Plans S ; -i
060
Structural Calculations
For
Clean Water Services,
Durham Facility Phase 5A1
These calculations were performed
under the direct supervision of
Sterling Rose, P.E.
s . .yam. ^^rr r
1
r
K \,,,,.....
re 11 11 ,G J cC
7 1r! `57€
Should any questions arise concerning these calculations,
Please contact . the above at
CH2M HILL
2300 NW Walnut Blvd.
Corvallis, OR 97330
541- 768 -3495
or
sterling.rose @ch2m.com
August 2009
ONCE COPY
. 60 8' x-.
•
Durham Phase 5A1
Calculations for the Concrete Portions of the Gate Structure
Wind loading criteria:
Wind Speed
j V := 94.5mph (3 second gust wind speed)
Exposure := "C "' Exposure Category
11:= 1.0 Importance Factor
Design system as a solid free standing wall per ASCE 7 -05
F = gh•G•Cf•As ASCE 7 -05 Eq 6 -27
ih := 8.5ft Maximum structure height above grade
s := h = 8.5 ft Height of structure
B := 6.5ft Length of structure
:= B• s = 55.25 ft Area of the sign
A
Kh .= 0.85' Velocity pressure coefficient ASCE 7 -05 Table 6 -3
K := 1.0 Topographic factor ASCE 7 -05 Section 6.5.7.2
K := 0.85 Wind directionality factor ASCE 7 -05 Table 6 -4
2
q := 0.00256•Kh•Kz K Ph ) •I•psf q = 16.517•psf
G := 0.85, Gust effect factor ASCE 7 -05 section 6.5.8
B
— = 0.765 Ratio of B /s - -used to select force coefficient
s (Larger ratios result in higher forces)
Cf := 2.25 Force Coeffcient ASCE 7 -05 Fig 6 -20
(Case C gives controlling force)
f := g f f = 31.59•psf Force per area
F := f•A F = 1.745. kip Total force on the sign
h + 0.05.h = 4.675 ft . Force acts at h/2 + 0.05h above grade per ASCE 7 -05 Fig 6 -20
2 (Conservative for seismic)
Calculations by: Katrina Pearson and Sterling Rose Page 1 of 12 Checked by: Rich Forrest
. . •
• - ,
, .
., .
. '
• Seismic Forces
, . 0.4.a . • Sds•W ,
p . p .( z) ..
. , F,., - • 1 + 2.-
'h .r• • ASCE 7-05 Eq 13.3-1
P •
_- • , .
' ' -•• - '
but not greater than
F •=1.6.S DS -I - 4 p - - , -- - - , ASCE 7-05 EQ 13.3-2
p • , • • ,,.'
• • • . . .
' -
.. • nor less than •
•_. : ..
- -
F p = 0 • 3 ' 8 DS'Ip - Wp • - . • . ASCE 7-05 EQ 133 -
. ..
, -
-, .. • ....
, •
- - .
.. .. _. .
S DS . - 0 6'9' • See USGS sheet
- '' .•. - . 1 - • 7 1 ' , ._ .• • •' - , -
-,..• .
_._
, - •• • •
' ' - • - ' Ta := 2.5 • - ASCE 7-05 Table 13.5-1
• • -,.. - IR := 2.5 -
ASCE 7-05 Table 13.5-1 ' • , .
• - - •• ' ,
. - • P • J . . . - _ -- - , , ., •
, . .. ... _ . .
. .
.., . .
, - - • „.,.; Attached at base (cantilever eleMent). .
..,
. _ .
0.4.a S . ' ' - - • •
• f i
:= = .• 0.28 - . . - '
...
'
____ •
. ,
I - - .
A . . • ,•
f p2 := 1.6. . S DS' I p‘ = 1.118 • • -...,
., .., •
f := 0.3•S =0.21
- .
. „ . .
max(Plin(fpl- '..- • . - ' Seismic factor (reduced to allowable stress levels)
f = - 0.2 ,
. .
. .. ,_
' . . . . • . .
. .
. _
, . ,..
' ' •
, •
_ .
• .. ._ .
.. _
•
. , .
. ..,,.
. , . .
. - - - • Calculations by Katrina Pearson and Sterling Rose Page 2 of 12 • • Checked b: Rich Forrest
. .
, . "..
• : , . .. . - -
Design footings -- neglect soil above the footing
Gate Center Pier
L := 7ft + 4in Length of Footing
B := 5ft Width of Footing
H := 1 ft Depth of Footing
1concrete := 150pcf Unit Weight of Concrete
t wall := 10in Thickness of the wall
Dead Load Wall Above the Footing
P :_ (L - 12in) (h + 1.Sft) t walfryconcrete = 7.917'ktp (buried 1.5 feet below grade)'
e := 2%•B = 0.1 ft Horizontal Eccentricity of Load
(assume accidental eccentricty of 2% footing width)
F = 1.745 .kip Wind load
f •P = 1.581 kip Seismic Load
F := max(F, f = 1.745•kip Lateral Load
e := h + 0.05•h + 1.5ft = 6.175 ft Vertical Eccentricity
2 (buried 1.5 feet below grade)
I
F p f i P
e2� _1—
1
i Rotation about narrow side
S
W foot L •B•H•'yconcrete W foot = 5.5 kip Weight of Footing •
M foot P ' e l + F p .e 2
M foot = 11.569•kip•ft Moment on Footing
P foot := P + W foot P foot = 13.417•kip Total Vertical Load
M foot
e := e = 0.958 ft
0.9P foot
B = 0.833 ft to keep qmin > 0, ec must be < B/6
6
B foot 6 e 4 ' P foot
gmax := if- >_ e, C1 + — gmax = 0.791 •ksf Maximum Soil Pressure
6 B•L B JJ 3•L•(B - 2•e) B P
qmin - t f [ 6 > e, B Lt C1 B I >Ok groin = 0•ksf Minimum Soil Pressure —
gall := 2000psf J Allowable Bearing Pressure
Check := if (gmax _< gall, "Okay" ,"Not Okay"
Okay
Calolations by: Katrina Pearson and Sterling Rose Page 3 of 12 Checked by: Rich Forrest
Global Stability Check
Moments taken about the toe
M drive P p' e 2 M drive = 10.777•kip•ft Moment trying to overturn
M resist [wf + p. B — e1)1 M resist = 32.75•kip•ft Moment resisting overturning
M resist
FS := FS = 3.039 Factor of safety for overturning
M drive
Sliding - neglect soil contributions
Coefficient of friction between the soil and concrete
:= 0.3
Fdrive F = 1.745 • kip
F resist l foot
F resist
FS := FS = 2.306 Factor of safety for sliding
F drive
Calculations by: Katrina Pearson and Sterling Rose Page 4 of 12 Checked by: Rich Forrest
J
Gate End Pier
L := 5.5ft Length of Footing
B := 5ft Width of Footing
H := 1 ft Depth of Footing
ryconcrete I50pcf Unit Weight of Concrete
twall 10in Thickness of the wall
Dead Load Wall Above the Footing
P:= (L — 12in)•(h + 1.54t wall'(concrete = 5.625•kip (buried 1.5 feet below grade)
e1 := 2%•B = 0.1 ft Horizontal Eccentricity of Load
(assume accidental eccentricty of 2% footing width)
F = 1.745 • kip Wind load
f P = 1.123 .kip Seismic Load
F := max(F,f = 1.745•kip Lateral Load
e := 2 + 0.05•h + 1.5ft = 6.175 ft Vertical Eccentricity
(buried 1.5 feet below grade)
1
Pp i 1 i . ' P
e2 1 -1—
i
Rotation about narrow side
W foot L
H ryconcrete W foot = 4.125. kip Weight of Footing
M foot P • e 1 + F p• e 2
M foot = 11.34 kip ft Moment on Footing
!foot P + W foot P foot = 9.75• kip Total Vertical Load
M foot
e:= e= 1.292ft
0.9P foot
B = 0.833 ft to keep qmin > 0, ec must be < B/6
6
— i B P foot( 6 el 4'Pfoot i _ _ e, I 1 + 0.979 ksf Maximum Soil Pressure
qmax •— 6 B•L B 3•L•(B — 2•e) gmax
B P
gmin t 6 > e, B L • I 1 — B I,Oksf gmin = 0•ksf Minimum Soil Pressure
gall 2000psf l J Allowable Bearing Pressure
Check := if(gmax < gall, "Okay" , "Not Okay"
Okay
Calculations by: Katrina Pearson and Sterling Rose Page 5 of 12 Checked by: Rich Forrest
Global Stability Check
Moments taken about the toe
M drive F p• e 2 M drive = 10.777•kip•ft Moment trying to overturn
M resist [wf + F.( -- e l)] M resist = 23.813•kip.ft Moment resisting overturning
M resist
FS := FS = 2.209 Factor of safety for overturning
M drive
Sliding - neglect soil contributions
Coefficient of friction between the soil and concrete
µ:= 0.3
Fdrive F = 1.745•kip
Fresist := N''Pfoot
F resist
FS := FS = 1.676 Factor of safety for sliding
F drive
Calculations by: Katrina Pearson and Sterling Rose Page 6 of 12 Checked by: Rich Forrest
Gate End Pier -check long direction assuming gate weight is supported entirely by
the pier
L := 5.5ft Length of Footing
B := 5ft Width of Footing
H := 1 ft Depth of Footing
concrete 150pcf Unit Weight of Concrete
t wall := 10in Thickness of the wall
'Dead Load Wall Above the Footing +
P := (L — 12in)•(h + 1 . 5 ft)•twalf' concrete + 2kip = 7.625•ki pnaximum gate load
(buried 1.5 feet below grade)
e1 := 10%.L = 0.55 ft Horizontal Eccentricity of Load
(assume gate eccentricty of 10% footing length)
f •P = 1.523 kip Seismic Load
F := f •P = 1.523 kip Lateral Load - -no wind this direction
e := 2 + 0.05•h + 1.5ft = 6.175 ft Vertical Eccentricity
(buried 1.5 feet below grade)
Fp I P
e2 -1—
Rotation about long side
W foot L • B • H •'iconcrete W foot = 4.125. kip Weight of Footing
M foot P • e 1 + F p• e 2
M foot = 13.597•kip•ft Moment on Footing
P foot P + W foot P foot = 11.75. kip Total Vertical Load
M foot
e := e = 1.286 ft
0.9P foot
L
— = 0.917 ft to keep qmin > 0, ec must be < L/6
6
q _ i L > e P footr l + 6_el 4 ' P foot 1 q = 107•ksf Maximum Soil Pressure
max 6 B•L I` L J 3•B•(L — 2•e)J max .
P foo
qmin t 6 e, B L t 'I 1 — LeJ,0k gmin = 0 ksf Minimum Soil Pressure
gall := 2000psf ` Allowable Bearing Pressure
Check := if(gmax < gall, "Okay" , "Not Okay"
Okay
Calculations by: Katrina Pearson and Sterling Rose Page 7 of 12 Checked by: Rich Forrest
Global Stability Check
Moments taken:,about,th"e toe .
Mdrive F p e 2 Mdrive = 9.403• kip. ft . Moment trying to overturn
• f L L _`
• M.resist Wfoot•— + P ( e11l
M resist 28.1'19' .kip' ft Moment resisting overturning
resist _:.
M resist .
FS := FS = 2.99 Factor of safety for overturning
• M drive
Sliding-neglect soil contributions
Coefficient of friction between the soil and concrete
• µ: = 0.3
•
Fdrive F = 1.745 kip
F resist := µ• P foot
F resist
FS := FS =, 2.02. Factor of safety for sliding
F drive
•
•
•
•
•
•
Calculations by Katrina Pearson and Sterling Rose • Page 8 of 12 Checked by Rich Forrest
Entry Pedestal
L := 5ft + 8in Length of Footing
B := 5ft + 8in Width of Footing
H := 1 ft Depth of Footing
' concrete 150pcf Unit Weight of Concrete
t wall := 81n Thickness of the wall
h := 7.5ft Height of wall above grade
A • = h•(3ft + 4in) = 25 ft Area of entry pedestal
P := [2.h.(3ft + 8in)•t + [6in.(4ft + 8in) = 7.133 kip Dead Load Wall Above the Footing
wall concrete = (two walls plus top)
e := 2%•B = 0.113 ft Horizontal Eccentricity of Load
(assume accidental eccentricty of 2% footing width)
f•A = 0.79•kip Wind load
f = 1.425•kip Seismic Load
F := max(f•A = 1.425•kip Lateral Load
e := 2 + 0.05•h + 1 ft = 5.125 ft Vertical Eccentricity
(buried 1 foot below grade)
Pp 1 P
e2 i -1—
Rotation about narrow side
S
Wfoot L B • H • ^ yconcrete W foot = 4.817•kip Weight of Footing
M foot P ' e l + P p' e 2
M foot = 8.11•ktp•ft Moment on Footing
Pfoot P + W foot foot = 11.95• kip Total Vertical Load
M foot
e := e = 0.754 ft
0.9P foot
B = 0.944 ft to keep qmin > 0, ec must be < B/6
6
B P foot( 6•e 4 • P foot 1
qmax •= if- ? e, I I + — I, J g max = 0.669•ksf Maximum Soil Pressure
6 B•L ` B JJ 3.L.(B — 2•e)
B gram '�[6 > e, 13 Lt•I 1 — B cl = 0.075•ksf Minimum Soil Pressure
gall := 2000psf \ Allowable Bearing Pressure
Check := if(gmax < gall , "Okay" , "Not Okay"
Okay
Calculations by: Katrina Pearson and Sterling Rose Page 9 of 12 Checked by: Rich Forrest
Global Stability Check
Moments taken about the toe
M drive P p' e 2 M drive = 7.301 •kip•ft Moment trying to overturn
M resist [wfOOt' B + P '(B e l)] M resist = 33.05•kip'ft Moment resisting overturning
FS := Mresist FS = 4.527 Factor of safety for overturning
M drive
Sliding - neglect soil contributions
r • Coefficient of friction between the soil and concrete
µ:= 0.3,
F drive F = 1.425 • kip
F resist := 1'' foot
F resist
FS := FS = 2.516 Factor of safety for sliding
F drive
Calculations by: Katrina Pearson and Sterling Rose Page 10 of 12 Checked by: Rich Forrest
Check moment capacity of concrete—Gate Pier
cbM = 1131A s .f y • (cl – I)]
- • 2
• := 0.9 Reduction factor for flexurally controlled merribers.
; Length of shortest pier so least steel is present
Lb := 4.5ft
111
IA := 0.31 —b = 1.395•in 2 ; Area of steel
As • ft j (assumes #5012)
f := 60kst Yield strength of reinforcing
Depth to centroid of reinforcing
• := 5 irt
• ri
• .= 3000psi Compressive strength of concrete
c
A s' f y
a := = 0.608•in Depth of compression block
0.85.f • b
cl3M := (b.A – 1 2 )1 = 29.48-kip-ft
ax
M m := 13.597kip'ft See above
•
M := 1.6•M = 21.755-kip-ft Factored load
Check := if(M cl3M , "Okay" , "Not Okay")
Okay
•
Calculations by: Katrina Pearson and Sterling Rose Page 11 of 12 Checked by: Rich Forrest
Check moment capacity of concrete - -Entry Pedestal
n = 4.1A — 2)]
:= 0.9 Reduction factor for flexurally controlled members
Length of shortest pier so least steel is present
b := 3ft + 4in
A := 0.6in Area of steel
(assumes 3- #4bars)
E. 60ksi Yield strength of reinforcing
Depth to centroid of reinforcing
d := 3in
f := 3000psi Compressive strength of concrete
A f
a := y = 0.353 • in Depth of compression block
0.85.f•b
4?M := (13•CA — a I` = 7.624• kip. ft
2 JJ
Mmax : 3.505kip• ft For wind -see above
M := 1.6•Mmax= 5.608•kip•ft Factored load- -wind
8.11 kip- ft
M :_ • 1.4 = 5.677•kip•ft Factored seismic divided by the two walls
2
M := max(M = 5.677•kip•ft
Check := if(M S M "Okay" , "Not Okay" )
Okay •
Calculations by: Katrina Pearson and Sterling Rose Page 12 of 12 Checked by: Rich Forrest
Appendix A USGS Seismic Vaules Page 1 of 1
•
Conterminous 48 States
2006 International Building Code
Latitude = 45.40398
Longitude = = 122.764555
Spectral Response Accelerations Ss and 51
Ss and S1 = Mapped Spectral Acceleration Values
Site Class B Fa = 1.0 ,Fv = 1.0
Data are based on a 0.05 deg grid spacing
Period Sa
(sec) (g)
0.2 0.928 (Ss, Site Class B)
1.0 0.335 (51, Site Class B)
Conterminous 48 States
2006 International Building Code
Latitude = 45.40398
Longitude = - 122.764555
Spectral Response Accelerations SMs and SM1
SMs = Fa x Ss and SM1 = Fv x 51
Site Class D - Fa = 1.129 ,Fv = 1.73
Period .Sa
(sec) (g)
0.2 1.048 (SMs, Site Class D)
1.0 0.579 (SM1, Site Class D)
Conterminous 48 States
2006 International Building Code
Latitude = 45.40398
Longitude = - 122.764555
Design Spectral Response Accelerations SDs and SD1
SDs = 2/3 x SMs and SD1 = 2/3 x SM1
Site Class D- Fa = 1.129 ,Fv = 1.73
•
Period Sa
(sec) (g)
0.2 0.699 (SDs, Site Class D)
1.0 0.386 (SD1, Site Class D)