Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Specifications
1 3572 S,1 / i kosEN1462y LA/ ,'%s7,/ 0006-5 Structural Calculations RECEIVED for APR 22 2011 CITY F Full Lateral & Gravity Analysis of BUILDING DV�SIC I Plan B 1332 Lot 2 Summer Creek Townhomes Tigard, OR Prepared for Pulte Group April 7, 2011 OFFICE COPY JOB NUMBER: CEN -090 ** *Limitations * ** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and /or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 98 sheets total including this cover sheet. SI RUC TUR 3k,0 N i 4 , ��1 2,320 R O9 0 v OREGON , ,_ . � yi5 , \g N i. E �, (EXPIRESs12- 31-2011 I This Packet of Calculations is Null and Void if Signature above is not Original 6 Harper ',, fit. Houf Peterson Righellis Inc. ENGiNESF4 • Nf PS ' iP NPBCPVE Pf.CNl IEC 14.4UNYEr Gk4 205 SE Spokane St. Suite 200 o Portland, OR 97202 0 [P] 503.221.1131 0 [F] 503.221.1171 1 104 Main St. Suite 100 o Vancouver, WA 98660 0 [P] 360.450.1 141 0 [F] 360.750.1 141 1 133 NW Wall St. Suite 201 • Bend, OR 97701 0 [P] 541.318.1 161 0 [F] 541.318.1 141 liarper Project: Summer Creek Townhomes UNIT p BP • Flouf Peterson Client: Pulte Group Job # CEN -090 2��tr Rig l L■G111QEP3 .�lAt4tikRS Designer: AMC Date: June 2010 Pg. # 1AnhhnCAVQ ANG41 i; C,$. %UNVVf *11P DESIGN CRITERIA 2007 Oregon Structural Specially Code & ASCE 7 -05 Roof Dead Load RFR := 2.5•psf Framing RPL := 1.5•psf Plywood RRF := 5 •psf Roofing RME := 1.5•psf Mech & Elec RMS := 1 •psf Misc RCG := 2.5•psf Ceiling R1N := l •psf Insulation RDL:= I5,'psf Floor Dead Load FFR = 3.psf Framing FPL := 4•psf Sheathing FME := 1.5•psf Mcch & Elec FMS := 1.5•psf Misc FIN := .5 -psf Finish & Insulation FCLG := 2.5-psf Ceiling F'DL,= 13: ps. Wall Dead Load WOOD EX_Wall := 12.psf INT_Wall,,, := 10•psf 'Roof Live Load k1 := 25: psf Floor Live Load FLL := 40• psf . Harper Project: Summer Creek Townhomes UNIT B BPI. Houf Peterson Client: Pulte Group . Job # CEN -090 Righellis Inc. „, —, «a E , ;:, , ; - Designer: AMC Date: June 2010 Pg. # AP CIiTE �ioa GU',VCYJR3 Transverse Seismic Forces Site Class = D Design Catagory = D Building Occupancy Category: II Weight of Structure In Transverse Direction Roof Weight Roof Area := 748•ft 2 .1.12 RF := RDL -Roof Area RFgr-r = 12566 -lb Floor Weight Floor Area2nd := 605•ft FLRw - := FDL• Floor Area2nd FLRWT2nd = 7865.lb Floor_Area3 := 600.ft 2 FLRW := FDL•Floor Area3rd FLRW3 = 7800• lb Wall Weight EX Wall Area := (2203) -ft 2 INT Wall_Area:= (906) -ft WALLw := EX_Wa11 Wall_Area + INT Wall wt .INT_Wall_Area WALLIAr-r = 35496 -lb WTTOTAL = 63727 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h := 32 Mean Height Of Roof I := 1 Component Importance Factor (1 1.5, ASCE 7 -05) := 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C := .02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x := .75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period T := C T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F := 1.123 Ace -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F, := 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4-2, ASCE 7 -05) x , \,_ , Ell 4rper Project: Summer Creek Townhomes UNIT B • : Ilf t. Houf PeterSofi , Client: Pulte Group RO; CEN-090 Righol Us Inc. - — 'Designer: AMC Date: June 2010 Pg. # 1,..22 CC A0 1._ A q5 , Y t.,! ?III SMS := F Sms = 1.058 (EQU 11.4-1, ASCE 7-05) 2.Sms Sds := Sd = 0.705 (EQU 11.4-3, ASCE 7-05) 3 Smi := F• Si Smi = 0.584 (EQU 11.4-2, ASCE 7-05) 2.Smi Sd1 := Sdi = 0.389 (EQU 11.4-4, ASCE 7-05) 3 $ts* le CA:— Cst= CO og (EQU 12.8-2, ASCE 7-05) k ...need not exceed... S 4 1 ' 1 9 ;(s inlix :=-. - . - --. CS (EQU 12.8-3, ASCE 7-05) Tn.A, ...and shall not be less then... C1 := if(0.044.SdA < 0.01, 0.01,0.044 0.5.Spl (EQU 12.8-5&6, ASCE 7-05) C2 := ifi S1 <0.6,0.01, R Cs := if (C1 > C2, C i , C2) Cs = 0.031 . Cs := if (Cst < Cs , Cs , if (Cst < Cs inax ,Cst, Cs Cs = 0.108 Cs: WTTO`fAL y =-:691410 (EQU 12.8-1, ASCE 7-05) E := V.0.7 E = 4840 lb (Allowable Stress) 13 , Harper Project: Summer Creek Townhomes UNIT B ' 8 a=', .• Hoof Peterson Client: Pulse Group ..lob # CEN -090 Righcllis laic. gtapl'IC 6�1p • "A1W1 - -- Designer. AMC _ Date: June 2010 Pg. # LA1100G.PC AI C1.ITEC O• pUaCpYOtlp Transverse Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 100 mph (3 Sec Gust) Exposure: B Building Occupancy Category: H I; := U00 Importance Factor (Table6-1, ASCE 7 -05) .h = 32 Mean Roof Height •X := 1.00 Adjustment factor. (Figure 6 -3, ASCE 7 -0S) Smaller or.. •a2: : =. 2' .1.1 "6: ft Zone-A & pi-10410M Length (Fig 6 -2 note 10, ASCE 7 -05) 4,= .2R or — a2 = 25.6 R • but not less than... a := 3.2 -ft a2' = G R min Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA := 19.9•psf PnetzoneB := 3.2.psf Pnetzonce := 14.4•psf Pnet 3.3.psf Vertical • Pnet,,oneE :_ — 8.8•psf PnetzoneF := —12• psf PnetzoneG := —6.4• psf PnetzoneH:= — 9.7•psf Basic Wind Force PA := PnctzoneA PA = 19.9•psf Wall FIWC PB := Pnet neB-Iw•X P1.3'= 3:2•psf Roof I•I W.0 PC: PnetzoneC'Iw•X Pc = 14.4•psf Wall Typical • Pll:= Pnett0neD•Iw•a Pp 74 psi'. RoofTypical PE := Pnet, • X PE = - 8:8•psf PF := Pnet,oneF.IW•X PI = —12' psi' PG := PnetzoncG'Iw'a PG;= — 6.4• P := PnetzoadrIw a P — 9.7•psf Harper project: Summer Creek Townhomes uNrrIll floirrPeteiten Client: Pulte Group Job # CEN-090 Righellis Inc. E....Rs • p4...tm. Designer t AMC Date: June 2010 Pg. # Determine Wind Sail In Transverse Direction wsAiL 5,9 ± 29).11 WSAILz (6 ± 0 + 23)• ft 2 WSAIlqoaeC-. (429 355 + 339) '(0 0 + 4 )ft 2 WA.:= WSA IL&„- PA WA. = 2846 lb WSA Po, = fl Wc.:. WSAIL76„ Wcr= 16111 lb WI), := WSAILz6 WD = 13 lb. Winci_Force := WA W13 + WC WD Wind_For'c'e -:= 10i Of + WSNILzo W.SAILz + WSAILz„,D) Windforce = 19123 WiiitlForde = . 12990'lb WSAILz WSA1L•ZonO: :43 fl W. 3301 W S A : WSAIL-zo PE WE = —3781b Wp W8AILz P Wo := WSA PG WG.= —218 WSAILz W1,1 = —1172 lb ( WSA WS • . 1 . 12 ' U,01111 + + (WE + + IZDI4WS.AILZonet? + WSAL- Uplift 13261b (Posit*. rinibr...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION Harper Project: Summer Creek Townhomes UNIT B =LT =1P HOUf Peterson Client: Pulte:Group. .Job # CEN -090 / Righellis Inc. - - e„.,„,... ,�,;,, „, „, Designer: AMC Date: June 2010 Pg. # -_ fin:: .:iiCr S ♦! -v RVEVUH9 Longitudinal Seismic Forces Site Class = D Design Catagory = D Building Occupancy Category: II Weight of Structure In Longitudinal Direction Roof Weight Roof Area = 838 ft RM := RDL•Roof Area RFWI• = 12566•lb Floor Weight Floor Area2nd = 605 ft 2 FL = FDL•Floor Area2 FLRw = 7865-lb Floor_Area3 = 600 ft 2 Fa R = FDI.•Floor Area3rd FLR3rd = 7800.1b Wall Weight EX Wall .Area := (2203)•ft 2 INT Wall Area = 906 ft • (ALI r j := EX_Wall Wall Area + INT Wall Wall_Area WALLwrr = 35496- lb WTTOTAI.. = 63727 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h = 32 Mean Height Of Roof I = 1 Component Importance Factor (1 1.5, ASCE 7 -05) A, := 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C = 0.02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x = 0.75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period A ,„:= C x T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 = 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S = 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F = 1.123 Ace -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F, = 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) t/(0 Harper Project: Summer Creek Townhomes UN1T B 4,41P r• Hoar. Peterson . client: Pulte.Groun job # CEN-090 . . -.--- Ri Designer: AMC Date: June 2010 Pg. # l41103CAPr atteHliCsrs•auuvvnets F S SMS = 1.058 (EQU 11.4-1, ASCE 7-05) 2..Sms Sd = 0.705 (EQU 11.4-3, ASCE 7-05) 1 . E Si Smi = 0.584 (EQU 11.4-2, ASCE 7-05) 2 A Sd = 0.389 (EQU 11.4-4, ASCE 7-05) 3 St1' le Cst =.0.103 (EQU 12.8. ASCE 7 :..need not exteed:.. Sill'IC A it W := Ty it 'Csmax = 0.2.4 (EQU. 124,3, ASCE.7.,05) ...and shall not be less then... A c A t A := if (0.044 Sd < 0.01, 0.01 , 0.044. Sth- l 0.5.S t .I ( (EQU 12.8-5&6, ASCE 7-05) $:= if S < 0.6,0.01, R a if,(C1 > C2 Csi = 0.031 i f (CSt < Csmin Csmin i i f (Cist ,' CS , Cst Csmax)) Cs = 0.108 V :-:= Cs'r WTitTAL V= 69141b (EQU 12.8-1, ASCE 7-05) F..— V.07 E = 4840 lb (Allowable Stress) 1,2i Harper Project: Summer Creek Townhomes UNIT B ' 1 -1ou'f Peters(ni Client: Pulte Group Job it CEN -090 Righellis Inc. Designer: AMC Date: June 2010 Pg. lI LAUUS'CA PS ARCMITECt9• SURVEYORS Longitudinal Wind Forces (Method I - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 110 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II = .I.0 Iniportance Factor (Table 6 -1, ASCE 7 -05) = 32- Mean Roof Height X = 1.1)0 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... =. 2•. I.1 .1641 Zone A 8c B Horizontal Length 3 2$ (Fig 6 -2 note 10, ASCE 7 -05) a2 = or = .4•h,;2:'ft a2= 25.6ft but not less than... A2,A iw:= 3.241 a = 6 ft Wind Pressure (Figure 6 -2, ASCE 7 -05) HIorizontal PnetzoneA = 19.9•psf PnetzoneB = 3.2 -psf Pnet ,neC = 14.4-psf Pnet = 3.3.psf Vertical PnetzoncE = — 8.8•psf Pnet„ner = —12•psf PnetzoneG = —6.4• psf Pnet,oncH = —9.7• psf Basic Wind Force Pte= PnetzoneA•Iw•X PA l9.9•psf Wall l -IWC Pte:= PnetconeB pB ='3.2•psf Roof H WC = PnetzoneC4tiy a Pc = 14.4•psf Wall Typical := Pnet„ Pb = 3:3•psf Roof Typical SgA:= Pnet7oneE•Iw'X PE = - 8.S,1psf := Pnetzonep 1 F = — ,12.psf := Pnetzo Ivy' X PC = =G ?t psF P Prietzonew Iw X P1:1, = —9 psf �,i Harper Project: Summer Creek Townhomes UNITB FIPa'' Houf Peterson Client: Pulte Group Job # CEN -090 Righcllis Inc. niatupcao •,ri Designer: AMC Date: June 2010 Pg. # i6N ❑SCSPE 1 _I ?E ^ i�SUFVEYD ?:; Determine Wind Sail In Longitudinal Direction ,V/S j = (58 + 59 + 21)•ft 2 n),MZ,74,Ara,:= (0 + 0 + 51). ft eGn:= (98 + 99 + 34)•$ WS := (0 + 0 + 114)•ft Wes : — WSAILZoncAPA WA = 2746 lb := WSA1LZoneB WB = 163 lb := WSAILZoncc W = 3326 lb = WSAILGoneD• WD = 376 lb ind Force := WA + Wg + W + Wf) Wind Force = 10•psf•(WSAILZ + WSAILZoneB + WSAILZoneC + WSAILZonCD) Wind Force = 6612 lb Wind_Force = 5340 lb SAN= 151 41 WSA N�M� zwirTv:= 138•ft2 242.11 SA�:= 216.ft 2 := WSAILZoneE•PE Wt = — 1329 lb := WSATLZonci; P. WE = —1656 lb := WSAILZoneG PG WG = —1549 lb Wes= WSAILZoneH• Wt_{ = -2095 lb U 1i11� ",.= W + WH + (WE + WG) + RDL•[WSAILZoneF + WSAILZoneH + (WSAILZonCE + WSAILZoneG) .6.1.12 UPI ift 901 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION Harper Houf Peterson Righellis Pg #: _ Transverse Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X = 1.00 Iw= 1.00 Wind Sail (ft Wind Net Design Wind Pressure (psf). Pressure (Ibs) Zone A = 19.9 143 2846 Wall High Wind Zone Horizontal Zone B = 3.2 29 93 Roof High Wind Zone Wind Forces Zone C = 14.4 1123 16171 Wall Typ Zone Zone D = 3.3 . 4 13 Roof Typ Zone Zone E = -8.8 43 -378 Roof Windward High Wind Zone Vertical Zone F = -12.0 43 -516 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 334 -2138 Roof Windward Typ Wind Zone Zone H = -9.7 327 -3172 Roof Leeward Typ Wind Zone Total Wind Force =l 19123 lbs I Use to resist wind uplift: Roof Only Total Exterior Wall Area 2203 ft Uplift due to Wind Forces= -6204 lbs Resisting Dead Load= 7517 lbs E =I 1313 Lbs:..No Net.Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Dia hragm (ft): _ Zone A Zone B Zone C Zone D Main Floor 55 6 429 0 Upper Floor 59 0 355 0 Main Floor Diaphragm. Shear = 7291 lbs Upper Floor Diaphragm Shear = 6286 lbs Roof Diaphragm Shear = 5546 lbs Wind Distribution To Shearwall Lines • MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm (Ibs) Diaphra (lbs) Diaphragm (lbs) _ Widtft) Width ft Width, ft - A 15.83 2275 20.50 3143 21.33 2773 B 19.50 2802 0.00 0 0.00 0 C 15.42 2215 20.50 3143 21.33 2773 50:75 7291 '41 6286 42:67 5546 L,'° Harper Houf Peterson Righellis Pg #: Transverse Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D S1 = 0.34 Ss= 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 SMs 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 Sps= 0.71 Equ. 11.4 -3, ASCE 7 -05 SDI= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (lb)= 7865 • Floor 3 Wt (lb)= 7800 Roof Wt (Ib) = 12566 Wall Wt (lb) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22063 Trib. Floor 3 Diaphragm Wt (Ib) = 21998 Trib. Roof Diaphragm Wt (Ib) = 19665 Vertical Dist of Seismic Forces Cumulative % total of base shear I Rho Check to Shearwalls (lbs) tcvshearwalls Req'd7 V noor2 (Ib) = 711 100.0% Yes V aoor 3 (Ib)= 1595 85.3% Yes Vroof (lb) = 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area ` Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft lbs lbs lbs A 126 299 371 148 795 1257 B 282 0 0 331 0 0 C 197 301 377 231 800 1277 Sum 605 600 748 711 1595 2534 Total Base Shear* = I 4840 LB I *Base shear assumes rho equal to 1.0. See sheanvall analysis spreadsheet for confirmation of rho. LA Harper Houf Peterson Righellis Pg #: Longitudinal Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X. = 1.00 lw= 1.00 Wind Sail Wind Net Design Wind Pressure (psf) ( ) Pressure (Ibs) Zone A = 19.9 138 2746 Wall High Wind Zone Horizontal Zone B = 3.2 51 163 Roof High Wind Zone Wind Forces Zone C = 14.4 231 3326 Wall Typ Zone Zone D = 3.3 114 . 376 Roof Typ Zone Zone E _ -8.8 151 -1329 Roof Windward High Wind Zone Vertical Zone F = -12.0 138 -1656 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 242 -1549 Roof Windward Typ Wind Zone Zone H = -9.7 216 -2095 Roof Leeward Typ Wind Zone Total Wind Force =l 6612 lbs I Use to resist wind uplift: Roof 8 Half of Upper Floor Walls Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -6629 lbs Resisting Dead Load= 10160 lbs • E=) `3531 Lbs:..No Net Uplift l Wind Distribution Tributary to Diaphragms Wind Sail Tributary.To_Dia hragm.(ft2): Zone A Zone B Zone C Zone D Main Floor 58 0 98 0 Upper Floor 59 0 99 0 Main Floor Diaphragm'Shear= 2565 Ibs Upper Floor Diaphragm Shear = 2600 lbs Roof Diaphragm Shear = 1447 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm (Ibs) Diaphragm (Ibs) Diaphragm (Ibs) Width I Width (t),_ T Width (ft) 1 8 1283 8 1300 8 723 2 8 1283 8 1300 8 723 ).',= 16, 2565 16 2600 16 1447 , _ — _ LA2, Harper Houf Peterson Righellis Pg #: Longitudinal Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D Si = 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct= 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 SMs= 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 Spg= 0.71 Equ. 11.4 -3, ASCE 7 -05 Sot= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (lb)= 7865 Floor 3 Wt (lb)= 7800 Roof Wt (Ib) = 12566 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (lb) = 22063 Trib. Floor 3 Diaphragm Wt (Ib) = 21998 Trib. Roof Diaphragm Wt (lb) = 19665 Vertical Dist of Seismic Forces Cumulative % total of base shear I Rho Check 'to•Shearwalls (Ibs) to:shearwalls. Rep'd? Vfioor 2 (Ib) = 711 100.0% Yes VOoor 3 (lb) = 1595 85.3% Yes Vroot(lb)= 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq sq ft lbs lbs lbs 1 275 270 360 323 718 1220 2 330 330 388 388 877 1315 Sum 605 600 748 711 1595 2534 Total Base Shear* = I 4840 LB *Base shear assumes rho equal to 1.0. Sec shearwall analysis spreadsheet for confirmation of rho. bit.b Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCII 7 -05 Transvere Shearwalls Line Load Controlled By: Wind Shear H L Wall I Line Load Line Load Line Load 'Dead V Panel Shear Panel Mo Ma ' Uplift Panel Lgth. From 2ndllr. From 3rd Flr.. From Roof Load Sides Factor Type T (ft) (ft) (ft) ' ht k ht k ht k (klt) (pif) (ft -k) (ft -k) (k) 101 8 5.25 5.25. 1.52, OK . 8.00 ' 2.28 ' 18.00 3.14 27.00, 2.7.7 ' 1560 Double 1.40 VIII 102 8 3.88 3.88 2.06 ox 8.00 ' 2.80 8.00 _ 0.00 723 Single 1.40 IV 103 8 4.58 8.58 1.75 ox _ 8.00 ' 2.22. 8.00 3.14 8.00 2.77 947 Double 1.40 • VI ' 104 8 4.00 8.58 100 OK 8 :09 2.22' 8,00' -3:14 8.00 177 - '.947 Double .. 1.40 V,,I 107 8 ' 4.58 , 13.08 -1.75 ox 8.00 2.28 -18.00 3.14. 27.00. 2.77 626, Single " 1.40 III 108 8 8.50 1108 0.94 rim 8.00 ' 2.28 18.00 3.14 27.00: 2.77 626 Single 1.40 III 109 8 3.88 3.88 _ 2.06 ox . 8.00 • 2.80 723 Single . 1.40 , IV , 110 .. 8 1.25 4.50 - 6.40 ' J r!t.. i 8.00 2.22 8:00 3.14 8.00 2.77 • 1807 Double 1.40 NG i. 111 8 2.00 4.50: 4.00 i•t - I. 8.00 2.22 8.00 3.14 8.00 2.7.7 ' 1807 Double . . 1.40 NO '112 8 1.25 ' 4.56! - 6:40 r,it 8:00' 2.22 - 8.00 3.14 8.00 ' 2.77 ' 1807 Dtiuhle 1:40 NG : _201. .9 ;G:79 9.79' ,133 ox - _9.00 3.14 .18.00 ,. 2.7.7 , '604 Single_ 1.40 - III. • . 202 - _ 9 . 3 9 3.00 a x . 9.00 3.14 ' 18.00 _ 2.77 604 . Single _ - 1.40 III 203 9 _ 5.00 5.00 _ 1.80 , ex 9.00 3.14 18.00 2,77 1183 Double 1.40 ._ VII - ' 204 Not Used 205 Not Used 206 Not Used' 301 8 6.88 10.08 [1.16 OK ' 8.00 2.77 _ 275 Single ' 1:40 I _302 . 8 3.21 10.08 .2.49 ox ' ' 8.00 -2.77 275 Single 1.40 ' I • 303 8 5.00 10.00 ' 1.60 OK 8.00 2.77 277 Single _ 1.40 I 304 8 2.50 10.00 .3.20. on _ 8.00 ' 2.77 277 Single 1.40 ' I 305 8 2.50 10 :00 3.20 ox _ 8.00 2.77 277 Single _ 1.40 _ I _ . Spreadsheet Column Definitions & Formulas L = Shear Panel Length H= Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For I > 2:1 Mo (Overturning Moment) = Wall Shear' Shear Application ht Mr (Resisting Moment) = Dead Load *12 * 0.5 * (.6 wind or .9 seismic) Uplift T= (Mo -Mr) / (L - 6 in) I L . \ IA Harper Houf Peterson Righellis Pg #: Shearwall. Analysis Based on the ASCE 7 -05 rrti nsvire'Shearwulls Line Load Controlled By: Seismic 'Shear It L Wall IVI. I.ine'Load - Line Lend line Load Dead V Rho'V % Story. 1 - Panel Shear Panel M M Uplift Panel Lgth. From 2nd Flr. Prom 3idElr Front Roof Load Strength Bays Sides Factor Type "1' (ft) ((I) (a) ht k ht k ht k (kit) (phi) (plf) (fl -k) (ft-k) (k) 101 8 . 5.25 5.25 1.52 OK 8.00 0.15 18.00 0.80 , 27.00 1.26 . 419 545 , 0.30 . 171 Single 1.00 IV 102 8 3.88 3.88 2.06 ox 8:00 0.33 8.00 0.00 0.00 85 1.11. .0.22 0.97 .Single 0.97 1 103 8 .4.58 8.58 1.75 ox 8.00 0.23 8:00 0.80 8.00 1.28 269 ' 350 0.26 1.15 Single 1.00 II 104. 8 4.06' 8.58 2.00 ox 8.00 0.23 8.00 0.80 8.00' 1.28 269 350 0 -23 , 1.00 Single 1,00 - II ' - 107, 8. , 4.58 13.08 1.75 ox , 8.00 0.15 18.00 0.80 27.00 ' l.26_ 168 219 0.26 1.15 Single 1.00 ' I 108 . 8 .. 8.50 13.08 .0.94 OK 8.00 0.15 18.00 D.80 27.00 1.26 . (68 . 21.9 NA 2,13 Single 1.00 1 _ 109 8 3.88 3:88 2.06 OK 8.00 0.33 0.00 . 85 , 11.1 0.22 0.97 Single 0.97 . I - . 110 8 1.25 4.50 6.40" i ii ! ' 8.01 0.23 8.00 0.80 8.00` : 1.28 513 667 ' 0.07' ' 0.31 Double 0.31 NG 111 ' 8 ' ' 2.00' 4.50 4.00 I '8.00 0.23 8.00 0.80 8,00 ' 1.28 513 667 0:11 ' 0.50 Double 0.50 NG 112 . 8 1.25 - 4.50 , 6.40 1 of r , 8.00 0,23 8.00 0.80 8,00 , 1.28 513 ' ' 667 ' 0:07 ' 0.31 Double 0.31 'NG " . 201 . 9 6.79 9.79 1.33 , OK 9.00= 0:28 , 18.00 , 1.26 157 205 0.46 131 _ Single 1.00 ' I 202 9, ' 3.00. 9.79 "3.00 OK 9.00 0.28 18.00 1.26 .. 157 205 020 0.67 Single 0,67 11. . 203 • 9 ' 5.00 5.00 1.80 ' OK 9.00 0.55 _18.00_ 1.28 366 476. _- 034 , 1.11 Single . 1.00 . IV 204 ' - Not Used 205 . Not Used " - 206 Not Used 301 . 8 - . 6.88. 10.08- 1.16 . OK _ . 8:00 . 1.26 ' 125 1 162 0.34 1.72 Single 1.00 1 . • 302 8 3.21. 10.08 2.49 ox _ , 8.00 1.26 ' 125 - 162 0.16 0.80 Single 0.80 1 . 303 8 - 5,00 10.00 1.60 aK 8.00 1.28 128 • (66 0.25 1.25 _ Single 1.00 . I 304" 8 2.50 10.00 3.20 . oK 8.00 ' 128 128 • 166 0.12 0.63 ' Single 0.63 ❑ 305 8 2S0 10.00 3.20 16K _ , 8.00 ' 1.28 128 166 0.12 0.63 Single 0.63 _ II _ Rho Calculation Does the I st floor shearwalts resist more than 35% of the total transverse base shear'? Yes Does the 2nd floor shcarwalls resist more than 35% of the total transverse base shear'? Yes Does the 3rd floor shearwalls resist more than 35% of the total transverse base shear? Yes Total 1st Floor Wall Length = 17.71 Total # 151 Floor Bays = 4,0 Are 2 bays minimum present along each wall line? No 1st Floor Rho = 13 fatal 2nd Floor Wall Length = 14.79 Total if 2nd Floor Rays= 3 Arc 2 bays minimum present along each wall line? No 2nd Floor Kho = is Total 3rd Floor Wall Length = ID OS Total # 3rd Floor Bays = s Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho= Lt Spreadsheet Column Definitions & Formulas L = Shear Panel Length II = Shear Panel Height Wall Length = Sum ol'Shear Panels Lengths in Shear Line IUL Ratio = Flight to Width Ratio Check V (Panel Shear) = Sum of Line Load°Rho / Total L % Story Strength = L / Total Story I. (Required for walls with Il /L > 1.0, for use in Rho check) t/ Bays= 29J.11 Shear Factor = Adjustment ForHll. > 2:1 Mo (Overturning Moment) = Wall Shear' Shear Application hr Mr (Resisting Moment) = Dead Load • 1?' 0.5 a (.6 wind or .9 seismic) ' Uplift 1' = (Mo -Mr) / (I. - 6 in) L \ C) Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H L Wall I -I/L Line Load Line Load Line Load Dead V Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd FIr, From 3rd Fir: From Roof Load Sides Factor Type 'f (f3) (ft) (ft) ht k ht k ht - k (klf) (plf) (ft -k) (ft -k) (k) , 105 8 12:75 12.75 0.63 ox 10.00 1.28 18:00 ' 1.30 27.00 - 0.72 1.13 ' 259 Single 1.40 - 1 55 :75 92.01 0.04 106 ' 8 12.75 1275,. 0:63' ox 10.00. 1.28 18.00 ' 1.30 27.00 0.72 1.13., 259 Single , 1.40 , I 55:75 92.01 , 0.04 I 307 9. 11.50 - LI 50 0.78 OK 9 :00; 1.30 •18 :00 0 :72 0.75 - .176 Single 1.40: 1 247.1 49:73 -0:'47 I 208 9 11.50 11.50 0.78' OK ' r 9:00. 1.30. 18.00 0.72 0.75 176 Single 1.40 I 24.71 49.73. -0.47 1 _306 8 - . - _10:00 I 10.00' 0 :80 . ox :8:00. 0.72 0.29. 72 1 . Single L40 _ 1_ 5.78 14.40 430 307 8 10.00 _ 10.00 0.80 OK 8.00 0.72 0.29 72 Single 1.40 1 5.78 14.40 -0.30 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height • Wall Length = Suns of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) L.k Co Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 .:ungitiulinal Shearwalls Line Load Controlled By: Seismic . Shear H L 'Wall I IUL Line Load Line Load ' Line Load ' Dead V Rho• V % Story II Panel Shear Panel Mo Ma Uplift Panel Lgth. From 2nd.Elr. _Erom.3rd Flr. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ■ ht k ht k ht k (kit) (p11) (p11) (ft-k) ( &k) (k) 105 8 . 12.75 12.75 0.63.1 on _10.00 , 0.32 18.00 0.72 27:00 1.22 1.19' . 177 177 NA 3,19 Single 1.00 I . I 49.09 96.89 -0.74 106 8 12.75 12.75 0.63 OK 10.00 0.39 18.00 0.88 - 27.00 _ 1.32 - 1.19„ 202 202 NA 3.19 Single _ 1.00 f 55.17 `96,89' -0:24 207 • .9, 11:56 11.50 '0.78' "oK t ' 9.00.' 0:72 18.00 1.22 ' 0.81' 169 169 NA 2:56 Single 1.00. 1 • 28.42 53.69 -0.34 208 9 _ 11.50 _ 11.50 : 0. 76 on 9.110 0.88 - 18.00 132 ' 0.81" ' 191' 191' 1 - - NA J _ 2.56 Single 1.00 1 31.56 53.69 -0.06 '� I 306 8 10.00 10.00 0.80 opt 1 8.00 .22 0.35. 122 122 NA 2.50 Single 1.00 1 9.76 17:00 0,07 I 307 8 10.00 10.00 0.80 on 18.00 , 1.22. 035 122 . 122 NA 2.50 Single . 1.00 1 9.76 17.40 , -0.07 ,Rho Calculation _ Does the 1st floor shearwalls resist snore than 35% of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Total 1st Floor Wall Length = 25,50 Total 6 1st Floor Bays = 6.3a Are 2 bays minimum present along each wall line? Yes 1st Floor Rho = t.o Total 2nd Floor Wall Length = 23,00 Total # 2nd Floor Bays. s Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho = t,o Total 3rd Floor Wall Length = 20.00 Total # 3rd Floor Bays = s Are 2 bays minimum present along each wall line? Yes 3rd Flour Rho = t,0 Spreadsheet Column Definitions & Formulas L - Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load'Rho 1 Total I. Story Strength = I. / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2' IJH Shear Factor= Adjustment For fl /I.> 2:1 Mo (Overturning Moment) = Wall Shear' Shear Application ht ' Mr (Resisting Moment) = Dead Load' L 0.5' (.6 wind or .9 seismic) Uplift T _ (Mo -Mr) / (L - 6'in) tdi)c Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Transvere Shearwalls 'Panel Walf$Iiear Wall Type I Good'For . *V'(P I (P«) • k t .rte imam" Rom - mlitommilreviztmeig, 101 1560 2 Layers 112" APA Rated Plyw'd w/ 8d Nails @ 2/12 ' 1667 .I • 102 _ 723 1/2" APA Rated PIyw'd w/ 8d Nails @ 2/12 833 103 947 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails a, 4/12 990 104 947 2 Layers 1/2" APA Rated Plyw'd wl 8d Nails @.4/12 990 107 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 _ 638_ 108 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 . 109 723 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 833 110 Simpson Strongwall 111 Simpson Strongwall 112 Simpson Strongwall 201 604 1/2" APA Rated Plyw'd w/ 8d Nails @ 3112 638 202 604 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 • 638 203 1 183 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 1276 _ 204 Not Used 205 Not Used 206 _ Not • Used 301 275 1/2" APA Rated Plyw'd w/ 8d Nails @.6/12 339 302. 275 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 _ 339 303 277 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 304 277 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 339 305 277, 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 339 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. Lkb Harper Houf Peterson Righellis Pg #: _ SHEAR WALL SUMMARY' Longihidinal Shearrvalls fPAOel VWaIltSlieiir VUnII Typer 'rood :�F,or Uplift l ' •Simpsonq- 19ld'own `Gdiid�Eor i 105 259 1/2" APA Rated Plyw'd,w/ 8d Nails @ 6/12 339 . 44 . Simpson None 0 106 259 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 44 „ Simpson None 0 207 176 1/2" APA Rated Plyw'd w! 8d Nails @ 6/12 , , , 339 . � 45 _ Simpson None 0 208_ 191 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 , =59, Simpson None 0 f 306 122 1/2" APA Rated Plyw'd w/ 8d Nails (u, 6/12 242 . , =7,2' ^ , Simpson None 0 1 307 122 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 , -7 ;2 Simpson None 0 I NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. Lik61 Transverse Wind Uplift Design . Unit B Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall .@ Left @ floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) - - - - - (ft) (ft) (ft) (ft) k k • k k plf klf k k- kft kft kft k k k k k k 101 8 1.1667 5.25 • 5125 2,28 3.14 _ 2.77 8,19 1560 0.1 0.8 . 0.208 72.42 5.58 2.47 14.54 14.93 14.54 14.93 102 8 1.1667 3.88 3.88 2.8 2.8 722 0.092 2.432 22.40 10d3 0.69 4.83 6.50 4.83 6.50 103 8 1.1667 4.58 8.58 2.22 3.14 2.77 8.13 948 0.1 0.078 0.078 38.40 1.41 1.41 9,20 9.20 203 R -12.12 -2.91 9.20 104 8 1.1667 4 8.58 2.22 3.14 2.77 8.13 948 0.234 0.117 1,632 33.54 2.34 8.40 9.18 8,14 .. 9.18 8.14 107 8 1.1667 , 4.58 1308 _ 2.28 3,14 2.77 , 8.19 626 0.1 - 0.192 0.078 25.36. 1.93 1.41 5.93 6.01 201L 201R 6.71 6.71 12.65 12.72 108 8 1.1667 - 8.5 ' 13.08. , _228:. _ .. 3.1.4 - 2.77 , 8.19 - 626 _ 0.1 0.078. 0.384 47.06 4.28. 6.88 5.56 537 '202L 202R 6.77 724 12:33. 12.60 110 8 1.1667 1.25 4.5 2.22 ' 3.14 2.77 8.13 1807 0.1 0.384 0.078 _ 18.07 0.56 0.18 23.00 23.30 203L 12.13, 35.13 23.30 111 8 1.1667 2 4.5 2.22 3.14 2.77 8.13 1807 0.1 0.078, 0:208 2891 0.36 062 18.87 18.76 203R - . -12.12 6.75 18.76 112 8 1.1667 1.25 4:5, 2.22 3.14 2.77 8.13 1807 '0.1 0.208 ' 1.424 18.07 , 0.34. _ l ;86 231+7' 21 :99 23.17 21.99 201 9 1.1667 6.79 9:79 _ 3.14 2.77 5.91 604 '0:112 0.848, 0.156 39:13 9.72 5.02 4.90 .5.32 301L 30,111 I 1.45 1.40 6.35 6.71 202 9 1.1667 3 9.79 3.14 2.77 5:91 604 0.172 0.848 0.156 17.29 332 1.24 5.10 5.51 3021 * 302r 1.67 1.72 6.77 7.24 203. 9 1.1667 5 5 3.14 2.77 5,91', 1182 ' 0:172 0.848 0.385 56.42 6.39 4.08 • 10.52 10.80 303L 303R' _1.61 1.3 12.13 12.12 301 8 '6i38', 10.09 2.77 2.77 ' 275 ' '0 :252 0.384 0.468 15.1f. , 8.6F 9,18 _ 1:45` : - 1.40 - 1.45 1.40 302 8 3.21 10.09 2.77 2.77 275 0.252 0.468 0.384 7.05 2.80 , 253 1.67 1.72 1.67 1.72 303 8 5 10 2.77 2,77 277 0,252 0.384 _ 0 :858 11.08 5.07 7,44; 1.61 1.32 1.61 1.32 304, 8 2.5 10, 2.77 2.77 277 0.112 0.192 5.54 283 0.35 2.02 2.13 2.02 2.13 305 8 2.5 ' 10 2.77 2.77 277 0.112 0,384 5.54 0.35 1.31 2.13 1.90 2.13 1.90 Spreadsheet Column Definitions & Formulas L = Shear Panel Length 11= Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) - Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) Transverse Seismic Uplift Design Unit B Shea? H Joist L Well Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting. Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall 'Load (not Point Point ning .Moment 'Moment Floor Shear @ Floor Shear @ Stacking r@ Stacking From From Uplift Uplift FIr. Fir. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right _ , stack). . (ft) (ft) (ft) ' (ft) k k ' k k plf ' klf k k ' kft kft ' kft ' k k k k k k 101 8 1.1667 5.25 5.25 0.148 0.795 1.257 ' 2.2 419 0,1 . 0.8 . 0.208 _ _ 19:99 5.58 2.47 3:15 3.74 3.15 3.74 102. 8 ' 1.1667 3.88 3.88 0.331, 0.331 65 0,092 2.432 0 2.65 10.13 0.69' -I.91 0.60 -1.91 0.60 103 8 1.1667 4.58 8.58 0.231 0.8 1.277 2.308 269 0.1 0.078 0.078 11.15 1.41 1.41 2.42 2.42 203 R -2.99 -0.56 2.42 104 8 1.1667 4.00 - 8.58 0.231 0.8 1.277 2.308 269 0.234 0.117 1.632 9,74 2.34 8.40 2.18 0.62 2.18 0.62 107 8 1.1667. 4.58 13.08 0.148 0.795 .1.257 2.2 ,__ 168 0.1 ' 0.192 0.078 7.00 1.93 1.41 1.29 1.41 20IL 201 (part) 1.17 0.34 2.46 1.75 108 8 '1.1667 ' 8,50 13.08 0.148 0.795 ,1257 2.2 . 168 0.1 . 0.078. 0.384 12 :99 , 4.28 6.88 1.14 0.85 ' 202L . 202R .033 1.35 1.47 2.20 110 8 1.1667 1.25 4.50 0.231 0.8 - 1.277 2.308 513 0.1 , 0.384 0.078 5.80 . 0.56 0.18. 6:88 7.32 203L . 3.00 ' 9.87 7.32 111 8 1.1667 2.00 4.50 0.231 0.8 1.277. 2.308 513 . 0.1 , 0.078 0.208 9.28 0.36 0.62. 5.89 5.74 203R, 304L -2.99 2.91 5.74 112 8 1.1667 1.25 4.50 0.231 0.8 1.277 2.308 513 0.i , 0.208 1.424 5.80 0.34 1.86. 7.13 5.36 7.13 5.36 201 9 1.1667 6.79, 9.79 0.795 1.257 2.052 210 - 0,172 '0.848 0.156 13.83 , 9.72 5.02 0.75 1.37 301 L 30I R 0:13 -0.20 0.62 1.17 202. 9 1.1667 3 .00 9.79 0.795 1.257 2.052 210 0.172 0.848 0.156 6.11 3.32 1.24 1.04 1.66 3021 302r 0.11 •0.32. 1.15 1.35 203 9 1.1667 5.00 5 :00 0.8 1.257 . 2.077 415. ,0.72 0.848 0.385 20.18 6;39 4.08 2.89 3.30 303L '303R OE f I' -0:32 3.00: 2.99 3,01 . 8 . - 6.88 10.09 ' 1.257 .L257 , 125 0.252 0.384 ' 0.468 6,86 __ 8.61 _ 9.18 ' -0:13' -0.20 -0.13 -0.20 302 8 3.21 10.09 1.257 1.257 125 0.252. 0.468. 0.384 3.20 2.80' 2.53 0.21 0.29 . 0.21 0.29. 303 8 5.00 10.00' 1.277 1.277 12E' 0.252 0.384 0.858 5.111 5.07. 7,44 0.11 -0.32 0.11 -0.32 304 8 2.50 10.00 1.277 ' 1.277 128 0112 0,192 0 2.55 ) 0.83 _ 0.35 0.72 0.90 0.72 0.90 305 8 2.50 ' 10.00 - 1.277 1.277 128 0.112 0 0.384 2,55 0.35 1.31 0.90 0.55 0.90 0.55 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H= Shear Panel Height .----J Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) TRANSVERSE UPLIFT CALCULATIONS - SUMMARY UNIT b Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right k ; Simpson k k Simpson k 101 Wind 14.54 Holdown - HD12 w DF .15.51 _ . Wind 14.93 ,_-1D12 w DF , 15.51 102 Wind 4.83 Holdown . HDQ8 w 3H1? 6.65 Wind 6.50 HDQ8 w 3HF 6.65 103 Seismic -0.56 Holdown HDQ8wDF 9.23 Wind . 9.20 HDQSwDF 9.23 104 Wind 9.18 Holdown HDQ8wDF 9.23 Wind 8.14 HDQSwDF 9.23 107 Wind 12.65 Holdown HD12 w DF 15.51 Wind 12.72 HD12 w DF 15.51 108 Wind 12.33 Holdown H DUl4 14.93 Wind 12.60 HDU14 14.93 110 Wind , 35.13, Holdown ' None 0.00 _ Wind . 23.30 , None 0.00 - 111 Wind _ 6.75, Holdown . None 0.00 Wind 18.76 None O00 112 Wind 23.17 Holdown None 0.00 , Wind , 21.99 None '0:00 201 _Wind 6.35. Strap MST60x2 8.11 Wind 6.71 MST60x2 8.11 202 Wind 6.77 Strap MST60x2 8.11 Wind 7.24 MST60x2 8.11 203 Wind 12.13 Strap CMST12x2 18.43 Wind 12.12 CMST12x2 18.43 301 Wind 1.45 Strap MST48 i 2.88 Wind 1.40 MST48 2.88 302 Wind 1.67 Strap MST48 2.88 Wind ,' 1.72 MST48 2.88 303 Wind 1.61 Strap MST48 2.88 Wind I 1.32 MST48 2.88 304 Wind _2.02 Strap MST48 2.88 _ Wind , , 2.13. MST48 2.88 305 Wind 2.13 Strap _ MST48 _ 2.881_ Wind . 1.90 MST48 2.88 oI.s. AO - i- 17c.431 "AP:" A. °S1°) tZF`t"4: �1 A--1/2. - 1Q S i ) S'e ^'e 0 45s '0 VeVO J A S .1� l � .2 "^^+++���� ' ° f.S i YJ Oj = 1 i� he l/ ` i •/� \!hiTo 0,1 ) - t; � eiv . A Sic 11" L .101)C.S2o'0)c`�'b1) . ��1�JZ �1 C)'0)`11,,) -� (9 3ZX:M . .0)QQ) A zI01) bt) 7.11 11br1 — si 4_'S r 1 `11 sd -' hh'0 _ c 15 sd,* 1 t : ; ° y = (zk„7,szO'OOS'b1) (S'OXs .0'0) 'b sci ` €' = C - 2)0 C °X.g1)-c k k s1 0.0xt1.e) + o)rs'b1) alLs'oXzloo)c- -L.Z) 4` )s•q), 51O \1■ "1 "1S ' h 1 = YZNxL$w o)( - t C (SZa'c)(s' z. 04 � z l� .) ZAC 2) �-r c Sk0'0 ) (' b 1 ) ) + K t OOJ, s1CY0- K5'61A5 I) 011 1b\xd Sd!-,1 c3g• °c3, �;s1t�1ij11S NO CL3SA,d r1 Zf1/2:11 \S - 30 ryo11n LS\Q , 103rOad Q100 69) AN 051 is -4 0- 15 1 > O`t.k,1 > oi #19 -E.S x'0991 J'?v a \fi n 1l b 44 01% ...r0 0 ro MSS m SS x 1 1 rOCS xSlnnzS k1 '1 1\1 )■*, H = 0 z ❑ m z 0 3 3 m 0 • ❑ O m 0 0 NOIIVOINf1WWOD 17VD 3NOHd f / / l ❑ ❑ lob • • V — T 110 1 It 1 \2 0 i 2 \,bP UN \ \3 - 1"-t- _OVYR Sw LAN 0u T 0 0 t 0 \ --- _,..t.17.7 i 1 --- - 7 . tn 1 0 ---_- 0 . I I, - , \02. — - .: ------_ :---------,,,, . I . 1 — o 0 0 L 0-Elitg LION) N 11 a, -a- "FLook. sw LANiou-o L1ow7 ty6 ..± ' c- if -CI Si (\ C) 9:1 '1 l 90e -:So owl r.-t-i L.c-°' I . o i \t, 1 ---------:-. I .,‘ 1 . „., - lell 1 94. h 1,1 „smog' t cte lo-t, :i 1 I A _- . --_- _ == 3o I =� , W J M m f . ri �� �� I - r d ` 'r n _ I L C 4-' m i"..tw§wv "�� C) 3oLi .u��ll L UN IT r3 3( LE /L. L w i A! /oul 6Y Fi DATE. _` JOB NO. A OF C E ' V PROJECT: . 2 a }' - } I0 u RE: Des . 43'r\ OF nrn i r.c e Sro;r ❑ ❑ OPTION) L Li Z o W f . • W T a WI DTtf ON) N) � F.F. \G- o .�,. ij • ❑ �O 1 A- i = cl t 9 1 12' I 'M ¶09 ?LA -Tts 1'e-5" • Q Mv,x 5tAvcovi...1 w U O W cs' -'1 .l U O w DE. s 1 C-1P.J u./ I r , J 'J Pressoce ce — aO, Qb p O f.. F- 4 1 ' - 3 -4 1t" F- j a e •• \ � Jf\ 9,o A e.::-.) i 0 ) ''r., 1 •"[' i - r- . I , T04 P I_Al E. 5 U I . a Z Lail -:1Y (}'J1V . .!'- - A I I1 ?LF° J 2 o 0 1 '.∎ =tt-i°lt'y 'R-- 't4`i°t of 0' -0'' 0 a z 0 o IA Mix z 1> Z _ a ° i _:(6.a$ _ 51-2.1-r: #- /� 2 �-y (L x.25 o r ±1 _ rZ[T._g L 1- i - G ti Z if 1 iU z l 3.S - 5 v. �`.�r L q c19 _ cen. 1 / i NI- Fe (0C (BS0 ?siALGil )6.ts)= d3`3'co <. (Dg12 t'ca 'o - fv ) - iSO. (.(0) =aLio .,L jcbZ...ptt- xZ 1 mac-, f\ 0 e � -, -, 2 J • L2t) . L ii -A0 -,s, <o'k).C3'1y( '11\D'0 x91)(0'tx:vi . - ec.se)� ,ai - J.-0 (ti )(o o 'r)Lo.'tlo't a'1x°11 )c?'d O59) q., � `h� 5E4• " b ct_N1 sy'h f. Z g r ; 2) tt2 Sit ' h t. 2 0 4. c6c`i! 4 8 'It' S -14 ..E.Q, '0) 5' k + 5r , (.5t..G' 4 S.` = 1 = N\ Q= °r5h'% Ft., , -8 - _ - co 1 "\ o c,�t.� =kV ) 0 \ -- I v.N■ sah a Y"': V i ! 4 -� /� '7.1 o ❑ 1 1 m - Y *. 9 0 •� Yl" f p 7, ,St'0 '7 r 0 ;ll� 3 ► = 3( A gib' kg - MA r"c' - ' z ni = "`°'`u' 0 0 K I � '91 1 1'= ?) K c_n . '1 1 :4 0 ! - -d ei _ ) 0 1c\ ck\ 11c \JO - p T-30 z A Sc1 (ao'Qs° _ = 3u, 5- .,td `pulrn \ \SO m o n m p 1IQ - V" Y) \.0. \.A3d0 J' () ', _). r ' "ow > O r 00 , q . k 1 NI 1 NI U kJ" r :rf1 g, `.al ❑ m 3 • O m -I O � • m • 'Z,1 O0 i QN 7 :J W t) d o - i; T m ❑ ❑ 7. Cl 01 J. d0 3a :103 rO21 d AO 0 0 - N ) ,NR., a l -- - cJ �,.G :Jlva p1 'A9 s 1 ----] WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorhse (leer 7.1 Dec. 15, 2010 11:27:17 CUHp,4l0 I PROJECT RESULTS by GROUP - NDS 2005 SUGGESTED SECTIONS by GROUP Lot LEVEL 4 - ROOF MnC Trusses Not designed by request (2) 2x8 looter n -ply D. Fir -I. No.2 1- 208 By Others Not designed by'request (2) 2010 Lumber n -ply D.Flt -L No.2 2- 2010 121 2x6 Lumber n - ply Hem -Fir No.2 2- 206 13) 2x6 Lubber n - ply Ifem -Fir No.2 3- 200 12) 204 Lumber n -ply Hem -Fir No.2 2- 2x4 (3) 204 Lumber n -ply Hem -Far No.2 3- 204 Typ Wall Lumber Stud Item -Fir Stud 206 @1 Typ Wall- 204 Lumber Stud Hem -Fir Stud 2x4 016.0 SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR see t Jot � Not designed by request landing lumber -soft D.Fit -L N0.2 206 016.0 4x6 Lumber -soft n.tir -L No.,Z. 406 (2) 2x8 Lumber n -ply 0.Fir -L No.2 1- 208 1.75014 LSL L5). 1.30 1760th 1.75xll By Others Nit designed by request By Others 2 Not desoyoed by request (2) 2x10 Lumber n -ply D. Fir -L No.2 2- 2010 (2) 20E Lumber n-ply Rem-Fir No.2 2 205 (3) Pub Lumber n -ply Hem -Fir No.2 3- 2x6 (2) 2x4 Lumber n -ply Item Fir No.2 3- 204 131 204 Looter n -ply Hem -Fir No.2 3- 2.01 Tyr ('fall Weber Stud Hem -For Stud 206 @06.0 Typ Ball 204 Lumber Stud Hem-Fir Stud 2x4 011.0 SUGGESTED SECTIONS by GROUP for LEVEL 2 - FLOOR •x-se#_ Mnf Trusses Not eoigned by request d deck mists Lumber -soft D Fir -I, No.2 2x8 016.0 Mnf Jsr Not desogned by request 400 (IF Lumber -soft Hem -For No.2 400 1.125014 LSL LSL 1.55E 2325Fb 3.5_x14 400 Lumber -soft D, Fur -L No.2 400 5.125x16.5 GI, Glulam - valanced West species 20F -V7 OF 5.1250155.5 (2) 2010 Lumber u-ply D,tir -L 00.2 2 2x10 4012 Lumber. -soli O. Fur -L No.2 4x12 3.125x1411 L51. 1.550 2325t1) 3.5014 (2) 2x6 Lumber n - Ply Hem -Fir No.2 3- 2x5 (3) 20b Lumber n -ply Hem-For No.2 3- 206 Gob Timber -soft Hem -Fir No.2 606 12) 2x4 Lumber n-ply Hem -For No.2 3- 204 13) 204 Lumber n -ply teem -Fir No.2 3- 2x4 'ryp Well Lumber stud Hem-Fit Stvd 206 @16.0 SUGGESTED SECTIONS by GROUP for LEVE1. 1 - FLOOR Foe Not designed by request CRITICAL MEMBER% and DESIGN CRITERIA ()scup Member Criterion Analysis /Design Values deck j00400 ,,-- u.�.... - _ lendinq •M=_ _...i ..ae 0.41 Hof Jst Mn£ Jot Not designed by request landing 346 Bending 0.17 By Others 3 By Others Not desogned by request 106 b25 Bending 0.07 12) 200 67 Mending 0,21 1.75014 051, 614 Bending 0170 400 HF b24 Bending 0.60 3.125014 (.SI. b2( Shear 0.41 4446 b20 Bendony 0.04 By Others By Others Not designed by request By Others 2 By Others Not designed by request 3.125010.5 unknown Unknown 0.00 5.125x16.5 (:I. b26 Bending 0.21 12) 2x10 b15 Bending 0.93 4012 b22 Shear 0.16 +.125x141) h23 Deflection 0.09 ttg Fty Not desogned by request 121 206 c2 Axial '0.34 13) 206 064 Axial 0.59 606 c36 Axial 0. 12) 204 c25 Axial 0,30 131 2x4 cad Axial '0.64 Typ Wall w15 Axial -0.26 FTId End Not desogned by request Typ Wall 2x4 w74 Axial 0.33 005tGN NOTES: 1. Vlv ve rify that the default deflection limits are appropriate ® .� for your application. 2. RESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result is considered the final design and appears r , the Materials List. 3. ROOF LIVE LOAD: treated a w load with tOrrespondtng duration factor. Adel a empty c of Le el to hype.~ . r this interpretation. r 4. BEARING: the designs is responsible for ensuring that adequate tearing is provided. 5. GLt11.AM: bud = actual breadth x actual depth. 6. Glulam Beams shall be laterally supported accot0inq to the provisions of 1D6 Clause 3.3.3. 7. Sawn limber bending members shall be laterally supported according to the provisions of NUS Clause 4.4.1. B. BUILT -UP BEAMS) it is assumed that each ply i single continuous member. that i no butt Joints are present) fastened together socutely at intervals not oxceeding 4 times the depth and that cash ply is equally top - loaded. Where beams are side - loaded, specoal fastening details may be required. 9. SCL -BEAMS (Structural Composite Lumber): the attached SCL selectoon is for preliminary design only. Fat final member sign contact youc local SCL manufacturer. 10. BUILT -OP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NOS Clause 15.3. Cl 1 El WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN • Unit B - Front Load WoodWorks® Sizer 7.1 Dec. 15, 2010 11:28:05 Concept Mode: Beam View Floor 2: 8' tT L O �(� 1'105. .. `(�►1 �J�,J 1 4 - U e i - -- b24 ' — -b28: ...... .: . ., . 7! -0 Uu "e► --ice = � • ... . .. - 3 t - n 3U-0 U4t1 . .. _ .. .... , 40 t1J 4f _0 _ .. . . ._. _. _ VL , . 1 • . ,• . -. • -. - • 40 _0 u "q b1 v4 -n • "JO {. 1 . . . 44 -] 4 / I 4 1 - WI • • - .. _ ... _ JJ - 0 3... - - • . .,. 00 -0 — aL , .. .. _. _ • ' J 1 -0 < JO J , 1 .. ... _ .. 0 . .. -444 ... .. .,. • JD -0 bL : __. :..... ...... -d: .... ... .. .. . 34 OV .. . - .. - .5.] -O 40, . ( . . _ ... ... 4 -. . .. .1: . .. .. .. . 34 _ 00 .S0 - O . • - . _ .. . _. .. i - L. - O 04 ... . .. . - LO - W L / -O O - .. ., .. L3 - 0 . . .. - .. .. 0 43-C1 10 LL -0 i' [. , 1 L I -0 11 ' L1.; -0 • tO ,�. :.1 -43 ! { 0 - 0 /0 t ! -0 (L I l I� 0 -0 ._ .. 1. . . . -. _ . _ .... - . , .. . . _ . . . . 4-O b.1. 1 _ -i`rf' .. -.• 1 - 0 00 _ - _ L 0 00 . 1 . i b2.1 0 , . _ - o - v � *2�i 1 .. . .- r -0 - •, b26' _ . • 0 - 9 ut.. b20 := 622- =b23 .*._ ...;... ' .. +, . ..._.. lli: .. ._ I -0 � :�i .-,— _ • . , ...• - , .. . EB'BBBCCGCCCCCI000CGCCf CCCCCCC' CCCDI3DDDCoDICCDEE)DQDDDOC•l7Cl OODEEEEEEEEIC-EEEEEEEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10'12'14'16 '18'20'22'24'26'28'30`32'34'36 '38'40'42'44'46'48'50'52'54'56 '58'60'62'64'66'68'70'72'74'76' 0'1'2'3'4'5'6'7'8` 111 1:1:1.1:111'1 1'2 222 3333133X3 '4+444:44:4(4'44555:55.5:: 51555!& 66.6'6.666'66i7I7777.77177' -6" • 62_ WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks® Sizer 7.1 Dec. 15, 2010 11:17:31 Co?c60ept Mc69.e : Ccc59imn View Floor 2 : 8 ' 1050 T N� t,n�). 4 c3 ru 4t -b tus y r •b I UL' 94 -0 lull . • . _ . .. v u IV./ c57 c1 c2 c46! c58 ' ' rT .. /14 MI _ _ . .. - ... , . .. - -. 4'1 .b yt� .. . gU -b J 00 b n Jtl •-0 ".j ,, . ' . t - • � - - - - .. . ... it - b y2 su' -o s.t)'b ;ci47• . , . : - -= .54'-u t} r _ . . 6 I - .1.1 si b 8 b I ! • 4y -b 0__9 !c55. 'c48.. - - au-et S) C Gr I11 - t1 •t _ .. L4 U ttJ /1 1 c50 -' ,e1 -b 1 ,e54' : 111 • ra c )> ii • 52� c51, / u , - o a ` 1 1 - . - - 4 i b a , ' c7. - 1 .o56,:' 0 I -b bb - U`0 ba} x1 1) me ' o 431 .c46, :c64' ' - c • . . . .. . . 5 b u -t) BBIB.B B C CC C C CC CICCC CC CCCC C CCC CCICC CDDD D D DD DIDDDCD D D•DD D D DOCD E E EEE•EIEEEIEEEE 0' 2' 4' 6' 8' 10' 12' 14' 16'18' 20' 22' 24' 26' 28' 30'32' 34' 36' 38' 40' 42' 44' 46'48' 50' 52' 54' 56' 58'60'62' 64' 66' 68' 70' 72' 74' 76' 0'1 '2'3'4'5'6'7'8'91(1'1;111.1 :111 - .1116 X22:2:2.2.'2(2' 224313 3:33 4(415(5'5:5'.5 5!5(5 :515!6(6fiA:6. 6!6(6'6(6!7(7'7 :7:7.7!7F77` 6" • I ----] WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Rear Load Woodworks® Sizer 7.1 Dec. 15, 2010 11:19:45 Concept Mode: Beam View Floor 2: 8' Ir � c + _G • Iuy,,._ - - . • - - - . _. , ... so -0 ,,,,,: - ., ., . . . ..- ., .. I!_-O IUOI. . .. j• 'b24 . -- .. ._. .. .. . ' i _ -- 0 I - O 3u -0 !WI • . ,- . .. .. . ,. • , , • , ., . I vo 0 1u .10 +t - o i .::b ws o A . -- - :. • • - I • ' .: ; - , I • .' • - - 43 -0 J6 - - . _. - 4.4 - 17.• S I' � 4 I - 7U _ _ • ., > ... . .. - -- . LW -71 4'417.. ` . ay -o . , , c . ... . 30 -0 JG . .. - ' - - . • .- .>I 5I i. ao - O J-- - .... . ... .- .... ... :. . . . - -- jJ-0tl 00 _ .. - _ ... • ... • _ Of - ••: -_.. -. i_- - . - , i . • ! - Dery 00. .. .. ,. .. . , . -. - . . - _ .... Ga_o 04. _.�: .. . . . , - to -0 .. ,.y .. .. . . OG .l • .. _. - - - CO -0 0 I .4 . ., .. .. ,. ,. _ .. to , a - 1 ( - - . . LC t L1 -0 to Lu -0 t� i. J -0 I' .. 0-0 7J _ _ • . t -0 • tG . � 0 -0 , - • ,u•. .... _ 4 -0 Cu .. J -0 . 00. -• _ _ t .. ._. _ . _ t .. .. ... _ .. • _.. --. 1 C Co. . . u -0 • 04). ;1)21 -. o -.-• : ,b6':.''b2 t 6: : _:... _ , . ,. ._... u • ou b20 b22cb2 ' 1, .. . ... _ ' "� 31. 6BBCCCCCCCCI. CCC CCCCCCCCCCCC ICCCDCOODCDDlCQDCfJf OP ODDCI DC0 1)00EEEE E 1 EEElE.EEEEEEEEEE1yEuEZ 0' 2' 4' 6' 8' 10'12'141 6 '18'20'22'24'26'28' '38'40'42'44'46'48'50'52'54'56 '58'60'62'64'66'687072'74 01'2 1 : 1 : 1 •1 : 1 i i i i'2Q 2:22.22i2'22'3r3 313.33 4A:44:4:4 5:5:5.5.515'55'6€ 6:6'6.666'66.77 77:•77177' -6" Cetk I WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Rear Load WoodWorks@ Sizer 7.1 Dec. 15, 2010 11:19:48 Concept Mode: Column View Floor 2: 8' A.E.�� r'�P 11t) . _ . . . •.. 54' 6' 14;1 • -- ... as•n r. u o 1:u36 , • t .. .. d `J.0 14.1 _ 41 -0 I VG , 40 Ill IutiN C63 • ' • • • c57 w •-a • 8 s . - _ -- . ... c , • • . . , : • 44 - 0 ya - -4 - 0 �.� .i,1, va J`J -0 4l1 -0 Wi .. I • ... 00 -0 • 6 JO -0 f:, .. - ,. ..)...1 -0 Go -. .. .. 7 .. _._ , ._ .. .. JG - 0 • 1 . . _ .. -- l 1 -, 00 1 JU -0 .. . . . .. _ _. c48' ca -o ok c 55' 1 _ _. Lo t .. OG ,(U (. • - - - - - Lo -0 c1 1C72. • .. • • CO o OU 1.- Cy -7 1JC49 .. .. .. ti., -0 0 I - F1 6 50 L L -0 G I -0 i� c53 I • i0 -.3 i i , c52 � _.. t 1.c51 a -0 a -0 00 U -0 0 4)• - .. • .. • . • .. . - • . O v i - , ,c405, ; cc37 `c62 c61 • _ 3 -0 • .I:c ;. _ ' 42 , .. • I -o EB`BB BCCCCCC CCCDDDDDCDD IMOCDDD0DDACDCD'CDDEEEEEEE EIEEE EE E E EEEEEEIEEEEZ 0' 2' 4' 6' 8' 10'12'14'16 '18'20'22'24'26'28'30'32'34'36 '38'40'42'44'46'48'50'52'54'56 '58'60'62'64'66'6870'72'74'76' 01'2`34 +1 1:1 1.1 111'1,12(22:22.2:212 '2.2313331.1133344 4:4:411=414' 414555 :5.5.5 = 55'5. 5666.616-66166 &7f 77:7=7.7177'=6" CAS WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks® Sizer 7.1 Dec. 15, 2010 11:15:5B Concept Mode: Beam View Floor 3: 17' 1050 . - - - • - • - - - 49'-6" tvii 40 - b U3 -. 4. -b tue 40-0 • 01 I - . 40-0' 1U0„11 . ^ b • .. •. „ „ • • 44' iJ a 4,1-b Vi .- : ,_ _ -. - 4 -0 • 115. . .. . -.. -59 -b • - - .. ., _ ._ .. -b - . . `JV - .. _ . . • -- ' • 5 1U -b • t3U - Lb -b 04 b12 - 20 "b n� b30 . - n - — ` ... = L r -b °bg• , co -O :51 2 .' 14 - .. . L b -b CO d • , _ _ i L4 -v (M °'� Lb - JS- - - • 55 - • - -• H f 'i � LL -b L - I -U lb -- I' ,• ' 71; ..! . I LU-b !0 • ' - i J -1) (4 I • b13 .. it I> ,. b11 = i •. ,. .. . lb -0 17 b (U 14 -b • 1.3-0 'IL 43 WS br - - . - .. - 5 • I I -b 013 111-0 0* . .... I .. '. • , . _ •. • - . 0 e. 0 - • ems • .,• ° ° ig • -' b10 . • I b9,• ;1 1 . + _. - • - • - - •: 3-0 L -b _ .•... .. i -b I . , - 1.1 131313B BCCC C C CCClCCC CC CCCCC CCCCCICCCDDDDD DD D FDDD CD DD DD D D DD CDiDD DEE EE E EE EIEEEiEEIE EIEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22'24' 26' 28'30' 32' 34'36'38' 40' 42' 44' 46' 48' 50'52' 54' 56'58'60'62'64' 65' 68'70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'9111 1:1 :1.1! 111' 1111 212222 2 i2E222S3(33:3 :3 ; 4.4'4(4 :A1415t5 55: 5. 5! 5( 5: 5i516( 66: G8.6!6t6'6i64707:77 -6" c1to WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks® Sizer 7.1 Dec. 15, 2010 11:16:00 Concept Mode: Column View Floor 3: 17' 1050 - - . ... - .. 49' -6" I U4, irrs -v I�fJ`r . . 4/ 43 1V1 : . ' ' 4 11.4P — c14 - . VD •, 4L - J( 4 - 0 • :. 4V , 17 . .. - - 59'•0 V-1 .. _ .. S7 -D • JU ,A -0 1 , b38 . -, sz Jo 0f •11 .. J1.0 b4 c25 c46: - . .. -. . 4W-t.., b2 .. _ .. • ... .. ... ., . . . , ' Zb' -t7 tsr '1.c72 .CD 42 Dar t . .. , , - • ,t4 -6 ism_ C 1.7 ,_ _ ° .b I11 . U c43', L - rb : _ . . .. . u'.n • r y b 2 3 ` c6 7 19.0 rn, c22.- 1ts.D ( 1 ' c24 - :. ' C26. - . - . _ , - . -- i n _r, • (V. ' . (I - . _- 14 -0 b "J li -U_ Intl - -- IL-13 Of -- 1 1 r -0 OD [ , 1V-D Ct41. (J .. -. f t� 0 0 i , b -0 13 '. ° ,1, , • c45 , -: il•i:44- -D, +., ` c21' c20:19;+�18 . ' .. 4 ., 13 i - • ?` I i 4 c> . . u -0 E1I31BBBCCCCCCCCFCCCCt .CCCCCCOCCCi CCCMDe)DP01CDDCE7OD0UDDDDCD ODDS- EEE=EEE>EIEEEIFEJE:DIEEEEEIHEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16'18'20' 22'24'26' 28'30'32'34'36' 38'40'42'44'46'48' 50' 52' 54'56'58'60'62' 64'66'68'70'72'74'76' 0'1'2'3'4'5'6'7'8'9111 1:1:1-1;111:10!2r2 2:2"2 (4 4:4:4 5:5:5 5f5t5'515!6t6 816:6 71.' •7,7;7.7!7(7 7.-6" Li WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks® Sizer 7.1 Dec. 15, 2010 11:15:37 Concept Mode: Beam View Roof: 25' 1050. - • - - - • • - • . . .., • 49'-6" 1 U4, 40 -b 104 40 -U - 1 in 4J' -U 1 vu " b.15 - . - .. - , ' 44 -b .. y0' _ 4...." - • U0 .: : • • • • • • ' - - • • • • _ • - 4U • 4U - ..10.-b as.. 3/ b G .Sb" -b Ify - .,s - • '- • - .. SL -0 t3( : .. S f -b_ 1'l -. - ' . . . .. St; -b 00 b16 LW-0 64 - . - ... .. . ... - .. _ , Ltf -b b`5 629 t u' -b" tF6. . . . �.. .. _ - -• Lb -b t3'1 10'-b tltJ•• , .. ...f.4 -t1 /b• LS-b f r3 . ; t1' -U / / : L'I - b' ib ,. 1127 + . -- • tU - !9 i i _ _ I - b 14 l6 -b L4 . _.. _ ... _ .. - I b' U f1 ., ., .. 10.-t3 ii) ', . 14 -b b`J . .. - _ ' . . . I S" -b btf. _ -J .. _ ___ 'IL - -b 0 ob. ,1 • .. l U b Y� a V-0 ' b - -b bt, i ( .., ; 1018 . .. 4 - a Cl CJ I t 3•-b• , .4.,113_111_.0.. _ b I -U "-I - . , - - 1.1-0 BEMriE3CCCCC DIDDDDODDODDDDDCDIDDDEEEEEEBEIEE EIEEIE•EEEEIBEEEEZ • 0' 2' 4' 6' 8' 10'12' 14' 16' 18' 20' 22'24'26' 28' 30' 32' 34'36' 38'40' 42' 44'46' 48'50'52' 54'56'58'60'62' 64' 66' 68'70' 72'74' 76' 0'1'2':r4'5 (1 1:1:1-1!1(11 M2(2222 4A".4 5;5'5.5: 515' 515!6(68:6:6 7(77 • • Ceb • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load Wood Works® Sizer 7.1 Dec. 15, 2010 11:15:40 Concept Mode : Co-loriin View Roof : 2 5 ' 1050 •• .:. - • - - -- . - •-• -- • -- -.- • • • - -- • - • - • - 49'-6" 11,14 lt.:4 - •-• — - - ' ----- . 41--0. RIZ 191 ■ ' • . . : ,-. . .. ' ,. . . '' . • ' )VU : .. • c27. c28. • - , ' . 44 Aa' 1, Sv - ': 1 1 1 - 0 . - , 171= ' :i • . ...... .. ..... . . . 4..3 96 - ' ' • ' ' ' ''''' • 44'-' .: - • • 4L1'-0 . . ....... . Jo -0 9.1 . .., : • , 2 - ' ' ' • ' . .. .. ..14 ' . ' 0 •,,:' .1 . : • .. - . , , - • . • . OZ. -01 ■• • 0( '•; .7 - i i .. ' .s ; . , Z9 -b ri'• TC . 704 - ,* . • ••i - :- . — • ', -; • ••• 2b b..ir ' , : . . . a • -b • PN: . -••• . • .. 01 .c71 ' • (9 • • L.i -0 ' , - • .. . . . . . . : . • . • • - . - 11 -0 11 , -C6.6'. eb • '; - - - • • • . . • • • -• ' [U -LI' . . . lt ' - . - 1 .. . . . . ... .. • • ••• •••• lb -b 1..1 , •, • . .: ..: . I r-0 • . 12 : • ' . (I . . " . . .. . . . : •, • . • . 10 ••0 (U .. :: ; 7 .. , . . . .. . .. . . ' . - . . . _ .. . ... .... . . 1 ..1.0' . :_ , , .. . 0/- , . 00. [I . , ' . . 11.1'41 .. , . . ■ . . ' , . ... , ti 4) 0.) 1 • • „ : • ' - . ■ . . • 64 . . . , . . o -0 ,., . *: *. * :C34 • ' • ' c35 ' 7 - - ' ' . .• : *1. • .. . . • • b-b • : ' • . , . 4 -0 - '''' ' • ' ■, . , ' ...,V-13 , . , • • • 0 -0 63113.8 BC.CCGC CCCICCeCOCCCCCCCCCCICCCOODODUDDIDODODDE}ODODODCDIDDDEEEEEEEEIEEEE.EIEEIEEBEIEREZ 0' 2' 4' 6' 8' 10' 1Z 14' 16' 18' 2a 2Z 2426' 28' 30'323436' 36' 40424446'48' 50' 5254 56' 58'60'62'64' 65' 68'70'72'74' 76' 01'2'3'4'5'6'7'8'91 11 :14111171 i112t2222 '4A A-41414A i4;515 5:6:6-615161616i7(7 C 1 \ • COMPANY PROJECT lit WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:34 b1 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or p[f ) Load Type Distribution Magnitude Location [ft] Units Start End Start End I w27 Dead Part3_'a1 UD 539.7 539:7 0.00 2.50 . p1-f 2 Rf.Live • Partlai. UD 493.7 493.7 0.00 2.50 pif 3 Dead loint 1074 2.50 lb 4 R f:. F.i ve 1?o4ht 1601 2.50 ltis 5 j43 Dead 9u1l. UDL 47.7 [Alf 6 143 ._Live Full On 160.0 pit MAXIMUM RE • ' r o I 0', -- 3 ' Dead 1048 ,. 1539 Live 1227 2089 Total 2275 3627 Bearing: Load Comb #2 112 Length 1.21 1.93 Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2 -Plys Self- weight of 6.59 pif included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/design Shear fv* = 127 Fv' = 207 ' fv*/Fv' = 0.62 Dending( +) fb = 581 Fb' = 1138 fb /Fb' = 0.51 Live Defl'n 0.01 = <L/999 0.10 = L./360 0.06 Total Defl'n 0.01 = <L/999 0.15 = 1./240 0.09 The effect of point- Toads within a distance d. of- the support' has been included as per NDS 3.4.3.1 ADDITIONAL DATA; FACTORS: F/E CD CM Ct CL CP Cfu Cr Cfrt Ci Cn LCH Fe' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb' -r 900 1.15 1.0D 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 2 F'cp' 625 - 1.00 1.00 - - - - 1.00 1.00 - E' 1.6 million 1.0D 1.00 - - - - 1.00 1.0D - 2 Emin' 0.59 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : 1.0 #2 = D +1„ V = 3627, V design* = 2356 Lbs Dending( +): LC #2 = 0 +1., F = 2073 lhs -ft Deflection: LC H2 = 0 +1. EI= 158•x06 lb -in2/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D -dead L =live S W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: TCC -IDC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 611 COMPANY PROJECT di WoodWorks® SUFI WA Rf fOR WOOD DESIGN June 28, 2010 10:45 b7 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End - Loadl Dead Full UDL 13.0 If Load2 .Live Full UDL 40.D plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • -r - Ip' 6t" Dead 54 54 Live 120 120 Total 174 174 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. 'bearing length - for beams is 1/2" for exterior supports Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis. /Design Shear iv = 10 Fv' = 180 fv /Fv' = 0.05 Bending( +) fb = 120 Fb' - 1080 fb /Fb' = 0.11 Live Defl'n 0.01 = <L/999 0.20 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.30 - L /240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1:00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1;00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - -. - 1.00 1.00 - - E' 1.6 million 1.00 1,00 - - - 1.00 1.00 - 2 Emin' D.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 174, V design = 139 lbs Bending( +): LC #2 = D +L, M = 2.62 ins-ft Deflection: LC #2 = D+L EI- 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. , (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: '1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. (1.10 • COMPANY PROJECT di '' Wood Works® sorrwnfit WA froth, Dutost June 28,201010:33 b8 Design Check Calculation Sheet Sli 71 . LOADS ( nisi Pot or P Load TyPe, 'tilStirllbution Magnitude •Legation tleti Omits . .8 east end . start end 1 c39 Dead , Point 59 .3.50 lbs 2 Snrivi, 'Point 75 • 0 .lie 3 Dead l Partial LID. 98.6 96 0:00 35,0 ' pif ' I i?:iiT bead Paco:4i um 76.4 18 `.0 :6.0 5.50 plf ' 5 ,,,..l 13 live IT:Attie:1 bit 24 0..0 246.0 0 00 5.50 plf ' • ,6, J14 Dead _Partial 'dm 104 .b 10.6 S.50 5.00 fil.f ' :71..114 Live Partial' uct 320.0 320.0 5.50 6.00 plf 8 b12 Dead Point, 171 .5.50 lbs .9702 Live Pant 459 _ .550 lbs MAXIMUM REACTIONS (16S) and BEARING LENGTHS (in), :. , t , . . . . • , . . ,. . . . . - . . . . . . , .. . ' . . . . , . . • . .. _ • . . • . - . . . R'' 10' bead 531 . .4 . .: 6 Live 761 11:89 TOail. 1292' 1'14'4 0.44 ' - - - - - 14iatl Ctimb 112i :112 ,_ Leiteth 0.69... - . 0.93 Lumber n-ply, D.Fir-L, No.2, 2x10", 2-Plys Self-weight of 6.59 plf Included In loads; Lateral support: top= full, bottoms at supports; , - ... ... Analysis vs. Allowable Stress.(psi), and Deflection (in).tising NDS 2005: Criterion 7 Analysis Valiiiv. DeSIqn %relive Afralyels/Oeilg'n :,lhear 'EN" - 6 - - Tv' • .., 1,80 fy•I Be:riding, r.i ) fbi •-- 556 'Fb' ,.. 999 . f/Ftv .■ 0 Liiie De fl' a 903 - $1,499.9 9 - 143.6'0 0.13, Total Defl.' ri 0.05: = •ett.•999 O30 - 1i.240' 0.1:6 'The effect' of point .loacis••wl thin a distance d' or the support has been, lneliftiod as pot NUS 1.'4 .3 ADDITIONAL DATA: FACTORS: Fte CD CM, 'et CL CE Cfu. Cr ef rt Ci. en 1.Cli 1.00 1.00 17.00 - 1;09 , - 1'. pp 1.00 1.00 2 6.,..i. .900 1.00 1.;00 ,t..00' 1.000. t.i00 1...0 1.00 1.'0 .i...60 - 2 : ., Fdp • 625 - 1.09 .I-: 00, - - .- - 1.02 i .9b , - e! i .. 6 million 1.00 .t....06 - - - 1.. 60 '1..-00' - 2 einin' 0.58 million, 1.60 1.00 - - - 1.00 1.00 - 2 Shear : LC 'II? ,,, 6i1, 'V 1744, V• qeh1gn 1 - 1232 lbs Bending (+) :' LC .112. ... 011., II' .., 198,4 lb:S-5 t Deflection:, LC 112 •;‘- D+L .e 158e06 lb.-10; T ai Deflection .:• 1.50 (Dead Load Deflection) '4 •t Load Deflection. ' r D-deed . 6-Live V.;- i4 '1,4-icind I--impact C..const:ruCt:ion 'CLii-tcincentreitcd) (A11 I:61s are listed in the Analysis .outputi Load Combination's: Ice-ille DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS.•Clause 4.4.1. 3. BUILT-UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that . each ply is equally top Where beams are side.loaded, special fastening details may be required. COMPANY PROJECT i I I Woodworks® SOFIWARF FOR WOOD DESIGN June 28, 2010 10 :33 b9 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude ' Location [ft] ' Units . Start End Start End . w51 Dead Partial UD 96.0 96.0 2.00- 3.00 pif 2 - C32 Dead Point 59 2.00 lbs 3-c32 Rf.Live, Point 75 2.00 lbs toad4 Dead Full UDL 13.0 plf Load5 Live Full UDL 40.0 plf • MAXIMUM REPr nroue:,n6..1 :,...:1 ecn1:1i►.i• r CIA Ie► r...% • - r . L R0 3 Dead 63 146 Live 85 110 Total 148 256 Bearing: Load Comb #2 #2 Length 0.50* 0.50.* *Min. bearing length for beams is 1/2" for exterior supports - Lumber n - ply, D.Fir - L, No.2, 2x8 ", 2 - Plys Self- weight of 5.17 plf included in loads; Laterafsupport: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Crlterdion Aiialyijs. Value- Design Value Analysis /De.ign Shear fv = 12 ' Fv' = 207 fv /Fv' = 0.06 Bending( +) fb = 82 Fb' _ 1242 fb /Fb' = 0.07 Live Defi'n 0.00 = <L/999 0.10 e L/360 0.01 Total Defl'n 0.00 = _<L/999 - 0.15 L/240 0.01 • ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr. Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.,00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - 1.00 1,.00 - - F:' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Ervin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 ' Shear : LC #2 = DiL, V = 256, V design = 169 lbs Bending( +): LC #2 = D +L, M -= 179 lbs -ft Deflection: LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. ' (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. (lila-- • COMPANY PROJECT I WoodWorks® \()F f WA R F FOR Wl.1 CJ O RWS'1C M June 28, 2010 10:33 b10 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) • Load . Type Distribution Magnitude Location (ft] Units . Start End Start End '1 "c33 ' Dead Point 59 1.00 lbs 2=c33 Snow Point 75 1.00 lbs 3w52 Dead Partial UD 96.0 96.0 0.00 1.00 plf Load4 Dead Full UDL 13.0 plf Loads Live Full UDL 40.0 plf MAXIMUM REDCT11 ctt....� �- • ±�. ) IM(' t - ICKIr- a - i:i.t • 7S = 7S I0' 31 Dead 146' 63 Live 82 64 ' Total 229 127 Bearing: - Load Comb #3 #3 Length 0.50' 0.50* 'Min. bearing.le'ngth for 6'eams& is 1/2" for ezteriorsupports Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: . Criterion Analysis Value Design Value Analysis /Design , Shear fv = 10 Fv' = 207 fv /Fv' = 0.05 Bending(+) fb = 72 Fb' = 1242 fb /Fb' = 0.06 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total.Defl'n 0.00 = <L/999 0.15 =_ L/240 - 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt CI Cu LC# Fv' 180 1.15 1.00 1.00 - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1..00 1.000 1.2.00 1.00 1.00 1..00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 = - - - 1,00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 229, V design = 1.48 lbs bending( +): LC #3 = Dl.75(L +S), M = 157 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. ' (D =dead L =live S =snow W =wind I= impact C= construction OW-concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 61 VD COMPANY PROJECT 1 WoodWorks® ti(J.UWAR! FOR WOOD VFSGV June 28, 2010 10:36 b14 ' Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psi, or plf ) : Load Type Distribution Magnitude Location [ft] Units Start End Start -End - 1 j33 Dead Partial UD 78.0 78.0 0.00 1.50 plf 27j33 Live Partial UD 240.0 240.0 0.00 1.50 plf 3 j13 Dead Partial [10 78.0 78.0 3.00 8.50 plf 4 j13 Live Partial UD 240.0 240.0 3.00 8.50 plf 5 j34 Dead Partial. UD 78.0 78.0 1.50 3.00 plf 6 _j34 Live Partial UD 240.0 240.0 1.50 3.00 plf 7_j46 Dead Partial UD 28.9 28.9 5.00 8.50 plf ' 8_j46 Live Partial UD 80.0 80.0 5.00 8.50 plf 9,b25 Dead Point 409 5.00 lbs 10 b25 Live Point 1080 5.00 lbs _ MAXIMUM REACTIONS.(Ibs) and BEARING LENGTHS (in) : . �.Y 'd±�` .`v > �+d7i'+rey� - -- ..- . ,.: . . � i J I'0' t3' -6' Dead 553 68.5 Live 1522 1878 ' Total 2076 2563 Bearing: - Load Comb #2 #2 Length 1.48 . 1.83 LSL, 1.55E, 2325Fb, 1- 3/4x14" Self- weight of 7.66 plf included in loads; Lateral support: top= full, bottom= at supports; A nalysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 126 Fv' = 310 tv /Fv' = 0.41 Bending( +) fh = 1324 Pb' = 2325 fb /Fb' = 0.57 Live Defl 'n 0.09 = <L/999 0.28.= L/360 0.31 Total Defl'n 0.14 = L/750 0.42 = L/240 0..32 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 • Fb'+ 2325 1.00 - 1.00 1.000 1.00 = 1.00 1.00 - - 2 . Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - 2 Shear : LC 112 = DA-t, V = 2563, V design = 2064 lhs Bending(f) : LC #2 = Di - L, M = 6308 lbs -ft Deflection: LC #2 = D +L E1= 620206 lb -n2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I =impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your ' ' local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. (.1 `�- COMPANY PROJECT di Wood Wo r ks sux iWM F IOM %Ont• oxsicri , June 28, 201010:48 b15 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type' DiSt"ribution Magnitude, Location (ft] Units' Start End Start cud 1__j 5 Dead' Full :UDC 335:7 plf 2 j5 .RE..Live•_ Full .UDL 493.7 'pit MAXIMUM REACTIONS fibs), and BEARING'L'ENGTHS,(in) : 1 ' • • l itic 61' Dead 1027 1027• Live 1481 1481 Total 2508 250.8' Bearing Load Comb #2' 0 Length 1.3 1.34' Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2 -Plys Self- weight of 6.59 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Crite.-rion Analysis Va1:ue D`es'ign Value AnalyYsis /Design Shear - fv = 1 £v °' = 207 - fv /,Fv' = 0.49 'Bending•( +) fh' = 1055 Fb.' = 1138' fb /Fb' '= 0.93 Lave De:fl' n• 045, _ �11/999, 0..20 = L/360 0.;2 'Tot'al Defl'n 0'•.09 = L/776 0,:30 = L/2:40 '0.31 ADDITIONAL DATA: FACTORS: F/E CD 'CM Ct. CL CF CQb, Cr Cfrt Ci. On LCt) Fv' 180 1.15 1..00 1. p9, - - - - 1:00 1.. :00 1.40 2 Fb'+ 900 1.15 1:00 1.00: ,.1,-.-090: '1.100 1.Od 1. 1..00 1.00 - 2 - Fcp' 625 - 1.00 1.00: - - - - 1:00 1,.,00 ' - - E` 1.6 million 1..00 1..00' - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00' - - � - '1.00 1.00 - 2 Shear : LC 42 = D+1., V = 2508, V.design = 1864 Ibs Bending (•s')' : LC i#2 = D +L, M =' 3762' lbs -ft Deflecd'dn: LC' #I2 = D +L SI= 158e06 lb -Ln2 /ply Total Deflection == 1.50.(Dead•.Load Deflection) ;r Live Load Deflection. (D =dear]' L =live S =snow W =wind ,I =impact C =construction CLd =concentrated) (All LC are listed. in the Analysis .output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times. the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 61i6'.... COMPANY PROJECT I Woodworks® SOFTWARE FDR WOOD DESIGN June 28, 2010 10:46 b20 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_147 Dead Partial OD 42.5 42..5 0.00 2.50 plf 2 147 Live Partial UD 62.5 62.5 0.00 2.50 plf MAXIMUM REP•c -T rra ^! - .....•+ oOACIMr 4CAr?.TUC l:.... • rg Dead 71 A 53 Live 91 65 Total 162 118 Bearing: Load Comb #2 #2 Length 0.50* 0.50* 'Min. bearing length for beams is 1/2" for - exterior supports Lumber -soft, D.Fir -L, No.2, 4x8" Self- weight of 6.03 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 6 Fv' = 180 fv/Fv' = 0.03 Bending( +) fb = 46 Fb'. -= 1170 fb /Fb' = 0.04 Live Defl'n 0.00 = <L/999 0.10 -= L/360 0'.01 ' Total Defl'n 0.00 = <L/999 0.15 = L /240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci en LC# Fv' 180 1.00 1.00 1.00 - - = - 1.00 1.00 1.00 2 Fb'± 900 1.00 1:00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 62.5 - 1.00 1.00 - - - - 1.00 1.00 - - F,' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1..00 1.0U - - _ - 1.00 1.00 - 2 Shear : LC #2 - D +L, V a 162, V design = 99 lbs Bending( +): LC #2 = D +L, M = 118 lbs -ft Deflection: LC #2 = D +L EI= 178e06 ib -in2 Total Deflection = 1.50(Dead Load Deflection) 4 Live Load Deflection. (D =dead l=live S =snow W =wind 1= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. • C11L COMPANY PROJECT l WoodWorks® 3u0!WAR( rile WOO) OF SIGN ;June 28, 2010 10 34 b21 Design Check Calculation Sheet Sizer 7.1 LOADS _ I lbs, psf, or plf ) Load Type D, stributo on Magnitude Location Ifti Pat- , Start End Start End tern 1 w63 Dead Partial Un ' 308.0 700.0 h :00 111.00 No 2%63 Live Partial UD 320.0 320.0 6.00 "10.00 No 3 Dead Partial UD 306.1) 308.0 2.00 6.00 No , i'%62 Live Partial UD 320.0 320.0 2.00 6.00 No 5%32 Dead Partial 1113 369.0 369.0 0.00 2.0 No 6%32 brow Partial UD 357.5 357.5 ' 0 2.00 No 7 Dead Point 1940 1;50 No 111' Snow Point 2053 1.50 No 9j 20 Dead Partial UD 104.0 104.0 0.50 00,00 No 1020 Live Partial 0D 320.0 320.0 0.50 10.00 No 11 Dead Partial UU 104.0 104.0 0 :00 6.50 No 12_j21 Love Partial UD 320.0 320.0 6.00 6.50 No 13_j22 Dead Partial UD 104.0 101.0 2:00 2.50 No 14 j22 Live Partial UD 320.0 320.0 2:00 2,50 No 15 Dead Partial UD 104.0 109.0 2:50. 6 -.00 No 16 _123 Love Partial OD 320.0 320.0 2.4Q 6.00 No ' 17_148 Dead Partial DD 71.5 71.5 0:00 1.50 No 16 _148 Live Partial Ulf 220.0 220.0 0'.00 1 :50 NO 19 b23 Dead Point 658 0.00 No 20 b23 Snow Point 195 0:00_ 1)0 . MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS.(in) � '' fi "' - .s..�„, ' , Jr , =;'- 't ?.•. ' - .4.. ^,�- .•-'�` _ 'wti _-... .�/ '`+' •-...� �.,,.,.sl iYom .. . '.. _ _ L_ '� _ �+�w,w- F ua��+wr [t A,..... career -L4 . ;��r.. . .L ''- Mh }µ..�'iiwl: aarws. t ,�s a + + K,.,wiL+ 'ja+.it 111.- 1 .: ✓?(... � -if R"" . ,dam '� � 7, , G y -- .i�' EI! 0,4.11�� -++Yy ✓t'XV ^vw.': • - w.i w...xa - :•- 1;S ^.�4 a AO Dead 5581' ' 1311 Live 5266 2500 - Total - 10647 3819 Denting: - load Comb- HO #3 #2' Length 0.00 3,00 1._23. Cb 0.00 1.,11 1 :00 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15,31 plf included in loads; Lateral support' top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and D eflection (in) using NDS 2005: - Criterion - Analy'ia Value Dasi,on. Value 'Analysis /Design •Shear fv• n 130 IV' = 70 fv` /FV' _ - 0.39 Bending( +) fb-+ 717 Fb' = 2325 fb /rb' = 0 :31 Bending(-) fb = 600 Pb' = 2032 fb /Pb' = 0.43 Defiecti.un: - Iol:eoiut Live 0.05 = <1/999 0.27 = L/360 0.13 Total 0.07 - <5/999 U.40 = 1/240 (1.17 Cantil. Live -0.03 - 1 /690 0.13 = 1. /160 0.26 Tota-L -0.03 = 1676.0 4_20 = 1/120 0.15 ':3'holefl'act of loads w.ithln a"dia,tancc d of the support has been included as per NDS 3.9.3.1 ADDITIONAL DATA: FACTORS: F/E CD CH Ct CL CV Cfu Cr girt Ci Cn LC# Fe ' 310 1.15 - 1.00 - - - - 1.00 - 1.00 4 Flail 2321 1.011 - 1.00 1.000 1.00 - 0.00 1.00 - 2 - Fb' 2325 1.15 - 1.00 0.904 1.00 - 1.00 1.00 - - 4 Fop' 000 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Ernrn' 0.80 million - 1.00 = - - - 1'.00 - - 2 Shear : LC #4 = OtS, V = 7237, V design. = 4536 lb, Bending( *): LC #2 = D +L, H = 6033 ibs -Sf. bending( -): LC #4 = UrS, H = 5720 ibs -it Deflection: IC 02 - D.I. EI- 1241e06 lb-in2 Total Deflection = 1.50(Dead Load DefleLLiun) + Live Load Deflection. !D= dead L =live S =Snow w =w u:d 1 =impact C= coaslu:cLion CLd =cou,,eutrate.11 All i.C's are listed in the Analysis output) Load combinations: ICC - 16C • DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate far your epphCalion. 2, SCL -BEAMS (Structural Composite Lumber). the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer, 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. , I 4. The critical deflection value has been determined using maximum back -span deflection. Cantilever deflections do not govern design, COMPANY PROJECT dl WoodWorks® SOFFWARF FOR WOOD DESIGN June 28, 2010 10:35 b22 Design Check Calculation Sheet Sizer 7.1 L OADS ( Ibs, psf, or pif ) Load Type ' Distribution Magnitude Location [ft] Units Start End Start End . 1 w69 Dead Partial UD 369.0 369.0 1.p0 2.50 p1f 2 Snow Partial UD 357.5 357.5 1.00 2.50 plf 1348 Dead Partial UD 71.5 71.5 1.00 2.50 pit 4 4 . 548' Live Partial UD 220.0 220.0 1..00 2.50 pif S.:j'0 Dead Full UD1. 42.5 i pif 6'j47 Live Full UDL 62.5 pIf 7J)23 Dead Point 700 1.00 les 6 Snow Point 195 1.00 lbs MAXIMUM R E' _ : _ _ _..__.. f Dead 683 ' 807 Live. 341 572 Total. 1024 1379 Bearing:, - Load Comb If3 #3 Lensith 0.50' 0.63 'Mtn: bearing Length for beams is 172" for exterior supports Lumber - soft, D.Fir - L, No.2, 4x12" Self- weight of 9.35 pit included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 Critorl.on Analysis Value Design •Value 'AnalysislDesr00 Shear iv 30 - Fv" a 207 fviFv' = 0.14 Bending( +) 'f6.® 159 Fb' = 1130 fb /Fb' = 0.14 Live DeE1'n 0..00 <i'/999 0.08 = L/360 0.01 Total Defl'n 0..00.= <51999 ; 0.13 51240. 0.42 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 = 3 Fop' 625 - 1.00 1.00 - - - - 1.00 1.00 - - C' 1.6 million 1.00 1.00 - - - = l.;00 1.00 - 3 Frain' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = Dl-.75(L4-S), V = 1024, V design = 778 lbs i Bending( -): LC #3 = D +.75(L +S), M = 978 lbs -it Deflection: I.0 #3 = D +.75(L+S) EI= 664e06 lb -in2 Total. Deflection = 1.50(Dead load Deflection) + hive Load Deflection. (D =dead L =live S =snow W=wind I =impact C= construction CLd= concentrated) (A11 LC's are listed in the Analysis output) Load combinations: ICC -IDC . DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NOS Clause 4.4.1: (1, COMPANY PROJECT lit WoodWorks® . .101-1 WA *1 FOR WO CIO nrv(:.Y June 28, 2010 10:35 b23 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location )ft] Units Start End Start End l_w33 Dead Partial UD 204.0 204.0 0.00 1.50 plf 2_c18 Dead Point 143 1.50 lbs 3_c18 Rf.Live Point 110 1.50 lbs 4_c19 Dead Point 59 4.50 lbs 5 c19 Rf.Live Point 85 4.50 lbs 6 s 34 Dead Partial UD 108.0 108.0 4.50 6.50 plf 7 c 20 Dead Point 59 6.50 lbs 8 c20 Rf.Live Point 85 6.50 lbs 9 c21 Dead Point 143 9.50 lbs 10_c21 Rf.Live Point 110 9.50 lbs 11 w35 Dead Partial UD 204.0 204.0 9.50 11.00 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : .,, ` ,y rs= ,y am "°`:. S :?ti.. ,...2.., .: ' �•- a'.r' - "P� .x � '^--4,,,, �4.._ . . - }- .-'.►... .i"�- A A. 10 111 Dead, 700 700 Live 195 195 ' Total 895 895 Bearing: Load Comb #2 #2 Length 0.50* 0.50 *, - *Min. bearing length for beams is 1/2" for exterior supports LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; • Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criter.ihii Analysis Value . •Dei4h Value Anal.yY3i s;%Des.i,gi'r Shear fv = 20 Fv' =- 356 fv /Fv'' = 0,.05 Bending( +) fb = 213 Fb' = 2674 fb /Fb' = 0.08 Live Defl'n 0.01 = <L/999 0.37 = L/360 0.03 Total Defl'n 0.05 = <L/999 0.55 = L/240 0.09 ADDITIONAL DATA: FACTORS: F/E CD CM CL CL CV Cfu Cr Cfrt Ci Cu LCU Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - = 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = DST,, V = 895, V design = 639 lbs Bending( +): LC #2 = DIL, M = 2028 lbs -ft Deflection: LC #2 D +L EI= 1241e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= consLruetion CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: TCC -TBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 7 . (--1 VA. COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR W000 OFSII:N June 28, 2010 10:47 b24 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 2_j42 Live Partial UD 160.0 160.0 0.00 4.50 plf 3j43 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4_j43 Live Partial UD 160.0 160.0 4.50 7.50 p1.f 5 Dead Partial UD 47.7 47.7 7.50 13.00 plf 6_j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 7_j45 Dead Partial UD 47.7 47.7 13.00 16.00 plf 8 - j45 Live Partial UD 160.0 160.0 13.00 16.00 ply MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 1 0' 16 Dead 442 442 Live 1280 1280 Total 1722 1722 Bearing: - Load Comb #2 #2 Length 0'.85 0.85 Glulam - Unbal., West Species, 24F -V4 DF, 3- 1/8x10 -1/2" Self- weight of 7.55 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 'Cri,teeioii Analysis Value Design Value Analysis/Design ' Shear fv = 70 Fv' = 265 fv /Fv' = 0.2.6 Bending( +) fb = 1440 Fb' =2400 fb /Fb' = 0.60 Live Defl'n 0.93 = L/491 0.53 = L /360 0.82 Total Defl'n 0.66 = L/290 0.80 = L/240 0.83 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 = 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.0 million 1.00 1..00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 1722, V design = 1534 lbs Bending( +): LC #2 = D +L, M = 6890 lbs -ft Deflection: LC #2 = D +L EI= 543e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W=wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). (120 • COMPANY 'PROJECT '111 ell Wood Wor ks' SCMWAlltfOR WOOD ea/(;N Dec. 15,2010 11:28 b24 V thA, Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs. psf, or plf ) _ . Load Type Distribution Magnitude Location [ft] Units Start End . Start, End 1_112 Dead pajttial LID 47.7 47.7 Q.00 4. pU j42 Live Partial UD 160.0 166,0 d . go, 4.5.0 -Of 1 Dead Partial DA 47.7 47„7 4.50 7.50. A143 Liv e Partial UD 160.0 160.0 4.50 7.50 .pit 5,144' .bead Partial LID 47 .7 41.7 7.50 'a:. 00 , p1f 6 14.4 _ Partial OD' 160.6 160,.0 7". 50 00 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS tinj • • _ _ . _ - - , • • • rb . Dead 212 2112 Live 640 640 total 052 852' ff_eaang:: Load , Comb A2. . Length 0.75 0..75 Lumber-soft, Hem-Fir, No.2, 4x8" Self-weight of 5.24 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Vibie_ De Value AhalySiAlDesiqn Shear Lv 43 'Fv" = 120 - Bending(*.) Eb = 667 = 884 = 0.15 Live DeA1'41 '0.11 = L'893 0,27 = L/360 0.40 total = L/597' 0..40 L/240 ..40, ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfr-t CI Cn LCA Fv' 150 1.00 1.00 1.0,0 - = - 1,0 9.8A 1 - 0 .0 2 Fb'+ 850 1.00 1.00 l.00' 1.000, .1.3,00. 1..00 1.00 1..00 0.80 - 2 Fcp' 405 - 1.00 1:00 - - l..00 1.00 - E' 1.3 million 1.00 1-06 - - LAO 0.95 - Emin' 0.47 million 1.00 1.00 - - 1.00 0.95 - 2 Sheer : LC 112 = p+J„ v 852, V design = 723 lbs. eending(+): LC 112 ti+L 14 1704 lbs-ft Deflection: LC 02 = OIL' 144e06 lb-in2 Teta). DefleCtion = 1.50 Load, Deflection) Live Load Deflection. L=live 5=Saow Ll=w1nd I=iMpadt C=CoWstructiOn 'CLd=concentrated) (All LC's are Listed in the Analysi output) Load combinations: ICC-IOC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. GWe • COMPANY PROJECT I WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:33 b25 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start_ End Loadl Dead Full UDL 200.0 plf Load2 Live Full UDL 540.0 plf MAXIMUM REACTIr)NS flhsl and BEARING I FNt TNS Iinl : - - I0 Dead 409 409 Live 1080 1080 Total 1489 1489 Bearing: Load Comb #2 #2 Length 0.68 0.68. Lumber -soft, D.Fir -L, No.2, 4x6" Self- weight of 4.57 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 89 Fv' = 180 fv /Fv' = 0.50 - Bending(+) fb = 1013 Fb' = 1170 fb /Fb' = 0.87 Live Defl'n 0.04 = <L/999 0.13 = 1,/360 0.30 Total Defl'n 0.06 = L/764 0.20 = L/240 0.31 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1:00 - - - 1.00 1.00 1.00 2 Fb'+ 9C0 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - _ - 1.00 1.00 = 2 Ervin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 1489, V design = 1148 lbs Bending( +): LC #2 D +L, M = 1489 lbs -ft Deflection: LC #2 = D +L EI= 78e06 lb -in2 Total. Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= .i.mpact C=construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. Gai COMPANY PROJECT II III di WoodWorks® SUFI IYAHLFON n'000 Of SIGN June 28, 2010 10:57 b25 Design Check Calculation Sheet Sizer 7,1 LOADS ( lbs, psf, or Of ) Load Type Distribution Magnitude Location (ft) Units Sta_Lt find SLar.t, End 1 _w72 Dead artial UD 539.7 539.7 _ 14.50 pl. _w72 RC.Live Partial U0 493.7 493.7 13.00 14.50 plf 1.420 Dead Partial OD 535.5 535.5 0.00 4.50 plf 4 u20 Rf.Live Partial UD 401.5 407.5 0.00 4.50 pif r.14 Dead Point 10'74 7.00 Lbs 6_c.14 Rf.Live Point 1601 7.00 lbs 7 c15 Dead Point 1074 13.00 lbs 8'c15 Rf.Live Point 1601 13.00 lbs 9 bead Partial U0 539.7 539 14.50 16.00 plf 10_w73 Rf.Live Partial UD 493.7 493,7 14.50 16.00 plf 11 bead Partial UD 443.7 443,1 5.50 7.00 pit 12 Rf.Live Partial UD 493.7 4930, 5.50 7.00 plf 13 bead Partial UD 539.1 539.7. 4.50 5.50 plf ' 14 w75 Rf.Live Partial UD 493./ 493.1' 4.50 5.50 plf 15M12 Dead Partial UP 47.7 97.7' 0.00 4.50 plf 16 Live Partial UD 160.0 160.0, 0.00 4.50 plf 17_343 Dead Partial UD 47.7 47.'l. 4.50 5.50 plf 1 j43 Live Partial UU 160.0 160;0 4.50 5.50 pit 19]44 Dead Partial UD 47.7 47:7 7.50 13.00 plf 20 344 Live Partial UD 160.0 160.0 7.50 13.00 pit 21_j45 Dead Partial UD 47.7 47.7' 5.50 7.50 plf ' 22 345 Live Partial UD 160.D 160:0 5.50 7.50 pit 23 Dead Partial UD 47.7 47;7 13.00 14.50 plf ' 24_346 Live Partial UD 160.0 160,0 13.00 14.50 plf 25 j47 Dead Partial UD 97.7 47.7' 14.50 16.00 pit 26 11 rti 47 Live Paal UO- 160'.0 160.0' .14.5(1 16.00 pat MAXIMUM REACTIONS ,(lbs) and BEARING LENGTHS (in) : U0 1st' ' Dead 4320 4101 Live 5296 ' 537e Total 9024 9477 Bearing: ' Load Comb :12 82 ' Le;rgttt 2.89 2.84 Glulam -Bal., West Species, 24F -V8 DF, 5- 1/8x15" Self- weight of 17,7 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NOS 2005 c critbcl'dn Ana 1''yata.value Desf4n- value Annlyais /Design Shear fv = 157 Fe` = 305 fe /Fe' = 0212 Bending(♦) lb = 2301 1b' = 2760 fb /Fb• = 0.63 Live Def. l'n 0.36 = 1./526 0.53 = 1,/300 0.60 Total lief 1.'n 0.77 = L/249 0..80 = 1/249 0:96 ADDITIONAL DATA: FACTORS: r' /E. CU CM Ce CL CV Ulu Cr Ctrt Notes Cn 1.C(I I'S' 265 0.15 1.00 1.00 - - - - 1..00 1.00 1.00 2 1 2400 1.15 1,00 1.00 [.000 L.5011 1.01 1.00 1,00 1.00 = 2 Fcp' 651) - 1:00 1:00 - - - - 1.00 - - - 5' LB million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.05 million 1,00 1.00 - - - - 1.00 - - 2 Shear : LC il2 = Did., V = 9624, V design = 0063 lbs ©ending( +): LC 02 = DrL, M = 36054 lbs - ft Deflection: LC 02 = DrI E1= 2594e171 lb - in2 Total Deflection - 1.50(Dead Load Deflection) r Live Load Deflection. ID -dead L -live S =Snow M -wand 1= impact C- construction CIA-concentrated) ;011 LC's are listed it the Analysis output) Load combinations: ax:- IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application, 2, Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSIIAITC A190,1 -1992 3. GLULAM. bxd = actual breadth x actual depth, 4. Glulam Beams shall he laterally supported according to the provisions of NOS Clause 33,3, 5, GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 61.a.1.- COMPANY PROJECT di WoodWorks® 50(1)%ARE FOR 11000 OCSIGN June 28, 2010 10:36 b26 Design Check Calculation Sheet • Sizer 7,1 LOADS ( lbs, psF, or plf ) Load Type Distribution Magnitude Location [ft] Units : Start End Start End 1 w37 Dead Partial UD 535.5 535.5 I0.50 11 plf 2w 37 Snow Partial UD 487.5 487.5 10.50 11.00 plf 3 w 38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4 w 38 Snow Partial UD 487.5 487.5 11.00 14.00 plf 5_w 39 Dead Partial OD 535.5 535.5 14.00 15.50- plf 6 w39 Snow Partial UD 487.5 487.5 14.00 15.50 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 0' 15' -6' Dead 583 - - - 2397 Live 393 2044 Total 976 4441 Bearing: Load Comb #2 #2 Length 0.50* -. _ 1.33 "Mit bearing length forbeams'is 1/2 " "forezteriorsuppbrts Glulam -Bal., West Species, 20F -V7 DF, 5- 118x16 -1/2" Self- weight of 19.47 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 54 Fv' = 305 fv /Fv' - 0.18 Bending( +) fb = 488 Ph' = 2297 fb /Fb' = 0.21 Live Defl'n 0.05 = <1./999 0.52 = L /360 0..09 Total Defl'n 0.14 = <L/999 0.77 = L/2&0 0.18 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Ctu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2000 1.15 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - 2 Shear : LC #2 - D +S, V -- 4441, V design = 3070 lbs Bending( +): LC #2 = 0.1 - S, M = 9454 lbs - ft Deflection: LC #2 = D +S E7= 3070e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) .1 Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). (i3 COMPANY PROJECT WoodWorks® SOh7w4Rtnnu WOOD / WSI(4V June 28, 2010 10:50 c2 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type D str- ibut:ion Magnitude Location (ft).'. Units ,Start End' . Start End ,. l�bl- Dead Axial 3539 (ECeentrici'ty,''= 0.0u, in) 2"b1- '41f.Live Axial _ 2089. .(ECceritricity = 0.00 im) MAXIMUM REACTIONS (Ibs): I> ` _ _ 0 8, Lumber n -ply, Hem -Fir, No.2, 2x6 ", 2 -Plys Self- weight of 3.41 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener. nails; Ke x Lb: 1.00 x 0.00= 0.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : • 'Criterion Analysis :value Design Value Analyss%Design- Axial fe = 221 Fc' = 980 EcyEC' 0:23' Axiah Bearing fc = :221 Fa.* _ 16:9:4 .fc /Eck° = 0.. 1.3 ADDITIONAL DATA: FACTORS: OF -CD` ,CM Ct CL %CP CE Cfu Cr Cfrt Ci LCD Fc' 1300 1..,15 1.00 1.00 0.596 1.100 -- - ]..00 1.00 2 Fc* 1300 1.•15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC 02' = D +L, P = 3655 lbs Kf = 1.00 (0 =dead L =live S =snow• W =wind 1 C= construction CLd= concentrated) ('A.11 IC' s; are listed in the Analysis output`). Load combinations.; TCC -ISC'. DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. • ��a� COMPANY PROJECT 1 oodWorks® SO)f/WAtrfM U WOOD DLVIGN June,28; 201,0 10:52 c25 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location t.eti Units Start End Start .End- - 1'p12' Dead Axial 514 (Eccentricity 0 00 in') 271112 Live Ax-i'al 1908 ( = O.L00 in) MAXIMUM REACTIONS (Ibs): 0' 9' Lumber n -ply, Hem -Fir, No.2, 2x4 ", 2 -Plys Self- weight of 2.17 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 0.00= 0.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis. Value Design Value Analysis /Design Axial lc = 185 Fc' = 380 fc /•FC' = 0.49 .Axial Bearing it = 185, ,Fc' = 1995 Fc /Fc'* _ .012 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cf Cfrt Ci LClI Fc' 1300 1.00 1.00 1.00 0;.254. 1.1-50: -- - 1.00 1.0B 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1 :00 1.00 Axial : LC 02 D +L, P = 19,42 lbs. Kf = 140. (D=dead L =live S. =snow W =wind t= impact Ceons.truction CLd =concentrated) (All LC!s are Listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. fdt: COMPANY PROJECT di WoodWorks' SOFJWARE FOR WOOD DESIGN June 28, 2010 10:51 c36 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b21 Dead Axial 5634 (Eccentricity = 0.00 in) 2 Rf.Live Axial 7021 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): r' .mo , ' 1 , Timber -soft, Hem -Fir, No.2, 6x6" Self- weight of 6.25 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 MI; Ke x Ld: 1.00 x 8.00= 8.00 (ft); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion .Analysis Value Design Value Analysis /Design Axial £c = 420 Fc' = 549 fc' /Fc' = 0.77 Axial Bearing fc = 420 Fc* = 661 fc /Fc* = 0.64 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.15 1.00 1.00 0.829 1.000 - - 1.00 1.00 2 Fc* 575 1.15 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 12705 lbs (D =dead L =live S =snow W =wind I =impact C= construction CLd= concentrated) (All Lt's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 6\a(d, COMPANY PROJECT 1 WoodWorks® %Qi I WAREU)A WOOD D SID.V June 2010 10 :52 c44 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf) ■ Load Type Distribution Magnitude Location (`ft l Units . Start _ End Start End 1 e35', Dead Axial. 1 (Eccentr-icity = 0. in) 2 ^ c35 Rf.Live• Axial 2'853 (Eccentricity s O..i00 in) MAXIMUM REACTIONS (Ibs): 0' 9' • Lumber n -ply, Hem -Fir, No.2, 2x4 ", 3 -Plys Self- weight of 3.25 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 9.00= 9.00 [ft); Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Repetitive factor: applied where permitted (refer to online help): Analysis vs. Allowable Stress (psi) and Deflection (ir1) using NDS1005 : Criterion - Anal,ysisValue Design Value. Analysis /Des:i9n Axial fc - 396 Fc'' _- 363 fc /Fc'' _ '0.84 Axial Bearing, fc = 306. F.c* = 1719 _ Lc /Fc* = .0.18 'ADDITIONAL DATA: FACTORS': F/D CD. CM Ct .CE /CP CF Cfu Cr Cfrt Ci LCII '.Fc' 1300 1.15 1.00 1.00 0.211 1.150 - - 1.00 1.00 2 RC* 1300 1.15 1.00- 1.A0, - 1..150 - - 1.00 1.00 2 Axial c LC -l12' = D4,10 F = 4823 lbs Kf (D =dead L =five S =snow W =wind -I =impact c= const- ruction CLd =concentrated) (A'll LC's are listed ;i;n• the Analysis output)' .Load combinations: TCC =IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT Wo odWorksOH WMe sQN WUQO ry$ICM June 28; 201010:51 c64 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location [fti Units Start End Start End 1 c45 iDead Axial -1940 (Eccentricity = 0;00 in) 2 - ,c45 Rf. Live Axial 2853 (Eccentadity 0. Ob' in) 3 Dead Axial 807 (Eccentricity = 0.. 00 in) .4 b22 - Ri..Live Axial 763: (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' t3 Lumber n-ply, Hem -Fir, No.2, 2x6 ", 3 -Plys Self- weight of 5.11 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : . 'Criterion Analysis 'Value Design Value_ Analysis /design Axial fc = 259 Fc' • = 439 fc /Fc" = 0.59 Axial.-Dearing, fc 259 Fc *' =_169:4_ fc%Fet ADDITIONAL DATA: • FACTORS: FIR CD CM Ct CL /CD CF Cfu Er Cfrt Ci LCit Fc' 1300 1.15 1.00 1.00 0.267 1.100 - - 1.00 1.0.0 2. Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.0.0 1.,00 '2' Axial : LC 02 = D +L, P m 6404 lbs KE = 0.60' (D=dead G =:live S °snow W =wind I =impact C =construction CLd =concentrated) (411 LC'S.ate listed im the Analysis output) Load ,combinations':' ICf' -Z-f3C DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. 6955 Harper COMMUNICATION RECORD • . OP '.• Houf-LPeterson Rigliellis Inc. TOE FRoM fl MEMO To FILE E 777 717 • FT.71;i■lf - — :ANC.CA.F Ao:C. ..., PHONE NO.: PHONE CALL: E MEETING: E x -0 co m 7, e or.... ...., r.,. .'"'''' P C ,. iu :3 iq'w- 0 so E al C . 0..t. V E 5- ( , •V 2 -- p-- 0 ., C CA 7 P g) ...... (,) ,.......1 .07) c..... S N r S P cs 57 9, g e- 0 CP .., L.. Li z 9 z 6 ,...e 0 . 0 T COMPANY PROJECT 1 WoodWorks® 5UrriraRPrOR WOOL) OrsI i '.' June 26, 2010 10:19 b25 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif) i Load Type Distribution Magnitude Location [ft) Units Start End ..Start End 1 w72 Dead Partial UD 539.7 539;7 13.00 14.Se pit 2 Snow Partial DD 497.7 493.7 13.00 1 Of 3 Dead Partial UD 535.5 535 :5 41.00 4.50 plf 4M28 Snow Partial UD 487.5 467.5 0.00 4.50 plf 5 Dead Point 1074 7.00 lbs 6 Snow Point 1601 '7,00 lbs 7 Dead Point 1074 13.00 lbs 0 Snow Point 1601 13.00 lbs 9 w/3 Dead Partial 00 539 -7 539.7 14.50 16.00 pif LO w73 Snow Partial UD 493.7 493.7 14.00 16 :00 plf 11 474 Dead Partial UD 443.7 443.7 $.50 7.00 pif 12 Snow Partial UD 493.7 493.3 5;50 7.00 pif 135 Dead Partial UD 539.7 539;7 4.50 5.50 plf 14 Snow Partial UD 493.7 493.7 '4.50 5,50 pit 15:42 Dead Partial UD 47.7 47.7 0100 4.50 pit 16 142 Live Partial UD ]60.0 160.0 0;00 4.50 pif 13 Dead Partial UD 47.7 47.7 4.50 5.50 pif 18 143 Live Partial CID 160.0 160.0 4,50 $',50 pif 19_j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf '20_j44 Live Partial UD 160.0 160.0 -7.50 53.00 pl 21j45 Dead Partial UD 47.7 47.7 $:50 7.50 plf 22 145 Live Partial LID 160.0 160.0 5,50 7.50 plf • 237146 Dead Partial UD 47.7 47.7 13.00 14.50 pif 24_346 Live Partial UD 160.0 160:0 1-3 :0ii 14.50 pif 25j47 Dead Partial UD 47.7 47.7 1.4.50 16.00 plf. 26,147 Live Partial UD 160.0 160.0 14.50 76.00 pif 203A Wind Point 7960 0.00 lbs 203A.1 Wind Point -7960 ' loon lbs 2036.1 Wind Point 7960 13.00 lbs 2030.2 Wind Point -7960 16'.00 lbs MAXIMUM REACTIONS_ (Ibs) and BEARING LENGTHS•(iti).: Dead 4326 4101 Live 7703 4096 Uplift 2450 Total 12031 0197 Bearing: i _ Load Comb 111 96 L=nostit 3.8i 2.,4c Glulam -Bal., West Species, 24F -V8 DF, 5- 1/8x15" Self- weight of 17.7 plf included in loads; Lateral support top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 Criterion An3.lys..is .Value Oesi.gn value Melysia7pes.i.gn Shear 2v a 136 - 'f'v' = 305 fv/Fv' = 0.45 Bending(4) fb a 1986 Fb' = 2760 fb /Fb' = 0.72 Live Defl'n 0.27 a L/704 0.53 = 1 /360 0.51 -Total De11'n 0.60 a 1/283 .0.80 = L/240 - 0.85 ADDITIONAL DATA: FACTORS: F/E CD SW Ct CL CV CIU Cr Cfrt Notes Cu LC4 Fe' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 6 - 86'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.011 1.00 1.011 - 6 Fop' 650 - 1.00 1.00 - - - - 1.00 - - E 1.0 million 1.00 1.110 - - - - 1.00 - - 3 Fain' 0.85 million 1.00 1.00 - - - - 1.00 - - 3 Shear : LC #6 = D1S, V = 0344, V design = 6933 lbs Deeding[-r1: LC 06 - DIS, M = 31811 lbs -ft Deflection: LC #3 - 0'.75(L'S) 01= 2594e06 lb -in2. Total Deflection = 1.50(Dea<l Load Deflection) , Live Load Deflection. (D =dead L=live S =snow W= •.rind 7= impa<:t. C= construction CLd=concentrated) (A11 LC's are listed in the Analysis output.) Load combinations: TCC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits me appropriate for your application. 2, Glulam design values are for materials conforming to Alf C 117 -2001 and manufactured in accordance with ANSIIAITC A190.1.1992 3, GLULAM: bxd = actual breadth x actual depth. 4, Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3,3,3. 5, GLULAM: bearing length based on smaller of Fcp(lension), Fcp(comp'n). 6130 COMPANY PROJECT ell WoodWorks® SOFIIVARE FOR WOOD DLSICW June 28, 2010 10:24 b25 LC1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location ift1 Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 ' 13.00 14:50 plf 3 Dead Partial Ul) 535.5 535.5 0.00 4.50 plf 3c14 Dead Point 1074 7.00 lbs 7=r15 Dead Point 1074 13.00 lbs 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf it w74 Dead Partial LID 443.7 443.7 5.50 7.00 plf 13w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 15,j42 Doad Partial UD 47.7 47.7 0.00 4.50 plf 17_j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 19_j44 Dead Partial 11D 47.7 47.7 7.50 13.00 plf 21_j45 Dead Partial UD 47.7 47.7 5.50 7.50 pit 23'_j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 2.5 j47 Dead Partial UD 41.7 47.7 14.50 16.00 plf 203A Wind Point 7960 0.00 lbs 203A.1 Wind Poinc -7960 7.00 lbs 2.030.1 Wind Point /960 13.00 lbs 20313.2 Wind Point -7960 16..00 Ibs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : A 1 fit Dead 4328 4101 Live 3300 Uplift 2458 Total 7572 4101 Bearing: Load Comb 02 #1 Length 2.27 1.23 Glulam -Bal., West Species, 24F -V8 DF, 5- 1/8x15" Self- weight of 17.7 plf included in loads; Lateral support: top= full, bottom= at supports; • Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : 'Cribetion 'Analysis Value Dosign Va'luo Anal- ai$ /Design Shear fv = 70 Fv' 238 fv /Fv' = 0.29 Sending(;) Lb = 978 Fh' a 2160 fb /Fb' = 0.45 Live Defl'n -0.30 = L/632 0.53 L/360 0.57 Total Defl'n -0.03 = <L/999 0 -110 0 5/24.0 0.04 ADDITIONAL DATA: FACTORS: F/li CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LCO Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb 2400 0.90 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - G:' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Ernie' 0.05 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC 01 = D only, V = 4328, V design = 3577 Lbs Bending(*-): LC 0.1 = D only, M - 15667 lbs -ft Deflection: LC I(2 = .60+41 11= 2594e06 lb - in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D =dead L= . . =snow W -wind 1= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: 1CC -1BC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3..GLULAM: bxd = actual breadth x actual depth, 4, Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLtJLAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). G \. COMPANY PROJECT 1 WoodWorks® I SOFIWAat r00 WOOD Du tch June 28, 2010 10:21i b25 LC2 Design Check Calculation Sheet S izer 7,1 LOADS I Ibs, psf, or pif) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w72 Dead Partial UD 5139.7 539.7 17.00 I4.50 pIP 2 Snow Partial UD 493.7 493,7 1:1.00 14.50 plf S Dead Partial UD 535.5 535:5 D.00 4.50 plf 4M20 Snow Partial UD 487.5 487.5 0.00 4.50 Pit 5 Dead Point 1074 7.00 lbs 6 Snow Point. 1601 7.00 lbs 7 Dead Point 1074 13.00 ]be 8 ~015 Snow Point 1601 13.00 lb., 9 :w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 10Y u73 Snow Partial U0 493.7 493.7 14.50 18.00 plf llw'74 Dead Partial UD 443.7 443.7' 5.50 7.00 plf 12 w74 Snow Partial UD 493.7 493:7 5.50 7.00 plf 13 -w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 14 -' 75- Snow Partial UD 493.7 493.7' 4.50 5.50 pJf 15 j42 Dead Partial. UD 47.7 47.7 0.00 4.50 plf 16_142 Live Partial UD 160.0 160,0 0.00 4.50 plf 17 j43 Dead Partial UD 47.7 47.7' 4.50 5.50 plf 10 - '14 :3 Live Partial UO 160.0 160;0 4.50 5.50 plf 19 144 Dead Partial UD 47.7 47,7 7.50 13.00 plf 20j44 Live Partial UD 160.0 160.0. 7.50 13.00 plf 21 j45- Dead Partial UD 47.7 47.7 5.50 7.50 plf 22 j45- Li ve Partial UD 160.0 160.0. 5.50 7.50 plf 23 Dead Partial UD 47.7 47.7, 13.00 14.50 plf 24 146 Live Partial 01) 160.0 160:0 13.00 14.50 plf 25 ^j47 head Partial UD 47.7 47.7 14.50 16.00 plf 26 j47 Live Partial UD 160 -0 160.0 14.50 16.00 pit 20 Wind Point -7960 0.011 lbs ' 203A_1 Wind Point 7960 7.00 lbs 2030.1 Wind Point -7960 13.00 lbs 2030.2 lied Point 7960 ' 16.00. • ihs. MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) IV . 161 Dead 4328 410 Live 4016 7'163. Up1irt 2321 'total 8344 11969 Bearing: . Load Comb N6 8 4 Leanth 1,59 3:56 Glulam -Bal., West Species, 24F -V8 DF, 5- 1/8x15" Self- weight of 17.7 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS : Criterion Analysis Value Design Value Analysis /Design Shear fir = 1-36 Fvr = 305 fv(Fv' - A 0.1,9 Bending(t1 fb.= 2949 Fb' a 3040 fb /Fn' = O.:CC Live Defl'n 0.42 = L/454 0.53 a L /360 0.79 Total List1.'n, ..0.59 - L/577 0.00 a 1/240 0,07 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC) Fv' 265 1.15 1.00 1..00 - - - - 1.00 1.00 1.00 6 Pb': 2400 1.60 1.00 1,00 1.000 1.000 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - '1.00 - - 4 Ervin' 0.05 million 1.00 0,00 - - - - 1..00 - - 9 Shear : LC #6 - D +S, V - 0344, V design = 6903 lbs Bending ill: LC 94 = 01.751L +S414), N - 47220 lbs-ft Deflection, LC 114 = 17- 1.75(L +S +W) E1= 2594e06 lb-rn2 Total Deflection = 1.00IDead Load Deflection) 1 Live Load Deflection. (1)=dead L =live S -snow W =,: ind I= impact C- construction CLd= ccncentrnted) All I.C's are lists :) in the Analysis output) Load combinations: 1CC - 18C DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application, 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI/AITC A190,1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall he laterally supported according In the provisions of N(3S Clause 3.3.3. 5, GLULAM: bearing length based on smaller Cf Fcp(tension), Fcp(comp'n). 61 32-- COMPANY PROJECT I 411 1 I WoodWorks® VOFIWARr FOR WOOD Drsruv June 28, 2010 10:23 b25 LC2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location ]ft] Units Start End Start End rTw72 Dead Partial UD '539.7 539.7 13.00 I4.10 plf 3 _ w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 5 c14 Dead Point 1074 7.00 lbs 7 c15 Dead Point 1074 13.00 1h-s 9 w73 Dead Partial UD 139.7 539.7 14.50 16.00 plf 11w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 13 _ w7`i Dead Partial UD 539.7 539.7 4.50 5.50 plf 15_202 Dead Partial UD 47.7 47.7 0.00 4.50 plf . 1 17j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 19 144 Dead Partial UD 47.7 47.7 7.50 13.00 plf 2]_j45 Dead Partial UD 47.7 47.7 5.50 7.50 ' plf 23 _j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 25J47 Dead Partial UD 47.7 41.7 14.50 16.00 plf 203A Wind Point - 7960 0.00 lbs ' 203A.1 Wind Point 7960 7.00 lbs 20313.1. Wind Point -7960 13.00 lbs ' 203)3.2 Wind Point 7960 16.00 Lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : to. 16E Dead 4328 4101 Live 3391 Uplift 2321 Total 4328 7435 Bearing: _- Load Comb #1 #2 Length. 1.30 2.23 Glulam -Bal., West Species, 24F -V8 OF, 5- 1/8x15 °' Self- weight of 17.7 plf included in loads; Lateral support: top= full, bottom= at supports: Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : ' Criterion Analysis Value Design Value Analysis /Design Shear fv = 70 Fs' = 238 fv /Vv' = 0.2 - Bending(?) fb = 1905 Pb' = 3840 fb /Fb' = 0.50 Live Dett'n 0.10 = <L /999 0.53 = L/360 0.18 Total Defl'n 0.37 = 1/525 0.80 = 0/240 0.4fi ADDITIONAL DATA: FACTORS: F/E CD CM Ct CI, CV CPu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1:00 - - - - 1.00 1.00 1.00 1 F7)'., 2400 1.60 1.00 .1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fep' 650 - 1.00 1.00 - - - - 1:00 - - - r:;' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 13min' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #1 - D only, V = 4328, V design = 3577 lbs Bending( +): LC 02 = .6D +W, M = 30517 Ibs -ft Deflection: LC 02 = .6Di -W El= 2594e06 lb -in2 Total Deflection = 1.00(Dead Load Deflection) + Live Loan Deflection. (D =dead L= )_i-ve S =snow 14 =wind I =impact C= ronstruccion CLd= concentraledl (ALL LC's are Li:a:ed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1, Please verify that the default deflection limits are appropriate for your application. . 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI/AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5; GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). C;3 . COMPANY PROJECT dt WoodWorks® SC/PI 'Mkt ION WOOD f)C]I(..Y June 28, 2010 10:25 b26 LC1 Design Check Calculation Sheet Sizer 7.1 •LOADS ( lbs, psf, or ptf ) Load ' Type Distribution Magnitude Location [fti Units , Start End Start End 1 w37 Dead Partial UD 535.5 535.5 10.50 11.00 pl`f 2 w37 Snow Partial UD 487.5 487.5 10.50 11.00 plf 3�w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4w38 Snow Partial UD 487.5 487.5 11.00 14.00 plf 5 w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf 6 Snow Partial UD 487.5 487.5 14.00 15.50 plf W1.1 Wind Point 13500 10.50 lbs W1.2 Wind Point -13499 15.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : to _ - - - 15',61 Dead 583 2397 Live 4182 8392 Total 4704 10789 Bearing: Load Comb #4 #3 Length - 1.41 3.24 Glulam -Bal., West Species, 20F -V7 DF, 5- 118x16 -1/2" Self- weight of 19.47 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 :. Criterion .Analysis Value Design Value Analysis /Design Shear fv = 181 - Fv' = 424 tv/Fv' = 0.43 Bending( +) fb = 2526 Fb'-= 3195 fb /Fb' = 0.79 Live Defl'n 0.47 = L/395 0.52 L/3 0.91 . Total Defl'n 0.56 = L/331 ; 0.77 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/F CD CM CL CL CV Cfu Cr Ctrt Notes Cn LC# Fv' 265 1.6D 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'r 2000 1.60 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - 4 Shear : LC #4 = .6D -lW, V = 10643, V design = 10194 lbs Bending( +): LC #4 = .60 +W, M = 48956 lbs -ft Deflection: LC #4 = .6n-Ew ET= 3070e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) -f- Live Load Deflection. (D =dead L. live S =snow W=wind T= inpact C= construction CLd= concentrated) (A1.1 LC's are listed in the Analysis output) Load combinations: 1CC -1BC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). t� , COMPANY PROJECT 1 WoodWorks® $OP1wAAE PDX WOOD 0(3/65 June 28, 2010 10:27 b26 LC1 no II Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w37 Dead Partial UD 535.5 535.5 10 -.50' 11.00 plf ' 1 Dead Partial UD 535.5 535.5 11.00 14.00 plf 57W39 Dead Partial UD 535.5 535.5 14.00 15.50 plf W1.1 Wind Point 13500 10.50 lbs W1.2 Wind Point - 13499- _ 15.50 lbs . MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 10' 15' Dead 583 2397 Live 4182 8247 Total 4704 10583 Bearing: Load Comb #2 #2 Length 1.41 3.18 • Glulam -Bal., West Species, 20F -V7 DF, 5- 1/8x16 -112" Self- weight of 19.47 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : ' Cri.terion Analysis Value Design Value Analysis /Design Shear Iv = 181 Ev' = 424 fv /Fv' = 0.43 ' Bending( +) fb = 2526 Fb''= 3195 fb /Fb' = 0.79 Live Defl'n 0.47 = 1/395 0.52 = 1/360 0.91 Tonal Defl'n 0.56 = L/331 0.77 = 1 /240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr. Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - 1.00 1.00 1.00 2 Fb'i- 2000 1.60 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - -. - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emi.n' 0.85 million 1.00 1.00 - - _ - 1.00 - - 2 Shear : LC #2 = .6D +W, V = 10643, V design = 10194 lbs Bending( +): LC #2 = .6D +W, M = 48956 lbs -Ft Deflection: LC #2 = .6D +W EI= 3070e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind T= impact C= construction CLd =concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. - 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). COMPANY PROJECT Of WoodWorks® SOUWARF FOR moon nfS1GN June 28, 2010 10:26 b26 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w37 Dead Pa "rtial UD 535.5 535.5 10:50 11.00 p11 2 Snow Partial UD 987.5 987.5 10.50 11.00 plf 3w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 9 s30 Snow Partial (1D 487.5 907,5 11.00 14.00 plf 5 Dead Partial UD 535.5 535.5 19.00 15.50 plf 67439 Snow Partial UD 987.5 487.5 19.00 15.50 plf W1.1 Wind Point - 13499 10.50 lbs W1.2 Wind Point _ 13500 _ 15.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • ,___ -_._ 10' 15'•6 1 Dead 583 2397 Live 393 2049 Uplift 3945 7647 Total 976 4441 Bearing: - . Load Comb 92 92 Length 0.50* _ 1.33 bearing length for6eemsas 1/2" for exterior.supports Glulam -Bal., West Species, 20F -W DF, 5- 118x16 -1/2" Self- weight of 19.47 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 Criterion 'Analysis Value Design Value Analysis /Design Shear fv - 136 Es'' = 424 tv /Fv' = 0.32 Bending(+) fb = 488 Fb' = 2297 fb /Fb'. - 0 -,21 Bending(-) tb = 2193 Pb' = 2940 fb /L•b' = 0.75 Live Defl'n -0.51 = 1/362 0.52 = L/360 0.99 Tota], DeLL'n. -0.42 = L,/441 0.77 = .L/240 0 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cio Cr Cfrt Notes Cn LC# Fe' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Eb'r 2000 1.15 1.00 1.00 1.000 0.999 1.00 1.00 1.00 (..00 - 2 Fb'- 2.000 1.60 1.00 1.00 0.919 1.000 1.00 1.00 1.00 1.00 - 4 Fop' 650 - 1.00 1.00 - - = 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 4 Frain' 0.85 million 1.00 1.00 - - - = 1.00 Shear : LC 94 = .601-B, V = 7947, V design = 7647 lbs Bending( +): LC .i2 = D +S, M = 9454 lbs -ft Bending(-): LC 44 - . 6D+W, Df - 4249G lbs-fl. Deflection: LC 44 = .6D +'r7 51= 3070e06 Lb -in2 Total Deflection = 1.50(Dead Load Deflection) - Live Load Deflection. (0 =dead r. live S =snow W =wind I= impact C= cnnstr inn CLd= concentrated) (All LC's arc listed in the Analysis output) Load combinations: 1CC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3,3, 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n), • C-J/1 COMPANY PROJECT 1 WoodWorks® SUfIWARI fOW WOOD un,.:N June 28, 2010 10:30 b26 LC2 no II Design Check Calculation Sheet Sizer 7,1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft] , Units Start End Start End 1 w37 Dead Partial UD 535.5 535.5 ' 10.50 11.00 If 3 w38 Dead Partial UD 535.5 535.5 11.00 14.00 pit 5 w39 Dead Partial UD 535.5 535.5 14.00 15.50 pit W1.1 Wind Point -13499 10.50 lbs W1.2 Wind Point 13500 15.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : p 15'-6 Dead 583 2397 Live Uplift 3945 764'7' Total 583 2397 Bearing: - - Load Comb #1 #1 Length 0.50* 0.72 `Min. bearing length for beams is 1/2" forexterior,supports Glulam -Bat., West Species, 20F -V7 DF, 5- 118x16 -1/2" Self- weight of 19.47 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 136 Fv' = 424 fv /Fv' = 0.32 Bending( +) fb = 267 Fb' = 1797 fb /Fb' = 0.15 Bending( -) fb = 2193 Fb' = 2940 fb /Fb' = 0.75 Live Defl'n -0.51 = L/362 0.52 = L/360 0.99 Total Defl'n -0.42 = L/441 0.77 = L/240 0.54 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2000 0.90 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 1 Fb'- 2000 1.60 1.00 1.00 0.919 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - _ - 1.00 - - - F.' 1.6 million 1.00 1.00 - - - - 1.00 - = 2 Emin' 0.05 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = .6D +W, V = 7647, V design = 7647 lbs sending( +): LC #1 = D only, M = 5167 lbs -ft Bending( -): LC #2 = .6D +W, M - 42496 lbs-ft Deflection: LC #2 = .6D +W EI= 3070e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= cunceulraLed) (AL] LC's are listed in the Analysis output) Load combinations: ICC -111C DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application„ 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3, GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NOS Clause 3.3,3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). t2j f� • \ Haber Project: H r. • lout Peterson Client: Job l� • • Righellis Inc. ' eiiuiiiterts Peri r7s a "s ' -- Designer: Date: Pg. # i,etIODC PI •xrun "rF r. .oIlov r.',.i De c\t. Aesi c lr1 Wdl := 10 lb 8 ft•20 ft Wdl = 1600•Ib ft Seismic Forces Site Class =D Design Catagory =0 W := Wdl I 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S1 := 0. 339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F • = 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F 1.722 Vel -based site coefficient © 1 s- period (Table 1613.5.3(2), 2006 IBC) S • = F • Sm1 := F .S 2S ms S ds : = Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a := 1.0 R. := 2.5 (Table 13.5 -1, ASCE 7 -05) 4a- •Sds•I ( z1 Fp;- p R p •I 1 +2• l•Wp EQU. 13.3 -1 p l JJ Fpmax := 1.6•S EQU. 13.3 -2 F pmin := • 3•S ds •l p •W p EQU. 13.3 -3 = if(F > F pmax , Fpmax, if(F < Fpmin, F. 1 p )) F = 338.5171 lb Miniumum Vertical Force 0.2•Sds• Wdl = 225.6781 .lb Harper Project: . RP flour Peterson Client Job # Righellis Inc. ENGIRESRS . Designer: Date: Pg. it tANNSCAPE ARCI1ftECrs ♦SURVPVORS W dl := 10• lb — 8.f1.20-ft Wdl = 1600•lb ft 2 Seismic Forces Site Class =D Design Category =D W := Wd1 I ;_ 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F • = 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F := 1.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S ins • F Smi := F .S 2 • S ms S ds := 3 Max EQ, 5% damped, spectral responce acceleration at short period Exterior Elements & Body Of Connections a := 1.0 R := 2.5 (Table 13.5 -1, ASCE 7 -05) . 4a p •Sds• F P : •1 + h Wp EQU. R 13.3 -1 P Fpmax := 1.6•S EQU. 13:3 -2 F pmin := • EQU. 13.33 F if(F > Fpmax,Fpmax,if(Fp < FpmimFpmin,Fp)) F = 338.5171•lb Miniumum Vertical Force 0.2•Sds-Wd1= 225.6781•lb Gib • Harper IC c'' HoufPeterson COMMUNICATION RECORD . Righellis Inc, To ❑ FROM ❑ MEMO TO FILE ❑ • 4 n.; •• Hhfia,npc ~ },,.,vc�a...p PHONE NO.: - PHONE CALL: ❑ MEETING: IT m -o m ri x . O L w s C") 3 �� cJ n (..), .„ , ,____ . s ....0 ti i Si II d ,,. s 6- o n d & STh . er 6- O ° 0 N. N. 1 1 o a . ,l r - C q 6 ,_.z 0 0 By p erita . . . DAIE, -- ) --o k ... 3 a 010 JOB NO.:4 COQ ()9 0 • 01 I PROJECT: RE: 0 E C Y '''\ ) t PI ';z' ti•f 4 =-C'A tv\ C (Pr'-•,(. VT..\/ 2xL En Lo .• il ; 13 _.1 D - Z u_ P 0 w I- w 0 2 NA k L. I CR-P()C. t - r . ( I La C3 NM InGV:) 2 tj 0 Li ( t. 9.5 )(Rlai#/rNa l 1 ) r: t * kV; I te u = u z • a w Z • • il. C.APAC.IT`t 4;..1" 0 • • =(1.(oti:(1 *1) ____ * (2. board ---- ---- • , 1 0 i -- 3 2 = r pt. _____ .._. __-._____ ____ iC spac in O€ b.) ee n n.o. \--,.., :_- 31 ., ico,c; - , E Lapoc.013 El 6 i . 1 2 I ut,.) A t r u 0.1 ,- v,.95 pi-F- . I co e_li 1 .__...._,.,. . LES:x.---, - 9._ \ (,-,,,c,,1 -r-r-- • I I- : \) -L 1. G ,9,5 )Liz.% • . , 1 i 1 i ( SI rP. n S ID ':3 ri f?i I '' • ./N a L. ... ,i e I 2 11 „e_____-......._,.... v V ( •:.'' i. C T (41„)( 4 tZ •=, ,.':, . SS 'Li .--• 3 4 C Sof\psa•rN 3D‘D`14- xLi'i 22 e- 11" 0 i C_ • • I - '- BY: pafr),re1 ttif DATE75 N N 1 0 JOB No.. r E ....0q0 PT 10 • PROJECT: ' • f .. RE ..De C• (7'' 1:)0 CO nn(? V, (_.*..2.1.,1.. • 0 El 6 • - z ecl,.,:i,:::: 0 w 11 EI . J . 8 0 . • _...,-_ 64-00 *v.) o z . 0 ._ 30 T- C. - 6'400 itkw a 1 0 ____.:_._. i 0 i U 5oryNborN I-Mu 4 z To U 1 J -41.-C 2 o " - it 0 LL 2 w 0 g , 0 = Lf_A cn __., = • I- a- 0 - ---1.--:-/ --- BOCX3 •#-Iti 1 , T-= C _-=-• BOOO itim =a810-4t- 1 ago° .., 1-1-DU4 3 c 0 • -1-. un n •. 1 4 . ) •-• ff-', - • . .-, - , it: • 711," - ,.. -._ - !,•! ---,--?- • • Harper .1 P'. Houf Peterson COMMUNICATION RECORD Righellis Inc. To fl FROM 0 MEMO TO FILE E g tp,..,,,,,ps- --• LAIIS•14 • 5 I• RVn,... 14 : PHONE No .PHONE CALL: E MEETING: fl G -D � DH (2 r, • Et1 v ' x 11 r) .-1 0 (---) o g7 ..... ir 0 a l 11 p (1 -- 3 [ 9.) d _,.. .. ...___0 0 (,, c, 0 9 Q _ 0 0 C3 e- 9 di •--- ' 3 d . G _ ..., L _c- r) -I c....5- k....) . -rn I ?-.) . o . I - ..,.. 1 ---1 , a , 2 9 "1 (.... Cr) 1 0 —.0 c BY: { /J/'�� DATE: JOB NO.: TkL aO C l OF PROJECT: RE: I ❑ 1e( IVICI I P r Z W w 2 ❑ 0 • W U O a , BEAM 1 . Pos r ► • + r.� POST 7- z Z o 53'sr-s / �• � r/ r ( r e • e. • W CI g DEC (L LA \/0 r c C'1U o eni...2 Ci '.I =a;t • C; \ COMPANY PROJECT .00 1 I i Wood Works® SOFTWARE FON WOOD DESIGN June 8, 2009 16:27 Hand Rail Design Check Calculation Sheet - Sizer 8.0 LOADS: • Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE :Live Point 2.50 200 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : r ■,,, t - i , f r.t1 .t.-- -:,,-, • tv4- 7-,.--,..: . -4 , . ,, ......:: ,,.4. .i....a,-;=•$,; ;.;::, ...-%. ;,... ,a,. :' , , ,. ,- . .•••••, ,,■••• A. 3. ,■11+ ... .t!-: . • ._... ; -,,..:,:. .:. ,.."--.,.::. :,•;1",' 4 ..a r• ,=. ..,!.: f,-, .....: .. .;:, . ! •:. 4 -:-.: f.',: .- .' . - '.., i-- _. • • . A I o' 54 Dead Live 100 • 100 Total 104 104 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams is 1/2 exterior supports Lumber-soft, Hem-Fir, No.2, 2x6" Self-weight of 1.7 plf included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Valu e Design Value Analysis/Design SlieAr f = 19 Fv' - 150 fv/Fv• = 0.13 Bending(+) fb = 405 Fb' = 1048 fbills = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L7.999 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 :. - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 r 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending(+): LC #2 = L, M = 255 lbs-ft Deflection: LC #2 = L El = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. .2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. • 6 q c ( 0 COMPANY PROJECT i WoodWorks • SOFTWARE FOR WOOD DESIGN June 8, 2009 16:27 Hand Rail2 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location Eft) Magnitude Unit - tern Start End Start End LIVE Live _Full UDL. _ - 50.0 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 1 "'' r - }^ :d t,' if +a -: - ..---- +:a.. -� ., Pon -=.p- t ..a -:�- -y ,,4 = w � � , _ , ' i . , .�)';�' r ^t'` '4`i .,...t'tS:�','�.`t_�' y ^i. ..• -n ,.. 4. : f - 1n ''� � ... "'} i ', „,i4 ,,,-•, - . ^ -- . -4, -.,. 'w:..: -- = °,.L.,'- , `;5q;.. ,.:i:n -. $,..d:...;, r:� -.o. - • -1'- - ..i4 • t w l• ♦. -a. ,t1. - . }, '•',.s ..�.x` .•e 1 . ,, . ?. .w) ..,. Y , h 1 ..L .« , '` n �u - .. ..•r - .s.. •' •- 10 54 . Dead Live 125 • 125 Total 129 129 Bearing: - Load Comb 02 #2 Length 0.50* 0.50* Cb 1.00 1.00. `Min..beaiing length for beams is for exterior supports Lumber - soft; Hem -Fir, No.2, 2x6" Self- weight of 1.7 plf included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : _ Criterion Antalysi.s;Value 'Design Value Anal eis /.Design Shear fv = 19 ' Fv'' = 150 fv /Fv' = 0.13 Bending( +) fb = 256 Fb' = 1048 fb /Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.11 1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fir' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1:00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - = - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 129, V design = 106 lbs Bending( +): LC #2 = L, M = 162 lbs -ft Deflection: LC #2 = L EI = 27e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction Lc= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. . C f ' - \ (4) 1 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks® Sizer 7.1 June 22, 2010 14:13:51 Concept Mode: Reactions at Base of Structure View Roof: 25' 1050 -- .1280'L•- • - -1280 L. • • .. .. • ... ••• - 49'-6" 1u n4' 4 4 2 D. ;... . 442 0 . 40-0 104 - 4r -b 'an 4D -0 100 - - 44-3 t%g. ..! .... .- ... -'- _ . . . .. . _ . .. 43 b u1 , , 12272089 L 1601 .L - 4 I -0 t5 10481539 D 1074 D 4U 43 Std -b .I - .. .., .. .,.. .3(' -0 }�e 37 -b .. . . 0 35 -b 01 b GO ; ' i -- - •0 . .. ..., - • . JL -t3 • b i / 3 I - SU -b 75 L LV -,3 • CJ 59 D .. .. • e� b ' 1232 L - . ,. _ - . .. .... Lb -b tf1 1408 L Lb -b *+u ', '514 D. 1 556D -._ . . 0 L4 -n hi , L3 -I 18 ' 640 L.... t b o b • -409 D 792 1 _- , U -1..) i� a>;n '99DD - -- .... ... 6 - b r -o r s 1522 L r - • rt 99 D - f l 553r b AD ru.. 98, p, .. - .• 4 -b • as '2251 ' ' . , •75 L 3 40 c�. . .73 - ' 9e 15 I - L - b tau ,2192 L ._ u -ti a 1311 D • ._ ,, v 01 b o .. Y!'ti b-b ul • :220 L. - • • b u a L . 5 L" ClCCCCCC . ... •' 4 •0 BBIBBBCdCC • 109 58 Di 3 7 021 L . _ .. = • - n � 24.50; 27. 1 D .5581 D; , . a ' -� C CCCCCCCCClCCCDODDD, DES0 10000DDDDDDDDDCDIDDDE. EEEEEE'EFEEEIEEIEE�E €EEEElEEEEZ �E €EEEElEEEEZ 0' 2' 4' 6' 8' 10'12'14'16'18'20' 22'24'26'28'30'32'34'36'38'40'42'44'46'48' 50'52' 54'56'58'60'62'64'66'68'70'72'74' 76' 0'1'2'3'4'5'6713' 1141 1 ;1 :1.1!1t1 111 212222 MA A ; 404!4 €4:4;41515 5:5 :5.5 :5(5 7.5i5! 6166 ;6:6.6x16 - 6167(7'7,77.7!7177' 6" 3Lt L to FCDOT 1N C.--1, L iot,r -F exxyr Le.Dert) � WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Rear Load WoodWorks® Sizer 7.1 June 22, 2010 14:14:21 . Concept Mode: Reactions at Base of Structure View Floor 3: 17' • • 1050 12801_-' 1280 L: - _ 49' - 6' use 442 D. .. . ,442 D - - , -• of - IUL .. I 4b-,U Wi c - 45 -b � 5296 L_ — 376'L, t i b 'C ' 4328 Co' 1 4101 D • • .. - _ sy -h `! - . . _ S! -b `t /_ - - 'I - '- .. ..10 -0 '! l J7 -c7 U;! ( S.i -0 • of JI -b • a� 75. <y d45 59 , • . . • . . /6 -0 1/ -0 :.IL • — 1 03 6 L - . Lo -o � 277iJ 48'D . w -u a 2 D: Zd-b ; i 9 DI ' 6 40 L LL -o u 208, . - - . - _ `u -u • i o 77 4' '1 . ..I - o i ., din t, . ' DY' • is -0 i � . 1020 L 99 D: u i 1 368;D . ' ....... o -b n u . ' 9 8 D, . • . - s -o ors 2 25, • 75 L L -b of 73 D ' 'A- �' - " 24.11 . • I -o bb �-w ;2186L U b br '' ' 1298 D 7 . ; - u -u U.:-',' ' ij 5�7 / .. / - O • 9.?.-; . 94 L 084 L. _ - . _ • _ ~ n I 94 Li - i 306 L4 D_ ■ I. 062 :L— • z -b 73 D71E2515 D 5 D - -.. :5647 D: ' • • -. .. T I -b BB \BBBCCC-CCCCCICCC CCCCCCCCCCECICC. t; DDDDDDDDl LZDDC /DDDDUDf7DDCf31DDDEEEEEEEE IEEEEEEEIEEEEIEEEET- 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46'48'50'52'54'56' 58' 60' 62' 64' 6 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 1;1:11 111:1 11222;2:221222:21313 3: 3.: 3. 3' 3f3 5 :5:555(5'51553i6 6:616 7;7 :7.70' 7 7' -6" V OM It -, L PtNiOuT RE:Pti/- l oPID • c / Plain Concrete Isolated Square Footing Design: Fl f := 2500-psi Concrete strength f := 60000-psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity ' fconc 150•pef Concrete density Ysoil 100•pcf Soil density gall 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Total dl = 5647-lb PdI:= 7otaldi Totalll := 7062-lb P11 := Totalll Ptl PdI + Pll Ptl = 12709•lb Footing Dimensions t := 12• in Footing thickness Width := 42•in Footing width A := Width Footing Area gnet cl — tf•r'Iconc gnet = 1350-psf Pt' Aregd = 9net A 9.414.11 < A = 12.25-11. 2 GOOD Widthregd 4Aregd Widthregd = 3.07•ft < Width = 3.50 fl GOOD Ultimate Loads PdI + tf „c P := 1.4•Pd1 + 1.7•P11 P„ = 22.48-kips P q„ :_ — q„ = 1.84•ksf A • Beam Shear : 5..5 (4x4 post) d := tf— 2.in 4) := 0.85 b ::= Width b = 42• ii V,:= cli-- 4 -g-TSi-13-d V, = 23,8-kips. 3 (I — bco1 V, :— q - 2 .13 V, = 9.77-kips < V, = 23.8-kips GOOD Two-Way Shear bs := 5•5-in Skirt stdo•c,Olumn width bi, := 5.5-in Long side column width b := 2.(bs + d) + 2.(bL + d) b = 62-in 0, := 1.0 -= (1). — + — 8 - I ( 3 3.43o. V„ = 71.41tipS V„,„ := 1:1)-2.66.4fsi-b-d V =-47.48 kips 2 i h y 444 := q — Om + d) V„ = 1.9.42-kips < V 47:48-kips GOOD Flexure . . M1:= 2 ..6,91)1./±).b L ) 2 ) M = 7, it kips 0.65 13-d 2 S = O F := 5-(1). - f FL= 162.5-psi Mu ft := — s f =127.3613si< F = 162.5-psi GOOD .Jse a 3 x 3'-6" x 12" plain concrete footing V Lk Plain Concrete Isolated Square Footing Design: F2 f := 2500•psi Concrete strength Of • 6000•psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity lleone 150•pcf Concrete density 'Ysoil 100•pcf Soil density g := 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Total := 4101•lb Pdl:= Totaldi Totalll := 5376•lb P11:= Total]] Ptl := Pdl + Pll P11 = 9477•lb Footing Dimensions t f := 10• in Footing thickness Width := 36.in Footing width A:= Width Footing Area gnet gall – tf'1'conc net = 1375•psf Pt' Aregd gnu A g d = 6.892 ft A = 9 ft GOOD rc Widthregd A reg d Widthregd = 2.63•ft < Width = 3.00 ft GOOD Ultimate Loads ,:= Pdl+ tf•Al'conc P := 1 - + 1.7•P1, P = 16.46-kips P chi := — qu = I.83•ksf A Beam Shear e di 5:5• in (4x4 post) d := ti• — 2, in • := 0.85 := Width b= 36 in V ;= 41' - .0/TTO b•d V= ' 3 vu b t 2 :b V, = 6.97,kips < V= 1.6.32-kips GQQD Two-Way Shear bs := 5.• Short sid'e.:colunin width bL := 5.5 in Long side olimn with b 2 + d) + 2•03L + = in := 1.0 (L1 4_ 8 1 f riSi• b•d V = 48.90cips 3 • Vil1ax.. 40.66.F.W-13.d V„ = .3156- kips 2 A U:= [b — + d) V„ = 14.14, kips < = 32:56•kips. GOOD Flexure g b 2 b . N4„- =14.43 ft,kips 2 d t:= 0.65 b•d 41 6 .8 -=0J 3 F 5 .4).. F = psi M 138.42ps1 F 162.5-psi GOOD )Use a 3'-0" x 3'-O" x 10" plain concrete footing I lq01 Plain Concrete Isolated Square Footing Design: F2 f := 2500•psi Concrete strength f := 60000•psi Reinforcing steel strength -29000 :ksi .Steel modulus ofelastidity "f := l5911cf Concrete density 'Ysoil := f0.0' pcf .density %Ill == 1500.1psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl := 2515.1b Pdl Totaldl Totalu := 3606.1b Pll := Totalll P := Pd1 + Pll P = 6121•1b Footing Dimensions t := 10' in Footing thickness Width := 30.in Footing width 4:= Width Footing Area - net := gall — tf''Yaonc net = 1375•psf Pd Amid g aet Aregd = 4.452 ft < A = 6.25 R GOOD Width Aregd Widthregd = 2.11.ft < Width = 2.50 ft GOOD Ultimate _Loads 234,:= p4 t 4 rA" Ycetie P := 1.4•'Pdl + l .7•'Pu 10.74. kips 1 'u qu.:= A q,,,.= 1.72;ksf Beam Shear l'eor:= 5.5'16 (4x4 post) d := tr - 2'..in cl• := 0.85 b :=: Width b = 30.iii V, = 13.6;kipS '3 (1) 2 - b V, := q, V, = 4.39.kips < V, = 13.6-kips GOOD Two-Way Shear b3 := 5.5•itt Short side column Width bL 5.5•in Long side cOlunitt width b, := 2.(bs + d) + 2-(bL + d) b 54.in ( := 1 . 0 4 8 m := df•.[- + • -j- • b.d V, = 40 .44‘ 3 3: 1 1 e v . ;max := 4i.2.66.,NT?si.b.ci V = 273.13.kips 2 / I := q„-.53 - kb„i + d)2] V, = < V„„, = 27.13 GOOD Flexure [(b - bc01 M:= ) 2 u air ty1 A:= 0.65 2 b•c1 4 ` = T- S.= 0:185.ft 3 Et := 5'4)' F = I 62.5, psi. f = 83.98.psi < F = 162.5.psi GOOD . 8 !Use a 2-6" x 2 x 10" plain concrete footing j 400 I `+ '/ on-rE: � acio Jo© No.:C , oc o or l'` 1 \�:�/• � Il �V{ 9.aos V 4,2 .osv.. PROJECT: T '� RE: U N rUf1 V LAJac �q,9syst alq� n X ma ❑ ❑ �° " • w • ❑ - o o w U z a ° - C Ove(i j 1"t ,,(DT = l°1,°l`b 3 a il°tI 4,2o5 Cu.) = PA, I R w (O.,150)(3.5 18 )((,51,9) a,4sCi' Q, - )`61Cc.s >4 \( ZY Cl a�.l 2 Mk?, = (o. t570)(3', )CbX16)(9) }S•sS\ Ci) - a:0 La \Via • z aga,(057 i1ci al I-- • a C A - YYVA x =- C� (-Ca4 -G1- go. I. 45 F 31-05 2c) - 3(3,5)(1$— a(Cbs- N oe O 4:f 7 = Bent ' Harper . Houf Peterson Righellls Inc. Current Date: 6/22/2010.10:48 AM Units "systen5: English File name:.O:1HHPR Projects \CEN - Centex Homes (,309) \CE& - Plans \CEN -090 Summer Creek Townhomes \calcs\Unit B1FDN1Front Load:etzl • M33 =81:13 IKip' M33= - 23 :24 [Kip•ft] Y A 1 g -s Bentley. HarperHouf Peterson Righellis Inc. Current Date: 6/22/2010 10:49 AM Units system: English Filename: 0:1HHPR Projects\CEN - Centex Homes (309)\CEN - Plans \CEN -090 Summer Creek Townhomes\caics \Unit BIFDN\Front Lead 2.etz\ M33 =48.59 pip' ft] • Y M33= -54.65 JIQp'flJ A X• 1� - -A0 ',,- -?....,w -.7..c_,....•t) il Ag ,... Irk n ‘ 4 es ::: NI \ t7 '0 ''''' tf. - q-CO - - c - A4 ' 7 a IA l *ASA).1.01/43A --a.i.i..k •.7-.! r_. V ,- I 5 5' o - .- 1,1-N -..(34. 1-i _st.2;° h 2 - c - :51 xpoo•olk\oti 1? 0 \:) 7- ` N (2 0 7: c:&b c10 Cr7*V ) ' I • D '0 , a .._$, :1:1- 10,.' 1,(a< c - ,E0706cibl)cgtrj'il; ci• 1-7 - Q - 0 - 7 - KpooS)Q9.',2) / • ccooso00(2vUb• \ ) ; = ( ' t - .S \ X:COtArac 19 010T) = 1 0 0 114 0 ,N\ '''W '-,--,c.`07)( 0”,.°)A °I '0) := v 9 D r, z - fl .. o J,4 -1 A# 13g)( .t.f - ''yo ,;') _S 4 Q) 'Ccvi. El n 7: 1 Cl V :: o (7 ). VO VC? = \ MO Z F) 1 h O`9 t.1 - c- --) k 9(l > = \mkivi z O • r,, n m 0 • n Ill - 'QA ' 1 c) 9,t kt■sc) • , • . 3 0 m --4 • m 0 i( r------'*-------1 -i z II El E, • . • suA,k-0:9- \owl .),0,13 ; :133 f08c1 ON oar By DATE: JOB NO. OF PROJECT: RE: � _ WT �3 � = C -Rea( Load ❑ ❑ 1 _9 1.9 54.5VAL H W loo0 2 -too 0 W 0 id o � I a Mor = 54,5 U N1R7 D ,ia( -I- a. C6,3u� f-<;(1(.4) 33 - Lts.3t4 f bL ,LL) �aC�.c�� > c�,b� -�. 0 l DL 1JL _ . \2 V-:( z x = C _ 4 C .34 t G (8 _ q` 3 } e = WY) Ft x qm..y. _ a + (Z _ AAA- + ((12.1 ;: ©1-3. ) , — o. 49. a v.sf (Mt') C «y— s Leo, 2(1` O o N' o +4)) V',3 AP Bentley Harper Houf Peterson Righellis • Inc. Current Date: 6/22/2010 10:57 AM Units system: English File name: O: \HHPR ProjectslCEN - Centex Homes (309)ICEN•- Plans\CEN -090 Summer Creek Townhomeslcalcs \UnitC \FDNIRear Load 2.etz\ M33=36.82[Kip'ftj M33 =-50.22 [Kip'ft] 1 X ACI 318 -05 Appendix D 1.125" Diameter Bar Capacity at Standard Stem Wall Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc = 3000 psi fc = 3000 psi h'ef = 17.00 inches h = 12.00 inches (into the Foundation) Stem = 8.00 inches Note: hef above is the the embedment into only the the foundation and does not consider stem wall embedment Fnd Width = 36.00 inches cmin = 2.25 inches c m;n = 18.00 inches Wc,N= 1.00 cast -in -place anchor WC,N= 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor = 0.75 strength reduction factor = 0.75 strength reduction factor Calculations Calculations ANc = 408 in` AN = 1296 in` AN° = 2601 in AN = 1296 in` Nib = 92,139 pounds Nb = 55,121 pounds Wed,N = 0.7265 Wed,N = 1.00 Nob = 10,500 pounds No = 55,121 pounds (I)N = 7,875 pounds 4N = 41,341 pounds Combined Capacity of Stem Wall and Foundation (pNcb = 49,216 0.754N = 36,912 V. Concrete Side Face Blow Out Givens Ai = 2.75 in` fc = 3000 psi Cmin = 18:00 inches .0.75 strength reduction factor Calculations Nsb= 261,589 pounds 4)Nsb = 196,192 pounds Concrete Pullout Strength Givens App =. 2.75 in` ft = 3000 psi cp = 0.75 strength reduction factor Calculations N = 66,000 pounds ON = 49,500 pounds Steel Yield Strength Givens ft= 58,000 psi A= 0.763 in = 0.80 strength reduction factor Calculations N = 44,254 pounds DNS = 35,403 pounds < 36,912 Ductility Met Holdown Check Holdown: HD19 Holdown Capacity= 16,380 pounds 1.6* Capacity= 26,208 pounds 26,208 < 35,403 Holdown Checks ACI 318 -05 Appendix D 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc = 3000 psi fc = 3000 psi h'et = 3.50 inches h = 12.00 inches (into the Fc Stem = 8:00 inches Note: hef above is the the embedment into or c = 5.25 inches the foundation and does not consider stem wa Fnd Width = 36.00 inches c = 2.25 inches c = 18.00 inches Wc,N= 1.00 cast -in -place anchor Wc,N= 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor 4) = 0.75 strength reduction factor 0= 0.75 strength reduction fact! Calculations Calculations ANC = 68 in` AN = 1296 in` A NO = 110.25 in` ANO = 1296 in` Nb = 8,607 pounds Nb = 55,121 pounds Wed,N 0.8286 Wed,N — 1.00 N = 4,399 pounds Nth = 55,121 pounds 4)NOb = 3,299 pounds 4)NOb = 41,341 pounds Combined Capacity of Stem Wall and Foundation 4,14 = 44,640 0.750N = 33,480 Concrete Side Face Blow Out Givens Abrg = 2.15 in` ft = 3000 psi cmin = 18:00 inches = 0.75 strength reduction factor Calculations N = 231,191 pounds 4N = 173,393 pounds Concrete Pullout Strength Givens Abre.= 2.15 in fc.= 3000 psi 0.75 strength reduction factor Calculations N 51,552 pounds 4 N = 38 „664 pounds Steel Yield Strength Givens ft = 58,000 psi A = 0.606 in + = 0.80 strength reduction factor Calculations N = 35,148 pounds +N = 28,118 pounds < 33,480 DuCtility Met' Holdown Check Holdown: HDU14 Holdown Capacity= 144 ;930 pound 1.6* Capacity= 23,888 pound 23,888 < 28,118 HOldown Checks BY k DATE: ....._ Q_010 Jo.N0 ce Or PROJECT RE' - e r\ WA COOblni El 0 6e5 oP Bui lavr\o)s O E w O 2 IDL asct.Ck.'2. 300 pi_p uic D • 'L.(.2.1eve.k se) ---- 2 Q u S bOr J 0 _I 1'0 N. 650 ?c OLF 5\-ern IC i00 IA z 0 • a_ LL (f3ck.)(.2 (.(40 c;....F _Door 0 ‹ 0 lOcct, - I 4 PL\s . Thch% p \5OOp 0opo ° uJ 0 + Ky - rsoow CU = .04 #?‹. IS I I • d LI O z e fear us \C cjc tk) Id y-Nop Fl 6 DL: gsCo..1.1 p‘p uJoku • ( kOr 4 . 1 101 NJ 650 pa 1 C I la) aw p rY) 150U):) (00Lt.) 681 II ?SP ) • ()6 ?Lc • 1 P LL 0 m: ""6(4- 100 ck.) • .r.2. ,4 a31/4-170 k- toow s 0 i• t (0/ urNi Pt =Same_ as ik ri\ SO( IOQc TL: r6 \-■o0u.) 1,00 1 e ?o,LivwcA.1 (6001)6-7 vicAll (b)(2 X41,2-7)=.416 pc..; Slow" tko■alsoper)( 33 51 Cnr) 1'a)(.150 u..) : u)' LL (2.`)(.4.o)(2):: 12.zo c>uv- sstexg T LA.) =. use