Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Specifications
I i AA,TL ci0 -I r-7, Ike, al, /9 Structural Calculations for Full Lateral & Gravity Analysis of Plan A 1460 REC;E/ SEP 2 3 2010 Summer Creek Townhomes CITY OFTIGARD Tigard, OR BUILDING DIVISION Prepared for Pulte Group July 13, 2010 JOB NUMBER: CEN -090 ** *Limitations * ** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and /or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 117 sheets total including this cover sheet. This Packet of Calculations is Null and Void if Signature above is not Original Harper '- Houf Peterson Righellis Inc. Ro Ro l4RJOCAG�•ARC��1 T[CTO.♦0 VR'il Y " U R O 205 SE Spokane St. Suite 200 a Portland, OR 97202 a [P] 503.221.1131 a [F] 503.221.1171 1104 Main St. Suite 100 o Vancouver, WA 98660 e [P] 360.450.1 141 e [F] 360.750.1 1 41 1 133 NW Wall St. Suite 201 a Bend, OR 97701 e [P] 541.318.1161 • [F] 541.318.1 141 Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit A Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, lW: 1 2006 IBC / 2007 OSSC Occupancy Category: II Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed, ASCE.7 -05 Ch. 20 Importance, IE: 1 ASCE 7 -05 Table 11.5-1 Ss: 0.942 USGS Spectral Response Map Sl: 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength, f' c: 3000 psi Foundations & Slab on Grade Concrete Unit Weight, yc: 145 pcf Steel Reinforcement Yield Strength, f 60,000 psi Wood Studs (Wall Studs): Hem -Fir #2 2x & 4x Wood Beams & Posts: DF -L #2 6x & Greater Wood Beams & Posts: DF -L# 1 Glulam Beams: 24F -V4 PSL Beams: Fb =2,900 psi, FV= 328psi, E =2.0 Million TS /LSL Beams: Fb =2325 psi, FV= 460psi, E =1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : .1500 psf Assumed 2. All manufactured trusses, joists, and flush beams u.n.o. shall be designed by others. Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 WoodWorks — Sizer version 2002 Bently RAM Advanse Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP '• Houf Peterson. C lient: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS. MANNERS - Designer: AMC Date: Pg. # LANDSCAPE ARCM TEC f 9• 9URVE ',ORS DESIGN CRITERIA 2007 Oregon Structural Specialty Code & ASCE 7 -05 Roof Dead Load RFR:= 2.5•psf Framing • RPL := 1.5•psf Plywood • RRF := 5 •psf Roofing RME := 1.5•psf Mech & Elec RMS := 1 •psf Misc RCG := 2.5.psf Ceiling RIN := 1 •psf Insulation RDL = 15.psf Floor Dead Load FFR := 3•psf Framing FPL := 4•psf Sheathing FME := 1.5•psf Mech & Elec • FMS := 1.5•psf Misc FIN := .5•psf Finish & Insulation FCLG := 2.5•psf Ceiling FDL = 13•psf Wall Dead Load WOOD EX Wall := 12•psf INT_Wall := 10•psf Roof Live Load ALL := 25•psf Floor Live Load FLL := 40•psf / - L1 Harper Project: SUMMERCREEK TOWNHOMES UNIT A H P Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS. PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCHITECT6•6URVEYOR6 Transverse Seismic Forces Site Class = D Design Catagory = D Building Occupancy Category: II Weight of Structure In Transverse Direction Roof Weight Roof Area := 843•ft RF yr := RDL -Roof Area RFw1- = 14162-lb Floor Weight Floor Area2nd := 64741 FLRwund := FDL -Floor Area2nd FLRW1'2nd = 8411•1b Floor_Area3 65241 FLRWT3rd FDL•Floor Area3rd FLRWT3rd = 8476.1b Wall Weight EX Wall Area = (2203)•$ INT Wall_Area: (906).ft WALLw-1- := EX_Wall EX_Wall_Area + 1NT Wall WALLw-r = 35496.1b WTTOTAL = 66545 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h := 32 Mean Height Of Roof I := 1 Component Importance Factor (11.5, ASCE 7 -05) ,:= 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C := .02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x := .75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period T := C T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. . (Chapter 22, ASCE 7- 05)...or S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F := 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F,,, := 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7-05) -.. Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP t. Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCHITECTS• SURVEYORS SMS Fa SMS = 1.058 (EQU 11.4 -1, ASCE 7 -05) S :— 2 3 Sd = 0.705 (EQU 11.4 -3, ASCE 7 -05) SM1 Fv SM1 = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2 •SMl Shc := 3 Shc = 0.389 (EQU 11.4 -4, ASCE 7 -05) Cst := Sds Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) R ...need not exceed... Cs := Shc'Ie Cs = 0.223 (Q ) (EQU 12.8 -3, ASCE 7 -OS T ...and shall not be less then... C1 := if(0.044•Sd < 0.01, 0.01,0.044• Sd l ( 0.5 • S 1.1 '\ (EQU 12.8 -5 &6, ASCE 7 -05) C2:= if l S1 <0.6,0.01, R J Csmi := if (C 1 > C2 , CI , C2) Cs = 0.031 Cs := if (Cst < Cs < Csmax, Cst, Cs ,,)) Cs = 0.108 := Cs-WTTOTAL V = 72201b (EQU 12.8 -1, ASCE 7 -05) E := V•0.7 E = 50541b (Allowable Stress) \:3 Harper Project: SUMMERCREEK TOWNHOMES UNIT A P: Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. - ~_ ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCNITECTSAS VR,EYORS Transverse Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 100 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I := 1.00 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X := 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... a2 := 2..1.20.ft Zone A & B Horizontal Length a2 — 4 ft (Fig 6 -2 note 10, ASCE 7 -05) or 2 = .4•hn•2•ft a2 = 25.6 ft but not less than... a2 := 3 2 ft a = 6 ft Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA 19.9•psf PnetzoneB 3.2•psf Pnetzonec 14.4.psf PnetzoneD 3.3•psf Vertical PnetzoneE —8.8•psf PnetzoneF —12•psf PnetzoneG :_ — 6.4-psf PnetzoneH = — 9.7•psf • Basic Wind Force PA := PnetzoneA'Iw'X PA = 19.9•psf Wall HWC Pg := PnetzoneB'Iw'X PH = 3.2 -psf Roof HWC PC := PnetzoneC'Iw'X Pc = 14.4•psf Wall Typical PD := PnetzoneD'Iw'X PD = 3.3•psf Roof Typical PE := PnetzoneE'Iw'X PE = — 8.8 - psf PF := PnetzoneF' Iw'X PF = — 12• PG := PnetzoneG'Iw'X PG = — 6.4•psf PH := PnetzoneH'Iw'X PH = — 9.7•psf L`- Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. _ -- ENGINEERS • PLANNERS --'� Designer: AMC Date: Pg. # LANDSCAPE ?NCH , ECTS•SURVEVORS Determine Wind Sail In Transverse Direction WSAILZoneA (41 + 59 + 29) 8 WSAILZoneB (1 �ft 9 + 0 + 23) WSAILZoneC := (391 + 307 + 272)•ft WSAILZoneD (0 ± 0 + 5).ft WA := WSAILZoneA•PA WA = 25671b WB := WSAILZoneB•PB WB = 1341b WC WSAILZoneC'PC WC = 139681b WD WSAILZoneD•PD WD = 161b Wind_Force := WA + WB + WC + WD Wind_Force := 10•psf•(WSAILZ + WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind_Force = 166861b Wind_Force = 114601b WSAft-ZoneE 94•ft2 WSAILZoneF := 108•ft WSAILZoneG 320•ft2 WSAII- ZoneH := 320 f WE := WSAILZoneE•PE WE = —827 lb WF := WSAILZoneF•PF WF = — 12961b WG := WSAILZoneGPG WG = — 20481b WH := WSAILZoneH•PH WH = — 31041b Upliftnet WF + WH + (WE + WG) + RDLIWSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneG)1•.6.1.12 Uplif net = 12121b (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION LS Harper Project: SUMMERCREEK TOWNHOMES UNIT A P:• Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # �AN05CAPE ARCNITEC SS•SIIRVEVORS Longitudinal Seismic Forces Site Class = D Design Catagory = D Building Occupancy Category: II Weight of Structure In Longitudinal Direction Roof Weight Roof Area = 944 ft au,:= RDL•Roof Area RFwT = 14162.1b Floor Weight Floor_Area2 = 647 ft = FDL•Floor Area2nd FLRWT2nd = 8411.1b Floor Area3rd = 652 ft Fj ;= FDL-Floor_Area3 FLRWT3rd = 8476•1b Wall Weight E.c.W.411.AteA;= (2203).ft INT Wall Area = 906 ft nJwwaman= EX Wall + INT Wa11 WALLw -r = 354961b WTTOTAL = 66545 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h = 32 Mean Height Of Roof l = 1 Component Importance Factor (11.5, ASCE 7 -05) ,,:= 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C = 0.02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x = 0.75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period ^ T a ,:= C T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 = 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S = 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F = 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F, = 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) 4- Ulm Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP :• Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. - -- ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCRI TECTS•SURVE YORS S A := F SMS = 1.058 (EQU 11.4 -1, ASCE 7 -05) 2 •SMS Ntsv:= Sd = 0.705 (EQU 11.4 -3, ASCE 7 -05) = F. Si SM1 = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2 •SM1 = Sdi = 0.389 (EQU 11.4 -4, ASCE 7 -05) 3 := Sds Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) R ...need not exceed... � Sdl Ie Cs 0.223 (EQU 12.8 -3, ASCE 7 -05) – Ta max ...and shall not be less then... Cam:= if(0.044•Sd < 0.01,0.01,0.044•Sd 0.5 S1 -le) (EQU 12.8 -5 &6, ASCE 7 -05) := if <0.6,0.01, R := if(Ci > C2,C1,C2) Cs = 0.031 C := if (Cst < Cs Cs if (Cst < Csmax , Cst, Csmax)) Cs = 0.108 V := Cs. WTTOTAL V = 72201b (EQU 12.8 -1, ASCE 7 -05) E_ V•0.7 E = 50541b (Allowable Stress) / L`) Harper Project: SUMMERCREEK TOWNHOMES UNIT A 1 s ' Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE APCNITEC TS• SUR,EYORS Longitudinal Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 110 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I = 1.0 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X = 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... = 2•.1.20•ft Zone A & B Horizontal Length = ft (Fig 6 -2 note 10, ASCE 7 -05) or = .4•h 2 -ft a2 = 25.6 ft but not less than... S 3.2.ft 6 ft a = Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA = 19.9.psf PnetLoneB = 3.2.psf PnetzoneC = 14.4•psf PnetzoneD = 3.3•psf Vertical PnetzoneE = —8.8.psf PnetzoneF = — 12 -psf PnetzoneG = —6.4.psf PnetzoneH = —9.7•psf Basic Wind Force P PnetzoneA'I ,.X PA = 19.9•psf Wall HWC Pte:= PnetzoneB'Iw•X PB = 3.2•psf RoofHWC Pte:= PnetzoneC' ivy X PC = 14.4•psf Wall Typical Pte:= PnetzoneErIw PD = 3.3.psf Roof Typical Pte:= PnetzoneE'Iw•X PE = — 8.8•psf := PnetzoneF Ivy' X Pp = — 12•psf Pte:= PnetzoneG'Iw•X PG = — 6.4 -psf Pte:= PnetzoneH'IWX PH = — 9.7•psf Harper Project: SUMMERCREEK TOWNHOMES UNIT A • HP Houf Peterson Client: PULTE GROUP Job # CEN -090 yfr, Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCM TECTS• SURVEVORS Determine Wind Sail In Longitudinal Direction N w N Nw := (48 +. 9 + Aaisx:= (10 + 0 + 44) ft :_. (91 + 137 + 67)•ft := (43 + 0 + 113)41 Wes= WSAILZoneA'PA WA = 2925 Ib WSAII- ZoneB'PB WB = 1731b = WSAI-ZoneC'PC WC = 42481b Wes= WSAII-ZoneD'PD WD = 515 lb WiN := WA + WB + WC + WD N Wi tA k tA := 10.psf•(WSA1LZ + WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind Force = 7861 lb Wind_Force = 6520 Ib = 148- f1 N LZ, := 120 • ft := 323.112 , NRah:= 252. ft Wr WSAILZoneE'PE WE = — 13021b W �= WSAILZoneF WF = — 14401b Wes;= WSAILZoneG'PG WG, = — 20671b Wes= WSAILZoneH'PH WH = — 24441b li := WF + WH + (WE + WG) + RDL•[WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSJ ZoneG)]'. Uplift = 12431b (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION g L9: Harper Houf Peterson Righellis Pg #: Transverse Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = • 6 /12 . Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X= 1.00 lw= 1.00 Wind Sail Wind Net Design Wind Pressure (psf) ( ) Pressure (Ibs) Zone A = 19.9 129 2567 Wall High Wind Zone Horizontal Zone B = 3.2 42 134 Roof High Wind Zone Wind Forces Zone C = 14.4 970 13968 Wall Typ Zone Zone D = 3.3 5 17 Roof Typ Zone Zone E = -8.8 94 -827 Roof Windward High Wind Zone Vertical Zone F = -12.0 108 -1296 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 320 -2048 Roof Windward Typ Wind Zone Zone H = -9.7 320 -3104 Roof Leeward Typ Wind Zone Total Wind Force =l 16686 lbs I Use to resist wind uplift: Roof Only Total Exterior Wall Area = 2203 ft Uplift due to Wind Forces= -7275 Ibs Resisting Dead Load= 8472 lbs El 1197 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm (ft Zone A Zone B Zone C Zone D Main Floor 41 19 391 0 Upper Floor 59 0 307 0 Main Floor Diaphragm Shear = 6507 Ibs Upper Floor Diaphragm Shear = 5595 lbs Roof Diaphragm Shear = 4584 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF • Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Diaphragm Diaphragm (lbs) (lbs) (lbs) Width (ft) Width (ft) Width (ft) . w t A 13.08 1737 18 2797 19 2323 Al 24.50 3254 0 0 0 0 B 11.42 1516 18 2797 18.5 2261 E= 49 6507 36 5595 37.5 4584 4 •L t0 Harper Houf Peterson Righellis Pg #: Transverse Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D S1 = 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 SMg • 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 SDS= 0.71 Equ. 11.4 -3, ASCE 7 -05 Sol= 0.39 Equ. 11.4 -4, ASCE 7 -05 . Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = ' 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 ' Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 • Floor 2 Wt (Ib)= 8411 Floor 3 Wt (Ib)= 8476 Roof Wt (Ib) = 14162 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22609 Trib. Floor 3 Diaphragm Wt (Ib) = 22674 Trib. Roof Diaphragm Wt (Ib) = 21261 Vertical Dist of Seismic Forces Cumulative % total of base shear Rho Check to Shearwalls (Ibs) I to shearwalls I Req'd? Vnoor2 (Ib) = 720 100.0% Yes VBuor 3 (Ib) = 1625 85.8% Yes V roor (lb) = 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line • Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft Ibs Ibs Ibs A 102 361 394 114 897 1266 Al 432 0 0 481 0 0 B 113 . 293 449 126 • 728 1443 Sum 647 654 843 720 1625 2709 Total Base Shear* = I 5054 LB i • *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. — Llk ,----- Harper Houf Peterson Righellis Pg #: Longitudinal Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph • Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X= 1.00 Iw= 1.00 Wind Sail Wind Net Design Wind Pressure (psf) () Pressure (Ibs) Zone A = 19.9 147 • 2925 Wall High Wind Zone Horizontal Zone B = 3.2 54 173 Roof High Wind Zone Wind Forces Zone C = 14.4 295 4248 Wall Typ Zone Zone D = 3.3 156 515 Roof Typ Zone Zone E = -8.8 148 -1302 Roof Windward High Wind Zone Vertical Zone F = -12.0 120 -1440 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 323 -2067 Roof Windward Typ Wind Zone • Zone H = -9.7 252 -2444 Roof Leeward Typ Wind Zone Total Wind Force =l 7861 Ibs I Use to resist wind uplift Roof Only Total Exterior Wall Area . 2203 ft Uplift due to Wind Forces= -7254 Ibs Resisting Dead Load = 8483 lbs El 1229 Lbs...No Net Uplift Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm (ft Zone A Zone B Zone C Zone D • Main Floor 48 10 91 43 Upper Floor 59 0 137 0 Main Floor Diaphragm Shear = 2440 Ibs Upper Floor Diaphragm Shear = 3147 lbs Roof Diaphragm Shear = . 2275 Ibs Wind Distribution To Shearwall Lines . MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Diaphragm (Ibs) Diaphragm (Ibs) (lbs) Width (ft Width (ft) Width ft 1 10 1220 10 1573 10 1137 2 10 1220 10 1573 10 1137 E= 20 2440 20 3147 - 20 2275 A - Lc2...,_ Harper Houf Peterson Righellis Pg #: Longitudinal Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D S1 = 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 SMg 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 Sin= 0.71 Equ. 11.4 -3, ASCE 7 -05 SD1= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (Ib)= 8411 Floor 3 Wt (Ib)= 8476 Roof Wt (Ib) = 14162 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22609 Trib. Floor 3 Diaphragm Wt (lb) = 22674 - Trib. Roof Diaphragm Wt (Ib) = 21261 Vertical Dist of Seismic Forces Cumulative % total of base shear Rho Check to Shearwalls (Ibs) I to shearwalls Req'd? Vfloor 2 (lb) = 720 100.0% Yes Vfloor 3 (Ib) = 1625 85.8% Yes V roo (Ib) = 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft Ibs Ibs Ibs 1 286 291 415 318 725 1334 2 361 361 428 402 900 1375 Sum 647 652 -843 720 1625 2709 Total Base Shear* = 1 5054 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. ,--- L V Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 'Transvere Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht I k ht I k ht I k (klt) (plf) (ft -k) (ft -k) (k) 101 Not Used 102 7 1.75 3.50 4.00 :, " - 8.00 1.74 18.00 2.80 27.00 2.32 1959 Double 1.40 NG 1.hi.t 103 7 1.75 3.50 4.00 ■` ° <' 8.00 1.74, 8.00 2.80 8.00 2.32 1959 Double 1.40 NG 103a 7 4.00 4.00 1.75 OK 8.00 3.25 814 Single 1.40 IV 104 8 4.50 10.50 1.78 ox 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 105 8 3.00 10.50 2.67 OK 8.00 . 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 106 8 3.00 10.50 2.67 OK 8.00 1.52 _ 8.00 2.80 8.00 2.26 626 Single 1.40 III 109 8 4.58 17.08 1.75 ox 8.00 1.74 18.00 2.80 27.00 2.32 401 Single 1.40 II 110 8 12.50 17.08 0.64 OK 8.00 1.74 8.00 2.80 8.00 2.32 401 Single 1.40 II 111 8 4.50 7.25 1.78 OK 8.00 1.52 8.00 2.80 8.00 .2.26 907 Double 1.40 VI 112 4.75 1.38 7.25 3.45 ox 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 113 4.75 1.38 7.25 3.45 OK 8.00 . 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 201 9 3.92 10.79 2.30 OK 9.00 2.80 18.00 2.32 474 Single 1.40 II 201a 9 4:17 10.79 2.16 ox 9.00 2.80 18.00 2.32 474 Single 1.40 Il 201b 9 2.71 10.79 3.32 ox 9.00 2.80 18.00, 2.32 474 Single 1.40 Il 202A 9 2.96 11.96 3.04 OK r 9.00 2.80 18.00 2.26 423 Single 1.40 Il 202B 9 3.00 11.96 3.00 OK 9.00. 2.80 18.00 2.26 423 Single 1.40 Il 203 9 3.00 11.96 3.00 ox 9.00 2.80 18.00 2.26 423 Single 1.40 11 204 9 3.00 11.96 3.00 ox 9.00 2.80 18.00 2.26 423 Single 1.40 II 301 8 3.92 - 13.96 2.04 OK 8.00 2.32 166 Single 1.40 I 302 8 5.79 13.96 1.38 ox 8.00 2.32 166 Single 1.40 I • 303 8 4.25 13.96 1.88 ox _ 8.00 2.32 166 Single 1.40 I 304 8 2.96 5.96 2.70 OK 8.00 2.26 . 379 Single 1.40 II 305 8 3.00 5.96 2.67 ox 8.00 2.26 379 Single 1.40 1I Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height • Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht . Mr (Resisting Moment) = Dead Load * L • 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • kk..4 Harper Houf Peterson Righellis Pg #: 1 . Shearwall Analysis Based on the ASCE 7 -05 fransvere Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho• V % Story # Panel Shear Panel Mo M Uplift Panel Lgth. From 2nd Flr. From 3rd Fir. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht I k ht I k ht I k (kit) (pit) (plf) (ft -k) (ft -k) (k) 101 Not Used _ 102 7 1.75 3.50 4.00 " % "° r. 8.00 0.11 18.00 0.90 27.00 1.27 651 846 0.10 0.50 Double 0.50 NG 103 7 1.75 3:50 4.00 ; :'? 8.00 0.11 8.00 0.90 8.00 1.27 651 846 0.10 0.50 Double 0.50 NG 103a 7 4.00 4.00 1.75 OK 8.00 0.48 0.00 0.00 120 156 0.22 1.14 Single 1.00 I 104 8 4.50. 10.50 1.78 OK 8.00 0.13 8.00 0.73 8.00 1.44 219` 284 0.25 1.13 Single 1.00 II 105 8 3.00 10.50 2.67 OK 8.00 0.13 8.00 0.73 8.00 1.44 219 284 0.17 0.75 Single 0.75 III 106 8 3.00 10.50 2.67 OK 8.00 ' 0.13 8.00 0.73 8.00. 1.44 , 219 284 0.17 0.75 Single 0.75 III 109 8 4.58 17.08 1.75 OK 8.00 0.11 18.00 0.90 27:00 1.27 134 174 0.25 1.15 Single 1.00 I 1 10 8 12.50 17.08 0.64 OK 8.00 0.11 8.00 _ 0.90 8.00 1.27 134 174 NA 3.13 Single 1.00 I. 1 11 8 4.50 7.25 1.78 OK 8.00 0.13 8.00 0.73 8.00 1.44 316. 411 0.25 1.13 Single 1.00 III 112 5 _ 1.38 7.25 3.45 OK _ 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.08 0.58 Double 0.58 VII 113 5 1.38 7.25 3.45 OK 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.08 0.58 Double 0.58, VII 201 9 3.92 10.79 2.30 OK 9.00 0.90 18.00 1.27. 200 261 0.17 0.87 Single 0.87 II 201a 9 4.17 10.79 2.16 OK 9.00 0.90 18.00 1.27 200 261 0.18 0.93 , Single 0:93 II - 201b 9 2.71 10.79 3.32 OK 9.00 0.90 18.00 1.27 200 261 0.12 0.60 Single 0.60 III 202A 9 2.96 11.96 3.04 OK 9.00 0.73 18.00 1.44 182 236 0.13 0.66 . Single 0.66 111 202B 9 3.00 11.96 3.00 OK 9.00 0.73 18.00 1.44 182 236 0:13 0.67 Single 0.67 III 203 9 3.00 11.96 3.00 OK 9.00 0.73 18.00 1.44 181 236 0.13 0.67 Single 0.67 III. 204 9 3.00 11.96 3.00 'OK 9.00 0.73 18.00 1.44 ' 181 236 0.13 0.67 Single . 0.67 III 301 8 3.92 13.96 2.04 OK 8.00 1.27 91 118 0.20 0.98 Single 0.98 I 302 8 5.79 13.96 1.38 oK ,. 8.00 1.27 91 118 0.29 1.45 Single 1.00 I 303 8 4.25 13.96 1.88 oK 8.00 1.27 91 118 0.21 1.06 Single 1.00 1 304 8 2.96 5.96 2.70 OK _ 8.00 1.44 242 315 0.15 0.74 Single 0.74 III ' 305 8 3.00 5.96 2.67 OK J 8.00 1.44 242 315 0.15 0.75 Single 0.75 III _ Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total transverse base shear? Yes ' Total 1st Floor Wall Length = 18.00 Total # 1st Floor Bays = 4.77 Are 2 bays minimum present along each wall line? No I st Floor Rho = u Total 2nd Floor Wall Length = 22.75 Total # 2nd Floor Bays = s Are 2 bays minimum present along each wall line? No 2nd Floor Rho = 1.3 • Total 3rd Floor Wall Length = 19.92 Total # 3rd Floor Bays = s Are 2 bays minimum present along each wall line? No 3rd Floor Rho = 1.3 • Spreadsheet Column Definitions & Formulas L = Shear Panel Length • H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load•Rho / Total L % Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2•L/H Shear Factor = Adjustment For 1-1/L > 2:1 Mo (Overturning Moment) = Wall Shear • Shear Application ht Mr (Resisting Moment) = Dead Load • L 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) / 4 - ... - - \,.....\c' Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klf) (pll) (ft -k) (ft -k) (k) 107 8 15.50 15.50 0.52 ox 10.00 1.22 18.00 1.57 27.00 1.14 1.03 254 Single 1.40 I 71.21 123.49 -0.19 108 8 15.50 15.50 0.52 ox 10.00 1.22 18.00 1.57 27.00 1.14 1.03 254 Single 1.40 I 71.21 123.49 -0.19 r 205 9 13.00 13.00 0.69 OK 9.00 1.57 18.00 1.14 0.70 208 Single 1.40 I 34.62 1 59.15 -0.07 1 206 9 13.00 13.00 0.69 OK 9.00 1.57 18.00 1.14 0.70 208 Single 1.40 I 34.62 59.15 -0.07 1 306 8 10.00 10.00 0.80 OK 8.00 1.14 0.29 114 Single 1.40 I 9.10 14.40 0.05 307 8 10.00 10.00 0.80 ox 8.00 1.14 0.29 I 114 Single 1.40 I 9.10 14.40 0.05 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overtuming Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) • 19 - Lib Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Seismic ' Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho' V % Story # Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Strength Bays. Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klt) (plf) (plf) (ft -k) (ft -k) (k) 107 8 15.50 15.50 0.52 OK 10.00 0.32 18.00 0.73 27.00 1.33 1.09 153 153 NA 3.88 Single 1.00 1 52.25 130.70 -1.74 • 108 8 15.50 15.50 OK 10.00 0.40 18.00_ 0.90 27.00_ 1.38 1.09 173 173 NA 3.88 _ Single 1.00 1 57.35 130.70 -1.40 I 206 I 9 1 113.00 13.00 0.69 oK , I 1 9.00 1 0.90 1188..0000 1.38 0 117558 I 1 1 7 5 5 8 N 22..8899 I Single 1.00 I 32.85 } 64.22 I 0.45 I 307 _ 8 1 10.00 10 00 0.80 _ oK I I I 1 8.00 I 1.38 0.35 138 138 I NA 2:50 I Single 1 1.00 11 11.00 1 17.40 1 0.06 I Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes • Does the 3rd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Total 1st Floor Wall Length = 31.00 Total # 1st Floor Bays = 7.75 Are 2 bays minimum present along each wall line? Yes 1st Floor Rho = 1.0 • Total 2nd Floor Wall Length = 26.00 Total # 2nd Floor Bays = 6 Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho = 1.0 Total 3rd Floor Wall Length = 20.00 Total # 3rd Floor Bays = s Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho 1.o Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load•Rho / Total L % Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2•L/H Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear ' Shear Application ht Mr (Resisting Moment) = Dead Load' L 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Transvere Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good For V (plf) (plf) (lb) (Ib) 101 Not Used 102 Simpson Strongwall 103 _ Simpson Strongwall 103a 814 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 833 104 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 105 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 106 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 109 401 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 110 401 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 111 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 112 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 990 113 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 990 201 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 201a 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 201b 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 202A 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 202B 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 203 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 204 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 301 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 302 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 303 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 , 304 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 305 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Longitudinal Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Ho'down Good For V (pit) (Pb) (lb) (lb) 107 254 1/2" APA Rated PI w'd w/ 8d Nails 1, 6/12 339 -192 Simpson None 0 108 254 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -192 Simpson None 0 205 208 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -69 ' Simpson None 0 206 208 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -69 Simpson None 0 306 133 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 48 Simpson None 0 307 138 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 59 Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. ,4 1,, \C\ Transverse Wind Uplift Design . Unit A Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. Fir. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ Floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 102 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.192 0.832 27.43 0.57 1.69 21.31 20.79 21.31 20.79 103 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.832 0.192 27.43 1.69 0.57 20.79 21.31 20.79 21.31 103A 8 1.1667 4.00 4.00 3.254 3.254 814 0.04 2.016 1.664 26.03 8.38 6.98 6.00 6.24 6.00 6.24 104 8 1.1667 4.50 10.50 1.516 2.8 2.26 6.576 626 0.1 0.8 0.078 25.08 4.61 1.36 5.58 6.06 5.58 6.06 . 105 8 1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 0.048 0.252 0.156 _ 16.72 0.97 0.68 6.45 6.52 6.45 6.52 106 8 1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 • 0.048 0.156 0.252 16.72 0.68 0.97 6.52 6.45 6.52 6.45 109 8 1.1667 4.58 17.08 1.737 2.8 2.32 6.857 401 0.152 0.192 0.156 16.31 2.47 2.31 3.63 3.66 201L 201R 4.82 5.09 8.45 8.75 110 8 1.1667 12.50 17.08 1.737 2.8 2.32 6.857 401 0.096 0.156 0.192 44.52 9.45 9.90 3.24 3.21 201 aL 201 bR 4.95 4.88 8.18 8.09 111 8 1.1667 4.50 7.50 1.516 2.8 2.26 6.576 877 0.144 0.8 0.078 35.11 5.06 1.81 8.02 8.51 8.02 8.51 112 8 1.1667 1.50 7.50 1.516 2.8 2.26 6.576 877 0.048 0.252 0.234 11.70 0.43 0.41 11:44 11.46 11.44 11.46 113 8 1.1667 1.50 7.50 1.516 2.8 2.26 6.576 877 0.048 0.234 0252 •11.70 0.41 0.43 11.46 11.44 11.46 11.44 201 9 1.1667 3.92 10.8 2.8 2.32 5.12 474 0.225 0.432 0.156 17.71 3.42 2.34 3.99 4.16 301L 301R 0.83 0.93 4.82 5.09 201a 9 1.1667 4.17 10.8 2.8 2.32 5.12 474 0.225 0.156 0.156 18.84 2.61 2.61 4.14 4.14 302L 302R 0.80 0.80 4.95 4.95 201b 9 1.1667 2.71 10.8 2.8 2.32 5.12 , 474 0.225 0.156 0.432 12.24 1.25 2.00 4.24 4.08 303L 303R 0.91 0.80 5.15 4.88 202A 9 1.1667 2.96 11.958333 2.8 2.26 5.06 423 0.173 0.432 0.052 11.92 2.04 0.91 3.62 3.84 304L 304R 2.60 2.75 6.21 6.59 202B 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.173 0.052 0.216 12.09 0.93 1.43 3.84 3.74 305L 305R 2.74 2.16 6.58 5.91 203 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.309 0.216 0.312 12.09 2.04 2.33 3.62 3.56 3.62 3.56 204 9 1.1667 3_ 11.958333 2.8 2.26 5.06 423 0.225 0.312 0.432 12.09 1.95 2.31 3.64 3.57 3.64 3.57 301 8 3.92 13.96 2.32 2.32 166 0.232 0.384 0.204 5.21 3.29 2.58 0.83 0.93 0.83 0.93 _ 302 8 5.79 13.96 2.32 2.32 166 • 0.232 0.204 0.204 7.70 5.07 5.07 0.80 0.80 0.80 0.80 303 8 4.25 13.96 2.32 2.32 166 0.232 0.204 0.384 5.65 2.96 3.73 0.91 0.80 0.91 0.80 304 8 2.96 5.96 2.26 2.26 379 0.232 0.384 0.136 8.98 2.15 1.42 2.60 2.75 2.60 2.75 305_ 8 3 5.96_ 2.26 2.26 379 0.232 0.136 1.104 9.10 1.45 4.36 2.74 2.16 2.74 2.16 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height • Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) Transverse Seismic Uplift Design Unit A Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @. floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 102 8 1.1667 1.75 3.50 0.114 0.9 1.27 2.284 653 0.152 0.192 0.832 10.40 0.57 1.69 7.91 7.11 0 0 7.91 7.11 103 8 _1.1667 1.75 3.50 0.114 0.9 1.27 2.284 653 0.152 0.832 0.192 10.40 1.69 0.57 7.11 7.91 0 0 7.11 7.91 103A 8 1.1667 4.00 4.00 0.481 0.481 120 . 0.04 2.016 1.664 3.85 8.38 6.98 -1.06 -0.69 0 0 -1.06 -0.69 104 8 1.1667 4.50 10.50 0.126 0.73 1.44 2.296 219 0.1 0.8 0.078 8.96 4.61 1.36 1.20 1.93 0 0 1.20 1.93 105 8 1.1667 3.00 10.50 0.126 0.73 1.44 2.296 219 0.048 0.252 0.156 5.97 0.97 0.68 2.04 2.14 0 0 2.04 2.14 106 8 1.1667 3.00 10.50 0.126 0.73 1.44 2.296 219 0.048 0.156 0.252 5.97 0.68 0.97 2.14 2.04 0 0 2.14 2.04 109 8 1.1667 4.58 17.08 0.114 0.9 1.27 2.284 134 0.152 0.192 0.156 5.58 2.47 2.31 0.82 0.86 201 L 201 R 1.13 1.54 1.95 2.40 110 8 1.1667 12.50 17.08 0.114 0.9 1.27 2.284 134 0.096 0.156 0.192 15.23 9.45 9.90 0.56 0.53 201 aL 201bR 1.32 1.32 1.88 1.85 111 8 1.1667 4.50 7.50 0.126 0.73 1.44 2.296 306 0.144 0.8 0.078 12.54 5.06 1.81 2.00 2.73 0 0 2.00 2.73 112 8 1.1667 1.50 7.50 0.126 0.73 1.44 2.296 306 0.048 0.252 0.234 4.18 0.43 0.41 3.79 3.82 0 0 3.79 3.82 113 8 1.1667 1.50 7.50 0.126 0.73 1.44 2.296 306 0.048 0.234 0.252 4.18 0.41 0.43 3.82 3.79 0 0 3.82 3.79 201 9 1.1667 3.92 10.80 - 0.9 1.27 2.17 201 0.225 0.432 0.156 7.63 3.42 2.34 1.16 1.41 301L 301R -0.03 0.13 1.13 1.54 201a 9 1.1667 4.17 10.80 0.9 1.27 2.17 201 0.225 0.156 0.156 8.11 2.61 2.61 • 1.38 1.38 302L 302R -0.06 -0.06 1.32 1.32 201b 9 1.1667 2.71 10.80 0.9 ' 1.27 2.17 201 0.225 .0.156 0.432 5.27 1.25 2.00 1.53 1.28 303L 303R 0.10 -0.06 1.63 1.22 202A 9 1.1667 2.96 11.96 0.73 1.44 2.17 181 0.173 0.432 0.052 5.25 2.04 0.91 1.15 1.50 304L 304R 1.28 1.50 2.43 3.00 202B 9 1.1667 3.00 11.96 0.73 1.44 2.17 1'81 0.173 0.052 0.216 5.32 0.93 1.43 1.49 1.35 305L 305R ' 1.50 0.63 2.99 1.97 203 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.309 0.216 0.312 5.32 2.04 2.33 1.16 1.08 0 0 1.16 1.08 204 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 '0.225 0.312 0.432 5.32 1.95 2.31 1.19 1.08 0 0 1.19 1.08 - 301 8 0 3.92 13.96 1.27 1.27 91 0.232 0.384 0.204 2.85 3.29 2.58 -0.03 0.13 0 0 -0.03 0.13 302 8 0 5.79 13.96 1.27 1.27 91 0.232 0.204 0.204 4.21 5.07 5.07 " -0.06 -0.06 0 0 -0.06 -0.06 303 8 0 4.25 13.96 1.27 1.27 91 0.232 0.204 0.384 .3.09 2.96 .. 3.73 0.10 -0.06 0 . 0 0.10 - 0.06 304 8 0 2.96 5.96 1.44 1.44 242 0.232 0.384 0.136 5.72 2.15 1.42 1.28 1.50 0 0 1.28 1.50 305 8 0 3.00 5.96 . 1.44 1.44 242 0.232 0.136 1.104 5.80 1.45 4.36 1.50 0.63 0 0 1.50 0.63 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L 1 Mo (Overturning Moment) = Wall Shear * Shear Application ht ` Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • TRANSVERSE UPLIFT CALCULATIONS - SUMMARY UNIT A Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right • k Simpson k k Simpson k . • , 102 Wind 21.31 Holdown None 0.00 Wind 20.79 None 0.00 103 Wind 20.79 Holdown None 0.00 Wind 21.31 None 0.00 103A Wind 6.00 Holdown HDQ8 w 3HF 6.65 Wind 6.24 HDQ8 w 3HF 6.65 104 Wind 5.58 Holdown HDQ8 w 3HF 6.65 Wind 6.06 HDQ8 w 3HF 6.65 105 Wind 6.45 Holdown HDQ8 w 3HF 6.65 Wind 6.52 HDQ8 w 3HF 6.65 t 106 Wind 6.52 Holdown HDQ8 w 3HF 6.65 Wind 6.45 HDQ8 w 3HF 6.65 109 Wind 8.45 Holdown HDQ8 w DF 9.23 Wind 8.75 HDQ8 w DF 9.23 _ 110 Wind 8.18 Holdown HDQ8 w DF 9.23 Wind 8.09 HDQ8 w DF 9.23 111 Wind 8.02 Holdown HDQ8 w DF 9.23 Wind 8.51 HDQ8 w DF '9.23 112 Wind 11.44 Holdown HDU14 14.93 Wind 11.46 HDU14 14.93 113 Wind 11.46 Holdown HDU1 4 14.93 Wind 11.44 HDU14 14.93 201 Wind 4.82 Strap MST48x2 5.75 • Wind 5.09 MST48x2 5.75 201a Wind 4.95 Strap MST48x2 5.75 Wind 4:95 MST48x2 5.75 201b Wind 5.15 Strap MST48x2 5.75 Wind 4.88 MST48x2 5.75 202A Wind 6.21 Strap MST60x2 8.11 Wind 6.59 MST60x2 8.11 202B Wind 6.58 Strap MST60x2 8.11 Wind 5.91 MST60x2 8.11 _) 203 Wind 3.62 Strap MST60 4.06 Wind 3.56 MST60 4.06 204 Wind 3.64 Strap MST60 4.06 _Wind .3.57 MST60 4.06 ` 301 Wind 0.83 Strap MST37 1.79 Wind 0.93 MST37 1.79 302 Wind 0.80 Strap MST37 1.79 Wind 0.80 MST37 1.79 303 Wind 0.91 Strap MST37 1.79 Wind 0.80 MST37 1.79 304 Wind 2.60 Strap MST48 2.88 Wind 2.75 MST48 2.88 305 Wind 2.74 Strap MST48 2.88 Wind 2.16 MST48 2.88 • c6t1 • n O g v x 0 z o m z '1 o A Day n°Ib� = �'� 4EC`�SS a a 3 F") pird > 1 anto7 •: rn S° kScr) G� C.l. — *-10 4 . t2. - ti '" / 1'^'p9 y �7 0 v Worn sq\ 001.A. 001.A. = A?, \ `ems do CrLi t o 3 O rn SAO - Dpsk- �SnG Swipri) ooK VLti�1.�� �5���� \'°' m �� El 0 - 00 J`02 x :3a �' 1 � — '� � � (AS 103 road 30 b( N2 : ON gor DI U@ @ ! :31tl0 `s v ` :n9 / ; 2 0 3r4Y1 S 1.19.E v7.fV(riv 31 ' m 1-1.1. .1 S\ A-1,1. MS 0 1 `� 1- p i - C d 1 `i 1 i ; \ 1 !,'4' 6 �{ d y/,: _ . 1 g. : , 0 Cy 3N 11 SINU.' 44j')rva1 S1 Hl Mg • . . 1-" .. - 2 r- J 1 -4 T' SW "B LP JC -,TI+ klowii -e i4.„ Pc LON/C-1 I &4l5 LOVE 0 6, ''' o _s ,,,i '4 - U ice' r o ° I ,:. C L t of r 1 O ,; r6 a — _::r.._. ^a.: 1, ....._. •�c._: .a._ � e _._r. .z�._� ._..._ : .. L _.. . y r .r '0� . _i El fob m S w TH`t s Ll tic -i Pc UJ I E V-V Alm-, - nil s L f /Q I c ...g." c E IN t 1 5W "Prf'ls LC ■JcnrH A wfOC-1 VIS LWt O 5 My `1 ��, .------- r n ' :1'" ti Y 1 : I :: , 1 I //:\i/ ! !; �d L - . ' , -11 , -_ . i ; 90 d r , 8 „...„ J ts 03 la? ; i gl ; ; 1 r —2 r te - _..s - - .7; •.�• -•' _..3.. .c`_a.:r�?,44'T i . `'». c... __...._...._..a 1:: `' ' % Mi _ V_'_- .: ... _ _ ___. -- .,.,.Y. 1 aob SW 1 Lek ^Tl -t- Awn) c -x THIS LiNS :arvp S 1111 '-'--)Nmmd - 1-{1l.-)rsi-r) Sq-U. ( —LQ C, 0 L� .� �- . �......zr, ,th: L?: ° ,, .....t_ -.. . _. _...tea 3n.- _. 'T - ITh li 0 �7 L c6, is, ti L — ,./ ,„ . I 0 '' 1 V, ., : I = ._._ - . � `� 1 _ -- N 4 k1. L., Nt7� -1-1..1. 1-3.c13 - 1 a1 R...1, Ms ( (n k 2 cJ BY ANNL, DATE: --aO' O JOB NO.: A ' ......0 G O OF i `v I PROJECT: RE: D V qN YY1 ti \ e( a \- Earn- of hovsc_, • ❑ ❑ V L%ne,8 ; (a -5'4 wind fcorkoIs) b.514 fr F W °lt c\ Phragm tvi d iirl = aU Pt O m • i ❑ w ; lac\ pL.F 1 li CI c9 ,s14 o z Ca pact oF ur�l 0ru phvt�evr� W D = Ciao X 1,t4 = asacp r F- woo c�ticki*akgrn . U z NIL No I r13 egpau _ (as5 = 351•>w ou- M 1 O U E ¢ O U. Z to ❑ . Z O O = F 0. 0 U t -Z: : a x • • • 4- 1 � • ' r DATE: .. ....A . Joe No '(v 0 PROJECT: R2 al-'- 8 W. RE: Des ;g oc r■rn P oloc..;. c @ Sto ‘r S 0 OpTIo u L • J Z i.'4-- D w / ` F. W Mt 13 l lt�W.: ON 1•••■■_A ►�! F . F . C - ' k ' L • ❑ - Sot ti T = el 9 - co? pans 18 5 Q c Max 5iA tt_al, NaAJ' o W K G o Z W O . DE. -�N W i NM Pressure Z = - ao. O ?SC o O?\oj(\ P \o: -Es CQ ))U.f.\ \\J iers.. Top 4W1ES B' o z LUM\ \VISA_ tOti CI 0( 1 11? _P o f o 1 U R1= tq%°V4 gz= t4CkQ1 0"-O" f u_ z C o N1 m „ z L - _ ! ° i165.351 . : 512,1 #ct o a 8 . V ty\C.x = 1 V- 14 1 1 SV _ V _ 1 _ C62 #1,N2- A ( . 1.C5.25) c F(' ;?c (8SOPS,)(t.L)(1.s )(1.1S )= 33yc, (A1-2_ . N..'T 5 o t,r ! - _ ISO ?St (Ma 7 auo s� 7 c>2__- . 01� x m a 4* N-\ 1(j • oe r . /9-- L29 A ..AL • - E K o — 0 BY: DAT 6.- \ JOB NO. C . PROJECT: RE: OPT 10 k.) 2 ii\ up (I'm E 2ND . P1,..oO9.,. W \DOA°On 'C e 3!f-AD TWO 1- W O f f ❑ ' TOO t._Aj ICA t O INT !3i"g 0 J Max ;ca Iov c � - t( .� G ?e \ \9 = Q.:- o' k rt Q U O w U Z cc d Qe W!rtd presc;'Lli e _ -a;o.o.f) pS F Z Lora d,. on \av1 \ v b\0 C _ alp pLF-. O uki a it 1- _I' y 1 (/ o Z T T 2 'R= ,tto 5 rz z f •�� p z V rr,�X = VG'S -* F a ,, l = (I 9 )S J 3 ,_ b t t+J 1 l Vitt' ie.,,s,r (►,S 3>3_S•`�6,tvct / 1 Z, y _ (0. _ a ,bb 1,0 ► ' AI,s S. - lc tw' 1- xsa A -3 1 = 6 .3,5 t- d4,s(0,515) 1r .1. a ,. Co, ra=t: l S,'3b+ p t R.(, -t 0 r = 1-'1. ‘ N b= t.. = tqa‘ti #C. 0 13 11.45 1 = 9 S,. v _ 4 5G, b .: �C,CN.C. t..`.L.CFC -sjiCr Fe = (48 so ? ,)( I,o)(\.�1(1.o)Ct o X t� 14" 3a-f.i, I ns i, Vj -7-(a3D.Ci›s I t,00 • 0)( t, ()YU .i,1, „, 4o ?sr. °\c___ L 4- 3o • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:49:04 COMPANY 1 PROJECT RESULTS by GROUP - NDS 2005 . SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF Mnf Trusses =- � -U. = = .. � S6 800 designed by request =.__' = = = = =y= (2) 2x8 Lumber n -ply D.Fir -L No.2 1- 20B By'Others Not designed by request (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 Typ Wall Lumber Stud Hem -Fir Stud 2x6 916.0 SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR . Mo Mnf Jot �'_�__ .. _ =__= Not designed by request = E .. = =� = .... ____ Sloped Joist Lumber -soft D.Fir -L No.2 2x6 916.0 (2) 2x8 (1) Lumber n -ply D.Fir -L No.2 1- 208 (2) 2x8 Lumber n -ply D:Fir-L No.2 2- 2x8 By Others Not designed by request By Others' 2 Not designed by request (2) 2x12 Lumber n -ply D.Fir -L No.2 2- 2x12 5.125x10.5 Glulam- Unbalan. West Species 24F -V4 DF 5.125x10.5 4X6 Lumber -soft D.Fir-L No.2 - 4x6 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 4x6 Lumber Post Hem -Fir No.2 4x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 (21 2x4 Lumber n -ply Hem -Fir No.2 2- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 916.0 SUGGESTED SECTIONS by GROUP for LEVEL 2 - FLOOR = Mnf Trusses = � = = � - . ..--= = = = Not designed by request � z ssu= Mnf Jot Not designed by request Deck Jst Lumber-soft D.Fir-L No.2 2x8 916.0 (2) 2x8 Lumber n -ply D.Fir-L No.2 2- 2x8 - • 3.125x9 Glulam- Unbalan. West Species 24F -V4 DF 3.125x9 4x8 • Lumber -soft D.Fir-L No.2 4x8 By Others Not designed by request • By Others 2 Not designed by request (21 2x10 Lumber n -ply D.Fir -L No.2 1- 2x10 5.125X12 GL Glulam- Unbalan. West Species 24F -V4 DF 5.125x12 By Others 3 Not designed by request 3.125014 LSL LSL 1.55E . 2325Fb 3.5=14 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 404 Lumber Post Hem -Fir No.2 4x4 . 4x6 Lumber Post Hem -Fir No.2 4x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 6x6 Timber-soft Hem -Fir No.2 6x6 (2) 2x4 Lumber n -ply Hem -Fir No.2 2- 2x4 6x6 nol Timber-soft D.Fir -L Noll • 6x6 (3) 2x4 Lumber n -ply Hem -Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 936.0 SUGGESTED SECTIONS by GROUP for LEVEL 1 - FLOOR = = Fnd = = � = = =__ = = = = =�� Not designed by request =__� =__ = =_ CRITICAL MENDERS and DESIGN CRITERIA Group Member Criterion Analysis /Design Values = =s ___= Mnf Jet .. = = =� = =3iv = = = = -___ Mnf Jot Not designed by request Deck Jot j65 Bending 0.41 Sloped Joist j30 Bending 0.10 • Floor Jst4 unknown Unknown 0.00 (21 211 (1) b35 Bending 0.47 (2) 208 b8 Bending 0.89 3.125x9 b3 Bending 0.06 . • 4.8 b30 Bending 0.12 By Others By Others Not designed by request By Others 2 By Others Not designed by request • (2) 2012 b6 Bending 0.93 (2) 2x10 bl Shear 0.78 5.125X12 GL b10 Bending 0.76 . By Others 3 By Others Not designed by request 5.125x10.5 b9 Deflection 0.95 4X6 620 Bending 0.08 3.125x14 LSL b14 Deflection 0.73 (2) 2.6 c2 Axial 0.91 404 c55 Axial 0.07 4x6 c23 Axial 0.80 (3) 2x6 c29 Axial ' 0.75 6x6 c26 Axial 0.70 . (2) 2x4 039 Axial 0.62 • 6x6 nol c12 Axial 0.86 (31 2x4 c31 Axial 0.89 Typ Wall w14 Axial 0.48 Fnd Fnd Not designed by request = = =... __...___ _==- z==.= = =z_ = > ..... ______ .. :_=.._ = = .. = =a= DESIGN NOTES ==.==.================....== 1. Please verify that the default deflection limits ate appropriate for your application. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result is considered the final design and appears in the Materials List. 3. ROOF LIVE LOAD: treated as snow load with corresponding esponding duration factor. Add an empty roof level to bypass thisinterpretation. 4. BEARING: the designer is responsible for ensuring that adequate bearing is provided. 5. GLULAM: bxd = actual breadth x actual depth. 6. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 7. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 8. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together . securely at intervals not exceeding 4 times the depth and that ' each ply is equally top - loaded. Where beans are side - loaded, . special fastening details may be required. ' _ 9. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 10. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. • WoodWorks®Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks ®Sizer 7.1 June 24, 2010 12:41:17 Concept Mode: Beam View Floor 2: 8 ' ��� b31 -- -- 105 ,: -- - 1U3� - --- -.. -. _ - - - 4 -b I ULO - - - - 40 - O ' Ili 1,.,_ i : -- - - - - - - - - 44 b a9 43 b V0 ' b1 - - - - _ 4L-0 y r :. _. 4 1 b yb 4U yo 30 0 35 -b Vt./ b2 ' 34 0 33' -b 3L b Ob it,/ -0 00 LV -0 LO b 03 Lf -b OL - is _. .. -- .. ----- .. -- - --- -- - :. . . - ..- -- :. 01 Lb +b L5 -b f y b1 43 -b 1 ; -- b33 _b L L f0 - - 1V -0 f4 _ 1 0 - 0 - � - � -- � -�- --- -�- -�--- - !3 - � - 11-0 fL. b32. 10 -b 10-0 fU 14-b O! b0 - - O oe2 r b4 b14 b -o. ou' b30�� b3 4. ...3 b2 L b 1 b .... _ _ .. _ U-0 BBIB.B BCCCC CCC C ICCC CC CCCCC CCC CCICC CDDDD D DD DICDD CD DD -DDD D DD CD'DD DE.E E E E E EEIEEEIEEIEEEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22'24' 26' 28' 30' 32' 34' 36' 38'40' 42'44'46'48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'678'91(1 1 :1 :1 11112(2'2:22 213(333:3 313E414'4A:4 4 5(5 -6(6 777 -6" j4Z— CPN Woodworks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:41:19 Concept Mode: Column View Floor 2: 8' VAN r LOP t 11824 ❑ c58 � N .. --- 49' -6" . 42J !US - - ----- 4/ -b . ' 40 -0 1U I 40 -0 I VU� _ :. .. - - - 4 . -7 .. 0 4.5 ' c69. c2 : •c70 . "c71: - - - ' 4Z -0 V0, _ ... .. .5 -o 2323 - - _ _ - . _ .. _ - SL -n J 1 -b • Cff _ _ _ ._. ._ .-- ..50.-b 235 Ly. n - _. '- .._.... —.. .. -. .. .. - - -- . . . -- - - L23 -0 23J L/ -b n 1 - 1 - - L5 - a' °U. c25 c12 i c26 ; -: L4 b c2 // L7-a r 4 fi. Q - ! is -b f 1 • -c7 - - - - - - 1a -n JU _ : '14'-b (U © 1.5 O a .. 1 -b nn_ __. 1U bb4)._ - - -c3 -c76 -c79-- -_ --- : - 25 --0 l}!��` ot r 0 -b � bu Can .. 4 -b -n c55 c b.. BB \B.6 BC CC C CCCC1CCC CC CCCC C C CC CC1CC CD DM) D DD DFDDD CD DDDD D D DD CD1DD DEE E E E:EE.EEEEEEEiE EEEEEEEEEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0' 1'2'3'4'5'6'7'8'91 t 1 '1:1 :1 (1 '1 31022:2 :2 :3 "313.444 414 :4414(4 41415t5 5:5:5 • 1 4 2 -- (-€•)3 WoodWorks®Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 24, 2010 13:14:33 Concept Mode: Beam View Floor 2: 8' `(Z l-i..)I b31 • 105 ■ . - • . - . r - • : . - 49 6 _ 415 _b. 104 : '10.5 : . ' . 1 41'-0 1 UL0 _ - : - 40 - 0 . 1U1 : : : • .- - - -- - 40 -0 1VVb - - .... - - - - - - - • -. - 44 . -0 . • 4 y9- = b3 .:. . 4- 4L-0' •`J•! - -- - ......- ---- ......... .. • -- - b - . . • 3C b y 3 - - - - - - - . _ - ' - - J0-0 1 ! 30 b 34 -b g b 6.5 u 00 - - . ` . - . . - - -- - - -- • 01 • I . • t5b -- -- __ ---- r • 04 .. L LS b • 31' b 3U b 1V 25L .. .. - - -_ .. - .- Lb b 01.1 ._'; .. 1 b10 ' L6 n . • /0 b33 - ' • LU -0' (4 •' 1:5 f -b lL - -- -_. .. . . . - --- (0,___... -- - _ • i ;. .-:.. - - .. - --- - - . -- --- --- - - -.. . - . -- .. ___.. - .. -- - '14-0 b25- . _ _ _ _ - - L -n b f '�.15 < - -- .... -- - -- 1 i - 0 • nn. c) 00 .. n� b4 b14 ■. • : . b . b .. oti b30 - b35 4 -0 -_... b28 iF n BB\B.B BC CCC CCC CtCCC C CCCC. C CCC CC\CC CDDDD D DD DIDDD CD DD DD D D DD CD'DD DE:E E E E EEEIEEE!EEIE EEEEEEEEEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'67'8'31(1'1:1 :1 33: 3: 3 3! 3E373l 3W1 44A: 4 4( 4' 4( 41 5( 55: 5: 5 555' 5l 5! 6( 68:6:6 S' • • • 4 - C-7-)1-1 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 24, 2010 13:14:35 Concept Mode: Column View Floor 2: 8' Q O Z I c58 c14 oi).- `v VIJ� l 1050. ❑- ❑ .. ... . .. _ ... 49'-6 04 40 -b • 'I 0.5'" 4/ b• •I UL - - 40 -0 •iUi' 40-b • V0 : -c82 .. -_ : • .. . : c81:' : .: ' - - 4L -0 y3. • 3 / _ .. • vi sa b JV - 34-0 0'3 :. C4 :. - -" -- -- -- • - - - 31.1-0 OS L/. b.. Oi t0-O u c25 c12 c26 L3-0 ib © c73 �u� • . • 1 c78 fo n . • / • U - . b btf :: c77. bb - -. .. b4 C31 C76 - - C71 - - -- - - 5 ; "`c,'+ c Li C30 c32 • bU5. ❑ . n ® 0 b .c5/ C7II • : CO : . c55 - .c5 -6`C. `. : • � b .. o - .BB1B.BBCCCCCCCCtCCC CCCCCCCCCCCCICCCDDDDDDDDtDDD DDDDDDDDDDCD'DDDE.EEEEEE 1EEEEEEEEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91t1'121:1 (1:1(112(2 22:2 4;4:4 "4t 415(5 5;5:5 61661:6:6 , 6.'6(616(617(7 . 77:7 , 717(77' -6" • 4 ..---- Cic WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:44 Concept Mode: Beam View Floor 3: 17' 1050.. . - -: - :. 49' -6" I UP i - -- - -- - -- --- - -- - -- - -- : - 4/ -0 iUL • 4 0 - 0 IUI - - - -- - -- - . - - - - - 44-0 0 • • b35 b6 : 4L-0 4U -0 yb ----- ----- - - - -- - -- -- - -- _. - -- - _ .. _.. .. - - -- y4 - - . - : - : 325-0 yL • : • .... .: - .. 30 - yt ISy b7 35-13 JL b 231 ... 3 I - 250 - ` --,;-- -- - -- ------ --- _.. ... - - : . . - .- - - - -. -- - -- -- - .. : . - : - : SU 00 -0 _ -. - - - --- -, 03 - -- - - - - L(' -0 0L - -- :: .. : - -- -- : .. - - - -. -- --- -- .. -- -- - - --- -... -- - --- Lb-b bi - - L0 t5U' - -- - --- - - - ... - - _ - -- - - - --- ---- • (i b 9' LL4 b L..3.-0 ! r ' b22: L.I !3 .. "17-0 r i b20 b 21- - • 14 _ � ru . b 13 -b bu_.. _. - b1(b17 iL-b ut I 035 - - / -0 .. bl 4 - 0 7 O BB\B.B BC CC CC CC CitCC CC CCCC C CCC CCICCCD DD D D 00 DIDDD CD DD DD D D DD CDIDD DE,E E E EE E EtEEE EEIE EEEEEEEtEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 '1;1 :1.1.'1(1' 114222:2:2.2'- 2(2'21243(33;3:3 313!4(4 4A :4.4(4(4 5:5:5.5(5(55(56(6 6;6:6.6 '.6(676(6470•7:7.7 , 7.7(77' -6" • • 4 - (..,i, to WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:42 Concept Mode: Column View Floor 3: 17' 1050 .. _ :: 49'-6" 104 4tS - b IU3 4/ -0 IUL 40 -0 iU l - ' - - . -_ _ _ _ 40 -6 IVU - .. - .. .. _ _ -- 44-0 9 43 -b a ts c62 c61 c15 c16- :. 4L -0 Jf_._. 41 -b yb -- .. - . . -_.__ 3y._b y3 -- --- -' --- ._ _ 3f -U aL c17 :. 30 -b V : : i .; --- : : --- - '-' -'-- - - '- 34 tSy - 33 -b 231 .5 I -b.. tab : -- - -- c18: _ - .. _ ._•_ -- - - -- - -- - - 3U -0 23.5 : i [ L / -b is L. .. _.: .. :_.. _._..__.. ._- .. ,.._.. _ . : . .. --`-'- - -- —... _ -- -- —_ __ -- — _. .. .- - Z0 -0 61 L5. -b bu c39 c24 ... _ c23 e4 -b r r c5 1 1 -b /p "' - --- -- -- -- ('LSO. -- - -- - - ---- GU-b f5 ■ W -b f 4 .- - .... __. 11 __ .: .... : ... . .- -- -" - -- .-- -- _ 16 - r3 : Ir - f a c37 ■ I D -U f ... _ _ _ _ _. . : ' -... - - . --- -- .. -- - - - 14 - 3 c66 c63 2s - b ut2 • . IC. ' r1 c756520 c1 c6c74 0 ' - «. .. bid I -,I • -0. b -b Z . -b . I 0 3 BB1B.B BC CC C C CC CFCCC CC CCCC C C CC CCICC CDDDD D DD DODD CD DD DD D D OD CDIDD DE E E E EEE EFEEEEEiE E'EEEEEEIEEEEZ 0' 2 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'9111 1;1:1 "11 i S2t2'2:2:2 , 2!212 . 2 i2f3133;3:3 4A:4y1,'4(4 '5:5:5 515t566k:6 61670 7.77 -6" 4 ---- ---- Cn, '...../..- WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:38 Concept Mode: Beam View Roof: 25' 1050.. .. ... . . . - 49'-6" IU4 . - : '10 0 10.5 ' . : i . 1- - _ - - - 4/ -0 I UL " - - 40 -0 , IU'1 ` ---- - -- • , s .-- �---'-- 40.-0. --- - - - - --- - -- - .. 100 - - - - --- - - - - -. - - - - _ b . 44 .. • y9 .. 4S-0' 0 : : • b23 : .! -; - b24 : - ` . . . . . 4L - o 4I b 4U 0 :: : .. a s :.. _._- ._ : - lu 30 b a4 -o 1:5 SJ -0 - .52 -b 0/ .. . S1 -0 • bb' ----- - -- .. -- - - -.. _ - -- -' -- - -- ....--- 00 s 134 - •; - __... -:. - - - --. - _ -- - - -- 20 b 0,5 . 02- ---. _:. :--- . _ - .._ - - -- - - - • - - - • --- - - -. . L L Lb b 0. - - _ 43-0 24 -0 /0 LL -b / / :.b 25: 41 -0 • /b- -' - • - -- -_ • _ .. - - - __ - - _ .. -. _ 40 • --. -. -- - � — -: - 105 b ID b / 0 - .. .: .: ..... .. .. .......: .... - . _.. - - . . - I.Y-0 bd. . -. IL b v( 1I 00 — -- I - --- - _- -- - --" --- - - -- . - -" -- - - - -- 1U b -0 • 04 : b27.:,_ : .. -- �_b b G ) 1 0 0. b .. • 1711) . - le - � • �- -- �; - ° _ _ .. ... _ :' _ ... .. 4 b . 2•-b• . - - - --- • -- - - - .. .... -- - . - - - - - 1 - V 40 BBIB.B BCCCCCCCCtCCC CCCCCCCCCCCCICCCDDDDDDDDICDD DDDD- DDDDDDCD'DDDE.EEE E'EE EEEEEEEIEE+EEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'9111 :1 ;11113142(222:2 4A:44!4(4:4t4'.5(5 5:5:5 :5(5 :6 ;6(6'8(67(7 777 , 7.7(77` -6" • A7 __ 6:::(e;) WoodWorks®Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:40 Concept Mode: Column View Roof: 25' 1050 - - - ; - - - -- - - -- . - -- . -: - 11/14,,i - 40 -0 _ _.f .. .... - - - - -- - - - - - - -- - -- - - ---- -- - - ----- 4/ - 0 - .._. 4 0 -10 _ .: _ y ts c o .. c44 c 4s_0 4i -b ..5 -0 -0 3L-0 0/ 3 I -0.. 00 '- - ---'- -. - --- - `- - -: - -- --- -- - ..- _ - - -- --- - -- '•--- - -- - -- - 3U -0 t50 Ly. -0 • : -- --- - --- - -- -- .. -' -' 40 -0 04 01 .. - LO-0 44 -0 L•3-0 . LL -0 / / L ._ in c4 7 W-0 f4 : = ---- _.. : - - .. _ .__ -- --- - - --- It5-b /3 1 /-0 /L 113-0 / ( - - - .. - .. - 10-1 (U-- --- -- - - - _ ._ . .-- — .. ._ - -- .. 14' -b 025 - -- -. _ . ... - - - - - :- - -- . - -- - - .- - -- - - 14-0 131 .. -- 1 I -0 00 .: IU -b 00 043.- - -- -- -- c51c50- c52 --- -- - - --- c53._ . _ .. .. - -- -- : is _U °iS o o : tts>o tea, �_� :: bl -': i - - �-- . --- . - - - . -: - - -- ----- - ... - - - - --- - -' 0-0 005 S b BB(B.B BC CC C C CC C iCCC CC CCCCC CCC CCICCCD DD D D DD D}DDD CD DD DD D D DD CD'DD DE.E E E E EEEEEEEEE EEEEEEEfEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20 22' 24' 26' 28' 30' 32' 34' 36' 38'40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70 72' 74' 76' U1'2'3'4'5'3'7'8'51(1 1 :1 :1 ?111'1 t1( 2( 2' 2: 2: 2 2 :ZE2"2t2t3(33:3:3 4A:4-4'.4t4 44±5t5 5.5:5 7:77 /. — 6-19 COMPANY PROJECT (11 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:42 bt Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w61 Dead Partial UD 613.2 613.2 2.50 3.00 plf 2 w 61 Snow Partial UD 795.0 795.0 2.50 3.00 plf . 3 c61 Dead Point 622 2.50 lbs 4 c61 Snow Point 1192 2.50 lbs 5_ j28 Dead Full UDL 47.7 plf 6_j28 Live Full UDL 160.0 plf 7_j33 Dead Full UDL 120.2 plf 8 j33 Live Full UDL 370.0 plf MAXIMUM RE o Dead 391 1061 Live 795 1615 Total 1186 2676 Bearing: Load Comb #2 #3 Length 0.63 1.43 Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2 -Plys Self- weight of 6.59 plf included in loads; Lateral support: top = full, bottom= at supports: Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv* = 67 Fv' = 207 fv * /Fv' = 0.32 Bending( +) fb = 331 Fb' = 1138 fb /Fb' = 0.29 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.05 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 2676, V design* = 1237 lbs Bending( +): LC #3 = D +.75(L +S), M = 1178 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 158e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not 1 exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 4 - 61 0 COMPANY PROJECT r 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:43 b3 Design Check Calculation Sheet Sizer 7.1 • LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j45 Dead Full UDL 17.0 plf 2 j45 Live _ Full UDL 25.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 10' gl Dead 106 106 Live 112 112 Total 218 218 Bearing: Load Comb #2 #2 Length 0.50* _ 0.50* *Min. bearing length for beams is 1/2" for exterior supports Glulam- Unbal., West Species, 24F -V4 DF, 3- 118x9" Self- weight of 6.48 pif included in Toads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 10 Fv' = 265 fv /Fv' = 0.04 Bending( +) fb = 140 Fb' = 2400 fb /Fb' = 0.06 Live Defl'n 0.01 = <L/999 0.30 = L/360 0.04 Total Defl'n 0.03 = <L/999 0.45 = L/240 0.06 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 218, V design = 182 lbs Bending( +): LC #2 = D +L, M = 491 lbs -ft Deflection: LC #2 = D +L EI= 342e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLUTAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). • 601‘ COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:40 b6 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 c44 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 w44 Snow . Partial UD 431.2 431.2 0.00 2.00 plf 5 c45 Dead Point 444 5.00 lbs 6 c45 Snow Point 647 5.00 lbs 7 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8_w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9_j25 Dead Full UDL 120.2 plf 10 j25 _Live _ Full UDL 370.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : I D 61 Dead 1436 1389 Live 1803 1803 Total 3239 3192 Bearing: Load Comb #3 • #3 Length 1.73 1.70 Lumber n -ply, D.Fir -L, No.2, 2x12", 2 -Plys • Self- weight of 8.02 plf included in loads; Lateral support top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. G i COMPANY PROJECT f WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:50 b8 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1j14 Dead Full UDL 113.7 plf 2 114 Live Full UDL 350.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • 0 . 6 1 Dead 357 357 Live 1050 1050 Total 1407 1407 Bearing: Load Comb #2 #2 Length 0.75 0.75 Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 77 Fv' = 180 fv /Fv' = 0.43 Bending( +) fb = 963 Fb' = 1080 fb /Fb' = 0.89 Live Defl'n 0.07 = <L/999 0.20 = L/360 0.33 Total Defl'n 0.10 = L/712 0.30 = L/240 0.34 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 1407, V design = 1123 Ibs Bending( +): LC #2 = D +L, M = 2110 lbs -ft Deflection: LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 4- 613 COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:40 b9 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) • Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 j50 Dead Partial UD 113.7 113.7 0.00 1.50 plf 2_j50 Live Partial UD 350.0 350.0 0.00 1.50 plf 3_j14 Dead Partial UD 113.7 113.7 3.00 9.00 plf 4j14 Live Partial UD 350.0 350.0 3.00 9.00 plf 5 j51 Dead Partial UD 113.7 113.7 1.50 3.00 plf 6_j51 Live Partial UD 350.0 350.0 1.50 3.00 plf 7_j24 Dead Partial UD 120.2 120.2 0.00 3.00 plf 8_j24 Live Partial UD 370.0 370.0 0.00 3.00 plf 9_j25 Dead Partial UD 120.2 120.2 3.00 9.00 plf 10_j25 Live Partial UD 370.0 370.0 3.00 9.00 plf 11.j26 Dead Partial UD 120.2 120.2 9.00 12.00 plf 12_j26 Live Partial UD 370.0 370.0 9.00 12.00 plf 13_j52 Dead Partial UD 113.7 113.7 9.00 10.50 plf 14_j52 Live Partial UD 350.0 350.0 9.00 10.50 plf 15J53 Dead Partial UD 113.7 113.7 10.50 12.00 plf 16 j53 _Live Partial UD 350.0 350.0 10.50 12.00 _ plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : Icy 121 Dead 1478 1478 Live 4320 4320 Total 5798 • 5798 Bearing: Load Comb #2 #2 Length 1.74 _ 1.74 Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x10 -1/2" Self- weight of 12.39 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 138 Fv' = 265 fv /Fv' = 0.52 Bending( +) fb = 2217 Fb' = 2400 fb /Fb' = 0.92 Live Defl'n 0.38 = L/381 0.40 = L/360 0.94 Total Defl'n 0.57 = L/252 0.60 = L/240 0.95 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 5798, V design = 4953 lbs Bending( +): LC #2 = D +L, M = 17395 lbs -ft Deflection: LC #2 = D +L EI= 890e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I =impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Ecp(tension), Fcp(comp'n). Ci COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:43 b10 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs, pst, or pit ) Load Type Distribution Magnitude Location [ft] Pat - Start End Start End tern 1 w39 Dead Partial UD 311.0 311.0 0.00 4.50 No 2 w39 Live Partial UD 680.0 680.0 0.00 4.50 No 3 c39 Dead Point 267 2.00 No 4 Live Point 822 2.00 No 51j32 Dead Partial UD 120.2 120.2 0.00 0.50 No 6 j32 Live Partial UD 370.0 370.0 0.00 0.50 No 7 Dead Partial UD 120.2 120.2 1.00 4.00 No 8_j33 Live Partial UD 370.0 370.0 1.00 4.00 No 9 j34 Dead Partial UD 120.2 120.2 4.00 4.50 No 10_j34 Live Partial UD 370.0 370.0 4.00 4.50 No 11 j35 Dead Partial UD 120.2 120.2 4.50 7.50 No 12j35 Live Partial UD 370.0 370.0 4.50 7.50 No 13_j36 Dead Partial UD 113.7 113.7 4.50 16.50 No 14_j36 Live Partial UD 350.0 350.0 4.50 16.50 No 15 j37 Dead Partial UD 100.7 100.7 3.00 4.50 No 16 j37 Live Partial UD 310.0 310.0 3.00 4.50 No 17 j47 Dead Partial UD 120.2 120.2 7.50 13.50 No 18_j47 Live Partial UD 370.0 370.0 7.50 13.50 No 19 j48 Dead Partial UD 120.2 120.2 13.50 16.50 No 26348 Live Partial UD 370.0 370.0 13.50 16.50 No 21j49 Dead Partial UD 120.2 120.2 0.50 1.00 No 22_j49 Live Partial UD 370.0 370.0 0.50 1.00 No 23_b32 Dead Point 300 3.00 No 24 Live Point 922 3.00 No MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 1 . la 4'-6" 16-6') Dead 452 4067 1180 Live 847 11291 3436 Uplift 12 Total 1300 15358 4616 Bearing: Load Comb #2 #2 #2 Length 0.50• 4.24 1.27 Cb 1.00 1.09 1.00 'Min. bearing length for beams is 1/2" for exterior supports Glulam- Unbal., West Species, 24F -V4 DF, 5- 118x12" Self- weight of 14.16 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 265 fv /Fv' = 0.60 Bending( +) fb = 1074 Fb' = 2400 fb /Fb' = 0.45 Bending( -) fb = 1396 Fb' = 1844 fb /Fb' = 0.76 Live Defl'n 0.13 = <L/999 0.40 = L/360 - 0.32 Total Defl'n 0.19 = L/740 0.60 = L/240 0.32 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 F6'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fb'- 1850 1.00 1.00 1.00 0.997 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 8357, V design = 6496 lbs Bending( +): LC #2 = D +L, M = 11006 lbs -ft Bending( -): LC #2 = D +L, M = 14310 lbs -ft Deflection: LC 02 = D +L EI= 1328e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. Grades with equal bending capacity in the top and bottom edges of the beam cross- section are recommended for continuous beams. 4. GLULAM: bxd = actual breadth x actual depth. 5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 6. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). . iq ...... C fl c COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:44 b13 Design Check Calculation Sheet Sizer 7.1 • LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 w 58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 - c40 Dead Point 217 5.50 lbs 4 Live Point 668 5.50 lbs 5 Dead Point 518 5.00 lbs 6 c67 Snow Point 778 5.00 lbs 7 Dead Point 573 3.00 lbs 8 c68 Snow Point 942 3.00 lbs 9 w59 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10 w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12_j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13_j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14_j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15_j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16_j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 18 - b15 Live Point 389 3.50 lbs . 19 - b32 Dead Point 225 6.50 lbs 20 Live Point 693 6.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : .ate r...- - ' ...�..' _ z'• . �i.... i� +r., -----r„- - -'NC a =•-, -- 'gy m . ;: " �^.a '�. . '1"--7.r....-*--"- ' s. ` ,- i,n ""��„ : ..... r, _ .._,..,....M. `, L: ms, � . .6'. =- _," .. ' � .rc " --- a..; - '- ,4- - .ems, � 'I . r Nov* .. ` �' .-- :::--.'1".. `� .... -r. .- . - ";' s s . F -s=tar-, _ ` ham... - ' ,...�_�' - -1.;rte I 0' $t Dead 2561 3033 Live 2699 3789 Total 5261 6822 Bearing: Load Comb #3 #3 Length 1.88 2.44 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L/680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC #3 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC #3 = D +,75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D-dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. • 4- 6,,,, 1‘, COMPANY PROJECT ea WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:43 b14 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w33 Dead Partial UD 317.7 317.7 9.00 12.00 plf 2 w33 Live Partial UD 350.0 350.0 9.00 12.00 plf 3 c19 Dead Point 357 9.00 lbs 4_c19 Live Point 1050 9.00 lbs 5_c20 Dead Point 357 3.00 lbs 6 c20 Live Point 1050 3.00 lbs 7 Dead Partial UD 317.7 317.7 0.00 3.00 plf 8 w34 Live Partial UD 350.0 350.0 0.00 3.00 pif 9 c64 Dead Point 165 10.50 lbs . 10_c64 Snow Point 225 10.50 lbs 11 c65 Dead Point 165 1.50 lbs 12_c65 Snow Point 225 1.50 lbs 13_j36 Dead Full UDL 113.7 plf 14 j36 Live Full UDL 350.0 plf 15 j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 16 Live Partial UD 25.0 25.0 0.00 0.50 plf 171j44 Dead Partial UD 17.0 17.0 0.50 1.50 pif 18 j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 19 Dead Partial UD 17.0 17.0 1.50 10.50 plf 20_j45 Live Partial UD 25.0 25.0 1.50 10.50 plf 21 j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 22 Live Partial UD 25.0 25.0 10.50 12.00 plf MAXIMUM REACTIONS (lbs) and te amend BEARING LENGTHS (in) : P . ` "r'� . ...7. .ass" fi ` 4 � c+M.iL •4._t.' !P!^�. ti `T- C � g - ,1" - -• - •ft......." - ,.....iet ...:.::- • - - 7.- „4 .7 - 7 --.• -4 . ,:::::-:;-_,.- -' .2.;;; -;-:-:.-- .7!" -- ....L.... - -4. - - , •••■■•- rs) 10' 12( Dead 2351 2351 Live 4350 4350 Total 6701 6701 Bearing: Load Comb #2 #2 Length _ 2.39 2.39 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 163 Fv' = 310 fv /Fv' = 0.52 Bending( +) lb = 1769 Fb' = 2325 fb /Fb' = 0.76 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.43 = L/333 0.60 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 6701, V design = 5314 lbs Bending( +): LC #2 = D +L, M = 16851 lbs -ft Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. / 9 ---- 1.:,-1 ?)-- COMPANY PROJECT di WoodWorks® SOFTWARE FOR woos DESIGN June 24, 2010 12:41 b20 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j30 Dead Full UDL 21.7 plf 2 j30 Live Full UDL 60.0 plf MAXIMUM REACTIANS /dhcl and RFARINC: 1 FNCZTNS lint • 3'-6 Dead 46 46 Live 105 105 Total 151 151 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x6" Self- weight of 4.57 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 9 Fv' = 180 fv /Fv' = 0.05 Bending( +) fb = 90 Fb' = 1170 fb /Fb' = 0.08 Live Defl'n 0.00 = <L/999 0.12 = L/360 0.02 Total Defl'n 0.00 = <L/999 0.18 = L/240 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 151, V design = 111 lbs Bending( +): LC #2 = D +L, M = 132 lbs -ft Deflection: LC #2 = D +L EI= 78e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 1 4 - (ntoi) COMPANY PROJECT di WoodWorks® SOFIWAREFOR W00D OESICN June 24, 2010 12:50 b30 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j41 Dead Partial UD 68.0 68.0 2.00 4.00 plf 2_j41 Live Partial UD 100.0 100.0 2.00 4.00 plf 3_j42 Dead Partial UD 72.2 72.2 0.00 2.00 plf 4 j42 Live Partial UD 106.2 106.2 0.00 2.00 plf MAXIMUM REACTIONS IIhs1 and REARING I FNC THS lint 0 . 4 Dead 154 150 Live 209 203 Total 364 353 Bearing: Load Comb #2 #2 - Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x8" Self- weight of 6.03 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 15 Fv' = 180 fv /Fv' = 0.08 Bending( +) fb = 140 Fb' = 1170 fb /Fb' = 0.12 Live Defl'n 0.00 = <L/999 0.13 = L/360 0.03 Total Defl'n 0.01 = <L/999 0.20 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 364, V design = 253 lbs Bending( +): LC #2 = D +L, M = 359 lbs -ft Deflection: LC #2 = D +L EI= 178e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. / 4- 771 • COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR W000 06105 June 24, 2010 12:42 b31 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j65 Dead Partial UD 47.7 47.7 0.00 4.00 plf 2_j65 Live Partial UD 160.0 160.0 0.00 4.00 plf 3_j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4_j28 Live Partial UD 160.0 160.0 4.50 7.50 plf 5_j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 6_j62 Live Partial UD 160.0 160.0 7.50 11.00 plf 7_j63 Dead Partial UD 47.7 47.7 11.00 17.00 pif 8_j63 Live Partial UD 160.0 160.0 11.00 17.00 plf 9_j64 Dead Partial UD 47.7 47.7 17.00 20.00 plf 10_j64 Live Partial UD 160.0 160.0 17.00 20.00 plf 11_j66 Dead Partial UD 47.7 47.7 4.00 4.50 pif 12 j66 Live Partial UD 160.0 160.0 4.00 4.50 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 10' 20 Dead 619 619 Live 1600 1600 Total 2219 2219 Bearing: Load Comb #2 #2 Length 0.67 0.67 Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x12" Self- weight of 14.16 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 49 Fv' = 265 fv /Fv' = 0.18 Bending( +) fb = 1082 Fb' = 2400 fb /Fb' = 0.45 Live Defl'n 0.43 = L/553 0.67 = L/360 0.65 Total Defl'n 0.69 = L /350 1.00 = L/240 0.69 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 2219, V design = 1997 lbs Bending( +): LC #2 = D +L, M = 11095 lbs -ft Deflection: LC #2 = D +L El= 1328e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4-G2o COMPANY PROJECT i Wood\Norks .5.6024, 201013:15 b34 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet 00.67.9 LOADS 111...pe/,.. pN) : 1.0.2 Tyye Distribution Magnitude Location Lftl Unita Start End Start End • 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 pif 2 Snow Partial UD 795.0 795.0 0.00 2.00 plf 3 Dead Partial 0D 617.5 617.5 7.90 11.00 pif 4 Snow Partial UD 801.2 901.2 7.50 11.00 pif 5 Dead Point 1436 11.00 1b2 6 Snow Point 2404 11.00 lbs 1016 Dead Point 1399 17.00 lbs 9 Snow Point 2404 17.00 lbs 9 Dead Partial UD 617.5 617.5 17.00 18.00 plf 10 w61 Partial UD 601.2 901.2 17.00 18.00 plf 1 1 c61 Dead Point 622 7.00 1 12 Snow Point 1132 1,60 l04 ba 13_062 Dead Point 622 4.00 lbs 14 Snow Point 1192 4.00 lbs 15 Dead Partial UD 613.2 613.2 2.00 4.00 pl! 16 Snow Partial UD 1 95.0 195.0 2.00 4.00 pif 17 Dead Partial UD 617.5 617.5 19.00 20.00 pif 19 Snow Partial UD 001.2 601.2 10.00 20.00 plf 19 Dead Partial UD 613.2 613.2 7.00 7.50 pif 20 Snow Partial UD 795.0 795.0 7.00 7.50 plf 21_164 Dead Partial UD 47.7 47.7 17.00 19.00 plf 22_164 LSva Partial UD 160.0 160.0 1 18.00 pif 23_129 Dead Partial UD 47.7 47.7 4.90 7.50 pif 4_729 Live Partial UD 160.0 160.0 4.50 7.50 pif . 25_162 Dead Partial UD 40.7 47. 7.90 11.00 pif 26_162 Live Partial UD 160.0 160.0 .50 11.00 pif 27_ Dead Partial U0 120.2 120.2 0.00 2.00 pif 2? 143 Live Partial UD 370.0 370.0 0.00 2.00 plf 23132 Dead Partial UD 120.2 120.2 3.50 4.00 plf 30_132 Livw Partial UD 310.0 370.0 3.50 4.00 plf 31 00. 133 Daad Partial UD 120.2 120.2 4.50 7.50 plf 3 _133 Live Partial OD 370.0 370.0 4.50 7.50 pif 33 134 Dead Partial UD 120.2 120.2 7 .70 9.00 plf • 3: 134 Live Partial UD 370.0 370.0 7.70 9.00 pif 35_135 Dead Partial UD 120.2 120.2 9.00 11.00 pif 336_135 Live Partial UD 310.0 370.0 8.00 11.00 pif 37)47 Dead Partial UD 320.2 120.2 11.00 17.00 pif 30_147 Live Partial UD 370.0 370.0 11.00 17.00 pif 39_167 Dead Partial VD 120.2 120.2 2.00 3.50 pif 4 167 Live Partial UD 310.0 370.0 2.00 3.50 pif 41 149 Dead Partial UD 120.2 120.2 4.00 4.50 pif 42:149 Live Partial U0 370.0 370.0 4.00 4.50 pif 43_163 Dead Partial UD 47.7 47.7 11.00 17.00 pif 44_163 Live Partial UD 160.0 160.0 11.00 17.00 pif 45_165 Dead Partial UD 47.1 . 18.00 20.00 plf 46 165 4':3 Partial UD 160.0 16060.0 0 19.00 20.00 plf 0 41 166 Dead Partial UD 47.7 47.7 4.00 4.50 p1f 19_166 Live Partial UD 160.0 160.0 4.00 4.50 plf 49_169 Dead Partial U0 120.2 120.2 17.00 19.00 pif 50_166 Live Partial UD 370.0 3 17.00 10.00 pif • 51_169 Dead Partial UD 120.2 120.2 10.00 20.00 pif 52_161 Live Partial UD 310.0 310.0 19.00 20.00 pif 53_172 Dead Partial U0 47.7 47.7 2.00 4.00 pif 55 172 Live Partial UD 160.0 360.0 2.00 4.00 plf 55_173 Dead Partial UD 47.7 47.7 0.00 2.00 pif 56 173 Live Partial UD 160.0 160.0 0.00 2.00 elf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : " J3 Love 93 Dead 1 24g5 - 56 2 6 66 9309 Total 17361 il' -OS 2 egad 170: Lead ',tab 13 13 Ler.oth 5.21 _ 5.19 Glulam -Bat., West Species, 24F -V8 DF, 5- 118x22 -1/2" Sea-weight a/26.55 p9 included in bdsi Lateral a.W.6l!Dianna, bottom el supports: Analysis vs. Allowable Stress (psi) and Deflection (in) .sha Nos 2005: Crtterlon 2340:4ia Value Dealan Vale. Analysis/Galan Shear 192 305 fv /FV' - 0.60 Bending(*) fb - 2392 Fb' - 2604 fb /2b' - 0.92 Live Gfl': 0.40 1/595 0.67 - 1/260 0.60 Total Den, 0.94 . 1/225 1.00 ■ L/240 0.64 ADDITIONAL DATA: FACTORS: F/E CD 07 CL cV cfu cr Cfrt LCa Fv' 265 1.15 1.00 1.00 1.00 1.00 1.00 3 Fe'. 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 Fop' 650 1.00 1.00 - - - - 1.00 - - E' 1.9 pillion 1.00 1.00 - - - - 1.00 - - 3 Evan 0.95 million 1.00 1.00 - - - - 1.00 - - 3 shear : LC 13 - 0 -01, V . 17361, V 3.0149. 13992 100 34.631:9) LC 13 ■ 0..1511 M ■ 26179 lbs-ft Deflection: LC 13 ■ D EI. 9756606 10 -072 Total G Don action. 08118 :tlon ■ 2.50)0.43 Load flecticnl . Live Load .ctlon. (■dead 1.11v. S ■anew M.wind I.impact C.0074truct109 cL3-ccncantratea■ (All LC'a At listed in the Analyst. output) • Load co Donations: Icc -sec DESIGN NOTES: 1. Please witty that the default deflection Pangs are appropriate fa yobs application. 2. Gabon design thaws are for natertaO conforming to AITC 117 -2001 and manufactured 41 ercadancs with ANSOAITC A190.1 -1992 3. GLULAM: Cad 0 animal breadth 1 actual depth. • 4. Gh4am Beam shall be laterally supported according to the provisions of NOS Clause 3.3.3. 5. GLULAM: bearing length based an oraBer of Fop9.6abn), Fcp(compn). 4-, COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:49 b35 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 j21 Dead Partial UD 120.2 120.2 0.50 1.50 plf 2_j21 Live Partial UD 370.0 370.0 0.50 1.50 plf 3j59 Dead Partial UD 120.2 120.2 0.00 0.50 plf 4_j59 Live Partial UD 370.0 370.0 0.00 0.50 plf 5_j60 Dead Partial UD 120.2 120.2 1.50 3.00 plf 6 j60 Live Partial UD 370.0 370.0 1.50 3.00 plf MAXIMUM mot.,........_ 1 11.111, . ef...% . 1■.11.01,••..,, , • • I 34 Dead 188 188 Live 555 555 Total 743 743 Bearing: Load Comb #2 #2 Length 0.50* 0.50; `Min. bearing length for beams is 1/2" for exterior supports Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 31 Fv' = 180 fv /Fv' = 0.17 Bending( +) fb = 254 Fb' = 1080 fb /Fb' = 0.24 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv• 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 743, V design = 444 lbs Bending( +): LC #2 = D +L, M = 557 lbs -ft Deflection:,LC #2 D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I =impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. • -- 61 ci COMPANY PROJECT WoodWorks® SOFEWARE WOOD DESIGN June 24, 2010 12:51 c2 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_bl Dead Axial 1056 (Eccentricity = 0.00 in) 2 Rf.Live Axial 2153 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 2 -Plys Self- weight of 3.41 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 0.00= 0.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 196 Fc' = 980 fc /Fc' = 0.20 Axial Bearing fc = 196 Fc* = 1644 fc /Fc* = 0.12 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.596 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 3236 lbs Kf = 1.00 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. GD).3 COMPANY PROJECT Al WoodWorks SOFTWARE FOR WOOD DESIGN June 24, 2010 12:54 c12 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 c24 Dead Axial 1478 (Eccentricity = 0.00 in) 2_c24 Live Axial 4320 (Eccentricity = 0.00 in) 3 b10 Dead Axial 4067 (Eccentricity = 0.00 in) 4 Live Axial 11291 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): • 8 , Timber -soft, D.Fir -L, No.1, 6x6" Self- weight of 7.19 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 701 Fc' = 820 fc /Fc' = 0.86 Axial Bearing fc = 701 Fc* = 1000 fc /Fc* = 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC #. Fc' 1000 1.00 1.00 1.00 0.820 1.000 - - 1.00 1.00 2 Fc* 1000 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 21214 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 4- (22*4 COMPANY PROJECT WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:53 c23 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 b9 Dead Axial 1478 (Eccentricity = 0.00 in) 2 b9 Live Axial 4320 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 9 ' Lumber Post, Hem -Fir, No.2, 4x6" Self- weight of 3.98 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 303 Fc' = 379 fc /Fc' = 0.80 Axial Bearing fc = 303 Fc* = 1430 fc /Fc* = 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.265 1.100 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 5834 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. • COMPANY PROJECT %� i WoodWorks® SOF7WARFFOR woos DESIGN June 24, 2010 12:54 c26 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 c23 Dead Axial 1478 (Eccentricity = 0.00 in) 2 c23 Live Axial 4320 (Eccentricity = 0.00 in) 3 b10 Dead Axial 1180 (Eccentricity = 0.00 in) 4 Live Axial 3436 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): r R2 .a o `-Y S.�x +`� - mc * . r ire :c. to . ..` .ff .w +a • 0' 8' Timber -soft, Hem -Fir, No.2, 6x6" Self- weight of 6.25 plf included in Toads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 346 Fc' = 492 fc /Fc' = 0.70 Axial Bearing fc = 346 Fc* = 575 fc /Fc* = 0.60 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.00 1.00 1.00 0.856 1.000 - - 1.00 1.00 2 Fc* 575 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 10465 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 4--- 61 2L COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:52 c29 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b13 Dead Axial 3033 (Eccentricity = 0.00 in) 2 Rf.Live Axial 5052 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 3 -Plys Self- weight of 5.11 plf included in Toads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 328 Fc' = 439 fc /Fc' = 0.75 Axial Bearing fc = 328 Fc* = 1644 fc/Fc* = 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.267 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 8126 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. • 4 ..._ Ci7/ COMPANY PROJECT 1 WoodWorks® SOFFWARE FOR WOOD DESIGN June 24, 2010 12:55 c31 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_b13 Dead Axial 2561 (Eccentricity = 0.00 in) 2 b13 Rf.Live Axial 3599 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): D 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x4 ", 3 -Plys Self- weight of 3.25 plf included in Toads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 393 Fc' = 443 fc /Fc' = 0.89 Axial Bearing fc = 393 Fc* = 1719 fc /Fc* = 0.23 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.258 1.150 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 6186 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) • (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT i WoodWorks® soF FOR woos D $IG.v June 24, 2010 12:54 c39 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b21 Dead Axial 267 (Eccentricity = 0.00 in) 2 Live Axial 822 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): • 1 Lumber n -ply, Hem -Fir, No.2, 2x4 ", 2 -Plys Self- weight of 2.17 plf included in Toads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 106 Fc' = 171 fc /Fc' = 0.62 Axial Bearing fc = 106 Fc* = 1495 fc /Fc* = 0.07 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.114 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 1108 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. 6.0 2,9 COMPANY PROJECT i WoodWorks® SOFTWARE F02 WOOD DESIGN June 24, 2010 12:52 c55 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b30 Dead Axial 154 (Eccentricity = 0.00 in) 2 Live Axial 209 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 1 0' 8' Lumber Post, Hem -Fir, No.2, 4x4" Self- weight of 2.53 pif included in Toads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 31 Fc' = 470 fc /Fc' = 0.07 Axial Bearing fc = 31 Fc* = 1495 fc/Fc* = 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.315 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 384 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 0 BY A I ` f, , DATE: 0 - aO 1 O JOB NO.: C EN .... OF P RE: 'Beams w I LO k rat ReckthorS ❑ ❑ J D F W bec \ (o -> Watts 'c ,03 3o3 O f L ❑ be0. V -, Wails ao ail ao pS O J o W i yT\ t 9 kx as ao ' ao k. U Z W O a Z bear 3L-1 - watts a0 , doI 7: aoeg O U 5knce wM c .c i�S >> seismic. r c,�; s Z Or\I.k6 wlydk_ uut l t be ea t c. o c ,ci • 2 O U El f x O !L Z w ❑ Z O O x H d O • U N M"y o , v] a o ;xa uL i q --- (i ''')) \ COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 13:07 b6 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS (1bs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 c44 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 w44 Snow Partial UD 431.2 431.2 0.00 2.00 pif 5 c45 Dead Point 444 5.00 lbs 6_c45 Snow Point 647 5.00 lbs 7 w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 6 w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9_j25 Dead Full UDL 120.2 plf 10 j25 Live Full UDL 370.0 plf WIND1 Wind Point 800 2.00 lbs WIND2 Wind Point -910 5.00 lbs MAXIMUM REACTIONS llbsl and BEARING LENGTHS (inl : 0' 61 Dead 1436 1389 Live 2089 1803 Total 3525 3192 Bearing: Load Comb #4 #3 Length 1.88 1.70 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in loads; Lateral support top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.15 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 4 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 4 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #4 = D +.75(L +S +W) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. G32._ COMPANY PROJECT 1 WoodWorks® SOFT t' RE FOR W000 DESIGN June 24, 2010 13:07 b6 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 Dead Point 444 5.00 lbs 6 c45 Snow Point 647 5.00 lbs 7 w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8_w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9_j25 Dead Full UDL 120.2 pif 10 j25 Live Full UDL 370.0 plf WIND1 Wind Point -800 2.00 lbs WIND2 Wind Point 910 5.00 lbs MAXIMUM REACTIONS fibs) and BEARING LENGTHS lint • 1 • g1 Dead 1436 1389 Live 1803 2172 Total 3239 • 3561 Bearing: Load Comb #3 #4 Length 1.73 1.90 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 pif included in loads; Lateral support top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. ...._ COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 13:09 b14 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2 w68 Live Partial UD 350.0 350.0 9.00 10.50 plf 3 c19 Dead Point 357 9.00 lbs 4 c19 Live Point 1050 9.00 lbs 5 c20 Dead Point 357 3.00 lbs 6 Live Point 1050 3.00 lbs 7 w66 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8 w66 Live Partial UD 350.0 350.0 0.00 1.50 plf 9 c64 Dead Point 165 10.50 lbs 10 c64 Snow Point 225 10.50 lbs 11 c65 Dead Point 165 1.50 lbs 12_c65 Snow Point 225 1.50 lbs 13 - _w67 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14 w67 Live Partial UD 350.0 350.0 1.50 3.00 plf 15 Dead Partial UD 317.7 317.7 10.50 12.00 plf 16 w69 Live Partial UD 350.0 350.0 10.50 12.00 plf 17_j36 Dead Full UDL 113.7 plf 18_j36 Live Full UDL 350.0 plf 19j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20_j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 21_j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 23_j45 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24_j45 Live Partial UD 25.0 25.0 1.50 3.00 plf 25_j Dead Partial UD 17.0 17.0 10.50 12.00 plf 26 j46 Live Partial UD 25.0 25.0 10.50 12.00 plf 27_j70 Dead Partial UD 17.0 17.0 3.00 9.00 plf 28 170 Live Partial UD 25.0 25.0 3.00 9.00 plf 29_171 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30_571 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point 3560 3.00 lbs WIND2 Wind Point -3640 9.00 lbs wind3 Wind Point -3620 0.00 lbs winds Wind Point 3570 12.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : _ - ,aris Ar... - ..,,z,,., - - . .. .iJ .- . .s„•.: - . � ... 4 O. ..w. -- e . •. .n la 121 Dead 2207 2207 Live 4350 4350 Uplift 499 479 Total 6557 6557 Bearing: Load Comb #2 #2 Length _ 2.34 2 LSL, 1.55E, 2325Fb, 3- 112x14" Setf- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 310 fv /Fv' = 0.51 Bending( +) fb = 1735 Fb' = 2325 fb /Fb' = 0.75 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.42 = L/343 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 6557, V design = 5170 lbs . Bending( +): LC 92 = D +L, M = 16527 lbs -ft • Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L=live S =snow W =wind I= impact C= construction CLd =concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC • DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. / 6 3(1 COMPANY PROJECT I Wood £OFIWAREFOR WOOD DESIGN June 24, 2010 13:09 b14 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2_w68 Live Partial UD 350.0 350.0 9.00 10.50 plf 3 c19 Dead Point 357 9.00 lbs 4 Live Point 1050 9.00 lbs 5 c20 Dead Point 357 3.00 lbs 6 c20 Live Point 1050 3.00 lbs 7 w66 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8_w66 Live Partial UD 350.0 350.0 0.00 1.50 plf . 9 c64 Dead Point 165 10.50 lbs 10_c64 Snow Point 225 10.50 lbs 11 c65 Dead Point 165 1.50 lbs 12 c65 Snow Point 225 1.50 lbs 13 w67 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14 w67 Live Partial UD 350.0 350.0 1.50 3.00 plf 15 w69 Dead Partial UD 317.7 317.7 10.50 12.00 plf 16 w69 Live Partial UD 350.0 350.0 10.50 12.00 plf 17j36 Dead Full UDL 113.7 plf 18 j36 Live Full UDL 350.0 plf 19 - j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20 j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 21_j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22_j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 23j45 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24 j45 Live Partial UD 25.0 25.0 1.50 3.00 plf 25 - j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26 j46 Live Partial UD 25.0 25.0 10.50 12.00 plf 27 j70 Dead Partial UD 17.0 17.0 3.00 9.00 plf 28 170 Live Partial UD 25.0 25.0 3.00 9.00 plf 29_j71 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30_j71 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point -3560 3.00 lbs WIND2 Wind Point 3640 9.00 lbs wind3 Wind Point 3620 0.00 lbs winds Wind Point -3570 12.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : -• ., - -- - 9..._.. -±.- _- _.- .o..:.- r "._.. . • -- .- ... T�rs+ : . ems - f° -'?,. w.=w- l0' 121 Dead 2207 2207 Live 4826 4811 Total 7033 7018 Bearing: Load Comb #4 #4 Length 2.51 2.51 LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 310 fv /Fv' = 0.51 Bending) +) fb = 1735 Fb' = 2325 fb /Fb' = 0.75 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.42 = L/343 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 6557, V design = 5170 lbs • Bending( +): LC #2 = D +L, M = 16527 lbs -ft Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live 5 =snow W =wind I= impact C= construction CLd =concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer.' 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 4- GC-. COMPANY PROJECT 1 I i WoodWorks® 1 SOFTWARE FOR WOOD DESIGN June 24, 201013:11 b13 LC1 • Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or p11) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3_c40 Dead Point 217 5.50 lbs 4_c40 Live Point 668 5.50 lbs 5_c67 Dead Point 518 5.00 lbs 6_c67 • Snow Point 778 5.00 lbs 7_c68 Dead Point 573 3.00 lbs 8_c68 Snow Point 942 3.00 lbs w 959 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10_w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12_j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13_j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14_j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15_j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16 j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 Dead Point 126 3.50 lbs 18 Live Point 389 3.50 lbs 19 b32 Dead Point 225 6.50 lbs 20 b32 Live Point 693 6.50 lbs W1 Wind Point 6590 0.00 lbs W2 Wind Point -6590 3.00 lbs W3 Wind Point 6590 5.00 lbs W4 Wind Point -6590 8.00 lbs MAXIMUM RFACTIONS /thalami BFARIN(; I FNGTHS fin) : y=4. - - rte.. j .r, s,. r� -. - - �.-.,... u ._ , -- i -- - a. - "X;;41 ..- �,.-- •• --- �- ..- •-- !n.,.- . " , - � ►... "'.. . : -• ° •, ••• - : -.. a,..... "' . -i n... • .. g,.,- _ -- fir ,...f.. .;A :.wt _ = a. -- ._,. `� e4∎- •3^- -� = • --1... ....17,: - .......,_•- _. .'. �c ._ "'- �+�' -- � - -S l..ni . . ^+�., n Y am ' -'�w.aY4�° � .o+.,. - ;r -r .cc fir. • T** ` -,�..c .,.- *a . ��.,. _ «..- +. ' �' •i !.>. - I a 81 Dead 2561 3033 Live 6406 3789 Uplift 3098 Total 8968 • 6822 Bearing: Load Comb 94 83 Length 3.20 2.44 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L /680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC 63 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC 83 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC 83 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. • . - (1 3c, COMPANY PROJECT i WoodWorks SOFIWARFFOR WOOD DESIGN June 24, 2010 13:11 b13 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pit) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 c40 Dead Point 217 5.50 lbs 4 c40 Live Point 668 5.50 lbs 5 c67 Dead Point 518 5.00 lbs 6 c67 Snow Point 778 5.00 lbs 7 c68 Dead Point 573 3.00 lbs 8 c68 Snow Point 942 3.00 lbs 9 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10 w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12_j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13_j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14_j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15_j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16 j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 18 b15 Live Point 389 3.50 lbs 19 Dead Point 225 6.50 lbs 20 b32 Live Point 693 6.50 lbs W1 Wind Point -6590 0.00 lbs W2 Wind Point 6590 3.00 lbs W3 Wind Point -6590 5.00 lbs W4 Wind Point 6590 8.00 lbs MAXIMUM REACT - UL Island FARINSJ FNGTHS finl : p '' �r3 i „;;,...„_----7- =' ;L i- � -, -.-%C` - war . - -r c. • - "�.r� ='- fit• . "•�..' ¢- r.7' 6.-4' -:- J��rs.... _: -- *.- ►°- .•- ,- -t =a F.�.. .441 ,m.R - - -- `~.. - --.......V r- , ...tea,. '=` z -'seer c7 l a 81 Dead 2561 3033 Live 2699 7496 Uplift 3381 Total 5261 10529 Bearing: Load Comb #3 #4 Length 1.88 _ 3.76 LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L /680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC #3 = D+.75(L+S), M = 12340 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 4 -6,1`;73--- COMPANY PROJECT 1 %Vo VVo r k s ® S 24,20101310 034 LC1 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet 0024 7.1 LOADS ( aa,pe.o. Pup : Load Typo Dlatrlbutlon .a ;nlcude Location 1ft1 Units End Start End 1o62 Dead Partial UD ' 613.2 613.2 0.00 2.00 pif _ 2462 Snow Partial U0 7 35.0 795.0 0.00 2.00 plf 3_029 Dead Partial UD 617.5 617.5 1.50 11.00 plf 4 029 Snow Partial 'JD 601.2 901.2 1.50 11.00 plf 5 Dead Point 1436 11.00 lbs 6_015 - Point 2404 11.00 101 016 Dead Point 1399 17.00 lb. P 016 Snow Point 2404 17.00 lbs 9 Dead Partial 00 617.5 617.5 17.00 19.00 pif 10 064 Snow 64:00.1 00 901.2 601.2 17.00 19.00 pif ll 061 Daad Point 622 7.00 lbe 12 Snov Point 1192 7.00 lbs 10062 Dyad Point 622 4.00 lbs 14 0700 97100 1192 1.00 lbs 15 Dead Partial ID 613.2 613.2 2.00 4.00 plf 16 Snow Partial UD 735.0 795.0 2.00 1.00 pif 17 065 Dead Partial UD 61 617.5 19.00 20.00 pif 19 v65 Snow Partial UD 901.2 601.2 19.00 20.00 pif 19 Dyad Partial UD 613.2 613.2 7.00 7.50 pif 20 0000 Partial UD 795.0 795.0 7.00 7.50 plf 21_164 Dead Partial UD 47.7 17.7 17.00 13.00 pif 22_164 Live Partial UD 160.0 160.0 17.00 19.00 pif 23_129 Dead Partial UD 47.7 47.7 1.50 7.50 plf 24_129 Live Partial UD 160.0 160.0 1.50 7.50 plf 25_162 Dead Partial UD 47.0 47.7 7.50 11.00 pif 16_362 Live Partial UD 160.0 • 160.0 7.50 11.00 plf 27_149 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29_140 Liva Partial UD 370.0 370.0 0.00 2.00 pif 29_132 Deed Partial UD 120.2 120.2 3.50 4.00 plf 30_132 Live Partial UD 370.0 3 3.10 4.00 pif 31_133 Dead Partial UD 120.2 120.2 1.50 0.50 pif 2 133 Live Partial UD 370.0 370.0 4.50 7.50 pif 33_134 Dead Partial 70 120.2 120.2 7.50 9.00 plf 34_331 Live Partial U0 3 370.0 7.50 9.00 plf 35_135 Dead Partial UD 120.2 120.2 9.00 11.00 pit 36_135 Live Partial UD 3 370.0 6.00 11.00 pif 37_347 Dead Partial UD 120.2 120.2 11.00 17.00 pif 39_147 Live Partial VD 370.0 370.0 11.00 17.00 pif 39_167 Dyad Partial U0 120.2 120.2 2.00 3.50 pif 40_167 Live Partial UD 370.0 370.7 2.00 3.50 Of 41_340 Deed Partial U0 120.2 120.2 4.00 4.50 plf 42_149 Livo Partial U0 370.0 370.0 4.00 4.50 pif 43_163 Doad Partial UD 17.7 47.7 11.00 17.00 plf 44_163 L1+. Partial UD 160.0 160.0 11.00 17.00 pif 45_365 Dead Partial UD 47.7 47.7 19.00 20.00 pif 46_365 Live Partial VD 160.0 160.0 19.00 20.00 pif 47 366 Dyad Partial UD 47.7 47.7 4.00 4.50 pif 48 166 Live Partial VD 160.0 160.0 4.00 4.50 pif 49_160 Dead Partial UD 12D.2 120.2 17.00 19.00 plf 50_160 11va Partial UD 3 370.0 17.00 19.00 pif 51 169 Dead Partial UD 120.2 120.2 19.00 20.00 pif 52:169 Live Partial UD 370.0 370.0 15.00 20.00 plf 53172 Dyad Partial UD 47.7 47.7 2.00 4.00 Of 54 372 Live Partial UD 160.0 160.0 2.00 4.00 plf 55 173 Dead Partial UD 47.7 47.7 0.00 2.00 pif 56_1 Live Partial UD 167.0 160.0 0.00 2.00 plf W1 Wind Point 5950 0.00 Its 112 Wind Point -5450 4.00 104 W3 Wind Point 5050 11.00 lba W4 Mind Point -5850 17.00 164 WS 7lnd Point _ 5950 20.00 1bs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (In) : Dead LA ]hz, Live 12150 12172 Total 19555 19499 9earin7: Load Comb 44 14 Leneth 5.97 5.75 Glulam -Bal., West Species, 24F -V8 DF, 5- 118x22 -1/2" Self-welds el 26.55 p0 Included M bads: 68024.6 support Ispy M, bottom= el supports: Analysis vs. Allowable Stress (psi) and Deflection (In) using NDS 2005: Criterion 10.10,ls Value Deafen Value 10.1V.1. /Casson Shaer iv • 19Z F7' ■ 305 fv /FV' • 0.60 6ond105).) 1b • 2392 Flo' • 2604 fb /FD' • 0. Live 0401'n 0.40 • 1/595 0.67 • L /360 0.60 Total Oefl'n 0.84 • L /205 1.00 • L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CH Cc CL 74 Cfu Cr Cf:c Notes Cn LC4 60' 265 1.15 1.00 1.00 1.00 1.00 1.00 3 61'• 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 Fop' 650 1.00 1.00 - E 1.8 million 1.00 1.00 - - - 1.00 - - 001n' 0.65 010110, 1.00 1.00 - - - - 1.00 - - 3 Shear : LC 43 • 0+.7516 V e 17361, V 3,0170 • 13982 Ito 6and1ng1.1: LC 13 • 0+.7516401. 0 e 96099 lea -ft Deflection: LC 42 • 7+.1516411 EI• 9756,06 1b -102 Total Doflecclon • 1.501Dead Load 0.flection) • Live Load Deflection. o (D•Eead L•live 5•,00+ w.wind I•110. 0,0ns::0ction CLd■_on- ont_eted) 0 1 1 1 0 0 ' . . : , Slated to the Analyslc output) Load combination.: 1CC -I6C DESIGN NOTES: 1. Please verify Val IM defalor d0eddn 0+7, are appropriate for your appaca1m. 2. Ghdan design values ere for maledab conforming to ANC 117 -2001 end menufa6Lred In accordance wW ANSVAITC AIWA-1392 3. GLULAM: bed a DOA bre.Nt 8 actual depth • 4. Gularn Beams 000,1 be bleragy supported warding to Um provisions of NOS Clause 3.3.3. 5. GLULAM: bearing length based on sender of Fcp(lerulon), Fcpleompn). 4 -C3v COMPANY PROJECT .' I WoodVVo r ks® June 24, 201013:19 b34 LC2 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Sire 7.1 LOADS ( tbs. Pa. orpN) t Load Typs Distribution Magnitude Location 1701 Units Start End Start End 1_062 Dead Partial UD 613.2 613.2 0.06 2.00 pif w62 Snow Partial UD 795.0 195.0 0.00 2.00 plf 3_029 0..d 6.6 :181 U0 611.5 611.5 1.50 11.00 plf 029 Snow Partial UD 601.2 601.2 1.50 11.00 pif 5 Dead Paint 1136 11.00 lee 6_015 Snow Point 2404 11.00 lea 016 Dead Point 1399 17.00 lbs 6016 Snow 77105 2404 11.00 103 9 Dead Partial UD 617.5 611.5 11.00 19.00 pif 10_064 Snow Pa :01.1 UD 901.2 801.2 17.00 19.00 pif 11 061 Dead Point 622 7.00 lea 12 Snow Point 1192 7.00 10. 13:062 Dead 71120 622 4.00 lbs 14 062 Snow 7o1n0 1192 4.00 lbs 15 Dead Partial ID 613.2 613.2 2.00 4.00 plf 16 Snow P•rtlel Up 195.0 795.0 2.00 4.00 plf 17 065 Dead Partial ID 617.5 611.5 19.00 20.00 plf 18 065 Snow Partial UD 901.2 801.2 19.00 20.00 pif 19 Dead Partial U0 613.2 613.2 7.00 1.50 plf 20 w71 Snow Partial U0 795.0 795.0 7.00 7.50 pif 21_164 Dead Partial U0 47.1 47.7 17.00 19.00 pif 22_164 Live Partial UD 160.0 160.0 17.00 10.00 pif 2 129 Dead 7.251•1 UD 4 47.7 4.50 7.50 011 24_126 Live Partial UD 160.0 160.0 4.50 7.50 p1! 25_162 Daad P.ri101 UD 47.7 41.7 1.50 11.00 pif 26_362 Live Partial ID 160.0 160.0 7.50 11.00 pif 2 7_148 Dead Partial UD 120.2 120.2 0.00 2.00 pif 29_146 Live Partial ID 370.0 370.0 0.00 2.00 pl. 29 132 Dead Partial UD 120.2 120.2 3.50 4.00 pif 30_332 Live Partial UD 370.0 370.0 3.50 4.00 plf 31_133 Dead Partial UD 120.2 120.2 4.50 7.50 pif 32 133 Live Partial UD 370.0 370.0 4.50 7.50 plf 33 134 Dead Par :1411 UD 120.2 120.2 7.50 9.00 pif 34_134 L1va Partial UD 370.0 370.0 7.50 9.00 pif 35_135 Dead Partial ID 120.2 120.2 9.00 11.00 plf 36_135 Live Partial Uo 370.0 370.0 9.00 11.00 pif 37_347 Dead Partial UD 120.2 120.2 11.00 17.00 plf 39_)47 Live Partial UD 310.0 370.0 11.00 17.00 pif 39_)67 Dead Partial UD 120.2 120.2 2.00 3.50 pif 40_)67 Live Partial UD 370.0 370.0 2.00 3.50 pif 41_149 Dead Partial UD 120.2 120.2 4.00 4.50 plf 42_149 Live Partial UD 370.0 310.0 4.00 4.50 pif 43_163 Dead Partial UD 47.7 47.7 11.00 17.00 plf 44_363 Live Partial UD 160.0 160.0 11.00 11.00 plf 45_365 Lead Partial ID 47.7 47.7 19.00 20.00 pif 46_165 Live Partial UD 160.0 160.0 19.00 20.00 p12 47_166 Dead Partial UD 17.1 47.7 4.00 0.50 of 46_166 Live Partial U0 160.0 160.0 4.00 4.50 plf 49_159 Dead Partial UO 120.2 120.2 17.00 19.00 p1[ 50_168 Live Partial UD 3 370.0 17.00 19.00 pif 51_167 Dead Partial UD 120.2 120.2 19.00 20.00 p1[ 52 569 Live Partial UD 370.0 370.0 19.00 20.00 pi! 53 172 Dead 7a404el UD 41.7 47.7 2.00 4.00 pif 54_172 Live Partial UD 160.0 160.0 2.00 4.00 p1! 55_1 Dead Partial UD 17.7 47.7 0.00 2.00 plf 56_)73 Live Partial UD 160.0 160.0 0.00 2.00 Flf 01 0124 Point -5950 0.00 lbs 02 Wind Point 5950 4.00 lbs 403 Wind Point -5950 11.00 lb. 04 Wind Point 5950 11.00 lbs W5 Wind Point -5950 20.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 1 Dead r 5 Live 9956 9978 Total 17361 17305 6.ering: Load C eb 43 13 Length 5.01 5.194 Glulam -BaI., West Species, 24F -V8 DF, 5- 118x22 -1/2" Sag+. 41,4 of 2455 pd nduded In loads; Lateral support top. rot Dawn- a supports; Analysis vs. Allowable Stress (psi) and Deflection (In) using NW 2905 Criterion An3t' :s /s Value Denton Value Analvele /D331an Shear 192 Fv . 305 !v /Fv' - 0.60 Bending( -1 !b - 2372 Fb' - 2604 fb /Fb' - 0.92 Live Defl'n 0.41 ■ L /501 0.67 - 0/360 0.61 7 Del1'0 0.04 ■ L/2,4 1.00 - L /240 0.04 ADDITIONAL DATA: FACTORS: 7/0 CD GM Ct CL C/ Cfu Cr C!rt . Cn LCI 79' 265 1.15 1.00 1.00 1.00 1.00 1.00 3 00'• 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 Fcp• 650 1.00 1.00 - - - - 1.00 - E' 1.9 million. 1.00 1.00 - - - - 1.00 - - 4 Coin' 0.95 0111142 1.00 1.00 - - - - 1.00 - - Shear , LC 03 . 0.75(1.6). V - 17361, V design ■ 139:2 1be Pen01ng1.1: LC 13 - 0..75(4051, M ■ 66169 lbs -ft Deflection: LC i4 - 0•.1510.000) El. 4756.06 11-1n: Total 03!1,:111n - 1.50103.4 Wed Deflection) • Live Load Deflection. (D.Se.0 L■11ve S■enow 0.w1n4 1- 1174100 C.cpnatruction CL3- 1cncenirate31 (All LC are listed In the Analysis autpuS( Load combinations: 100 -100 DESIGN NOTES: 1. Nemo verify that the defau9 deflection 0NS are eppoplab for your epp*mbo0. 2. Ghmm deaiyn values are for materials cmftmi g to ARC 117 -2001 end nwMaclued in accordance w80 ANSUAITC A190.1 -1992 3. GLULAM: bid . actual breadth 4 actual depth. 4. G66ar7 Seems shed be Iatea27 supported according to the provisions of NOS CIaSm 3.3.3. 5. GLULAM: bearing length basal cc eoW' er of Feptletvm), Fcp(oonp'n). /41 Cp,9 COMPANY PROJECT I I WoodVVorks® June 24. 25101320 b34 LC2 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Star 7.1 LOADS l lb* W.Ofl : Load Type 004001butlon Magnitude Looatlon Eft] Unita Start End Start End 1 w62 Dead Partial UO 613.2 613.2 0.00 2.00 pif 2 Snow Partial UD 795.0 795.0 0.00 2.00 pif 9829 Deed Partial UD 617.5 617.5 7.50 11.00 pif 4 Snow Partial U0 801.2 901.2 7.50 11.00 plf 5 Dead Point 1436 11.00 10. 6_015 Snow Point 2404 11.00 lba 7 bad Point 1399 17.00 lba 9 016 Snow Point 2104 17.00 lba 9 Dead Partial U0 617.5 617.5 17.00 19.00 plf IO 064 Snow Partial UO 901.2 801.2 17.00 19.00 plf 11 Dead P01nt 622 7.00 lba 12 761 Snow Point 1192 7.00 104 13:062 Dead Paint 622 1.00 1ta 14 063 Snow Point 1192 1.00 lbs 15 Dead Partial UD 613.2 613.2 2.00 4.00 plf 16:v63 Snow Partial UD 795.0 795.0 2.00 4.00 Of 17x65 Deed Partial UD 617.5 617.5 18.00 20.00 plf 19x65 Snow Partial UD 801.2 801.2 18.00 20.00 pif 19 Dead Partial UD 613.2 613.2 7.00 7.50 pif 20 Snow Partial 0 795.0 795.0 7.00 7.50 pif 21 164 Daad Partial UD 47.7 47.7 17.00 18.00 pif 22_164 Llvo Partial UD 160.0 160.0 17.00 18.00 plf 23_129 Dead Partlel UD 47.7 47.7 4.50 7.50 plf 2 3 66 Live Partial 0 160.0 160.0 4.50 7.50 plf 25162 Dead Partial UD 47.7 47.7 7.50 11.00 Of 26_162 Live Partial UD 160.0 160.0 7.50 11.00 plf 27_146 Dead Partial UD 120.2 120.2 0.00 2.00 pif 20_249 Live Partial UD 370.0 370.0 0.00 2.00 pif 29_232 Ned Partial ID 120.2 120.2 3.50 4.00 plf 30_132 Live Partial UD 370.0 370.0 3.50 4.00 plf 31_133 Dead Partial U0 120.2 120.2 4.50 7.50 plf 32_133 Live Partial U0 370.0 3)0.0 4.50 7.50 plf 33_134 Dyad Partial UD 120.2 320.2 7.50 8.00 plf 34_134 Llva Partial UD 370.0 370.0 7.50 9.00 pif 35)35 Dead Partial UD 120.2 120.2 9.00 11.00 pif 36_135 L1ve Partial UD 370.0 370.0 5.00 11.00 pIf 31 Dyad Partial UD 120.2 120.2 11.00 17.00 plf 38_147 Live Partial UD 370.0 370.0 11.00 17.00 plf 39_367 Dead Partial UD 120.2 120.2 2.00 3.50 plf 40_367 Live Partial UD 370.0 310.0 2.00 3.50 plf 41_149 Dead Partial UD 120.2 120.2 4.00 4.50 pif 2_149 Liva Partial UD 370.0 370.0 4.00 4.50 pif 43_163 Dead Partial UD 47.7 47.7 11.00 17.00 plf 44_163 Live Partial 00 360.0 160.0 11.00 17.00 pif 45_165 Doad Pertlal UD 4).) 47.1 15.00 20.00 pif 46_165 Live Partial UD 160.0 160.0 19.00 20.00 pif 4) 166 Dead Partial UD 47.7 47.7 4.00 4.50 pif 48_166 Liva Partial UD 160.0 160.0 4.00 4.50 plf 204 49_169 Dead Partial UO 120.2 120.2 17.00 09.00 p1 50_169 Live Partial UD 370.0 310.0 17.00 19.00 plf 41_169 Dead Partial UD 120.2 120.2 19.00 20.00 pif 52_169 Live Partial UD 3 370.0 15.00 20.00 pif 53_172 Doad Partial UD 47.7 47.7 2.00 4.00 al: ' 54_172 Live Partial UD 160.0 160.0 2.00 4.00 plf 55_173 Doad Partial UO 47.7 47.7 0.00 2.00 plf 56 173 0 Partial UD 160.0 160.0 0.00 2.00 pif 22 O0r Mlyd Point -5950 0.00 lbs 02 Mird Point 5950 4.00 Iba H3 Mird Point -5950 11.00 Iba 44 nird Point 5950 17.00 lba 05 Yird _ Point -5850 20.00 lb. MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : • • 4 1 1:6 Dead 4405 1327 Live 9956 9979 Total 1)361 17305 P 10.8 0 : Load Cora 13 63 Length 5.21 5.19 Glulam -BaI., West Species, 24F -V8 DF, 5- 118x22 -1/2" EN7 e125.55 p9 included In Iods; LHCa1 support 1op• M, bete . d mew* Analysis vs. Allowable Stress (psi) and Deflection (in) lasing Noe epee: . Criterion Anat valve Deafen value 0nalvals /Dne10n Sheer 182 Fv' - 305 1v /FV' ■ 0.60 90001011 fb ■ 2392 Fb' - 2604 (b /M' - 0.92 Live Oef1'11 0.41 ■ L /593 0.67 - 1/360 0.61 Total Wf1'n 0.94 - L/294 1.00 ■ L /240 0.94 ADDITIONAL DATA: FACTORS: F/E CD 01 CC CL CV Cfu Cr Cf:t Mote. Cn LC4 F0' 265 1.15 1.00 2.00 - - - - 1.00 1.00 1.00 3 Ft 2400 1.15 1.00 1.00 1.000 0.941 1.00 1.00 1.00 1.00 - 3 Fop' 650 1.00 1.00 - - - - 1.00 - E' 1.5 0111100 1.00 1.00 - - - - 1.00 - - Dein' 0.95 million 1.00 1.00 - Sheer : LC 43 ■ 0.. v ■ 17361, v dea19n ■ 13982 lba 0104100(61: LC 43 - 01.75(0•1), 0 86189 114-10 Doflocticn: LC 44 - 0•. EI• 9756,06 15 -in2 Total 0af10ccl :n ■ 1.50(Dead Load Deflection) • Live Load Deflection. (0.dead 1•11v. 1■an00 H.vtnd 1■1¢pa:t 0.00045ructl70 CIG- concentratec) (A11 LC o a listed In the 704/7810 output) Load combinations: ICC -00C DESIGN NOTES: 1. Please wiry Vol Um ENNUI de0sclbn Nets ere epploprbte UN your appenedon. 2. G1G710 design a'aem me b aotahb centorneng b AMC 117 -2001 end mendacdred In accordance wen AMSVAITC A190.1 -1992 3. GLULAM: Lad • =1 Lread914 mdse depth. 0. G16m Reams 6100 be Weedy w 99095.0 atwdolg b Vn pmesbm of NDS Chum 33.3. 5. 0101924: bearing length bud on mew of A:Adensbn), FeNeen9m). - 61(-10 COMPANY PROJECT di WoodWorks® SOFIWAREFOR WOOD DESIGN June 24, 201013:23 b34 LC1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf) : Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 3 w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5 c15 Dead Point 1436 11.00 lbs 7- C16 Dead Point 1389 17.00 lbs 9 Dead Partial UD 617.5 617.5 17.00 18.00 pif 11 c61 Dead Point 622 7.00 lbs 13 Dead Point 622 4.00 lbs 15 w63 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17_w65 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19_w71 Dead Partial UD 613.2 613.2 7.00 7.50 plf 21 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23 j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25_j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 27 j48 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29 j32 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31_j33 Dead Partial UD 120.2 120.2 4.50 7.50 plf 33j34 Dead Partial UD 120.2 120.2 7.50 8.00 plf 35_j35 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39_j67 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41 j49 Dead Partial UD 120.2 120.2 4.00 4.50 plf 43 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45_j65 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47_j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49 j68 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51_j69 Dead Partial UD 120.2 120.2 18.00 20.00 plf 53_j72 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55 j73 Dead Partial UD 47.7 47.7 0.00 2.00 plf W1 Wind Point 5850 0.00 • lbs W2 Wind Point -5850 4.00 lbs W3 Wind Point 5850 11.00 lbs W4 Wind Point -5850 17.00 lbs W5 Wind Point 5850 20.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : A la 201 Dead 7189 6822 Live 156 302 Total 7238 7018 Bearing: Load Comb #2 #2 Length 2.17 2.11 Glulam-Bal., West Species, 24F -V8 DF, 5- 118x22 -1/2" Self- weight of 26.55 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 74 Fv' = 238 fv /Fv' = 0.31 Bending( +) fb = 950 Fb' = 2038 fb /Fb' = 0.47 Live Defl'n negligible . Total Defl'n 0.41 = L /585 1.00 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC 01 = D only, V = 7189, V design = 5674 lbs . Bending( +): LC #1 = D only, M = 34217 lbs -ft Deflection: LC #1 = D only EI= 8756e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (A11 LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). • 4-G141 COMPANY PROJECT i WoodWorks° SOh7WAREFOR WOOD DOWN June 24, 2010 13:22 b34 LC2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, pst, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 Dead Partial UD 613.2 613.2 0.00 2.00 plf 3_w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5__c15 Dead Point 1436 11.00 lbs 7 c16 Dead Point 1389 17.00 lbs 9 w64 Dead Partial UD 617.5 617.5 17.00 18.00 plf • 11 c61 Dead Point 622 7.00 lbs 13 c62 Dead Point 622 4.00 lbs 15 w63 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19_w71 . Dead Partial UD 613.2 613.2 7.00 7.50 plf 21 j64 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23_j28 Dead Partial 110 47.7 47.7 4.50 7.50 plf 25_j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 27_j48 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29_j32 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31_j Dead Partial UD 120.2 120.2 4.50 7.50 plf 33_j34 Dead Partial UD 120.2 120.2 7.50 8.00 plf 35_j35 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39_j67 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41 j49 Dead Partial UD 120.2 120.2 4.00 4.50 plf 43_j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45_j65 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47_j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49j68 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51 j69 Dead Partial UD 120.2 120.2 18.00 20.00 plf 53 j72 Dead Partial UD 47.7 47.7 2.00 4.00 pif 55_j73 Dead Partial UD 47.7 47.7 0.00 2.00 plf . W1 Wind Point -5850 0.00 lbs W2 Wind Point 5850 4.00 lbs W3 Wind Point -5850 11.00 lbs W4 Wind Point 5850 17.00 lbs W5 Wind Point -5850 20.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : l a 201 Dead 7189 6822 Live Total 7189 6822 Bearing: Load Comb #1 • #1 Length 2.16 2.05 Glulam-Bal., West Species, 24F -V8 DF, 5- 1/8x22 -1/2" Self- weight of 26.55 plf included in loads; Lateral support: top = full, bottom = at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 74 Fv' = 238 fv /Fv' = 0.31 Bending( +) fb = 950 Fb' = 2038 fb /Fb' = 0.47 Live Defl'n negligible Total Defl'n 0.41 = L /585 1.00 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 Ervin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC #1 = D only, V = 7189, V design = 5674 lbs Bending( +): LC 01 = D only, M = 34217 lbs -ft Deflection: LC #1 = D only EI= 8756e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) . Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4 -Gl17 Harper Project: Houf Peterson Client: Job # Righellis Inc. ENGINEERS PLANNERS Designer: Date: Pg. # LANDSCAPE ARCNI rECTS•SURVEYORS Wdl 10 lb-8-ft-20- W = 1600-lb c c'� Zl'eSi9Y\ ft 2 Seismic Forces Site Class =D Design Catagory =D W •= Wdl 1:0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S := ▪ 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S := ▪ 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F : = 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F 1.722 VeI -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S • = F S S := F 2S S : = Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a := 1.0 Rp := 2.5 (Table 13.5 -1, ASCE 7 -05) 4a • r z l F P := p Rp • I 1 + 2--W h I p EQU. 13.3 -1 J Fpmax 1:6•S EQU. 13.3 -2 F pmin 3 ' S ds I p W p EQU. 13.3 -3 := if(F > Fpmax,Fpmax,if(Fp < Fpmin,Fpmin,Fp)) F = 338.5171•lb Miniumum Vertical Force 0.2• S ds• W dl = 225.6781 • lb • Harper Project: Pd Houf Peterson ° Client: Job # Righellis Inc. ENGINEERS • PLANNERS Designer: Date: Pg. # LANDSCAPE ARCNI TEC TS• SURVEYORS Wdl 10- lb — -8-ft-20-ft Wdl = 1600-lb ft Seismic Forces Site Class =D Design Category =D W := Wdl - 1.0 Component Importance Factor (Sect 13.t3, ASCE 7 - 05) 1 S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S = 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F :_ ' • 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) ' F 1.722 Vel -based site coefficient @ 1 s- period • (Table 1613.5.3(2), 2006 IBC) S ms • = F S := FvS 2S ms S = Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a := 1.0 R := 2.5 (Table 13.5 -1, ASCE 7 -05) 4a •Sds• FP := p (1 + 2 z h • Wp EQU. 13.3 -1 F pmax := 1.6•S EQU. 13.3 -2 • F pmin :_ . EQU. 13.3 -3 F if(F > F pmax , Fpmax, if(F < F pmin , Fpmin, Fp)) F = 338.5171-lb Miniumum Vertical Force • 0.2 ' S ds• W dl = 225.6781-lb C L I Li 0 HP Har per Houf Peterson COMMUNICATION RECORD Righellis Inc. To ❑ FROM ❑ MEMO TO FILE O f N“INUE::, • f- 1nl+M1LNa i•,nosrnre nKe11,ree rs.,oin_roas PHONE NO.: PHONE CALL: Q MEETING: J -0 co m x . . p ^ L rrl 7 0 • c �� a 11 c N I/ c - CO • 3 �� (— V II et- . 'I.. Ivi V r e of "4--' 1 .....0 `" 1 r -4.1 i► N. N. N. I 5- - f) 0 - 4,1 L N Z r VVV n r r N. 1,� 0 BY: /* (00"1-49Skt Otti)1 DATE: JOB NO.: I . . .- - - - - 'PROJECT: RE: " De-C)t e n 1) ()PC-AC?_1 er'91 D 0 . // , 2 6, . .. - I 0 - Z IL - V 0 I- ILI PCPPIC k ( I La NMIT M El J ( .$3)(taatinlal i) - .7:. l(r).(4(2 1 %20 m < u = • . k 0 . w . W CL n Z 0 0 LAPIA(.11-1 • L1 0 ' 1.-_(IG'3„1,Vi. * (z ca) 4 . 1 l x'■.) - c u z Qa\s-r-5 = r- +\ 0 - U iC spacin5 \eJef n Aa.; V., Pf Co‘cxlckil zz (01 . pt., - F. a 6 . 12 ti lik) :5 0 ovmt 1 . 1 P ei D . . _______ ' ! . e 2 II 0 ..-, ,,• T ( 1. :.,:- os7,) w(p+ 4ols 4 14 a i • , ,f.' • , 4e)t - - Y', • • , . • am -, C 1' k tOuck . -=7 30°14 ( = a•I sqr-t- S\0 30544- x4‘12:' e. 12," 0,c, =o ig-GqG By DATE R. N.,s.,T, . ,..,,..0,-. , JOB NO. , , \ - - -•• • PROJECT: RE: - De c V.,,, pos.. (1 ,..1 ., w , c. b_ a o . .. ..., 0 - z O E L.CDPj. C. in.kT- '1. : Lij 1 0 t = Q00 #( 4a" ) 0 , x 6 0 . • .,..—_ BLuao .*10 0 . 6 z T= C = 6400 1 aL1001* lt■J i a u _ z 0 ___ 5inv coo n N Du 4 m To Yek'5L,. tf n 2 0 ‘- (.) . -,t- - 4 -- -c 6 - . 0 LL z o g 0 = LC)Prr I- CL M.....- aooi4c ( ) zoo vi > S000 4t-iki 1 I 1 1 T.= C 8606 shk., 1 i .9a0V0 es a4 00 ••• 1+DO4 31( 1... 0., — .. cu 1.3 1:1.4 , ----->r --,..- • /q c1 Cle-3- Harper COMMUNICATION RECORD _ : 111". Flout' Peterson Righellis Inc. To 0 'FROM 0 MEMO TO FILE 0 El./Gin/CEPS • PLAIINERS LANC•1.,9PE ARCHITECT.“SUP.VCYCA: PHONE NO.: PHONE CALL: p MEETING: El A:I "II CO 2 -- 5 C ..?OH „ m et 0 ..- . I I . 0 71 (---) f--- ._, il 0 0 1 1 , 37 0 so d 3 g....) . C _- -C ---D 0 0 0 0 0 • 0 0 . CI, ,---..„ - u) . ci ....../ 3 i S r> D Jr. la -i P. (fi r * i ,••1, . • I . ( -1 cs , .. , • 6--„I 0 c_zo P < \ • --- _- . narpei • HOUfPeterson COMMUNICATION RECORD • Righellis Inc. To ❑ FROM EI MEMO TO FILE ❑ E, ?GINEEil3 . PLAr:;:ERS LANDSC.APP. ARCHITECTS. StOVEVUR PHONE NO.: PHONE CALL: ❑ MEETING: 0 . 13 • m m 1) :. Q .. m . . ., g R . 3 . -, . ,..„:, -p..„, . .., (., ki -4, 0 c r ; r • VI V 0 0 I . . 1 ; . r Z 0 0 CP e • • . COMPANY PROJECT in. Wood Works® SOFTWARE FOR WOOD DESIGN June 8, 2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat - Location [ft] Magnitude Unit tern Start End Start End LIVE Live Point 2.50 200 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : a s _ r .' ` 1 I0, 54 Dead Live 100 100 Total 104 104 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams is 11? for exterior supports Lumber -soft, Hem -Fir, No.2, 2x6" Self - weight of 1.7 pit included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv /Fv' = 0.13 Bending( +) fb = 405 Flo' = 1048 fb /Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 '1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending( +): LC #2 = L, M = 255 lbs -ft Deflection: LC #2 = L EI = 27e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction Lc= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. /2) . - - - ( 1 c 0 ( COMPANY PROJECT _tit VI/oo d Works® SOFTWARE FON WOOD DESIGN June 8, 2009 16:27 Hand Ra112 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Full UDL 50.0 pif MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : I -s - iz-i ••••,,,-;:,:-,.. ,, ''. .'1 i, -:::-&: 1. :::' ' '` "-.. ''''' '''''' -:- - '',"- - ''' 44 . ,- .4: , ;-:..- , -- -. ..,, ,,,,, i , ...- , ..",:...; ..... ,.:1 ..:.:., „,- -... 4,;-,... jr .:.,:_, .;.: „„ „„ ---2 ' --. 'I. . ' '-' 1;":,`, 1 . , , ' - :,;.t . , l'''' - ',:,'''' , , '''' •:';'^ ' '''''','' ',,,^', =„-- ., t' , , : i. ', : `, '':-, '. ,, (",,,:' _,.' ',, .- ; ' .' ' ' 7 - '' ''',...'', :: . :,.. . 10' 51 Dead Live 125 125 Total 129 129 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams Isla" for exterior supports Lumber-soft; Hem-Fir, No.2, 2x6" Self-weight of 1.7 pif included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 256 Fb' = 1048 fb/Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 . <L/999 0.17 = L/360 0.16 Total Defl'n 0.03 = <L/999 0.25 = L/240 _ 0.11 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci On LC# Fv' 150 1.00 1.00 1.00 - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp 405 - 1.00 1.00 - - - - 1.00 1.00 - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 129, V design = 106 lbs Bending(+): LC #2 = L, M = 162 lbs-ft Deflection: LC #2 = L la = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D.dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 22, 2010 13:57:56 Concept Mode: Reactions Base of Structure View Floor 2: 8' 105 49, -6 • f - -_ -. 1600 L: - -- :- -: -, -- '600 : , 4 __ / . 0 ' IUL/ 619 D : • • ' ':'619D - -: - - _ . . - 4b-0 lUl ; • 4b-b • .. . : :: . y9 • 4.1-10 y/ ... • • • • • • - -- .... - - -_- . .. 4'1 -b ._ : - : - .." - - --... .'.. _ . . .. .. .. _. - 11 11 ,. - - - 4U. -b. ya - 1193 L153 2404 L:.:2404 L : _ • .1&'-b. y4 625 D105911439 D 1394 D "" 1 -0 `- --• _ : : : ` : .. -- -- 3 / -b • by : : . : 315L: . .: . : . . : _ .. • . Ss-0 bo- 358 D _. - -_ - - -- - - - __- JL-Cl rib = . . : . - 1U -0 t5b LV -b Lb'-b 01 .; . 315 L; - LI -b aL r �: 358 D - Lb -b • b i 100E _ [ _ .. - .4 .-u . bU .. :96 D ,._t, / / 74(847 ... 5611 L 756 L . L1 -o• /b -.7:: Lu-b. / b - 4(452 D 5546 D 25 L'3 D • - - - I a -b.. • i o - - - - - - - 625 1,--.:- - - ' = - - - = - - - 5 D` - - . . - - , . - - - - - - - - - - - - - - 2 0 3 0 : _ .. L 10 -0 b 105 L. L : :• is • / 307 D u� 1 1 b 46 D' 245 L / v d} - 3 D- •-.-- 50 L 4 s • I� :741 01 599 --- • x • 87 L • : : - 87 L--- -: - --- - - 0-0' • bu) 209LD 8D!•1963 D. : 1963D : - , .' ,. 4 154 D .:: :. -its v c - -- ....__. K .- 78D>D ` ....11236 . ,,, _- : _ 1-r) n . BB1B.OBC CC 106 D: u - CC CC C iCCC CC CCCCC C CC CC \CC CD.DDD! DD D }DDDCD DD DD D D DD CD'DD DEE Et EEEEFEEEEEIE EEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 6 6' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 :1' 1 !141 :14142(2'2:2:22!2E2 21243(33 :33 4A:44',4(4 4(445(5 - 5:5 :5 55!6(6 fi:6 :6 Yi' -7(7'7.7.7 7.7(77' -6" FoomJ el . Lp - V .0I.ST L • . //Yr F ( WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 22, 2010 13:57:37 Concept Mode: Reactions at Base of Structure View Floor 2: 8' i 050_0 �� "1 . ' 49 .6" •1 u.5 600 L 1600 L : 4 r -b ui 619D 619D 40 -b' • 1 V - - 44 -b 9 43 -b' y{y 44 - b' .: .. • .. 5 13274 Ls 3304 L : . . is -n 4 7153 D '' ...- , . ;- 7072 D : . - - - - -- - - oa -b ' yi.. s r -n y L . .. - - __ Jb - b � 315 L 3 • 25( -358 D: , 3 i - b OD : : .. : : .. . . - Ly -n 04 --- -- ... ._.., --- .. --- --- - - - ---- -- --- -- - - --- - --- ... LO 63 315 L; z/ -o ' 58 D 251 3 100E .. .e5 - Olt ... -- -- G4 --b • f 96D 1.5-0 • !O 110111.•=-:1 LL -b • 11 74(84 611 L L. . f56L zu- r n 4(452, D 5546 D• � r5 LJ D i y -b 14_ • 625 - X0.5 • it 203 5q ie- - - ri- - 5D 10 -or -soil - - -- --- --. - _ _ _ 14-0 b 105L ... .. i� b. 307 D . - 46 D . , o! I 1 -b bn 245 E - _ yU-b • K. - - _ 5 0 L ..:- b n -- 7 ' .. 0 15 -- 599 = n -t5 L��. L : � 587 L • - - nu ?_ 209 LD8 D_ 1963 D:.' _ 1963 D _ s•-n 154 D i -iu u 2219 D c -n.. ALL 725L_ . 1 -b - -i 78D7DJ 617D'D. u n BB1B.BBC.CCCC CCCICCC CC CCCCC CCC C CD.DDD D DD DIDDD DD DDDD D D D D CD'DD DE E E E EEE•EIEEEIEEiEEfEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91{1 1:1 :1 11117222; 22. 2E221731 33: 3: 3 3 '- 3E3 :313f4(4 5:5 :5 67(7 7 :77 • \OOT1 El j our . /4_ F : 1 i tiev Harper Houf Peterson Righellis Inc. C -rent Date: 6/24/2010 1:41 PM system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\F1.ftd\ Design Results Reinforced Concrete Footings GENERAL INFORMATION: Global status Warnings Design Code ACI 318 -05 Footing type Spread Column type Steel Geometry y , R 1 in 4.2 if 111 4.25 ft Nalrialga 4.25ft Pagel Length 4.25 [ft] Width 4.25 [ft] Thickness 1.00 [ft] Base depth 1.50 [ft] Base area 18.06 [ft2] Footing volume 18.06 [ft3] Base plate length 5.50 [in] Base plate width 5.50 [in] Column length 5.50 [in] Column width 5.50 [in] Column location relative to footing g.c. Centered Materials Concrete, fc 3.00 [Kip /in2] Steel, fy 60.00 [Kip /in2] Concrete type Normal Epoxy coated No Concrete elasticity modulus : 3122.02 [Kip /in2] Steel elasticity modulus : 29000.00 [Kip /in2] Unit weight 0.15 [Kip /ft3] Soil Modulus of subgrade reaction 200.00 [Kip /ft3] Unit weight (wet) 0.11 [Kip /ft3] Footing reinforcement Free cover : 3.00 [in] Maximum Rho /Rho balanced ratio : 0.75 Bottom reinforcement // to L (xx) . 6-#4 @ 9.00" Bottom reinforcement // to B (zz) : 6-#4 @ 9.00" (Zone 1) Load conditions to be included in design Service Toads: SC1 DL S1 DL S2 DL +LL S3 DL +0.75LL Design strength loads: DC1 1.4DL D1 1.4DL D2 1.2DL +1.6LL Loads Condition Axial Mxx Mzz Vx Vz [Kip] [Kip *ft] [Kip *ft] [Kip] [Kip] DL 5.55 0.00 0.00 0.00 0.00 LL 15.61 0.00 0.00 0.00 0.00 RESULTS: Status Warnings - Insufficient development length, Section 21.5.4.1 Soil.Foundation interaction Allowable stress 1.5E03 [Lb /ft2] Min. safety factor for sliding : 1.25 Min. safety factor for overturning 1.25 Paget Li il ---. F Controlling condition S2 Condition qmean qmax Amax Area in compression Overturning FS [Lb /ft2] [Lb /ft2] [in] [ft2] ( %) FSx FSz slip S2 1.38E03 1.38E03 0.0826 '18.06 100 1000.00 1000.00 1000.00 Bending Factor 4 0.90 Min rebar ratio 0.00180 Development length Axis Pos. Id Ihd Dist1 Dist2 . [in] [in] [in] [in] zz Bot. 20.11 7.04 19.75 19.75 xx Bot. 20.11 7.04 19.75 19.75 Axis Pos. Condition Mu 4 *Mn Asreq Asprov Asreq/Asprov Mu/(4 )*Mn) [Kip *ft] [Kip *ft] [in2] [in2] zz Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 I I zz Bot. D2 13.38 45.76 1.10 1.20 0.918 0.292 f 7I 1 xx Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 l I xx Bot. D2 13.38 43.06 1.10 1.20 0.918 0.311 1 "'l I Shear Factor 4 0.75 Shear area (plane zz) 3.10 [ft2] Shear area (plane xx) 2.92 [ft2] Plane Condition Vu Vc Vu/(4>*Vn) [Kip] [Kip] xy D2 8.99 46.09 0.260 I I yz D2 8.68 48.88 0.237 I -'1 I Punching shear Perimeter of critical section (b... : 4.67 [ft] Punching shear area 3.31 [ft2] Column Condition Vu Vc Vu /(4> *Vn) [Kip] [Kip] column 1 D2 29.25 104.29 0.374 Ir I Notes Page3 bt - ?Se--- * Soil under the footing is considered elastic and homogeneous. A linear soil pressure variation is assumed. * The required flexural reinforcement considers at least the minimum reinforcement * — '•1 design bending moment is calculated at the critical sections located at the support faces * Only rectangular footings with uniform sections and rectangular columns are considered. * The nominal shear strength is calculated in critical sections located at a distance d from the support face * The punching shear strength is calculated in a perimetral section located at a distance d/2 from the support faces * Transverse reinforcement is not considered in footings * Values shown in red are not in compliance with a provision of the code *gprom = Mean compression pressure on soil. *gmax = Maximum compression pressure on soil. *Amax = maximum total settlement (considering an elastic soil modeled by the subgrade reaction modulus). Mn = Nominal moment strength. * Mu /(4 *Mn) = Strength ratio. * Vn = Nominal shear or punchure force (for footings Vn =Vc). * Vu /(4)*Vn) = Shear or punching shear strength ratio. • Page4 r^ Beam Shear bcoi 5.5•in (4x4 post) d := tf -2•in := 0.85 b := Width b = 36•in V :_ 41 4 f psi•b•d V = 16.32 -kips 3 Vu .– qu rb 2 col b Vu = 7.83•kips < V = 16.32-kips GOOD Two-Way Shear bs := 5.5.in Short side column width bL:= 5.5-in Long side column width b,:= 2•(bg + d) + 2 -(bL + d) b = 54.in R := 1.0 V-_ + 8 f psi -b•d 3 3-13, Vu = 48.96 kips ( Vnntax := 2.66 f psi b d V = 32.56•kips V q, [b – (b�l + d) V = 15.88•kips < Vnutax = 32.56-kips GOOD Flexure 2 Mu qu. C b – 2 bcol 1 .( M = 4.98-ft-kips t 0.65 2 := b- d S = 0.222 -ft 6 F := 5 f psi F = 162.5 -psi M f := — f = 155.47 -psi< F = 162.5-psi GOOD lJse a 3' -0" x 3' -0" x 10" plain concrete footing Plain Concrete Isolated Square Footing Design: F2 f :=. 2500-psi Concrete strength f, := 60000-psi Reinforcing steel strength E = 29000 ;ksi Steel modulus of elasticity ''cone • 150•pcf Concrete density "Ysoi1 == . 100pcf Soil density g := ,1500 psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl. := 26591b Pd1:= Totaldl Total11 := 7756•lb P11 := Totalll Pd := Pdl + Pll Pti = 10415-lb Footing Dimensions tf := 10 in Footing thickness Width := 36•in Footing width A,:= Width Footing Area gnet gall — tf "Yconc gnet = 1375•psf P Areqd gnet Aregd = 7.57541 < A = 941 GOOD Widthregd Aregd Widthreqd = 2.75-ft < Width = 3.00 ft GOOD Ultimate Loads o Pdi + tf'A'lconc P := 1.4•Pdl + 1.7.P11 P = 18.48-kips P qu := A q = 2.05•ksf Plain Concrete Isolated Square Footing Design: F3 fe := 2500-psi Concrete strength f := 60000-psi Reinforcing steel strength E := 29000ksi Steel modulus of elasticity "icone 150•pcf Concrete density I soil := 1007pcf Soil density gall 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 2363-lb Pd1 := Totaldl Totalu := 4575-lb Pll := Totalll P Pdl + P11 P = 6938-lb Footing Dimensions t := 10-in Footing thickness Width := 30-in Footing width ,A,:= Width . Footing Area tint gall — tf' Yconc net = 1375•psf Ptl Areqd 5.04641 < A = 6.2541 GOOD %et Areqd Widthreqd Areqd Width = 2.25-ft < Width = 2.50 ft GOOD Ultimate Loads l.' Pdl + tf'A'"fconc P := 1.44 + 1.7•P11 P = 12.18-kips P q := A q = 1.95•ksf Beam Shear bcol : ='5.5•in (4x4 post) d := tf -2•in := 0.85 b := Width b = 30•in V := 0 4 • f V = 13.6.kips 3 r Vu •= qu I b 2 toll b Vu = 4.97•kips < V = 13.6-kips GOOD Two -Wav Shear bs = 5.5.in Short side column width bL := 5.5•in Long side column width b := 2•(bs + d) + 2.(bL + d) b = 54-in := 1.0 4 8 f psi b d V = 40.8.kips 3 3 + I3c V , , := 2.66 f psi b.d V = 27.13 -kips yAtt,,= qu — O + d) V = 9.71 .kips < V ax = 27.13.kips GOOD Flexure 2 Mu qu rb — bcoll 1 1 b M = 2.54•ft•kips I 2 J 2 J := 0.65 2 1:= b d 6 S = 0.185•f1 F := 5•�• f psi F = 162.5-psi M fi := s u f = 95.19•psi < F = 162.5.psi GOOD 'Use a 2' -6" x 2' -6" x 10" plain concrete footing 6 ° Plain Concrete Isolated Square Footing Design: F4 fc := 2500-psi Concrete strength f := 60000-psi Reinforcing steel strength E ;= 29000 Steel modulus of elasticity 'leonc: =•'150•pcf Concrete density "!soil = lO0•pcf Soil density gall := 1500:psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl := 5001-lb • Pd1:= Totaldl Totalll:= 7639•Ib P11 := Totalll PU := Pdl + Pll Pd = 12640-lb Footing Dimensions t := 12 -in Footing thickness Width := 42• in Footing width ,,:= Width Footing Area gnet := gall — tf'"Yconc gnet = 1350•psf P Areqd (het Areqd = q 9.363-11 < A = 12.25•ft GOOD Widthreqd rr egd Widthreqd = 3.06 -ft < Width = 3.50 ft GOOD Ultimate Loads ,:= Pdl+ tf•A' tconc P := 1.4•Pd1 + 1.7.P11 P = 22.56 -kips P qu := A q = 1.84 -ksf /4' dR Beam Shear • bcoi := 5.5' in (4x4 post) d:= tf -2.in := 0.85 b := Width b = 42 -in V„ :_ 0 4 • f V = 23.8-kips 3 V Qu (b - 2 toll b V = 9.8•kips < V = 23.8•kips GOOD Two -Way Shear b8 :=15 Short side column width bL: 5.5 -in Long side column width b := 2•(bs + d) + 2 -(bL + d) b = 62 -in (3 =1.0 A VM= + 8 f V„ = 71.4 -kips 3 3.0 Vum,, := x'2.66 f psi b d Vnmax = 47.48-kips ,V Qu'[b — kbc01 + d) V = 19.49 -kips < Vumax = 47.48-kips GOOD Flexure 2 2J Mu := Qu' [(b — 2 bcol) 11 b M = 7.45•ft•kips A t:= 0.65 2 b d S = 0.405•ft 6 F := 5-4J f psi F = 162.5-psi M u f := S f = 127.79 -psi< F = 162.5 -psi GOOD Pee a 3' -6" x 3' -6" x 12" plain concrete footing I /4 —7 \P2.- Plain Concrete Isolated Round Footing Design: f5 f 3000.psi Concrete strength f := 60000-psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity 'Yconc 150•pcf Concrete density ^fsoil 120.pcf Soil density gall := 1500•psf Allowable soil bearing pressure TYPICAL FOOTING Reaction Total 619.1b Poi := Totaldl Tota111:= 1600•lb Pll := Totalll P := Pill + Pil Po = 2219•Ib Footing Dimensions t := 12• in Footing thickness Dia := 18-in Footing diameter rr Dia Footing Area nvv:= 4 clnet gall — tf''Yconc net = 1350•psf P Areqd gnet A red= q 1.644 ft < A = 1.77 ft GOOD Aregd 4 Diareqd � = Diareqd = 1.45•ft < Dia = 1.50 ft GOOD Tr Ultimate Loads r := Pd1 tf'A''Yconc P := 1.4•Pd1 + 1.7•P11 P = 3.96.kips P qu A qu = 2.24•ksf 7) \ Beam Shear bco1:= 3.5.in (4x4 post) d := tf — 2•in := 0.85 b := cos(45•deg)•Dia b = 12.73•in V, :_ 0 4 • f V = 7.901•kips 3 Vu •= qu (b bcol) c V, = 0.91 -kips < V = 7.901 -kips GOOD Two -Way Shear bs := 3.5-in Short side column width bL:= 3.5.in Long side column width b := 2.(bg + d) + 2.(bL + d) b = 54 -in (3 := 1.0 V):= -(4 + H- f psi b d V = 23.703•kips 3 := 2.66 f psi b d V = 15.76•kips V q [b — kbc01 + d) V = —0.31-kips < V = 15.76-kips GOOD Flexure 2 Mu := 9u C b — 2 J bcoll r 1 b M = 0.1841-kips l2J 0.65 2 1•— b-d 6 S = 0.123 -ft F := 5.4• f psi F = 178.01 -psi M u f := f = 9.9.psi < F = 178.01 .psi GOOD Use a 18" Dia. x 12" plain concrete footing • Plain Concrete Isolated Square Footing Design: F( f := 2500-psi Concrete strength fy := .60000-psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity /. conc 150•pcf Concrete density (soil 100•pcf Soil density g := 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 7072•lb Pdl := Totaldl Totaljl := 13304-lb P11:= Totalll Ptl Pdl + Pll Pil = 20376-lb Footing Dimensions t := 15• in Footing thickness Width := 48-in Footing width • A := Width Footing Area gnet gall — tf'"'Iconc lnet = 1313•psf Pd Areqd gnet Areqd = 15.525-11 < A = 16 ft GOOD Widthreqd Areqd Widthreqd = 3.94•ft < Width = 4.00 ft GOOD Ultimate Loads yA:= Pd1 + tf'A'"(conc P := 1.4 Pdl + 1.7•P11 P = 36.72-kips Pu 9u A 9u = 2.29•ksf Beam Shear bcol := 5.5-in (4x4 post) d:= tf -2•in := 0.85 b := Width b = 48•in V„ := 4 f psi b d V„ = 35.36• kips 3 Vu — q„ ( b - 2 col) b V = 16.26-kips < V = 35.36-kips GOOD Two -Way Shear bs := 5.5-in Short side column width bL := 5.5-41 Long side column width b,:= 2 -(bg + d) + 2•(bL + d) b = 74-in P := 1.0 _ 4 8 + f psi b d V„ = 106.08-kips (3 3. 1 3 u V„„,, := 2.66 f psi b d V = 70.54-kips qu [b — Owl + d) V = 31.26-kips < V = 70.54-kips GOOD Flexure (b — bcol 2 l M := au- I I • ( 1 1 I•b M = 14.3941-kips 2 J J := 0.65 := 2 b d S = 0.782•ft 6 F := 5.4)• f psi F = 162.5-psi M f :_ f = 127.75•psi< F = 162.5-psi GOOD .Jse a 4' -0" x 4' - 0" x 15" plain concrete footing Plain Concrete Isolated Square Footing Design: F7 f := 2500-psi Concrete strength f := 60000-psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity 'Yconc 150.pcf Concrete density /soil := 100.pcf Soil density q�1:= 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi : 1200-lb Pdl Totaldi Totalp := 3200-lb P11 := Total!' Ptl Pdl + Pll P = 4400-lb Footing Dimensions t := 10-in Footing thickness Width := 24•in Footing width ,:= Width Footing Area net gall — tf'"Yconc net = 1375.psf Ptl Areqd gnet Areqd = 3.241 < A = 4 ft GOOD Width Areqd Widthreqd = 1.79•ft- < Width = 2.00 ft GOOD Ultimate Loads ,:= Pd1 + tf'A' /conc P := 1.4 Pdl ± 1.7•P11 P = 7.82-kips P gu A q = 1.96•ksf Beam Shear bcoi : 5.5-in (4x4 post) d:= tf -2 -in (I) := 0.85 b := Width b = 24 -in V := 40 4 • f V„ = 10.88•kips 3 Vu:— qu r b 2 coil b V = 3.01 -kips < V„ = 10.88 -kips GOOD Two -Way Shear b := 5:5 -in Short side column width bL, := 5.5 -in Long side column width b := 2 -(bs + d) + 2•(bL + d) b = •54 -in (3 := 1.0 Vim.= 4 + 8 f psi•b•d V„ = 32.64-kips 3 3•(3 V„ := x•2.66• f psi•b•d Vnmax = 21.71 -kips := q [b — (bcoi + d) V = 5.35 -kips < V = 21.71 -kips GOOD Flexure 2 b bcol1 1 Mu qu ' 2 J j {_}b M = 1.16 -ft -kips A:= 0.65 b 2 , := 6 S = 0.148-11 6 F := 5- eb- f F = 162.5 -psi M f := u f = 54.45 -psi < F = 162.5 -psi GOOD S 'Use a 2' -0" x 2' -0" x 10" plain concrete footing A - P 613 b =;a o� • N R pro" ---- t O 0 : ' S ' A ::: ( WC = c7 = 11:74- - 0 0 -- 1A 1 c.1 isl C31 = Tv — = v►1 uuto S' S1E'�'D = 4 - s - 9_) cam)(v) _ "1z$ ,c ({+A„ vjQ scy rr) J r " I so °'�.e W 9 { t`j _ " -j (z)c9c: c + Sz,- Li i t_ci =- J5e — ts'3S-1°le = b/W = x C - E(5t e1)c. t.. --v Li O(tZXS'9cS',)(osvo) = 1 )v \ z �)cr -cl ,' C 4 `$Z'b)C-`1Q.'t -+ L' I X 4.' S'1 °S I' 0) _ . Z w o ( a k s'9S = n 0-1/4,:w, 1 t . : \ \ - 4 - \\' s Cc. low o 3 3 `` n �y ' C u���C��1'aJ\Q j`7a� n D I - 1 t! i+ t Z 1 m z, = m �... z n Pi 0 i 1 r �i fl n o I r ■ 3 i I 1 3 p n y c p rQ2 F T! 1i-.Ok:\I - 3,Ak;�1 S� 1 x x �� pool +Uo.Ai - d -pun :3a 1 �+ I fo ' l ' �+' �(�/� 'YJ�,/� ��� Tau � V1� /W.�, / : l 03 road do Q b0_ ' V ) oN eor Q 1 W -- `) aiva 'jci — _.,. � Benue Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:43 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \Front Load 2.etz\ M33 =51.9 [Kip "ft] M33= -12.19 [KipIt] • • • Nhmernt �L\ a Bentley' Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:35 AM Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs\Unit A \foundations\Front Load.etz\ UN IT P+ L-- M33 =25.66 [Kip ft] M33= -30.27 [Kip *ft] Y Mmen4c LC2 6- 1 Zt J L i x F, b x O 1%d C Q i - > J t de. 1= XNOW z� CD (ps• s)E -eeX e ) ( a 4 ) - \ . �. --t. C `72.7(2) S ( S)c1010' 0`071 — noto'o‘e = u "AAt OS' 5700b oe) 7 °? ob' ot x -6 1 Ob. we $ ❑ m fS - „ : 1 -- AC) S'1< 5;10'1 °W/zV o A 3 lb - bee = o (Ie)2SI't4 O SVE. cetWI)L1)Qe7L °sro) = ' 0 m Z 604 tvian+)df Q aN'3 0 Z j 2 m �i\'1 �� - ----j— ti m p I � n 13 1 r O r 1__1. 't 1 1 Tia ❑ m 3 y m O m A s -A woE. 33A 1 � it] ag n ❑ . celk. Z A cr" -- )01 U a - \ 1 1 I V 1 I :38 '4 `` Gam' `1OOJ \ \ k S :103 road 40 Q 1 Q- N a ,'ON BOf Q 1 Ot 9 :31V0 -)11 :A9 Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:38 AM Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309)10EN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A\foundations\Rear Load.etz\ M33 =43.24 [Kip *ft] • M33= -45.06 [Kip'ft] X • MceMs )j: -13 Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:43 AM Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\Rear Load 2.etz\ M33 =41.88 [Kip'ft] ■ M33= -46.37 [Kip'ft] 1 I X Mrevk - LC-2. Lk • c > CD cD • z E; 7) h �l 01 i �4 a O • . x'oi < h b� �c Si <4..4.' c+Y)I a S - Qf� °` o.. n y' V V : F • Oben o 7 9c 6'0 = cf`1T xoL) '0 / (.G70n c, '0 = -- 1 h 1 °) 'o s{/ ')' n Z' a S $? V J.L (/oo -PL.oao1o9)(1t'o)ob uI,, (ft:X.000 0/ c00 0 ith '0 1 1 - 10 -1_" 4-6 7 0 Ss )'0 „V a 1-i14. Y` o a ( Q -E',9c00 CO,)(_Voc.."00b 'C) ' 'ANN V) 9 13 o N110Ot1 " O _ ❑ (+rz)C.000s) g' 01(000' 0)Voi ;0 =10 L b2 V 'To „1.1a t(l) LL 3 3 CI 1 7 CSC1../ sb Z (1 P) Vold _ T WO c— t »n • t..Sc° °I-'b -1-N(1- u`r`n o m O D zl O 0 r1 o z ' t )14 1121x X „, ❑ o ckPA 003 V00-1 iv 1 :aa :17Bf0Nd 10 Q I N BOf 0 10 C 31VO y` V :A9 ---Ao ; -- - .. - ..c , c,..1) - all•t_.S . ; Irk cl'il"e = (- 0 •-.,, , — (214X..a (9 ) ,.. -72\11 ;CM,....0 = "S V • )' 0 „la a ii7 -0- V ‘-ell. g• aq 2 E >> 0) c " '' — co VI e-t- 10 *.- 11..ca< ) sq h 2 = \I WO . = N ' 1t 0 ::: czt-x c000 oT(\67: \) - . 1 zr- 0 pi °Aso , ." sq < k.1) i =-- (.e.e..))I5cyric,_ - (900 bi)c_Qxo ov o = 'W� (41 -6-fin --:----. (p-i / Lcooio 4 nclt r \ ) :--- No ", 0 li t a 4 q) - 1.11.. MI "s 4: '-rt 9—C41141= , () 4. \ .... S9( 0110‘110 ow° i 0 0 co 0 N‘Stg't tr. Qtki)(....CXX LOX 01 4 0): ‘0 9 0 z m V s) r p m l. „Ti o-ii i+ 13soic - L 141 111 . 0 = 51 'yo in z s 4 . - Q . ) \ru \l- E o x -0 b . 0 '\(10 z c z 131 bcrot) - <- - D -\-A -11A 511-1S- 4-- c_i --Oun g := \Amyl z m 2 > xi , o .....4 - - 1 . 1 . 1. )A - II.. \ . 4\6 . k ek\ o - c ). _____ , 00\mw E r K 0 rn 0 4( =._.__.,1 H 71 z F -7 - nqi i x .:)-,E 1±1 EI Vyk,Pkoji \P1XA AVP :3H . 103 road Jo ON eor :31vo :As - k... - fig 72: )Z -1Kz)E - Aos , e - t =1C. ,BSI K -3t° x 6uol - S<< Sll'f _ -- )6..- -L'25 C `71 - '`W °WS' - kci -. 9Q'`)1 = -4 W 70,2, 4 -€_,' = ) o\ 4 3 ` i _ 6v h o c) f) -3 710 a IS Cou c)oJ p+; ° o 2 k:1 = • x 7c fi `)b'Sfi (50'1 e) S' 1 • 00 - 6W > 00./.5:1 a_ x x: — Kit) -4 2 . 11 0/ 77:- -,:,. ac , o ta) i r, 54,1 u � -0a LL Jo I I )' - I - : a s lie dcn - M fi 4 cikZ' E + 1°1' 1)4 Q XZ"E -1 t'g) d 1 � \i� P 0 0 - Z � .a y.)e - 101 g I 0 eUt Uh f anp }` +s di C4 ° 2S(1 =o -o ' •" S' 1 < 1°►' 1 110'147 - '6w 11 z 1 +C ( ,)t. , 5 , 4 - b)Q9cS'AX°S1'oxa) ' ''lk W 3 3 b' 147 = OM( 4 c 4 ()(CXS'1XOS1`oXe) = aW . ate, sQ c z Ov«WWn+)?AQ - )Pave o • m z o k- I - I t , ---i--;e4 m p ✓ p r 1 1 1 I 1 ❑ m 3 0 9° 1 1 ' —.-" ,1 V'S --I ❑ ❑ �, x ms k - u kNn ,1 52'1 K i g :r 3road 30 060° V v N :.oN eor 0 tO 1 a V \ 1 V CAB I Z O s V . n ' O 1 I 0 z ❑ m z '1 O 13 3 r( D p } � _ o - ^ r r m In p 6 . - A . eaT ="1a „S\ x R jS1eX - . 13 14 z 0 /7 a)Z - - 90) q ❑ ❑ .°►`e' C- \ 4 1 U) ti - X"\k"co :3a 103 road '-'") JO C)1 L 1 9 N -�� ..ON eof 0 1 Qe 9 :31va \N\d :A9 A Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:42 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309)\CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \Interior 2.etz\ M33 =23.55 (Kip *ft] • • M33= -17.88 [Kip *ft] Y X %me/45 . Z--f .Bentley ' Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:42 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A\foundations1Interior.etz\ - M33 =32.26 [Kip'ft] M33= -9.27 [Kip'ft] A Mamen\-s LCZ 0;F30 ACI 318 -05 Appendix D 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc = 3000 psi fc = 3000 psi h' = 3.50 inches h = 12.00 inches (into the Fc Stem = • - 8.00 inches Note: hef above is the the embedment into or cm., = 5.25 inches the foundation and does not consider stem via Fnd Width = 36.00 inches c min = 2.25 inches cmin = 18.00 inches Wc,N= 1.00 cast -in -place anchor Wc,N= 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor = 0.75 strength reduction factor = 0.75 strength reduction fact, Calculations Calculations ANc = 68 in` AN = 1296 in` AN = 110.25 in` AN = 1296 in` Nb = 8,607 pounds Nb = 55,121 pounds Wed,N = 0.8286 Wed = 1.00 N = 4,399 pounds Nth = 55,121 pounds (Kb = 3,299 pounds 4 )N = 41,341 pounds Combined Capacity of Stem Wall and Foundation �Neb = 44,640 0.754N = 33,480 r x a b O • y b r .. i cD 0 0 O - *o ' u W < tab c7t-1/43:o -7 - ( =k) NrYk) • 1-412 m • ❑ o o 5 # CA 11 4 <Z) o ,t5 ! -b# (1) CrUl i 1 gs ° 1-t, _ ���- ,)�°i�e•,� ` _ Cyboh,o- 7 = ' 9� cmo� Q,p (- b0fi'0 = X. ) / (00 017 635'Q O zN \ s'o =Sv „21 -b # (k) dal. • o • m cZlb ) nb`°`"W0 D r z O 1 1 1 ?51.41 L \- `4``AA v ( 2 m v�1 ❑ ❑ G L ' J1UG 'kul :3a 103r0ad a0 0100 w ' ` ) ''oN 9or -� - JVn Q 1 � / J 31VO - A,\;\4 `� v ',6 Concrete Side Face Blow Out Givens Abrg = 2.15 in` fc = 3000 psi ;min = 18.00 inches = 0.75 strength reduction factor Calculations N = 231,191 pounds 4'Nsb = 173,393 pounds Concrete Pullout Strength Givens Ab = 2.15 in` fc = 3000 psi = 0.75 strength reduction factor Calculations N 51,552 pounds 4)N = 38,664 pounds Steel Yield Strength Givens f = 58,000 psi A = 0.606 in = 0.80 strength reduction factor Calculations N = 35,148 pounds 4)Ns = 28,118 pounds < 33,480 Ductility Met Holdown Check Holdown: HDU14 Holdown Capacity= 14,930 pounds 1.6* Capacity= 23,888 pounds 23,888 < 28,118 Holdown Checks ?°32D BY: DATE: JOB No VI . PROJECT: RE: ver't> w zt. cookiony ❑ ❑ e Sides of Boi laino w 1 0 2 t.° aSct(12 ?sF "= 300 P� uxj,11 2 ❑ S cat levels13 s0 _ _ Of) pt...P door Li 4o►N G S op ck)C'11 CO 333 P�F si-e_m w Cshn >( tSO x T ( ) = 100w P�< < J = r. w 0 r w• - -3 Cr Z LL o 05c ( z levels ')x.40 > >sc) = (,Up Q".F _loon . 0 a Z TOW loud. = ti-t-i3 I } IOOu.) at,F J . 2 'N D % sbp = 1S00 pre :- IsvopLP • w 0 11 I + 1COL S tow ,,,,- , - w-1.0(aC,. x IS El O o b_ Z ❑ o e rear- F,i cork., c)c_ ; kdNrop O = r a DL, a -Cltl, 30c0 94..P wall - ( esF a34 PLF ,\ooc- 4o w (t 54 pc. C X V i 7__Cb1 12 /= 33''� 5 _ P �1 (iIt2)(.45o W � = Mow Cia ►3 psc = 306 p-c P LL : 09)(2.140 = 1 p LF C1t>C25) _ 4- -S0 PL - g a .,, T L b a34 3 1 100 vJ 0 - a a3�13 ttoUw c tsUd�u o o xa - u LL ^' a,1 ‘N € u-n+ \ Pt :› Same cis h mtnQ. ,Plocxr load, TL: \ -) A) C F 100 uJ W = 1.00 . o.e is e ?0,(ku,,,uuti n4 o asC1Z.)(z) =- b00 pa: via 0 (5)C2 �C l3L(.z) = 4 tto t.F Slow 401NC+socx.0)C`10)0't1�.') _ 333pLc 51err Cc$I11X1so u.)) =100 tv LL o (?) NA-o)(1.) = \290 et-c: to r +L : a6a9i -1oo1.0 W = L TDT 23 ► ti -' • v s-e c74- I N 4'c H