Loading...
Plans S ; -i 060 Structural Calculations For Clean Water Services, Durham Facility Phase 5A1 These calculations were performed under the direct supervision of Sterling Rose, P.E. s . .yam. ^^rr r 1 r K \,,,,..... re 11 11 ,G J cC 7 1r! `57€ Should any questions arise concerning these calculations, Please contact . the above at CH2M HILL 2300 NW Walnut Blvd. Corvallis, OR 97330 541- 768 -3495 or sterling.rose @ch2m.com August 2009 ONCE COPY . 60 8' x-. • Durham Phase 5A1 Calculations for the Concrete Portions of the Gate Structure Wind loading criteria: Wind Speed j V := 94.5mph (3 second gust wind speed) Exposure := "C "' Exposure Category 11:= 1.0 Importance Factor Design system as a solid free standing wall per ASCE 7 -05 F = gh•G•Cf•As ASCE 7 -05 Eq 6 -27 ih := 8.5ft Maximum structure height above grade s := h = 8.5 ft Height of structure B := 6.5ft Length of structure := B• s = 55.25 ft Area of the sign A Kh .= 0.85' Velocity pressure coefficient ASCE 7 -05 Table 6 -3 K := 1.0 Topographic factor ASCE 7 -05 Section 6.5.7.2 K := 0.85 Wind directionality factor ASCE 7 -05 Table 6 -4 2 q := 0.00256•Kh•Kz K Ph ) •I•psf q = 16.517•psf G := 0.85, Gust effect factor ASCE 7 -05 section 6.5.8 B — = 0.765 Ratio of B /s - -used to select force coefficient s (Larger ratios result in higher forces) Cf := 2.25 Force Coeffcient ASCE 7 -05 Fig 6 -20 (Case C gives controlling force) f := g f f = 31.59•psf Force per area F := f•A F = 1.745. kip Total force on the sign h + 0.05.h = 4.675 ft . Force acts at h/2 + 0.05h above grade per ASCE 7 -05 Fig 6 -20 2 (Conservative for seismic) Calculations by: Katrina Pearson and Sterling Rose Page 1 of 12 Checked by: Rich Forrest . . • • - , , . ., . . ' • Seismic Forces , . 0.4.a . • Sds•W , p . p .( z) .. . , F,., - • 1 + 2.- 'h .r• • ASCE 7-05 Eq 13.3-1 P • _- • , . ' ' -•• - ' but not greater than F •=1.6.S DS -I - 4 p - - , -- - - , ASCE 7-05 EQ 13.3-2 p • , • • ,,.' • • • . . . ' - .. • nor less than • •_. : .. - - F p = 0 • 3 ' 8 DS'Ip - Wp • - . • . ASCE 7-05 EQ 133 - . .. , - -, .. • .... , • - - . .. .. _. . S DS . - 0 6'9' • See USGS sheet - '' .•. - . 1 - • 7 1 ' , ._ .• • •' - , - -,..• . _._ , - •• • • ' ' - • - ' Ta := 2.5 • - ASCE 7-05 Table 13.5-1 • • -,.. - IR := 2.5 - ASCE 7-05 Table 13.5-1 ' • , . • - - •• ' , . - • P • J . . . - _ -- - , , ., • , . .. ... _ . . . . .., . . , - - • „.,.; Attached at base (cantilever eleMent). . .., . _ . 0.4.a S . ' ' - - • • • f i := = .• 0.28 - . . - ' ... ' ____ • . , I - - . A . . • ,• f p2 := 1.6. . S DS' I p‘ = 1.118 • • -..., ., .., • f := 0.3•S =0.21 - . . „ . . max(Plin(fpl- '..- • . - ' Seismic factor (reduced to allowable stress levels) f = - 0.2 , . . . .. ,_ ' . . . . • . . . . . _ , . ,.. ' ' • , • _ . • .. ._ . .. _ • . , . . ..,,. . , . . . - - - • Calculations by Katrina Pearson and Sterling Rose Page 2 of 12 • • Checked b: Rich Forrest . . , . ".. • : , . .. . - - Design footings -- neglect soil above the footing Gate Center Pier L := 7ft + 4in Length of Footing B := 5ft Width of Footing H := 1 ft Depth of Footing 1concrete := 150pcf Unit Weight of Concrete t wall := 10in Thickness of the wall Dead Load Wall Above the Footing P :_ (L - 12in) (h + 1.Sft) t walfryconcrete = 7.917'ktp (buried 1.5 feet below grade)' e := 2%•B = 0.1 ft Horizontal Eccentricity of Load (assume accidental eccentricty of 2% footing width) F = 1.745 .kip Wind load f •P = 1.581 kip Seismic Load F := max(F, f = 1.745•kip Lateral Load e := h + 0.05•h + 1.5ft = 6.175 ft Vertical Eccentricity 2 (buried 1.5 feet below grade) I F p f i P e2� _1— 1 i Rotation about narrow side S W foot L •B•H•'yconcrete W foot = 5.5 kip Weight of Footing • M foot P ' e l + F p .e 2 M foot = 11.569•kip•ft Moment on Footing P foot := P + W foot P foot = 13.417•kip Total Vertical Load M foot e := e = 0.958 ft 0.9P foot B = 0.833 ft to keep qmin > 0, ec must be < B/6 6 B foot 6 e 4 ' P foot gmax := if- >_ e, C1 + — gmax = 0.791 •ksf Maximum Soil Pressure 6 B•L B JJ 3•L•(B - 2•e) B P qmin - t f [ 6 > e, B Lt C1 B I >Ok groin = 0•ksf Minimum Soil Pressure — gall := 2000psf J Allowable Bearing Pressure Check := if (gmax _< gall, "Okay" ,"Not Okay" Okay Calolations by: Katrina Pearson and Sterling Rose Page 3 of 12 Checked by: Rich Forrest Global Stability Check Moments taken about the toe M drive P p' e 2 M drive = 10.777•kip•ft Moment trying to overturn M resist [wf + p. B — e1)1 M resist = 32.75•kip•ft Moment resisting overturning M resist FS := FS = 3.039 Factor of safety for overturning M drive Sliding - neglect soil contributions Coefficient of friction between the soil and concrete := 0.3 Fdrive F = 1.745 • kip F resist l foot F resist FS := FS = 2.306 Factor of safety for sliding F drive Calculations by: Katrina Pearson and Sterling Rose Page 4 of 12 Checked by: Rich Forrest J Gate End Pier L := 5.5ft Length of Footing B := 5ft Width of Footing H := 1 ft Depth of Footing ryconcrete I50pcf Unit Weight of Concrete twall 10in Thickness of the wall Dead Load Wall Above the Footing P:= (L — 12in)•(h + 1.54t wall'(concrete = 5.625•kip (buried 1.5 feet below grade) e1 := 2%•B = 0.1 ft Horizontal Eccentricity of Load (assume accidental eccentricty of 2% footing width) F = 1.745 • kip Wind load f P = 1.123 .kip Seismic Load F := max(F,f = 1.745•kip Lateral Load e := 2 + 0.05•h + 1.5ft = 6.175 ft Vertical Eccentricity (buried 1.5 feet below grade) 1 Pp i 1 i . ' P e2 1 -1— i Rotation about narrow side W foot L H ryconcrete W foot = 4.125. kip Weight of Footing M foot P • e 1 + F p• e 2 M foot = 11.34 kip ft Moment on Footing !foot P + W foot P foot = 9.75• kip Total Vertical Load M foot e:= e= 1.292ft 0.9P foot B = 0.833 ft to keep qmin > 0, ec must be < B/6 6 — i B P foot( 6 el 4'Pfoot i _ _ e, I 1 + 0.979 ksf Maximum Soil Pressure qmax •— 6 B•L B 3•L•(B — 2•e) gmax B P gmin t 6 > e, B L • I 1 — B I,Oksf gmin = 0•ksf Minimum Soil Pressure gall 2000psf l J Allowable Bearing Pressure Check := if(gmax < gall, "Okay" , "Not Okay" Okay Calculations by: Katrina Pearson and Sterling Rose Page 5 of 12 Checked by: Rich Forrest Global Stability Check Moments taken about the toe M drive F p• e 2 M drive = 10.777•kip•ft Moment trying to overturn M resist [wf + F.( -- e l)] M resist = 23.813•kip.ft Moment resisting overturning M resist FS := FS = 2.209 Factor of safety for overturning M drive Sliding - neglect soil contributions Coefficient of friction between the soil and concrete µ:= 0.3 Fdrive F = 1.745•kip Fresist := N''Pfoot F resist FS := FS = 1.676 Factor of safety for sliding F drive Calculations by: Katrina Pearson and Sterling Rose Page 6 of 12 Checked by: Rich Forrest Gate End Pier -check long direction assuming gate weight is supported entirely by the pier L := 5.5ft Length of Footing B := 5ft Width of Footing H := 1 ft Depth of Footing concrete 150pcf Unit Weight of Concrete t wall := 10in Thickness of the wall 'Dead Load Wall Above the Footing + P := (L — 12in)•(h + 1 . 5 ft)•twalf' concrete + 2kip = 7.625•ki pnaximum gate load (buried 1.5 feet below grade) e1 := 10%.L = 0.55 ft Horizontal Eccentricity of Load (assume gate eccentricty of 10% footing length) f •P = 1.523 kip Seismic Load F := f •P = 1.523 kip Lateral Load - -no wind this direction e := 2 + 0.05•h + 1.5ft = 6.175 ft Vertical Eccentricity (buried 1.5 feet below grade) Fp I P e2 -1— Rotation about long side W foot L • B • H •'iconcrete W foot = 4.125. kip Weight of Footing M foot P • e 1 + F p• e 2 M foot = 13.597•kip•ft Moment on Footing P foot P + W foot P foot = 11.75. kip Total Vertical Load M foot e := e = 1.286 ft 0.9P foot L — = 0.917 ft to keep qmin > 0, ec must be < L/6 6 q _ i L > e P footr l + 6_el 4 ' P foot 1 q = 107•ksf Maximum Soil Pressure max 6 B•L I` L J 3•B•(L — 2•e)J max . P foo qmin t 6 e, B L t 'I 1 — LeJ,0k gmin = 0 ksf Minimum Soil Pressure gall := 2000psf ` Allowable Bearing Pressure Check := if(gmax < gall, "Okay" , "Not Okay" Okay Calculations by: Katrina Pearson and Sterling Rose Page 7 of 12 Checked by: Rich Forrest Global Stability Check Moments taken:,about,th"e toe . Mdrive F p e 2 Mdrive = 9.403• kip. ft . Moment trying to overturn • f L L _` • M.resist Wfoot•— + P ( e11l M resist 28.1'19' .kip' ft Moment resisting overturning resist _:. M resist . FS := FS = 2.99 Factor of safety for overturning • M drive Sliding-neglect soil contributions Coefficient of friction between the soil and concrete • µ: = 0.3 • Fdrive F = 1.745 kip F resist := µ• P foot F resist FS := FS =, 2.02. Factor of safety for sliding F drive • • • • • • Calculations by Katrina Pearson and Sterling Rose • Page 8 of 12 Checked by Rich Forrest Entry Pedestal L := 5ft + 8in Length of Footing B := 5ft + 8in Width of Footing H := 1 ft Depth of Footing ' concrete 150pcf Unit Weight of Concrete t wall := 81n Thickness of the wall h := 7.5ft Height of wall above grade A • = h•(3ft + 4in) = 25 ft Area of entry pedestal P := [2.h.(3ft + 8in)•t + [6in.(4ft + 8in) = 7.133 kip Dead Load Wall Above the Footing wall concrete = (two walls plus top) e := 2%•B = 0.113 ft Horizontal Eccentricity of Load (assume accidental eccentricty of 2% footing width) f•A = 0.79•kip Wind load f = 1.425•kip Seismic Load F := max(f•A = 1.425•kip Lateral Load e := 2 + 0.05•h + 1 ft = 5.125 ft Vertical Eccentricity (buried 1 foot below grade) Pp 1 P e2 i -1— Rotation about narrow side S Wfoot L B • H • ^ yconcrete W foot = 4.817•kip Weight of Footing M foot P ' e l + P p' e 2 M foot = 8.11•ktp•ft Moment on Footing Pfoot P + W foot foot = 11.95• kip Total Vertical Load M foot e := e = 0.754 ft 0.9P foot B = 0.944 ft to keep qmin > 0, ec must be < B/6 6 B P foot( 6•e 4 • P foot 1 qmax •= if- ? e, I I + — I, J g max = 0.669•ksf Maximum Soil Pressure 6 B•L ` B JJ 3.L.(B — 2•e) B gram '�[6 > e, 13 Lt•I 1 — B cl = 0.075•ksf Minimum Soil Pressure gall := 2000psf \ Allowable Bearing Pressure Check := if(gmax < gall , "Okay" , "Not Okay" Okay Calculations by: Katrina Pearson and Sterling Rose Page 9 of 12 Checked by: Rich Forrest Global Stability Check Moments taken about the toe M drive P p' e 2 M drive = 7.301 •kip•ft Moment trying to overturn M resist [wfOOt' B + P '(B e l)] M resist = 33.05•kip'ft Moment resisting overturning FS := Mresist FS = 4.527 Factor of safety for overturning M drive Sliding - neglect soil contributions r • Coefficient of friction between the soil and concrete µ:= 0.3, F drive F = 1.425 • kip F resist := 1'' foot F resist FS := FS = 2.516 Factor of safety for sliding F drive Calculations by: Katrina Pearson and Sterling Rose Page 10 of 12 Checked by: Rich Forrest Check moment capacity of concrete—Gate Pier cbM = 1131A s .f y • (cl – I)] - • 2 • := 0.9 Reduction factor for flexurally controlled merribers. ; Length of shortest pier so least steel is present Lb := 4.5ft 111 IA := 0.31 —b = 1.395•in 2 ; Area of steel As • ft j (assumes #5012) f := 60kst Yield strength of reinforcing Depth to centroid of reinforcing • := 5 irt • ri • .= 3000psi Compressive strength of concrete c A s' f y a := = 0.608•in Depth of compression block 0.85.f • b cl3M := (b.A – 1 2 )1 = 29.48-kip-ft ax M m := 13.597kip'ft See above • M := 1.6•M = 21.755-kip-ft Factored load Check := if(M cl3M , "Okay" , "Not Okay") Okay • Calculations by: Katrina Pearson and Sterling Rose Page 11 of 12 Checked by: Rich Forrest Check moment capacity of concrete - -Entry Pedestal n = 4.1A — 2)] := 0.9 Reduction factor for flexurally controlled members Length of shortest pier so least steel is present b := 3ft + 4in A := 0.6in Area of steel (assumes 3- #4bars) E. 60ksi Yield strength of reinforcing Depth to centroid of reinforcing d := 3in f := 3000psi Compressive strength of concrete A f a := y = 0.353 • in Depth of compression block 0.85.f•b 4?M := (13•CA — a I` = 7.624• kip. ft 2 JJ Mmax : 3.505kip• ft For wind -see above M := 1.6•Mmax= 5.608•kip•ft Factored load- -wind 8.11 kip- ft M :_ • 1.4 = 5.677•kip•ft Factored seismic divided by the two walls 2 M := max(M = 5.677•kip•ft Check := if(M S M "Okay" , "Not Okay" ) Okay • Calculations by: Katrina Pearson and Sterling Rose Page 12 of 12 Checked by: Rich Forrest Appendix A USGS Seismic Vaules Page 1 of 1 • Conterminous 48 States 2006 International Building Code Latitude = 45.40398 Longitude = = 122.764555 Spectral Response Accelerations Ss and 51 Ss and S1 = Mapped Spectral Acceleration Values Site Class B Fa = 1.0 ,Fv = 1.0 Data are based on a 0.05 deg grid spacing Period Sa (sec) (g) 0.2 0.928 (Ss, Site Class B) 1.0 0.335 (51, Site Class B) Conterminous 48 States 2006 International Building Code Latitude = 45.40398 Longitude = - 122.764555 Spectral Response Accelerations SMs and SM1 SMs = Fa x Ss and SM1 = Fv x 51 Site Class D - Fa = 1.129 ,Fv = 1.73 Period .Sa (sec) (g) 0.2 1.048 (SMs, Site Class D) 1.0 0.579 (SM1, Site Class D) Conterminous 48 States 2006 International Building Code Latitude = 45.40398 Longitude = - 122.764555 Design Spectral Response Accelerations SDs and SD1 SDs = 2/3 x SMs and SD1 = 2/3 x SM1 Site Class D- Fa = 1.129 ,Fv = 1.73 • Period Sa (sec) (g) 0.2 0.699 (SDs, Site Class D) 1.0 0.386 (SD1, Site Class D)