Report (7) • 1
• .... .•,,. - . ,-, ,;•,, ,‘,,,,:= -:".,--."....:,,, : .- -.--=', )"
,,,, , . ,.,,, ,.. ...,. , ..,,;,,,, •j .,",52,...:: . • :: , ..,,:-.:,, , I,,, ; -,- r,;:,. • :- 3-
I .:.„. . ,i--,,-,.i,y,:il " v., e ,„ - ? • , , .."',,,s• : ',, ''., -.. ;-:.&_:) .., -:',•:,-',,,".v.;_Ar,
'. " ' ' '-'' '; ':e , ':: ;:--,-.,1!,- ''-.:g-7,.'"!:'--,,':`. , '‘, : .. - .1 -, - , : .."` `;',. ' : 7:' 4: ',.6 ;', L,•••■1 - --.,- /.71' DV ',--','
.,. , ..„.. ,„,- .„, ,-,,,- ;.:,-- ,,,e,7:::::''..-. ..',47,;;;!''-'.:,;:le•-.'f-..:z.f4.-I'j4,,,-.-;,r ''‘'''''V:.;".,1%,.. ,,.0-',',....'.:'.-!...,..-::,•"....2.*.,.•,,.., . ,.' ::',..,„.,`"•;,-,=-; -/IJVFIC:1..L.;U:i t.';',7:',.;:,!...:'..`ls'4.,'"-,1..
.;- -;:,;_ „••,- - .: . ....,...}: ) .--i, ,,,i i-: ., ',...,, ,..: ...,,.• . -.; ...,:.:. 4;.,, <`; .: - , - ,.:', :I, ';..f'C'.. 'S. , • ''' ''' ''''' . '.''', ''..,...,-,','... ,..1--':',„;`: ; ‘.:. --",' -,, .. I, 7‘- - ! -!` ' -: ' ' . : ‘,4 — .1.:,7' ;, , - .'-.. - , :',`, c' .".,,, '',":"
.7 , 4 r ".., - ••1-;',."- ,, -,.---.' t!' *. , ".7. .. ‘ ", , ..2' .- '',', ' '• `,,- !!' '.,:,;-: '„i, i ; A.r:,. ,. J. tr,,,, '..'.,. . „Y..t.V,V.,.,:,...,,r,z , I„ , ..” , - . 1 :!„. i , , i :;,: 41' . , `, 61:
; •-••!''''" - .'.*:,'` 'f ', '' `''‘;'' r. ..' \-. 4' A. • ''''' -'-': ..':...,!! `','... .4..r. \-;'..-, . '1.. ; . a ' : : :;•.: -.,,,, - 1 , :::.! -. '4-.:,,-::, -', :- ' "..":::... 2., ,'..-, :r-:,27.17 7:',..c:A.:-..---.S•1`,4',.- ..' .: -- - 4Y -,-!;.,-.'..., i • . k.L.
...,:-.4,,,Is:• 4 ,,,'-- -,..-1"..--4--:r-1--'.'4`.-:::°:='. „.:',''.-,P . .:'' .E ' ''.72';.>': -'-f---',';',;.;,.•1:-,---!.I.,..'',. :'.; "...A;'`e!,.'-.,;.:::,
'=....-' '. , '-'-`1•;1".,:-,.,,;,, - `: , ,..','.:7:-):: rt •-• ' . '.•,: :•:,.",- -.I. ,!t, , - ..-. ..,: ;„ ,,,, -. ,
, et,: 4. '' ..-,•.",- ::-.: - 2 :,
' ,:*..- ,.\-,---'.,. ,....: ,''„,-:',- :;-. ' .:!. t'"„13.'1,:,V.:,01.'';'-'.'''': 1 ,.-, 7.; -, -:=, 1,- ;': -'",-" k, .4 - :::- . i),,...., , rr.,-..,,,, , , ,, ,...,g . ,., , , ,,, .„ 4 „ ,... , ,.. ] ,, , ,,_. ,: ... , t
I
• i," ,t.'.' . '. :- --, • .: - .',th,
4 4 '''i:;.:-V'',..e,.i.;;I''''11,..:..,':‘ ' .':7",...s;.7..`::,..-..;,;,,'.•6+;.`V.::":*114... ;4Z,t,:4,4174 . ,:.:,:.CA,...'.....0:,.-..,.-Z-, ':',,,,.•;,:%-'!., ■i ' ' 7' .i , ;; ''',:'1:.-. 1,.: '. ,..,,,?`,'. :',t,i '.. ?....,.-,-; :•,: .,,;:,.. 4., •;,'.. .
.,.„,,:'
,-.':•,:,:.",‘;,i:-:,:,',,:-.,,i)::,,E1,:fir;t4,.,7, .1A0.,,L7,,,,,glit.,,,,,..;,Pil,',i1:'k .,,.:`!, Z: .- .:'. .,'; , ''.,' ''''. ` "";:e-4' ..‘,-'...; 7- .... ' . ' r'''' ' itf,..42.'1 V.:-':!'.';:-',..';',t .:1,..',:;,t'i: ''';..'''' - - t ;'• i: ' "::,.. '....,
.,: .,, t 4 ,.-.,„ to ,,,.-.,,.;0k, - w - ; , ' ,. ; -•,,,,....., ::: . ;••• 4. 3 . , j ,,v - ' , ..t.,,..,..- 1 ,..,.,..-,, :f ';,,.:.?„.• 's :„,,p, j*,10117,",;;,,,..,:!--,:,xp, 1::,,:l.,, i,,..,..4,,,1; 4,•••.'1,-.-..--i-:;•-.2•,:=',;;r-:_,•.''..--.,..Ni -::'::, 1.,,,',11 , , , ,,,,,...
-,.=:•:.'' '''.7:4-':c:s-",-;",;•:;*:.:i: '1;.:Al 1.1,Zi.,';,i'::-.;:.' '14,4';:,. - , , ... , :' , ',17. ,.'ibP..,-; 4 ::' , ..: ( " ,.. 0„ . •=' , •,;-:' . :::-:; , „ - :;. - 7 t;.::;,',.,:4-',,-,:.--:..`t -''.-7;--,,.,'...-.-...;'.,::-..:
.
' •,;: ::: - 4 .:.,,.., e:',:;,:i4044,-..r.r4.7i,r,; *,..;-:::-V4--:-.0:-if:75,442,r,45-1,..,41:',:1,,',.',1-„:,:rtc,',',:;,',.5:'.., '.471:`7----..,TIGA073,;.. 41::*---..-7),-,=.1::".:
''''4'(*3"1"'-4'4'''''''''ff :''''''';:';‘''''''''''''[:::cl'''''4''I''''''' 1''CIT'Y'''Y'r:';6”
- , ,J,.•. , -,. !,,, ,;::_fr
,,,,,,:::‘,7,1t,...„,...-„,te;:,,,1_,,,,:,:::„„_.:4.,:,,,,,;:,,,,":„.....:.„...,::?, .f,,, ,_
-- ' ; ' : ; : ::::''' 11 \ 1 "r':.-: '11'-- •-=:-.-:'-;.):.'''f' '-;"( -:,-;.'7,:e7,,,:?,,7.'1 ,':1:1U1-14,Y,,k71- -;:r1s.1:.-'7,,;":.,-t:,)•..''',..1'-1-,•D?.`"'
11 h''Cill'ReMod el ..,..,,,,,,...“-....„.:,..,,,:
r...,7._. :,„..:,,,,.,,,,.i.,,f-,-,„,-;,„,!,,,,,,,:%.:,..„..r.:,,,,,,-.:.,,i'f.:.:0...-__-„,„29,:r,--,,...,..,!-,,,,,..,:i'i-Azi....Tiil .6 Kr- 141 cl ' t --- r ' - ‘ - ` rl
• I : " '' AJ ":., - Yr" , - -:, -',' tr:'r- 4 ,,.- '•,'....i"
:•,',:i.;,:vt: . „:-
1. 5 i .,',' : ' ';e:01 ' 4 " .
''.' ''. ;:'..i..";-:''': :' :4:1';frr,Q.,PY,§g.,::,:',:.•V; .•; f, ...,' r-,s'■,'',:;.',..*, .V:':P,if ;,-,,;;':
...,.. , .- .;.• ."...-?,,'„"
11. ,-' - .,t-2): , . - -., i...•;"
'. ',, '.". . `i : ..;.■ ....' .: ..:"..Y:i;i'''''-'''' '''.;:l'}5:'.1',-'....'s''''''''''''' -.'..): ''C'''''''' '''.4.'4ne:"11:411:n' 1... n Ct'a$4 '',.' Y.':','",-,i.
7 4, ' '', 4 ' . ?2,'... " :■ ' ; ';:% '..." ::,', '; : 2,",,';.. !,,...4 : 4 ,1",'..' ,7'.'•'' j=7;171garVil - lli: - .4" NA. .:.".., ': .• . ''.'S',,ii.:-1:i,-:-# :, I .: ...-).t7- -'
,1.,'-- ',,...--;;......'---: ':. --- ' ;,),'..^:.':-.,..74;;;;-,.4,..`"..,...cf:;;;•:.':•:::::;.7,:;:•Ii"":.-:':`:::-..:.=;;C:.',".:;--11"!''".‘''-''..‘•')c..::,:- : '.
I
:, ,..
f-t.''''''''.: ''''''.1h•••;' ''''';'4:■''''Z'.::''''',"s:*.*';'' ''ft:Ci''.:'.4'''''sl-').:' '..,'":.:;..v.` i''''''%.'''''..;-"'
:,
:..:, ''‘.• :•':.: 4",t...!..:,.•:;,.?_.--.;-i,.::•;:.';'..r-:.....:::::'-a-i:".-:.;:-,-;::.,.-''',...::_.•.:::;:::;1..,.;:l'",;,',:,;; ,955 ." j‘::'. • .''.","'-'• '''' , 'Y'-, ''
, , , ,,.6 , ..i,: : Fi d g ,, ; 7 .
,--; ! ''..'•';4'.'-.! ;1;..-i...-,...!;(.2..: '..'..",.,„-.',!,..-.,.Z;":"..--:',.', '72;,t..,:c::',..:.‘'.-,.'it'.',.': '.:'..-601'8ib15'-#:.'2566();;,0QQ:4,:.,..t.:,,,
:,,....,:::,,,,,.:;;;;...i.,...?.-...,.. .... ...,,,, ,- .: 1 ,-... , ..,: - -r,.. - -,.. , , , — :, -.... i,::::.,,,,,,,.,,,,, ... - .! - , . il•-• .. '..1„. ,f, .... '.. ,..,::.,....
..,..„.,..,.-..,:.„..?„,.. ,,...,.:, .,-, ,,:,..,,,,,.,7.,4,....,..,:::::,,..•:-...,,,-;,:,;,..i.-..2.,....,,..! -..,.,..-,...„:,,,,,,,,:-. ,.. ,' ,4,.',:-..,:.-,,,..;,;,',; ..„..,;:.;.-I..:!..,-,,,-::!,...,,,,,....,,.....,,,
- .6.,:' . .,,„ :•.
-....:$,.z.......,.,..,,.., :,.,.. ,-...,,,. ,-..., ,.._.,....:„1"L-, 7, •;... . '.' r A . ...,..,. ,. ..7:;,,.. • -A 2..4:- --,., :: ..:-.-, ,,,,,,,, k,,,,
V.,,
y':-..2..' . .....%, "...: , I., .-"... ..,^.'''‘''' . . ,,".; ' ,■4.T , , t , ,,..',..' .„... .S ., ,..'.l' V .. - '; ''' ',' ■ - a . .. '
- • -
4'. '- i'..:. Y'''',..''''','4^',,l'i'•':'',', ..-' '' ,-/.. - •P' : i.w.,,' '' ‘ a 3'. ■-■'.:'''';'-' '..r-..;....:T'4■'..- '::',V..'!'',;,,'.• -' '.5 ;• . ` . .;;$7 ,, `,- ' ' "r; _.1,..:rt.,'1:
'''''..:. "' ;14.‘'&-, ', .....:•_i'....'11,"....';.:'!".,4; ',■;- • . i.40 _ •.,.. . '+`-jr".4.4'.1,•'..' ---''''S.," ' '' f v....'; ,...„..;:.,....!,,,.,.,-.:,:"....:•::;,:.„',..::,:.:,,, :„.k:...,e..4;',t:
:1 • - - •
'...,. '',.....-7,.."-"?'•
I . ..,.::',..', ' -, 5 , ,,...;;:(.. .,,.:... f`,1; :-.'. : 1 , `" . ..r .!•'.;:'..-.'...i,!;Y--,c. :',.i.j;1-, '1'''hi'''.4,:'.. 41..,,''',4it,..V:„::::,,'' '.,,.,ii._ ',,-...:4".att ';', r ' ',5 - 4.'$..,'1.. ,,,,,,,
.--- /..:-';'-,';'. . ,..,... --, , , ,:.:,,-:..,;,:.:0- ,,.,.. .-'.,-.,- ,..,,,,,,.; ;, ,- ,,,..- , • -, ,, ,,, -. -,- , ,4,-, .',-. . r!. .; '. t4 .■ • ' ' '' )• .' ''. ''''. .' ■;;.: 7'1.
' ',f 't' ,, ,,,.;!" , , , i_.: 1. - ..... :' , i, ' I'll '" .7,f, ,■':S.'41.17,;'',,, ,..,. „,....:„),.,,,,,,',..., -14'....,.. , ,,...: :,--, ' •• •
, s- - . - "''''., 2-1 / 4 ) , `. - -,'
.-.,,i': , i- . .,'. - -.7'-': .../ .1'; --Lfc--..1"!!!!.-:-If•:' --'',:. "•:• • ' '- , f". -2 - if ii.,.•".,.1 ' h t,,...leil' ,-- ..,,..• ... :' -.-,- '•--','":7;,,f,”
; .-4;';'` ,! •[.
- f rl :‘,','''' -'‘.. ':.:1.- ,i, '1; *','';':-.': 1 •: 11.; ,: ' ;,', ''': ' t - 414 -1 ',.V , ';') -- . - V - .: - .. - ,,:,;', ' ' "V,, - ' , ,.`"..!: - ';' ,' ''', --- .-,:1,-45,-;,......:,;,01,tif' `,N-: ••‘.;,..: ..' ..4-- .A ,...:
..• :fr. .-. ,, ,,:••-• ,! .4: i .,;.:,:,,,,..,!'..', ::--, •,...,,,,,I...: ....,,...0-,;,:,.„:;,..,y,,..-.,::',,,,:,.., '..".-. A' ,‘,'"..,=;,... '',.,::'. • , i,....;g1 ,r 1 V,..... i .v . •7;` , • 7 i v. : ,,,,,,;„.. ,:,,,,, . n:,:e.„..., 40:". ,,,t .• ' • - , : ' . r :r_ ;,.,‘"•,!;:-„"..,:..:4-:`,.',.,",,..,,,..ii,;=,-1.•,,,,fr.,„:;,,1"...4,:r": -, ..,;,,,,lic 7 :,:'.. , .:'. ', ,.::::,-,
• '' -i ',$.!.7,;.:':•41.. ,., .- =), '.--,-. -..*.:rrrt..1-4-)):::.:::---.::,,,,.;•,=1:-A --'', • ,..:'-', ?;t',',: w.-- - - ?„;:4 r:'
11'3'4 J*...- •,,'
I -,=:;;,i',:.:: , :'...- :,;;:f..,.,:, `1.!.i.4: .,,,...:-:-,;:/ ;•;.,,,,;.:,-,,,,,,..:,;,i. 5A,7,-..:.,•:':::.>:7-?:`,''.•!''l'"'P -'.:'''';',V .;.-..-:',":-.; I'.' - ;';
i !...•) 26 :('-' .;':-....,"..ir • ' "
.- ,... ;
.:-.- . 4 "i !,,;/ • e, c,
".., :'=:.• .:-...... ..z,- . ,..=, :-.••••,. :-.; ,,,,,,-- '-:- ., ',.., , --4, y :.= •,..---,!: ,.,.• ..----- - --,:• . , , I,' t„.. 4_ . . ..,,, ,•'-_.;,,. ,I.,i,::::,:f,,,,:.-::::.,,-: : :" '''':::--; 11- ` ..11 ' 1: "
-,,,...,,...::::::-,:: :,,1-:':-,-.‘"t - ":" '1" :. 11 7 41 -
. '''''''' . " '' ' - A . ',..":" - " ' ' . 4 ' ',- 1;!--r------- -..i,'.=!'„.:,..;:-.` , f.:7;,-,',,,
: ' ..i..'' . , , f '4.!:. ',:. fi-- .,.■.,. 4 . ..i.,',, .; - .., . 4-2.,-:?:.,' ...'2'..4;- ...,-14,41_1";%it.,"=-, . - , '',....■,.','," . ... e , q. , . ,..< ' ,' -"•• • ,,'' , ',., -44 - '1" ''' , - . ' .4•! ..,,•:' , •
'•.•re.,.• -.. ' . ' •••''' V ; ':- ...-- ''• '1 . , TA' " '% . '''.: ;- : ' "' 21 7 :'•:' ' l'•' ' ''''''•'- ' . Ti;77,-.'•-•_,;:•':, :::11,1, \'.:::". - ' -,.' A • '• ; : 'z'n '' ' ; '''•:,' - ' "..' i 2 '.:.- ..: - . 7 ,--: , :' . .•.-
14: ',' .'.: ;;•• '
' . .' • ,•• ' at••• • . t • .'',.. " ; • ' ‘ 7 .;•': : . * /•:, A 2 '; , : : ',,IV.:1 .,' • • ' ' ' ' • ' - - . '"Asil 1 t I 11 I I i A i Li i ! ! g I 7k."11 '' ' ! ` - :..., , -- . .' '' '' • ':':1 - .‘ , .:,,: : :' 7 . !':',,.'.4.::
..
.- 1,,,, ,--Yotrara...k,.. -1....----,.-_:--,_ :,.1....".. 7.-' " , .- . ,.• ,,, ,4
.:;.'. .,..,,-,,,,' ..-.!1!;,-,., l, :.,,.! .)..;, ' ' '.,...id',, '" '.' . .,. ...; . ' ,-,,"_-it!..'„,5;.,!,'
-, ,- ., %,' '', - • 4 . ' ,:- , • ,. , *....1. 9.- '.',.' ''' ''tiq ,.. ' ,- ' „.' .... ' .,,.. - . . ' T. ,'1■ ''..'", ii, ' 1., •..,,,,, t-:, e- ;',4%- .= . - , • : ,
F' :'''7:'.`7.f'4.--14 - ;:?!:-..: r - ,' '; , , ':' ; 7 'PA ' ;'' ? 1. 'fr , ':''' : . '-' • . " . ' ' 4- • — • ' '''
, t:' - •::s, i,
:11„4 .4-:!,t.'•,''., C .; .';.!.) ,-' - •--t,,,;,..,4 ';':.,' 4• ‘ =,, ..,. ',- a ,.... -' -,-- "::_-', ::' 4 .:"'. =,'. ,' ': ': .' '''. . ', . . rri% .4', ...:'.'k '';2' '''?::&.tS,.'0''' ...4 ',.7 ...4.''',:',■. '.',
7 .,, .3;,-...1 ., , ,:.-:::;7 ..:,',-,. 4 ' . ' •=,..t , .„ ,, ,. , , ,,, x ,. • ..,,,,,,.:,, ,,.•,,,„,-,:, .• - ,.. ..,,,, .).„ • • ,.,., _... = •„, -. • : • H - :•...... „,.....,t ,-,-,,,:-.:.,,,,,,, . ,, • ,,,!;...
•,,
, • , . ,..,.. - , n, : ,, . t,:,., '.,. f , ..i,' -,.'.. ,:" : ,..-;: *:,- 1 - • , , , ,i,>, .i.:,„;; , !., c.,.
, ' .:! '.',:: 1 .4 4'.'.'. -c i.?"-1 ''7 , - ;:.,' '.4-4, ':=,'Ir'fi''' .- '.; : .. i ' 'k' "' , • , :" c "-:: - - ' ' ' .,--• ''.', 4'1 ':---' i.'..!.:•', ',.' ;.: ,-* - ' !, i" ,- '.";=i; . .= ' ,(, • .5 ,,,- ''''' - Y,'' ,. • ,, ,.t.,'
;..4:f,',- ,; - .-tt,. ( '! ! : '.' . 1 , ) ;if...',' A ' 1 : -- - -- :tor- -,- -, '..7-- ''''. "''''''''':' - 7 .."- ( '": *. r'' 14:'.1--:.2::-'''!'e;''':A4;-)' - :-- -•"` ' ' -'''' '''''''''
''.:••.',:'-!:
..,,J4'44.*.k. '.--'''---''-'-!' -'7.Z:',:-''''' ' ,,, ,415-. --- : , ' .: ;',#:•:'T,. ,..?-6'),•ts .•?.; i f - :!•,,s,f. 3 ..1‘..:, . - , 5::„.;:-..-_-,:i:,v'rl'
- , ,
::: L:.7"L‘kri'1.,,,', 7.-.-,7,,,!!-'1•...:;p1,1i.4,,1:-41t , ,7-"e!,' '11'...i.lti," 1 ‘; . 1 N2, 11 ' '- - '' ":1 1Y„'''.: , ..... t ; ,...:;;;- )-!::::', , :,-: ...!:cr?,i,7:1-1,1::,-=•.'i", .
''.::, ' ' '' 1-1- " €1:4'' ' '' ' -'4 . ''' 1:, t.A4103 0 1:1 ''' '.:. 770r :" ,, ., _ , : = 7, '17'''''',Z.T4:,7L.,-:,,,,7,4',..--4--": ;.,.;.,:--2.d'e,:,4.,,,,,,-;',.1.z.r„ .,•,•":'..c.',2,..!;:'''. t '' '' ' ' ,1 •.'::' '''
P,-.,,,,;-•'?;',: -.; ',..7r::',.'' ..!-,.J.,!‘,.`,,...,i.-„r:;.*:,..,. !::.;,Y,;- "f:. _ ' pAnd la.. ., '' ..;.'', ';':: ' , ;;,'..--...-:, - 'j . ,;',,. r •• ' '''' - ',.," •• , • • ." " ,. ,...;2;6 . - .t,i.,..--2,:::,i7,.'••■7..:,,,t,,,`
' l if ' t ' ' '::.' • • • + . ,` : '• ,''''•• X ?ri , , ' ," 7 ; _., .....:!,..' '-:,.:.;:i '' ' ' ''' , '-.,'.f , :,,,:t! .';',. : tT ,7. ,, l ' ; , ';' , .'' -(''''?. '..-!". ;';‘-;-,:4‘-'.': ;
I:.,": '.::'''• ';". --, '. ''' ' ' ' '` e i r! '' ' '' ' '' - i' . :::.'''';'.
-:.,,,,,': ,..,--„,..,-,
4 7-;t32,i , , :,:'',,'tr, .: ,;.!` ::,,,- . . ;,. ; L. 7 7 . , -,1. , ' . C .,,,. ' '.. , . 4,;."::‘.'j' „,,c.t<.,,.,,,-;-•::11.4.4,q-!,,,,,,,,,,,:-:,i,,..-1I',.--7-,..-i•: - ,,--,' ,
•,,.!,, ..,:,,,,, ,„:,:.',....,:-..',:$ ,.r.-.;•, , ,,,, - ..... -,.44,4&d:11. ' { ,,:' ., 1 ...::,.01PA.■. it :'../' n ' .P . ..1...;!.FI',4 ',:Alt4t.• ; , .... .'. .', , :.''' .':' : ;, a. ,', 1.'■ ..-.i ' 4 . ..,-i,m
- 4 .. )-•' -. ' . '"=>1 . -- '--- .....,:; . .. - •-.-- „,'-',•,.--:.•‘'• -.--;-• - '4 '*' .”' ■;r:?.': ,,,,,e,,, ,..,.,,,, , , .., ,.: ,-,,,.. '.,„..;;.,,,,,,',',-,
,,.., !,,-' ' ; - ' ''" -- .,1/4 '• ''.- • . . ' ' ■tr','" ',..."./', -. " ;?,,. ' - ' ; ' , ' , ' , i .- .::" - ett'.::•,$'.7 - 4-•..,-''=.1::',,:',...::: : :),.. , t,,..:.,...Y - ::... ,•Af....1;.:..,,-0,•1.,',C.7,..
'-'-',•:'';' `
q ;-,:1/4,,F...'.,f4cri'''''':;,,,..PtEC:" ' if ..,: ,^:.'''',. ..,..64.%,...it;,0$4i:.;4.:':$4`:;"'""t.."' :k ' • '
' . ! ?= 7
I
6;;;;;.), :',. •;.; . ,' . 1,:" . . . .4. ''...:•*",''' , * 7 1[4 - ,,,,. , -
.1i). :' :4,.: ; 1-,,t-_:,"•_„,,,J-'•:: `,"7:7:r?ttei, • • . ,.- '',,Y*,,t;-;');'.?...:i.
• : ',--,, •: -. K;:',11, - -. 't1 111 .417' ,' : ' !I , f 1 :: .,.-::2.4,-,4it -,...`,::,',1-,,-'7„;,„,•:=,,:,, .. ...
;'‘,....''. ,;:' • ..• ':, i''. ...,....,,-;-..,. ,:.
--.-------... - . :4 ''..... ....,4'.4;1‘..•$)-:7::•'''.''T-J:‘:';:•''..•;;-",[(1..1 . • -;-::`".-1.....=:;-'''.:::.i"!:
rt-t: .:',1' :
ri.,4:t ":"j'. - : 7- ,' , -=;:',):-:' '., -- H., - , o':: .. • :- , , , , , - . ,";,,!',';',,7:1;),,, ' 7 -.' --:,-...;,". i .12 • . ..,-, !.7.,...f.,,'::-..-:-..,,,, . ,.‘
- ".,..• -
:,,,, ,,, , ,. .c...21 .3 .,, , ,,..)..,..,,,..?,:; -. .,•; ; ;,..,,--...„ - ,•„•,,,,..,-,..,,,i y .. •.,-, .„:, .,,,: ,-,. , ...;,:', ,,, ....,, ,.,,,,,,,? ..-,,,, z.. 4 `,.' . '.,-, ,! 0'.....'-'7, i..--. 2;:• ,,.-L.,. ., , : -1
,...,-;,..!:,,, ",•::.4:
.; .',..,..;: • ••'..: --:- ' .:: -71' '',:',:', .-- ... .,;,:.-.,:-.',.7.,"5:-1-'.'-'2.--,..' ..; -„!::-!: -'.' . ' ''-`: ‘',,,>,'''''',- -`-'i ...„:,--' ....•-• - i n ..... ,, "2_;,." :' ,";•';'.6-,,,„?....;•- '! % -,' ;;;:• : < • ,,.,j ' %, ■' • '''''' '. . :" ;./.,r-,!‘2:34i.,,,:";-':,i:::;'?
- ' - -1` - .; P.7..1.-..„ '.1,..';:::„., , ,,,-, C • ';t .;-.-.-' ,•••.,i ,.:-...., 7"7-".. • - '1 : ,> - 1 , 4-, '- ' ' ' - - !' ' - ' ... ,' ''', ,,, !'• :: *"1% -,-. I :•":;'- '
, .., 1, `‘''''.!,,,,,
I
:'f,-,,,;‘,....,.`,.,;.:'''':;=7';'7;'..;'..4-■,,.`,.;.:2 4 ":, -"C.,..';'... '‘''',.'=•,-:;11.. '-' '''.' ."',''''":. v.-'■;.::- '''',"! C r , ',."..'.: ,. .4`2k t'.;'''? 5*- :?."" - ; - 4 1 4''7..;- l ':2.../:. '''..
l' 7 , , ,r,,,,,-::•.- A.Y'Ve::: :
,' ..:,., - Vie 747';',,k ; ','. ''''= .., .`'' ",..„:,,%,•:, .,-- . ,- 4S? -'':? : !!' ': ,:;.:,,,!' :,. '7.'',.-...,'-'",- 7 ., : Y " ,;-::' , 1` , 1 '- '-' , ,■:- : '. , t:* :`..: 'Ti!f::::','-':,r,'-,:: '-•,--:?... '!‘-''q'
.,..::.:•-..,-..., •,•:%,,,,,,.-:,.,•,:,: ,,,,.. • „:,-,,,,,,- yi .,-„--,,,,,,;„, , v; ,. .. ,,,,. ...:4 - :. ,,-, ,-,,:;,,t,,k, ..-.'', -.,,•-',,..'•-•,..-. :i. ,-,-.,,,,,;.!..,<,;- ,-..,,...:,,;•-;;/....,',•.. --, ., ,' -, ,.,-,_•'-,,,,., -.:. : •_.,.;,?,..''',...t't,„,a ; - ,, - - • ':. ',..::-.■ r^i:t.'"'i's ,:::.;4-....,:
--,i:,..!.', -,Y 7 -;:„,;-;.,.
,',':, r.n7; :.`.",:%. ,":t.' ....', , -` 1, t ', ' `K: ji--k„'t' '' , Its.. , A",• . .. - '1' • , . ,..,....,,:- ,,:!',:,,.,-';,-•-,-1 :.:•,4,Y.;;F,';, ' • ' : . „-,.;'‘'',=: :* ; f : , ': ; :s,.`
-.- ' ' W i•
i ,...„-;,,...,!,,...: ,,,,, - . .,,:....„,,:p.,.%4,4„-:.,,,,,....,.?„,-,,., „ • ,..: - T -: .. ' .' ',.;',..,,,':-::,:, •• - ' - fr" , :"% . .• , :',1,. 4: --;
. .ri,=•-.,\,-.-.y . - :„, ,...... . ' 4,,,- • ,,,. - %: ; -.,.....t.: • , •,....k :: ': ,:•., ; '-;L --..,?--,..?,1,....'14,:-...!!-'k .;-1., - .---"-'..";- .,..•.,':',..,„
" '-`, ;:::".,... ,•,.*,:,:,,•:?;':.;"•.2....":„4,..',;',-,:;1:;''.,, .,..4.....f,.: , , ;;;, 4 1 ,3s,. ,F .,,2,.i.......' „ . , i,• - •...;:; .- ;,",,,..:: , ;,..,?,..'.....- - • :; .,,,;...''': .,...;:•;'.., -, .;;. r.:7,-,, , , ,..;,,, , ..::4 - ....".. 1,.- " • ' .. , r -,..
.1[ :' '', A,
.'-3'''t•L'7.,F!.-1'.--",:' .,,,,;:;. ,!;--':-.1';',',-.2;-....,i4:.',':' .•-!;•:;'-f-';-, ..•-:,-''',',"-"..-,',','....'w=i,:',-7:,.,:=i ' ','...-';',..-."-i-, .. . . : - ''''',' - :" - ..t'.4 - •:'...';' ••‘''''''''-
.....,,...,..-,:, ',:•, -. •„•,•„.. „t-,:. .,..- ,
,.. , ••• ,,,,, - -., •:-.-:
,:::- :••••- • ,,,,,,,.• •
,•:, ''-''" .' ,-;',.',''t•. S1'..'"A' V 4
'''.!:.1*;1?:' ''(-1'i'en'''' ''' '$'''.. : h'''00.,.. ''''0.;.'7.P.:3-$:::tr.;:,..?:1):-;1': .,''',-.''''...:!1:; ';
..ci,,,_-..''..-e ::1‘-.,.;1'..:;,''''"" :'::',!,,,:::::,:::" ;4 ;, : t . ::: , ..,: : :::,.':„.1"
.:-.-,.f-....- -ri y,-44t ,k: -, -,., 4:-..!'r1-1'"4", ':' „...,; ",-:' -' %,"/'.!:-.'-:--Yf';",.ii";''' ', •.: ' , 4 '' ''. ' .J- 1! ‘ : ."`A'
: .:,2.,. yll.r.7,....*'.. ' '.'...'....„.11 .., .::..,,,;,,:•,,, --,,.,..,,,,•,,,,, ,-, .-. fc:•, ,,....,, ,..,,._ .,.....,,,,,:•'.:1., ••. •.;!,..i t ;:.--: ..i.. -.:... !-• -, .: :.` ‘.• • • ft ...`. 1-:-.,. .. -:',...:.: ,..;., .... :.,,..:::.,,, ..,•...:-.:,....• -,.;,,,, - ..•: r` 1 ''' Q '
''''''''.. 4 ''' '' '" 'if , 1-' " r 'I - f'," , ,, -- ;',-, ,,,,.! - ,■.i.,,,. n
'.,..1?.(:,: ;:1-1„7.-: . -.. i'''''" .r.`..:::;f:-',•;: ,..-? ;: (4''."''-"-',1 '!i...,,4:t,',. '8t.'14
-,,,1761.d; '?.. ...;',.%!- :C ''....:•:,'„,r,,17'7,:..1%...' '.'..., ' •.: ' . ''.':?''',-.1,./,,,-;::', c.,:''''-';;',,f!'.1.?":;
‘',- .4 "'". ',.''t. 7 :::,;„,,,:; „,,, ,--2:'■-, sr , r .:: , `, 2 e•,.-.1,..:::,',., c,',::,:,,,,r'.c,...,,:.:,.... 4;?;4: ' ':.- ' "r ':' 'iL ' ' ' '..f',,,': i.... '., :i'' . ..lr..;;- ;:
.. r, ., ,;,, '1,r4,4,;;0‘,■•;,‘::';:'7".T::'.14 t. '.AV ; D Ir s
-••-4 :z.i,-- ,,,,...-:/?.'„);;
1
' '';''''f.:2'4...):r4:.lii.lt.i''' '2''Ii'f.?.16044''''''''''';'6''....APlaraVeY!:?': .?. ,-• i;•: .•... ',"-,-...,:y..-.:- z, - . , ,• , .:;:tv , f,., ..f..:,. Q:;,,. •:.,1, . , '.- „.,..- _.......,.:f 1 :rf,.; - ::' -.. ; ,-, .,
- .,.,..., ,..:,,. -.- •.,:: , ''...-.41'?`;-: - :itlte.. , ' - ‘.-i, 7''' :'. , -,...--.;',..,
„,.::,: -,),7, , ,..;:. ?: 8I .13i. ,!'..',.„-, 1;.;.'',`4iitik,-",..,,,',',:::t.,..,;71.7i4'..:',..':*4-.'.74'47k,4 :;'[-,;:',.'i-fiel";,::3-,',,-.•'-'*;',','!:','
,,•,,..!:,,,,.-,,,r,-.T:::..,.-::: :,.-a.-s. /)” 00.,:(... ,: ,,I,._,,..[ k , , 74; '.'";.-• ;"' ;:', 4 , :,,,r,, 1 1' , ,-:,'",i.,1,"1.':-.;,'..,...f;:i=;''%.`.,..!-'f'..-- .‘ ',,'"
:•.„ ..,,.; .,, ..d .1 ,'-
i
c,
,.., .., .,, .,,,. ,.. 1 . . -". 4 2. -.,:„.' .‘...''':,.„. ,,',...,;,„,-■?,:...,..,7.4,,•!.: ..,.=,...„ , ;4 .-..... ., ± . ,..._ c: ,.. [ ..,,,. ;, ,,, , r.: :.■ ,,,z ," ,,,,,,,', ; ; ;: - . ...,...: 1 ,1 , : ,:c . r r,. ;:i , ,,,,, ii . ,. , 4.t,,,, ,.,, t. :,,,, 144 0 i ,. t.; ,. , . T.,,,,,, , A.,,,, ,, 11, ,,,,„,,,,,:.. , ,.2.,.,„,r.: ,:;: ,i,:, ,: .:, ,.....:. ; 1.4....::
...., v :111 ,,,, , 1-7'rePqi..m44:Pyi:':..:-7'..,:., .....ii. ,,„.- :,-.: 's ,. ° ;.:.;e:t.L„..iciri3O0. . ,,,,,,, ..- 0 ,. .&,i ., ‘ . 0. - :; , -.•. :,,,,,',•;' , .. ,-'. i' ;' "'Olmi7 i '-:.,`,.;:•:',::.; ':::: :' ,..
vr rir . ..e:-I.Y.: '' .;:r. . ::•-:4 h,:,..,„,,,,,,,...1Z,OPIYV-:TU,\,. 4 y,,,.,:t'-.:,.,'......",.zYr:::;.!T,,,,..1',..•:"::-`1.-:':'' ',' 5,.`' '..',.`;!.:rz:,•''•''...,';1'-''''''N'.•;'' '' . .?''''' - -, - IF '-'-.;;;:' - -.2
' ' ... ::•' - • , , : ',„:".. ,*1 : .. ' , ... - ::: , .:'!".....,,• : -. ..."'..-; • .. . ,-.9...;..,t.jr2S.:B.QI:PP1...,.1*'•:- : ' ,... • .:I T !!, ..: : :" . 7 : =•A', 1: ;. , :: : :j:11;; - ..':.'";.4. :-4 , i' - .;,,:„", ':'. :7, ,-,-; .i.`4.,:. 1 ' :-...700,,,....,.'t':;'..$1.4,-; !-"4.:;-•..'`f3,-;.*:'j3';:'4:',-;,'• .,;.:.,T,''''';...'(:-..c'.:'..--,::,,,`.-P....''...:-."4,,:•.'..
,2.....-• ;:. ,..,.....-.-,...; ::-; '.` ,,..,': ;..,:.-,.,„, •„, i,,,*“.‘,•,.:,7-s., 4:, ,:'...., 'i,-.!''',,,."V,../, *..,4C)14/1111/1',..,,... ,'''.!,,,:!•.',,f,L.,:,`,;,;;;71",',..;,...";-Y':: ,"t•,,,,,' *.,t,'(..;-;,..).4.,:- , ,,SA -i 4.',. ,: ,'';',':::::::..;;;-; .,:=::r:'-.;,...
5, ',' ' .
1 . (,, ,z NI , :,i;■ . ,'„c.p':' . '4:',1',:',F.%-i'. ,i'gi.„,..;;:i?0040_'4•5-' ' 1 1,'? ' ''' ',,,,_; =' , .. ',,,N.T1 _' •;.,'"'“', k ,,,.'''''" '',,'. ... '-':',,-,' ,'' ' ‘.- t-',,` . ',}.■,.',./ ''': V,' ,i '...' - i.''';'. , t 7., . - .":'.,,; 7 ..,,;-, ...,,g),,,,.-
• ' " •. :'..:. • - -. -..'",,; ..: r' 4 , :', -.1",... :.;,---.:: , ‘.2).... ,- , , - , :2" , r?. , : , r7:.;,,,:-,i,•: r ' :. ' ::,,....:', ' "1 ,...-.:, = f ••.r ,••,'-'' .•:' -,' ' ,„•'4f;• • ^' ' • ' .: -L",:;, .'''-'`i".:. '.• - "'",, .• .,: ' ;:••-.%'...,''. I: , - :' - . •' ;<- • ' .i. .t - s . 1 ''',' _'...
1 '3 ' : - 7 :' , '' .. '"':::"'''''"it '`,' ' , '''''.4',1:-. '-2,-;;',',1-,..C.'-4:-,'-,.f.:),;:,,,'“..",-. ,--1::_:;:: t ,..; . .'..4:•,-;' , ',.... '''. r''',-'..,::;-',4::.:,:c7.,, " T ''.....,..' ,, .--;= e.,',t. ',* f. ' '' ' :' . .. s 4. - ■ "' , q,: . ,. 1 .:' ' '''''-' .; \ ''''''''''' . '..;.-: ; 4 4: .; ': :. '' ‘it; '..".' '1i'. ,.i:' 4 ,'',: '''
"i. •', '' .i ", :-4 -41, ; -;.4:1.:.1,'.; '.'.;,:*1.:_'."..%..;.,1;ii,'.:',1,,'....'+;,.', 4.[. ..;".''...„'...^.?.:,';.'".:' ,'..-;T":,,,■'..4'.,? :%' ',' • ,':•?:;- ..=;:.. ; ,, '-'::. ..f•L5' , . , .;.:,-..4.:::.7. -, , , ,:- , ,' , ',',,,' .t.: , gf:,.'' •:*1-•,• . 1.it1 . :ili :'...!,!',•-..
• ' ''' : ' - ' - '''';.. -. 7. - : --.'.:::::,,',--.;,. ;...?:-',;:::::•-`;'„t:.,:f-> .'''',',,•....',.71-"i•:1'!i:i'..-::.F.:..!;':::,..f...."'-., : L ',•-- . -, !' I.`, ','. ",, - •!..,-'". • ' •-•' ' ' • .
:::' ; .-, ,:- . ,-; ' ,. . :- : . '''' -- !...:::',''.".::•,?-'1,• , ; :- ...,.2:,:..;i.:1-,-,?:::-:;1'.4_, . - ,-;::,,,:. ',,.:2 -' , ,- ' , - :. 'C, - , .,.'; ,t ,',,,e , j. ,.;,...,;.,,;,; - ..,, .. „t., - ' •- . .- - , . -
II
::;,",''''',..;..'7.-!,t: ,,,:X '',.,,,:.,:-:',:,;', '......'. •• '',.:{•:,,.',..-.,'.::.'...-' x'".. '
,..1 "ft, ': ';.-°. '::,...c..., 4 . ,.,- -:'. .•-• , --
„ . ,
URS
I
January 30, 2004
I
I
Tigard- Tualatin School District 23J
I 6960 SW Sandburg Street
Tigard, Oregon 97223
•
I Attn: Mr. Stephen Poage
Director of Capital Projects
Re: Geotechnical Investigation
Proposed Tigard High School Remodel
1
Tigard- Tualatin School District 23J
Tigard, Oregon
URS Job No: 25695560.10001
1
Dear Mr. Poage:
I I We are pleased to submit herewith our report entitled " Geotechnical Investigation, Proposed
Tigard High School Remodel, Tigard- Tualatin School District 23J, Durham, Oregon." This
report formally documents our conclusions and recommendations regarding the proposed project.
I As we are currently awaiting vehicle and bus count information, the work related to pavement
design and rehabilitation will be submitted under a separate cover. .
I It has been our pleasure to assist you with this project. Should you have any questions regarding
the contents of this report, please call us at your convenience.
Yours very truly,
«DPRO,,
URS 44S'.cfc G1NE _ - 10 4
72276PE r
J
1 ; A OREGON ti Q
�- '•s 0,2°
i � � A %
I ice — --
Timo J. Richter, P.E. Irian M. Willman, Ph.D., P.E.
Project Engineer i EXPIRES. i2 �� /o I Manager, Geotechnical Engineering
I
I URS Corporation
111 SW Columbia, Suite 900
Portland, OR 97201 -5814
Tel: 503.222.7200
I Fax: 503.222.4292
I
TABLE OF CONTENTS
M
1. Introduction 1 -1
1.1 General 1 -1
1.2 Proposed Construction 1 -1
1.3 Scope of Work 1 -
1 2. Field and Laboratory Investigation 2 - 1
2.1 Field Exploration 2 -1
I 2.1.1 Subsurface Borings 2 -1
2.1.2 Cone Penetrometer Tests 2 -1
2.2 Laboratory Testing 2 -2
j 3. Site Description 3 - 1
3.1 Surface Conditions 3 -1
I 3.2 Regional Geology 3 -1
3.3 Subsurface Conditions 3 -1
3.4 Groundwater 3 -2
I 4. Design Recommendations 4 - 1
4.1 General 4 -1
1 4.2 Shallow Foundations 4 -1
4.2.1 Earth Pressures and Friction Factor 4 -1
4.2.2 Slabs on Grade 4 -2
.1 4.3 Retaining Walls 4 -2
4.3.1 Retaining Wall Design Parameters 4 -2
I 4.3.2 Equivalent Fluid Densities 4 -3
4.3.3 Additional Lateral Pressures 4 -3
4.3.4 Retaining Wall Backfill 4 -3
4.4 Site Preparation 4 -4
4.4.1 General 4 -4
4.4.2 Dry Weather Earthwork 4 -4
I 4.4.3 Wet Weather Earthwork 4 -4
4.4.4 Structural Fill 4 -4
4.5 Slopes 4 -5
II 4.6 Temporary Shoring 4 -5
4.7 Seismic Design 4 -5
5. Sensitive Site Status 5 -1
1 6. Construction Monitoring 6 -1
7. Closure 7 -
1111 List of Figures List of Appendices
Figure 1 Vicinity Map A - Subsurface Exploration Logs
I Figure 2 Site Exploration Plan B - Cone Penetrometer Test Logs
Figure 3 Standard Slab and Wall Drainage Detail C - Laboratory Testing
I
} 0: \25695560 TTSD Tigard HS \Geotech Report \TTSD Tigard Geotech.doc \30- JAN -04 i
I
I
SECTION ONE Introduction
r.
1.1 GENERAL
This report presents the results of our geotechnical investigation performed for the proposed
P p g g p p p
addition to Tigard High School in Durham, Oregon. This work was completed in accordance
with our proposal to Tigard- Tualatin School District 23J dated December 18, 2003. The project
site is located approximately as shown on the Vicinity Map, Figure 1. The Site Exploration Plan
presented on Figure 2 shows the proposed plan layout of the site.
The purpose of this investigation was to explore the surface and subsurface conditions at the site,
analyze the conditions encountered, and prepare design and construction recommendations for
support of the proposed school. These recommendations along with supporting data are
documented in this report.
1.2 PROPOSED CONSTRUCTION
The project involves an interior remodel and seismic upgrade with shear walls at the southern
portion of the main facility, as well as expansions to the Choir area and PE locker rooms. In
addition to this, the project will require the demolition and reconstruction of approximately
80,000 square feet of the existing school. We understand that there is a crawl space underneath a
portion of the existing school that will be filled to final grade, and the removed portion of the
building will be replaced with 2 -story steel- framed structure. We anticipate that column loads
will not exceed 100 kips and continuous wall loads will not exceed 3 kips per lineal foot.
Specific loads and settlement criteria were not available at the time of this report. In addition to
the remodeling work proposed for the High School Building, the parking lots adjacent to the
school will be rehabilitated and/or replaced.
1.3 SCOPE OF WORK
The scope of this investigation included completion of the following:
1. Review of previous reports for geotechnical and geological information relevant to the
site. This has been augmented with information obtained from site visits.
2. Conduct a field exploration program consisting of 3 geotechnical boreholes advanced to
about 25 feet and 2 cone penetrometer tests advanced to about 80 feet each. These were
done to determine the foundation suitability of the subsurface soils and for the purpose of
obtaining shear wave velocities for the Seismic Site Hazard Report (submitted under a
separate cover).
3. A laboratory testing program to characterize the physical and engineering properties of
the subsurface soils, including moisture content, plasticity, and gradation.
4. Recommendations for foundation support of the proposed school. These include
foundation bearing capacities, footing sizes and depths, estimated settlements, earth
pressures and the allowable sliding friction coefficient.
5. Estimated total and differential settlements of new foundations
O \25695560 TTSD Tigard HS \Geotech Report \TTSD Tigard Geotech.doc \30 -JAN-04 1-1
1
I
SECTION ONE Introduction
6. Recommendations for slabs -on -grade including subgrade preparation, base course
gradation, compaction and subgrade modulus.
7. Recommendations for retaining wall and below grade retaining wall design, including
earth pressures for restrained and unrestrained retaining walls. Additionally, drainage and
r backfill recommendations are included.
8. General recommendations regarding construction and earthwork.
9. Five "wet sealed" copies of the Geotechnical Report containing our findings and
conclusions from each of the tasks outlined above.
•
•
I
I
I
I
I
I
O: \25695560 TTSD Tigard HS \Geotech Report\TTSD Tigard Geotech.doc \30- JAN -04 1 -2
•
i
1 .
SECTION TWO Field and Laboratory Investigation
I
I 2.1 FIELD EXPLORATION
The field exploration program was conducted on December 29, 2003. The program included the
completion of 3 soil borings, and 2 cone penetrometer tests at the locations shown on Figure 2,
111 Site Exploration Plan.
1 2.1.1 Subsurface Borings
Three soil borings were completed in the vicinity of the proposed school footprint, as shown on
the Site Exploration Plan, Figure 2. Drilling was performed by Subsurface Explorations, Inc., of
I Banks, Oregon using a truck- mounted Mobile B -57 drill rig. All three soil borings (B -01 -2003
through B -03 -2003 were terminated at depths of 26.5 feet bgs in silty sands and sandy silts.
a Borings were advanced using hollow stem auger to the completion of the boring. Upon
completion of the borings, boreholes were backfilled with bentonite chips in compliance with the
state of Oregon Water Resources Department requirements.
Soil samples were obtained by use of two types of in situ samplers. Samples from 5.0 feet to 6.5
feet bgs were obtained by . driving a 2'/2 -inch inside diameter (31/4-inch outside diameter) ring
sampler (Dames & Moore Type -U) with a 140 -pound hammer falling 30 inches. Recorded blows
I required to advance each 6 inches of penetration are shown on the boring logs. Sampling
resistances for the Type -U Sampler were converted to equivalent Standard Penetration
Resistances (N) using relationships from Winterkorn and Fang (1977) for engineering
calculations.
The remainder of the soil samples was obtained by use of a split -spoon sampler advanced by
I repeated blows with a 140 -pound hammer falling 30 inches. Recorded blows required to advance
each 6 inches of penetration are shown on the boring logs as the Standard Penetration Test
blowcounts (N) for each sample.
The N value is used to determine the in situ relative density of granular soils and the consistency
of cohesive soils based on established correlations. Field reported blow counts are recorded on
I the boring logs. Retrieved ring samples were wrapped. in watertight bags, placed in plastic
containers, sealed, and temporarily stored in padded boxes for transportation to our laboratory.
The soil boring logs are presented in Appendix A. The stratigraphic contacts indicated within
I each log represent the approximate boundaries between soil types; actual transitions may be more
III
gradual and indistinct. The soil and groundwater conditions depicted are only for the specific
dates and locations reported, and therefore, are not necessarily representative of other times and
I locations.
I 2.1.2 Cone Penetrometer Tests
Two cone penetration tests (CPT) were performed to augment the subsurface data set at the site.
I CPT -1 -2003 and CPT -2 -2003 were advanced to 44.95 feet and 84.97 feet respectively at the
locations shown on Figure 2. Completion of a CPT involves pneumatically advancing a 1.5 -inch
diameter conical probe downward through the soil column. The probe contains electronic sensors
that record tip pressure, sleeve friction, probe orientation, pore pressure and seismic shear wave
URS O:\25695560 TTSD Tigard HS \Geotech Report \TTSD Tigard Geotech.doc \30- JAN -04 2-1
1
•
•
SECTION TWO Field and Laboratory Investigation
I ..
information. The CPT logs and output data sets are presented in Appendix B of the Geotechnical
1 Report.
2.2 LABORATORY TESTING
I The soil samples collected as part of the surface and subsurface investigations were tested to
refine the field classifications and to evaluate physical properties of the soils. All tests were
I conducted in general accordance with applicable ASTM standards. The laboratory testing
program consisted of the following:
• Visual Soil Classification in general accordance with ASTM Test Method D2487.
• Grain size analysis — Mechanical Testing in general accordance with ASTM Test Method
. D422 and D1140.
• Moisture Content in general accordance with ASTM Test Method D2937.
I The results of the physical laboratory tests conducted are summarized on the soil boring logs in
Appendix A. Plots of the Sieve tests are contained in Appendix - C.
1
1
I
I
I
I
I
I
0:\25695560 TTSD Tigard HS \Geotech Report \TTSD Tigard Geotech.doc130- JAN -04 2 -2
1
SECTION THREE Site Description
1
3.1 SURFACE CONDITIONS
The site is located in a roughly level portion of the floodplain north of the Tualatin River as
shown on the Vicinity Map, Figure 1. The topography across most of the site is relatively gentle,
with elevations ranging from a high of approximately 195 feet above Mean Sea Level (MSL)
along the northwestern boundary to the site to 182 feet above MSL in the far southeast corner the
athletic fields onsite.
3.2 REGIONAL GEOLOGY
The site is located in the northern Willamette Valley physiographic province, an elongated north-
south trending alluvial valley that lies between the Oregon Coastal Mountain Range and the
' Cascade Mountain Range to the west and east, respectively (Orr, et. al., 1992). The Northern
Willamette Valley has undergone substantial structural deformation since the Eocene, resulting
in the Portland fold belt as defined by Unruh et al. (1994). The tectonic underpinnings of the
1 Portland Fold Belt are not well understood and are further complicated by the fact that this area
lies in a transition zone between the rotating Coast Range forearc block and the continental
interior (Wells et al, 1998).
Specifically, the project site is located in the Tualatin Basin, a northwest trending synclinal
subbasin to the Willamette Valley basin (Unruh et al., 1994). The Tualatin Basin is fault bound
by structurally controlled, northwest - trending highlands, specifically along its northeastern
margin by the Portland Hills and on the southwestern edge by the Chehalem Mountians (Madin,
1990). The two highlands are parallel to mapped regional faults including the East Bank fault, the
Portland Hills fault, the Oatfield fault, the Mollala -Canby fault, the Gales Creek fault, the
Newberg fault, and the Mt. Angel fault. Internal structures of the basin include the faulting that
has resulted in the formation of the Bull Mountain and Pete's Mountain anticlines.
The site is located at the approximate axis of a local synclinal trough (southern subbasin from
Wilson, 1997) as shown by the basement isopach contours mapped by Madin (1990). This trough
has developed as the west -to -east flow of the Tualatin River has incised within the local
structural downwarp between Bull Mountain and Iron Mountain to the northwest and northeast
respectively, and Pete's Mountain anticline to the south (Burn's et al, 1997).
3.3 SUBSURFACE CONDITIONS •
The results of the subsurface investigation indicate that the site is underlain by approximately 5
to 14 feet of brown stiff sandy silt and loose to medium dense brown silty sand. Underlying the
surficial silty sands to sandy silts are approximately 18 to 20 feet of medium dense, poorly -
graded sand. The CPT logs indicate that these sands and silts are associated with the Quaternary
Alluvial Deposits laid down in the historic channels of the Tualatin River as mapped by Madin
(1990), and are variable and interbedded to approximately 380 feet bgs. The Quaternary alluvium
is underlain by approximately 200 feet of deposits interpreted to be Troutdale Formation gravels.
In the water well completed on the school property in 1953 (Washington County Well # 011707),
Miocene -age Columbia River Basalt bedrock was encountered 590 feet below the ground
surface.
URS 0:\25695560 TTSD Tigard HSlGeotech Report \TTSD Tigard Geotech.doc \30- JAN -04 3 -1
•
I
SECTION THREE Site Description
3.4 GROUNDWATER
I .
Perched groundwater was encountered between 3.5 to 9 feet bgs during the subsurface
investigation. Pore pressure data from the CPT logs indicate that the static water level is
I approximately 23 feet bgs.
I
I
I
1
• 1
.
I
1 •
I
•
I
I
I
:1. .
Ms 0:\25695560 TTSD Tigard HS \Geotech Report \TTSD Tigard Geotech . doc \30- JAN -04 3-2
I
I
SECTIONF Design Recommendations
4.1 GENERAL
Foundation loads for the new school building were provided to URS during our conversations
with Mr. Keith Johnson of DOWA, Mr. Rick Rainone of Cornerstone Construction and Mr.
Gerry Gotchall of Nishkian Dean. We understand that column loads are not anticipated to exceed
100 kips and continuous wall loads will not exceed 3 kips per lineal foot. Based on the soil
conditions present at the site, URS recommends the use of conventional continuous or isolated
shallow foundations be used to support the proposed structure.
4.2 SHALLOW FOUNDATIONS
In our opinion, the school can be adequately supported with conventional continuous or isolated
shallow footings. For footings that bear on shallow, undisturbed native soils, we recommend a
net allowable bearing pressure of 3,500 pounds per square foot (psf) for column footings and 2.5
kips per lineal foot (klf) for strip footings with a minimum width of 2.0 feet. For column footings
founded at a depth of 10 feet or greater, we recommend a net allowable bearing pressure of 4,500
psf.
Bearing pressures may be increased by one -third when considering transient loads such as wind
and seismic forces. We recommend that a unit weight of 115 pounds per cubic foot (pcf) be used
to calculate the overburden pressure due to excavation. Backfill soils will be slightly heavier than
excavated soils but not enough to significantly influence the bearing pressure.
Exterior footings should be founded at least 18 inches beneath the lowest exterior grade to
provide frost protection. Continuous wall footings should have a minimum width of 18 inches
and isolated column footings should have a minimum plan dimension of 24 inches.
We recommend that excavations for foundations be accomplished with a straight- edged grading
bucket to minimize disturbance of the bearing surfaces. Following excavation, the bearing
surfaces should be thoroughly cleaned of loosened or disturbed soil, by hand if necessary. Any
soft or unsuitable soils encountered at the base of foundation excavations should be removed and
�. replaced with compacted structural fill meeting the requirements described below.
For foundations designed and constructed as specified above, we estimate settlements on the
order of less than V2-inch. We anticipate that the majority of the settlement will occur during
construction, essentially as the loads are applied. The remainder of the settlement will likely
occur within three weeks following application of the loads.
4.2.1 Earth Pressures and Friction Factor
Passive earth pressures acting against the toe of the shallow foundations and friction on the base
of the foundations may be considered to provide resistance to lateral forces tending to cause
translational sliding. These structural members should be considered for counteracting lateral
forces only if the member is placed in direct contact with tested and approved soils. If the
foundation is constructed by using forms, lean concrete may be placed between the footing and
the undisturbed wall of the adjacent excavation in order to provide the direct contact required to
consider passive pressure for counteracting lateral movement. The lean concrete should have a
U 0:\25695560 TTSD Tigard HS \Geotech Report\TTSD Tigard Geotech.docl30 -JAN -04 4 -1
1
I
SECTIONFOUR Design Recommendations
r
minimum 28 -day compressive strength of 1,500 psi. An allowable passive pressure having an
' equivalent fluid density of 180 pcf may be used for the passive resistance of the native soils.
Passive resistance derived from structural backfill should be considered using an allowable
equivalent fluid density of 230 pcf. This is based on a factor of safety of two.
An ultimate friction factor of 0.5 for mass concrete on compacted granular fill can be used for
design for those portions of the foundations with full positive pressure on the base of the
foundation. For foundations placed directly on native silty sand or sandy silt, an ultimate friction
factor of 0.40 should be used. Only long -term dead loads should be considered in calculating the
available friction on the foundation base.
4.2.2 Slabs on Grade
' The subgrade under all floor slab areas should be prepared in accordance with Section 4.4 and as
shown on Figure 3 Standard Slab & Wall Drainage Detail. We recommend that floor slabs be
underlain by a minimum 6 -inch thick granular base course to provide uniformity of support and
to act as a capillary break against moisture migration through the slab. The granular base course
should consist of a well - graded gravel or crushed rock with a maximum nominal size of 3 /4 -inch
and having less than 5 percent by weight passing the No. 200 sieve. The base course should be
compacted to at. least 95 percent of its maximum dry density as determined by the modified
proctor test (ASTM Test Method D1557). We recommend a modulus of subgrade reaction of 225
pounds per cubic inch (pci) for the base course.
Even with a capillary break as outlined above, there is the possibility of some floor moisture or
dampness. If floor moisture is a critical consideration due to storage of materials directly on the
floor slab, or because of the use of glued down impervious floor coverings such as tile or
linoleum, we recommend the use of an under -slab impermeable membrane placed directly below
the slab. To maximize water tightness, the membrane must be installed in accordance with the
manufacturer's recommendations.
4.3 RETAINING WALLS
Following are typical design parameters for wall types that we believe represent the range of
systems that may be constructed at this site. Please contact us . if any additional design values or
wall types need to be addressed.
4.3.1 Retaining Wall Design Parameters
Lateral soil pressures on a retaining wall depend on several factors including retained soil type,
wall fixity, drainage provisions and the influence of surface loads imposed behind the wall. We
have provided typical design parameters for wall types that we believe represent the range of
retaining wall systems that are likely to be constructed at this site. Our recommendations are
based on the following assumptions:
• Retaining walls will be designed to restrain both existing soils and constructed fills.
• Retaining walls will be backfilled with free draining crushed rock, in accordance with
Section 4.3.4 of this report.
0:\25695560 TTSD Tigard HS \Geotech Report\TTSD Tigard Geotech. - JAN - 04 4 -2
1
I
SECTIONF Design Recommendations
• Adequate subsurface drainage will be provided.
1 • Walls will be 12 feet high or less.
4.3.2 Equivalent Fluid Densities
Unrestrained walls have no fixity at the top and are free to rotate about their base through tilting
or translation. Most cantilever retaining walls fall into this category (unless they are attached to
' buildings or other structures). A lateral movement of 0.005 times the height of the retaining wall
may be required to achieve this active pressure. For these walls, we recommend that a lateral
equivalent fluid density of 35 pcf be used for design in both native and structural fill soils.
Restrained walls are rigid structures where essentially no relative movement occurs between the
structure and the soil. Most basement walls and other rigid walls that are restrained by buildings,
1 parking decks, floor slabs or other perpendicular walls fall into the category of restrained walls.
For restrained walls, we recommend that a lateral equivalent fluid density of 55 pcf be used for
design in both native and structural fill soils.
1
4.3.3 Additional Lateral Pressures
Additional lateral support will be provided by passive resistance of soil compacted adjacent to
the sides of the wall foundations. For design purposes, an allowable equivalent fluid density of
1 180 pcf may be used to estimate the passive resistance of the native soils. Passive resistance
derived from structural backfill should be considered using an allowable equivalent fluid density
of 230 pcf. These passive pressures are calculated using a factor of safety of 2. See Section 4.2.1
for additional information regarding construction requirements to realize this passive earth
1 pressure.
If cohesive soils are used as backfill, hydrostatic pressures or surcharge effects from surface
1 loads exist, the equivalent fluid density will be significantly higher and URS should be contacted
for additional design information.
4.3.4 Retaining Wall Backfill
Backfill within 3 feet of retaining walls should consist of free draining crushed rock, free of
' organics and debris. This material should meet the requirements of the 2002 Oregon Department
of Transportation (ODOT) Standard Specifications for Construction for "Granular Wall
Backfill", Section 00510.12. Backfill beyond 3 feet from the wall should meet requirements
' described in Section 4.4.4. We recommend that all fill be compacted to 95% of the maximum dry
density as determined by the Modified Proctor test (ASTM 1557). Additionally, we recommend
that any backfill that is placed within 5 feet of the wall (measured horizontally) be compacted
with lightweight, hand operated compaction equipment. Over - compaction of this fill can increase
wall pressures.
We recommend the placement of a 4 -inch diameter slotted PVC pipe wrapped in non -woven
geotextile fabric at the base of the wall backfill to facilitate drainage of this area.
URS 1
0: \25695560 TTSD Tigard HS \Geotech Report \TTSD Tigard Geotech.doc \30- JAN -04 4 -3
1
i
SECTIONFOUR Design Recommendations
I
4.4 SITE PREPARATION
1 4.4.1 General
Prior to construction of any new foundations, all areas that will receive fill, base rock, or
structures should be stripped of all surface vegetation, organic topsoil and any deleterious
' materials that might be encountered. Any soft or unsuitable soils encountered during stripping or
excavation should be removed and replaced with compacted structural fill meeting the
requirements described in Section 4.4.4.
4.4.2 Dry Weather Earthwork
After areas are stripped or excavated to design elevations, we recommend scarification of the
resulting subgrade in all areas that will receive fill or structures to a depth of 8 inches. The
scarified soil should be brought to 2% above optimum moisture content, and compacted to at
' least 95 percent of its maximum dry density as determined by ASTM D698, the Standard Proctor
method.
4.4.3 Wet Weather Earthwork
We anticipate that the native clay found at the site will be susceptible to erosion. Therefore,
during or after wet weather, it may be necessary to import granular materials for structural fill or
to protect open subgrade materials. It may also be necessary to install a granular working pad to
support construction equipment. Delays in site earthwork activities should be anticipated during
' periods of heavy rainfall. Additionally, site clearing and stripping activities may expose subgrade
material that may be damaged if subjected to disturbance from construction traffic. During wet
weather, we recommend that site stripping and excavation be performed using an excavator with
a straight -edged bucket that does not traverse the final subgrade.
When a granular working base is used to protect open subgrade material and construction
equipment, the base should consist of a suitable thickness of crushed rock or ballast placed by
end - dumping off an advancing pad of rock fill. Areas that contain native alluvium materials are
moisture sensitive, and it may be necessary to place a geotextile fabric beneath the working
' blanket to prevent the intrusion of fines into the rock. Because construction practices can greatly
affect the amount of rock required, we recommend that if conditions require the installation of a
granular working blanket, the design, installation and maintenance be made the responsibility of
the contractor. After installation, the working blanket should be compacted with a minimum of
four passes with a smooth -drum roller.
4.4.4 Structural Fill
We recommend that all fills intended to support structures be placed in horizontal lifts not
exceeding about 8 inches in loose thickness and be compacted to at least 95 percent of the
maximum dry density as determined by the Modified Proctor method (ASTM D1557), unless
where specified above.
URS 0:\25695560 TTSD Tigard HS \Geotech Report\TTSD Tigard Geotech.doc130 -JAN -04 4 -4
1
1
SECTIONFOUR Design Recommendations
Imported structural fill should be clean, well graded granular material, free of organics and debris
' and meeting the requirements of the 2002 ODOT Standard Specifications for Construction for
"Granular Structural Backfill ", Section 00510.13. The procedure to achieve proper density of a
compacted fill depends on the size and type of compacting equipment, the number of passes,
thickness of the layer being compacted, and certain soil properties. When the size of the
excavation restricts the use of heavy equipment, smaller equipment can be used, and the soil
must be placed in lifts thin enough to achieve the required compaction. We recommend that
methods of compaction be left to the discretion of the contractor, with compaction testing
provided by URS.
We do not recommend the use of onsite soils for structural fill. This material may be used for
miscellaneous fill and landscaping applications around the site provided these areas are not
intended to support structures. Onsite soils should be compacted to at least 95% of the maximum
dry density per ASTM D698.
4.5 SLOPES
Depending on the Contractor's proposed excavation and shoring plan, temporary cut slopes may
be required during construction. Cut slope inclinations must be made in accordance with
regulations established by the Oregon Occupational Safety and Health Administration (OR-
OSHA). In accordance with OR -OSHA, the silty sand and sandy silt soils in the upper 15 feet of
the site are classified as Type C due to the perched groundwater conditions at the site. The
maximum allowable slopes for excavation less than 20 feet deep in Type C soils is 1 V2:1
(Horizontal:Vertical). Flatter slopes will be required if water or seepage is present.
I Significant slope work is not anticipated at this site. Allowable finished slopes will depend upon
the type of fill material that is being used, or the location of any cut slopes. For planning
purposes we recommend that any finished cut or fill slopes less than 8 feet high be designed no
steeper than 2H:1 V. Onsite fill used to construct slopes or embankments at the site should be
compacted per Section 4.4.4. All permanent slopes will require erosion protection. Erosion
protection should follow procedures described in the Tigard Community Development Code
Chapter 18.745, "Landscaping and Screening ".
4.6 TEMPORARY SHORING
' URS does not anticipate the need for temporary shoring for the recommended overexcavation
activities. Should shoring be necessary for other parts of the project not described in this report,
the Contractor must submit a shoring and excavation plan to the Owner and URS at least 2 weeks
before the start of excavation. The plan should show the design of shoring, bracing, sloping, or
other provisions to be made for worker protection from the hazard of caving ground and for any
trench or excavation over four feet in depth. The shoring and excavation plan must be prepared
and stamped by a civil engineer registered in the State of Oregon.
' 4.7 SEISMIC DESIGN
The site lies within Seismic Zone 3 as defined by the 1998 version of the OSSC. Based on the
' soils encountered during the exploration program, OSSC Soil Type SD (Stiff Soil Profile)
URS O:\25695560 TTSD Tigard HS\Geotech Report \TTSD Tigard Geotech.doc \30 -JAN -04 4 -5
1
1
SECTIONF Design Recommendations
represents the closest approximation to the site conditions and is recommended for use in design.
' The seismic response coefficients that corresponds with Z = 0.3 and S are C = 0.36 and C,, _
0.54 and were obtained from tables 16 -Q and 16 -R of the OSSC, respectively.
Per section 1631.2 of the OSSC 1998, URS has completed a site - specific elastic design response
spectrum for the site with a 5% damping ratio. Using the geologic, tectonic, seismologic, and
subsurface soil conditions particular to the Tigard High School Site. This elastic spectrum is
' discussed at length in the Seismic Hazard Report.
As the spectral responses calculated by URS are lower than the OSSC response spectrum
envelope, URS recommends that the design base shear calculated for the structure be reduced to
1 80% of the standard code base -shear per Section 1631.5.4.2 of the 1998 OSSC.
1
i
1
URS 1
i
1
1
1
1
1
1
1
0: \25695560 TTSD Tigard HS \Geotech Report\TTSD Tigard Geotech.doc130- JAN -04 4 -6
i
SECTIONFIVE Sensitive Site Status
r
Tigard Community Development Code Section 18.775 defines "sensitive" sites that may be
unsuitable for development. Included in the definition of sensitive sites are locations where
•
existing slopes exceed 25 %. Existing slopes at the site approach 25% at the northwest edge of the
site, but no new facilities are planned in this area. Slopes in the area of the new structure are
generally less than 10 %. Further, the proposed site plan meets the acceptance criteria for sites
built in areas with slopes greater than 25 %, outlined in Section Tigard Community Development
Code Chapter 18.775.070.C. These criteria are as follows (description of the site compliance is
provided in italics):
1. The extent and nature of the proposed land form alteration or development will not create site
disturbances to an extent greater than that required for the use;
- The proposed school and appurtenant facilities will disturb only their immediate footprints.
These disturbances will not affect the stability of the site.
2. The proposed land form alteration or development will not result in erosion, stream
sedimentation, ground instability, or other adverse on -site and off -site effects or hazards to
life or property;
- Proper restoration of the site will ensure no erosion and stream sedimentation will occur.
Structures constructed per the recommendations in the report will not adversely affect
ground stability.
3. The structures are appropriately sited and designed to ensure structural stability and proper
drainage of foundation and crawl space areas for development with any of the following soil
conditions: wet/high water table; high shrink-swell capability; compressible /organic; and
shallow depth -to- bedrock; and
- Structures designed and constructed with the parameters and recommendations described
' in this report will be stable and provide adequate drainage. Refer to Sections 4.2 through
4.5.
' 4. Where natural vegetation has been removed due to land form alteration or development, the
areas not covered by structures or impervious surfaces will be replanted to prevent erosion in
accordance with Chapter 18.745, Landscaping and Screening.
- Project specifications must contain a section regarding site restoration insuring the
finished site meets the requirements of Chapter 18.745.
URS 1
1
0 \25695560 TTSD Tigard HS \Geotech Report\TTSD Tigard Geotech.doc \30- JAN -04 5-1
i
SECTIONSIX Construction Monitoring .
r
We recommend that URS be retained to provide construction monitoring and testing services
during earthwork activities and foundation construction. The purpose of our field monitoring
services is to confirm that site conditions are as anticipated, to provide field recommendations as
required based on conditions encountered, and to document the activities of the contractor to
' assess compliance with the project recommendations provided by URS.
•
•
URS 1
i
1
i
1
1
1
i
1
1
0: \25695560 TTSD Tigard HS \Geotech Report \TTSD Tigard Geotech.docl30- JAN -04 6-1
1
SECTION SEVEN Closure
The analyses, conclusions and design recommendations presented in this report are based on site
I conditions as they existed at the time of our field exploration, and further assume that the
conditions encountered are representative of subsurface conditions within the study area. If
conditions different from those described in this report are encountered or appear to be present
beneath excavations, URS should be advised at once so that additional recommendations may be
provided where necessary.
' This report was prepared for the exclusive use of the Tigard - Tualatin School District and its
agents and consultants. It should be made available to prospective contractors for information on
factual data only and not as a warranty of subsurface conditions similar to those interpreted from
the borehole logs or discussions presented in this report.
•
•
i
1
1
1•
•
•
1
1
1
1
1
URS :\25695560 TTSD Tigard HS\Geotech Report \TTSD Tigard Geotech.doc \30 - JAN -04 7- 1
•
1
SECTIONEIGHT References
1
American Association of State Highway and Transportation Officials, 1986. AASHTO Guide for
' Pavement Structures, AASHTO, Washington D.C.
Burns, S., Gowney, L., Broderson, B., Yeats, R.S., and Popwski, T.A., 1997, Map showing
faults, bedrock geology, and sediment thickness of the western half of the Oregon City
1:100, 000 quadrangle, Washington, Multnomah, Clackamas, and Marion Counties, Oregon,
Oregon Department of Geology and Mineral Industries, Interpretive Map Series IMS -4.
' Madin, I.P. (1990). Earthquake Hazard Geology Maps of the Portland Metropolitan Area,
Oregon. Oregon Department of Geology and Mineral Industries (DOGAMI), Open -File
Report 0 -90 -2.
Oregon Department of Transportation, 2002. Oregon Standard Specifications for Construction,
Salem, Oregon.
Orr, E.L., On, W.N. and Baldwin, E.M., 1992, Geology of Oregon, Fourth Edition,
Kendall /Hunt Publishing Company, Dubuque, Iowa.
Unruh, J.R., Wong, I.G., Bott, J.D.J., Silva, W.J., and Lettis, W.R., 1994. Seismotectonic
' Evaluation: Scoggins Dam, Tualatin Project, Northwestern Oregon; William Lettis &
Associates and Woodward -Clyde Federal Services; unpublished final report prepared for the
U.S. Bureau of Reclamation, Denver, CO.
' Wells, R.E., Weaver, C.S., and Blakely, R.J., 1998, Forearc migration in Cascadia and its
neotectonic significance: Geology, v. 26, p. 759 -762.
Wilson, Doyle, 1997, Post - middle Miocene geologic history of the Tualatin basin, Oregon with
hydrogeologic implications, Portland State University Masters Thesis Abstract,
http: / /nwdata. geol. pdx .edu /Thesis /Abstract.php ?ThID =127
Winterkorn, H.F., and Fang, H -Y., 1975. Foundation Engineering Handbook, Van Nostrand
Reinhold Company, N.Y., N.Y.
I
i
1
1
W O : \25695560 TTSD Tigard HS \Geotech Report \TTSD Tigard Geotech.doc\30- JAN -04 8 -1
I �•�•� ` � sC , �` ` '� •. ` y L _ .., _, \ 1 -t S J 1 ill a r._. •I >' a, , ' A .." ,
` I . �-1 kh Ht ae 1 �1. 1,�`t 1 r �` 4 _ wJ � ' ' 1'
I ` \ ` M . 2 i �.� It '\ t 1 - t iii
} ✓ t 33 � 'ti , 'S' t i - 1 re enln i - ' -z 4 ' B . ', 'z
I
'�/ ▪ , ,i , a - � � '\ S sw k oa 1 ''. : 4 - :. � 56 ° I . ,� y
p ¢ r / ....- . _ - \�� ,- . '-''as � 4 .. r' . (1 , , 4 1J ' i , y . \ . r . 4 x . ' i'
);- I i ' )i" a i L4'lN I 4 S` .01.,;;_ _ n � ). ‘5',-• i _\. • I '' ., •
{ ,r , 9�
-? y ^ ; ' , Kj , J' i. s - 3 .. a '`- f � :` ; r. r I i,t'� \ rY 3H"' 9
J ' f .. {l c ,e a . ti r. r r3 x�i •..1*- s.w.^`N 1§Y� L =am.,• R a .� Ms ti p� ` ,. . ' 1 ) • c °� tgs ) r � f 1 a� ' ' � 1 v �I -
4 g '= I :7. ' { /' w I j f, ® .�.�i' 4 '� IY ,.. . ` ) ' vd t ' ,,
) � FW t ' r ...• -` f � � '; . . • c . ^ n t 3 { jJ • I J I . I .
-54.-„,.. ` j a y T �'`� n y r 1 -7) eg % s s, yl 'I c.
w _ / �- . � f � 1 5 c- Jt.F.,, t 5�l
! I B ��Mi_ n�� ' .� �� V � <` v-! aC ". . \ .• 3 Bon
•' s 4 f c kk H // -Ma ,c r, i L ` , «il t 31,► . J l z Y -, .. ,, ,, I ,
� -, \V� / , .:' • /� :I �a v : o d al, r • � t !
� � i / ., I ,r r'�+5� _ . cv 'I 5 t tii�...r ▪ o- v y.. f
L A �;& k.°''w -4 �. f --..- J r J, I ▪ ,i i - 7.: = a f ,' ! r."
;+ t��"� .r
▪ y'3��s • d a -
L y>� a a � 7 °E i '•c -
� � k' � f � ti BN � II ., r , • ." r ' d� - p ti� t� C "".� �
. sc `' ' , i\ /1 1 - � • 1 •• rr ..�{� , h r a . � :-. ._, a '4 a 17 - i ' .. � = '' ` / 1 ' � a
�` :"
I ti, f 3 � �I 11
:1 1 w 1 , - ✓'' ,=f dr < . - 5--- '::� f ' �? / y E . . •
�s > f _ y I e / : * -P .. '. ^"\ ) ��.' a rham • 3'
-% e` -'°a r r ` 1 3 � r t { �`sreosK —...� � " `, 9 - ` �J i Ji
v f • I '_.- t'`"^ -� f. - _ . r C -`- 4 ; �s., -.. :• ��,. c i l l { — , -,, •
r�
"` f� " >r " -• . unN _ y t t
• \ ` l f ��_ 7 I c C CouN I•v c lue it, I A � 1
I t f ill 1 . •
� � - _ J / n'— ' �
� - - ',7";-3.1*--- - 22 +r ▪ a . 1 23 ti. r ' • le ▪ isnr 9 fl .. ' " ' r TCE I 1Y TIN,
. ion Flat F e j � ; ♦ ` ' • r ' � i V x .150 -`/E L FiCTRIL° r I
I
t ® !s..11.,..,—/;,------ YID E sn
sa. Y7,�
SOURCE CAMAS. WASHI NGTON— OREGON USGS TOPOGRAPHIC QUADRANG 1993.
I VICINITY MAP
TIGARD HIGH SCHOOL REMODEL
I TM JANUARY 2004 GEOTECHNICAL INVESTIGATION
25695560 TIGARD, OREGON
I FIGURE 1
I '
I / _,,,,,,.....
' _ .
,--5 _ .
--,,,-- ' ,
1
r
I / N d d
---- ,
,:___._,..-------- \
,,-
i iiMIN=NEININIM 03 0:
i ; \ \
. .
,f"
V , 1
\ • 1 ..,---;
1 i
1 ,--
; ,,,
i d -,
N- \
,,, \ •
\ ‘••‘, \
\, . d
\ \ \ ,--,, ----- _.--- o,------„,
d
d
,-----„ ,
3 1 ,
-----\\' \' \... .----
,,...----
,----- -. -
-2003
,-- ..--
„r ( ,,,„,,
, %," CPT-01-2003 16.
4......... a
___ L
\ , „
t.,.
,\, fl ,<, ,
, ......
,._, \\:,
Li ,..., ...... ,,_____________,
. ,, ,,,
\ , ......„ ,,,
....__„, _____. . \ .
\ s I I1, ■
•, ,
')\ t i l '
„< .,,■ ..-- . --- / , J t,.., i \\ L I 1
Irv:
-----,---; -; -:.-;-1— ' .- - ' , cit --- 4 — i• r
f., 1
I [} 6-2
.
, / . 7 ---- ------
1 Ft
J r , _
# , / \ , I 1
K.,, .. ,
L-
%
Nsi.: •
\
\
\
\ -
‘ I
11
,______
1
\ \
I „ [1........
\ \
,..i
, ,/• \• \
11 1
i ‘ ll
, \ f
•
\ ‘ ' CPT-02-!-2003',
.
1 1
11 ,
A
A
----,\ ." \
\,-
..._._,... I
— "“ ---- ii..--''' 0. i
. I
I \N
E
II 1 • \••
. \
. co .-- 1 1 i F
I
or B_0 B-01-200 •c: ,..______
ir I!
1 1111 . [ ,c.i..
.....----' \\
\
a .. .
a
1 \ \ + ".,, 7
. 1 ...,_F
___-- # , °. a °
.------\\(
,
1 / , B-03-2003 . , !-
1=1 ------; \ •c,(, \\'\
I
-,-
• -;"/ \,,. 'c, \'',\,\ ) I\
....___.„,
." .
S , /
I
/ \
\ ,---,---
+ B-01-2003 URS BOREHOLE LOCATION,
-,..--', "\, \ .„------- ----
.- DECEMBER 2003
. i
__„.„--- _-_,---------
__...... j___ .
----\ ----..„---,-----°>--
,
..- + CPT-01-2003 URS CONE LOCATION,
I „ __-
,
DECEMBER 2003
\ „------ ..„---c:--
I 1 o
% . \
\ *
\ \ - I
____----- ._,„----
,---
,
,---- -
-----,-/ s.
•
, •
I I
[..* • ' • \
,/ , I
1 0 40 so 120
„„------- //
9 1.11
SCALE IN FEET
I -______-------
n1 /
I 1"■130'
,
DRAWING NUMBER:
JOB No. DESIGNED: PROJ. ENGINEER:
TIGARD-TUA SCHOOL I
N C OOL TIGARD HIGH SCHOOL . FIGURE 2
•
SCALE DRAWN JOD
TJR
BY: WARNING
M
• . IS
DISTRICT A E B i T R E s
/ / ---- i
.
CAD FILE NUMBER
DRAWN BY: APPROVED 111 SW Columbia, Suite 900 SITE EXPLORATION PLAN :
0 1
JOD BMW IF BAR DOES P4OT ' Portland, Oregon 97201-5814 6960 SW A N U G ST
1"■150. MEASURE 1' AT FULL s T TIGARD, OREGON
SIZE. 'MEN SCALES (tel) 503-222-7200 SHEET: REV.
TIGARD- , S 0 GD; ON 7 22 3
I REVISION CHECKED BY: DATE:
SCALE.
TJR 1/28/04 ON DRAWING NOT
TO • (fax) 503-222-4292
No. DATE BY
• www.urscorp.com 1 OF 1 A
1 .
I
m
• 3'
VAPOR BARRIER
GRANULAR WALL BACKFILL
I (SEE NOTE 2) .:30'-' °o e .:.
) o o •;. • ,FEOOR•SLAB' •
° o 0 o GRANULAR BACKFILL (SEE NOTE 3)
Pk
I > o
o 0 0 0 - STRUCTURAL FILL'
> o p o p ' (SEE NOTE 4)
)oo
'o
I
STABILITY OF EXISTING WALL • > ° o ° o
REQUIRES VERIFICATION > °o °o
) o ° o °
) p °p°
I ) 0 0
>0000
)0 000
)000 •
0
I
i HI > >
I o °
> o 0 0 0' EXISTING GROUND
��y 'popo, SURFACE
� v FOOTING , o 1� p
4" PERFORATED PIPE
,`
WRAPPED IN FILTER FABRIC
I (SEE NOTE 1)
I
I NOTES:
1. FILTER FABRIC TO BE NON -WOVEN GEOTEXTILE SUCH AS LINO 40EX, MIRAFI 140N, OR EQUIVALENT.
I 2. GRANULAR WALL BACKFILL TO MEET REQUIREMENTS OF THE 2002 ODOT STANDARD SPECIFICATIONS FOR
CONSTRUCTION, SECTION 00510.12. GRANULAR BACKFILL SHOULD BE PLACED WITHIN 3 FEET OF THE WALL.
3. GRANULAR FILL TO CONSIST OF CLEAN, WELL - GRADED, 3/4" MINUS DIAMETER CRUSHED ROCK AND SAND
CONTAINING LESS THAN 5 PERCENT PASSING THE NO. 200 US STANDARD SIEVE.
I 4. STRUCTURAL FILL TO MEET THE REQUIREMENTS OF THE 2002 ODOT STANDARD SPECIFICATIONS FOR
CONSTRUCTION, SECTION 00510.13.
I
I
STANDARD SLAB & WALL DRAINAGE DETAIL
I 1MS • TIGARD HIGH SCHOOL REMODEL
JANUARY 2004 GEOTECHNICAL INVESTIGATION
25695560 TIGARD, OREGON
I FIGURE 3
4sco
muc-
21. in _I _I r 1111 INE 11.0 I E IMM
1
Project: Tigard High School Key to Log of Boring
Project Location: Durham, Oregon
I Project Number: 25695560.10001 Sheet
SAMPLES
I
o
U
O
iu •._, 0 2 MATERIAL DE SCRIPTION E - REMARKS AND
a
� C, -0 N `r
° ' o a iZ 0 OTHER TESTS
it
II
w.P3 8,1 a E E' 2n o c3-� m -t
- z toctco W...7.- Q ON
1 2 3 4 5 6 7 8 9 10
•
II
II COLUMN DESCRIPTIONS
• 1 Elevation: Elevation in feet referenced to mean sea level • Graphic Loo: Graphic depiction of subsurface material
(MSL) or site datum. encountered; typical symbols are explained below.
2 Depth: Depth in feet below the ground surface. 8 j Material Description: - Description of material encountered;
may include color, moisture, grain size, and density /consistency.
3 Sample Type: Type of soil sample collected at depth interval
I
shown; sampler symbols are explained below.
4 Sample Number: Sample identification number. 9 Drill Time: Time (recorded in 24 -hour clock) of sampling or
other events during downhole advance.
10 Remarks and Other Tests: Comments and observations
5 Blows per 6 inches: Number of blows required to advance regarding drilling or sampling made by driller or field personnel.
I driven sampler each 6 -inch drive interval, or distance noted, Other field and laboratory test results, using the following
using a 140 -lb hammer with a 30 -inch drop (unless otherwise abbreviations:
stated).
6 Recovery: Percentage of driven sample length (or penetration
distance) actually recovered. •
I
I TYPICAL MATERIAL GRAPHIC SYMBOLS
��' '� Crushed Aggregate Base
III Concrete % %Rock Sandy Silt Poorly Graded Sand
•
I Silty Sand . . ..
.-... -. .•
....... . .
;•.-;:,.: .-: :::-- Poorly Graded Sand with Silt with Sand
Silt
I
M
0
I TYPICAL SAMPLER GRAPHIC SYMBOLS OTHER GRAPHIC SYMBOLS
o ® Standard Penetration • Dames & Moore Ring Depth of standing water observed in
Sampler • Sampler borehole
a
0
6
x
I o
0
0
I-
a;
iL .
U
I
0
Z
C I
• C
I oI
Z
> Soil classifications are based on the Unified Soil Classification System.
Y Descriptions and stratum lines are interpretive; field descriptions may have been
o modified to reflect tab test results. Descriptions on these logs apply only at the
specific boring locations and at the time the borings were advanced; they are not
1. 1 warranted to be representative of subsurface conditions at other locations or
rimes.
0
I L
1 .
Project: Tigard High School Log of Boring B -01 -2003
I Project Location: Durham, Oregon
Project Number: 25695560.10001 Sheet 1 of 1
Date(s) 12/29/2003 Log DJD Checked TJR
Drilled By By
I Drilling Hollow Stem Auger Drill Bit 4 7/8 -inch O.D. Total De 26.5 FT
Method Size/Type of Borehole
Drill Rig Mobile B -57 Drillin Subsurface Technologies Ap — 190 feet MSL
I Type Contractor Surface Elevation
Groundwater Level 9 feet [bgs] Sampling Dames &Moore /S Hammer 140 pound manual hammer
and Date Measured Method(s) Data
Borehole
Backfill Bentonite Chips Location
I SAMPLES
o 0
N . O —I 8 c U
o iu ._ca� > s .o(0 MATERIAL DESCRIPTION E T REMARKS
wa) p a E E' v -. m - Iii Z
I— Z U)CC c0 CL -- 0 J= 20 OO
190 0 „
I , - ML - 2" CRUSHED AGGREGATE BASE ROCK /_
SANDY SILT [ML], fine grained, nonplastic, mottled
brown- brownish yellow, stiff, moist.
-
—185 5 I —
I 1 9.7 12 32.2 77.9
•
I SP _ POORLY GRADED SAND [SP], trace silt, sand fine to medium SZ -
grained, brown, medium dense, wet.
— 180 10 — J
2 14 14 _ _ 30.5
SM SILTY SAND [SM], with layers of sandy silt, fine grained,
— 175 15 _ nonplastic, light brown and gray, medium dense, wet. —
_..g 21 12 _ 28.5
I M _
N
4 - -
I (xi
0
° —170 20 - —
4 26 18 SP -SM _ POORLY GRADED SAND WITH SILT [SP -SM], fine grained, _ 32.8
light brown, nonplastic, medium dense, very moist.
x
0
~ I LL SP POORLY GRADED SAND [SP], 2" silty sand layer, fine grained,
— 165 25 _ brown and gray, medium dense, wet.
0
0
c 5 19 18 _ 27.4
U
nl - _ Boring terminated at a depth of 26.5 feet bgs on 12 -29 -2003, _
o backfilled with bentonite chips and asphalt patched upon
o completion.
Li, - - -
U
Il o - _ -
o
0
—160 30
a
u 4
•
I ,
Project: Tigard High School Log of Boring B -02 -2003
Project Location: Durham, Oregon
I Project Number: 25695560.10001 Sheet 1 of 1
Date(s) 12/29/2003 Log DJD Checked TJR
I Drilled By By
Drilling
Method H Stem Auger Drill Bit
Size/Type 4 718-inch O.D. Total Depth
of Borehole 26.5 FT
Drill Rig Mobile B -57 Drillin Subsurface Technologies A
s ur ec ies — 190 feet MSL
I Type Contractor 9 Surface Elevation
Groundwater Level 3.5 feet [bgs] Samplin Dames & Moore /Splitspoon Hammer 140 pound manual hammer
and Date Measured Method(s) Data
Borehole Bentonite Chips Location
Backfill
SAMPLES
C)
o , ��� Y. o� MATERIAL DESCRIPTION -. REMARKS
>w a.. -0 ain N
Ww Ow a E E '� o c ° � - . 03 t � g
co
> = a)CD_ m� oo i'a�i
190 0 I— Z wee ce .. CO � � 20 o0
5" ASPHALTIC CONCRETE
I - ' , ' CP _\4" CRUSHED AGGREGATE BASE ROCK
SM SILTY SAND [SM], fine grained, low plastic light brown, loose,
_ moist. _
V •
-185 5 II - -
II ,I 1 10.1 18 - _ 30 86.8
I
— 180 10 — —
2 9 18 _ 35.5
I SP -SM POORLY GRADED SAND WITH SILT [SP -SM], fine to medium
— 175 15 _ grained, nonplastic, brown and gray, medium dense, wet —
3 23 18 ': - _ 27.3
0
0IL 170 20 - -
4 16 18 ':: : 25.7
`' - 2" Layer of gravel @ 20 -
ML�4 Laver of noor1y graded sand @ 21.0 f
_ - SILT WITH SAND [ML], sand fine grained, medium plasticity,
0 gray, very stiff, moist.
a - -
o
u
o —165 25 — —
0
# i 5 29 18 _ _ 28.7
I U ,
o� Boring terminated at a depth of 26.5 feet bgs on 12 -29 -2003,
o backfilled with bentonite chips and asphalt patched upon
o completion.
w - -
i N _
I
o _
o -160 30
0
cc
I
I Project: Tigard High School _ _
� g 9 Log of Boring B 03 2003
I Project Location:. Durham, Oregon
Project Number: 25695560.10001 Sheet 1 of 1
Date(s) 12/29/2003 Log DJD Checked TJR
i Drilled By By
Drilling Hollow Method Holl Stem Auger Drill Bit nc
Size/Type 4 7/8-inch O.D. Total Depth
of Borehole 26.5 FT
Drill Rig Mobile B -57 Drilling Subsurface Technologies Approximate
sur — 190 feet MSL
I Type Contractor Surface Elevation
Groundwater Level
and Date Measured 7 . 0 feet [bgs] Sampling
Method(s) D & Moore /Splitspoon Hammer
Data 140 pound manual hammer
Borehole Bentonite Chips Location
Backfill
I SAMPLES
c ai. o J o
a•- °' ° =_ ' `6 � L o vU) MATERIAL DESCRIPTION _ � z T REMARKS
I 0-17> a�
LLJ ID l] a § g'N p V ^ m E° _ O O _
I— Z U) c [O 0 - . 0 � 2O 00
190 0 SM SILTY SAND [SM], fine grained, nonplastic, light brown, medium
I _ dense, moist. _
I
-185 5 � -
_.I 1 16.1 18 : :!a::.: : 31.9
SP POORLY GRADED SAND [SP], fine grained, light brown,
medium dense, moist.
I SP POORLY GRADED SAND [SP], trace gravel, trace silt, fine
grained, brown, medium dense, moist to wet.
— 180 10 - —
2 29 18 : •_ 27.3
I
SM SILTY SAND [SM], 2" layer of poorly graded sand, fine grained,
— 175 15 _ brown and light brown, medium dense, wet. —
3 29 18 _ 31.3
- -
N
co
O
C
Ig -
-170 20 - -
4 26 18 30.1
I SP POORLY GRADED SAND [SP], fine grained, brown, medium
( 5 9 5 dense, wet.
0
cc
o
I ~
- -
-165 25
# 5 21 18 ML _ SANDY SILT [ML], fine grained, low plasticity, gray, very stiff, wet. _ 36.8
I U -
o Boring terminated at a depth of 26.5 feet bgs on 12 -29 -2003 and
o backfilled with bentonite chips upon completion.
0
w - - -
0
a — 160 30
0
URS
1
(1
11111C
IIIII NM NMI NM Ins Ns NM In Mil INN mit MIN MN NMI MI III•
Subsurface Technologies
I Operator W MCC / A.MEE CPT Date/ rime! 12-29-03 1204
Sounding. SND583 Location CPT1 TIGARD HS
Cone Used 442 TC Job Number 25144AA00100
I Tip Resistance Local Friction Friction Ratio Pore Pressure Diff PP Ratio Soil Behavior Type`
Qt (Ton/ftA2) Fs (Ton/ftA2) Fs /Qt ( %) Pw (psi) (Pw- Ph) /Qt ( %) Zone UBC -19
I 0 0 300.0 0.0 5.0 0 0 5.0 -20 0 100.0 -20.0 100.0 0.0 12. 0
0.00 1 I I I I I l l l I I I I V I I 1100
I I I 771_00
l ►1111111111
I
I,;
;
1
5.00 - - - -- -- -- -- -- - 1-....1;i' -
1 li
I 10 00 - - - - - - - - - -
I
15.00 -- - - - - - - - - - -
1
- ri i . ;
ill ; 1
A
20.00 - - - - - - - - ; -
Depth I .
• le '
1 (ft)
25.00 — 4 + _ — — — — — — _
i
1
{ j 1 H I 11 i
i
o
�� — r:
,_.
I 30.00 f'- ,
i I 1
I 1 i 1 j
E I I
•
I I
• 3500 - I -- - - - -I_ — - _ _ _ ..._
i
i I
i ' 1 1111
'
1 40 00 - 4-� - - - - - - - -
1
j
I
I �
45.00
Maximum Depth = 44.95 feet Depth Increment = 0.33 feet
I 1 sensitive fine grained 4 silty clay to clay ' 7 silty sand to sandy silt 10 gravelly sand to sand
2 organic material 5 clayey silt to silty clay 8 sand to silty sand 11 very stiff fine grained ( ")
3 clay II 6 sandy silt to clayey silt 9 sand ■ 12 sand to clayey sand ( ")
I
Subsurface Technologies
Operator: W.MCC / A.MEE CPT Date /Time: 12 -29 -03 12:04
r Sounding: SND583 Location. CPT1 TIGARD HS
Cone Used: 442 TC Job Number: 25144AA00100
r Tip Resistance Soil Behavior Type` SPT N' Seismic Delay Seismic Velocity
Qt (Ton /ft ^2) Zone. UBC -1983 60% Hammer (milliseconds) (Meters/Second)
r
0.0
0.00 i i l i i 300.0 0.0
Milli"- 12.0 0.0 v i i i i i iTr
250.0 0.0 60.0 0 0 400 0
I
5.00 - - 0.'44-- _. - - -
10.00 - _ > - - - -
r 15.00 -
- k -._ _ - - -
I
•
•
II 20.00 - - a
is 1
i!
Depth !
25.00 , V' --i_ _ _ _ ", -} -
i i
I i iI
( f 't' 1 ± I if i t
I { i
30.00 - . -± - -rt - : , -t- r - 7- f- I *- {
1
i t ! I; 1 i
1 f }
- - - i- --
35.00 - 1 -i- _ E- - .._ - . i 1 I I ..
I
it i � •
� f I i
40.00 ! ,,____ _ .._ --_
f
1 45.00
Maximum Depth = 44.95 feet Depth Increment = 0.33 feet
I 1 sensitive fine grained 4 silty clay to clay 7 silty sand to sandy silt 10 gravelly sand to sand
2 organic material 5 clayey silt to silty clay 8 sand to silty sand 11 very stiff fine grained (*)
3 clay 116 sandy silt to clayey silt 9 sand X 12 sand to clayey sand (*)
Subsurface Technologies
Operator: W MCC / A MEE CPT Date /Time: 12 -29 -03 16:17
I Sounding'. SND585
Cone Used 442 TC Location: CPT2 TIGARD HS
Job Number: 25144AA00100
I Tip Resistance Local Friction Friction Ratio Pore Pressure Diff PP Ratio Soil Behavior Type`
Qt (Ton /ft^2) Fs (Ton /ft^2) Fs /Qt ( %) Pw (psi) (Pw- Ph) /Qt ( %) Zone: UBC -1983
0.0 300.0 0.0 5.0 0.0 5.0 -20.0 100.0 -20.0 100 0 0.0 12.0
0.00 l l l I l i i l i I r l l — m r l l u l l )Ilillllllll
i
I t
i
loon — — — — — — — —
I 'E"
20.00 - _ - - - - - -_ - _ _
i
30.00 .:., ;.. _
- - -
i ' i ? ! iii
i : . : ..
c 3
■ J
40.00.. _� - - - _ - -
Depth _k ? i I • (ft) Si f I
�y 1
I
- I *mils
I
I
i ! i ii i
I 60.00 =} - _ _ + - - -- � ...-i
c '1 •
t„ i , i I
I Zj ! ;.; i ; ; I I I
i ' ' i _
( i ;_
•
70.00 - i i
I
f E '
R i i, it
)I ;
I
80.00 -� -* _ _ _ __ _ _
I I i I�
I) i i i
i
1 ' : ,_ '
9 0.00
Maximum Depth = 84.97 feet Depth Increment = 0.33 feet
1 sensitive fine grained 4 silty clay to clay 7 silty sand to sandy silt 10 gravelly sand to sand
2 organic material 5 clayey silt to silty clay 8 sand to silty sand 11 very stiff fine grained ( *)
3 clay /16 sandy silt to clayey silt 9 sand X 12 sand to clayey sand (*)
I
Subsurface Technologies
Operator: W.MCC I A.MEE CPT Date/Time. 12 -29 -03 16:17
I Sounding. SND585
Cone Used. 442 TC Location: CPT2 TIGARD HS
Job Number: 25144AA00100
I Tip Resistance Soil Behavior Type* SPT N* Seismic Delay Seismic Velocity
Qt (Ton /ft^2) Zone: UBC -1983 60% Hammer (milliseconds) (Meters/Second)
0.0 300.0 0.0 12 0 0.0 250.0 0.0 1000 0 0 400 0
I 0.00 I I r –r– – 111111M
i i l l TT i i i i r l r
e •
I
* , 10.00 -
- - - -
I Nair
. ....
20.00 – _ – _ – _ –
30 00 – - – , -- _ 1 ,. _ – _ _ _ _
s I 1
I
i I
I 40.00 – -_ r — _ –
I �_ _
Depth j.
(ft) 4 s
50.00 – .._..._! _.. ---- _.. ........ – �nr . . , – – _ – – –
_
j I
, I
f : i - I I I 1
I 60 -00 –. _� -1 – - 4 - - I i -
`4-:--- 13 1 I I 1 I I I
I „ I ii
• ( I 1 1 I l i •
-
I I i
1.1 ) j' F I
j fl I 1 +
)1 I I 1 I
I. 11
I, i
I I I
■ I
j 5 I 1
1 I I I 11 l 1 1` I l j l
90.00
I I i j
Maximum Depth = 84.97 feet Depth Increment = 0.33 feet
1 1 sensitive fine grained 4 silty clay to clay 7 silty sand to sandy silt 10 gravelly sand to sand
2 organic material 5 clayey silt to silty clay 8 sand to silty sand 11 very stiff fine grained (`)
3 clay • 6 sandy silt to clayey silt 9 sand a 12 sand to clayey sand (')
CID
X
Q
iiii.,
%IL
.. ... ... ... .. am EN • am SIM IIII MN MN NM MI 11111 la. 1 NM
I
I
•
I GRAVEL SAND
BOUL- COBBLES
SILT OR CLAY
DERS coarse fine coarse medium fine
I
I U.S. STANDARD U.S. STANDARD SIEVE NUMBERS HYDROMETER
SIEVE OPENING IN INCHES
36 24 18 12 6 4 3 2 1.5 1 3/4 3/8 4 10 20 40 60 100 140 200
1001 1 1 1 I I I 1 1 1 I I I I I 0
1 90 10
80 20
1 .70 30 0
0 w
1 z z
( 60 I 40 Q
a w
CC
I— 50 50
l z Z
W Ui
40 60 0
LY
W w CC
I a
30 70 a
20 - 80
I 10 90
0 100
1,000 100 10 1 0.1 0.01 0.001
PARTICLE SIZE (mm) SIZE % PASS.
1 -1/2"
Exploration Point: B -01 -2003 3/4"
o
i 0 % 0. 0 1/2"
Sample Number: 1 #4
0 % Sand: 42.5 #10 100.0
N S Depth: 5.0 -6.5 % Fines: 57.5 #20 98.9
99.5
1 #60 96.0
D 85 : 0.173 #100 80.7
0 Classification: SANDY SILT (ML) D 60 : 0.081 #200 57.5
u)
I I • Description: Brownish - Yellow, mottled, nonplastic D so
P • Geologic Formation: Quaternary Alluvium (Qal) D 30
LL D 15 '
u.
1 U- ti
D,o •
z Ci
O C.:
'- C :
1
u)
g PARTICLE SIZE
Tigard High School DISTRIBUTION CURVE
1 Durham, Oregon ASTM D -2487
a
0) URS
1
I
I GRAVEL SAND
SOUL- COBBLES SILT OR CLAY
DERS coarse fine coarse medium fine
I
I U.S. STANDARD U.S. STANDARD SIEVE NUMBERS HYDROMETER
SIEVE OPENING IN INCHES
36 24 18 12 6 4 3 2 1.5 1 3/4 3/8 4 10 20 40 60 100 140 200
1001 I I I I I I I I I 1 I I I II I 0
I 90 10
80 20
_
70 30 a
0 W
Z Z
U 60 40Q
a W CC
i_ 50 - 50
I z z
W W
a0 600
CC
D'
W W
I 30 70 d
20 I 80
I 10 90
0 100
I
1,000 100 10 1 0.1 0.01 0.001
PARTICLE SIZE (mm) SIZE %o PASS.
1 -1/2"
Exploration Point: B -02 -2003 3/4"
Sample Number: 1 %Gravel: 0.0 1/2"
o % Sand: 56.2 #10 100.0
Specimen Depth: 5.0 -6.5 % Fines: 43.8 #20 96
86.8
I #60
D 85 : 0.233 #100 73.5
0 Classification: SILTY SAND (SM) D 60 : 0.109 #200 43.8
cii 1. c Description: Light brown, slightly plastic D •
50 0.0867
0
• Geologic Formation: Quaternary Alluvium (Qal) D 30
Ai
i D15• •
I o-, D10:
z C
Iu • C:
cn
g PARTICLE SIZE
Tigard High School DISTRIBUTION CURVE
co Durham, Oregon ASTM D -2487
a
,x URS
I
I
GRAVEL SAND
BOUL- COBBLES SILT OR CLAY
. DERS
coarse fine coarse medium fine
I .
U.S. STANDARD U.S. STANDARD SIEVE NUMBERS HYDROMETER
I
SIEVE OPENING IN INCHES
36 24 18 12 6 4 3 2 1.5 1 3/4 3/8 4 10 20 40 60 100 140 200
1 0 0 1 1 1 1 I 1 1 1 1 1 1 I I I I I, 0
1 90 - 10
80 20
70 30 0
W
z
1 . Z
� 60 40 Q
W
50 50 CC
I Z Z
W W
ao 600
CC CC
W W
t .
30 70 a
zo - 80
• 10 90
0 100
1 1,000 100 10 1 0.01 0.001
PARTICLE SIZE (mm) SIZE % PASS.
1 -1/2"
Exploration Point: B -03 -2003 3/4"
111 % Gravel: 0. 1/2"
Sample Number: 1 #4
% Sand: 74.1 #10
N Specimen Depth: 5.0 -6.5 % Fines: 25.9 #20 s8 #40
I.
#60 80.7
D 85 : 0.285 #100 52.8
a.
0
Classification: SILTY SAND (SM) D 60 : 0.171 #200 25.9
I
Description: Light brown, nonplastic D so: 0.1396 • P Geologic Formation: Quaternary Alluvium (Qal) D 30' 0.0834
II D 15
u.
1 U. °1
z
C
0
C:
0
7.
g PARTICLE SIZE
Lui Tigard High School DISTRIBUTION CURVE
Durham, Oregon ASTM D - 2487
n MS
a)