Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Specifications
1 & 14.44 -cci 7S ---- 1 GROUP RECEIVED 1 MACKENZIE' SEP 222009 PORTLAND, OR I SEATTLE, WA I VANCOUVER, WA RiverEast Center 11515 Water Avenue, Suite 1001 Portland, OR 97214 CITY OF TIGARD I P.O. Box 143101 Portland, OR 97293 BUILDING DIVISION T: 503224.9560 1 F. 503.228.1285 1 www.groupmackenzie.com 1 1 STRUCTURAL CALCULATIONS 1 rn Oregon Business Park — 10 T.I. — New Openings Tigard, OR I PROJECT NUMBER 2080421.00 September 9, 2009 ' lc oCTUR, 1 n �� ° P . ® • _ ..:. 16,880 ; . . 1 e :' E 1' ' l'21. \-. 1 1 ' i. � , - Y P1 1`s; c i r3Q/ OFFICE COPY � LOADING L 1 - L 5 1 OUT -OF -PLANE LATERAL OP 1 - OP 4 1 IN -PLANE LATERAL SW 1 - SW 23 WALL ANCHORAGE A 1 - A 11 1 (VOLUNTARY) ENTRY CANOPY C 1 - 0 11 1 SUNSHADES SS1 - SS4 1 Project Name = OBP - Openings Date = Tue Apr 21 15:30:51 PDT 2009 1 Conterminous 48 States 2005 ASCE 7 Standard I Zip Code = 97224 Spectral Response Accelerations Ss and S1 I Ss and S1 = Mapped Spectral Acceleration Values Data are based on a 0.05 deg grid spacing - - :1,o 12, =5,D = 1,5 Period Centroid Sa (sec) (g) 0.2 0.918 (Ss) p l 2-`) 1.0 0.333 (S1) 1tC 1 Period Maximum Sa (sec) (g) 0.2 0.944 (Ss) 1.0 0.338 (S1) ' Period Minimum Sa (sec) (g) 1 0.2 0.895 (Ss) 1.0 0.330 (S1) Conterminous 48 States 2005 ASCE 7 Standard I Zip Code = 97224 Spectral Response Accelerations SMs and SM1 ' SMs = Fa x Ss and SM1 =FvxS1 Site Class D Period Centroid Sa (sec) (g) ' 0.2 1.040 (SMs, Fa = 1.133) 1.0 0.578 (SM1, Fv = 1.733) 1 Period Maximum Sa (sec) (g) 0.2 1.060 (SMs, Fa = 1.122) Z0€ZI LI o;?,P —I c7 ' Period Minimum Sa (sec) (g) 0.2 1.022 (SMs, Fa = 1.142) 1.0 0.575 (SM1, Fv = 1.739) I Conterminous 48 States 2005 ASCE 7 Standard I Zip Code = 97224 Spectral Response Accelerations SDs and SDI ' SDs = 2/3 x SMs and SD1 = 2/3 x SM1 Site Class D 1 Period Centroid Sa (sec) (g) ' 0.2 0.693 (SDs) 1.0 0.385 (SDI) 1 Period Maximum Sa (sec) (g) ' 0.2 0.706 (SDs) 1.0 0.389 (SDI) 1 Period Minimum Sa (sec) (g) 0.2 0.682 (SDs) 1 1 1 1 1 1 1.0 0.583 (SM1, Fv = 1.723) 1 1-2 - - - - - -- ---- . — ------------------ - I 1 C • C . • _ ! 1 , 1 I e>_os - rii-tet. (,(9 1) 01,1S s . . -- — - - ---- - -, I El; - Pt--Nk_ C ----- k ‘) •-,..- ‘ i 1 1.11 ' • 1 . ... ....„ -- EtKa • to=6,...t. ■.\ • t lLi 1 t . t------- I ' ' 12-6 47 ir.('),L. 6„i I -rqp, . I I 1 - / , . . .... , 1 , . 1,, (t) -4=1*• Tye e c•-1 A' 14 I" • I INA IC ° Tct 0 . i : 1.13 s ; .-.) a_ F_-•t__ •---- /45 :•i7l_,,,,F I S r 0.011 ebeis •c,(_, e0OF .=- , e / ' ) - 4 ( rtA - ri ■-• . : - I cATI o 34 1 - 'l \ I • \1 't-Il\e-ie\CI\tl FLL2e,a..-1.4., -r6 0 P tt•)(,)V - ■ 1 . 1 , F. :: 03 pk ' IA , - (fr,loo›; Zoo 01 4- 50 t.f:;, I - 0 , i ..e.s..52. tr‘ , ._ ?../-' L. r 4Is va_.: u _ c. , ? „,,, 4 ..., a.,y1-c-c. -; cp. (2!" N \ I I, _ v„ _ ___Ec,(„:0:4?_\ qc, Pcikt.--\ bIg-': \ ISC 7" FC ' D ' 5 (. (°) Ett ; " 5 1:/ 2 -Y CC21 ) (7') :: (.0 IL • ,-:: I VsJ1 pg,N 2 7-- cp,ks LItY ( :*- 16rOs , 0 . • i 1_,„_j\ ;.-- (A.(e+ 5 - f 61 111 1 13; +- (60 1.11 : x. = i.o4 ( 11- ? -) ___-, 1 II 4 ( z. k 9 C .--- . ... i .. . 1 1 By 1 GROUP Date /I/ 1-0 t 1 1 MACKENZIE' Portland, Oregon I Seattle, Washington 1 Vancouver, Washington lob # Sht. 1. 3 of www.groupmackenzie.com 02009 G ROUP M - ACKENZIE. ALL RIGHTS RESERVED 1 C , C • , I , . ______. ,— _ V....44.,■- u .\-:_., . . \AI v., -4 ,'T T I O-t ' t. Vi/t t540.X- titz k CV • .....: u ,. 1 , s ...- + t 6.7(a T 1 l' 1 r: 1,0 - i . • I \1 VJE 4 t ?- . UC C4t--- . 5 ) = Sb ( .•-\,- 1 . . V W t-57 1/ 2iStt.°47)) Pt I 1 ., • 5_5: : C-Y■E-c-V--- "t"•-1{ \ '‘. A6 P Pc-.1-4 -(- T I ' - L • k 0 ts_-s ! OAT PAR • • , . • ,. . . , , I. ft , . 1 1 VC._ *p 0 c_L.k,rn c t....vr 7702 1 . . . . . 1 ) :i•K9V-217 . '''.-v , i . . 1 •:" 0 ■. L-A. ND . , (7 ei■ -1 '') 4,(".s.to. To tt.) 0.);,, w A.,-c_t__. 1 I - L& PP( FLoOR-- P0.36-TQA-V 1 DN)c> .‘C..C___VP -) 1 0 7 P LALitil SP 4 CAP_ I i I I , - " 9 . at - • 1 i . . I ' I . I .• , I ■ . - 1 1 . By I Date GRQUP 1- 1) 1 1/1 1 0 M ACKENZIE Portland, Oregon I Seattle, Washington 1 Vancouver, Washington Sht. www.groupmackenzie.com ©2009 G m ROUP ...ACKENZIE. ALL RIGHTS RESERVED 1 r 1 1 No, 1 Sav`,, whkl. \_.,'j s (D2 -°l y e � �'� v �' °I 3 -C°- y a ` .... .._ „...,..__ 1 . C z +- o. lS - � �gi�j41151) p,,-:,,.. --N ' i L 4- olt s� ) :;'',6. ,fit / 1 . A- 12 p S } Ay.{) - l to .., 252 .• , • ' - . , A- I = 1 ,c ((02:- 2') = 1 & cvz- - �SZ ,_ - �L CJ� >K D A ' 4(9 -(p f, (iDa,5 2-4 ) ' 3,\ loLA F i- Z A m :(iii.;-9") x 9315 - �3'S = Av b (1. z p 1 , '�' I n Pf NtNG, i 7- �'' N 1 I , , i , ; IM' /1 , I ,. , 1 1 1 Y lip`-v< 1(�� S- I b,,. zi,- — . 1, , 5,6AJA,n,04 ; „,,,, 4/, N 1 '10e.11-■ . 1 1 III 1 66P-4.0 B ?2-2 II G R Q U P Date 4 /7,q /91 M ACKENZIE 1 ' °b" Portland Oregon 1 Seattle, Washington 1 Vancouver, Washington Sht. 1 -"S of www.groupmackenzie.com ©2009 G M ACKENZIE. ALL RIGHTS RESERVED 1 G R O U P RiverEast Center 1515 SE Water Ave. - P.O. BOX 14310 PORTLAND, OREGON 97293 1 (FA • TEL (503) 224 -9560 - FAX (503) 228 -1285 Concrete Tilt -Up Panel Design Per 2006 IBC i PROJECT NAME: OBP -10 TI PROJECT NO.: 2080421.00 DESIGNER: RRB Typical WALL PANELS I OUT - - PLANE Panel Ht. ht:= 15.5•ft Conc Strength f 4000.psi GENERAL LOADING Panel Thickness t := 6•in Rf Load Ecc. e := t + 3•in e = 6 in I Reveal Depth r, := 0.5 in Reinf Yield f := 60•ksi 1 Stl Depth def t — r, 0.625 in - 1.0•in d = 4.188in d := 2 Roof DL DL := 14•psf Roof Snow Load SL := 25•psf 1 Panel Width w:= 25•ft GENERAL LOADING 1 UBC WIND (Per Oregon OSSC) 80 MPH Exp B Wind n I 1 I qs :— 16.4 psf C :_ .76 gtJeL -S Se #604 40Q--/Z f tkL ' C := 1.2 I := 1.0 qp = gs'CQ Ce I q = 14.957psf 1 qp.ht M �v := 8 M w = 0.449 ft 1 SEISMIC (Per. ASCE 7 -05 Sect 12.11.1) I := I.0 h := ht F := 1.133 S := 0.918 1 Sms := F S 1 ads 2 S = — 3 ' S ms C7 := .15•kcf•t C7 = 75psf Wt. of Panel 1 F := 0.4S F = 0.277 ht 1 q 7 := F q7 = 20.802 psf Ms := q� 8 M 8 0.625k-- ft ft 1 1 Panel_IBC.xmcd bp 1 1 PANEL W/ OPEN'G Panel Ht. ht = 15.5 ft Steel Depth d := d I Span Horizontally Opening Width w := 4•ft Panel Thick. t = 6 in Opening Ht. ht, := 3.5.ft.3 Rf Load Ecc. e = 6 in 1 Panel Leg L := 3 • ft Reveal r = 0.5 in w 1 o•2 + L 1 L DL•57•ft x :_ Pdl := 2 .0 P = Oplf (No gravity load spanning horizontal) SL Pll Pdl' DL P11 = 0 plf 1 P2 := C7• [(ht)..51.0 P2 = 0 Plf k• ft M := M Ms„ =0.749 ft i Sei Mom w/ Opening P 9 1 w := q w = 34.67psf 2.25•psf•w + q L w2. L 1111 2 W1 w (w — w — ht 2 + 1 2 ht R top := [w + w — ht„)] — Rbot 1 12. x "' . x w m = 6.481ft i I w1•xm 2 k.ft M := R — 2 M = 0.728 ft — Compression Check 1 P := Pal + P + P2 P = 0 klf P := 0.06•f P 17.28k1f 1 Check := if (P > P "Okay" , "No Good ") Check = "Okay" 1 nb:= 3 # 4 at CL in Leg 1 nb•0.31 •in L 1 1 Panel_IBC.xmcd o ? 2 1 DETERMINE Mn USING THE YELLOW BOOK METHOD / 1.05 Pdl 1 1.05•P . 1 — 1.28 .1 1 1.6 M 1 0 I f — 4000-psi) klf klf 2 klf k 13 := 0.85 — 0.05- 1 1 1.05•P 1 1.28•P I 1 - • 1 0 I 1000-psi drif 2' u — w klf 1 klf 2 k 0.854 87000•psi 1 1 1 1 P := R 1' Ultimate Loads x:= 1.2• 1•2.P2. 0.2•P 1.0.1\4, 0 f 87000•psi + f AM klf klf klf k i:= 0..4 1 1 1 0. klf 0.9• klf 0 1.0 M 0 A t•12•in I P„ .:= (x. 0 + x i 1 + x i 2) k 0.9 Pdl' klf 0.9 P2 klf 0 1 k 0 / P„ + As.ft•fy 1 1 1 1 I X. :_ ' 1 Pdl I P 2 P u 1 M w 0 I 0 .85•f� 12•in klf klf 2 klf k 1 1 1 1 1 P + A ft f 1 Pd1 klf 1 P2 klf I Pit' klf — 2 'Mw' k 0 1 Ase. := f Service Loads , := 1 dt • 1 1 P 0 1 1 M 0 �; := 0.9 >» klf klf (1.4) k I M 1 := A f d — X� 1- Pd1' 1 1 •P2. 0 0 klf klf (__J.M.! k 4M n. := (I) ' i'Mn. l.p 1 l.P2. 1 0 1 M 1 0 dl' klf klf w k _ Steel Ratio check - Tension controlled required _ t d, := d Depth to Extreme Tension Fiber X. C.:_ —' Neutral Axis Location ^"q 1 R . fla := if / C� < 0.375, "OK" , "Revise Steel C. / "OK" d = dt "OK" I 0.179 flag = "OK" 0.179 "OK" I 0.179 0.179 "OK" j n .179 DEFLECTIONS AND Mu ht' := ht• 1 12 in t3 X. 29000•ksi I .- C.:_ — E := 57000 •psi n :_ 12 ' 0.85 psi E II 12• in•(C.) 3 2 5M nt•ht'2 f c I := 3 + n•A (d — Cil An i 48 E c I f r := 7.5 si ps \\ / cr. P 1 M e ht °i := x ,3 -1k + (xi 0 + x 2 ) k• — + (xi 0 + x 1 + x 2 ).k•A n 2 := Yi 3 .1k + (Y1 0 + yi 2 )-k. — + (y 0 + Yi 1 + y ,�l•k•— 2 \ / ` 2 ` / 150 — f — 5•M ht G Ms ' — Mcr Mcr Mcr Amax • Os A + • On. — Ocr [ 48 E� I 150 M n. — M cr 1 j 111 2 5•M A := if M < Mcr 1 , O s I Panel _1 1 48 E I � • .xmcd 0 3 1 1 1.05DL + 1.28LL/2 + 1.6WL Note: Load Combo M I := 0 �; := 0 Based on ACI Appendix C 1 (1)M 0 = 46.404 k. in > M 0 = 14.373 kin M. := if (4)Mn. > M, "OK" ,0) 1 Amax = 1.24 in > A = 0.042 in 0 Ai := if(Amax > OS ' , " OK " ,o ) \` 1.05DL + 1.28LL + 1.6WL /2 1 4M ni = 46.404 k•in > Mul = 7.187 k•in Check " ( Amax = 1.24 in > 0 = 0.021 in "OK" "OK" 1 M = "OK" 4 = "OK" I 1.2DL + 0.2LL + 1.0E "OK" "OK" \ "OK" , COK" j cliM = 46.404k•in > M = 8.738k•in 1 1 Amax = 1.24 in > A 2 = 0.029 in 0.9DL + 1.0E 1 eM 3 = 46.404 k•in > M 3 = 8.738 k•in 1 1 Amax = 1.24 in > A 3 = 0.029 in 0.9DL + 1.6WL 1 0M 4 = 46.404k•in > M„ 4 = 14.373 k-in 1 1 Amax = 1.24 in > A 4 = 0.042 in 1 1 1 Panel_IBC.xmcd oe 4 1 I GROUP RiverEast Center 1515 SE Water Ave. - P.O. BOX 14310 A NZ 1 E I TEL (503) 224-9560 - FAX (503) 228 -1285 1 SHEAR PANELS 1 PROJECT NAME: OBP -10 PROJECT NO.: 2080421.00 DESIGNER: RRB 1 West Shear Walls (Shear acting N -S direction) 1 SHEAR FORCE DISTRIBUTION ht := 23ft d := 19.25 ft Panel 19' -3" FT PANEL WI (2) OPEN' GS (End Panels) ht := 7-ft ht := 4ft d := 3.5-ft-3 Openings 1 d := 6.25ft d := 2.5ft Leg Dimensions 1 h := ht h = 1.195 Dwall :_ . + .3•hr Dwall = 1.041 Entire Wall hdo := ht 1 h = 0.364 Ddopen •1 •h 3 + .3•hdo Ddopen = 0.114 Opening Strip hdl := h d o hdl = 1.12 k := 3 1 kda = 2.099 Leg a 1 a .1•h + .3•hdl hdb := htdo flab = 2.8 kdb := 1 kdb = 0.329 Leg b 1 db . 1 • h 3 db + . h := hd oo h = 0.208 Dwopen :_ .1 •h + . 3-11 . Dwopen = 0.063 Window Strip 1 h h := — o h = 0.64 kwa := 31 kwa = 4.583 Leg a I da 1 hwl + .3 hw1 hwb := lit hdb = 2.8 k := 1 k = 1.124 Leg b db . 3 " 1 1 1 kdoorlegs := kda + kdb Ddoorlegs : kwindlegs := kwa + kwb Dwindlegs :_ 1 kdoorlegs kw indlegs Dtot := Dwall — Ddopen + Ddoorlegs — Dwopen + Dwindlegs k := 1 1c1 = 0.689 Dtot 1 1 1 1 Shr_wall_06IBC_obp 10.xmcd OBP -10 C 1 1 SHEAR FORCE DISTRIBUTION ht := 23ft d:= 15.5.ft Panel 15' -6" FT PANEL W/ (2) OPEN' GS I hit .v.= 7-ft ht,.= 4ft := 3.5.ft•3 Openings d am = 2.5ft = 2.5ft Leg Dimensions 1 h := ht h = 1.484 D :_ .4•h 3 + .3•h D = 1.752 Entire Wall ,,,',, d r , ,�y a1L, r r wall • – h�ao hd = 0.452 _ .1.h 3 + .3•hdo Ddopen = 0.145 Opening Strip d I d o hdl = 2.8 A44.)— 31 kd = 0.329 Leg a a .1• hd l + .3•hdl 1 htdo ham,:= hdb = 2.8 k := 3 1 kdb = 0.329 Leg b .1 •h + .3•h := h oo h = 0.258 Dom.= .1 •h 3 + .3 .h„ Dwopen = 0.079 Window Strip I .- d oo h = 1.6 �k .= 3 1 kwa = 1.124 Leg a a .1•h + .3•h ,hUCp,•= — o hdb = 2.8 k:= 1 kwb = 1.124 Leg b 1 .1•h 3 + .3•h 1 254994g49v kda + kdb „ wArsai= t , 1 = kwa + kwb �WiAdJpgs✓ 1 1 "doorlegs kwindlegs 1 1 2K4,,:= Dwall – Ddopen + Ddoorlegs – Dwopen + Dwindlegs k2 := 1 k2 = 0.286 Dtot 1 Shear Distribution: West Wall Line: Kwest 2•k + 2•k2 Kwest = 1.952 1 k = 0.353 K end := Kend — K west 1 Condition B: (corner poured opp. direction) KwestB := 4•k2 1 k2 Kin, Kint = 0.25 KwestB 1 1 1 1 Shr_wall_06IBC_obp 10.xmcd OBP -10 'G,) 2 1 IN - PLANE SHEAR ht := 23.ft ht 12.5ft w 15.5•ft Panel Ht. and Width ' End West Wall Panel at First � := 3000•psi Conc. Strength Floor Opening clan := 1500•psf Allow. Soil Press. 1 DL 13•psf DLfl := 30•psf DL := .75 ' f ,, := 60ksi t := 6•in r.:= Oin Panel Thickness and Reveal Depth ' v := 0.129 Working Seismic Coefficient C7 := 150•pcf •(t + r ht := 7.ft lega := 6.25•ft k 4.583 1 w := 3.5ft•3 legb := 2.5•ft k := 1.124 ktotai := k + k Pier Check - If wall section is a pier, requirements of ACI 318 -05, 21.7.10 must be met. (2007 OSSC 1908.1) Both must ht Check := Check := if C legs <6, "Pier" , "Segment " lega g a PierCheck := if(Check > 2 ,Check "Segment ") IPierCheck = "Segment" 1 1 1 1 1 1 1 1 1 1 1 Shr wall_06IBC_obp 10.xmcd OBP -10 !(A) 3 Overturning Forces 1 1 Vroof = 12•k•Kend Vroof = 4.239k Vfloor := 14.8•k•Kend Vfloor = 5.228k 1 Vwall := ht•(w + 4ft)•C wing panel included I Panel Toad included in floor and roof lateral Vtot := Vroof + Vwall +Vfloor Vtot = 13.805 k 1 Mot := V + Vw.all' h + Vfloor'htflr 2 Mot = 212.7321k Resisting Forces 1 Proof := DLsei' 10 2 — w + DL 10 2 •w (Panels support small portion of floor and roof) Vwall 1 Pwall := v Pwall = 33.637 k Pslab:= 150' Pa•6•in•8• ft' ws 1 s (Proof + Pwall + Pslab Mres := (Proof + Pwall + Pslab)' 2 + 2 j Mres = 717.1851k 1 Required footing weight M — 0.9•Mres Wft := Wft = — 27.918 k w I Maximum Seismic Bearing Mot 1 Psei := 0.9w, Psei = 15.25 k ftg_size := Psei + Pwall ftg_size = 27.228 ft 1 gall — .15•ksf).1 .33 UPLIFT REIN 1 Uplift w w w 1 Muplift := Proof 2 + Pwall' 2 + P slab' 2 M 0.9M p Mot — u lift 1 Tftg T ftg = - 8.889k ( - number therefore no uplift. w — 0.5 lega 1 1 1 1 Shr_wall_061BC_obp 10.xmcd OBP -10 SW 4 1 Wall Shear - Leg a at Second Floor designed with corner poured monolithicly with West panel line. I ACI 318 -05, 11.3 leg := lega lega = 6.25 ft lit, = 7 ft PierCheck = "Segment" I Vu Vtot• 1 ka ktotai 1 I V, := lb ' in •2• j..8•1eg•t 4.V, = 29.577k > V = 15.521 k ADD'L SHEAR STEEL NOT REQ'd - Use min. steel A „ := .6.60•ksi•.8. w Vu – V • 12•in A = –0.031 in < A „ := 0.20•in Use min. shear steel I ACI 318 -05, 21.7.2.1 / 14.3.3 1 — 1 Vmin • – 1e V = 24.648 k > V = 15.521 k if �V < V 0.002 0.0025) g . t lb 5•in min = u = p u min> > I p = 0.002 Avsr := t•12• in. p A „ = 0.144in < A „ = 0.2 in #4 @ 16” oc minimum required 1 ACI 318 - 05, 21.7.2.2 1 Vreinf lb 5 •in 2 ws t V reinf = 122.252 k V = 15.521 k i Reinforcing := if V > V , a. Face” , "CL” Reinforcing retn "E F f � g = "CL" 1 V := A „s•.6.60•ksi•.8•ws 12•in 4)•V, = 66.96k I ACI 318 -05, 21.7.4.1 V := V + V V = 128.716 k I a := 3.0 if ht –< 1.5 ac = 3 — w 2.0 if ht 111 >_ 2.0 w 2 — ht ' 2 + 0.5 w s otherwise I p, Avs 12int := p = 0.0028 1 Vn.max t ws' ac'j' –5 •tn + Pt'fy Vn.max = 369 k 1 lb , V := Vn.max if Vn > Vt.( 1 V otherwise 4) • V„ = 96.537 k flag := if (4 • V > V "OK” , "NG! ! !" ) 1 V = 15.521 k flag = "OK" 1 Shr_wall_061BC_obp 10.xmcd OBP -10 5 L" 5 1 Panel Reinforcing Mleg := V,. ht o •0.5 Fixed -Fixed leg leg = 6.25 ft num := 2 #5 bars 1 Mleg 60 ksi2 num := 1 #4 bars A Mn .9 .85•f c •t•2 #of bars total in end leg ' x: = tin 2 B := 60•ksi•leg•.8 � C := Mn Asleg := 1 mot(A•x + B•x + C,x)I A, := 0.31 •in + 0.20in I M01.1.4 Asieg = 0.201 in2 A = 0.82 in 2 0.9. w T 1 Astension 60•ksi Astension = 0.356 in Astor Asleg' 2 + Astension Astor = 0.758 in < A = 0.82 in NUM ._ num NUM = 0.5 4 I ACI 318 - 05, 21.7.6 - Boundary Element Requirements Ig _ (leg 0.9) 4 12 I = 7.416ft 4 A leg•0.9•t A = 2.812ft 1 M := V ht M = 108.6461k 1 Proof-1.2 Pwall' 1.2 1.4M P :_ + + P„ = 43.531 k leg•0.9 2 2 0.9•w ma c: - 2 Estimated Neutral axis 1 ACI 318 -05, 21.7.6.3 I M P au := +— 6 0.394ksi I g Ag F := 0.2.f F = 0.6ksi 1 BasicCheck := if (F, > is u , "Okay" , "Detailed Analysis Req'd ") BasicCheck = "Okay" 1 1 1 1 1 1 1 Shr_wall_061BC_obp 10.xmcd OBP -10 ! (r) 6 1 IN - PLANE SHEAR h := 23.ft ht := 12.5ft w:= 15.5•ft Panel Ht. and Width ' End West Wall Panel at First Floor ,c= 3000•psi Conc. Strength Opening - Condition B ,:= 1500•psf Allow. Soil Press. ' with corner panel poured mono - with , 13•psf D := 30•psf DL N/S wall panels 1,,:_ .75 ' f m, 60ksi M ;= 6•in A Oin Panel Thickness and Reveal Depth v := 0.129 Working Seismic Coefficient £= 150•pcf •(t + r := 7-ft 1 ,:= 2.5•ft k .5 1 w .= 3.5ft•3 1eib := 2.5•ft k,:= .5 Z ,:= k + k 1 1 1 1 1 1 1 1 1 1 1 1 Shr wall_061BC_obp 10.xmcd OBP -10 v /�J 7 1 Overturning Forces 1 := 12 •k•Kint Vroof = 3 k ma 14.8•k•Kint Vfloor = 3.7k 1 V = ht•(w + 4ft)•C wing panel included I Panel Toad included in floor and roof lateral V roo f + V + Vtot = 11.039 k ht 1 = V + Vwall 2 + Vfloor'htflr Mot = 165.151 lk Resisting Forces 1 wf,„:= DLsei• 10 2 • w s + DL 10 2 •w (Panels support small portion of floor and roof) Vwall P V 1 Am P 33.637 k x,11: = V wall = 24 150•pcf•6• in. 8• ft. w 1 ms's ( Proof + Pwall + Pslab M me_ Proof + Pwall + Pslab)' 2 + I 2 jWs Mres = 717.185 Ik 1 Required footing weight M — afk Wft = — 30.988 k I w Maximum Seismic Bearing = Mot 1 Psei = 11 k 0.9w ftiz„e,:= Psei +' Pwall ftg_size = 25.328 ft 2 1 � 9all — .15.ksf).1.33 UPLIFT REIN 1 Uplift � w w w 1 „0„w i t,, Proof 2 + P wall' 2 + P s lab' 2 M 0.9M a Mot — u lift 1 Its,,:— T ftg = — 11.296k ( - number therefore no uplift. 9 w 1 1 1 1 Shr_wall_061BC_obp 10.xmcd OBP -10 411 8 1 Wall Shear - Leq a at Second Floor Condition B 1 ACI 318 -05, 11.3 lei:= lega lega = 2.5 ft ht. = 7 ft PierCheck = "Segment" 1 V = Vt.,• 1.4 ka ktotal I 1 := 2 .8 leg t 4).V. = 11.831 k > V„ = 7.727 k ADD'L SHEAR STEEL NOT lb ' in REQ'd - Use min. steel A Vu — Vc • 12. in A ° = —0.009 in 2 < A 0.20•in Use min. shear steel 1 '' �c" 6 60 ksi .8 ws = ACI 318 - 05, 21.7.2.1 / 14.3.3 1 V 1 \ F e leg•t lb ' in Vmin = 9.859k > V = 7.727 k= if (V,, < Vmin , 0.002, 0.0025) 1 p = 0.002 A t• 12•in•p Avsr = 0.144in < Avs = 0.2in #4 @ 16" oc minimum required I ACI 318 - 05, 21.7.2.2 X • —1 5 .2. ` - w t Vreinf = 122.252 k V = 7.727 k 1 1b •m ReinN = if (V > V "Ea. Face" , "CL ") Reinforcing = „CL" I A� V:_ 12•in 4)•V,= 66.96k I ACI 318 - 05, 21.7.4.1 V im : V C + V V. = 105.054 k ' := 3.0 if ht S 1.5 a = 3 wfv— ms's 1 2.0 if ht >— 2.0 ws 2 — ht ' 2 + 0.5 w s otherwise I := AVS p = 0.0028 12int Vp, := t ac . j . 1 + Pc Vn.max = 369k i lb ' ,r V p n = Vn.max if V. > Vnmax 1 V otherwise 4)•V = 78.791 k fly:= if (4) .V > V "OK" , "NG!!! ") 1 V = 7.727 k flag = "OK" 1 Shr_wall_061BC_obp 10.xmcd OBP -10 U" 9 Panel Reinforcing M V ht Fixed -Fixed leg leg = 2.5 ft n = 2 #5 bars 1 1 2 n um := 2 #4 bars Mleg 60 ksi ' .9 " .85•f •t•2 #of #5 bars, total in end leg I excluding std. reinforcing 2 13 60•ksi•leg•.8 ANA x = 1 • in C:= M A := Iroot(A•x + B•x + C, x)1 Ac .:= 0.31•in + 0.20in I T Mot 1.4 Asieg = 0.251 in2 A = 1.02 in 2 wLY 0.9• w T n 1 NO9P P R � = 60•ksi Astension = 0.276 in ,603,,,:= Asleg' 2 + Astension Astot = 0.777 in < A = 1.02 in 1 NUM num NUM = 0.5 t.Wy 'A 4 I ACI 318 -05, 21.7.6 - Boundary Element Requirements 3 1 �, := l 12 t I = 0.651 ft Ate= leg 0.9 t A = 1.125 ft ,:= Mi M„ = 27.0461k 1 Proof 1.2 Pwall• 1.2 1.4M P • + + P = 38.756k le •0.9 /04,./– 2 2 0.9•w u Nc�:= g Estimated Neutral axis 2 1 ACI 318 -05, 21.7.6.3 I M P :_ + — a = 0.564 ksi I A 1 F 0.2.f F = 0.6ksi Bast= if(F > a,,, "Okay" , "Detailed Analysis Req'd ") BasicCheck = "Okay" 1 1 1 1 1 1 1 Shr wall_061BC_obp 10.xmcd OBP -10 / t j 10 1 IN - PLANE SHEAR Analysis utilizes only one panel for conservative in -plane shear calculation. I South Wall Panel at Second Floor Opening 1 hht:= 23•ft ham:= 12.5ft w := 21•ft Panel Ht. and Width 1 f .= 3000•psi Conc. Strength ,:= 1500.psf Allow. Soil Press. 1 Dom= 13•psf D 17•psf DL t:= .75 I f 60ksi = 6•in r Oin Panel Thickness and Reveal Depth = 0.129 Working Seismic Coefficient ' = 150•pcf•(t +r„) M ht:= 7•ft la:= 4.5•ft 1 w .= 3.5ft 2F A:= := 13•ft I SHEAR FORCE DISTRIBUTION d := w Panel PANEL LEGS - Panel 1 d := w Opening d iega := lega dlegb := legb Leg dimensions I h : = d ht h r = 1.095 : _ .4.h r 3 + .3•h r D wall = 0.854 Entire Wall MIX ' h := hto h = 0.333 A 1:2 44 , ; , 99 ,:= .1 •ho + .3.ho Ddopen = 0.104 Door Opening Strip d := d hal = 1.556 k:= 31 k = 1.186 Leg a legs .1 •h + .3•hd I hto hdty:= d h = 0.538 k:= 3 • 1 k = 5.645 Leg b k:= k + k legb 1 h •db + .3•hdb I Pier Check - If wall section is a pier, requirements of ACI 318 -05, 21.7.10 must be met. (2007 OSSC 1908.1) Both must 1 ht heck := lega Chec ifr lega < 6, "Pier" , "Segment" 1 1 PierCheck if(Check > 2, Check "Segment ") PierCheck = "Segment" 1 11 1 Shr wall_061BC_obp 10.xmcd OBP -10 I,, 11 1 Overturning Forces ' := 32.8•k ' ,;= 19.2•k wt,:= ht•(w + 4ft)•C7.v 4 ft. wing panel included 1 Panel Toad included in floor and roof lateral V +Vwall +Vfloor Vtot = 57.563 k Vtot 2 Vroof + Vwall' 1 = Vroorht + Vwall'2 + Vfloor'htflr Mot = 1.058 x 10 Resisting Forces 1 Proofa DLsei. 15.5 2 • w + DL 15.5 — . w P roof := 12psf• 15.5 2 •(w + 5ft) ,P,,,,rgpty= Proofa + Proofb Proof = 7.301 k 1 P Vwall P 43.125 k (Panels support small portion of floor and roof) nn,�7tp1j,/ wall = v 1 Preturn 12psf•15.5ft•0.5.5ft return = 0.465k 150•pcf•6•in•8•ft•w ws Proof + Pwall + slab j• 1 ,M�6J= Proof + Pwall + Pslab)' 2 + 2 + Preturnws Mres = 1.333 x 10 Required footing weight Mot - 0 . 9 •Mres 1144.,:_. Wft = —6.743k w ' Maximum Seismic Bearing Mot P�= Psei = 55.999k ' 0.9w NVwv — Psei Pwall ftg_size = 55.207 ft (gall — .15•ksf 1.33 1 1 1 1 1 1 Shr_wall_061BC_obp 10.xmcd OBP -10 ' 12 11 Wall Shear - Leg a at Second Floor ACI 318 -05, 11.3 lei:= lega lega = 4.5 ft ht,, = 7 ft PierCheck = "Segment" II ka Vyt�= Vtot_ 1.4 kt otal ,:= 1 •2•�•.8•leg•t 4 •V, = 21.295 k > V„ = 8.65 k ADD'L SHEAR STEEL NOT lb ' in REQ'd A = V – .8 V . • 12. in A„ _ –0.021 in < A:= 0.20•in .6- 60ksiw ACI 318 - 05, 21.7.2.1 / 14.3.3 : = 1 •If lb .5 in Vmin = 17.746 k > V = 8.65 k := if (V„ < Vmin, 0.002,0.0025) p =0.002 A, t.12- in. p Avsr = 0.144 in < Ass = 0.2 in #4 @ 12 " oc minimum OKAY 1 ACI 318 - 05, 21.7.2.2 . – 2 w t Vreinf = 165.631 k V = 8.65 k lb m Reinf rcin := if (V,, > Vreinf, "Ea. Face" ,''CL" ) Reinforcing = "CL" ' A,, V :_ 12.in 4) -V = 90.72k I ACI 318 - 05, 21.7.4.1 V — V e + V S V = 149.354 k 'y := 3.0 if h <_ 1.5 ac = 3 w 1 2.0 ifh > -2.0 w 2.0 – ht w 2 + 0.5 s otherwise I Avs p = 0.0028 12in t �:= t ws' a c'j 1 + Pt'fy Vn.max = 500k i lb ' ;= Vn.max if VT, > Vn.max 1 V otherwise (I)•V = 112.015k fl,:= if(4 ).V > V,,, "OK" , "NG!!! ") 1 V„ = 8.65 k flag = "OK" 1 Shr wall_061BC_obp 10.xmcd OBP -10 �`� 13 1 Panel Reinforcing M,:= V Fixed -Fixed leg ' 2 le 4.5 ft num := 4 Avvvvvk • M Mleg A _ 60 ksi g ""'�' .9 ""' .85•f t•2 U 2 B:= 60•ksileg•.8 C:= M := Iroot(A•x + B•x+ C,x)I A„;= 0.2•in 0.31in I T ,ww— Me 1 . 4 A sieg = 0.156 in2 A = 2.04 in 2 0.9w 1 "" Tr, 2 194" _ 60•ksi Astension = 1.307 in A Asleg'2 + Astension Astot = 1.618 in < A = 2.04 in I ACI 318 -05, 21.7.6 - Boundary Element Requirements I _ leg 3 t 12 I = 3.797 ft A AA . = leg•0.9•t A = 2.025 ft ' M := V M = 60.5481k Proofa' 1.2• lega Pwall• 1.2.1ega 1.4Mot l g 0.9 Pte= + + P = 93.212 k c Estimated Neutral axis 1 lega + legb lega + legb 0.9.w 2 ACI 318 - 05, 21.7.6.3 I M c P _ + — a = 0.544ksi I A 1 F 0.2•f F = 0.61csi Bast= if (F, > a "Okay" , "Detailed Analysis Req'd ") BasicCheck = "Okay" 1 1 1 1 1 1 1 1 Shr_wall_061BC_obp 10.xmcd OBP -10 (A) 14 1 Wall Shear - Leg b at Second Floor 1 ACI 318 -05, 11.3 1= legb legb = 13 ft ht = 7 ft PierCheck = "Segment" ' kb ,Vy�,;= Vto t_2.1.4 • tt °total 1 V 1 • 2•J•.8.1eg•t cl)•V = 61.52k > V = 41.164k ADD'L SHEAR STEEL NOT lb ' REQ'd 1 A V„ — Vo .6.60•ksi•.8•ws 12 in A ° = — — 0.034 in < A := 0.20 in „ X" ^^^'� I ACI 318 - 05, 21.7.2.1 / 14.3.3 Vim:= 1 •�• leg- t . 5 in V V = 51.267 k > V = 41.164 k ,9,,i= if (V < V 0.002, 0.00251 1 lb p = 0.002 Mx := t• 12•in•p Avsr = 0.144in < Avs = 0.2in #4 @ 12" oc minimum OKAY 1 ACI 318 - 05, 21.7.2.2 ""akiofv lb 1 5 in • 2 Y " ws t V reinf = 165.631 k V = 41.164k It 'nN = if (V. > Vreinf,"Ea. Face" , "CL ") Reinforcing = "CL" 1 A„•.6.60•ksi•.8•ws V:_ • V = 90.72k 12-in I ACI 318 - 05, 21.7.4.1 H V . — V o + V s V = 202.987 k 1 ht a y 3.0 i _< 1.5 a = 3 w 1 ht 2.0 if _> 2.0 w 2.0 — ht w 2 + otherwise 0.5 1 Av ,�� = Pt = 0.0028 12in•t I n t• cc. T 1 + Pt'fy Vn.max = 500k lb 5 •in 1 iwRA' Vn.max if V > Vn.max V n otherwise 1 • 4 .V = 152.24k fla : = if(4•V > V "OK" , "NG!!! ") 1 Shr_wall_06IBC_obp 10.xmcd OBP -10 ‘A 15 1 V u = 41.164 k fla g = "OK" 1 Panel Reinforcing M .= V Fixed - Fixed leg M ie 60 ksi .85•f� t•2 leg = 13 ft nom:= 12 1 g .9 '- A ' - #of #5 bars, total in leg " 2 B := 60•ksi•leg•.8 excluding std. reinforcing I N= 1-in ^^^ := M A A /4 W; = Iroot(A•x + B•x + C, x)1 A := 0.2•in + 0.31in T� M ot 1 4 Asieg = 0.257 in A = 3.64 in 2 1 MM/' _ 0.9•ws T pp,; = 60 • ksi Astension = 1.307 in I 4g9,1,;= Asleg' 2 + Astension Astot = 1.82 in < A = 3.64 in I ACI 318 - 05, 21.7.6 - Boundary Element Requirements 3 — 12 leg t I = 91.542 ft A leg•0.9•t A = 5.85 ft 1 M V M = 288.151 Ik 1 Proofa' 1.2. legb Pwali• 1.2. legb 1.4M0t leg." P _ + + P u — — 121.193 k Estimated Neutral axis '' lega + legb lega + legb 0.9.w '�^= 2 I ACI 318 -05, 21.7.6.3 I M C P :_ + — A au = 0.272ksi I g g ,L:= 0.2.f F = 0.6 ksi 1 Ba icCheck := if (F > a "Okay" , "Detailed Analysis Req'd ") BasicCheck = "Okay" 1 1 1 1 1 1 1 Shr_wall_061BC_obp 10.xmcd OBP -10 16 1 SOUTH WALL: U SHEAR FORCE DISTRIBUTION AT FIRST FLOOR PANEL LEGS ' Panel 1 d := 21ft ht := ht Panel dam= 7ft h := 7ft Opening d 9ft d 5ft Leg dimensions I ht h = 0.595 D .4 h + .3•h Dwaii = 0.263 Entire Wall • ' ha h = 0.333 D = .1 •h + .3.ho Ddopen = 0.104 Door Opening Strip h := ht„ h = 0.778 = 1 = 3.567 Leg a diega 1 h + .3 hdl h := ht„ h = 1.4 = 1 = 1.44 Leg b ,�, ab ,�� fit, 9 dlegb 1 hdb + .3 hab 1 1 .,legs := L + kb Di '= k legs = D — Dd open + D legs k,L:= 1 k = 2.786 D tot 1 1 1 1111 1 1 1 1 1 Shr wall_061BC_obp 10.xmcd OBP -10 JJ 17 IN - PLANE SHEAR Analysis utilizes only one panel for conservative in -plane shear calculation. South Panel #1 at First Floor Opening ht:= 23.ft ht := 12.5ft w := 21-ft Panel Ht. and Width 1 f= 3000•psi Conc. Strength NW ,:= 1500•psf Allow. Soil Press. 13.psf DL= 17•psf DL _ .75 ' := 60ksi AnW t:= 6•in := Oin Panel Thickness and Reveal Depth v:= 0.129 Working Seismic Coefficient 1 £ 150•pcf•(t + r := 7•ft 1= 9•ft k= 3.567 t z a „ , = 3.5ft 1 := 5•ft &,:= 1.44 ,664)= k k Pier Check - If wall section is a pier, requirements of ACI 318 - 05, 21.7.10 must be met. ' (2007 OSSC 1908.1) Both must Ch ems:= le g h ck e := if (leg s < 6, "Pier" ,"Segment") ' PierCheck := if(Check > 2,Check "Segment" l PierCheck = "Segment" 1 1 1 nNw.vwwvwn \ / 1 Shr wall_06IBC_obp 10.xmcd OBP -10 18 1 Overturning Forces 1 V y = 32.8.k.1 1 N y e= 19.2•k•1 = ht•(w + 4ft).C 4 ft. wing panel included 1 Panel Toad included in floor and roof lateral V roof + Vwall +Vfloor V tot = 57.563 k 1 M�µy h t= Vroof ht + Vwall 2 + Vfloor'htflr. Mot = 1.058 x 10 Resisting Forces 1 2 ,: = DLsei' 15.5 ft • w + DL 15.5 ft • w 2 2 P := 12psf.15.5' .(w + 5ft) 1 2 � Proofa + Proofb Proof = 7.301 k 1 P - Vwall P 43.125 k (Panels support small portion of floor and roof) a vVtil . — wall = v i := 12psf• 15.5ft•0.5.5ft rem = 0.465k P 150•pcf•6.in•8• ft. w 1 W Proof + Pwall + "slab 1 � _ Proof + Pwall + Pslab)' -Is 2 + 2 + Pretum • ws Mres = 1.333 x 10 Required footing weight 1 M — 0.9•Mres Ay4/ := Wft = —6.743 k ms's I Maximum Seismic Bearing Mot Pk�i,. Psei = 55.999k 1 0.9w Psei + Pwall ftsi ftg_size = 55.207 ft kgall — .15.ksf).1.33 1 1 1 1 1 1 Shr_wall_061BC_obp 10.xmcd OBP -10 v/V" 19 1 Wall Shear - Le a at Second Flo Leg o d or I ACI 318-05, 11.3 lei:= lega lega = 9 ft ht = 7 ft PierCheck = "Segment" ' VV • = V ktotal iwfv— — 1 i 5 •2• J ..8.1eg•t •V = 42.591 k < V„ = 57.411 k SHEAR STEEL IS REQ'd lb •m 1 A = Vu — V ` • 12•in A — 0.025 in < A 0.20•in ACI 318 - 05, 21.7.2.1 / 14.3.3 1 1 leg•t V = 35.492 k < V = 57.411 k = if V < V 0.002 0.0025) lb 5•in min = u = �j u mm, 1 p = 0.0025 A,,:= t• 12•in•p Avsr = 0.18 in < Avs = 0.2 in #4 @ 12" oc minimum OKAY I ACI 318 -05, 21.7.2.2 y - , 2 w t 1 lb 5 Vreinf = 165.631 k V = 57.411 k •m Rein•= if (Vu > Vreinf, "Ea. Face" , "CL ") Reinforcing = "CL" I A„..6.60•ksi•.8•ws V : _ 12in (I) -V = 90.72k 1 ACI 318 - 05, 21.7.4.1 V .= V e + V s V = 177.748 k 1 ,:= 3.0 if h 1.5 ac = 3 ms's I 2.0 if h >— 2.0 ws 2.0 — ht II 2 + 0.5 w s otherwise I Ass 12int Pt = 0.0028 V ' t ' w s ' ( c '�' 1 + Pty Vn.max = 500k 1 lb 5 .in = Vi max if Vn > Vn.max 1 V otherwise C•V = 133.311 k fl a ;= if(4•V > V "OK" , "NG!!! ") 1 V„= 57.411k flag = "OK" 1 Shr_wall_06IBC_obp 10.xmcd OBP -10 / 20 1 Panel Reinforcing M - . - V„ ht 1 M .– Mleg A := 60•ksi2 leg = 9 ft _ """ .9 "' .85•f t•2 ' x := 1 in 2 B 60•ksi•leg•.8 AAA M CC= M A := Iroot(A•x + B•x + C,x)I 1 M A = 1.034 in 0.9. w 2 •A = 2.068in Minimum required distributed in leg 1 Tn ,4e := 60•ksi Astension = 1.307in Minimum required in wall return 1 • nn 9 steel distributed in leg As_dist := 0.2•in + 0.31in2.2.2 As_dist = 3.04in > 2•A = 2.068in As_ret 0.2 in 4 + 0.31 in 2 A jet = 1.42 in > Astension = 1.307 in 1 Steel Okay ACI 318 -05, 21.7.6 - Boundary Element Requirements 1 leg • t 4 2 := 12 I = 30.375 ft 4 leg•0.9•t A = 4.05 ft 1 M V M = 401.881k I Proof 1.2.1ega Pwaw 1.2•lega 1.4Mot leg.0.9 P •_ + + P = 117.298 k c :– Estimated Neutral axis ""` lega + legb legs + legb 0.9 w u ' – 2 I ACI 318 - 05, 21.7.6.3 M P a :_ + — a = 0.573ksi 1 I A F 0.2 f F = 0.6 ksi 1 Bash = if (F > a "Okay" , "Detailed Analysis Req'd ") BasicCheck = "Okay" 1 1 1 1 1 Shr_wall_06IBC_obp 10.xmcd OBP -10 /t/,/ 1 Wall Shear - Leg b at Second Floor 1 ACI 318 -05, 11.3 1eA:= legb legb = 5 ft ht, = 7 ft PierCheck = "Segment" 1 kb /4A:= Vtot• 1.4• k total 1 := 1 2 .8 leg t •V = 23.662 k > V„ = 23.177 k SHEAR STEEL NOT REQ'd mArvV ] 5 •in 1 A A .= Vu — Vc 12 in A, = —8.013 x 10 A in = 0.20 in .6- 60•ksi•.8•w ACI 318 -05, 21.7.2.1 / 14.3.3 1 V 1 im :- 1b 'S • in •117c•leg•t V min = 19.718k < V u = ,� �_ ( V u < 23.177k if V,,,„, 0.002, 0.00251 1 p = 0.0025 A t.12. in. p Avsr = 0.18 in < Avs = 0.2in #4 @ 12" oc minimum OKAY 1 ACI 318 - 05, 21.7.2.2 ""' "• 15 2 . C w t 1 lb •tn Vreinf = 165.631 k V = 23.177 k inf i,1 = if (V > Vreinf, "Ea. Face" ,"CL" ) Reinforcing = "CL" I A..6.60.ksi. .8•wAvw 12in 4 • V = 90.72 k 1 ACI 318 - 05, 21.7.4.1 V .= V + V V = 1 52.509 k ':= 3.0 if ht < 1 a = 3 w 1 2.0 if ht >_ 2.0 w ht I 2.0 — ws 2 + otherwise 0.5 I Avs 12in•t p = 0.0028 1 „,R,R .„-- t. ac 1 Pt'fy V„ = 500 lb ' I n V:= Vn.max if V > Vn.max V otherwise I (1)•V = 114.382k fl$ = if (0 V > V„, "OK" , "NG!!!") V = 23.177k flag = ' OK" 1 Shr_wail_061BC_obp 10.xmcd OBP -10 5) 22 1 Panel Reinforcing Mme= V Fixed -Fixed leg 1 2 le g = 5 ft num := 4 Mleg 60 ksi nnvv0A "" .9 ' .85•f •t•2 #of #5 bars, total in leg I e 2 13 60 ksi•leg•.8 excluding std. reinforcing M = 1•in N C N := M Ate:= Iroot(A•x + B•x + C,x)I ,c;= 0.2•in + 0.31in I , I , := Mot• 1.4 Asleg = 0.376 in2 A = 2.04 in 2 NAV 0.9•ws 1 T u _ 2 6 0•ksi Astension = 1.307 in 1 ,&;94.,;•= Asleg' 2 + Ascension Ascot = 2.058in 2 < A = 2.04 in ACI 318 - 05, 21.7.6 - Boundary Element Requirements 3 := 1 12 t I = 5.208 ft A leg•0.94 A = 2.25 ft 1 •= Ml M = 81.121k Proor 1.2•legb Pwall• 1.2.1egb 1.4M - 0 . 6 •Mres leg•0.9 P _ + + P - 58.462k c :- Neutral axis ' i, lega + legb lega + legb w - 0.5.1eg a '' 2 ACI 318 -05, 21.7.6.3 1 M P _ + — a = 0.424 ksi I A 1 F 0.2•f F 0.6ksi Bast= if (F > a "Okay" , "Detailed Analysis Req'd ") BasicCheck = "Okay" 1 1 1 1 1 1 1 1 Shr_wall_06IBC_obp 10.xmcd OBP -10 41 23 1 <L,-( A., . O te..1-- v P(-4-0 <TeA -PP t N g(_6 S o 0, 'F 6. .0)w 1 = o,5sy ( 6 - (e I lD , 5 ) ( 1 w <LV0-- (/(0,/s)( // /5') 1 6 PL( b _ ( � 1 (Noil (p " — !a PA-12A961 1 �, pL�_ _ ��ve�� \��N� 2x 1'{ @ IV pc, 00 ) /L'r 61 L e l-1- D' Or. 'ffr 1 A NCrio P eoP-( ,LOc-D 1 'zlP ® ft-oD- o— du t ri.)uK0t-S — . 7. ? 211 1 W' .. oe t 1// %0V . 2 ' a J►t�.►\P SAN A ti2 � Z- 1 1 -- - - - 2 ,_ w7 - 17=71 - 2.- - a 1; = le ZS (1, 33) = gZ°v I w f (v) `'b Vc-t 4 111*- - 1 o kN%L .-1 "F'e-P. i d FtOo2 i i, z-- l la r _ 12 (o W - ? G S 1 v g _ x i -& QE &!.--o 1 1 1 1 f212 p'i - 1'D 1))4 \-1 , - U�U2 - \L-;lc By 1 7....0- GRQuP Date 5 ' MACKENZIE1 'obN 7,030!'V I Portland, Oregon 1 Seattle, Washington 1 Vancouver, Washington Sht. / of www.groupmackenzie.com ©2009 GROUP M ACKENZIE. A LL RIGHTS RESERVED . .. 1 i r 1 1 1 1 1 Ews r 6 K PAt 6 L 1 ILVT, �NTG,,: /v.1i To 2x. A w/ t0 d.'.5 @ 6- o � L EY-c7 F� ►,^- wALL- , kl Z I LI @ f40" 0 L. , 1, .. i 7�ii��a��iimm■ :�rii ∎ i \I - - � i i� � i��fi �ii��'i= is i• I . 1. 1 0 s 9 e ��, o e 0 0 .I 1 1 ` � 1 _ 1 S 1µ 950 1)1T t. e lZgoc 'f1 PI vo c_3) '41- x I y. 5( mPsotv SP5 1 sc1 --u • u 5.r; 4 /2'0 51 ( &»4 TIT Et k 4p \t -uklo D_ 1 1 LJ 1\t)CA o( IKT 2_ ''' FtJDO( 1 1 By I 2 I I 1 GROUP Date j 7 i � �oba I MACKENZIE Portland, Oregon I Seattle, Washington I Vancouver, Washington Sht. 2 �D vD U,-1 of www.groupmackenzie.com ® 2009 G ROUP M ACKENZIE. A LL RIGHTS RESERVED 1 c 6 1 1 / �(��T. C��CrsG P/vv (� I � ti rvk 'r) GS 1S Cxr- -Q O ,EX,I-7T - Yo ie.re u,P0 L 1 •N i . 1 / r. . 1 7 r S ►M (; k4C _ �(I), fxrENp — III f02 GONG STS, P _ 2-.17 i. r-1,7)0(2-+ . C ' • ' • i I F ' ANCK.o(1- Po- c)ETA'G /\ . „ L , 3 "o_, : i mc,r, 2.x !LI e- 1 R .(_ 40cRoQ- - T-3.0 FLDop 1 By ty I G R Q U P Date 5't^' -0 -1 JVIACKENZIE -) J'5 I I Portland, Oregon I Seattle, Washington yob # Vancouver, Washington Sht. rJ `J of www.groupmackenzie.com ©2009 G ROUP MACKENZIE. ALL RIGHTS RESERVED _ - 1 c c 1 0 20 ft JJC -14 1 fey (;. ' ) &I (co) = 2 3(4 - (j (nw� -s-& Zµ Tlr&L) H►7 Cc' a� aL ��v� 1 cfr1( C -) • 3/� �U = Diz > oz 1 • y / 3q14 0- (y) 1 ` e- eL7 L > z,s'` 1 1 1 1 1 1 1 1 1 1 By �n pp 12i 1 GROUP Date MACKENZIE lob " 2-C7004 Portland, Oregon 1 Seattle, Washington 1 Vancouver, Washington Sht. / of www.groupmackenzie.com ©2009 G ROUP M ACKENZIE. ALL RIGHTS RESERVED Page 1 of 7 1 Anchor Calculations Anchor Designer for ACI 318 (Version 4.0) Job Name : o BP- 10 wAu.. AtuAk.ca-S Date/Time : 8/20/2009 4:22:30 PM ' 1) Input Calculation Method : ACI 318 Appendix D For Cracked Concrete ' Calculation Type : Design a) Layout Anchor : 1/2" Titen HD @ 3Z" Of... Number of Anchors : 1 1 Embedment Depth : 3.75 in Built -up Grout Pads : No 1 cx1 �x2 ' � Vuay c y2 C) Muy 1 • ANua by2 Mux b vuax ' x1 bx2 co 1 ' I ANCHOR 'Nue IS POSITIVE FOR TENSION AND NEGATIVE FOR COMPRESSION. + INDICATES CENTER OF THE ANCHOR 1 Anchor Layout Dimensions : ' c x1 : 48 in c : 48 in t c y1 : 36 in c y2 : 48 in ' bx1 : 2 in b 1 b : 2 in b b) Base Material about:blank 8/20/2009 Page2of7 1 Concrete : Normal weight f : 4000.0 psi Cracked Concrete : Yes `P V : 1.20 1 Condition : B tension and shear (1)F : 2210.0 psi Thickness, h : 6 in 1 Supplementary edge reinforcement : No c) Factored Loads ' Load factor source : ACI 318 Section 9.2 N : 2302 Ib V uax • 0 Ib ' V uay • 0 Ib Mux • 0 Ib *ft M uy O lb *ft ' e e • 0 in I Moderate /high seismic risk or intermediate /high design category : Yes Apply entire shear load at front row for breakout : No d) Anchor Parameters From C- SAS -2009: ' Anchor Model = THD50 d = 0.5 in Category = 1 h ef = 2.78 in h min = 5.833 in c = 4.1875 in c min =1.75 in S min =3in I Ductile = No 2) Tension Force on Each Individual Anchor I Anchor #1 Nua1 = 2302.00 Ib Sum of Anchor Tension EN = 2302.00 Ib ' a =0.00 in a =0.00 in I e' Nx = 0.00 in e' = 0.00 in 3) Shear Force on Each Individual Anchor Resultant shear forces in each anchor: I Anchor #1 V ua1 = 0.00 Ib ( = 0.00 Ib , Vuai = 0.00 Ib ) Sum of Anchor Shear EV uax = 0.00 Ib, EV = 0.00 Ib I e' vx = 0.00 in 1 about:blank 8/20/2009 1 Page 3 of 7 I e' vy = 0.00 in 4) Steel Strength of Anchor in Tension [Sec. D.5.1] I Nsa = nAsefuta [Eq. D -3] Number of anchors acting in tension, n = 1 I N = 20130 Ib (for a single anchor) [C -SAS -2009] 4) = 0.65 [D.4.4] ' 4Nsa = 13084.50 Ib (for a single anchor) , 5) Concrete Breakout Strength of Anchor in Tension [Sec. D.5.2] 1 N cb = A Nc /A Nco Ped,NuPc,Njcp,NNb [Eq. D - Number of influencing edges = 0 1 h =2.78 in ANco = 69.56 in [Eq. D -6] 1 ANc = 69.56 in Smallest edge distance, c a,min = 36.00 in = 1.0000 [Eq. D -10 or D-11] 1 ` Note: Cracking shall be controlled per D.5.2.6 1 P c,N = 1.0000 [Sec. D.5.2.6] ` f ' cp,N = 1.0000 [Eq. D -12 or D -13] 1 N = k J f ' c heft .5 = 4983.63 Ib [Eq. D -7] I k = 17 [Sec. D.5.2.6] N = 4983.63 Ib [Eq. D -4] I 4= 0.65 [D.4.4] 4)N = 3239.36 Ib (for a single anchor) I 6) Pullout Strength of Anchor in Tension [Sec. D.5.3] Pullout does not occur, and is therefore not applicable. I 7) Side Face Blowout of Anchor in Tension [Sec. D.5.4] Concrete side -face blowout strength is only calculated for headed anchors close to an edge, ' cal < 0.4h Not applicable in this case. 8) Steel Strength of Anchor in Shear [Sec D.6.1] 1 V = 4790.00 Ib (for a single anchor) [C- SAS -2009] 4 = 0.60 [D.4.4] 1 4 V = 2874.00 Ib (for a single anchor) 1 47 about:blank 8/20/2009 Page 4 of 7 I 9) Concrete Breakout Strength of Anchor in Shear [Sec D.6.2] Case 1: Anchor checked against total shear Toad 1 In x- direction... V cbx = Avcx/AvcoxTed,VPc,VVbx [Eq. D 1 cal = 32.00 in (adjusted for edges per D.6.2.4) ' vcx = 504.00 in 1 A vcox = 4608.00 in [Eq. D -23] P ed,V = 0.9250 [Eq. D -27 or D -28] c,v = 1.2000 [Sec. D.6.2.7] V bx = 7(le /do)0.2 .� dol f c(cal )1.5 [Eq. D -24] 1 =2.78 in V = 79864.35 Ib V cbx = 9696.03 Ib [Eq. D -22] I =0.70 V cbx = 6787.22 Ib (for a single anchor) I In y- direction... V cby = ' 'vcy/AvcoyTed,V`Pc,VVby [Eq. D - ] p I cal = 32.00 in (adjusted for edges per D.6.2.4) A vcy = 576.00 in A vcoy = 4608.00 in [Eq. D -23] `P ed,v = 1.0000 [Eq. D -27 or D -28] ` = 1.2000 [Sec. D.6.2.7] V = 7(l /d dc fc(ca1)1'5 [Eq. D - 24] I 1 e =2.78 in ' V = 79864.35 Ib V cby = 11979.65 Ib [Eq. D -21] I = 0.70 8385.76 Ib (for a single anchor) �V = I Case 2: This case does not apply to single anchor layout Case 3: Anchor checked for parallel to edge condition Check anchors at c edge I V cbx = Avcx/AvcoxlPed,VtPc,VVbx [Eq. D A about:blank 8/20/2009 Page 5 of 7 c = 32.00 in (adjusted for edges per D.6.2.4) A vcx = 504.00 in 1 A N/cox = 4608.00 in [Eq. D -23] ` = 1.0000 [Sec. D.6.2.1(c)] I P c,V = 1.2000 [Sec. D.6.2.7] Vbx = 7(1e/d0)(12 \/ do .N1 f c(ca1)1.5 [Eq. D -24] ' l = 2.78 in V = 79864.35 Ib V cbx = 10482.20 Ib [Eq. D -22] ' V cby = 2 * Vcbx [Sec. D.6.2.1(c)] V cby = 20964.39 lb ' = 0.70 Vcby = 14675.07 Ib (for a single anchor) I Check anchors at c edge V cby = ' 'vcy vcoyPed,V`Pc,VVby [Eq. D-21] ' c = 32.00 in (adjusted for edges per D.6.2.4) A vcy = 576.00 in ' ' vcoy = 4608.00 in [Eq. D -23] ` = 1.0000 [Sec. D.6.2.1(c)] I `t' c,V = 1.2000 [Sec. D.6.2.7] V = 7(1e /do)°.2 \/ d fc(ca1)1.5 [Eq. D -24] ' 1 =2.78 in ' V = 79864.35 Ib V cby = 11979.65 Ib [Eq. D -21] I V cbx = 2 * V cby [Sec. D.6.2.1 (C)] V cbx = 23959.31 lb I 4 = 0.70 V cbx = 16771.51 Ib (for a single anchor) I Check anchors at c edge V cbx = Avcx/AVcoxiPed,V [Eq. D -21 ] 1 c = 32.00 in (adjusted for edges per D.6.2.4) about:blank 8/20/2009 I Page 6 of 7 I A vcx = 504.00 in A vcox = 4608.00 in [Eq. D -23] 1 klj ed,V = 1.0000 [Eq. D -27 or D -28] [Sec. D.6.2.1(c)] ` = 1.2000 [Sec. D.6.2.7] 1 Vbx = 7(l /d d0- ■j pc(ca1)1.5 [Eq. D -24] 1 l =2.78 in V = 79864.35 Ib I V cbx = 10482.20 Ib [Eq. D -22] V cby = 2* Vcbx [Sec. D.6.2.1(c)] 1 V cby = 20964.39 Ib =0.70 I Vcby = 14675.07 Ib (for a single anchor) Check anchors at c y2 edge `Ped ,V`t'c,VVby [Eq. D-21] I V cby = A vcy /A vcoy c = 32.00 in (adjusted for edges per D.6.2.4) I A vcy = 576.00 in A vcoy = 4608.00 in [Eq. D -23] 1 ''ed,V = 1.0000 [Sec. D.6.2.1(c)] Y 'c,V = 1.2000 [Sec. D.6.2.7] 1 V = 70 e/d0,0.2 do fc(ca1)1.5 [Eq. D -24] 1 l =2.78 in V = 79864.35 Ib I V cby = 11979.65 Ib [Eq. D -21] V cbx = 2 * V cby [Sec. D.6.2.1(c)] I V cbx = 23959.31 lb = 0.70 I 4V cbx = 16771.51 Ib (for a single anchor) 10) Concrete Pryout Strength of Anchor in Shear [Sec. D.6.3] I V cp = kcpNcb [Eq. D -29] k = 2 [Sec. D.6.3.1] 1 N = 4983.63 Ib (from Section (5) of calculations) 1 MO about:blank 8/20/2009 1 Page7of7 1 V ep = 9967.27 Ib = 0.70 [D.4.4] 1 (IV = 6977.09 Ib (for a single anchor) 11) Check Demand /Capacity Ratios [Sec. D.7] I An additional 0.75 factor will be applied automatically to all design strengths related to concrete failure modes per Sec. D.3.3.3 of ACI 318 Appendix D. Tension 1 - Steel : 0.1759 - Breakout : 0.9475 I - Pullout : N/A - Sideface Blowout : N/A I Shear - Steel : 0.0000 - Breakout (case 1) : 0.0000 1 - Breakout (case 2) : N/A - Breakout (case 3) : 0.0000 I - Pryout : 0.0000 V.Max(0) <= 0.2 and T.Max(0.95) <= 1.0 [Sec D.7.1] Interaction check: PASS I Use 1/2" diameter Titen HD anchor(s) with 3.75 in. embedment BRITTLE FAILURE GOVERNS: Governing anchor failure mode is brittle failure. Per 2006 IBC I Section 1908.1.16, anchors shall be governed by a ductile steel element in structures assigned to Seismic Design Category C, D, E, or F. Alternatively the minimum design strength of the anchor(s) shall be at least 2.5 times the factored forces or the anchor attachment to the I structure shall undergo ductile yielding at a load level less than the design strength of the anchor(s). Designer must exercise own judgement to determine if this design is suitable. 1 1 1 1 1 1 1 1111 about:blank 8/20/2009 i r 1 c,,,.e-i --- \ cs "., . r1 1 — Nc'LO I2 -� "--t- ■ 1Ps , ao.ti es . . ..i g 1 ilitY 1 _. 1 �0 `) I-O % I i (-1P-1/ — Ia /q.� 7 G-21.01,0 1.04D, — 1 1 l ______1 ;1 :1 A' Art- .. i� ' I II 1 1 ,,H.. 1,, l I•! 1 ! 1 11••: I.;, • • 1 • 1 -. • 1 I O I CA:0 I By 0/ l 1 G R U P Date F���/ b1 Q ` ll I MACKENZIE' Job# / 1,0 1'70 1 Portland, Oregon 1 Seattle, Washington 1 Vancouver, Washington Sht. of www.groupmackenzie.com ©2009 G ROW MACKENZIE. ALL RIGHTS RESERVED I 6 .6., W • >1/ Am .i4,_ f1 t - - -- - - -- - - - - --- -- -- -- - �w /,5� /o). = /Sp : , . I P= - S w P 01 : /Z)(15) + I I y 25X 1 f i, _ 4t-'r 1 \to(l,$) - - -- -- - -= 10) p( : = r.�3� - - - -- — — — 1 � 30 ►\ � _ (2,') } 1110 (7 ,5 '5 1- 02-) - ;.(e‘ ((,s )C-1rs) , z,( k-- f . . , 14(. 3 0 6 r _ , 1 � . G 2 ( / ' S M � j`� v C.- c l i ZYtJ /1 1 f15 5 C o ' z : i l L. t o ..S(3�.v- I 112 ;9 1 I0s =t1;j,y)5 1.01 P 1 505.\ ' k ' iti) = 130 t 10(5) - 5a EA-C 11LL : 1.1:71(_ \' )U-a) -'- 111,(5.\1')0Z)C:I3 7-- 62,2 ti • ea-L. _ X35 +' 112(5. ► - 4)(1z -ICV3) - 119 1 M = (1,01.-s \ - 4 2 ( t (°)) - /,Z K-Q4" . . C>41 r 5c,) : ( 2r.q ( "t i,,, I ,- . 5 Cr )60 c 1- l -)z , 6,4 («c z-ll°l(1.:41 Pb) v 5 XI- (0L) 24 ■ 1 9t7'1 Cl i, (10x- 7_ 1 21 -S 1 1 ! b>50 l A N By Pe !"2 J I G R Q U P Date - b - - o ff 1 MACKENZ'IE1 Job# 2' =u7/ Portland, Oregon !Seattle, Washington 1 Vancouver, Washington Sht. (/ of www.groupmackenzie.com ©2009 GR OUP M AC KENZIE. ALL RIGHTS RESERVED I___ I t is r , ,. - - - - -TL -k J ) �N Eti i I 1 — i 2. 1 O - / 5 - q AStg 5 'rkvcA 60 et S ! k_e., . \ T, 2 - 5 ‘srr3 - !4, oke- Cr7ln:, c„nci ---0r) 1 $/y` V CJ fr--- vau - - 1T51 (s1 ancL Di) 1 6=— Co' .. • r n ccer er-E 15 - off. M ,AvX — ° 1I> \ . 1 - k 1 _1_ 0 _ i 1 �� r fgCP 5S. A,2 Kt THQ!4 god -iS W/ wk6gS D (Lk1 1 J - 1- QL S Q't •b(2._ ruci._ 56-kf--tly C 1 - -. 1 1 1 1 1 ni?) -l CA4OP By r Z • 1 GRQUP Date 8 -b l- - cycl 'MACKENZIE' Job# 205O 1 Portland, Oregon 1 Seattle, Washington 1 Vancouver, Washington Sht. C/3 of www.groupmackenzie.com ©2009 GROUP MACKENZIE. ALL RIGHTS RESERVED q" ± OIZ" 4 S' - y 1 0 1 i/ I I 1 I 114 C0V x I o I '1\117') �y CA P ( q � K l v 1 p p 4 1 5tt) o t= o Cox ►h,3 x �' o I i.\ \ Rt.,U,lo(6S E.Y6Qk.c) ) y (0, y. I R F -- -3,1 KL ©) 1 x i.t AE.)Ck o e.— 1. lo`'` L".-e.) 1 . 1 2 j 1 1 1 1 1 1 1 0/Y -ID By Pl. 1 GROUP Date B(i 10 a r ' MACKENZIE' Job# 7.13 °° I Portland, Oregon 1 Seattle, Washington 1 Vancouver, Washington Sht. CA' of www.groupmackenzie.com ©2009 G ROU. M ACKENZIE. A EI RIGHTS RESERVED I Page 1 of 7 I Anchor Calculations Anchor Designer for ACI 318 (Version 4.0) I Job Name : Canopy Connection Date/Time : 9/9/2009 11:02:50 AM I 1) Input Calculation Method : ACI 318 Appendix D For Cracked Concrete Calculation Type : Analysis 1 a) Layout Anchor : 1/2" Titen HD Number of Anchors : 1 1 Embedment Depth : 3.75 in Built -up Grout Pads : No 1 Vuay Cy c )m 1 RY2 y1 Vuax co 1 I 9 ANCHOR 'Nua IS POSITIVE FOR TENSION AND NEGATIVE FOR COMPRESSION. + INDICATES CENTER OF THE ANCHOR I Anchor Layout Dimensions : I c x1 : 9 in c x2 : 36 in I c y1 : 144 in c y2 • 144 in I bx1 : 2 in b I b ye : 2 in b :2 in I b) Base Material 1 CS about:blank 9/9/2009 Page 2 of 7 1 Concrete : Normal weight f • 4000.0 psi Cracked Concrete : Yes T e V : 1.20 1 Condition : B tension and shear 4)F : 2210.0 psi Thickness, h : 6 in I Supplementary edge reinforcement : No c) Factored Loads I Load factor source : ACI 318 Section 9.2 N : 0 Ib V uax • 0 Ib V uay : -2060 Ib Mux : 0 Ib *ft I M • 0 Ib *ft e : 0 in ' e • Moderate /high seismic risk or intermediate /high design category : Yes Apply entire shear Toad at front row for breakout : No I d) Anchor Parameters From C- SAS -2009: ' Anchor Model = THD50 d = 0.5 in Category = 1 h ef = 2.78 in h min = 5.833 in c = 4.1875 in c min = 1.75 in S min 3 in I Ductile = No 2) Tension Force on Each Individual Anchor I Anchor #1 Nuai = 0.00 Ib Sum of Anchor Tension EN = 0.00 Ib ' a =0.00 in a =0.00 in ' e' = 0.00 in e' = 0.00 in 1 3) Shear Force on Each Individual Anchor Resultant shear forces in each anchor: 1 Anchor #1 Vuai = 2060.00 Ib ( = 0.00 Ib , V uai y = -2060.00 Ib ) Sum of Anchor Shear EV uax = 0.00 Ib, EV = - 2060.00 Ib e' = 0.00 in about:blank 9/9/2009 1 Page 3 of 7 • e' = 0.00 in 4) Steel Strength of Anchor in Tension [Sec. D.5.1] Nsa = nAsefuta [Eq. D -3] Number of anchors acting in tension, n = 0 ' N = 20130 Ib (for a single anchor) [C- SAS -2009] = 0.65 [D.4.4] Nsa = 13084.50 Ib (for a single anchor) 5) Concrete Breakout Strength of Anchor in Tension [Sec. D.5.2] N cb = ANc /ANcoWed,Njc,Njcp,NNb [Eq. D - Number of influencing edges = 0 ' hef =2.78 in A Nco = 69.56 in [Eq. D -6] ' A = 69.56 in Smallest edge distance, c a,min = 9.00 in 1 g 'ed,N = 1.0000 [Eq. D -10 or D -11] Note: Cracking shall be controlled per D.5.2.6 P c,N = 1.0000 [Sec. D.5.2.6] `t' cp,N = 1.0000 [Eq. D -12 or D -13] N = k '/ f ' o heft .5 = 4983.63 Ib [Eq. D -7] k = 17 [Sec. D.5.2.6] I N eb = 4983.63 Ib [Eq. D-4] I = 0.65 [D.4.4] (INeb = 3239.36 Ib (for a single anchor) I 6) Pullout Strength of Anchor in Tension [Sec. D.5.3] Pullout does not occur, and is therefore not applicable. I 7) Side Face Blowout of Anchor in Tension [Sec. D.5.4] Concrete side -face blowout strength is only calculated for headed anchors close to an edge, Cal < 0.4h Not applicable in this case. 8) Steel Strength of Anchor in Shear [Sec D.6.1] 1 V = 4790.00 Ib (for a single anchor) [C- SAS -2009] = 0.60 [D.4.4] 1 4 V = 2874.00 Ib (for a single anchor) 1 ct about:blank 9/9/2009 Page 4 of 7 9) Concrete Breakout Strength of Anchor in Shear [Sec D.6.2] Case 1: Anchor checked against total shear load In x- direction... V cbx = Avcx /AvcoxP'ed,Vk'c,VVbx [Eq. D I d al = 36.00 in A vcx = 648.00 in ' A vcox = 5832.00 in [Eq. D -23] `t' ed,V = 1.0000 [Eq. D -27 or D -28] I T c,V = 1.2000 [Sec. D.6.2.7] ' Vbx = 7(le /do)0.2.\f d J fc(ca1)1.5 [Eq. D -24] 1 =2.78 in V = 95297.55 Ib V cbx = 12706.34 Ib [Eq. D -22] I = 0.70 V cbx = 8894.44 Ib (for a single anchor) I In y- direction... V cby = Avcy/Avcoy`t'ed,V`t'c,VVby [Eq. D c = 24.00 in (adjusted for edges per D.6.2.4) A vcy = 270.00 in 1 A vcoy = 2592.00 in [Eq. D -23] `t' ed,V = 0.7750 [Eq. D -27 or D -28] 1 ` = 1.2000 [Sec. D.6.2.7] V = 7(le /do)o.2 .\/ do 4 fc(ca1)1.5 [Eq. D -24] I 1 e =2.78 in V by = 51873.42 Ib ' V cby = 5025.24 Ib [Eq. D-21] ' 4 = 0.70 (I)Vcby = 3517.67 Ib (for a single anchor) I Case 2: This case does not apply to single anchor layout Case 3: Anchor checked for parallel to edge condition Check anchors at c edge I V cbx = Avcx /AvcoxPed,VPc,VVbx [Eq. D CO about:blank 9/9/2009 Page 5 of 7 I c at = 9.00 in A vcx = 162.00 in A vcox = 364.50 in [Eq. D -23] Y' ed,V = 1.0000 [Sec. D.6.2.1(c)] ' 'c,v = 1.2000 [Sec. D.6.2.7] V = 7(1 /d do f c(cat )1.5 [Eq. D -24] ' 1 = 2.78 in V = 11912.19 Ib V cbx = 6353.17 Ib [Eq. D -22] ' V cby 2 * Vcbx [Sec. D.6.2.1(c)] V cby = 12706.34 Ib I = 0.70 Vcby = 8894.44 Ib (for a single anchor) Check anchors at c edge V cby = ' vcy p vcoykijed,V`t'c [Eq. D -21] c = 24.00 in (adjusted for edges per D.6.2.4) Pv = 270.00 in ' A vcoy = 2592.00 in [Eq. D -23] T ed,v = 1.0000 [Sec. D.6.2.1(c)] I v = 1.2000 [Sec. D.6.2.7] V = 7(1e /do)02 _ Y ! d fc(cat )1.5 [Eq. D -24] l = 2.78 in ' V = 51873.42 Ib V cby = 6484.18 Ib [Eq. D -21] ' V cbx = 2 * V [Sec. D.6.2.1(c)] V cbx = 12968.35 Ib ' 4 = 0.70 Vcbx = 9077.85 Ib (for a single anchor) 1 Check anchors at c edge V cbx = Avcx/Avcoxk'ed,Vg'c,VVbx [Eq. D-21] C = 36.00 in about:blank 9/9/2009 1 Page 6 of 7 ' vcx = 648.00 in Arcox = 5832.00 in [Eq. D -23] 'ed,V = 1.0000 [Eq. D -27 or D -28] [Sec. D.6.2.1(c)] ` = 1.2000 [Sec. D.6.2.7] Vbx = 7(l /d d0 f c(ca1)1.5 [Eq. D -24] ' l = 2.78 in V bx = 95297.55 Ib V cbx = 12706.34 Ib [Eq. D -22] V cby = 2 * Vcbx [Sec. D.6.2.1(c)] ' V cby = 25412.68 Ib =0.70 I 4Vcby = 17788.88 Ib (for a single anchor) Check anchors at c edge V cby = ' vcy/AvcoytPed,VPc,VVby [Eq. D-21] c = 24.00 in (adjusted for edges per D.6.2.4) A vcy = 270.00 in ' vbby = 2592.00 in [Eq. D -23] 'ed,V = 1.0000 [Sec. D.6.2.1(c)] = 1.2000 [Sec. D.6.2.7] V = 7(I /d d ,1 fc(cai )1.5 [Eq. D -24] 1 =2.78 in V by = 51873.42 Ib • V cby = 6484.18 Ib [Eq. D-21] V cbx = 2 * V cby [Sec. D.6.2.1(c)] ' V cbx = 12968.35 lb = 0.70 I 4 V cbx = 9077.85 Ib (for a single anchor) 10) Concrete Pryout Strength of Anchor in Shear [Sec. D.6.3] ' V = kcpNcb [Eq. D -29] k = 2 [Sec. D.6.3.1] N cb = 4983.63 Ib (from Section (5) of calculations) Cco I about:blank 9/9/2009 ' Page 7 of 7 1 V eP = 9967.27 lb = 0.70 [D.4.4] W = 6977.09 lb (for a single anchor) 11) Check Demand /Capacity Ratios [Sec. D.7] I An additional 0.75 factor will be applied automatically to all design strengths related to concrete failure modes per Sec. D.3.3.3 of ACI 318 Appendix D. Tension I - Steel : 0.0000 - Breakout : 0.0000 I - Pullout : N/A - Sideface Blowout : N/A I Shear - Steel : 0.7168 - Breakout (case 1) : 0.7808 1 - Breakout (case 2) : N/A - Breakout (case 3) : 0.3088 I - Pryout : 0.3937 T.Max(0) <= 0.2 and V.Max(0.78) <= 1.0 [Sec D.7.2] Interaction check: PASS I Use 1/2" diameter Titen HD anchor(s) with 3.75 in. embedment BRITTLE FAILURE GOVERNS: Governing anchor failure mode is brittle failure. Per 2006 IBC I Section 1908.1.16, anchors shall be governed by a ductile steel element in structures assigned to Seismic Design Category C, D, E, or F. Alternatively the minimum design strength of the anchor(s) shall be at least 2.5 times the factored forces or the anchor attachment to the I structure shall undergo ductile yielding at a Toad level Tess than the design strength of the anchor(s). Designer must exercise own judgement to determine if this design is suitable. 1 1 1 1 1 1 about:blank 9/9/2009 September 18, 2009 Sun Shades Group Mackenzie Project Number 2080421.00 ' The rovided calculations are for the analysis p y and connections of the exterior aluminum channels and ' the interior aluminum tubes that are used a sun shades for the existing building. The aluminum members, connections and thermal deflections are designed for combinations of dead, ' snow, ice, temperature and wind forces using: 1) The 2006 Edition of the International Building Code, 2) For wind, the 1997 Edition of the Uniform Building Code, 3) 25 PSF snow, 4) An 85 MPH, Exposure B wind and ' 5) Ice as defined in "Atmospheric Icing ", Chapter 10, Minimum Design Loads for Buildings and Other Structures in ASCE /SEI 7 -05 ' The following stamp and signature pertain to calculation sheets 1 Of 4 through 4 of 4, respectively. 1 Iftta ty- ' Xt ‘- 11 1 1 1 1 1 1 2080421.00 511 of 4 1 L f: L �aT S-SZ - 1'1 31 - ?A,x to x2`1-,, • 1 =. • Cl0) 2(.120(' -3,51 .1„t(r 2,.i,4aci 2,' -i 11.0 • 1L \L I f% ; , 115(1V)( , L ) bti7 i- Ll,. C\C2.3).5)( tr31ts) 3t='is? _ ,'L.su I \. , -6\ot3ts T = c0 t- ZCr12- ( r 31 '1 3 4.- 0 (, -lo'/-5) 2.-( u`k (i`6-I c-1 1 ft% 1L 1 r '" - -- , 1n\ S k = 1 : - ‘ '5.`11-‘A - ' - ' r ? S 1t- S" Qi v, s = 11.LD'S (t °111.) (16( 6 (I'S\ 1,000 c�,r1,`►S � - HIr 3$ 6.r-Si 1 ,1y1-o z;� wc. = t,\t PLP Mp = l' n ("2 (I. = . • 63\ \ K 1tv0 1 S,N10) IS '\ (1CPr \6 s)L,\IS) = - 1_, o'-‘ lc\ \ 1 Ic.\E- D 12 L, 'Ca ' 2 C Ti J-1. (Kiz) 35 1 - ` -I5 ,t 1. tiL�:.1)L�;�1E 3v C = i,t = i 1<1 KL\( 3 = \) 7 . \, %1 1 i : Sc (11 ,,., u Lx\,c 1_\_ v 1 (1.F I 1 rr\,, !\-(\i4l`L4l.,I (\ S- _ ..k,1\1___::- )4„ SK = 1rci-tsS - I, �� L 1 . = 1\-A, 3'6 3 6 \ =s ue I l_b = c l `"c = t-vs I 1'1 1 ? 5,, = 1 ‘ t `6 =r r 7.. 7T'- o t oil ( 3'�zx10 w `tir- ,,' 1 I USG R C I ,z5 ee & , Fv (.,, By t) u 1 GROUP Date Il$10 G 1 MACKENZIE' J o b # 20E)0-1- \0 o I Portland, Oregon 1 Seattle, Washington 1 Vancouver, Washington Sht. SS Z L i e www.groupmackenzie.com ®2009 G ROUP M ACKEN ZIE. Q LL RIGHTS RESERVED 1LVr1,rvM (r)" X L' x 'lb" Tvi e ' (ICI 1 , c i 3 5 -i n1 .1: r 215 t ' 4 . . .11 = I , .-t 32.0 k i.1 `i vJ= Z.23i PLF SY= 2. 1,,1 Si" "32u 1x 1 .5 1\ 1- p s-c S ° / !. �, - T I = iS,1151 (51 `- iS.) - '4- 1,'-'\3 (coS `. - yuYz S I 1 ,`62 5 �t -, 1,11(1,1 t rJ 3 I ii ,- T T = X11'35 1 S _ 1 W 1 r D . ()U'ZS Co (`6 S I (.') to) (1, t) = 1'.. , toc� P F — V\ u,,N1 = 1 .6`5 v >(4u,oct.)1(1,51 = , 3° 1 u�o - 3.6 -Ls� ,1 = ! Lo tit 1 MtirN 2-21`1 ("P' "D = ,V-1 4" a = putt 5 t Q r U = 1— / L-1rt 2 vUUU 1 M•tluvs 'LS (5'`--='3=-4) ("-'t LY ►•S) - � r.�� 1 4 s = , 3c�5S t- Li Sty I ucxs Mo s!ti = Cp.'611) K" fb = 3,ci Co 'Ili (4- - .C. D: rSco3 = t—/`-1`.1 ' V � "\ W ^ r 11.1 y...' / E 3) ,'-{ C00(o3 - S V ` I G,$) ASS Jv rcouts - i Nt vt-etrJ vM F : 1 c, D 1 s 1 '.4.2X li b ,4% VA , \,.N,Sc. _ 15(1. -116.11 T '1:61 3 1 ? S 1= 13 E S� to 5 11� . S � i S r S � I . ''`��'L 3 •`i t "' M1 4. �' <<6 P -_c�, ' t'�C' °1\ ' l 1LBt , — - ssT go tT _ :. °- ' '� =/ -X11 d 1 * L� I3 caL-v, , . 1 _ i 1. I. �, J5 O \ 1LSL CZ, yR5,1r -NP s�.� CST ` >7 1 1 I l - `! ' et- 4c QDED 3nzx /16- X c,"LurJS BY l k ! t F^ ,` 1 GRQUP Date ( t21)CI MACKENZIE' 'ob# 2.c�� °�1'�c I Portland, Oregon Seattle, Washington Vancouver, Washington Sht. 55 3 of t www.groupmackenzie.com ©2009 GROUP MACKENZIE. ALL RIGHTS RESERVED 1 « I • S Ts (01...k 5,o\-1? PII- 1 Tb = 1, 1"l..b 1L„0 = 3117 33" S iso ► 1 1 1 MD _ A E'l 1 iE 3- \ 1 .c)- Toni (1c - :Y � _ 1 '1>S •3oi5 (( 1UO�(`i. S3 _ lLo.1%" S‘'C: ' t ,a - , x (45 (•L-\\-Acct.)) - , 1i�6L" \�S 7,,C ,, C ,, l E1 \S ��t � C C' ___1,—K...„-- ts I 1 ? MPLR \JRlr P�FL1:c-- 71ursS t 5�t" -STM -- -- �-��K TIE ter LTFr ENO 3o1--Ts L.LT ruC. l=rt- OL F1 Ec-f S Lc, rre-b 1 p,sS�Mi. Su SL i�rJS Ts Ana -�rz& 1-k) LE 3f is 1 ., s 2-> AT - 10° E C. L x\ , - l(I}o)L ol1 - T- .�1," 3 (oo ti -� 1 L3x1-x =ilct o A C-S X 0- L )(0 7 J+)olC1 = l`il = , 1ST' C. 1 1 1 By W r 1 GROUP Date 1 lZ ' MACKENZIE' Job# Zp %ok-tZt.00 1 Portland, Oregon 1 Seattle, Washington 1 Vancouver, Washington Sht. S joi of www.groupmackenzie.com 02009 GROUP M ACKENZIE. A LL RIGHTS RESERVED