Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Specifications
/3SP cSW' L ) i � a-0 0/ / 00 7 -�- Structural Calculations APR 22 2011 CITY OF TIGARD for BUILDING DIVISION Full Lateral & Gravity Analysis of Plan A 1460 Lot 4, Slimmer Creek Townhomes Tigard, OR Prepared for Pulte Group or f TrE COPY April 7, 2011 JOB NUMBER: CEN -090 ** *Limitations * ** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and /or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 122 sheets total including this cover sheet. P ROT fo 10 R 2,32 LVe( OREGON � � 15, 4' 4 �. ENIC' I EXPIRESs 12 -31 -2011 I This Packet of Calculations is Null and Void if Signature above is not Original Harper HP Houf Peterson Ri.ghellis Inc. E NGiNCO AD . ALANNE 1 E•NDSCAPE AACNI fEt l0.8UNVErOR; 205 SE Spokane St. Suite 200 ® Portland, OR 97202 a [P] 503.221.1131 0 [F] 503.221.1171 1 104 Main St. Suite 100 • Vancouver, WA 98660 a [P] 360.450.1 141 0 [F] 360.750.1 141 1 133 NW Wall St. Suite 201 ® Bend, OR 97701 0 [P] 541.318.1 161 0 [F] 541.318.1 141 Harper Project: SUMMERCREEK TOWNHOMES UNIT A 1 N Flout' Peterson Client: PULTE GROUP raw CEN -090 r R igh:elIis Inc. -- 41;�,,,E�,;.. a��e,;l�k, Designer: AMC Date: Pg. ti I VtIM0 DESIGN CRITERIA 2007 Oregon Structural Specialty Code & ASCE 7 -05 Roof Dead Load RFR := 2.5.psf Framing RPL := 1.5•psf Plywood RRF := 5 •psf Roofing RME := 1.5•psf Mech & Elec RMS := 1 -psf Misc RCG := 2.5•psf Ceiling RIN := 1 •psf Insulation RDL = 15•0f Floor Dead Load FFR := 3•psf Framing FPL := 4•psf Sheathing FME := 1.5•psf Mech & Elec FMS := 1.5•psf Misc FIN := .5•psf Finish & Insulation FCLG:= 2.5•psf Ceiling FDL = 13•psf Wall Dead Load WOOD EX Wall := 12.psf INT Wall := 10•psf Roof Live Load RLL := 25 -psf Floor Live Load ELL := 40• psf Harper' Project: SUMMERCREEKTOWNHOMES UNICA . I!H 1, • Houf Peterson Client: PULTE GROUP Job fi CEN -090 Righellis Inc. f„C „ NfLP , •f „„ nL „ s Designer: AMC Date: Pg. # l nnf:iC aPf .R ..,f [.io•;v:sf�tEa Transverse Seismic Forces Site Class = D Design Catagory = D Building Occupancy Category: 11 Weight of Structure In Transverse Direction Roof Weight Roof Area := 843 • ft RFWT := RDL•Roof Area ' WT = 14162•lb Floor Weight Floor_Area2 := 647•ft FLRWT2nd := EDL•Floor Area2nd FLRWT2nd = 8411• lb Floor_Area3 652•f1 FLRWI := FDL•Floor Area3rd FLRWT3 = 8476.1b Wall Weight EX Wall Area := (2203)•ft 1NT Wall_Area:= (906)•ft WALLWT := EX _Wall Wall Area JNT Wall INT Wall_Area WALLWT = 35496.1b WTTO = 66545 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h := 32 Mean Height Of Roof I := 1 Component Importance Factor (1 1.5, ASCE 7 -05) R:= 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C .02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x := .75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period T := C T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (l) &(2) F := 1.123 Ace -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F, := 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) L2 . • Harper Project: SUMMERCREEK'IOWNHOMES UNIT H F Houl Peterson Client: PULTE GROUP Job # CEN -090 Righellis Enc. t „�,;, _,; , gNS Designer: AMC Date: Pg. N ... O0CA ARCM ,CC f ti•tlUWV 1'Y O •SN1$ := F - Sms = 1.058 (EQU 1 1.4 -1, ASCE 7 -05) 2•SMS • Sds := 3 Sds = 0 (EQU 11.4 -3, ASCE 7 -05) 441 := 1: SM I = 0.584 (EQU. 11.4 -2, ASCE 7 -05) 2' SM I Sd1 := 3 Sd, = 0.389 (EQU' 1 1.4 -4, ASCE 7 -05) Cst':= Sds 1e Cst = 0.108 (.EQU 12.8 -2, ASCE 7 -05) It ...need not exceed... Csmax := Sdt'le Csmax = 0.223 (EQU 12.8 -3, ASCE 7 -05) T K ...and shall not be less then... C1 := .if(0.044•Sd <0.01,0.01,0.044•Sd 0.s.s1.r ( (EQU l2.8 -5 &6 ASCE 7 -05) C2:= if S1 <0.6,0.01, J `` R Csmin := if(C1 > C2,CI ,c2) Csniin = 0.031 CS := if(Cst <.Cs, ,Csmii„if(Cst <Cs Cs = 0.108 ,,,,Y,,:- Cs, WTtO V = 72201b (EQU 12.8 -1, ASCE 7 -05) E := V•0.7 E = 5054 lb, (Allowable Stress) , Harper Project: SUMMERCREEK TOWNHOMES UNIT A LH I. Hoti f Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. GN6INEE116 • ?1..axNERS Designer: AMC Date: Pg. it LANDSCAPE ,,LACN.T C Transverse Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 100 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I := 1.00 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X := 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... a2 := 2- .1.20•ft Zone A & B Horizontal Length (Fig 6 -2 note 10, ASCE 7 - 05) a2 =4ft 4h„.2ft or a2= 2.5.6ft but not less than... a 3.2- It a = 6 ft Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA = 19.9.psf Pnet := 3.2-psf Pnetzonec := 14.4-psf PnetwncD 3.3.psf Vertical Pnet, := —8.8 -psf PnettoneF := —12-psf PnetzoneG —6.4 -psf PnetzoneH :_ — 9.71psf Basic Wind Force PA := PnetZOneA'IW X PA = 19.9.psf Wall 1 Pit := PnetzoneB'Iw a P = 3.21psf Roof L-HWC PC := PnettoneC'IwiX PC= 14.4• psf Wall Typical Pig := PnetzoneD'Iwa Pj) =3.3 -psf Roof Typical PE := PnetJOncE' Iw X [? = —8.8 • ps f PF := PnetzoneF'I .X P;- _ — 12•psi • PG := PnetzoneG-lw-X P(;;,= — 6.4.psf PH := Pnetzonei-I'IH X = — 917•psf ' , Harper Project: SUMMERCREEK TO.WNI - HOMES UNIT A Bout' Peterson Client: PULTE GROUP _ Job # CEN -090 Righellis Inc. "E - itleene ; diaan•ic7s - Designer: AMC Date :. Pg. it lnry0D0ArC wN0n1 unvCY6R9 Determine Wind Sail In Transverse Direction WSAILZoneA (41 + 59 + 29) 41 WSAILZoneB (19 + 0 + 23)•ft WSJ -ZoneC (391 + 307 + 272) >ft WSAII.,ZoneD (0 + 0 + 5) -ft W := WSAILZoneA"PA WA = 2567 lb WB:= WSAILZoneB WB = 134 lb WC WSAILZoneC'PC WC = 13968 lb Wll := WSAILZoncD WD = 1616 Wind_Force := WA + WB + WC + WD Wind_Force 10- psf•(WSAILZ + WSAILZoneB + WSAILZonec + WSAILZoneD) Wind Force = 16686 lb Wind Force = 11460 lb WSAILZoneE 94•ft2 WSAILZoneF = 108 -ft WSAIII-ZoneG 320 -ft2 WSAILZoneBi := 320 -ft2 WE := WSAILZmteF'PE WE = -827 lb WF := WSAIL7 oic p•Pp W1 = - 1296 lb WC, := WSAILZoneG WG = -2048 lb WH := WSAILZ „nell'PH WH = -3104 lb Upliftnet = WP + W1-1 + (WE + W0) + RDL•rWSAILZoneF + WSAILZoneH + (WSAILZ„neE + WSAILZoreG)1•. Upliftnet = 1212 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SIIEARWALL IIOLDDOWN CALCULATION Harper Project: SUMMERCREEK UNIT A 11:11 Houf Peterson Client: PULTE GROUP Job # CEN-090 Righellis Inc. ENGINEERS • PI,NNERS Designer: AMC Date: Pg. # !:S f.TV'E 4)i:; HIiE:. i I!PIEi ORS Longitudinal Seismic Forces Site Class = D Design Catagory = D Building Occupancy Category: 1I Weight of Structure In Longitudinal Direction Roof Weight Roof Area = 944 ft R a RDL•Roof Area REwT = 14162.lb Floor Weight Floor_Area2 = 647 ft 2 F RK n d A := FDL•Floor_Area2 FLRWT2nd = 8411•1b Floor_Area3 = 652 ft 2 r C1arj,k:= FDL•Floor Area3rd FLRWi3rd = 8476-lb Wall Weight EX Wall Area := (2203).ft INT Wall Area = 906 ft A W A AW. gy EX_Wall + INI_Wall WAL.Lw• = 35496-lb WT•I•oT,L = 66545 lb Equivalent Lateral Force Procedure(12,8,. ASCE 7 -05) h = 32 Mean Height Of Roof l = 1 Component Importance Factor (11.5, ASCE 7 -05) R := 6.5 Responce Modification Factor (Table 12.2 -I, ASCE 7 -05) C = 0.02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x = 0.75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period ti C T = 0.27 < 0.5 (EQU 12.8 7, ASCE 7-05) St = 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S, = 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (I) &(2) F = 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -I, ASCE 7 -05) F„ = 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4-2, ASCE 7 -05) IJO r:R Harper Project:. SUM MI RCREEKTOWNI•IOMES UNITA I'IoUf Rcl'ei'SUn Client: PULTE GROUP Job # CEN -090 • Righel.lis- lnc t. RCtr:NLnS.'P LflE Designer: AMC Date: Pg. # ( a,,n.SC'anr; AR I EC1 SUNVfi(Ottti ' , := ra'Ss SMS = 1.058 (EQU 11.4 -1, ASCE 7 -05) SMs ACW: Sds = 0.705 (EQU 11.4 - 3, ASCE 7 - 05) Fv S I SMI = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2 •SMI = Sd1 = 0.389 (EQU 11.4 -4, ASCE 7 -05) NCA:= Sds•Ie Cst = 0.108 (EQU 12.8 -2, ASCE 7.05) R ...need not exceed... �:= Sd1 le Cs max = 0.223 (EQU 12.8 -3, ASCE 7 -05) T ...and shall not be less then... ,:= if 0.044• Sd < 0.01,0.01 , 0.044' Sd •l r 0.5• S1.1e J (EQU 12.8 -5 &6, ASCE 7 -05) �"' ` ifl Sl <0.6,0.01, R s := if(Ci > C2,C1,C2) Csmin = 0.031 ,:= if (Cst < Cs < Cs Cs = 0.108 .Cs • - WT•i'OTAL V = 72201b (EQU 12.84, ASCE 7 - 05) E := V•0.7 E = 50541b (Allowable Stress) Harper Project: SUMMERCREEK TOWNHOM UNIT A 10: Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. - „i„T« tE :: n „„ Designer: AMC Date: Pg. ii t- •ur =c..rz •KC Nrreeis•°V4:Cr°RL Longitudinal Wind Forces (Method l - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 110 mph (3 Sec Gust) Exposure: B Building Occupancy Category: I1 1 = 1.0 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X = 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) 2..1.20.ft Zone A & B Horizontal Length Smaller of... (Fig 6 -2 note 10, ASCE 7 -05) ^ a2 = 4 ft or a2�= .4hn2ft a2 =25.6ft but not less than... ate:= 3.2•ft a2, „ =6ft Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA = I9.9•psf PnetZOneB = 3.2 -psf PnetzoneC = 14.4•psf PnettneD = 3.3•psf Vertical PnetzoneF = — 8 -8•psf Pnetzonei = — 12•psf PnetzoneG = — 6.4•psf PnctioneH 9.7•psf Basic Wind Force P PnctzoneA•lw PA = 19.9•psf Wall HWC := PnetzoneB'Iwa Pg = 3.2•psf Roof HWC Pte:= PnetzoneC'Iw'X Pc= 14.4•psf Wall Typical := PnetzoneD'lwa PD = 3.3•psf Roof Typical P te : = PnetzoncE' l %, X PE = —8.8• psf := Pnet-zoneF'Iw'X Pp = — 12•psf ,1 PnetzoneG'Iw•X PG = —6.4.psf 1u:= PnetzoneH'lw'X Pll = — 9 -7•psf l�� Harper Project: StJMMERCREEK TOWNHOM.ES UNIT A 3hTi''I Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis [iic. E.wi1N EE N'S e CANN EHS — - Designer: AMC Date: Pg. # lArlastw[ ).RC..,,G4 0 •OVf1 VCy ORO Determine Wind Sail In Longitudinal Direction A1L:= (48 + 59 + 40) -ft SN� := (10 + 0 + 44) -ft W S (91 + 137 + 67) •ft WS�:= (43 + 0 + 113).11 W4 WSAILZoncA•PA WA = 2925 lb = WSJ- Z_oneB•PB WB = 173 lb Wes:= WSAILZoneC'Pc WC = 4248 lb NWT : = WSAILZoneD'PD WD = 515 lb Force := WA + W8 + Wc + WD Wind Forc= 10•psf•(WSAILZ + WSA1LZoncB + WSAILZoneC + WSA Wind Force = 7861 lb Wind_Force = 6520 lb WSA 148•ft �I>v:= 120 -ft2 MALL7 323 • ft WSAvwMN�:= 252 -ft2 := WSAJLZoneE'PE WE =- 13021b W := WSAILZonep•PE WF = —1440 lb Vv WSAILZoneG -PG WG = —2067 lb Wes:= WSA = — 2444 lb 0 := Wp + Wi -1 + (W8 + WG) + RDL•[WSAILZonCF + WSAILZoneH + (WSAILZoncE + WSAILZoneG)]-.6 -1.12 Uplift = 1243 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION L°I ' Harper Houf Peterson Righellis Pg #: Transverse Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf 7 = 1.00 Iw= 1.00 Wind Sail (ft :) Wind Net Design Wind Pressure f) ( ps Pressure (lbs) Zone A = 19.9 129 2567 Wall High Wind Zone Horizontal Zone B = 3.2 42 134 Roof High Wind Zone Wind Forces Zone C = 14.4 970 13968 Wall Typ Zone Zone D = 3.3 5 17 Roof Typ Zone Zone E = -8.8 94 -827 Roof Windward High Wind Zone Vertical Zone F = -12.0 108 -1296 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 320 -2048 Roof Windward Typ Wind Zone Zone H = -9.7 320 -3104 Roof Leeward Typ Wind Zone Total Wind Force =l 16686 lbs I Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -7275 lbs Resisting Dead Load= 8472.Ibs E =I 1197 •Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Dia hragm (ft - Zone A Zone B Zone C Zone D t - a _ , Main Floor 41 19 391 0 Upper Floor 59 0 307 0 Main Floor Diaphragm Shear = 6.507 lbs Upper Floor Diaphragm Shear = 5595 lbs Roof DiaphragmShear = 4584 lbs Wind Distribution To Shearwall Lines _ MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Diaphragm (Ibs) Diaphragm (lbs) Width O Width (ftL _ Width (ft) , A 13.08 1737 18 2797 19 2323 Al 24.50 3254 0 0 0 0 B 11.42 1516 18 2797 18.5 2261 E= 49 6507 36 5595 37.5 4584 L10 Harper Houf Peterson Righellis Pg #: Transverse Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D S1 = 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11,5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 Period (T.) = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 S 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 Sps= 0.71 Equ. 11.4 -3, ASCE 7 -05 Spt= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (lb)= 8411 Floor 3 Wt (lb)= 8476 Roof Wt (lb) = 14162 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22609 Trib. Floor 3 Diaphragm Wt (Ib) = 22674 Trib. Roof Diaphragm Wt (Ib) = 21261 Vertical Dist of Seismic Forces Cumulative % total of base shear Rho Check t� Shearwalls (Ibs) to shearwalls Req'd2 Vfl (Ib) = 720 100.0% Yes Vnoor3 (Ib) = 1625 85.8% Yes Vroof (lb) = 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq . ft lbs Ibis lbs A 102 361 394 114 897 1266 Al 432 0 0 481 0 0 B 113 293 449 126 728 1443 Sum 647 654 843 720 1625 2709 Total Base Shear* = I 5054 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. 1.1 Harper Houf Peterson Righellis Pg #: Longitudinal Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X = 1.00 lw= 1.00 Wind Sail (ft2) Wind Net Design Wind Pressure (psf) Pressure (lbs) Zone A = 19.9 147 2925 Wall High Wind Zone Horizontal Zone B = 3.2 54 173 Roof High Wind Zone Wind Forces Zone C = 14.4 295 4248 Wall Typ Zone Zone D = 3.3 156 515 Roof Typ Zone Zone E = -8.8 148 -1302 Roof Windward High Wind Zone Vertical Zone F = -12.0 120 -1440 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 323 -2067 Roof Windward Typ Wind Zone Zone H = -9.7 252 -2444 Roof Leeward Typ Wind Zone Total Wind Force - 7861 lbs l Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -7254 lbs Resisting Dead Load= 8483 lbs E =l '1229 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Dia hragm (ft Zone A Zone B Zone C Zone D Main Floor 48 10 91 43 _ ,Upper Floor , 59 0 137 0 _ Main Floor Diaphragm Shear = 2440 lbs Upper Floor Diaphragm Shear = 3147 lbs Roof Diaphragm Shear= 2275 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm (lbs) Diaphragm (lbs) Diaphragm (lbs) Width (ft ` Width.(ftl Width (ft) - --n 1 10 1220 X 10 1573 10 1137 2 10 1220 10 1573 10 1137 L= 20 2440 20 3147 20 2275 L. C2, Harper Houf Peterson Righellis Pg #: Longitudinal Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D S1 = 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other • Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 SMs 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 Sps= 0.71 Equ. 11.4 -3, ASCE 7 -05 S 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7-05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (lb)= 8411 Floor 3 Wt (lb)= 8476 Roof Wt (lb) = 14162 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (lb) = 22609 Trib. Floor 3 Diaphragm Wt (Ib) = 22674 Trib. Roof Diaphragm Wt (lb) = 21261 Vertical Dist of Seismic Forces I Cumulative % total of base shear Rho Check to Shearwalls (Ibs) to shearwalls ( Req'd7 VWoor 2 (lb) = 720 100.0% Yes Vfloor3 (Ib) = 1625 85.8% Yes Vrcot (lb) = 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft lbs lbs lbs 1 286 291 415 318 725 1334 2 361 361 428 402 900 1375 Sum 647 652 843 720 1625 2709 Total Base Shear* = I 5054 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. L\' Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCB 7 -05 Transvere Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load .. Line Load Line Load Dead V Panel Shear Panel Mn Mgt Uplift Panel I,gth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (i]) (fl) ht k ht , k ht I k (kif) (plf) (ft -k) (fl -k) (k) 101 ' Not Used 102 7 1.75 3.50 4.00 ' 8.00 1.74 18.00 2.80 27.00 2.32 ' 1959 Double 1.40. NG 103 7 1.75 3.50 4.00, oci 8.00 1.74 8.00, 2.80 8.00 2.32 1959 Double 1.40 NG 103a 7 4.00 _ 4.00 1.75 ox 8.00. 3.25 814 Single 1.40 IV 104 8 4.50 10.50 1.78 OK 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 105 8 , 3.00 .10.50 2.67 OK 8.00 . 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 106 8 3.00 10.50 2.67 OK 8.00 1'.52 8.00 2.80 8.00 2.26 626 Single 1.40 111 109 ' 8 4.58 17.08 1.75 ox 8.00 1.74 18.00 2.80 27.00 2.32 401 Single . 1.40 II _ 110 8 _ 12.50 17.08 0.64 on 8.00 1.74 8.00 2.80 8.00 2.32 401 ' Single 1.40 II III 8 ' 4.50 7.25 1.78 OK 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 112 4.75 ' 1.38 7.25 3.45 OK 8.00 L52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 13; 4.75 1:38' 7:25 3:45 on 8.00 1.52 8.00 2.80 8.00 2.26 ' 90.7 Double , 1.40. VI 201 '9'. . 3:92 10.79 2.30 OK 9.00,' 2:80 18.00 - 2.32. 474' Single , 1.40 if 201a 9 4.17 10.79 2.16 ox 9.00 2.80 18,00 2:32 474 Single 1.40 II 201b,_ . 9 ' 2.71 10.79 3.32 ox 9.00 2.80 .18.00 ' 2.32 . 474 Single 1.40 Il , 202A 9 2.96 11.96 3.04 ox 9.00 2.80 18.00 2.26 423 Single 1.40 II . 202B 9 3.00 11.96 .3.00 ox ' 9.00 2,80 "18.00 ' 2.26 423 Single 1.40 11, 203 9 3.00 11.96 3.00, ox 9.00 2.80 18.00 2.26 423 . Single 1.40 i 11 204 9 3.00 11.96 :3.00 OK 9.00 , 2.80 18.00 2.26 423 Single 1.40 ' [I 301 8 3.92 13.96 2.04' OK 8.00 2.32 166. Single 1.40 I 302 8 5.79 13.96 1.38 . OK ' 8.00 _ 2.32 166 Single 1.40 I 303 8 4.25 ' 13.96 1.88 ox 8.00 2.32 166 Single 1.40 1 304 8 2.96 5.96 2.70 ox .8.00 2.26 . 379 Single 1.40 11 305 It 3:00 5.96 2.67 OK 8.00 2.26 379 Single 1.40 7f , Spreadsheet Column Definitions & Formulas I.= Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line JUL Ratio = flight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht . Mr (Resisting Moment) = Dead Load • L' * 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) L...■"4 Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 frnnsvere Shea malls, Line Load Controlled By:: Seismic 'Shear I I L Wall I I/I, Line Load Line Load Line Load Dead V Rho *V % Story P Panel Shear Panel M M Uplift Panel Lgth. From,2nd Flr. From 3rd Flr. . From Roof Load Strength Bays Sides Factor Type T (II) (0) (ft) ht I k ht 1 k ht I k (klf) (plf) (plf) (fl -k) (ft -k) (k) 10 1 Not Used _ 102 7 , 1.75' ' 3.50 4.00 ' ' 8.00 0,11. 18.00, 0:90 27.00 1.27 651 846 0.10 0.50 Double 0.50 NG 103 7 . 1.75 .3.50 4.00_ , 8.00 0.11 8.00 0.90 8.00 127 651 846 0.10 0:50 Double ' 0.50 - NG . 103a 7. 4.00 4.00 1.75 on 8.00 0.48 0.00 .0.00 120 156 012 1.14 Sinele .1,00 1 _ , 104 8 4.50 _10.50' 1.78 on 8.00 ; 0.13 8.00 0.73 8.00 1,44 219 284 0.25 1,13 • Single 1.00 II 105 8 3.00 10.50 2.67 OK 8.00 i 0.13 ' 8. 0 .73 8.00 1.44 219 284 ' 0.17 0:75 Single 0.75 III 106 8 3.00" 10.50 '2:67 on 8.00 , 0:13 , 8.00 , 0:73'' 8.00 1.44 219 284 0.17 0.75 'Sinote 0.75 III _ 109 , 8 4.58 , 17.08 1.75 on 8.00 0.11 18.00 0.90 27.00 1.27 134 174 0.25 1,15 Single 1.00 1 110 8 12.50 17.08 .0.64 OK 8.00 . 0.11 8.00 0.90 8,00 1.27 134 . 174 NA 3.13 , Single 1.00 1 III 8 4.50 7.25. 1.78. on 8.00 0.13 8.00 0.73 . _ 8,00_ 1.44 316 , 411 0.25 1.13 Single 1.00 HI 112 5 138 7.25 3:45 oK 8:00 0.13 8.00 003 ' 8.00 1.44 316 411 0.08 0.58 Double 058 VII . . 113 5 1.38 7.25 3.45 on 8,00 0.13' 8.00 0.73 ' 8,00 1.44 316 411 0.08 0:58 Double ' 058 VII ' 201 ,. 9 I 3.92_ 10:79 2.30 on 9.00 0.90 '18.00. '1.27 200 261 0.17 0.87 Single 0.87 11 201a, 9 4.17, 10.79. 2.16. on 9.00 090' 18.00 _ I.27 200 261 0.18 0.93 Single _0.93 II. 201b 9 2.71 10.79 332 , on 9.00 0.90 18.00 ' 1.27 _ 200 261 0.12 0.60 Sinele 0.60 111 • 202A 9 2.96 11.96 3.04 OK 9.00 r 0.73 18.00 1.44 182 236 0.13 0.66 Single 0.66 III . 20219 9 3.00 11.96 3.00 nut ' 9.00 0.73 18.00 1.44 182 236 0.13 0.67 Single 0.67 III ' 203 9 3.00 11.96 3.00 oK 9:00 0 -73 18.00 1.44 181 236 0.13 0.67 Single 0.67 III 204 9 3.00 , 11.96 3.00' the _ ' 9.00 0.73 ' 18.00 1.44 181 236 ' 0.f 3 0.67 Single Th.67 III 301 8 .3 :92- 13.96 2.04 on . 8.00 1.27 91 118 0.20 0.98 Single 0.98 ' . 302 8 5.79 , 13.96 1.38 on . 8.00 1.27 91. 118. 0.29 1.45 . Single 1.00 I 303 8 4.25 13.96 1.88 on ' -.8.00 1.27. . 91 . 118 0.21_ 1.06 Single 1.00 , I - _ _ 304 8' .2.96, 5.96 2.70, on 8.00 1.44 242 315 0.15 0.74 Single 0.74 III_ 305 R 3.00 ' 5 :96 2.67 out 8.00 1.44 '242 315 0.15 035 Single 0.75 Hf _ Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total transverse base shear? Yes Dots the 2nd flour shearwalls t esist mor than 35% of the total transverse base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total transverse base shear? Yes Total 1st Floor Wall Length= moo Total # 1st Floor Bays = (.77 Arc 2 bays minimum present along each wall line? No 1st Floor Rho = u Total 2nd Floor Wall Length = 22.75 Total # 2nd Floor I3ays = s Are 2 bays minimum present along each wall line? No 2nd Floor Rho = 1,5 Total 3rd Floor Wall Length - man Total # 3rd Floor Bays = 5 Are 2 bays minimum present along each wall line? No 3rd Floor Rho = !,a Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Litre H/L Ratio = Ilight to Width Ratio Check V (Panel Shear) =Sum of Line I.nad *Rho / Total L % Story Strength - L / Total Story I. (Required for walls with 1 ? 1.0, for use in Rho check) 6 Bays = 2 *L/I1 Shear Factor = Adjustment For 1 -hFL> 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L` a 0.5 0 (.6 wind or .9 seismic) Uplift 1' _ (Mo -Mr) / (L - 6 in) \, Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCI 7 -05 I.ongidulinal Shearwalls - Line Load Controlled By: Wind Shear FI L Wall f1lL Line Load Line Load Line load Dead V Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr.. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (kit) (pli) (ft -k) (ft -k) (k) 107 8 15.50 15.50 0.52 otc 10.00 1.22 18.00 1.57 ' 27.00 L 14 1.03 254 Single 1.40 I 71.21 123.49 -0.19 108 .8 15.50 15.50 0.52 OK 10.00 1.22 18.0.0 1 :57 27.00 1.14 1.03 254 ,Single 1.40 I _71.21 _ 123.49 -0.19 I 205 9 13.00 13.00 '0.69 OK 9.00 1.57 18.00 1.14 0.70• 208 Single 1.40 , I .34.62 59.15 -0.07 206 9, '._13:00 13.00 0 :69' OK „ - 9.00 . 1.57 18.00 1.1.4. 0.70 208 Single 1.40 1 34.62 59.1.5 -0.07 I 306 8 10:00 10.00 0.80 oK ' • '8.00 1.14 0.29 114 Single 1.40 I 9.10 14.40 0.05' I 307 8 10.00 10.00 0.80 OK 8.00 , 1.14 0.29 114 Single 1.40 I 9.10 14.40 0.05 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line JUL Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of 1.ine Load / Total 1.. Shear Factor = Adjustment For H /L> 2:1 Mu (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • • Ut° Harper Houf Peterson Righellis Pg It: Shearwall Analysis Based on the ASCE 7 -05 L0ngituilinaISheorwulls line Load Conlrelied By: 'Seismic. • - Shear Fl - - - I. Wall 11/11, Line Load Line Load Line Load Dead V Rhu % Story II Panel Shear Panel M Ma Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (B) ht k ht k ht k (klf) (plf) (plf) _ (fl-k) (ft -k) (k) 107 8 15.50 15:50 0.52. otr 10.00 0.32 18.00' 0.73 27,00 1.33 1.09 153 153 NA 3.88 Single " "I.0(Y ' 'I 52.25 130.70 -1,74 ' 108 8 15.50 1530 0.52 Ox 10.00,_ 0.40 18.00 . 0.90 27.00 1.38 1.09 173 173 NA 3.88 _ Single - 1:00 1 " 57.35 130.70 -1.40 I 205 9 13.00' 13.00. 0.69 ox 9.00 0.73 18.00 1.33 . 0.76 158 ISO NA- 2.89 Sinele 1.00 I 30.54 64.22 -0.64 206 9 13.00 13:00 0.69 ox ' •9.00' 0.90 18.00 1.38 0.76 175 175 I NA 2.89 .. 'Single 1 f.Ol) 1 32:85 64:22 ' 445 l 306 8 1 10.00" 10.00" 0.80 ox 8.00 1.33 0.35 133 133 NA 2.50 Single ' 1.00 1 1 0:67 17.40' 0.02 307 8 10.001 ]0.00:1 0.80 ox 1 8'.00 1.38 0.35 138 13B NA 2.50 Single 1 'LOO - 1 ' 11.00 17.40' 0.06 Rho Calculation Does the 1st Floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Total 1st Floor Wall Length= 31.00 Total 1st Floor Bays= 7.75 Are 2 bays minimum present along each wall line? Yes 1st Floor Rho = t.o Total 2nd Floor Wall Length = 26.00 Total /1 2nd Floor Bays = 6 Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho = o Total 3rd Floor Wall Length= 20.00 Total fl 3rd Floor Bays = s Arc 2 bays minimum present along each wall line? Yes 3rd Floor Rho = t.o Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Flight to Width Ratio Check V (Panel Shear) = Sum of Line Load *Rho / Total L Slury Strength = L / Total Story L (Required for walls with FUL > 1.0, for use in Rho check) k Bays = 2*L/F1 Shear Factor = Adjustment For I -IlL> 2:1 Mo (Overturning Moment) = Wall Shear 0 Shear Application ht Mr (Resisting Moment) = Dead Load * L 6 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo - Mr) / (L - 6 in) • Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Transvere Shearwalls Panel! Wall Shear ,' Wall Type Good. Fo ; �� Uplift E � Simpson Aofdown Good For (lb) (lb) 101 Not Used 102 Simpson Strongwall 103 Simpson Strongwall 103a 814 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 833 . 104 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 105 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 106 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 , 638 109 401 1/2" APA Rated Plyw'd w/ 8d Nails n, 4/12 495 110 401 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 1 I I 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails u, 4/12 990 112 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 990 113 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 990 1 , 201 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 201a 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 201b 474 1/2" .APA Rated Plyw'd w/ 8d Nails @ 3/12 _ , 495 _ 202A 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 202E 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 203 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 204 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 301 166 1/2" APA Rated I'lyw'd w/ 8d Nails @ 6/12 339 302 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 303 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 304 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 305 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Longitudinal Shearwalls 'Panel' , Wall? Shear,.; Wall Type Good'For Uplift Simpson.Holdown Good`For` V (p11) (PM ' '(lb) (14). 107 254 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -192 Simpson None 0 108 254 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -192 Simpson None 0 205 208_ 1/2" APA Rated Plyw`d w/ 8.0 Nails @ 6 339 -69 • Simpson None : 0 . 206 208 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -69 Simpson None 0 1 306 133 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 48 Simpson None 0 307 _138 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 59 Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. \C\ Transverse Wind Uplift Design . Unit A Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Well Wall Uplift ' Uplift Total Total Panel Height Lgth. From 2nd Front 3rd From Wall Load (not Point Point ping Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) • (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 102 8 1.1667 1.75 3,50 1.737 2.8 2.32 6.857 1959 0.152 0.192 0.832 27.43 0.57 1.69 21.31 20.79 21.31. 20.79 103 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.832 0.192 27.43 1.69 0.57 20.79 21.31 20.79 21.31 103A 8 1.1667 4.00 4.00 3.254 3.254 814 0,04 2.016 1.664 26.03 8.38 6.98 6.00 6.24 6.00 6.24 104 8 1.1667 4.50 10.50 1.516 2.8 2.26 6.576 626 0.1 _ 0.8 0.078 25.08 4.61 1.36 5.58 6.06 5.58 6.06 105 8 1.1667 3.00 10.50 1 516 2.8 2.26 6,576 626 0,048 0.252 0.156 16.72 0.97 0.68 6.45 6.52 6.45 6.52 106 8 1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 - 0.048 0.156 0.252 16.72 0.68 0.97 6.52 6.45 6.52J 6.45 109 8 1.1667 4.58 17.08, 1.737. 2.8 2.32 6.857 401 0.152 0,192 0.156 16.31 2.47 2.31 3.63 3.66 201L 201R 4.82 5.09 8.45 8.75 _ 110 8 . 1.1667 12.50 _ 17.08 1.737 2.8 2.32 6.857 401 0.096 0.156 0.192 44.52 9.45 9.90 3.24 3 21 201 aL 201 bR 4 4 8.18 8.09 111 8 1.1667 4.50 7.50 1.516 2.8 2.26 6.576 877 D.1 0,8 0.078 35.11 5.06 1.81 8.02 8.51 8.02 8.51 112 8 1.1667 1.50 7.50 1.516 2.8 2.26 5,576 877 0.048 0.252 0.234 11.70 0.43 0.41 1 1.44 11.46 11.44 11.46 113 8 1.1667 1.50 7.50 1.516 2.8 2.26 6.576 877 0.048. '0.234 ., 0.252 11.70 0.41 0.43 11.46 11.44 11.46 11.44 201 9 1.1667 3.92 10.8 2.8 2.32 5.12 , 474 0.225 0.432 _0.156 17.71 ' 3.42 2.34 3.99 4.16 ' 301L 301R 0.83 0.93 4.82 5.09 201a 9 1.1667 4.17 10.8 2.8 2.32 5.12 474 0.225 0.156 0.156 18.84 2.61 2.61 4.14 4.14 302L 302R 0.80 0.80 4.95 4.95 201b 9 1.1667 2.71 10.8 2.8 2.32 5.12 474 0.225 0.156 0.432 12.24 1.25, 2.00 4.24 4.08 303L ' 303R 0:91 0.80 5.15 4.88 202A 9 1.1667 2.96 11.958333 2.8 2.26 5.06 423 0.173 0.432 0.052 11.92 2.04 0.91 3.62 3.84 304L 304R 2.60 ' 2.75 6.21 6.59 202B 9 1.1667 3 11.958333 2.8 _ 2.26 5.06 423 0.173 0,052 0.216 12.09 0.93 1.43 3.84 3.74 305L 305R 2.74 2.16 6.58 5,91 203 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.309 0.216 0.312 12.09 2.04 2.33 3.62 3 3.62 3.56 204 9 1.1667 3 1.1:953333 2 2.26 5:06 423 0:225, 0.312 0.432 12.09 1.95 2.31 3..63 3, 3.64 3.57 301 8 • 3.92 l3.96 2.32 2.32 166 0232: 0.384 0.204, 5.21 3.29 2.58 0183 0.93 0.83 0.93 302 8 ' 5.79 13.96 2.32 , 2.32 166 _ 0.232 0.204 0.204 7.70, 5.07 5.07 0.80 0.80 0.80 0.80 303 _ 8 4.25 _13.96 2.32 2.32 166 0.232 0.204 0.384 5.65 . 2.96 3.73 0.91 0.80 0.91 0.80 304 8 , 2.96 5.96 2.26 2.26 379 0.232 0.384 0.136 8.98 2.15 1.42 2.60 2.75 2.60 2.75 305 8 3 5.96 2.26 2.26 379 0.232 0.13E 1.104 9.10 1.45 4.36 2.74 _ 2.16 I 2.74 2.16 • Spreadsheet Column Definitions & Formulas [� L = Shear Panel Length 11 = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T= (Mo -Mr) / (L - 6 in) Transverse Seismic Uplift Design . Unit A Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lath. From 2nd From 3rd From Wall Load (not Point Point ping Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. FIr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) . (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 102 8 1.1667 1.75 3.50 0.114 0.9 1.27 2.284 653 0.152 0.192 0.832 10.40 0.57 1.69 7.91 7.11 0 0 7.91 7.11 103 8 1.1667 1.75 3.50 0.114 0.9 1.27 2.284 653 0.152 0,832 0.192 10 40 1.69 0.57 7.11 7.91 I 0 0 7.11 7.91 103A 8 1.1667 4.00 4.00 0.481 0.481 120 0.04 2,016 1.664 3.85 8.38 6.98 -1.06 -0.69 0 0 -1.06. -0.69 104 8 1.1667 4.50: 10.50 0.126 0.73 1.44 2.296 219 0.1 0.8 0.078 8,96 4.61 1.36 1.20 _ 1.93 • 0 0 _ 1.20 1.93 105 8 1.1667 3.00 10.50 0.126 0.73 . 1.44 2.296 ' 219 0.048 0.252 0.156 5.97 0.97 0.68 2.04 2.14 0 0 2.04 2.14 106 8 1.1667 . 3.00 10.50 0.126 0.73 1.44 , 2.296 219. 0.048 0.156 0.252 5:97 0.68 ' 0.97' 2.14 2.04 0 0 2.14 2.04 109 8 1.1667 4.58 17.08, 0.114 0.9 1.27 2.284 134 0.152 0.192 . 0.156 5.58 2.47 2.31. 0.82 0.86 201 L 201R 1.13 1.54 1.95 2.40 110 8 1.1667 12.50 17:08 0.114, 0.9 1.27 2.284. 134 0.096 0:156 0.192 15.23 9.45 9.90, 0.56 0.53 201aL 201bR 1.32 1.32 1.88 1.85 11`1 8 1.1667 4.50 7.50 0.126 0.73 1.44 2:296 306 0.144 0.8 0.073 12.54 5.06 1.81 2.00 2.73 0 0 2.00 2.73 112 8 1.1667 1.50 7.50 0.126 0.73 1.44 2,296 306 0.048 0.252 0.234 4.18 0.43 0.41 3.79 3.82 . 0 0 3.79 3.82 113 8 1.1667 1.50 7.50 0.126 0.73, 1.44 2.296 306 0.048 0,234 0.252 4.18 0.41. _ 0.43 3.82 3.79 0 0 3.82 3.79 201 9 1.1667 3.92 10.80; . 0.9 1.27 2.17 201 ., 0.225 . 0.432 0.156 7.63 3.42 2.34 1.16 • 1.41 3C 1 L 30 _ -0.03 ' 0.13 1.13 1.54 201a 9 1.1667 ' 4,17 10.80 - 0,9 1.27 2.17 _ 201 0.225 0.156 0.156 8.11 2.61 2.61' 1 38 1.38 302L . 302R -0.06 -0.06 1.32 1.32 2016 9 1..1667 2.71 10_.80 0.9 1.27 2.17 201. 0.225. 0.156 0A32 5.27 1.25 _2.00 1.53 1.28 303L 303R 0.10 -0.06 1.63 1.22 202A 9 1.1667 2.96 11.96 0.73 1.44 2.17 181 0.173 0.432 0.052 5.25 2.04 0.91 1.15 1.50 304L 304R 1.28 1,50 2.43 3.00 202B. 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.173 0.052 0.216 5.32 0.93 1.43 1.49 1.35 305L 305R 1.50 0.63 2.99 1.97 203 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.309 0.216 0.312 5.32 2.04 2.33 1.16 1.08 0 0 1.16 I.08 204 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.225 0.312 0.432 5.32 1.95 2.31 1.19 1.08 , 0 _ 0 __ 1.19 1.08 301 8 0 3.92 13.96. 1.27 1.27 91 , _ 0.232. 0.384 0.204' 2.85 3.29 I. 2.58 -0,03 0.13 0 0 -0.03 0.13 302' _ 8 0 5.79 13.96 • 1.27 1.27 91 0.232 0.204 0,204 4.21 , 5.07 5.07 -0.06 -0.06 0 0 , -0.06 -0.06 303 8 0 4.25 13.96 1.27 1.27 91 0.232 0.204 0,384 3.09 2.96 3.73 0.10 -0.06 0 0 0.10 -0.06 , 304 8 0 2.96 5.96 1.44 1.44 242 0.232 0.384 0136 5.72 2.15 1.42 128 1.50 0 0 1.28 1.50 305 8 0 3.00 5.96 1.44 1.44 242 0.232 0.136 1.104 5.80 1.45 4,36 1.50 0,63 0 0 1. 50 0.63 Spreadsheet Column Definitions & Formulas ,--- L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 " (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) TRANSVERSE UPLIFT CALCULATIONS - SUMMARY UNIT A Shear Controlling Total ' Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right k Simpson k k Simpson k 102 Wind 21.31 Holdown ' None 0.00 Wind 20.79 None 0.00 103 Wind 20.79 Holdown None 0.00 Wind 21.31 None 0.00 103A Wind 6.00 Holdown HDQ8 w 31-1F 6:65 Wind 6.24 1-1DQ8 w 3HF 6.65 104 Wind 5.58 Holdown HDQ8 w 3HF 6.65 Wind 6.06 HDQ8 w 3HF 6.65 105 Wind 6.45 Holdown HDQ8 w 3HF 6.65 Wind 6.52 HDQ8 w 3HF 6.65 • 106 Wind 6.52 Holdown HDQ8 w 31-IF 6.65 Wind 6.45 HDQ8 w 3HF 6.65 109 Wind 8.45 Holdown HDQ8 w DF 9.23 Wind 8.75 HDQ8 w DF 9.23 110 Wind 8.18 Holdown HDQ8 wDF. 9.23 Wind 8.09 HDQ8 wDF, 9.23 111 Wind 8.02 Holdown HDQ8 w DF 9.23 Wind 8.51 HDQ8 w DF., 9.23 112 Wind 11.44 Holdown HDU14 14.93 Wind , 11.46 HDU14 14.93 113 Wind 11.46 Holdown HDU14 , 14.93 Wind 11.44 HDU14 14 :93 201 Wind 4.82 Strap MST48x2 5.75: Wind 5.09 MST48x2 5.75 201a Wind 4.95 Strap MST48x2 5.75 Wind 4.95 MST48x2 5.75 201b Wind 5.15 Strap MST48x2 5.75 Wind 4.88 MST48x2 5.75 202A Wind 6.21 Strap MST60x2 8.11 Wind 6.59 MST60x2 - 8.11 C 202B Wind 6.58 Strap MST60x2 8.11 Wind 5.91 MST60x2 8.11 -..1 203 Wind 3.62 Strap MST60 4.06 Wind 3.56 MST60 4.06 204 Wind 3•:64 Strap MST60 4.06 Wind 3.57, MST60 4:06 301 Wind 0.83. Strap MST37 1.79 Wind 0.93 MST37 1:79 302 Wind 0.80 Strap MST37 1.79 Wind 0.80 MST37 1.79 303 Wind 0.91 Strap . .MST37 . 1.79 Wind 0.80 MST37 1.79 304 Wind 2.60 Strap MST48 . 2.88 Wind 2.75 . MST48 2.88 305 Wind 2.74 Strap MST48 2.88 , Wind 2.16 MST48 2.88 BY Ni DATE: 6. _ auto JoB No IN ....oc OF PROJECT: RE: 3S6 — 'Rem Loaa wloc woms msioke.. 49\Xi(A I Wad I o w w O 2 CCA*M 4 P swa\ urk-loo \bs 0 • 6 = 5 z _,,,Ait s 3 4-aclittiuouti a. O aCtUa < CIATX164 0 - Z 2 CO\ ?a `' c SSW 1)(5 3 LO c. 1 Caeac (3qc, O !' ,p; re ?,e Z o H (1 • p " 115 .1'2 os ; er ., 3 b— 2 0 1rall s,-HL v)Ncriv 91 21\S-ankilb 1-u.1 -.)N -al 5■;-11 MS is- i ❑ 1 X 01 C 5 �• 0 iy 4 C - � r 1 ❑ L Li A _ ❑ 4 O P ] _ I r 0 I I �'Jd 2Si we tti I x 0 -k4l U— g o 3 N f'1 7tNL `- )Ncrl' 441. S► to Mg , . <c . (...; _ 2 0 . . 8 C.2. t _9 S I 3N!i s9-,i, t-)v -s f - 1l.3.t-1rn k NV 4u- n) ;:) sI411 N w 0 V.: . , 0 �. � O j J 3 vp � _ ( d. o L Pi ° __s 8 .-3 . U- 1 — =1 : ot X01 -1-1° 3n1? Sl .L 1 - / r,mAd =M COWI -H_L -9N S"\Rl MS tt ell c 1 czt r C Z IN 10'9 .5) ) ! 5 J T S LeNiCiT f A o j his LIN go 0 , 1 _ , - ..,_ aos - -- f e„...„..----;7)<<- ,,,,, / • R._ __.$' — ;. / rail L-.: y g C 1, n) s. — Via: O x.5 4 t ry 1 I { ".0(:, 5W - i$ L e CryTl-r LUN C— miS L N • 4J 2 3 �, 0‘ ?,p2 3o3 2. Q J �w CJ i'� 2 4 I, it 2 J + t j II f I / �d R 3 \' i. ilq. vi ri i / il 11 . , , . \ / \ ,. „,L, \ ,I , _ i ,, 30y 30 r A W. • 0 klt:c A -- T kV4 "Loot.. SW Ulsyour Q3e,71 • z 2 ` ) „,". • ft) 10 - o 0 9 D 9, z .. • 3 0 3 ; C ( tsc, f_cti )Va C4 014 b GU! I - ON \AAA:0%4166p -- AlOtC.1 v ; 114 S€ :(h' )1„092 = 8 LA) e VAq a 90 pa)ponvn jo t70 'end loe9.- 4 • 3 0 41\ '4,3 0 z t tAppro u.A6-rx.0,617110 m ° ( = Uflf\ r, D AU,$)33 JaSUND,k.\-. WC0W\00K1, • 0 10 Naj ,-QN Elor kge 3 /NO 443 liX BY. I ....\ I f \ ci I 1 1 \ DATE: ....... 0 _ ....... JOB No . C a IQ .......oci .0 OE PROJECT: 9 ‘ 0 0v R ' T 1 b10c\onb e Stoly s ,,, • OPTION) I- , 0 , z O w "Ill/AINIVA I W 0 TRtz WIDTH °to 111 F.F. \GIL "Ma" 2 To? V Livre ii5 cr . g Kooc siAtt_ociuNikx--, LA, 0 DE51C--1 UJ i 1 \-1 D Pressuce rx 0_ z I= 0 rr-.F• 1 3 O c- c ie - _ TG9 v LAI ES BI- 115" - Ucii Pi\ U..iknI cod o( 1°CipLP 2 0 i r l n gt .7. Wevo* gi...- 14 'el A 0 ct LL. z — _ 5-4-2.17 stc Li 6 b 0 = Sy ) -:- M _ 512 . , ,.. , .....2..... S \ _ = ItYZLi vc_., = ( .61.Akiii-i2- f 0 • cn s... - i.. 5., =,, -• isc psi. (,,: : at.-10- - 7 d62... . .o . . 0 (-■ 111 0 0, 2_ S? By A �\ k L GATE' Va 1 / i MA NO. C K _ 0 f OF / 0 . U \ I V� 0 PROJECT: RE: 0,p`i !01`.) 2 • 0 w i�vl\ - , up (gym 2. 2ND �Loata.. J Z O L `DoMoor\ - ( t1k.f` \e- 312.-w VtAO(Z I- w O L ❑ - 1 - f;b _....t Or) N �ir = 13:-c py w a Mo 10\i » r ../ 4 Oye X11 -' j ' `� • U 1 O w U Z a o t z Loci d- can \0Q\ 1 ■,)>p \0\0 0(..- = pt., 0 z 2 0 MrnONX _ , ,u.et 3. - GCt, - 6 sb tr.., cc • 0 w . i1 v I f h a I — ( 1 f l 1�1,� G. GI_i 0 "q iL .5 SC '1,5,t,, e (I,S) (/S.)-. m �• € io l- . lii� " = r V)._ I ,2 = d, .,, I kJ --- 3.S \ '' '�W`� '.Ni o • U A r{= r. Y ^ r-1 - A 4i Q b0 3,1 S,1e 0 1t :Kt xxa .-: _ 6.x;5 t. a4.s6,5 s) 4 ).-z. .t a1/41 ,s (o, bt‘s r 5, Lnt 0 t d,i, -+ 0 t e `i . 135 ,N1 :-4 Li. v s 1 N% Sv v V e , I e a� � fib : V !� r; r, C M, E. C .Y,. � � C r b (so w)(1. t...)0, 0 ' i1 , Qx1.0 - }.1.��(I:o - )(1'0 -y1.1s) 0---pi c .f. --- r bi ::b3�. ,5 /(ista (..1,f1.U. 1yl,i`f,[. LSL-- - 101?) ?s L 3o WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load Wood Works49 Suer 7.1 Dec. 15, 2010 11:01:47 COMPANY I - IdD.IGCT RESULTS by GROUP - NOS 2005 SUGGESTED SECTIONS by GROUP tot LEVEL. 4 - ROOF w. i rs�.. s «» - -zssY s our Trusses Not designed by request (2) 2x8 s .umber n -ply O.FSr-L No.2 1- 200 Ey Others Not designed by request (21 206 Lumber o -ply Hem -Fir No.2 2- 206 (3) 2x6 Lumber n -pLy Rem -Fit No.2 3- 206 Typ Wall Lumber Stud Hem-Fir Stud 24 016.0 • SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR mrr.e..sw ---s Met .1st Not designed by request Sloped Joist Lumber -soft D.£ir-1, No.2 206 816.0 (2) 200 (1) Lumber n -ply D.Fit -L No.2 1- 253 121 2x3 Lumber n -ply D. For -L 05.2 2- 200 By Others Not designed by request By Others 2 Not designed by request 12) 2012 Icotrri u-ply D.Fit-L No.2 2-- 2012 5.125510.5 Glulam - Unbalan. West Species 24F -V4 DF 5.1251410.5 4X6 Lumber -soft D.Fir -L No.2 4x6 12) 206 Lumber n -ply Hem -Fir No.2 2- 206 4x6 Lumber Post Hem -Eir No.2 406 (3) 206 Lumber a -sly Hem -Fir No.2 3- lob (2) 254 Lumber n ply Hem -Fur No.2 2- 204 Typ Walk Lumber stud Item -Fit stud 256 @16.0 SUGGESTED SECTIONS by GROUP fnr I.FVE1. 2 - FLOOR Ysacraraaaza:rreIaamewe uuava.eo..r-rrry Mnf Trusses Not designed by request Not Jut Not designed by request Deck Jst Lumber -soft D.Frr-L h'o.2 208 @16.0 • 4010 Lumber -soft O. Fur -L No.2 4510 (2) 256 Lumber n -ply D.Fir -L No.2 2- 250 3.12559 Glulam - Unbalan. West Species 24F -V4 De 3.12509 450 Lumber -soft O. Fi r -1. No.2 400 By Others Not designed by request By Others 2 Not designed by request (2) 2010 Lumber n -ply U. Fir -c No.2 1- 2010 5.125X12 GL Glulam - Unbalan. Wes_ Species 24F -V4 OE 5.125012 By Others 3 Not designed by request 3.125514 LSL Lnt 1.3E 1700Fb 3.5514 (21 206 jumbos n -ply nem -Fir No.2 2- 256 454 Lusher Post Hem -Fir No.2 4x4 406 Lumber Post Hem -Fir No.2 406 (3) 2x6 Lumber n -ply Hem -Fur No.2 3- 206 606 'tither -soft Hem -Fir No.2 606 (21 2x4 Lumber n -ply Hem -Fir 60.2 2- 254 loch not Timber-soft O.Fir -L No.1 656 (31 2x4 Lumber n -ply Hem -Fir tlo.2 3 254 Typ Wall Lumber Stud Hem -Fir Stud 206 816.0 SUGGESTED SECTIONS by GROUP for. 4.6561. 1 - FLOOR Fed :s Not designed by request •r - � + CRITICAL MEMBERS and DESIGN CRITERIA • Group Member Criterion Analysis /Design Valves ~ItatIZ w Mnf Jst Not designed by request Mnf Jst Deck Jst j65 Bending 0.41 Sloped Joist j30 Bending 0.10 Floor'Jst4 unknown Unknown 0.00 4010 '' b31 Bending 0.60 (2) 200 (1) b35 Bending 0.4 (2) 2x0 be Bending 0.89 3 -12959 h3 Bending 0.06 4x0 1137 Bending 0.22 By Others By Others Not designed by request By Others 2 By Others Not designed by request (21 2012 06 Bending 0.93 (21 2010 hl Shear 0.70 5.125X12 GL b10 Bending 0.16 By Others 3 By Others Non designed ny request 5.125010.5 h9 Deflection 0.95 4X6 b20 Bending 0.00 • 3.125014 LSL 614 Bending 0.92 (21 206 c2 Axial 0.91 404 c55 Axial 0.06 456 c23 A5,41 0.00 13) 206 c29 Axial 0.7S 656 c26 Axial 0.70 r (21 254 e39 Axial 0.62 6x6 not cl'. Axial 0.06 (3) 254 c3I Axial 0.09 Typ Wall wl4 Axial 0.40 End End Not designed by /egotist rr 065I06 MOTES: ea -we -ess a�ar..m4s- +v�¢msse.c ®� i s 1. Please verify that th s deflection limits are appropriate_ for your application. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower Level s u!t Is considered the final design and appears in tee Matrrlals Lint. D 3. NODE Livt LOA: treated as snow load with n corresponding ds I alien fa Add empty roof level to bypass this _ n s r erpre atron. 4. BEARING, the dery got r is responsible for ensuring that adequate bearIng ts provided. 5. GLUI.N1: bed = actual breadth x actual depth. 6. Glulam Beams shall be laterally supported according to the provisions of 00S Clause 3.3.3. 7. Sawn lumber bending members shall be lateral ty supported accnrding to the p I s of SUs Clause 4.4.1. B. BUILT-UP BEAMS: it is s lied each ply i rule continuous .:ember (that ro butt - Joints arc present) fastened together securely at intervals not exceeding 4 times the depth and that each ply i equally top-loaded. Where beams are side - loaded, special fastening details may be required. 9. SCL -BEAMS (Structural Composite lumber), the attached SCI. selection is for preliminary design only. For final member design contact your local 5CL manufacturer. 10. WILT-0P COLUMNS: nailed or bolted built -up colorists snail conform Lu the provisions of NUS Clause 15.3. fp • 1 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorksoD Sizer 7.1 Dec. 15, 2010 11:08:38 Concept Mode: Beam View Floor 2: 8' b31 b36 1050- , 0.- _---- .. -- -- Tra _:, . _ - • - .. - 49'--.6" ItYl . . .• 40 -0 0 MS.J.0 b38 40-0 1 M . . • - WU — . - . • • 440 G 43 -0 .. • . . . . . _ . .. V0 l• ' • 131 . • - . • : - - 41 -0 &/' •. .............; ipso{ -...m........ ' • ' "‘ _ _ . . -- -- U0 • : ' : . • " : . . ': ; 4U -0 ...1 -0 . . . .. ,... _ .. .. . ...- . `,14• : - . - • 00 - 0 3 • • ' ' . . . , . - - . , . . . , - -- L ' ' f : . U , 30 4 0 ... . . _. , . .. .. * 1 ' 44 - 0 b2 . • •••• • - . . • ., — 60 '; • ; • • • . . • , ::: . .. . . . . 03 . ' 0 ': ; •: • ' ; - i • • ” " - • - • — . • - ' Lb bi LI -0 - • - . . .. . d . 0 i . U El _ _ . . . b10 .. . .. , .. . . • . al 11 ' M. ..- 19 ' • " ' ' . • . . - - • • zz 4-.) H 1 b33 21.0 . .. . . . - . - - . - , . .. ZU-0 r , " • :-b _;. d - 0 • • ' " - ' ' ' . . - i -0 . ' f -■•! --b32 . -. . . _ . _ .. .... . . . — . -... _ , . 0 H - • • . . .. . 0 - .. . - . . . . . . ' . . . . ... 4 -0 ...1 4, 00 .b16 ' .. .... . . . — - .,..-b or ,- 1 -v U-b .. . .- 03 . o4 . 1.... 3 . , . , _ . ,. . . ... ... , . ts -0 03 • (-0 o2 y . , . b14 0-0 . , . . ... . .. i ■ i . • bU b30 —IT 1 .. ... ,. . . . • 4 -0 . ) . . - I -.,,,:..: • . l ' • , .. . . . . • , • • - .5 -0 . Oil 4' _ . - ...___ • . . .. . A . , , . , . . U -0 , • .. BB1BB BC. 6ccc cdcia3cCCOCCCCOCCCCICGCDDODDDDMODDCDDDIDDDDDDCUDD DE EEEE EE EIEFEIEEIEBEFEEEREEEEZ 0' 2 4' 6' 8' 10' 121416 18' 20 22' 24' 26' 28' 30' 32' .34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56'58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 01'2'14'567'3'91(1 1;1:1/1nn:in 2;2 222 3:3.3(3 4:4.4 555656515 Cit'6 5:6:6-6!6(661(27077:7 " V Ck0141 1,(Th‘) (12,. I 1 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load Wood Works® Sizer 7.1 Dec. 15, 2010 11:08:40 Concept 'Mode: Co1u View Floor 2: 8 ' c58 c80 014 49' 6.. a . ... . . . . _• 4:s -b lu0. • . - . 4 - lug , I u ,. . - 1 . 44 -b U�. - _ ... - ., . , . 4.5-o so -. " ' " .c69, - 'c2 c70' c7 f "c91• fil_ -4 !-I'' ma , ', T E } • -: - -' : B LI, 1. 4 i -o 5 4 . - 3U-0 9L r: ... • • c • - So ti!j 33 -b 6b 1 - ' .. - -.)L -O • t} r 31 . tlf)' I C 4 ' , 3u . . G .. 254' - i , - -- • f - : L6 L; -b z53 c90' .. ,. . .. . . . , . 611 iI,C89' 15"b. • 61t- _ . . C4 -b t 1 c82- -.c25 .c1.2 c26: L.5_0 f_L -b' in c81._, I - - - Lu•-v• ,5 Ill ` c73. -... IS. -U. ill. , I _ _ 111.-0 1 J ' I C_b. t i • :c3° - Ib"-o' r i :c78' . • , _ la-b AA ., , . . - ... gi ' i ic77; .. . - .- .. .. " _.. . . . {L , b . I 1 •-0 bt) s 1 ' . ,_ l u _ IsD v -b :r I ' c31 r . t c76 'c79 . • - 6 -b r ae i 4 = � c30 . l c32' IS-b . '( c55 lc:c b L .o.. .. ` 'a . - - . .. U-b VM ESIi S iC BCCCCCCCC1CCCCC CCCCCCCCCICCCODODODODIC3DDDO DDDD I" DDDDD1DODEE EFEEE�i=t'Ei; ETEE'EEHEEfEIEEEEZ u 0' 2' 4' 6' 8' 10' 12' 14' 16 18' 20' 2Z 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1 t1 1:1:1 :1t1;111022122 2c2�1,2121 3133 :3:3.3.!. - 3130141:4:401 #teC414:515 5: 5: 5. 55( 5515!616 :7.7!7(77' - 6" ' 'eCt•11 UpPtb • (Pc-5 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load Wood Works® Sizer 7.1 Dec. 15, 2010 11:08:51 Concept Mode: Beam View Floor 2: 8' 105 - • • - • d I u , „ 1U4 b31 4r •b .s 11../G .� _ _ .. Ea 40.0 191 , , b38. , . .. 4a-rr i VU - 44.....) 9a b34 4J -0 . I -U 94 . JCl -0 93. - _ _ - _ . it -0 5L 40 - 0 yl I - .. _ . . 1. .30 -0 91.1 - J4 -0 tsa b2 JJ ,u .. .. - SL - U W �' 31 - tab' . .... -- 39 -b 00 - .e.9 -0 G4' .. Lis b tf.i L -b • 0/. . _ . .. .. .. Lb -0 0I b zn - • du ' ; b10 - - Z4 -0 19 .� Z.s-n ib• .....; k . - - Lf -0 r j b33 L I -0 r t> LU - 0 r0 - - "' j -: IU-b f 3 - - - / -0 1t b32- ..- - -- u -u !41 . „ . . .. 4-b by . . . J -p 'b49 °B - i1 5 . __ -- 04, �? yUUb 00 04) I ^ . _3: _ ... -- . . - . 0 0 04 , tr • - , b14 , n _0 00 b30:— I , 1,;r. - • : I 4 - 0 b••��9 a _. i _u BB■BB BCCCCCCCCECCCGGCCCCCCCCCCI CCCDD DDD DID DODDCDDDDDDDDDCD \DDDEEE E E EE EEEEEIEEIEEEEEEEIEEE 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' ;Y1'2'3'4'5'678'0.1 (1 1:1:1 111:2(2 222 212 (22i2f3(.33:3 :3 4:4:4 5:5:5.5!5(5•515[ 616 6:6 :6 6" giNfv._. wPri) (+1 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 Dec. 15, 2010 11:08:53 Concept Mode: Column View Floor 2: 8' 105 . .. .._ . , 419' -6 yund c79, - - c80 Q�i :b lu - 45 -b ! UU 4S -tS %lb , IC82:• - ' • ic81; „ ++ v Jr - . ell 4) tlt7 'r- . - _ 4U-0 ' 0 _ .. ., .1:1-0 y9 36'43 • vz c 3 .. i it yl- .. , 1. �. h tSV 5.5-b 615 • .- • .„1/.. -V 01 SI -0 nti • . c4' .. JU n do s r0 L'J• -b 4k1 1 c91 c25 c12 • -- - c26', c26. ,, :4 -0 'G3 -0 ra... - ,, • c72 t rr c9 _ ca - i E ; ris:g u r4... � -- . / J -V 12 .c3 -0 rl ;'-c78' -' , , • 10.0 14-t) t t . C77, . • i _ - - 1 I - 0 cal Li ; , _ 1u4 :1 -0 941 c31 , _ • c76 .: •c71. - • .. , . u :0. • o I 1 : '6 30 J II c32, 15 -n 0V) yr 1 " 1 . Cb °'C7c1 .Cb � 4 -0 ., 4-b U E3 vyi BBIB.Bf:CCCC C1CCCCC000CCCCCCC1CCL' DDDDDODDI UDDCDQi] 1. 710Dt? 0D CUD DOE' EEEE :C-EEIEE,EiFPIFEIEEECESEEEE2 0' 2` 4 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0' 1 2' 3'4' 5" 8` 7 8' S1 11 - 1 :1:i•1!1t1 :11112222'222E2212 (33;3;3.3! 3133131414 :4414t4'4E415+55:5:5.5!515' 515! 6t66;6:6 -6" ?..e Loes\> CIS- WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks0 Sizer 7.1 Dec. 15, 2010 11:02:02 Concept Mode: Beam View Floor 3: 17' 1050 - . - • - - - . . • - 49-6' wa , 40 - 0 10.,I • . . . . . 41-b I 1./L 40 - WI ' iu , . . . . - I tii..2 . . * . • 44-b 1;3 - - b6 - . ' 43 -0 . .. . • ' , " . . 43 - ' V . 91 - i 'c====EtiVE= . ? - - : - : - • . .. _ . .. , VI) ''• . . , . 4U -V D ' . - .. " .te - . .. •- .., . . , ,. i .. .. 3t5 -V .9..S... t i . , 3 / -V 5 .11 . - ... . . . - . ... - • - • - • • • - - - 30 -V V i . iD -V . . . - U. ' ' 34 -V M.! - b7 , ' Ob - ' - . • .- . 1 ... :- . . '• - .3Z -0 b f . ... •• " ' 31.) -b 00 ' . . ' • '''. .• ' . . ,, - : . • •: 03 '- Z / -V tiL b40 . - - • - • • • • ' • ; ' - Lb -b 0 1 ZD -0 t.P - - t d - i ' • b9 ' - , - - Z4 43 /.:-.1 • Z3 - 0 f 0 b41=3 - -I -■ . .w.■•••.I • — • . . ' i , i , , b22;. • . . . , . . .. t 1 4.) LU-b (•,..) • r,, I , . • • .. IS -t3 t r.; - 1 0 -0 , ... i• .1 ■ . . . . - 1 t -0 • . . . -- • . lb -V , . . 13-0 /U . ,. . - " . . . 14 -0 . .. .. . . . . 13 t" 'blibt7 ' . _ . • i Z -0 . . .. .. 0/ 1 I , 1 1 -0 00.. 1U -0 03 • • . b4)._ ■ . .04 i ' . . b -0 . . . . . - . 0.3 • i=a1,..1t,s,,„..,, ( b8, i - -- .. . - • - . .. . . . . ... .. 3-b O a • VG ,4 -b .. . .. ... . .. ... . 5 .. . .5 -V . Z -b . . . • . - . . • • • . - • 1 -b ...1 ..e, , . ; : : • . , ... BBFB B BeCCC C CCC1bCCC C CCCCCCCC CCICCCDDIDD D DD DODO CD DEMODD DDCOODDEE EE E EEEPEEDEEIEBEEEEEBEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 2830' 32' 34' 36' 38'4042' 44' 46' 48' 50' 52' 54' 56' 58' 6062' 64' 66' 68' 70' 72' 74'76' 0'1'2'34'56'7'6'6111 1:1 1-11111:11102 2:22 4:4:4 5:5'5 613:6 6•1 (10, _I 1 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load ' WoodWorks® Sizer 7.1 Dec. 15, 2010 11:02:04 Concept Mode: Column View Floor :3: 17' 1050 ....... - • 1 - • -- - - • - . -. 49' -6" IIM .- 4 10 -e lua - .. ... . ... • .. - - 9r..U.. IUZ � ' 4q•SJ IVV 99 Ct a9 - /143' 140 '• :c :c61- -•:c15: : c16: .- : ; • . 4z -t) 4u•b as .,.' . , ab•b • Fib >■ K7 8r 31 -G c18: • ou•-b CJ sy-o dii -; _ 4u'-4a 03 C88_ .. . : .. if -b 01 087 . . . .. .. .. cu -b L9 -•b /IV a c86 ' c39(c24 . ' c23` • ¢�:� to- c' "' e- r - 1c59;:, • • • 44 -0 g c85 ; }0'..5. -u-to to a U• I_1 .'.. . lu -1, iz .' _ I r -4 ' --o r I : c37 i . to 13 -43 blS C35 .. . , It -o Of 1.-.....; . - - . 1I-0 00 IU -b b9) C6 ^673 't66 - - - c63 n • ca oa + � r' -b b 056520 , c1;c6c74 n -b' 0:)) M: •i .. s p1 v o BBIB. BBCCCCCCCCICCCCCCC CCCCCCCCtCCCDOODDODDO DCDDDDODDOD l231DDOEEEEEIEE•EIEEILESEE. EEEEEIEEEEZ 0' 2' 4' 6' 6' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48 52 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 7 6' 0'1'2 :1 :1.1!1(1 :111t2(2'22:2.2'2(2: 21213131: 3 :3'3!313 4141515'5:5:5.5!5(5' 5156(&$: B :o.6!6((6'6 :7 6" CA 0 1 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 Dec. 15, 2010 11:02:17 Concept Mode: Beam View Roof: 25' 1458 -. . .. ... . - 49' -6" 104, 40 -0 1V3 "' .- .. - .. . .. 4 / -0 0../Z . 40-0 1010. .... .. .. - _ _ -. - - 40 -0 IOU •. - .. 44.0 • y ,; b23 b24 • •' 42 4) Vi - r 41 -b b- . 3r/ -b • 04 .. _ - . _ .. . - -. - - 30-b 3 / -tr `VL i - - - 3b -0 0 I- .... ._ _, .... .. - . . 30-0 V 34 b 2V.1 - 03 -b e • , . _ - - _ -___ JL -0 0/ - 31 b . . - - 3U -b 00 Ld -ia . 03 L1 - ill • - . - .. .. ,.. .. Lb -b C0'1 'n LJ - 00 -- .- . ... 24-0 i0 b39 . - -- - ". • - Li r r ,b25 4 1 -0 1t) -- - - . LU-b a - 10 b OS . ' , 10 -0 13 1 / -0 12 , - _ - I b - b • 11 - I3 /U . . .. .. 14 Ub 13 -0 btl - . r • _ .. .. 1 L -b 0/ 1 1 -0 bb _ . -. lb -0 o ) :b27. ^- b28 - - b .. , - 04 -. - t t, - ti 0UJ j 4 -b .. - .... .. • .. .. • - .. .. .. 1 -b E313\ B.3 BC CC C C CC C fCCC CC CC CCC C CC CMG CDDDDD DO DODD CD DDIDDDODUCOODOEEEE EEE EIEEEIEEIEE EEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18 22' 24' 26' 28' 30' 32' 34' 36 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72'74'76' 0'1'2'3'4'5'678'9111 1 :1 :1.1!11i' 1112t 222: 22! 2F 2' 2r2f3i3 . 3;3:3'3!3f3:33W14'4A:4'4! 414 4145155,5:5.5:5f55156t68:8'6. 6!616 66s7f'7:7:7 6" • CA5 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 Dec. 15, 2010 11:02:19 Concept Mode: Column View Roof: 25' 1050 .. - .. . ., MY-6" wi 46-i.) wa -ii e. I Ut qU -G rut/ . I uu° i cq ..b 19 .. 4,1-0 m ts c42' • c43 ' • • c44' " c45; ' >,11 . c_ ({ ©" cam" q t U .. _. • .. ... .10,0 :.Q ... Nib.b *)j . 1 r 43 0 a .. '-b :u . . I .. Dv -o s.Y-70 do .,14' - b tl f ,3 'I b 0 0 . - .. • • . . ill -t.) 2M - 0 - Gy -0 .. . - dt1 • • bs dl' -0 bX „.. .. .. .. .- • • • L0 - b I GJ -tb CU . 0 ' 03 . 411 -s, r e..$-IS its I - - rA .. . .. r.L -u / , ' c84 .el -b r0 t9 /41 Rs' -b • r3 Ir -cr !G — . . _ lor-U t i tw! ^t? I U. - - .4 -t? no . . , d -0 h/ t1 et) - - . .. 11./.0 64) c51:S0,c�2 c53 =- t�sq r , U . U ' cam . ._ 'fly s • U-0 BBIBB BCCCCC CCCICCCCCCCCCCCCCCCICC CDDDDDDDDIDDDCDDD DDDt7DDCL)!DDDEEEE E EE E1EEEEEIEEEEEEEEIEEEEZ 0" 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50'52' 54' 56' 58' 60' 62' 64' 6G 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91 (1 "1:1:11 E1 t 11( (1212 2 5 5 5 5(5 3(6 6:6:6 !6167616!7177,7 :7 -6" (19 COMPANY PROJECT d i ' l Woo.dWorks ® sor'rwnurroR WOOD nrsrrn' June 24, 2010 12:42 b1 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location IfiI Unita Start End Start End 1 w61 Dead Partial UD 613..2 613.:2 2.50 3.00 pie 2 w61 Snow Partial up 795.0 195.0 2.50 3.0 'Olf 3 bead Feint 622 2.50 lbs 4_c61 Snow Point 1192 2.50 lbs 5_328 Dead Full UDL 47.7 IiIf 6_j28 Live Full UDL 160 -.0 piE 7_133 Dead E1.111, U01: 120.2 pl f 8 133' _Live Full UDI. 310.0 pit • MAXIMUM RE r .. .- • } 1 0' 3 Dead 391 1061 Live 795 1615 Total 1:186 2676 Dearing: . Load Comb 112 113 Length 0.63 1.43 Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2 -Plys Self - weight of 6.59 pit included in loads; Lateral support top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Anal sis /Design Shear lv' = 67 Fv' - 207 tv'/Ev' a 0.32 Banding t+) fb A 331 Fb' a 1138 tb /lb' a 0.29 Live Defl`n 0.00 - <1./.999 0.70 - 1./360 0.04 Total ieE1'ri 0.01 - <1;/999' 0.15 - .L/240 0.05 The effect of point Loads within a distance d of the support has been -included as per Nps 3.4,3.1 ADDITIONAL DATA: FACTORS: P/C CD CM' Ct CL CE gib Cr. C6rt Ci Ca LCII lv' 180 1.15 1. -00 1.00 - = - - 1.00 1.00 1.00 3' Fti'+ 900 1.15 1.00' 1.00 1.00Q 1.100 1.00 1,00 1.00 1.00 - 3 ' Fep' 625 - 1.00 1.00 - - - - 1.00. 1.00 - - E' 1...6 m.i..ilibn 1.00 1.00 - - - - 1.00 1.00 -- 3 Fai.n'' 0.58- m.i ition 1.00 1.00 - - - - 1:00' 1 :00 - 3 Shear : .LC 43 - 0 +.751L+S), V = 257.6, V design' - 1237 Ibs "Dend.ing(Fj: 1,C 113 .- D4.7S(i; +Sl. M - 1178 lhs -Et Deflection: i,C 113 = DF , 751l, +S) F..1:= 1-58e06 1b -in2 /ply Total. Deflection = 1.50'iDead 7.oad 0eflectionl- Live Load De,flOCtion, (D -dead L.11ve =snow ?l -wind 1D-impact C=:const tee trun CLd.coriceinr<ra (Alt GC's are 11 in the Analysis output) 'Load CornliinatLonS: TCC -ZnC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate foryour application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. • 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. • C* 9 ° COMPANY PROJECT dt WoodWorks® SOFT WART FOR WOOD DESILA June 24, 2010 12:43, b3 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End l j'45 Dead Full UDL 17.0 plf 2 - 145 Live Full UDL 25.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : _= a 10' 9 Dead 106 106 Live 112 112 Total 218 218 Bearing: - Load Comb #2 # Length 0.50 *, 0.50* *Min. bearing length for beams is 1/2" for.exteriorsupports. Glulam - Unbal., West Species, 24F -V4 DF, 3- 118x9" Self- weight of 6.48 plf included in loads; Lateral support: top= full, bottom= at supports; .Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 10 - Fv' = 265 fv /Fv' = 0.04 Bending( +) fb = 140 Fb' = 2400 fb/Ho' = 0.06 Live Defl'n 0.01 = <L/999 0.30 = L/360 0.04 Total Defl'n 0.03 = <L/999 0.45 = L/240 0.06 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 tcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 = - 2 Shear : LC #2 = D +L, V = 218, V design = 182 lbs BendLng(i-): LC #2 = D -, -I., M = 491 lbs -ft Deflection: LC #2 = D +L EI= 342e06 lb -in2 Total. Deflection = i.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =Live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). (1 • COMPANY PROJECT di woodworks® SOF rWAN( FON WOOD OrO( ;h June 24, 2010 12:40 b6 Design Check Calculation Sheet Sizer 7.1 L OADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location fit] Units Start End Start Coil 1 c:44 Dead Point 444 2.00 lbs 2 Snow Point 647 2.00 lbs 3 w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5.c45 Dead Point 444 5.00 lbs 6 Snow Point 647 5.00 lbs 7 w45 Dead Partial UD 389.2 389.2 5.00 6.00 pif 8 w45 Snow Partial UD 431.2 431.2 5.00 6.00 off 9 Dead Full UDL 120.2 plf 10 i25 Live Full UUL 370.0 pit MAXIMUM REACTIONS (Ibs1 and BEARING LENGTHS fiii) : - Dead 7436 1399 Live 1803 1803 Total 3239 3192 Bearing: - - Load Comb 43 li3 Length 1.73 1 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in loads; Lateral support top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value _ Design Value Analysis/Design Shear fir = 97 Fv' = 207 fv /Fv' - 0.4 Bending(-() fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live De 7.'n 0.03 - <L/999 0.20 = L/360 0.14 Total DeT1'n . 0..06 = <L/999 0.30 - L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LCII Fv' 180 1.15 1.00 1.00 = - - - 1.00 1.00 1.00 3 Fb' ++ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 LOU 1.00 - 3 Pup' 625 - 1-00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 -- 3 Emiu' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC 43 = 11+.75(L +S), V = 3239, V design = 2190 lbs Bending(i -l: LC 43 = D +.75(1. +5), M = 4247 lbs -ft Deflection: LC (13 = n-i.75(L -'S) CI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind 1= impact C= construction CLd- concentrated) (All LC's are listed in the Analysis output) Load combinations: TCC -IBC • DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. • • COMPANY PROJECT I 'WoodWorks® SOFTWARE FOR WOOD DF$ILN June 24, 2010 12 :50 b8 Design Check Calculation Sheet Sizer 7.1 LOADS ( ibs, psf, or plf ) Load' Type Distribution Mag Location (fti' Units' . Start End .Star End 1_'j14 Dead Full UDL' 113.7 plf 2 114 Live Fuull UDL 3 50.0 plf . MAXIMUM REACTIONS (lbs) and BEARING,LENGTHS (in) : . A ,Dead 357 • 357 Live 1050 1050 Total 140.7 1407 Bea,eing.: ' Load Comb 1N2 02 Length 0.75 0.75 Lumber n -ply, D.Fir-L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 off included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : ritex ion- Analysis Value Design Value Analysis /Design Shear fv ' 77 Ev' = 180 :fv /Fv' = 0.43' i3endir (+j ni = 963 Eh' - 1080 fl), /Fb" = Q.89 Live Qefl n 0 :.07 = <L/999, 0.20 = L /360 0.33" Total Defl. 'n . 0.:10 = L/712 0.30 = L/240 0.34 ADDITIONAL DATA: FACTORS: F/E CD CM Ct C.L CF C -fu Cr, cfrt Ci. Cn LCii &V' 180 1.00 1.00 1.00 - - - - 1:'00 1.00 1.00 ■ 2. Fb'+ 900 1.00 1.00 1.00 1.00,0 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00, - - - - 1..00 1.00 = - )v' 1.6 million 1.00 1:00 - - - - 1.`00' 1.00 - 2 FSnin' 0.58 million 1.00 1.00 - - - - 1:LQ0. 1.00 - 2 Shear : LC #2 = D +L, V = 1407., V design.= 1123 lbs 8_end'ing( -) : LC , #2 = D+L, M = 2110 lbs -ft Deflection-: LC t'2 = D +L EL= 7606 lb.- in2 /(ily Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection: (D =dead L =live S=snow W =wind T= impact C =construction CLd =concentrated) (All Le's are', listed in the Analysis output) Load combinations: IeC,LSC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 1 64 3 COMPANY PROJECT II Ill i I WoodWo rks° SOF FOR WOOD DFMMON June 24, 2010 12:40 b9 Design Check Calculation Sheet Sizer 7.1 LOADS ( !Ps, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 12150 Dead Partial UD 113.'7 I13.7 0 ".00 I.50 plf 2 j50 litre Partial III) 350.0 350.0 0.00 1.50 plf 3 - j14 Dead Partial UD 113.7 113.7 3.00 9.00 p1L 4 114 'Live Partial UD 350.0 350.0 3.00 9.00 plf 5 _j51 Dead Partial UD 113.7 113.7 1.50 3.00 plf 6 j51 Live Partial UD 350.0 350.0 1.50 3.00 plf 7 - j24 Dead Partial UD 120,2 120.2 0.00 3.00 plf 8 j24 Live Partial UD 370.0 370.0 0.00 3.00 plf 9_j25 Dead Partial UD 120.2 120.2 3.00 9.00 plf 10_j25 Live Partial UD 370.0 370.0 3.00 9.00 plf 11_j26 Dead Partial UD 120.2 120.2 9.00 12.00 plf 12_j26 Live Partial UD 370,0 370.0 9.00 12.00 plf 13_j52 Dead Partial UD 113.7 113.7 9.00 10.50 plf 14_j52 hive Partial UD 350.0 350.0 9.00 10.50 p11 • 15 j53 Dead Partial UD 113.7 113.7 10.50 12.00 pit 16 Live Partial UD 350.0 350.0 10.50 12.00 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : - -_ L_, ....-___ .. .... _ _ _ : - - Ice 12f Dead 1478 :478 Live 432.0 4320 Total 5798 5798 Bearing: - Load Comb 42 02 Length - 1.74 - _ 1.74 Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x10 -112" Self- weight of 12.39 plf included in loads; Lateral support: tape full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design • Shear fv = 138 Fv' = 265 t /Fv' = 0,02 Bending( +) fb = 2217 Pb' = 2400 fb /F'o' = 0.92 Live Della 0.38 = 1 /381 0.40 = 1/360 0.94 Total Def1'n 0.57 = L/252 0.60 = [./240 0.95 ADDITIONAL DATA: FACTORS: F/E CD CII Ct CL CV Cfu Cr Cfr. Notes Cn [.CI! Vv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'a 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 lfcp' 650 - 1.00 Lon - - - - 1-.00 - - - E' 1.8 million 1.00 1.00 - - - 1.00 - -- 2 Emirs' 0.85 million 1.00 1.00 - - - - 1;00 - - 2 Shear : LC 82 = U +L, V = 5798, V design = 4953 lbs Bending[+1: LC 112 = 0 +1., I = 17395 lbs -ft Deflection: LC 112 = D +L EL= 890e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection( 1- Live Load Deflection. (D =dead L =live S =snow W =wi-nd 1= iwpact C=construction CLd= concentrated) (AIL LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: • 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSUAITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). i q COMPANY PROJECT 11 1 Woo-dWorks® IOIIWAHL IOU WOOL 015)0,5 June 24, 2010 12:43 b10 Design Check Calculation Sheet Sizes 7.1 LOADS ( Ibs, psf, or plf ) ,Load Type Distribution Magnitude Location iftl Pat- _ Start End S.taXt End tern 1 w39 Dead Partlat UU 31I.0 711.0 0.00 4150 No 2 ' Live Partial UD 600.0 100.0 0.00 4. No 3039 Dead Point 267 2.00 No 4 _ 039 Live Point 822 0.00 No 5 j32 Dead Partial UD 120.2 120.2 0.00 0.50 Nu 6 Live Partial UD 370.0 370.0 0.00 0.50 No 4_133 Dead Partial UD 120.2 120.2 1.00 4.00 NO 0133 Live Partial UD 370.0 370.0 1.00 4.00 No 9 _ j34 Dead Partial UD 120.2 120.2 4.00 4.50 No 10 - j34 Live Partial UD 370.0 370,0 4.00 4.50 No • 11 j35 Dead Partial UD 120.2 120.2 4.50 /.50 No 12 - j35 Live Partial UD 370.0 370.0 4.50 7.50 No 13 736 Dead Partial UD 113.7 113„7 4.50 16.50 No 14,j36 Live Partial UD 350.0 350.0 4.50 16.50 No 15 - j37 Dead Partial UD 100.7 100.7 3.00 4.50 No 16_j37 Live Partial UD 310.0 310.0 3.00 4.50 No 17j47 Dead Partial UD 120.2 120.2 7.50 13.50 No 18 _ j47 Live Partial UD 370.0 376..0 7.50 13.50 No 19 ' Dead Partial 11D 120.2 120.2 13.50 16.50 No 20 Live Partial UD 370.0 370.0 13.50 16.50 No 21:j49 Dead Partial UD 120.2 120.2 0.50 1.00 No 22 )49 Live Partial UD 370.0 370,0 0.50 1.00 No 23 Dead Point 300 3.00 No 24 Live Point 977 3.00 - No MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) :l • • - - -- -- - -- -- - - -_-___ . ._ -__ Dead 452 - 4067 - - '1180 Live 047 11291 3436 Uplift 12 Total 1300 153 4616 Bearing: - Load Comb 312 312 02 Length 0.55' 4.24 1.27 Cb '1.00 1,09 -_ - - . 1.00 'Min. boaririg Ibnglh (or booths is1/2" for extoriorsupporls Glulam - Unbal., West Species, 24F -V4 DF, 5- 118x12" Self - weight of 14,16 p1f included in loads; Lateral support: top = full, bottom= al supports; A nalysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 ; Criterion Analysis Value Design Value Analysis /Design Shear fv = I50 Fv• = 205 fv /FV' = 0;60 Bending) -•t fb = 1074 Fb' = 2400 fb /tb' s 0.45 Bending(-) fb = 1396 Pb' = 1844 fb /Pb' - 0.76 Live Daf1'n 0.13 = <L/999 0.40 = L/360 D:32 . Tatal,Defl'n . 0.19 = 1 /740 0.60 = L/240 0.32 _ ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr C*_rt Notes Cn LCk Fe' 265 1.00 1.00 1.00 = - - - 1.00 1.00 1.00 2 0b'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1,00 - 2 F5'- 1950 1 -00 1.00 1.00 0.997 1.000 1.00 1.00 1,70 1.Q9 a 2 rep' 650 - 1 -00 1.00 - - - - 1.00 - - - E' 1.0 million 1.00 ;An - - - - 1.0a - - 2 Emi 0.05 million 1 -00 1.00 - - - _ 1.00 - - 2 Shear : 1.0 82 = D +L, V = 1:357, V design = 6496 lbs Bending lit: LC 82 = Dtt., M = 11006 lbs -ft Bending( -): LC 02 - D +L, -1 = 14310 lbs -ft Deflection: LC 62 = D•L EI 1328e06 lb -in2 Total Deflection = 1.50(Deed Load Deflection) I Live Load Deflection. (D -dead 1. =Live S -snow 41=w nd 1- impact C= construction Ct:d= concen *_rated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application, 2, Glulam design values are for materials conforming to AITC 117 -2001 and manufactured In accordance with ANSI /AITC A190.1 -1992 3. Grades with equal bending capacity in the top and bottom edges of the beam cross- section are recommended for continuous beams, 4. GLULAM: bxd = actual breadth x actual depth. 5. Glulam Beams shall he laterally supported according to the provisions of NDS Clause 3.3.3. 6. GLULAM: bearing length based on smaller of Fcp(tension), Fep(cornp'n). �s,nL COMPANY PROJECT di WoodWorks' SOrnvAUr IOR (WOOD resins June 24, 2010 12:44 b13 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Maynituoe Location Ifti Units Start End Start End I wS8 Dead Partial UD 519.0 519.0 0.00 3.00 plf' 2w58 Snow Partial UD 505.0 505.0 0,00 3.00 pif 3 c40 Dead Point 217 5.50 lbs 4 Live Point 668 5.50 lbs 57:67 Dead Point 518 5.00 lbs 6 Snow Point 778 5.00 lbs 7 Dead Point 573 3.00 lbs 9 Snow Point 942 3;00 lbs 9 Dead Partial UD 593.7 593.1 5.00 8.00 pif 10 w59 Snow Partial UD 735.0 735.0 5.1)0 9.00 plf 11 Dead Partial UD 100.7 100.7 6:50 8.00 pif 12D37 Live Partial UD 310.0 310.0 6.50 8.00 p11 13j38 Dead Partial UD 81.2 91.7 3.50 6.50 pit 14_338 Live Partial UD 250.0 250.0 3.50 6.50 plf 15 339 Dead Partial UD 22.7 22.7 0,00 3.50 plf 16 Live Partial UD 70.0 70.0 0.00 3.50 pif b 17 I5 Dead Point 126 3.50 lbs 18 Live Point 389 3.50 lbs 19 Dead Point 225 6.50 lbs .111 032. Live Point 693 . 6.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : �r� - “---::-.7, _..:r.:..?a- r� '- te r, r - -- , .. - 7,-- - ," , 1- , ,r'- ^°' - iC �'Y.' ,. --... �1 .s E SL.. - l+w- 4 �� ` r , ". -2,1*,...--...-- , . .. - = 'tw'.� i- -+^ .' :cam. .Q ,�. .. :- , y r -.-- F - ll 1 0• •o f Dead 2561 3033 Live 7699 3789 Total 5261 6822 Bearing: . Load Comb ((3 # Lenatn 1.88 2 LSL, 1.55E, 2325Fb, 3- 1!2x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using Nos 2005 : Criterion Analysis Value Design Value AnalySiS /De Shear. fv = 157 Fv' . 356 fv /1•'v' = 0.44 Bending(+) fb = 1295 Pb' . 2671 fb /Fb' = 0.48 Live Defl'n 0.06 - <L/999 0.21 = L /360 0,24 Tota.l. Defl'n 0.19 = L/680 0.4D a L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fe' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'S 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1,00 - - - E' 1.5 minion - 1.00 - - - - .1.00 - - 3 Emirs' 0.80 million - 1.00 - - - -. 1.00 - - 3 Shear : LC #3 = D +_75(L+S), V = 6922, V design = 5122 Lbs Bending(i): LC #3 = Dr.75(L+S(, M = 12340 lbs-ft Deflection: LC #3 = Dr.75(L+S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Detiection) + Live Load reflection. (D =dead L live S =snow V1 =wind 1= impact C= construction CLd= concentrated) (All Le's are listed in the Analysis output) Load combinations: ICC IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application, 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. l• 5 t + p j`+ 6 COMPANY PROJECT dt WoodWor.ks® SOFTWARE rot. WO 00 UNACN June 24, 2010 12:43 b14 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ihs, psf, or plf ) Load Type Distribution Magnitude Location (fti Units _Stars End ' Start- End "1 w33 ' Dead Partial liD 317.7 317.7 i 9.00 12.00 plf i 2 - w33 Live Partial UD 350.0 350.0 9.00 12.00 plf 3 7c19 Dead Point 357 9.00 lbs 4 c19 Live Point 1050 9.00 lbs 5 c20 Dead Point 357 3.00 lbs 6 Live Point 1050 3.00 lbs 7 Dead Partial DD 317.7 317.7 0.00 3.00 plf 8 - w34 Live Partial UD 350.0 35(1.0 0.00 3.00 plf 9 Dead ' Point 165 10.50 lbs 10 c64 Snow Point 225 10.50 lbs 11 c65 Dead Point 165 1.50 lbs 12 Snow Point 225 1.50 lbs 13)36 Dead Full UDL 113.7 plf 14j36 Live Full UDL 350.0 plf 15 j43 Dead Partial (ID 17.0 17.0 0.00 0.50 plf 16_j43 Live Partial JD 25.0 25.0 0.00 0.50 plf 17 ,j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 18 _j44 Live Partial UD 2.5.0 25.0 0.50 1.50 p1f 19_j45 Dead Partial UD 17.0 17.0 1.50 10.50 plf 20_j45 Live Partial. UD 25.0 25.0 1.50 10.50 . plf 21_j46 Dead Partial (ID 17.0 17.0 10.50 12.00 plf 22 346. - Live .Partial UD 25.0 25.0 10.50 12.00 p11 . MAXIMUM REACTIONS (lbs) and BEARING LENGTHS.(in) : . '°-'��' ..i t .. ' -.. • • rs. 1.,4 0 w. - .2,... ,,, ..:. y •= , ;° - ar,;: �"" + • ce ...,,,. - '4 7: 7 " . '''' ' ' = ^ . , .dd: -evl. " , : .. ,sue = ._ w,o ,.......='; -7 .4,�',:r.. - - .n,,::r w�- ; • , p' 12 Dead ' 2351 ' 2:351 Live 4350 4350 Total 6701 6701 Searing: Load Comb 42 112 Length 2.39 2.39 LSL, 1.55E, 2325Fb, 3- 1/2x14" w - Self - weight of 15,31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Crit'er. on Analysis Value Design Value An83.v7is /Design Shear Dv - 163 Ev' = 310 fv /Fv" = 0.52 Bending(t) fb = 1769 Fb' = 2325 tb /Fb' = 0.76 Live Detl'n 0.25 = L/573 0.40 = L/360 0.63 Total. Defi'n 0.43 = L/333 0.60 = L /240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cu (.Cll Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 1300 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC 42 = Dm-L, V = 6701, V design = 531.4 lhs Bending( +1: LC 112 = D +L, M = 16851 lbs -ft Deflection: LC 42 = Did. 51= 1241e06 lb-i-n2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead i, =live 8-snow w =wind T= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: LCC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. COMPANY PROJECT 11 I . WoodWorks® SOFTWARE FOS WOOD DESIGN June 24, 2010 12:41 b20 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1, Dead Full UDL 21.7 pif 2 j30 Live Full UDL 60.0 plf MAXIMUM REpCTIfMS (IhQ1 anti RFARINCZ I FN(±TNC (ini • l 0. 3'_5'4 Dead 46 46 Lie 105 105 Total 151 151 Hearing.: Load Comb #2 #2 Length. . 0.50* 0.50* *Min. bearing length rot beams is 112" for exterior supports Lumber - soft, D.Fir - L, No.2, 4x6" Self- weight of 4.57 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NOS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 9 Fv' = 180 fv /Fv' = 0.05 Bending( +) fb = 90 Fb' = 1170 fb /Fb' = 0.08 Live Defl'n 0.00 = <L/999 0.12 = L/360 0.02 Total Defi'n 0.00 <L/999 0.18 = L/240 0:02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +r,, V = 151, V design - 111 lbs Bending( +): LC #2 = D+h,, M = 132 lbs -ft Deflection: LC #2 s D +L EI= 78e06 lb -in2 Total Deflection = 1.501Dead Load Deflection) + Live Load Deflection: (D =dead L =live S =snow W =wind I= impact C= construction CLd =concentrated) (A1-1- LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 61 • . COMPANY PROJECT 111 t . WoodWorks® SOIIWARI MR WOOrl IIISIIIV dune 24, 2010 12:50 b30 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, pe, or plf ) . .. -. . Load Type Distribution Magnitude Location [it] Units .. .. . Start End Start End 1_j41 Dead Partial UD W.0 68'.0 2.00 4;06 pl...f. 2j41 Live Paiiia:1 0 10.0 100.0 2.0 4.06 pit 3,142 Dead Partial Up ' 722 71._.-2 0.9.0 2,0 p1E 4 142 Live Partial UD 106%2 106.2 0.00 2.00 Pie MAXIMUM REACTIONS Ilhgl Atiril RFARIII.G_J FNGTHS (int : , .. .. . „ , . , _ .._ .. ., . . , • . i • , „ . . . . . . . . , . , • . . • . - ., . . „. . • , . , . • , . . . . . . ,• . A - IV 4 Dead 154. 150 Live 209 263 , Total 364 353 Beating: E0.40 Comb 412 #2. Leneth 0.50 0.56" *Min. bearing length for beams iS 1/2" for-exterior supports Lumber-soft, D.Fir-L, No.2, 4x8" Self-weight of 6.03 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : triterion Analysis Value Design Value Analysis/Design. Shear. fv = 15 Fv' = 180 tviFv = 0,:.08; Bendingj.t) Lb = 140 Fla! - 1170 .f.b/FW = 6-12 Live Defl'n 0.00 = , <1.,/9,99 0.13 - L/360 0.03 Total Deflrh 0.0i- '1,/9:99 b.20' = L/240. ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Ctrt ti Co LC8 Fv' 180 1.00 1.0.0 1.00 - - - -, 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00. 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00. 1.00 - - - - 1.00' 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - 1.00 1.00 - 2 Shear : Lc 112 - 64-1„ v = 364, V design = 253 lba Bendingt+1: LC 02 = DU, M = 359 lbs Deflection: LC 112 = pi-L Et= 178e06 lb.in2 Total Deflection = 1.50(ptad Load Deflection) + Live Load Deflection. (D=dead L=live S=sn M=wind r=iMpact C=construction CLd=doncenttatea (All. LC's are listed in the Analysis output) Load coMbinations: ICC-113C DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 619 COMPANY PROJECT :". A 1 ll ' WoodWorks® ,• , SOFJWARE FOR WOOD DEVGN Dec. 15, 2010 11:03 b31 (citarr Lope()) Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf) lead Type Distribution Magnitude Location [ f t) Units .Stan t End, Start 'End . 1j65 'Dead Partial UD. 47.7 47.-.7 IL 0,0 .4.00' pif _ Live Partial UD 160.0 160.0 0.60 4.00 plf 3_128 Dead Partial 11D 47.7 47.7 4.50. 7.50 ,plf 4- J18 Live partial 06. 160.0, 160..0, 4..50. 7 plf 5_562 Dead Partial UD 47.7' 47.7 7.50 10,0'0 'elf 662 Live Partlal UD: 160.0 160.0 1..50' 19 Olt 77,j66 Dead Partial 111) 07.7 47.7' 4.00 4.50 - pit' 8 i:66 Live ,Pactial UD 160.0 160.0 4.00 4.50 ell MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • .• I ... . 7 • . , . . . ■ . ; . , . • 1 1 10' 1& ' Dead 277, 117 Live. 800 800 Total 1077 1077 Bearing: _ Load Comb 112 112 Length 0..56* 0.50'" *Min. bearing. length for beams is 1/2" for exteriorsupports Lumber-soft, D.Fir-L, No.2, 4x10" Self-weight of 7.69 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value AnalYsisifieSig Shear fk; = 42 Fv' = 180 fv/Fv' -= 40.23. , Bending (4.), Lb = 647 Fb' - 1080 fb/Fb' = 0.60 Live De fl 'n 0.10' ----' <L/999 0.33 = L/3.60 0. 29 Total Den ' n 0.15 = Laio 6.50 = L/240 XI. 3G ADDITIONAL DATA: FACTORS: Flu CD CM et CL CF MI Cr- Cfrt Ci Cn Let Fv' 1:80 1...00 1.0 1.00 - - - - 1.00 1. .00 1.00 Z , F)') 900 1.0.0 1 . DO 1.00 1.0.00 1.200 1.00 1.00 1.00 1.0o. - '2 Fcp' 625 - 1. 00 1. oo - - - - 1.00 1.00 - _ p' 1.6 million' 1.00 1.00 - - - - 100 1.00 - -2' Ende ' 0.513 million 1.,00 , 1.00 - - - - 1.00 1.00 - 2 Shear : LC 112. - D+1,; V = 1,071, V design = 911 lbs. Bending (+I : LC 112- = 0+1,, 71 -= 2693 lba- ft Deflec,tion: LC 02 = O+L El. 36906- lb Total Deflection = 1.5 Lead Deflection), + Live Lead Deflection. (0=dead L=11.ve Sr- W=wind 1=inipact C=constriletion CLd=deneentrated) (All LC''s are listed in the Analysis output) 'hoed cemeinetions: 'ICC-.IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 6119,1 - COMPANY PROJECT WoodWorks° SOFlWARE Mk WOOD DFSIGN June 24, 2010 12:42 b31 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 j65 Dead Partial UD 47.7 47.7 0.00 4.00 plf 2_j65 Live Partial UD 160.0 160.0 0.00 1.00 plf 3_j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4_j28 Live Partial UD 160.0 160.0 4.50 7.50 plf 5_162 Dead Partial UD 47.7 47.7 7.50 11.00 plf 6_j62 Live Partial UD 160.0 160.0 7.50 11.00 plf 7_j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 8_j63 Live Partial UI) 160.0 160.0 11.00 17.00 plf 9 j64 Dead Partial UD 47.7 47.7 17.00 20.00 plf 10_j64 Live Partial UD 160.0 160.0 17.00 20.00 plf 11_j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 12 166 Live Partial UD 160.0 160.0 4.00 4.50 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : Ip 2 Dead 619 6 ' Live 1600 1600 Total. 2219 2219 Bearing: Load Comb #2 #2 . Length 0.67 0.67, Glulam- Unbal., West Species, 24F -V4 DF, 5- 118x12" Self- weight of 14.16 plf included in loads; Lateral support: top= full, bottom= at supports; L Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Sheaf fv = 49 Fv' = 265 fv /Fv' = 0.18 Bending( +) fh = 1082 Fb' = 240D fb /Fb' = 0.45 Live Defl'n 0.43 = L/553 0.67 = L/360 0.65 Total Defl'n 0.69 = I. /350 1.00 = L/240 0.69 ADDITIONAL DATA: ,FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Ervin' 0.85 million 1.00 1.00 - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 2219, V design = 1997 lbs Bending(+): LC 42 -= D +L, M = 11095 lbs -ft Deflection: LC #2 = D +1. EI= 1328e06 Lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= couceutrated) (All Le's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSNAITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). G. )20 COMPANY PROJECT 4 till ® Ill I WO o d Wo r k s Jtnr 24 Dom 13 15 b34 soirwAar FOR WOOD DESIGN Design Check Calculation Sheet LOADS im.p.tyrpe) : , - 7. , r1.4 , u,r , .1.4. v...asw• L ,,_■,,-. 17.1 EL Ft 0,,I Olin es 0:64 ttctrs, ■ 5 TO.. el.,. 5 75 -,..7,, Fr , lz, 054. '44414 3 0 ,,, .h r", S., 4,60 131 .17 054, 1484 .1 .t. .st t 17,1 l,,,o rt 00 ;.•J: ,......7.9 ,,,„ ,,,,,, ,,, ,1 J .,1. 7.00 11.10 4740 1930t I:, ISO. Feint 110/ 11.0T 71, Irr ''' Tolac 10 1.26 0. 37,, Virr Po: ti, 17';!£-, .7,7 rmt.2 0. '0, .: 7,1,2 1 1670T Al 57.1 trIC5 1 :.,6: '''' tt, ' :;: - 0 ' td Mint ; 5 trrT. 1.: 2 117 t 1. Sr, 1.11.101 WI 5:0 . : 1,7.0 7.,,.. 1.0, .77 1T 0.0 .75 7151 01 7 .,,,, ( '101 1.10 r ., 1 tt C.. 5107171 .■` 7 , 4 • 0 4 •1,7, 1 .57 7 1.540 cl: Ezead r,,,Y a 1 45 .1. 4, , I . - .1.., ,5.0%.■ tl, 00_3 rr tCr* :---, • .11 06 Irc 2 . • r 5 77,66 1 pl.: 1-75s 1 ,7.7, TT :00, 71. 7,05 5.7 '11 20._41.1 10 ]',.:i 1-1 :•4 50 110, 115,71 7.00 .1.00 Of 37Y. 7 .c77,1 151 1 .,... 215.7 [7.0T 5. .11 - , . 66 :31 .A0. 6 r,r1, a 1,0 .110:15 110.0 . rr • .60 cl 1 /17111 De, .... 01 107.1 1.7 . 0.00 1,10 07 n_13_3 cp.r, ,,,:., 010 0 . 0 07:7.. .,...• 7 ... 110 2011 trt II, 3 0 1, 1,5.0 7,77 1,0 0,17 :1.04 7,1•I• 11,4. 0 .57.0 105,0 2,140 .15_145 0721 ¶'.- 01 '00.1 0110.1 0.05 7 .11, 050 .16,)32 14 5 r P1t ,111 01 .1 00144 5,13. 11.10 011 cl 104-1 4 7 . . • 1 000 109.1 1_0.. 7 u • -, _1.50 , £ 0 1 ra 5577.,,, 01 010.0 210,0 11 ST .4.70 517 Th.,,101 07,1 1.7,771 715 1, 1, -.40 0,50 CI 5 c0., 41 it,'. 01,1 ul 113 011 .1 ttt,.t., 2.1 0 3,50 trc 41 5r.r.1 rrrt 1: 0 00 4.T.= 415,4 '.011.0 s s.• 17.1, ;rt., 0;r:40: 1!0 :10011 105. 0.00 1.06 41. 13,3. 1,11 54514, lie 0 '.0 11.00 14, Pt 1102 1.1r. 5, 710 001.1 1 ,0-0 15.00 11700 ,47 1%111 32., 11101.: 000:.: 0.1 10110 20.50 rte i4 J61 1.11/ 00:0.0 Ur: 1010 013.0 05..1 ,0,...9 I. t ::'1'; 04041 F 13 .7.' . 4.05 U. F3... 10 00:101 0.871 1.1201 UT 0.0.: _.,7 , I: £5 0, LW, (0ts.77 VD 07.1 I, , 04.00 1.00 cs„ $1 ,e,, 1111.1 IV .f..1.1 1,1 . L0, , .,, ri , S T . . . 1 T lir. tr It . a 1 CC 2".0, ,7 5 .4 1 2.06 00.05 pl. 10 J 077a. 0ars.,71 LIT 41.1 OH! 1.66 1.00. rIt ST _II: t.06 4 :a,: T JP :II, :0,4 200 1.00. ET, 04,..111 LITTI 00:01.1 IT 00.5 1 t,.1011 '.70 *13 511,1 s LIT; 2 cr:111 Ur 114.0 11540 71..CA S-410 _ .17 = MAXIMUM REACTIONS (Ws) and-BEARING LENGTHS (In): _ . _ .. _ . - it.% r,..t„ ,,,,,.; 1145C 1:151 11,6 • 1.40.' L • i T1 T5T5, 5.71 5-1, Glulam-Bal., West Species, 24F-V8 DF, 5-118x22-1/2" Sell-rmghl of 2655 [111141341 in loads; Lateral supp44.14,1011,6000m5.005004. AnMySis vs. Allowable Stress (psi) and Deflection (in) .22,,, mi..; -er trartera itecalTs1, T.15. eTtrItil Tait, 0,s1Cat•00.•ton Tn.,. Tv 4 I ea to' - 2,1 11/05',' • 0.00 :4 0,1 f .10' ... 4.14 1,w, rt•: I •tt 5.10 . 01501 9101 - 13311 ir rr,r) 535)', 14 11 . 14166 1 AR - 1.1210 0,1 • ADDITIONAL DATA: r1.0115:41 In CD 551 , tt FL et 01 0 Cts4 Ds:•• CD' 451 Ese 105 ..15 1.5, 7.5. • • • - 140 EDO 1.00 60 1.10 1.006 0.211 1.00 1.10 1.00 4.0* 0 2 C 1.L11 F$111.1 1.05 0.10 . . . , 042 - . 011,3 5 :.), cr - 2011510-01, 1 • ttetet, V .I•H 47. = 11101 Its 1.1,...4i 1.0 4, = 07•4511.7.51, 1 = ,11. 17,-(4 4,777.7157.1 , . 77 0,171,51 ET= t 'I tr ecr ”,-.. 50711 71.1.7.7..cr = 1,501104.4 LL,..1 Cc I' 1.1 • Cr .s 1-..50 0,■16,11,1. I3-'001 L=177, ,..0077, ...0324 1•20,171 0=4.4.17101711. T2T 0 1051 1 1.1 are 11,401 .11 use Ar Ill,, I • 1.20I 10020111.13.50ar 14C-T= DESIGN NOTES: 1. 119410 5' etlf1011 104001U10000rikei knit, we ovn.0.0 f ur I...PO.... 2 Warn CctIga valuer rre fa rratenuiz r0010,04g le A1TO .17 2001 andit0rufartuirofo arrardance .0 4105140TC 3100,1-1993 3 GLUM: bed =actual breadths .1.15,010 4. (14‘.01 Boa. J. i•I Dion?, swf..?teD evordro to D. Doyeakm 0 NOS Clause Dt3 3 5 .-0 54DVIDVDDitsta cm sAtiDef rto ftippunken), resoirritn, COMPANY PROJECT 0 00,4114. , Ili Wood Works' SOFIVANIIOR tyoon Lew," June 24, 2010 12;49 b35 Design Check Calculation Sheet •siiee LOADS ( lbs, psf, or plf ) Load Type Di Magnitude :1.;,6,6a.tiPp ( f_t1 Unit Stair: - End Stare End, - - 1j21 Dead Partial ,Uif 120.2 120 .2 9 „so, .1 „so NI - 2j21. Live .Partlal U0 370„.0 370.0 " 0.59, 1 ..51): plt 359 Dea , , . Partial. DO 120,2 128,2 0,00 0 50 of 4359 Live Partial LID 378:0 370..0 "0.06 0 pit 5j Dead Partial tip 120.2 120.2 1A0 aAo pit "6 160 Li iie _ Partial WI 370.0 370 , 1.50 3.00 p16 ' -- ' MA ,114,•l" A I. -' - I 1,■••• A 11,111o, I 11■.1411,110,11 .1" i I , I . .• • '. ' . . , ••- -- t - ..• , • . . . , . , , •,. . ; . . • . . , - • , .. . . . - ,,... , . ..„. ,,, •.. - n. ' . ■ , ._, .. , .. . . , . . . ., • . . • • , . ..• . . , • , . . . . 1 , , , • . . . , , • • . . ' ' ' • ,, r t ,, ; . . ' ', . . , •• .,,, • „ . , . . , , t .. - , . . • , 1 , . ' . . • . . : . . ,, • • I• 31' D 188. 188 1.1ve 555 555 • "Total, 1413 ' Be in . Load Comb k2 11,2 Length 0.50' 0.50" °Min. bearing fengttifor beams is112""for exterior. snivel:la ' . Lumber n-ply, D.Fir-L, No.2, 2x8", 2-Plys Self-weight of 5.17 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis:vs. Allowable Stress (psi) and Deflection (ii) using NDS 2005 : . Criterion Analysis Value Design Value Anals14f0esion. Shear gy = 31-. Fv = 1p3 fV/Fir = 0..17' Bending (+1 ft? = 254 Fty. = 1090 fi.VE1.) = 0.-24 Live DeflYn 0.00 = c4/999 010 4. 1/360, 0.04 Total De.aen . 0.01 = 41190 0.15 = 1/240 0.04 . . ADDITIONAL DATA: SACT43E8 : r/ S CD cm, cl: CL Cf C to Cr Cfrt. Ci Cn LC1 , Si.' 180 1. 00 1. co 1.00 - - - - 1.00 1.00 1.00 2 M.+ 900 L.00 1.00. 1..do 1,000 1.20 1.00 1.130 1.00 1.00 - 2 'FO1.1 625 - 1.00 '1.00 - - - - 1.00 1,00. - - E. 1,6 million 1.00 1.00 - - - ,. 1.00 1.00 - 2 Satin' 0.58 mlillem 1.00 1.00 - - - - 1. 00 1.00 - 2 Shear : LC 112 - 04.1, V .. 743-, 'V design c.- 444 lbs Bendingo-) : IC 12 .. 0+1,, t.s. . 557 the-fl: De fiection : LC 112 - 0+1, Ell.. 76e06 lb-1n2/ply Total De tiection' - L50 (Dead Load Deflection 4-- lave Load Deflection. ID 1. S W 3r .C. ruction C Ld rated) ' S All 1.c.s are listed in the Analysis output) Load combinations: 10c-Iat DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT-UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded. Where beams are side-loaded, special fastening details may be required. 'Th COMPANY PROJECT ' 1 WoodWorks YMIWART IOW WOOD 111100: June 24, 2010 12:51 c2 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or Load Type Distribution Magnitude Location (ft) Units _Start End Start- End Dead Axial 1056 (Eccentricity = (L00 in) b1 Rf.Live Axial 2153 (Eccentricit - =. 0.00 in') MAXIMUM REACTIONS (lbs): 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 2 -Pays Self - weight of 3.41 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 0.00= 0.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion: Analysis Value Design Value Analysis /Design F�x;�al fc = 196' Cc' = 980 fc /Fc' = 0.20 Axial T3earinq fc = 196' Ec = 1694 fc /E'c* _ .0 .12 ADDITIONAL DATA: FACTORS F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LCD EC' 1300 1.15 1.00. 1.00 0. .50'6 1.10,0 - - 1.00 1.00 2 Fc'+ 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC 412 = D +L, P = 3236 lbs Kf- =•1.00 (D' =dead L =1i.ve S =snow G7 =wind 1 =imp'act C =Construction CLd= concentrated) (All IC's are listed in the Analysis 010t) Load' combinations: ICC -18C DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application, 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT II I WoodWorks® SOFTWARE FOR WOOD °MGM June 24, 2010 12:54 c12 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c24 Dead Axial 1478 (Eccentricity = 0.00 in) 2 Live Axial 4320 (Eccentricity = 0.00 in) 37b10 Dead Axial 4067 (Eccentricity = 0.00 in) 4 Live Axial 11291 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): -:.. y M ,� '- '- � -- i5 r f : ' . -...1. .Y. ; ;d:F , . ^ '..:- .-. =0` ... iii :':•v` • , , - % :' �:' ,4 , 4 ,� '( A, Gam, :.:., "x� ;,i . ^ -, s-- - �; ,... -;r r." - -i "-� ° � = ` r xs s „42-.,,::.. .:1.. rni e ter-4,:z • .. � a^ ?4^ 0' 8' Timber - soft, D.Fir - L, No.1, 6x6” Self- weight of 7.19 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : ' Criterion Analysis Value Design Value Analysis /Design Axial fc = 701 Fc' = 820 fc /Fc' = 0.86 Axial Bearing fc = 701 . Fc* = 1000 fc /Fc* = 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1000 1.00 1.00 1.00 0.820 1.000 - - 1.00 1.00 2 Fc* 1000 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 21214 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) . (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. • Gpi..9 COMPANY PROJECT '%1 WoodWorks® i'011 WARE Mk WOOD D! V■ON June 24, 2010 12:53 c23 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [rat) Units Start End Start End 1 b9 Dead Axial 149.8 (Eccentricity =` 040 in) '2 b9 Live Axial 4320 (Eccentxa:Ci.Gy 0.0.0 in) MAXIMUM REACTIONS (Ibs): • 9 , Lumber Post, Hem -Fir, No.2, 4x6" Self- weight of 3.98 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design. Value Analysis /Design Axial 1:c = 303 Fe' = 3'79 fc /l'c' = 0'.90 Axia.t Bearing fc 303 Fe 1430 fc /Fc'' = ADDITIONAL DATA: FACTORS: F/E CD CM Ct 'CL /CP CF Cfu Cr Cfrt Ci LCii Fc' 1300 1.00 1.00 1.00 0:265 1.100 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.100 - - 1-.00 1.00 2 Axial : LC 42: = D +L, P = 5B3'A lbs (D =dead Live 'S =s'now W =wind .L= impact C =construction CTd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT I I WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:54 c26 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units . Start End Start End 1 d23 Dead Axial 1478 (Eccentricity = 0.011 in) 2_c23 Live Axial 4320 (Eccentricity = 0.00 in), 3 Dead Axial 1180 (Eccentricity = 0.00 in) 4 Live Axial 3436 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): • "�"«y' : Y. ... x^-. ,T�..c ✓a:.. w.t; rr_ •t . r ' • ' : i+... «- ..'^y'' " � ! �L: �:.YC �..m.�� � l '. * S St �++ "Z c S S. j. '.'�r ' •. "`vYk -a" S.r. :'fY: '��a�{ m` v -s.. tp,. r. I',s. ,.. " Ar w , .,,..° �: =ter -?+- a ,� a " .. . J r . ._`7'- ✓ : +� `�. i . p .. _ 0' 8' Timber - soft, Hem - Fir, No.2, 6x6" Self- weight of 6.25 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : • Criterion Analysis Value Design Value Analysis /Design . Axial fc = 346 Fc' = 492 fc /Fct = 0.70 Axial Bearing fc = 346 Fc *_= 575 fc /Fc* = 0.60 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.00 1.00 1.00 0.856 1.000 - - 1.00 1.00 2 Fc* 575 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC 1)2 = D +L, P = 10465 lbs (D =dead L =live S =snow W =wind I= impact C =construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 6 COMPANY PROJECT I' Wood Works® .( HWAAI ION COOn DISII:S' June 24, 2010 12:52 c29 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distrlbut:ion Magnitude Location [fti Units Start End Start End 1 b13 Dead Axis -1 3033 ( Eccentricity = 0.00 in) 2�b13 Rf.Live Axial 5052 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): C; - d 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 3 -Plys Self - weight of 5.11 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 328 Fe' _ '439 fc /Fc' = 0.75 Axial Bearing fc = 328 Fc = 1644 fc /Fc'` _= 0':20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CE CF Cfu Cr Cfit Ca LCil Fc' 1300 1.15 1.0.0 1.00 0.267 1.100 - - 1.00 1 2 Fcl 1300 1.15 1:00 1.00 - 1.100 = - 1.00 1.00 2 Axial : LC 02 _ D +L, P = 8126 lbs Kf - 0.60 (D =dead L =live S =snow W =wind i= impact C= construction CLd =concentrated) (All LG's are listed in the Analysis output) Load combinations: 1CC -.IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. (i11 COMPANY PROJECT", III: Wood Works® •SCHIWARI !OW W000 OLSIGN Amp 24., 2010 12:55 c31 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psi, or plf) Load Type Distribution Magnitude Location at! Units Start End Start. End 1_b13 Dead Axial 2561 (Eccentricity = 'fl)13 RfLive. Axial 359.9, tECCentridity = 0,110 1A1 MAXIMUM REACTIONS (lbs): • . . , 0 8' Lumber n-ply, Hem-Fir, No.2, 2x4", 3-Plys Self-weight of 3.25 plf included in loads; Pinned base; Loadface = depth(d); Built-up fastener nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value, .AnalysisIDesign Axial fa = 393 Fc? - 443 f = 0.89 Axial Dealing fc = 393 .Fc* 1114 fc/Fc' = - - ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LCII Fc' 1300 1.15 1.00 Lob 0.258 1.150, = - 1,00 1.00 2 Fc* 1300 1.15 I00 1.00 - 1.150 - - 1.00 1.00 2 LC 112 = D+L, P = 6186' lbs Kf = 0.60 (1.1=dead i=live S=SnOW W=wind 1-impact C=conStruction CLd=concentrated) (M1 LC's Are listed in the AhalYsiS,outp0t) Lbad. combinations.: DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. G .10 - I/ Of COMPANY PROJECT WoodWorks® SOfl WAkf Wk wOon June. 24, 2010.12:54 c39 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start: End: , 1 b21 Dead Axial 26,7 (Eccent=rici•t.y = (1.00 in) 2 b21. Live Axial. 822 (Eccentricity t 0,00 in) MAXIMUM REACTIONS (lbs): 0' 9' Lumber n -ply, Hem -Fir, No.2, 2x4 ", 2 -Plys Self- weight of 2.17 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener. nails; Ke x Lb: 1.00 x 9.00= 9.00 [t]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005'_ Criterion Analysis Value Design Value Analysis /Design Axial fc = 106 Fd' = 171 fc/Fc' a (1.62 Axial Bearing fc = 106• Pc' = 1495 Lc /FCC = 0.07 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr C£rt Ci LC# Fc' 1300 1.00 1.60 1. -00 0.114 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.0o 1.00 - 1.150 - - 1:00 1.00 2 Axial LC 112 = DIL, P = 1108, lbs K£ = 0.60 CD-dead t. =five S =snow - W =wind I =impact C= construction CLd= cdncenttated) (All LC-'s are listed in the Analysis output) Load combinations: 1CC -1BC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. 6129 COMPANY PROJECT WoodWorks® 40E111;1104 011 IYOnn Drsupl June 24,,2010 12:52 c55 Design Check Calculation Sheet Slier 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude - Location Mt Units Start End Start End 1 Dead ' Axial 154 (Eccentricity - '0.00 i:n), 2�b30 Live .Axial 202 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 8' Lumber Post, Hem -Fir, No.2, 4x4" Self - weight of 2.53 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS.2005 : Criterion. Analysis Value besign Va1ue Analy /Desin Axial fc = 31 Pc' = 470 fc /Fc' = 0.07 Axi`a1 Bea.riny . lc = 31_ Fc* _ l4. 5 fc /Fc4' = 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CCs CF Cfu Cr Cfr,t Ci LClI Fc' 1300 1.00 1.00 1.00 0.315 1.150 -- - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00' 1.00 2 Axial : LC 'ill = D -L, P = 384 labs (D =dead L =live S =snow W =wind i =impact C =construction. CLd= concentrated) (All LC' are listed in the Analy output_ Load Egmbiria hated ICC- .I-F1C DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. ja • _i By: ANIL DATE G ao\O JoBNo: cui Or PROJECT: RE: Beairn.$ _ uJI Orcirgi. geadi COS. CI Li bearn Lc) > Lk.r.41,k S . 4) 3 4 , 2O3 0 w 1 hi 2 \Oe041r1 1 3 aoaR 0 bed:rfl I Wog ACY6 aoLi Ui beasm watv6 aoi , aciPt ao‘T: 0 11- Snce wicr >'> t5rn( re-i0 wirck uU e, e-ot LAU\ VeCk 0 Er 0 Z ri 6 I- CC 0 ;3 1. 0) , 4 C1')) COMPANY PROJECT dl WoodWorks° S017WARF FOR WOOD OFSIO.V June 24, 2010 13:07 b6 LC1 Design Check Calculation Sheet Sizer 7,1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ftl Units Start End Sl :art End 1 c44 Dead Point 444 2 -.00 lbs 2 Snow Point 64i 2,00 Lbs 3w44 Dead Partial CID 389.2 389.2 0.00 2.00 plf 4 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 Dead Point 444 5.00 lbs 6_e45 Snow Point 647 5.00 lbs 1 w45 Dead Partial Un 389.2 309.2 5.00 6.00 plf 8 Snow Partial UD 431.2 131,2 5.00 6.00 plf 9j25 Dead Full UDL 120.2 plf 10_j25 Live Full_ UDL, 370.0 plf P]IND1 Wind Point 800 2.00 lbs WIND2 Wind Point -910 5.00 lbs MAXIMUM REACTIONS (Ibsl,and BEARING LENGTHS (inn': - f • p -� .,-._ Dead ' ]436 1389' ' Live 2089 1803 Total 3525' 3192 ' Dearing: -- Load Comb #4 93 Length 1.88 - - 1.70. Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 Criterion Analysis Vpiuc Oon.Sgn Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Pb' = 1035 fb /Pb' = 0.78 ' Live Defl'n 0.03 = <L/999 (].20 = L/360 0'.15 Di a_I De.t.l..'r 04.6 = <L/999 0.30 = L/240 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL Ci Cfu Cr Cfrt Ci Cn LC# Elf' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'i- 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 1'cp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - 5' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 1 Emi-n' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 4 Shear . LC 43 = DI.75(L +S), V = 3239, V design = 2190 lbs Deriding ( +I: LC #3 = DI.75(Li -S), M = 4247 Lbs -ft Deflection: LC 44 = D+.75(L+S+W) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D-dead L =live S =snow W =wind 1= impact C= construction CLd= concentrated) (Al] LC's are listed in the Analysis output) Load combination::: ICC -IBC DESIGN NOTES: • 1. Please verify that the default deflection limits are appropriate for your application, 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 6-132___ COMPANY PROJECT I _ WoodWorks® SOFTIV41F FOR 11000 VISION June 24, 2010 13:07 bO LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units . Start. End Start End 1 c44 Dead Point 444 2.00 lbs 2 Snow Point 647 2.00 lbs 37'444 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 w44 Snow Partial UD 431.2 431.2 0.00 2.00 pLf 5 Dead Point 444 5.00 lbs 6 Snow Point'. 647 5.00 lbs 77445 Dead Partial UD 389.2 389.2 .5.00 6.00 plf 8_w45 Snow Partial SD 431.2 431.2 5.00 6.00 plf 9 325 Dead Full UUL 120.2 plf 10 _j25 Live Pull UUL 370.0 plf WIND1 Wind Point -B00 2.00 lbs 415002 Wind Point 910 5.00 lbs MAXIMUM REACTIONS (Ibsl -and BEARING l LENGTHS int i o Dead 1436 1389 Live 1303 2172 Total 3239 3561 Bearing: Load Comb 93 94 Length 1.73 1.90 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending(+) fb - 805 Fb' _ ]035 fb /Fb' v 0.78 Live Oef.I.'n 0.03 = <L/999 0.20 = L/360 0.14 Total Della 0.06 = <L/999 0.30 = 1/240 0.20 ADDITIONAL DATA: FP.CTOIIS: F/E CO CM Ct CL CF Cfu Cr. Cfrt Ci Cn LC)) Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fh'-+ 900 1.15 1.00 .1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fop' 62.5 - 1.00 1:.00 - - - - 1.00 1.00 - - 6' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - :3 Shear : LC 1(3 = D-+,75(L +S), V = 3239, V design - 2190 lbs Bending( +): LC 43 = Dr.75(L+S), M = 4247 lbs -Lt Deflection: LC 93 = 0 +.75(L -+S) BI= 285e06 lb -in2 /ply Total. Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= censtr.uction CLd= concentrated) (All LC's are listed in the Analysis output) Load cwubinalious: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. (7)33 COMPANY PROJECT I IIII i I WoodWorks® slFI WA NC rOH WOOD DI5101 June 24, 2010 13:09 b14 LC1 Design Check Calculation Sheet Sizer 7,1 LOADS ( lbs, psf, or pit ) : Load Type Distribution Magnitude Location (ft) 'Units Start End Stott_ ad. , 1 w6N Dead Farhat Un 221.7 221.7 0.00 19.00" plf 2 Live Partial UD 350.0 350.0 9.00 10.50 plf 3c19 Dead Point 357 9.00 lbs 4 c19 Live Point 1050 9.00 lbs c20 Dead Point: 357 3.00 lbs 6 - C20 Live Point 1050 3.00 lbs 7 wb6 Dead Partial UU 317.7 317.7 0.00 1.50 plf 0 _w 6fi Live Partial 1IU 350.0 350.0 0.00 1.50 pit 9 Dead Point 165 10.511 lbs 171 Snow Point 225 10.30 lbs 11 Dead Point 165 1.50 lbs 12 Snow Point 225 1.50 lbs 13 head Partial UD 221.7 221,7 1.50 3.00 plf 147w67 Live Partial UD 350.0 350,0 1.50 3.00 pit 157,69 Dead Partial 11E1 317.7 317.7 10.50 12.00 plf 16 w69 Live Partial UD 350.0 350.0 10.50 12.00 plf 17336 Dead Full 11DL 113.7 plf 10]36 Live rule UDL 350.0 Of 19 j43 Dead Partial UD 17.0 17.0 0.00 0.50 OA 20 143 Live Partial UD 23.0 25.0 0.00 '0.50 plf 21_j44 Dead Partial UD 17.0 17,0 0.50 1.50 plf 22 j44 1.300 Partial UD ' 25.0 25.0 0.50 1.50 plf 23 j45 Dead Partial UD 17•.0 17.0 1.50 3.00 pll 24 Live Partial UD 25.0 25.0, 1.50 '3.00 plf '25 j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 2E j46 True Partial UD 25.0 25.0' 10,50 ].2-00 pit 27 j75 Dead Partial UD 17,0 17.0 3.00 9.00 plf '20,j70 Live Partial UD 1 25.0 25.0 3.00 9.00 plf 29_111 Dead Partial UD 17.n 17;0 9.00 .10.511 pif 30`171 Live Partial UD 25.0 21.0 9 00 10.51 pif WIND1 Wind Point 3500 3.00 lbs WIND2 Wind Point -3040 9.00 lbs wind3 Wind Point -3620 0.00 lbs winds Wind Point , 3570 12.00 lbs MAXIMUM REACTIONS(lbs) and BEARING LENGTHS_(in) : --.. r.e - ? -mac_ --. -°^ --w.�. •.4... ...:, < -. ,-. - - a?! -7.,-,....4", _ 1%. -` . aa' a°° a c ' '` ` = =:,- -,.><' ' - 'c `' Yom w .: ."'�'+e.di^. :n27.,i ra1"_*m' E' 1 . - c� . "r - - ...a..s+ '..L... . 5..=- =,i- -- " 121 - Dead 2207 2207 Live 4350 4350 Uplift 199 479 Total 6557 6557 Gearing: Load Comb 42 42 t:efrgtli 1,34 _ 2.34 LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight of 15,31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Qeaign- Shear fv = 153 Fe'- = 310 fv /Fe' a- 0.51 Bending(*) fb = 1735 Fb' = 2325 fb o 0, Live Defl'n 0.25 = L /573 0.40 = L/360 0.63 Total Defl'n 0.42 = 1/343 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM CL CL CV Cfu Cr Cfr'_ Ci Cn LCI Fr' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 PU'+ 2325 i.00 - 1.00 1.000 1.00 - 1.00 1.60 - - 2 lop' 000 - - 1.00 - - - - 1.00 - - - 1' 1.5 million - 1.00 - - - - 1.00 - - . Isis' 0.00 million - 1.00 - - - - 1.00 - - 2 Shear : LC 02 = OIL, V = 5557, V design = 5170 lbs Bending(,): LC '42 = D +L, M = 16527 lbs-ft Deflec Lion: I,C 112 = DtL E1= 1241e06 lb -in2 . Total Deflection = 1.50(Dead Load Deflection) -r- Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= conci'ntrated) (All LC's are listed in the Analysis output) Load combinations: FCC -IBC • DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only, For final member design contact your local SCL manufacturer, 3, Size factors vary from one manufacturer to another for SCL materials, They can be changed in the database editor. 6 3(4 COMPANY PROJECT WoodWorks® SOP lWagi rue WOOD oniGry June 24. 2010 13:09 014 LC2 Design Check Calculation Sheet Sizer 7,1 LOADS I lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Sto cod Start End 1 560 Dead Partial UD 221.7 221;7 9.00 10.50 pit 27W60 Live Partial UD 350.0 350.0 9.00 10.50 plf 3 Dead Point 357 9.00 Ihs 4 - '019 Live Point 1050 9.00 lhs 57 Dead Point: 357 3.00 lbs 6020 Live Point 1550 3.00 lhs 7566 Dead Partial UD 317.'7 317.'7 0.00 1.50 plf t3 _ w66 Love Partial UD 350.0 350.0 0.00 1.50 plf 9 Dead Point 165 10.50 lbs 10 064 insw Point 225 10.50 lbs 11 -. 065 Dead Point 165 1.50 lbs 12 : c65 Snow Point 225 1.50 lbs 13 567 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14 Love Partial UD 350.0 350.0 1. 3.00 plf 15M69 Dead Partial UD 317.1 317.7 10.50 12 -00 plf 16569 Live Partial UD 350.0 350.0 10.S0 12.00 plf 174j36 Dead Full UDL 113.7 pit 1836 Live Full UDL 350.0 plf 19 j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20 Live Partial UD 25.0 25.0 0.00 0.50 plt 21 Dead Partial lID 17.0 17,0 0.50 1.50 plf 224144 Live Partial 00 25.0 25.0 0.50 1.50 plf 23745 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24j45 Live Partial UD 25.0 21.( 1.50 3.00 plf 25_j96 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26_j46 Live Partial UD 25 -0 25:0 10.50 12.00 elf 2 170 Dead Partial UD 17.0 17:0 3;00 9.00 plf 28 770 Live Partial UD 25.0 25.0 3.00 9.00 plf 7.9 X71 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30 377 Live Partial DD 25.0 25.0 9.00 10.50 plf 51501 Wind Point -3560 3.00 lbs 51502 Wind Point 3640 9.00 lbs 5i093 Wind Point 3620 0.00 lbs Wiut5 wind. Yol.nt -3570 12.00 lbs . MAXIMUM REACTIONS -(Ibs) and BEARING LENGTHS (in) : Li �„ f - r, t,�:�r ..- rt ` "*' �tiy� 8 "„ �� � ,,,..r ;+ ti _ ',°' , .. - ' - , -_�• .;+ f. I a 12) Dead 2207 2207 Live 4826 1011 Total 7033 7019 Bearing: Load Comb 54 64 Lendch 2.51 2.51 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self - weight of 15,31 plf included in loads; Lateral support: lop= full, bottom= at supports, Analysis vs. Allowable Stress (psi) and Deflection (in) using NOS 2005 : Criterion Analysis Value Maslen Value lulalvsi.a /Design Shear ivrr 150 Pa' a 310 fv /tv' = - 9751 - Bending(r) fb : 1735 Fb' a 2325 rh /Fh' = 005 Live DCfl'n 0.25 a L/573 0.40 n L/360 0.63 Total Dafl'n 0.42 ■ L/343 0.60 .. I./240 . '0.70 • ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Cl Cn LCD 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fe'+ 2325 1.00 - 1.011 1.000 1.00 - 1.00 1.00 - - 2 Fro' 000 - - 1.00 - - - - 1.00 - - - 0' 1.5 million - 1.00 - - - - 1.00 - - 2 Egan• 0,50 million - 1.00 - - _ - 1.00 - 2 Shear : LC 112 = DIL, V = 6557, V design = 5170 lbs • Heading( ,-): 1.0 2 = Dal., M = 16527 lhs -ft Deflection: LC 112 = D>L E1= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D - dead L - Livo 0 - snow W -wind 1= irnp,"ict C= construction CLd= concentrated) (All LC's are listed in the AOaiysio output) Load combinations: ICC -TIC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your appltcalion, 2. SCL -SEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor, COMPANY PROJECT 1 WoodWorks® VW! vnr J 1OM wool) Ot oca June 24. 2010 13:11 b13 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft:) Units Start End Start End 1,145 Dead Partial UD 519.0 519.0- 0.00. 3.00 pit ' 2%55 Snow Partial UD 505.0 505.0 0.00 3.00 pit 37 Dead Point 217 5.50 Lbs 4 Live Point 66B 5.50 lbs 5 Dead Point 515 5.00 lbs 6=c67 Snow Point 775 5;00 lbs 7 e613 Dead Point 573 3.00 Lbs 5 c68 Snow Point 942 3.00 lbs 9 w59 Dead Partial SD 593.7 593.7 5;00 8.00 p10 10 w59 Sncw Partial UD 735.0 735.0 5.00 8.00 pit 11,..j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12 j37 In ve Partial UD 310.0 310.0 6.50- 8.00 pit 1fj38 Dead Partial UD 81.2 81.2 3.50 6.50 ptt 34_j313 Live Partial UD 250.0 250.0 3.50 0'.50 pit 15 j39 Dead Partial UD 22.7 22.7 0.00 3'.50 pit 16pj39 Live Partial UD 70.0 70.0 0.00 3.50 pIf 1 615 Dead Point 126 3.50 lbs - 1115 Live Point 3139 3:50 Lbs . 19 Dead Point 221 6.50 lbs 20 Live Point 693 6.50 lbs 411 Wind Point 6590 0.00 lbS 142 Wind Point -6590 3.00' lbs 03 Wird Point 6590 5.00 lbs W4 Wird Point -6590 0.00 Las MAXIMUM RFACT1ONS_JI.hs) aril BEARING I FNGTHS (iril ; - +..iC}'i`�.' --. � -..:7 4 _ - ; ^.rt - '''''''-‘,-'1":"....:;-:.-.. .:.` icy :�', p w= ' . � i-,�:e +> 1:";; . - _ '4+11 '.s�%� 3e1s ""r ^use" &' ' ;-..i a'. =-. _ --' - : -�.:., :.:. r • �-*,.• tom^ - „...a.......^-^ , . "R, . - * --,,. ,.... ,,, '""F. " : ". F :- ....''' ' 1 .t_a.` ► �•_ r - k ..,. - �.,pA. .�- °"ea*.,C" '` _ G,.. , '. - 'i:, �• � ,� Oi ,... `- ,. -; -. "G . ' .c+ "a.._. ; -.L.'"‘,..;:-;..."7".• 1 + ae-" !1 _ ' ;fps- +art -7.-"t2,-."+"++ra�Y°' x - ".ma . , ' - ' a sT, ' ,wit:. ...3 S ice U .�f' � *r .-: ,'7 - ----e,....;,-. •` ` vrC ^ - - _-" " 0 - Yam -` '" VZ I 0' '81 Dead 2561 3033' Live 6406 3789 Uplift 31198 Total 8968 6822 Bearing: Load Comb 54 53 Length 3.20 2-4 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15,31 plf included in loads; Lateral support. lops full, button= at supports; Analysis vs. A llowable Stress (psi) and Deflection (in) using NOS 2005 C Ana Lysis_Vniuo. Des Value Analyysis /U0"siyn - Shear iv a- 157 Fv' _- 356 fv /Ev' = 0i44 Beading( +) fb a 1295 Fb' a fb /Fb' = 0,48 Live Defl'n 0.06 . <L/999 0.27 a L/360 0.24 , TotaL DeEl'n 0.14 = L /600 0.40 a L/240 0135 ADDITIONAL DATA: FACTORS. F/E CD CM Ct CL CV Cfu Cr CC_t Ci Cn LCS Fv' 310 1.15 - 1.00 - - - 1.00 - 1.00 3 Fe', 2325 1.15 - 1.00 1.000 LOU - 1.00 1.00 - - 3 Fop 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Ervin' 0.50 million - 1.00 - - - - 1.00 - - 3 Shear : LC 113 = Di-.75(Li S) , V = 6522, '5 design = 5022 Ibs Bending (+-): LC 03 = D +,75(L +S Ti = 12340 lbs Deflection: LC 03 - D +.75 (1, +St EI= 12 -11enL 71 - in2 1l) De 010,;L inn = 1.50(Dead Load Deflection) r Live load Dei I.e. (D =dead L =live =snow W =w ud 1=!mpact C - canstructiou CLd= concentrated) !All. LC's are listed in tha Analysis output) Load combinations: ICC -IDC DESIGN NOTES: . 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL - BEAMS (Structural Composite Lumber) the attached SCL seteclion is for preliminary design only, For final member design contact your local SCL manufacturer 3, Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. (1 32 7 COMPANY PROJECT It WoodWorks© SOH IVA FCtmr woue Drs,Gi June 24, 2010 13 11 b13 LC2 Design Check Calculation Sheet Sizer 7,1 LOADS I tbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End It w58 Dead Pail :1al UD 519.0 519;0 0.00 3.00 plf 2 Snow PaILJal UD 505.0 515,0 0,00 3.00 plf 3 - r40 Dead Point 217 5,50 lbs 4 Live Point 668 5.50 lbs 5 Dead Point 516 5.00 lbs 677:67 Snow Point 778 5,00 166 7'_c68 Dead Point 572 3,00 lbs 9 Snow Point 992 3,00 los 9 Dead Partial UD 593.7 593.' 5,00 0.00 plf Ili w59 Snow Partial UD 735.0 735.0 5.00 8,00 pLf 1 137 Dead Partial UD 1011.7 100.7 0.50 6.00 plf 12_337 Live Partial UD 3111.0 710.0 6.50 9;00 plf 13_336 Dead Partial 017 81.2 81.2 3,50 0,50 plf i4 Live Partial_ UD 250.0 250.0 3.10 6.50 plf 15 Dead Partial UD 22.7 22.) 0.00 3.50 pl] 16j39 Live Partial UD 70.0 70.0 0.00 3.50 pit 17 b15 Dead Point 126 7.50 lbs 18 Live Point 389 3.50 lbs 19 Dead Point 225 6,50 lbs 20 Live Point 691 6.50 lbs Ill Winn Point -6590 0.00 lbs W2 'Wind Point 6590 3.00 lbs W3 Wind Point -6590 5.00 lbs W4 Wind Point 6590 0.00 ihs MAXIMUM REACTIONS fibs) and BEARING; LENGTHS (in)-:- ' -^, --- : fir,`.,- 'tea. ' . %3-,= i- �►...- V& i.- -' t ea r ;r q. ' af ' ° � !� „ +d .:-- =: -- •.:n. - -! r-"4�,c sw.f#f�y"`i . 'w s'a:•o.E ; +�, - ems . • . L - ' ' "" - °z r �-...t....."0,.,' ' .... ...0 ,.-.. "t`.. ? • 1 -.. - .,1 '* ,y t Y 'rs -`r'a? i=".. � a tZ w'- . ' ,::: �- G -wr - ,.: -."�^ -' °^s-- �-' • :'? ",+ Sur ..- ms P► , w... ^• ,nr. ._." ., 4",,.. - 'A^ ..-z - ,...• ..• . - I • 2:' o. r e x LS Dead 2561 3033 Livc 2699 7496 Uplift 3301 Total S261 10529 Dea nq: Load Comb 63 #4 Length 1.80 3.76 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self - weight of 15,31 plf included in loads; Lateral support top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 Crttexfon Aria Vl iiva Deal an Value Anal.ysie /UCSirin Shear tv = 157 Fe' 356 fv /Fv' = 0.44 Bending(r) fb = 1295 Fb' = 2074 fb /Fb' = 0.48 < Live Dell's 0.06 = <L/999 0.27 = L /360 0.24 Total Defl'n 0.14 = L /690 0.40 = 1./240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CH Ct CL, CV CFI, Cr trot CI Cn LO tv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fop' 800 - - 1.00 - - - - 1.00 .- - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emir.' 5.00 million - 1.00 - - - - 1.00 - - 3 Shear : LC 63 - D�.75(1. +5), V - 6622, V design = 5122 lbs Bending(,): LC 113 = D +.75(L +S), M - 12340 lbs - -ft Deflection: LC #3 = 01.7511,1S) El= 1241e01 lb -in2 'total Deflection = 1.50(Dead Loaa Deflection) , Live Lead Dci'io tion. (D =dead L =,Live S=snow F1 =wind I= impact C= construction Cl.d =concentrated) (All LC's are listed in the Analysis output) Load combinations. 1CC -iBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber) the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3, Size factors vary from one manufacturer to another for SCL materials, They can be charged in the database editor, \_'-:' A2/ COMPANY PROJECT di %VoodWorks° we2a 2010 131 33331 lCl 500TWARe FOR wool) COSIGN Design Check Calculation Sheet seer U, LOADS nea. pot, or pill 3 );ad ,F. 073014.1.26:_, II .5I111id. .5043305 1 Va14a 5•.415 0.A • i ' :e, ,.., 1 11 .00 3.99 G“. i s - ,;1,1 US - 5,0 :1.0 0.06 - .1,? 0,20 06,3, 11, 50735 E:/.1 1 .50 1 0 3 0 _ .1 1.a S651. Cz._t-: J_ 7, o :ot.I 13.00 1 5 tali t .10153 99x11 11.2 11.5 l' . 11,R 1, 4 :16 '05301 E 0.310 17.10 162 - I*e,d 5.,:101 0�J 1.5 11.1 11.'1, 50 1'•'c- +al'o r..: , 0D 7 331.9 211.: 12.00 79'../3 :0l - _ _ - r.,1, _ _ CB.i 9.126 .:-3-f, 1,00 1 - - =114 - 1psv aI < '0� J '.. - - t0 1.50 RIC D2a1 3,11 1 6:1. 5 633.1 _- .Co 0, 0 - J :0 .• 32 01,0 1 5+12 1 JO 56 - :.1 1,01 ..1 7 j1 0+.3 n, 1' r J1 uG 14 7 ,,4 .00 - r!: '-, -V.4 E: 1410 ie :1131 12,33 :65.0 1,5 60,1, c r - .1 - .M , Of x 21 Live 61,111 :P.1 101.5 .51.4 - 51_ 16)66 L.• Finial :IV 10. :30.0 G ::: :: 05.15 Pe: ' VD 10).1 94 5145 P.3232.1 IT 7 000.0 _ p5,] .11'21. 116 - F.1 55,5. - l) .1 - 13. 0131 - all. UO . 1-0:_ - 1t 19 4t.• - 1 CO 1 016 - c 1..: J_1 60.44 - L1D u.3 .50 1 • .Oe ' 134. 11 C V !11 :. ),< - 1 , 11 3s - .55 5 6.4 Far 21 2 - 1.0.- ]c .06 , : 3 _, ]5 105 E.. :11.0.1 ! 111,4 1,111. 1 F -= 5141 ' . 0, 0,5 1,,00 F,. 1 5 Li 111 03 6.7 £5,,, : 0,33 111 00 110.3 100. 9 5 . 0 3 9 . 3 0 3.3 32 L[v. 16:3:..1 1 - 1 - _ Fr LiNe =:51a: 110 . 030 03331 -3C. .:R 160 R2.5. E37 :1] 17 1.00 1..20 1;,. 33146 11,11) 13.j5 ' 3 0`=x 3a] 611 1:C ,,t Ii.00 :0.91 1 t w C: L1 1 53 : 1, D • }el 00 111.) 1 3-x.0 '.IL 30. 1 +1 5 " 5 d:1 :'. , 1 C1 1.1E. 033. IE,j55 L1+ JD 110, 3 Ol 10.0 4.4.:43 ' 39_71 0 6 3-;3 24311 L- 10., 0.33 i1 _ _ . 06.15 ' 223,91 1 210.0 235.9 1 n _� v - 50.15 261 .. -129 W ,dial 010 , 70,„5 = I . • to ^ 1 111 131_1 1 e: . 0500 - _ .. ..-- 5.00 f I1 e;, rit 3 1 ,- _ 111. n .7. 0.01, 51.1 ; .: u40 a a - : _ _1 = - ;, 0.513 Loa p!: 1 '4 -13 LIT% 09613,1 3.:9 11090 10.6 4: 2. 9 09: 114 4:1 t <1 n, - - 0 -X40 VI -_- 140 1 L :: 3 O Y 00, 1. 5 50 11.00 1310 ``I 112 1,11, - ca 0.051 _ 1 !'L Grew .,- 1430 Y0 - 11-7 MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS(in): u.= IZt93 0112 i ti/p 1)011 ` ._57 11, 0 11 ti •i 459ich. 5.11 - 1_11 Glulam -Bal., West Species, 24F -V$ OF, 5- 118x22 -112" 5516weighl 012655 p11 inc/0.0 M bark: lateral suppal' IW' 631 b401.5. al 55590415, Analysis vs. Allowable Stress (psi) and Deflection'Clit),,,.M rrestrase 011,5.0050 1 :Alto 15.00,, Y17 0x,413, t.yn,,,P - ,11p41t l0: re.• . Jas 013101" . 0,00 So...V.41.1 L 4 ^ :70 0"9• - ,000 5)61-.1• /1,3,1 Fls 0 .0 'S. 0110. 0.41 . 1.1 d,, 1,.311 0.41.1, 0.41 .- 1,0300 .1_00 . 13_,0 0.43 ADDITIONAL DATA: 10613155: i CI 5, Ct Ct. tI 1113 Cr Cl: ::0551 330 IX.t _ i. V 1.300 S.M 145 1 x015• ` 1nc 3.50 _ - _ 6 21131A i9' 4. F1 1 Fl . 11155 3.05 IPM ■ - - _. _. - - - _ = 0 =.l ° 1,51 01- C4.: , _ _- __ C.40n0t,02 1 GLS- oalCssls I .1 e - -- 11. - e .:31, .ucr._ 1.123 0 00011004,H1'0'160 DESIGN NOTES: 1.Please 1,1155 Nal the 0,3, W deledion 11,041 ate NA/31/1332 rt, 5 v aptd,at:a, 2 993,3035 21.3.5307n 2-21336, are ,es e for m.,l.,ials unh .,0 1m19 AITC 117 - X101 and m xuilam,M 5 aro44arcn 3.366 ANCIi1lTT. 1150 1.112257 3:6L011AM:OO10, eitud bt-iOJ.. edla000003, 4 Glu Beans shall be Ialerally sup1aled a.c btm ld01g l0 11e Fvonsions 13 NOS Clause 333. 5 GLULAM.bOOl10 length 11354"120 111090100 04141enwn), r6pw357313) 6 3‘6) COMPANY PROJECT til 0 ill WoodWorks Jime MI, 201n 13 19 bat tC2 SOFFINARF FOR WOOD 00110 fi ■ Design Check Calculation Sheet Sim, 7,1 ■ LOADS I .4. Ps 41 PM ' ... 0,,,,,i,,ct 0010,,m.m. 101.1109 1ru .vor.: Stool r...-1 21.11 trot 1 .A3 IAEA Emit. . '1,3.1 'I° • .. 7.4%., • 0 00- 01.03.1 00 , 11 0 % ' ...=' s; 0: 0,104 1 01101 01 0/ 01,1 1,90 11.01 01f IIPTY 0.0107 VI '0:1 ,0 .2 ' . “.r. n: t 1,.t. 1 59111 09.94 :91-9 Ica tr 1 2000 Et , 00 : 11.0 1 ti f O...., MO, :0. =0 1.0 ti7,• '1 %.1 11,0 MOO 010 Ilf. 1 . 0032.=.1 UT 111.0 %.01./ 11.40 15.00 t15 11 9vati Pao.: Ea, 1 1.2 t01 R0 014 0 =-1,1 1..- It 040.. 0 • 9 • r- 11 0 4,07, 11,- Oval 4 0,10 tin : 4 : , 4.1'. • 4. ° .,• ' ,,,, Tooth 54,,, 00 0..1 , 1070 Le.:40 ..,...,■.n .-1: 1.0 007p, 12,01 :1 0.: -2, , 2 01..l, 11,01 ,I, .,,,,,, -- reel 72,1.1 110 f- • - 010, 1.90 1,10 .14 Esc.. 10,121 04 0 0503 00003: 7.000704 0, 1171 a 2 Cyr_l t2r1,01 0? .11.1 41,7 17.09 ,,,..9 4.0 , #.4 Um. 102,21 00 1110 tree,/ 01,00 le 0, .1: F., 1 . AI uL 413 .49 , : /At, 7 031 oil 14_3: i Mt 4 Part:a: 00 150.0' lat4.0 1.30 :.00 411 210_15 o E,-.101 01,44 tart031 90 e I.■ 12.2 1.701 ll .01 t II 011* PEtrl01 01 110.1 100.0 7.0/ :1.00 2, 1 --..-- 302 n i 000E1 90 170.1 1504 0.00 1,5 91.0 1304 • .,011.23 01. 77900 2 (4. 0.50 0. 0. .0, ,7-: s...•, +AI Iv I ill 110.2 3.00 e. : 0. S.Iv. , .. , ... , 4 LIE a , G,0 0 5 0,.0 inn .01 flu: ,,D, 5.3 100.1a1 90 1043 114.. 4.19 0750 111 1001 7,00 0 , 10 Mc,: 0.0, :10 110.0 110.1 1.9% 1.41` clt 50:_t0t Ltv• 1,0,151 AP 171.0 .70.3 taTJ ',PO r , ..- .,. ,.., 1. _ 711, 12,591 00. 01o.1 3.13,0 1.00 11,07 L '-;!... t.,, P,,/ t IA: or 419.1 124,1 11.00 1 clr MY. 01:104341 120.0 E'0.0 I1.90 1A.,.1.0 c11 1014 11..3 7.,. :.,' 0, it,. 1 00 3 500,0 1.99 4.50 ,-.1, 41 :A 9,00 It: 0,0 IC 110.5 100.1 1.04 1.21 lI1 :0 1.100 tte !IA, 1.19 900,0 90,,1 4,03 : .0' mll 047,1., 0.4114 00,131 00 0,0 :1,7 04.00 .an ,..., 44 11Vr F., e kit I30 100.17 :00.0 .3.00 1714 701 2 •014f91 04 : . .1 0,1% 0,41 10.00 ,14 49 01 Llts 0,0903l 0 0 10 100.0 1010303074,0' 1.11 4T:10 :, 2 95:94.1 03 41.1 17. 3,0 4, 01: j , ,,1 1 I 1_,.. 0-.1:0,al 99 104.0 itv.9 l.,49 4.1 J1: tO„.1VE 1 IV* 4.,,t91 13 019.0 ; 0.9C Ie.., vir r 10 ,,r. 10304 ,a....: 44. _0.10 of . !. 0 0 ..r ,4 5 11‘. 007.00 000 9' 40 „C. 19,90 al? 2152 00,04:100 l071 4 2,90 4,04 C11 Ito. 1,,00,; 09 i i.0.0 i 40 .4 1.00 4030 5.07 30:;, 00,5 51:1103 05 : .7 t y on, O it IC :00 1.1,4 000,1 00 100,0 :0 0.0 07102.00 ,...,, fttsis To o: .1710 0.10 tv, 61•1 11102 752/ 1.00 102 'll'' 2,1 I - t ?t ,2 11 0, 11.0 O : 0.i. ?Pone 7111 11.00 11, KZ Wifa ,:a..... •11.I 22,12 111 • _e- ,_ • MAXIMUM REACTIoNS Obs) and 'BEARING LENGTHSIIN : _ . _ _ . . - - . • . _ _ . _ _ _ _ .,_ . _ ..__ _ _ ,.. _ . C k 4'7., ' , 405 1 -1 LOt 11/4 ,t4 74}11 1 4142 :09.9 1 4/111.241 . 2 412 '21 17 47 lter0t0 1-11 1.14 Glulam-Bal., West SPecies, 24FAIti OF, 5-118x22-1/2" sm.,....ght 0126 55 4110419 in loads. 0400.1 support IA, RC NAM.- 01 .0404110, - • Analysis vs. Allowable Stress • (psl)'and Deflection (in) r.te.ox. 0...ttva.e. 0.119. ce41107 Yt NM AnatvatafrettAm WA.. 100* 1030 1111 - 141 1 1.0014-111,1 , = 10044 It • . 2,4 .6100' 0007 I tov ttift•tt 9,41 E 1.• ;31 1.07- 1. 3.01 70197 0000 tr.. I/ . 1 1264 1.001 - Lille _ 1.41 ADDITIONAL DATA: rricivr. w no CM , 01 01, cv 400E 04 0101 R.,. 9 Lc- 13,... ,00 1.10 1.03, 1.0r, - - - - 1.00 0771 3.00 t • • t - 1 P . .. r. IMtt 1 00 1.00 - - - . 1,00 J - t Cm., 0 et 5 111 51, 1.0 1.19 - - . - 0.40 . . 1 ,Irrl b LC rr . 7.00 11.•}1,, 0 - 1101, 1. lett, - 12002 112 1:1.1111yllo 71 7,tt ii • 1, I It • 20112 100-it 0411■41;401 4C II A 4.0 47. 61311440 10442 7 0•01e,... A - 1,1111,1 ,0-er2 1,11,22[001 • IA t l i 12•1 D....0,r' i.c./t ID•tell 1..-1 ite- .0=, tem 100 1•1,412.1 C=0S1Selt/2•11t, lII-1,1,1•2'. •1,1.1. I2I1 I01 .1., 104 It 4.1%, M■=1,19 55,A9t1 ■ :mi 5.5.4.9a,t0m, 01T-19:4 DESIGN NOTES: I, Please m001194 In, 10e1201 deflestamlemls me amm lm pm em0s011cas, 2,0000rndesigt values am fat rrolenala toAl0r7009144110110.2011 5,0 rnanuratImmt 11 accordance 550 ANSVA1TC A190 1-1992 2.GLULA114441 E .194 breadth z actual depth. 4. GU.= limns shall be :Atwell, supported actortang to the promsions of NDS Clause 3 3 3. 5. G1.1/1.414,400400143,00 based on stroller 41 Fcp(140.1.9), Fcp(tumpt. • /-% .4 2 I COAIPANV PROJECT di WoodWorks® Jun. 24, 2010 13 20 614 LC2 SOFOVARF FOR WOOD DESIGN • • _ . Design Check Calculation Sheet Size 7.1 LOADS i Oas p.1." pit - yr.e Ui IS t 0..1.m N440(1144 4,4 cri !,.f Cl '5.4‘.. YUJI, CM 01041 tool .14.01 1 IP- 0 6.14.7 011400 0.0.0. 04 7:07, F.' 747114410 1 17,7 470,0 0,a4 0.0.1 , , 1 00,o fa:1411 111 61 p0.1,11 1.0 44 .00 GI z .....:442 3,-.4 2 444.70 . .s :01.1 01.1 0.04 11.00 41. 0041 N444.4 4110 41.00 10, [ :31 li.n. I ektet 11.. Ica DI, 004 1,7 :7.70 It. 11:.': 0000 1 4 11,1 1 4 141: 1 100 0110 ,,,,,,a 001140.1 411.0 17.00 • =....' r. 17001 1. 4 .. F4441.1 131 1014 141.4 17. Ott .14.014 pli 11 114, hilt 410 1.00 10, pare 1014, 1110 1.00 !ye 13 GC0 1 3 ifra- 020 4,2) II 11,..,2 0 .... 14134 0,111 1.00 14, 00 .., 4.4.1 0443141 44 413.1 11 4. 4 1_00 4. 1, 4 1 I C .4., itrvise faik i .1 V) 11.4. 1 10 - 1 .:0,14 1410 V:7 110,4, 1.0341 1.0 0110.6 0. MO VI.. .;i:7 4 0.41.1s1 1.10 101:0 00172 U40 144.4 . 3.44 i ttttt 1 110 4114 31131 1.0 1.14 111 •G 4 344 Pin 1.1 iM 00,0 1110.0 V..04 1 .50 , 00 01.:144 4 0444 0411141 00 8 0.1 11.40 00.0' , r , 41 - , 0: 11-4. 00,704 010 1040 1010 10.00 10 1. Ctn. ta11,114 OD 1 410 1.10 7.701 rli 147? 1 .40. Fiitttel vp 10.0 I00.0 0.06 0,0.1 01 4 S.7. - 107 0....,1 I' .43.41 110 17.3 430 7.0$ Its,. s i 1 1 010. Wier 04411.1 130 130.0 700.0 7.30 13.00 .144 7f,,s0 41 On,1111llI 7:4.3 ma co r.-.,,, - .5 1.44.• Iota) tIP 141.10 110.0 0.0 1.1., i....1 I 0.02 i wit-4 ‘O 1:0•1 I 41 ' 1140 ••', OF C.04. 0.10•1 LAI 330.0 014.4 3.00 1.44 31. 04,300 0,1:1 344104 XI ire.: 104.2 . 0,50 111 101111 LIN'• 01 0 410.. 4.110 1.11 ,11. 31_4 44 r,.4 Notts! 000 10 It,' I.. 11, p r 1,..131 Ls: 111,10* 29) 0 111 , G. 4.4. 1,01' ,,, r144 7•41441 Nu 1,1 100.2 1.00 71,00 010 4 1121 330. 3441441 00 000. 010.7. 7.40 10,00 ;17 2•1 I 74, 001101111 - ..M 730,1 10!.2 41.0 2 441 ..,; ,:! L.10. 0.1:14 7 011.0 11.0 =1,1k1 07.11 014 0444 4E11 $01 140 10.' l.4. 1 ..1.1 7,1,,, ,..11 - 7 Less vigil 41 UD 170.1 P1.6 7.01 3.10 el 0 .i1.0 111 tool Ps4401 111 117.. 10.0 1.11 1.=2 1,41 4 11 G44. ' 444.1,1 ,, o ,i• -0 1.10 4.1 i 12100 0451 747061 70 0.0 I', . I 14.41 14.00 01 , 44_1,1 1100.' 00411*4 310 470.0 ioLc II-NG 330 011 40 :17 01,, 1.441.) 1.3 47. 4', 10,01 :a.o F. ' C.,,...■ 31, 41/1144 01 1:11.1 :04.1 I 3.04 30. p10 41 04J3 51111*1 it 4 1'.. 4.0: C1:1 0,u 11451 J.Iiii 041710102 OD 1.1.1.4 :cu., 4,04 4,00 ..1 . 1„1 00*41 TA111011.P 12 'III:.: 1 14. 04? 10 it:: Iasi. ,0074001,t00 2 0114;4 : 10.10 Eli 01 Cgsg 1470.1 110 1141- 1:0.74 1.4,-, ,30.07 07e 05,407 Lt. raotial 100 011'_71'1',,0 11.44 my, ,...- r,-174'1 3,04 Par GO :1.1 10.7 , 4,07 ill.' 341. Ian L•4 Un II 41 101. 7. 444013 F.11 70 713 0.0,4 7 044 4.1.1 11.1 0,00 7.07 91e 7'0 1.1 I al I■1•13 100.) :1 0a91 1.00 3 , 01 0400 14000' 41410 0;03 Is.. I44 MG. 1•133 L404 4,40: 140 1:0 1114.0 041011 -4410 11 00 074 N4 NIP 40104 1i 11.01 11, 1 140 .0 401 0444 -3747 21_3; MAXIMUM REACTIONS (lba) , and BEARING LENGTHS On)':' . , . __ _ _ .______ _ _ _ . . _ - - - _ _ _ le I N . 0,10 '400 17.11 1.170 !Mit ts 01011 0011, 1 r•,,,,,-, ,40. ej II 5.23 0...11 .. _ _. Glulam-Bal., West Species, 24F-A/8 DF, 5-118x22-1/2" s0...ce0 astiaptlincivdsd InIc law•Isup,•4151,411.111,31013410. '41441q4414, Analyil5 vs. Allowable Stress (psi) and Deflection tin) u 'ar'0011.5 2001 i CrI004,00 - , j10.11.4,00.14 007. 00,010 03050 - 7 0,1 a 1 Y 07077144,00, 04-a44 at 4- 131 r - 24, F.? . n' - 49 4 4N - 1.4( 4 i ie.. 4 3 4 . - 0 . 1034 114471, • u„, 0,10'. Deg .rt 0.11 . 3173 9. • 001 0.40 40330 4403 0.44 - 0.07014 1-00 . 0,4240 0-47 ADDITIONAL DATA: i . 1=0 Cr I. c 01 . 10. 04 . .401.-• 04. 11• ,0 1. • • • • 4-.10 1,00 1,00 j (1 2,40 1.11 1.0, 1,00 1 0 1,0' 1 . 1,10 .00 - 3 1744 510 - 1„, 1. • - - • 1.00 - - , 1,, 1,11..0 1....0 i .■ .. . . ". , .0 r. .... .. i .3 . - ,,sciti•Ili, si • 1111. ..50•10: - 17004 III i'iffitir. MI L. til • 1•,4011,51, 0 • '1141 c•tt..71,0c,rii IX il • :•‘011 .• . 1 it ,,,, 01,4,4 7.,..1 Cd,s.: _,. - 0.0, :[ 1,4... V. 41.-4 t S.,,2 • GI:. !....: 104, , 44,44., 1.000 =1-10,04,0, 2C1-71.1 DESIGN NOTES: I, PIGas• 0017111011101 del3u5 .110.104i7irds we 44,077411,110140 you 0,41.0447,40, 2 design values are Sir maledais conforming 1147170 117-701 old manufactured In sccnrdanse .11.51/A11C 0190 1-1001 3, GLULAM Lid = actual 00005 1 adual depth .... ■r.. 4,Glu1*n lealms shall be laterally suppoded acsotdr4g to the 4444340ons 41000 Clause 3,33 S,GLULAIVI Loanng '01010 0003 an 01,070 01 Pcivension), rGpIGornp . . COMPANY PROJECT 1 WoodWorks° sorlwaeeaon W000 Guinn June 24, 2010 13:23 634 LC1 NO LL Design Check Calculation Sheet Sizer 7,1 LOADS ( Ins, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start. End Start End 1 w62 'Dead Partial 01) 613.2 613.2 0.00 2.00 pIt 37129 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5 Dead Point 1436 11.00 lbs 77:16 Dead Point 1389 37.30 lbs 9064 Dead Partial UD 617.5 617.5 17.00 10 00 pli 1l c61 Dead Point 622 7.00 lbs 13 162 Dead Point 622 4.00 lbs 15 Dead Partial UD 613.2 613.2 2.00 4.00 pit 8.7 Dead Partial US 517.5 617,5 18.00 20.00 pl[ 19 - w71 Dead Partial UD 613.2 613.2 7.90 7.50 Of 2164 Dead Partial US 41./ 17.7 17.90 18.00 plf 23�j28 Dead Partial UD 47.7 47.7 4.50 /.a0 plf 25_j62 Dead Partial UD 47.7 47.7 7.50 11.03 pit 27 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29 j32 Dead Partial UD 120.2 120.2 3.50 4.00 pit 31 j33 Dead Partial UD 120.2 120.2 4.50 7.50 p11 33_j34 Dead Partial UD 120.2 120.2 7.50 B.00 plf 35j35 Dead Partial UD 120.2 120.2 8.00 11.00 pif 39 j67 Dead Partial UD 120.2 120.2 2.00 3.50 plf 4049 Dead Partial UD 120.2 120.2 4.00 4.50 off 43_,j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45_ Dead Partial UD 47.7 4i.7 18.00 20.00 plf 47166 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49`360 Dead Partial UD 120.2 120:2 17.00 :8.00 plf 51 Dead Partial UD 120.2 120.2 18.00 20.00 plf 53 072 Dead Partial UD 47.7 47,7 2.00 4.00 Plf 55 Dead Partial OD 47.1 47,7 0.00 2.00 p1f W1 Wind Point 5850 0.00 ■ lbs 412 Wind Paint -505n 4.00 lbs W3 tired Corot 5850 11.00 lbs 04 Wind Point -5050 17.00 lbs 515 wind Poio5 5850 20.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : Iry 2 Dead 7109 6622 Live 155 302 Total 1238 7015 Bearing: Load Comb 82 02 Le1nLh 2.1 2-11 Glulam -Bal., West Species, 24F -V8 DF, 5- 118x22 -1/2" Self- weight of 26,55 plf included in loads; Lateral support' top= full, bottom- at supports, Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion ,Analysis Value fieigts value Annlysia /D'c.l9n Shear `v - 74 Fe'• = 236' ry /EY' 0 0 ' Bending(t) fb - 950 E1/' = 2030 fb /Pb' o '0,47 Live Deft'n negligible Total pePt'n 0.41 = h /505 1.00 = 1/240 0.41 ADDITIONAL DATA: FACTORS: P /E: CD Cli Cl, CL CV Cfu Cr Cfrt Notes Cn LC11 Fe' 265 0.90 1.00 1.00 - - - - 1.00 1,00 1.00 1 F'b'' 2400 0.90 1:00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 Fop' 650 - 1,00 1.00 - - - - 1.00 - - - E' 1.8 million 1.OQ 1.00 - - - - 1.00 - - 1 Ervin' 0.65 million 1.00 1 -04 - - - - 1.00 - - 1 Shear LC Ill - D only, V _ /1E9, V design = 5674 lbs Bending li) : LC 01 = D only, L1 - 34217 lbs -ft Deflection: LC kt - D only El= 0756e06 lb -i.n2 Total Deflection - 1.50(Dead Load Deflection) i Live Load Deflection (D -dead 1,=live 8=snow W =wind I- impact C- construction CLd= coucentratedl (All LC's are listed in the Analysis output) Load combinations, ICC -10C DESIGN NOTES: 1, Please verify that the default deflection limits are appropriate for your application, 2, Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC'A190,1 -1992 3, GLULAM: bxd = actual breadth x actual depth, 4, Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3,3,3, 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). L- 41 COMPANY PROJECT 1 WoodWo rks® su/ I WAN rue woos uisIcs June 24, 2010 13:22 b34 LC2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psi, or plf ) Lead Type Distribution Magnitude Location (ft] Units Start End Start End I wG2 lead Porflni 150 D73.2 6I3'.2 0.00 2.00 pxr 3 - w29 lead Partial 510 617.5 617 7.50 11.00 WI 5'c15 Dead Point 1436 11.00 lbs 7 c16 Dead Point 1389 17.00 lbs 9 Dead Partial UD 617.5 617.5. 17.00 18.00 plf ll c61 Dead Point 622 7.00 lbs 13 Dead Point 622 4.00 lbs 15w63 Dead Partial UD 813.2 613.2 2.00 4.00 plf 17 w65 Dead Partial lID 617.5 617.5 10.00 20.00 plf 19 w71 Dead Partial UD 613.2 613.2 (.00 7.50 plf 21 64 Dead Partial UD 47.7 47.7 17.00 10.00 plf 23_120 Dead Partial UD 47.7 47.7 9.50 7.50 pIP 25_762 Dead Partial UD 47.7 47.7 7.50 11.00 plf 27_j48 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29_j32 Dead Partial UD 120.2 120.2 3.50 4.00 p30 31_j33 Dead Partial UD 120.2 120.2 4.50 7.50 plf 33 j34 Dead Partial UD 120.2 120.2 7.50 8.00 pit 35 )35 Dead Partral UD 120.2 120.2 8.00 11.00 plf 39 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41_149 Dead Partial UD 120.2 120.2 4.00 4.50 plf 43 lead Partial UD 47.7 47.7 11.00 17.00 pit 45j65 Dead Partial UD 47.7 47.7 16.00 20.00 pit 47 Dead Partial UD 47.7 47.7 4.00 4.50 plf 492j68 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51369 Lead Partial UD 120.2 120.2 18.00 20.00 pill 53 172 Lead Partial UD 4 47.7 2.00 4.00 plf 5.8 Dead Partial liD 47.7 47.7 11.00 2.00 plf . W1 Wind Point - 5850 0.00 lbs ' W2 Wind Point. 5850 7.00 ibs W3 Wind Point -5850 11.00 lbs '114 Wind Point 5850 17.00 lbs W5 Wind Point -5850 20.00 lbs' MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 1.)1 20 1, Dead 7189 6622 Live Total 7189 0822 Bearing: Load Comb 61 21 . Length 2,16, 2.05 Glulam -Bal., West Species, 24F -V8 DF, 5- 118x22 -1/2" Self - weight of 26.55 plf included in loads; Lateral support: lop= full, bottom= at supports, Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005•; ' Crileriun Annlysis Value- Design linluo Analysts /Design Shear tv = 74 Fv' - 239 fvTFv' = 0.31 Bending(I) fb = 957 Oh' = 20311 fb /Pb' = 0.47 Live Def1'n negligible -Total DefL'n- , 0.41 - 1./182- 1.0 - 1,/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CN Ct Cl. (.V Cfu Cr Cfrt Notes Cn LC0 Fiv' 265 0.90 1.60 1.00 - - - - 1.00 1.00 1.00 1 Fb'4 2400 0.90 1.00- 1.00 1.000 0.944 1.00 1.00 .1.00 1.00 - 1 Fop' 150 1 :00' 1.00 - - - - . 1,00 - - - 0' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 Emig' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC 01 = D only. V - 7109, V design = 56/4 lbs Dendinq(•): It MI = D only, M = 34217 lbs-Et Deflection: LC 01 - D only EI- 8756e06 1b - in2 Total Deflectron - 1.50(Dead Laad Defle,.tror,) t L Load Deflection. (D =dead L =live S =snow W =wind I= imuocL C= coeelrucLiou CL(1= cuu,.nntralec]) (All IC's are listed in the Analysis oul Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2, Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A180.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n), CSI I Harper Project: hhP:f Uouf Peterson Client Job # Righell is Inc. E�ricr�rsetts: +rrtr+ntkS - Designer: Date: Pg. II 6A10f CAP, AN4IIIricr!..(.1JRVr GOt.0 Wd1:= 10 l • 8•ft•20•ft WdI= 1600.1b Deck. ZreSa9 ft Seismic Forces Site Class =D Design Catagory =0 W p W dl ' - P T� 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S : = 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F := 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F es := 1.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S -= F Sm1 Fv.SI 2 • S ms Sd Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a = 1.0 R := 2.5 (Table 13.5 -1, ASCE 7 -05) . 4a p •Sds• FP P 1+ 2.—}W h p EQU. 13.3-1 Fpmax:= 1.6•S EQU. 13.3 -2 F pmin := . S ds' 1 p . W p EQU. 13.3 -3 X if(F > F pmax ,F pmax ,if ( F p <Fpmin,FPmin,Fp)) F = 338.5171•Ib Miniumum Vertical Force 0.2 • S ds• W dl = 225.6781•lb C1q Flarper. Project: •• Fjouf Peterson Client: Job # �y Righelfis lnc. Dcslgncr: Date: Pg. # 1 Jirooticaoe, AJ cIII rrtlIS‘8Unv1 '!ORO Wdl 10. lb •8•ft•20•ft Wdl = 1600.1b ft Seismic Forces Site Class =D Design Category =D W p W dl 1P 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S := 0339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S: • = 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F := 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) • F := 1.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S ts := F :1' S S . = .S S i1$ := 2 Sms Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a := 1.0 Rp := 2.5 (Table 13.5 -1, ASCE 7 -05) 4a • S ds' ( z 1l F P := p Rp I l + 2 h Wp EQU. 13.3-1 Fp := 1.6•S -I W EQU. 13.3 -2 Fpmin:= • • S ds .l p • W p EQU. 1'3.3 -3 4 if(F > Fpmax,Fpmax, if(F < Fpmin, Fpmin, Fp)) F = 338.5171 • lb Miniumum Vertical Force 0.2• Sd W = 225.6781.lb Harper II A. Houf Peterson COMMUNICATION RECORD Righell is ilk. TOO FROM 0 MEMO TerFILED .. - ....,......... ... I Al■ Jr.201 4‘ r.:■••1 r • 01.:1.., ,... ■-. ... .. .,.... P.HONE NO.: PHONE CALL: a MEETING: 0 z 17 C7 m 2 s A.? 3 __ ..z 61 ... .. ?..4 II 0- or ,.../ -,4 C ..._... rt" ....c. (--- Nt"..34-,..i .....0 U..) . I i I t , 0 0 i i \ q r rc 4---- n ... 0 , BY: A li , \.{8 j eir DATE: Joe No.:1 . . - • - • 0 i - PROJECT: • RE: (--) .c- 1P, IA C r2r\--y.._ \T Y [ 2x L 0 0 w .. DEctiNci r - - Z O E O 2 NPS \ L.. C R-Pqc I - r . , 0 (t L t4 Nuvrirlai) . . 0 , . * IMO ' . .,. re = U z 0 W 0 x 11 I. re ,. a ] . 0 . 1 .. , .. ' .-_-...-. (I va. k, LI ik ino,i.I .. ) (V1 .- 2. ■ta_)„ * (2. boasas\ a I b 1"Ki c ) 0 z- \--rSosr5 D 7 1 - 1 4 0 iC spac Inc) \of_Auie:e ri fe.o.; \c, ..:-_ 7.,' . . 0 u0 (-. L) z . : (o \,L,-F. n 6 i . uk..) A t i 1) 0. \ .-- v, ,ci 5 v)L.; 1 1 , : • . ! ---, _.--..---,L.— P \) ---; 1.(7 cis ?if:- 1 i - ( - - — - c 1 ,. . , 1 ro () I ) G J _-_, . 0- • 4 1 ,,, 0 : • • Li Q 2 ' i --------- —I V T tr3 1:.,..,i , § tr,',1 rz . ( z )(, Z:z_ 0 ik'") ::: 4 ,t 'w(p. 4/.. .loi? .; .. .. 1.., -,,:, I .7. i '.- ---- 3 4 ( :- g'31 k■iy 3040`14- x412: e. 12 0,C., • . Gc1C0 ■ Br: R itfi\ot t 07 :311 .... zitif) DATE: Toe No -e-. • - . PROJECT: . RE: 1 Yol , ...1.)1 1 i )t•-•. %.. .... • El El 1 11 (•J : 0 w 1- w 0 m 2 : <.•■ ZOO A# '7 1 ' El . 8 0 w itio 111 0 I 12L 0- 34" 1 < o _ z 0___ 51irn so rN 1lDu 4 to fe'S. 5 tf ova() 2 O cl,,LS" O 1-- 2 W • 0 1.I.. Z Le D 6 0 . LoPir M a004 (40" ) ZOO ft ■ T=- C 8600 i s,, --- (3Git- 3.5" aay. 4 9,q00 -', 41)04 ,( 0 4:1 0 a t ird 73 f::..' i:1 :11 ii 1 - Lk, , ••, 1;1": • , n-1 -- 4 ,, ---,2e- CiLp \\. „harper COMMUNICATION . ' 9i. ii liouf-Peterrson OMMUNICATION RECOR Righellis Iiic. To 0 FROM 0 MEMO TO FILE El --- .V....:57 .-- ' — ,,,,,,,, 4,1 ARc,irtECTO.b•ilnVi`v4;;: • PHONE NO: PHONE CALL: 0 MEETING: E 13 13, co, 71 21 0 H 2 -t, CP ii 0 ( , rj 1 ---- ..... If 0 cr, 01 I 1 37> fl ---' ...c ,, .--:---• -c .o o 1 ( 8 4 0 d . .6 . --# 74' r , C: . C -1-1 I. • • i . —H . , .7. g 1 N s , 0 I " 7o , [WE: Joe No.: B ktr Cofcoq PRoJ'ECT: RE: " bect on I Po.-r • 0 w •• z 0 0 2 w • • • 6 • • 0 til , 2k.. iv\ 1. POST POT t'€- "so% srs 0 0 / • er . c • ce 0 6 0 DEL 1-A r CluAm O j D, u J:i0 • .0.c • - as I Id 1111112, • -• • • GLI 191 COMPANY PROJECT 0 0°4 WoodWorks® SOFTWARE FOR WOOD DES1CN June 8. 2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location (ft] Magnitude Unit tern Start End Start End LIVE Live Point _ 2.50 200 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : ,-,4-K• - 'c" r , 7' ht' •• • y,"• .".•■ *- • • • • ,2"," • t. ' • , ,•*. • ' 4. • • •• " •" • • • :t • IV 51 Dead Live 100 100 Total 104 104 Bearing: Load Comb #2 #2 Length ' 0.50* 0.50* Cb 1,00 1.00, krearingtength or beams Is 1/2'' for exterior supports - Lumber Hem No.2, 2x6" Self7weight of 1.7 plf included In loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion .Analysis Value Design Value AnaIydit/Deiigh Shear fv = 19 Fv' . 150 fv/Fir = 0.13 Bending(+) fb = 405 Fb' = 1048 fb/Fb' - 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl _0,03 = <L/999 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: FIE CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv 150 1.00 1.00 1.00 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 , 2 Fop' 405 1.00 1.00 - 1.00 1.00 - - E 1.3 million 1.00 1.00 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 1.00 1.00 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending(+): LC #2 = L, M = 255 lbs-ft Deflection: LC #2 = L ET = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S.-snow W.wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NOS Clause 4.4.1. COMPANY PROJECT (it Wood Works® SOPFWARE FON WOOD DESIGN June 8, 2009 16:27 Hand Rail2 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE_ Live Full UDL 50.0 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : ?• •717 •'"" • ---"-' ••-•-% -t•-:••• • 4%-- • .?-1.-1 .1- "0:- • • • • =. • ' - • - ' :; • - • • - .2 : . . 3 . 1 � 5 Dead Live 125 125 Total 129 129 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 "Min:bearing length for beams is 1/2" for exterior supports: Lumber-soft, Hem-Fir, No.2, 2X6" Self-weight of 1.7 plf included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis. Value DeSign. Value Analysis/Deiign Shear fv = 19 Fv' = 150 fv/Fv' 0 Bending(+) fb = 256 Fb' = 1048 fb/Fb' = 0.24 Dead Defl'n 0.00 - <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Defl 0.03 = <L/999 0.25 = L/240 0.11 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 1.00 1.00 1.00 1.00 - E 1.3 million 1.00 1.00 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 1.00 1.00 - 2 Shear LC #2 = t., V = 129, V design = 106 lbs Bending(+): LC #2 L, M = 162 lbs-ft Deflection: LC #2 = L El = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) LC's are listed in the Analysis output) Load combinations; ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NOS Clause 4.4.1. WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 22, 2010 13:57:56 :oncept Mode: Reactions -Base of Structure View Floor 2: 8' 49'-6" Ur,,,. .,. ... C) - 40-b • u.;` 1 600' L ' 600 L -- -• •-•• - - 4'r - iuL, '. 619D 619D' 45 o . 44 -S? 9 UV 44 -6 6 sip,' -6 of �!1 5 4u -o 1193 L153 12404 L. :- '2404 L , ' ., .. M-0 34 625 01059 11439 D 13940 s° t, JV 34 -U by 315L ..i..5 -b 00 , F - 358 D .. .. - .SL -b tS l J I -b - 4U-b bo - L `3-la a 315E Lb -b et -b Lb -r, dc : 1f0L - - \ 3580:.. . . .. . - - L, b . L4 -b b 96 D r r" « o /b 74(8 5611 L 756'L. .. - Lu-n Iv 4E452 D 5546 D ' '26 PyD _7 !� ;625 L ;5 Dr e_ 203 D z H ..)--t) 4y 46 D t307 D : . . V i . . U '245 L • ; 0 L Cl? - .. . u - v 4, .3 _ 0 •. ^ I -a 0La " - i 74. o b • , ''3 599 _ . b-b' 20 i ' 87 L, ., 7L' 41-t) 154 0 8 D 196 �D • "19 63 D • • - , .2 _ ., D 1 2363 D .. - . _.. e -o ...,t • 7803 D> '1.06,0 u e E 1BB8CC , EFEEEEIEEEEZ 0' 2' 4' 6' if 10' 12' 14' 16' 18'20'22'24'26' 28' 30' 32'34' 36' 3840'4244'46'4850'52'5456'58'60'62'64'66'687� 72 74' 76' 0'1'2'3'4'5'678'91(11:1:1 22:2 313 3;3:3 4(4 421:4.4!4(4'4:4(5(5 5:5;5.55( 5515 6(6 8:6;5.6,'616 f?70 7.7.7 -6' VooT\NC -, - L?1O UT' - 714.0 NIT wM) • FI WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 22, 2010 13 :57:37 Concept �" 1 Mode: Reactions at Base of Structure View Floor 2: 8' • 1050 • . 49 -6" i u • ` L • • 1600 L • - • • • 4, - 0 lu1i 6 19D .619 4� n IUU�'' .. - - . 44-0 • 43 -0 41 -0 S0 .. `1 13274 L_w ; ; 3304 L.:. . : -.- 3 va . D: - . . - 7072 D' oo u `J4 - I • - - 3U -0 :i) 35 -0 nU 315 L J,4' .3 un • : S 358 D' • - - - • . >i -ti zs� r -y -u 44:-_: - .. . -._ . . • d6 -0 63 _ 1 3.15L z1 -0 t o I 100L \ 358D= -. 1 b • b EiU - + - • 1- - - 9 29 -q ra 6 D; 2s 'b r is e , :.c •c> is 74184 611 L 56 L . w / 0 41•(452 D 5546 D • .51.2.D 11-_1-0 rr • 6 25 L, - - - - .. r : • 5 - is - 14. _ '203D !. ., n - _. ti -ID u r 't 5.D ' . io -o u� 1 908 L - ... .. .. . .. is -i tats . 1 0 5 12 307 D v+ , -1Z.-0 ` 46 D -. t r -0 ts0, 1U -b Dr 24 a„ a 3'D • 50 L , 21 t� ' , • , 374, D r - * •' - ' 3599 I A=4112587 L: • • 587 L - • • ' ' • -- -- - o .•y. - 209L D84O 1963D• -. t v :1963D.. - -.. -. '• -• •- , .1-s> 154,- , '2i`ts uD LL. X75 12219 D - -- i o 1 � 78 D7QD 617D'D v•n B8\ BB BC. CCCCCCCFCCCCCCCCCCCCCCC1CCCDDD DDDDDIDDDCDDDOOOODDCDVDDL' EEEEEEEEFEEEIEEIEE 0' 2' 4' 6' 8' 10' 12' 14' 16' 18'20' 22'24'25'28'30'32'34'36'38'40'42'44'46'48'50'52' 54' 56'58'60'62'64'66'68'70'72'74'75' 0'1'2'3 . 1:1:1-11 t1 :11 2(22;2 :2 243133:3 :3. 313(3 :3t3(4M •4;4 :4.4!4(4•4M(5L5 5:5:55(555t66:6€6677 1 bo L (JUT - as. ! Harper Houf Peterson Righellis I nc. Cu .gent Date: 6/24/2010 1:41 PM l system: English Fi,G name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans\CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \F1.ftd1 Design Results Reinforced Concrete Footings • GENERAL INFORMATION: Global status Warnings Design Code ACI 318 -05 Footing type Spread Column type Steel Geometry - I t 12 in I � 42 5 ft 6.1 • • ;ft 4. 25 ft ft 4.25 ft 1 Pagel Length 4.25 [ft] Width 4.25 [ft] Thickness 1.00 [ft] Base depth 1.50 [ft] Base area 18.06 [ft2] Footing volume 18.06 [ft3] Base plate length 5.50 [in] Base plate width 5.50 [in] Column length 5.50 [in] Column width 5.50 [in] Column location relative to footing g.c. Centered Materials Concrete, fc 3.00 [Kip /in2] Steel, fy 60.00 [Kip/in2] Concrete type Normal Epoxy coated No Concrete elasticity modulus 3122.02 [Kip /in2] Steel elasticity modulus : 29000.00 [Kip /in2] Unit weight 0.15 [Kip /ft3] Soil Modulus of subgrade reaction 200.00 [Kip /ft3] Unit weight (wet) 0.11 [Kip /ft3] Footing reinforcement Free cover . 3.00 [in] Maximum Rho /Rho balanced ratio : 0.75 Bottom reinforcement // to L ()x) : 6-#4 @ 9.00" Bottom reinforcement // to B (zz) . 6-#4 @ 9.00" (Zone 1) Load conditions to be included in design Service loads: SC1 DL S1 : DL S2 DL +LL S3 DL +0.75LL Design strength loads: DC1 1.4DL D1 1.4DL 02 1.2DL +1.6LL Loads Condition Axial Mxx Mzz Vx Vz [Kip] [Kip "ft] [Kip*ft] [Kip] [Kip] DL 5.55 0.00 0.00 0.00 0.00 LL 15.61 0.00 0.00 0.00 0.00 RESULTS: Status Warnings - Insufficient development length, Section 21.5.4.1 Soil.Foundation interaction Allowable stress 1.5E03 [Lb /ft2] Min. safety factor for sliding 1.25 Min. safety factor for overturning 1.25 Paget Controlling condition S2 Condition qmean qmax Amax Area in compression Overturning FS [Lb /ft2] [Lb /ft2] [in] [ft2] ( %) FSx FSz slip S2 1.38E03 1.38E03 0.0826 18.06 100 1000.00 1000.00 1000.00 Bending Factor 0.90 Min rebar ratio 0.00180 Development length Axis Pos. Id lhd Dist1 Dist2 [in] [in] [in] [in] zz Bot. 20.11 7.04 19.75 19.75 xx Bot. 20.11 7.04 19.75 19.75 Axis Pos. Condition Mu 4)"Mn Asreq Asprov Asreq /Asprov Mu/(4)*Mn) [Kip "ft] [Kip *ft] [in2] [in2] • zz Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 1 I zz Bot. D2 13.38 45.76 1.10 1.20 0.918 0.292 l xx Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 I - 1 xx Bot. D2 13.38 43.06 1.10 1.20 0.918 0.311 I' -a . I Shear • Factor 4 0.75 Shear area (plane zz) 3.10 [ft2] Shear area (plane x() 2.92 [ft2] Plane Condition Vu Vc Vu /(4"Vn) [Kip] [Kip] xY D2 8.99 46.09 0.260 El= yz D2 8.68 48.88 0.237 I :1 1 Punching shear Perimeter of critical section (b... _ 4.67 [ft] Punching shear area 3.31 [ft2] Column Condition Vu Vc Vu/(4)*Vn) [Kip] [Kip] column 1 D2 29.25 104.29 0.374 I: -.1 I Notes Page3 �� * Soil under the footing is considered elastic and homogeneous. A linear soil pressure variation is assumed. * The required flexural reinforcement considers at least the minimum reinforcement * " ° design bending moment is calculated at the critical sections located at the support faces * Only rectangular footings with uniform sections and rectangular columns are considered. * The nominal shear strength is calculated in critical sections located at a distance d from the support face * The punching shear strength is calculated in a perimetral section located at a distance d/2 from the support faces * Transverse reinforcement Is not considered in footings * Values shown in red are not in compliance with a provision of the code *qprom = Mean compression pressure on soil. *gmax = Maximum compression pressure on soil. "Amax = maximum total settlement (considering an elastic soil modeled by the subgrade reaction modulus). * Mn = Nominal moment strength. * Mu /(4 *Mn) = Strength ratio. * Vn = Nominal shear or punchure force (for footings Vn =Vc). * Vu /(4*Vn) = Shear or punching shear strength ratio. Pag (=.2 Plain Concrete Isolated Square Footing Design: F2 f := 2500•psi Concrete strength f := 60000•psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity "Yconc l50•pcf Concrete density Ysoil l00•pef Soil density gall 1500 -psf Allowable soil bearing pressure COLUMN FOOTING Reaction l otaldi := 2659.16 Pdl := Totaldl Total11 := 7756.1b P11 := Totalll P11 Pdl + Pll Pt1 = 10415.1b Footing Dimensions t := 10• in Footing thickness Width := 36-in Footing width r A := Width Footing Area quct = gall — tf• gnet = 1375•psf Ptl Arcqd := gnu A = 7.575 ft 2 < A = 9 ft GOOD Widthregd = JAregd Widthrcgd = 2.75. ft < Width = 3.00 ft GOOD Ultimate Loads Atcli = Pd1 + tl A Yconc P := 1.4•Pd1 + 1.7.P11 P = 18.48. kips P qu := A q = 2.05•ksf Beam Shear bcoi:= 55.j (4x4 post) d := tf. - 2.in := 0.85 b := Width b = 36-in V„ := — V„ = 16.32. kips 3 clic( bcoi) 2 -b V = 7.83 -kips < V = 16.32•kips GOOD Two Shear bs := 5.5 in Short Sidd oblunin width bL := 5.5.in Long sick column width := 2(b + d) + 2.(bL + d) b, 54 in c • := 1.0 8 ). V„ = 48.96-kips Vt„„„ V N y o ,:= %[b 2 - kb + V, = 15.88•kips < V nmax = 32.56. kips GOOD Flexure u. ft q b bcoi) (1 M„ 2 = 4,98.11-kips 2 A 0.65, Q b. d 2 S = 0.22241 F := 5..0.-4 F 162.5. psi M, := s = 155.47.0i < F = 162.5. psi GOOD Use a 3'-0" x 3'-0" x 10" plain concrete footing Plain Concrete Isolated Square Footing Design: F3 f := 2500.psi Concrete strength f 6QQOO psi .Reinforcing.steel strength E := 29000•ksi Steel modiilus.of'elasticity • Yconc = 150•pcf Concrete density "(soil := i00•pcf Soil density. g := 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl:= 2363•lb Pdl :_ Totaldl • TotaIll := 4575=16 PIl := Totalll P := Pdi + Pll Pi! = 693346, Footing Dimensions tf := 10-in Footing thickness Width := 30•in Footing width r:= Width Footing Area q : gall — tp icons Qnct = 1375•psf Arco _ N ("net Aregd = 5.046. ft < A = 6.25, CI GOOD Width := Arcgd WidIhregd = 2.25• f < Width. = 2.50 0 GOOD Ultimate Loads 1J,• Pdl + tf q ^ f,coi,c P := 1.4•Pdl+ 1.7•P11 P;,= 12.18.kips Pt' q,,:= , q;= I.95'kf Its(' Beam Shear := 55jn OA post) d := t1 — 2•in := 0.85 b := Width b = 30.in V„ := ch. — IfTF)si-b.d V„ = 13.6•kips 3 — b V. Vu cq11 2 .b „ 4.97.kips < V„.= I 36. kips GOOD Two-Way Shear bs := 5:5.in Short side column width 111 5.5 in Long side column width b„ := 24bs + d) d) b, = 54-in r3, := 1.0 = + — j-K.FiSi-b-d V„.= 40.8-kips Vnmax V,,,„ = 27.13. k ps (111[ — + (0 V„-.- 9.7 I kips < = 27. I 3. kips GOOD Flexure := g u. b — 2 1) (1) • — .b M„ = 2.54- ft. k ips 2 A:= 0.65. b. d 2 5..th.4f, psi 1 = I 62.5-psi Mu fi r= s =95.19. psi F = 162.5•psi GOOD Pse a 2'-6" x 2'-6" x 10" plain concrete footing..I ) 17 \ Plain Concrete Isolated Square Footing Design: F4 f := 2500•psi Concrete strength f := 60000•psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity -'cone 150•pcf Concrete density -'soil 100•pcf Soil density gall 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 5001-lb Pd1:= Totaldl Totalll := 7639• lb P11 := Totalll Pt1 Pd1 + Pll P = 12640•lb Footing Dimensions t := 12-in Footing thickness Width := 42 -in Footing width ? A V = Width Footing Area net clan — tf•`Yconc net = 1350•psf Ptl Areqd := (het A = 9.363 ft < A = 12.25 ft 2 GOOD Widthregd := A Widthregd = 3.06•ft < Width = 3.50 ft GOOD Ultimate Loads pi := Pill _l_ tf.A•7conc P := 1.4 -Pdl + 1.7•P P = 22.56•kips P qu 1.84•ksf A �II Beam Shear bed := (4x4 post) d := tf — 2.in 0.85 b := Width b = 42-in 4 V„ := (1).—. • b.c1 V„ = 23.8.kips 3 ( 2 b — b„t) V, := q„. V„ = 9.8.kips < V, = 23.8•kips GOOD Two-Way Shear bs := 5.5;in Short side column width 1)1, := 5.5.in Long Side Column width b 2.(bs + d) + 2.(bL + (i) b, = 62.in 3 1.0 + 8 ) .‘r fcpsi.b.d = 71.4-kips 3 3.15, Vnmax := 4)-2.66-4 firpsi.b V„„ =47.48.kips (Nib 2 — (b1 + d) V„ I 9.49. kips < V = GOOD Flexure. _ mu := qu i( b 2 ucol) . (1 2 ) .b M 7.45.ft. kips 0.65 b.d S = 0.405 .ft F := F = 162.5-psi — f = 127.79 psi< F = 162.5 .psi GOOD Pee a 3'-6" x 3'-6" x 12" plain concrete footing P-- Plain Concrete Isolated Round Footing Design: f5 f := 3000.psi Concrete strength f := 60000-psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity -'cone 150.pcf Concrete density '(soil 120•pcf Soil density gall 1500•psf Allowable soil bearing pressure TYPICAL FOOTING Reaction Totaldi := 619.1b Pd1 := Totaldi Totaltl := 1600• lb P11 := Totalil Pd := Pdl + P11 Pd = 2219•Ib Footing Dimensions t := 12. in Footing thickness Dia := 18.in Footing diameter ir• Dia l A := Footing Area 4 q := gall — tf'-'con, gnet = 1350•psf Pt1 Arco A red= g 1.644 ft 2 < A = 1.77 ft 2 GOOD A Diaregd • :_ • Diareqd = 1.45•ft < Dia = 1.50 ft GOOD IT Ultimate Loads :1 Pdl ± tf'A "'-cone P := 1.4•Pd1 + 1.7•P11 P = 3.96 -kips q := Pu A q = 2.24-ksf 7 1 Beare Shear bcoi 3.5•in (4x4 post) d:= tf -2•in := 0.85 b := cos(45•deg)•Dia b = 12.73•in := 4 . f d V„= 7.901•kips 3 V„ := tlu'(b ' bcol� b V,,= 0.91 .kips < V„ = 7.901 .kips GOOD Two - Way Shear bs := 15-in Short side column width bL := 3.5•in Long side column width b„:= 2.(bs -t• d) -t- 2•(bL+ d) b = 54•in (3 _ 1.0 1x,:= r + 8 �f`Psi b d V„= 23.703•kips l 3 3 ° 1 Vnmax x.2.66• f V„ 15.7G.kips qu �b2 - � bcul + d) V„ = -0.3I kips < Viunax = 15.76-kips GOOD Flexure M,,:= X1 r b coll (2 }•b M „= 0.18•ft•kips 0.65 I \ l 1 ;= b' d` 6 S= 0.123.11 3 fi 5•c1)• f F,= l78.0`I•psi f t M,, fi = 9:9 {asi < F = 178.01 .psi C OO.D Use a 18” Dia. x 12" plain concrete footing �1 Plain Concrete Isolated Square Footing Design: F6 f := 25 psi Con crete strength fy: 40000.p Reinforcing steel strength GS := 29000 Steel modulus of elasticity tconc 1.50. pef Concrete density Ysoil := I Oa. per Soil density gall := 150O•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl := 70720 Pd1:= Total& Tota111 = 13304-lb P11:= Total11 Ptt := Pdl + Pll Pt1= 20376•1b Footing Dimensions t f := 15-in Footing thickness Width := 48•in Footing width Width Footing Arca Met := gnll. — tf••Yconc Met = 13l3•psf t'tl Areqd gnct_ Aregd = 1 5,525 ft 2 < A• = 164 GOOD Wittthregd ` Aregd W idthregd. = 3.94• ft < Width = 4:00 ft GOOD Ultimate Loads := Pdl + tr. A (colic P := 1.4 Pdl + 1.7•PD P = 36.72. kips P`l 29.ksf gu:= A gu =. .: 1� Beam Shear b coi := 5.5.in (4x4 post) d := ti-- 2.in 1:13 := 0.85 b := Width b = 48.in 0.- 4 -Kiisi:b-d V„ = 35.36. kips 3 b - b„i V, 2 :- q, ( ' j•b V„ = 16.26,kips < V= 35.3&kips GOOD Two Shear bs : - 5i:5-.in Short side column width bL.:= 5.5.in Long side'•colunin width b := 2 -I- d) + 2.(4 + d) 1;0 = 74-in f3 := 1.0 0.- - + — - .1, b. d ( 3 3' V, = 106.08-kips, Vilinax := (1).2.66.sib-d V arna , = 70.54. kips 2 i - kb + V„ = 31.26. kips < V„,,„ = 70.54. kips GOOD Flexure m.:_ (.111 b - 2 11 ( 1 ) . b M,, = 14.39. ft.kips 0.65 b. d 2 1:- S = 0.782'• ft 3 , F := 5.0- '1,47 F, = 162.5-psi • Mil f — fi = 127.15..psi< F 162.5-psi GOOD ILIse a 4 x 4'-0" x 15" plain concrete footing I j 6entLey S Microsoft Current Date: 12/15/2010 11:11 AM w un;k. Units system: English 9-tryia. watt. kS I%)¢Xk. #O Vr1i4- Design Results 1 Fear load Reinforced Concrete Footings GENERAL INFORMATION: Global status OK Design Code ACI 318 -05 Footing type Spread Column type Concrete Geometry • • 1 1S1n 12 ft 'I • z J _ . Eft �' a . 6 f 12ft F110.1 Length 12.00 [ft] Width 7.00 [ft] Thickness 1.50 [ft] Base depth 5.00 [ft] Base area 84.00 [ft2] Footing volume 126.00 [ft3] Column length 12.00 [in] Column width 12.00 [in] Column location relative to footing g.c. Centered Materials Concrete, fc 3.00 [Kip /in2] Steel, fy .: 60.00 [Kip /in2] Concrete type Normal • Epoxy coated No Concrete elasticity modulus : 3122.02 [Kip /in2] Steel elasticity modulus : 29000.00 [Kip /in2] Unit weight 0.15 [Kip /ft3] Soil Modulus of subgrade reaction 200.00 [Kip /ft3] Unit weight (wet) 0.11 [Kip /ft3] Footing reinforcement Free cover . 3.00 [in] Maximum Rho /Rho balanced ratio . 0.75 Bottom reinforcement // to L (xx) : 945 @ 9.00" • Bottom reinforcement // to B (zz) 345 @ 13.00" (Zone 1) Bottom reinforcement // to B (zz) 1245 @ 7.00" (Zone 2) Bottom reinforcement // to B (zz) 345 @ 13.00" (Zone 3) Dowel bar size Reber1 . 8-#4 Free cover : 1.00 [in] Development length calculated in tension Bars number // to x axis 3 Bars number // to z axis 3 Stirrups : #4 @ 8.00" Legs number // to x axis : 2 Legs number // to z axis : 2 Load conditions to be included in design Service loads: SC1 DL Design strength loads: • DC1 1.4DL Loads Condition Axial Mxx Mzz Vx Vz [Kip] [Kip *ft] [Kip *ft] [Kip] [Kip] RESULTS: Status OK Soil.Foundation interaction 'i nfo b Allowable stress 3E03 [Lb /ft2] Min. safety factor for sliding 1.25 Min. safety factor for overturning 1.25 Minimum safety factor for bearing capacity (uplift) 2.50 Controlling condition SC1 Safety factor for bearing capacity (uplift) 1000.00 Condition qmean qmax Amax Area in compression . Overturnina FS [Lb /ft2] [Lb /ft2] [in] [f[ ( %) FSx FSz slip SC1 0 0 0 84.00 100 1000.00 1000.00 1000.00 Bending Factor I 0.90 Min rebar ratio 0.00180 Development length Axis Pos. Id Ihd Dist1 Dist2 [in] [in] [In] [in] zz Bot. 22.90 8.01 33.00 33.00 xx Bot. 26.71 • 9.35 63.00 63.00 Axis Pos. Condition Mu *Mn Asreq Asprov Asreq / Asprov Mu/(4)*Mn) [Kip •ft] [Kip *ft] [in2] [in2] zz Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 l L zz Bot. DC1 0.00 179.50 0.00 2.79 0.000 0.000 I I xx Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 ■ I, xx Bot. DC1 0.00 341.66 0.00 5.58 0.000 0.000 I I' Shear Factor 0.75 Shear area (plane zz) 8.57 [ft2] Shear area (plane xx) 14.06 [ft2] Plane Condition Vu Vc Vu /(4)*Vn) [Kip] [Kip] xy DC1 0.00 221.83 0.000 i yz DC1 0.00 135.15 0.000 I Punching shear Perimeter of critical section (b.... : 8.79 [ft] Punching shear area 10.53 [ft2] LCC1 L., 03 Column Condition Vu Vc Vu/(4)*Vn) [Kip] [Kip] column 1 DC1 0.00 332.26 0.000 I Notes * Soil under the footing is considered elastic and homogeneous. A linear soil pressure variation is assumed. * The required flexural reinforcement considers at least the minimum reinforcement * The design bending moment is calculated at the critical sections located at the support faces " Only rectangular footings with uniform sections and rectangular columns are considered. *The nominal shear strength is calculated in critical sections located at a distance d from the support face *The punching shear strength is calculated in a perimetral section located at a distance d12 from the support faces * Transverse reinforcement is not considered in footings * Values shown in red are not in compliance with a provision of the code *gprom = Mean compression pressure on soil. *qmax = Maximum compression pressure on soil. *Amax = maximum total settlement (considering an elastic soil modeled by the subgrade reaction modulus). * Mn = Nominat moment strength. * Mu /(4 *Mn) = Strength ratio. * Vn = Nominal shear or punchure force (for footings Vn =Vc). * Vu /(4)*Vn) = Shear or punching shear strength ratio. Plain Concrete Isolated Square Footing Design: F7 f := 2500• psi Concrete strength f := 60000-psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity "Yconc 150•pef Concrete density -y soil 100• Soil density qall := 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 1200-lb Pd1 Totaldi Tota111:= 3200-lb Pil := Totalil Pt! Pd1 + P11 Ptl = 4400• lb Footing Dimensions t1 • := 10•in Footing thickness Width := 24 -in Footing width A := Width Footing Area gnet gall — tf' quet = 1375•psf PH Aregd _ 9net A reqd = 3-241 < A = 4 ft 2 GOOD Widthregd Aregd Widthregd = 1.79-ft < Width = 2.00 ft GOOD Ultimate Loads Zak::= P + 4-A 1'w= P,:= 1.4• Pd1 + 1.7• Pll P = 7.82• kips P q :_ — q = I.96•ksf A Beam Shear b coi (4x4 post) d := tf — 2.in cl) := 0.85 b := Width b = 24- in V„ := 4-- 4 fisi-b • cl V, = 1088•kips 3 b — bcc 2 ) .b q) V:= q,- V 3,01 < V, = 10.88•kips• GO0:0 Two-Way Shear bs := 5.5.in Short side coluinit Width bL:= 5.5•in Long side.column width b, := 2.(bs + + 2-(4, + d) b, =54j (3, := 1.0 X + 1 " As. H4 . .pSi.b.d V, = 32.64-kip's Vitmnx: 3 14 . iti!2.66.4repsi.b.d = 21.71. ki ps g„11) — (k) + d) V, = 5,35. kips < V 21.71. kips GOOD Flexure qu [(b — 2 bc01) (-12) = 1.16. ft. kips 0.65 2 d S = 0.148.11 rt := 5 *(1 ) *1:fsi F = 162.5-psi 1\ := = 54.45. psi < F .162.5. psi GOOD Pse a 2'-0" x 2'40" x 10" plain concrete footing • OY' f DATE: /'1 1 o JOB NO, ae 1 _ �'}, y ° OF PROJECT: Cor Voot c lJ�n; + A - fan Load (J a a ) 3 L ) 11 X t•\51 RE: ❑ ❑ 11;3(0, ►1;10 N.4■ • z 35.i1�t W nJ a,3L3k- ► a.361 o 2 ' L II w El li U a 1 W 2 I a Q D ``�n o , \I\ OT = 3S +\ \ 4-1 l,- ' \ :10 S`Q.s 1 kC' CI M Ca-,,Co +t oi\,s- 3,s - ) (2z - Y i 4- a - 3 3(a .7 ) 4 a.rt. z :: acaa 1-P.. �► o MR = ColiSO - )(t +5 :3 i- a.3+,3(1a,15 ')t 1.3t,',( I) i- a , aa3 v.-F' xfe.= Mia= a(4.a -se.s = GI .aFt e= l.`1 1'32.6 + x.363(0 30 = Q } 6 M J a 1 + �(aa.05 ii.1.'4�- _ ©.4_ast<�SF j4 �2 L (3 is )(TO (3 . T ) (z- — c lam ►n= C _ (-M = 0,14b C 13 L 1■52-L o ci , _ aa3 3 : S o� 0 '_' M0 55,s1 V) 7, a " v z4= a `d! a qQ1 /.Flay ntt tt Harper Houf Peterson Righellis inc: Current Date: 6/22/2010 10:43 AM Units system: English File name: O: \HHPR Projects\CEN - Centex Homes (309)\CEN - Plans \CEN -090 Summer Creek Townhomes \calcslUnit A \foundations \Front Load 2.etz1 • • *133z- • M33= -12.19 (Kip•ftj X~ Wm Es L1 'F20 v ietew Harper Hoof Peterson Righellis Inca Current Date: 6/22/20:10.1 D:35 AM Units system: English. File name: O IHHPR,Projects \CEN - Centex Homes (309)10EN.- Plans \CEN -090 Sumner Creek Townhomeslcalcs\Unit Alfoundations\Front Load.etzl uN IT I - �— `'IN =25:66 Np`ft) • M33= 3027 [KUp'ftI ' Y A x • M,o LC2 �- ` zz.., • ° y VGA `°g 1 : 0 i �Q ���C?C��1 �� 1@,x � ' �, 1 ro b' Q - 0 5 1 -1 4`OU+A -b V• O> w• v'-) " .. 1 0 • �$ 5611 � (°S'S o &'oe) 7 "" 01010'oc = K ' AA 'CJ lob o`e 1-3u)5'.S '9 J Zi - t'•S G1"111 — ,Vb'et _ x - m 'c,' - 710 '. S't< '9; o wfZ\ci o 3� °)b' b'e`e = n (Ie)ES1 Y) .St'L (,ee)U1)`1)rl°sv0) = -3W a .i gl ' )11 = c c l ` e ) 0 3 - L ' e ) 4- 1-17 k 1 1 7 ' 0. = 10V\ 3 Z fo,Nin4)a Aw' a Z = • m J n x D r O 14.S1 t" ' ' • o API `VIDE ilk ^ m er1 Z --AQMUe tik:n ?a ??1, - d 1.1 Nfl 3t - g v, a. 17k iD3 road ip Q b 0— @ ®a : ON aor 010t— 9 .„da -A U ,.. r ei Bentley* Harper Hquf Peterson 1 igheffls h30, Current Date: 6/22/2010.10:38 AM Units system: English File name:.O:1HHPR Projects\CEN - Centex Homes (309)10EN - Plans \CEN -09O Summer Creek Townhomeslcalcs \Unit Alfoundations\Rear Load.etzl M33 =43.24 [19p'f1l • M33 -45.08 (Klp•ftj X ' *Meiits L 7#., Bent it Harper Houf Peterson'Righellis Inc. Current Date: 6/22/2010 10:43 AM • Units system: English File name: "0:11HRR Pro•ects \CEN - Centex Homes (309)ICEN - Plans\CEN -090 Summer Creek Townhomes\calcs1Unit A\foundations1Rear Load 2.etz\ M33 =41.88 (Kip'ftl • 1 • , • • M33= -46.37 (Kip'ftj ■ X � r M _ LCt .s7,3 • •:,.. . 1:', 2 Q , . •', = - I tulawri der a -)10.,- xvtAw< hb' i. s:. cC;cri 1) ph.T.:=. ( 1 /6S1 ,----S )(°X I.," 0 )0 r ctn.:XS:00E)9 '0/ (C t) r -01 ill") z.".kl "Dio ,, 7,1 S Ai vu,L. „. . -9LP°°,10,2(J -01'0,2060 • (n)C,...000SOS'O) (000 ttri'D -1..tv‘i-E.tb•*0 rzcv 70 ;,ef\ &_itott i 0 q6 . k C3i4 r., 2 El o K . ..., . NR Oh P O -:".• LI ci7rtYcOODS) q a 0,/ C000'' N.) Voi." 0 " )0 n in< 7.,ri '0 = 5 V ' TO F'ja- 0 - 3 3 C C i a '=- 10 • Vit -19) Esvolo°0 W� 0 , „,, . > , o , , • - 1 - ' ' ' - Iiii i V'' -<--,' kj -1-1•Un .= *`0cLk \ A f - - . r , !._, a F RI -)k 1 x p---le m 6 Ei \ QIOCTI JX)• , . • :in:If . . Ao C 0-- N , ...,, Q 110 - , :.,,,,, NIV ... . ! . mo i - e.."-r....c..,•1).it.e,_.. ,..:: I :. Ili = (.. .,.si)cooci'0 -z--,Likw .,- , ii = (..zip)c,,cmez rz )0 fl;,--• 0 \!? C\ ..11, .4.1m 0 1. ay.. I r 5 al 0 A 0= c 7 / L io")Q:07 \) :: \D "D'O n ol 0! c- .: V\A I AO ' .' S G < cziZ.M.)'0. -31),(oao'ol)(g.-CO'N)ok,'() 7'.. *0 ; (_coo'cr )(... \ ) [--_..2.. ° -? _.]: -it..P" CILOI \ = CV 1 I X.1 7 6 ) . .S 'r1).1 (-et 4- =. v2%1 A' . rvvvg Lcoo 00))„ 0) • o).-- v . 0 9 o z -,1 I "D'O 1; IThl i n Z 1,1 00t1 - <-- "D 4. c • c) . 6 IP\ -k•( — C- kcj k \- I, xi 1 . o " _P‘ h Ile .' m o > • x ' C O ' I 2) 4 .: - k : \ W) ii/-'1 VA 4 ( 1 r rn -i m 0 itC3A E-----".-------1 j z - -IL i 1 AQA )(- - 1 x CI El • ' OINCii3 V -kuosil ,„ , 1 -1-01 I . AO ON or '31VO 'AEI BY N\ \i\ .0 DATE' 1 - ao 10 -No- Ced w _ -090 OF PROJECT' b'x3 I,zs' RE: U 1 y� 1'‘ .k- A r 1n- 5u,...) ❑ L i i.W s.a v ,may t.ee 0 2 I J ° t- a,' +—L 9 -- a' —# o W U z W c, d Z Check_ Overti nmr‘9 0 Aor = a�.n 'c Ma.., (e10 sN5I4) f �, I,iLL(() - (+4 l' k g' 2 M 6 y ,$)C)(4) } ,aC() +-1 Lt,( ?.) ® 5(4,. 2 0 M9... _ 41 ,°00 .., , (l > I,s ate. z tenor ° ar.63 ❑o X _M1 a _ 4t�L -a �o3 SA r5,2 4-1,1.1, - VYNcfr.x - '' ( _ 1 _`d: 0 _ — a, -o ksc = - o� 3 �C3 -2e.) - 3(- `. S -Q(a, -1o1)) E3y %Yor4 r 1 __ Use slab to rest Ove Ivanln3 Mot af.., ,0 -� . o U = MIL (5. a i-3. 4--(I,I�I, k 3.2 (,) i" L4 DL Use 51'4_ s °' = MIt ie. Cs, 2- t - :3.2 X(a) 4- ( I. (,� 1 3 ,2)(Z>) q D L or 5'0,1 o 6 t 2 h L4 'C6a': i I, - mo <N10_ \ es (a ,(A G 4s.ci cp 4- LI DL ca> ' 1 )\---7- - - - - 1.) 3 :. 54 foc>kwn) j 13 e OK._ i - Soo N - _L tst 1 • ) r - 31)1_ MQ,_ t-L,tb , f-3�L \ 0 A 1,5(2 ,0) s - - '2,' hL- Q . - D5 go LCD- Icing x @c1 x 15" 1 )\-= a -aso aas A-s: - a + .2‘- 1,(,,Li a) >5,5 1 ' e..7.-_- 1,22.. ( -ftna.x 4(.t5,51) ^ - amg0 NC-1 3(.2_,(L-2.(..1.22-)) ) Va'-- QZ y N y V !,'•.: tII • _ MM z . i m • CD : • n 0 • 2 O z z ❑ m z '1 0 0 3 _ <<t r 1 t — 1)(C- )2 ❑ VI °). } 7 h(' = a ��'1 -= �o'Ise- QsE_�.C.)� - 9 a'`k-) ° �1 K D d . S -Lcr.. "q_ _-_- h S1 )(- 2 . o r'") Z <(5 1)Z - ° 1)(TOE' m L')N �C� � L{a'�71) ' TOE' ----' '<` 1)J , o o Q -t.0.°)\ r o TJ\•1 --a �� _ t .- J 1 3 z '� m ❑ ❑ :t3aroad so a\OC) N "-../ : Oro evr' 010e- 9 -3iva \ 1 At) n l r ' fl y Harper Ho,uf Petersen Righellis Inc: Current Date: 6/22/2010 10:42 AM. Units system: English' File name: 0 :1HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN =090 Summer Creek Townhomes\calcsWUnit A \foundations\Inteiior 2.etz\ M33= 23:55 f ttl • i j . M33=- 17.881KIp ft1 A i X z \ I LC t ' # Harper Houf.Peterson Righeltis Ino. Current Date: 6122/2010 10:42 AM Units system: English File name: O:IHHPR Pro ects %CEN CentexdHonies (309)10EN Ptans \CEN -090 Summer Creek Townhomes\calcs \Unit Atfoundations\lnterior.etz\ M33 =32.26 (Kip' ft] M33= -9.27 (Kip'ft) A a i — I\AGM LCD BY ; DATE' 6-R010 JOB NO.. Cato-octo or P ROJ ECT: RE' Ified.ritAjt-VtfiC 5 El El . 0 v IMON.x A 7\1.'055N-ft. c • • El ft 3 .)( iS'' 1 u, • 0 Tr. , (1.)V-4 a 12.," A& 0,S ‘NO- O\L 0 0, s.?"9 140000 )/0 , eCao06)(:3) 0 .LI-oct 1.7 My\---- 0,c15(.0 2 • 7 - r3.1.,2,L36: k.g6 0 i To) 0 = 0:6 to,&3000 LL. z g O (OM 0 . 0(03q 3 (1 2 ao.q5 -Mmtn co4. pi t _ , i AC! 318-05 Appendix D 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens f c = 3000 psi fc = 3000 psi h' = 3.50 inches h = 12.00 inches (into the Fc Stem = 8.00 inches Note: hef above is the the embedment into or Cmax = 5.25 inches the foundation and does not consider stem wi Fnd Width = 36.00 inches Cmin = 2.25 inches = 18.00 inches W 1.00 cast -in -place anchor W 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor = 0.75 strength reduction factor = 0.75 strength reduction fact' Calculations Calculations AN = 68 in` AN = 1296 in` ANa = 110.25 in` AN = 1296 in` Nb = 8,607 pounds Nb = 55,121 pounds Wed,N — 0.8286 Wed,N = 1.00 Nth = 4,399 pounds Nth = 55,121 pounds (I)Neb = 3,299 pounds 4N,b = 41,341 pounds Combined Capacity of Stem Wall and Foundation ol = 44,640 0.750 = 33,480 • Concrete Side Face Blow Out Givens Ab; = 2.15 fc = 3000, psi cm n = 18.00 inches = 0.75 strength reduction factor Calculations N = 231,191 pounds 4 NSb = 173,393 pounds Concrete Pullout Strength Givens Ab, = 2.,15: fc = 3000 psi = 0.75 strength reduction factor Calculations N = 51,552 pounds 4)N = 38,664 pounds Steel Yield Strength Givens ft= 58,000 psi A = 0.606 in = 0..80 strength reduction factor Calculations N = 35,148 pounds 4N, = 28,118 pounds < 33,480 ductility Met Holdown Check Holdown: HDU14- Holdown Capacity= 14 pounds 1.6* Capacity= 23,888 pounds 23,888 < 28,118 Holdown Checks * 3 7D Dv. DATE- JOB NO. OF • PROJECT. RE- S Irem coak 03 ° I II 6 D e 5i Gees oP Boilciorns Z 0 w o 2 l ° aS t. 2,?s()= 300 Pi..p - ❑ ? E(2 levets")(l3 s4=) = (.705 i ,f loon 4oIN C o 15pa . - 171 is ) 333 OLF 5k-ern 0 W C - 100'w PCs:- U w 0 Z a (5c R )(2 levels) (.40 _toor O z TAO load. = 11 l +- Ioow ' O∎Y sbp =. \ 500 psF = 1soopc..P ° w 0 i 81 + co I W 15O0w u - (4) = 1.-NA x ts," 2 Et 0 W e fear c c.fi by tokq\c a ❑ Z O I- DLo 'Zoo ( ateve s)(1. PIAF 10cyr- 401 (150 f C = 3S3 s\-e P ry) 01 -(2Y. (50 w') = tOOj Ci81 I ps`r • co LL: 06(2 -..40 = 1-2U p LF C14,.Y.25) • - S PLF O U 1 CA s Tt a343 tID ( JUJ o ,, a3k-13+- 100w�15Uda7 x a w s I , 10 7 4 ` ° a- uriF% 6 ' C„ • • # mi SIbc. SaN ccs � hv� lnad.s TL 13bq 100 vs.) W 1.00 4 -e_ t s Pcx(kv) w a l l n�. o .5C12)(2_) (00pii- wut1 ( B)(2Xt3 - )C2; = _l.F Sloar till rSOF.P)C'i;IX ° 333pk.F 51 -e C 112.V30 v1 � 100 u) LL ° (t'I Y.4o)CL) p \2 P1_\- 31cxn rt_ a6a9 0O u.) c3H