Loading...
Specifications (3) 2/t • :.. dal ' AutoZone . Store, #3756 9 •' . _ ' • 1 3405 S W Pac fs:c Hw y . Tigard - . °:972.23.•• - i . . 9._ ® Jul. 6 2O Jot: N o. 1 . - g u 4 gip' G y °- • , . • • • • I �'. Structural Calculation • I r 11; ry ; I r, • • - •. OF FIL C0FY . ' - -, a. - ace X Thom W Wallac ' E r ;Wallace En ineerin Structural Inc 9 9' w Enineen „ - St uc i 31 •C "n,u tan I> . I : Is t ah ns 7 1�3 l ; t3� SSSE Fug r } }d 5;43�$� • - • - , j c- AutoZone Store #3756 13405 SW Pacific Hwy Tigard, OR 97223 3 6 700 Job No. 1010472 Structural Calculations OFFICE. COPY 1 wallace r 1 % Thomas W. Wallace, P.E. Wallace Engineering Structural Consultants, Inc. Wallace Engineering St-uconal (snsu!;ar;r;, Inc [00 East EI Al Street clsr,. Ozlahma 7 918.584 5858, F 3X 918.584.'368 ::.a,eIl:,caasccom I 11 Auto Zone Store #3756 Design Criteria 1 ii 13405 SW Pacific Hwy Tigard, OR 97223 I . Roof Framing 2 Job No. 1010472 I Lateral Analysis 3 1 I CMU Walls 4 II Structural Calculations 1 Columns 5 1 I Foundations 6 1 1.14-1- 1 iFtt1C Tu P R e () _ I NE % 1 4, .., ct- 15124PE 1 • --5 OREGON 4, 1 -4 -> 23 °\ '? Ism, ' D ,0\ wailace -Quo\ I Expiration Date 06-30-2012 :;411P Thomas W. Wallace, P.E. 1,ins I Wallace Engineering Structural Consultants, Inc. Wallace Engineering t f.orui:tar, li. 200 E dl [3r:A Siieet ILIS::, U1/4i3[10`i 71173 018 5,S,: 5:n•38, FYI 9 i8 1 1 1 ►lice .,: ` itbs� ..,„ 4 : 1 CODE CHECK 1 DATE: 6/11/10 TO City of Tigard, OR 1 I PHONE: 503- 718 -2436 FAX: ATTN. Dan Nelson EMAIL: PROJECT: # 1010472 AutoZone #3756 -- Tigard, Oregon I BY PHONE X VISIT OTHER TIME 1 ITEM DESCRIPTION RESPONSE 1 GOVERNING CODE I A. Building Code: Local Amendments: Zoo Oregon Structural Specialty Code B. based on 1-col IBC 2 ROOF LIVE LOAD I A, Minimum Roof Live Load: 20 psf 3 SNOW LOA.D I A . Ground Snow Load, Pg: 25 psf B. Can ground snow load be reduced per code: No 4. WIND LOAD I A. Design Wind Speed: 100 mph B. Minimum Wind Load: per code 5 SEISMIC LOAD I A. Mapped Spectral Response Acceleration, Ss: 1.058 (short period, 0.2s) B. Mapped Spectral Response Acceleration, Si: 0.371 (long period, 1.0s) 6. FROST DEPTH 1 A. Minimum Bearing Depth: 18 in. 7 SPECIAL REQUREIMENTS I A. B. Vapor barrier required by local ordinance? Slab on grade reinforcing required by local ordinance? REMARKS: 1 Please notify the undersigned if the above information is incorrect or incomplete. 1 } FROM: Travis Koehring Wallace Engineering CO: File Structural Consultants, Inc. 200 Fast Brady Street I rulsa, Oklahoma /4103 918 584 5858, 'Par. 918 584 8689 vww.wallacesc.com Date: 06/11/10 Sheet No. of Job: Subject: DESIGN LOAD ENVELOPE SUMMARY .' Reference the Dead Load Summary Sheet in this section for the Roof Loads 1 WIND LOAD o (O- 5TaLt.CTtA AAN., SQEc t'xt.'t'1 Wo ... Basic Wind Speed 100 mph V I (3 sec. gust) Importance Factor 1.0 Exposure Classification C I Design Wind Pressure on Primary Structure h= 17.25' Windward 12.9 psf 1' Leeward 8.1 psf Total 21.0 psf I Design Wind Pressure on Primary Parapets h= 21.00' Windward 29.6 psf Leeward 19.8 psf I Total 49.4 psf Design MWFRS (Net ") Roof Uplift -11.9 psf (for 0 to h) -5.5 psf (for h to 2h) I Design Sidewall Suction 14.8 psf Design Wind Pressure on Exterior Walls h= 17.25' Atrib= 350.Osgft Atrib= 10.0sgft I End Zone psf -27.3 psf Interior Zone -17.6 psf -22.2 psf I Design Wind Pressure on Front Parapets h= 21.00' Atrib=62.Osgft Atrib= 10.0sgft End Zone 39.9 psf 53.3 psf Interior Zone 39.9 psf 53.3 psf I Design Wind Pressure on Back Parapets h= 21.00' Atrib= 176.0sgft End Zone 36.0 psf I Interior Zone 36.0 psf 'Note' Net uplift pressures use a sustained dead lo[ 6 psf except on deck screws. Roof Member J1 J2 Deck Screws I ZONE 424 sqft 71 sqft . - 1.0 Corner -18.4 psf -20.3 psf -37.6 psf Edge -18.4 psf -20.3 psf -37.6 psf Interior -14.6 psf -14.8 psf _ -22.5 psf 1 SEISMIC (ASD1 QSC-• . ' S 105.8% V I Sg, 37.1% SOS 0.760 S 0.410 1 Seismic Design Category D LFRS for base shear 0.106 Wp LFRS for flexible diaphragm 0.106 Wp I Walls - Ext. Loadbearing 0.213 Wp / Parapets 0.638 Wp ' Wall Anchorage 0.425 Wp r/ Multiply by 1.4 for steel elements 0.595 Wp I Minimum Wall Anchorage 213 plf I WALLACE DESIGN PROGRAM REVISED 09/22/06 Copyright Date 6/11/2010 Sheet No of 1 Job Subject 05 ASCE • WIND LOADS f '' iN a�r � * ° . : �,« - rkA'.�:'�l�'��x,.. .,z��Tt., .< r- .z`a�n,.� - v d, u.� -.-�a '�s �...r a tcva.....pw tv4,,,. Basic Wind Speed V = AiOp mph ( se-IOn65 4 . 79 6 6 ✓ Exposure Category (B. C, or D) = C (semen 6.513) Building Category (1, 11, III. or IV) = 0 (sector. 6.11. Tad, 1 - l z x (upwind) _ - x 1, Maximum ridge height h above ground level t7 reel Mean Roof Height, H above ground level - - ' • H!2 Parapet Height above ground level, Hp = ' `> yi',4 ✓ V(z) Building Width Perpendicular to Wind. B = 94.66 feet �/ - - H Building Width Parallel to Wind. L = 72.00 feet LEI H/2 y... , Enclosed, Open, or Partially Enclosed Building = E E. O. or P (sector. 6.5.91 ... Gabled. Multispan. Mono5loPetl. or Sawtoolh Roof = GIG, MG. M5. or 51 _.... _...._ ... ........... ...... Angle of Plane of Roof From Horizontal, 0 = 1.8 0eyrees Tributary Area for Wall Components 1- ` / 350 square Bet Do not al le 2 -D Ridge or 3 -D Axlsymrnetrical Hill (Figure 6 -2) x1 Tributary Area for Wall Components, 2 = ,,. ;: j 10,,peara leet shaded val Tributary Area for Well Components. 3 = 10 aye reel Tributary Area for Parapet Components 1 - BZ'. se Tributary Area for Parapet Components, 2 = F ;176 wears rest Tributary Area for Parapet Components, 3 = 'r spare reel k ' -.ti Tributary Area for Roof Components, 1 = �°�'=.l,g,,r�.�;423'ware feel Tributary Area for Roof Components, 2 = .. 7�� 0000'e teal I tx «..s „s o 1O Tributary Area for Roof Components, 3 = �„`- , soar. fa.I Tributary Area for Overhangs or Canopies, 1 = 10 square feet Tributary Area for Overhangs or Canopies, 2 = 50 spare loot Is building sited on or near a hill, ridge, or escarpment? N (r or N) Height of Hill or Escarpment relative to upwind terrain. 11 = 1.00 feet (Sect. 6.1.7. Fig 6 4) 7loriz. Dist. Upwind to Point Where Elevation = H(2. Lh = 1.00 rest ($0, 6.5.7. F9 6 8070 Dist. from Crest to Building Site, X = 1.00 feet (Sect. 6.51. F9 6 - 4) Haigh) Above Local Ground Level, Z = 2.00 19ei (Sen. 657 Fg 6 41 20 Ridge. 2D Escarpment. or Axisymmelrlcal Hill = E (a. 0, 0 lNINO LOADS T vs .,; 5 ..,. 2:. *�r �r. ':.:�., , > s..�, A r 3.tU s .l , +` 2 .° "' ?rez .a S," "s I a.,' .2 . ' -5e. _ n .,. a. ..� _..ae.... -�SSa. �, �,-. u . s_ �,e .. �,� ,�� � irk % ` , .'.e ,� Main Wind Force Resisting System Method 2, Figure 6-6 Bldg Parapet Velocity Pressure Exposure Coefficient, K2 MWFRS = 0.87 0.91 Toole 6 Velocity Pressure Exposure Coefficient. Kz Components = 0.87 0.91 Table 6 -3 Wind Directionality Factor, Kd = 0.85 0.85 Table 6 -4 Topographic Factor, 501= (1 a K7 K2 63)'2 = 1.00 1.00 Fig 6 -4 Windward Leeward Importance Factor, 1 = 1.00 1.00 Table 6 -1 07 000070 passers Velocity Pressure, gmain = .00256 Kz Kzl Kd V "2 = 18.99 19.76 001150 6 - 70/ Velocity Pressure, gcompononl = .00256 Kz Kzl Kd V'2 I = 18.99 19.76 est fat 6-10) Coefficient, G = 0.85 0.85 Sect. 6.5 0 Roof si'i Kz qh (GCp - Gcpi) = P Et, 0-17 Walls Fig. 6 -6 Fig. 6 -5 Wan IL; - Windward 15 0.85 18.50 0 .68 12.6 est J W indwar0 pressure at h= 17.25 h. 18.99 0.88 12.9 00 ' '/ w . / 1 -r Leeward Pressure (L /8) 18.99 -0.43 Leeward Pressure (B /L) 18.99 -0.37 -7.1 psi Si0ewell Pressure 18.99 -0.60 0.18 -14.7 0 s_ Refer to Figure 6 -6 Internal pressure 18.99 0.18 3.42 psi i Parapets GCpn 6.5.12 2 4 c P . 10 Windward 19.76 qp 1.5 28.6 psEqi 6. Leeward 19.76 .1 -19.8 psf For 10L= 0.241 qh 1 GCp - Gcpi) = P 00.6 -17 i Roof Normal to Ridge for slopes greater than 10 degree5 Windward Pressure 18.99 -0,60 0,18 -14.7 psf 18.99 -0.15 0.18 -8.3 pal Leeward Pressure 18.99 -0.26 0.18 -8.3 psf Roof Normal to Ridge for slopes less than 10 degrees and parallel to ridge for all slopes I For 0 t N2 18.99 -0]7 0.18 - 17.9 N2 to h 18 -99 -0.77 0.18 -17.9 psi h to 2h 18,99 -0.43 -0.18 -11.5 osr 4 2h 18.99 -0.26 -0 -18 -8.3 psi i For o 182: Roof f N Normal to Ridge for slopes greaser than 10 degrees Windward Pressure 18.99 -0.60 0.18 -14.7 051 18.99 -0.15 0.18 -6.3 psf Leeward Pressure 18.99 -0.26 0.18 -8.3 pst I Roof Normal f0 Ridge for slopes less than 10 degrees and parallel to ridge for all slopes For 0 to 512 18.99 -0.77 0.10 -17.9 ps■ h2 to h 18.99 -0.77 0.16 -17.9 pm h l0 2h 18 -99 .0 43 -0.18 -11.5 osr >28 18.99 -026 -0.18 -8.3 pst i At Root Overhangs add to tool 07(14 18.99 0.68 12.9 osr Snows 66tt4 I WALLACE DESIGN PROGRAM REV15EO 09/12/06 • Copynghl0 Date 6/11(2010 Sheet No. of 1 Job _ - - -_- -. Subject 05 ASCE - WIND LOADS Components qh 1 GCp • Gcpi J = P co. s"2z Fig, 6 -11 Fig. 6-5 WALLS Zone 4 Interior Zone 18.99 -0.74 0.18 -17,6 par " - 3 (Trio. Area = Zone 5 End Zone 18.99 -0.77 0.18 -18.0 oo/ 350sq.tt.) Zone 485 1899 0,72 -0.18 17.1 ps ?�- WALLS Zone 4 Interior Zone 18.99 0799 0 "18 -22.2 psi 2 _ z (Trio, Area = Zone 5 En::: 18.99 0,26 0.18 -27.3 psl 10sq,f .) Zone 485 18.99 0 "90 -0.18 20 "5 psi \ WALLS Zane 4 ne 18.99 -0.99 0.18 -22,2 pal /� ••••-•-•,,,,- (Trio. Area = Zone 5 End Zane 18.99 -126 0.16 -27.3 pal 10sq.ft.) Zone 485 18.99 0.90 -0.18 20.5 psi FIGURE 6 -11 qp (GCp - GCp/ =P Seann6.512c. ' PARAPETS 1 (Trib Area =62 Wt.) Fig. 6 -119 Fig. 6 Case A Zone 4 Interior Zone 19.76 0.77 -125 39.9 pal Zone 5 End Zone 19.76 0.77 -1,25 39.9 pal Fig. 6 -1 /A Fig. 6.11A Case B Zone 4 Interior Zone 19.76 0.77 -086 32.4 pal Zone 5 End Zone 19.76 0.77 -1.01 35.2 psi I PARAPETS 2 (Trib Area =176 sq.5.) Fig, 6 -116 Fig. 6 -110 Case A Zone 4 Interior Zone 19.76 0.72 -1 "10 36.0 psi Zone 5 End Zone 19.76 0.72 -1.10 36.0 pat Fig 6 - 11A *9 6 Case B Zone 4 Interior Zone 19.76 072 -0.79 29.9 pal I Zone 5 End Zone 1976 0.72 -0.86 31.3 pat PARAPETS 3 (Trib Area =lO sq.0) Fig 6.11A Fg, 6 - 116 Case A Zone 4 In1enor Zone 19.76 0.90 -1.80 53.3 pal Zone 5 End Zone 19.76 0.90 -1.60 53.3 pal 1 Fig. 6 -11A Fig. 6 - 112 Case 5 Zone 4 Interior Zone 19.76 090 -0.99 37.3 psl Zone 5 End Zone 19.76 090 -1.26 42.7 psi ROOFS Zone 1 Interior Zone 18,99 -0.90 0.18 -20.5 pat (Trib. Area = Zone 2 End Zone 18.99 -1.10 0.18 -24,3 pat • ' 423sq,8) Zone 3 Corner Zone 18.99 -1.10 0,18 -24,3 pat Zane 1,2,3 1899 0.20 -0.18 10.0 pal ROOFS, Zone 1 Interor Zone 18 "99 -091 0.18 -20.8 pal (Trib. Area = Zone 2 End Zone 18.99 -7.20 0.18 -26.3 pat 71sq.lt.) Zone 3 Corner Zone 18.99 2 120 0.18 -26.3 psi 1 Zone 1,2,3 1899 021 -0.18 10.5 psi ROOFS, Zone 1 Interior Zone 1899 -1.00 0.18 -22.4 pat (Trib. Area = Zone 2 End Zone 18.99 -180 0.18 -378 pal 1004.5.) Zone 3 Corner Zone 18.99 -1.80 0.18 -37.6 psi Zone 1,2,3 1899 0.30 -0.18 100 psl I OVERHANGS Zone 1 Interior Zone 18.99 -170 -32.3 pal (Trib. Area = Zone 2 End Zone 18.99 -1.70 -323 60 70sq.ft.) Zone 3 Comer Zone 1899 -280 -53.2 pa/ OVERHANGS Zone 1 Interior Zone 18.99 -1.63 -30.9 0 I (Trib. Area = Zone 2 End Zane 18.99 • -1.63 -30.9 psi SOsq.l1.) Zone 3 Corner Zone 1899 -1.40 -26.6 pot Width of End Zone. a Min. of 10% L and .4H but not < 4% L or 3' = 6.9 tent IFn9 6"111 1 Notes: 1, The gust too. of 085 rs based on a budding with a natural bequancy of > 1 Hz. For other buildings, the gust factor must be calculated. 2. If a palap1 equal to 3 ft or higher is provided ameound the perimeter of a root with a slope of s 7 °, Ne roof corner zones may be treated as end zones. IFg• 6 -118. 550lnole 5) 1 1 II 1 1 1 Conterminous 48 States 2006 International Building Code Zip Code = 97223 I Spectral Response Accelerations Ss and S1 Ss and S1 = Mapped Spectral Acceleration Values 1 Data are based on a 0.05000000074505806 deg grid spacing Period Centroid Sa 1 (sec) (g) 0.2 0.944 (Ss) 1 1.0 0.340 (S1) Period Maximum Sa 1 (sec) (g) c� ► b S.asa 0.2 0.971 (Ss) lA S(1' D -61 t 1.0 0.347 (S1) Period Minimum Sa 1 (sec) (g) 0.2 0.907 (Ss) 1.0 0.334 (S1) Conterminous 48 States 2006 International Building Code Latitude = 45.422925 1 Longitude = - 122.78319 Spectral Response Accelerations Ss and S1 Ss and S1 = Mapped Spectral Acceleration Values Site Class B - Fa = 1.0 ,Fv = 1.0 Data are based on a 0.05000000074505806 deg grid spacing Period Sa (sec) (g) 0.2 0.931 (Ss, Site Class B) b . c11-4 1.0 0.336 (51, Site Class B) o . 9)94 lu SOtif ��- 1 1 . 1 2006 IBC (Ch: 16) and ASCE 7 -05 (Ch: 11 to 14) Seismic Summary Loads (Spreadsheet Assumes that the building is one story or low rise with a short period.) Revised 04 /30/2007 I 1. User Input Values: (Single underlined values) Is your structure regular with a period<.5 s1 Yes (Yes or No, Re:Sections ASCE7 12.8.1.3) Is structure short period with a rigid diaphragm or with a flexible diaphragm with vertical elements of Seismic Force Resisting System spaced at 40 feet on center max.? No (Yes or No, Re:IBC Sections 1613.5.6.1 and ASCE 7 -05 11.6) I Mapped Spectral Response Acceleration for Short Periods, Ss= 1.058 (Figure 1613.5(1) or CD - Rom) Mapped Spectral Response Acceleration for 1- second Periods, 61= 0.371 (Figure 1613.5(2) or CD - Rom) Assumed Site Class (A,B,C,D,E,F)= D (Table 1613.5.2 & Sec. 1613.5.2) Building Category = II (IBC: Table 1604.5 & ASCE: Table 1 - 1) I Site Coefficient, Fa= 1.08 (Table 1613.5.3(1)) Site Coefficient, Fv= 1.66 (Table 1613.5.3(2)) Seismic Importance Factor, le= 1.00 (Table 1604.5) Site Adjusted Spectral Response Acceleration for Short Periods, Sms= 1.139 (Section 1613.5.3, 11.4.1, I Site Adjusted Spectral Response Acceleration for 1- second Periods, Sm1= 0.615 and 12.8.1.3) Design Spectral Response Acceleration for Short Periods, Sds= 0.760 (Section 1613.5.4 and 11.4.4) Design Spectral Response Acceleration for 1- second Periods, Sd1= 0.410 I Seismic Design Category based on short period= D (Use worst case except for Seismic Design Category based on 1- second period= D Section 1613.5.6.1) Seismic Design Category= D - (Section 11.4.1 and 11.6) 1 Basic Structural System Bearing Wall System (Table 12.2.1) Lateral Force Resisting System Special Reinforced Masonry Shear Walls (Table 12.2 - 1) R= 5 ../ (Table 12.2 - 1) S2o= 2 (Re: Footnote g for .5 reduction for Flexible Dia. (Table 12.2 - 1) I Cd= 3.5 (Table 12.2 - 1) px ,redundancy in x -dir.= 1.00 ( Redundancy is either 1.0 or 1.3) (Section 12.3.4) py ,redundancy in y -dir.= 1.00 ( Redundancy is either 1.0 or 1.3) (Section 12.3.4) p, =1.0 for Seismic Design Category B and C, re: 12.3.4.1 for additional exceptions. I 2. Design Loads for the Building Lateral Force Resisting System: If Seismic Performance Category A, Need comply with Section 11.7 only. i a. Find the Design Base Shear for the Lateral Force Resisting System: (Section 12.8) I V= (Sds /(R / I)) W= For the X-direction: E horizontal= 0.152W multiply by 0.7 for Allowable Stress Design= 0.106W 0.152W multiply by 0.7 for Allowable Stress Design= 0.106W For the Y- direction: E horizontal= 0.152W multiply by 0.7 for Allowable Stress Design= 0.106W b. Find the Design Seismic Shear for the Diaphragm: I (Section 12.10.1.1) Max of 0.2'1e'Sds and section a 0.152W multiply by 0.7 for Allowable Stress Design= 0.106W but need not exceed 0.4'le'Sds 0.304W multiply by 0.7 for Allowable Stress Design= 0.213W For Seismic Design Categories C through F: The collector elements (drag struts) for the diaphragm shall be designed for the strength design values, Em= 00 x Eh per Section 12.10.2.1 and 12.4.3.2. If the collector is designed using ASD methods, the strength of the member can be determined by using an allowable stress Increase of 1.2 (Section 12.4.3.3.) i Em= 0.304W for Allowable Stress Design= 0.177W c. Find the Vertical Earthquake Load Component: (Section 12.4.2.2) I E vertical = 0.2SdsD= 0.152D multiply by 0.7 for Allowable Stress Design= 0.106D For design of foundations using ASD and where Sds <0.125, vertical force may be taken as zero. (Section 12.4.2.2) 1 i . I 1 1 1 3. Design Loads for the elements of the structure, nonstructural components, and equipment supported by the structure: (Chapter 13 and Section 12.10) ii Max. Load =1.6 Sds Ip Wp= 1.215Wp (Equation 13.3 - 2) for Ip =1.5 = 1.823Wp Min. Load =0.3 Sds Ip Wp= 0.228Wp (Equation 13.3 - 3) for Ip =1.5 = 0.342Wp a. Check the Out -of -Plane Seismic Load on Bearing or Shear Walls: I (Section 12.11) Fp= 0.40 le Sds wp or .10 wp min .= 0.304Wp multiply by 0.7 for Allowable Stress Design= 0.213Wp b. Check the Seismic Load on Exterior Non - Structural Walls: ap= 1.00 (Table 13.5 -1) I Rp= 2.50 (Table 13.5 -1) hx1= 0.00 ft. Height at floor attachm Fp= 0.228Wp at floor hx= 16.83 ft. Height of roof attachml Fp= 0.365Wp at root hr= 16.83 ft. Height of me root Fp (average of roof and floor). 0.296Wp multiply by 0.7 for Allowable Stress Design= 0.207Wp 1 c. Check the Seismic Load on the Parapets: ap= 2.50 (Table 13.5 -1) Rp= 2.50 (Table 13.5 -1) Assume parapet is attached at roof, therefore hx/hr =1. Fp= 0.911 Wp multiply by 0.7 for Allowable Stress Design= 0.638Wp' 1 d. Check the Seismic Load on the Interior Partitions (non- masonry) supported at the roof: ap= 1.00 (Table 13.5 -1) Rp= 2.50 (Table 13.5 -1) Assume wall is attached at roof, Therefore hx/hr =1. Fp= 0.365Wp multiply by 0.7 for Allowable Stress Design= 0.255Wp e. In Seismic Design Categories C, D, E, and F; check the Seismic Load for anchorage of masonry walls to a flexible diaphragm: (Section 12.11.2.1 and 12.11.2.2.2) Use section "a" if Seismic Performance Category B Fp= 0.8 Sds le wp or .10 wp min. = 0.608Wp multiply by 0.7 for Allowable Stress Design. 0.425Wp '1.4 = 0.851 Wp multiply by 0.7 for Allowable Stress Design= 0.595Wp * ' Note: In Seismic Design Categories C -F, the strength design forces for steel elements, excluding reinforcing steel and anchor bolts, of the wall anchorage system shall be 1.4 times the force otherwise required by section 1620.3.1. i But the minimum wall anchorage load for concrete or masonry walls is: (Section 12.11.2) Fp= 304 pit multiply by 0.7 for Allowable Stress Design= 213 p11 f. Continuous Load Path and Interconnection: I (Section 12.1.3) Fp= 0.133 Sds wp or .05 wp min .= 0.101 Wp multiply by 0.7 for Allowable Stress Design= 0.071 Wp g. Connection to Supports: (Section 12.1.4) Fp= .05 ' dead + live reaction = 0.050 Rd +1 multiply by 0.7 for Allowable Stress Design= 0.035 Rd +I I h. Check the Seismic Load of masonry walls to a rigid diaphragm: (Section 13.4.2) For the Body of the Wall Panel Connection: ap= 1.00 (Table 13.5.1) Rp= 2.50 (Table 13.5.1) 1 Assume wall is attached at roof, therefore hx/hr =1. Fp= 0.365Wp multiply by 0.7 for Allowable Stress Design= 0.255Wp For the fasteners of the connecting system: ap= 1.25 (Table 13.5 -1) 1 F p= 1.00 (Table 13.5 -1) Assume wall is attached at roof, therefore hx/hr =1. Fp= 1.139Wp multiply by 0.7 for Allowable Stress Design= 0.797Wp However, for anchors in Concrete or Masonry per section 13.4.2: 1 ap= 1.00 (Table 13.5 -1) Rp= 1.50 (Section 13.4.2) Assume wall is attached at roof, therefore hx/hr =1. • Fp= 0.608Wp multiply by 0.7 for Allowable Stress Design= 0.425Wp "1.3= 0.790Wp '1.3= 0.553Wp I Note: Per ASCE 7 -02 (13.4.2), Anchors embedded in concrete or masonry shall be proportioned to carry 1.3 times the force in the connected part due to prescribed forces. But the minimum wall anchorage load for concrete or masonry walls is: (Section 12.11.2) j Fp= 304 multiply by 0.7 for Allowable Stress Design= 213 pit [� 1 1 1 1 1 1 2006 IBC Seismic Tables Site Coefficient, Fa Table 11.4 -1 and 1613.5.3(1) Site Mapped Spectral Response Acceleration at Short Periods (S) Class Ss< =0.25 0.5 0.75 1 Ss> =1.25 I A 0.80 0.80 0.80 0.80 0.80 B 1.00 1.00 1.00 1.00 1.00 C 1.20 1.20 1.10 1.00 1.00 D 1.60 1.40 1.20 1.10 1.00 E 2.50 1.70 1.20 0.90 0.90 F --- --- -- - -- --- 1 Site Coefficient, Fv Table 11.4 -2 and 1613.5.3(2) 1 Site Mapped Spectral Response Acceleration at 1 Second Period (Si) Class S1< =0.1 0.2 0.3 0.4 S1> =0.5 A 0.80 0.80 0.80 0.80 0.80 B 1.00 1.00 1.00 1.00 1.00 C 1.70 1.60 1.50 1.40 1.30 I D 2.40 2.00 1.80 1.60 150 E 3.50 3.20 2.80 2.40 2.40 F I Seismic Design Category based on Short Period Response Acceleration (Table 1613.5.6 1) and 11.6 -1) Value of Occupancy Category Sds I or II III IV Sds< =0.167 A A A I 0.167< = Sds <0.3 8 8 C 0.33< =Sds<0.5 C C D 0.5< =Sds D D D S1> =0.75 E E F I Seismic Design Category Based on 1- Second Period Response Acceleration (Table 1613.5.6 2) and 11.6 -2) Value of Occupancy Category Sd1 I or II III IV Sds< =0.067 A A A I 0.067<= Sds<0.1 6 8 C 0.133<= Sds<0.2 C C D 0.2,- D D S1> =0.75 E E F 1 1 1 1 1 1 1 1 1 1 STRUCTURAL DESIGN 1 1T p p� I � OREGON 124° 12 • 122° 121• 120° 119' 118° 117' 48' / MUL TNOMAH r - 7 r4 � .: : WALWWA I i r • ∎ } a i l } 3l. � ... 1 { ` ' :': .. ..':.:,_ 4 i • A ..' . .g xf. } . MORROW hYj , { f1 r: � -'.6'141.1111t. N� < UNION - f' 1 45• �' f ;a WASCO tTi - �. � �� 45• a ' ..}}V ss: { �afn8 JEFFERSON . ~ . r 1: I MI NI ,� rr`" �7 : � _" �� GRANT' ;� .tix • }: ;'r'G r v }� CROOK nit 44• II 1111 a?o✓ i ..c:4 -e> 76Q4 4. .ti ti. +v `v `� —■e r r$ 'p' .. :� t` y 1. 4 , :;;; '. 4 : : ,: : r 0 : ;. : X ; r j S �, �� {' MALHEUR 43 • :: C ' �r SYS� *,, <40)N r r .YV` rY "' J �Ci rr � : :6 tidy z. f � }}} : .ti N � f 1 & rit40, lrrf.y ' i <•• r < 11111 11111 i Y om.,. r • x • .f : 42' d �`• :'{" }}��v `�r� :i y iv ] i � ' } yy } }{n q ,:r r : :: 42' OKd 179rR1. { .. ti1VQ(yb • }: +� i . r n:. lc r: 1 124• 123' 1 22° 121' 120' 119' 118° 117 1 1. All areas with full exposure to ocean winds shall be designated 110 mph areas. 2. Areas in Multnomah and Hood River Counties with full exposure to Columbia River Gorge winds shall be designated 110 mph areas. 105 mph I ME 94.5 mph 1 184 mph 1 For SI: 1 mile per hour = 0.44 m/s FIGURE 1609 I BASIC WIND SPEED (3- SECOND GUST) IN MILES PER HOUR (x 1.61 for km /h) 1 403 1 2007 OREGON STRUCTURAL SPECIALTY CODE 1 STRUCTURAL DESIGN II �� ; !! r :,.\\I r i ti 41 k I �� i' '' ---,. . r _ 1 0 - 2a6. 5 , ; r r-- - f ; f' i 1 11111 1 3 1 4 0 '-'. ,-,.-.:- : ' : :- , •• ; " • '' . ' - - ' i -.:-..:. i Afi i n .. .„ . , . ,. I hi, . \lb i rr � q1U 1 I FIGURE 1613.5(1) MAXIMUM CONSIDERED EARTHQUAKE GROUND MOTION FOR OREGON STATE OF 0.2 SEC SPECTRAL RESPONSE ACCELERATION (5 PERCENT OF CRITICAL DAMPING), SITE CLASS B 1 (Alternatively, these values may also be obtained from the USGS maps posted on their website at: http: / /eghazmaps.usgs.gov/) 1)\ 0 oM 1 livx, W.F., if s. �i-221� a 2 (1 2a 22 l! - Zcn3 Inc 1 - I'L2 . �3 � 2 0�- 4 2oae I tac, N 2 (r3c ski 0 , g 31 I,e) , ` . o. v 0.927 I 1 .-- S 1 408 OREGON STRUCTURAL SPECIALTY CODE 1 STRUCTURAL DESIGN I i ..' J' � E l 1 E i ;t.__ s r _ . �_ i iT if ✓ .,—,..—t .. 1 ..,.- ,s- .._. �, � -..� rr 4- 1 s. 1 .. ....: - .-.. .�_1 r.•a -e i ,-- � .. e_, t saenzce - - : � • - l _. •- .. - • ..-e:... - �._. _ -.. - . • 1 i f � �a \, y /nl � � `; �a ;� 7\ O 1 1 FIGURE 1613.5(2) I MAXIMUM CONSIDERED EARTHQUAKE GROUND MOTION FOR OREGON STATE OF 1.0 SEC SPECTRAL RESPONSE ACCELERATION (5 PERCENT OF CRITICAL DAMPING), SITE CLASS B (Alternatively, these values may also be obtained from the USGS maps posted on their website at: http: / /eghazmaps.usgs.gov/) 1 1 i 1 OREGON STRUCTURAL SPECIALTY CODE 409 M M I r= NM r w— — MI M M, N — — pm No ■■■.■■■■■■■■■■■■■■■■■■.....■■■■■■■■■■■■■■■■■■■■ ■ ■ ■ ■MUUU•NINIMgq■gNIM■1111M11NOmmummo 11■■ •11■ ■ ■ ■ ■ ■ ■ ■■•• ■1111■ ■M. ■•■ ■ ■..■■■ ■ ■■ ■■■1111■■■ ■■ ■1111■11NI M•■■■■MMMq M■■■■■NINIMMNI•■NI■q■■■ ■q■_. - t l- . ■M• ■NI■..■ ■■M■M■ .■••■• 11..I■■ ■■••■. ■••■■■•■ ■•■MMMME M■■ ■• •■■• ■••INIMMNI11• ■■■■■•Mq ,., i1 .1111 1111■ ■M■M■I■M■INI■q■ . ■ q■ •■•••NI ■ ■ ■ ■ ■■■■ ■minor _I _ - i 'r - -, - ■.M SNOW LOADS ■■M■•• ■. 1111 - -. _ 1111■■ ■u ■.■ ■■■■ ■ ■■■ ■ ■■..u■. ■u � � -r :_ ! _ _ ' _ INI C L A T S O P CO L U M B I A T I L L A M O O K, ■MNINIq�■ ■� �•u ■ ■ ■...q ■ ■ ■q ■ ■ ■ ■ ■•■ ■q ■ ■ ■ ■■ _ rt -' • BM ■ ■ ■•q ■ ■ ■NI NI %•••••••••• ■•••••••••• ■• ■••••• 17-11-1- ■ ■� WASHINGTON, YA M H I L L, LINCOLN, ■■■■■■■■■■■■■■■■••■ q ■ ■ ■ ■q' ■ ■ ■. ■q ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■�■ 1 - r? 15 0 M1 P 0 L K, B E N T O N, CURRY, COOS,' COUNTIES n1111••..•..■M11.uq•...•••• .•.■•• u.q■■ ■a au ■■ ■ ■ M ■• ■ ■11u ■• ■ ■• ■ ■q • ■ ■11 ■ ■I.i ■ ■ ■ ■ ■ ■ ■■ ■111111 Emil 4 _ ■■■ ■■1111■■■■■■ q■■■•■ ■■ ■ ■ ■ ■qq ■ ■ ■ ■ ■ ■ ■ ►.1q■■■■ ■■■■ ■■■■ MN= ■■■ ■.■M■■.■■■•■■■q•■■ ■■■■■q..... ■ ■ ■ ■ ■ ■ ■■ ■■■■■gyp 1 _1_ . ■ ■ ■■■ ■ ■ ■ ■ ■q■ Imo ■ ■ ■ ■ ■ ■ ■ ■ ■ ■•∎ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■11■■ 1 ` -LI -I '. - um Exception to this curve ••••••••••••• ■ ■NIq ■gL• ■■ ■ ■u•••••• ■■ 1 1 L i N a• Marys Peak - Elev. 3620' 2/6'#/Ft •••••B•••••• I■M ••••••••••%••••11111101••••••••• • 1 L _ ,_ - ,_ - ••• •••••••••••••••••••••••••••M•••••••••••••••••••• 1 .T � LL ■.••■■■■ MNI■ ■ M■M■• •■■■■M■■■■■ M■M ■•11MEM MI■■■ MUNI ■ ■ ■►■■■■■■ ■•• MU MMMAM• NINI■■■NI ■NI • T +; r ■■■■■■■■■■■■■■■■..■■■■....■ ■■M■■MM■CNIM�..u■■■■ ■■•u• ■u■■■• M ■ � + i- 125 ■■■■■■■■■■■■■■■■■■■■■■■■■■■ •■ ■••••••11■■ ■••1111 ■M■■ ■.11■qu■■11 ••N■ ■■u••••••MM■■ ■■ ■1111 ■1111■■■ EMU • mils i ■■■■■■■■■■■ q■ MNI■ NI■■ ■••M■■■■NINI• ■MNI11•■■■MU11NI■•NI■■■■11 1111■ ■■L ■■■q■■NI ■ ■NININI■■■■uNII11■■ ■ ■■ M■•11■■.■■■■■■■ ■■ ■NININI■NI■■ 1111■ ■ ■ ■NI■■■•■•u■■■NI■■NI•M•■■M■■■■ ■1111 ■ ■M ■ ■qq■I. %■ ■ ■■ ■gq■ mu ■■■■■■ ■■■■�q mi ■■■■ q•• M•■•■■ 11• M•• •■■•■•■■MNI•■■II•g■■■■•u...m.... • ...a... ■■■■■uUu..■■u..• ■■■■■ NINI■•■■■•• INI■■■■■■■ NIU■ NINI•■■■ M■• uM■•■ MNI■■o mmi ri•mq ■■■■■■ ■ ■ ■NIM■■M.gNI ■ ■ ■ ■ ■ ■■■■ qM • .■ q ■ ■•• ■ ■• ■ ■•• ■■NI• ■ ■■■■NI•■■■■mmEm ■ ■■■ ■ ■ ■■■■■r.mm ■ ■■ uminmE nImu ■■■ ■■■■■■ u • o .• M..•■■ q■■■■ NI . ■■■•■■ ■uMNININI■■■INI■■■■■■■■•■q.■ r •gm•NIM.■•■ ■M■ •■■■■11■••■•■■ ■u■ C5 .■■.■ ■ ■ ■ ■ ■ ■M• ■ ■ ■ ■• ■ ■•••••• ■■■M■NMEM■ MEM 1. 111■11i■• ■■■■■■■■■ ■ ■ ■ ■�q ■ •• ■ ■� ■ ■ ■ ■■■■ ■ ■ ■ ■ ■ ■ ■u = ■11gEM 100 ■■ ■■■■■■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■•u•••■u■M••••■■••■•• ■•/.21111111 ■qu ■ ■■ 1111 ■ ■q ■ ■ ■u ■ ■q ■u ■ ■ ■ ■ ■ ■ ■ ■ ■u ■u ■uu ■■ c .■•.•■■■•••■■■••■•■••• •• ■ ■• ■MM• ■M ■q• ■q■••••=a ■ ■•••••= ■ ■ ■q ■ ■q ■ ■ ■q ■ ■ ■ ■ ■ ■ ■ ■ ■u ■• ■ ■q■ qq o •■■■• •NI• ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■q ■1111 ■u q q ■ ■ ■ ■5•■ ■ ■ ■ ■ ■•■ ■ ■ ■ ■•■ ■■ ■11••11. •■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ •••• ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■•■ MI%•. NI■■ uqq u... ....••••• ■ ■••U.• ■ ■ ■ ■ ■.IM. ■ ■ ■M■■ ■. ■u•■ ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■••••••.•■■■ q■ M•■■■ q•■■■ ■ ■ ■ ■ ■ ■ ■ ■ ■I• ■ ■11• ■• ■ ■ ■ ■ ■•••••• ■ ■■ ••• ■M•• o MI■■.■■••■•••••••••••■••••■■••••••■■■■■•■%••••■..•■■■.■ M■ ■ ■ ■•••••••■ ■ ■ ■•u• ■q ■•. ■ ■ ■uNI ■•11.■ ■q•■•• ■■■■■■■ ■ ■■■■■■■■■ ■■■■ ■■ ■ ■•NI ■ ■ ■•••••••■ ■•.21.11• ■ ■ ■ ■ ■ ■u ■11■ .■.•■■■■ ■ ■ ■ ■M ■ ■•• ■. ■ ■ ■• ■••••••• ■• ■ ■ ■ ■ ■■ o ■■■■■■■•••■• •••••M••■.■■•• ■■••••••• ■ ■■ /.d•■•■ u■••■ u■■ qU• u u■■■■■■■■■■■■ ■■ ■■ ■■■■■■■■■■■•■■■■■■■■■■■■ ■■■ 3 •■•■■■•■■.■■■ NI11■■■■■•■ NINI■■■■■■•■• M■■.■•■■ C••■■■■■■■■■... q■•■•■• uu ■ ■■■■...M ■■• ■M ■.•.■■NININININI11■M■■■ E ■• NI11■• NI•■•.••.■■■•M■• M■■•■■■■■•••■./. I•■■■••■■■■■■■■■■■■ q■■. u■■■■• •u• ■■■■■•■q• ■■■■■■■■■M■■•■■■■ ■• • 75 •■■■••••••■■••••••■•■■ B■•■■■•■ NI■■• I, IM■ 11■•••■ q■ 11■■■■■■ q■■■■■■■■• q■■ ■q■■■ ■ ■■q■■■■■■■■■■■■■ ■ ■u■■■ ■qNI• ■ ■M■M■q■■■■ ■ ■■ ■■■NI■ ■ ■ ■■ ■1•.i ■■■■■■q■■■ ■■■■MM■ ■ ■q ■ ■ ■ ■ ■q ■■■q■■■q■■■■■M■ • ■q■ ■■ E . . Q ■■■■••••• NI■■ q■■■■■••••••■•■■•■/ INI■■■■•••••••• MU■■ q.• M■•M 11M ■q ■u ■ ■•uuu ■ ■ ■ ■ ■•. ■ ■ ■M •• ■ ■NI•u ■■■•..•■.■■■■•■•■•••.•■■•■■■•■Etl•••■■■■■■■■■■■■■■ u■•••■■•■■■ u■ Mq. ■ ■ ■ ■ ■MM ■ ■ ■M ■ ■ ■ ■ ■ ■. ■ ■• ■ ■ ■• ■ ■ ■ ■•. ■■■■■■ ■■■■ ■■•■■•■■■■■■■ ■q■■./■.LNIMNI•■ ommu m■•■■■■•■ M•■■•■■ NI■ NIM■ M■■ ■■■■■■■■NIM■ ■M ■MM ■ ■.•■■ ■NI ■NI ■q■■■ ■■M .■■■••■ INI■■.■■ M■•■ NI•• NI■■•■■ PI••■■•■■ M■ NI•■■■.■■ MU■ uq•• u•• Mq■■■q■M■ ■•••MM■■■■q• ■■.qU•■ ■■M M■•■ ° u•■NI■NI■••■■■■■■MMM.■•■■■I, •/1111■• ■ ■. 11■ ■ ■ 11 ■■■■■■M mium■■■■■■ ■q.g •■■ qMM■NI. ■ ■ ■■ ■NIMNIMM■ ■ ■■■ ■11NI �■ N •• U• I• M11uUM•■ NIq.•■■•M■. i. 1••■.■•••••.■•■MM I•■ M.■.•• u■■■. ■■ u■■■ q■ q ■ ■••.•■■■■U ■M■.• ■••••••• ■M■■■• ■■■■■■■■ ■••••••■M••■•■ ■Fi,■NI■u..• ■■ ■■ ■• ■ MINI ■ ■ ■ ■ ■ ■ ■M •■ ■ ■�•••■ ■ ■11NI ■ ■ uq 1111 ■ ■•• ■ ■ ■•■1111 ■■■■■■■■■■■■■■■■ ■ ■ ■ ■ ■ ■ ►./Y■M•M• ■.. ■NIM•NI.• ••O•.•• ■•••■••M■■q q■■••• •••••���■��m••••• ■ ■.. ■ ■ ■.■ ■ ■ ■ ■■ E . M•••••■■ M■■ M■•■••■• ■!l ■ ■M ■ ■ ■ ■ ■ ■ ■••M• ■ ■ ■•••••••• ■•• M■•M■■M ■NI ■ ■Mqq ■ ■ ■q ■■ ••••••• ■. ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■•■ E 50 11IMI ■ /C -: 9■ ■••■■ ■•••/ ■ 11••11■ M•■■■■ M• M■■■••••• M■■■■ ■•NI ■M•uM ■•M• ■M••••••• ■ ■ ■ ■ ■ ■ ■ ■ ■■ ■1111■ ■q ■ ■ ■ ■ ■ ■ ■ ■ ■ ■■ ■■■• i■ ■■■■■M■■■.11•.••.••.•NI•. ■ ■ ■ ■q•■. x • NII.% NI. NI■■■■.■■■■■ t.■■■•/■■■■■■.■■■■■■■■■■■■■■ ■ ■ ■ ■ ■.■■■■■■■■■ ■■ ■ ■NI• ■ ■■■■■■I•NI ■NI• ■ ■■■■■■ ■q ■.uu•..• ij ■I /:p•.M■•■ MINI■■'' LNI•■■ l` %■■ ■ ■• ■ ■.. ■ ■■■■■ ■ ■• ■••■■■■■■ ■■. q■■■■ u•• 11•■ ■ ■■■■q■�MNI..•I••■■■•■NI•MM■M■••M ■■■■\.■■■.■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ uM• M■■.■■• NIq ■• ■■■■■.•.g■NIU■NI•■..••IIM11■■■■• .■■■■■■■■■■ m11i■■■■■■■■■■■■■..■■■■■■■■■■■ NII■• M■■■■■■■■■ NIM■■■ NI■■■■■ ■■■■■■ ■ ■■■■■■•■■ ■ ■ ■■■■■•NI� m 25 /F t. I d IUUUU• UUNIUUUU•• UU• ��UU••••••• UUUUUUUUIUURHUUu• U•• ••••••■•••••••u ■••■• ■••• Minimum 1•∎• NI• NININI■•■ M■■■■■■■• NI■. NININI• M■■■■■■■ MM■ I•. NI■■. M. M••.M NINII■■ M■ M■■■■ ■M■ ■■ ■•NI.MMM•■ ■•••MM••••■. �wl/ i■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ N■■■■■■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■q ■ ■ ■ ■ ■ ■ ■ ■ ■ ■■■ . 1111■■■■■■■A I< J■■.■■■.■■■■■■■■•■■■■■■ NI■■■.■ ■• ■ ■■ ■ ■NI ■ ■ ■• ■ ■ ■ ■ ■ ■■ ■ ■ ■ ■ ■■MM ■ ■ ■■ ■••••••1111 ■ ■M•• ■•M ■ ■ ■M ■ ■ ■•••• ■■■■■■■■■ r.■■■•■•■■•••••■■••■■••■•M■•■••••••■■ M■■•M••••■■■•••••••• M■ •• ■I ■M ■M■■■•■■•M■u■■■•■■■••u■•M .■■■■ M■■►/■■■■ ■ ■ ■■ ■ ■ ■ ■■■■■■■ ■■ ■ ■ ■ ■■■ ■ ■■■. ■■ ■NI q■■■■■■■■ ■■■■■■■■■■■■ •■■ ■M• ■■■ ■ ■■ ■■ ■■NIq■■•■■•■■ ■ ■M■■ \`. E�11�■►. I■■ NINININI■11NI•■••. MM•■•. NI■ NINI• M■■•••••••■∎q•M• NINI■ NIgNI■■ NI■■ IM■■ ■IMMI■■■■.■.NI.I•■•■■• ■ ■■■■■■M•NI •\�__ �•■.■■•■■■■■ M..■•■■•■ NI••■ NI■■ M■. 11M■■■■•■M11NI• II■..■ MNI■■■• NI■■ NIq ■q■q•■.■■•■■NINI•■■• ■■.11•■■ ■■■■■• ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■.■■■■■■■■■■■■■■■.■■■■■■■■■■■■■■■■ M• ■ ■ ■ ■ ■ ■. ■ ■• ■•••••••NIINI ■M ■ ■ ■M ■M aNI•■..■■■■■■ ■NI ■M• ■■ ■• ■ ■ ■ ■ ■••M ■•• ■ ■ ■11. ■11 ■ ■MM 1111 ■•NI■• ■••.■■ ■NINI•.•M• ■NINI11•■M•II ■•■MINI■■■■■■■■■■■■■. 1111.■■■ L.■■■■■/■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ q■■■■■■■■■■■■ u■■■ ■■■■■ ■■■■■■■■ ■■■■■■■■■■■■■■ ■ ■ ■■ ■■■■■■■■■■■■■ ■ M•.•• rr■■.■. M. M■■■■•■•■•■■ n■■■•■■•■■■■■■ ■ ■•••.M•■.•u•■ ■■■•■ ■ ■ ■•M ■•. ■ ■M■ ■1111. ■•.■M ■ ■■ ■• ■.•■ ■ ■ ■ ■• ■••• ■6 111111 ■11■ 1111■ 111111 ■11■ ■ ■ ■. ■ ■11 111111. ■ ■11 ■ ■M ■ ■ ■M■ ■1111 ■11•111.•111111 ■Mq■ ••11.1111•1.. ■ ■■ ■11 ■ ■ ■ ■ ■■ ■1111 ■ ■■ ■1111 ■■ ■■■■111•1•■■■■■■ 0 500 1000 1500 2000 2500 3000 3500 4000 Elevation - Feet G- 1 WALLACE DESIGN PROGRAM REVISED 5/25/97 _ ...... _ I Copyright © — Page 1 Date 1/29/2004 Sheet No. of 1 Job AutoZono 7N Subject DEAD LOADS ROOF LOADS 1 ITEM DESCRIPTION WEIGHT (PSF) Roof Covering Built -Up (4 ply) • 2,0 I Insulation 4" Polylsocyanurate + 3/4" Perllte 1,5 Deck Metal deck, 22 gage, 1,5 Inch 2 2,0 Roof Framing LH- Serles (32LH09 at 7' -0" o.o.) 3.0 HVAC Except sprinklers 3.0 I Sprinklers 3.0 Misc. 0.5 Sub -Total 15.0 I Sustained Dead Load = Covering, Insulation, Deck, and Framing 8.0 LIGHT GAGE PARAPET DEAD LOADS 1 . ITEM DESCRIPTION WEIGHT (PSF) Framing 6 "x16 gage metal studs at 16" o.c, 1.5 / Secondary 3 -5/8 "x16 gage dtag. metal studs at 48" o.c. 1 Sheathing 1/2" gyp, Board (1 -1/2 sides) 4.0 Facsla 1" EIFS 2.0 Insulation • 6" batt insulation 1.0 Nailer 2x8 block at top 0.5 Total Dead Load 10.0 LIGHT GAGE SOFFIT DEAD LOADS 5 I ITEM DESCRIPTION WEIGHT PSF Framing 6 "x16 gage metal studs at 16" o.c. 1.5 ' Sheathing 1/2" gyp. Board 2.0 I Facsia 1" EIFS 2.0 Misc. 2.0 Total Dead Load 7.5 1 z. 1 . 1 1 • 1 ) 1 . i , 1 Ns 15 ruirilii ppm" .: I -C. ., it/ 1101 a ll Eli S--- t b 1 °cat 61' • I . 1 / 0171.1 11M1‘.. . 11 ,khhHaR. ii< , I u se) b. h ..... ..,.,,,„; ®— r s— -a a.. r— r r— AM — MN 11111 MN i NE 1 1 (9.c., 1 5x.7,1= - 1_1_ - co 1 , -KW 1 )1 (ii ° aM II (,)- V01/°,71)(ti/, ')< WS)(31 , ` ji 7 -- * 06` ° Z i, :I Q ciLl -- 4 055119 4- ( L o17 (--)1 GL(') = I t 1 -- 4;r 1 `G tZ/ a.2) - -Ai- L - S G/ 1 = -Y-1(Y/ 1 1 5T2 (z? (\,\ � ar Z s,c 10 S �-1- j ' . , °),G2 ti. V) + +-7 bZ a - I- - ^ - - . ?3- 0 ZX 1 /,7(,ll 22(11 9Ll -111-r) ÷ 4+,bt : 1 21 JD 1. - ;=,,c)(N/ )1 PA r".711. = A- > -1 1 II L., i I -4- 14 . +,t„l, = 1 Ac--- a ���� ' t - �). 6'7(j\� j ` c l -1- I +,) -1- Cz /,97)X(:jri L1) _ ' ?:I , /i �, .-/' — r £ vat te a°) I The ,. ,_ z .,' (L1(57) _ ELI , -- ._____W_ - -- ,1- = - 9 ( 67b - r ./ . _ -1? - : .:/, , 1 , c.,,,,\!, 11. Move lee(gnS r aor 1 1 - oN 3eegS elea 1 1 1 Date Sheet No. of Job 1 Subject 5 \ow 'Dry 1 F1 j` I '24 ,..... —1:891 621 t I ,-Xv zd + l v vt 1/ \\,,- ____ ____ _ ._..__ _ ,. - n n t - . cps '1'1 X i (E3.91 e, , 1 JZ— 55 -1 I 12, e (IS6 (- )L( 1 /2) + ( ypI -;a p (t X2o')(5e,p`flc ° ) r75ci 'I + � 15 + ' 9 VD * = fipc6715 ( -I ,C.r.,}- wall P.I. = = 17 # + 0- - le f i -")(,2oi1D, /(a0 F-) 1 -+- Li-f p1- - °- 2j=t pl�)L .a' ') (..,'/Z`)C � ."1' /(00,') - 1 -t- -+ (vto t+ -t- 4- - x — -i'o J ots c,rcke Y ci ` PG ,1 TL : 4 / 2310 u /9-.4 1 ..)-ii - X1 : (- I ) (-Li -1B0 (f-+ - 1i -") v = 055POLl °'I1/2°) + (.1 — 6 6C)(.S' i)C,'1 :)f.-ti,S /10,11) G L-f I fl +- 3271 * - f2t ca # { -tz, J0,`'r `.rcter 1 1 q 141 44- + L rW IB eV) LB, i '''') (72 - X. /1On - 9y-I t' + 534- 4 — I 1 < -,. c r- wall ve 1 v .. I v . , , e t c - T L / ) Cis rk20 / 1. 1 - 1 1 Date Sheet No. of Job 1 Subject (, QvJ r iDR.%wr 1 I51.- ' t ' - — '.3 ' / x — — — 3to - 27ti 6 _1o* 2 J3 1 (. 3 - 14c.;) 1 , = [2:1 p I X(LO /2.) -t- ( zeo -21f i . (,,, ) 4 )0D(.0;T /cco 1 - 5z t9 4- + 20c # _ 535/.2., stA -4. , . , )n..1\ 12 - 5iYht * + L. �I.I' -Z? ' p1 i") 9 '10 * - = 8 3214 { -t-o �� ` r-ker 1 w - e i -FL = 0990 //A z Pt_ LT -) v )(. to t t 71") i- C3eo pi-C a 2 - 1 fa! )( d °)( 'T O • i 10,11) 131 `I 4t- t 21 T- = I LI ( -t-o J d ,54 - zvrAt e_ r 1 1 123 = 1299 i + `-) I — 2 f \r--) 64,0 ' )L`di:)( .a1 bo ,t-r) ►- 1 -t- I aLt r l'g` - ( +— k t L 1 'v\)01..= eC p t yc0 /31:2:) 1 III t..e.e -- f - 7 iYVac . ,may Ivali I 1 1 1 1 Date Sheet No. of Job 1 Subject ,..... ,..... 1....1 1 �� L__ �EFR -- L : ►-�u,L07` 1 y t S 4 PcvoNFeA" 1 = • . lu ! 4- C LO. .r (_b. D1 k59 ( ti 1 Use I I . ok U&e.. 1(.1 1 r o le-'' 1 1 L,n„ = 32 ,(p p= J1 t JZ '1- EPcr - , I _ CD S r, s v per-. _ ,,,, 3 i v r + � 3 - r 5 3-t -- 12554 -E- 5 # I p t "" 1 U . 121 V / T r , . , rn ,,,ii P - - _-#- L +- +*t' -f- I -i'd4 ne =__ I. •` I` I ✓ _ I 1 , 1i--- 1 + 2.01-G 1 5T 6 + 1,0 - e, z 1 anioto f 1 1 1 WALLACE DESIGN PROGRAM 1 I Date 1/19/10 Sheet No. of Project Subject J1 - High at 21' -0" parapets FLAT ROOF SNOW DRIFT - Joists Perpendicular to Wall 1. Input ' 1 / Wb1 Wb2 / \ Code = (click on code cell to select) ASC, -1- o. Wd Dead Load = 15 psf / - Roof Live Load = 16 psf 1 T.O.W. Pg, Ground Snow Load = 30 psf . Drift for Parapet, Projection, or Upper Root P (P) or (PR) or (U) Pm I, importance factor = 1.00 I hr hd Ce, exposure factor = 1.00 Pf Ct, Thermal Factor = 1.00 td r' 'ti ``. hb Use Pg minimum for drift calc's (Pf Pg). N (Y or N) .. J.B.E. L t�¢t�C�fi�;'= 1 i =`' `- `+%'"L 1 Geometry T.O.W., Top of Parapet Elevation = 21.00 ft J.B.E., Joist Bearing Elevation = 16.83 ft I td, Thickness of Joist, Deck, and Insulatior 8.50 inches Wb1, length of upper roof = 0.67 ft Diagram Wb2, length of lower roof = 70.67 ft S, Joist Spacing = 7.00 ft I L, Joist Span = 60.50 ft 2. Drift Formula Summary I Pf= 0.7CeCtIPg= 25.00 psf '� 1� �� hd a E 4 .z� D= 0.13Pg +14.0 <_30pcf = 17.90 pcf 1 /1 �� �e` hb = Pf /D =. 1.40 ft V Wb = 70.67 ft hr= 3.46ftV r s r ► b t 2 -c)(0° hd = 0.75 [0.43 Wb2 ^1 /3 (Pg +10) ^1/4 - 1.5 2.23. ft ✓ I Wd = 4 [ hd ^2 /(hr -hb) ] or 4 hd <- 8 (hr -hb) = . ft 1,,,I Pm= D(hd +hb) <_Dhr= 61.96 psf fr I 3. Uniform Load Summary 121'ft Drifted Snow Load 1 ' 'k`LE 492t1 Snow Total ;444,. `` �7 R left = 6472.0 ✓ 9648.2 lbs R right = 5359.7 ye 8535.9 lbs I M max = w equiv = 82074.6 130110.7 ft-lbs 214.0 ✓ 319.0 plf * Load Without Drift I Snow Total w (Pf = 25 psf) = 175.0 280.0 plf * indicates controlling load (drifted vs. undrifted) 1 1 I WALLACE DESIGN PROGRAM I • Date 1/12/10 Sheet No. of Project I Subject J2 - Low 1 FLAT ROOF SNOW DRIFT - Joists Perpendicular to Wall 1. Input G 1 Wbl Wb2 \ / _ Code = (click on code cell to select) D - 1-05 Wd Dead Load = 15 psf / Roof Live Load = 16 psf I Pg, Ground Snow Load = 30 psf ✓ T.O.W. Drift for Parapet, Projection, or Upper Root P (P) or (PR) or (U) Pm I, importance factor = 1.00 hr hd Ce, exposure factor = 1.00 I Pf Ct, Thermal Factor = 1.00 h b = or N) Use Pg drift c I ' (Pf P N Yo td se minimum for d ift a c s I �! Geometry \-� T.O.W., Top of Parapet Elevation = 21.00 ft J.B.E., Joist Bearing Elevation = 14.83 ft I td, Thickness of Joist, Deck, and Insulatior 8.50 inches Wb1, length of upper roof = 0.67 ft Diagram Wb2, length of lower roof = 70.67 ft 1 S, Joist Spacing = 7.00 ft L, Joist Span = 10.17 ft 2. Drift Formula Summary 1 Pf = 0.7 Ce Ct I Pg = 25.00 psf ✓ D = 0.13Pg +14.0 30 pcf = 17.90 pcf I hb =Pf /D= Wb = 1.40ft V 70.67 ft hr = 5.46 ft hd = 0.75 [0.43 Wb2 ^1 /3 (Pg +10) ^1/4 - 1.5 2.23 ft to" I Wd = 4 [ hd ^2 /(hr -hb) ] or 4 hd <_ 8 (hr -hb) ' 8.91 ft Pm= D (hd +hb) <_Dhr= 64.88 psf 1 3. Uniform Load Summary Drifted Snow Load I Snow Total R left = 1770.6 2304.5 lbs R right = 1253.3 1787.3 Ibs I M max = 3847.8 5197.6 ft-lbs w equiv = 348.2 453.2 plf ". Load Without Drift I Snow Total w (Pf = 25 psf) = 175.0 280.0 plf " indicates controlling load (drifted vs. undrifted) 1 . 1 1 Snow per ASCE 7- 98/7 -02/05 for Drift along a sloping Roof at a Parapet Re: ASCE 7- 98/7- 02/7 -05 Section 7 1 Input: lu= 93.33 ft. (Perpendicular to drift) Top of Parapet= 21.00 ft. I Joist bearing at Point 1= 16.83 ft. (High) Joist seat thickness= 5.00 in. Deck and insulation thickness= 3.50 in. Roof Slope 0.3830 in /ft. (Between point 1 and point 2) I Roof Length parallel = - 62.60 ft. (Between point 1 and point2) ._ _ _ _ _ . Pg= 30.0 psf Figur 7 -1 ds" Ce= 1 Table 7 -2 I Ct= 1 Table 7 -3 1= 1 Table 7 -4 Verify with IBC Tables Should Pf =Pg? No Yes or No I ' Distance to first joist from wall= 4.67 ft. Distance to second joist= 7.00 ft. Distance to third joist= 7.00 ft. Distance to fourth joist= 7.00 ft. I Snow Drift Output: Pf= 25.0 psf Section 7.3 Vi Rain on Snow Surcharge= 0.0 psf Section 7.10 I Density= 17.9 pcf Eq. 7-4 Hr at Point 1 (high) = 3.46 ft. (Wall or Joist Girder) hb= 1.397 ft. Section 7.7.1 ✓ Hr at Point 2 (low) = 5.46 ft. (Wall or Joist Girder) hd= 2.548 ft. Section 7.8 ✓ ' Snow load in plf I L (ft.) 0 he (ft.) hd (ft.) w (ft.) Pm (psf) W (wall) W (1st joist) W (2nd joist) W (third joist) 2.065 2.065 12.579 61.964 136.67 271.50 203.56 175.00 6.26 2.265 2.265 11.469 65.540 143.40 274.10 194.24 175.00 12.52 2.465 2.465 10.540 69.117 149.98 275.01 186.75 175.00 U 18.78 2.664 2.548 10.193 70.615 152.69 274.89 184.16 i ,„/ 175.00 25.04 2.864 2.548 10.193 70.615 152.69 274.89 184.16 175.00 31.3 3.064 2.548 10.193 70.615 152.69 274.89 184.16 175.00 37.56 3.264 2.548 10.193 70.615 152.69 274.89 184.16 175.00 I 43.82 3.464 2.548 10.193 70.615 152.69 274.89 184.16 175.00 50.08 3.663 2.548 10.193 70.615 152.69 274.89 184.16 175.00 56.34 3.863 2.548 10.193 70.615 152.69 274.89 184.16 175.00 I 62.60 ft. 4.063 2.548 10.193, 70.615 y r 152.69 274,89 V' 184.16 175,00 Where does 8 *hc= 4(hd ^2) /hc? at hc= .707hd -8.251 1.802 1.802 14.413 57.250 127.58 265.48 218.61 175.00 1 -_ - -. . _.. - _- - - - Snow load to first joist Snow load to second joist 1 400.00 300.00 . 350.00 --11-- .. 250 -00 1 300,00 0 250.00 °m 200.00 • '' 200.00 150.00 cc 150.00 1 o N I 100.00 N 100.00 50.00 0 -00 i 50.00 ° N LO CO o ' ro O ln ' 0.00 • N O , 5'l. .19 C: ^'!) 66 6 66 45a r. Length Length 1 1 1 1 1 Date Sheet No. of Job 1 Subject • 1 Deck 1 Go 2,0 rock Gov, inS�, : 8ecl\ -1- MIS 1 (A-) T L - 7. O- e 1- Z'a51 '< .(oV Ge : at,c hecl @ bo cic 00),/ ' o r - S 1 7 0 " 1 O'L " 7 j + +70,G t 77. (p 4 ( E II /2 x 20 r.�lde r; L deck @ sides PS S =5,o' Fays'Ie✓■ erS �c,r lh \ ;�� I 1� 1 tR. = (72. $ psi) C 0.$) ) C 7. = z ss - -c`cx- 4 Iz SC ret.,oS .jn '20 Ga cl ecl; Pallow = lI C7 = 32 3 4 > �� c 6k 1 - r 1-11LT\ D',n 111 `15 / -P619 1� 1 1 I`,Z I lc �cra?co S t k-t IL TI P "S cir (06 . • 1 1 .. - - • - - •!AI ;�t� -_- - - � �.���;__;,> •--� w H �� s: ;._. ,�� � CMCTu>I ,s- �.�-w. k �•.. _ �..,.a:• � ,�� � .... =��, ,. .r- - E: _ _ .., a. '- � . x... ark _. 1 Note: ( Type B, BI, A, BM Wide Rib Deck FY = 40 ksi I TYPE B s' 21$ TYPE BI . f 4 ' 1 ' 116 r r >f' X 36' Covora,o (036) X X 36' Coverage (8135) ' —* 30' Covora.: 1330 and 8130 Is also available ' `- ' (Unifo iiiTotel Lei s psHLoadProduoin of id 0240 1', at) Spn G a 6 San fl 1n) C to C of Su rt gpnd111on g. . 50 - .6'6' 60_ s!6.. 70 76 80 r 86 J - - 90 ..::9 22 122/84 100!63 84/49 I --. _ - . I i - ------ -- • 20 147/105 122/79 102/61 i 87/413 - ... 1 �- - . -- _- _, - "'' 1 Single ---- -- -... -- '- - - - -- _ _..- __ ..__.. - 18 205/152 1691114 142/88 ' 121/69 104/56 91/45 80/37 - -•{�. - .... ... __ 16 262!200 217/750 182/116 ; S555/B5/91 I 134/73 11 103!49 91141 : . -•� ~ -. 22 119/202 99/152 1 83/117 71/92 ,----- , 61/74 -- -- - - - -_ '' - _ - I --- f /;h71) } 20 150/253 1261190 1 105/148 1 90/115 f 77/92 68/75 . -'- , - - - f . ._ .— ` ��' Double 18 200/367 168/27g 21 120/167 1031134 901109 79!90 I 70!75 63/63) 58/53 - 16 256/481 213!361 �7 { 153!2 1321175 115/142 102/117 1,._ 90/98 , ' 60182 72/70 66160 ' 22 146/168 1231119 103192 I 66172 1 7. .. -' " _- = n I - Trlpie f 20 .186/198 1551149 1_530 1115 111180 'r f _84/59 ,.- I_ -- - 18 248/287 20612113 1 174/1661 149/131 a r 112/B6 99/70 I - 68/58 8/49 70/42 - 16 317/376 2631283 1 222/218 190/171 164/137 144/111 126/92 f 112/77 1 100/64 90/55 81/47 I :! ` (UnitormTolat LOad psi /Load,Produchlg 1240 or 1 , Psf) span 9 :Span�ft In) C to C .01 Support '' _ Cond01co Ga e T 66 V - 22 193/84 159/63 134/49 -- - ,- -7 _ - - -�_ 20 233/105 193/79 ..._ .......... .....- --....__._. -._ r :... - - - ,�- . - - - - - ' _- � 162/61 , 138/ F,_ / - _. _ Single - -- - -- - .. -.. 18 324/152 266/114 1 225/88 48 -- .....7`� - _ 192/69 165/58 ; 127/37 1 16 415/200 343/150 289/116; 246/91 212/73 _ 185/59 162/49 144/41 128/34 - ��j� 22 188/202 156/152 132/1171 117!92 97/74 . - - 1 e 18 / , - - -'- ° —' --_-- - ' ----- ___ ---1"- - _ �� 187/190 186/146 ! 142/N5 123192 10717 5 - - .- - " - - "" I _ 89/53 . I %` - � Dou -. _ . - - - - - -- I 20 237/253 316/367 263/278 221/212 ^ 89/167 163/134 143/109 125/90 111/75 , 99/63 - --....... - ! 1 r� -- � : I Areas marked �.- ..__.. -`---- -�..- - 283/278 -- �_- - -----' 242/219 1 209/176 183/142 161/117 142/98 -- '--'- 127/82 1 103/60 � -- - „� 1 1_6 405/481 336/361 ; 14/70 with this symbol r.. - - - -1 - ......... -- -. -- I - -- 72 - ---- _ ..._. �' I exceed SDI 22 233/158 194/119 163/92 1 140/72 121/58 ; --- - _- - t -. _,- recommended 20 2941198 244/149 206/115 L 176!90 152172 133759 I - - - =' Triple ..... - -- - -- .... _... - - -- ...__...... - . - .__....... -. - maximum spans. i 113 391!287 3261216 2767186 1 235/131 f 203/!05 177!85 156!70 139/58 124/49 111/42 -' (see database) I r - - - -- - ,_ _..- _...... .16 ......1. 5001376 4 iG /283 3511218 3011171 1 260/137 2271111 200/92 177177 156/64 .� .142/55 _�. 129747 _ 1 ? Type 6 intermediate Rib Deck . _ -- -- --- -- _...... _..-- --- I TYPE F ......... 1 ..... 1 Vi 30' Coverage {F30) also available ' PP 36• Covera.a s,(UnlformTot8t pafiLoaif Produoing 1,1240 or:1 ', psfl =- S pan { >'' `:. t'.- S /0 In C to C of $upporl Co _ age 4'0” ' 4'6 6 " - b 6 8 0 6 6 7 _ 7 6 130 :813 22 130/133 103/94 83/68 , 69/51 - - 1 .- - 1_ - I _ I Single 20 180/164 126!115 1 102/84 1 85/63 71/49 - , " _-- - - L. - -- -- "X - __ -- - 1 8 _ .. _. 16/ - _ .. _ L. SB 22012M1G 174/173 /141/126 518/95 98/73 83!57 72/46 I � _ - -� I _� -__ � I 4---- - - -__- 22 135/321 110/226 89/164 1 74/124 82/95 53/75 1 20 168/395 1331270 1081202 1 891152 - I Double 751117 69/92 � 55/74 -- ---- 11-- ---- - _ r-- i .- ' 1 __ . _ - -- _ 18 227/593 180/416 1 146/303 11??? 8 102/176 87/138 75/111 65/90 57 1 51/62 22 172/251 136/176 1 111/129 r 92/97 77/74 66/59 - -� - - Triple 20 209/309 _166/217 1_35/1581 111/119I - 94/92 I- . 80/72 69/58 _ __ __-- 18 282/464 224/326 182/238 ' 151/178 1 127/137 1 108/108 93/87 81170 72/58 63/48 (UnIfonnTotalLoad pf /Load ProducingU240 or i , pst) I Span I . Gfl9a Span /0 1n C: to C of Su ort ( Cpndid0n 4'0 4_6 50':` j 66 { p 130 66 70 76 80 86' 22 205/133 163/94 132/68 109/51 1 _ . Single ,._.__ 20_.__.253 /164 200/115 162/04 134/63 113/49 .. i' �tt - - r - ._.--____-_--1 : _ f 8 348/246 276/173 223/126 1 184/95 155/73 132/57 114/46 � II -- . = i .. . .. _.._.- ..- --- -- --.. .._ -_ 22 .. 219/321173(2261141/184 I 98!95 84175 -_ , ,. -- - Double 20 266!395 210/278 7717202 - 1457162 ! 7191117 101 /B2 88!74 --' _ - -' `� L___- 16 3591693 285/416 231/303 1 191/228 161/176 137/138 118/111 I 103/90 91/74 ' 1 80/62 - -- -- 22 272/251 216!176 1 175/129 145/97 122/74 104/59 - -- 1 _.----- ' - -I ; Triple 20 330/309 262/217 1{213/158 1 476/119 { 148/92 127/72 109/58 ! - 1 18 446/46413641328 ! 288/238 1 238/178 1 201/137 1 171/108 148/87 129/70 113/58 100/48 LOAD TABLES . 1 1 1 Steel Deck Fastentn9Systems, . Deck Fasteners for Attachment to Bar Joist 3.4.2 I 3.4.2.1 Product Description 3,4.2.1 Product Description 1 The Hilti bar joist deck fastening system deck profile and base steel thicknesses 3.4.2.2 Material Specifications I consists of a variety of powder - actuated of 1/8" to 3/8 ". These fasteners are 3.4.2.3 Technical Data tools which are primarily used with the available in collated strips of 10. Four 3.4.2.4 Ordering Information following fasteners: the X -EDN19 THQ12 of these strips are loaded into the and the X- EDNK22 THQ12, which are DX 860-HSN tool along with the strips available in a collated version. of cartridges, and enable the operator to fasten at a rate of up to 1,000 quality F°��` For many bar joist decking jobs, the tool „, #,,,,, ,�;, I of choice will be the DX 860 -HSN tool. fastenings per hour. Additionally, this 0 i This self- contained stand up decking tool offers punch through resistance in X-EDN19 THQ12 tool is powered by 0.27 caliber short cases where the base material is inadvertently missed. _"* -, . cartridges, which are loaded into the ,i tool in strips of 40. The cartridges drive Other tools include the hand held i i I the X -EDN19 or X- EDNK22 MX DX -460 MX SM, a semi- automatic X- EDNK22 THQ12 fasteners into almost any type of steel magazine tool for use on smaller jobs. I 3.4.2.2 Material Specifications Listings /Approvals Fastener Fastener Fastener Nominal Fastener ICC (International Code Council) I Designation Material Plating Hardness ESR -2197, ESR -2199, ESR -1414, X -EDN 19 THQ12 Carbon Steel 5 pm Zinc' 55 HRC ER 2078P COLA (City of Los Angeles) X - EDNK22 THQ 12 Carbon Steel 5 pm Zinc 55 HRC RR 25296 1 ASTM 8 633, SC 1, Type III. FM (Factory Mutual) I 3.4.2.3 Technical Data For attaching Class 1 Steel Roof Decks with 1 -60 and 1 - 90 wind uplift ratings. Allowable Pullout Loads for Attachments to Steel Base Material Ib (kN)1, 2, 3 Listed for higher wind uplift ratings with FM Approved Lightweight Insulating I Fastener 1/8 Base Material Thickness (in.) Concrete Roof Deck Assemblies. 3/16 1/4 3/8 1/2 Refer to FM RoofNav for specific X - EDN19 THQ12 - 425 (1.89) 515 (2.29) 630 (2.80) 405 1.80) assembly listings. ( 4 . UL (Underwriters Laboratories) X- EDNK22 THQ12 395 (1.76) 590 (2.62) 610 (2.71) - - Fasteners for attaching steel roof deck I 1 Those values represent testing performed in ASTM A 36 plate steel. Performance values in a different (uplift and fire classification) grade, condition or shape of base material may provide different values. 2 The values must be compared with allowable tensile pullover values. S:'. i A -- ADO. 0 �� s 3 Allowable values based on safety factor of 5.0. j . G " F �"" ' ""' "' _` APPAeV 0 Mini ' 4 Outside of recommended base material thickness range for roof and floor diaphragm applications. Allowable Pullover and Shear Loads for Attaching Steel Deck 3 . 4 , 5 Steel Deck Gauge (in.) I Fastener 16 (0.0598) 18 (0.0474) 20 (0.0358) 22 (0.0295) 24 (0.0239) 26 (0.0179) Tension Shear Tension Shear Tension Shear Tension Shear Tension Shear Tension Shear ib (kN) Ib (kN) Ib (kN) Ib (kN) ib (kN) Ib (kN) Ib (kN) Ib (kN) ib (kN) Ib (kN) Ib (kN) lb (kN) X -EDN19 THQ12 610 585 530 470 415 360 240 300 195 245 140 185 I X-EDNK22 THQ12 (2.71) (2.60) (2.36) (2.09) (1.85) (1.60) (1.07) (1.33) (0.87) (1.09) (0.62) (0,82) 1 For base steel thickness 1/8" to 1/4 ". 2 For base steel thickness 3/16" to 3/8 ". 3 Allowable values are based on a safety factor of 5.0. i 4 For alternate pullover capacities and factors of safety for uplift, refer to SDI Diaphragm Design Manual. 5 Loads based on ASTM A 1008, or minimum ASTM A 653 S033 steel deck. Shear Strength (Q,) and Flexibility Factor (S for Calculating Steel Deck Diaphragm Strength and Stiffness'', 2, 3 Steel Deck Gauge (in.) 1 This data can be used tocatcutatefastenerperformarxewhen Fastener Term attachbgsteeldeckdbphragmsb ton perfor anew 16 (0.0598) 18 (0.0474) 20 (0,0358) 22 (0.0295) 24 (0.0239) D5 M5nuat Qr 2925 2350 1795 1500 1215 2 values based on ASTM A1008 or minimum ASTM A653 5033 X- EDN19& Ib (kN) (13.01) (10.45) (7.98) (6.67) (5.40) steel deck I X - EDNK22 S, 0.0051 0.0057 0.0066 0.0073 0.0081 3 Profis DF software Is available to generate diaphragm tables in In. /kip (mm /kN) (0.0294) (0,0329) (0.0381) (0.0421) (0. 0468) accordarrce with SDI equations. A free downbadis available at www.us.hllG.cam- iiti, Inc. (US) 1- 800 -879 -3000 I www.us.hIltl.com I " I-1 err . " espariol 1- 800 - 879 -5000 1 111111 (Canada) Corp. 1-800-363-4458 1 www.hlitl.ca I Product Technical Guide 2008 97 1 1 1 1 Date I I 1(-A 1M- Sheet No. of 1 ./ Job )k,{'To E-_, 6 l Subject - .. Reference . A) VV. I cD, -_ VP- .... C c . Him, F _, l pl T1oN ' : " - - - -- - _ .. _ . Z,f,� : ! G22 - : f? -= - r7 -fri in. - 1:?.. f p , - ck G G25N / - -- .. _- __ - _ - - -- -- bPr4 l t•-l- . - : b6.'["0. i i t4 t L- F74L. G ., R T t- I C.1 , _ 1✓'T-- 77;____1 1 .: , :. :- . . ._ _ ._ .. ._ . - .. . q i - o I, - ---=- - �b 1 :( = = -1! :1 :11) - g-- 4:►i tilCigy=p- :_5-cc.PFf . • ' 0'. _. ofp .'p f l G,-, oH - `_ �_ ,?r3. . .._... . . . : ._ / .. I ►' 5" V/A - reiww, .:-- ----... -A • ______ ____________________ ____ . . - _ __ 0._ ,. 1 . % - - - - - I y, p • 0 - I - P, , - r / . (5'. J10,171 /4-- c+. 1, ) (4 1 /)(,2) 1 Val ( e ,,i - ) - (® P) CG ,2) .11i& Pe -• 1 ±-- ; i 1 4 J '': , i L. 1 Date 11 101 4' Sheet No. of Job • ,6{4TD Subject! — -- — Reference _ GH T U T1DN= or- =. __ - • _ = L►� ,, X610., -L� �2 �- (x.} - - = -- — G �G1L_ jot be%16. -tom • - - c_ -t_ i_,°I 4 .fik _. l ib < Cl.ci C " - ' • 11 _1� I G! x (•.17 oN PO1--tT Jo167 Jo!‘77 ! f•=-C:?2- 1 1 - T -III 1 I 1 t - -. I 1 MI 111111 MIll NM r 1 — i I i i ! MI _, MN MIR • _, i • 110' 105° 100' 95° 90° 85° 80° 75° 70° 65° 13 N 50 m 20 To O • - '�� L AKE SUPERIOR 45° N o / ' r 2 �_ . ' '_ ..£ . % -1 _. ':r/r' - L r 7 $ 2. 2 2 5 r _ 5225 , ' \ O ' . 1 . . { • I - . . 1. t_ i � 3.Q - I \ `��.0 LAKE MrcwenR Z2 ;� 225 2) - . I • ,' .' ! %. ' 1 `3' • . ; 1 ... .. ` ... .0.......... LAKE HURON 45 f 32i1 ...L.; ( I , 11 1 2 I r -i �.� ... t-!. . _ LAKE ONTARIO 75 ,,_ - ��•. L t .�r-�= 1 � J 1t i,, ,,- j3 -• l i , I ' 1 ' I :IT; 1 _,.. - , • . . i 3 1 3.0 <.. ' i: 1 ` X 2 . 7. -.,". j � j • T f r\ "t �! • • c �- ,L... ; i • , i -- 1.1.T1.-..1.11.--1-3.• , .1 ,-::, , if ` , ^;.�.i`. * r ' 4 ; 0 o O n t' 2 5 {n O 5 -t{ �__ ' -L I �. . _.. '.. � ,� ' _.,••- t-f ' '�; ^. r '1': y `,. ^/`' ! I - - 3• a r .+. C I 11 F - � - -0 may ;;,. ` • r n • l y. /4 3. 2 5 �� ? ! _ "I• _ r � '� I v.. m r. 35' L_, rur - I - '4' ' , _ '� l •�a/� 7.t( L end: c D 1 - ' ...1 - � _ . ji -,� w 111.a,,�.;;.I".rr x 1 ' fm `. L '` y;�.(..ct Q ..�i 5 `'� l __ ` L S( 3q.. SY L F 7 IA : 100 -YEAR 60- MINUTE o g: __ �1_. j y_j •� Ni • C' � ': - ' � ti X1 PRECIPITATION (INCHES) A 4 ! 32 1. _ 1 ... •.L' � r 7 �' f t � . ' ■ • KEW WEST. FLORIDA VALUE 30° O • r L 4 7 ' } •• ' A , _ REPRESENTATIVE FOR FLORIDA EYS p ! r Y f 7 il- -� r ! ' t -i F:. ! >s `'" p 200 400 , 11111 -r rc t co ; ? I • .%r, — 4 Kilometers p 30' ` /,. i. _ i� � ! : •_ 1 �_�_lT•° Tr7R1� ; _ p 100 200 300 (I) 5 4 • , • ._ q15 Miles 33, 5 A0 ._1_ 0: `• - .'4 $- -- - . e :1 - ' � ' 1 - -, ./4. _1 l fir. - , ' N 4.5 25 ' t9 7 / ,,4...' q5 GULP Or MEX . -rki 7 4.25 m 25° �'� a, 42 CO :r 1 105° 100° 95' 90' 85' 80' 75' 2 (^^ 'a Y Fig. 14. Rainfall Intensity (i) in inches per hour for the central and eastem United States. • • 1 1 Valid Through September 2003 ' 1 -54 Roof Loads for New Construction FM Global Property Loss Prevention Data Sheets Page 31 I 1 130° 125° 120° 115° 110° 105° 100° 1,0 1.0 1 1.0 1.0 4 5° r. ®, 0 I 1. ' f 1 ` / I. 1.5 ; r 2 tarp. 0 50° 1 O r 1 L 1 2 •.I �_ 1_ C ` `� �i r . 1 .__jam _ -ii.,...,)- 2 - . • 1 2 0 ' r te " f 1 '' - k c 1 , — : 5 2 . 0( , . 5 '- . � - - , _�_ � i j ! . ..•. =i� ti.. ;`..' f �1 _ _ t o , . ' CI s ■ I__, - 1_:.. - I 'Ilk , I r -;-' i r Il l i l l il I- 7 ' ' i L -- 30 1 1 r r_ . 1 4:11 ij - 1 .5 1 1 1 1 - tom t�' ' ' 5 2.141411 4 7 i `L _ 0 200 y 400 2.5 2.0 P- 3 p; 1t_ - s Kilometers L '. - _ , 25 4 100 200 300 ` - - 7 r- - 7 30° Mlles r i 20° 25 115° 110° 105° 100° 100 Year 1 hour duration ' Source: U,S.Weather Bureau, Technical Paper No. 40, 1961 Fig. 13. Rainfall intensity (1) in inches per hour for the western United States I . ©2001 Factory Mutual Insurance Company. All rights reserved 1 • 1 1 1 1 1 ■ . , -' - ' . - - -• - • ' ' I ■ . . 14" .... . T2 71r ' , i - -• 1 " 1 , . :•;? .:, ..;) .le 4 ,' I :' .1' ' 5, . , , .,.;'!.. - '' ..' • - • fr r" i""'‘ I- - I - fe - A ,- -- -- —__. i 1 -..4 , . I.- -,,. '/,11 . • ,- 1 , , • •-,7-, ,., - 1 (- _ 1 I ._,.. r _1_, .1 - . _.„,...1 1 , ,,,,, \ .. ,, , ',. '• .,..,,yr -.. ' I ' i-/ 1 ! I .. .t- \ • - '1.\7,1,__ ' i• 4; _.,4- . - ge' • ' " - i. - ._',..-1; I ---,• , - . , 1 r I . • v , Iii• ,,•:;,,- I I I I- 21. • L- 2 ' — ' ' Ilia ,- ' .,. 1 2;..''' --.-- . - .• -. -*".' '''‘, • - ' - ' - ' , - 1 1 .-%,V ...., '..; ''' 1 1 1 .- , I .--) 1,_. - 7•,,, I I i i ■,I - - Nr• ,,-• ; l''' - ',....- • ,, ' ri'...,'...": r.' 't_•:.. . -- r----- --- • - - - --- — I .■ , 1, ri •-• .../1 - • - ',v.:7*c, - \ 1 - -,,-t. -,,,-;.; • ,, •••_.-;--• ,- - ••• -,-,_:,, F. - - -- lc - --i-.1... .-,.'; --,/ L.: • r -''''-.1•..11--- .'"V.: 4-. ....: N-i .4",' .',. r F'''' .- ; . ',' . _•-- .. ..' .51,,,:"7',.... 4 1, ',"''. '..,....:, ` ,I . • -r-f-i- • 7:' ! ;1.9-4?).;) .. - ,, "." I •• '„ '.I -,•--w: ',, , 1 1 ' ..: -1 ''':." .-,4.t 1 - , '-.', - ..,- .4, —. 4'4 , ,, .. -c6-irrN,-, , ' 1 -4 i--• 1. t--- t - : T 1 1 .. ", 4 .7.; l i ''-. " ,-.) .1_ : .:. !- ''.. ,- '• " i , ,...,. .,, , , , ...."-_,-..-- , ... - ...-_,- , , ,, ,.. ; .•„.-".T , ' , 1,,c‘b '.' • I i — rz, ..., :... I s ' — ,/ • .) ,.... ..... ••• - '''; --__: 7 ',1 3 '• I,_ 1 . -7 I ' 'Q.. ' .. - -1 -- 3.i r- rIt. P,'- ' .. . ': 1: . 4'' rc • 1 - e i I , , 'c r • II" • .e I- , ,- , "1—.{ _...,:,....- ..1_..—...... ... ., „ ! 1_44 f - 1: - ...t . i --i Fi 1.--1_. „--s., _L! , '.1._,,-1. - , ' - •' , „I_ -r . • , , ? , . ; ..). k _.-- _ ' /. I , ,''..i.„ ' , - 7 " C ' ', I 1 I ; — t;---tr-47.. 1 "I 1 1. ...--1 . j _ 1 ... t. •. , , ., r it L...- ti .-• . ...• ....... ..,.,,i, ,... ; [t.-- '__+ If. _I -. 1 _1, 2 , - 11..1 . - '-t 1 - L. ).0 r-t -II. l 'i s ;r' , " - _A-• ' 3-*•-.1 ,- '•• , ,:.- s f -I- • 1 - - . .-- 1 -,, - - 1 - .t. ,....t- 7 .._.., Q, ..- • i.4-7 _y,....' :VP • r - ----- 1 .,, 1 i.t„, , . . r-I4 . a f_',. 1._. ,. l i , . i , . 1 , ' L.. ,J7 1- 1 ; 4 k 47r114 . I '';', , ,-,i'... • . _ '. , I , I - • . _ - - .4 7 :41,-1,4' t . c". ,-.1 - . • '... ''.. , '..2...r.7,\ .,I .,.t '', 4.7 .. • 'F'''` 11 I .1 • ''' '' , S,1 , 1 f - .....,, ..,-, :,_,/, •,.... 1 ; ., .■ i .4, - 1 ■ .11.. -..:- ,,,_ _ i...- i ' s , T - _:::-..•-•, r , t----, •,..,. -- L.,-. i it - ,-; ,I ..;,....:-:. -- . ,, . •, • , 1 1 • -- tc . • - 1- , `•••• - • ',,- .1u..4 i ..-. ..., -,,, r-t--- p •,...„ , - . 1 _7 - _ ,4 - . ;- - -- - • • - . A -:, : [,.-• • ) _, i ; .t. , ,,.. , ,. x ., : , :i .:_ . , , t q '''■ * ' ,4 '. I ' . I -r-1 4 - 'N. -r-.. .- - 1.• rd - c' i •,••,-',• --_,-. „Y, '.‘ ' ,:".'s ';'''-, -,,- - •• .. 1 ) i I I • ,- ii_c -, - 1 'i •-- '-,-: '.,-- r , _., 4,, rr „ro ,, ."1.4-,, r ' ...,-- • . , r Jr% •,• .. 4.....t , ''. ' 1 - - - 1 i f _Li 1 ■ ■ I *1... .1.1- .. -4.>" - V ' ' 77 ', 7 , - 1 _ I t • . ' - 4 ' 1 '''--4 • A''.; ' 1 '''- --` _- 1,.. . ' . ± ' -. - - --.- .-' ' - it. !.... I , _' .? 4-• . 1 , 1 - 11 4 ,_,.,' , A 4 : . • ' '..,.,... '7' ‘.' -.,,,,':;_i ,-,-.:.}._ t ' .4 ; I , • ‘.*, • - ' ' . .. .. , .... - . .. ' .. ' . . ,. , 1 — , r-r- 1,-- 6 II. A'''.. f ' "..' ' '7' ' . t 1 4_ A 7, . -P, , • •• ...- „ • .., • .. . • • :, ;-)t • . Lf '' I- ---; .' • - ..::). .'-A 7..... 1 ' ' .--' 1 7 - s 'l ' •7 . 'r-- •!-'7.-1.1... r .,.. ,.... , -, - • ' ' - c . •. I . L[7 ., .._-;-(•:. --,-._ :i i- , .. 0 ,„i-, .....„.. 1 - - - • 1 ' , - i -i-- ,::,,fAu ,'" ,- - ,. / ,',,` , > --i . ,, 3- , '.,.. .--,_ 7 . -,--, • -,..." .,-..,--...- , :*; -, - 1 \I .. • I ,, •-•..1 i-,--? - . .Lr') 1 -- 1-1, .■ e • ., i; 1 .:-..- 4 ' ,;''''..`• ..;.-V _ 4 1 r _' 7 ., T -7 .:7..,3'. - iisk ',. • -1"- , ': '..- • r J -.•.: • ' •';'-'•-•''5 % 1 . t i ,,,I ri,,,,--1.„ • 1 ,./ -, .... , ,84. , 14_' , ..1 , - , 7[...,--:- !i 1 1- -: , . _ 4,„ r„ • -,,. • 1 .„, , .,, i L , _..._ , L.. ii .r -- . ...„- , , -...L.J.„-- ',..,_ , _. ,,...,,,...,;•_,_.....,. ,. .,...;,,,,...- ,,,-,,,,, ,.., ,y. , ..,, , ,• 1 .. „ ,•-•„...„:",,,,-, . , , . - LI (1 - 'q- '‘' ': • 1 /-11,w L. f r,.)-- i.t, ....,), • ..,. ,. e- -- .:.:.,..,,c : 0... , . 7, 4 ....*. - '',. i -- Tr , ' 4 1-- r• 1__I '',•'' •• ':•'') ) IL — -,', I ' i i'l '‘.. -( S -.k.'1 '‘I\ -,'• .t•r ; 11:10-Y'EMI S.MINLItti fer‘f".4,pirntsQry -2-1-1 ,.. - i 1 • ... -..' i .. ,...., ' .1 ' 4‘-. t 1 ' . i WOLVES' r i s ,,, . .. , • , ,.... . . .I. 1 : " I .. r, 1 I t ... 1 A I - -- -- I .- .• L-- 1. - KLY 11'MT r.41"(V.5 VOILA I 1 "' ; 1 1 i ‘ . -, , • 1 •• 1 "1 --7--1 ? 1 . • I ; , T-••• ,•• -.I •-• ,- - - ,1,1411.1415/01111. 1,1 ecte,' 1K 1 CZYS . 1, 4 ..' 7 - - T •J- :.. .., 1 ' .1 '. r /..-.. c — .... ,.. ' iC 1 I f' '', • — . ' ., ..,•" ' -"' '''‘ I ; • 1 . •' P" • '-_!---, Thr 'N . •T ., I 1 , . i ... . " •- k.e-,.. ,....... '•., ;•-, 7 I I ,)„...,.. ,•,.„.,..,,,,„.,,..,........., ,., _...._.___ ,...„...,, ., _... , :, __ _ ,i / • -,• .1 i . 77 ., 1--1 p....... )...1: .,.,.. • t .!•, 1,4' ''' Cr-F. ,,,,..- ,.- •; 1 • •. ":1I f' - ''s ' ';:: ..: - - -, , ; ' -,i < •-• • j;l'il' .` i 't e,..i,- ' •-----''", ' "7-1,: t 4i. '', ' I l' I I " - 1;7 ."-' \ ,C- I -1.--;' ••f . ..;•.„ '''., ..:',' .+''," .4: '. '' , ), r C f 6 TO 4 ,''—,, \;\ 7 . 1 I ••. ••;,,"..., ve \_ • '' 4. ' '''' ''') ';'.. 4 ''',;%'. - " , I ,••• I. .. r • o ; . ' 4:1 - ■ • .t-f.... --- 1 . ..... _., , ,?.. • • . _ . . , t _-. .. . . - 1 , c.:„.. , _. ..__ .. , . ...._... ,Nvi.,,a.,-.‘,,,,,-.11,,...r..Tr, . . . .x4 , , I . • I Do V i2- G — M1 t•-1 . <P(1 1 . . , 1 1 1 • Valid Through September 2003 • ' Roof Loads for New Construction 1 -54 . _ • Page 20 FM Global Property Loss Prevention Data Sheets 1 i Table 6. Hydraulic Head Versus Flow Capacity for Roof Scuppers (Depth of water over Invert versus flow of water through scupper) 1 h "z_---'1-1.:-._:-__.- r I h N MI h MI . 1 b Invert Invert b ( 1 • CHANNEL TYPE SCUPPER CLOSED TYPE SCUPPER • 1 Flow (gpm) = 2.9 bH' • Flow (gpm) = 2.9 b(Ht s —hr r.$) when h 2 H; units—In, when h < H; units —M. Flow (dm' /min) = 0.0034 bH' Flow (dm' /min) = 0.0034 b(H1•6 -111 r.$) when h 2 H; units —mm when h < H; unlls —mm 1 — English Units _ Scupper Flows, gprn • Water Channel Type Closed Type 1 Buildup h z H _ Height h = 4 In. Height h a 6 In. H, In. Width b, In. Width b, In. 6 8 12 24 6 8 12 24 6 8 12 24 1 18 24 36 72 I 2 60 66 100 200 3 90 120 180 360 (see channel type) 4 140 186 280 560 (see channel type) 5 194 258 388 776 177 236 354 708 I 6 255 340 510 1020 206 274 412 824 7 321 428 642 1284 231 308 462 924 303 404 606 1212 8 393 622 786 1572 253 338 606 1012 343 456 686 1372 Metric Units I Scupper Flows, drrm /min Water Channel Type Closed Type Buildup h z H __ Height h = 100 mm Height h = 150 mm t H, mm Width b, mm Width b, mm I 160 200 300 500 150 200 300 500 150 200 300 500 26 63 84 126 210 60 178 237 366 595 75 327 437 656 1093 ' (see channel type) I 1 00 505 673 1009 1682 (see channel type) 125 705 940 1411 2351 642 856 1284 2141 150 927 1236 .1854 3090 749 998 1497 2495 175 1168 1558 2337 3894 841 1121 1681 2802 1105 1474 2211 3654 I 200 1427 1903 2855 4758 923 1230 1846 3076 1249 1666 2498 4163 Notes: Whenever h 2 H for closed a scupper, the scupper (lows under channel typ pp type scuppers are appropriate. Interpolation Is appropriate. t 1 • l - 02001 Factory Mutual Insurance Company. All rights reserved. 1 1 1 . . . . . . I • • • I Date (7.., 19.1 I , Sheet No. of pc„ o. 1 • Job H , 4 0,-ro • zcf.4., Subject. 1:7e.,174.1 1,, A ...,41,4--(12--(1/ • • I . . ' • References-- . • I . 1 . 1 - I • 6 1-t . • • 6. 4 o , 0 o 2 * 69 t4-z i4 .,:i LIZ_ 1 r 1 I . 1 • .1 ,., 1 1 V (0g,F1 C. S '2:1 ) 1: a1,0 .1 4 0 )6C7 ' . 1 - , - • 9 . 1 . . . • • I . . . . . 1 4.4 4 4.4-1 't 1/4 a . • 1 . • ..,.. ....... _ if,. • I " . z: -7E lock . . - • , 0 - - - • . • 1 if • - . 0111 - o ,_ : i - - '6:O.:. • • • . , .. .. — . 44114 1 ; . 1 . . • VU ... : • ir T••-7,),•::;-,...-(Z••-.4"..4-k.,,,,,. r,,;:,,<*;,'•;.‘- ' . . .. • - " . --,....,,:; ,40....„ . • .....!•/. *\"!:,•:. ' op P.c.r /.f3 - ... 1 1 _,1 I ..-.::. Ii '.II ' : .' ''. • it 1.'T .P....I.:34;:1'44t,L , „ . .,....• , 's, • ., • . .* .J...4. ='. -• - . . - .- '.., 7 ...,,,..:,.:... , 2. , o' ...,......., ,. • I „ . . . . , . . . . Cp4s, .0-7 , IS 2, 1.0.6..k:)2 1 ! A 7--_() I • .- • • -co- Ito 1•74P1-(- : • . • ; .. 1 . . . .. . v.1 - 10;, oi +. vv), .pat e: t.",'??1:r-• . . .0 . :54. 1 e3.1, v.), .1 . .- - I • . & 13 ', \ki - --1 - , 0-1 l' • wa.. 7c3 , cli t.'- . ..... ___ . . . • r i 117, 0 I : .. . _....:. . . ' ... ....__ ..... . . . 1 . . . 1 • .2,_., . , :....; . . • . 1 . • - . • . t , . .... ( 1 1 • 1 Date rp 2-f¢I 1 - Sheet No. of JobLI.T'b 2�"..� I subject 1,),T,6l t.....,1,. 1 Reference , p-,-GT i orq G Joie? * / ; r-, v-ot.- ise7 50 4 •b1 O : M Pit .- G6. Q ,, e- . -rte 0 - 1• 1 1 '"I', { .@ .loVvT 1 . '• - y, Iii e i &•S ± -- I2''''.) (7, DI) a., , k Iz I?1 - ; ( V-0. .'+) ( I,' 4r - r . . Irk To 4..og)T . 04 f?- 1 iar,cq s • t t✓b1:1- 11 b. tyl 71-1.1 ; - C, GN -Iz- . t .e • r.,)6 T 1 , 1 A..- p r/q.887q• )0,i-r _x•67'` `lam' ,, 1 Pe. '1 -0 ) i - 1Z At Sc- 1,3 1 LISe L j it. K 1:612_ ¢ IAt ✓ 1 . (14 64 4 ' . (-). tn)(a) ,,. 9 I VA a _ L t7.I.4.' . i 1 r MI M, r i. I. - GIN MI M M I r MO M, ®, Mit E. FRAME M. )e: 65W Entry Soffit; Last modified at 4:58:39 PM on Tue, FeL )2006 Node 1 Bern 1,2 Node 2 FReact Elem 2,3 Node 3 FReact Bern 3,4 Node 4 0.00 L =1.00 0.00 - 123.00 L =4.17 0.00 - 283.72 . L =3.67 0.00 0.00 - -- 1.00 0.00 - -- 5.17 0.00 - -- 8.84 - - -E= 29000000.00 - -- - -- E= 29000000.00 - -- - -- E= 29000000.00 FNdW1 DW1L t DW1R DW ---/--- DW1R D DW 107.3422.20 22.2022.20 22.2050.30 50.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 . � t rAWAGF / /! / /! / /! /! /eomman! / / !ll�, / /V' J // f/ / / / / " / /' 7/' i F: _ lb lb/ft Load 1116 _ •. M: lb-ft E: psi 184.60 Shear lb • -129.54 0.00 Moment lb-ft - 338.74 L/6 L/4 L/3 L/2 2L/3 3L/4 5L/6 ft Distance 0.00 1.77 3.54 5.30 7.07 8.84 M1 =II NMI MI _, _e MN • NM FRAME 7 e: 65W Entry Soffit; Last modified at 4:57:24 PM on Tue, ', 2006 1 Node 1 Bern 1,2 Node 2 FReact Elem 2,3 rwoe 3 FReact Bern 3,4 Node v 0.00 L =1.00 0.00 158.17 L =4.17 0.00-230.74 L =3.67 0.00 0.00 - -- 1.00 0.00 - -- 5.17 0.00 - -- 8.84 E =2900 000.00 - 1 - �� E =29001 000 - � � � E' =29001 000.00 �- i FNdW1 DW1L DW1R DW1L DW1R DW1L DW1R 117.0624.21 24.21 24.21 24.21 39.97 39.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -- -- Load 0.11, N I fAre / /fer AFISMANNElf irMilif r D: lb/ft M: lb-ft E: psi 146.69 Shear - lb - 141.27 I I 0.00 Moment lb-ft I i I I - 269.18 L/6 L/4 L/3 L/2 2L/3 .3L1/4 5L/6 ft Distance 0.00 1.77 3.54 5.30 I 7.07 • 1 8.84 1 1 I WALLACE DESIGN PROGRAM • 1' Date 06/15/10 Sheet No. of I Project 65W Subject Lateral AutoZone Lateral Design I INPUT: Code: Year: Code: IBC 01 AutoZone Prototype? (5W, 68W, or 65W) 65W Option 4 94.7 ft I Loads: Actual 93.3 ft At Dead: 15.0 psf / Wall2 Live: 16.0 psf Roof Snow: 25.0 psf Y I % Snow Load Included: 0 Are Live /Snow loads Reducible: n Windward (MWFRS): (y or n) 12.9 psf Wall 1 X Wall 3 Leeward (MWFRS): . 8.1,;psf 70.7 ft 72.0 ft Windward Parapet (MWFRS): 29.6 p`sf I Leeward Parapet (MWFRS): 19.8 psf IF Wind Sidewall Suction: 14:8 psf ✓ Seismic Base Shear 0.107 Wp ASD v Wall 4a Wall 4b Seismic (diaphragm) 0.107 Wp ASD I Seismic oh Wall Anchorage: 0.426 Wp ASD 11, Code minimum on wall anchorage: 213 plf ASD Sds: 0.760 ✓ 16.7 ft 45.3 ft 32.7 ft Seismic Overstrength Factor (f1 j: 2.0 Seismic Design Category: D s . I CMU Wall Weight 78.0 psf • y r Storefront Weight 10.0 psf Typical Joist Spacing: 7.00 ft Vit Deck Gage: 20 Ga Fastening Pattern: 36/9 I Try screws ? Y (Y or N) Wall Heights: Trib. Heights of Diaphragm: Wall 1: 16.25 ft 13.57 ft I Wall 2: 15.25 ft 14.46 ft Wall 3: 16.25 ft 13.57 ft Wall 4: 17.25 ft 12.78 ft Wall 5: (8.83' +(12.17'- 2.5')/2) = 13.67 ft Parapet Height for Main Bldg.: 21.00 ft I Parapet Height for Storefront: 21.00 ft Is there a back wall parapet? yes (yes or no) I Lateral Loads: Y- Direction: Seismic: I Weights: Main Roof = (15 + Opsf)(93.33')(70.67') = 98934 lbs Walls 5 = (10 psf)(13.665')(45.33') = 6194 Ibs I Wall 2 = (78 psf)(14.46')(94.66') = 106758 Ibs Wall 4 = (78 psf)(12.78')(16.67' + 32.67') = 49194 Ibs Total = 261081 Ibs I Psy total = (0.107)(261081 Ibs) = 28.0 kips Psy 1 = 13.6 kips Psy 3 = 14,4 kips 1 .,, 1 1 1 I Date 06/15/10 Sheet No. of Project 65W 1 Subject Lateral I Y- Direction (con't): Wind: Wall 1 (300.7p8 + 152.2pt0[(16.67')(86.34'/ 94.66) + (32.67)(16.34' /94.66')] I Pwy = + (300.70 + 152.2p8)(45.33')(55.34' /94.66') = 21.4 kips Wall 3 Pwy = (300.7p18+ 152.2p1f)(16.67' + 32.67) + (300.7plf + 152.2p1f)(45.33') - 21.44kips = 21.4 kips I X- Direction: Seismic: I Weights: Main Roof = see above = 98934 lbs Wall 1 = (78 psf)(13.57')(72') = 76205 Ibs Wall 3 = (78 psf)(13.57')(72') = 76205 Ibs Total = 251344 Ibs Psx tot= (0.107)(251344 lbs) = 26.9 kips I Psx 2 = 13.4 kips Psx 4 = 13.4 kips Wind: I Wall 2 & 4 Pwx = (265.96 plf +173.61 plf)(72) = 31.7 kips Pwx 2 = 15.8 kips Pwx 4 = 15.8 kips I Deck & Shear Wall Summary: Px or v L Wind: Wind: I Wall Length (L) Deck Length (L) _ Wall Shear Deck Shear Wall 1 70.67 ft 70.67 ft 304 plf 304 plf Wall 2 93.33 ft 93.33 ft 170 plf 170 plf Wall 3 70.67 ft 70.67 It 304 plf 304 plf I Wall4 48.01 ft 93.33 ft 330 plf 170 plf Seismic: Seismic: I Wall Length (L) Deck Length (L) Wall Shear Deck Shear Wall 1 70.67 ft 70.67 ft 193 plf 193 plf Wall 2 93.33 ft 93.33 ft 145 plf 145 plf I. Wall 70.67 ft 70.67 ft 204 p16 204 p16 Wall 48.01 ft 93.33 ft 281 plf 145 plf I Design Metal Deck: Load Allowable for pins Largest deck shear at wall = Wind 304 plf < 480 plf = 1.00 ' 480 plf IBCO#4373 Seismic 204 plf < 451 plf = 0.94 ' 480 p8 Use 1.5" x 20Ga deck with a 36/9 pattern I HILTI ENP2K, X- EDNK22, or X- EDNK19 at 6" o.c. OR #12 TEK screws at 6' Largest deck shear at 1st Joist = Wind 274 p11 < 440 pH = 1.00 ' 440 plf Sidelaps use #10 Tek screws at 12" o.c.. Seismic 184 plf < 414 ptf = 0.94 ' 440 plf Shear capacities are based on 36/7 pattern by observation, 36/9 is greater than 36/7. (Re: Cont I 1 1 Date 06/15/10 Sheet No. of Project 65W Subject Lateral Analysis Provide continuity across diaphragm for wall anchorage forces: ' A. Provide continuity in the Y -dir. through roof joists. P = (0.426 * 1.4)(78psf)(14.46 ft)(7 ft) = 4708 Ibs 1 1 Design Joists for an axial load of 4.8 kips B. Provide continuity in the X -dir. through the strong axis of the metal deck. 1. Check deck for axial load in combination with gravity loads P = (0.426'1.4)(78 psf)(13.57 ft)(3 ft trib width of deck) qb = 1894 Ibs (Re: CFS for axial check of deck) 2. Check connection of deck to cont. angle P = 1894 Ibs a.) #12 Tek screws Capacity of (1) screw in 20Ga deck = 315 lbs For a 36/9 pattern total capacity = (315 Ibs)(7) = 2204 Ibs < P, (o.k.) y/ b.) HILTI P.A.F. t¢ E 1 Capacity of (1) p.a.f. in'20Ga deck = 360 Ibs For a 36/9 pattern total capacity = (360 Ibs)(7) = 2520 lbs < P, (o.k.) s Use 1.5" x 20Ga deck with a 36/9 pattern b' with HILTI pins or #12 TEK screws. 1 1 1 Steel Diaphragm Deflection for Uniform Loading 1 FOR SEISMIC 1. Building Dimensions, Loading and Shears Diaphragm Length (x)= 93.33 ft. I Diaphragm Depth (y)= 70.67 ft. Uniform Load y-dir= 300 pif (Assumes for Allowable Stress Design) Uniform Load x -dir= 381 pif (Assumes for Allowable Stress Design) Max diaphragm shear y -dir= 204 pif (Assumes for Allowable Stress Design) I Max diaphragm shear x -dir= 145 pif (Assumes for Allowable Stress Design) Area of typical perimeter chord angles= 3.75 sq. in. Height of Diaphragm A.F.F.= 17.25 ft. I Masonry or Concrete Wall Thickness, t= 8.00 in. fc or fm, psi= 1500 psi Masonry or Concrete Wall? M (M or C) I 2. Building Code Information Building Code= IBC Deflection Ampl. Factor for max deflection= 3.5 (for Seismic Loads) 1 Factor from Working Stress to Strength= 1.4 (For UBC and IBC Seismic =1.4) 3. Steel Roof Deck Information Does the deck manufacturer use Flexibility(F) or Stiffness(G')? F (F or G') Flexibility (F) or Stiffness (G') Value= 11.1 4. Determine Y- Direction Deflection 1 Moment of Inertia for angles in y -dir.= 1348447 in.4 For Bending= 5wLA4 = 0.0183 in. I 384E1 For Shear= v ave.(L /2)F = 0.0740 in. 10 ^6 I Total Deflection= 0.0923 in. Maximum Deflection= 0.3240 in. is < or = 1.364 in. O.K. 5. Determine X- Direction Deflection 1 Moment of Inertia for angles in x -dir.= 2351832 in.4 For Bending= 5wL^4 = 0.0044 in. I 384E1 For Shear= v ave.(L /2)F = 0.0398 in. 10 ^6 I. Total Deflection= 0.0442 in. I Maximum Deflection= 0.1547 in. is < or = 1.364 in. O.K. 6. Check wall maximum deflection Allowable flexural compression of wall material= 495 psi Modulus of Elasticity of wall material= 1350000 psi 1 Wall Max Deflection= H ^2fc = 1.3638 in. 0.01 Et 1 1 I Date 06/11/10 Sheet No. of Project 65W Subject Lateral Analysis 1 Sidewall Embeds: For Wall 1 or 3: I Distance to joist from Wall 1: 4.67 ft Snow load at wall: 153.0 plf (if no snow, enter 0) Roof live load at wall: 37.4 plf Use HILT! embeds? N (Y or N) I Numer of bolts per plate: 4 (2 or 4) Loads: W = (15 psf)(4.6772) = 35.1 Of Roof Dead Load I WLL = 153 plf Snow Load Re: Roof Framing Ww, = 304 plf In -Plane wall shear Ww2 = (14 psf)(13.57') = 201 plf Sidewall Suction I 1. Load Combination: D + .75(Lr + W) Shear: 1 bv, = WDL + .75(WLR) = 149.9 plf bv2 = 75(Ww,) 228.0 plf bv = J((bv,) + (bv = 273.0 plf I Tension: WI = bv1(2.67 "/4 ") = 101.0 plf Prying Action of Angle acting on the top row of bolts. bt = .75(W = 151.0 plf 1 I bt = bt, + bt = 252.0 plf Determine Spacing: S' bv + bt1 + bt2 = 0.138062 4800 # 2174 # 4348 # Sr (0.1381)'= 7.243 ft I 2. Load Combination: D + W Shear: bv, = W = 35.1 plf bv = W 304.0 plf bv = J((bv,) + (bv = 307.0 plf I Tension: bt, = bv1(2.67"/4 ") = 24.0 plf Prying Action of Angle acting on the top row of bolts. bt = W = 201.0 plf I bt = bt, + bt = 225.0 plf Determine Spacing: S bv + bt1 + b12 = 0.121226 l i 4800 # 2174 4 4348 # S = (0.1212) - '= 8.249 ft 1 1 1 1 1 Date 06/11/10 Sheet No. of Project 65W I Subject Lateral Analysis Wall 1 or 3 Embeds (con't): 3. Load Combination - D + .75(Lr) + E (note .7 factor has already been applied to ASD values) I Wa = (15 psfX4.6772)+ (Sds)(0.2X35.1 plf)= 40.4 plf Roof Dead Load W = (16 psfx4.67' /2) = 37.4 plf Roof Live Load > (153p1fX.2) = 31p1f WE, = 204.0 plf Seismic In -Plane wall shear . I WE2 = (0.426X1.4)(13.57')(78 psf) = 632 plf Out -of -Plane wall anchorage Shear: bv, = Woi + •75(W = 68.4 ptf 1 bv = WE1 = 204.0 plf bv = q((bv,) + (bv = 216.0 plf I Tension: bt, = bv1(2.67 "/4 ") = 46.0 ptf Prying Action of Angle acting on the top row of bolts. bt = WE2 = 631.2 plf I Determine Spacing: In -Plane Forces: S = bv + bt, = 0.066159 I 4800 # 2174 # S = (0.0662)'' = 15.115 ft Out -of -Plane Forces: S'' = bv, bt, + bt, = 0.18059 4800 # 2174 # 4348 # I s= (0.1806) = 5.537 ft USE 1/2 "x10 "x10" Plate with (4) 1/2" dia. x 5" studs spaced at 48" o.c. 1 1 1 1 1 1 .... ... �� 1 1 1 • I Date 06/11 /10 Sheet No. of i Project AutoZone Subject Lateral Analysis 1 Uplift on Embeds for :65W Long Span Joists for Wall 4 For MWFRS - 1 h =c= 17.3 ft L= 60.5 ft s= 7.0ft • W2 I W, • • ♦ , W' 1. ASCE c1 = 7.1 k c ,Y 1 L- (c +c1) 01 I W, = W,_ -11.9 psf -5.5 psf x 7 ft = x7k= -83.6 Of p11 For ASCE Interior Zone + T T, T w ,„ „, = (W, /L)(c^'(0.5) + Lc - c ^ + W,(c1 ^') /(2L) . -1.85 kips +W2 /L • (L- (c +c1))((L- (c +c1))/2 + c1] I T , = '2 T, - T, -.= -1.57 kips . . ASCE -For Joists in Edge Zone W W, = -11.9 psf x 7 ft = -83.6 pll Tw „�,c, = ( 1/2)( -83.59 pif)(60.5 ft) = -2.53 kips 4" L T T For Components & Cladding: For ASCE Edge Zone 1 a =c= 6.9 ft 1. ASCE . • W, = -18.4 psf x 7 ft = -128.8 plf W ' W, 1 W, = -14.6 psf x 7 ft = -102.2 pif T. ,, = (W, /L)(c + Lc - c 2 ) +W -c) L -c -3.22 kips c f T,c = T„,,, - T, = -3.14 kips T For ASCE C &C 7,0 I 2. ASCE - For Joists in Edge Zone W, = -18.4 psf x 7 ft = -128.8 plf Twee, 4.2 = (1/2)(- 128.80)(60.5 ft) _ -3.90 kips 1 Maximum MWFRS Uplift at Columns: 1 P„,,,„ = ((-1.85 kips) -0.6 (88.3 p11)) 45.33 f< = -4.79 kips (7 ft) (2) I P,,,•c, _ ([-1.58 -0.43 kips' (32.67ft * 28ft) = -8.68 kips (7 ft) ( P,,c2 = (( -2.53* -0.43 kips' (32.67ft) = -6.90 kips ( ft) ( I Gross MWFRS Wuplift = -543 pif Wall 4 Wuplift = -91 pk Wall 2 Wuplift = -42 p1f Wall 1 & 3 1 r 1 1 r Date 06/11/10 Sheet No. of Project AutoZone Subject Lateral Analysis r Uplift on Embeds for :65W Short Span Joists for Wall 2 • • For MWFRS - W ' c (for ASCE) = 17.3 ft L = 10.17 ft s = 7.0ft L r T,G 1. ASCE (Entire Joist is in End Zone) > For ASCE W, _ -11.9 psf x 7 ft = -83.6 pH TwmvJo, = (1/2)( -83.59 plf)(10.17 ft) _ -0.43 kips r • . For Components & Cladding: • W- W, c= 6.9 ft ♦ c I 1. ASCE W, = -20.3 psf x 7 ft = -142.1 pH T'G L -c For ASCE C &C T, W, = -14.8 psf x 7 ft = -103.6 pH = (W, /L)(c'(0.5) + Lc - c') +W2/L (L(0.5) -c)2 = -0.70 kips = T, - T. -0.62 kips 2. ASCE - For First Joist in Edge Zone W, = -20.3 psf x 7 ft = -142.1 plf - T awc, = (1/2)( -142.1 plf)(10.17 ft) -0.73 kips r Wuplift = -61 psf Gross MWFRS 1 1 1 • 1 1 1 .. 1 • 1 1 1 Date 06/11/10 Sheet No. of Project 65W Subject Lateral Analysis 1 Embed Design - Wall 2 I 1. Wind (MWFRS) Embed Forces: T= RE: Uplift Clacs = 0-48 -kips = 0 kips 16" Deep bond beams w/ (1) #5 cont will resist uplift I V„ = (170 plf)(7 ft) = (14.8 psf)(14.5')(7 ft) = 1190.0 Ib In plane wall shear V. = 1498.0 Ib Out -of -Plane wall shear Interaction for Steel Embeds I I.E. = V. + V B B„ I.E. = 1498.0 + 1190.0 = 0.2962 < 1.0, (o.k.) I 8696 lbs 9600 Ibs 2. Seismic I A. In -Plane Forces V, = (2)(1.4) (145 plf)(7 ft) = 1672 Ibs 1.7 1 I.E. = 0 + Vi, B Btii I.E. = 0 + 1672 = 0.1742 < 1.0, (o.k.) I 8696 lbs 9600lbs B. Out -of Plane Forces Vl = (0.426)(78 psf)(14.5')(7 ft)(1.4) = 4708 Ibs 1 LE = V, 0 Br Bvu = 1 I.E. = 4708 + 0 0.5414 < 1.0, (o.k.) 8696 Ibs 9600 lbs Re: Embed Capacity attached Use (2) 1/2 "x10 "x0' -10" Plates I one each side of joist with (4) 1/2" dia. x 5" h.s.a: s /plate 1 1 1 1. 1 1 1 1 Date 06/11/10 Sheet No. Project 65W Subject Lateral Analysis I Embed Design - Wall 4 1. Wind (MWFRS) I Embed Forces: T= RE: Uplift Clacs = 2,88-kips = 0 kips 16" Deep bond beams w/ (1) #5 cont will resist uplift I V„ _ (330 plf)(7 ft) = 2310 Ibs In -plane wall shear \I, = (14.8 psf)(12.8')(7 ft) = 1324 Ibs Out -of -Plane wall shear Determine Spacing of HILTI Anchors I I.E. = V.. + V„ B Bv„ I.E. = 1324 + 2310 = 0.3929 < 1.0, (o.k.) 1 8696 Ibs 96001bs 2. Seismic I A. In -Plane Forces V„ = (2)(1.4) (281 plf)(7 ft) - 3240 Ibs 1.7 1 I.E. = 0 * B B,,„ I I.E. = 0 + 3240 = 0.3375 < 1.0, (o.k.) 8696lbs 9600 Ibs B. Out -of Plane Forces 1 V, _ (0.426)(78 psf)(12.8')(7 ft)(1.4) = 4162 Ibs I.E. = V, + 0 4162 + Bvu I.E. = 4162 0 = 0.4787 < 1.0, (o.k.) 8696 Ibs 9600 Ibs I Re: Embed Capacity attached Use (2) 1/2 "x10 "x0' -10" Plates one each side of joist with (4) 1/2" dia. x 5" h.s.a.'s /plate 1 1 1 1; 1 1 1 I Date 06/11/10 Sheet No. of Project AutoZone Subject Lateral Analysis 1 Chord / Drag Strut Design: 1. Drag Strut Forces: I Drag Strut 4A 4B Largest Deck Shear: 170.0 plf X 16.7 ft 'r 45.3 ft 't. 32.711 'r 170.0 pH I Unit Shears: 0 160.0 pH 160.0 plf 5.10 kips I Strut Forces: _ 0 2.7kips A. F4 - for wall 4 I F, = (2)(1.4) ((145 0)(45.33 ft )-(136 plf)(16.67 ft)) = 7.09 kips seismic collector force controls drag strut 1.7 F, = 5.04 kips wind 2. Chord Force Y - dir: Wind Seismic 1 w = 42.87 kips = 0.459 klf 0.300 klf 93.33 M = (0.459 klf)(93.33 ft) = 500.09 kft 326.66 kft 8 I ) C.F. = (500.09 kft) /(70.67 ft) = 7.08 kips wind controls 4.62 kips 3. Chord /Drag Strut Design: 1 l A. Design Force: 4,„ _ 1 "L(- cp.", 5 S \ D CQ_�r o , 1 P,,,,,,, = 7.09 kips Drag Strut Force controls w_,- 88.30 pH Mx = 5.19 kin (w)(L2 storefront parapet weight. I W - 22.21 psf Trib ht. = 6.74 h 10 WP , = 53.35 psf w,,,,, = 292.51 pH , ✓ My = 17.20 kin (w)(Lf wind pressure against storefront. 10 I Lb= 7.00 ft Fy = 36 ksi E = 29000 I 2. Allowable Calculations: Try an L4x4x3/8 b/t = 10.67 A = 2.86 in ^2 I rz = 0.779 in Sx = 1.50 in ^3 Ix = 4.320 in ^4 Pe = rr`(E)(Ix) = 175.24 kips (K,L)' Cm = 1.00 B, = 1.069 • I A. Chapter E: Compression - Sec. E7 kL = (1.0)(432 in) = 107.83 r, 0.779 I Qs = 1.000 Fe = 24.62 ksi = n'E /(kLJrzp < 0.44(Qs)(Fy) Fcr = 19.52 ksi I Pn/Q =A'Fcr /1.67 = 33.43 kips B. Chapter F: Flexure - Sec. F10 1 1 i Ar(flexure) = 25.83 > b /t: therefore angle is slender for flexure J Mn = 64.80 kin = 1.5 My, yielding I Me = 261.92 kin = 0.66'E'b`t'Cb [4(1 +0.78(Lt/bT) -1] > My= Fy'Sx'0.8 L' Mn = 62.42 kin = Lateral Torsional Buckling * Controls I Mn = 77.05 kin = Local Leg Buckling Mr = B,(Mx +My) = 23.94 kin M n/O =M n/1.67 = 37.38 kin U C. Chapter H: Combined Forces • Sec. H2 Eq. H2 -1 = 7.09 kips + 23.94 kin = 0.853 (o.k.) 33.43 kips 37.38 kin IV I USE L4 x 4 x 3/8 4. Angle Splice A. Design Force I P„,,,,,, = 7.09 kips B. Chord Design per AISC 13th ed. Ch. D 114'r 3 Fy = 36 ksi I Fu = 58 ksi ion Yielding III P„ = (36ksi) (0.75 slain) = 16.17 kips eq. D 2 -1 III 12 1.67 I Tensile Rupture P„ _ = (58ksi)(U)(0.57 slain' = 16.53 kips eq. D 2 -2 52 2.0 (U per Table D3.1, 4.) I C. Check Weld Length (1/4" fillet) Wallow = 3.6 kli I Total Length req'd = 7.09 kips = 2.00 in 3.6 kli USE 3/8 x 2 " x 8" splice with 1/4" fillet weld x 6" each end of splice 5. Offset Drag Strut Connection 1 A. Max Drag strut Force: F= 7.09 kips B. Check plate in tension I ft = 7.09 kips = 2.10 ksi (0.375 in)(9 in) Fl = (0.6X36 ksi) = 21.6 ksi > 2.1 ksi (ok) I C. Check weld with max eccentricity: 1/4 1 3.5 F= 7.09 kips 1/4 r 4 ' - 7 - F xl = (3.5'x1.75 ") = 0.82 in 1 (3.5" + 4 ") ecc. = 2(0.82 ") + 4.875" = 6.51 in F *-- r 4.875 " Re: AISC 13th Ed. Table 8 -11 (pg. 8 -108) I 114 4 al = 6.51 in a = 1.63 kl= 3.50 in k= 0.88 1 Pr /4 3.5 C= 0.993 C, = 1.0 D= 2.0 Pallow = (1)(0.99)(4)(4 ") = 7.94 kips > 7.09 kips (ok) 2.0 I USE 3/8" x 9" x 9" Plate w/ 1/4" weld with pattern as shown above 1 1 1 Date 06/11/10 Sheet No. of Project Subject Angle Check Angle Design ASD per AISC 13th Edition: 4, LAA 1. Design Forces: P 0.00 kips # of spans = 3 w = Mx = 0.00 kin (w)(L) storefront parapet weight. 10 w,= My = 33.22 kin (w)(L) wind pressure against storefront. 10 Lb = 3.00 ft = => K,L = 36 in Fy = 36 ksi I E = 29000 ksi 2. Allowable Calculations: Try an L4 x 4 x 3/8 b/t = 10.67 A = 2.86 in ^2 rz = 0.779 in Sx = 1.50 in ^3 ix = 4.320 in ^4 Pe = rr = 954.07 kips (K,L) Cm = 1.00 B, = 1.000 1 A. Chapter E: Compression - Sec. E7 kL = (1.0)(36 in) = 46.21 r, 0.779 ' Qs = 1.000 Fe = 134.02 ksi = Tr°E /(kL /rzY > 0.44(Qs)(Fy) I Fer = 32.17 ksi .67 = 55.10 kips B. Chapter F: Flexure - Sec. F10 )`p = 15.33 > b /t: therefore angle is compact for flexure Mn = 64.80 kin = 1.5 My, yielding t° Controls U Me = 350.35 kin = 0.66 *E *b *Cb [N(1 +0.78(Lt/b -1] > My= Fy'Sx'0.8 LZ Mn = 64.80 kin = Lateral Torsional Buckling Mr = B,(Mx +My) = 33.22 kin Mn /f2 =Mn /1.67 = 38.80 kin ' C. Chapter H: Combined Forces - Sec. 112 Eq. H2 -1 = 0.00 kips + 33.22 kin = 0.856 (o.k.) 55,10 kips 38.80 kin USE L4 x 4 x 3/8 1 1 1 1 Date Sheet No. of � ! Job 1 Subject ---i, 32 3o -S 3 x I' ir 1 1 clnec\x-- Redt," dots/lcy : 2q 9-t 2 e A c.a - 1- c>5 C..112_ -4 WD 31, 4a% 1 spry lAe- kc4, - t - = 15, a.v • r 1 I, v , 32 AA &• C c",1‘,4-No ..... _ a _ _ 1 1 1 , 3. CAS C 7- e35-3 ,, X k' ,1' ' (9-8 3'2_-S 1 t WO, 11 \ 04 . @4 /Q 1 --) IA _ 3a 1 .'25 32/ °• t < I,0 Co.G.) 1 1b = 3 1 (o . -4a' 0,41 1 2, ')<- TD«- Cnr\cv, -k or. " 0," 1 1 tA00. 11 \-, (--4 Q C -k) `v I Th.s �a11 q 11.25 1 ( - 1 ' l. 03 7 acco.A- h ttn" b t`1,25 "62,"7 0 .5 3 11,5% c50 SbrY 1 S 4- c < SS ro 2 G = 2 L 15.25 3 0,4 1 2 b 15.25 . 30, ' 0,SO I 1,0 koeaaN`a�, c..0/4:4-lon "0," • c 12.3,4.2 \s v►\& 1 11 1 1 • 1 12.3.4.1 Conditions Where Value oP is 1.0. Th e value of is p v u p 12.4 SEISMIC LOAD EFFECTS permitted to equal 1.0 for the following: AND COMBINATIONS 1. Structures assigned to.Seismic Design Category B or C. 12.4.1 Applicability. All members of the structure, including . 2. Drift calculation and P -delta effects. those not part of the seismic force - resisting system, shall be designed using the seismic load effects of Section 12.4 unless 3. Design of nonstructural components. otherwise exempted by this standard. Seismic load effects arc I 4. Design of nonbuilding structures that are not similar to buildings, the axial, shear, and flexural member forces resulting from ap- plication of horizontal and vertical seismic forces as set forth in Section 12.4.2. Where specifically required, seismic load effects 5. Design of collector elements, splices, and their connections shall be modified to account for system overstrength, as set forth for which the load combinations with overstrength factor of in Section 12.4.3. I Section 12.4.3.2 are used. 12.4.2 Seismic Load Effect. The seismic load effect, E, shall be 6. Design of members or connections where the load combi- determined in accordance with the following: nations with overstrength of Section 12.4.3.2 are required for design. I. For use in load combination 5 in Section 2.3.2 or load com- 1 bination 5 and 6 in Section 2.4.1, E shall be determined in 7. Diaphragm loads determined using Eq. 12.10 -1. accordance with Eq. 12.4 -1 as follows: L 8. Structures with damping systems designed in accordanc E = Eh + E, (12.4 -1) with Section 18. 111 2. For use in load combination 7 in Section 2.3.2 or load corn- 12.3.4.2 Redundancy Factor; p, for Seismic Design Categories bination 8 in Section 2.4.1, E shall be determined in accor- D through F. For structures assigned to Seismic Design Category dance with Eq. 12.4 -2 as follows: D, E, or F, p shall equal 1.3 unless one of the following two E = E - E (12.4 -2) conditions is met, whereby p is permitted to be taken as 1.0: 1 where a, Each story resisting more than 35 percent of the base shear E = seismic load effect in the direction of interest shall comply with Table 12.3 -3, Eh = effect of horizontal seismic forces as defined in Sec - b. Structures that are regular in plan at all levels provided that tion 12.4.2.1 1 the seismic force - resisting systems consist of at least two E = effect of vertical seismic forces as defined in Section bays of seismic force - resisting perimeter framing on each 12.4.2,2 side of the structure in each orthogonal direction at each 12.4.2.1 Horizontal Seismic Load Effect. The horizontal seis- story resisting more than 35 percent of the base shear. The mic load effect, Eh, shall be determined in accordance with Eq. / number of bays for a shear wall shall be calculated as the 1 12.4 -3 as follows: length of shear wall divided by the story height or two tithes the length of shear wall divided by the story height for light- Eh = pQ (12.4 -3) framed construction. where 1 QE = effects of horizontal seismic forces from V or P r ,. Where TABLE 12.3 - REQUIREMENTS FOR EACH STORY RESISTING required in Sections 12.5.3 and 12.5.4, such effects shall MORE THAN 35% OF THE BASE SHEAR result from application of horizontal forces simultaneously Lateral Force - Resisting Requirement in two directions at right angles to each other. Element p = redundancy factor, as defined in Section 12.3.4 I Braced Frames Removal of an individual brace, or connection thereto, would not result in more than a 33% 12.4.2.2 Vertical Seismic Load Effect. The vertical seismic reduction in story strength, nor does the load effect, E shall be determined in accordance with Eq. 12.4 -4 resulting system have an extreme torsional as follows: irregularity (horizontal structural irregularity I Type 1b). E„ = 0.2SDSD (12.4 - 4) Moment Frames Loss of moment resistance at the where beam -to- column connections at both ends of a single beam would not result in more than a 33% reduction in story strength, nor does the Sos = design spectral response acceleration parameter at short resulting system have an extreme torsional periods obtained from Section 11.4,4 I inegularity (horizontal structural irregularity D = effect of dead load Type ib). S hear Walls or Wall Removal of a shear wall or wall pier with a EXCEPTIONS: The vertical seismic load effect, E Is permitted to be Pier with a height -to- height -to- length ratio greater than 1.0 within taken as zero for either of the following conditions: length ratio of greater any story, or collector connections thereto, 1. In Eqs. 12.4 -1, 12.4 -2, 12.4 -5, and 12.4 -6 where Sos is equal to or less I than 1.0 would not result in more than a 33% reduction than 0.125. in story strength, nor does the resulting system have an extreme torsional irregularity 2. In Eq. 12.4 -2 where determining demands on the soil - structure interface (horizontal structural irregularity Type I b). of foundations. Cantilever Columns Loss of moment resistance at the base 12.4.2.3 Seismic Load Combinations. Where the prescribed connections of any single cantilever column seismic load effect, E, defined in Section 12.4.2 is combined with I would not result in more than a 33% reduction in story strength, nor does the resulting system the effects of other loads as set forth in Chapter 2, the following have an extreme torsional irregularity seismic load combinations for structures not subject to flood or (horizontal structural irregularity Type 16). atmospheric ice loads shall be used in lieu of the seismic load Other No requirements _ combinations in either Section 2.3.2 or 2.4.1: i� 126 ASCE 7 -05 1 I Date 07/09/10 Sheet No. of • Project AutoZone Subject Lateral Analysis Shear Wall 4a: I Input: P2 Configuration: P1 Code = ACI -08 V+w. V,s l 3.75' Length of wall = 16.7 ft I Length of footing = 18.0 ft Parapet Height = 3.8 ft F.F. to Roof height = 17.3 ft V F.F. to T.O.F. = 1.5 ft f► 17.25' I Veneer weight = 0 psf 12.25 ' Footing: 1 50 ' I Thickness of Footing = 1.00 ft j 1 .00' Width of Footing = 3.75 ft Weight of soil = 110 pcf f r Depth of soil = 0.5 ft 16.7' I Allowables: Soil Bearing = 2000 psf Net or Max? N (N or M) Use 1/3 bearing increase? N (Y or N) Friction Coefficient = 0.35 I Loads: Wall Shear due to Wind 1 } V, = (330 plf)(16.67 ft) = 5.50 kips Wall Shear due to Seismic V, = (281 plf)(16.67 ft) = 4.68 kips 1 V2s = (0.107)(78 psf)(22.5 ft)(16.67 ft) = 3.13 kips Uniform Loads • WM. = W = 453.8 plf + (58 psf)(3.75 ft) = 671.3 plf 756.3 plf snow Wnsusl = (6 psf)(60.5 ft/2) +(58 psf)(3.75 ft) = 399.0 plf % sustained = 59.44 % I Point Loads on Wall Use Point Loads? N (Y or N) dead live P1 = 11.60 kips + 11.00 kips = 22.60 kips Reaction from Joist Girder I P2 = [(78 psf)(22.5 ft) + (.15 kcf)(1 ft)(2 ft)] + 5.0 ft = 10.28 kips Wall and Footing Return Additional Load for Sliding Resistance Use kneewall for sliding resistance? Y (Y or N) Ps = 24.55 kips RE: Shear Wall Design Output I Use a 3.75 ft. wide x 1 ft. thick footing 1 1 I WALLACE DESIGN PROGRAM REVISED 03/12/2010 DCM Page 1 Copyright I Date 07/09/10 Sheet No. of Job Subject Shear Wall 4a MASONRY SHEAR WALLS (WSD) I ACI 530-08 1. Input a P dead - P live /snow Configuration: III Wall Hw, Height of Wall = 19.75 feet w dead Lw, Length of Wall = 16.67 feet w live /snow LL Length of Footing = 18.00 feet Tw, Nominal Wall Thickness = 8 (6 ", 8 ", 10" or 12 ") I V1 I MIEWMIEWN Ww, concrete block weight = 115 pcf (103, 115, 135) (+ or -) = =� Wv, veneer weight = 0 psf �� � mm r o � Reinforcing 1 m�mm� #, Wall Reinforcing Bar Size = 5 As iMENEMMENNI111111.11 1 As n, number of bars per cell? 1 (1 or 2) tN 1� ��M 1 � ��� 1 I S, Wall Reinforcing Spacing = 24 inches V2 \ 1� ���� 1 Solid or Partial Grout? P (S or P) (+ or -) ) j ������ j Hw d', Distance to Tension Steel = 4 inches "-__---- Footing 1MINNINIMINNIMMMINIMMI1 T.O.S. Tf, Thickness of Footing = 1.00 feet 1 H 11l1 _ WI, Width of Footing = 3.75 feet 1� = =�� =.1 ds Ws, Soil weight = 110 pcf 11.1=111111===1..111 / ds, Soil Depth = 0.50 feet r / TI / / A Building Code: IBC i 1 d' Masonry Code? ACI 08 (UBC, ACI, or ACI-08) f m, Compressive Strength = 1500 psi Inspected or Non - Inspected? 1 (I or N) Lw Fs, Steel Stress = 19,200 psi II Qa, Soil Bearing Pressure = 2,000 pst Net or Max Soil Bearing Pressure? N (N or M) Use 1/3 increase for masonry? N (Y or N) [Allowed for FBC only] Use 1/3 increase for soil bearing? N (Y or N) Load Diagram Reduce Overturning Loads to Foundation? Y (Y or N) [per ASCE 12.13.4] I ') p, Friction Coefficient = 0.35 Loads: Lateral Loads V1w, Wind Load at Roof = 5.5 kips I Vie, Seismic Load (ASD) at Roof = 4.7 kips V2w, Wind Load at H = 0.0 kips V2e, Seismic Load (ASD) at H = 3.1 kips H, height for V2 = 12.25 feet i Multiply seismic loads by 1.5 for checking shear? Y (Y or N) Uniform Loads w, uniform dead load = 671.3 plt w, uniform root live load = 484.0 pff w, uniform snow load= 756.3 plf Snow loads factor for seismic= 0 0.0 or 0.2, re: 1605.3.1, exc. 2 w, uniform wind uplift Toad (gross)= -542.7 p11 Point Loads Dead Live (roof) Snow Distance P1, loads (kips) and distance "a" (ft) = 0.0 0.0 0.0 0.33 P2, loads (kips) and distance "a" (ft), 0.0 0.0 0.0 16.67 P3, loads (kips) and distance "a" (ft) = 0.0 0.0 0.0 0.00 i P4, loads (kips) and distance "a" (ft) = 0.0 0.0 0.0 0.00 P5, loads (kips) and distance "a" (ft) = 0.0 0.0 0.0 0.00 Use Point Loads in determining the tension steel? .N (Y or N) dead load to use for min. case = 59.4 i Additional Dead Load for Sliding Resistance= 24.6 kips 2. Tension As Required Amrhein Section 5 -8.D I Loads V = V1 + V2 = 7.8 kips M = V1 (Hw -Tf) + V2 (H -Tf) = 123.0 ft -kips (seismic controls) P = 0.6(Lw(Wd)) + Lw(Ww) + F Pd = 14.9 kips Stresses Em, Modulus of Elasticity = 1,350,000 psi n = Es /Em = 21.48 Am = 57.70 sq. inches fa = P /Am = 15.5 psi rx = 2.53 inches I F = 88.9 Fa a = 223.7 psi (ACI 530 -08, 2.3.3) fb 484.5 psi (ACI 530 -08, 2.3.3) fm = fa + fb = 500.0 psi 1 I WALLACE DESIGN PROGRAM Page 2 2. Tension As Required (cont'd) Amrhein Section 5 -8.D P dead I a P live Reduced fm if fs > Fs = 180.0 psi ( Amrhein 5- 8.B.1(b)) Find Tension for +V (Hw) w dead a'= 1/6fmt= 0.15 w live b' = -1/2 fm t (Lw - di) = -89 I Vt INIMMI'111111E c' = M +(Ww +Wd +F PrLw /2- F(Pe)= 2,904 kd, length of stress block = 34.51 inches / I 1 1 I 1 I 1 C = 1/21 kd fm = 15.74 kips ( +or -) L 1 1 1 1 1 1 1 1 I I I [ T =C - FP= 0.87 kips I k = kd /d = 0.176 1 1 1 1 1 1 1 1 1 1 1 l 1 11 ts = (1 -k)/k n fm = 18,102 psi < 19200 O.K. V2 1 1 1 1 1 J I 1 J 1 ) 1 A= T/fs = 0.05 sq. inches Find Tension for -V (Hw) (+ or - 1 1 1 1 1 1 1 1 I 1 1 1 1 1 Hw c' = M +(Ww +Wd +F P)'Lw /2 +E(Pe) = 2,904 I H 1 I 1 1 1 1 1 1 kd, length of stress block = 34.51 inches 1 I 1 I 1 I 1 C= 1 /2 t kd fm = 15.74 kips 1 1 1 1 1 - I 1 I I I T =C -�P= 0.87 kips k = kd/c1 = 0.176 I / / fs = (1 -k)/k n fm = 18,102 psi < 19200 O.K. A = T/is = 0.05 sq. inches Section 2.3.5 d' I T I;' 3. Check Shear ACI 530 -0 Lw kd kd 2 3 3 V = 7.8 kips (seismic controls) I Y / / MNd = 1.49 Lw Lw Fv (no shear reinf. provided) = 35.0 psi 2 2 Fv (shear reinf. provided) = 58.09 psi / j= 1 -k/3= 0.94 fv = 1.SV/bjd= 12.5 psi < 35 psi - O.K. 1 Av req'd = 0.00 sq. inches Spacing of shear reins. (if req'd) = 0 inches Shear reinf. = Not Req'd 4. Check Overturning 1 P dead a P live Wall weight = 1097.5 plf Footing weight = 562.5 plf w dead Soil weight = 169.6 plf w live Mot = V1w Hw +V2w H +Wup'Lw'Lf /2 = 190.1 ft -kips (wind controls) 1 - M = Check Overturning for +Mot V7 Mr =SMr about the right end 205.9 ft -kips I I T J I I ( I 1 1 1 1 J S.F. = Mr/Mot = 1.1 > 1.0 O.K. Check Overturning for -Mot ME��MEr Mr =SMr about the left end 205.9 ft -kips v2 v - I S.F. = Mr/Mot = 1.1 > 1.0 O.K. MIMI 5. Check Footing 1 Sliding 1 1 1 1 1 1 I 1 1 I 1 1 IC 1 1 V. Vwind = 7.8 kips (seismic controls) P = SP 0.6( %Dmin) = 37.6 kips Fr = N P = 13.2 kips i ..::::::::::::::::::::::::::::: S.F. = FrN = 1.68 > 1.0 O.K. ...:..:.... .:..::..:... Check bearing pressure for -V, load case = 0.6D +W +Uplift 0.6*(%min.)*PD (kips): 22.9 kips q Mr = F Mr (about Jett end) = 205.9 ft -kips / a / e = 7.86 feet Lw (x Wf) q = [2•P /(3 "a)] / Wf = 2151.5 pst i / ' q (net) = 1986.5 pst < 2000 pct O.K. Check bearing pressure for +V, Toad case = 0.6D +W +Uplift Footing Force Diagram 0.6'( %min.)'PD (kips): 22.9 kips Mr = IMr (about right end) = 205.9 ft -kips i q = q = 7.9 feet psf 12'P /(3'a)J / WI 2151.5 fee q (net) = 1986.5 pst < 2000 psl O.K. 6. Conclusion 1 For Masonry Walls: O.K. - Provide As (Tension) = 0.05 square inches at end of walls No shear reinforcement required I Use a Footings: a 3.75 ft. wide x 1 ft. thick tooting 1 1 1 1 I Date 07/09/10 Sheet No. of Project AutoZone Subject Lateral Analysis 1 Shear Wall 4b: 1 Input: P2 Configuration: P1 • Code = ACI -08 V,w V,s� j 3.75' Length of wall = 32.7 ft I Length of footing = 34.0 ft Parapet Height = 3.8 ft F.F. to Roof height = 17.3 ft V2s F.F. to T.O.F. = 1.5 ft f► 17.25' Veneer weight = 0 psf I 12.25 ' / Footing: 1.50' I Thickness of Footing = 1.00 ft / j 1.00' Width of Footing = 2.00 ft Weight of soil = 110 pcf r Depth of soil = 0.5 ft 32.7' I Allowables: Soil Bearing = 2000 psf Net or Max? N (N or M) Use 1/3 bearing increase? N (Y or N) Friction Coefficient = 0.35 I Loads: Wall Shear due to Wind I l V, = (330 plf)(32.67 ft) = 10.78 kips Wall Shear due to Seismic V, = (281 plf)(32.67 ft) = 9.18 kips I V 2s = (0.107)(78 psf)(22.5 ft)(32.67 ft) = 6.13 kips Uniform Loads W = 453.8 plf + (58 psf)(3.75 ft) = 671.3 plf W = 756.3 plf snow WDSUST = (6 psf)(60.5 f112) +(58 psf)(3.75 ft) = 399.0 plf % sustained = 59.44 I Point Loads on Wall Use Point Loads? N (Y or N) dead live P1 = 11.60 kips + 11.00 kips = 22.60 kips Reaction from Joist Girder I P2 = [(78 psf)(22.5 ft) + (.15 kcf)(1 ft)(2 ft)] + 5.0 ft = 10.28 kips Wall and Footing Return Additional Load for Sliding Resistance Use kneewall for sliding resistance? Y (Y or N) I Ps = 29.71 kips RE: Shear Wall Design Output I Use a 2 ft wide x 1 ft. thick footing 1 1 1 WALLACE DESIGN PROGRAM REVISED 03/1212010 DCM Page 1 Copyright 1 Date 07/09/10 Sheet No. 0f Job Subject Shear Wall 4b , MASONRY SHEAR WALLS (WSD) , III ACI 530-08 1. Input a P dead / P live /snow Configuration: Wall Hw, Height of Wall = 19.75 feet w dead Lw, Length of Wall = 32.67 feet w live /snow Lf, Length of Footing = 34.00 feet Tw, Nominal Wall Thickness = 8 (6 ", 8 ", 10" or 12 ") V1 Ww, concrete block weight = 115 pct (103, 115, 135) Wv, veneer wei ht = (+ or -) ������=� 9 0 psf 11 ��� ��p Reinforcing 1 MEMO MM1 #, Wall Reinforcing Bar Size = 5 As 11111101111•1= =11111= =11 As n, number of bars per cell? 1 (1 or 2) 11 = =� = =11 S, Wall Reinforcing Spacing = 24 inches ;��= = =� =11 Solid t ance to T Partial ension Stee! = Grout? d', Dis 4 in (S or P) 4 Hw tensio inches 1��������1 Footing 11-_-- TI, Thickness of Footin 1.00 feet 1IMEMMIMM �El1 T.O.S. g = ,E) ������II , WI, Width of Footing = 2.00 feet I 1 11 ����MI�1 ds Ws, Soil weight = 110 pcf / ds, Soil Depth = 0.50 feet r IIIMMIIIIIIIII / Tf, / A I Building Code: IBC Masonry Code? ACI-08 (UBC, ACI, or ACI -08) d f'm, Compressive Strength = 1500 psi Inspected or Non - Inspected? I (I or N) Lw Fs, Steel Stress = 19,200 psi ' Qa, Soil Bearing Pressure = 2,000 psf Net or Max Soil Bearing Pressure? N (N or M) Use 1/3 increase for masonry? N (Y or N) ]Allowed for FBC only] Use 1/3 increase for soil bearing? N (Y or N) Load Diagram Reduce Overturning Loads to Foundation? N (Y or N) ]per ASCE 12.13.4] p, Friction Coefficient = 0.35 Loads: Lateral Loads Vlw, Wind Load at Roof = 10.8 kips I Vie, Seismic Load (ASD) at Roof = 9.2 kips V2w, Wind Load at H = 0.0 kips V2e, Seismic Load (ASD) at H = 6.1 kips H, height for V2 = 12.25 feet i Multiply seismic loads by 1.5 for checking shear? Y (Y or N) Uniform Loads w, uniform dead load = 671.3 plf w, uniform roof live load = 484.0 plf w, uniform snow load= 756.3 p11 I Snow loads factor for seismic= 0 0.0 or 0.2, re: 1605.3.1, exc. 2 w, uniform wind uplift load (gross)= -542.7 p11 Point Loads Dead Live (roof) Snow Distance P1, loads (kips) and distance "a" (ft) = 0.0 0.0 0.0 0.33 P2, loads (kips) and distance "a" (ft) = 0.0 0.0 0.0 32.67 P3, loads (kips) and distance "a" (tt) = 0.0 0.0 0.0 0.00 P4, loads (kips) and distance "a" (ft) = 0.0 0.0 0.0 0.00 P5, loads (kips) and distance "a" (ft) = 0.0 0.0 0.0 0.00 Use Point Loads in determining the tension steel? N (Y or N) dead load to use for min. case = 59.4 1 Additional Dead Load for Sliding Resistance= 29.7 kips 2. Tension As Required Amrhein Section 5 -8.D I Loads V = V1 + V2 = 15.3 kips M = V1 (Hw -Tp + V2 (H -Tf) = 241.1 ft -kips (seismic controls) P = 0.6(Lw(Wd)) + Lw(Ww) + F Pd = 29.1 kips Stresses Em, Modulus of Elasticity = n = Es /Em = 1,350,000 psi 21.48 Am = 57.70 sq. inches to = P /Am = 15.5 psi rx = 2.53 inches ' h/r = 88.9 Fa = 223.7 psi (ACI 530 -08, 2.3.3) Fb = 500.0 psi (ACI 530 -08, 2.3.3) fb = 484.5 psi (ACI 530 -08, 2.3.3) fm = fa + fb = 500.0 psi 1 I WALLACE DESIGN PROGRAM Page 2 2. Tension As Required (cont'd) Amrhein Section 5 -8.D P dead I a P live Reduced fm if fs > Fs = 500.0 psi ( Amrhein 5-8.8.1(b)) Find Tension for +V (Hw) 1 w dead a'= 1 /6fm1= 0.42 w live b' = -1/2 fm t (Lw - d1) = -492 I Vt c'= M +(Ww +Wd +F P) "Lw /2- 1(Pe)= 8,489 kd, length of stress block = 17.53 inches /) 1 C = 1/2 t kd fm = 22.21 kips (+ or) 1 1 I I L j 1 . I I I 1 1 1 1 T= C- F P= 0.00 kips k = kd /d = 0.045 ' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 fs = (1 -k)/k n fm = 0 psi < 19200 O.K. 1 1 I i 1 A= Tits = 0.00 sq. inches -/ 1 1 I l I 1 1 I 1 1 1 1 1 1 1 Hw Find Tension tor -v (Hw) (+ 1 1 1 1 1 1 1 c' = M +(Ww +Wd +IP)"Lw /2 +F(Pe) = 8,489 I 11 1 1 1 1 1 1 1 1 1 1 kd, length of stress block = 17.53 inches H C = 1/2 t kd fm = 22.21 kips ENE T =C - EP= 0.00 kips k = kd /d = 0.045 fs = (1 -k) /k n fm = 0 psi < 19200 O.K. A = T/fs = 0.00 sq. inches 2.3.5 I d ' ■ T :i 3. Check Shear ACI 530 -08 Section Lw kd kd 2 3 3 v= 15.3 kips (seismic controls) 11- ✓ / / MNd = 1.04 2 Lw Lw Fv (no shear reinf. provided) = 35.0 psi 2 Fv (shear reinf. provided) = 58.09 psi / j= 1 -k /3= 0.98 tv = 1.5V/bjd= 11.9 psi <35 psi - O.K. I Av req'd = 0.00 sq inches Spacing of shear reinf. (if req'd) = 0 inches Shear reinf. = Not Req'd 4. Check Overturning I P dead a P live Wall weight = 1097.5 p11 Footing weight = 300.0 plt w dead Soil weight = 73.3 pit w live Mot = Vlw Hw +V2w H +Wup'Lw "Lf /2 = 514.4 ft -kips (wind controls) 1 V1 1E=W����T Check Overturning for +Mot Mr =SMr about the right end 628.2 ft -kips / MMIMM_�MMI S.F. = Mr/Mot = 1.2 > 1.0 O.K. ■■ ■ Check Overturning tor -Mot � l 1 1 1 1 1 Mr = SMr about the left end 628.2 ft -kips V2 1 - 1 1 1 1 1 1 1 1 1 S.F. = Mr/Mot = 1.2 > 1.0 O.K. 1 1 1 _� 1 I 1 1 I 5. Check Footing 1 1 1 I 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Sliding I 1 1 1 1 1 1 I I V= Vwind = 10.8 kips (wind controls) P = SP 0.6( %Dmin) = 37.0 kips Fr = p P = 13.0 kips ............... S.F. =FrN= 1.20 >1.0 O.K. ■ - - - -_ _ ' Check bearing pressure for -V, load case = D +0.75(L +E) I :•:• q PD +.75L (kips): 82.3 kips Mr = SMr (about left end) = 1399.9 ft -kips a f e = 2.34 feet Lw (x WI) q = 12 "P /(3 "a)1 / Wf = 1709.8 psf q (net) = 1544.8 psf < 2000 psf O.K. Check bearing pressure for +V, load case = D +0.75(L +E) Footing Force Diagram PD +.75L (kips): 82.3 kips Mr = F Mr (about right end) = 1399.9 tt -kips I e = 2.3 feet q = [2'P /(3 "a)] / Wf = 1709.8 psi 154 q (net) = 1544.8 pst < 2000 psf O.K. 6. Conclusion I For Masonry Walls: O.K. - Provide As (Tension) = 0 square inches at end of walls No shear reinforcement required For Footings: Use a 2 ft. wide x 1 ft. thick footing 1 1 1 Date 07/09/10 Sheet No. of Project AutoZone Subject Lateral Analysis 1 Shear Wall 1 or 3: I Input: Configuration: Code = ACI -08 Vw,. Vs, / 3.75 ' I Length of wall = 32.0 ft _b. Length of footing = 32.0 ft Parapet Height = 3.8 ft F.F. to Roof height = 17.3 ft V F.F. to T.O.F. = 1.5ft 7 . I Veneer weight = 0 psf 17.25 ' 12.25 ' Footing: Thickness of Footing = 1.00 ft / 1.50 ' 1 Width of Footing = 2.00 ft Weight of soil = 110 pcf 1 1 , 1.00 ' Depth of soil = 0.5 ft l' t I Allowables: 32' Soil Bearing = 2000 psf Net or Max? N (N or M) Use 1/3 bearing increase? N (Y or N) I Friction Coefficient = 0.35 Wall Shear due to Wind 1 V, = (304 plf)(32 ft) = 9.73 kips Wall Shear due to Seismic , -' V, = (204 plf)(0 ft) = 6.53 kips V2 = (0.107)(78 psf)(22.5 ft)(32 ft) = 6.01 kips I Uniform Loads W 0 = 35.1 plf + (55 psf)(3.75 ft) = 241.4 plf WLL = 153.0 plf snow WOSUST = (6psf)(4.67 ft/2) +(55 psf)(3.75 ft) = 220.3 Of .— % sustained = 91.26 % Sliding Resistance: I Ps = 10.6 kips RE: Shear Wall Design Output Use a 2 ft. wide x 1 ft. thick footing 1 1 1 1 WALLACE DESIGN PROGRAM REVISED 03/12/2010 OCM Page 1 Copyright 0 Date 07/09/10 Sheet No. of Job Subject Shear Wall 1 MASONRY SHEAR WALLS (WSD) ACI 530 -08 1. Input a P dead i P live /snow Configuration: Wall Hw, Height of Wall = 19.75 feet w dead Lw, Length of Wall = 32.00 feet w live /snow Lf, Length of Footing = 32.00 feet Tw, Nominal Wall Thickness = 8 (6 ", 8 ", 10" or 12 ") I v1 ../ Ww, concrete block wei ht = 115 g pct (103, 115, 135) � -�-- � #, veneer weight = 0 psf (+ or -) ' -__ Reinforcing 1���� �I fl, Wail Reinforcing Bar Size = 5 As lliMMINE=1/5/ /.1I As n, number of bars per cell? 1 (1 or 2) 11� =M� �I S, Wall Reinforcing Spacing = 32 inches V2 \ i �n = = =- =" Solid or Partial Tension P (S or s P) (+ or -) J l ♦ ����M�1 Hw d', Distance to Tension Steel = 4 inches 11 5------ x' Footing I������MNI T.O.S. Tf, Thickness of Footing = 1.00 feet • III H IAMMI��MMMQ Wf, Width of Footing = 2.00 feet _,_== = =__,I d Ws, Soil weight = 110 pct / ds, Soil Depth = 0.50 feet // 1 Tf / / All owables: Building Code: IBC d' Masonry Code? ACI OB (UBC, ACI, or ACI-08) fm, Compressive Strength = 1500 psi Inspected or Non - Inspected? 1 (I or N) Lw Fs, Steel Stress = 19,200 psi Oa, Soil Bearing Pressure = 2,000 psi Net or Max Soil Bearing Pressure? N (N or M) Use 1/3 increase for masonry? N (Y or N) [Allowed for FBC only( Use 1/3 increase for soil bearing? N (Y or N) Load Diagram Reduce Overturning Loads to Foundation? N (Y or N) [per ASCE 12.13.4) I , p, Friction Coefficient = 0.35 Loads: Lateral Loads V1w, Wind Load at Roof = 9.7 kips I Vie, Seismic Load (ASD) at Roof = 6.5 kips V2w, Wind Load at H = 0.0 kips V2e, Seismic Load (ASD) at H = 6.0 kips H, height for V2 = 12.25 feet Multiply seismic loads by 1.5 for checking shear? Y (Y or N) i Uniform Loads w, uniform dead load = 241.4 plf w, uniform roof live load = 37.4 plf w, uniform snow load= 153.0 plf Snow loads factor for seismic= 0 0.0 or 0.2, re: 1605.3.1, exc. 2 w, uniform wind uplift load (gross)= -41.9 plf Point Loads Dead Live (roof) Snow Distance P1, loads (kips) and distance "a" (ft) = 0.0 0.0 0.0 0.00 P2, loads (kips) and distance "a" (ft) = 0.0 0.0 0.0 0.00 P3, loads (kips) and distance "a" (ft) = 0.0 0.0 0.0 0.00 i P4, loads (kips) and distance "a" (ft) = 0.0 0.0 0.0 0.00 P5, loads (kips) and distance "a" (it) = 0.0 0.0 0.0 0.00 Use Point Loads in determining the tension steel? Y (Y or N) dead load to use for min. case = 91.3 i Additional Dead Load for Sliding Resistance= 10.6 kips 2. Tension As Required Amrhein Section 5-8.D I Loads V = V1 + V2 = 12.5 kips M = V1 (Hw -Tf) + V2 (H -Tf) = 190.0 ft -kips (seismic controls) P= 0.6(Lw(Wd)) +Lw(Ww) +1Pd= 24.0 kips Stresses a Em, Modulus of Elasticity = 1,350,000 psi n = Es /Ern = 21.48 Am = 53.70 sq. inches fa = P /Am = 14.0 psi rx = 259 inches rift 111 Fa 86.9 Fa = 230.6 psi (ACI 530-08, 2.3.3) Fb = 500.0 psi (ACI 530 -08, 2.3.3) fb = 486.0 psi (ACI 530 -08, 2.3.3) fm = fa + fb = 500.0 psi 1 WALLACE DESIGN PROGRAM Page 2 2. Tension As Required (cont'd) Amrhein Section 5 -8.D P dead I a • P live Reduced fm if Is > Fs = 500.0 psi ( Amrhein 5- 8.8.1(b)) Find Tension for +V (Hw) I I w dead a' =1/6 fm t = 0.40 w rive b' = -1/21m t (Lw - dl) = -456 111 V1 c' = M +(Ww +Wd +jP) "Lw /2 -j(Pe) = 6,797 ����t��N kd, length of stress block = 15.10 inches / ■ I 1 1 I 1 C= 1 /2tkdfm= 18.13 kips (+ or -) 1 1 1 I 1 11 T = C - FP= 0.00 kips 1 1 1 1 1 1 I I 1 1 I L_ k= kd /d = 0.040 I I 1 1 1 fs = (1 -k)/k n fm = 0 psi < 19200 O.K. V2 11 1 1 I 1 1 1 1 1 1 1 A= T/ts = 0.00 sq. inches �+ H w Find Tension for -V (Hw) (+ or -) I I 1 I 1 1 I 1 1 1 1 1 1 c' = M +(Ww +Wd +1P) *Lw /2 +1(Pe) = 6,797 1 1 1 1 1 1 1 1 1 1 1 kd, length of stress block = 15.10 inches H l I I I 1 1 1 f C= 1 /21kdfm= 18.13 kips 1 � 1 1 1 1 f1 1 1 -Lf _ T =C -1P= 0.00 kips k = kd /d = 0.040 / / fs = (1 -k)/k n fm = 0 psi < 19200 O.K. A = T/fs = 0.00 sq. inches d' I T 3. Check Shear ACI 530 -08 Section 2.3.5 Lw - kd kd I_ 2 31 3 V = 12.5 kips (seismic controls) I / MNd = 0.54 2 Lw Lw Fv (no shear reinf. provided) = 44.7 psi 2 Fv (shear reinf. provided) = 67.04 psi j = 1 - k/3 = 0.99 iv = 1.5V/bjd= 10.4 psi < 44.7 psi - O.K. I Av req'd = 0.00 sq. inches Spacing of shear reinf. (if req'd) = 0 inches Shear reinf. = Not Req'd 4. Check Overturning I P dead a P live Wall weight = 1042.8 p11 1 Footing weight = 300.0 ptt w dead Soil weight = 73.3 plf w live Mot = V1w 1-1w +V2w H +Wup "Lw'Lf /2 = 213.6 ft -kips (wind controls) ' Check Overturning for +Mot V� Mr = SMr about the right end 502.7 ft -kips I S.F. = Mr/Mot = 2.4 > 1.0 O.K. 1 1 1 1 1 1 1 1 1 V I 1 Check Overturning for -Mot 1 1 1 1 1 I 1 Mr = SMr about the left end 502.7 ft -kips 1 V2 I I I I i mill 1� I 1 I 1 S.F. = Mr/Mot = 2.4 > 1.0 O.K. I I I I I I 5. Check Footing 1 1 1 1 1 1 1 1 1 1 1 1 I- 1 1 1 I I 1 1 f Sliding i I 1 1 1 1 1 1 f V= Vwind = 12.5 kips (seismic controls) P = SP 0.6(/ Dmin) = 37.8 kips f Fr = p P = 13.2 kips 1 S.F. =FrN= 1.05 >1.0 O.K. "' ' Check bearing pressure for -V, load case = D +0.75(L +E) P - - - -- ___ q PD +.75L (kips): 53.9 kips Mr = F Mr (about left end) = 863.D ft -kips a e = 2.82 feet Lw (x Wt) q = [2'P /(3'a)] / Wf = 1287.8 psf I q (net) = 1122.8 psf < 2000 psf O.K. pressure for +V, load case = D +0.75(L +E) g gPD +.75L (kips): 53.9 kips Mr = F Mr (about right end) = 863.0 ft-kips I e = 2.8 feet q = [2'P /(3 "a)] / Wf = 1287.8 psi q (net) = 1122.8 psf < 2000 psf O.K. 6. Conclusion I For Masonry Walls: O.K. - Provide As (Tension) = 0 square inches at end of walls No shear reinforcement required For Footings: Use a 2 ft. wide x 1 ft. thick footing 1 1 1 . . Page 1 ) gi Date 6/17/10 Sheet No. Of II Job Subject Wall 3 Load Case .60 • .7E Masonry Shear Wall with Piers at Wall 3 I 1. Input Uniform DL to Wall = Uniform Live to Walk FT;R‘‘.4138-13WI g,rginVg153orr, Tm = Tm^0.5 = 'VlaTT050ftlititi 38.73 psi Lateral Load at Roof= Ire Em= 1350000 psi Density of Wall above F.F. r4P.SI7*78 Pit n= 21.48 Density of Wall elow F.F.= 777NiA78iftel/ I Wdth of Wall= ,ggeggegg &lig 04TftifttlijitiT Seismic Factor = i fs = lid•j/ Height of Wall (A.F.F.)= 6UNWitj2f600 Footing Thickness= aattlitetift"4 Top of Roof (A.F.F.)= "tri Footing VVidth= 2-tifriGMT;ZOO.ftZ Top of Footing (B.F.F.)= TrkakiNSTA50ift4 Height of Soil above ftg= PAZ*10.:50A1 Length of Wall= , i1201 1 ,T40• 0 9 ftVii Density of SoiI= itiMirtairft100ipcf/ Soil Bearing Capacity= Vi4ingS4eittiW Dead Load Factor= 0.60 Soil Sliding Resistance= ,riiPMZE,T.A21035.: I 2 Input Pier Geomety Ri•ht (Input zero values for blanks) Pier Height Height Pier Len• h Equiv. Wall Length open Length open Radius of Thickness Left Ri• ht G ration r Area kr, ig kirikkar mg .. in , '.Igg ggg. :■'.:: ggg agg.:' ,, riggi eggggggg mgg.g i' VIA wyggig ' .kgggg Opening Left 48.00 sq. ft.' k PI Wrar8:00.fUN1 4 Vt,t7:17 ft:WA 44102‘00:-ftT/4 /24 20 AftEomanta l541,3.:33 tt:IXPE tigtiOTAIWN 23.88 sq. ft. jt3•Ri i'liZt4717Jtta0 Vglg&M.PPntV PAMIZIMPDX'g ae7p,3 ihrziit 3wiii3;33ift..tm rzwixawas 1/ zzgaigx4 I fatW f',? Wala-M49, OMPAC,Ven&t, tt.1461tiMM 0 El .C.it . .,M ° , . r; *A 011711M4WOR: FA'SgMrilaW 41:05 - ? , .evaigur-ot. -.J .. : , .......5i.‘"'.... , ; . *:41C4 rgggg'gtgAg Mgaggg:Wrg ggiggggggggg gggg'dgVggNgg' gag gggggggggkg4 iNgWegigief gligiggiggilgg '' g Zgeggggggg,:.. 7 15 ":14-..":. wgraglogo 4YPI 4ii?....474a9Mtr4. VC4410^ 1r ''.1 V '>. v/-'15 Matik :14::VAgi7M4 71.88 sq. ft. Sum of Lengths= 30.67 ft. 9.33 ft. 9.33 ft. Total Length= 40.00 ft. I 3. Check pier rigidities and shear stress distribution. Seismic Weight 08 15611 = 6912 lbs Total Shear to Piers = 15072 Ibs Pier I H (ft.) I d (0.) 1 Equiv. t (in.) 1 0 1 R . 1 R/SumR I V 1 M I MNd I Fv (allow) I Tv = V/bjd (1) 1 fv ' 1.5 . 1 8.00 16.00 4.200 0.387 2.585 0.255 3850 lbs 15401 ft-Ibs 0.25 47.93 psi 5.54 psi 8.31 psi I . 2 7.17 18.67 12.67 4.200 0.288 3.475 4.058 0.343 517655 18556 ft-lbs 21672 ft4bs 0.19 48.67 psi 6.36 psi 6.09 psi 9.55 psi 3 7.17 7.625 0.246 0.401 6045 lbs 0.28 47.51 psi 9.13 psi I (1). j=0.88 assumed. d=d-4in. Sum R= 10.117 Sum V= 15072 104 • , 4. Check Axial-Rendin Loads Pier Axial Fa A fa fa/Fa L Fb S fb Ib/Fb Interaction fa +85 fa - 70 Load - I 1 20.86 k 349 psi 806 8.2 25.86 psi 0.074 495 psi 25805 in.3 7.16 psi 0.014 0.089 33.03 psi 18.70 psi 2 3 6.03 k 16.02 k 354 psi 346 psi 941 M.2 1159 18.2 6.41 psi 13.82 psi 0.018 0.040 495 psi 495 psi 35136 in.3 29377 in.3 6.34 psi 8.85 psi 0.013 0.018 0.031 12.74 psi 0.07 psi 0.058 ' 22.68 psi 4.97 psi 1 1 1 . I 1 . ,. \ . .. i I 1 1 .... _ ... . ..... ........... ..... . . . .. - Page 2 Date 6/17/10 Sheet No. of 1 Job Subject Wall Load Case .6D +.7E 5. Check Required Tension Steel. If Tension = T is ne alive, use minimum As required by code. -_ Pier fa/Fa fb fm a b I c kd k I C I T fs A 1 0.074 458 psi 484 psi 318.92 - 191151 2103667 41,2310 0.06 11417Ibs -9440 Ibs 2 0.018 486 psi 492 psi 344.71 - 227553 873880 3.86 in 0.02 3995Ibs -2034 Ibs 3 0.040 475 psi 489 psi 621.48 - 276011 1414180 5.18 in 0.04 9666 Ibs -6359 Ibs ' Pier e U2 -e 3' (/2 -e) 02 1/6 lb NOTE:If fvfs allow, reduce I'm until fs is less than fs allow. 1 8.86 in 87.14 in 261.42 in 96.00 in 32.00 in 33.03 psi 1- 2 36.94 in 75.08 in 225.25 in 112.02 in 37.34 In 12.74 psi 3 16.23 in 59.79 in 179.17 in 76.02 In 25.34 in 22.68 psi 1 6. Check Overall Overtuming Moment on Shear Wall • Total Overturning Moment = 251010 0 -Ibs. R esisting Moment (from right)= 1077902 ft-Ibs. Factor of Safety= 4.29 III Resisting Moment (from lefl)= 1296640 ft-Ibs. Factor of Safety= 5.17 7. Check Sliding on Shear Wall I V= 15072 Ms Sliding Resistance = 19095 Ibs Factor of Safety= 1.27 8. Check Overall Foundation Bearing Pressure I 1 From Right End Mr -MO= 826892.30 P= 60378.85 a= 13.70 e= 6.30 06= 6.67 I night= 1469 psi gleft= 41 pst From Left End Mr -Mo= 1045630.71 P= 60378.85 a= 17.32 e= 2.68 1/6= 6.67 glefl= 1058 ps1 gnght= 451 psf 1 1 1 1 1 1 I / . Page 1 ) Date 6/17/10 Sheet No. of I Job Subject Wall 3 Load Case .60 + W Masonry Shear Wall with Piers I 1. input Uniform DL to Wall 90 4- fiNt2g i 0 i f rm = 1500 psi Uniform Live to Wall= igiiiiiTiiiaii Prn^0.5 = 38.73 psi Lateral Load at Roof= iti1g7t52121601bs'; Em= 1350000 psi Density of Wall above F.F.= k Of: n= 21.48 Density of Wall below F.F.= ifCtiaMdfifinipSf; I Width of VValk Seismic Factor fs = MD Mn i= Height of Wall (A.F.F.)= P:VrIA 21.00 55. Footing Thickness= • 19200 psi 1.00 ft. Top of Roof (A.F.F.). 17.25 ft. Footing Width= 2.00 R. Top of Footing (B.F.F.)= 1.5051. Height of Soil above ftg= 0.5055. I Length of Wall= y= Soil Sliding Resistance= 40.00 55. 2000 psf Density 05 50,1= Dead Load Factor= 100 pcf Soil Bearing Capacit 0.60 0.35 1 2 P Height (Input zero valuesifor 11 Length open 1 Length open Radius of Opening Left Right qt s I , Area . . 1 8.0055. 16.0051. 4.20 in 6.00 ft. 2.6 48.00 sq. ft. 2 8.0055. 7.1751. 2.0055. 4.20 in 6.0055. 3.33 ft. 2.6 23.88 sq. R. 3 7.1755. 12.67 ft. 7.63 M 3.3301. 2.2 i . _ 71.88 sq. ft.' Sum of Lengths= 30.6751. 9.3355. 9.33 R. Total Length= 40.0851. 3. Check pier rigidities and shear stress distribution. I Seismic Weight of Wall = Total Shear to Piers = 12160 lbs Pier 1 H ift) 1 d (5.) 1 Equiv. t (in.) 1 D 1 R 1 R/SumR 1 V 1 M 1 MNd 1 Fv (allow) 1 N = V/Iiijd (1) 1 fv* 1.5 1 8.00 16.00 4.200 0.387 2.585 0.255 3106 lbs 1242651 0.25 47.93 psi 4.47 psi 6.71 psi I . 2 7.17 18.67 4.200 0.288 3.475 0.343 4176 Ibs ft 14971 -lbs 0.19 48.67 psi 5.14 psi 4.91 psi 7.70 psi 3 7.17 12.67 7.625 0.246 4.058 0.401 4877 Ibs 17486 55-lbs 0.28 47.51 psi 7.37 psi . _ _ I (1). j=0.88 assurned. Wd Sum R= 10.117 Sum Vi= 12160 Ibs 4. Check Axial-Bendin Loads Pier Axial Fa A fa fa/Fa I Fb S fti I fb/Fb I Interaction fa • fb fa - fb Load I 1 13.45 k 349 psi 806 15.2 16.68 psi 0.048 495 psi 25805 in.3 5.78 psi 0.012 0.059 22.46 psi 10.90 psi 2 3.76 k 354 psi 941 in.2 4.00 psi 0.011 495 psi 35136 in.3 5.11 psi 0.010 0.022 9.11 psi -1.12 psi 3 10.36 k 346 psi 1159 5.2 8.94 psi 0.026 495 psi 29377 in.3 7.14 psi 0.014 0.040 16.08 psi 1.80 pal 1 I I 1 1 .. i _ 1 I . Page 2 Date 6/17/10 Sheet No. of 11 Job Subject Wall 3 Load Case .6D + W 5. Check Required Tension Steel. If Tension = T is ne55ative, use minimum As required by code. Pier fa/Fa fb fm I a b c kd I k C I 7 fs 1 A I 1 0.048 471 psi 489 psi 488 psi I 341.61 -192669 1386521 7.9 in 0.04 7472 Ibs 59781bs 2 0.011 493 psi 345.39 - 227996 585867 2.58 in 0.01 2673 Ibs -1088 Ibs 3 0.026 482 psi 491 psi 624.16 - 277201 956132 3.48 in 0.02 6510 Ibs -3853 Ibs 1 Pier e I V2 -e 3' (V2 -e) 02 V6 ib NOTE1f 15 >fs allow. reduce fm until fs is less than fs allow. 1 11.09 in 84.91 in 254.74 in 96.00 in 32.00 in 22.46 psi 2 47.77 in 64.25 In 192.74 in 112.02 in 37.34 in 9.29 psi 3 20.25 in 55.77 in 167.31 in 76.02 in 25.34 in 16.08 psi I 6. Check Overall Overturning Moment on Shear Wall Total Overturning Moment = 240160 ft-Ibs. it Resisting Moment (from right)= 775855 81 -Ibs. Factor of Safety= 3.23 II Resisting Moment (from left)= 917239 ft -Ibs. Factor of Safety= 3.82 7. Check Sliding on Shear Wall I V= 121601bs Sliding Resistance = 13727 Ibs Factor of Safety 1.13 8. Check Overall Foundation Bearing Pressure • Front Right End Mr -M0= 535695.20 P 43961.36 a= 12.19 e= 7.81 V6= 6.67 I aright= 1203 psf glefl= From Left End Mr -MO= 677078.90 P= 43961.36 a= 15.40 q l 4.60 psf 1/6= 6.67 gleft= 929 psf aright= 170 psf 1 1 I 1 1 1 1 1 ., Page 1 ' Date 6/17/10 Sheet No. Of _ I. Job Subject Wall 1 Load Case .6D + .7E Masonry Shear Wall with Piers at Wall .1 1 1. Input Uniform DL to Wall = m Live @ VVall= Lateral Load at Ratt= fregfaitilit 04.14 141X11118.160081 fm Em= Unifor = f 660.5 5 = MIT-Lasig(i3ii 38.73 psi 1350000 psi Density of Wall above F.F.= tkriZQW.+1+178*1 n= 21.48 Density of Wall below F.F.= 6r.:':766, '.0 I \With of Wall= Seismic Factor = :goin Height of Wall (A.F.F.). 61MatiaMe.8'1K3. 36Zgiack.J Illifiliiio:ft fs = Footing Thickness= WPIT.Abzow-Oip WISOftbOA. Top of Roof (A.F.F.)- 0t., Footing Width= t4,.. Top of Footing (B.F.F.)= 077/0OM115.0,ft4 Height of Soil above ftg= )).7//nt0:90 fU Length of Wall= I iariity-- S 7 . /066/640.00887 7 . /066/640.00887 11 "Miirraiii064114i lot46=74V10:35; . Density of Soil= Sol Be ng Capac Dead Load Factor= t.":;,:',144.1+6'5100.11igt 0.60 oil Sliding Resistance= I 2. Input Pier Geometry (Input zero values for blanks) Pier Height Rir Height Per Equiv. Wall Length open - Left Rnht • - Pi Lenrth Length open Radius of Thickness Left ht G ration r ww glafIew.:4 , 1%ii . ?;.: . :, , ..,:i -,, a vw....T. • Iwo , vt.'4. '-, 5m4y., rg,..o /0/67 t :. +trnt C.1JZf+29 r Ingt+J•-: Opening Area 23.88 sq. fl. r:12iir bilil77:17.•ft 11`,M Mgt6907,A7Ah=7=, g qi;a30137:ft,47,Nr, .tattill=1:1444323,rt :4=43:331t9/VN lit.047.4otta 23.88 sq. fl. la:3 4iV,77,17,,fe::^ t 74%17:33 tt:=AA 5,:*420•10.41 AM3:331Vagi AtirtAtatwitA wtraziwg.w? _ I II A...r..i E't. t kiNM44444440 N M1420 N=N 04,04=NN:Nizei 444=01M=Ma 444= 4,==== MMOMMd MMANININg= N=M;N;ZNUNNN 011440 4i======= 0401===== M4'4 41M44441444404 116744m444m vam:1•014,1W4 arArftilAtv 4 MMOMM4P V4 4 . N4N= MMINNIIMMOVOIMM=M Me=44=4144 MNN.N4mm 4 M 4=767477677776 47.75 sq. ft. Sum of Lengths= 33.33ft. 6.6688. 6.6688. Total Length= 39.99 ft. 3. Check pier rigidities and shear stress distribution. I Seismic Weight of 7/alt = 7113 Ibs Total Shear to Piers = 15273 @s Ti;fl -1 0.) 1 d (ft.) 1 Equiv. t(in) 1 D 1 R 1 R/SurnR 1 V I M 1 MNd 1 Fv (allow) 1 N = V/bid (1) 1 N 1.5 . • 1 7.17 5.33 4.200 1.540 0.649 0.089 135404 4852 ft-lbs 0.67 42.53 psi 6.11 psi 9.16 psi I 2 3 7.17 7.17 18.67 17.33 4.200 4.200 0.288 0.312 3.475 3.201 0.474 0.437 7245 Ibs ft 6675 Ibs 25973 -lbs 23928 ft-lbs 0.19 0.21 48.67 psi 48.48 psi 8.91 psi 13.36 psi 8.85 psi 13.28 psi I 15273 Ibs (1). j=0.88 assumed. c1=0-4in. 4. Check Axial-Bending Loads Sum R = 7.325 Sum V= Pier Axial Fa A fa fa/Fa Fb S fb '6/Fb Interaction fa + 15 fa .88 Load 1 7.53 k 354 psi 269 in.2 28.04 psi 0.079 495 psi 2864 in.3 20.33 psi 0.041 0.120 48.38 ps1 7.71 psi • 2 3 15.08 k 21.42 k 354 psi 354 psi 941 In.2 873 in.2 16.02 psi 24.52 psi 0.045 0.069 495 p51 495 psi 35136 in.3 30273 in.3 8.87 psi 9.48 psi 0.018 0.019 0.063 24.90 psi 7.15 p5) 0.088 34.00 psi 15.03 psi 111 _ I I 1 I I 1 1 Page 2 I Date 6/17/10 Sheet N0. of Job Subject Wall 1 Load Case .6D +.7E 5. Check Required Tension Steel. It Tension = T is ne ative, use minimum As required by code. Pier fa/Fa I fb fin a b I c kd I k ` C T fs f A 1 0.079 456 psi 484 psi 338.68 -60923 269016 4.53 in 0.08 I 46021bs ' - 29311bs I r 2 0.045 473 psi 489 psi 342.03 - 225784 1940465 8.71 In 0.04 8937 Ibs -6142 lbs 3 0.069 461 psi 485 psi 339.67 - 207835 2428297 11.92 in 0.06 12142 Ibs - 92741bs 1 - Pier e 1/2 -e 3 • ( -e) II/2 U It Po NOTE:It is >fs allow, reduce fm until fs is less than fs allow. 1 7.73 In 24.25 in 72.75 in 31.98 in 10.66 in 48.38 psi I 2 3 20.67 in 91.35 in 274.05 in 112.02 in 103.98 in 37.34 in 24.90 psi 13.41 in 90.57 In 271.72 in 34.66 in 34.00 psf 1 6. Check Overall Overturning Moment on Shear Wall Total Overturning Moment = 253627 ft I Resisting Moment (from right)= 1134864 R - IDs. Factor of Safety= 4.47 Resisting Moment (from left). 1234707 R - Ibs. Factor of Safety 4.87 7. Check Sliding on Shear Wall I V= 15273 ibs Sliding Resistance = 19486 Ibs Factor of Safety= 1.28 . 8. Check Overall Foundation Bearing Pressure ! From Right End Mr - Mo= 881236.89 P= 61496.28 a= 14.33 e= 5.67 V6= 6.67 I Fright= 1422 psf gleft= 115 psi From Loft End Mr -Mo= 981079.48 P= 61496.28 a= 15.95 e= 4.05 V6= 6.67 glefl= 1235 psf gdght= 302 psf 1 1 I 1 1 1 1 I Page 1 • i - Date 6/17/10 Sheet No. of 1 Job Subject Wall 1 Load Case .6D + W Masonry Shear Wall with Piers 1111. Input Uniform DL to Wall = Attere7,L 113triiii fm = 1500 psi Uniform Live to Wall= Ra!NiAlAtiViA fm"0.5 = 38.73 psi Lateral Load at Roof= 514,1*(411,121601bSi Em= 1350000 psi Density of Wall above F.F. 11Al-7irVA-58li0t n= 21.48 Density of VVall below FF.= t'1-1,K1r VVidth of Wall= Dtarettli=81n4 I. Seismic Factor = 4:44: fs = 19200 psi Height of Wall (A.F.F.)= 21.0019. Footing Thickness= 1.00 ft. Top of Roof (A.F.F.)= 17.25 ft. Footing Width= 2.00ft. Top of Fooling (B.F.F.)=. 1.50 ft. Height of Soil above ftg= 0.50 ft. I Length of Wall= Soil Bearing Capacity= = 40.00 ft. 2000 psf Density of Soik Dead Load Factor= 100 pcf 0.60 Soil Sliding Resistance 0.35 I 2 E (Input zero values for blanks( Length open Height Length open Radius of Opening 9 rd I Area 1 7.17 ft. 5.33 ft. 4.20 in 3.33 ft. 2.6 23.88 sq. ft. 2 7.17 ft. 7.17 ft. 10.67 ft. 4.20 in 3.33 ft. 3.33 ft. 2.6 23.88 sq. ft. 1 7.17 ft. 17.33 ft. 4.20 in 3.33 ft. , 2.6 47.75 sq. ft. Sum of Lengths= 33.3319. 6.66 ft. 6.66 ft. Total Length= 39.99 ft. 3. Check pier rigidities and shear stress distribution. I Seismic Weight of Ntali = Total Shear to Piers = 12160 lbs Pier 1 H (ft.) 1 d (5.) 1 Equiv. 1 (in.) 1 D 1 R 1 R/SumR 1 V 1 M 1 M/Vd 1 Fv (allow) 1 Iv = V/bjd (1) 1 hl • 1.5 1 7.17 5.33 4.200 1.540 0.649 0.089 - 1078 lbs - 3863 ft-lbs 0.67 42.53 psi 4.86 psi 7.26 psi 1 '. 2 3 7.17 7.17 18.67 17.33 4,200 4.200 0.288 0.312 3.475 3.201 0.474 0.437 5768 lbs 5314 Ws 20679 ft-lbs 19051 ft4bs 0.19 0.21 48.67 psi ft 48.413 psi 7.09 psi 7.05 psi 10.64 psi 10.57 psi 1 (1). i=0.08 assumed. ckd-4in. Sum 13= 7.325 Sum V= 12160 lbs 4. Check Axial-Bendi Loads Pier fa - I Axial fb 16 fa_ fa/Fa i__ 49 S fb fb/Fb Interaction fa . Loa Fa A d i 1 4.84 k 354 psi 2 3 9.70 k 13.87 k 354 psi 354 psi 269 in.2 18.03 psi 0.051 941 in.2 873 in.2 10.30 psi 15.88 psl 0.029 0.045 49 psi 2864 in.3 6.19 psi 0.033 0.084 34.22 ps 1.84 psi 495 psi 495 psi 35136 91.3 30273 in.3 7.06 psi 7.55 psi 0.014 0.015 0.043 17.37 psl 3.24 psi 0.060 , 23.43 p51 8.32 psi , 1, _ I Illi 1 1 .. _ I 1 1 1 Page 2 II Date 6/17/10 Sheet No. of Job Subject Wall 1 Load Case .6D + W 5. Check Required Tension Steel. If Tension = T is ne$ alive, use minimum As required by code. Pier fa/Fa I tb fm I a b I c kd k C T 1 Is A I 0.051 470 psi 488 psi 341.47 -61425 181890 3.01 in 0.05 3085 lbs -1759 lbs 2 0.029 481 psi 491 psi 343.63 - 226836 1295417 5.76 in 0.03 5939 Ibs -3756 lbs 3 0.045 473 psi 489 psi 342.08 - 209309 1614952 7.82 in 0.04 8020 lbs -5846 lbs ' Pier e 02 -e 3' (52 -e) 02 06 rb NOTEff fs >is allow, reduce fm until fs is less than is allow. 1 9.57 in 22.41 in 67.23 in 31.98 in 10.66 in 34.22 psi 1 2 25.59 in 86.43 in 259.28 in 112.02 in 37.34 in 17.37 psi 3 16.49 in 87.49 in 262.48 in 103.98 in 34.66 in 23.43 psi 6. Check Overall Overturning Moment on Shear Wall Total Overturning Moment = 240160 ft-lbs. Resisting Moment (from right(= 815859 ft -lbs. Factor of Safety= 3.40 Resisting Moment (from left)= 878514 ft-lbs. Factor of Safety= 3.66 7. Check Sliding on Shear Wall I V= 121601bc Sliding Resistance = 14018 lbs Factor of Safety= 1.15 8. Check Overall Foundation Bearing Pressure j From Right End Mr -Mo= 575699.15 P= 44793.35 a= 12.85 e= 7.15 56= 6.67 I gright= 1162 psf gleft= From Left End Mi -Mo= 638353.52 P= 44793.35 a= 14.25 e= 5.75 1/6= 6.67 gleft= 1043 psf gright= 77 psf II 1 1 1 I 1 I Date 07/09/10 Sheet No. of Project AutoZone Subject Lateral Analysis 1 Shear Wall 2: I Input: Configuration: Code = ACI -08 V,w. V,s ' 5.75 Length of wall = 30.7 ft ___I, i Length of footing = 30.7 ft Parapet Height = 5.8 ft F.F. to Roof height = 15.3 ft V zs F.F. toTO.F.= 1.5ft -/-g. I Veneer weight = 0 psf 15.25 ' 12.25 ' Footing: 1.50 ' Thickness of Footing = 1.00 ft / 1 / 1.00 ' Width of Footing = 2.00 ft Weight of soil = 110 pcf .i' ,+' Depth of soil = 0.5 ft 30.7' I AI lowables: Soil Bearing = 2000 psf Net or Max? N (N or M) Use 1/3 bearing increase? N (Y or N) I Friction Coefficient = 0.35 Loads: I t Wall Shear due to Wind V, = (170 plf)(30.67 ft) = 5.21 kips Wall Shear due to Seismic 1 V, = (145 plf)(30.67 ft) = 4.45 kips Vzs = (0 psf)(22.5 ft)(30.67 ft) = 5.76 kips Uniform Loads 1 WM = 76.3 plf + (55 psf)(5.75 ft) = 392.5 plf Wu_ = 127.1 plf snow I Wo Re _ (6 psf)(10.17 fU2) +(55 psf)(5.75 ft) = 346.8 plf % sustained = 88.34 S liding Resistance: Ps = 9.5 kips RE: Shear Wall Design Output I Use a 2 ft. wide x 1 ft. thick footing 1 1 1 1 1 I WALLACE DESIGN PROGRAM REVISED 03/12/2010 DCM Page 1 Copyright Date 07/09/10 Sheet No. of Job Subject Shear Wall 2 .i MASONRY SHEAR WALLS (WSD) ACI 530-08 1. Input a F' dea i P live /snow Configuration: Wall Hw, Height of Wall = 17.75 feet w d ead Lw, Length of Wall = 30.67 feet w live /snow Lf, Length of Footing = 30.67 feet Tw, Nominal Wall Thickness = 8 (6 ", 8 ", 10" or 12 ") V1 Ww, concrete block weight = 115 pcf (103, 115, 135) II (+ or -) E Wv, veneer weight = 0 psf Reinforcing i� #, Wall Reinforcing Bar Size = 5 As 111♦ == �I, As n, number of bars per cell? 1 (1 or 2) 1 � � S, Wall Reinforcing Spacing = 32 inches / V2 \ ; i P (S or P) (+ or -) I ON� ��� Solid or Partial Grout? Hw d', Distance to Tension Steel = 4 inches 11-_111M- ON Footing MMINE ��� M T.O.S. TI, Thickness of Footing = 1.00 feet _ H V ∎∎� �1 / Wf, Width of Footing = 2.00 feet 11==.1.1111111111.111111111 � (1 ds Ws, Soil weight = 110 pcf / ds, Soil Depth = 0.50 feet 7t I / owables: / All Building Code: IBC Masonry Code? ACI-08 (UBC, ACI, or ACI -08) d i'm, Compressive Strength = 1500 psi - Inspected or Non - Inspected? I (1 or N) Lw Fs, Steel Stress = 19,200 psi Qa, Soil Bearing Pressure = 2,000 psi I Net or Max Soil Bearing Pressure? N (N or M) Use 1/3 increase for masonry? N (Y or N) ]Allowed for FBC only] Use 1/3 increase for soil bearing? N (Y or N) Load Diagram Reduce Overturning Loads to Foundation? N (Y or N) per ASCE 12.13.4] h p, Friction Coefficient = 0.35 1/, Loads: Lateral Loads V1w, Wind Load at Roof = 5.2 kips i Vie, Seismic Load (ASD) at Roof = 4.4 kips V2w, Wind Load at H = 0.0 kips V2e, Seismic Load (ASD) at H = 5.8 kips H, height for V2 = 12.25 feet Multiply seismic loads by 1.5 for checking shear? Y (Y or N) Uniform Loads II w, uniform dead load = 392.5 plf w, uniform roof live load = 81.4 plf w, uniform snow load= 127.1 p11 Snow loads factor for seismic= 0 0.0 or 0.2, re: 1605.3.1, exc. 2 w, uniform wind uplift load (gross)= -91.2 plf I Point Loads Dead Live (roof) Snow Distance P1, loads (kips) and distance "a" (it) = 0.0 0.0 0.0 0.00 P2, loads (kips) and distance "a" (ft) = 0.0 0.0 0.0 0.00 P3, loads (kips) and distance "a" (ft) = 0.0 0.0 0.0 0.00 P4, loads (kips) and distance "a" (ft) = 0.0 0.0 0.0 0.00 I P5, loads (kips) and distance "a" (ft) = 0.0 0.0 0.0 0.00 Use Point Loads in determining the tension steel? Y (Y or N) dead load to use for min. case = 88.3 II Additional Dead Load for Sliding Resistance= 9.5 kips 2. Tension As Required Amrhein Section 5 -8.D I Loads V = V1 + V2 = 10.2 kips M = V1 (Hw -Tf) + V2 (H -TI) = 139.3 ft -kips (seismic controls) P = 0.6(Lw(Wd)) + Lw(Ww) + X Pd = 23.3 kips Stresses Em, Modulus of Elasticity = 1,350,000 psi n = Es /Em = 21.48 Am = 53.70 sq. inches fa = P /Am = 14.2 psi rx = 2.59 inches h/r = 77.6 Fa = 259.8 psi (ACI 530 -08, 2.3.3) Fb = 500.0 psi (ACI 530 -08, 2.3.3) fb = 485.8 psi (ACI 530 -08, 2.3.3) fm = fa + fb = 500.0 psi 1 I WALLACE DESIGN PROGRAM Page 2 2. Tension As Required (cont'd) Amrhein Section 5 -8.D P dead a P live Reduced fm if fs > Fs = 500.0 psi (Amrhein 5- 8.B.1(b)) Find Tension for +V (Hw) •t w dead a' =1 /6im 1= 0.40 • w live b' = -1/2 fm 1 (Lw - dt) = -437 1 V1 c' = M +(Ww +Wd +F P) *Lw /2 -E (Pe) = 5,872 �������� kd, length of stress block = 13.61 inches / C = 1/2 t kd fm = 16.33 kips 1+ or -) 1 I I ) 1 I I 1 1 1 T = C -FP= 0.00 kips k = kd /d = 0.037 I I ` I 11 11 I 1 1 1 1 1 1 is = (1 -k) /k n fm = 0 psi < 19200 O.K. 1 1 A = T/fs = 0.00 sq. inches / v2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Hw Find Tension for -v (Hw) (+ or -) ' 1 1 1 1 1 1 1 1- 1 1 I I c' = M +(Ww +Wd +P)'Lw /2 +I(Pe) = 5,872 kd, length of stress block = 13.61 inches I H =�' ■� . C = 1/2 t kd fm = 16.33 kips T =C - yP = 0.00 kips k = kd /d = 0.037 /-- fs = (1 -k) /k n fm = 0 psi < 19200 O.K. A= T/fs = 0.00 sq. inches I d ' I T '':::::;;;iii 3. Check Shear ACI 530 -08 Section 2.3.5 Lw - kd kd 2 3 3 V = 10.2 kips (seismic controls) I MNd = 0.48 Lw Lw Fv (no shear reinf. provided) = 45.4 psi 2 Fv (shear reinf. provided) = 68.11 psi j =1 -k/3= 0.99 tv = 1.5V/bjd= 8.9 psi <45.4 psi - O.K. II Av req'd = 0.00 sq. inches Spacing of shear reinf. (if req'd) = 0 inches Shear reinf. = Not Req'd 4. Check Overturning I P dead a P live Wall weight = 932.8 p11 Footing weight = 300.0 plf w dead Soil weight = 73.3 pit W live Mot = (Vie Hw + V2e H) = 149.5 ft -kips (seismic controls) V1 Check Overturning for +Mot > �l 1 I Mr = SMr about the right end 466.4 ft -kips S.F. = Mr/Mot = 3.1 > 1.0 O.K. 1=IIIIMIItiENNI Check Overturning for -Mot �M���_ Mr = SMr about the left end 466.4 it -kips I v7 S.F. = Mr/Mot = 3.1 > 1.0 O.K. MINIM MN NM 1 I 1 1 1 1 1 1 5. Check Footing 1 1 1 1 1 1 1 I 1 1 I 1 1 1 E Sliding 1 1 1 1 1 1 f li 1 1 1 1 1 1 1 1 V= Vseismic = 10.2 kips (seismic controls) P = SP 0.6(%Dmin) = 36.1 kips ( Fr = p P= 12.6 kips tt: •• S.F. = FrN = 1.24 > 1.0 O.K. Check bearing pressure for -V, load case = D +0.75(L +E) - -- --_ - - -- p - - - -_- q PD +.75L (kips): 54.0 kips I Mr = FMr (about left end) = 827.6 ft -kips a / e = 2.08 feet Lw (x Wf) q = 12'P/(3'a)1 / Wf = 1237.4 psf q (net) = 1072.4 psf < 2000 psi O.K. Check bearing pressure for +V, load case = D +0.75(L +E) F ooting Force Diagram PD +.75L (kips): 54.0 kips Mr = F Mr (about right end) = 827.6 ft -kips e = 2.1 feet I q = (2 "P /(3 "a)1 / WI = 1237.4 psf q (net) = 1072.4 psf < 2000 psf O.K. 6. Conclusion I For Masonry Walls: O.K. - Provide As (Tension) = 0 square inches at end of walls No shear reinforcement required For Footings: Use a 211. wide x 1 it. thick footing 1 I . I la i UWR, IR, NR) (EQ): 0.65 S2 (EQ): 2.50 design Wellness = 0.0358" (WIND): 0.70 (WIND): 2.35 t�<')�. , � P F 'ASTENING: HiIt) ENP2K, K -EDN19 or X- EDNK22 (0.125" to 0.375" support steel} (Other): 0.65 S2 (Other): 2.50 Ita.; , r FASTENING: #10 screws i NOMINAL SHEAR STRENGTH, PLF SPAN, FT „ OTENER SIDE -LAP 5.5 6.0 6.5 7.0 7.5 8.0 Ki ' /SPAN 4.0 4.5 5.0 95 , ; 1 ; :,t,ti; 5'; 'Y�¢" -_' 0.388 d� ,y. 7 LAYOUT CONN./SPAN ,, ]a ,, gj '860'x' 7 s.,, 735;,. �„-,,6 5t;.. 0 1435 1280 1145 j}?, ±;% ; , °";.��9�_�,i�c.:h • - - - ]:. � "i ;] I 1 1590 1435 1300 1175 1070 0.321 1 ' 2 1740 1575 1440 1315 1195 1100 1015 940 880 0.274 i 36/9 3 1860 1710 1565 1440 1325 1215 1125 1045 975 " 0.239 v 4 2015 1835 1685 1550 1440 1335 1235 * 1145 " 1070 * 0.211 1955 1800 1660 1545 1440 * 1345 * 1250 * 1165 * 0.190 2140 19 5 I 6 2260 2070 1910 1770 1645 1535 * 1440 * 1350 * 1260 * 0.172 W, 0 890 790 705 64Q5i:> :I 580 :i'.;; 5W.1.; 490'`". Tj'.y,..557rc1 .1;;425',,,: 0.581 443 1 1070 960 860 775 710 660 620 0.358 ( � i 915 835 770 2 1235 1110 1010 1050 965 890 8 765 715 0.300 I 36/7 3 1390 1255 1145 p 865 810 0.258 4 1535 1390 1270 1170 1080 1005 . 4 5 1675 1525 1395 1285 1190 1105 10355 1970 " 1905 * 0.202 6 1800 1645 , 1510 1395 1295 1210 • 650 590;:'" " 53 j' ; ; , 490 > . ' :::: ` : : � .: 0.698 0 815 730 1 965 875 795 730 665 0.507 2 1105 1005 920 850 785 730 675 625 585 0.399 el el I 36/5 3 1235 1130 1040 960 890 830 780 730 660 0.328 4 1350 1240 1145 1065 990 925 870 820 775 0.279 5 1450 1345 1245 1160 1085 1015 955 900 855 0.243 I 6 1540 1435 1340 1250 1170 1100 1040 980 930 0.215 - .- . 340. ,.. ...; u 3 16 � :�' ,' 295'x. 0.872 0.594 4 '� . 0 625 550 495 :r. 445. ,:, 05i, -. s a<70_ 1 775 700 640 585 530 2 905 830 760 700 650 605 560 520 485 0.450 a _ I `� 3 1020 940 870 805 - 750 705 660 620 580 0.362 4 1120 1040 965 900 845 790 745 705 665 0.303 `. 5 1205 1125 1055 990 930 875 825 780 740 0.261 6 1275 1200 1130 1065 1005 950 900 855 810 0.229 ' 855 � , 880' • 0.229 0 800 705 630 57.(:%':, 520: qt-,,, ' . 0.575 1 990 875 785 710 645 2 1155 1040 940 850 775 710 660 610 570 0.458 30/6 3 1315 1185 1080 990 905 830 770 715 670 0.380 4 1465 1325 1210 1110 1025 950 880 815 765 0.325 5 1610 1460 1335 1230 1135 1060 990 920 860 0.283 6 1740 1585 1455 1345 1245 1150 1085 e ` 1020 955 * 0.251 d 0 760 685 610 k; 550 rt ` `505 i' <; 460 ja 425. , 395; :i:: 366 0.627 , 1 910 825 755 690 630 2 1045 955 875 810 750 700 645 600 560 0.490 30/4 3 1170 1070 990 915 850 795 745 700 655 0.402 4 1275 1180 1090 1015 945 885 835 785 745 0.340 ti 5 1370 1275 1185 1105 1035 975 915 865 820 0.295 6 1450 1355 1270 1190 1120 1055 995 945 895 0.261 El * NOMINAL SHEAR SHOWN ABOVE MAY BE LIMITED BY SHEAR BUCKLING. SEE TABLE BELOW. El THE SHADED VALUES DO NOT COMPLY WITH THE MINIMUM SPACING REQUIREMENTS FOR SIDE -LAP CONNECTIONS AND SHALL NOT BE USED EXCEPT WITH PROPERLY I . SPACED SIDE -LAP CONNECTIONS. cp (Bnckiing): 0.80 S2 (Buckling): 2.00 0 I DECK I NOMINAL SHEAR DUE TO PANEL BUCKLING (S PLF / SPAN, FT C) PROFILE 0i / ft 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 ti - 0.128 3255 2570 2085 1720 1445 1230 1060 925 810 I ,R 0.139 3465 2735 2215 1830 1540 1310 1130 985 865 d r3 0 4515 3570 2890 2390 2005 1710 1475 1285 1125 E: 1 I 'D S Required Strength (Service Applied Load) <= Minimum (Nominal Shear Strength / Q (EQ or WIND), Nominal Buckling No Buckling Strength S ) 10 Required Strength (factored Applied Load) <.--. Minimum [P (ELI or WIND) x Nominal Shear Strength, cp (Buckling) n d ] 7 AV - September 2004 III III 1.5 (WR, IR, NR) t = design thicifness = 0.0358" 4) (E0): 0.65 Q (EQ): 2.50 I - WORT FASTENING: BuiIdex or Elco Textron #12 or #14 TEKS screws 4) (WIND): 0.70 Q (WIND): 2.35 i _ 2-LAP FASTENING: #10 screws 4) (Other): 0.65 Q (Other): 2.50 ) NOMINAL SHEAR STRENGTH, PLF I FASTENER SIDE -LAP SPAN, FT LAYOUT CONN. /SPAN 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 K1 mum,: �• � �„ g:' ,AM, ;r'+ t 0.403 ic m s : ` r` r '�:., ;. 505°x_; ,x":47 0 985 880 785 :��:7��:0, •.,. ;' ; 6�: •t� ���:590:'. ` ' 5�(5., ..�?.�, on,'��_ Or c. 1 1140 1030 940 850 775 0.331 2 1285 1165 1065 980 900 830 765 710 665 0.281 36/9 3 1415 1290 1185 1095 1015 945 875 815 760 0.244 4 1540 1410 1300 1200 1120 1045 980 915 855 0.216 5 1650 1520 1405 1305 1215 1135 1065 1005 950* 0.193 II 6 1750 1620 1505 1400 1310 1225 1155 1090* 1030* 0.175 0 610 540 485 ''5' ±.'.. : 'N`365'. ''3460 M5:(h'...... 0.605 1 790 710 640 580 525 II 2 945 855 775 715 655 605 520 485 0.366 2, 1,t, U-9 36/7 3 1090 990 905 830 770 715 670 620 580 0.306 �, 2.4 ety 4 1225 1115 1025 945 875 820 765 ,7.20------ 67;} --- 0,263__, . 3(111- 5 1340 1230 1135 1055 980 915 8 5 805 760 0.230 VAV II 6 1450 • 1340 1240 1155 1075 1005 45 890 840 0.205 4j� /2 0 560 500 450 .' ''.,, 405: fM 370• : ' ; , -; 340` ?,:;r 310 `. `.. ` ' 290:',... �; ` 270`' :x`. 0.725 1 710 645 585 540 495 0.522 2 840 770 705 655 605 565 530 495 460 0.408 P36/5 3 4 955 880 815 755 705 660 620 585 550 0.334 1050 975 910 850 795 745 705 665 630 0.283 5 1130 1060 990 930 875 825 780 740 705 0.246 6 1195 1130 1065 1005 950 900 855 810 770 0.217 0 430 380 340 305 : .'•-• ;'..:;` 25 235; . '.. 215 r I' 200: , 0.907 1 575 525 480 440 405 0.610 . 2 695 640 590 550 510 475 450 420 395 0.459 ' ,36/4 3 790 735 685 640 600 565 535 505 475 0.368 4 870 815 765 720 680 645 610 580 550 0.307 5 930 880 835 790 750 710 675 645 615 0.264 6 980 935 . 890 850 810 770 735 705 675 0.231 300 ,'' U . ...,.., • • P 0 550 485 ,x 399...::. 355: 3"•: ` " 20 260 0.806 1 735 655 435 585 530 485 0.592 2 895 805 735 670 615 565 520 485 455 0.468 30/6 3 1045 945 865 795 735 680 630 585 550 0.387 P 4 5 1180 1075 985 910 840 785 735 690 645 0.330 1305 1195 1100 1020 945 885 825 780 735 0.287 6 1415 1305 1205 1120 1045 975 915 865 815 0.255 0 525 470 420 . :::.,'380 th 345;' 315 :'2901: ;. . 270 1 '`.';. ' 250 0.907 I 1 670 610 555 510 475 0.645 2 795 730 670 620 580 540 505 475 445 0.500 30/4 3 900 835 775 720 675 630 595 560 530 0.409 4 990 925 865 810 760 715 675 640 • 605 0.346 P 5 1060 1000 940 885 835 790 750 710 675 0.299 6 1120 1060 1005 955 905 860 815 775 740 0.264 * NOMINAL SHEAR SHOWN ABOVE MAY BE LIMITED BY SHEAR BUCKLING. SEE TABLE BELOW. THE SHADED VALUES DO NOT COMPLY WITH THE MINIMUM SPACING REQUIREMENTS FOR SIDE -LAP CONNECTIONS AND SHALL NOT BE USED EXCEPT WITH PROPERLY I SPACED SIDE -LAP CONNECTIONS. 4) (Buckling) ; 0.80 Q (Buckling): 2.00 . I DECK I NOMINAL SHEAR DUE TO PANEL BUCKLING (S PLF / SPAN, FT PROFILE in / ft 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 NR 0.128 3255 2570 2085 1720 1445 _ 1230 1060 925 810 IR 0.139 3465 2735 2215 1830 1540 1310 1130 985 865 ' •'• AWR 0.198 4515 3570 2890 2390 2005 1710 1475 1285 1125 . P ASD Required Strength (Service Applied Load) <= Minimum [Nominal Shear Strength /a (EQ or WIND), Nominal Buckling Strength S /Q (Buckling)] LRFD Required Strength (Factored Applied Load) <= Minimum [4 (EQ or WIND) x Nominal Shear Strength, 4 (Buckling) x Nominal Buckling Strength S AV-18 September 2004 1 1.5 (WR; IR, NR•) • t = design thickness = 0.0358" 4) (E0): 0.65 S2 (EQ): 2.50 I SPORT FASTENING: Hiitl ENP2 or ENPH2 (0.25" I41k support steel) 4) 01111111D): 0.70 L (WIND): 2.35 1-LAP FASTENING: #10 screws 4) (Other): 0.65 Q (Other): 2.50 NOMINAL SHEAR STRENGTH, PLF 1 FASTENER SIDE -LAP SPAN, FT LAYOUT CONN. /SPAN 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 K1 0 1500 1335 1195 1 0`r: 98Q';t, '.,;j " )`i $ 0 r 't,‘:,,; , C715 'j:1 0.388 I 1 1655 1495 1350 1220 1110 0.321 2 1805 1635 1490 1360 1240 1135 1050 975 910 0.274 36/9 3 1945 1765 1615 1485 1365 1255 1160 1075* 1005* 0.239 4 2080 1895 1735 1600 1485 1375 1270* 1180* 1100* 0.211 I 5 2210 2015 1855 1710 1590 1480 * 1380 * 1280 * 1195 * 0.190 6 2330 2135 1965 1820 1690 * 1580 * 1480 * 1385 * 1290 * 0.172 0 930 825 735 n .66551., t - 605'';'a M 55 5?:?. .'. :5'. ,:'475. r ; Y4, 0.581 1 1110 995 890 805 735 0.443 I 2 1275 1150 1040 945 865 795 735 680 635 0.358 36/7 3 1430 1290 1175 1080 990 910 845 785 735 0.300 4 1580 1430 1305 1200 1110 1030 885 830 0.258 5 1720 1560 1430 1315 1220 1135 1 60 990 925 0.227 I 6 1850 1685 1550 1430 1325 1235 11 5 1085* 1020* 0.202 0 850 760 680 r:6 :615 560; ". '' ;`''' 515:' is 475:: ` iV :440°r t =,! .141'0. 0.698 1 1000 905 825 755 690 0.507 I 36/5 2 1145 1040 950 875 810 750 695 645 600 0.399 3 1270 1165 1070 990 915 855 800 745 700 0.328 4 1390 1275 1180 1095 1015 950 890 840 790 0.279 5 1495 1380 1280 1190 1110 1040 980 925 875 0.243 I 6 1585 1475 .1375 1285 1200 1130 1065 1005 950* 0.215 0 650 575 515 ?`:'': :'465 t_ =_' ; °,4 ?d':';r i;� '';.::1 3 55.': :'::? 330(:' 305 0.872 1 800 725 665 605 550 0.594 2 935 855 785 725 670 625 575 535 500 0.450 ;36/4 3 1050 970 895 830 770 720 675 635 595 0.362 I 4 1155 1070 995 925 865 810 765 720 680 0,303 5 1240 1155 1080 1015 950 895 845 800 755 0.261 6 1315 1235 1160 1090 1030 970 920 870 830 0.229 Il 0 835 735 660 ' • 695, ": -;;; " ;.; 540 ;';; ;;; ' ;',.. 495. °+: k ° ' ' 460" ' 428.. 395 `` 0.775 1 1 025 905 810 735 670 0.575 2 1195 1070 965 875 800 735 680 630 590 0.458 I 30/6 3 1355 1220 1110 1015 925 850 790 735 685 0.380 4 1505 1360 1240 1140 1050 970 900 835 780 0.325 5 1650 1495 1365 1255 1165 1080 1010 940 875 0.283 6 1785 1625 1490 1370 1270 1185 1105 1040 975* 0.251 0 795 715 • 640 ";' Y 575;! .:ha 525: 480;=. 445 410'' . 385 { �3` 0.872 1 1 945 855 780 715 655 0.627 2 1080 985 905 835 775 720 665 615 575 0.490 30/4 3 1205 1105 1015 940 875 820 765 720 670 0.402 1 4 5 1315 1210 1120 1045 975 910 855 805 760 0.340 1410 1310 1220 1135 1065 1000 940 885 840 0.295 6 1495 1395 1305 1220 1150 1080 1020 965 915 0.261 * NOMINAL SHEAR SHOWN ABOVE MAY BE LIMITED BY SHEAR BUCKLING, SEE TABLE BELOW. I THE SHADED VALUES DO NOT COMPLY WITH THE MINIMUM SPACING REQUIREMENTS FOR SIDE -LAP CONNECTIONS AND SHALL NOT BE USED EXCEPT WITH PROPERLY SPACED SIDE -LAP CONNECTIONS. (81ICking): 0.80 S2 (Buckling): 2.00 111 DECK I NOMINAL SHEAR DUE TO PANEL BUCKLING (S PLF / SPAN, FT PROFILE in /ft 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 NR 0.128 3255 2570 2085 1720 1445 1230 1060 925 810 I IR 0.139 3465 2735 2215 1830 • 1540 1310 1130 985 865 ,( - WR 0.198 4515 3570 2890 2390 2005 1710 1475 1285 1125 I \. . NOTE: ASD Required Strength (Service Applied Load) <= Minimum [Nominal Shear Strength IQ (EU or WIND), Nominal Buckling Strength S / S2 (Buckling)] LRFD Required Strength (Factored Applied Load) <= Minimum (I) (ES or WIND) x Nominal Shear Strength, 4) (Buckling) x Nominal Buckling Strength S 1 AV -46 September 2004 1 ESR -1967 FrS REPORTTM Reissued January 1, 2008 i This report is subject to re- examination in one year. • c c Evaluation Service, Inc. Business /Regional Officer 5360 Workman Mill Road, Whittier, Califomla 90601 • (562) 699 -0543 I WWW.1CC-es.OICl Regional Office • 900 Montclair Road, Suite A, Birmingham, Alabama 35213 • (205) 599 -9800 Regional Office r4051 West Flossmoor Road, Country Club Hills, Illinois 60478 ■(708)799 -2305 I DIVISION: 04— MASONRY Section: 04081 — Masonry Anchorage The resin and cement are separated from the hardener and water by means of a dual - cylinder foil cartridge attached to a manifold. The volume ratio between the large and small REPORT HOLDER: cylinders is 3:1. An injection nozzle equipped with an internal I HILTI, INC. mixing element is attached to the manifold, and the adhesive components are dispensed through the injection nozzle to 5400 SOUTH 122 EAST AVENUE ensure proper mixing of the separate adhesive components. TULSA, OKLAHOMA 74146 The injection nozzle may be replaced to permit multiple uses 1 (800) 879 -8000 of the cartridges. Available cartridge sizes include total mixed www.us.hilti.com volumes of 11.1 ounces (330 ml), 16.9 ounces (500 ml), and HiltiTechEnq anus.hliti.com 47.3 ounces (1400 ml). The shelf life of unopened adhesive cartridges Is nine 1 EVALUATION SUBJECT: months when the cartridges are stored in a dry, dark environment. Each cartridge is stamped with an adhesive HILTI HIT HY 150 MAX ADHESIVE ANCHOR SYSTEMS expiration date. Temperatures during short -term (less than 48 hours) storage of the adhesive must be between 32 °F and 1 1.0 EVALUATION SCOPE 104 °F (0 °C and 40 °C). Temperatures during long -term • Compliance with the following codes: storage of the adhesive must be between 41 °F and 77 °F (5 °C and 25 °C). Hilti, Inc., must be contacted regarding suitability e 2006 International Building Code (2006 IBC) of adhesive for which the storage history Is unknown. 1 ® 2006 International Residential Code (2006 IRC) 3.2.2 Threaded Steel Rods: The threaded steel rods must 2003 International Budding Code (2003 IBC) be all- thread rods in diameters described in Table 5 or 6 of this report. The rods, with nut and washer, must comply with e 2000 International Building Code (2000 IBC) the four steel specifications shown in Table 2. The standard 1 O 2003 international Residential Code (2003 IRC) threaded rod and high- strength threaded rod must be furnished with a 5 pm thick zinc electroplate coating In 9 2000 International Residential Code (2000 IRC) accordance with ASTM B 633 SC 1 or must be hot - dipped galvanized in accordance with ASTM A 153, Class C or D. 1 r 1997 Uniform Building CodeTM (UBC) 3.2.3 Grouted Concrete Masonry Units: Concrete masonry Properties evaluated: construction must be fully grouted and have minimum prism Structural strength of 1,500 psi (9.58 MPa) at the time of anchor installation. Concrete masonry units must be Grade N, Type I 2.0 USES I, in accordance with ASTM C 90 (2003 IBC, 2000 IBC, 2003 The Hilti HIT HY 150 MAX Adhesive Anchor Systems are IRC, or 2000 IRC) or UBC Standard 21 -4. Mortar must be used to resist static tension and shear loads in uncracked fully Type N (minimum) in accordance with Section 2103.7 of the grouted concrete masonry construction. Table 1 provides 2003 IBC and the 2000 IBC, or Section R607 of the 2003 IRC I general application descriptions for use of the HMI HIT HY 150 and the 2000 IRC, or Section 2103.3 of the UBC. Mortar must MAX adhesive anchor systems. The anchor systems are an have a minimum compressive strength of 750 psi (5.72 MPa). alternative to cast -In -place anchors under the IRC, where an Grout must comply with Section 2103.10 of the 2003 IBC or engineered design is submitted in accordance with Section the 2000 IBC, Section R609.1.1 of the 2003 IRC or the 2000 I R301.1.3 of the 2006 and 2003 IRC or Section R301.1.2 of the 2000 IRC. IRC, or Section 2103.4 of the UBC. 4 4.0 DESIGN AND INSTALLATION 3.0 DESCRIPTION 4.1 Design: 1 3.1 General: 4.1.1 General: Tension and shear loads for threaded steel The Hilti HY 150 MAX Adhesive Anchor Systems consist of rods in masonry are intended for allowable stress design and the HIT HY 150 MAX adhesive and threaded steel rods. are described In Tables 5 and 6. The allowable tension and I shear values based on adhesive bond and masonry capacity 3.2 Materials: must be adjusted In accordance with Figure 2 for in- service 3.2.1 Hilti HIT HY 150 MAX Adhesive: Hilti HIT HY 150 base - material temperatures In excess of 70 °F (21 °C). MAX adhesive Is a hybrid adhesive mortar consisting of Allowable tension and shear loads for threaded steel rods are urethane methacrylate resin, hardener, cement and water. described in Table 7. • .e REPORTS'" are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an - endorsement of the subject of the report or a recommendation for Its use. There Is no warranty by ICC Evaluation Service, Inc., express or Implied, astoanyfnding ANSI `. ,. 1 or other matter In this report, or as to any product covered by the report. WA Ju n rto0 Nprsm PROOMIcalNKwnon Copyright © 2008 Page 1 of 8 1 1 ESR-1967 Page 2 of 6 I 4.1.2 Combined Loading: Allowable loads for anchors 3. Installation description, including verification of masonry subjected to combined shear and tension forces must be compressive strength and verification of anchor installation determined by the following formula: and location (spacing and edge distance) in accordance with the manufacturer's published instructions and this (P)P,) + (VJVO s 1 report. where: 5.0 CONDITIONS OF USE P = Applied service tension load, pounds (N). The Hilti HIT HY 150 MAX Adhesive Anchor Systems • I P, = Allowable service tension load, pounds (N). described in this report comply with, or are suitable alternatives to what is specified in, those codes listed in V = Applied service shear load, pounds (N). Section 1.0 of this report, subject to the following conditions: V, = Allowable service shear load, pounds (N). 5.1 Anchor sizes, dimensions, and installation comply with I this report and Hilti's published installation instructions. 4.1.3 Design of Anchors for Short-term Loads: Allowable If a conflict occurs between this report and the Hilti stress design tension and shear loads in Tables 5 and 6 may instructions, this report shall govern. be used for resistance to short -term loads such as wind and 5.2 Allowable tension and shear loads must be as shown in I seismic, when design is in accordance with Sections 5.3 and 5.4 and Table 3 of this report. Tables 5 and 6 of this report. 4.2 Installation: 5.3 Seismic or wind load in grouted concrete masonry under the 2006, 2003 and 2000 IBC or the 2006, 2003 and I 4.2.1 General: Installation of the HILTI HIT HY 150 MAX 2000 IRC: The adhesive anchors described in the system must conform to the manufacturer's published evaluation report installed in grouted concrete masonry installation instructions included in each unit package, and the are capable of resisting seismic and wind loads. When requirements of this evaluation report. Installation parameters using the basic load combinations in accordance with 1 are summarized further in Tables 1 and 2 and the corresponding load data tables. 2006 and 2003 IBC Section 1605.3.1.1, allowable loads must not be Increased for seismic or wind loading, but applied loads must be decreased by the factor in Table 4.2.1.1 Threaded Steel Rods: Holes for installation of the 3. When using the alternative basic load combinations in threaded rod into grouted concrete masonry must be drilled 2006 and 2003 IBC Section 1605.3.2 that include I using an electro- pneumatic hammer drill set in rotation seismic or wind loads, the allowable loads may be hammer mode and a carbide tipped drill bit complying with increased In accordance with Table 3, or the alternative ANSI B212.15 -1994. Holes must be cleaned of dust and basic load combinations may be decreased by the factor debris by blowing with oil -free compressed air, brushing with In Table 3. I a wire brush three times, and again blowing with compressed 5.4 Seismic or wind load in grouted concrete masonry under air to achieve a relatively dust free wall surface. Holes may be the UBC: When using the basic load combinations in dry or damp but must not contain any water at the time of accordance with UBC Section 1612.3.1, allowable loads anchor installation. The dual cartridge is self- opening, and the are not permitted to be increased for wind or seismic I adhesive is dispensed through an injection nozzle equipped loading, but applied loads must be decreased by the with an internal mixing element that is attached to the factor in Table 3. When using the a basic load cartridge manifold to ensure proper mixing of the components; combinations In UBC Section 1 the alternative lt 2 that include wind material from the first two "trigger pulls" must be discarded to or seismic loads, the allowable loads may be increased I ensure that only properly mixed products are used. The in accordance with Table 3 or the alternative basic load injection nozzle may be replaced to permit multiple uses of the combinations may be decreased by the factor in Table 3. cartridge. The injection nozzle must always be equipped with the Internal mixing element. The injection nozzle must be as 5.5 Calculations and details demonstrating compliance with manufactured by Hilti for the HIT HY 150 MAX Adhesive this report must be submitted to the code official for Anchor System. Holes must be filled approximately two - thirds approval. full with the mixed adhesive, with injection from the bottom of 5.6 The HIT HY 150 MAX Adhesive Anchor Systems must the hole toward the top. The threaded rod or deformed bar be installed in holes using a carbide - tipped masonry drill must be twisted in a clockwise motion as It is inserted into the bit manufactured within the range of the maximum and hole to the required embedment depth. The anchor position minimum dimensions of ANSI B212.15 -1994. may be adjusted only during the gel time shown in Table 4. Anchors are permitted to be loaded to the design load only 5.7 Special Inspection in accordance with Section 4.2.2 of after the cure time shown in Table 4 has passed. Sections this report must be provided for all anchor installations. I 5.13 and 5.14 of this evaluation report describe limitations on base- material temperature during installation. 5.8 Anchors must not be permitted to support fire resistive - rated construction. Where not otherwise prohibited by 4.2.2 Special Inspection: All adhesive anchors must be the applicable code, anchors may be used in fire - installed with special inspection in accordance with Section resistive construction provided that at least one of the ' 1704 of the 2006 IBC, 2003 IBC and the 2000 IBC, or Section following conditions is fulfilled: 1701 of the UBC. The code official must receive a report, from • Anchors are used to resist wind or seismic forces only. an approved special Inspector, that Includes the following • Anchors that support gravity load- bearing structural details: elements are within a fire - resistive envelope or a fire- I 1, Anchor description, including the adhesive product name, resistive membrane, are protected by approved fire- anchor type, nominal anchor diameter, and anchor length. resistive materials, or have been evaluated for resistance to fire exposure in accordance with 2. Hole description, including verification of drill bit recognized standards. I compliance with ANSI B212.15 -1994, hole depth and cleanliness. • Anchors are used to support nonstructural elements. 1 Page 3 of 6 ESR -1967 1 ' 5.9 The Hilti HIT HY 150 MAX Adhesive Anchor System compressed air; or otherwise preparing the hole so as to may be used to resist tension and shear forces in wall achieve an equivalent damp surface condition prior to ' installations only if consideration Is given to the effects anchor installation. I of elevated temperature conditions on anchor 5.16 Threaded rods may be installed with HIT HY 150 MAX performance. Figure 2 describes load reduction factors adhesive In oversized carbide drilled holes that have for elevated temperatures. diameters up to 1 / 4 inch larger than the anchor rod 5.10 Since an ICC -ES acceptance criteria for evaluating data diameter. 1 to determine the performance of adhesive anchors subjected to fatigue or shock loading is unavailable at 5.17 Steel anchoring materials in contact with preservative - treated wood or fire- retardant- treated wood must be this time, the use of these anchors under these stainless steel or hot - dipped galvanized in accordance conditions is beyond the scope of this report. with ASTM A 153 Class C or D. I 5.11 Since an ICC -ES acceptance criteria for evaluating the 5.18 The HIT HY 150 MAX adhesive is manufactured by Hilti performance of adhesive anchors in cracked masonry is GmbH at their facilities in Kaufering, Germany; and the unavailable at this time, the use of anchors is limited to HIT -TZ, and HIT -RTZ rods are manufactured by Hilti installation In untracked masonry. Cracking occurs when Aktenglelltenschaft at their facilities in Schaan, 1 f, > f due to service loads or deformations. Liechtenstein, under a quality control program with 5 .12 Use of the H IT HY 150 MAX Adhesive Anchor System in inspections by Underwriters Laboratories Inc. (AA -668). conjunction with uncoated carbon steel threaded rods, 6.0 EVIDENCE SUBMITTED I HIT -TZ rods, and /or reinforcing bars, must be limited to interior exposure. Installations exposed to severe, 6.1 Data in accordance with the ICC ES Acceptance Criteria moderate or negligible exterior weathering conditions, as for Adhesive Anchors In Masonry Elements (AC58), defined in Table 1 of ASTM C 62 or Figure 21 -1 -1 of dated January 2008, including test reports for the UBC Standard 21 -1, are permitted where stainless steel following tests: axial tension testing of single anchors, I (AISI 304 or 316) anchors or hot dip galvanized anchors establishing minimum edge distance, c = c (AC58 Test with a zinc coating conforming to ASTM A 153, Class C Series 5); axial tension testing of a group of two anchors, or D, are used. establishing minimum spacing distance, s = s (AC58 5.13 HIT HY 150 MAX adhesive may be used in base Test Series 9); shear testing of single anchors, I materials having interior temperatures between 14 °F (- establishing critical edge distance, c = c (AC58 Test 10 °C) and 110 °F (43 °C) at the time of installation. Series 13); shear testing of single anchors, establishing Installation of HIT HY 150 MAX adhesive in base minimum edge distance, c= c m;n (AC58 Test Series 14); materials having temperatures beyond this range is creep testing (AC58 Test Series 17); in- service I outside the scope of this report. The temperature of the temperature (AC58 Test Series 18); dampness testing HIT HY 150 MAX adhesive must be between 32 °F (0 °C) (AC58 Test Series 19); freezing and thawing testing and 104 °F (40 °C} at the time of installation. (AC58 Test Series 20); seismic testing of threaded rods and rebar (AC58 Test Series 21) in single anchor tensile I 5.14 When anchors are located where the base- material temperature may exceed 70 °F (21°C), allowable tension testing of reinforcing bars (AC58 Test Series 1); single anchor shear testing of reinforcing bars (AC58 Test and shear loads in this report must be adjusted for in- Series 13). service temperatures in accordance with Figure 2. The 6.2 Quality control manuals for HIT HY 150 MAX adhesive. I use of HIT HY 150 MAX adhesive in base materials having interior temperatures exceeding 180 °F (82 °C) 7.0 IDENTIFICATION during their service life is outside the scope of this The Hilti HIT HY 150 MAX adhesive is identified in the field by report. labels on, or in, the packaging that include the manufacturer's I 5.15 For threaded rods standing water must be removed from name ( Hilti), product name, lot number, expiration date, holes before placement of the adhesive. In applications evaluation report number (ESR- 1967), and installation where the concrete - masonry has been exposed to water instructions. The container for the adhesive also includes the for extended periods, the holes must be made damp by name of the inspection agency (Underwriters Laboratories I applying oil -free compressed air for at least five Inc.). seconds, then applying a wire brush for three strokes, then blowing again for five seconds with oil -free 1 . 1 I • 1 1 Page 4 of 6 ESR -1967 1 , TABLE 1— APPLICATION DESCRIPTIONS FOR HILTI HIT HY 150 MAX ADHESIVE ANCHOR SYSTEMS BASE MATERIAL ADHESIVE ANCHOR PRODUCT ELEMENT SPECIFICATION DATA LOAD DATA I Grouted concrete block masonry HIT HY 150 MAX Threaded rod Tables 2, 4 Tables 5, 6 • TABLE 2 —STEEL SPECIFICATIONS FOR THREADED ROD, NUT AND WASHER I ALL - THREAD ROD NUT WASHER SPECIFICATION Description Specification f (ksi) f (ksi) SPECIFICATION ISO 898 Class 5.8 58.0 72.5 ASTM A 563, Grade DH ASTM F 436 High- strength rod ASTM A 193 B7 105.0 125.0 ASTM A 563, Grade DH ASTM F 436 I Stalnless steel rod 65.0 100.0 (316/304) - 5 / Stalnless steel rod ASTM F 593, CW ASTM F 594, Alloy Group 1 ANSI B18.22.1, Type A, plain I (316/304) 45.0 85.0 /4 n 1 1/ 4 „ For SI: 1 Inch = 25.4 mm, 1 ksi = 6.89 MPa. 'The rods are normally zinc- coated, For exterior use In severe or damp applications, hot dipped galvanized carbon steel rods complying with ASTM I A 153, Class C or D, must be used. TABLE 3— ALTERNATIVE BASIC LOAD COMBINATIONS ADJUSTMENT FACTORS I STEEL TYPE' MODIFICATION FACTORS Reductions for Basic and Increase Factor for Short -term Alternate Basic Load Combinations Loading Conditions Tension Shear Tension Shear I ___ Standard threaded rods' 0.75 0.75 1.33 1.33 High- strength rods 0.75 1 1.33 1 Stainless rods 0.75 0.87 1.33 1.14 I ■ When using the basic Toad combinations in accordance with IBC Section 1605.3.1 or UBC Section 1612.3.1, allowable loads shall not be increased for wind or seismic loading. 'When using the alternative basic load combinations in IBC Section 1605.3.2 or UBC Section 1612.3.2 that Include wind or seismic loads, the allowable shear and tension loads for anchors may be increased by 33 percent. Alternatively, the alternative basic load combinations may be I reduced by a factor of 0.75 when using IBC Section 1605.3.2. 4 When using the alternative basic load combinations In IBC Section 1605.3.2 or UBC Section 1612.3.2 that Include wind or seismic loads, the allowable shear loads for anchors may be increased by the tabulated percentage Increases. Alternatively, the alternate basic toad combinations may be reduced by multiplying them by the inverse of the tabulated percent Increase, for example, for stainless steel rods, 1/1.14 = 0.87 for shear loading as applicable. I 4 When using the alternative basic load combinations in IBC Section 1605.3.2 or UBC Section 1612.3.2 that include wind or seismic loads, the allowable tension loads for anchors may be increased by 33 percent. Alternatively, the alternate basic load combinations may be reduced by multiplying by 0.75. 5 The above modification factors are applicable to Tables 5 and 6. 1 TABLE 4— HILTI, INC., RECOMMENDED CURE TIMES FOR HIT HY 150 MAX ADHESIVE MINIMUM BASE- MATERIAL TEMPERATURE APPROXIMATE GEL TIME' APPROXIMATE CURE TIME I °F .0 14 -10 100 min • 12 hours 23 -5 40 min 4 hours 32 0 20 min 2 hours I 50 10 8 min 1 hour 68 20 6 min 30 min 86 30 3 min 25 min I 104 40 2 min 20 min For St: t °C= ( °F- 32) +1.8. 'Section 4.2,1.1 of this report describes significance of gel time and gel time In anchor installations. 1 1 1 1 Page 5 of 6 ESR -1967 I TABLE 5- ALLOWABLE TENSION AND SHEAR VALUES FOR THREADED RODS INSTALLED USING HILT! HIT HY 150 MAX ADHESIVE IN GROUT - FILLED CONCRETE MASONRY CONSTRUCTION (pounds)''''' Anchor diameter (Inches) 3 / 8 '2 . 5/8 3/4 I Embedment (inches) 3 4 5 63 /4 Minimum anchor spacing (inches) s,,„„' 8 8 8 Load direction Tension Shear' Tension Shear' enslon Shear'-) Tension Shear' I 4 -Inch end distance, cmi e 880 1,055 1,745 1,370 2,120 1,580 2,205 1,135 End distance z 20 inches' 950 1,265 1,870 1,850 2,590 I, 2,440 2,785 For SI: 1 inch = 25.4 mm, 1 Ibf = 4.45 N. 'Anchors are limited to one per masonry cell. Anchors in adjacent cells may be spaced as close as 4 inches with a load reduction of 30 %. For I anchors In adjacent cells spaced between 4 inches and 8 Inches, use linear interpolation. 'Anchors may be installed In any location In the face of the masonry wall (cell, bed joint, or web) as shown In Figure 1, except anchor must not be Installed In or within 1 inch of a head joint. 'Allowable load values are for use in any masonry construction complying with Section 3.2.3 of thls report. I "When anchors are used to resist short-term loads such as wind or seismic, allowable loads must be calculated In accordance with Sections 5.4 and 5.3 or 5.4, and Table 3, of this report, but the loads cannot exceed 2,400 pounds for tension and 3,000 pounds for shear. 'Embedment depth is measured from the outside face of the masonry. "Edge distances of less than 4 inches are outside the scope of this table. Linear Interpolation for edge distances between 4 Inches and 20 Inches Is allowed. Edge distance at top of wall Is greater than 12 inches. I 'Allowable shear loads must be the lesser of the adjusted masonry or bond tabulated values and the steel values given In Table 7. 'The tabulated allowable loads have been calculated based on a safety factor of 5.0. These values may be increased 25% (safety factor of 4.0) under the UBC only. 'Concrete masonry thickness must be equal to or greater than 1.5 times the anchor embedment depth. 1 EXCEPTION: The 5 / 5 -inch- and 3 / 4 -Inch-diameter anchors may be installed in minimum nominally 8- Inch -thick concrete masonry. TABLE 6- ALLOWABLE TENSION AND SHEAR VALUES FOR SILL PLATE AND OTHER ATTACHMENTS 1 TO TOPS OF GROUT - FILLED MASONRY WALLS AT MINIMUM EDGE DISTANCES AND USING HILTI HIT HY 150 MAX ADHESIVE (pounds)'' 4 ' 5 ' 0 ANCHOR EMBEDMENT EDGE TENSION SHEAR DIAMETER DEPTH DISTANCE 1 (inch) 1/2 (inches) - (inches) Load Applied Perpendicular to Edge ^ Load Applied Parallel to Edge 4'/ 1 1,095 295 815 5 /8 5 1 1,240 400 965 For SI: 1 Inch = 25.4 mm, 1 Ibf = 4.45 N, 1 psi = 6.89 kPa. I 'Loads in this table are for threaded rod complying with Section 3.2.2 installed in the masonry at the edge distance shown In thls table. No reductions for edge distance are required when anchors are Installed with the minimum edge distance specified in the table. Capacity of attached sill plate or other material to resist loads In this table must comply with the applicable code. `Edge distances are given In this table. Anchor spacing must conform to the dimensions given in Table 5. I 'When anchors are used to resist short-term loads such as wind or seismic, allowable loads must be adjusted in accordance with Sections 5.3 and 5.4 and Table 3, of this report. "Masonry thickness must be equal to or greater than 1.5 times the anchor embedment depth. 'The tabulated values are for anchors installed In any masonry complying with Section 3.2.3 of this report. I ° Allowable loads calculated using a safety factor of 5.0. These values may be increased by 25% (safety factor of 4.0) under the UBC only. TABLE 7- ALLOWABLE TENSION AND SHEAR VALUES FOR THREADED RODS (pounds) I ANCHOR DIAMETER (inches) TENSION SHEAR BASED 014 STEEL STRENGTH BASED 014 STEEL STRENGTH ISO 898 ASTM 'AISI 304 SS ISO 898 ASTM A ' AISI316/30 Class 5.8 A 193 B7 Class 5.8 193 B7 4 SS I _ '/a 2,640 4,555 3,645 1,360 2,345 1,875 /2 4,700 8,100 6,480 2,420 4,170 3,335 6 / e 7,340 12,655 10,125 3,780 6,520 5,215 '1 _ 10,570 18,225 12,390 5,445 9,390 6,385 I For SI: 1 inch = 25.4 mm, 1 Ibf = 4.45 N, 1 psi = 6.89 kPa. 'Allowable load must be the lesser of bond values given In Table 5 and tabulated steel values. 'The allowable tension and shear values for threaded rods to resist short-term loads, such as wind or seismic, must be calculated in accordance with Sections 5.3 and 5.4 Table 3, of this report. 1 • 1 1 Page 6 of 6 ESR -1967 Anchor Installation Is Restricted to Non - Shaded Areas 0 _, AIP o i I 010 010 g \ N9 \ 0 IV 1 _ . _ ��� /i 11 / / 0 1 , 0 1 1 Mortar Bed 6' Concrete Masonry unit Joint 1• 1' (Grouted) I. For SI: 1 inch = 25.4 mm. n. FIGURE 1— LOCATIONS FOR HIT HY 150 MAX ANCHOR IN GROUT - FILLED CONCRETE MASONRY UNITS 1 HIT HY 150 MAX IN- SERVICE TEMPERATURE 1 140 - 120 I g100 'a co r ici m w 60 ii 1 a 40 0 P 1 20 0 0 50 100 150 200 1 Temperature, F Installed @ 70 F Installed @ 14 F I For SI: t °C = ( °F – 32) -:- 1.8. FIGURE 2— INFLUENCE OF BASE- MATERIAL TEMPERATURE ON ALLOWABLE TENSION AND SHEAR LOADS I FOR HILTI HIT HY 150 MAX ADHESIVE 1 --,„ ESR -2197 ES REPORT' Issued April 1, 2007 111 This report is subject to re- examination in one year. ��C Evaluation Service, Inc. Business/Regional Office • 5360 Workman Mill Road, Whittler, California 90601 • (562) 699-0543 Regional Office • 900 Montclair Road, Suite A, Birmingham, Alabama 35213 • (205) 599 -9800 W W W .1 C C -B 5.0 rQ Regional Office ■ 4051 West Flossmoor Road, Country Club Hills, Illinois 60478 • (708) 799 -2305 ' DIVISION: 05— METALS panels must have widths of 24, 30 or 36 Inches (610, 762 and Section: 05090 —Metal Fastenings 914 mm) with the flutes spaced 6 inches (152 mm) on center, and the sidelaps must be a nestable -type or a standing seam, REPORT HOLDER: interlocking -type. The 2 -Inch -deep (51 mm) panels must have 111 HILTI, INC. a width of 36 Inches (914 mm), with the flutes spaced 12 inches (305 mm) on center and standing seam, interlocking 5400 SOUTH 122 EAST AVENUE type sidelaps. The 3- inch -deep (76 mm) panels must have widths of 24 or 36 inches (610 and 914 mm), with flutes TULSA, OKLAHOMA 74146 111 (800) 879-8000 spaced 8 or 12 Inches (203 and 305 mm) on center, respectively, and nestable -tye or standing seam, www.us.hilti.com interlocking -type sidelaps. The 1 (38 mm) steel deck panels must have minimum base - steel, thicknesses of EVALUATION SUBJECT: 0.0598, 0.0474, 0.0358 or 0.0295 Inch (1.52, 1.19, 0.91 or 0.76 mm) [ 59, 47, 35 or 29 mils (No. 16, 18, 20 or 22 gage)]. BARE STEEL DECK AND CONCRETE - FILLED STEEL The 2- Inch -deep (51 mm) steel deck panels must have DECK DIAPHRAGMS ATTACHED WITH HILTI X- ENP -19 minimum base -steel thicknesses of 0.0598, 0.0474, 0.0418 L15, X -EDN19 THQ12, OR X -EDNK 22 THQ12 FASTENERS or 0.0358 Inch (1.52, 1.19, 1.06 or 0.91 mm) [59, 47, 41 or 35 mils (No. 16, 18, 19 or 20 gage)] . The 3 -inch -deep (76 mm) 1.0 EVALUATION SCOPE steel deck panels must have minimum base -steel thicknesses of 0.0478, 0.0418, 0.0359 or 0.0299 inch (1.21, 1.06, 0.91 or Compliance with the following codes: 0.76 mm) [47, 41, 35 or 29 mils (No. 18, 19, 20 or 22 gage)]. I m 2006 international Building Code (IBC) Steel deck panels must conform to the requirements of ASTM A 653 SS, Grade 33, with a minimum yield strength of 33,000 Di 1997 Uniform Building Code"' (UBC) psi (228,000 kPa). Galvanizing must be In accordance with Property evaluated: the minimum G60 designation. For steel deck panels installed without concrete fill, the panels may also be painted or Structural phosphatlzed steel complying with ASTM A 611, Grade C, or 11( _._ ASTM A 1008 SS, Grade 33 (minimum), with a minimum yield 2.0 USES strength of 33,000 psi (228 MPa). Steel decks shall have Hilti's X- ENP -19 L15, X -EDN19 THQ12 and X- EDNK22 deck embossments or indentations for positive interlock with I THQ12 fasteners are used for the attachment of bare steel concrete fill. deck and concrete filled steel deck diaphragms to structural 3.3 Concrete Fill: steel members. ' 3.0 DESCRIPTION The structural concrete fill is either normal - weight or structural sand lightweight, with a minimum 28 day compressive 3.1 Power - driven Fasteners: strength, f' of 3,000 psi (20.7 MPa), and a minimum thickness above the deck of 2 Inches (51 mm). Structural The Hilt' fasteners are manufactured from hardened carbon normal - weight concrete fill must contain aggregate complying I steel with an electroplated zinc coating conforming to ASTM B 633-07, SC 1, Type III. with ASTM C 33, and have a minimum unit weight of 145 pounds per cubic foot (2323 kg /m Structural sand The X- ENP -19 L15 fasteners are 0.937 inch (23.8 mm) long lightweight concrete fill must contain aggregate complying with a 0.177 -inch- diameter (4.5 mm) knurled, tapered shank with ASTM C 33 and ASTM C 330 and have a minimum unit fitted with two 0.590- inch - diameter (15.0 mm) steel cupped weight of 110 pounds per cubic foot (1782 kg /m washers. The X- ENP -19 L15 fasteners have a flattened head 3.4 Reinforcement: design to accept a sealing cap. The X -EDN19 THQ12 and X- EDNK22THQ12 fasteners are, Steel welded plain wire reinforcement, In accordance with I respectively, 0.827 Inch (21.0 mm) and 0.960 inch (24.4 mm) Section 1907.12 of the IBC and the UBC, must be placed in long. Both fasteners have a dome -style head, a 0.472 -inch- concrete - filled diaphragms for temperature and shrinkage diameter (12.0 mm) steel flat washer and a steel top hat control. Steel welded plain wire reinforcement must consist of washer. See Table 1 for fastener drawings. plain wires conforming to ASTM A 82 fabricated into sheets I 3.2 Steel Deck: in accordance with ASTM A 185, and be embedded 1 inch (25.4 mm) from the top surface of the concrete slab. Table 19 The steel deck panels must have nominally 1'/ 2- or 3 -Inch- provides the minimum welded wire reinforcement for deep (38, 51 and 76 mm) flutes. The 1 (38mm) allowable concrete - filled diaphragm shears. ' REPORTS'" are not to be construed as representing aesthetics or any other attributes not specifically addressed nor are they to be construed as an �• C endorsement of the subject of the report or a recommendation for Its use. There Is no warranty by ICC Evaluation Set Inc., express or implied, as to any /INS/ I finding or other matter in this report, or as to any product covered by the report. 4 r ' AIM ,,0 asaomwe Prop. MOM e[AiVWAPON Copyright © 2007 Page 1 of 28 1 Page 2 of 26 ESR -2197 I 3.5 Shear Connectors: DESIGN FOR MULTIPLY METHOD DIAPHRAGM Concrete fill must be positively Interlocked to the steel deck SHEARS IN (( ' below by means of deck embossments, indentations or TABLE BY I\ mechanical anchorages for concrete - filled diaphragms. Shear Diaphragms subjected to wind loads / connectors (studs) must be made of ASTM A 108 cold -drawn ASD or load combinations which include 1.06 steel and comply as Type B with specifications of the wind loads American Welding Society (AWS) Structural Welding Dia subject to all other load I Code - Steel, AWS b1.1. ASD 1.00 combinations Studs must be 1 / 2 -, 6 / B or 3 / 4 -Inch-diameter (12.7, 15.9 or Diaphragms subjected to earthquake 19.1 mm) Type B studs with lengths as shown in Table 20. LRFD loads or load combinations which 1.63 Shear connectors must be installed in accordance with the include earthquake loads I AISC 360 and AWS D1.1 referenced In Section 2205 of the Diaphragms subjected to wind loads IBC or Chapter 22, Division III, of the UBC, with center to L RFD or load combinations which include 1.75 center spacing not exceeding 36 inches (914 mm). Studs at wind loads shear transfer points within the diaphragm or at perimeters LRFD Dlaphragms subject to all other load 1.63 I must be spaced as required in Table 17 or 18. Shear combinations connectors may substitute for Hilti fasteners where their Concrete - filled diaphragms locations coincide. LRFD subjected to wind, earthquake or 1.63 other load combinations 3.6 Screws: factors determined from Table D5, 2004 Supplement to The screws for steel deck panel sidelap connections must be the North American Specification for the Design of Cold Formed Steel m inimum No. 10 by 3 / 4 - inch -long (19.1 mm), self - drilling steel Structural Members, 2001 edition. screws conforming to SAE J78 and ANSI /ASME 818.6,4 Allowable stress design (ASD) diaphragm capacities in requirements and manufactured by Hilti, Inc. These fasteners Tables 10 through 15 are for concrete filled steel deck I are recognized in ICC -ES evaluation report ESR-2196. diaphragms subjected to earthquake loads or subjected to 3.7 Supports: load combinations which Include earthquake loads. For LRFD diaphragm capacities, the tabulated "q" value must be Structural steel supports must consist of minimum ASTM A 36 multiplied by 1.63. I steel with a base -metal thickness greater than or equal to 1/4 4.2 installation: Inch (6.4 mm) for the X- ENP -19 L15 fastener; from greater than 3 / 16 Inch (4.8 mm) to 3 / B inch (9.5 mm) for the X -EDN19 Fastener selection must be in accordance with Table 1. THQ12 fastener; and from '/ inch (3.2 mm) to less than 1 /4 Figures and tables are summarized in the table of contents in (6.4 mm) for the X- EDNK22 THQ12 fastener. that appears following the text of this report. Standing seam Ilk( � 4 .0 DESIGN AND INSTALLATION interlocking -type sidelaps must be well engaged, and the button- punching sharp and deep. Button - punching sidelaps 4.1 Design: must be spaced at 12, 8 or 6 Inches (305, 203 or 152 mm) on center for bare -steel deck diaphragms, and not more than 36 Design information for steel deck panels attached to structural inches (914 mm) for concrete - filled steel deck diaphragms. steel supports with HIM X ENP 19 L15, X EDN19 THQ12, The coating of the outer protruding nose of the punched lap and /or X- EDNK22- THQ12, fasteners is found in the tables of should be "starred," indicating a near - penetration of the this report. Table 1 provides guidance for determining the button punching tool. proper fastener. The required number and placement of fasteners for various spans with allowable diaphragm shears, 5.0 CONDITIONS OF USE q, and flexibility factors, F, are shown in Tables 2 through 8 The Steel Deck and Concrete - Filled Steel Deck Diaphragms for bare -steel deck diaphragms, and in Tables 10 through 15 Attached with Hilti X- ENP -19 L15, X -EDN19 THQ12, or X- 1 for concrete - filled steel deck diaphragms. Nominal shear and EDNK 22 THQ12 Fasteners described In this report comply flexibility factors for fasteners are provided In Table 21. with, or are suitable alternatives to what is specified In, those Allowable loads to resist uplift forces for fasteners are codes listed in Section 1.0 of this report, subject to the provided in Table 22. The notes after Table 22 describe following conditions: I additional design requirements and limitations. Horizontal 5.1 Steel deck and concrete filled steel deck diaphragm distribution of earthquake loads must be established in accordance with Section 12.8.4 of ASCE 7 or Sections 1630.6 construction must comply with this report. and 1630.7 of the UBC. The analysis must determine whether 5.2 Allowable diaphragm shears and flexibility factors must the diaphragm Is rigid or flexible in accordance with Section comply with Tables 2 through 23. 1604.4 of the IBC and Section 12.3 of ASCE 7 or Section 5.3 comply for duration of load must be limited to that 1630.6 of the UBC. The diaphragm design must comply with Adjustment applicable requirements in either Section 12.3 of ASCE 7 or described in Section 4.1. Section 1633.2.9 of the UBC. Diaphragm flexibility limitations 5.4 Allowable vertical loads must be limited by the deck I are shown in Table 23 . Varying deck gage and /or section properties and allowable stresses for the connections across a diaphragm is permitted, provided the specific deck. Composite design values are beyond the configuration meets varying shear and flexibility demands. scope of this report. Allowable stress design diaphragm capacities In Tables 2 5.5 Allowable loads and deflections must be as set forth In through 8 are a t diaphragms described in this report lad report. Calculations demonstrating that the applied this re .� subjected to earthquake loads or subjected to load P j combinations which include earthquake loads. Diaphragm loads comply with this report must be submitted to the � shear found In Tables 2 through 8 must also be limited to the code official for approval. The calculations must be respective ASD (q and LRFD (q,) buckling diaphragm I capacities found In Table 9 . The diaphragm shear In the prepared by a registered design professional where required by the statutes of the jurisdiction in which the tables may be increased for other applications as follows: protect Is to be constructed. 1 1 ESR -2197 - Page 3 of 26 1 ' 6.0 EVIDENCE SUBMITTED 7.0 IDENTIFICATION 6.1 Data in accordance with the ICC -ES Acceptance The Hiltl X- ENP -19 L15, X -EDN19 THQ12 and X- EDNK22 Criteria for Steel Decks (AC43), dated June 2006. THQ12 fasteners are identified by an "H" stamped on the 111 fastener head. Fasteners are packaged in containers noting 6.2 Data in accordance with the ICC -ES Acceptance the fastener type, the HMI, Inc., name and address, and the Criteria for Fasteners Power driven Into Concrete, Steel evaluation report number (ESR -2197 or ER- 4373). and Masonry Elements (AC70), dated October 2006. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Page 4 of 26 ES R -2197 I r1 f TABLE OF CONTENTS 1 PAGE Table 1 — Fastener Selector Guide 5 Tables 2 and 3 — Allowable diaphragm shears, q, and flexibility factors, F, for standard 1 Y, inch deep, 6 inches center -to- center steel deck diaphragms installed with Hilti X -EDN19 THQ12 or X- EDNK22 THQ12 fasteners 6 and 7 with end and Interior support fastener patterns as: 36/5, 36/7, 3619 and 36/11 and screwed sidelaps. I Table 4 - Allowable diaphragm shears, q, and flexibility factors, F, for standard 1 '/: Inch deep, 6 inches center - to- center steel deck diaphragms Installed with Hilti X- ENP -19 L15 fasteners with end and Interior support 8 fastener patterns as: 36/7, 36/9, and 36/11 and screwed sidelaps Table 5 - Allowable diaphragm shears, q, and flexibility factors, F, for standard 1 % Inch deep, 6 Inches center - to- center steel deck diaphragms installed with Hilti X -EDN19 THQ12 or X- EDNK22 THQ12 fasteners with end 9 I and interior support fastener patterns as: 36/7, 36/9, and 36/11 and button punch sidelaps Table 6 - Allowable diaphragm shears, q, and flexibility factors, F, for standard 1'/ inch deep, 6 Inches center - to- center steel deck diaphragms installed with Hilti X- ENP -19 L15 fasteners with end and interior support 10 fastener patterns as: 36/7 and button punch sidelaps Table 7 - Allowable diaphragm shears, q, and flexibility factors, F, for standard 3 inch deep, 8 inches center -to- center steel deck diaphragms installed with HIM X- ENP -19 L15 fasteners with end and interior support 11 ' fastener pattern as: 2414 and screwed sidelaps Table 8 - Allowable diaphragm shears, q, and flexibility factors, F, for standard 3 inch deep, 8 Inches center -to- center steel deck diaphragms installed with HMI X- ENP -19 115 fasteners with end and interior support 12 fastener pattern as: 24/4 and button punch sidelaps 13 Table 9 - ASD and LRFD diaphragm capacities based on buckling of the steel deck I Table 10 - Allowable diaphragm shears, q, and flexibility factors, F, for standard 1 '/ Inch deep, 6 Inches center -to- center steel deck with (2 % ", 3'/. ", 4 %" topping thickness) lightweight structural fill installed with HIIti X- ENP -19 L15, X -EDN19 THQ12 or X- EDNK22 THQ12 fasteners with end and interior support fastener 14 pattern as: 3614 and button punch sidelaps Table 11 - Allowable diaphragm shears, q, and flexibility factors, F, for standard 2 and 3 inch deep, 12 Inches ' center -to- center steel deck with (2 ", 3 % ", 4" and 5" topping thickness) lightweight structural fill installed with Hilti X- ENP -19 L15, X -EDN19 THQ12 or X- EDNK22 THQ12 fasteners with end and Interior support fastener 15 pattern as: 3614 and button punch sidelaps Table 12 and 13 - Allowable diaphragm shears, q, and flexibility factors, F, for standard 1 '/ Inch deep, 6 inches center -to- center steel deck with (2 % ", 3'I ", 4%" and 5'/" topping thickness) normal weight structural fill installed with Hilti X- ENP -19 115, X -EDN19 THQ12 or X- EDNK22 THQ12 fasteners with end and 16 and 17 I _interior support fastener pattern as: 36/4 and button punch sidelaps Table 14 and 15 - Allowable diaphragm shears, q, and flexibility factors, F, for standard 2 and 3 inch deep, 12 Inches center -to- center steel deck with (2 ", 3 ", 4" and 5" topping thickness) normal weight structural fill Installed with Hilti X- ENP -19 115, X -EDN19 THQ12 or X- EDNK22 THQ12 fasteners with end and interior support 18 and 19 fastener pattern as: 3614 and button punch sidelaps 20 Table 16 — Deck types for concrete diaphragms with shear studs I (.__ 1 Table 17 and 18 — Allowable diaphragm shears and flexibility factors for normal weight and lightweight 21 and 22 concrete fills with minimum concrete shear reinforcement 23 Table 19 — Minimum welded wire fabric for tabulated shear values 24 Table 20 — Typical exterior or interior shear transfer studs I Table 21 — Nominal shear Qt, and Flexibility Factors, Sr, for steel deck attached with X- ENP -19 L15, X -EDN19 24 THQ12 or X- EDNK22 THQ12 fasteners — Table 22 — Allowable loads to resist uplift forces for steel decks attached with X- ENP -19 L15, X -EDN19 THQ12 24 or X- EDNK22 THQ12 fasteners 24 Table 23 — Diaphragm Flexibility Limitation 20 I Figure 1 — 1 Y : :" B Deck — 36" Wide (Type A) 20 Figure 2 — 2" Deck — 36" Wide (Type B) 20 Figure 3 — 3" Deck — 36" Wide (Type C) 23 Figure 4 — Shear Studs at Supports Parallel to Flutes 23 Figure 5 — Shear Studs at Supports Perpendicular to Flutes 25 I Figure 6 -- Nall Head Standoff (hays) for X- ENP -19 L15 fasteners 25 Figure 7 - Nall Head Standoff (hNys) for X -EDN19 TH012 and X- EDNK22 THQ12 fasteners 1 - 1 II 1 1 Page 5 of 26 ESR -2197 1 TABLE 1— FASTENER SELECTOR GUIDE 1 Reference Tables Type Bare Steel Concrete Fastener T Base Material'' Yp Deck Filled 1 Diaphragm _ Diaphragm Bar Joist chord member or Structural Steel Shape l Tables Tables I with 2 3 5 9 10 -15 3/16 in, < t < 3/8 in. (f„ =58-68 ksi) 17 -18 X -EDN19 THQ12 1 1f Bar Joist chord member or Structural Tables _ It Tables 1 Steel Shape with il 2,3, 5, 9 10-15 1/8 in. < t <1/4 in. (f„ = 58 -90 ksi) 17 -18 X- EDNK22 THQ12 _ 1 High Strength Structural Steel or 11 Heavy Bar Joist chord member with - Tables Tables 1(c ,,i t > 1/4 in. (f = 58 90 ksi) ` 4, 6, 7, 8, 9 10-15 17 -18 18 X- ENP -19 L15 I For SI: 1 inch = 25.4 mm B t u = -Structural framing minimum uncoated base metal thickness 'Base metal must comply with minimum strength requirements of ASTM A 36. 1 1 1 1 • 1 1 ( ) 1 1 OM - • =It MI MI MB i MI M' M • M WI -' S= = •-T • -r. - TABLX; L. /ABLE DIAPHRAGM SHEARS, q (POUNDS PER LINEAL FOOT) AND FLEA. CTORS, F, FOR STANDARD 1 1/2 - INCH -DEEP FLUTES, 6 INCHES CEN1 a._ TO-CE1 i tt STEEL DECK INSTALLED WITH HILTI X- EDN19 -THQ12 OR X- EDNK22 -THQ12 IF.__ - RS WITH END AND INTERIOR SUPPORT FASTENER PATTERNS AS: co to rD PATTERN 36/7 PATTERN 36/9 PATTERN 36/11 G 2. N , L. SPAN (FT - IN.) GAGE SIDELAP FACTOR 4'-0" I 5' -0" t 6' -0" 1 7' -0" 1 8'-0" I 9'-0" 1 10'-0" CONNECTION PINS PER SHEET TO SUPPORT . 7 9 11 7 9 n 7 9 11 7 9 11 7 9 11 7 9 11 7 9 11 Screws q . 508 667'' :767 461 - 596 676 42,8 7, ' 544.:, `. 611 404 " 506 523 ' '386 ' • ,=401' 401 317 317 317 ' 256` '• 256' ..''256 @ 12" o_c F 18.7 18.1 17.8 16.8 16.2 15.9 15.6 15.0 14.7 14.7 14.2 13.9 14.1 135 133 13.6 13.1 12.8 13.2 12.7 125 Screws q 596 748` •856 555 684•' 772 526' ''638'' 712 504 523' 523 401 ' 401' ' 401' 317. 317- 317' • 256 . .256 256 22 8 o.c �° " F 18.0 17.6 17.4 16.0 15.6 15.4 14.6 143 14.1 13.7 13.4 13.2 13.0 12.7 125 12.4 12.2 12.0 12.0 11.7 11.6 Screws q 673 819 :938 ' 637' 763 861 611 712 712 523 523 - 523 401'' .401 • 401 317 `317 '.317 ;256 256' 256 @ 6" o.c. F 17.5 _ 17.3 17.1 15.4 15.2 15.1 14.1 13.8 13.7 13.1 12.9 _ 12.8 123 12.1 12.0 11.8 _ 11.6 11.5 113 11.1 11.0 Screws q 614 . 806 926 • 558 720 • 816 518 658 738 a 612 681 467 565 565' 446 446 446 362 . _ 362 - =362 @ 12" o.c_ F 13.4 _ 12.9 12.6 123 11.8 115 11.6 11.1 10.8 11.1 10.6 10.4 10.8 103 10.1 105 10.1 9.8 103 9.9 9.7 Screws 9 721 '903 1034 • 671 827 933 ` 636 - - 771 ' ' 861 - 610. 730' 738 - 565 565 .565 446 446 446' 362 ' 362 - : 362' 20 " 8 o.c _ .. - @ F 12.7 12.4 122 11.5 11.2 11.0 10.8 lOS 10.3 10.2 9.9 9.8 9.8 9.5 9.4 95 9.2 9.1 9 . 9.0 8.9 Screws q 814 • 990 1133 770 922 1041 '740 '873 :975 717 . 738 738• 565 565 565 446• '446 446 362 ''362 .' 362'. @ 6" o.c. F 12.3 12.1 12.0 11.1 10.9 10.7 10.2 10.0 9.9 9.6 9.5 9.4 9.2 9.0 9.0 8.9 8.7 8.6 8.6 85 8.4 Screws q 807 ' 1057 1215 733 945 1071 682 '864: 970 - 644 804 895 615 757 837 592 720' 722 573 585` 585 @ 12" o.c. F 8.7 8.2 8.0 8.2 7.8 75 8.0 75 73 7.8 7.4 7.1 7.7 73 7.1 7.6 7.2 7.0 7.5 7.2 7.0 Screws q 948 , 1186 '1358 883 1086 1226', 837 1014 1132. 803 960 1063 778 914 914 722 722 • 722 585 `- 585 585 18 @ 8" o,c. F 8.1 7.8 7.7 7 : 6 7.3 7.1 7.2 7.0 6.8 7.0 6.7 6.6 6.8 6.6 65 6.7 6.5 63 6.6 6.4 63 Screws q 1070 1300' 1489' 1013 1212 1368` 974 1148 1282 944 1100 1194 914' 914 ' 914 722 722 722 ' 585 585` 585' @ 6" o.c F 7.7 75 7.4 7.2 7.0 6.9 6 -8 6.6 6.5 65 6.4 63 63 6.2 6.1 6_2 6.0 5.9 6.0 5.9 5.8 For SI: 1 inch = 25.4 mm, 1 foot = 305 min, 1 p1f = 14.6 N /m, 1 psi = 6.89 kPa, I inch/lb = 5.7 ram/N. 1. Refer to footnotes following Table 22 for additional installation and design requirements. M 2. Allowable stress design diaphragm capacities are presented for diaphragms mechanically connected to the structure subjected to earthquake Loads or load combinations which include earthquake loads. to Diaphragm shears may be increased for other applications as prescribed in Section 4.1 of this report 73 N -1 r>� ,fin - - TABL,,' ,.,L_ . ✓ABLE DIAPHRAGM SHEARS, q (POUNDS PER LINEAL FOOT) AND FLE... .CTORS, F, FOR STANDARD 1 1/2 - INCH-DEEP FLUTES, 6 INCHES CEN7,..� TO- CENTER STEEL DECK INSTALLED WITH HILTI X- ENP -19 L15 FASTENERS WITH END Aries- .NTERIOR SUPPORT FASTENER PATI ERNS AS: - ca CD PATTERN 36/7 PATTERN 36/9 PA I 1 ERN 36/11 Co -n t N T L T I �- �. J t. I 1 ' SPAN (FT -IN.) GAGE SIDELAP FACTOR 4' -0" 1 5' -0" 1 6'-0" 1 7' -0" 1 8' -0" 1 9' -0" 1 10' -0" CONNECTION PINS PER SHEET TO SUPPORT 7 9 11 7 9 11 7 9 11 7 9 11 7 9 11 7 9 11 7 9 11 q 533 705 • 811 ° - 627` `712 445 571= - 642 419 523• -1. 523 X399 '. 401 .• ' 401 317 ` - 317. ' 317 , 256 256 l' ..256: - . Screws @ 12" o.c. F 17.9 17.4 17.2 16.1 155 15.2 14.8 143 14.0 14.0 13.4 13.1 13.4 12.8 12.5 12.9 12A 12.1 12.6 12.0 11.7 Screws q 623 788.. 902 - 577 ` 717 - 810 : ,- 545 666 712 - 521 "523 - 523 401 401 401 317 . 317 317 256 256' 256 @ 8" o.c 22 F 175 17.1 16.9 15.5 15.1 14.9 14.2 13.8 13.6 133 12.9 12.7 12.6 12.2 12.0 12.0 11.7 115 1L7 11.3 11.1 Screws q 702 '861 986 662 798 .901' 633. 712 712 523 .523 523' '.401 401 401 . 317 317 317- 256 256 256 @6 "o.c F 17.2 16.9 16.8 15.1 14.9 14.7 13.8 135 13.4 12.8 12.6 12.4 12.1 11.8 11.7 11.5 11.3 11.2 11.1 10.9 10.7 Screws q_. 644 - 852 - 980 582 757" 860 539. 690 776 507' - 639 713 ' 483 565 1 565" 446 - 446 446 362 362 362 @ 12" o.c. F 12.7 12.2 12.0 11.6 11.1 10.9 11.0 10.4 10.2 10.5 10.0 9.7 10.2 _ 9.7 9.4 l 10.0 9.4 9.2 9.8 93 9.0 - Screws q 753 951 1090 698 :867. ' 979 ' 659. 806 900 630 . 738 -738: 565 565 565 ' 446 446 446 362 362 362- 20 @ 8" o.c F 123 11.9 11.8 11.1 10.8 10.6 10.4 10.0 9 -8 9.8 9.5 9.3 9.4 9.1 8.9 9.2 8.8 8.7 8.9 8.6 8.5 Screws q 849- 1040` 1191 801. 965. 1089' • 766 910 '1004 738 738.- - :738` 565 565. '565 446 - 446 -'446 .362 362 362 @ 6" o.c. F 12.0 11.8 11.6 10.8 105 10.4 10.0 9.7 9.6 9.4 9.2 9.1 9.0 8.8 8.6 8.7 8.5 83 8.4 8.2 8.1 Screws q - 846 1117' 1285 765 " 994- 1129 709 906 1019 667 '''`840 1 1.937 635 790: • 87 4 - 610 - 722- '722 585 585:•''585.' @ 12" o.c F 8.1 7.6 7.4 7.6 7.2 7.0 7.4 6 -9 _ 6.7 73 6.8 6.6 7.2 6.7 65 7.1 6.6 6.4 7.1 6.6 6.4 - • Screws q. - 9 90 1249 , 1430' 918 1139 1286 - 867: 1059 , 830 999 1107' 80V 914. 914 . 722 722- 722 585 --585 585`` 18 @ 8" o.c F 7.7 7.4 73 7.2 6.9 6.8 6.9 6.6 6.4 6.7 6.4 62 65 6.2 6.1 6.4 6.1 6.0 6.3 6.1 5.9 Screws q . 1116 1366 1564 1053 1268 1431 1009 1197 1336 976 1143 1194 914 914 914. 722 722 722 585 585 • @6 "oc. F 7.5 73 7.1 6.9 6.7 6.6 6.6 63 6.2 6.3 6.1 6.0 6.1 5.9 5.8 6.0 5.8 5.7 5.9 5.7 5.6 m For SI: 1 inch = 25.4 mm, I foot = 305 mm, 1 plf = 14.6 N /m, 1 psi = 6.89 kPa, 1 inch/lb = 5.7 mm/N. t/l 1. Refer to footnotes following Table 22 for additional installation and design requirements. X 2. Allowable stress design diaphragm capacities are presented for diaphragms mechanically connected to the structure subjected to earthquake Loads or load combinations which include earthquake N loads. Diaphragm shears may be increased for other applications as prescribed in Section 4.1 of this report- cfl i i, i i i i it i' i it i' =It i i i !' M' i i' CD w 2h TABLE 9— ALLOWABLE DIAPHRAGM SHEARS, q, (POUNDS PER LINEAL FOOT) FOR BUCKLING AND LRFD DIAPHRAGM SHEARS, qr (POUNDS PER LINEAL FOOT), FOR N SUCKLING FOR STANDARD 1 -112— INCH -DEEP FLUTES, 6 -INCHES CENTER -TO- CENTER AND STANDARD 3 - INCH -DEEP FLUTES, 8 INCHES CENTER -TO- CENTER STEEL rn DECK: STEEL DECK DECK SPAN (F1 - IN.) TYPE GAGE 4'-0" 1 5' -0" 1 6' -0" 1 7' -0" ` 8'-0" 1 9' -0" 1 10' -0" 1 11' -0" 1 12' -0" 1 13'-0" ( 14' -0" 1 15' -0" ASD, q, Standard 1 -1/2 -Inch 22 1603 1026 712 401 317 256 - - - - - Deep Flutes, 6- Inches 20 2259 1446 1004 738 565 446 362 - - _ Center - to-Center 18 3655 2339 1625 4 914 722 585 - - - 22 - - - 1330 1019 805 652 539 453 386 333 290 Standard 3 -Inch Deep 20 - - - 1868 1430 1130 915 757 636 542 467 407 Flutes, 8-Inches 3049 2334 1844 1494 1235 1037 884 762 664 - Center- to-Center - 18 16 - - - 4290 3285 2595 2102 1737 1460 1244 1073 934 LRFD, q, Standard 1 -1/2 -Inch 22 2565 1642 1139 837 642 507 410 - Deep Flutes, 6- Inches 20 3614 2314 1606 1181 904 714 579 - - - - - - - Center -to- Center 18 5848 3742 2600 1910 1462. 1155 936 22 - - ,, - 2128 1630 1288 1043 862 725 618 533 464 Standard 3 -Inch Deep 20 - - - Z989 2288 1808 1464 1211 1018 867 747 651 Flutes, 8-Inches - - - 4878 3734 2950 2390 1976 1659 1414 1219 1062 Center-to-Center . 16 - - - 6864 5256 4152 3363 2779 2336 1990 1717 1494 For SI: 1 inch = 25.4 mm, 1 foot = 305 mm, 1 p1f =14.6 N /m, linch/lb = 5.7 mm/N. 1. Diaphragm shears in this table are for steel deck buckling failure only and are to be used as prescribed in Section 4.1 of this report. M PO N CO v 1 Page 24 of 26 ESR -2197 II. l Table 20— Typical Exterior or Interior Shear Transfer Studs I t d Minimum Stud Length i 1-1/2" 3" 2" 3 -1/2" L 3„ 4 -1/2" F or SI: l inch = 25,4 mm. 1) Refer to notes following Table 22, . I TABLE 21 — NOMINAL SHEAR, Qr (LBS), AND FLEXIBILITY FACTORS, Sr (INJICIP), FOR X- ENP -19 L15, X- EDN19 -THQ12 OR X- EDNIC22 -THQI2 FASTENERS ATTACHING STEEL DECK TO STEEL SUPPORTS' PANEL THICKNESS (IN.) 0.0474 I FASTENER FACTOR (16 GAGE) (18 GAGE) (19 0.0418 GAGE) (20 GAGE) (22 GAGE) X- ENP -19 L15 Qr 3149 2529 2243 1933 1603 I Sr 0.0044 0.0040 0.0037 0.0034 0.0031 X -EDNI9 -THQ12 Qr 2924 2348 2083 1795 1489 I S r 0.0051 0.0057 0.0061 0,0066 0.0073 1 X- EDNK22 -THQ12 Qr 2924 2348 2083 1795 1489 IV . _ •' Sr 0.0051 0.0057 0.0061 0.0066 0.0073 • For SI: 1 inch = 25.4 mm, 3 Ibf= 4.45 N, 1 inch/kip = 5.7 mm/kN. Refer to notes following Table 22 for additional installation and design requirements. I TABLE 22 — ALLOWABLE LOADS TO RESIST UPLIFT LOADS FOR STEEL DECKS ATTACHED WITH X- ENP -19 L15, X- EDNI9 -THQI2 OR X- EDN1C22 -THQ72 FASTENERS (LBS)'' BASE STEEL PANEL THICKNESS (IN.) I FASTENER THICKNESS 0.0598 0,0474 0,0418 0.0358 0.0295 (IN.) (16 GAGE) (18 GAGE) (]9 GAGE) (20 GAGE) (22 GAGE) X- ENP -19 L15 > 1/4 525 475 440 395 325 I > 3/16 340 340 340 340 215 X- EDNI9 -THQI2 <3/8 1 X- EDNIC2Z -111Q12 <1/8 340 340 340 340 215 1. Loads are based on ASTM A 36 steel base material and metal decking with yield point, F = 33,000 psi. . 2. Refer to footnotes following this table. 1 • II i . 1 Page 25 of 26 ESR -2197 • 1 FOOTNOTES TO TABLES 2 THROUGH 22 I 1. Hilti X- ENP -19 L15, X -EDNI9 THQ12 or X- EDNK22 THQ12 Diaphragm deflection equations provided apply to rectangular fasteners are used at all panel ends, interior supports and deck edges symmetrical diaphragms only. Nonrectangular diaphragms, parallel to the deck corrugations. The sides of adjacent panels nonsymmetrical diaphragms with re- entrant corners or parallel to the corrugations are lapped by nesting or interlocking and diaphragms subjected to torsional loadings require special then fastened with a minimum No. 10 self - drilling steel screws design considerations. I manufactured by Hilti, Inc. or button punched. c. Roof diaphragms supporting masonry or concrete walls shall 2. Evenly spaced seam connectors per span length excluding those at have [heir deflections limited to the following: supports. 3. The following assumptions apply to the attached tables: a. The deck sheet length is assumed to equal the span times the 4 = H' f / 0.01E t I number of spans. b. All tables are based on a three span condition. (For SI: 694,000 H'-f / El) c. For steel deck diaphragms in Tables 2 - 8, the number of = Deflection of top of bolt, inches (mm). diaphragm edge fasteners at walls or transfer zones parallel to the deck corrugations is assumed to equal the same number of 1-1= Wall height, feet (mm). I stitch or sidelap connectors at interior sidelaps. d, For concrete filled diaphragms in Tables 10 — 15, the number of t = Thickness of the wall, inches (mm). edge fasteners at walls or transfer zones parallel to the deck E = Modulus of elasticity of the wall material, pounds corrugations shall not exceed 30 inches (762 mm) on center. 4, Tables 2 — 6, 10, and 12 - 13 apply to intermediate and wide rib 1- per square inch (kPa). 1/2 -inch (38 mm) deep metal deck with a flute pitch of 6 inches f = Allowable flexural compressive strength of the wall provided adequate space is available for fastener placement. 5. Tables 7 - 8, 11 and 14 — 15 apply to 2 -inch and 3 -inch deep metal material, pounds per square inch (kg/m'). For decking with flute pitch of 12 inches, provided adequate space is I available for fastener placement. masonry f = 0,331',,,; for concrete f = 0.45f ,. 6. For Tables 10 -15, No.10 screws or larger may be substituted for the specified button punches. 10. All end perimeter and interior members and their attachments must 7. The embedment of Hilti fasteners into the structural support member be designed to resist all applied loads. is such that the standoff dimension, hNVS in Figures 6 — 7 is obtained. ' 8. Hilti fasteners shall be centered not less than 1 inch (25 mm) from X- ENP -19 L15 the panel ends and not less than 5/16 inch (7.9 mm) from the panel edges parallel to corrugations at the sidelaps. 9, Diaphragm Dia h m deflections must be considered in the design. Table 23 I describes diaphragm limitations, a. Flexibility Factor F is defined as the average micro - inches a h i vs = 5/16 " -3/8" diaphragm web will deflect in a span of one foot under a shear owis 111 J load of one pound per foot. F = 1000 / 0', inches /pound. r b. The general deflection equation is: \�il� �'� ��VV Ir — Steel Deck r _ = M M /El +q /B 0' '� d x , Structural Steel I For a uniformly loaded rectangular diaphragm on a simple Member span, the maximum deflection at the centerline of the diaphragm is: Figure 6 — Nail Head Standoff (hNvs) A = 5(1728)gL" / 384 El + qLF/ 10 for X- ENP -19 L15 fastener 1 (For SI: 5(1000)" qL" / 384 El + qLF /10 A = Diaphragm deflection, inches (mm). q = Wind or seismic load, kips per lineal foot (N /m) X -EDN 19 THQ12 I q.v, X- EDNK22 THQ12 A verage shear in diaphragm in pounds per foot (N /m) over length L. L =Length of diaphragm normal to load, feet (m). = 1 =3 3/16 " -3/8" 1 iiiiuuiii a ri —� Y i�ui uiKIA ii B = Width of diaphragm parallel to load, feet (m). \\\ \ \\� Steel Deck E = Modulus of elasticity of supporting steel chord - • material, pounds per square inch (kPa). Structural Steel 1 = Moment of inertia, inches" (mm"). Member } Figure 7 — Nail Head Standoff (hNvs) for X- EDN19 -THQ12 and X- EDNK22- I THQ12 fasteners 1 Page 26 of 26 ESR -2197 1 TABLE 23— DIAPHRAGM FLEXIBILITY LIMITATION'' ( / F MAXIMUM SPAN IN SPAN -DEPTH LIMITATION l O R FEET FOR MASONRY CONCRETE Rotation Not Considered In Diaphragm Rotation Considered In Diaphragm I WALLS Masonry or Concrete Walls Flexible Masonry or Concrete Flexible Walls Walls Walls I More than 150 Not used Not used 2:1 Not used 1 70 -150 200 2:1 or as required for deflection 3:1 Not used 2:1 10 -70 400 2 or as required for 4:1 As required for deflection 2 i _ deflection 1-10 No limitation 3:1 or as required for deflection 5:1 As required for deflection 3:1 Less than 1 No limitation As required for deflection No As required for deflection 3 limitation I For SI: 1 Inch = 25.4 mm, 1 foot = 304.8 mm, 1 plf = 14,594 N /m, 1 psi = 6894 Pa. • 'Roof diaphragms shall be investigated regarding their flexibility and suggested span -depth ratio. Refer to the Tables for determination of F. 2 When diaphragms are supporting masonry or concrete walls, the maximum deflection of the diaphragm should be computed using the loads In UBC Section 1612.3.1 and it should be limited to the amount S well given by the following formula in inches (mm): 1 H sue .01St 1 For SI: (694000H f ) Et / I where: H = Unsupported height of wall, in feet (m) f = Thickness of wall, In inches (mm) ... E = Modulus of Elasticity of wall material for deflection determination, in pounds per square inch. (MPa) f, = Allowable compressive strength of wall material in flexure, in pounds per square inch (MPa). (f = .45 f, for concrete and f,,, = .33 f „, I for masonry) 'When applying these limitations to cantilever diaphragms, the suggested span -depth ratio shall be 1 1, of those shown. "The total deflection A of the diaphragm in Inches (mm) shall be computed from the equation. A= A, +A ill where: A = Flexural deflection of the diaphragm in inches (mm) determined In the same manner as the deflection of beams. I A" , = The web deflection is determined by the equation A, = Lq„ „F / 106 (Lq„ „BF / where: A, = Shear deflection of diaphragm web, In inches (mm) over span L, F = Flexibility factor (the average micro inches a diaphragm web will deflect on a span of one foot under a shear load of one pound per I foot. L, = Span between points for which deflection is determined, In feet (m). q = Average required shear, in pounds per foot (KN /m) over span L, 1 'Diaphragm classification (flexible or rigid) and deflection limits shall comply with Section 2.3. • 1 1 1 • Date Sheet No. of Job 1 Subject t„,„�� t:: 1 Reference . 61-461 c��r..:. 1 -, 6HeOl Va Y- ID" )4, ld' M kiki/ ____.- ,---, --- .-..., 4- 1 /." bi,&• , v. " eTt,PG, 7 j 4 1 . \ ' 1 ) - c "- I L N � -nil TO . biP� > — 8 �, — . " -...4-, -_-__ 9, 1 ..,4,0 o.i.z--, ( . j.--- ', 2 i'' I -' . \ ' \/ G -. - r cal -6t . -f . ` j � / 1 IL A P-V (.-i) 1,.e 1,25 4P - 1 n, 2 x,25 (9i ► 1 riT 1 * 'm 977(1, 1- ')c 4 . ii I O 2 (arr- (5 ._1._ N) 4‹.> ' G.V 9)Coo 1 .'l-2) { = o, & CA .6) . — 2 it 01,71 or? —to 3 ih 7 - _ 0.60 Co C ) Z 14 ,c1 _ - ir) 2- _ 1 = &COO t#- tS9 = 2 cos (g /r7 4- 2."cGco * 9 7.756' ■ 6 1 - G G C.f1--r-f =( i }-) 4;)/Q..)1 I. 1 EQ ( - 13 \t = O - 1--4'Yn Ib L... x C - `) 13u c 0,3 e._ -, 1 v Bw y 2.0 4 - ' EQ(2 - 5) 1 - c. - . 3600 ' `.r ADO = M 3 6o0 . = I ->' c III 1 Date Sheet No. of Job 4( 4ToZ1E Subject L,A L. — 1: -TQ 1 Reference 1 jTQ, .1 —T G, ..1, • I - -0" - 1. s ; TG � 7` ` I I J cie-,T G1 -G , '�, � � — — -- � 1 Co _ I �Cl lC� t�� U I� l T 1 . /' I 'L- ut�,-r `Z�� r- t -y l J > 1 _o 1- - - - - ,,,s‘o -..---- / - - - -* -- / 1 2 I 3- 7 '2 /to n r l� l + � 1 \____": 1 2-3 ‘ V9)/2. 1-1 y - M. PJ . - 7. 8.5 TON UH1T Icis y,C1 IC- i-ET 4 LtI.I1 T " , ' 8'2)0 -4- 14� - -t- I +- - - u L - i ' 2 r2- . u Nlz cup- i t r --Sc#'y 1 Icy 12. Told ( i.1•11 tasql# l441" I • I .7o + 19-3 -f- I 4 ,AP ■ . iii 1 °D" 111 ��. .2.0,21-4= i 1 �� i,t 1 i A.) 1 - 11\1 GCS - D 2U - lt- I 7) xi bJ L = 40 1 Ciao b - T -ap Pr-2-0J C 1 16 tki / J <- ' 1 1 11 7 Date r .Sheet No. of Job Subject I 0-77,f Reference • L'ON:G 6,) G k27MV' L74 f,4„, 111 rt3c, (1.)] (I -1-) r • 1 1 I, /20 \k/F (e51/4-c 6bs r-CP- G1fl 4 '2. 1 111 ( • 1 1 1 1 1 Date Sheet No. of Job l Subject 1 ) olAck \cracks A-0 ('`;Pt`-,alj7 Co, IS-1 CAsC.E •1-m) 01/4 _ .25' )(/.`28') = 38.'21-4' 0.1 61-, = 10 7 4 ' > A� - 5 . (0 4' 1 ` 15 , Sa' 4 8 ,S'" 5, = 21, S 4 (ror eJ.. RTU F. 5 Co ri ' _ F = cb G, C � V - \cc A^p' c6 " \°1. °1 ps� I G, = 0.85 = 38.' p - s125' = 4 , 5 < 7 W r ;rid r∎orry I ?es' CO35 1 o-R mow`,r,a, _ . • 2,6 9 1 1 1 Date I I - Sheet No. of Job 1 40767ZerN, Subject 1 vck. e:;64 Reference , L' t/ C-OMP5it%.4 + + b +- ; 1: • PQ 7p Nor • "1:3- 131 M L - , ocot -- . (4,C13) 1 1 1 1 1 1 1 Date • Sheet No. of _ _ , I-- • Job I AUTO zoN Subject 1 1.41 PIRA . Reference OR DIk 4.1■1cu Tti n To JOic-DTS (2T(1) I/ (4 I IDL, (1 C7 2 - 1: ta-r 111 - I 1 111 (.• 1 + .1-2 ('9-5 70 PL.P-- 1 E- (+, 1 I +- l a 4 1-'2. 1 )/._ (2c' re)P- GNoW 0 07+. Jr-p.-1- c • GI,7 I- V 74a*, + -r-Pct 4#2-- 9241-o zcg-t*--1- 4 t-oi 1 - 79 xt-- 1 1 1 1 1 I . 7- • - , Date Job 4IT(77-e)P=H S heet No. of ) . . I Subject 1 f — rzzr? 4 I . Reference I i - ItsW L- 4l2\I 1 - rut L,o6.1D 1 .1 4.146/ L. .... J- Tc) Jo IG7c) 1 , ■ c - 7 , 01 e sm*L.c., • V P)cl.: - v.; G * Co 9, ' • I IlLoG0 I I 0-- -- : --' —d::. . 1 P 11• ■I7 -- J/ , ....... 1 ._. , Lig ,,,, ., , „. 1 .• ) a , 1., To 1 e. L.4...1- .. 6.. P-TC4 I ki =" 79 14 4 9. 7c-Pi- = (250--C.04: - . I H 1 ,: • 4/6 =Jr 1 - st 1 /. / , T . , , , 4 - '2- ' . i 1 1 I , _ 1 1 Date Sheet No. of } Job 41 .IT b zoi� • Subject f L4. -P-T Reference a > f-7 ,. 1 �fyl� LV u N 1 7 Ioec ('� ,2 gS -7 [(72 41 . - ) , '��f°lis'�� 1 7gI I- I 0IR U6, L 17 I77 (i.2e,r77) 72a Mo 1,'2- 7[(1)g )( ;2,2!)-1-/4� )C'c,0I a7f2- 1 1 1 1 1 1 ' . I ' . - Date 1 I I • Sheet No. of Job 1,6.kATCz 1 Subject I I L. Reference 4 ( - 1 6 . -- " F-4.t./ — 1 6) \IQ I 1\-WD, 1 1,) F12-0 v 1 1\41 — t■ Lio,1 n 1 = itql3 4- i-- - . = 1_, ,* (417 • ti 1 1 -=, 1,--! ..... \ A . I 0 a 1 3(fi' 7 ' (3 , l' ) & 'L ) I ' 2i /2:- ...., 1 W-1 IT : p e7 (-,:__.a: I )( • c \ co -4:6 1 = 4 1 . v_io 4 , --4:-- / (.1-, 1 . /7) I 2 . -01 HAr I • ( 4-7 2 /-).?, c I , 4 1■101 Urci9 q71-ei4 .. I y: to= ( 1'L- 1 L4.1 a IT P 1 ' ) (A 19/1 CN (Apr / 1 ; ). D • = (19A,s0(1 )•- •Co _ 'FG• I . I • aauaaaIGH Jo 1 °n - °° ``�� " G91 - 5- -2r-b) - ( -+ _6)) d1 ' - 01 L !'1dY)) r -} 'Q cca 1 -+ L 01 ) c 1 . oN iaaqS olQ1Y , loafgng qop �d ScZ -� ((1 G 167 `?L' o 4C - r L 01) rn G <Q: t) tY,) Li o� + CI . -17.€* 2 i, g� � _Lev 1 or QL I 1 sfiau. Nic4 Ec WL 1-0 1 1 1 i 1 I Date Sheet No. of Job I4UTzo4 t SuljectiATI24,•Lf ---- 1=2. - 17 A Reference m • , 414 .(4L, Tla-y 1 z• ' r2 10 ?)-2. eiP l 2- 1 "F b t rKic CoLk ) ( IS -cc) -\3 ; z404 _1 d ite c- 1 VITY 1 04,= . 19 1 I f-iGk- 44. 5o7 ,r r. 1 1 1 1 O IS " I ( Date 07/09/10 Sheet No of Project Subject Angle Check Angle Design ASD per AISC 13th Edition: 1. Design Forces: P = 0.00 kips # of spans = 1 w, = 307.00.plf Mx = 3.28 kin (w)(L)z storefront parapet weight. 8 w,= 0.00 plf My = 0.00 kin (vin.)z wind pressure against storefront. 8 Lb = 2.67 ft =_> K,L = 32 in Fy = 36 ksi E = 29000 ksi 2. Allowable Calculations: Try an L3 1/2 x 3 1/2 x 3/8 b/t = 9.33 A = 2.48 in ^2 rz = 0.683 in Sx = 1.15 in ^3 Ix = 2.860 in ^4 Pe = Tr ) = 797.41 kips (K, L) Cm = 1.00 B, = 1.000 I A. Chapter E: Compression - Sec. E7 kL = (1.0)(32.04 in) = 46.91 r, 0.683 I Qs = 1.000 Fe = 130.06 ksi = rr'E /(kUrz)' > 0.44(Qs)(Fy) I Fcr = 32.06 ksi Pn /f2 =A *Fcr /1.67 = 47.61 kips B. Chapter F: Flexure - Sec. F10 Ap = 15.33 > b /t: therefore angle is compact for flexure Mn = 49.68 kin = 1.5 My, yielding * Controls Me = 338.91 kin = 0.66`E`b°'t *Cb [J(1 +0.78(Lt/b -1l > My= Fy'Sx'0.8 L' Mn = 49.68 kin = Lateral Torsional Buckling . / Mr = B,(Mx +My) = 3.28 kin Mn /f2 =Mn /1.67 = 29.75 kin 11 1 C. Chapter H: Combined Forces - Sec. H2 Eq. H2 -1 = 0.00 kips + 3.28 kin = 0.11 (o.k.) 47.61 kips 29.75 kin _ USE L3 1/2 x 3 1/2 x 3/8 1 _ 1 1 I m Date , I , • - Sheet No. of Job - I 4UTOZ-Ot■.I'.. I Subject I ( —p I _ I Reference -7 C'H --61 CONN cor- P-11A To Fza)- . . 1 q) A.:1 P-TU To c,U12-13 t\(5 42. __. i 04.1, 1 ( '_ . I . . 1 I ) ' / -- • -.14,\ . — --- I it \i = 2.4ac- :._ 0 M0- 1 - 7 tZ 1 Ici S )(2...06)] I 7 = C_. c- 7 --, -e,1 • . _.. . .._ tki I it4b; I '.) 1 1-A ' \./ = (i7-)(4. 11 ')(1.)c tD077 # I T = ( )(9-,N rif, ■72-30 (_e2 . o cv 1 ) • . .. c •2_&14 •—z&. T c, .. 'Gc) 4. v i -.. ■ I ."' 1-.4,0-C.76- btKi IT coNN, (..ONTP--ot... 1 r ( iPt..ri .....4. cci:24-mi2_ V -= i'') l 4 .= 1 (7 .*- I • -;-77 4G3 z± 4 . 1 ••-, r-0P- !,/, ll -g-e.-- • 2 0 P6 I 1 ' 1 1 - - r , OS ,..... ., bizs... , p3oL,T „eS.., 6,e; e — N ,. 4,1■ - •• - • DP CI-1P ; (.. I 1 Date Sheet No. of Job 1 Subject I P- TO 1�f G GI b 6 `(.1 7 t2 a714 2--- f liU GeP 1'3°7 41-17 Q3 T s � I'2 cal x' /40 6,0;4 e'"11) T ci I 0 o v� aurn n� T C., 5ro0 l! ` ' -I- 3\ ©�- I GI 1 tee % 1 • / GI.06S co- < _ I0 'it/ eic • 1 1 ,.. 1 INIII 111111 M 1 1 IN.t TAE NM N 1 r N ! NM — MR !. ME INS 4 1 . - . C k1t.p -- V- tT: , ; ,( ' t�d • W p-Qo r G 14-3 1 l G N CD IT SID / N DURA0I`ADC :CON091'602 ECONOMI /ER2 (A) R8) ICI (0) ! CONNECTION SIZES N (CON W( IGNT 4010111 6 /P,9 WEIGHT CORNER WEIGNI CORNER 0EI•HT CORNER WEIGH( CORNER WEIGHT "J' OOTTOH POWER 50490, • UN C LBS. KG, L05. F.G. 105. KG. LOS_ KG, . LOS. KG. L05, KC.. LOS. KG, LDS, K0, FT, -IN. NM THESE NOTES REO'D FOR USE A L 7 /B' 0)A. (75) FIELD 60169 SW PL' HOLE WITH ACCESSORY 095610E5 - U 17' OIA. (511 POVCR SUPPLY KNOCK - 001 46 530 710 34 15.4 50 27.7 • 90 40:9 127 57.6 122 55.3 130 62,6 143 64.9 2' -9 5/16' 846,5 CODIHPWR001A00 (1/2',3/1') C 7 7// DIA. 1411 CHARGING POni HOLE 6 SAO 715 129 58,5 174 541,2 141 64,0 146 65,. _ 1116060(9 0)06 REG'D'HOIE 0 I7 / 0 ' 01 (771 0IE10 CO4(801 01 HCLE 5 T 08.4.006 560 254 _ _ _ — _ 134 60,8 129 5 .S 146 66.2 151 60,5 _ CONDUIT USE 512E5 E Ivl' - 14 NoT COHOE459)9 DRAIN • -'�_ � — • e — 11001 635 29 96 )_ - ' 152 68.9 147 60.7 165 71,8 171 77,5 7 -5 5/16' 1050 511E (MAX.) F 11/7' - 14 OPT GAS G /i j^ A 2 240 .7/8'122.2) 012 I/O' DIA, )611 ROVER SUPPLY KNOCK-DUI CL • J+ JO ,OUTSIDE POWER 1 1/8 178:41 . 90(57, 1 9.7/0 (8101 Y/.I OUTSIDE AIR FILTER ACCESS PANEL A 3 I, OIMENSION5 IN I 1 ARC IN HILLIHETTn5. Y ' 1 ( DISP05ABLE FILTERS) • • S ECONOHIfER7 ANO /T S C V 7, CI) CCNIER OF GRAVITY, 0' -/ 1/2' REAR POWER EXHAUST 2' - p 15/16 !6771 • • • 3. OIPEC1(0N OF AIR (LOW, FILTER /ECONOMIZER ACCESS PANEL ECONOMIZER 1000 F/ 009001AOE CO _ ` III141 BL7C00 F __--- _----4 / /y A, ON VERTICAL 0155)14600 UNITS, DIlC(VnnK (0 0E ATTACHED CONDENSER "OIL prIIONAL ' 1' -4 3/8' (4161 lJ (0 6CCE55059 ROOF 5000 ONLY, (50 Hg5hl04TAI DISCHARGE 4 F/ OURABLADE ECON • 11+115 F1r10 5506).100 FLANGES 500100 nE ATTACHED TO .I _ A . f 1011 /06,161 DISCHARGE OPENINGS, AND ALL DUCTWORK SHOULD 1'•5 I /1' [178) . ...IOC) 1 • 1 ,i 0 BE A(IACNEO f0 THE (104065. FOR ECONOH11692 ��''''��pp CORNER 'A' ` ( 001 -(451 2'- 1/2 13/4' CORNER '8- VIEW 9-5 ..J 5. MINIMUM CLEARANCE (LOCAL 50065 OR 251150101 ION MAY I 9004011), P� o. 9E(WCEN UNIT, FLUE 570E 149 50090511610 SURFACE5 .- _ _ _ _ _ _ l 1 '- 2' -1 11 /15' -0' -3 3/16' R I G H T S i DE V 36 IN.,IR IN, WHEN USING ACCESSORY FLUE DISCHARGE DEFLTR. / / ' (657 , 1811 6. BOTTOM pF UHT TO (0400011810 SURFACES (WHEN NOT USING LEFT ( IT C I CURT) I IHCH, S I D E 1 I POTION fF OASE RAIL TO COOUSIIO.E SURFACES 040 NOi I. , EVAP00 6100 I 1 0' -10 1 15/16" RETURN AIR f // • 111 USING'CU7A) 0 INCHES. I CO L RETURN AIR OPENING 1 [2781 I // c. GONDINGER COIL, FOn Pnoun AIR (LOW J5 INCHES VERTICAL • ONE SIDE, 12 INCHES HE O)IER, THE 510E 001116,0 THE II I N 1 GnrATFO CLEARANCE 15 OPTIONAL Y��✓// 4 1 — !1371 I' -8 I /4' (5141 t // _[� d. 005 60 INCHES 10 ASSURE PROPER CO47EN5ER 'FAN I I r 1 // R / �� OPCnATioN, 3' -9. ( I ; / O'- 0 7/8 W 7610519 04(15. CONTROL 709 510E 4. IN, P NEC. (11111 E 1 ` �.nr T. 01(60.EN UNIT AND 090604 / 6,000 557!6[05, CONTROL 00% I 1 ^, 5107, .16 IN, PFR NEC. / / ALT. CONDENSATE I 1 I ��651 9/16' — -- �ECONONIfER7 g 1111014N u6IT 041 BLOCK on 50115(5(0 WALLS 66,0 OTHER — ` DRAIN OPENING / GRWNIKO sun CONTRO 709 5100 42 IN, PER NEC, 1 1 0' -1 7/0 / / 0'-O 7 /B' IN 0A5EPAN I5U'PLT AIR! H' - J//' SUPPLY AIR � — I "G I /2" C..... h, HORIZONTAL 55075(AN0 7)10414 (NO, 0 INCHES WHEN THE 1 (44,5) / / (991 OPENING I (4511 !1701 I • • ALTERNATE CONDENSATE DRAIN 15 USED. I I VERTICAL 1 I CD 6. 4)19 THE EXCEPTION OF HIE CLEARANCE FOR NNE CONDENSE 1.-9- L _ -' .7 5 15/16' ' -I 15/' I COIL AND COMOUS(10N SIDE A5 51A(CO IN NOTE 450, 6, 15331 "' • 1 1191 ) ANO c, A RE4 00(LE FENCE On OAn91CA0E 1010011165 NO 1 y_2• -f01fi1 0 I /,• 0 -11 1/7' 0 -3 5 /16' L o'-57/16" 1' -8 1//' 6111 ' CLEARANCE, I 199,11 / (2901 1)391 • I 7, HAMS H49 0(: INry141.1 CII ON C1M7)511nLr. 110009 - / 1.---- - - / I HIGH WO1111 nn CI 6:,9 A, 1). 00 C IN51' (MERINO 0110101 / 000NC11 W. OWN PIW(II SCE NOrE 0 F RON T •,` i / O It Sr.( 416 RAGE IIAII 'p � / 511491 191,16, c4-4.11 _ .. \ — l� 4 .''c 0'•0 7/I q'(I 1,11 • 7'• 11 11/16' 0' -3 1 /16' J.0 )/l5' 0'•] 3/16' COINER'C' 0' -7 I / — .._ - ... CD 8. NR' V(4IICAI. crNTSn OF G06011Y 15 1'•6'(4571 UP F909 (051 I (701 (30G) 101) (1041 (1109 HIE 110110M OF 1111 UA5E HAIL. - 3 ' . I' -5 5/16' ' -l0 17/11' 0'44 1/16' (CQ140MIK((12 I' 1914) 6' -i II /I6' 139.7 (271,6) !103.2) W/ POWER 0X116451. •7 ] / (16727 0' - 0 3/B !/87,1 1 hf) 3'13/16' 1 '1 /-FILTER ACCESS PANEL _ _ ( 971 1 ����� / (DISPOSABLE FILTERS) C 0 % /CONPRE550P/ 1 1 ' nr• , f IFAC TORY SUPPL LEO B0 NEn'ACCE55 1 ' 7 +' B FLUE 1000 PANEL ( I OURAAlAOE ECON �' — 4 T I 2 -1 11/16' 11000 FILTER 1'467/16' 1 I RE i(1dH I( 1657.51 ft 1 111 (/6 ,BI Ain _ CONDENSER COIL A 7 16,0006 FAN MOTOR E I 1 OPENING 11 1 } 1 � I 8L00E9 ACCESS PANEL 4 n 1 11001- 11 l / I .�. , 1' -1 5/16' T ( I I I \ 4 I 1 ZONIAL Ii !375.6 [414,51 F II P' II 7/8• I I SUPPLY AIR \II 1 7' II 9OTTom 411 (301,61 OPEN Of UNIT ( 0 -10'•3 5 /16' 1 II HORIZONTAL II 1 ((77•01 II 041510E AIR • .„. (91.01 I II II _ ._ _ 1 1 0' -6 5 /8' ��'�} 0' -0 I/ (168,2) t (20 i ®��� 8 Igo o 1 1 �+ 1 p o 1'' 1 1 I 2 -5 3/8 FORK TRUCK SLOTS / 0' - 3/4"1 IA 2 15 /I6 /� i 0•-5 II /I6' 0'•/ 9/16 3 %5 3/16 (7+6,11 0' -8 7/16 (658.67 A' 1115,01 IrP (10161 ((467 • � 044,31 0' -2 9)16' F.LF,C1nICAL (21 0 "•Z t / - pIA OUT )I DE AIR RETUN 618 7651 LEF T S 1 DE p 0111 ou FRONT ITYP (5 P10CE57 OF PANEL 'SUPPLY R R I GI-IT ., I DE E 510. CONDENSATE 00016, • ..--, ' • '0 . (,..) q!�s!y'� � P Ai . i ,.i r �- °'C- ��"� } 1:.�'A V:1 1 7 1 • 1. 11 1.. 1 1 N . 1 -. ,A-, i OM MIN IIRR IIIER MN MIMI MB MN EN1 Inn IIM MEE NM OM 111111 NMI Mil NMI 111111 • 48HJ004�01- -7 - e., / g . i, C� ‘,1' �. q' -- ' a 0 t2.. c, cop -�( - tom" . 4 00 " 0 • 510. UNI DURAOLACE EC0NOMIsER2 ECONOMIsER2 • 11.E UNIT vEIGNi ECON YEIGHI HEIGHT v/ P.E. WEIGHT CORNER WEIGHT(A)CORNER 'AEIGHT(B)CORNER WEIGHT(C)CORNER WEIGHT(0) • H' - J" I • K" • - I. - , • . 1.85. KG. 165. KG, L65. KG. 195. KG. L95, KG, LBS. KG, 105, KG. LBS. KG. FT, -IN. HM FT, -IN. MM T. -TIN. MN FT. -IN. MN wC 7.c.7.\-- 111.1.000 670 995 44 70 75 31,1 145 65.9 109 06 161 73 139 109 700 127 2' -0 7/8' 6)2 3' -5 5/16 1050 ' -9 11 /16' 056 2' -2 7/16' 672 sd 8 / T. 16 1.009 880 399 191 87 103 74 742 110 261 129 1' - 7 /0' 370 3' -5 5/16' 1050 ' -9 II /16' 856 2'-? 7/16' 672 r+l1 `O ` T " " 19411•017 1075 469 225 102 192 07 265 129 333 151 I' -2 7/0' 378 4' -1 5/16 1253 __ 3' -0 1 /0• 974 2' - 7/15 075 f/ 16111•011 1050 476 228 103 195 Be 209 131 1 /' 330 153 1' -2 7/0' 378 •1 5/16' 1253 3' -0 3/6' 924 2' -10 7/16' 975 1'2 • 1 /-[ ^- , OUTSIDE AIR 80 t0 VCR 6)4407, 611115 ACCESS 644[1 NOI[Si E 5 6E0'0 FOR USE 1015 f 11E05r � • 1, 01.4.111 IN ( 1 PE IN NIAI.11f PS. WIN ACCESSORY PACKAGES I- 5 •[9619649003 (1/7',3/41) ), Q) CENIr6 a 644411Y. m 7 _ 1 71 0 1105 RD iNPYq_00 F y. 14 0' (1��1 -I / / 0)000)1041 a 9)5 r 101. [ rte/ ( 6041064699? AN 77569060 VIRE nc0'n1 7, CY1 9)00)0/ C OTOJn Ulf 51015 -•- - 1. ON 7 D166 1 4 15, 0,1140.16 10 RC .1110,5111.0 RE A Il (0950 EXNAU9t 517E IRA1.I In.4(C(55RY 6700 OM 041Y, 10R 11711/0111.1 71561)4716 RE 0 9 /16' /A 00110 x111.0.5061 91ANQ5 9 RE All AMR 10 } -.119;,./17;05(90,0 2 1 1/7 NY 7/0 )9).71 VJ 16611041/1 019011W 0 AN, All DUCTWORK 710.10 FILTER /ECONOMISER ACCESS PANEL FJ E 11 I 190) 7/1' 600[6• 1 I/O 1 (79,4) I , 416 AIIACIV0 10 11( 7L /1CCS, CORNER •0" I I//' POWER. 1 3/4' CONDENSER COIL -\ _ r 10031 I /2 GAS I 1/4 ®� 5, NININM CI649494(! (9001. [110445 M ))6150161lnll MAY O - - 1 10011 3 /F 1 5 /6 119 I, 7'5 19/1 R110NAL I'•5 7/0' 1/5 . 567[[1 4'P1 011167 54415 J/ M I /1 31 -. .. n 194x1 5. 1 fflu( S V. Awl IN, AL 11NT '46,,4079, • ( 10911 F/ OVIIAIIIADE LCON FOR POWER, OCPC4o1M6 W WIRE 51:0, • Q _ ( -_ - 1 A 1 16 NW C N(N 55164 0 /4655. 0 UI0O90G Off 1.66101, ECONOMIZER . 0 0 0 • 5, BO 11094 a 1.,111 10 CMUr511B1E 50/46E5 INC. 101 , 41940 CMG) 1' -6 1 %7 .701 VIEW 5.5 , 1 i1a, 0'.3 1 /8' 9/ ECONOMISES 7 Cl ono) a CASE wk. yo C04ft1511!(E $U9f ACC5 1946. not VS(NO CORNER • A " -` 79) P AMCL 0 1 00( 0 0940015, _ _ -__.- '• . 0 - 1/2 0, Q40 54(I' COIL 59 119 0.1 AIR 110 39 INf,11 EYAP0RA1 ~ � K, , (4 01 I 5,r 1(0 , I) 1 455 1 1 )004 l �I(X Gf,I11940 rlE 11' COIL I f [4!11[4 Cl 6 /N(! 16 M (10011, 1 1 . • 4. 0.,101110 60 194x,,65 10 45566E 4906[m Cda7CArC6 6194 1 RETURN Alm 07E41W .I . 1'•0 5/0 / hm� I6I ' 11 6591)591 Y (320) YU%�e // 71194 (II WITS 51#041 FMK 716 4 7 IN, PER N.C. _�� . I RFUIB) I // r r, Brlri(N 0011 ) ND IP,GOu.040 SO ACES, CONTROL 804 a II _ J� J �0 Inf 61 IN, 4440 941:, / / G 9. n r 14{x41 046 /Nn IK 60 M (1100701( 011 4, 06X6 1 -9 3 /1' _ _r_,•r �' •7 I] /I6 2 -1 )6)5) A • // /`y1 mWnla7 5MnCML (n45m 1100 311X, 1 IN, Pln Nr), p 5 - 0 ' - 9/76 9 V✓ N. 47tlrrr 01 91Pry 4 71141 7947, 0 INCI93 N(N O( (14671 Ali, C0N06.NlA1E 1 I I 1 • ( 171.91 J/ / 0'- 0 7 /p' rgf�I • 4 1( 7 461( CO.IXNSAI( MAIN 15 U',111. II DRAIN 01'[11110 • I SUPPLY I I l / 'J (22.21 8 6. vl Hl 11( 4476! 977007 a l,( 0L(4nAN0C 6754 rlf, 0nN(X NSEq LEFT i1 �Ik 745694 AIR 1 7'•/ 3//• d � COIL Attu COMtFIId1 510( 45 Villa IN hog • 0, 6, I O PAin -_1 .0 A 961,0,60,E 04494[(m RARRIC40E 6fOVInE6 S» 6 - i ( 73 01 RIG H T 5 (DE .E az • a I A9 i 59 S I E II IVERT ICAL " - 2'•2 • L660) -- CD 7, 001 94 7 5 INSI AL CD � w CMIYJ5IIALC 1 )0 MA(X. U - 1 1 sm ) !6001 0006 64 CLASS e, a, C bar Cov(a I,C MA qRI AI I 1 Yv / '�/ I 5 10 XI M BAY RAIL, I - II I/1 SEE NOTE /0 I SUPPLY AIR B, 944 9( C 67[8 d 9240)60 15 1 906 008 (5911 I - - , - - - C) • E 0• 7/8 0 ' - 15/16 0 II /I6' 60 Dom. -II 15711 rill 01) Arq 011 (751.11 / (48,54 1 0201 / UP room Irf. 804600 a NE BAS[ 00477. I f / 2' - 1' (6351 "T P ul Ar6 l } b i SEE 0001100 POKY I U 1' _ t ' 0 (1301 /I6' // / ' 1 I )/ 0 ' 1 011 / 11 'nail. L- ClU9t (CIE[. ONLY) J I. nas 1411 a 'nail. 04.9 /4 i 1 COR NER '0' 2' 7 /8 D ( ]551 =� 0 ' (0,00) I FRONT . , 1 D 1/6 007169 'C' j I 4 4 4 2 114. 116'5 ran. Ir/ - -° 1731,41 J1 r•' 1791 -. . 1) r/1 ' n14. 'On /MU(0.151. v101Id'lKA i__ (107)1 3'4 1 /1' ,.0• 170•0 3 /10 I i/ ......1). 1' 1f i nl (4.,4 4IC Inux "- 01 �j , h ' 1 41 .l1 Sni q(7 (. 16) ol, 4 61541009 3 -4 1 /4' - 0'•7 5 /I6' , 0' -/ v/ PUNCR 015, r 1,9•11 MI Oil [17.1„ 4611711,601,600, M (10221 (1051 11011 ...,,,.11 /1M /,.6,7,011, 46/ /1,•'617, • N ' 7'•3 3/e - � - 191 49 x 1• .-) 113/16' (22191 0 "0 7' -1 S /I6" - 1' -0 S /8" i 01A 4511 46x(4 wq,9 60.0.000 (7191 (3101 FILTER ACCESS PANEL l• - 1971 1 - I �� (DISPOSABLE FILTERS) I I RE N1 , • RURABL IR • q 8 FACTORY FLUE SUPDL HOO IEO 1 O H000 FILTER S OPENING) / CONTROL 608/ •1• 0 I FAN 60,°6 1 H091 I 1 A 9„71 COMPRESSOR/ 610066 ACCE55 PANEL 4 20N1AL P ���y !11!/14 COMIF.NSEP COIL 0 6591169 ACCE55 •9 '�-- �•�'�%/ 1 614(1 r OUTSIDE AIR (6191 1 7/0" I - 7/8' 1( SUPPLY AIR \ ,)I I 1 1 7' +7 7/16 OPENING q1 (3521 11 HORIZONTAL 11 I 11 (671) • n it 0 0' -3 5/16 A^ �I <; _ � 1911 F II - l ` .. 0 -7. 1/16" 1 `���l 00 t_ (1791 • 00: I�M� 0' -s 3A' I'-- 3' - 0• (1441 0' - 9 11/16 0• .1 9/16' (914,41 FORK TRUCK 5L015 19401 (1701 (1161 1 7/8' (1161 OUTSIDE pJ //JJ,� 0' -7 9/161 613691 0' -0 7/16' 0' -7 1/1 157) OF PANEL 191 � ' 1651 199 ELECiPICAI 120011 44199 B 914[651 •, g/g/ RIGHT S 1 DE LEFT SIDE OI SCONNELI 10597)09 FRONT 5UPPL5 AIR R ETURN AIR 5 510. 1060(99910 069(4) 1 ,x,:1:`• • \ • Accessory dimensions 48HJ004-007 carried. ( D ALT ROOF CURB A UNIT SIZE • CO B C DRAIN HOLE GAS POWER CONTROL ACCESSORY PKG. AGCY. / < 3 /,- [19 NPT V 1'-2" CRBTMPWROO1A00 ) z " CRRFCURB001A00 356 CRBTMPWR002A00 (19) NPT . 1'/ [31.7) [ 7 ) [ ) 48HJ004 -007 . • 1' -9 " /s" 1' -4" 1'/," 7 " a /.," .CRRFCURBOO2A00 2 " -0" CRBTMPWROD3A [651] [4061 [44.5J (12.7�NPT I19J NPT /z (610] CRBTMPWROO4A [19) NPT 1' /, [31.7j (12.7) NOTES: 1. Roof curb accessory is shipped disassembled. • 2. Insulated panels. C _ � 3. Dimensions in [ J are, in millimeters. 4. Roof curb: galvanized steel. 1-- 1 5. Attach ductwork to curb (flanges of dud rest on curb). 1 IMNINI 6. Service clearance: 4 fl on each side. ter \ I 7__740_Direction.ol_airflow /( \ \ 1 8. Connector packages CRBTMPWROO1A00 and C / \ ! 002A00 are. for thru- the -curb type gas. Packages 1 / � <-- r — �` CRBTMPWR003A00 and 004A00 are for thru -the- • I I i� I I 1 Lis ?T bottom type gas connections. X / �l _ -./ 1 'AIL 1 [ `/ ; .-- / 1 GASKET / ( SUPPLIED ITN CURB) 7 D j .._7,16."A _ -7iifi TYPICAL (4) SIDES (76) \ 1 1 I IT COUNTER FLASHING } [76] 1 ( F I E LD SJF I ED) . \ (FIELD SUPPLIED) I DOP ING FELT 0 O I { 1 \ IF SUPPLIED) C ANT STRIP . [76J I r' — I \ EIELD SWPL IED> ROOF {NG MATERIAL [6.37� t� 1 1 1 L (FIELD SUPPLIED) ( R ETURN AIR [ I - OPENING I 2 0378 L /�' 1 I I SUPPLY AIR 1 I OPENING D SECTION "C —C 1' -1 7/16' I [ I SrAI F 1,4 [341] 1 __ _ ,7 RIGID 1 T•ON t - it (FIELD S.PPLI ) OPENING FOR BASEFAN 0' -0 7/16- I ENTRY SERVICE ` -7 13/16 1 - 1 1/8 0 - -0 7/16 (SEE NOTE • Ill) C50 4] I['' C33 <7 [7 ! 0 -2 In ) • (BOLT NEA057 0 . -]. L (BST r ;S> ' [767+ 1 (6e] - 3'-0 0' -0 7/1E- .1 i [I,] [91,] (1 u A A 0 ' /�� 0 -7 3/1 6 (B O L T tE A. 7D ENSURE AIRTIGHT CONNECTION. (BOLT ti<.�5) :E.. `837 PLACE UNIT AS 0.05E TO THIS ill • ENO AS P05518� SEE NOTE •2 I I ! I' G ..5 SERVICE [ . S- -EOTE 1 - - IT;E A — 1 0' -0 1/4 (7) (C`C� [152)1 \ 2 ` 0' 7 ���� ` [ 179? 1/16 I (INS 7w) 0' -4 9/16' � i% 4 ' • [715.57 1 '•• A 1 T 2 P 3 O I SUPPLY AIR R ETURN T. [bl) O� q � • VIEW �A — A � �\ 1 / � , TO ENSURE ArRTIGHT CONNECTION. \\ • ..,, _ , P.-ACE UN AS CLOSE TO MI:5 `/ ENO A5 POSSto_E \ PLEAD OF DM TO B� ON Y' • � \ ' INSIDE OF F II uB7 ` zs) Ste. \ [t 7os7 '' ' ` 7C \ :< /16' ' \`i l IC.TE, CA!C9R lDGEPORT 'S:F3E- LOCK. REF 3 - -0 FASTENING DEN ICE IS ACCE.T A BLE ALTERNATE CONSTRUCT' A ;S3E` ' .'.T IDN- 7. ■ I 1. I ( v 1Eu "6" + -� J YP. ALL CORNERS) 5EE V 1_1. - E " � — • • ' (. 141 1 s CMU SHEAR WALL PROCEDURE I ❑ DESCRIPTION The spreadsheet checks a CMU shear wall for input configurations, loads, and allowable stresses. Lateral shear loads may be input at the roof level and at an intermediate height. Dead and live loads may be input as both distributed loads and point load The spreadsheet uses working stress design to calculate tension steel, and to check shear, overturning, sliding, and soil bearin pressure. The spreadhsheet is based on Section 2106 and 2107 of the 1994 UBC Code or the ACI 530 -95 masonry code, Th I formulas used to calculate the neutral axis are based on Amrheln's Reinforced Masonry Engineering Handbook, Section 5 -B.D, ' ❑ REFERENCES Building Code Requirements for Masonry Structures, ACI 530-95 /ArC.l 510 — Cr, Reinforced Masonry Engineering Handbook by James E. Amrhein, 51h Edition, Section 5 -8.D 1 ❑ INPUT Configuration: P dead Wall I P livo H Height of Wall feet 7' a _` L Length of Wall feet wdead T Nominal Wall Thickness inches u wove W Concrete Block Weight pc( vt \ M �� 111r111. R einforcing I #t, Wall Reinforcing Bar Size (+ or -) 1 1 1 1 1 j I l 1 1 1 1 L1 n, Number of Bars Per Cell I I L 1 I I ! t S, Wall Reinforcing Spacing inchos v As I I l t 1 1 1 1 1 1 1 1 L S or P, Solid or Partially Grouted Walls ti 1 1 1 ) 1 J f 1 1 1 1 1 f 1 d', Distance to Tension Steel / 2 I t 1 1 ! 1 I 1. Footing Hw Tf, Thickness of Footing feet (r or) NEM MM.= Wf, Width of Footing loot R 1 1 1 1 1 1 1 1 1 1 1 1 T.O.S. W Soil Weight pcf I I I 1 1 I f 1 d d Soil Depth feet _ TI ti z, . ��� '' . r �r ';` x:9,'1. Allowables: + �� code, UBC or ACI d' P Masonry Compressive Strength psi I 1 or N, Inspected or Non - Inspected F Steel Stress p Q Soll Bearing Pressure psf Diagram • N or M, Net or Max Soll Bearing Pressure Y or N, Use 1/3 Increase for soil bearing ,u, Friction Coefficient Loads: I Lateral Loads V1 Wind Load at Roof Level kips V1 Seismic Load at Roof Level kips • • V2 Wind Load at H kips I V2 Seismic Load at H kips H, Height for V2 feet Uniform Loads I w dead, • Dead Load plf w live, Live Load pif (Note: the spreadsheet adds in wall soli - weight, so it sho included in the uniform dead load input) I Point Loads Pfd, P1t, al, Dead, Live, Distance (from loft end) ■ P2d, P21, 02, Dead, Live, Distance (from loft ond) Pad P31, 03, Dead, Live, Distance (from loft end) I f ';I P .1 n , fined I ivn Distance (from Inl1 cord 1 (Note: Input minimum % o( dead load that will be prosent uplift and sliding) 1 ❑ CALCULATIONS 2, Tension A Required I Working Stress Load Cases 4c' 5 0 41 D +L +W (or E) Note: 0.--Dead Load, Lr =Roof Live Load, S.---Hoof Snow Load, W =Wind Load, and E= Solsmlc Load , 1 Loads V = (V1w + V2w) or (V1e + V2e) M = (V1wHw + V2wH) or (V1 eHw + V2eH) P = Lw( Ww+ Wd)+ LwWI+ P1d+ P11+ P2d +P21 +P3d+P31 +P4d +P41 +P5d +P51 Find Tension for +V(Hw) P dead The derivation for equations used is as follows: a P five 1 Sum the moments about the centerline of the wall C(L2 - 3 d )+T( - d')- M+X(Px(Lw /2- ax)) =( � wdead wlivo Using the sum of the vertical forces 1 T =C - P ■ V1 \ �������M Substituting T = C - P Into the moment equation, 1 rc 1 w ( + or -) I i I i 1 ` I ) I i 1 1 1 C ( 2 -k3 ) +(C ZP)( - d) M +Y(Pxax) = I I 1 1 1 1 1 I 1 ► 1 1 1 t Substituting C= 1/21 kd fm ■ V2 ) I I 1 l I l 1 1 I I III 1 /2tkdf - k 3 ) + (1 /2tkdfm -ZP)(2 - d) - l (i or) / fr11111111f111111 11 1 I f 1 Hw Y.(Px ax) = 0 H I f 1 I 1 1 I t 1 J 1 1/4 t f 1/61 f (kd) + 1/4 1 i - 1/2 1 f k I I 1 I 1 i 1 l 11 1 I 1 -ZP 2 d) M +j(Pxax) = I / Changing signs and combining lorms Lw d' , '�`�4'f,- `I, 1 /6tfm(kd) 1 /2ttm(Lw- di) kd +eP(2 - d) +M ""44 r�. I(�'i �i.IS.Kj4t �, I 1 �5yt3ji� �(PX aX) = 0 I c I I w — kd kri Solve for x from a x + b' x + c' = 0 whore x = kd a' = 1 /6tf ), 2 3 3 _ b' = - 1/2 t fm (L - d) 1 J c' _ +M +P(Lv /2 d) P1(L /2 a1) P2(L /2 a2) _ . 2 P3(Lw /2- a3) - P4(Lw /2- a4) - P5(L /2- a5) 1 x = -b t b2.4ac = kd 2a C = 1 /2tfmkd T. = C - yP I k _ d kd 1 -k fs = ( k )nf • 1 T As fs Find Tension for -V(Hw) I Solve for x from a ' x + b' x + c' = 0 whero x = kd a'= 1/61 fm b' = - 1 /2tfm(Lw -d) Lw L c'= +M +P(2 -d) ) +P1( - al) +P2( + 2 -a2) P3(2 P4( Lw P5( Lw - a5) I -b +q b - 4ac a x = 2a = kd 1 C= 1 /2lfmkd 1 T As = T 111 /� AV 1 - 3. Check Shear V = (V1 w + V2w) or (Vie + V2e) I M/Vd = M/ /Vd If M/Vd <1,0 Fv (masonry) = 3 (4 - MNd) Prn S 80 - 45 MNd I • F (reinforcing) = 2 (4 - M/Vd) ('rn s 120 - 45 M/Vd If M/Vd ?1.0 F (masonry) = 1.0 'm 5 35 I F v (reinforcing) = 1.5 ('m 5 75 If V s F (masonry), no shear reinforcing is required and A = 0, 0 V s F (reinforcing), calculate shear reinforcing required I f 1.5 V v = bjd A = V Ay ry 0 V > F (reinforcing), wall must be ro- designed 4. Check Overturning I Design Load Cases D + W or 0.9D + E (load combinations with less vertical load will control for overturning) Wall Weight = W - Tf) I Footing Weight = 150 Tf WI Soil Weight = Ws dsoil (Wf - 1112 Mot = (V1 wHw + V2wH) or (V1 eHw + V2eH) M = XM( %(dead load) +self weight) for wind loads .9 lM( %(dead load) +self weight) Mr for seismic loads • Safety Factor = Mot a 1.5 for wind loads I Mr M Z 1.0 for seismic loads 1 . 1 1 1 ,._ I I - I 1 P dead 5. Check Footing I a P live Sliding V = V1w +V2W or V1s +V2 W dead P = ZP( %(dead load) + self weight) W live 1 V1 KIIII11111111111 1 1 1 Fr = F P 1 l 1 1 1 1 I 1 1 1 1 1 S.F. = V F I 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Soll Bearing (calc. for +V and -V since point loads are not V2 1 t l t 1 1 1 1 1 1 1 1 1 1 1 1 symmetrical) �___�_ Mr = ai (about right end) I _ (Mr M 1 1 1 1 1 1 1 a r ot) Mot calculated in slap 4 1 1 1 1 I i 1 1 1 1 1 1 1 1 P calculated above for slid 1 1 1 1 1 1 1 Lw 1 f ; ��'�: y r:";..;.;;:,:.$ �( q - [ ga ) / Wf for 3a 5 L n.S 1 i l P — q q = LwWf [ 1 + cw ) for 3a > L 1 a gnat = q - Ws ds for net soil bearing Lw (x Wf) qmax = q for max. soli bearing 1 • 1 1 111 • 1 . 1 1 1 ■ 1 1. 1 1 U - - Date 06/10/10 Sheet No. of Project AutoZone Subject Walls I Wall Design: Wall Properties - I Joist Brg. Elev. = 17.25 ft (high) Joist Brg. Elev. = 15.75 ft :/ (above doors at side wall) Joist Brg. Elev. = 15.25 ft (low) I T.O. Masonry = 21.00 ft T.O. Footing = -1.50 ft Is wall dowelled at slab? Y t (Y or N) Location of 6' -0" door? S'- (Sidewall or Loadbearing) Back Wall Parapet? Y :. (Y or N) I Wall Design Heights - H wai = 17.25 ft L I HPorovor = 7.50 ft = (21 ft - 17.25 ftx2) (effective ht. of cantilevered element) Haoie�k= 11.50 ft =(21 ft - 15.25ft)(2) Design Loads - I Dead and Live Load Roof Load Front Wall (max case) Side Wall (min case) I Dead (15 psf) (15 psf)(60.5 8/2) = 454 plf ,,.: (15 psfx4.67 ft/2) = 36 plf Live (25 psf) (25 psf)(60.5 ft/2) = 756 plf Snow Load at Wall 153 pif °' Note: Control joints do not occur at corners of walls, therefore an "L" shaped section is assumed to resist End /Corner Zone wind pressures I Wind Load -, P,,,,,„,,,, - 17.5 psf '•$- Pwma c„, n F,0„ ' r = 39.1 psf " Pw,,w v„ „i exr. = 36.0 psf Seismic Load - Pk w�i = 16.6 psf I sa, = (0.213X78 psf) v . Psa :mK ao„ „s = 49.8 psf / = (0.638)(78 psf) I Allowables - Try (1) #5 @ 24” o.c. Walls - Ww,r„Mow = 25.72 psf > 17.5 psf (o.k.) I W5tA=mm All = 25.72 psf > 16.614 psf (o.k.) Parapets - ' Ww,,,,a Ally Front = 125.33 psf > 39.1 psf (o.k.) Ww anuo Back 54.44 psf > 36 psf (o.k.) ' W seismK All = 54.44 psf > 49.764 psf (o.k.) I Use 8” CMU w/ (1) #5V. @ 24" o.c. 1 I WALLACE DESIGN PROGRAM REVISED ' ;arrie Johnson Page 1 Copyright C I Date 6/10/2010 Sheet No. of Job Subject Main Building Walls I WORKING STRESS WALL ANALYSIS IBC -01/ AC1 530 -00 1. Input I Wall Height, H = 17.25 feet Parapet Height, Hp = 3.75 feet Weight of Concrete Block = 115 (103, 115, 135) pcf e Pf Nominal Wall Thickness, T = 8 (6 ", 8 ", 10" or 12 ") I Eccentricity, e = 4 inches Clear Dist. for Reinforcing = 2.5 inches • it H Running or Stacked Bond R (R or S) & Solid or Partial Grout P (S or P) Level of inspection factor, o = 1.000 (0 to 1) w Applicable code = IBC-01 H Comp. Strength, fm = 1500 psi I .;;;; Steel Stress, Fs = 24000 psi / 19200 psi for design x Use one-third stress increase? N (Y or N) A Axial Loads (Unfactored) I Pf, Case #1 Dead Live 36 0 plf Pf, Case #2 36 153 plf S•acin Pf, Case #3 454 0 plf Pf, Case #4 454 756 plf I j k Reinforcing - #, Size, and Spacing ,. 'SHi d T -- EI tin DE -_ # Size Spacing (Note: input numbers only) 1 Try: 1 - # 5@ 56" O.C. 1 - # 5@ 48" O.C. 1 - # 5 @ 40 " O.C. b 1 - # 5@ 32" O.C. I ; / 1 - # 5@ 24" O.C. 1 - # 5@ 16" O.C. 1 - # 6@ 56" O.C. 1 - # 6@ 48" O.C. 1 - # 6@ 40" O.C. I 1 - #6@ 32" O.C. 1 - # 6 @ 24 " O -C. # Summary of Calculations ALLOWABLE WIND PRESSURE (PSF) I ALLOWABLE SEIS 1 PR ESSUR E ,(PSF)� , ; , Reinforcing #5 @56 #5 @48 #5@401 ; 5 @24 #5 @16 1#6@56 #6@481#6@40 I #6 @32 #6 @24 Density (psf) E 49 ! 51 j 53 1 55 I `, 58 1 63 i 49 I- 51 53 i 55 58 d (inches) ' 3.81 3.81 381 3.81 1381 381 381 : 3.81 3.81 381 i 3.81 Cost per sq.ft. (estima 10.34 10.49 10.7V• 11.03 -11.56 12.63 10.57 10.75 11.00 11.37 ! 12.00 Axial Loai Dead Live r - Case #1 36 0 129 146 169 I 203 259 327 169 19.2 224 265 32.1 12.9 ( 1'4 * 6 ,j 16.9) f 20 3 X 9 n „s, 3 2 7 . 1 16.9",.1 X19 2 ;;[; 22'4A I -26 5 1 g 3 2 1 I Case #2 36 153 1 12.9 1 14.6 16.9; l 20.3 125.9 • 32.7 1 16.9 i 19.2 1 22.4 26.5 , 32.1 12".91 14`6; 16.9 t;1 20 3, 1 25 9v ... 3...yas 2 7 ar 16 .9. 1 .») 22.4 6 5 1 x, 1 32. Case #3 454 0 13.7 I 15 4 1/.7 '1 21 0 25.7 32 2 17.6 19.9 I 23.1 1 2 26.3 1 31 6 ;13'.7 * 15.4 g I 17.7 - 1'21 0 , 25.7, 32 2' 17.6 ;, 19.9 23 1 1 26 ; 3 31 6 . � Case #4 454 756 j 13 7 15 4 1 17.7 ' 2 25 7 32 2 17 6 19 9 ; 23 1 2 3 31 6 1 1,' 137 f `,15.4 j 177 :`21001. ,2 57, ,f ., ,.: 2, .176,> 199:1 2 3.1�i i , 263. 1.1316,, `, Note 1. If reinforcing is followed by a ', the allowable Moment is less than Mcr. 2. If bar laps are < the required min. (re: code), the allowable steel stress should be reduced proportionally. I 3. The'cQIBC 8'97 UBC require a lap increase of 50% if steel stress is more than 80% of allowable. The spreadsheet reduces the stress to 80%, so this isn't necessary. 4. If the parapet height is greater than 1/2 the wall height, check as a separate condition. The program assumes a simple span condition. 5. For the IBC codes, allowable seismic pressure in charts is an allowable stress design value equal to 0.7E. 1 1 WALLACE DESIGN PROGRAM REVISED ' •arrie Johnson Page 1 Copyright I Date 6/10/2010 Sheet No. of • Job . Subject Front Wall Parapet I WORKING STRESS WALL ANALYSIS IBC / ACI 530{ 1. Input I Wall Height, H = 7.50 feet Parapet Height, Hp = 0.00 feet Weight of Concrete Block = 115 (103, 115, 135) pcf e Pf Nominal Wall Thickness, T = 8 (6 ", 8 ", 10" or 12 ") I Eccentricity, e = 4 inches Clear Dist. for Reinforcing = 2.5 inches in H Running or Stacked Bond R (R or S) Solid or Partial Grout P (S or P) F - Level of inspection factor, a = 1.000 (0 to 1) w e. Applicable code = IBC - . :r H Comp. Strength, fm = 1500 psi I IR Steel Stress, Fs = 24000 psi / 19200 psi for design f Use one -third stress increase' N (Y or N) t ■ Axial Loads (Unfactored) I Dead Live Pf, Case #1 0 0 plf Pf, Case #2 0 0 plf S.acin i Pf, Case #3 0 0 plf Pf, Case #4 0 0 plf I ( k Reinforcing - #, Size, and Spacing - T -- OD M{3 fl d # Size Spacing (Note: input numbers only) I i Try: 1 - # 5 @ 56 " O.C. 1 - # 5 @ 48 " O.C. 1 - #5@ 40" O.C. b 1 - # 5 @ 32 " O.C. I / f 1 - # 5 @ 24" O.C. 1 - #5@ 16" O.C. 1 - # 6 @ 56 " O.C. 1 - # 6 @ 48 " O.C. 1 - #6@ 40" O.C. I 1 - #6@ 32" O.C. 1 - #6@ 24" O.C. # Summary of Calculations ALLOWABLE WIND PRESSURE (PSF) I ALLOWABLE SEI5MICtiPRES$P - 0,g -g ' Reinforcing #5 @561 #5 @48I #5@401#5@32' #5@24 #5 @16 I #6 @561 #6 @481 #6@40 1 #6 @32I #6 @24 Density (psf) 49 i 51 I 53 1 55 58 63 49 51 53 I 55 I 58 I d (inches) 3.81 I 3.81 I 3.81 ' 3.81 3.81 3.81 3.81 3.81 3.81 1 3.81 I 3.81 - - Cost per sq.ft. (estima 10.34 I 10.49 1 10.71 i, 11.03 11.56 12.63 10.57 10.75 11.00 I 11.37 i 12.00 Axial Loa Dead Live 1 I 1 Case #1 0 0 57.8 1 66.5 j 78.5 96.3 125.3 1 168.8 79.1 91.2 107.8 1 132.4 I 165.9 x",578 I'1665 78`5, 963 1253 ' 1688 , g 791 x'9122 :1078, 1324 t '1659 . I Case #2 0 0 57 8 66.5 I 78 5 96.3 125.3 168.8 1 79.1 91.2 107.8 132.4 i65.9 5 2: . 7,1 - ow, ooloj 7 5 `) 3 x;125'3 'x,-166 8 „ o 47g9:4.ii , 91'2 3107 8 13 ', 9 Case #3 0 0 57.8 I 66.5 1 78.5 1 96.3 , 125.3 1 1688 79.1 91.2 i 1078 132.4 165.9 1 5 7 7 8 ' 66 5 78 5 I,_96 3 f 125_3 1,88 gi.: X79 1 _ ; 91, 2, °�, x 8 E1.32`4 ,ti 165 9 Case #4 0 0 57.8 I 66.5 i 78.5 96.3 125 168 8 79 1 91 2 107 8 1 4 l 165 9 1 I 'S7 8. ,66:5 78 5.., p „96 3 1,..125 3p ,, 1;68 8 j .'79 11. 1 91, 2 h ` ;107 8 , i ,.1,3 4 ,f . 1,65 :. Note 1. If reinforcing is followed by a ', the allowable Moment is less than Mcr. 2. If bar laps are < the required min. (re: code), the allowable steel stress should be reduced proportionally. I 3. The '(A IBC 8.'97 UBC require a lap increase of 50% if steel stress is more than 80% of allowable. The spreadsheet reduces the stress 1 4. If the parapet height is greater than 1/2 the wall height, check as a separate condition. The program assumes a simple span condition. 5. For the IBC codes, allowable seismic pressure in charts is an allowable stress design value equal to 0.7E. 1 1 I WALLACE DESIGN PROGRAM REVISED Carrie Johnson Rage - f Copyright (. I Date 6/10/2010 Sheet No. of Job Subject Back Wall Parapet I WORKING STRESS WALL ANALYSIS IBC Z / ACI 530 -p* 1. Input I a Walt Height, H = 11.50 feet " Parapet Height, Hp = 0.00 feet Weight of Concrete Block = 115 (103, 115, 135) pcf e Pf Nominal Wall Thickness, T = 8 (6 ", 8 ", 10" or 12 ") a } Eccentricity, e = 4 inches Clear Dist. for Reinforcing = 2.5 inches `� \ H Running or Stacked Bond R (R or S) C Solid or Partial Grout P (S or P) I Level of inspection factor, m = 1.000 (0 to 1) w i Applicable code = IBC- VI l H Comp. Strength, fm = 1500 psi 1h Steel Stress, Fs = Use one -third stress increase' 24000 psi ./ 19200 psi for design z N (Y or N) A. Axial Loads (Unfactored) I Dead Live Pf, Case #1 0 0 plf Pf, Case #2 0 0 plf S•acin i Pf, Case #3 0 0 plf Pf, Case #4 0 0 plf k Reinforcing - #, Size, and Spacing ...... rr•;ru;;rx, au «e< d_ T --.� E l O 4 Size Spacing (Note: input numbers only) I > Try: 1 - # 5 @ 56 " O.C. 1 - #5@ 48" O.C. 1 - # 5 @ 40 " O.C. b 1 - #5@ 32" O.C. I ., 1 - # 5 @ 24 " O.C. I 1 - # 5 @ 16 " O.C. 1 - #6@ 56" O.C. 1 - #6@ 48" O.C. 1 - #6@ 40" O.C. I 1 - # 6@ 32" O.C. 1 - #6@ 24" O.C. # S ummary of Calculations ALLOWABLE WIND PRESSURE (PSF) I ALLOWABLE SEISMI PRESSU Reinforcing ; #5 @56 #5@481#5@401#5@32 #5 @24 #5 @16 i #6 @56I #6@48! #6 @40 #6 @32', #6 @24 Density (psf) i 49 51 I 53 ' 55 : 58 63 I 49 51 _ I 53 55 i 58 d (inches) j 3.81 3.81 3.81 I 3.81 3.81 , 3.81 ! 3.81 3.81 _� 3.81 3.81 i 3.81 Cost per sq.ft. (estimal 10.34 10.49 10.71 1 11.0 ; 11.56 j 12.63 I 10.57 10.75 11.00 11.37 12.00 I Axial Loa+ Dead Live i I i 1 i I Case #1 0 0 ' 25.6 29.3 34.5 ( 42.0 i 54.4 i 72.2 34.6 39.8 46.9 57.4 1 71.0 - 25 Ri29 3 ! j34 0 PM OMA01 iteili 13 0 : 39 8, 6 9 , y ; 574 71``Oy III Case #2 0 0 25.6 29.3 34.5 - 42.0 54.4 1 72.2 34.6 39.8 46.9 57.4 71.0 --1261-6N Pq 3411 5% }42 0 k 54x4 { i72 2 r MO/ ig:'§W t 46 9 t ,,,K 57 "4 . 71i0Q t Case #3 0 0 25.6 29.3 34.5 42.0 54.4 72.2 34.6 39.8 46.9 57.4 71.0 25'6` X 29 3 t 4 5 42N0I I ' A54 4' � fr7,2�2,., ; 3'4161, X39 8. � k 46 9 ?71 0. ` ; ll - Case #4 0 0 25.6 29.3 34.5 42.0 , 54.4 72.2 34.6 39.8 46.9 I 57.4 i 71.0 25"6 041:3 w ,34:5 '{.4 42:0',4 154;4. 1 :72.2 . ` 34'6, . ` 39`8 1 � °46 1 .;,57 4` :.�;' ni , Note 1. If reinforcing is followed by a ', the allowable Moment is less than Mcr. 2. If bar laps are < the required min. (re: code), the allowable steel stress should be reduced proportionally. 3. The .4 IBC 8'97 UBC require a lap increase of 50% it steel stress is more than 80% of allowable. The spreadsheet reduces the stress 4. If the parapet height is greater than 1/2 the wall height, check as a separate condition. The program assumes a simple span condition. 5. For the IBC codes, allowable seismic pressure in charts is an allowable stress design value equal to 0.7E. r 1 1 WALLACE DESIGN PROGRAM REVISED (-- ' - . -- Page 1 coprght Date 06/10/10 Sheet No of I. Job AutoZone Subject 3' -4" door Side wall BLOCK LINTELS AND JAMBS IBC / ACI 530-05 . . I W dead, W live 1. Input ���� = = =� Loads /Configuration: Opening Width, B opening = 3.33 feet uffsimmulowo •121 Opening Height, H = 7.17 feet Il " of ®molismmo / Roof Bearing Elevation, Hw = 15.75 feet �� ®� ®;) Nominal Wall Thickness, T = B (6 ", 8 ", 10" or 12 ") ®■� Overall Wall Weight, Ww = 78 psf IIIIIIMENIIIM s; a', IMMErl Lintel and Jamb Weight, WI = 80 psf ®_E® ® ®1.111® Is Grout in Wall Solid or Partial? P S or P Lateral Load, Wlateral = 17.50 psf I 1.F EI_ 1_® sr E� I — Dead Load, W dead = 445,50 p11 ®® ®® Live Load, W live = 153.00 p11 4 4 z a , r agARRi Eccentricity (Dead /Live Loads), e = 2.50 inches 0 k,.�Y_�: 5 r , _N Lateral it-'k' ® ® i ":x ® ®E Hw Applicable code = IBC -41 0 to 1) 1 ® _S Level of inspection factor, o = ® ® Masonry Comp. Strength, fm = 1500 psi Steel strength, Fs = 24000 psi / 19200 psi for design 4E1'4 I Allow 1/3 stress increase? N (Y or N) [mem am ®x ^"i`= � ®oim® �® � Lintel Input: 1.000 H N ® ® M Nominal Lintel Depth, D = 8 inches 0 = CM MIVIENIMINIMIll Top bars (# -size) = - #5 For a series of doors, I t. I ®� ti" l� GI III ®��1 Bottom bars (iC s¢e) = 1 16 input the jamb width & 1q distance from opening M.\ �® Milk II� II Jamb Input: if MEN GIs Jamb Width, B jamb (grouted cells) = 16 inches to C.J. as 1/2 the width 1 / of the distance between ® ®la® �®® ®tea ® ®x Bars per cell (# -size) = 2 - #5 ® ®emam® ®m ® ® ®a ®'9e®r 6 doors. �® - � s = :..;; 1~'"''' ' .. Wall Reinforcing Spacing, S = 24 inches Distance from Opening to C.J. = 72 inches - - - - - Continue first bar to roof height? Y (Y or N) IP Clear distance for jamb reinforcing = 2.50 inches B opening B jamb 2. Lintel Design Reinforcing Diagram Allowable Stresses: Masonry, Em = 1.4E +6 psi (ACI 530- C6Sect. 1.8.2.2.1) ratio Es /Em, n = 21.4.8 Allow. Bending Stress. Fb = 500 psi Wdead Allow. Steel Stress, Fs = 19200 psi III If Hw -H> .5Bopening, v v` v v v Allow. Shear Stress, Fv = 38.7 psi wwan vngaar( solo Moment -Mx (Gravity Loads): me) Hw - H = 8.58 feet If Hw-H 5 .5Bopening, wwan is rectangular i" = 2.3 in -kips (dashed line) and Wdead Wwall dx = 4.125 inches and Wlive are applied l__ l .5 Bopening (rho)x = 0.010 k = 0.473 I = 0.842 fbx = 90.1 psi s Fb = 500 Wlateral fsx = 2160.2 psi 5 Fs = 19200 Moment -My (Lateral Loads): My = 2.3 in -kips Load Diagram dy = 3.813 inches (rho)y = 0.021 k = 0.603 j = 0.799 Z`+ fby= 85.8 psi 5Fb =500 fsy = 1213.8 psi _< Fs = 19200 i j Combined Stresses: fbx/Fb + fby /Fb = 0.35 5 1.00 O.K. it! 9, fsx/Fs + fsy/Fs = 0.18 5 1.00 O.K. Shear: Vx = 196.9 lbs II Vy = 229.5 lbs ii 2.5 .�.5" fv = Vx/tdx + Vy /ddy = 14.2 psi < 38.7 No Stirrups Req'd t Deflection: Deflection Limit = U600 = 0.067 inches Ax, gravity load defection = 0.001 inches < 0.067 O.K. Lintel Section 1 Use 8" Deep Lintel with - #5 To and 1 - #5 Bottom Required development = 24" for straight bars and 15" for hooked bars 1 1 I WALLACE DESIGN PROGRAM REVISED 07/09/07 Page 2 Copyright co Date 06/10/10 Sheet No. of 1 Job AutoZone Subject 3' -0" door BLOCK LINTELS AND JAMBS I 3. Jamb Design Axial Load: Tributary Width = 3.67 feet Lateral Loading: I w, lateral load = 64.1 ptf V, shear = 505.1 Ibs w lateral Below Top of Door Section Properties: Pa = Number of reinforced cells, n = 2 I D.L. +L.L �i� ^ belt = 24 inches. Design as a Wall Ag = 142.0 sq. in. Ig = 796.9 in. ^4 Vbot Hw Vtop Sg = 209.0 in. ^3 -,j ,- r = 2.37 inches Axial Load: I P = 4669.1471 Ibs fa = 32.9 psi Loading on Jamb 1 r = 79.78 <_ 99 Fa = 253.2 psi Moment: I B eff My, max. below top of door = 26.2 in -kips As = 0.62 sq. in. dy = 5.125 inches .... kd )Y = 0 2.009 > tf = 1.25 V _ i I `�� = 0.896 I fb = 275.7 psi < 500 B jamb � fs = 9187.9 psi < 19200 Combined Stresses: fa /Fa + fb /Fb (or fs /Fs) = 0.68 0 1.00 O.K. 1 Jamb Section Below Top of Door Above Top of Door Section Properties: Number of reinforced cells, n = 2 beff = 43.98 inches, Design as a Wall B eft Ag = 192.0 in. iii ,. ) 1 Ig= 1310.9m in. ^4 Sg= 343.8 m ^3 � .., �� r = 2.61 inches � ��.��.'j L .� � � Axial Load: 4465.728 8 psi I h/r = 72.32 s 99 B open ing /2 B iamb Fa = 274.9 psi Mo menC S My, max. above top of door = 26.6 in -kips As = 0.62 sq. in. I dy = 5.125 inches Jamb Section Above Door (rho)y = 0.0028 k = 0.293 kd= 1.503> if =1.25 j = 0.907 fb = 178.3 psi < 500 fs = 9232.2 psi < 19200 Combined Stresses: fa /Fa + fb /Fb (or fs /Fs) = 0.57 0 1.00 O.K. Use 16" Wide Jamb with 2-#5 Bars in Each Cell I Estimated Cost = $181.43 1 1 I : ...' 1 1 1 WALLACE DESIGN PROGRAM REVISED 07/09/07 Page 1 Copyright m Date 06/10/10 Sheet No. of Job AutoZone Subject 3'-4" door BLOCK LINTELS AND JAMBS IBC ACI 530* I 1. Input W dead, W live MIIIIMMI=MIll== Loads /Configuration: Opening Width, B opening = 3.33 feet 6666 " E: k "' A - Opening 9 O ni Height, H = 7.17 feet I { / Roof Bearing Elevation, Hw = 16.83 feet - { � { _ Nominal Wall Thickness, T = 8 (6 ", 8", 10" or 12 ") ){ 'S { 11 .x ,{ S {A Overall Wall Weight, Ww = 78 psf Lintel and Jamb Weight, WI = 80 psf Is Grout in Wall Solid or Partial? P S or P �� ' 1 1 { 1 { { { Lateral Load, W lateral = 17.50 psf i , { ' k( { { { ° { Dead Load, W dead = 746.25 Ii / Live Load, W live = 756.25 plf s " a ` x ? ° Eccentricity (Dead/Live Loads), e = 2.50 inches D a� - z�`, "r" .' ,, . ' t-n, _ Lateral ®, It x 6 3 6 66 66 Hw Applicable code = IBC , { g Level of inspection factor, e = 1.000 to 1) q � i, ti� 1 VI Masonry Comp. Strength, fm = 1500 psi x r r Steel strength, Fs = 24000 psi o® ® ® ® C. ® Allow 1/3 stress increase? N (Y or N) H mn s, {gig { { L intel Input: Nominal Lintel Depth, D = 8 inches For a series of doors, ii II ® TMI { t 'k f '{ Top bars (# -size) _ #5 { {® { v f{ d { Bottom bars (# size) = Foul the jamb width 8 �� xJ 1 Jamb Input: 1 #5 distance from opening Jamb Width, B jamb (grouted cells) = 16 inches to C.J. as 1/2 the width ® ® 6t ® ® ®® a a .. 1 % Bars per cell (# -size) = 2 - #5 of the dis between ®yam . ® ® ® ®e® ®ate a Wall Reinforcing Spacing, S = • 24 inches doors. ii III �" m s rrsir®, m aa , z ) Distance from Opening to C.J. = 72 inches 6.6 Continue first bar to roof height? Y (Y or N) Clear distance for jamb reinforcing = 2.50 inches B opening B jamb 2. Lintel Design Reinforcing Diagram I Allowable Stresses: Masonry, Em = 1.4E +6 psi (ACI 530 -Sect. 1.8.2.2.1) ratio Es /Em, n = 21.48 Allow. Bending Stress, Fb = 500 psi Wdead Allow. Steel Stress, Fs = 19200 psi 9 Hw.-1-1 > .5Bopening, v v Allow. Shear Stress, Fv = 38.7 psi Wwall is triangular (solid Moment -Mx (Gravity Loads): line) Hw - H = 9.66 feet H Hw -H 5 .5Bopening, Wwall is rectangular ,f Mx = 2.3 in -kips (dashed line) and Wdead Wwall dx = 4.125 inches and Wlive are applied i -- l .5 Bopening (rho)x = 0.010 I i k = 0.473 1= 0.842 fbx = 90.1 psi 5 Fb = 500 MWlateral fsx = 2160.2 psi s Fs = 19200 Moment -My (Lateral Loads): My = 2.4 in -kips Load Diagram dy = 3.813 inches (rho)y = 0.021 k = 0.603 j= 0.799 i. fby = 91.7 psi <_ Fb = 500 r- .' O - - Combined = 1297.0 psi 5 Fs = 19200 % - Combd Stresses: 1 o C I fbx + fby/Fb = 0.36 s 1.00 O.K. - fsx/Fs +fsy /Fs = 0.18 s 1.00 O.K. s in Shear: &' ∎Q Vx = 196.9 lbs ` I I - Vy = 245.2 Ibs 2.5 C .S" fv = Vx/tdx + Vy /ddy = 14.7 psi < 38.7 No Stirrups Req'd t Deflection: Deflection Limit = U600 = 0.067 inches 4x, gravity load defection = 0.001 inches < 0.067 O.K. Lintel Section I Use 8" Deep Lintel with - #5 Top and 1 Bottom Required development = 24" for straight bars and 15" for hooked bars I / • • r \ I II WALLACE DESIGN PROGRAM REVISED 07/09/07 Page 2 Copyright O Date 06/10/10 Sheet No. of Job . AutoZone Subject 3' -4" door -) BLOCK LINTELS AND JAMBS I 3. Jamb Design Axial Load: Tributary Width = 3.67 feet Lateral Loading: I w, lateral load = 64.1 plf V, shear = 539.7 Ibs w lateral Below Top of Door - -: --:: Section Properties: Pa = : Number of reinforced cells, n = 2 I D L +L L> - T beff = 24 inches, Design as a Wall Ag = 142.0 sq. in. Ig = 796.9 in. ^4 Vbot Hw Vtop Sg = 209.0 in. ^3 s . r = 2.37 inches I Axial Load: P = 8293.9267 Ibs fa = 58.4 psi g t r = 85.25 5 99 Fa = 235.9 psi Moment: I B eff My, max. below top of door = 32.5 in kips As = 0.62 sq. in. 5.125 inches A _ ■■ (rho)y = 0.0050 V T i� � JEN1INli l kd= 2.009 >if =1.25 j = 0.896 (b = 342.5 psi < 500 B jamb fs = 11416.7 psi < 19200 Combined Stresses: fa /Fa + fb /Fb (or fs /Fs) = 0.93 5 1.00 O.K. I Jamb Section Below Top of Door Above Top of Door Section Properties: Number of reinforced cells, n = 2 beff = 43.98 inches, Design as a Wall I ( 5% B eff 1 Ag = 192.0 sq. in. Ig = 1310.9 in. ^4 Sg = 343.8 in. ^3 II(i �� inches � (. � - ��.� 41.3 psi ..] AxiP Load: 7934. 98 77.28 0 99 B opening /2 B iamb _ Fa = 260.7 psi Moment: My, max. above top of door = 34.1 in -kips As = 0.62 sq. in. I dy = 5.125 inches Jamb Section Above Door (rho)y = 0.0028 k = 0.293 kd = 1.503 > tf = 1.25 j = 0.907 tb = 228.7 psi < 500 I fs = 11843.8 psi < 19200 Combined Stresses: % . fa/Fa + fb /Fb (or fs /Fs) = 0.78 s 1.00 O.K. I Use 16" Wide Jamb with 2-#5 Bars in Each Cell Estimated Cost = $191.8 1 1 1 1 1 WALLACE DESIGN PROGRAM REVISED 07/09/07 Page 1 Copyrgh m Date 06 /10 /10 Sheet No. of Job AutoZone Subject 6' -0" door side wall BLOCK LINTELS AND JAMBS TBCO ACT 530=0Yj i ti 1 1 Input W dead, W live 11�M1111 Loads /Configuration: Opening Width, B opening = 6.00 feet 15 X0 1 is wi el 1 dal Opening Height, H = 8.00 feet -I { 1 h " } } - / Roof Bearing Elevation Hw = 15.75 feet II <i +' +.za r S S �" Nominal Wall Thickness, T = 8 (6 ", 8 ", 10" or 12 ") j f� Overall Wall Weight, Ww 78 psf n, Lintel and Jamb Weight, WI = 80 psf &. _ Is Grout in Wall Solid or Partial? P S or P - 11 Peg G , Lateral Load, W lateral = 17.50 psf Dead Load, W dead = 445.50 p Live Load, W live = 153.00 plf -rs1 r � k p `'�.' Eccentricity (Dead /Live Loads), e = 2.50 inches D 1 *'al : x z RIB A llowables: n ® �...,., � 1 � 121 Hw Applicable code = IBC. Q E1 ® N _( M®_r Level of inspection factor, o = 1.000( ,, (O to 1) ii ' IEEE all �_ �� Masonry Comp. Strength, fm = 1500 psi 1 u c ® iii ® Steel strength, Fs = 24000 psi / 19200 psi for design nz ® $s®M o . Allow 1/3 stress increase? N (Y or N) • ® Lintel Input: H Nominal Lintel Depth, D = 24 inches ' ®S Top bars (# size) _ #5 For a series of doors, 1 r'`. �® ®I s, (� ®1®_®1® Bottom bars (# -size) = 1 - #5 input the jamb width & .1 wt hi IIII I1� IM Jamb Input: distance from opening ® MM�_® Jamb Width, B jamb (grouted cells) = 24 inches to C.J. as 1/2 the width .;,..® ®t® ®ISSm01 a a®. / Ba rs per cell (# -size) = 2 - #5 i of the distance between _ ® ®® ® ® ® ®m ® ®a e® doors. %x � _;js x ?,';x 4 0 x; p, , r Wall Reinforcing Spacing, S = 24 inches i i Distance from Opening to C.J. = 72 inches Continue first bar to roof height? Y (Y or N) Clear distance for jamb reinforcing = 2.50 inches B opening B jamb ' 2. Lintel Design Reinforcing Diagram 1 Allowable Stresses: Masonry, Em = 1.4E +6 psi (ACI 530 - 08Sect. 1.8.22.1) ratio Es /Em, n = 21.48 Allow. Bending Stress, Fb = 500 psi Wdead Allow. Steel Stress, Fs = 19200 psi If Kw : H > seopening, Allow. Shear Stress, Fv = 38.7 psi I ,, Wwall isfrongularlsolid W v V v Moment -Mx (Gravity Loads): line) .seopen Hw - H = 7.75 feet Wwall in rectangular ."--- Mx = 17.1 in -kips Idashed line) and Wdead Wwall dx = 20.125 inches and wive are applied I _ _ I .5 Bopening (rho)x = 0.002 I k = 0.254 1 IlOra 1= 0.915 tbx = 47.5 psi 5 Fb = 500 Wlateral fsx = 2968.6 psi 5 Fs = 19200 Moment -My (Lateral Loads): My = 7.4 in -kips Load Diagram dy = 3.813 inches ( rho)y = 0.003 k = 0.318 j = 0.894 iv fby= 152.6 psi <_ Fb =500 fsy = 7042.3 psi 5 Fs = 19200 ' Combined Stresses: p x fbx/Fb + fby /Fb = 0.40 5 1.00 O.K. fsx/Fs +fsy /Fs = 0.52 5 1.00 O.K. Shear: /-", Vx = 831.0 Ibs Vy = 413.4 Ibs i in 2.5, .,C fv = Vx/tdx + Vy /ddy = 10.0 psi < 38.7 No Stirrups Req'd D eflection: 1 f Deflection Limit = U600 = 0.120 inches Ax, gravity load defection = 0.001 inches < 0.12 O.K. Lintel Section 1 Use 24" Deep Lintel with 1-45 Bottom Required development = 24" for straight bars and 15" for hooked bars Estimated Cost = 5291.32 1 1 1 • 1 WALLACE DESIGN PROGRAM II REVISED 07/09/07 Page 2 Copyright Date 000/10 Sheet No. of I Job AutoZone Subject 6 -0" door BLOCK LINTELS AND JAMBS I 3. Jamb Design Axial Load: Tributary Width = 5.67 feet Lateral Loading: I w, lateral load = 99.2 plf V, shear = 780.9 Ibs w lateral Below Top of Door Section Properties: I Pa = i . Number of reinforced cells, n = 3 : D.L. +L.L. n n bell = 32 inches, Design as a Wall Ag = 203.0 sq. in. 19 = 1092.5 in. ^4 Vbot Hw Vtop Sg = 286.5 in. ^3 -/ .- r = 2.32 inches I Axial Load: P = 6903.75 Ibs fa = 34.0 psi Loading on Jamb h/r = 81.47 5 99 Fa = 248.0 psi Moment: 111 .1 B eff My, max. below top of door = 41.1 in -kips As = 0.93 sq. in. dy = 5.125 inches o L. L ..�� kd = = 0.0057 k 0.414 - kd 2.124 >tf =1.25 i= 0.895 ib= 317.7 psi <500 B jamb fs = 9643.9 psi < 19200 Combined Stresses: fa/Fa + fb /Fb (or fs /Fs) = 0.77 < 1.00 O.K. `- Jamb Section Below Top of Door Above Top of Door Section Properties: Number of reinforced cells, n = 3 bell = 56 inches, Design as a Wall B eff Ag = 263.0 sq. in. I 1 Ig = 1709.9 in. ^4 Sg = 448.5 in. ^3 r= 2.55 inches ! I�•• ■��•��7�■��� AxiLoad: J 6848 • •■ ■� MM fa = 26.0 psi ffr= 74.12 599 B opening /2 B iamb Fa = 269.9 psi Moment: S _ My, max. above top of door = 41.2 in -kips As = 0.93 sq. in. I dy = 5.125 inches Jamb Section Above Door (rho)y = 0.0032 k = 0.317 kd = 1.624 > tf = 1.25 j = 0.903 i fb = 206.6 psi < 500 11/ fs = 9566.8 psi < 19200 C Stresses: y ;' la/Fa + fb /Fb (or fs /Fs) = 0.59 <_ 1.00 O.K. I Use 24" Wide Jamb with 245 Bars in Each Cell Estimated Cost = $293.68 a 1 1 1. 1 1 • I WALLACE DESIGN PROGRAM REVISED " - Copyright (. I Date 6/11/10 Sheet No. of I Job Subject Jamb between doors ' Loads to Jamb between Doors 1 . Input: I Height to Roof= 15.75 ft. (Finish Floor to Roof Diaprhagm) Top of Parapet= 21.00 ft. Width of door (a)= 3.33 ft. i i II Height of door (a)= 7.17 ft. Lintel depth of door (a)= 8 in. Width of door (b)= 6.00 ft. Height of door (b)= 8.00 ft. 1 Lintel depth of door (b)= 24 in. Width of jamb between doors= 2.00 ft. Roof load tributary width= 2.34 ft. Roof dead load= 15.00 psf I Roof live load= 20.00 psf Roof Snow load to wall= 153.00 plf Wall wind load= 17.50 psf Wall weight= 78.00 psf Lintel weight= 78.00 psf 2 . Determine Axial Load to Pilaster: 1 Wall Weight from wall above lintel: From door (a): 1.80 kips From door (b): 3.04 kips 1 From Pilaster: 0.82 kips Roof Load to Pilaster: Roof Dead Load: 0.23 kips I Roof Live Load: 0.31 kips Roof Snow Load: 1.02 kips I Total Additional load to pilaster: 6.91 kips I 3 . Determine Equivalent Wind load pressure on Jamb Factor of Trib. Width /Jamb Width= 3.33 Equivalent wind load to jamb= 58.32 psf I vi 4 . Determine Equivalent Eccentricity of Load to Pilaster Roof Load * 4" / Total Load = 0.73 in. ' 1 I 1 1 WALLACE DESIGN PROGRAM - REVIStD 4/'672010 kmc Copyright I Date 06/11/10 Job Sheet No. of y Subject Jamb between doors ` CMU PILASTER - Working Stress Design I ACI 530 -05/ 1. Input C W / / k Configuration: I H, Effective Wall Height = 15.75 feet T, Nominal Wall Thickness 8 (8 ", 10" or 12 ") t.-Pcl W. Pilaster W (grouted cells) = 24 inches Total bars (# -size) = 6 - #5 Single or Double Reinforing? D (S or D) SOLVE 1 ® / S, Wall Reinforcing Spacing = 24 inches IT! CI, Left Edge of Pilaster to C.J. = 0 inches i ® Cr, Right Edge of Pilaster to C.J. 0 inches Solid or Partially Grouted Wall? S (S or P) I ■■ IlainiM L oads: • ® Wlat, Lateral Load = 58.32 psf (wind or seismic) ®� _� Pd +I, Axial Load (Dead +Live) = 6.91 kips (include wall weight above I- :: I IIMENNIMMIN B, Width of Bearing for Point Loa 24 inches H ex, Eccentricity for Axial Load = 0.73 inches Ww, Weight of Wall = 78 psf MIN Wp, Weight of Pilaster = 78 psf i- ®® Allowables: Applicable code = ACI -05/08 ®, _g e, Level of inspection factor = 1.000 (0 to 1) I 111111 1111IIA ® fm, Masonry Comp. Strength = 1500 psi mi I � i : Fs, Steel Stress = 19200 psi WI �� � ® Allow 1/3 stress increase? N (Y or N) 1 2. Pilaster Design ® .:: Section Properties: Em, Masonry Mod. of Elasticity = 1.4E +6 psi (Re: ACI 530 -0S, 1.8.2.2) J t, Actual Wall Thickness = 7.625 inches I tf, Flange Thickness = 1.25 inches n, Number of Reinforced Cells = 3 S Design as a Column or Pilaster? pilaster beff, Effective W = 24 inches Ag, Effective Area = 183.0 sq. in. I Ix, Moment of Inertia = 886.6 in. ^4 Reinforcing Diagram Sx, Section Modulus = 232.6 in. ^3 r, Radius of Gyration = 2.20 inches d = 5.125 inches I beff As, Area of Steel (axial) = 1.86 sq. in. As, Area of steel (bending) = 0.93 sq. in. rho = 0.0076 Allowable Stresses: III I 1::€:i:i:::€<::::: : : :: €::: : : ::: €: €: ><:;i::::4 I I I I Stress reduction factor = 1.00 :;v:: ::o:: i o:: n, ratio Es /Em = 21.48 '� e • 1f Fb, Allowable Bending Stress = 500 psi Fs, Allowable Steel Stress = 19200 psi 4 .. Fv, Allowable Shear Stress = 38.7 psi I III h/r = 85.9 <- 99 W Fa, Allowable Axial Stress = 233.9 psi At bottom of wall: S S/ S/ P = Pd +I + Wwall`H'b = 9.4 kips Plan fa = P / Ag = 51.2 psi < 233.9 - O.K. At top of wall: I P = Pd +I = 6.9 kips to = Pd +I / Ag = 37.8 psi < 233.9 - O.K. e e( Ma = Pd +I (ex) = 5.0 in -kips Pd+ ). Pd+ Pd+ kd = 7.625 > tf = 1.25 I j = N.A. U fs, steel stress = 0.0 psi < 19200 - O.K. fb, masonry stress = 59.3 psi < 500 - O.K. P 1 At mid - height of wall: H 2 2 V = w H/2 = 918.5 lbs li, I 91 w}f fv = V / (bjd) = 8.4 psi < 38.7 - O.K. P = Pd +I + Wwall'b`H / 2 = 8.14 kips Pw fa =P /Ag2 / = 44.5 psi <233.9 -O.K. M = w`H ^ 8 + Pd +i (ex) / 2 = 45.9 in -kips kd = 2.973 > tf = 1.25 ' BOTTOM TOP MID - HEIGHT I 0 892 Allowable Sresses, Ft fs, steel stress = 5967.3 psi < 19200 - O.K. Fs, and Fa fb, masonry stress = 383.7 psi < 500 O.K. include 1/2 Diagram of Loads Considered Use 24" wide pilaster with 6 - #5 bars III 1 CMU WALL DESIGN N PROCEDURE 1 (Working Stress Design) c 1 PROGRAM DESCRIPTION The CMU Wall Design spreadsheet determines the allowable wind and seismic service loads for vertically spanning reinforced CMU • walls, The spreadsheet calculates the maximum allowable wind and seismic loads based on the given effective height, section properties, axial loads and eccentricities, and construction technique, The spreadsheet is an exact working stress analysis based on the ACI 530-99/02/00 Masonry Building Code' The load calculations use the following load combinations: I Load Combination #1 Doad +Wind or .9 Dead +Seismic Load Combination #2 Dead +Live +Wind or Dead +Live +Seismic I REFERENCES 1, Building Code Requirements for Masonry Structures (ACI 530 /ASCE 6/TMS 402- 99/02/010 2. Reinforced Masonry Design, Second Edition, Chapter 7 and Table B -9, Robert R. Schnieder and Walter L. Dickey 1 3. Section Properties of Concrete Masonry Walls, NCMA TEK 14 -1, Structural (2003) • 111 ee Pf I . • Spacing Hp ss - kd tir w i T — f MN N© = " � H 1 y 1 o r t , bW , ...txs.2 neaW INPUT H = Height of wall In feet Hp = Height of parapet In feet Weight = Weight of the masonry wall In pcf (103, 115, or 135 pcf - Light, Medium, or Normal Weight) T = Nominal thickness of block (6, 8, 10, or 12 Inches) e = Eccentricity in inches I R or S = (R)unning or (S)tacked bond masonry S or P = (S)olld or (P)artlal grout In walls • a = Level of inspection factor (not required by code) I f' = Compressive strength of masonry In psi Fs = Allowable stress of reinforcing in psi (Re: ACI 530 - 99/02/08, 2.3,2.1 I 1 Em = Modulus of Elasticity of Masonry in psi (Re: ACI 530 - 99/02/06, 1.8.2.2.1 Pf = Doad and live load from roof In plf # = # of vertical bars In each cell (1 or 2) Size = Size of vertical bars (3, 4, 6, 6,...11) Spacing = Spacing of vertical reinforcing steel In Inches 1 . t I DESIGN PROCEDURE 1 1. Calculate Total Design Loads and Check Axial Load Limit P max = Pf + P 5 A F Where: Pf = Dead and live load from roof In plf P = Weight of masonry wall above mid- height = Density + hp) In plf I Density Density of the CMU In psf (using 140 pcf grout) f' = Compressive strength of masonry (not greater than 6000 psi) _ A Gross area of masonry I 2. Determine Allowable Stresses E = Modulus of elasticity of steel = 29,000 ksl n = ratio of E 1 Fb = Allowable masonry bending stress (Inorease stresses by 1/3 for wind or seismic) 7.5 3 f'm) F = Allowable steel stress (Increase stresses by 1/3 for wind or seismic) = g (F Input) I F = Allowable masonry axial stress (Increase stresses by 1/3 for wind or seismic) If h/r s 99, Fa= 3 ( if h/r > 99, Fa= 9 (4f'm(�h ) Where: h = Height of wall, Inches 1 r = Radius of gyration of wall, Inches /foot 3. Determine Section Properties I A = Area of steel (in A 7. Area of masonry including grout filled cells (in /foot) Af = Area of flange (In /foot) I Aw= Area of web (In /foot) Sm = Section modulus of wall (In /foot) I = Moment of inertia of wail (In /foot) I r = radius of gyration of wall (In /foot) T = Actual thickness of wall (Inches) if = Thickness of flange (Inches) dw= Depth of web = T- 24 (Inches) I d = Distance from face of masonry to centerline of steel (Inches) 4. Check Maximum and Minimum Reinforcing Requirements As 1 P - bd p(minimum), no mtnirnum reinforcing Is checked (note: min. reinforcing requirements are greater for seismic zones 2 -4) I For solid grouted walls, p(maxlmum) _ .5 p (balanced) = .5 .85� "' ( 870 00 fY ) where (3= .86 I _ For partially grouted walls, _ ,003 xb ( .003 i- f W E B )d ab = R1 xb = ,85xb I Asb _ ,85f', b, + ,85 f' (s, -t f f Y s I p(maxlmum) = .5 p (balanced) = .5 d 1 I 5. Determine Points on Interaction Curve I Procedure for Calculating Points d The calculations vary the stress magnitude on the CMU In order to find I i corresponding values of P and M. Point #1 Maximum allowable axial stress, no bending Pmax = Am F Mmax – 0 tf dw if Point #2 I T Maximum allowable axial stress + bending sufficient to achieve maximum allowable flexural compressive stress 1 Diagram Pmax = Am F Mmax = (Fb - Fa) Sx I Fa Point #3 Point where zero stress first occurs at Interior wall face Point #1 Pmax = (average stress) x (portion of Am stressed In compression) tf 1 P1 – 2b xT xAf ei = d -3 tt If Fb P2 = Fbx[ - T ]xAf e2 = d 2 1 Fa P3 – 2b x T x A e3 = d tf d 3 tf dw P4 = Fb x T xA 04 = d - tf - 2 Point #2 = t P5 Fb x T xAf e5 = d tf dw g Pmax = PPx Mmax = Z Px ex I Fb h..– Point #4 P2 11111161111A.— P5 Point where zero stress occurs midway between wall C.L. and Interior face 1 Point #3 – Fb 4tf if P1 2 x 3 xAf e = d 3 I P2 = Fbx[1. ]x Af e2 = d- 3T/4 – Fb 4tf 3T/4 - tf 3T/4 - tf Fb P3 2 x [1 3T ]x AHx dw e3 = d - tf ' 3 M If d> 3T/4 1 P2 lIllhb d Pst n x As x Fb x 3TT /4 est = 0 Pmax = EPx Point #4 Mmax = Z Px ex Point #5 • T/2 Point where zero stress occurs at the wall C.L. = t Fb ,u 1 P1 Fb 2tf ei = d - P2 Ilki , t • P2 = Fbx[1 2�if )xAf 02 = d- 1 :.—is Pst Fb 2tf Aw dw Point #5 • P3 2 x[1. T ] x 2 03 = d tf 6 . If d> T/2 Pst = nxAsxFbxdTTt2 est = 0 1 M . I Point #6 T/3 Point where zero stress occurs 1/3 of the distance between well C.L. and e ! Fb P1 face. P2 II`u - P1 = � r 'xT f xAt e1 = d- 2 Point #6 P G Fb x[1- Tf ]xAf e2 = d - z 1 T/4 F, 3t f T/3 - tf T T/3-4 P3 – 2 x [ 1 ]xAwx dw 03 = d tf 3 Fb If d> T/3 1 113 Pst = nxAsxFbxdT /3/3 est = 0 P2 = Pmax – Px Pst Mmax = Z Px ex Point #7 J Point #7 Point where zero stress occurs midway between wall C,L. and exterior face I T/6 Fb P1 Fb xTf x Af e1 = d - 3 1 P2 h k P3 P2 = Fb x [ 1- Tf ]xAf 02 = d - 2 � — — — _ Fb 44 T/4 - 4 T /4 -4 \ Pst P3 2 x[1- T ]xAwx d 83 = d - tf 3 \ 1 If d> T/4 I . \ 1 _ d - T/4 \ 1 Pst n x As x Fb X T/4 est = 0 Point #8 \\ 1 Pmax = Px \1 Mmax = E Px ex 1 . ) Point #8 Point where zero stress occurs et 2/3 of the distance between wall C,L. anc 1 exterior face. IfT /6>4, 1 2 Fb 64 tf 3 P1 = 2 x T xAt 0 1 = d - 3 I _ 6tf tf 4 P2 Fbx[1 -T ]xAf e2 = d -2 Fb 64 T/6 - 4 T /6 -4 P 5 P3 -- 2 x[1- T ]xA dw e3 = d - tf - 3 1 6 IfT /6stf, 7 P1 2b x6 x12 e1 = d -i 8 P2 = 0 e2 = 0 III 9 M P3 = 0 e3 = 0 If d> T/6 I Pst = n x As x Fb x d 7%6/6 eat = 0 Pmax = TPx Mmax = EPx ex r - -, Point #9 Maximum allowable moment - no axial load 1 Pmax ^ 0 . Mmax = Minimum of M and M Whoro, 1 Ms = A3Fs] .. 1 1 • J = 1 - Mm = 2b J k bd For a tee section (kd > tf), 1 k — pn +.5(t pn +t 6- 6 (t f 1 d) + /d) + ( t f /d f ( 2 1 ) 2n J = 6 - 3(tf /d) tf Mm = Fb (1 2kd ) (b tf) j d 6. Adjust values for P > Pmax and factor P and M by the o factor input Multiply by o, If calculated P Is greater than Pmax Px adjust the calculated values at each point for Px and Mx by Pmax Px Px = orx (Pmax) or P = eP 1 Px Mx °Mx (Pmax) or Mx = oMx This Is done In order to account for cases where the allowable moments were obtained using an axial load greater than allowab 7. Allowable lateral load I Interpolate between points for allowable Mmax using P = Pf + Pw Find w allowable (Note: program assumes a simple span condition, regardless of height of parapet), _(Mmax - /2) *S 1 w H2 Not For dead + seismic case, dead load Is factored by .6 as required by ACI 630- 99/02/0S v' • 1 1 1 11, 1 1 1 CMU BLOCK LINTEL AND JAMB DESIGN PROCEDURE 1 PROGRAM DESCRIPTION The program checks CMU block lintels and Jambs for Input configurations, loads, and allowable stresses. The program uses working stress design. The spreadsheet Is an exact working stress analysis based on the ACI 530 -02 Masonry 1 Building Code REFERENCES I 1. Building Code Requirements for Masonry Structures ACI 530 - 99/02/05/08 2. Reinforced Masonry Design, Second Edition, Robert R. Schnieder and Walter L. Dickey INPUT 1 W dead, W Ilve 1. Input iNialirairditai Loads /Configuration: I Ititg9IMIIII tt momorlm NMI B opening, Opening Width — 1111111•1 RISE S i Opening Height, H, in feet EMMI �� .5. ill • �� Joist Bearing Elevation, Hw, In feel I;iiNILMf ..MMI11111110 1 I f t ll ri�MElitii OINIMI tilllMMIIIIP: o Opening Width, W, in foot �E�NI���lF�N Nominal Wall Thickness, T, In Inches Wall Weight, WwaIL In psf � g ii•�it � I i f � D RP— rir :' ,r , 5I D { 't " Y 11 , — i k al,,o ,,a., x, v;,; , I � Lateral Load, Wlateral, in psf �lla Hw Dead Load, Wdead, In P8 1 �� �� � , 1] Live Load, Wiivs, In pif H F ` J @il`.'-' Eccentricity (Dead /Live Loads), e, In Inches l i l h l . { LL MY7 f LfS]i® lAAIfGs a lI9r a H; farm �a1i -_°¢;� riffillaitil Allowables: � 1 1� Applicable Code, ACI rM � Level of Inspection r-actor, a ,ta„m c,t, a,�. ,,; m . i (Note: This factor Is not required by code, 111s used to smr > =. mararer•era;vaaner�suanusiw kn ommtsraFU,vsnanmo : ,•.;,i ; ,,61ry { 5a� . to } rT,i t reduoe the allowable stresses, Fb, F and F - similar to non - Inspected masonry) B opening B Jamb • Compressive Strength, f m In psi Reinforcing Diagram ' Stool Strength, F in psi Masonry Modulus of Elasticity, Em In psi (Re: ACI 530, 1,8.2.2,1 i Lintel Input: Nominal Lintel Depth, D, In Inches I Top Bars, # -size Bottom Bars, # -size Jamb Input: Jamb Width, w, In Inches I Bars per cell, # -size Wall Reinforcing Spacing, 8, In Inches Distance from Opening to C.J., In Inches • I (Note: For a series of doors, Input the jamb width and distance from opening to C.J. as 1/2 the width of the distance between doors.) DESIGN PROCEDURE 1 Maximum and Minimum Reinforcing Requirements • Verify the diameter of reinf. (lintels and Jambs) does not exceed 1/2 the least dimension of the cell (ACI 530, 1.12,2,2) • • Verify the area of vertical reinf. does not exceed 6% of the area of grout space • A maximum bar size of 11 Is used (ACI 530 1.12.2_.1) 1 • If jamb section Is designed as a column (see calc's below), rho minimum = .005 and rho maximu n = ,04 1 . 1 • 2. Lintel Design ' Actual Dimensions: Aotual Wall Thickness, t = T-.375" If Rv -H>.5B opening, Wdead W wall le td angular Actual Lintel Depth, d = D- ,376" Mild line) W INe Width of Face Shell, tf= 1:5" for 12" wall II Hv - H < .5 B ope nine. W wall Is reotangu la, • . = 1.376 for 10" wall 1 (dashed line) and wdead = 1.25 for 8" wall = 1.00 for 6" wall and W INe are applied , 6 BO pm Ire r `! Allowable Stresses: W wall I Ratio E /E n = 29,000,000 /E W lei ord Allowable Bending Stress, Fb = e3 I' Loading Diagram Allowable Steel Stress, F = oF, Input for ACI I (assumes laps are not Increased by 1.6x) Allowable Shear Stress, Fv = o *min(50, f'm ) I Moment -Mx (Gravity Loads): Calculate Hw - H "' IfH HZW /2, Wwall "W Wllntel * D / * W 2 NI . x x Mn 24 8 1 in o . b IfH H <W /2, ,` ............. (Wwall *(Hw-H) +Wdead +WIlve) *W2 — �, M x = . 8 t M As Lintel Section ' =tax n • 1. f k . 42Pi + W n x ) 2 — p =1-- • Calculate fb .=.--, Jktd , check fb< Fb Mx f = Aslax check f8 <Fs 1 Moment -My (Lateral Loads): H Wlateral( + (H 2 H) ) *W2 1 M Y = 8 For single bars, d Y t = 2 I For double bars, d = t -4" for 12" walls, t -3" for 10 °, 8" and 6" walls A Pay ' n . • 111 k -2fi2y - t - (/ y) — pi ) , 1 = • 2My • I Calculate fby = Jkddy , check fb< Fb Caloulate f = Asidy , check f <F s s Combined Stresses: i 2 1 1 1 1 fbx Check Fb + b S 1.0 Chock FS + F I Shea 5 1,0 r: IfHw- HZW /2, Wwall * W 2 Vx = 8 IfHw- H <W /2, (Wwall * (Hw - H) +Wdead +Wllve) * W Vx = 2 H Hw - H Wiateral * ( 2 + 2 ) * W V = 2 V Vy 1 iv = + ddy Fv Defleotion: Maximum allowable = U600 (ACI 530 1.10,1) 1 IfHw - HAW /2, Wwall * W 5 �x = 240E1 If H - H < W /2, I Ax = 5(Wwail *(Hw-H) +Wdead +Wllve) *W4 384E1 Required Development Lengths: Id = .002 db f for straight bars Id .=.002 db f - 15db for hooked bars < #9 Id = .002 db f - 16 db for hooked bars #9 - #11 xl = x2 = 3. Jamb Design 1 H Hw -H o f 4 Lateral Loading: W S W 1 w w, lateral load = min. of (a +w +2 4 ") * Wlatoral and ( 2 1 , :k∎ • r '$t�+ rMiVlr k, ; i' 9'; 3 fi P� � y y J , � !� xp ti of }'fi;tf`,= Y + dist. to C.J.) Wlateral D.f -. +L " Vbot shear at bottom of wall = w *Hw /2 Below Top of Door Vbol Hw , Vtop Seotion Properties: Number of Reinforced Cells, n = w/8 rounded down to nearest Integer Loading on Jamb beff = min. of (w + 2 •4 ") and distance to C.J, If beff Is < 3t, section must be designod as a column, otherwise, section Is designed as a wall I ,l' beff A = min. of wt + 2 tf(beff - w) and (distance to C.J.)•t I min. of wt3 + 2 (beff-w)tf3 + 2 b t tf 2 �,�. .. ,W ■■ g V 12 12 (eff (2 - 2 ) HJ ]t� JLI JE nd (distance to C.J,)•t I Rim ■■ ■■ ■■ ■■ Sg S w r_ I 9 I Axial Load: If section Is designed as a wall, Jamb Section Below Top of Door (Wdead + W Ilve + Wwall * Hw) beff f = A 9 I If section Is designed as a column, 3 1 1 1 1 (wdead + Wlive + Wwall "Hw) beff f = A g [1-p(n -1)] . h/r ; Hw /r I If section is designed as a wall, If h/r s 99, 1 h F a ' ° 4 I'm [ 1 - ( irOr ) ] I If h!r > 99, Fa = m ,- f'm (yh 70r )2) If section Is designed as a column and code is ACI, F = r (.18f' + ,65pF, ) Moment: I • My maxlmum below top of door, If maximum moment occurs above top of door, wH 1 MY ' 8 + (wdead + wlive) beff e 2 . Itt maximum moment occurs below top of door, wH H My = 2 (Hw- H) + (wdead + wlive) beff e Frw- As = n *A for bar size Input For single bars, dy 2 • For double bars, d = t -4" for 12" walls, t -3" for 10 ", 8" and 6' walls A -- °, P = beffdY If kd s tf (rectangular section), k_4 y + (pi y ) 2 — la'ti y j =1 -3 If kd > tf(tee section), k= pi, +.5(t pn +t 6 6(tf /d) + 2(tf /d) + N ) 6 - 3(tf /d) 2My 1 Calculate fb = )kbeffdy2 ' check fb< Fb Calculate f = AMdy , check f <F I Combined Stresses: f /F + fb /Fb (or F /F 1.0 F and Fb are Increased by 4/3 for lateral • 1/, 1 • 1 I I 4 • I 1 1 1 Above Top of Door beff Section Properties: � Number of Reinforced Cells, n = w/8 - 1 rounded down to nearest Integer. One cell Is subtracted because the �i cell closest to the opening extends only to lintel height. C]C ■��� ■�� hurl '��,�,[ ■■ � be11= min. of ( + dist to C.J. and 2 + w + 8 - 4 ") A = (w -8)t + 2tf(beff-(w -8)) w (w ")t (beff +8 ")tf t 1f Ig 1 2 + 2 12 + 2 (beff - W + " )tf ( . ) 2 Note: If the dist. to the C.J. Is Input as less than w, that distance la substituted for w In the Ag and i Jamb Sectlon Above Door calculations. S r = /A Axial Load: If section Is designed as a wall, fa (Wdead + Nye + Wwall * (Hw - H)) beff A g If section Is designed as a column, fa _ (Wdead + Wflve + Wwail * (Hw - H)) beff A g [1-o(n -1)] h/r = Hw /r If section Is designed as a wall, If h/r s 99, Fa_ 04 fm(1 h , 140r ) 2 l If h/r > 99, I 1 70r 2 F a =f° 4 f 'm(h ) ) If section is designed as a column and code Is ACI, F 0(.181m +.65DF 1 ++ i Moment: 1 If maximum moment occurs below top of door, wHw2 1 M y = 8 + (Wdead + Wlive) beff e 2 If maximum moment occurs above top of door, M wH H M Y = (Hw H) + (Wdead + Wilvo) beff a FIT A = n*A for bar size Input For single bars, d = 2 For double bars, d = t -4" for 12" walls, 1-3" for 10 ", 8" and 6" walls As Pr beffdy If kd 5 If (rectangular section), k= -I2pn+' — k ' J =1 If kd > tf(tee section), k_ / at + .5(t j .ld) 2 I Pn +t 6 - 6(tf /d) + 2(tf /d) + (tf /d)3(2rn ) 6- 3(tf /d) 5 1 1 1 1 • Calculate fby 2My = Jkbeffdy2 , cheok fb< Fb 1 Calculate fsy A M , check f <F Combined Stresses: fa /Fa + fb /Fb (or Fs /F 1.0 1 Fa and Fb are Increased by 4/3 for lateral load 1 i 1 . 1 1 I I, 1 1 1 1 1 1 6 i 1 1 1 i 1 941-8" 5' , 93' -4 "il I '' -8!' 2S' 28' 28' -0" 4' -8; ���� (4) spaces at 1 -0" i (4) spaces at 1 -0" 1 (4) spaces at 7' -0" ,, I J2 L JBE I4'- 0" A.F. CI 1 1 JG2 i f - JBE.= 15 -1 1/2' 4.1=.x. JG2 JG2 C2 / C2 CI 1 V , g 1 _ �r-� I " Peck spa s ,�I Igo 1 1 JI 1 i 1 46 — 8 " I —. JG) ' — 7--4-V-541- JBE = 16' -10" Pl 1 8 32' 45' -4" I6' r S" 1 foot Framing Plan , 1 I 1 • 188 1 1 Date Sheet No. of 1 Job Subject hQ = 15. i3' - 7.5" -- 7" _ 15. os' P = 12. i k . f 3jk1� (32 * ZS.o') = 53. (o k T cnn ' 7.o 2 + 2.ok r9. "' \ • L.1 k (11.x' e 0,7 k 0,x1 lc + 2 —L- 11 ) = . RTLX 1 32.7' \�.2•�'' 321 - O V 2.5" (2c1. BESk — 29.E �: � = ►z.9 k .USE t-ISS 5k5 )( 5 /1.c, 5 A1 x 1 I x 1l C \ec\ c or 0,0cv.o - bock s ASc. E M W F R S cor-I-tr-o\ s = ( 2.1$k (321'+-28,4 • 1 \ / 2 SUP 1,3 _ . t45 k .. • z8c., '00 ' 0-S5 ? (1-G) = 15(2,-k � LAC 0 3 I 000 /CA 1 1 WALLACE DESIGN PROGRAM I _ Revised 04/14 /2008 -Beta Kenna Chapin Copyright Date 1/21/2010 Sheet No of Job Subject -- - - --- - - -- .. HSS COLUMN AND BASE PLATE DESIGN { LRFD -- --- --- - -- -t (with pinned bases) - - - --- - Reference - - - - " -- - - "- -- - " - - -- - - "� -" - - -�- 1. Input Per AISC Specificatic .dated March 9, 2005 O '13th Edition , i Y Column Mark C1 P Mx My • Column Input: kips in -kips in -kips b L Dead Load, D= 19.37 0.00 3.73 i i Floor Live Load, L = 0.00 0.00 0.00 I r � Roof Live Load, Lr or Rain 35.63 0.00 9.17 x d I x �Mz x Roof Snow Load, S = 0.00 0.00 0.00 -- Wind. W = 0.00 0.00 0.00 Seismic, E = 0.00 0.00 0.00 �- - -J Multiplier for Floor live loads, 11= 0.50 (.5 or 1.0) [For LRFD Combinatir Iti tier For snow loads, f2= 0.70 (.2 or .7) !For LRFD Combinatir ` Are seismic loads input as strength or allowable stress? ASD (LRFD or ASD) My Design short period spectral acceleration, Sds= 0.15 y KLx, unbraced length = 15.00 feet KLy. unbraced length = 15.08 feet I This program is primarily for the design of Cmx= 0.60 'Section C2 of I columns that are not part of the lateral system . Cmy= 0.60 (AISC 13th ed. A second order analysis is required to amplify Is the column part of a unbraced (Moment) Frame? N (Y or N) the moments for columns that are part of an I unbraced frame (moment frame.) This program Type (Square, Rectangular, Round or Pipe) = 5 S, R, Rd or P may be used with amplified moments. Minimum and maximum for width, b = 2.00 10.00 Inches !actual dimensions Minimum and maximum for depth, h = 4.00 10.00 inches Minimum wall thickness, t = 0.2500 inches Column Size = HSS 5x5x5116 leave blank to auto size Base Plate Input: If B and N values are left B (corresponding to b) = in. leave blank to blank, the program will N (corresponding to d) = in. auto -size I calculate them. (Note: sizes fc, concrete strength = 3 ksi are calculated using b (or' Fy, base plate steel yield strength = 36 ksi OS" as a minimum) A2, area of concrete support = 576 sq. in. Minimum base plate thickness= M. 2. Column Design I The base plate is not Column Properties designed for any moment from the column. Fy. yield stress = 46 ksi A. area of cross section of column = 5.26 sq. in. ■ Sx, section modulus with respect to x axis = 7.61 cu. in. Sy, section modulus with respect to y axis = 7.61 cu. in. I rx, radius of gyration about x axis = 1.90 in. Load Combinations Considered: ry, radius of gyration about y axis = 1.90 M. 1. 1.40 Zx, section modulus with respect to x axis = 9.16 cu. in. 2. 1.20 + 1.6L + 0.5(Lr or S or R) Zy, section modulus with respect to y axis = 9.16 cu. in. 3. 1.2D + 1.6(Lr or S or R) « 0.8W Ultimate Loads (Controlling Case - 1.2D + 1.6(Lr or S or R) + 0.8W) 4. 1.2D + 0.5L + 1.6(Lr or S or R) Pu. ultimate factored compression load = 80.25 kips i I 5. 1.20 + 0.5L + 0.5(Lr or S or R) + 1.6W Mux, ultimate factored moment about x axis = 0.00 in. -kips 6. 1.23060• + 0.5L + 0.75 + 1.43E Muy, ultimate factored moment about y axis = 19.15 in. -kips Allowable Stresses t, wall thickness = 0.2910 inches wall slenderness ratio, b/t = 14.18 wall slenderness ratio, h/t = 14.18 For Compression: lambda(p), compression ratio for compact sections = 28.12 compact r -, lambda(r), compression ratio for non - compact sections = 35.15 ®I d compression ratio = 0, 35.15 .. O, compression sion factor = 1.00 __ - J Blx= 1.16 • i Bly= 1.16 i Fcr, critical compressive stress = 24.99 ksi ec Pn, allowable compressive strength = 118.30 kips For Flexure in x -dir.: lambda(p), Flexural ratio for web for compact sections = 60.76 compact o�ti n lambda(r), flexural ratio for web for non - compact sections = 143.12 For Flexure in y -dir.: i e , 0b Mnx, allowable flexural strength = 379.22 in. -kips compact 6 cab Mny; allowable flexural strength = 379.22 in. -kips e Interaction Check I Equation H1 -la = 0. USE: HSS 5x5x5116 73 5 1.00 - O.K. Note: 0.95 factor shown 3. Base Plate Design I i 0.80 for pipe columns Pu, ultimate factored compression load = 60.25 kips Re: AISC Manual Al = 1 /A2 I Pu 1( 0 0.65 fc) j "2 0 Pu / ( e 1.7 fc) = 26.23 S9. in . (14 -4 to 14 -6) a= (0.95d- 0.95b)/2= 0.00 In. 14, required = sqrt(A1) + A 5.12 use 11 in. d = 5.00 B, required = Al / N = 5.12 use 11 in. b = 5.00 Al, area of plate = B x N = 121 sq. in. I A2, area of concrete support = 576 sq, in. m = (N - 0.95d) /.2 3.13 inches n= (B- 0.955)/2= 3.13 inches n'= sgrt(db) /4= 1.25 inches o Pp = 0 0.85 fc Al sgrt( A2 1 Al) = 370.26 kips 5 80.3 O.K. X = (4d b /[d +b) ^2 ) ( Pu / 0 Pp ) = 0.22 lambda = 2 sqrt(X) / [1 + sgrt(1 -X)) = 0.49 lambda n' = 0.62 inches Fy, base plate steel yield strength = 36 ksi tp req. = max.(m, n, lamda n')' sqrt (2 Pu / ( 0.9 Fy B N ) ) 0.63 inches ' tp = max.tp min and tp req.= 0.63 inches I USE: 0.75 "x11 "x0' -11" 1 WALLACE DESIGN PROGRAM REVISED 5/24/05 Page 1 1 Copyright Date 4/16/2010 Sheet No. of I Job Subject C1 CAST IN PLACE ANCHOR DESIGN I ACI 318 ✓i Appendix D- Anchoring to Concrete 1. Input Allowable Stresses: - Concrete compressive- strength f c - 3000 —psi— <10000 psi,, c k- D3:5 — 1 Concrete weight category = N (N= Normal Weight, L =Light Weight, S= Sand Lightweight) D3.4 Bolt steel tensile strength, futa = 58000 psi (If A307, use 58000 psi. Re: Chart for other anchors) Bolt steel yield strength, fya = 36000 psi (If A307, use 36000 psi. Re: Chart for other anchors) Is the bolt considered ductile or brittle? Ductile Is this a Seismic Design Category C or greater? Y (Y or N) D.3.3.3 I Is the concrete cracked at service loads (ft >fr= 7.5(fc) ^.5) ? N (Y or N, use Y 1 not checked) D.5.2.6 If concrete is cracked is there a #4 or greater edge bar? N (Y or N) D.6.2.7 If concrete is cracked is there stirrups spaced at 4 in.? N (Y or N) D.6.2.7 I Loads (Ultimate, User Input) : Load combinations per Section 9.2 or Appendix C? 9.2 9.2 or C Shear load, Vu = 0 kips Tension load, Tu = 15.2 kips I Eccentricity, el for tension (Vert. Dir.) = 0.00 inches Eccentricity, e2 for tension (Horiz. Dir.) = 0.00 inches Eccentricity, ev for shear= 0.00 inches Bolts: I Is bolt hooked or headed? Hooked What type of bolt head /nut? Stud (Square, Heavy Square, Hex, Heavy Hex, or Stud) Is the plate welded to the anchors? N (Y or N) To be Y, must also meet exceptions in D.6.2.3 - Is the bolt threaded? Y (Y or N) I , 1 . Will the anchor be torqued? N (Y or N) Is there a grout pad under the plate? Y (Y or N) 06.1.3 Bolt diameter, do = 0.75 inches D4.2.2 Bolt embedment, hef = 8.25 inches Re: Fig. RD.1 I Depth of concrete, h= 16 inches Effective area of bolt, Ase= 0.334 sq.in. Ag for bolts w/o threads, Ase for threaded anchors Bearing area of head, Ab= sq. in. For headed anchor bolts Hook length= 3.75 inches For hooked anchor bolts Bolt Configuration: D I Bolt edge distance in direction of shear, let= 8.00 inches lep �� sz IN Bolt edge distance orthogonal for shear, 1e2= 8.00 inches I sp�' f �' ACEL Bolt edge distance, 1e3= 8.00 inches I ! Bolt edge distance, Ie4= 8.00 inches I I Number of spaces vertical = 1 Bolt spacing vertical, s1 = 8.00 inches o � ° '�— j e 8 _ Number of spaces horizontal 1 w N y ' . Bolt spacing horizontal, s2 = 8.00 inches (3 ` { & ' cROUa th ES Interior Bolts? N (Y or N) w ° a_ i 1 I Has supplementary reinforcing been provided? Y (Y or N) � c PP rY 9 P ( ) 1.4.2.1 FOR TENSION Dist{ c p u 1 Refer to Section D.4.2.1; 1 reinforcement is provided within the breakout prism to resist the TOTAL load, I breakout capacity need not be calculated. (Or 1 the embed is far from an edge for shear.) Ignore concrete breakout for tension in Section 1913.5.2? N (Y or N) Ignore concrete breakout for shear perpendicular to edge in Section 1913.6.2? N (Y or N) Ignore concrete breakout for shear parallel to edge in Section 1913.6.2? N (Y or N) 1 • 1 1 2. Verify the following input items: Reduction Factors: I 4) = 0.75 Concrete Strength Reduction for Breakout, Vcb, Vcbg, Ncb, Ncbg, Nsb, and Nsbg 04.4 or D4.6 4) = 0.7 Concrete Strength Reduction for Pullout, Npn and Pryout, Vcp • + = 0.75 Steel Strength Reduction for Ns (1)-- 0.65 Steel Strength Reduction for Vs I (jr= 0.75 Additional Seismic Requirement Reduction Factor 03.3.3 • = 1 Additional Reduction Factor for Concrete Type D3.4 Modification Factors: yfec,N = 1.00 Eccentric Loading for el in tension D5.2.4 Eq. D -9 wec,N = 1.00 Eccentric Loading for e2 in tension I wed,N = 1.00 Edge Effects for concrete breakout in tension D.5.2.5 Eq.D -11 and D -1 wc,N = 1.25 Cracking at service loads for concrete breakout in tension D.5.2.6 wc,N = 1.00 Splitting for post installed anchors without supplementary reinforcement D.5.2.7 wc,P = 1.40 Cracking at service loads for concrete putout in tension D.5.3.6 I wec,V = 1.00 Eccentric Loading for ev in shear D.6.2.5 Equation D -26 wed,V = 0.90 Edge Effects for concrete breakout in shear D.6.2.6 Eq.D -27 and 0 -2 wc,V = 1.40 Cracking at service loads for concrete breakout in shear D.6.2.7 I 3 Check Tension Capacity # of bolts= 4 # of edges where c < 1.5 hef : 4 D.5.2.3 Vertical Distance between outer most bolts= 8.00 inches Horizontal Distance between outer most bolts = 8.00 inches I kc = 24 0.5.2.2 cmin= 8.00 inches cmax= 8.00 inches D.5.2.3 1/3 max spacing= 2.64 inches I hef = 5.33 inches If the group of anchors is near 3 or 4 edges and the largest edge distance cmax <1.5 hef, hef, for use in equations D -4 through D -11 is limited to the greater of cmax/1.5 and 1/3 of the maximum spacing between anchors within a group. a. Calculate the steel strength of the group of anchors 0.5.1 I Nsa= n *Ase *futa Nsa = 77.49 Equation D -3 b. Calculate the concrete breakout strength of the group of anchors in tension D.5.2 Anco =9 *hef ^2 Anco = 256 sq. in. Equation D -6 I Anc= projected area Anc = 576 sq. in. Fig. RD.5.2.1(a) For determining projected area: 1.5hef or edgel = 8.00 inches 1.5hef or edge2 = 8.00 inches 1.5hef or edge3 = 8.00 inches I 1.5hef or edge4 = 8.00 inches For thin sections subtract for vertical spacing 0.00 inches subtract for horizontal spacing 0.00 inches Anc /Anco= 2.25 I Nb= kc(fc) ^.5`hef ^1.5 *concrete modifier Nb= 16.19 kips Equation D -8 Ncbg=[ An /Ano]'wec,N`wed,N'wc,N "wcp,N *NI Ncbg = 45.54 kips Equations D-4 and D -5 c. Calculate the concrete pullout strength of the anchors in tension. Section D.5.3 Npn= 0.9 *fc *eh *do Npn= 6.83 kips Equation D -16 I eh= 3.4 inches 05.3.5 Npn= n "wc,p "Np Npn= 38.27 kips Equation D -14 d. Check Concrete side -face blowout strength of a headed anchor in tension D.5.4 I 0.4 *hef= 2.13 inches < c min. 8 in. Nsb= Does not apply 1 e. Check Controlling Anchor strength in Tension D4.1 For Group of Bolts: For one bolt: I 'Nsa = 58.12 kips 26.79 kips Steel Strength Q "Nsa = 14.53 kips Steel Strength "Npn= Concrete Pullout 'Npn= 6.70 kips Concrete Pullout • *Ncbg = 34.15 kips Concrete Breakout • *Nn = 20.09 kips > 15.2 kips o.k. 4) * Nn = 5.02 kips > 3.8 kips o.k. D -1 1 1 Date Sheet No. of 1 Job Subject 1 1 C2. - S\cle waki cola_ .s j e .Q = 15.13 - 7 v -- to = 15. 33 ' 1 ,2 B-7... P = ( 12. tk 1- .o37k -k ( 32. (07' : = 28. o k cno� 76T 7. o 2 I Z.ok (28.0' ) - 1.1 k (212o' 1 _ .2.-12k 8c4,. 32,7' V2. J oAk ( = 0 .1 k RTLa - 1 .„ 1 - 31.32k T v + 1 M y = 31.321c CZ'') _ GZ.7 k :;., re: Q,.. - 1?w4 1 • .USE 1-15S 8X '4 x * 1 L4 se Vt 1 x7x t -Z Chet\ Upl■ or. osinc_L `ool-L 1 ASc E 1\1 10 F R S corn -4 Q s I\ I lam , 41 13 . E P s. re..; / i 6.8' 2( W 2 s S. psc rNa� u IS• 84 ` 1 -PNp _ • 70.7' C13• ropsq(1 (0•83') r 24.3 4-(5.° p )( 15.ev )(7.12' ) ? 3E:7' � `32.7, / 111 = 6.8 --, Use 1.8 , 1,, = Pc„ p 1.3 = \l •ck k 1 z 1 1 1 Date Sheet No. of 1 Job ---- - --- Subject 1 1 ' : 3 . -3 k T3ase �. de s�v.. Prix (op-4+U ti 9 ) 1 Qez = .2e4 A = ( 12° )( I8 ., .\ = 21G:,1z .AS pp, . 1 2.38" Y 3.125 (...5 1 r ue + 3.5 " p1 (I O.Z�C - 0 1 9 55 ,. A\ " Mo. 1, ' , 11.1 ) J 5 .., I 1 q .' ^ 1 , ,, —a o I 32o Qr� +3.5„ cP psi.. — — — ---_ ( l'in 1 • g. Fp r 0.35 (3000� > 0.7 X (2v.:. 32 l 1 F. _ 210o :psi, > -)P 1 LkC\1 ■ or CRoC1 YES.. I n = — 7.0 " — ©.c1.5 ( 4.0 ") - 0.375" - Z.s . On --- V 1`1,0 ' - 0.'95 8.0" - 3.2:,.: 1 = T 1 l_ ek 9t .: 1 O . C- "" 1 61)4 [ rv\ \ T\ \-\' 1 z . 3..2 -4-, 1, -- = Z. (3S ")/ -' = o G" < 1 0,. 1 J 3G000 U5'E PL1 "x - 7 x Hz 1 WALLACE DESIGN PROGRAM Revised 04/14 /2008 -Beta Kenna Chapin Copyright O Date 1/21/2010 Sheet No. of Job -- -- - ---- ---- -- - - -- - - -- Subject I -- -- - -- - -- -- HSS COLUMN AND BASE PLATE DESIGN LRFD ---- -- - ase - --- , - - - - -- ----- --- - -- - -- - --- - Reference (with pinned bases) - -- --- Per AISC Specificatic 1. Input dated March 9, 2005 r�✓'- 13th Edition Y Column Mark C2 P Mx My Column Input: kips in -kips in -kips z b Dead Load, D= 10.33 0.00 20.66 Floor Live Load, L = 0.00 0.00 0.00 I " UJ Roof Live Load, Lr or Rain 20.99 0.00 41.98 x d �Mx Roof Snow Load. S = 0.00 0.00 0.00 Wind, W = 0.00 0.00 0.00 Seismic, E = 0.00 0.00 0.00 Multiplier for floor live loads, f1= 0.50 (.5 or 1.0) For LRFD Combinatir Y Y Mulilph oad er for snow ts, f2= I Are seismic loads input as strength or allowable stress? ASD (LRFD or ASD) My Design short period spectral acceleration, Sds= 0.15 KLx, unbraced len 0.70 (.2 or .7) gth'= 15.33 feet For LRFD Combinatk KLy, unbraced length = 15.33 feet This program is primarily for the design of Cmx= 0.60 'Section C2 of I columns that are not part of the lateral system . Cmy= 0.60 AISC 13th ed. Is the column part of a Unbraced (Moment) Frame? Pipe) N Y or N A second order analysis is required to amplify ( ) the moments for columns that are part of an Type (Square, Rectangular, Round or e unbraced frame (moment frame.) This program 9 P) = R 5, R, Rd or P may be used with amplified moments. Minimum and maximum for width, b = 2.00 10.00 inches actual dimensions Minimum and maximum for depth, h = 4.00 10.00 inches 1 Minimum wall thickness, t = 0.2500 inches Column Size = HSS 8x4x1/4 leave blank to auto size Base Plate Input: If B and N values are left B (corresponding to b) = in. leave blank to blank, the program will N (corresponding to d) = in. auto-size i calculate them. (Note: sizes fc, concrete strength = 3 ksi are calculated using b (or Fy, base plate steel yield strength = 36 ksi d) +6" as a minimum) A2, area of concrete support = 576 sq. in. Minimum base plate thickness= in. 2. Column Design I The base plate is not designed for any moment Column Properties from the column. Fy, yield stress = 46 ksi A, area of cross section of column = 5.24 sq. in. • Sx, section modulus with respect to x axis = 10.20 cu. in. . Sy, section modulus with respect to y axis = 8.53 cu. in. . I rx, radius of gyration about x axis = 2.62 in. Load Combinations Considered: ry, radius of gyration about y axis = 2.02 in. 1. 1.4D Zx, section modulus with respect to x axis = 12.40 cu. in. 2. 1.20 + 1.6L + 0.5(Lr or S or R) Zy, section modulus with respect to y axis = 9.83 cu. in. 3. 1.2D + 1.6(Lr or 5 or R) . 0.8W Ultimate Loads (Controlling Case - 1.2D + 1.6(Lr or S or R) + 0.8W) 4. 1.2D + 0.5L + 1.6(Lr or S or R) Pu, ultimate factored compression load = 45.98 kips i 5 1.20 + 0.5L + 0.5(Lr or 5 or R) + 1.6W 6. 1.23051Y + 0.5L + 0.75 t 1.43E Mux, ultimate factored moment about x axis = 0.00 in. -kips Muy, ultimate factored moment about y axis = 91.96 in. -kips Allowable Stresses • t, wall thickness = 0.2330 inches wall slenderness ratio, b/t = 18.46 h wall slenderness rand, bit = 27.04 .For Compression: 1-b-1 wall compression ratio for compact sections = 28.12 compact r - d lambda(r), compression ratio for non - compact sections = 35.15 lambda(c), compression ratio = 35.15 .. - �A . -..... -.. 0, compres factor = 1.00 1.00 B 1.00 Il _ n F«, critical compressive stress tr 26.33 ksi ac Pn, allowable compressive strength = 124.18 kips lambda(p), flexural ratio for web for compact sections = 60.76 For Flexure in x -dir.: compact n lamtxia(r), Flexural ratio for web for non - compact sections = 143.12 For Flexure in y -dir.: 05 Mnx, allowable flexural strength = 513.36 in. -kips compact B ob Mny, allowable flexural strength = 406.96 in. -kips I Interaction Check Equation H1 -la = 0.74 5 1.00 - O.K. USE: HSS 8x4x1/4 • Note: 0.95 factor shown 3. Plate Design I is 0.80 for pipe columns Pu, uiti - e factored compression load = 45. • i"fc'ps Re: AISC Manual Al = 1/A2 • 1 ( 0.85 fc) ] ^2 z Pu 1 ( 0 1.7 fc)_ .03 sq. in. (14-4 10 14 -6) N. required = sgrt(A1 • 4.83 use 13 in. d = 7.00 6, required = Al / N = 3.11 use 11 in. b = 5.00 At, area of plate = B x N = 143 sq. in. I A2, area of concrete support = 576 sq- in. m= (N- 0.954)/2= 3.18 inches n= (B- 0,95b)/2= 3.13 inches n'= sgrt(db) /4= 1.48 inches o Pp= o 0.85 fc Al sq • / A1) = 437.58 kips > 46 O.K. X =(4dbi d +b)^2 Pu /e Pp ) = 0.10 lambda = 2 sq / [1 + sgrt(1 -X) ] = 0.33 lambda n' = r 49 inches Fy, bas.. ate steel yield strength = • si •j tp r'.. = max.(m, n, lamda n')• sgrt (2 Pu /(0.9 Fy El N)]= 0.45 in •es = max.tp min and tp req.= 0.45 inche I USE: 0.5 "x 11 1• -1 " - 1 WALLACE DESIGN PROGRAM REVISED 5/24/05 Page 1 i Copyright© Date 4/16/2010 Sheet No. of 1 Job Subject OSs CAST IN PLACE ANCHOR DESIGN I ACI 318-0 Appendix D- Anchoring to Concrete 1. Input Allowable Stresses: - - - - --- Concrete- compressive - strength, - fc - = -- 3000 psi <10000-psi-o:k. — D3 - 5 — - - -- I Concrete weight category = N (N= Normal Weight, L =Light Weight, S= Sand Lightweight) D3.4 Bolt steel tensile strength, futa = 58000 psi (If A307, use 58000 psi. Re: Chart for other anchors) Bolt steel yield strength, fya = 36000 psi (If A307, use 36000 psi. Re: Chart for other anchors) Is the bolt considered ductile or brittle? Ductile I Is this a Seismic Design Category C or greater? N (Y or N) D.3.3.3 Is the concrete cracked at service loads (ft >fr= 7.5(fc) ^.5) ? N (Y or N, use Y if not checked) D.5.2.6 If concrete is cracked is there a 44 or greater edge bar? N (Y or N) D.6.2.7 If concrete is cracked is there stirrups spaced at 4 in.? N (Y or N) D.6.2.7 I Loads (Ultimate, User Input) : Load combinations per Section 9.2 or Appendix C? 9.2 9.2 or C Shear load, Vu = 0 kips Tension load, Tu = 11.9 kips I Eccentricity, el for tension (Vert. Dir.) = 0.00 inches Eccentricity, e2 for tension (Horiz. Dir.) = -1.56 inches Eccentricity, ev for shear= 0.00 inches • Bolts: I Is bolt hooked or headed? Hooked What type of bolt head /nut? Stud (Square, Heavy Square, Hex, Heavy Hex, or Stud) Is the plate welded to the anchors? N (Y or N) To be Y, must also meet exceptions in D.6.2.3 Is the bolt threaded? Y (Y or 14) I Will the anchor be torqued? N (Y or N) Is there a grout pad under the plate? Y (Y or N) D6.1.3 Bolt diameter, do = 0.75 inches D4.2.2 Bolt embedment, hef = 8.25 inches Re: Fig. RD.1 Depth of concrete, h= 16 inches Effective area of bolt, Ase= 0.334 sq.in. Ag for bolts w/o threads, Ase for threaded anchors Bearing area of head, Ab= sq. in. For headed anchor bolts Hook length= 3.75 inches For hooked anchor bolts Bolt Configuration: D I Bolt edge distance in direction of shear, let= 6.50 inches I�z � s z I ra ` ■ Bolt edge distance orthogonal for shear, let= 10.38 inches I `Q ' I EO ,SPACES■SPAC Bolt edge distance, le3= 6.50 inches Bolt edge distance, 1e4= 6.50 inches I Number of spaces vertical = 1 I Bolt spacing vertical, sl = 11.00 inches ° d ° ° • Number of spaces horizontal= 1 wa v & ; w C.L OF Bolt spacing horizontal, s2 = 3.13 inches B ' — � _ C R O U P Interior Bolts? N (Y or N) "t I - Has supplementary reinforcing been provided? Y (Y or N) ° D.4.2.1 11 FOR TENSION I HO IZ. DISTNCE o° P, 1 Refer to Section D.4.2.1; if reinforcement is provided within the breakout prism to resist the TOTAL load, 1 breakout capacity need not be calculated. (Or if the embed is far from an edge for shear.) Ignore concrete breakout for tension in Section 1913.5.2? N (Y or N) I Ignore concrete breakout for shear perpendicular to edge in Section 1913.6.2? N (Y or N) Ignore concrete breakout for shear parallel to edge in Section 1913.6.2? N (Y or N) 1 1 - - . • 1 2. Verify the following input items: Reduction Factors: I 4) = 0.75 Concrete Strength Reduction for Breakout, Vcb, Vcbg, Ncb, Ncbg, Nsb, and Nsbg D4.4 or D4.6 4) = 0.7 Concrete Strength Reduction for Pullout, Npn and Pryout, Vcp 4) = 0.75 Steel Strength Reduction for Ns I 4 0.65 Steel Strength Reduction for Vs I 4) = 1 Additional Seismic Requirement Reduction Factor 03.3.3 4) = 1 Additional Reduction Factor for Concrete Type D3.4 Modification Factors: yec,N = 1.00 Eccentric Loading for el in tension D5.2.4 Eq. D -9 I wec,N = 0.87 Eccentric Loading for e2 in tension y ed,N = 0.89 Edge Effects for concrete breakout in tension D.52.5 Eq.D -11 and D -1 Wc,N = 1.25 Cracking at service loads for concrete breakout in tension D.5.2.6 yc,N = 1.00 Splitting for post installed anchors without supplementary reinforcement _ D.5.2.7 Wc,P = 1.40 Cracking at service loads for concrete pullout in tension D.5.3.6 I yec,V = 1.00 Eccentric Loading for ev in shear D.6.2.5 Equation D -26 .yed,V = 1.00 Edge Effects for concrete breakout in shear D.6.2.6 Eq.D -27 and D -2 yc,V = 1.40 Cracking at service loads for concrete breakout in shear D.6.2.7 1 3 Check Tension Capacity # of bolts= 4 # of edges where c < 1.5 hef : 4 D.5.2.3 Vertical Distance between outer most bolts= 11.00 inches Horizontal Distance between outer most bolts = 3.13 inches I kc = 24 D.5.2.2 cmin= 6.50 inches cmax= 10.38 inches D.5.2.3 1/3 max spacing= 3.63 inches I hef = 6.92 inches If the group of anchors is near 3 or 4 edges and the largest edge distance cmax<1.5 hef, hef, for use in equations D -4 through D -11 is limited to the greater of cmax/1.5 and 1/3 of the maximum spacing between anchors within a group. I a. Calculate the steel strength of the group of anchors D.5.1 Nsa= n *Ase'futa Nsa = 77.49 Equation D -3 b. Calculate the concrete breakout strength of the group of anchors in tension D.5.2 I Anco=9*hef ^2 Anco = 431 sq. in. Equation D -6 Anc= projected area Anc = 480 sq. in. Fig. RD.5.2.1(a) For determining projected area: 1.5hef or edgel = 6.50 inches 1.5hef or edge2 = 10.38 inches 1.5hef or edge3 = 6.50 inches 1.5hef or edge4 = 6.50 inches For thin sections subtract for vertical spacing 0.00 inches subtract for horizontal spacing 0.00 inches Anc /Anco= 1.11 Nb= kc(fc) ^ .5`hef ^1.5 *concrete modifier Nb= 23.93 kips Equation D -8 Ncbg= [An /Ano] "Wec,N'Wed,N'y c,N "y cp,N "NI Ncbg = 25.73 kips Equations D -4 and D -5 c. Calculate the concrete pullout strength of the anchors in tension. Section D.5.3 I Npn= 0.9`fc'eh "do Npn= 6.83 kips Equation 0-16 eh= 3.4 inches 05.3.5 Npn =n`y c,p'Np Npn= 38.27 kips Equation D -14 d. Check Concrete side -face blowout strength of a headed anchor in tension D.5.4 I 0.4'hef 2.77 inches < c min. 6.5 in. Nsb= Does not apply 1 e. Check Controlling Anchor strength in Tension D4.1 For Group of Bolts: For one bolt: Q`Nsa = 58.12 kips Steel Strength 'Nsa = 14.53 kips Steel Strength "Npn= 26.79 kips Concrete Pullout O `Npn= 6.70 kips Concrete Pullout .*Ncbg = 19.29 kips Concrete Breakout 4)`Nn = 19.29 kips > 11.9 kips o.k. 4`Nn = 6.70 kips > 5.94 kips o.k. D -1 1 1 1 1 1 Masonry Column Design (Latest Revision 09/12/2006) I I This spreadsheet is based on building an Axial Load vs. Moment interaction diagram for the pilaster. With fm= maximum t 1. Input the design parameters. Pilaster Label= Entry Axial Load (kips)= 38.6 kips I Eccentricity (in.)= 4.000 in. Masonry Code= 2006 IBC , Inspected? Yes No or Yes, Column Width, b= 16.000 in. I Column depth, h= 16.000 in. Depth to flexural steel, d= 12.000 in. Area of Flexural steel, As+ 0.62 in.2 Column Height, H= 19.670 ft. Allowable Steel Stress, fs= 19200 psi (Use 24000 psi tor Grade 60 steel, use 0.8rs =19200 psi for UB& I Allowable Masonry Stress, f'm= 1500 psi Allowable Bending Stress, fb= 500 psi Es= 29000000 psi Em= 1350000 psi 1 Interaction Factor= 1.000 (1.0 for Gravity, 1.33 for Wind or Seismic it allowed by Code) 2. Input Stress Points for Interaction Diagram: Suggested Locations I Point 3= 14.000 in. 14.000 in. (Assumes steel in compression) Point 4= 12.000 in. At flexural steel Point 5= 10.000 in. 10.000 in. (Assumes steel in tension) Point 6= 8.000 in. At center of pilaster Point 7= 6.000 in. 6.000 in. (Assumes steel in tension) I Point 8= 4.000 in. 4.000 in. but greater th kd= 3.714 in. 2. Determine the maximum allowable axial load. (Point 1) Radius of gyration, r= 4.62 Column Height to radius of gyratior 51.10 If masonry is inspect( Allowable Axial Stress, Fa= 325 psi 325 psi Allowable Axial Load, Pa= 83.2 kips x Interaction Factor 83.2 kips I 3 Determine the allowable moment when the column is at maximum axial load. (Point 2) Masonry Stess for bending momer 175 psi n= 21.48 Moment= 119.4 in -kips e= 1.44 in. < H/6 = 2.67 in. 1 Adjust Maximum Moment= 119.4 in -kips 4. Determine the allowable moment when Axial Load is zero. (Point9) I rho= 0.00323 n'rho= 0.06937 k= 0.310 1= 0.897 I Depth of section in compression, k 3.714 in. Check values: Steel Stress= 19200 psi T= 11.9 kips Masonry Stress= . 401 psi C= 11.9 kips II Allowable Steel Moment= 128.1 in -kips Ms= 128.1 in -kips Allowable Masonry Moment= 128.1 in -kips Mm= 159.9 in -kips 11 ri , 1 I l 5. Find Allowable Axial Load and Moment at Point where Zero Stress occurs at Flexural Reinforcing. (Point 4) Depth of section in compression= 12.000 in. Allowable Bending Stress= 500 psi Compression Load= 48.0 kips x 1.00 = 48.0 kips I Moment= 192.0 in -kips e= 4.00 in. > H/6 = 2.67 in. 6. Find Allowable Axial Load and Moment at Point were Zero stress occurs at mid point of pilaster. (Point 6) I Depth of section in compression= 8.000 in. Allowable Bending Stress= 500 psi Allowable Steel Stress= 5370 psi Compression Load= 32.0 kips x 1.00 = 32.0 kips I Tension Load= 3.3 kips Total Axial Load= 28.7 kips Moment= 184.0 in -kips e= 5.75 in. > H/6 :2.67 in. I 7. Find Allowable Axial Load and Moment at Point were Zero stress occurs at input "x" for point 3. Depth of section in compression= 14.000 in. I Allowable Bending Stress= 500 psi Allowable Steel Stress= -1534 psi (Should be negative) Compression Load= 56.0 kips x 1.00 = 56.0 kips Total Axial Load= 56.0 kips 1 Moment= 186.7 in -kips e= 3.33 in. > H/6 =2.67 in. 8. Find Allowable Axial Load and Moment at Point were Zero stress occurs at input "x" for point 5. I ) Depth of section in compression= 10.000 in. Allowable Bending Stress= 500 psi Allowable Steel Stress= 2148 psi Compression Load= 40.0 kips x 1.00 = 40.0 kips Tension Load= 1.3 kips Total Axial Load= 38.7 kips Moment= 192.0 in -kips e= 4.80 in. > H/6 = 2.67 in. I 9. Find Allowable Axial Load and Moment at Point were Zero stress occurs at input "x" for point 7. Depth of section in compression= 6.000 in. I Allowable Bending Stress= 500 psi Allowable Steel Stress= 10741 psi Compression Load= 24.0 kips x 1.00 = 24.0 kips Tension Load= 6.7 kips Total Axial Load= 17.3 kips 1 Moment= 170.6 in -kips e= 7.11 in. >11/6 = 2.67 in. 1 } I 1 1 9. Find Allowable Axial Load and Moment at Point were Zero stress occurs at input "x" for point 8. Depth of section in compression= 4.000 in. Allowable Bending Stress= 500 psi Allowable Steel Stress= 19200 psi Compression Load= 16.0 kips x 1.00 = 16.0 kips I Tension Load= 11.9 kips Total Axial Load= 4.1 kips Moment= 154.3 in -kips e= 9.64 in. > H/6.2.67 in. 10. Points on Curve I Axial Load Moment (kips) (in. -kips) Point #1 83.21 0.00 Point #2 83.21 119.44 Point #3 56.00 186.67 I Point #4 48.00 192.00 Point #5 38.67 191.99 Point #6 28.67 183.99 Point #7 17.34 170.64 Point #8 4.10 154.28 I Point #9 0.00 128.11 Load Point 38.55 154.20 111 11. Interaction Curve Interaction Curve 1 90.00- ,. t : enzw,m404, 1 80.00 s {or - , a T'+;.� m r . 70.00 it &-, #° '�": o b" ; , s-, ,rA n a , 4 a' + : .' 6,5-.:4.101 e ' ,,, 60.00 '"`tt iY r ' P te . �`' r. t g M 1�. A ,,7,A?.: R co 5 *At. .,. . , : TA 4.,,,09,- Y .3i i f d .Y = - r -aC ta �' wt '' '�-..: 50.00 , . , i m1,010--, + . '' >. ei Akl ` ', ; � x , 3 r - p r , -r to ita � , , c� , , ?^ '� $v r- -a ii J 40.00 k To 30.00 �m � ''4 � A - } 4 , , : �: 20.00 „ ,1 � s . �' r. ' t',, , , s 1 0 . 00 o r o a p W .,, _^ -, x r 1 0.00 ' - e._; . „' „1 q < <. � :6:�k m� s^.. _:, . ,1 0.00 50.00 100.00 150.00 200.00 250.00 Moment (in. -kips) 1 1 P =. t 1..1:-. 4 - 0.0 Coto• (el b.) + � . � 3a- s� ✓ 1 I,cw -) - - ISM 2 �- " • 1 1 Date Job 07 4___ - Sheef G No. sw of - . 1 I Subject JoIrT <i-1 :•._..sL . ;t__ __ -- - - -- ,— — - - - - -- — I Reference 1 I. e - II -; I. 4 ' 1 „ 4 „ 2. c oF..6g- 3E,l>zs►.r —r 1 rL X \t l j 1 . . (1)x.)6 ) . r1 ET (9 )(p.-.) c la " a S r-,‘, ' 1 ii 1 I .. (o.`tG)(9,t�xo) - ,nti! 1 ' '%3, CN UPUIr---T . I ' lei t • • i It 12..v P*-4- I P I ) - ( .---1- )( -2 1 -1 ) . - (156 ` )% 1 W/ - 5 /e.)" X. I I .4" ` 4-/--1-' , - 4I.I0yQ,_ _ = Tj� KloFl / 1 -- T 06'' 1 (0 . '',?, 1 i r)) 27 q(.: t' 4- 7 -T, V-( c- l_ L, 6-1 2 > f 01 I ` -&- � Ss6o 03 �, 6f �G � (X&0/(1 ' �f, <- l .o 6 0 1 Design 1 Foundation Criteria GENERAL 1 Date: 6/11/10 Project Number: 1010472 ' Project Name: Prepared By: AutoZone #3756 Tigard, Oregon Travis Koehring Geotechnical Engineering Firm: Terracon Consultants, Inc. Geotechnical Report Dated: August 5, 2009 with an addendum dated April 15, 2010 FOUNDATIONS ' Foundation Options: @ Spread footings and slab on grade supported by geopiers 0 Allowable Bearing Pressure: 2000 PSF @ Net (i.e. IGNORE weight of footing and soil in calculation of bearing pressure) 0 Gross (i.e. INCLUDE weight of footing and soil in calculation of bearing pressure) Minimum Footing Size: Individual: 30" Continuous: 24" Minimum Footing Embedment: Exterior: interior 12" 1 Minimum Frost Depth: Exterior: 18" SETTLEMENT Differential settlement at walls: < 1" 1 Differential settlement at interior footings or slab: < 1/2" Differential vertical movement (PVR) between floor slab and exterior walls: SLAB Vapor Barrier or Capillary Break: 6" of free draining granular material over 12" of compacted granular fill Subgrade Description: 1 Subgrade Reaction Modulus: 125 pci SPECIAL RECOMMENDATIONS Perimeter or Undersiab Drains: Soil Site Class or Profile Type: F Concrete Cement Type: 0 Type I 0 Type II 0 Type III 0 Othei Water Table Depth: Special Comments: High risk of liquefaction. (Add information here regarding settlement plates, vibro compaction, stone columns, or other non- standard requirements) RETAINING WALL DESIGN ' Lateral Pressure - at Rest: Lateral Pressure - Active: Lateral Pressure - Passive: Coefficient of Friction (Sliding): Density of Backfill (fcf): Overexcavation Required? Backfill at Walls: MI MI INS 11•11 MI 1111111 MI MI Mil 11111111 MIL I= OM MB I= =I OM MR MI 6' -0" 3 '" 4 " M.O. M.O. 12'-8" ---_ -1---b_. • 1-------- , = 0 0 0 0 • t_ . . ' C.J• • C.J. 4 N - 0 = .- • - X) C al C.J. g :It (11- p .. = La ti . .1,. _ =• 1 1 C.J. . a C.J. = C.J. -i 1- LI wuj -T= -- "TI C) - 6 ?_ L L - , 1 1- 111 5 31-41 I " 60 M.O. M.O. , 10'43" 10 . ( -8 12'-0" (outside building dimension) . , Date Job Sheet No. of 1 - Subject 1 = 2noo-? (NGT) • 1 1` 1 re: PI o c 2 t`1 ` 87 I: � .14k � j C1. 3 3��) ( - ?w g tn = (0.018) ( ) + (D. -S5 't-\ ( + p. &7) itk M f TQT �SG �Z'« V 12 / 1 Try q 6-0 x 6 o -c cA: _ 12.t C o.r..> 1 C,•ec`tC - f 2.agk \ (AC ') = G.•k (1.(4P - 11..4k SA . 1 19.9 k � Cole.) U Sa 6 - 0 xG -o XI- •Le . w/ (Co) e.w, 1 1 1 Date Sheet No. of M Job Subject r c�toW = 20o0 C.NE r) F2 ' re C 1 ✓_ r ' h = 5 o `c 1 TN/ a G -o ,c 6 -o x _ 7 .t7 C o.tq. ) Oneck U0,4- 1 t?U = 9.5k .9k e.1 = �. Io.S Ec = cesk . 'a. C oAc2. x 6 a x i- C, 111 , UJ/ (6) 7 e ,w. r r r, r r 1 Date Sheet No. of Job Subject 1 F3 P 3G2 = 31.3 k ti ( -D„ _ \0.4 ?„ = Zon1: CD, > \<-4 (a ) a- CO, 0 12,cS ) ( i. J ((0. 10• 1 = CPw4\t ( o. 5 1 re. ; rr oM ewe . dPStg n ov- - puA' CV,Pc-1< t P ?.Sk (\.r. 13.dak LAp °S \STO f�G2 A - o 1\ \\ 5.4 \ = 10.51: = sd,l w }, 7.41 w 23.3 P USE.. -o K 6 -o x 1- wt C6_ 1 t 1 t WALLACE DESIGN PROGRAM Revised: 2/9/10 Author: Barbara Stuart Date 6/11/2010 Sheet No. of Project Subject • MOMENT FOOTINGS .' ACI318 -08 I 1. Input P, Axial M, Moment V, Shear P kips ft kips kips Dead Load, D= f �.20 93� 5 30 ✓"_ 0 00 y Floor Live Load, L= 0 00 OOOrTa�0 OOz M Roof Live Load, Lr - 0 00 k$00 , 0 00 Roof Snow Loads, S= : 20 99 0 00 , 0 004 W ind /Seismic, W /E= � Q`bO rx'.' 0 nn' yp.,1 0 06 • Wind or Seismic controls? , ','W W or S V Multiplier for floor live loads, f1 == _ 0 5 (.5 or 1.0) (IBC 1605.2.1) Multiplier for snow loads, f2= x lam" `�0iT71(.2 or .7) (IBC 1605.2.1) LP 1 , Allowable soil bearing = h I , x w ,, 20001 psf Wp d Net or Max = .� N N or M d " • I T Allow 1/3 increase? N! y or n (for soil) • Soil weight = � s 110 pcf Soil depth, d = � a ft 1' � Slab thickness, t = 5 00 in + - 1 3` ft 3 Pilaster /column height, h = �� �,� - Pilaster /column length, L = 3 i� 1 1iiii'i''� ii 1iiiiiiii >i € €il 9 . Pilaster /column width, Wp = ft `j, , 0 Rv Qmax Concrete strength, f c = : - 3000) psi Steel strength, Fy = 4600001 psi a Try: L (x W) Length, L =�� 6�D0' ft Width, W = 5;c001 6 ft Thickness, T = ',. ; „10 ft' I Loading Diagram 2. Overturning P total = P +Wf +Ws = 32.25 kips (D controls) M overturning = 5.30 ft-kips M resisting = 96.75 ft-kips I Safety Factor = Mr /Mo = 18.26 > =1.5 O.K. 3. Soil Bearing Rv = P total = 53.24 kips (D +ULr /S controls) e= Mo /Rv= 0.10 ft a =U2 -e= 2.90 ft Q max = 1.63 ksf Q max (net) = 1.37 < 2 ksf O.K. I 4. Reinforcing Bottom Steel Mu (face of pilaster) = 35.04 ft -kips (1.2D +1.6Lr /S +(f1L or .8W) controls) rho = .00262 Ptop As required (primary - Pbot) = 1.41 in` 2" Stop Bars required (primary - Pbot) = 645 • Bars required (secondary - Sbot) = 645 Top Steel 3" Mu (face of pilaster) = 00 ft-kips (1.40 controls) rho = 00000 R. � 3" CLR. ■ Pbot As required (primary - Ptop) = 0.00 in' Sbot Bars required (primary - Ptop) = 640 No top steel required Bars required (secondary - Stop) = 640 No top steel required Reinforcing Diagram 5. Shear Punching Shear Vu, shear on one end = 27.02 kips (1.2D +1.6Lr /S +(f1L or controls) I oVc, allow. shear = 31.43 kips > 27.02 kips O.K. Vu, shear on entire footing = 65.35 kips (1.20 +1.6Lr /S +(f1 L or .8W) controls) oVc, allow. shear = 70.25 kips > 65.35 kips O.K. Beam Shear Vu, shear = 27.83 kips ( 1 .2D +1.6Lr /S +(f1Lor.8W)controls) oVc, allow. shear = 44.37 kips > 27.83 kips O.K. Use 6' -0" x 6' -0" x 1' -0" footing with 645 primary reinf. and 645 secondary reinf. bottom and no top bars required 1 I WALLACE DESIGN PROGRAM Revised: 2/9/10 Author: Barbara Stuart Date 6/11/2010 Sheet No. of 1 Subject MOMENT FOOTINGS - SUMMARY OF LOAD CASES Project ) WO 318-08 . D +.75L D +.75W+ Load Cases for Soil Check D D +ULr /S +.75Lr /S D +W .75L +.75Lr /S .6D +W (IBC 1605.3.1) Overturning P total (kips) = 32.25 53.24 47.99 32.25 47.99 19.35 I Mo (ft -kips) = 5.30 5.30 5.30 5.30 5.30 3.18 Mr (ft -kips) = 96.75 159.72 143.98 96.75 143.98 58.05 F.S. = Mr /Mo = 18.26 30.14 27.17 18.26 27.17 18.26 F.S. > 1.5 O.K. F.S. > 1.5 O.K. F.S. > 1.5 O.K. F.S. > 1.5 O.K. F.S. > 1.5 O.K. F.S. > 1.0 O.K. I Soil Bearing Rv = P total (kips) = 32.25 53.24 47.99 32.25 47.99 19.35 e = Mo / Rv = 0.16 0.10 0.11 0.16 0.11 0.16 a = U2 - e = 2.84 2.90 2.89 2.84 2.89 2.84 Q max (ksf) = 1.04 1.63 1.48 1.04 1.48 0.63 I Q min (ksf) = 0.75 1.33 1.19 0.75 1.19 0.45 Q max (ksf) = 0.79 1.37 1.22 0.79 1.22 0.47 Q allowable (ksf) = 2.00 2.00 2.00 2.00 2.00 2.00 Q max < 0 allowable O.K. I 1.20 +1.6L 1.2D +1.6Lr /S 1.2D +1.6W+ Load Cases for Concrete Design 1.40 +.5Lr /S +(f1L or .8W) f1L +.5Lr /S .9D +1.6W (IBC 1605.2.1) Reinforcing (bottom layer) Pu (kips) = 45.15 49.20 72.29 49.20 29.03 Mu (ft-kips) = 7.42 6.36 6.36 6.36 4.77 e = Mu / Pu = 0.16 0.13 0.09 0.13 0.16 a = L/2 - e = 2.84 2.87 2.91 2.87 2.84 Qu max (ksf) = 1.46 1.54 2.18 1.54 0.94 Qu min (ksf) = 1.05 1.19 1.83 1.19 0.67 I dist. to face of pilaster (ft) = 2.50 2.50 2.50 2.50 2.50 (ACI 15.4.2) Qu face of pilaster (ksf) = 1.29 1.40 2.04 1.40 0.83 Moments calculated are the Mu face of pilaster (ft -kips) = 21.31 23.02 35.04 23.02 11.91 result of bearing pressure Rn (psi) = 70.15 75.77 115.36 75.77 39.22 upwards and soil and footing rho, = .00119 .00128 .00197 .00128 .00066 weight downwards rhomu = .00200 .00262 .00200 .00200 (ACI 10.5, ACI 7.1 rhoi = .01356 .01356 .01356 .01356 .01356 (ACI 10.3.4,10.2.7 rho = .00200 .00200 .00262 .00200 .00200 loads from soil and footing self - weight used for load I Use 6 - #5 at 12" O.C. bottom cases where Qmin = 0 inforcing (top layer) Qu (ksf) = .00 .00 .00 .00 .00 If top steel is required, a Mu (ft -kips) = .00 .00 .00 .00 .00 mimimum of 1/2 temp. and I Rn (psi) = 0.00 0.00 0.00 0.00 0.00 shrinkage steel (rho = .001) rho„ = .00000 .00000 .00000 .00000 .00000 is placed on the bottom and rhomn = .00000 .00000 .00000 .00000 .00000 1/2 is placed on the top. 6 rho = .00000 .00000 .00000 .00000 .00000 no top steel is required, a min of temp. and shrinkage I No top steel required steel (rho = 002) is placed nching Shear on the bottom. Punching at one end - see diagram at right dist. from edge to d/2 from face (ft) 2.19 2.19 2.19 2.19 2.19 (ACI 15.5.2/ACI 1 I Qu (at d/2 from face) (ksf) = 1.31 1.41 2.06 1.41 0.84 2 1 5 dist. from edge to 3d/2 from face (f 1.56 1.56 1.56 1.56 1.56 Qu (at 3d/2 from face) (ksf) = 1.35 1.45 2.09 1.45 0.87 2 Vu (along 1234) (kips) = 4.47 4.81 6.97 4.81 2.88 Vu (along 1456) (kips) = 13.19 14.04 20.05 14.04 8.48 P I Vu (total 123456) (kips) = 17.66 18.85 27.02 18.85 11.35 I oVc, allow. shear (2 -way) = 31.43 31.43 31.43 31.43 31.43 � \ CI 11.11.2.1) P unching on entire footing Qu (avg.) (ksf) = 1.25 1.37 2.01 1.37 0.81 1 c' 4 6 Vu (kips) = 40.82 44.48 65.35 44.48 26.24 1 I mVc, allow. shear (2 -way) = 70.25 70.25 70.25 70.25 70.25 d/2 d (ACI 11.11.2.1) Vu < oVc O.K. Refer to "Foundation Engineering" by Peck, Beam Shear _ Hanson, and Thornburn Vu (along 2' 3') (kips) = 18.18 19.41 27.83 19.41 11.69 (page 388) for explanation oVc, allow. shear (1 -way) = 44.37 44.37 44.37 44.37 44.37 of procedure (ACI 11.2.1.1) Vu < oVc O.K. 1 1 1 Date Sheet No. of ' Job A u7- Z N - (6\ / Subject TV N U A -r_76 , N 5 1 Reference W AL_ L. rvr - r_T 1 c; I 1X/r2 vra = o. 4•4 + o . 84 7 = 1.3 1 Co.v1� � C a ) -►- ( ( 1. ') - I, - 75E) 14- C . k1 111 TOT4L z 3 k(c _ :1.53 s < k5 • 973g4 2, • 1 (1SE A 2' - - ()"x -v "x Conrr; VJJ C1) 6 Goh/T. 1 1 1 1 - 1 1 '; 1 1 - EIIIIIIIIIMMIMIIMMEEIIMMIIMIMIMIIIMIIIIIBMMIIIII WALLACE DES..__: PROGRAM _ Revised:7 /26/06 - - Author: Carrie Johnson Date 6/11/2010 Sheet No. of Project -- _ - Subject FOOTING CHARTS ACI 318 FOOTING LOAD CAPACITY -- WORKING LOAD (KIPS) FOOTING NET ALLOWABLE SOIL BEARING PRESSURE (PSF) Width Thickness I Reinforcing 1 Weight 1500 2000 1 2500 1 3000 3500 1 4000 1 4500 1 5000 1 5500 1 6000 1 6500 1 7000 7500 2' - 0" 1' - 0" 345 ' 0.6 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0 2' - 3" 1' - 0" 3-#5 0.8 7.6 10.1 12.7 15.2 17.7 20.3 22.8 25.3 27.8 30.4 32.9 35.4 38.0 345 0.9 9.4 12.5 15.6 18.8 21.9 25.0 28.1 31.3 34.4 37.5 40.6 43.8 46.9 2' - 9" 1' - 0" 3-#5 1.1 11.3 15.1 18.9 22.7 26.5 30.3 34.0 37.8 41.6 45.4 49.2 51.6 51.6 3' - 0" 1' - 0" 3-#6 1.4 13.5 18.0 22.5 27.0 31.5 36.0 40.5 45.0 48.2 48.2 48.2 48.2 48.2 3' - 3" 1' - 0" 3-#6 1.6 15.8 21.1 26.4 31.7 37.0 42.3 47.4 47.4 47.4 47.4 47.4 47.4 47.4 3' - 6" 1' - 0" 4-#5 1.8 18.4 24.5 30.6 36.8 42.9 48.7 48.7 48.7 48.7 48.7 48.7 48.7 48.7 3' - 9" 1' - 0" 4-#5 1 2.1 21.1 28.1 35.2 42.2 48.2 48.2 48.2 48.2 48.2 48.2 48.2 48.2 48.2 4' - 0" 1' - 0" 446 2.4 24.0 '32.0 40.0 45.8 1 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 4' - 3" 1' - 0" 4-#6 2.7 27.1 36.1 45.2 45.4 45.4 45.4 45.4 45.4 45.4 45.4 45.4 45.4 45.4 4' - 6" 1' - 0" 5-#5 3.0 30.4 40.5 47.0 47.0 47.0 47.0 47.0 l 47.0 47.0 47.0 47.0 47.0 47.0 4' - 9" 1' - 0" 545 3.4 33.8 45.1 1 46.8 46.8 1 46.8 46.8 46.8 46.8 46.8 46.8 46.8 46.8 46.8 5' - 0" 1' - 0" 5-#6 3.8 37.5 44.7 44.7 44.7 44.7 44.7 44.7 44.7 44.7 44.7 44.7 44.7 44.7 5' - 3" 1' - 0" 5-48 4.1 41.3 44.6 44.6 44.6 44.6 44.6 44.6 44.6 44.6 44.6 44.6 44.6 44.6 5' - 6" 1' - 0" 645 4.5 45.4 46.2 46.2 46.2 46.2 46.2 46.2 46.2 46.2 46.2 46.2 46.2 46.2 5' - 9" 1' - 0" 6-#6 5.0 44,3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 44.3 ' 6' - 0" 1' - 0" 6-#6 5.4 44.2 010 44.2 44.2 44.2 44.2 44.2 44.2 44.2 44.2 44.2 44.2 44.2 646 6.8 54.0 7 .0 77.7 77.7 77.7 77.7 77.7 77.7 77.7 77.7 77.7 77.7 77.7 6' - 0" 1' - 6" 647 8.1 54.0 72.0 90.0 108.0 118.4 118.4 118.4 118.4 118.4 118.4 118.4 118.4 118.4 647 8.8 58.6 78.1 97.7 117.2 117.8 117.8 117.8 117.8 117.8 117.8 117.8 117.8 117.8 6' - 6" 1' - 0" 745 6.3 45.8 45.8 , 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8 • 45.8 45.8 6' - 6" 1' - 6" 7-#7 9.5 63.4 84.5 105.6 117.3 117.3 117.3 117.3 117.3 117.3 117.3 117.3 117.3 117.3 6' - 9" 1' - 0" 7-#6 6.8 43.9 43.9 43.9 43.9 43.9 43.9 43.9 43.9 43.9 43.9 43.9 43.9 43.9 747 10.3 68.3 91.1 113.9 116.8 116.8 116.8 116.8 116.8 116.8 116.8 116.8 116.8 116.8 7' - 0" 1' - 3" 7-#6 9.2 73.5 76.8 76.8 76.8 76.8 76.8 76.8 76.8 76.8 76.8 76.8 76.8 76.8 7' - 0" 1' - 6" 747 11.0 73.5 98.0 116.4 116.4 116.4 116.4 116.4 116.4 116.4 116.4 116.4 116.4 116.4 7-#6 9.9 76.6 76.6 76,6 76.6 76.6 76.6 76.6 76.6 76.6 76,6 76.6 76.6 76.6 7-#7 11.8 78.8 105.1 116.1 116.1 116.1 I 116.1 116.1 116.1 116.1 116.1 116.1 116.1 116.1 7' - 6" 1' - 3" 8-#6 10.5 76.4 76,4 76.4 76.4 76.4 76.4 76.4 76.4 76.4 76.4 76.4 76.4 76.4 1' -6" 8-#7 12.7 84.4 112.5 115.7 115.7 115.7 115.7 115.7 115.7 115.7 115.7 115.7 115.7 115.7 7' - 9" 1' - 3" 8-#6 11.3 76.3 76.3 76.3 76.3 76.3 76.3 76.3 76.3 76.3 76.3 76.3 76.3 76.3 7' - 9" 1' - 6" 847 13.5 90.1 115.5 115.5 115.5 115.5 115.5 115.5 115.5 115,5 115.5 115.5 115.5 115.5 8' -0" 1' -6" 847 14.4 96.0 115.2 115.2 115.2 1 115.2 115.2 115.2 115.2 115.2 115.2 115.2 115.2 115.2 847 15.3 102.1 114.9 114.9 114.9 114.9 114.9 114.9 114.9 114.9 114.9 114.9 114.9 114.9 8' - 6" 1' - 6" 9-#7 16.3 108.4 114.7 114.7 114.7 114.7 114.7 114.7 114.7 114.7 114.7 114.7 114.7 114.7 1' -6" 9-#7 17.2 114.5 114.5 114.5 114.5 114.5 114.5 114.5 114.5 114.5 114.5 114.5 114.5 114.5 Values are based on: fc = 3000 psi Service load factor = 1.43 Fy = 60 ksi C. c = 4 In. )cntical column dim. re: AUI 15.4.2) Clear Cover = 3 in. Note: values in blue are controlled by beam shear, punching shear, or Flexural punching shear 1 r . 1 Memorandum 1 -•••• TO: All Engineers D ATE: 10/02/89 • 1 FROM: Bruce Baker I SUBJECT: SLAB RESISTANCE TO UPLIFT • The attached table gives the final values for uplift resistance, R. from a 4 inch thick, 3000 psi concrete slab including both the slab dead load and bending capacity. These values are somewhat higher than assuming resistance to uplift being only the dead weight of a section of the slab cantilevered over the fooling. The values are tabular because there are more unknowns in the theoretical model than equations to solve. Therefore, the solutions were determined by trial and error. The exponential equation included was derived by fitting curves to the resulting I solutions. For footings greater Than 3.5 feet square this lit underestimates the uplift resistance somewhat. The equation gives unconservative values for footings smaller than 3.0 feet square compared to the tabular values. I Model and Assumptions The bending allowable for the slab, F = S(fc') 12 , comes from the PCA paper "Slab Thickness I Design for Industrial Concrete Floors on Grade ": Robert G. Packard, PCA 1976; assuming plain, unreinforced concrete. The geometry of the model follows Wallace Engineering standard details for cutting control joints midway between grid lines and assumes for all cases the fooling will engage the slab at a distance of 6 inches from the fooling corners. The designer should check to I insure d max is less than one half of the distance to the next column and/or less than the distance 10 the control joint. The values for R, can be used for columns at the edae of the slab (assumino the columns are pulled straight up 2.;d do not tilt to one side) by reducing the values by quarters 1 as required. When checking uplift: 1 1.S x UTOT <_ R + R + R _ RWALLS + RS UTOT= total uplift on column using "main frame" coefficients Rol_ = dead weight of framing 1 R = dead weight of footing RO = dead load of overburden R W LLS = dead load of wall above footing 1 R = dead load f- bending resistance of the slab Tabulated slab uplift resistance values do not contain the 4/3 increase for wind. - Please direct any comments to my attention. 1. III r .. 1 1 • 1 1 .. 1 UPLIFT RESISTANCE VERSUS FOOTING SIZE fc' = 3000 psi Min dist to Min dist to x, ft Rs, kips h, ft control , f next col, ft t t of 4 "1` 2.50 5.45 5.22 7.38 14.76 ^' I 3> 0 3.50 -8.23 6.42 9.07 1 AMM . �...:.....,." 4. 5 ...,...,. t > <: ....,.,.._ - ... :7.52 ,_......,,, 10.63 - :..... " ;: 2127 � ,.,. 5.'0 129 � "� m �� r • 5.50 ' 14.50 8.52 12.04. .24.08 ........::.: MS_50 .................:...._ 1 796 _- ....�...._.:__..<. < . 9.48_ _,_.<� ,,, �.<.. �,. I I 26St 7_50 21 10.44 14.76 29.51 ,,: , rte..., 1 r, :,�> .., ..- ..- ..,. _ _ 8 4.0 ...�.... 23 ..; ;�1 92:<�:�� ' 75 q� :. ":.: 30 9fl 8.50 26.00 11.40 16.12 32.25 9 00 ....:.. .. ... 28 26 -_ 1 .1 89; 16 .81 ::. 33 I 9.50 30.56 12.36 17.48 34.96 .`7 »; ..3 >1.2. 0. 1 I dotes: 1) Rs for slab only 2) Rs includes slab acting at all 4 corners 3) Do not apply a 4/3 increase in stresses 1 d max I 1 d -5 -i -- I '.' 4 .N.- -----I , i footing . ' - column C.J. x Q VN:ii . 4;■ 1 ,_ .„.,,.......x.....,..:.:.:...:_.:::::::,:.,:„.„. ...-----. -------- a -P 1 - 1 .. . . t 7 1•.) 1 1 1 1 Date Sheet No. of Job AvAro Zov&., 1 1 Subject - 0 tik. rcr,(A0s(Am 1 hlasorsri D LF pis r Ey,cA 1, Loucks t2 -o" 1 A. w tr. cA - A .E 7= (__C1 ) 12 6 /� ° /S 2° a 0.87 (C.4. Z) Toble, Co-} s . 2 r w 0 wrd T I = 5 = CO;5?v' Plan �'Cp F 0.:S$ Table ,G -.4 1 G = 0-85 • cbz = 0. v)2 (0.S7) (0. ,)(�, %) • • • 1 i(0.17 P4 i • Deer r�„v, e, C. - r � 2 0 1 �o : 1111 1 •) i?:./ - '201/G 3' - ° L . 1 C 1 C A' . ! A e: l_ 38, -c ro w. V- able, 1 C.4 , C G . = 2 . .k r p 6, 4- able, 1 i 54,, - I O y tZ F, - 0 .2) - 1.0' - 0. , 8 -ec- soo'■ 4 1 1 1 t 1 1 Date 2 /r7 /ock Sheet No. of Job A,A40 ZonC. J "L ' Subject %A,., 1 s c\osose lA) %n c (coo.' De +. e 1 2.) : $/5 : ► 2' /6 83 - I < 7 Co Cease. A = C � y Case. C " 2.25 rv, l r,',+H,...0v, t ee,r 1 RedtaG - hOya Fc ' 10 Case C 1 o ?: 0.8 9.8 : , no\ - e 4 w,ncl 1,- oad , �� v1 = (G). Ps [C2,57) Co. 2 a. Co -0 1 = 1 Ps 1 ww,h 1 1 1 1 Date Sheet No. of Job 1 Subject ' 1 Lc c , (w 4 4) ' 5, . ' ps, ' O•) ceO Fro ' T.10 k 1' 3 . S —.1 • 5wrs c cc' :13;1.1\00' 0\p = 2 ,5 . Rp =2,S 1 iDe.kec-vv‘kvje_, xx.lS■nlc 'Oest. \ -Coe cketA+ P 1 . 0 Per ' Sec. \ 1 S / `( = - Y}/laX F p • 1 . � � DS) IP!`wp) 1.2. W p j3,� 23 r `ff\m, Grp ° :D. 3 ( r0<.. gyp) = 0 W 13:3 -3- ' ipe v F = 0 (CC W.P .) •(-,7;) 1 %p ` M a K 1 _ Soc A F (©,-1)( 0. (O 0. -14 Fp= o2 bt)p 1 I WALLACE DESIGN PROGRAM REVISED 2/14/00 Page 1 Copyright © 1 Date 6/11/2010 Sheet No. of Job Subject I AutoZone Screenwall 1. Sketch 1 1 height of wall above finish floor 1 1 height of wall below finish floor 1 footing thickness width of footing I 2. Input information about screenwall Configuration: Height of wall below finish 1 0.83 ft. (Note: first coursing is 2 " +8" from finish floor) Height of wall above finish floor= 6.00 ft. I Width of footing= 3.00 ft. Thickness of footing= 1.00 ft. Wall Thickness= 8.00 in. (Use nominal size; for example 8") Distance to reinforcing= 3.81 in. I Bar size= #5 Bar spacing= 24.00 in. Weight of wall a.f.f.= 78.0 psf I Weight of wall b.f.f.= 78.0 psf Allowables: Building Code= ACI -05/O (ACI -05, o6) Masonry Comp. Strength, fm= 1500 psi I Allowable Soil Bearing= 2000 psf Is the value net or gross? net Allow 1/3 increase for wind and seismic? no (Yes or No) Soil Passive Pressure = 50 pcf (Equivalent fluid pressure) I Soil Density = 110 pcf p, Friction Coefficient = 0.35 Loads: Wind load= 28.1 psf 1 Seismic load= 0.210 *Wp 1 I 1 1 I WALLACE DESIGN PROGRAM REVISED 2/14/00 Page 2 Copyright 1 Date 6/11/2010 Sheet No. of Job 1 Subject 1 3. Check Screenwall Reinforcing Determine Loads and Moment on Wall: A. Wind Loads and Moment; I Load on Wall= 169 Ib. Total Shear, Vw= 169 Ib. Moment, Mw= 696.3 ft. -Ib. B. Seismic Loads and Moment: I Load on Wall= 112 Ib. Total Shear, Vs= 112 Ib. Moment, Ms= 382.1 ft. -Ib. I Check wall reinforcing: (Assumes solid grouted wall, if partial grouted check k *d <face shell t) Allowable Steel Strength, Fs= 19200.0 psi Modulus of Elasticity, Em= 1350000 psi (Re: ACI 530 -1$, 1.8.2.2.1) ratio Es /Em, n= 21.48 I Area of steel /foot, As= rho= 0.16 in.2 0.00339 rho*n= 0.07277 k= 0.31560 I kd= 1.20 in. j= 0.89480 Allowable Steel Stress, fs= 19200 psi Allowable bending Stress, fb= 495 psi I Allowable Moment for Steel, Ms= 846.1 ft. Ib. > 696.318 ft. Ib. O.K. Allowable Moment for Masonry, Mm= 1016.2 ft. -Ib. > 696.318 ft. -Ib. O.K. I Check out -of -plane shear at base of wall: Shear stress = fv =V /bd= 3.7 psi Allowable shear stress = Vall= 38.7 psi > 4 psi O.K. 1 Use 8" Wide wall with # 5 vertical bars t7a. 24 inches on center 1 1 1 1. 1 1 1 I WALLACE DESIGN PROGRAM REVISED 2/14/00 Page 3 Copyright 1 Date 6/11/2010 Sheet No. of Job I Subject 4. Check Footing I Determine Moment on Footing Wind 864.9 ft. -Ib. U Seismic 493.9 ft Ib. ck footing resisting moment Sum of Gravity Loads on Footing, R= 1196 Ib. I Passive Pressure against footing = 67 Ib. Centroid of passive pressure = 0.44 ft. Dead Load Resisting moment= 1793.7 ft. -Ib. Passive Resisting moment= 29.1 ft. -lb. 1 Total Resisting Moment = 1822.7 ft. -Ib. Factor of Safety= 2.11 > 1.67 O.K. 1 Check Soil Bearing Pressure (Using .6D + W, or .6D + E(ASD)) Mresist- Mover /R, a= 0.34 ft. I w /2 -a, e= 1.16 ft. 1427.7 w /6= 0.50 ft. Max. soil bearing pressure, qmax= 7.7 psf Net soil bearing pressure, gnet= 1226.4 psf < 2000 psf O.K. I Check Soil Bearing Pressure (Using D + W, or D + E(ASD)) Mresist- Mover /R, a= 0.80 ft. w!2 a, e= 0.70 ft. w /6= 0.50 ft. I Max. soil bearing pressure, qmax= 995.2 psf Net soil bearing pressure, qnet= 793.9 psf < 2000 psf O.K. 1 Check Sliding Resistance Sliding Resistance= 485 Ib. Factor of Safety 2.88 > 1.67 O.K. 1 Use 3' -0 "wide x cont. x 1' -0" thick footing 1 1 1. 1 1 1 1 Date 2 fr4cc? Sheet No, of • ,lob UT74W, 1 SubJaot 1 ' • 1 ( . 7 1 - 10P �G, , j s t . O - -1l , ' G - (2nt* E cr A`aGE `1 " d 1 I r j ' " /1 I-A '2a j 1 / : a tz" . 1 , I. .' r. C). ,,fi e.. I , (. �, ) ,,,4f- f F G — / 1-/ �T f 1 1 -flop. 'F'�!_ - %'" 1 og li' ', ire j , )- 2* 1 /1, 7? ( ,e,, v-1,4)97 /.... 1 . . J,8,(,I 1 1 1, ` 1-1 l� l - V •- t N \Ai c� o Vi c. : •, 77 ,'- z 1 F • ,� V- .,(fit. • V ty1 i c 0,"4...0 1k G©,v(: 1 . ( ' 1 14 '. 7P Viv\hq 1 c$ = e7 a ,'.6°, t.V (15.4 -1) 4 ' a . , \-E ; S • 7 ce AT- c(•Au A s ; -e. • ('h 4 -C 71' 5 1 o\n, c. Ica G T 15.5) • . 1 1 1 1 Date 2, i9,,r /CD Sheet No, of I Job • , I a . ( ._ Subject r C) ' A 1 1Gly11_ t--ek-1:3-_-2 .. . 131~-1 I- -F - ..10 4 I WT Dr , f17U% c. 1 c �,o(�,,11')(1 ') G 1 , 1-�1e ..,� , T EL, i I ' 7(0P4. 0 (0 -t '2;eX7 4-- I 4 116 0 ) H ; 4'-c - i-- /-7gb r �a • e P 1 II S'3, V-I114 , V 6 1 ,.i e? ,, op w:-5 ce y z . 1/ Krt v 9-- 1 Cc-F 4 '`'-- ' (0, (70'.2 0 (tpD 110)( 1,�,0 p_.( .C1 6) ,1 fr r 2� TI ( }L i Qty 2 - 2. X1 l.A* IY1'.� 1a —Jr C ,4, z= / W ac\ .z ( 3,.. 4')- •) r ' jl_ „ C',1: (0. )C2-) (1 5) ('25') . 22, - 6* ' 0,9.2 - . A. CF2 .' Ii (0 2_ . , ' •Pv.) = A9: RS j (Ce 1 C2 * r (1 4* . r V`- OTI . 1. ' ►`! (no ? dp.. H- P. ' 95) A. 14_4(0 1 v l\Ht , C.h\t1 l w ,, , 1 Pole Foundation Design Re: 2006 IBC, Section 1804 and Table 1804.2 Input: > \ d, trial depth of embedment = 6.25 feet P, horizontal force = 931.00 lbs Soil Class (1 -5) = 4 (Re: Table 1804.2) If n /a, input lateral bearing pressure: 0 psf So = 150.00 psf (Tabie1804.2) h Multiply by 2 per footnote 3 of Table 18-1-4 y y or n h, height above ground = 14.46 feet (location where P is applied) ' b, diameter of post or footing = 2.00 feet (diameter of round, diagonal of square) d Calculations: Nonconstrained (Section 1805.7.2.1) So = 300.00 psf (1804.2) Si =Sod / 3 = 625.00 plt A = 2.34P/(S1 b) = 1.74 sq. feet d = 4/2 *(1 +sgrt(1 +4.36h/A)) = 6.18 feet (Eq. 18 -1) 1 Constrained (Section 1805.7.2.2) Must be surrounded by pavement S3 = So d = 1875.00 plf d = sgrt(4.25 Ph / S3 b) = 3.91 feet (Eq. 18 -2) 1 1 1 r 1 1 1 1 1 1 1 r 1 I 1 ` r4aL . 1'0/-71' r 2 I ' TADLU 10•I -A-- ALLOWAlil.11 FOUNDATION AND [ATRRAL P l l309M) t T wnnte I 1 A U T 9 S t tam nIIII 6ellontot j u N s�0 0� ^ . nn�1vrF A1. a � '— tAnnA�` no;io kited » .... .. �M. , . K 0,10 mot i<Pa ' x b. pUt990pMA7nniAi3Or xa.ol Mtn .7,I lor 000lllotonla Iorknn 1, Massive oryelnllino baba*. 4,00b 1,200 0,70 '2. Sodhnonlnry mid foliated rook 2,000 400 0,35 3, Sandy gravoi and /or grnval (OW and 01) 2,000 200 0,35 4, Sand silty rr 2, ulnyoy rand, silly gravoi and olayoy prrvol (SW, SI; Ski, 80, OM � Ad 00) 1,500'_ 0,25 5, Clny, nmmdy slay, silly do and olayoy slit C 1,000 100 190 1 1'or soil classifications 01., OH nod ('1' (I,o., orgnola (Any; rod ireni), n foundation J voeilyntlon Anil bo roq droll, 0 A11 values 01 allowablo foundation prossuro tiro for footings Ir ving a nllulnn mm nn width of 12 Mottos (305 and n minimum doplh of 12 limbos (305 mill) Into 1?J natural grndo, 'Imp! as In llooluolo 7 0) 50 0nsa of 20 porcent shalt bo nliowcd for dins') additional fool t�305 nun) of width or depth to a maximum vnluo of I 111r00 thus Iho dosIgBnnlod 'ohm, Additionally, nn (norooro of ono third shall bo pormOted w)ton consltloring load combinations, Including wind or oasthquako r �, (??1.2_,,,V; l 1o0ds, as pormilled by Swtlon 1612,3,2, :GeC/ I 1 Mny bo 1noroascd Iho amount of Oh dcslgnalod vohro for aaob Additional foot (305 mm) of doplh to a mnxin um of 15 Ihnos iho donlgnated vnluc, Isoln(cd solos 4 ( for 11408 suvh no Angpolos or signs and poles used io suppor( buildings that tiro not advors ly affaotod by a'fo.lnch (12,7 mm) motion nl ground surfkco duo to short -loon Isiomnl'ioads may bo dostgnod using World Waring Moos equal to two tunes IRo Inbtllnlod values, ' pod !moral sliding loslalanoo may bo comb n SCooftlolonl lo Po mimt1hilai by t00 dgnd load, I kale nil sliding roslstnm:0.voluo 10 bo multiplied by tho coluaot ar0a, In no case shall Ibo )ntoral siding oasis's noo ox000d ono half iho deed lood, ' inoroaso for Width is ollowod, . l ' 1 q.50 I " 7 1 f; , ' 1 l' „ 1 ) 5606,0,2 Doetgn or'ltox►n, I 1006.6,7 „1 noncousto'nllrad, Tito following formula inn) bo mod In dalorminlng rho depth of otnbedinont lequlrod to resisl IoI oral tondo whore no constrain! Is provided tit iho ground aurfnco, I Atoll nu rigid floor or rigid / grolmrl'nurfnca puvomQnt. d ,, I 1 •h if •i• MI) (6-1) 'min= 1 A a 7 34P Sob 0 or dlamolor of round post or fooling or diagonal dbnonsion of square post or footing, foot (no), I d a daplh of omhodmont in earth la foot (n1) but not ovor 12 foot (3658 mm) for purpouo of compulln Inlornl pros aura, Ira dlalauco in foot (m) front ground ettrhoo to point of 1 , nppllonllori of "P,” I P p uppgod lateral foi'co In pounds (k1'), $1 a nllowablo latornl soli- booring possum as sot forth in • 'Addy 18.1 -A bnsod on a doplh of ono third Iho dnptb of omhbdmont (kl'n), I 83 m allownblo Intern! sail - boaring prossuro as sot forth In 'lbblo 18 -1 -A based on a depth 'equal 10 rho dcpllm of omhbdmont (hPn), 1806,8,2.2 Couslragwti, 'rho following formula may bo used to ' I / dolonnino 1110 dopth of embedment (cquIrod to mist latornl loads whoro constrain) 18 provided al (Ito ground surfaco, snot] ns a rigid floor or pavomont. da m 4,25• (6.2) 1 a • 1 1 1 1 i , . pato fhoat Na of 1 t Jon / �D Bub)aot 1 I U, ,6. a ) -c)." 1 , 6o , 'Ply V�.! (6°) w GA Q i' ' d V 1 l 1 ... 6 - r'1 ° 6 11 1.-cat G n 1 . vititzfi: els , 9 , \ , , cr a C7 1' 6:p y a ° ©i © ., =ft( hit l t`l. �`�L '�'h l ►%51�c'. fit► �13 M I M , TM. lo° q, l ° it, °d; 1o18° bars � IQ," , 044, 461 .,I , r0 ,eN 1 i , 1 1 , 1 1 1 I Product Guido, Lithonia Outdoor EPA, Effactive ProJactad Area In squara fout. Flxturo ProJeotad Area rnultipllud by shape drag coefficient, 1 Post EPA Chart DM19 0M28 DM29 DM32 DM39 DM49 KTNIS Top 1 AS1 SPA and TWA 0,7 1,4 1,4 1,6 1.0 2,2 n/a n/a AS2 SPA and RPA 1.2 2,4 2,4 2,8 2.8 3,8 n/a n/a AS1 OSAS1 CF CF CF CF CF CF n/a n/a I AS1 DCAS1 CF CF CF CF CF CF n/a n/a A52OSAS2 CF CF CF CF CF CF n/a n/a AS2OCAS2 CF CF CF CF CF CF n/a n/a I KAD 4-Inch arm 1.2 2.4 n/a , n/a , -n /a— n/u 4,9 No KAD 9 -Inch arm 1.4 2,6 2,8 3,5 3,6 4,2 6,1 n/a KAC FP 4 -Inch arm 1.2 2,4 n/a n/a n(a n/a 4.9 n/a KAC FP 9 -Inch arm 1.4 2.8 2.8 3,5 3,5 4.2 5,1 n/e I KAC DP 4 -Inch arm 1,4 2,8 n/u n/u n/a n/a 7,6 n/a KAC OP 9-Inch arm 1,8 3,2 3,2 4,0 4.0 4.8 7,9 n/e KSF1 4-Inch arm 1,5 3.2 n/a n/a n/u n/a 6,1 n/a 1 KSF1 9-Inch arm 1.8 3,6 3,6 4.5 4.6 5,4 5.4 n/a ICSF24 Inoh arm 2.0 4.0 n!a n/a n/a n/a 6,2 n/a KSF29 -Inch arm 2,2 4.4 4,4 5.5 5.5 0.6 6,5 n/a I KSF312•Inah arm 3,0 8,0 8,0 7.5 7,9 9,0 9,4 n/a KSE14 -Inoh arm 1,3 2,6 n/a n/a n/a n/a 5,5 n/a I KSE1 9-Inch arm 1.5 3,0 3,0 3.8 3.6 4.5 5,6 n/a KSE2 4-Inch arm 1.8 3.8 n/a n/a n/u n/a 7.6 n/a KSE2 8 -Inch arm 2,1 4.2 4.2 5,3 6,3 6.3 6,0 n/a I KAR1 8 -Inch arm 1.2 2.4 2,4 3,0 3,0 3,9 n/a KAR29 Inch arm 1.5 3,0 3,0 3,8 3,0 4,6 1.0 n/a KAR3 12 -Inoh arm 2,1 4.2 4,2 5,3 5,3 6,3 n/a n/a 1 KVS19 -Inch arm 1,8 3,6 3.6 4,5 4.5 5.4 6.7 n/a KVS3 12-Inch arm 3.9 7,6 7.8 9,8 9.8 11,7 n/a n/u 1 , 1 1 OUTDOOR Sheet #; Pole-EPA Chart PL-115 1 1 • 1 1 Poles Orientation O O 1 D B p 0 B • 1 Hand Halo Hand Hole A A 1 Pole Selection Procedure Tito stile of the polo with tiro hand bolo Is sldo A, Thu aide of lho polo OD doproes counteroloaltwlso from tho bond Iola In Milo 13. fright) I Tho sddo of tho polo .100 doproes oountorolookwlso Irom the hand hole Is sldo 0, Iopposllo) Tho silo of the polo 270 doproes oounlarulooftwfse for D0 tiogmon olvokwlsol front Ma hand hole Is sldo D. lief° Ordering Information for Horizontal Arm Brackets and Festoon Outlets L/E I H1.1? H stool brookat, to he used with stool autos Lnluminum brookoi, to ho used with aluminum poles --- Ionpih of horizontal arm Mortice!, Mottos length of horizontal nrm brnakol, Inohoe 1 numbor of horizontal arm brnukuts per polo . number of horizontal arm brackets per polo Tho arlontallon from the hand holo and location front tho polo hose must bo swilled whon ordering the polo. Tho orlontntion iroln tho I bond holo Is Jostpnntod by the polo silos A, e, C or D, Thu Wootton on !Ito pole shaft Is dosignntod by the distant) from Ilia pole base. Sou the following examples; 1. BSS 20 MI with one shoobux and two floodlights on horizontal arm breokots. Tito floodlights are to be 100 doproes front oaoh other, 00 doproes from tho shoebox, and 12 foot above the baso, Order us; 0S5 20 GO DM19 312.105 @ A012 2, IJTA 30 BO with two shoobuxos at 100 degrees, and ono floodlight on a horizuntul nrm bracket. The floodlight Is to be opposite of tho hand bolo and Ifvu loot from tho top of the polo, Order am IITA 30 BO 0M20 111.10/3 @ 020 3, SSA 10 40 with ono I(VP post top luminaire, nod n festoon uutioi loss olootrloal 00 doproes loft of the hand bolo mid 4 loot Irom Ilia top, Order no: SSA 10 4C PT FLO Q D12 1 i i= =9= SQUARE POLE DRILL MOUNTING OPTIONS (� 1 D---r 4 (—°T D I �}- 1 D 1 8 A UM10 7.0 DM28 DM39 011449 11 ROUND POLE DRILL MOUNTING OPTIONS r 1 1. 1 -•_ DI e A DM10 DM20 0M29 DM32 DM98 . 1 O r a £/7Z4 , N An e,lywa rri,v Shaefi #; Pole Orientation PL-11D Rev, On Pole.Orinotetton.pea 1 1 1 , 1 itr ''�t ; ��� f {' /i�'id ir ^ /� / ... rev x•,�� LA 4,ll�l'I�ANIa NaG �� ` Q 1 ,,, , ila l�j )(Ijtt ,ol„1.J•If qu.oro Strufght Stool Bolas I 1111 1111. ,. ....�....•....•.... ..+ -..-� . I __�__� _ TVeHNICAL INFORMATION I Nominal 00 Cat�lop A19'81000 n0 P414 5 ThloBnoa, �00 Max, , AQ , Num n r + Matt, r 1 N ax, Doll 0ircln pair 31to s11 p wviphl - In h au r in h, n11h1 i . �ql ht , �'� 5S5 10 40 10 4.9 x 10.0 9,124 } II 30,Q A '' llVn)yvs1 III x in, ,1 _j s ds ...• -.,.•. -111_ _ .. leg G 8 473 O,.g :s14 900 X0 75 I 44 _ 12 4,0x 17.0 0,128 II 24,4 .610 IBA 470 14,8 770 , / Isx 0. 55514 40 11 4,9 X 14,V V,129 11 14,9 {90 16,1 0••11 Q/4 x 10 t{ ! Q i 555 19 40 10 4 ,Ox10,0 0.1� 2 V' T 3/4xlOx3 100 L ,9 x 1 2,6 Al 16,9 390 11,0 291E E ?a 0"9 9/4 X 1B x 3 1 I s 1111.._•"' SSSlagp 10 _4,0 K100 0,125 11 12,B 9, , 15 ••' I 555 z0 40 20 4,0 x 20,0 OJ?A 1 230 , 1611 B 9 p F w • 11 9,B 240 /4 X 10X3 125 SS5 20 40 20 4,0 X 20,0 0,190 y 15/ 150 A •9 7/4 x 10 x A 140 _ __ 1�a 410 ' I220 IA 240 5-•9 3/4x3055 - 100 9S S 20 $C 20 9,0 x'J,V,V 0,125 11 17,7 143 12.7 a4a 505 .5 2V VQ 20 ._.. , x 2 8,11 p,IVO ? 20,1 7V3 21. 835 r 276 lU •12 1 x 10 x a 1gp SSS 2$ 40 � 2R 25 .0 0,125 11 4.8 100 2,0 1 1 405 I11,.l I x 3A x 4 17 _ - Q _ ?4 �_ 4.0 x 79.0 8,189 7 10.5 On 11 0/4 s OQ 10950 170 _. 11 ` . 157 RI 1 55$ 2n 54 26 S,V n 20,0 0.125 a " V/4 >S 80 �J 246 N--- , I ss t . .- -�__. .. Aq ^ � % _ �vv _ to•I ix90x 226 $ $$304(1 2 pOn30,V 0,180 7 04 . IAA a 0 ' '�0� IV••12 x 5 4 2' I. 100 23 ASS 3U a0 50 6,0 X10,0 _ 0,I25 11 4.7 tOr IM I. a 0` "8 3/4 30x8 28h ' 00 ••12 1 395 206 ' a S5$ 00, a 3 U,V x 3VA 9.100 7 • 10,7 207 " 10 .. ....... ... ..... ....... , � ...m••- .».•.- .-- ,_,.._.... 2 �0_ � ,4_ lUP 10••12 lx a0�n OBO SfiS 3V PO ' 30 �• 4.0x30,0 9.108 7 18,7 919 1 , 1. 1$ � - I ' F- �+ 111 ...�..,. � ,. - .�.,,.... _._• �,.,..,.., ti47 6,4 190 11••13 IX3Ux4 UZO �S535Qq 3V' u : o s,0 , 0. 100 T ,R ' 1V0 , .,,,. ,, ,,,.a„w,.,,.•- ..:....__..._�... � ,. " ';; �Q ' � � 12... °f x 3V X • 4 � 4 aq ., � � ��, � m 9.R 0,11 x 311,0 O y ,. • 7SS30UQ 30 9.R 0,05 0906,0 " 0;1011 9 9 ,} 0 .1,5 311 1,9 t10 11.,19 ., 1x4Hx4 , 0 ,- --.,.. ,1-- ...,9.,,..�..._...•... . .,.._ 11 ,.lo Ix30xM1 GV5 1 ' E�A$,� t�T�11~ '".'"_ • ,. 1,111 HANDMOI.!^ Q1301 'ATION , o 1 W • ''' ° r � Y 110• A 01,q OP TIONS Hnaholn , 3U SIX 05s05IPTION "" PAL 1 Yvcmgn 0uilni Insc olovirlovi ' 901. Fll ;loan SIFI Uullnl "loss olontrInn( I •H1•159 Ilorizontrl Nrn Ura ohm -1 Word vO Yttrrnllvl) 0nmpnr IJA0 Lv &r Auphor no(tc 1111'• 2xira 1lnndhoio • I 11510 Hnndhnln Cgvnr• „ --Y, M ponYlrrtl NV7081 1 Sn rh,ar 1rrvinSltivnr 1n In ivryrn,nl ,u au qN ,U colry IORAllon'andq(lanlallon WMn + ,? P In n,„un I P P 1 Y 11 1)1 lam$ib,17nlwapan nldvdgplagt .l ln11 iativglrom 9 vvtprlvr noJvv, n a vvnJnurng S Ivrn rggrgJl la pwdValb I1Pndnfl 800 ($* ld In rwt alruv h.„), ' ..r..7 1'l' t 4ilr Of 1 n1n1a lull toplivllyiNIGYnd4Vw, // r '-, M...,... .,.,,„,,,,,,,.w, ............... R Cvmbinell (tanvn •Iv N rndrtllflrnvunt l 4lP1SkI %'• • - - .. , .w.- nn",..e.... »r,,.,..... rt9glrv% rklra nnnglpk, • • OLH 944 L' riS / A L• r� a Ultrl l•Iniunlo l.1vl,q „q, Am r7vo ARCHIThCTURAL Qt)7Ug9R !AMINO 1 '4,r04N,rMO n! r tsok ro, vox nwrmxl oaoouVgoort,l urnorrenorzr. ■ nolw nlAYr,WJIINP, 5VE9wI.1.1 m, MY o l.1, owuiv l; 1I 1 , • ■ . . i 1 ■ I 1 y ,+ , 1 n . - , ■ v 1 vv v .'11.0 t.1 nitit,LA t.,Ali SS5jjjf�?ruflji( i /`ltl�'rF;r'% hl'I'd N(i I'AG(; ,02 i h0 1"fi�f 1 r`.. /., ,„,,,,,, b,.•. r. aw.... mmm. nM.,, .,m,..n.o.,Trv.•�...ow,..»..,,, : it "' ` FEATURE �.,,M.,.,n.n „� �,,,,��..�.,,,�•,n,,,,,,., ,,., SHAFT' --' Woldohio•urado, het- rolled, Ourmmorolabgunllty onrhon woad) outnbor „y, m1,K,,,,, r,,,.,r„,.,,,, t ymttrin n ..,,...,,,, „� „,,,,.. stool tubing with a minimum yield of 00,000 psi (11•puugtd, 60,000 ' pal N- gcugu►, Uniform woo dilck q( ,120' or .1 0'. 5'halts Aro ■ oltu•piuoo with A longitudinal electric roslstanne Wald, Mar* Arlbhar Base ['alai Arluaro In cross;svgtion•With tint sides, arnall earner rndlland ex oollont tvru(on, Avnilablo sin* WidIlls eta 4', 0' and 0', t ' AMONG() DASH— Fobrioatodiroin hot- roliot( carbon stout plate shot ' I mu tits or exoaods a minivan yield t ptillt of G0,0O0 psi, Tito On- ., char bash Is provided witli nlattdd halos, SQUARE STt1Ai M ST4G4 tiANAHA I - Arootan0ulurrolrl (nrnndhnndhUlo rim hn1(InU 10' to 39ouMinq d(tnunvlune of 3' x 0' (or all shahs, Ineludod Is a 4tuo1 odour whit ottauhmant $urov(s. °FHOUNDING —A nut bailor locatod hnmodlato)y inside !Flo handh9lo r Is provided with a 1/2”— 13 UNC Around pair And nut, ANCHOR VATS •-•, Top I2' uulyanlzud per AVM A -11L. Mode of S/4' or 1' diomater gaol rod having 0 minimum yield strnnglh of I 00,000 psi, i IAROWfl0. A Fnstunors nro hiph strvnpUl galvnnlzud rino pintail or A stninlass stool, Top CAN •-•-, Wontburpro f, high•slrongUl plastic vap provldvd AI II ell drill•rnnuntpolos, , '; r ' I I • FINISHES — Pork bri ntv 000) polyastor powdur standard, Athor OrehituntVfnl Oolb1$ pvllllf%ble, SASE ()OVER •'- Autvmotivn�•prado MS pinstic lu11.00vor flrllshatl to k r. I L,. ,. 1, ' 'r I �i, . tnntoh polo. .� 5 l �t y t• ' 1 0 —tot -1 f,•1 f ORDERING i'WQFIMATIOlid ?00U1 '�..'.•,� »o 1 4:110011 ON 170)41/400 ot19)op iiomanolvlvn That b►tt 1411, yvvr nrnd: Ma fJxaml >(Ol 58530 GO PPM ppt3 • ' ( ; 1 01110 Ii iA tbo Pep yprlatn 0114, sus 1 WW1 typal Nominal muuntinsJ Nominal uhufG bona ulzo/ H i " ° ' MOUntln Q r {lung vs hol0h f w all thloknesa . �. __021,11? .,_,. 1, 1 10. loot: Nam Mounting Arohiloutural Coloro (potstlor llniah) Won Wok nagaJ 11' Opon Iqp Slnnilar(l 1:o1nrs i0,, buck paurJ 2'20 2.9/0 (2• Nm 0)11 Pork bronzy I M ill z�7 /0' 0.0, lt•l/�' NPs) mWII WIN 011all Doll Ooil f lus h Anohur Warolluuso 1'oatnidla TOO 314' 0 ODt PA Clrolq Ptoiocilun 'Nora Dun Anohur 8011 NOM, TOO 4' 1( ClnaslQColyp Slzo A 0 ' C pascuptivn O 4c (plivn 1)1111 Mvuntlu0 PMn Madhlm bronin .„,�.___. 011419a 1 0(39' DNA Natural aluminum 4'0 0.1/2' 2- 314 0' A08S8•40 A010'0 PJ00004 011149x' 2 nt 100' 0SS Sondstan4 I 4 0.1/2' ?,•0/4'• -I' 0' A088S -4u AD N60004 P014 Pt° 2 at 160 with ono shin ADC Cngr000t gray V' 1e'•12' 8-YO' -4' 11' ADSSs.6 A1110.0 4'J00010 0 pll/yOud 6' 11 �1n' 3 -aN' 4' 12•IR' ADJSO.0 A A90 0 O M20? 271 00• DTP Tonnit 9441n ' - PJkW1I hop 0110111 rod ' - -'+-'-- - - -.— 0/400A 3 AM' DSO Stool oiuo I NorGSI DM40/0 4 ntoo' , 1 who n4,4444ni a4 mvuntl1,9 And dill] tnovA1Inq I4( Iho 64,14 [Iola, lvIto,' Ih QA I,V IKtlm 1 X v galvanitetl nnlrh Y ma* and 4' l Il9r. vow. r,-, 0' And 9 only, ' • o Th. dripkw Itmplgtt iv be y4.1 . 1n4 a portlmdrrlmnhnbr 4.prml; an Inv Ivmin9Irr Stoll, urr . • I nrneny 7vmp1010 nfllnnv (01 flu bt4rl 7C lh Writ urattail ut l . tNrlta • 1 ' once,, moot IMpollynrlT, n 2 KmIKt ' n0 imttrootot4a4wow ' haying italuroa ]nxiWO, KIInI .KIIC trOaror y - 44010 pmploin7tnw�hnu.adrtlita uinglncho,boiq, 4 Knav, KG 193, Onr,, once, 01101, 0.1.11)2 net pccont c alnl (or lnpotroat tnv ivriyo phGlIIIMI diw to (duty tv vn hvlvty • Plank n All olhvrhlttonl* Att. 1,9rninol(0i ' (4 p � ,., . ' (14Po( the lYook' NO 01019n ulte Outdoor elndarlor 2rllf,w TsOtnrx(oa, 'U poUtlrt4rloradmlrldtr. a0 Kim u,lrr wrrppinq mu , fEa r47rov rd lnwcdbuty I : ( •. 'a 4 additiono! ofchlttolvrol Wail 990(lo0Ia; oof pahol broohulo, io pr/ytnl n damoyy, + 1100014 id not rvpomiblo ter Iho n roundadon deal , I + , �.p,�p, �p' y � ,p� ��g " ""•••.— • n,..., •..... 9 ..,....,... i �Af+r�A YSP N tdi���I �A 114b 4► 1 1 ' . ARCHITOQ1IJHA1. OUTDOOR LIGHTING 1 I I 1 1 1 • max +• ■ ,...• A. A.:,.) vn u•I '.,U I." 1 41 As I11.I'Il'1 i 11 GPI,! I' t)1.7 .11-11'1 Y);) ' 11.) 1,1: a 1 .. _ _ TECHNIC, (_, INFORMATION 100 Melt 09 MP11 49 MPH 70 MPH - - rr(t.a uutt ' seta twat rr /1.9 nual r /i.a Gun Nominal Polo Wall Max, Mox, M. Max, Max. t'nxx. Max, bWX, 0011 0011 Apprvx. ITAI.00 MIq,111, 8411 61t 1111cxnot4 EPA WI. CM Wt. OPA W1, CI'A WI, kola Slzv 0015 Wt. 1M00R (8) (In A II) (In) 011 (10) ((l') , (111}' (la) (10) (Al 1 (ln� n x In x b1) (10A) IA a 40 0 CO x 0,0 .125 11.5 100 144 18o 10.0 100 20.0 1110 8'1/2 0/4 x10 x 3 39,7 1/0 0 40 IQ 4,0 x 10,0 ,125 0.0 180 10,0 100 13,3 160 15,4 100 8.1a 3/1 x 10 X 3 39,0 IA 1210 12 4,0 5 12,0 .125 0,6 100 0.1 100 100 160 15,2 100 6.1/2 3/4 x 14 X 3 44,0 1 1A 1140 1.1 4,0 .125 4.0 100 100 8,0 160' 12,0 160 0•1y2 3/4 x14 x3 49,2 to 10 40 10 4,0 X 15,0 ,125 2.0 180 3,4 180 6,0 150 7,0 160 0.1/2 3/4 X11/ X 3 63,9 1A 1840 10 1, 0 x14,0 .100 4,5 160 0,3 , 160 0.0 160 12,4 160 0.1%2 3/4 X30 X3 70.0 ,, fA 10 50 10 0,0 016,0 .100 7.ti 150 11,1 ' 100 160 160 30,0 160 10'1'2 3/4 x 303 3 78,7 1 IA 1040 18 419510.0 ,126 2,0 100 3,0 160 6,0 100 0.32 3/4410x3 60,6 iA 44 40 18 OA 10,0 .100 2.0 460 4,5 150 02 '100 0.0 140 0-1/2 11(4 x 50 x 3 02,0 1A20 40 , 20 1,0;20,0 ,I25 2,0 100 4.2 160 0.10. 3/44•10x3 63,2 1A 20 49 • 20 4,0 )520,0 .186 1,6 100 3,30 160 4.0 100 7.0 150 0,-.3/4 3/4 x 00 x 0 00,0 1A 20 00 20 4.0 0 20.0 ,100 4.0 \ 200 0,3 200 0,0 200 1443 200 10'10. 104 x 30 x a 190,0 I 1A 20 00 29 0,0 x 20,0 .105 7,0 260 11,0 260 10,0 200 52,8 290 12 ' 1 x110 x 4 147,0 64 20 09 20 4.0 X 24.0 .100 2,1 150 4,6 100 0,4 100 ' 10- lr2 3/4 o 30 x 3 151,0 5A 26 00 25 0.0 x 26,0 .100 2.1) 200 6.1 200 0.5 2,00 14,3 200 12 1 x80 X,4 174,4 54 20 04 20 0,0 X 24,0 .250 6,0 250 9.2 200 13.0 250 21.1 268 12 1 4 35 x 4 • 2,15.6 1 3A 00 00 30 0.0 x 30,9 •100 • • $,4 100 0,2 100 12 1 x30 X 4 , 209,3 2A 2V 01 30 0,0 X 50.00 ,200 � T '3 ;9 160 7,0 260 13,0 200 12 1 x 30 x 4 2,00.0 . '.1 f� s 9955 / POIo Mo 1.4540!0 .~,...-' ' ' .'•{ I. , 4 nAza q F lours Oatslo0 . Toonn Wt/ LPN I1covkui SIm Nurnbar, HurOboj AdoRtor Tenon Tows ('It &PA A 0420 23/0' too 4,4 90.... ( 2 � `� ' o I two' 10 4 -- f 5 .._ ,0 , 4' G , O t" t F10 0 0A37, 010, q 04 p 0M9 20(0' iVU 4,8 15 2,2 ''� � 0 OW x' 100 4,6 20 6.V Ilk , "--11-1-1-----P-----4 0 6410 23111' 100 4.6 6 .0 • It 8420 2 0N' 100 1,4 r .8 11 0432 2 5(11 loo 4,6 9 1,0 ' flp, E HMO I SMV 23ro' 100 4.6 It 1.0 Sl1FRX Dfi$Vlil 007 Paso Ogvnr wor o 50 M r Pron1 Vuplox ° , Q } 501, " Duplox Posloo4 011001 (loot) oloclrio) ' I ! Irt ` 't PO'' Fosloal WOO Oft 0uptox ra {7y MILLS Poston Oullot •OIV0upiet loss 6lsolrlc 4J, I 01' 1/7.'1)oup1010 Q a (2' ` OE )A 02' , S/l'0ouplIn0 I Oa' 2' Goopllnp ti 1' ; ' Ili' 1lortwroat Arm 8lankrt•1 nlaur ) r'; ' a Er 1.0 '1.2' 'TM Ql' Wort); lbs 1st th 112' 0nnplIntm. with 'i, I, , 0,,:i0',,,. ,s'itl'�, QuartzDraokat 'NC 'ti •f Yilh 3/4' Qouplln0a , �3, f)� ` VI) VIOralhm Palmy(' I tAD t as AndlPr Dolly _..._- . . ;t i.: L,ITHO,NIA soacttyy Iooiilos Q(10514109 who ynlollnv. ` ' V:, ' dolalls I01' loatovn otfUsts, Soo opt1005/cyassor1033 shout P•0 /A for mars r H b f111n gqR tII�oH11N0 4 May bo ordaOJ ne atxvu 8001 for mots bilk ,,X 0. V * O0Of10VVf, , HA 5194 1 (* 0P'ON4 711337.100) • MX 1N : 18A I I G 19031.01o/014 W910149 WOD 1 1