Loading...
Specifications tBUP C>0333 /105 © 5 w Ts 44 - VE MWH SHOP DRAWING REVIEW MWH Americas Review Date 8/17/2007 Submittal No. 176. A From Engineer: Rod Warner To Contractor: Contractors, Inc. Company: MWH Americas, Inc. P.O. Box 637 16580 SW 85th Avenue Tualatin, Oregon 97062 - Tigard, OR 97224 Attn: Michael Eubanks Project Owner: Clean Water Services Project Name Durham Facility Phase 4 Expansion Contractor's Submittal No. 176. A Project No.: 4969 Item of Equipment or Material Segmental Retaining Wall - Calculations Specification Section 02834 Subject submittal has been reviewed and review action is as shown below: Item No. SUBJECT OF SHOP DRAWING OR DATA REVIEW ACTION NO. COPIES NO. COPIES RECEIVED RETURNED 1 Segmental Retaining Wall Calculations MAKE CORRECTIONS NOTED 8 6 As noted in the attached memo from Kleinfelder, the calculations have addressed their previous concerns. However, please submit the requested documentation that the proposed geogrid material complies with the Long Term Design Strength (Tal) of 5000 lbs. /ft as required in Specification 02834.2.7.D. 2 Segmental Retaining Wall - Shop Drawings AMEND AND RESUBMIT 0 0 As discussed with CI, please submit Shop Drawings as described in Specification Section 02834.1.3.B.1. Upon acceptance by the Engineer, all of the information will be reviewed by the City of Tigard as a deferred submittal. Remarks See Attached Sheet p or indicate here: None Corrections or comments made relative to submittals during this review do not relieve the contractor from compliance with the requirements of the drawings and specifications. This check is only for review of general conformance with the design concept of the project and general compliance with the information given in the contract documents. The contractor is responsible for confirming and correlating all qualities and dimensions; selecting fabrication processes and techniques of construction; coordinating his work with that of other trades, and performing his work in a safe and satisfactory manner. Rod Warner Engineer's Signature ^t i } A f i!)NIt( r,i:i,'l: � Ft i. l!.:i+ Ith,SUi3MIT C 1. ►1 i - �HtI:C: T oR i;f)r. N;!;,*: i:: Mr ref; c),y r:GNfRACl r.)i. 5! IGt' DRAWINGS D'UFL'(i 71IIS RI: \'!lily c.•; N')1 THE cx)N T(ACIOR }' ROM COM LIANG o u Gl cr iWAR'INGS AND SPECIFICATION'S. THIS SHOP WI ?ICJ HAS BE EN RIWJ > FOR CONFM. AN WIT{{ TH} DESIGN CONCEPT AN7 GENERAL COMPLIANCE \` 'flip e CC 4 ACT DOCUMENT ONLY. C OATRACPOR .E ONF AM) CORRFLA7ING ALL QUANT17iFIS S AND RESPONSIfiI DIMEN IONSFOR ; C FAI3RICATiORMING ON PAOCNSSI s AND TP CCOI:D;rgArNG. WORK WiTlf OTHE2 TRADES; AND SATISFACTCRYAM) SAE F FORMANC.Ii OF TIM WORK File: 10.7.1 - 02834 -176 CM 305 (Revised 7/28/05) KLEI NFELDER TECHNICAL MEMORANDUM Geotechnical Engineering Materials Testing & Inspection Environmental Science & Engineering Water Resources Earthquake Engineering Air Quality Date: August 17, 2007 To: Brian K. Schultz, P.E. LESLIE LARAMOORE MWH cc: From: Arlan H. Rippe, P.E. Project No.: S098394 Subject: SEGMENTAL RETAINING WALL, REVISED AUG 2, 2007 DURHAM AWWTP PHASE 4 EXPANSION In accordance with your request, we have reviewed the Contractor's revised design submittal for the Segmental Retaining Wall in accordance with Project Specifications 02834. The design was prepared by David A. Hall, P.E., dated March 29, 2007, Revised August 2, 2007 for Centerstone Corporation. Our review was intended to look for general compliance with the referenced project specifications and to look for general accordance with the geotechnical conditions as described in the Geotechnical Data Report and the Geotechnical Baseline Report. It does not relieve the Contractor or wall designer from their responsibility for the design and its application to the site as required by the project specifications. We believe that the revisions have addressed our concerns expressed in our technical memorandum dated May 22, 2007. This is based upon the presumption that the proposed geogrid, Synteen SF 90, complies with the Long Term Design Strength (T according to the manufacturer's Product Certification is less than the 5000 lbs /ft. required by 2.7 D. However, the information provided indicates that the creep reduced strength for this product is 5483 lbs /ft. We take no exceptions to the design submittal. However, we recommend that the vendor provide documentation that the T of the geogrid meets the requirement of 2.7 D. segmental wall comments 081707.doc Pagel of 1 15050 SW Koll Parkway Copyright 2007 Kleinfelder Suite L Beaverton, OR 97006 -6028 Tel. 503 - 644 -9447 Fax. 503 - 643 -1905 R E c E v Contractor's Submittal MWH D ® MONTGOMERY WATSON NARZA Transmittal Form For all contractor submittals, including shop Date: 8/3/2007 Transmittal No. 176A drawings, samples calculation, data, or other To: MWH From: CONTRACTORS, INC. Attention: Leslie Laramoore Attention: Louise Loomis Project Name DURHAM AWWTP PHASE 4 EXPANSION This is: Check one an original submittal Owner CLEAN WATER SERVICES X a 2nd submittal a submittal Subject of Submittal Equipment Designation: Specification Section(s): 8 ea. Segmental Retaining Wall - Calculations 02834 (Revised per your comments). Comparison Information Tests Complete either (a) or (b), following: X (a) We have verified that the materials or equipment contained in this submittal meets all the requirements specified or shown (no exceptions) (b) We have verified that the material or equipment contained in this submittal meets all the requirements specified or shown, except for the following deviations (List Deviations): Contractor's Authorized Representative j / i.f eve Newton, Project Manag-r CM 306 (Revised 9/16/02) 120°6230,0 g -0 I (080 svi/ S'5' Avc March 29, 2007 Revised April 11, 2007 Revised August 2, 2007: Per Geotech Review STRUCTURAL CALCULATIONS AND DETAILS FOR THE PROPOSED ULTRABLOCK MSE RETAINING WALL DURHAM A.W.W.T.P. FACILITY PHASE 4 EXPANSION DURHAM. OREGON PREPARED FOR: CENTERSTONE CORPORATION 1233 SE 15 AVENUE CANBY, OREGON 97013 (503) 803 -2689 PREPARED BY DAVID A. HALL /STRUCTURAL ENGINEERING P.O. BOX 82228 PORTLAND, OR 97282 -0228 (503)- 231 -8727 . 8(Z( JOB #CENTX0013�.' , EXPakiki'icN IJA17.74 DAVID A. HALL /STRUCTURAL ENGINEERING PO Box 82228 Portland, OR 97282 -0228 503 -231 -8727 FAX 503 -231 -8726 CELL 503 -502 -7965 DESIGN SUMMARY SHEET PROJECT DESCRIPTION: Durham A.W.W.T.P Facility Phase 4 Expansion Durham, Oregon GEOTECHNICAL REPORT: Squire/Kleinfelder Report #98394.802 Dated August 26, 2003 DESIGN INPUT PARAMETERS: Angle of Friction Reinforced Zone 34 Degrees Unit Weight of Soil 125 pcf Cohesion 0 psf Angle of Friction Retained Zone 30 Degrees Unit Weight of Soil 120 pcf Cohesion 0 psf Angle of Friction Foundation Zone 30 Degrees Unit Weight of Soil 120 pcf Cohesion 0 psf Compaction of Backfill 95% Standard Proctor per ASTM D698 Maximum Bearing Pressure 3000 psf MATCHLINE 000-C-22 • 41:1■ - Itie,, aiD .Th -.,, ,.. -1 .- --:, • 0' ..........– . • • - • • - -.. ....-.. 0 ja.., , 1 co "R4" UNE -- - -, - 7,....11N . , .//4 : , • 0+24.38 ,.....„, •• •Itivrim .,....■ - . • aii ■ , . • • .- --• .• ....• .... .... . . 1. RT I ase co 1. a _ WO - --. iatlir . - -• '.0 • • • - - -..--. (E0:, . - 1111Al ai s° Ili ' W O S % .••<,,N.;.. . . .*„,.. 4ING WALL (TYP) . • NG 000- C-028 FOR A.Q1 IF WALL ELEVATION m1=4,24,0„ ..."....• - 1.,......MEX OftAIN-ti'll'Elh '' '.."-„,,;,' - • '''' • . • . s i•tva - 42, %tr • ...• ,...- ...• .- . .. - -'' .." LINE .., % • . : '• ....-,;*::: :77. I TYP: ' °F .. 23 . ::. -4 ", • :: : ." ' • ' ..f: .' .. ::".- • ' " " ' • ' " • • • • • "MI MN MM.. MIMI iral %MINN : 4111 1111 PA .. • -....... „....... "..7 _ _ •. • * . .• • .4 • • . :' - '''. ' 4. -- . ... 4 -i..1." ,_..2 . • ' 1 . . '. '; -:. . • .* KIIIIIMI ""wie•4 It. -% ..,, . : A.,..-__. 40. -.. '41, c,'D N'. t arra{ INLET .• ' ' 5' CONCRETE SIDEWALK o -. CEP . us Oval* FG = 150.50 ---- . (PER CWS ETD % .... _ . -...... OA I WI MIN 24" OF . 121° PEDESTRIAN RAMP ' , • - .,. • . it '.-1 .‘041 CA RIpAOALL AROUND • - •... • •••••• •.'-.. RE :•••;''. r . .k;•,' •• ; ..... -. 1 R I -.' ' ..... ..._ .., . ....-• • .,......... , CV. ....., • . : I li,. ..- .....'... . . :. , - 45) ETAIG WALL (TYP) Rr NIN ro kftip \C5 • • - 40 RET - .. _ . , 8 ONG 000- C-028 * LINE - % -.. „ ,.- .., ---... ' • - ,, . -. • ..• a FOR TOP OFWLL ELEVATION A CI ....... • ----• • .,..... 30 AC PAVEMENT .. -..... 1 ..e ..1 ,. • kl+ .::35. ". „ -.. ‘ V . . "-- .- ...„ '34%1 - -," . Illi • DITCH INLET P DWS_ .... INPLuEN 'T-.... GARDEN ''................____..-- .••--.. -. -... ...-........ .-...-. - -- -- . ... PUMP (SEE-NOTE 1) ....".. 1 f ' .... ■11014 . I ''' . • - • 4 11 .,,P . .f .■ I RIP-RAP ALL AROUND STATION --- ,_ ,,--% .. .!; ■ • 41E) GRASS DITC ' / - ) -_-............'...-, _ ...... ...... ..., H INLET -...., .. !iCIC.1:14: ....... • .% :.) C.*: .;j 411 - vvs STD 250 2 en ' 0 16- . , .....f.; „"' % - SWALE (PER p • (TYP OF 4 ...-- - - °434433 — - - - ..,•;- 4 ....e ,.... •..... - 4F .--_,go. ,t3i --.-- -............. r.!--z., 12137 LT . ..7. ..: v .441 witalanicalpie • ...."--.. 1Ti -..... '-...-.-: .--.•:.:,,. ....• • , - : :•::::::• : 21 % .:.:: . 7. f.‘..-:::.. -----...—.,...,.. 30 AC PAVEMENT :'.. — ----'-'• s7/4 trtif : -• ',.. : I., ..• .. . -• . - .:•'.1.-I' .4. ''''. .F....- ..................... .....*•'... , ... .......- tD• .. ...:44„ • • ' -• - , • t • ■ t 'i . 1 • ' .4:FC10 "::. .. 7 --..: • '.'."4::: *,:: ........:•!. ::::..•:•:....- , "--...--- •-•-..... ..... -.... . Er • t.,.• .-.-r.-:7-........•:...,;...,:-.1.......„.„..........,....:::::;.tit...::::::::-....0:::„....0.:.:-.- • ,, ......i.: ..,, . *.r. . ' , ,...v :- Pfg.::-;.;•:-::•:Esr • • . ...:. . -.. ii9,1: f 1+32.18 - ci, rr ....... . -- . ''.., T CONCRETE STRIP C ' • 188 ROAD A 1. ..-chigo.00 •-• WM . 11211 . Al I 14- 3 - I/ =....... '. • Ft2" L NE 0+ • i" '"*. • .....,,, . DRY CREEK e ,„ ..... 000-C-065 0004-063 i • A/ .-. ....-•--. DURHAM AWWTP PHASE 4 EXPANSIDN DREGD\ REVISED AUGUST 2, 2007 GUARD RAIL OR FENCE - BY OTHERS 100 psf SURCHARGE 10' -0" MIN 15' -8" MIN 11' -8' MIN " NN I N''' III —III —I I a 1:-1 I I _III SYNTEEN - I SF 90 x 8' -6" REINFORCED ZONE . I- > GEOGRIDS SEE DESIGN SUMMARY TABLE FOR INTERNAL - ANGLE OF FRICTION -III III—II I —I 1 .-r4 LT Y: I ��e 12" CRUSHED ROCK OR STANDARD LOCK -BLOCK ROAD BASE DIRECTLY (ULTRA- BLOCK) UNIT. BEHIND BLOCKS (TYP.) NO WALL BATTER -" STACKED 2 BLOCKS 6" OF CRUSHED ROCK SYNTEEN BELOW BLOCKS HIGH (5.0 FEET MAX) _ SF 90 x 8' -6" EACH TIER III - III- __ 4" DIA. PIPE WRAPPED G —I � I_I �T: - IN FILTER FABRIC. EACH TIER �� . � � . �� : �� HORIZONTAL SYNTEEN , FRONT SLOPE SF90 x 8' -6" 6" OF CRUSHED ROCK GEOGRIDS ' 4" DIA. PIPE WRAPPED BELOW BLOCKS IN FILTER FABRIC. - EACH TIER 1. -1 I I — 11'- III I I .T ti.Y:LY- Y_ Z ' —I I I . 1 . -� 1 a . - 6" OF CRUSHED ROCK > - BELOW BLOCKS . I- %.0 - 4" DIA. PIPE WRAPPED IN FILTER FABRIC. ' EACH TIER - III 4DY 7. SY_ eli ' — I 0. V. 6" OF CRUSHED ROCK dp BELOW BLOCKS TYPICAL 4 TIERED ULTRABLOCK WALL SECTION Based on NCMA 97 Criteria - January, 2007 M. A. R. V. PROPERTIES of SYNTEEN SF SERIES GEOGRIDS Property I Symbol I Method SF20 SF35 SF55 SF65 SF80 SF90 SF110 SF350 Note: All geogrids woven PET with PVC Coatings Tensile Properties LBS /FT kN /m ,LBS /FT kN /m ILBS /FT kN /m ,LBS /FT kN /m ,LBS /FT kN /m LBS /FT kN /m LBS /FT kN /m LBS /FT kNlm MD - Ultimate Strength Tult ASTM D -6637 1,940 28.3 3,200 46.7 l 4,200 61.3 6,000 87.5 7,400 107.9 8,500 124.0 10,250 149.5 27,390 399.5 MD - Ultimate Strain at Failure % ASTM D -6637 14% 13% 15% 15% 15% 15% 17% 18% MD - Creep Reduced Strength TI ASTM D -5262 1,259 18.4 2,078 30.3 2,710 39.5 3,870 56.4 4,774 69.6 5,483 80.0 6,528 95.2 17,671 257.7 DESIGN STRENGTH PROPERTIES I I I I I I I CREEP Reduction Factor(ed =10' RFCR NCMA 97 1.54 1.54 1.55 1.55 1.55 1.55 1.57 1.57 AGING /DURABILITY Reduction Factor 5 <soil PH <8 RFD NCMA 97 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 INSTALLATION DAMAGE Reduction Factor 1:100mm Max, 30mm D50, PI <6 RFID NCMA 97 1.73 1.63 1.55 1.50 1.50 1.50 1.40 1.40 2:20mm Max, 0.7mm D50, PI <6 RFID NCMA 97 1.10 1.08 1.05 1.05 1.05 1.05 1.05 1.05 3:20mm Max, .1- .5mmD50, PI <20 RFID NCMA 97 1.10 1.08 1.05 1.05 1.05 1.05 1.05 1.05 Tult / RF for Soil Type 1: = LTDS NCMA 97 662 9.7 1,159 16.9 1,589 23.2 2,346 34.2 2,893 42.2 3,323 48.5 4,239 61.8 11,328 165.2 Tult / RF for Soil Type 2: = LTDS NCMA 97 1,040 15.2 1,749 25.5 2,361 34.4 3,351 48.9 4,133 60.3 4,747 69.2 5,653 82.5 15,104 220.3 Tult / RF for Soil Type 3: = LTDS NCMA 97 1,040 15.2 1,749 25.5 2,361 34.4 3,351 48.9 4,133 60.3 4,747 69.2 5,653 82.5 15,104 220.3 DESIGN INTERACTION PROPERTIES Note: Ci & Cds tests type 2 & estimate from tech. Literature; Ci tan o = F• a & Cd Coefficient of Interaction: Ci GRI - GG5 '91 ci ci ci CI ci Ci Ci ci Coefficient of Direct Sliding: Cds ASTM D -5321 Cds Cds Cds Cds Cds Cds Cds Cds Soil Type 1: see above 0.75 0.70 0.75 0.70 0.75 0.70 0.75 0.65 0.75 0.65 0.75 0.65 0.75 0.65 0.75 0.65 Soil Type 2: see above 0.80 0.80 0.80 0.80 0.80 0.85 0.85 0.90 0.85 0.90 0,85 0.90 0.85 0.90 0.85 0.90 Soil Type 3: see above 0.70 0.75 0.72 0.75 0.72 0.80_ 0.75 0.85_ 0.75 0.85 0.75 0.85 0.70 0.85 0.70 0.85 PHYSICAL PROPERTIES si Us I si us I si us I si us I si us I si us I si us I si Us MD - Aperture Size: (ins.) measured 20 0.75 20 0.75 20 0.75 20 0.75 20 0.75 20 0.75 22 0.85 22 0.85 CMD - Aperture Size: (ins.) measured 20 0.75 20 0.75_ 20 0.75 20 0.75 20 0.75 20 0.75_ 12 0.47 12 0.47 Synteen can custom produce roll size and vary aperture size for site specific applications FIELD CO \ SIR UCTIO\ VA \UAL EXCAVATION Confirm location and elevation of walls. Width of excavation should allow for width of wall base and drainpipe. Note; all excavation should follow OSHA guidelines. If the wall steps up one block in height, the base blocks should be installed at the lowest level in order to establish grade and face location of the second level. BASE PREPARATION Consult engineer's wall design for a base material specification including type, width, depth and compaction. It is recommended to start at lowest wall level. Locate the front face of the wall and run a string line 1 inch in front of the face - 2" above the base. Use 2x6 or 2x8 pieces of wood with 18" steel stakes nailed to each end, for forming up the base (See DIAGRAM 1). DIAGRAM 1 STRINGLINE FRONT BOARD BASE WIDTH BASE ELEVATION L BA TTER BACK BOARD 1�_ . , L AL �11 � \ FILL 1\ iY • • - • � • • • i�i�i�i�igiiie i�iiier , I `er LJ • �i Alia W 1 1 0 1#1#:;;*; to \\ \ SUBGRADE \ COMPACTED BASE MATERIAL Set front board in line with string and at b. - - - - - . . scate the back board at the base width (of wall) distance from the front board. Set elevation of back board to give the proper wall batter. For example, if the wall has a 6:1 batter, and the base of the wall is 30" wide then the back board should be 5" lower than the front board (See DIAGRAM 2). DIAGRAM 2 30/ 6 = 5 I. 30' i LLq Al 1 .- - B 7 TER in •T •Y- •T: � • Y •T. • �T: •T: P • I.i : • k 1. �L•�L L -T ? . �� / \ I._ ,----/\ / \ / , \ \ Make sure the base material is well compacted. Test if necessary. Be careful not to push out boards during compaction. After compacting, screed off base material, fill in low spots, and screed again. Repeat procedure as necessary to achieve firm, compacted base. Without moving the stringline, start leap- frogging the base boards on down the wall line and continue preparing base. Do not disturb stringline. It is best ti prepare the entire base before setting the blocks. CURVED WALL BASE E PREPARATJON urved w s require many more location points to define the curve (the tighter the curve, the more location points). Use bender boards for the base boards. Set the front boards to the elevation and curve of the walls. Set the back boards to the back width and batter the wall. Fill, compact and screed base material as required. SETTING BLOCKS Before placing blocks, make sure the top and bottom surfaces of the respective blocks are clean. At one end of the wall, or at one end of the lowest base elevation, start the wall. At the start of the wall, mark a line perpendicular to the face of the wall. This line will help place the first block square to the wall face. Place the first block one inch from the stringline. Set the next block beside the first block, taking care to align the face. If the base widht of the wall requires 2 or more blocks, place the blocks at the back of the wall first (It may help to run a temporary stringline). Always place the best face of the blocks on the outside of the wall. (See DIAGRAM 3). DIAGRAM 3 SET BLOCKS AT BACK OF WALL FIRST All MIL Do not set any more than 25 to 30 feet of blocks along the length of base starting on the second or third row. The block keyways have a limited amount of play which could lead to binding if installed incorrectly. If binding does occur between the first and second row of blocks, leave a 1/4" gap when placing the next base block. Another suggestion to reduce the binding is as follows: When building the base going left toright, after placing each second row block, push the second row block right to left until it no longer slides along base block. Make sure the upper row blocks do not slide up on the keys of lower row blocks (See DIAGRAM 4). PUSH BLOCK DIAGRAM 4 PUSH BLOCK PUSH BLOCK WALL BUILDING DIRECTION _ If building walls with geogrid, make sure geogrid is extended through to the front face of the block. Geogrid reinforced walls require that the backfill and geogrid be compacted and stretched as the wall goes up. Make sure drainpipe, filter fabric, and drain mats (if required) are installed before backfilling. Backfill material and compaction must meet engineer's requirements. Test as necessary. Continue placing blocks being careful to align the face. EQUIPMENT FOR PLACING BLOCKS A track mounted excavator is the ideal piece of equipment for setting blocks. A wire rigging with swivel hooks, OSHA approved and rated for the weight of the blocks, can be attached to the excavator and used for lifting and moving blocks. SAFETY FACTORS 1. Never stand underneath a block. 2. Never accept or install blocks with a cold joint (LEAVE ON DELIVERY TRUCK) 3. Avoid getting any part of the body between pinch points while installing blocks (either between two blocks or between a block and the open excavation). 4. Always inspect rigging for lifting the block. replace all worn or broken parts. DO NOT USE INFERIOR, INADEQUATE OR UNAPPROVED EQUIPMENT. USEFUL TOOLS 1. Transit- to lay out a level base. 2. Shovels and rakes- for use by the base prep person. 3. A lifting jig- to hold the blocks at the correct batter. 4. A broom- tp clean the keyways before placing the next layer. 5. One or more 5 foot pry bars- for jostling the blocks into position. CORNERS 1. Vertical walls can be locked at 90 degree corners. 2. Battered walls at 90 degree corners are constructed as follows: Stack a vertical column to fill the corner. Adjust toe of battered wall to meet with corners of vertical stack (ie: kick toe out for outside corner, meet toe at edge for inside corner). For walls higher than 7.5', you may use a stack of full -size, interlocked blocks to make a 5'x5' vertical stack, rather than (2) 5'x5' stack with single half blocks (See below). Use geogrid between the vertical blocks, extending back into the fill. Make the corner stack the same width as the wall base (2.5'/5'/7.5' etc.) ■ 1 e 1 4 t l'iliI P OUTSIDE CORNER ._ INSIDE CORNER OPTIONAL LARGER CORNER STACK EXCAVATIO\ If the radius of the wall is less than the allowable radius then contact the manufacturer and see if arrangements can be made for special block. WALL WIDTH MINIMUM RADIUS OF CURVE 2.5 ' 100' 5.0' 200' 7.5' 300' 10.0' 400' FI \AL LEVELI \G OF THE WALL Imperfect or disturbed bases can cause a wall to not run straight or level. It is recommended to shim (asphalt shingle) wall if necessary or place a 4x6 on top of the wall at the high points and pound down with the excavator bucket. �= = ULTRABLOCK, INC. 815 NE 172ND AVE, Vancouver, WA. 98684 360 - 694 -0141 Fax 360 - 694 -0281 1- 800 - 377 -3877 1' N i i2„ 59 STA \3ARD BLOC< DETAIL NOT TO SCALE TECHNICAL SPECIFICATION FOR MECHANICALLY STABILIZED SEGMENTAL RETAINING WALLS PART 1: - GENERAL 1.01 A Professional Engineer, with experience in Geotechnical Engineering and the design and construction of Mechanically Stabilized Earth Walls shall verify that the input parameters specified in Section 1.05 used in the design of these walls at the specified site are correct. It is also recommended that the Geotechnical Engineer provide field observation during construction. This includes the review of the bearing stratum, verification of the specified soil compaction in the reinforcing zone, and the review and verification that the geogrids and drainage system were installed per plan. The Geotechnical Engineer shall evaluate all pertinent soil parameters during construction. 1.02 The design of these walls was prepared for the exclusive use of Konell Construction Company. The use of these plans by any others shall be approved in writing by The Engineer prior to construction. 1.03 The construction of this segmental MSE retaining wall shall be performed by either a Contractor that has been approved as knowledgeable and experienced in the construction of MSE retaining walls using a cast in place segmental facia or a Representative of fascia manufacturer shall be present at the beginning of construction until it has been determined by them that the Contractor is capable of constructing this type of wall system. 1.04 The design of Segemental Mechanically Stabilized Earth Retaining Walls is based on the U.S. Department of Transportation Federal Highway Administration's publication No. FWHA -NHI- 00 -043 "Mechanically Stabilized Earth Walls and Reinforced Soil Slopes Design and Construction Guidelines" which has been adopted by the latest American Association of Highway and Transportation Officials (AASHTO) and the National Concrete and Masonry Association (NCMA) codes. 1.05 Design compliance is made with the input design parameters as specified in the Design Summary Table. The a Geotechnical Engineer of record shall be retained to verify the input parameters. 1.06 Design Compliance is made with the following Factors of Safety: Sliding FS > 1.5 Bearing Capacity FS > 2.0 Overturning FS > 2.0 Internal Stability FS > 1.5 Seismic Stability FS > 75% of Static FS 1.07 The work described and shown involves the supply and installation of reinforced soil retaining walls. The segmental concrete wall fascia create a Retaining Module. The Geo -grid are the types of soil reinforcement. The work includes but is not limited to: a. excavation to the lines and grades shown on the drawing; (or as required by the Geotechnical Engineer, to obtain adequate bearing capacities) excavation to be coordinated with the General Contractor. b. supply and installation of geogrid reinforcement; c. supply and installation of drainage fill and piping; d. supply and installation of segmental wall Modules e. supply and installation of reinforced soil fill. f. removal of all deleterious materials to the satisfaction of the Geotechnical Engineer. 1.08 The walls will be installed in existing, natural, undisturbed soil or placed on a 1/4" rock base as determined by the Geotechnical Engineer. 1.09 The Contractor shall confirm the locations and conditions of all man -made elements which may be affected or damaged by the Work. Elements which may be affected or damaged by the Work must be reported to the Engineer in advance of the work beginning. The Engineer may modify the design or approve of changes to installation techniques proposed by the Contractor to preclude damage or conflict with existing elements. 1.10 The Contractor shall verify all dimensions and report discrepancies to the Engineer. 1.11 A Global Slope Stability Analysis was performed using the input design parameters specified in the Design Summary Table. The Geotechnical Engineer shall verify these design parameters. PART 2 - MATERIALS 2.01 Segmental Wall Blocks are locked together to form a "Retaining Module ". The retaining modules or segmental block shall be that approved by the wall Design Engineer. 2.02 Geogrid - The retaining walls have been designed to be erected as shown on the Plans. Other geogrid materials may be considered suitable provided that they meet the specification and requirements of the design and are approved in advance by the Engineer. 2.03 Modular Fill — The fill immediately behind the LOCK +LOAD panel and surrounding the counterfort shall be "dense graded" select free draining material. 2.04 Drainage Fill. Drainage fill placed around and above the perforated drainage pipe shall be granular aggregate composed of inert, clean, tough, durable particles of crushed rock capable of with standing the deleterious effects of exposure to water, freeze -thaw, handling, spreading and compacting. The aggregate particles shall be uniform in quality and free from an excess of flat or elongated pieces. The drainage fill shall consist of round or angular rock between 3/4 inch and 1 inch. 2.05 Reinforced Backfill. As shown on the Plans or as approved by the Geotechnical Engineer. The Reinforced backfill shall have an angle of internal friction as specified in Section 1.05 when compacted to the specification herein. PART 3 - EXECUTION 3.01 The Contractor shall excavate to the lines and grades shown on the construction drawings. A Geotechnical Engineer shall inspect the excavation and approve the foundation prior to the placement of the levelling pad or retaining modules. 3.02 Over - excavation of deleterious soil or rock as recommended by the Geotechnical Engineer shall be replaced with Reinforced and Retained Backfill meeting the specifications of Section 2.04 above, and compacted to that specified in the Design Summary Table within 2% of the optimum moisture content of the soil. 3.03 The first course of segmental concrete Modules shall be placed on the level compacted foundation and the alignment and level checked. 3.04 Modules shall be placed with the top of the panel level and parallel to the wall face. 3.05 Geogrid shall be oriented with the highest strength axis perpendicular to the wall alignment. 3.06 Geogrid reinforcement shall be placed at the elevations and to the extent shown on the Plans beginning at the front of the semental modules. 3.07 The geogrid shall be laid horizontally in the direction perpendicular to the face of the retaining wall and parallel to the alignment of the "Modules ". The geogrid shall be pulled taut, free of wrinkles and anchored prior to backfill placement on the geogrid. 3.08 The geogrid reinforcement shall be continuous throughout their embedment lengths. Spliced connections between shorter pieces of geogrid are not permitted. 3.09 The drainage pipe discharge points shall be free and clear to allow drainage from the pipes. 3.10 Reinforced and Retained backfill shall be placed, spread and compacted in such a manner that minimizes the development of slack in the geogrid. 3.11 Connection, Reinforced and Retained backfill shall be placed and compacted in lifts not to exceed 8 inches where light compaction equipment (less than 1000Lb vibrating plate) is used and not more than 16 inches where heavy compaction equipment is used. First — compact over tail of counterfort then to the panel back and finally away from the retaining wall structure toward the end of the geogrid. 3.12 All backfill shall be compacted to that specified in the Design Summary Table. The moisture content of the backfill material prior to and during compaction shall be uniformly distributed throughout each layer and shall be within 2 percent of the optimum moisture content. Reinforced backfill shall be free of debris and meet the following gradation tested in accordance with ASTM D-422: Sieve Size (Percent Passing) 2 inch (100 % -75 %) 3/4 inch (100 % -75 %) No. 40 (0 % -60 %) No. 200 (0 %- 35 %) ** Plasticity Index (PI) <15 Liquid Limit <40 per ASTM D -4318. ** Soils having more than 15% passing a 200 seive must be approved by the project Geotechnical Engineer and have an engineered drainage system to insure that a hydrostatic pressure is not built up behind the reinforced soil zone. The maximum aggregate size shall be limited to 3/4 inch unless field tests have been performed to evaluate potential strength reductions to the geogrid design due to damage during construction. Material can be site excavated soils where the above requirements can be met. Unsuitable soils for backfill (high plastic clays or organic soils) shall not be used in the backfill or in the reinforced soil mass. 3.13 Tracked construction equipment shall not be operated directly upon the geogrid reinforcement. A minimum fill thickness of 6 inches is required prior to operation of tracked vehicles over the geogrid. Tracked vehicles should not turn while on the geogrid to prevent tracks from displacing the fill and geogrid and damage or slack to result in the geogrid. 3.14 Rubber tired equipment may pass over the geogrid reinforcement at slow speeds less than 5 mph. Sudden braking and sharp turning shall be avoided. 3.15 At the end of each day of operation, the Contractor shall slope the last lift of reinforced backfill away from the wall units to direct runoff away from the wall face. The Contractor shall not allow surface runoff from adjacent areas to enter the wall construction site. Relatively large earthquake shaking (i.e. A z 0.29) could result in significant permanent lateral and vertical wall deformations even if limit equilibrium criteria are met. In seismically active areas where such strong shaking could exist, a specialist should be retained to evaluate the anticipated deformation response of the structure. The use of the full value of A for K in the Mononobe -Okabe method assumes that no wall lateral displacement is allowed. When using the Mononobe -Okabe method, this assumptions can result in excessively conservative wall designs. To provide a more economical structure, design for a small tolerable displacement rather than no displacement may be preferred. The 1996 AASHTO Specifications for Highway Bridges (with 1998 Interims), Article 5.2.2.4, in combination with Division 1A, Articles 6.4.3 and 7.4.3, allow Mononobe -Okabe earth pressure to be reduced to a residual seismic earth pressure behind the wall resulting from an outward lateral movement of the wall. This reduced seismic earth pressure is calculated through the use of reduced acceleration coefficient for K which accounts for the allowance of some lateral wall displacement. This reduced Kb can be determined through a Newmark sliding block analysis, though the complexity of this type of analysis is beyond the scope of this manual as) A reduced K can be used for any gravity or semi - gravity wall if the following conditions are met: The wall system and any structures supported by the wall can tolerate lateral movement resulting from sliding of the structure. The wall is unrestrained regarding its ability to slide, other than soil friction along its base and minimal soil passive resistance. If the wall functions as an abutment, the top of the wall must also be unrestrained, e.g., the superstructure is supported by sliding bearings. The 1996 AASHTO Specifications for Highway Bridges (with 1998 Interims), Division 1A, Articles 6.4.3 and 7.4.3, provide an approximation of this reduction to account for lateral wall displacement. The Kb used for Mononobe - Okabe analysis of gravity and semi- gravity free standing and abutment walls may be reduced to 0.5A, provided that displacements up to 250 A mm are acceptable. Kavazanjian et al (29) developed an expression for Kb (i.e., N, the peak seismic resistance coefficient sustainable by the wall before it slides), and further simplified the Newmark analysis by assuming the ground velocity in the absence information on the time history of the ground motion, to be equal to 30A. For MSE walls the maximum wall acceleration coefficient at the centroid of the wall mass, A (eq. 30), is used with this expression, and K is computed as: DU K = 1.66A,„(!i) (37h) where, "d" is the lateral wall displacement in mm. It should be noted that this equation should not be used for displacements of less than 25 mm (1 inch) or greater than approximately 200 mm (8 inches). It is recommended that this reduced acceleration value only be used for external stability calculations, to be consistent with the concept of the MSE wall behaving as a rigid block. Internally, the lateral deformation response of the MSE wall -101- _ 1 ■ ami0MEMV. —,. MEW V..m»WUV.®3n1SM Vara. 3.665..mee a.IW Vameal0 WS, Venom 3.1SEW Venom 3A XISENIV® ,.o.6,,.:mla,49.„..mMISMVV.:m.a a033a ma1,o,151./Vane1.1389/ 6W A,.1511,4,63e3a1.196Y Vom3.01■14.6 ..m.OKERWV m,o ' MSEW -- Mechanically Stabilized Earth Walls Durham Facility - Upper Tier Present Date/rime: Thu Aug 02 14:37:11 2007 F:VCenterstone Corporation\Durham W WTP\Durham Upper tier.BEN ...m.o.19swUeo..o.19./ V.+m..o.1960' ®1.0.6 VM.o.196a*0 . 19W* to 10 .6ewV.®,3.0 1.15.VV *4.21.186wV®,r.1969 e min .HvV... , ®m,.a.ae Vmo31.suw*m3n.aSW V.:mMOM Um. AASHTO DESIGN METHOD Durham Facility - Upper Tier PROJECT IDENTIFICATION Title: Durham Facility - Upper Tier Project Number: CENT0013 Client: Centerstone Corporation Designer: DAH Station Number: Description: Upper tier of a 4 tiered wall - Horizontal Backslope - Horizontal frontslope - 3 blocks high Company's information: Name: DAH/SE Street: PO Box 82228 Portland, OR 97282 -0228 Telephone #: (503) 231 -8727 Fax #: (503) 231 -8726 E -Mail: structbear @earthlink.net Original file path and name: F: \Centerstone Corporation\Durham WWTP\Durham Upper tier.BEN Original date and time of creating this file: 3 /30 /07:Rev 8/002/07 PROGRAM MODE: ANALYSIS of a SIMPLE STRUCTURE using GEOGRID as reinforcing material. D urham Facility Tier � V � , � V ®m'n V®,.0 Vam'n V.m. .0.19E,Vo 10.196�,V. m Page 8 of 10 Copyright © 1998 -2007 ADAMA Engineering, Inc. O �� License number MSEW- 301377 • MSEW -- Mechanically Stabilized Earth Walls Durham Facility - Upper Tier Presort Date /rime: Thu Aug 02 14:37:11 2007 F :e nterstone Corporation\Durham W W IPTurham Upper tierBEN . ,. V..,..wV.r.,u Iw Vw.,.o ®u,aw ,a.. Vd.,a.mWV...v a ,EWV..- ,a,.ebWV.S IOI WWV ,.a,.m„V..a ,.,,SS,WV.,a,� , ... a�,wvd. a e- ,. vW,<.®.,V r gollIASIN SOIL DATA REINFORCED SOIL Unit weight, y 130.0lb /ft' Design value of internal angle of friction, 41 34.0 ° RETAINED SOIL 120.0 lb /ft a Unit weight, y Design value of internal angle of friction, 4 30.0 ° FOUNDATION SOIL (Considered as an equivalent uniform soil) Equivalent unit weight, y eouiv. 120.0 lb/ft 3 Equivalent internal angle of friction, (1)equiv. 30.0 ° Equivalent cohesion, c egtriv. 0.0 lb /ft 2 Water table does not affect bearing capacity LATERAL EARTH PRESSURE COEFFICIENTS Ka (internal stability) = 0.2827 (if batter is less than 10 °, Ka is calculated from eq. 15. Otherwise, eq. 38 is utilized) Inclination of internal slip plane, yr= 62.00° (see Fig. 28 in DEMO 82). Ka (external stability) = 0.3333 (if batter is less than 10 °, Ka is calculated from eq. 16. Otherwise, eq. 17 is utilized) BEARING CAPACITY Bearing capacity coefficients (calculated by MSEW): Nc = 30.14 N y= 22.40 SEISMICITY Maximum ground acceleration coefficient, A = 0.150 Design acceleration coefficient in Internal Stability: Kh = 0.195 Design acceleration coefficient in External Stability: Kb = 0.195 Kae ( Kh > 0 ) = 0.4690 Kae ( Kh = 0) = 0.3333 A Kae = 0.1357 (see eq. 37 in DEMO 82) Seismic soil - geogrid friction coefficient, F* is 80.0% of its specified static value. • Vow. HISMYM3111,15. Vga.2.0 Vv.,e.�wV ®,a. V*,a,46W, a. .0.19P/V.®,.6° 1SEWV..., <,1961,Ve.,o,MEWV... < e.,.. V...,o.461,,. 150, Vd.,, .®wV ®, <14E1V.:. Durham Facility - Upper Tier Page 2 of 10 Copyright ® 1998 -2007 ADAMA Engineering, Inc. License number MSEW - 301377 Um 3u �wv..m10 WNW V 3111.6wvd a ..e.4161. .M954 *UMW V.+ mu.. wwv. �u w a� Neevs* 3 .� ® wv.>a�wv.:m1uwa av�3uw6WUM aowewvd3aiauv Yam Mmvv.:m 1061361 ,1o3ara ;m suv.,a�wvMaww sv.am NSPBV *101.1310/ W111 1 ' ' MSEW -- Mechanically Stabilized Earth Walls Durham Facility - Upper Tier Present Date/Time: Thu Aug 02 14:37:11 2007 F:\Centerstone Corporation \Duham W W1P\Durham Upper tierBEN Vesie.10 NM Vs* ".®., vmm3n1. 150.® 3n.® v.+ rmao�wvrm MOM vwu .mmwv.+mLn.®. AISIv*3u�wv.mis AWAY Um 1u vva .ebvvm.m�a�evv.:m.5611 13130. m...617v..mraws�'v.:mulaev INPUT DATA: Geogrids (Analysis) DATA Geogrid Geogrid Geogrid Geogrid Geogrid type #1 type #2 type #3 type #4 type #5 Tult [lb /ft] 3055.0 4200.0 7400.0 10250.0 27397.0 Durability reduction factor, RFd 1.15 1.15 1.15 1.15 1.15 Installation- damage reduction factor, RFid 1.10 1.10 1.10 1.10 1.10 Creep reduction factor, RFc 1.55 1.55 1.55 1.55 1.55 Fs- overall for strength N/A N/A N/A N/A N/A Coverage ratio, Rc 1.000 1.000 1.000 1.000 1.000 Friction angle along geogrid -soil interface, p 28.35 28.35 28.35 28.35 28.35 Pullout resistance factor, F* 0.80 tangy 0.80 tant> 0.80 tint) 0.80 tan* 0.80 tan4 Scale - effect correction factor, a 0.8 0.8 0.8 0.8 0.8 Variation of Lateral Earth Pressure Coefficient With Depth Z K /Ka 0.0 1.0 2.0 K /Ka 3.0 . 0 ft 1.00 0 3.3 ft 1.00 Z [ft] _ 6.6 ft 1.00 6.6_ 9.8 ft 1.00 13.1 ft 1.00 9. 16.4 ft 1.00 .....___ _.._ _ �- 19.7 ft 1.00 161 26.. �_.__ _ ; I 32.8 - .MBHY.r.3o.> 361,,...3 3 ... ....6..v.to3..M,.,.:m3a..I3.�m>o 13S,v.®3.o.13� . 6WVa 5d3a, 13�.® m3<. 13�.dm3.o.1100M1.o.136,...m..ONSW , Nm10 ..,. m30. SEI. �on. a. 13E, M.A.M13EW. ®3a.�.*3n14.•...3e.�.w>o Durham Facility - Upper Tier Page 3 of 10 Copyright © 1998 -2007 ADAMA Engineering, Inc. License number MSEW- 301377 .. . �, . ».,,,.,.>.,... ,�.w,a,�,._,,�®,o.��,4�>� > ' MSEW -- Mechanically Stabilized Earth Walls Durham Facility - Upper Tier Present Date/lime: Thu Aug 02 14:37:11 2007 F:'Centerstone Corporation \Du rham W WTPOurhsm Upper tierBEN INPUT DATA: Facia and Connection (according to revised Demo 82) (Analysis) FACIA type: Facing enabling frictional connection of reinforcement (e.g., modular concrete blocks, gabions) Depth/height of block is 2.50/2.50 ft. Horizontal distance to Center of Gravity of block is 1.25 ft Average unit weight of block is 7f = 145.00 lb/ft 3 Z / Hd To -static / Tmax Top of wall or To-seismic / Tmd Z / Hd 0.00 0.25 0.00 1.00 0.50 0.25 1.00 0.50 1.00 0.75 - -__. ___.�__... _ __ i_- .-_ 0.75 1.00 1.00. 1.00 1.00 1.00 0.90 0.80 0.70 0.60 0.50 To-static / Tmax or To-seismic / Tmd Geogrid Type #1 Geogrid Type #2 Geogrid Type #3 Geogrid Type #4 Geogrid Type #5 a (1) CRult t a CRult a CRult a CRult a CRult 104.0 0.26 250.0 0.23 250.0 0.14 300.0 0.10 300.0 0.04 522.0 0.38 668.0 0.34 814.0 0.20 2220.0 0.65 5936.0 0.65 1745.0 1.00 2400.0 1.00 4228.0 1.00 3416.0 1.00 9132.0 1.00 Geogrid Type #1 Geogrid Type #2 Geogrid Type #3 Geogrid Type #4 Geogrid Type #5 a CRcr a CRcr a CRcr a CRcr a CRcr 104.0 0.26 250.0 0.23 250.0 0.14 300.0 0.10 300.0 0.04 522.0 0.38 668.0 0.34 814.0 0.20 2220.0 0.65 5936.0 0.65 1135.0 0.65 1560.0 0.65. 2750.0 0.65 3416.0 •0.65 9132.0 0.65 (1) a = Confining stress in between stacked blocks [lb /ft 2 ] (2) CRult = Tc -ult / Tult (3) CRcr = Tcre / Tait In seismic analysis, long term strength is reduced to 100% of its static value. D A T A (for connection only) Type #1 Type #2 Type #3 Type #4 Type #5 Product Name SF35 SF55 SF80 SF110 SF350 Connection strength reduction factor, RFd 1.00 1.00 1.00 1.00 1.00 Creep reduction factor, RFc N/A N/A N/A N/A N/A „ �ao�ay..,., n, mv.+. r> n, aev>+ r. ve® v,,.. _v,av,ww,e,aevvr>o>asv,+�,u,aau ,v...,uens.,r.®,n,an-v�,nraw vd_, arabwv� >ueaew.,r.,n.eevv.._ >nrssY V.:_ >,. acv, ru. ow .�,o>a4wvr_,n u,asuv_rw Durham Facility - Upper Tier Page 4 of 10 Copyright © 1998 -2007 ADAMA Engineering, Inc. License number MSEW - 301377 yrs.Y�YVde)a�V V.mfn�1 /V�Im)A)iMV�)AMBV Vw IA I p)iV�m)0 M6vvam )A,65vv�)0AY9vv�)a)61.A'v�)aM6v vsb)A)66vvw 30EmP3'vstlm)Ae�V Vem3a)®vvwlm3n Ea6a"ti.o)a)lmw v�m)AA66a'v�.n)a.66c v�m)a 4563/ V.Am)o.66vVo.30 MSEW -- Mec hanically Stabilized Earth Walls Durham Facility - Tier P,esat Datdrm�e: Thu Aug 02 14:37:112007 F:�Centustone Co)p°rauon�Durham W W IP\Dutham Upper Upper tiaBFN v..m) A,v�)A..e. 3bm)A.�3/�dm>o.5ev , )arasaw, 3a.5wv ®��)5e. .�.+m)A..e.��a u�wm>a INPUT DATA: Geometry and Surcharge loads (of a SIMPLE STRUCTURE) Design height, lid 7.50 [ft {Embedded depth is E = 0.50 ft, and height above top of finished bottom grade is H = 7.00 ft } Batter, w 0.0 [deg] Backslope, 13 0.0 [deg] Backslope rise 10.0 [ft Broken back equivalent angle, I = 0.00° (see Fig. 25 in DEMO 82) UNIFORM SURCHARGE y . $ Uniformly distributed dead load is 0.0 [lb /ft 2 ], and live load is 100.0 [lb /ft 2] ANALYZED REINFORCEMENT LAYOUT: . 4 SCALE: 0 2 4 6 [ft] Vr mae. Q. MVdm) A. 5e3/V�) a.®vlv�)a3®vV�)a.5 Page 5 of 10 v..m)A.sewV.m. 3OM. Vwm30 wt3/V ®)13 .563/ V. mS0S am)A�eW v..)AEM Vas.. 6.'wv.:m)a.Sew v ®mio.aev/vmim io. 5sa V.®)a�3/'vum),35PA V.+m)a.5ev Vdm)9)Q'VswLWBA'V.ML Durham Facility - Upper Tier Copyright ®1998 -2007 ADAMA Engineering, Inc. License number MSEW .....d,.- 301._,. 377 ,....R.,,� ...®,,,�,. _- ,.,R..u - ..,.,�.,__.... ._, ..�, ,..w.,..._ MSEW -- Mechanically Stabilized Earth Walls Durham Facility - Upper Tier Present Date/Time: Thu Aug 02 14:37:11 2007 F:`,Cent� n a Co� ration am W WTP\Durham Upper Gc.BEN v...��,wv�3n.�v..m>.o.acvv.®w v.®,n�wv.:m3. emery,:., n. �v��.® vv«. a. �vv.. m,n r. �vvm3a�wm v.®.-.wUMWV�.a.�V*>UMWva., a.umewvimal.n.aINPAMMaewv *,n , ANALYSIS: CALCULATED FACTORS (Static conditions) Bearing capacity, Fs = 8.67, Meyerhof stress = 1190 lb/f1 Foundation Interface: Direct sliding, Fs = 3.480, Eccentricity, e/L = 0.0532, Fs- overturning = 9.39 GEOGRID CONNECTION Fs- overall Fs- overall Geogrid Pullout Direct Eccentricity Product # Elevation Length Type [connection [geogrid strength resistance sliding e/L name [ft] [ft] # strength] strength] Fs Fs Fs 1 2.50 8.50 3 1.60 4.28 4.283 4.566 4.472 0.0266 SF80 2 5.00 8.50 3 3.09 10.36 10.356 4.497 7.155 0.0089 SF80 ANALYSIS: CALCULATED FACTORS (Seismic conditions) Bearing capacity, Fs = 6.94, Meyerhof stress = 1330 lb/f1 Foundation Interface: Direct sliding, Fs = 2.065, Eccentricity, e/L = 0.1058, Fs- overturning = 4.73 GEOGRID CONNECTION Fs- overall Fs- overall Geogrid Pullout Direct Eccentricity Product # Elevation Length Type [connection [ geogrid strength resistance sliding e/L name [ft] [ft] # strength] strength] Fs Fs Fs 1 2.50 8.50 3 1.29 3.71 3.714 2.953 2.747 0.0500 SF80 2 5.00 8.50 3 2.10 7.96 7.958 2.452 4.763 0.0147 SF80 Durham Facility - Upper Tier Page 6 of 10 Copyright © 1998 -2007 ADAMA Engineering, Inc. number MSEW - 301377 . .., Inc ., .. License .. . ` MSEW — Mechanically Stabilized Earth Walls Durham Facility - Upper Tier Present Date/Time: Thu Aug 02 14:37:11 2007 FACente,stone Corporation\Durham WWTP\Durham Upper tie.BFN BEARING CAPACITY for GIVEN LAYOUT STATIC SEISMIC UNITS (Water table does not affect bearing capacity) Ultimate bearing capacity, q -ult 10322 9232 [Ib /ft 2 ] Meyerhof stress, rsv 1189.9 1330 [lb /ft 2 ] Eccentricity, e 0.41 0.82 [ft] Eccentricity, e/L 0.048 0.096 Fs calculated 8.67 6.94 Base length 8.50 8.50 [ft] SCALE: 0 2 4 6 [ft] Durham Facility - Upper Tier Page 7 of 10 Copyright 0 1998 -2007 ADAMA Engineering, Inc. License number MSEW- 301377 ,aka..,®..,a,n»,re., 01.....>®... A„I,Va,...1, ./WV ®,a,4, a>06{1/ .O> va.,aBO,.,. x,..016.. .60/,.. m>„ .® > <>®..Vaim,.ICSY,a,.•MOV MSEW -- Mechanically Stabilized Earth Walls Durham Facility - Upper Tier Present Date/rime: Thu Aug 02 14:37:11 2007 F:lCe,terstone Corporation\Durham W WTP\Durham Upper tier.BEN Vat 10 <>. wvd., n, mvv...> u>. e..- v.. m> nr .191wv *,.r.192v>v..m,a>mvvmm,a>ee. 9/M, n> cevve m> u. ee., Ihniee>< n® vv« 1e>. uvvam> n. asvv*, ow uwv..., o. we. v®l.. 16Wreal, a.. avv .®><>.evv..min..eov.:.,n.®vv6>n . DIRECT SLIDING for GIVEN LAYOUT (for GEOGRID reinforcements) Along reinforced and foundation soils interface: Fs- static = 3.480 and Fs- seismic = 2.065 # Geogrid Geogrid Fs Fs Geogrid Elevation Length Static Seismic Type # Product name [ft] [ft] 1 2.50 8.50 4.472 2.747 3 SF80 2 5.00 8.50 7.155 4.763 3 SF80 ECCENTRICITY for GIVEN LAYOUT At interface with foundation: e/L static = 0.0532, e/L seismic = 0.1058; Overturning: Fs -static = 9.39, Fs- seismic = 4.73 # Geogrid Geogrid e / L e / L Geogrid Elevation Length Static Seismic Type # Product name [ftl [ft] 1 2.50 8.50 0.0266 0.0500 3 SF80 2 5.00 8.50 0.0089 0.0147 3 SF80 v a.v,.avr..,n.>..Va... r9/vral,o>s.vm6n.WEYV m3aw6ay..m,0.619/vmm>a..swv®m3n.4 69/9/.®, n> mvve.> a.. wvom, a,. cwv eal1as sevvaRm, n. S6vvdm ,o>ewvrmv,.swv®>n,®.vmm,n.acwv. .0.6vv.em>awsvvmm10,469/v.am3a Durham Facility - Upper Tier Page 8 of 10 Copyright ® 1998 -2007 ADAMA Engineering, Inc. License number MSEW- 301377 MSEW -- Mechanically Stabilized Earth Walls Wm'n��V ®'A��V ^m'p��V ®m Durham Facility - Second to Upper Tier Present Date lime: Thu Aug 0214:45:172007 V_m nhew �mIA ®a.��em,n.a6..�I..8R,V..m,a. MY Vona,< weV,% Ma1o.1+,v�m1.01AM Co�ration\Dufiam WWTP\Dudtam Second to Upper tier.BEN VoaDMISEW AASHTO DESIGN METHOD Durham Facility - Second to Upper Tier PROJECT IDENTIFICATION Title: Durham Facility - Second to Upper Tier Project Number: CENT0013 Client: Centerstone Corporation Designer: DAH Station Number: Description: Second to Upper tier of a 4 tiered wall - Horizontal Backslope - Horizontal frontslope - 3 blocks high NOTE - The results from this analysis is close to that of the upper tier, therfore the results of the lower tiers will be the same Company's information: Name: DAH/SE Street: PO Box 82228 Portland, OR 97282 -0228 Telephone #: (503) 231 -8727 Fax #: (503) 231 -8726 E -Mail: structbear @earthlinlcnet Original file path and name: F: \Centerstone Corporation\Durham WWTP\Durham Second to nd to Upper tier.BEN Original date and time of creating this file: 3/30/07 Rev 8/02/07 PROGRAM MODE: ANALYSIS of a SIMPLE STRUCTURE using GEOGRID as reinforcing material. �.SEWV�,a . �61.nroe,.o../E. o.0.61,wm,tr .ISEW l.®,.o 01.19./V <„���m, <...6WVr 101.13E1/Vw .01.CEII Volum la .e6, *or 10 WIN V a. � 6. m3..6 Verm � m3.0 D urham Facility - Second to Upper Tier Page 1 of 4 Copyright © 1998 -2007 ADAMA Engineering, Inc. License number MSEW- 301377 MSEW -- Mechanically Stabilized Earth Walls Durham Facility - Second to Upper Tier Present Date/Time: Thu Auug� 14:45:17 2007 F:`Cententone Corporation\Durham W W1P\Duram Second to Upper ria.BEN V ®v.m/V *311ewV.._0 3m158.7VaIO.ere.,.M3.0.1913V w__ 101.19e.,., e. 1, u413_ V.._.,. 01e9w. m.. 6. /V.._ 3. 01.19e1VV .._..01.191w.-.._iowso,VM3,1.1361, lI. eDIwM >owe..v.._,.BIwvw3,49.9,V ®,,.mvv*1, Ve_,o■9e.vele., SOIL DATA REINFORCED SOIL 130.0 lb /ft Unit weight, y Design value of internal angle of friction, 41 34.0 ° RETAINED SOIL 120.0 lb /ft ' Unit weight, y Design value of internal angle of friction, 4) 30.0 ° FOUNDATION SOIL (Considered as an equivalent uniform soil) Equivalent unit weight, y e*tiv. 120.0 lb /ft Equivalent internal angle of fiction, Oequiv. 30.0 ° Equivalent cohesion, c e 0.0 lb /ft 2 Water table does not affect bearing capacity LATERAL EARTH PRESSURE COEFFICIENTS Ka (internal stability) = 0.2827 (if batter is less than 10 °, Ka is calculated from eq. 15. Otherwise, eq. 38 is utilized) Inclination of internal slip plane, qr= 62.00° (see Fig. 28 in DEMO 82). Ka (external stability) = 0.3333 (if batter is less than 10 °, Ka is calculated from eq. 16. Otherwise, eq. 17 is utilized) BEARING CAPACITY Bearing capacity coefficients (calculated by MSEW): Nc = 30.14 N y= 22.40 SEISMICITY Maximum ground acceleration coefficient, A = 0.150 Design acceleration coefficient in Internal Stability: Kh = 0.195 Design acceleration coefficient in External Stability: Kh = 0.195 Kae (Kh > 0 ) = 0.4690 Kae (Kh = 0) = 0.3333 A Kae = 0.1357 (see eq. 37 in DEMO 82) Seismic soil - geogrid friction coefficient, F* is 80.0% of its specified static value. 1_101.6ea. ®,,1661/Ve_l...P*0,we_ wBO/V .._3,w ./ VM,0w°..._ „weaVM.wS. Weis > awew..M„ IMVM„ w60/.M1.w0 MSS/ VM..wew„M „wE. 3.01.13SW .M3.014erVM 3.0w0 Durham Facility - Second to Upper Tier Page 2 of 4 Copyright CO 1998 -2007 ADAMA Engineering, Inc. License number MSEW-301377 • „..3.,a. ,.,.11111/Vas3 ...1 a Vaal,a MAW Valea,, NOW V ®,a,1351/vonsal,a,49S.V..v>a.186 ISSYV®_,a.3 ,,.186..•1•>d %ma. .66V/ , 36‘,..•,o, ., M ,o1-0EIW„s.,a,4./.ezim,0,61300*10.186MV MSEW -- Mechanically Stabilized Earth Walls Durham Facility - Second to Upper Tier Present Date/rime: Thu Aug 02 14:45:17 2007 P Centerstone Corporation\Durham W WTP\Durham Second to Upper tierBEN Va_ v, 6vV*3. 01.1460vw3al 03aiva..,nvaWV.:200MWVa_3a1410/ vam 10 v®wv ®,aIMEWIavw.'Vel. NSW Vo.i_. <.asa vd_. n1.13evveica. nwevVr_,a e19wiVV.._ v1ee1e.. m11.5,nver 0.30.,v 33a1.1851Vv...v,66W Vale•,n,e.wV*10.1111e.v..v INPUT DATA: Geometry and Surcharge loads (of a SIMPLE STRUCTURE) Design height, Hd 7.50 [ft] { Embedded depth is E = 0.50 ft, and height above top of finished bottom grade is H = 7.00 ft } Batter, co 0.0 [degl Backslope, 3 0.0 [deg] Backslope rise 10.0 [ft] Broken back equivalent angle, I = 0.00° (see Fig. 25 in DEMO 82) UNIFORM SURCHARGE Uniformly distributed dead load is 0.0 [lb /ft 2 ] OTHER EXTERNAL LOAD(S) [S 1 ] Strip Load, Qv -d = 1200.0 and Qv -1= 0.0 [lb/ft 2 1 Footing width, b=8.0 [ft]. Distance of center of footing from wall face, d = 14.0 [ft] @ depth of 0.0 [ft] below soil surface. ANALYZED REINFORCEMENT LAYOUT: [S1] • V • SCALE: 0 2 4 6 [ft] Emma" RITMT V.em10.66MV._.1014860/Va.3➢A1511W VW3.046WVdell 6 *1.111m8VWe*10 NEW v..o.0.o.suw VM1.11se Venter. ehwv.a_i0∎49E, _ i0. maV.._,a.69 /Yam'u.a6NV.._i014.v Vat.lDE®111VU.IP.4841v...3.0 WSW,*3.0146SW am 1aw61V v.ISL Durham Facility - Second to Upper Tier Page 3 of 4 Copyright © 1998 -2007 ADAMA Engineering, Inc. MSEW-301377 License number M Vow a,. a13..19170 1969,V.._3a. , V,a,®., ..,a 56V/ Vass 2.0,613,,a3 3 OMISEV Vo_,a V.._,a.IIM 6,a10.SIT.,V.._101.11160. Vow., 0.1111191a3 PASEM an, .OMEN ,..la3,0®., ,. MSEW -- Mechanically Stabilized Earth Walls Durham Facility - Second to Upper Tier Present Date/Time: Thu Aug 02 14:45.17 2007 F:`Centerstone Corporation\Dmham W WTP\Durham Second to Upper tier.BEN vr,n wewvr,aweVVax.. 120 <. HYVm,.mwv a LON. VI* 10 NOW Vas= ,a.eVV, r_,a.serV.mMAINVd_ Um ,. 0 MD/ Vance ,o.SEvVa,a.nevVes_so WOW Ve_, owe /.. ,..r®.i.v.,nrsew Vero ,0.eevv 3.01.60/ *SOWN . ANALYSIS: CALCULATED FACTORS (Static conditions) Bearing capacity, Fs = 8.14, Meyerhof stress = 1170 lb/f1 Foundation Interface: Direct sliding. Fs = 2.056, Eccentricity. e/L = 0.0834. Fs- overturning = 6.00 1 GEOGRID CONNECTION Fs- overall Fs- overall Geogrid Pullout Direct Eccentricity Product # Elevation Length Type [connection [geogrid strength resistance sliding e/L name [ft] [ft] # strength] strength] Fs Fs Fs 1 2.50 8.50 3 1.82 4.87 4.868 5.967 2.814 0.0310 SF80 2 5.00 8.50 3 4.35 14.60 14.604 6.342 11.925 0.0044 SF80 ANALYSIS: CALCULATED FACTORS (Seismic conditions) Bearing capacity, Fs = 6.21, Meyerhof stress = 1339 lb/ft'. Foundation Interface: Direct sliding. Fs = 1.464, Eccentricity. e/L = 0.1359. Fs- overturning = 3.68 GEOGRID CONNECTION Fs- overall Fs- overall Geogrid Pullout Direct Eccentricity Product # Elevation Length Type [connection [geogrid strength resistance sliding e/L name [ft] [ft] # strength] strength] Fs Fs Fs 1 2.50 8.50 3 1.43 4.15 4.147 3.760 2.017 0.0544 SF80 2 5.00 8.50 3 2.62 10.25 10.250 3.059 6.491 0.0103 SF80 Val v MO/ vswwer:,, r, nw90/ Va, ewev .,...,n/./**n,awes.uwavast,nwev, 011141(0/ Wel .wswv.:_3cw61uv_w1 . n wuw ..._lotam v.:_ ,nwewv....,omswv.:_,cwrs....r .o way .ti_,n.evv.._, <wavv.._ao∎OVivav Durham Facility - Second to Upper Tier Page 4 of 4 Copyright © 1998 -2007 ADAMA Engineering, Inc. License number MSEW- 301377 ffi20R68*10 RKAVdaLa6Y.Vma20 R60AVdaS1114b14 vm uR.99.*101.1..*20068.41M20 R60AVrm101l6MV.im20 WFVdm20R6MV oms.146*2.0P.9...e:LMMValf 98V a] 011aV® vlN .VwmLYiwV.+mtnR.WVws2nPdNV ®]A • ReSSA -- Reinforced Slope Stability Analysis Durham Facility - Tier Wall - Seismic Present Date/rime: Thu Aug 02 15:06:23 2007 F: Centerstone Co ration\Dmham WWII' urhamGlobal Seismic revised Vaim m 6RA la 20 RVa . mm m10 PAPA �2n.m.v..m2.4811 am.nR6., Name u n R6cvr RAMVows Vows,. .36A .SPASM Vs* .0R-93+V 2n.6 .6:AV 2.111499A Wawa SO MI. Wel SA Durham Facility - Tier Wall - Seismic Report created by ReSSA(2.0): Copyright (c) 2001 -2006. ADAMA Engineering. Inc. PROJECT IDENTIFICATION Title: Durham Facility - Tier Wall - Seismic Project Number: CENT0013 - Client: Centerstone Corporation Designer: DAH Description: 4 tiered wall - Horizontal Backslope - Horizontal frontslope - 2 blocks high each tier Company's information: Name: DAH/SE Street: PO Box 82228 Portland, OR 97282 -0228 Telephone #: 503- 231 -8727 Fax #: 503- 231 -8726 E -Mail: structbear @earthlink.net Original file path and name: F: \Centers \Durham WWTP\Durham Global Seismic - revised 2.MSE Original date and time of creating this file: 4/11/07 Revised 8/02/07 PROGRAM MODE: ANALYSIS of a Semi - Complex Slope using GEOSYNTHETIC as reinforcing material. 2oR6v. Vdm10R6 6AVam�RbR. Vam20 M,c,v wmuxmB.V..m.R6v.Vam_ORbRAV.am2n R61AVam20R6v. a.0.6wv..m2YR6NV ®uP6MVmi ARAZAVd.s2YR6MVdm2DR6MV ®LY.. ..LYOAV®2n0.44 .Vm2nR6eAV.10.49SAV*2011.12. .) Durham Facility - Tier Wall - Seismic Page 1 of 11 Copyright ® 2001 -2006 ADAMA Engineering, Inc. www.GeoPrograms.com License number ReSSA - 200444 Vals]11.1,..1L 11111.Vafs1114111l.Va... y&.Valm>u P8[.* 101. II ..Vaim]LP.1.Vdm.uPLi.Vas]➢1a.Va 1 . 4Q. Valml. l. 1. V ®]y1.1.V.0201$$.Vast...1.vaira. 91....I.R. ..A m: d1. WVaPeLld .VaimYPS.VaImIAR.Ny.yyllld.Va 2.0 ReSSA -- Reinforced Slope Stability Analysis Durham Facility - Tier Wall - Seismic Present Datelrime: Thu Aug 02 15:06:23 2007 F:`Centerstone Corporation\Durham W WIP'Durham Global Seismic - revised 21vISE �..m:1P��.em�Pay.�mmz <am, m: � ravdmuPe l��.: m�Pm. �.: mvPa, vamm.. s. wmvPa... . amvP. P. �. m_ aw.. �rmaa�vmuPa vam: a��e m: nPau�. mzlPaw�aimuP wd m�l swv INPUT DATA (EXCLUDING REINFORCEMENT LAYOUT) SOIL DATA Internal angle of Unit weight, y friction, 4 Cohesion, c Soil Layer #: [1b/ft 3 ] [deg.] [1b /ft 2 ] 1 Reinforced Soil 130.0 34.0 0.0 ....2 Reinforced Soil 120.0 30.0 0.0 3 Retained Soil 120.0 30.0 0.0 REINFORCEMENT Reinforcement Ultimate Reduction Reduction Reduction Coverage Strength, Factor for Factor for Factor for Ratio, Type # Geosynthetic Tult Installation Durability, Creep, Rc Designated Name [lb /ft] Damage, RFid RFd RFc 3 SF80 7400.00 1.10 1.15 1.55 1.00 Interaction Parameters = Direct Sliding= Pullout Type # Geosynthetic Cds-phi Cds-c Ci Alpha Designated Name 3 SF80 0.80 0.00 0.80 0.80 Relative Orientation of Reinforcement Force, ROR = 0.00. Assigned Factor of Safety to resist pullout, Fs -po = 1.50 WATER Water is not present . SEISMICITY Horizontal ground acceleration coefficient, Ao = 0.30 Design seismic acceleration, Am = 0.5 x Ao = 0.15 ... • 1.1„ m1PP.P.,��.. /Pm,... M 201498•Veam11146SA Vele,101.3•Vamo u MIA Vab,IPES1, 0P. 1. m....01. 1.. ...12.1PS „Vdm,.0P..,v.r.P.,��,�P�1.vm, W,.® 3.11141 ,Vay..11,*0P.P,,.a`.,6..P.,vmv Durham Facility - Tier Wall - Seismic Page 2 of 11 Copyright ® 2001 -2006 ADAMA Engineering, Inc. www.GeoPrograms.com License number ReSSA - 200444 ReSSA -- Reinforced Slope Stability Analysis Durham Facility - Tier Wall - Seismic Present Date/rime: Thu Aug 02 15:06:24 2007 Ff Centerstone Corporation \Duaham W WTP\Durham Global Seismic - revised 2MSE v.e_wxes+vd_so eawv.+_ucac..�vxe...wm..es.v «: axes, v..__ nxsa ,v.._wx.s+v «xcxsc.vwznc.z..�xa rc. .� _.. .��..evr.u ._. v «uuwv «axae.vm :uxa.v® soa+a.v.ranwa.v..m:a DRAWING OF SPECIFIED GEOMETRY - SEMI - COMPLEX -- Problem geometry is defined along sections selected by user at x,y coordinates. -- X1,Y1 represents the coordinates of soil surface. X2,Y2 represent the coordinates of the end of soil layer 1 and start of soil layer 2, and so on. GEOMETRY Soil profile contains 3 layers (see details in next page) UNIFORM SURCHARGE Surcharge load, Q1 None Surcharge load, Q2 None Surcharge load, Q3 None STRIP LOAD None Toe point 1 2 SCALE: 0 2 4 6 8 10 [ft] Durham Facility - Tier Wall - Seismic Page 3 of 11 Copyright © 2001 -2006 ADAMA Engineering, Inc. www.GeoPrograms.com License number ReSSA - 200444 vmlm A V�mvRtlRVmmvAnVmvNMVmlmvp /MV�mv41MV�mvPiMV�mv IBfvwim3AFCaV V�vP6MV.imvYecVVam]OMMV ®v11.W vNmvP�v�vPdfAV ®vPdMV.dm3DM1ev.V�mvl�V VwmvRlMVmmvY�VVdmv ReSSA -- Reinforced Slope Stability Analysis Durham Facility - Tier Wall - Seismic Present Date/Time: Thu Aug 002 15:06:24 2007 F:K;enterstone Corporation\Durham W WTPOurham Global Seismic - revised 2.MSE V..m1RR.V.VrmvR�AVmmvR uRm. vrmm. 38.1 U20Res. v.: m: nRaa.. aamux.R.v.:se10W..Va.201awv.:mu wwv ®:.0.1 . v..,ex.uxs...vmm7..Rd.W.2.0.41V mxne. a. v... v.. mymr 1uaeuvrm .orm.v.:mu..: TABULATED DETAILS OF QUICK SPECIFIED GEOMETRY Soil profile contains 3 layers. Coordinates in [ft.] Xi Yi # Xi Yi Top of Layer 1 1 83.60 100.00 51 138.00 100.00 2 100.00 100.00 52 146.50 100.00 3 100.00 105.00 53 146.50 100.00 4 108.50 105.00 54 146.50 100.00 5 108.50 105.00 6 110.00 105.00 7 110.00 110.00 8 118.50 110.00 9 118.50 110.00 10 126.00 110.00 11 126.00 115.00 12 134.50 115.00 13 134.50 115.00 14 138.00 115.00 15 138.00 120.00 16 146.50 120.00 17 146.50 120.00 18 146.50 120.00 Top of Layer 2 19 83.60 100.00 20 100.00 100.00 21 100.00 100.00 22 108.50 100.00 23 108.50 105.00 24 110.00 105.00 25 110.00 105.00 26 118.50 105.00 27 118.50 110.00 28 126.00 110.00 29 126.00 110.00 30 134.50 110.00 31 134.50 115.00 32 138.00 115.00 33 138.00 115.00 34 146.50 115.00 35 146.50 120.00 36 146.50 120.00 Top of Layer 3 37 83.60 100.00 38 100.00 100.00 39 100.00 100.00 40 108.50 100.00 41 108.50 100.00 42 110.00 100.00 43 110.00 100.00 44 118.50 100.00 45 118.50 100.00 46 126.00 100.00 47 126.00 100.00 48 134.50 100.00 49 134.50 100.00 50 138.00 100.00 ,o�s„m:m10 ReSSA V.:m_AR�,Vam,R.s, r0R�,.*�R.a R.d,V...m>d.. , 0R. R., vmrRR.,*21 RR.. Durham Facility - Tier Wall - Seismic Page 4 of 11 Copyright 0 2001 -2006 ADAMA Engineering, Inc. www.GeoPrograms.com License number ReSSA - 200444 ReSSA -- Reinforced Slope Stability Analysis Durham Facility - Tier Wall - Seismic Present Date/Time: Thu Aug 02 15:06:24 2007 F:`Centerstone Corporation\Durham W WPP\Durham Global Seismic - revised 2MSE zo.e..v_mmnaa.v..mma ss . mv _ m: nn+: va _ nx+ w v rm u. as, vv. m. a.. v. amvwn .yrmxnxawvdm:a..:.va„uway..m= ewe.. w. mxonaenv.+ mu. �+ vmrxerv. v._: n. m v® x axau . TABULATED DETAILS OF SPECIFIED GEOMETRY Soil profile contains 3 layers. Coordinates in [ft.] # X Y1 Y2 Y3 1 83.60 100.00 100.00 100.00 2 100.00 100.00 100.00 100.00 3 100.00 105.00 100.00 100.00 4 10 8.5 0 105.00 100.00 100.00 5 108.50 105.00 105.00 100.00 6 110.00 105.00 105.00 100.00 7 110.00 110.00 105.00 100.00 8 118.50 110.00 105.00 100.00 9 118.50 110.00 110.00 100.00 10 126.00 110.00 110.00 100.00 11 126.00 115.00 110.00 100.00 12 134.50 115.00 110.00 100.00 13 134.50 115.00 115.00 100.00 14 138.00 115.00 115.00 100.00 15 138.00 120.00 115.00 100.00 16 146.50 120.00 115.00 100.00 17 146.50 120.00 120.00 100.00 18 146.50 120.00 120.00 100.00 • • vas LHBMy_ yy. a•, ydmyg. ayaim] payimLNY. vdmvxdnvmim].ae/MV�m]nYNVaImLYW VaISLHYIVds] O. �iVi20. dMVSImLaauVmim3LReMV�m] OeiNVovPiNVdslnem, vels] p .aVmmLRYeV.�s]DBavrnlO.�V.vrm]D Durham Facility - Tier Wall - Seismic Page 5 of 11 Copyright ® 2001 -2006 ADAMA Engineering, Inc. www.GeoPrograms.com License number ReSSA - 200444 ,00r- r I 'am 2.PaMV*2Y RAM* EU.eu...mmx�a.V*101.1.v*2.wv lf... Vas mid .vim= eoauv..mEnaee.mmE.0MILO wuwwv.rmEnRMS... muem. * 10 14envrmEa x. m.v r. EORAMVrmE< aav ..m.WILAVmimESasenvmim2awuWv ReSSA -- Reinforced Slope Stability Analysis Durham Facility - Tier Wall - Seismic Present Date/Time: Thu Aug 02 15:06:24 2007 FACmterstone Corporation on\Durham WWI? Global Seismic - revised 2MSE vd2LIWA mv 1oRasAv..m Im2a YO 101.8 N 2lBM PV_2fl SA Vox.. Raa.V®m10 R+5A _tf0RdM ' V It MA Una. V. 1.016..Vwm2/ Wt&.V..mloxesAV..m 2andMV iv......V ®S01.1.. 11.11. a.PlwV.dmEO DISTRIBUTION OF AVAILABLE STRENGTH ALONG EACH REINFORCEMENT LAYER T A = Front-end of reinforcement (at face of slope) Tavailable — — — - B = Rear -end of reinforcement AB = Ll + L2 + L3 = Embedded length of reinforcement Tfe Tavailable = Long-term strength of reinforcement B Tfe = Available front -end strength (e.g., connection to facing) A Ll = Front -end 'pullout' length 1 Ll L3 o L2 L2 = Rear -end pullout length q Tavailable prevails along L3 Factor of safety on resistance to pullout on either end of reinforcement, Fs -po = 1.50 Reinforcement Designated Height Relative L Ll L2 L3 Tfe Tavailable Layer # Name to Toe [ft] [ft] [ft] [ft] [ft] [1b /ft] [lb /ft] 1 SF80 2.50 8.50 0.00 8.50 0.00 159230 1592.50 ( *) 2 SF80 7.50 8.50 0.00 8.50 0.00 159250 1592.50 ( *) 3 SF80 12.50 8.50 0.00 8.50 0.00 159250 159230 ( *) 4 SF80 17.50 8.50 0.00 8.50 0.00 1592.50 159230 ( *) ( *) This Tavailable is dictated by the pullout resistance capacity, which is smaller than the long -term strength of the reinforcement that is related to its specified ultimate strength Vmm 7.....10.1.0 ERR. Mw.. 2YP. MVzom2YR. MW213 RaMV.. m2 oRa L. V® 2YYa MVmmERY ..M„am]DROM.W2u....V.ffal014. VrmIDR.MV..m2<ROMVama.1 aMVaImLYaM,�u Durham Facility - Tier Wall - Seismic Page 6 of 11 Copyright C 2001 -2006 ADAMA Engineering, Inc. www.GeoPrograms.com License number ReSSA - 200444 w.ma..s..v 2014 i.v..kov421∎VM n..wveeLito. vd.vxsa. *OUSSAVam.v1/49A 10118.ve.vxu.vry xruv*vws...1=vw.w..vrSSAV .vero ver v. �w.m vn. v.. a.v,e..wv.ac.vrmvm..vd.vea ReSSA -- Reinforced Slope Stability Analysis Durham Facility - Tier Wall - Seismic Present Date/Time: Thu Aug 02 15:06:24 2007 F:`Centetstone Corpo tation\Dtaltam W WTP'Du ham Global Seismic - revised 2.MSE .,a .vx.x.vd.vxrx.vd.vx.uvd.x axes. vd. vr. sn. mvxs.. vr_ oxay.. d. v. a..a.vwasvmvwwv..rv.ua.vd.vx.�, wu.. w. �w.. a. vcm .w..vwu.d.vnca,v.®v.auvd.v� RESULTS OF ROTATIONAL STABILITY ANALYSIS Results in the tables below represent critical circles identified between specified points on entry and exit. (Theta -exit set to 50.00 deg.) The most critical circle is obtained from a search considering all the combinations of input entry and exit points. Critical circles for each entry point (considering all specified exit points) Entry Entry Point Exit Point Critical Circle Point# (X,Y) (X,Y) (Xc,Yc,R) Fs STATUS [ft] [ft] [ft] 1 143.50 120.00 88.78 100.07 98.47 158.55 59.27 1.19 2 145.80 120.00 87.99 100.00 98.16 164.16 64.96 1.16 OK 4 150.40 120.00 87.79 100.02 96.50 180.84 81.29 1.15 5 152.70 120.00 87.67 100.03 96.99 185.56 86.04 1.17 6 155.00 120.00 87.55 100.05 97.50 190.40 90.90 1.19 7 157.30 120.00 87.42 100.06 98.02 195.34 95.87 1.22 8 159.60 120.00 87.95 100.00 97.20 205.21 105.62 1.25 9 161.90 120.00 87.84 100.01 97.69 210.73 111.16 1.27 10 164.20 120.00 87.73 100.02 98.18 216.37 116.82 1.30 11 166.50 120.00 87.61 100.04 98.68 222.12 122.59 1.33 Note: In the 'Status' column, OK means the critical circle was identified within the specified search domain. 'On extreme X -entry' means that the critical result is on the edge of the search domain; a lower Fs may result if the search domain is expanded. * * * * * * * * * * * * * * * * * *** * * * ** Results in the tables below represent critical circles identified between specified points on entry and exit. (Theta -exit set to 50.00 deg.) The most critical circle is obtained from a search considering all the combinations of input entry and exit points. Critical circles for each exit point (considering all specified entry points) Exit Exit Point Entry Point Critical Circle Point# (X,Y) (X,Y) (Xc,Yc,R) Fs STATUS [ft] - [ft] [ft] .. �> s' �On extreme X -exit 2 88.69 100.06 148.10 120.00 97.92 171.05 71.58 1.15 3 89.96 100.06 148.10 120.00 98.85 168.85 69.37 1.15 4 91.05 100.06 148.10 120.00 98.88 16925 69.63 1.15 5 92.78 100.00 148.10 120.00 98.89 169.62 69.89 1.15 6 93.44 100.05 148.10 120.00 99.88 16726 67.52 1.16 7 95.17 100.00 148.10 120.00 99.92 167.49 67.65 1.16 8 96.34 100.00 148.10 120.00 99.94 167.67 67.76 1.17 9 97.53 100.00 148.10 120.00 99.96 167.79 67.83 1.17 10 98.74 100.00 148.10 120.00 101.07 165.17 65.21 1.18 11 100.00 100.00 148.10 120.00 101.13 165.12 65.13 1.18 Note: In the 'Status' column, OK means the critical circle was identified within the specified search domain. 'On extreme X -exit' means that the critical result is on the edge of the search domain; a lower Fs may result if the search domain is expanded. . a. 0, xe e. vW„ xtl, a10x88,.,W> d xeb„a.vxe..V.:.20146.,∎3/01.1.. .R.S .v auxea.vd.7...L.Vd.v Ye.va IONSI„*xexeV.®7... aV1.8..binx a. Lek. vx ei... a_ x, x.,, ,.a.,,x.68,,Mv41114*vxe Durham Facility - Tier Wall - Seismic Page 7 of 11 Copyright C 2001 -2006 ADAMA Engineering, Inc. www.GeoPrograms.com License number ReSSA - 2004-04 r v r..w.vr. v. m,av1.1. rve. a.... 049 V. wmx.. .wwm011•Sev....411*10wSAvd�..anvrsm wwveme_o v*2. 4.5 v® .. a„ vain xauv®_ nm..w rvw wve , ..a , w. , ..: . .wsm..ay..sa.w.vr.v ReSSA -- Reinforced Slope Stability Analysis Durham Facility - Tier Wall - Seismic Present Date/Time: Thu Aug 02 15:06:24 2007 F.\Centestone CorporationDurham W WCP\Durham Global Seismic - revised 2MSE RESULTS OF TRANSLATIONAL ANALYSIS ,,, ,.,. ^ • Results in the table below represent critical two-part wedges identified between 'm ' `:, specified starting (X1) and ending (X2) search points. Wedges along all reinforcement layers and at elevation zero are reported. The critical two -part Ada wedge, one for each predetermined elevation, is defined by Xa, Xb and Xc where Toe ;. �. " , 1 Xa is the front end of the passive wedge (slope face), Xb is where the passive ' wedge ends and the active one starts, and Xc is the X- ordinate at which the active - wedge starts. Critical two-part wedge along each interface: Interface Height Relative to Toe ()Ca, Ya) (Xb, Yb) (Xc, Yc) Fs STATUS [ft] [ft] [ft] [ft] IINBVEEMIIIIIIIIIIIMIIIIIIIIIIEEIINMIMIIIEMZIEIII f., t F', ,.. E.r OK Reinf. Layer #1 2.50 100.00 102.50 108.69 102.50 121.68 110.00 1.21 Minimum on Edge Reinf. Layer #2 7.50 110.00 107.50 118.69 107.50 123.02 110.00 2.62 Minimum on Edge Reinf. Layer #3 12.50 126.00 112.50 134.69 1 12.50 147.68 120.00 1.57 Minimum on Edge Reinf. Layer #4 17.50 138.00 117.50 146.69 117.50 151.02 120.00 2.62 Minimum on Edge Note: In the 'Status' column, OK means the critical two part-wedge was identified within the specified search domain. 'Minimum on Edge' means the critical result corresponds to a minimum on the edge of the search domain; i.e., either on Xl or X2 or the internally preset limits on Xc. *Is v .aw.vuww_ve.ww.vaaa..w.v1141Ma a.o.ws1.. . vru.s ..w.vaavru.u.w_vw.vr2...n.v®uxa v r. mr�wvr... m. vru. mAvrm.. a. vrvaa..w,..avw...x....vrvw.w.2n Durham Facility - Tier Wall - Seismic Page 8 of 11 Copyright © 2001 -2006 ADAMA Engineering, Inc. www.GeoPrograms.com License number ReSSA - 200444 I V..e 2.166 • Vo eL,N.valal. 1mLRilk* nIfMVoisIORASAW 01,41.em]u 4mkvm 20 xesnvd.musawvemu vaanvasousanvaousenVOLK.Av O,dMVala3ousuvalousUVd°`ld [lvamunxmva m LMMVd..fdYMVab.in ReSSA -- Reinforced Slope Stability Analysis Durham Facility - Tier Wall - Seismic Present Datelrime: Thu Aug 02 15:06:24 2007 use+ F:1Centestone Corporation\Diaitam WW1? \Durham Global Seismic - revised 2.MSE A e a2P.1. IAM IS AW,..11a aa s.V._nx.wv..evemn...e v a� ar2nxaSAV*2n.e. .. awl a.,we1.0..yrwx.s.v..2n.+a.vake SAV*2n. .v..ew141.V..e2nwnv®2nn+c V a.2n RESULTS OF 3 -PART WEDGE ANALYSIS (X1,Y1) Results in the table below represent the critical slip surface composed of a - -- three -part wedge and identified by the specified points (X -left, Y -left) tul and (X -right, Y -right) and angles Zeta(L) and Zeta(R). ReSSA finds the (X,Y) coordinates, as well as the angles Zeta, based on user - specified search domain. Toe The trace of the critical three -part wedge is fully defined by four points: (X1, Y1), (X2,Y2 - (X -left, Y -left), (X -right, Y- right), (X2, Y2). Critical 3 -part wedge (Automatic search): (X2, Y2) Zeta(L) (X -left, Y -left) (X -right, Y -right) Zeta(R) (Xl, Yl) Fs [ft] [degrees] [ft] [ft] [degrees] [ft] (91.04, 100.00) 15.00 (100.38, 97.50) (109.13, 97.50) 31.00 (146.57, 120.00) 1.218 V..e2sums.v..a2nYNVetm2 Ale. Vda2 nYl. V* 1 /11.00..e2LMAVde2iva.Vaie L, iNVd avtd.vre2.11.60weLYd.V.:LMM* Small.* 2. 11s. V® uII. s4. V*12nsdMV®2nR.ss.v®2nFtl.a.axn RdF VUmL14.98 e3n4wVdeu Durham Facility - Tier Wall - Seismic Page 9 of 11 Copyright 0 2001 -2006 ADAMA Engineering, Inc. www.GeoPrograms.com License number ReSSA - 200444 • Vim] p ll p vVwmLRI F dRHaysh: nPdvv�m] naARVrmS. aABUVrm] aR® HVwmuxmm�v nm�OR6R�vwm]l al GVr mLYBRVmIS] YR. �Vam aR.l MVam] LII® AVam]. oFeuVdm] ARiMVdm ]Aaw.Vrm].uMmVV /mavaimL ReSSA -- Reinforced Slope Stability Analysis Durham Facility - Tier Wall - Seismic Present Date rime: Thu Aug 02 15:06:24 2007 Ctne Cocporatiou\Diaham W W1T\Durham Global Seismic - revised 2MSE v ..m�Rm,v..mm.m.vmmuRea.vwmxaR. vim] nRac, �.. mw..ea.vrmmR�...v..mmns:,v�mia wec.. vdmuRaR. vemu. mvm.]. oRas .v ®]n.®c..v F m�.au enetsto wea.vrm]awBa,vr �. am. nRmnvr.] nRmn�mimuaaa .v..muR.a,vmimmRas.v ®u CRITICAL RESULTS OF ROTATIONAL AND TRANSLATIONAL STABILITY ANALYSES Rotational (Circular Arc; Bishop) Stability Analysis Minimum Factor of Safety = 1.15 Critical Circle: Xc = 97.00[ft], Ye = 173.27[ft], R = 73.82[ft]. (Number of slices used = 68 ) Translational (2 -Part Wedge; Spencer), Direct Sliding, Stability Analysis Minimum Factor of Safety = 1.16 Critical Two -Part Wedge: (Xa = 100.00, Ya = 100.00) [ft] (Xb = 106.68, Yb = 100.00) [ft] (Xc = 123.32, Yc = 110.00) [ft] (Number of slices used = 30) 1 Interslice resultant force inclination = 21.66 [degrees] Three -Part Wedge Stability Analysis Minimum Factor of Safety = 1.22 Critical Three -Part Wedge: (X2 = 91.04, Y2 = 100.00) [ft] (X -left = 100.38, Y -left = 97.50) [ft] (X -right = 109.13, Y -right = 97.50) [ft] (X1 = 146.57, Y1 = 120.00) [ft] (Number of slices used = 45 ) Interslice resultant force inclination = 18.89 [degrees] REINFORCEMENT LAYOUT: DRAWING „••••010/ ' SCALE: 02468 10[ft] linl vmimv aR V .im]lR..,.v.._]dR.lRVals]OYN.,, mom] e. �4, vds3Da..., bisL.. Y. Valsf iRdc, vem3u, GC.. v.: m:. oxas. wm_ e, ssv.®= oPdfl,vm2o.a,VS'm]dM®„valmfo..W V. wmLa. NVmY.] YPiR„ �3➢ R. MVdmi ➢R.,nV..m]Oa�s,v.®]D.ae.,.'�aL Durham Facility - Tier Wall - Seismic Page 10 of 11 Copyright ® 2001 -2006 ADAMA Engineering, Inc. www.GeoPrograms.com License number ReSSA - 200444 mar -- Vela xP RQ.Va121)1isN VdmIS.6MV.m x911... m30P.¢.VAaxdP6MVama -0P6MVemm 2.RP6MVW111411.V.m:aRB9AVmimxn WNV mxeRm 1V® J, mMV® ].o.98*xJFBV.w+eLYNVmIm]AB.49,. lm10Al11.‘ Vam11RauVwxY488 LHWV..1 ReSSA -- Reinforced Slope Stability Analysis Durham Facility - Tier Wall - Seismic Present Date/Time: Thu Aug 02 15:06:24 2007 F:`,Centerstone Corporation\Durham W WrP\Durham Global Seismic - revised 2MSE ,..mxn.euvmm1.0.39.vmim2. .. mux. c+ v.. muna s +V.+m w amM.S. zoa„vux*RIO .a.,..sm xo 1149.1VM2.0 14614.s. x9 P6P.v.a.uM..w.wmxPP.wA rmxnwn..rmuxe9.*211. 5....m 11.61A mxn.aAKMU SINUmx.o14.48 m:nHw.+.mmxn REINFORCEMENT LAYOUT: TABULATED DATA & QUANTITIES Height Embedded Covergae Layer Reinf. Geosynthetic Relative Length Ratio, (X, Y) front (X, Y ) rear # Type # Designated Name to Toe [ft] [ft] Rc [ft] [ft] 1 3 SF80 2.50 8.50 1.00 328.08 330.58 336.58 330.58 2 3 SF80 7.50 8.50 1.00 338.08 335.58 346.58 335.58 3 3 SF80 12.50 8.50 1.00 354.08 340.58 362.58 340.58 4 3 SF80 17.50 8.50 1.00 366.08 345.58 374.58 345.58 I QUANTITIES Reinf. Type # Designated Name Coverage Ratio Area of reinforcemnt [ft / length of slope [ft] 3 SF80 1.00 34.00 Vdm 31/1468.Vda x9 Pl NVr mxA a/ MVa1m xLMMVdmL4RAVaImxOiMA.M2.01,59A Me 10 R6v.V.em RASA Venue _nRd., Vacs 10 Pi.V.mx0MMV® Laic. 4∎ 22. d. Vdm. 49 11A* 2. 11 . m. Valmxl PYBn u0.6FVmmxo140 .4VamxDlMVm6]LP.78,..L Durham Facility - Tier Wall - Seismic Page 11 of 11 Copyright ® 2001 -2006 ADAMA Engineering, Inc. www.GeoPrograms.com License number ReSSA- 200444 m1m Y,6xNVdmYtdAV_Im 1 411. i_YYMV ./... VdmY1.14, imY4avwm101.1 mY RAAVa2.01 MVwYPis,v..rY,wuV...1011 .....01141.. mYlu4.*.I WaYKGVmboYR NV_ImYYiUValm ......d_YWMVamY ReSSA -- Reinforced Slope Stability Analysis Durham Facility - Tiered Wall - Static Present Date /Time: Thu Aug 02 15:10:56 2007 FACenterstone CotporetionTurham WWI? \Durham Global Static - revised2.MSE YP.1 .Va1018s.vdmYPd..aYP�.V.G241144 ..:mY161,vamzaP+s,VwemillP. o 10WA,V.._YPac.N*Y..5P+. YP. ea.V..rYP..:.V®YP.a,w+_YP.es.a P. c, v®Y PauVaYPm .V.:_YPS.vv_..0PaP..r®Y1.e4". Durham Facility - Tiered Wall - Static Report created by ReSSA(2.0): Copyright (c) 2001 -2006, ADAMA Engineering, Inc. _ PROJECT IDENTIFICATION Title: Durham Facility - Tiered Wall - Static Project Number: CENT0013 - Client: Centerstone Corporation Designer DAH Description: 4 tiered wall - Horizontal Backslope - Horizontal frontslope - 2 . blocks high Company's information: Name: DAH/SE Street: PO Box 82228 Portland, OR 97282 -0228 Telephone #: 503- 231 -8727 Fax #: 503- 231 -8726 E -Mail: structbear @earthlink.net Original file path and name: F: \Centers ion\Durham WWTP\Durham Global Static- revised2.MSE Original date and time of creating this file: Rev 9 /02/07 PROGRAM MODE: ANALYSIS of a Semi - Complex Slope using GEOSYNTHETIC as reinforcing material. mY1. UVdmY1. MV.: mY16uVd _YPS1.vdmx.uPauvd_:.cPes. vmmxol.v. veom xnP. Y. vwmYP�nvmmYlm. vd_ YP. 6. v® x. elsv.. mmx. al. s, vwn:n P. v., .em- nl.uv.®Y1.c.veosYPe¢.V ®Y1.W V.umYR.uVd_YP�.vaYYFVdmY Durham Facility - Tiered Wall - Static Page 1 of 11 Copyright ® 2001 -2006 ADAMA Engineering, Inc. www.GeoPrograms.com License number ReSSA- 200444 • ReSSA -- Reinforced Slope Stability Analysis Durham Facility - Tiered Wall - Static Present Date/Time: Thu Aug 02 15:10:56 2007 Mentetstone Corpotation\Dmham W WTP\Du ham Global Static - revised2.MSE va.mnasnve.: o x�, w. m:.... s, v� urm.W.u.�.vrmu..v..v*xo.as.vdm vnac.v..m.nxeaAv..m2n..n. ®min..®...wdeanouo,.v m,....* *1.wn..a2.oxa+.v 2.0.38..vd.. ltsla, .u.28,.. .0 .1...m:n..s..w...M.auv j.ie INPUT DATA (EXCLUDING REINFORCEMENT LAYOUT) SOIL DATA Internal angle of Unit weight, y friction, 0 Cohesion, c Soil Layer #: [lb /ft 3 ] [deg.] [lb /ft 2 ] 1 Reinforced Soil. 130.0 34.0 0.0 ....2 Reinforced Soil 120.0 30.0 0.0 3 Retained Soil 120.0 30.0 0.0 REINFORCEMENT Reinforcement Ultimate Reduction Reduction Reduction Coverage Strength, Factor for Factor for Factor for Ratio, Type # Geosynthetic Tult Installation Durability, Creep, Rc Designated Name [1b/ft] Damage, RFid RFd RFc 3 SF80 7400.00 1.10 1.15 • 1.55 1.00 Interaction Parameters — Direct Sliding= = Pullout Type # Geosynthetic Cds - phi Cds -c Ci Alpha Designated Name 3 SF80 0.80 0.00 0.80 0.80 Relative Orientation of Reinforcement Force, ROR = 0.00. Assigned Factor of Safety to resist pullout, Fs -po = 1.50 WATER Water is not present SEISMICITY Not Applicable 24 .....am2A.®,v_m20..11.V am2a..444.m2,.... r2<..., m> . 20....v_..>a.AS.,.�2D.... a..d,, > a...,,,...0.... .m2A..,,,,dm2a..sA0*d..u.VM. Durham Facility - Tiered Wall - Static Page 2 of 11 Copyright 0 2001 -2006 ADAMA Engineering, Inc. www.GeoPrograms.com License number ReSSA - 200444 reed Slope Stability Analysis Durham Facility - Tiered Wall - Static ug 02 . 15 : 10: 56 ®,nx�.�v�no.�.vw� mxm.v.:.xo.e..vm eav,v emcaa.v.+_Ewa.. roan CCo tonfpaharnWWrP\DurhamGl a r e sn n ^- DRAWING OF SPECIFIED GEOMETRY - SEMI - COMPLEX .o blem geometry is defined along sections selected by user at x,y coordinates. /X1,Y1 represents the coordinates of soil surface. X2,Y2 represent the coordinates of the end of soil layer 1 and start of soil layer 2, and so on. GEOMETRY Soil profile contains 3 layers (see details in next page) UNIFORM SURCHARGE Load Q1 = 100.00 [1b /ft inclined from verical at 0.00 degrees, starts at Xls = 42.37 and ends at Xle = 48.77 [ft]. Surcharge load, Q2 None Surcharge load, Q3 None STRIP LOAD None, Toe point ' 2 SCALE: 0 2 4 6 8 10 [ft] Durham Facility - Tiered Wall - Static Page 3 of 11 Copyright © 2001 -2006 ADAMA Engineering, Inc. www.GeoPrograms.com License number ReSSA - 200444 ReSSA -- Reinforced Slope Stability Analysis ��, ®_ ra. �, �.._, a.. �„ �._. �.�..®..a.��.��....m_.aan•� Durham Facility Tiered Wall - Static Present Date/rime: Thu Aug 02 15:10:56 2007 nnea,v.. �a�.vmro�,v >a�c v FACenterstone CorporationTurham WWI? \Durham Glo Static- revised2.MSE TABULATED DETAILS OF QUICK SPECIFIED GEOMETRY Soil profile contains 3 layers. Coordinates in [ft.] # Xi Yi # Xi Yi Top of Layer 1 1 83.60 100.00 51 138.00 100.00 2 100.00 100.00 52 146.50 100.00 3 100.00 105.00 53 146.50 100.00 4 108.50 105.00 54 146.50 100.00 5 108.50 105.00 6 110.00 105.00 7 110.00 110.00 8 118.50 110.00 9 118.50 110.00 10 126.00 110.00 11 126.00 115.00 12 134.50 115.00 13 134.50 115.00 14 138.00 115.00 15 138.00 120.00 16 146.50 120.00 17 146.50 120.00 18 146.50 120.00 Top of Layer 2 19 83.60 100.00 20 100.00 100.00 21 100.00 100.00 22 108.50 100.00 23 108.50 105.00 24 110.00 105.00 25 110.00 105.00 26 118.50 105.00 27 118.50 110.00 28 126.00 110.00 29 126.00 110.00 30 134.50 110.00 31 134.50 115.00 32 138.00 115.00 33 138.00 115.00 34 146.50 115.00 35 146.50 120.00 36 146.50 120.00 Top of Layer 3 37 83.60 100.00 38 100.00 100.00 39 100.00 100.00 40 108.50 100.00 41 108.50 100.00 42 110.00 100.00 43 110.00 100.00 44 118.50 100.00 45 118.50 100.00 46 126.00 100.00 47 126.00 100.00 48 134.50 100.00 49 134.50 100.00 50 138.00 100.00 Durham Facility - Tiered Wall - Static Page 4 of 11 Copyright © 2001 -2006 ADAMA Engineering, Inc. www.GeoPrograms.com License number ReSSA - 200444 ReSSA -- Reinforced Slope Stability Analysis Durham Facility - Tiered Wall - Static Present Date/Time: Thu Aug 02 15:10:56 2007 F:\Centetstone Corponuionn\Durham W WTP\Dutham Global Static- revised2.MSE v.em,w+sv..m,.eas.vrm�..,, . emrdws> v.: munat. v. amuwva. v.. mmn, ae, v.: m, ox� ,vrmux+.,v..m,....:,.v�mx.wsw xmvdmuwwv , � t.vdmzawnvrmux+a..v.,r,n.aev�. TABULATED DETAILS OF SPECIFIED GEOMETRY Soil profile contains 3 layers. Coordinates in [ft.] # X Y1 Y2 Y3 1 83.60 100.00 100.00 100.00 2 100.00 100.00 100.00 100.00 3 100.00 105.00 100.00 100.00 4 108.50 105.00 100.00 100.00 5 108.50 105.00 105.00 100.00 6 110.00 105.00 105.00 100.00 7 110.00 110.00 105.00 100.00 8 118.50 110.00 105.00 100.00 9 118.50 110.00 110.00 100.00 10 126.00 110.00 110.00 100.00 11 126.00 115.00 110.00 100.00 12 134.50 115.00 110.00 100.00 13 134.50 115.00 115.00 100.00 14 138.00 115.00 115.00 100.00 15 138.00 120.00 115.00 100.00 16 146.50 120.00 115.00 100.00 17 146.50 120.00 120.00 100.00 18 146.50 120.00 120.00 100.00 v.im ]DtiUVds,ntwNVai�sOtOnvem,n PAV. VmIS ,Dtei..vdm,nt.e4.w.mi.oas�vwm _o pasnv..m'A Fe'iaveem_e aa5nvwm, OBCMVwmLtl MVdcL. iMVaIS: DI�tVeiw3LYev ®2andMV�m,npdMVwm,uAwM Vwm ,LM96vwm,nRdevwb.,D.eNVdm,u Durham Facility - Tiered Wall - Static Page 5 of 11 Copyright ® 2001 -2006 ADAMA Engineering, Inc. www.GeoPrograms.com License number ReSSA - 200444 r , am1C4113AVam7aOa.vam2Daeuw 110154 r, Dnwnvwuwwv.. m, Deae. vwu, ae .v..m:.omuvr.,D.m.*vxm.*v,su ..941110. ®2.417L IIMII.Vrmua.v r 1041, ∎1011. v..-mwauvertioaivac.vam ". ■ ReSSA -- Reinforced Slope Stability Analysis Durham Facility - Tiered Wall - Static Present Date/Time: Thu Aug 02 15:10:56 2007 F:1Centetstone Cotpotation\Dnahmn W WFP\Dufiarn Global Static - revised2.MSE ..am 1111 a9. VNm1D49 .Vam2DRas10*114WV*101481. am2D11.99, mlapas.v.am1D Re. VENN. Z. 46nv w2a 0.8 NV.um2D4fl.V.r:D4fl....2649.Va1m: 11411.. dmu46 .*1DWL.v.ro1o448nVMSAMIINV�m 1D1 aNV® DISTRIBUTION OF AVAILABLE STRENGTH ALONG EACH REINFORCEMENT LAYER T A = Front -end of reinforcement (at face of slope) Tavailable - - - - B = Rear -end of reinforcement AB = Li + L2 + L3 = Embedded length of reinforcement Tfe Tavailable = Long -term strength of reinforcement B Tfe = Available front -end strength (e.g., connection to facing) A Ll = Front-end 'pullout' length l Ll L3 o L2 J L2 = Rear -end pullout length q Tavailable prevails along L3 Factor of safety on resistance to pullout on either end of reinforcement, Fs -po =1.50 Reinforcement Designated Height Relative L Ll L2 L3 Tfe Tavailable Layer # Name to Toe [ft] [ft] [ft] [ft] [ft] [lb /ft] [lb /ft] 1 SF80 2.50 8.50 0.00 8.50 0.00 159250 1592.50 ( *) 2 SF80 7.50 8.50 0.00 8.50 0.00 1592.50 159250 ( *) 3 SF80 12.50 8.50 0.00 8.50 0.00 1592.50 1592.50 ( *) 4 SF80 17.50 8.50 1.72 6.78 0.00 943.52 126538 ( *) ( *) This Tavailable is dictated by the pullout resistance capacity, which is smaller than the long -term strength of the reinforcement that is related.to its specified ultimate strength V rm204uwm2.0 41. wimu4u. mm u4svr. v4uV.: m2Dxa9. v.: m2D0m. vmim26 4uv. am10. 91. ValD4uwm2D WWI.. v4 l,.... u4w. dmzD4wwsm104avd.2D4a.vam2014131 maD 4a.VM11149enveau4SAVa104swr10 Durham Facility - Tiered Wall - Static Page 6 of 11 Copyright ® 2001 -2006 ADAMA Engineering, Inc. www.GeoPrograms.com License number ReSSA - 200444 r Vw>a�.�I. Va..�.....118.m.5a��.va V�� �ID Rd. V�>n.� �.�,V__,.� noo .....ValeelelliSA .�za .m..�.V..>a ....>a..� 2.01.7.*2.0.1. v�.V ®� Re. Vat. d ReSSA -- Reinforced Slope Stability Analysis Durham Facility - Tiered Wall - Static Present Date/ Time: Thu Aug 02 15:10:56 2007 F:VCentetstone Corporation\Dzeham W WTP\Durham Global Static- revised2MSE _:oP62;,vd_za neave mz< au, wamw.+ .+_ ua, e. v..mza..s..v.._:awawv.�zn�.v�_m r.�+v.,�zne.a,v.wvxaavr. ups.. �. zaw.+ v�e.... v.._z dws, v® sa. a., v�uc. c. v® zan. s, ..�:em.v�>aws+v.._san�v..�ra RESULTS OF ROTATIONAL STABILITY ANALYSIS Results in the tables below represent critical circles identified between specified points on entry and exit. (Theta -exit set to 50.00 deg.) The most critical circle is obtained from a search considering all the combinations of input entry and exit points. Critical circles for each entry point (considering all specified exit points) Entry Entry Point Exit Point Critical Circle Point# (X,Y) (X,Y) (Xc,Yc,R) Fs STATUS [R] [ft] [ft] 1 141.50 120.00 89.13 100.02 10252 143.56 45.55 1.82 2 144.00 120.00 88.75 100.07 98.60 159.33 60.07 1.68 3 146.50 120.00 88.99 100.03 98.43 165.65 66.30 1.65 OK 5 151.50 120.00 87.90 100.01 97.79 179.73 80.33 1.67 6 154.00 120.00 87.60 100.04 97.28 188.28 88.77 1.72 7 156.50 120.00 87.47 100.06 97.84 193.61 94.13 1.77 8 159.00 120.00 87.32 100.07 98.41 199.06 99.61 1.83 9 161.50 120.00 87.86 100.01 97.60 209.77 110.19 1.90 10 164.00 120.00 87.74 100.02 98.14 215.88 116.32 1.98 11 166.50 120.00 87.61 100.04 98.68 222.12 122.59 2.06 Note: In the 'Status' column, OK means the critical circle was identified within the specified search domain. 'On extreme X -entry' means that the critical result is on the edge of the search domain; a lower Fs may result if the search domain is expanded. * * * * * * * * * * * * * * * * * * * * * * * ** Results in the tables below represent critical circles identified between specified points on entry and exit. (Theta -exit set to 50.00 deg.) The most critical circle is obtained from a search considering all the combinations of input entry and exit points. Critical circles for each exit point (considering all specified entry points) Exit Exit Point Entry Point Critical Circle Point# (X,Y) (X,Y) (Xc,Yc,R) Fs STATUS [ft] [ft] [ft] °e ',On extreme X - exit 2 88.64 100.07 149.00 120.00 98.13 172.71 73.26 1.64 3 90.38 100.00 149.00 120.00 98.10 17329 73.69 1.64 4 91.01 100.06 149.00 120.00 99.06 170.97 71.36 1.65 5 92.28 100.06 149.00 120.00 100.02 168.68 69.06 1.65 6 93.41 100.05 149.00 120.00 100.04 169.03 69.29 1.65 7 95.16 100.00 149.00 120.00 100.05 169.33 69.50 1.66 8 96.33 100.00 149.00 120.00 100.04 169.59 69.68 1.66 9 97.53 100.00 149.00 120.00 100.03 169.80 69.84 1.67 10 98.75 100.00 149.00 120.00 100.02 169.95 69.96 1.68 11 100.00 100.00 149.00 120.00 101.17 167.17 67.18 1.69 Note: In the'Star»s' column, OK means the critical circle was identified within the specified search domain. 'On extreme X -exit' means that the critical result is on the edge of the search domain; a lower Fs may result if the search domain is expanded. Vr_1016MV..20P66AVW2211 .( 4Va 2PPH..Ve1_]106hVa_21PBOVVWL./.. a. SO WSW V..a2d06swVm_24 PP660.V®xOP60Ava®i0 P62AV__ ,JP6NVa1_2016SSAVa�2yP6MV® ...10 Q.w mzOPmlV....1.9NVa1_2lieiAVwhn3L Durham Facility - Tiered Wall - Static Page 7 of 11 Copyright © 2001 -2006 ADAMA Engineering, Inc. www.GeoPrograms.com License number ReSSA - 200444 1 r ReSSA -- Reinforced Slope Stability Analysis Durham Facility - Tiered Wall - Static Present Date rime: Thu Aug 02 15:10:56 2007 F:1Centetstone Corporation\Durham W WTP\Durham Global Static- revued2MSE Vdm xee,. m. �oewa, v.. .:ncs.��v�..nwuvd.sscm..�r.:.o�v mace s Vasue awV.+. lima, � .vee8.,V*2a1467.V..mIC.+uV ®:a..: *2.1.0s v�.:n�.. 1. v. .s..r®mIUSSAVd.w..s./..mm.� RESULTS OF TRANSLATIONAL ANALYSIS • ,., Results in the table below represent critical two-part wedges identified between specified starting (Xl) and ending (X2) search points. Wedges along all reinforcement layers and at elevation zero are reported. The critical two -part wedge, one for each predetermined elevation, is defined by Xa, Xb and Xc where sec Xa is the front end of the passive wedge (slope face), Xb is where the passive Toe Xa• • wedge ends and the active one starts, and Xc is the X- ordinate at which the active wedge starts. Critical two-part wedge along each interface: Interface Height Relative to Toe (Xa, Ya) (Xb, Yb) (Xc, Yc) Fs STATUS [ft] [ft] [ft] [ft] v.s,t .,..A a f 4€ €'e i8 It =i ,iy a > ,0:0 _ ' .C�r EI t - fi e Minimum on Edge Reinf. Layer #1 2.50 100.00 102.50 108.69 102.50 118.64 110.00 1.76 Minimum on Edge Reinf. Layer #2 7.50 110.00 107.50 110.30 107.50 112.47 110.00 4.66 Minimum on Edge Reinf. Layer #3 12.50 126.00 112.50 134.69 11230 147.17 120.00 2.17 Minimum on Edge Reinf. Layer #4 17.50 138.00 117.50 138.30 11730 140.98 120.00 2.89 Minimum on Edge Note: In the 'Status' column, OK means the critical two part-wedge was identified within the specified search domain. 'Minimum on Edge' means the critical result corresponds to a minimum on the edge of the search domain; i.e., either on Xl or X2 or the internally preset limits on Xc. v et.: Mt. vwuu 77.. rr. tn.6 s., e. mSD IWAV*io14.11..an767,v.,.v7m„w.. u146d,v.+_ao 767,Va isa......, msswn.. ...t<.®,,.: _ummY*2.0.6v.v.i.u1467..rzo.67., ._ n14146c, vr._n n67. v...14ea..v.i.ux6v.vv.an.s.v�.io Durham Facility - Tiered Wall - Static Page 8 of 11 Copyright 0 2001 -2006 ADAMA Engineering, Inc. www.GeoPrograms.com License number ReSSA - 200444 ReSSA -- Reinforced Slope Stability Analysis Durham Facility - Tiered Wall - Static Present Date/rime: Thu Aug 02 15:10:56 2007 F:`Centetstone Corporation\Durham W WTP\Dur am Global Static- revised2.MSE , a RAM va:. ewm, vr_ aws,+ vr, uwnc. v_ mm.. s. V._ SWUM v.._. .a„vMOru+v.M <.3S.v.m,nxev.*7. .ewv..uwav ® UMW. , aw. W: RESULTS OF 3 -PART WEDGE ANALYSIS (X1 ,Y1) Results in the table below represent the critical slip surface composed of a .., three -part wedge and identified by the specified points (X -left, Y -left) 1r t1 t and (X -right, Y -right) and angles Zeta(L) and Zeta(R). ReSSA finds the (X,Y) � ru coordinates, as well as the angles Zeta, based on user - specified search domain. Toe The trace of the critical three -part wedge is fully defined by four points: (Xl, Y1), (X2 Y2) • (X -left, Y -left), (X- right, Y- right), (X2, Y2). • • Critical 3 -part wedge (Automatic search): (X2, Y2) Zeta(L) (X -left, Y -left ) (X -right, Y -right) Zeta(R) (Xl, Yl) Fs tft] [degrees] [ft] [ft] [degrees] [ft] (93.24, 100.00) 21.00 (99.75, 97.50) (109.63, 97.50) 30.00 (148.60, 120.00) 1.717 • V�,na...,..., U,D..e..*,� ,..,,,asi_2014� 1, .s.V ®,.0.m,VosimM.m„-.a,...s v.®...74. Durham Facility - Tiered Wall - Static Page 9 of 11 Copyright © 2001 -2006 ADAMA Engineering, Inc. www.GeoPrograms.com License number ReSSA - 200444 P . v.._x naa ssw .. v d_ mn�nv., �x nr�a.. v. �uxw�v .,_xawnv�mrwv_+_va+uv�.viuuvr_ ranee.. v. vras. v®> euwvr.. unm+ v®.: an.. a vr_ mnev vr_x n� Anav xan ReSSA -- Reinforced Slope Stability Analysis Durham Facility - Tiered Wall - Static Present Datetrime: Thu Aug 02 15:10:56 2007 F:SCeotecstone Cotporation\Diahmn W WrPADurhatn Global Static- revised2MSE ..._vu �,vd , vuwv . amuua .,�. + _.a ww w W: aura ve _ uw . ve_: aueu. v.._x ae�v.._ wnn. V.._ vnm. �.. _: auw�� xaxffi awe v�un® s. �. �v.. a+ v.._x ana: , CRITICAL RESULTS OF ROTATIONAL AND TRANSLATIONAL STABILITY ANALYSES Rotational (Circular Arc; Bishop) Stability Analysis Minimum Factor of Safety = 1.64 Critical Circle: Xc = 97.20[ft], Yc = 174.96[ft], R = 75.52[ft]. (Number of slices used = 67 ) Translational (2 -Part Wedge; Spencer), Direct Sliding, Stability Analysis Minimum Factor of Safety = 1.68 Critical Two -Part Wedge: ()Ca = 100.00, Ya = 100.00) [ft] (Xb = 108.30, Yb = 100.00) [ft] (Xc = 121.57, Yc = 110.00) [ft] (Number of slices used = 30 ) Interslice resultant force inclination = 22.01 [degrees] Three -Part Wedge Stability Analysis Minimum Factor of Safety = 1.72 Critical Three -Part Wedge: (X2 = 93.24, Y2 = 100.00) [ft] (X -left = 99.75, Y -left = 97.50) [ft] (X -right = 109.63, Y-tight = 97.50) [ft] (X1= 148.60, Y1= 120.00) [ft] (Number of slices used = 45 ) Interslice resultant force inclination = 20.81 [degrees] REINFORCEMENT LAYOUT: DRAWING Amor �.: SCALE: 0 2 4 6 8 10 [ft] Durham Facility - Tiered Wall - Static Page 10 of 11 Copyright ® 2001 -2006 ADAMA Engineering, Inc. www.GeoPrograms.com License number ReSSA - 200444 ! .. , `Vemom 20 11■15,,,,... 4171,:emaa.01.8■Vaarce IA 11.4.,......,...1.01.11,...241146*10.16.9.4....0114.1.•,....0.41,/mim2.011.8.4,*:ANSSAVae.2.011.114.•Vato2.051■82AVaam.1.14Vaa2.014111....,-.1414,M1.01.....2.0R4.*7.+01.6,agel....SSAVrelea2.0 . ReSSA -- Reinforced Slope Stability Analysis Durham Facility - Tiered Wall - Static Present Date/rime: Thu Aug 02 15:10:56 2007 FACenterstone Corporation \Durham WWTP \Durham Global Static- revises12.MSE Yawns 2014115,.....,......6,...,01.11A Va 1.0 Re. Vol...0MM VencalAISSAVaostIAMESA Wien 20 1644•Vaiaa.0 P.M Valem.RASA Wet LO M. Va.D.B.S.....p.P..39...m2.1.61.....11.083AVanc....114,*2.014.85AVase0.111.1th Vaam.11.5.1A Velabl.M.SAVenva,01481A REINFORCEMENT LAYOUT: TABULATED DATA & QUANTITIES Height Embedded Covergae Layer Reinf. Geosynthetic Relative Length Ratio, ( X, Y ) front ( X, Y ) rear # Type # Designated Name to Toe [ft] [ft] Rc [ft] [ft] 1 3 SF80 2.50 8.50 1.00 328.08 330.58 336.58 330.58 2 3 SF80 7.50 8.50 1.00 338.08 335.58 346.58 335.58 3 3 SF80 12.50 8.50 1.00 354.08 340.58 362.58 340.58 4 3 SF80 17.50 8.50 1.00 366.08 345.58 374.58 345.58 QUANTITIES Reinf. Type # Designated Name Coverage Ratio Area of reinforcemnt [ft / length of slope [ft] 3 SF80 1.00 34.00 , 1 . . , • Va•P 2011.AVaim VI NM,* IlatAGU2.11 1.84.,U0-01167. Va..1..../. V*. 2.014.1. Yoke 10 pet..... 1,...•Va2.61.11AVal..0.6,..■11111.69.*2.01149.4...m1.0.66 Durham Facility.. Tiered Wall - Static Page 11 of 11 Copyright CI> 2001-2006 ADAMA Engineering, Inc. www.GeoPrograms.com License number ReSSA-200444 ii. ID) MWH SHOP DRAWING REVIEW MWH Americas Review Date 5/24/2007 Submittal No. 176. 0 From Engineer: Ray Lange To Contractor: Contractors, Inc. Company: MWH Americas, Inc. P.O. Box 637 16580 SW 85th Avenue Tualatin, Oregon 97062 - Tigard, OR 97224 Attn: Michael Eubanks Project Owner: Clean Water Services Project Name Durham Facility Phase 4 Expansion Contractor's Submittal No. 176. 0 Project No.:4969 Item of Equipment or Material Segmental Retaining Wall Specification Section 02834 Subject submittal has been reviewed and review action is as shown below: Item No. SUBJECT OF SHOP DRAWING OR DATA REVIEW ACTION NO. COPIES NO. COPIES RECEIVED RETURNED 1 Segmental Retaining Wall AMEND AND RESUBMIT 8 6 Please see the attached comments made by Arlan Rippe of Kleinfelder. Please revise the design calculations based on their comments and resubmit them. Remarks See Attached Sheet 0 or indicate here: None ❑ Corrections or comments made relative to submittals during this review do not relieve the contractor from compliance with the requirements of the drawings and specifications. This check is only for review of general conformance with the design concept of the project and general compliance with the information given in the contract documents. The contractor is responsible for confirming and correlating all qualities and dimensions; selecting fabrication processes and techniques of construction; coordinating . his work with that of other trades, and performing his work in a safe and satisfactory manner. Ray Lange Engineer's Signature NT �I . AMEND RzRFSlh3N4'1' NO I•:dCEP'ilON 5 _- RDEIE TFTJ RESUBMIT 1111. 2 tiC}J2?iCll( }NS NCi1T ?D prf DAM.: ;RV 'fir }, : �� al i' c S MADE9NliPn I E c�' *rSR A `FR 's riNTA/.CT DR A'A11jG S �`D $FI CIIICAT?ONS.'r}iI5 T } l14`.i'�G '11 ?I$ RF.Yi}:W I}Oi?5 NOT RBS, II i Y)NIS 'M C CO WITH C.• GENERAL C WITT .ANT, CON}aAC! I SHOP DiCI:WINti liAS ITEEN AEVI} A FOB IAN CONFC}R�'IAI NCE �Yilli TI . ON1,Y. IRACrOR 15 RESPONSIP.i.I: FOR CQNFCR PIN DOCUM O AND T NS; F! RICATTOI'i ANT) C RE U AND D. V,U WTOI OTTWR AND CORRF.LA1lNC ( QU�S. P : 1 7: TI'IG : :: PEOC AND File: 10.7.1 - 02834 -176 l : ICM:70; AND SATTSI l TORY A ANSI Fis PSiRFORM.4N%E C -F Ttir *. }RY.. CM 305 (Revised 7/28/05) KLEI NFELDER TECHNICAL MEMORANDUM Geotechnical Engineering Materials Testing & Inspection Environmental Science & Engineering Water Resources Earthquake Engineering Air Quality Date: May 22, 2007 To: ROD WARNER, P.E. LESLIE LARAMOORE MWH cc: From: Arlan H. Rippe, P.E. Project No.: S098394 Subject: SEGMENTAL RETAINING WALL DURHAM AWWTP PHASE 4 EXPANSION In accordance with your request, we have reviewed the Contractor's design submittal for the Segmental Retaining Wall in accordance with Project Specifications 02834. The design was prepared by David A. Hall, P.E., dated March 29, 2007, Revised April 11, 2007 for Centerstone Corporation. Our review was intended to look for general compliance with the referenced project specifications and to look for general accordance with the geotechnical conditions as described in the Geotechnical Data Report and the Geotechnical Baseline Report. It does not relieve the Contractor or wall designer from their responsibility for the design and its application to the site as required by the project specifications. We observed the following issues that we recommend to be addressed: 1) The retained soil is assumed to have internal angle of friction, o, equal to 32 and cohesion, c, equal to 250 lbs /ft For the native soil (Valley Fill — upper alluvium) we recommend instead o equal to 30 and c equal to 0. 2) The Long Tenn Design Strength, according to the manufacturer's Product Certification is less than the 5000 lbs /ft. required by 2.7 D. Although, the design appears to generally meet the other component strength requirements. We recommend that these issues be reconsidered and an appropriate response provided. segmental wall comments.doc Pagel of 1 15050 SW Koll Parkway Copyright 2007 Kleinfelder Suite L Beaverton, OR 97006 -6028 Tel. 503 - 644 -9447 Fax. 503 - 643 -1905 © MWH Contractor`s Submittal Transmittal Form MONTGOMERY WATSON HARZA For all contractor submittals, including shop Date: 5/3/2007 Transmittal No. 176 drawings, samples calculation, data, or other To: MWH From: CONTRACTORS, INC. 5 ] ECEIVE � IL/A u . . Attention: Leslie Laramoore Attention: Louise Loomis Project Name DURHAM AWWTP PHASE 4 EXPANSION This is: check one X an original submittal • Owner CLEAN WATER SERVICES a 2nd submittal a submittal Subject of Submittal Equipment Designation: Specification Section(s): 8 ea. Segmental Retaining Wall 02834 • Comparison Information Tests Complete either (a) or (b), following: X (a) We have verified that the materials or equipment contained in this submittal meets all the requirements specified or shown (no exceptions) (b) We have verified that the material or equipment contained in this submittal meets all the requirements specified or shown, except for the following deviations (List Deviations): f ,. Contractor's Authorized Representative < ',' 1�..�� ---- Steve Newton, Projec anager CM 306 (Revised 9/16/02) E c E I v Ea Contractor's Submittal MWH R e►1�Tir, ea © MONTGOMERY WATSON HARZA Transmittal Form For all contractor submittals, including shop Date: 8/3/2007 Transmittal No. 176A drawings, samples calculation, data, or other To: MWH From: CONTRACTORS, INC. Attention: Leslie Laramoore Attention: Louise Loomis Project Name DURHAM AWWTP PHASE 4 EXPANSION This is: Check one an original submittal Owner CLEAN WATER SERVICES X a 2nd submittal a submittal Subject of Submittal Equipment Designation: Specification Section(s): 8 ea. Segmental Retaining Wall - Calculations 02834 (Revised per your comments). Comparison Information Tests Complete either (a) or (b), following: X (a) We have verified that the materials or equipment contained in this submittal meets all the requirements specified or shown (no exceptions) (b) We have verified that the material or equipment contained in this submittal meets all the requirements specified or shown, except for the following deviations (List Deviations): di Contractor's Authorized Representative _J,. _ _ ,S eve Newton, Project Manag v CM 306 (Revised 9/16/02)