Loading...
Specifications 1 (,6s 72 2c0 City of Tigard Ap .. ved Plans = I Ili t a 0- ,� f 1 r. �y Date / , A -, R OOF LINE ... V: L. s N OFFICE COPY ; ° HSS 4x4X1/4 ��3 . . .,�....._..._ 1 L 3 I /2x3 1/2x1/4x0' -4" 0 w • Typ� 3/16 D ° 4' -0" OC MAX, STAGGERED, W/ 1/2 "0 THREADED ROD 8 " fIN W/ SIMPSON SET XP. EPDXY , 1 MA W/ 3 3/8" EMBED W/ SPECIAL INSPECTION 0 mil in is! w A11/2" C 3/16 D < YP FIN FLR 10' -0" MAX 3' -2" NOTE: PLACE (2) ANGLE CLIPS AT TOP AND BOTTOM OF HSS STRONGBACK O rmi HSS STRONGBACK m 1/4" =1' -0" o+ i J f`.t i f ( i ( ... . By • G R p U P Date MACKENZIE1 Job# Portland, Oregon i Seattle, Washington 1 Vancouver, Washington Sht. - of www.groupmackenzie.com 02010 GROUP M AC RENZIE. ALL RIGHTS RESERVED Project Name = Stash T.I. at Pactrust Bus. Ctr. Conterminous 48 States 2005 ASCE 7 Standard Latitude = 45.433037 Longitude = - 122.752122 Spectral Response Accelerations Ss and S1 Ss and S1 = Mapped Spectral Acceleration Values Site Class B - Fa = 1.0 ,Fv = 1.0 Data are based on a 0.05000000074505806 deg grid spacing Period Sa (sec) (g) 0.2 0.951 (Ss, Site Class B) 1.0 0.340 (S1, Site Class B) Conterminous 48 States 2005 ASCE 7 Standard Latitude = 45.433037 Longitude = - 122.752122 ss , t o t't ue4 Spectral Response Accelerations SMs and SM1 SMs = Fax Ss andSMI =FvxS1 e Site Class D - Fa = 1.12 ,Fv = 1.72 4,, 1 e "1 • Period Sa • e� rr sec ( ) (9) ; ....ti�.» \ 0.2 1.065 (SMs, Site Class D) �• 1.0 0.585 (SM1, Site Class D) Conterminous 48 States 2005 ASCE 7 Standard Latitude = 45.433037 Longitude = - 122.752122 Design Spectral Response Accelerations SOs and SO1 SOs = 2/3 x SMs and SD1 = 2/3 x SM1 Site Class D - Fa = 1.12 ,Fv = 1.72 Period Sa (sec) (g) 0.2 0.710 (SDs, Site Class D) 1,0 0 ,510(5D1 - • r 's ; 1 '' G R 0 t1 P RiverEast Center I 1515 SE Water Ave. - P.O. BOX 14310 A K E N Z I E TEL R (5 3) 224-9560 O FAX (503) 228 -1285 Concrete Tilt -Up Panel Design Per 2009 IBC PROJECT NAME: Pactrust - Stash Tea T.I. PROJECT NO.: 2100085.00 DESIGNER: RRB NORTH WALL PANELS OUT - OF - PLANE GENERAL Panel Ht. ht := 22.5.ft Conc Strength f := 4000•psi LOADING Panel Thickness t := 5.5.in Rf Load Ecc. t + 3 -in e = 5.75 in 2 Reveal Depth . r „ := 0.5.in Reinf Yield 60.ksi c := St! Depth 0.625•in t def := t — 2 — 1.5 - in d = 3.688 in d := — 2 Roof DL DL := I4•psf Roof Snow Load Si, := 25• Panel Width w 25•ft GENERAL LOADING IBC WIND 95 MPH Exp B Wind I,,,:= 1.0 X := 1.0 w•ht Area := 2 Area = 281.25 ft 2 q := 16.5 -psf•I .. q = 16.5 psf Per Table 1609.6.2 M ft U k gp•ht2 k Mw = Mw = 1.044 ft i �� f . , �.., = �, a -� 8. ' _ \. : (. ) • ( \ . ';/ A �• ;rd. 1 . C , c a r "` /' � V��� yi� e. f �r c f l SEISMIC (Per. ASCE 7 -05 Sect 12.11.1) l� f/ f L�� � 1,, := 1.0 h := ht X t /r1 Z • �f C F := 1.1 S, := 0.951 ' Sros := F S, ? r ? 7 c . . - p. . . 1 ' I l '' " - -' .:'t. " t 1 j C7 := .15•kcf -t C7 = 68.75 psf Wt. of Panel F := 0.4Sd I F = 0.279 2 q := F C7 C(7 = 19.178 psf Mg q7 ht 8 M = 1.214 k ft ft / /i,, PANEL W/ OPEN'G Panel Ht. ht = 22.5 ft Steel Depth d := d New 4'x10' window of Panel Width 25.ft Panel Thick. �'° t -5.5in • Opening Width w := 10•ft Rf Load Ecc. e = 5.75 in Opening Ht. ht, := 4.ft Reveal r„ = 0.5 in w + L Panel Leg 3 . 1 8•ft 2 x DL.50•ft L PdI 2 .x P dI = 900.314 plf SL PII := P dI' DL Pu = 1.608 x 10 Of P2 := C7- [(ht)..5]•x P2 = 1.99 x 10 Of M := Mw-x M = 2.686 k - ft Sei Mom w/ Opening w1 Q7p - x w = 49.333 psf 2.25.psf.w 0.5 + Q L w 2 L WI RNA := w2'ht + (w – w2)-(ht – ht 2•ht R top :_ [w -+- w – ht,,)] – Rbot R top x"' w x,,, = I 1.058 ft 2 WI•Xm Ms• = Rtopxm_ 2 Ms= 3.016 —ft ft Compression Check P :• Pal + P + P2 P = 4.498 klf P 0.06 -f P = 15.84k1f Check := if(P > P "Okay" , "No Good ") Check = "Okay" nb := 4 # 5 Each Face In Leg nb•0.31•in As: L DETERMINE Mn USING THE YELLOW BOOK METHOD _ _ 1.0 • A klf 2 P 1i • klf 1. 6 M 1 0 d) • klf 1.05•P2. 1 1.28 1 1 f 4000.0 fit := 0.85 - 0.05• 1 1 1000•psi 1.05 - Pd)• kif 1.05•P2• klf 1.28.1)1• kif 26 —.M„„-- k 0 0.85•f / 87000.0 1 1 1 1 Pb c, R) 87000•psi + f,) Ultimate Loads 4 : = 1.2•Pd)• klf 1.2•P2• kif 0.2•P))• kW 1.0•M,•— 0 f k i := o..a 0.9•Pd 0.9. 1 0 1.0.M 1 Ms. k 0 A := t• 12• in klf kif Pti := t ( 0 x i, t x i,2) .k \ 0. - P d)• klf 0. ! 0 1.6•Mw k 0 J Pu •2+ As ft f 1• P dr • 1 1 . p 2. 1 1 Pii 1 l M 1 0 - X.:- d y t klf klf 2 klf "' k 0.85. 12•in 2 t 1 1 1 Pw• + A,•ft•fy 1.Pd1.— 1 • P2.— 1 •P11•.— 1 •M • 1 0 I d Ase :_ klf klf klf 2 '" k fy Service Loads 1 . 1 i . !.. M s' 0 := 0.9 Pdi• k lf 1 1 y klf 1.4 i y $ »> M := A d- X 1 1 RI 1 2 1. Pdr klf 1 P2 klf 0 M, k 0 +Me =_ 4Si'Mni 1 t l •Pdl klf 1 P klf 0 1 •M " , • 1 0 Steel Ratio check - Tension controlled required k d := d Depth to Extreme Tension Fiber x Neutral Axis Location C 'HOK" C. t _ flag := if ! < 0.375, "OK" , "Revise Steel" dt "OK" d t flag = "OK" 0.207 0.213 "OK" 0.205 \ "OK" 0.198 0.198 DEFLECTIONS AND Mu he := ht.0.8 ht * 0.8 For dock high Panels Only 12 in t Xi fc 29000•ksi �:= 12 C :- — E := 57000. .psi n :_ 0.85 psi E c 12• in•(Ci)3 5 •Mn.• ht'2 1 cr. :- 3 + n•A (d - c )2 d _ i fc. i An. 48 •E 1 f r := 7.5 psi c cr psi 3.lk + (x. + x. / k • e + (x. + x. + x. / k•A„ C , := y. lk + + 1 ( + y. + yi k , ht M := xi, 1 i, 0 t, 2/ 2 1 t, 0 t,1 i, 2 """" c, 3' yi, 0 yi, 2J k 2 + l i, 0 i, I i, 2) 150 (L, c• 5 'Mcr'ht' 2 ht Ms. — Mcr • Mu ` Acr t -- 48.E,-18 Amax — A : = A + •(d — 6 cr) i SO Mn. — Mcr ` ' ' 2 5 'Ms.•ht' 2 A := if Ms. < Mcr, ' , As . ' 48•Ee I 1 1.05DL + 1.28LL/2 + 9,6WL Note: Load Combo M. := 0 Ai := 0 Based on AC1 Appendix C OMno= 80k•in > M 72.417k•in M := if(4)Mr,. > M "OK" , 0) Amax = 1.8 in > A = 1.11 in Ai := if(Amax > As. , "OK" , 0) 1.05DL + 128LL + 1.6WL /2 OM„ i = 82.093k•in > M = 53.59k'in Check ( " ` '" \ Amax = 1.8 in > A = 0.386 in "OK" "OK" M = "OK" A = " 1.2DL + 0.2LL + 1.0E "OK" "OK" \ "OK" i "OK" , 0M4 = 79.441 k•in > M° = 54.344 kin A 1.8 in > A s2 = 0.523 in 0.9DL + 1.0E 4M, = 77.004k•in > M„ = 48.122 kin A max = 1.8 in > A 3 = 0.533 in 0.9DL + 1.6WL OMn4 = 77.004 kin > M = 63.495 k• in Amaa = 1.8 in > As = 0.921 in / ( Th/ .Vi 1 •