Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Specifications (3)
I I 0A11-11 —I 11 Ikr1 in /96 Structural Calculations for Full Lateral & Gravity Analysis of Plan A 1460 RECEJV n SEP232010 Summer Creek Townhomes CITY OFTIGARD Tigard, OR BUILDING DIVISION Prepared for Pulte Group July 13, 2010 JOB NUMBER: CEN -090 ** *Limitations * ** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and /or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 117 sheets total including this cover sheet. This Packet of Calculations is Null and Void if Signature above is not Original O r Harper Houf Peterson Righellis Inc. En GVJfEHI. PLANNERS lAn38(..AGI ARCHITEET8•8V13VE1 205 SE Spokane St. Suite 200 ♦ Portland, OR 97202 • [P] 503.221.1131 ♦ [F] 503.221.1171 1104 Main St. Suite 100 o Vancouver, WA 98660 ♦ [P] 360.450.1 141 ♦ [F] 360.750.1 141 1 133 NW Wall St. Suite 201 ♦ Bend, OR 97701 • [P] 541.318.1 161 ♦ [F] 541.318.1 141 Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit A Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, IW: 1 2006 IBC / 2007 OSSC Occupancy Category: II Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed, ASCE.7 -05 Ch. 20 Importance, IE: 1 ASCE 7 -05 Table 11.5-1 Ss: 0.942 USGS Spectral Response Map Si: 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength, Pc: 3000 psi Foundations & Slab on Grade Concrete Unit Weight, y 145 pcf Steel Reinforcement Yield Strength, f 60,000 psi Wood Studs (Wall Studs): Hem -Fir #2 2x & 4x Wood Beams & Posts: DF -L #2 6x & Greater Wood Beams & Posts: DF -L# 1 Glulam Beams: 24F -V4 PSL Beams: Fb =2,900 psi, FV= 328psi, E =2.0 Million TS /LSL Beams: Fb =2325 psi, FV= 460psi, E =1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : 1500 psf Assumed 2. All manufactured trusses, joists, and flush beams u.n.o. shall be designed by others. Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 WoodWorks - Sizer version 2002 Bently RAM Advanse ». Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP Houf Peterson. Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # IANNSCAPE ARCHI TEC tS• SURVEYORS DESIGN CRITERIA 2007 Oregon Structural Specialty Code & ASCE 7 -05 Roof Dead Load RFR := 2.5.psf Framing RPL := 1.5•psf Plywood RRF:= 5•psf Roofing RME := 1.5•psf Mech & Elec RMS := 1 •psf Misc RCG := 2.5.psf Ceiling RIN := 1 •psf Insulation RDL = 15•psf Floor Dead Load FFR := 3 •psf Framing FPL := 4•psf Sheathing FME := 1.5.psf Mech & Elec FMS := 1.5 -psf Misc FIN := .5-psf Finish & Insulation FCLG := 2.5•psf Ceiling FDL = 13•psf • Wall Dead Load WOOD EX Wall := 12•psf INT_Wall := 10•psf Roof Live Load RLL;= 25•psf Floor Live Load FLL := 40•psf #— L1 Harper Project: SUMMERCREEK TOWNHOMES UNIT A I- P Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCNITECTS•SURVEYORS Transverse Seismic Forces Site Class = D Design Category = D Building Occupancy Category: II Weight of Structure In Transverse Direction Roof Weight Roof Area := 843.11 RFw := RDL -Roof Area RFC = 14162-lb Floor Weight Floor Area2nd := 647 -ft FLRWT2nd := FDL -Floor Area2nd FLRW-1•2 = 8411- lb Floor Atea3rd 652•ft 2 FLRWT3rd FDL•Floor Area3rd FLRwr3rd = 8476-lb Wall Weight EX Wall Area := (2203)•111 INT_Wall_Area := (906). ft WALL' := EX_Wall Area + 1NT Wall WALLW = 35496-lb WTTOTAL = 66545 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h := 32 Mean Height Of Roof I := 1 Component Importance Factor (11.5, ASCE 7 -05) ,:= 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C :_ .02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x := 35 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period T := C T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. , (Chapter 22, ASCE 7- 05)...or S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F := 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F.„ := 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) /1 L2 :.. Harper Project: SUMMERCREEK TOWNHOMES UNIT A a;< P Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCNITEECTS• SURVEYORS SMS F SMS = 1.058 (EQU 11.4 -1, ASCE 7 -05) 2 •SMS Sd := 3 Sds = 0.705 (EQU 11.4 -3, ASCE 7 -05) SM1 FvS1 SMI = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2 •SMl Shc := 3 Sdl = 0.389 (EQU 11.4 -4, ASCE 7 -05) Cst := Sds Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) R ...need not exceed... Cs := Shc le Cs = 0.223 (EQU 12.8 -3, ASCE 7 -05) T ...and shall not be less then... CI := if (0.044• Sd I <0.01 , 0.01, 0.044• Sds• le) C2 := if Si < 0.6,0.01, 0.5•S1•1 J '\ (EQU 12.8 -5 &6, ASCE 7 -05) l R Cs := if(Ci > C2,C1,C2) Cs = 0.031 Cs := if (Cst < Cs < Cs Cs = 0.108 V := Cs*WTTOTAL V = 72201b (EQU 12.8 -1, ASCE 7 -05) E := V•0.7 E = 50541b (Allowable Stress) l Le3 ; a,.. Harper Project: SUMMERCREEK TOWNHOMES UNIT A 8 P Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. 7L -_- ENGINEERS • PLANNERS - Designer: AMC Date: Pg. # LANDSCAPE ARCN SURVEYORS Transverse Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 100 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I := 1.00 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X := 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... a2 := 2..1.20•ft Zone A & B Horizontal Length a2 — 4 ft (Fig 6 -2 note 10, ASCE 7 -05) or 2;= .4•h 2•ft a2 = 25.6 ft but not less than... a2nun := 3 2 ft a2 = 6 ft Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA 19.91psf PnetzoneB := 3.2•Psf PnetzoneC 14.4•psf PnetzoneD := 3.3•Psf Vertical PnetzoneE —8.8•psf PnetzoneF :_ —12•psf PnetzoneG —6.4-psf PnetzoneH 9.7•psf • Basic Wind Force PA := PnetzoneA-Iw'X PA = 19.9 -psf Wall HWC PB := PnetzoneB'Iw.X PB = 3.2•psf Roof HWC PC := PnetzoneC'Iw'X PC = 14.4•psf Wall Typical PD := PnetzoneD'Iw•X PD = 3.3 -psf Roof Typical PE := PnetzoneE' Iw' X PE = — 8.8.psf PF := PnetzoneF'Iw PF = — 12•psf PG := PnetzoneG•Iw•X Pc, = — 6.4•psf PH := PnetzoneH'Iw'X PH = — 9.7•psf Harper Project: SUMMERCREEK TOWNHOMES UNIT A i' Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. M NEERS RLANNERS Designer: AMC Date: Pg. # LANOSCAPE ARCM S TECTS• SURVEYORS Determine Wind Sail In Transverse Direction WSAILZoneA (41 + 59 + 29) 41 WSAII -ZoneB (19 + 0 + 23)41 WSAILZoneC (391 + 307 + 272).ft 2 WS�ZoneD (0 + 0 + 5) ft WA WSAILZoneA'PA WA = 25671b WB := WSAILZoneB'PB WB = 134 Ib WC WSA WC = 13968 Ib WD WSAILZoneD'' D WD = 16 Ib Wind_Force := WA + WB + WC + WD Wind_Force := 10•psf •(WSAILZoneA + WSAILZoneB + WSAILZoneC + WSJ ZoneD) Wind_Force = 166861b Wind_Force = 11460 Ib WSAILZoneE := 94412 WSA- 108.ft WSAILZoneG 320•ft W SAILZoneH 320 • ft WE := WSAILZoneE'PE WE = —8271b WF WSAILZoneF'PF WF = — 12961b WG := WSAft•ZoneG'PG WG = — 20481b WH WSAILZoneH'PH WH = — 31041b Upliftnet WF + WH + (WE + WG) + RDL•[WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneG)1'. Uplifi = 12121b (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION _ Harper Project: SUMMERCREEK TOWNHOMES UNIT A ° P Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCHIrECTS•sURYEYORS Longitudinal Seismic Forces Site Class = D Design Category ='D Building Occupancy Category: II Weight of Structure In Longitudinal Direction Roof Weight Roof Area = 944 ft Abyx RDL•Roof Area RFWT = 14162.1b Floor Weight Floor_Area2 = 647 ft ,p y = FDL•Floor Area2nd FLRwund = 8411-lb Floor Area3rd = 652 ft g 16G7u1 ;= FDL•Floor Area3rd FLRWT3rd = 8476•Ib Wall Weight .W ll.A .= (2203)• ft INT Wall Area = 906 ft , J := EX Wall Area + 1NT Wall WALLWr = 35496-lb WTTOTAL = 66545 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h = 32 Mean Height Of Roof Ie = 1 Component Importance Factor " (11.5, ASCE 7 -05) A,:= 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C = 0.02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x = 0.75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period A T 4 ,:= C t ( h n r T a = = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 = 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S = 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F = 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F = 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) 4 -U H arper Project: SUMMERCREEK TOWNHOMES UNIT A ' HP HOUf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCRI rECTS•SURVEYGRS 5:= F SMs = 1.058 (EQU 11.4 -1, ASCE 7 -05) 2 •SMS Sd = 0.705 (EQU 11.4 -3, ASCE 7 -05) 3 AKA A := F Si SMI = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2 •SM1 5:= Shc = 0.389 (EQU 11.4 -4, ASCE 7 -05) 3 := Sds•Ie Cst = 0.108 (EQU 12.8 -2, ASCE 7-05) R ...need not exceed... Shc Cs = 0.223 (EQU 12.8 -3, ASCE 7 -05) T •R a ...and shall not be less then... := if ( 0 . 044- Sds•Ie <0.01,0.01, Sds•le) AC, r 0.5•Si -Ie (EQU 12.8 -5 &6, ASCE 7 -05) := if(S1<0.6,0.01, J R Su if (CI > C2,CI,C2) Cs = 0.031 N Cs := if (Cst < Cs , Cs if (Cst < Csmax , Cst, Csmax)) Cs = 0.108 V := Cs•WTTOTAL V = 72201b (EQU 12.8 -1, ASCE 7 -05) E:= V•0.7 E = 50541b (Allowable Stress) lam. Harper Project: SUMMERCREEK TOWNHOMES UNIT A e ' Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LAN DEL APE ARCHITECTS• SUR':EVORS Longitudinal Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 110 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I = 1.0 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X = 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... = 2•.1.20•ft Zone A & B Horizontal Length – 4 ft (Fig 6 -2 note 10, ASCE 7 -05) or „92„;.= .4•h,;2•ft a2 =25.6ft but not less than... 2 3.2•ft 6 ft a = Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA = 19.9•psf PnetzoneB = 3.2•psf PnetzoneC = 14.4-psf PnetzoneD = 3.3•psf Vertical PnetzoneE _ –8.8.psf PnetzoneF = –12•psf PnetzoneG = –6.4•psf PnetzoneH = – 9.7•psf Basic Wind Force , := PnetzoneA' Iw'X PA = 19.9•psf Wall HWC PnetZOneB' Iw X PB = 3.2. psf Roof HWC XcA Pnetzonec•Iw.X Pc = 14.4•psf Wall Typical ,&1 PnetZOneD'IwX PD= 3.3•psf Roof Typical , = PnetzoneE' Iw X PE = –8.8• psf ,b v := PnetzoneF'Iw'X PF = – 12•psf := PnetzoneG'Iw• PG = –6.4.psf ,:= PnetzoneH'Iw PH = – 9.7•psf g — L . Harper Project: SUMMERCREEK TOWNHOMES UNIT A P Houf Peterson Client: PULTE GROUP Job # CEN -090 fi Righellis Inc. ENGINEERS • PlAhNECIS Designer: AMC Date: Pg. # LANOSCAPE 4RC,TECT8•SURVEVORS Determine Wind Sail In Longitudinal Direction MA ir A N := (48 +:59 40)•ft yadami ,ic x := (10 0 + 44) • ft 2 ,4w l : =. (91 + 137 + 67)•ft 2 VSO L := (43 + 0 +.113)• 12 = WSAILZoneA'PA WA = 29251b W = WSJ- ZoneB'PB WH = 173 Ib = WSAILZoneC'PC WC = 4248 lb W� = WSAII-ZoneD'PD WD = 515 lb ind Force := WA + WB + WC + WD yjaij 10. psf•(WSAILZoneA + WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind Force = 7861 lb Wind_Force = 65201b M:= 148 • ft NXa ,:= 120 • ft W A := 323•ft , 4 := 252: ft ,W:= WSAILZoneE'PE WE = — 13021b = WSJ- ZoneF'PF WF = — 1440 lb Wes= WSAILZoneG'PG WG = —2067 Ib W := WSAILZoneH'PH WH = —2444 Ib WF + WH + (WE + WG) + RDL•[WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZonea'. Uplif net = 1243 Ib (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION 19— L. Harper Houf Peterson Righellis Pg #: Transverse Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = • 6 /12 . Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf A= 1.00 Iw= 1.00 Wind Sail Wind Net Design Wind Pressure (psf) (ft2) Pressure (Ibs) Zone A = 19.9 129 2567 Wall High Wind Zone Horizontal Zone B = 3.2 42 134 Roof High Wind Zone Wind Forces Zone C = 14.4 970 13968 Wall Typ Zone Zone D = 3.3 5 17 Roof Typ Zone Zone E = -8.8 94 -827 Roof Windward High Wind Zone Vertical Zone F = -12.0 108 -1296 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 320 -2048 Roof Windward Typ Wind Zone Zone H = -9.7 320 -3104 Roof Leeward Typ Wind Zone Total Wind Force =l 16686 Ibs I Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -7275 Ibs Resisting Dead Load = 8472 Ibs E =I 1197 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm (ft Zone A Zone B Zone C Zone D Main Floor 41 19 391 0 Upper Floor 59 0 307 0 Main Floor Diaphragm Shear = 6507 lbs Upper Floor Diaphragm Shear = 5595 lbs Roof Diaphragm Shear = 4584 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR. ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Diaphragm Diaphragm (Ibs) (Ibs) (Ibs) Width (ft Width (ft ) Width (ft ) A 13.08 1737 18 2797 19 2323 Al • 24.50 3254 0 0 0 0 B 11.42 1516 18 2797 18.5 2261 . E= 49 6507 36 5595 37.5 4584 "9- L. 0 Harper Houf Peterson Righellis Pg #: Transverse Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D Si = 0.34 Ss = 0.94 . Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 SMg • 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 Sips= 0.71 Equ. 11.4 -3, ASCE 7 -05 SIM= 0.39 Equ. 11.4 -4, ASCE 7 -05 . Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = ' 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 ' Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 • Floor 2 Wt (Ib)= 8411 Floor 3 Wt (Ib)= 8476 Roof Wt (Ib) = 14162 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22609 • Trib. Floor 3 Diaphragm Wt (Ib) = 22674 Trib. Roof Diaphragm Wt (Ib) = 21261 Vertical Dist of Seismic Forces Cumulative % total of base shear Rho Check to Shearwalls (Ibs) I to shearwalls Req'd? Vfloor2 (Ib) = 720 100.0% Yes Vfl 3 (Ib) = 1625 85.8% Yes Vroof (Ib) = 2709 53.6% Yes Shear Distribution To Wall Lines . Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft Ibs Ibs Ibs A • 102 361 394 114 897 1266 Al 432 0 0 481 0 0 B 113 293 449 126 728 1443 Sum 647 654 • 843 720 1625 2709 Total Base Shear* = I 5054 LB • *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. ' — 1.,\ ,------ Harper Houf Peterson Righellis Pg #: Longitudinal Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph • Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf R = 1.00 Iw= 1.00 Wind Sail Wind Net Design Wind Pressure (psf) () Pressure (Ibs) Zone A = 19.9 147 2925 Wall High Wind Zone Horizontal Zone B = 3.2 54 173 Roof High Wind Zone Wind Forces Zone C = 14.4 295 4248 Wall Typ Zone Zone D = 3.3 156 515 Roof Typ Zone Zone E = -8.8 148 -1302 Roof Windward High Wind Zone Vertical . Zone F = -12.0 120 -1440 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 323 -2067 Roof Windward Typ Wind Zone Zone H = -9.7 252 -2444 Roof Leeward Typ Wind Zone Total Wind Force =l 7861 Ibs Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -7254 lbs Resisting Dead Load = 8483 Ibs • E =l 1229 Lbs...No Net Uplift Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm (ft Zone A Zone B Zone C Zone D __ Main Floor 48 10 91 43 Upper Floor 59 0 137 0 Main Floor Diaphragm Shear = 2440 Ibs Upper Floor Diaphragm Shear = 3147 Ibs Roof Diaphragm Shear = 2275 Ibs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Diaphragm (lbs) Diaphragm (lbs) (Ibs) Width ft Width ( ft ) Width (ft 1 10 1220 10 1573 10 1137 2 10 1220 10 1573 10 1137 E= 20 2440 20 3147 " 20 2275 Harper Houf Peterson Righellis Pg #: Longitudinal Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D S1 = 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv= 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 SMs 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 SDS= 0.71 Equ. 11.4 -3, ASCE 7 -05 Sp1= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (Ib)= 8411 Floor 3 Wt (lb)= 8476 Roof Wt (Ib) = 14162 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22609 Trib. Floor 3 Diaphragm Wt (Ib) = 22674 - Trib. Roof Diaphragm Wt (Ib) = 21261 Vertical Dist of Seismic Forces I Cumulative % total of base shear Rho Check to Shearwalls (Ibs) to shearwalls Req'd? Vfioa 2 (Ib) = 720 100.0% Yes Vfl 3 (lb) = 1625 85.8% Yes V,00t (Ib) = 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft Ibs Ibs Ibs 1 286 291 415 318 725 1334 2 361 361 428 402 900 1375 Sum 647 652 843 720 1625 2709 Total Base Shear* = ( 5054 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. / v--6 Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 'Transvere Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel M MR Uplift. Panel Lgth. From 2nd Flr. From 3rd Flr: From Roof Load Sides Factor Type T (ft) (ft) (ft) ht I k ht I k ht I k (klf) (plf) (ft-k) (ft -k) (k) 101 Not Used 102 7 1.75 3.50 4.00 . . x 8.00 1.74 18.00 2.80 27.00 2.32 1959 Double 1.40 NG 103 7 1.75 3.50 4.00 '_ 8.00 1.74 8.00 2.80 8.00 2.32 1959 Double 1.40 NG 103a 7 4.00 4.00 1.75 ox 8.00 3.25 814 Single 1.40 IV 104 8 4.50 10.50 1.78 OK 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 I1I 105 8 3.00 10.50 2.67 OK 8.00 . 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III • 106 8 3.00 10.50 2.67 ox 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 109 8 4.58 17.08 1.75 ox 8.00 1.74 18.00 2.80 27.00 2.32 401 Single 1.40 II 110 8 12.50 17.08 0.64 ox 8.00 1.74 8.00 2.80 8.00 2.32 401 Single 1.40 II 111 8 4.50 7.25 1.78 OK 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 112 4.75 1.38 7.25 3.45 OK 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 113 4.75 1.38 ' 7.25 3.45 OK 8.00 ' 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 201 9 3.92 10.79 2.30 ox 9.00 2.80 18.00 2.32 474 Single 1.40 11 201a ' 9 4.17 10.79 2.16 OK 9.00 2.80 18.00 2.32 474 Single 1.40 II 201b 9 2.71 10.79 3.32 ox 9.00 2.80 18.00 2.32 474 Single 1.40 II _ 202A 9 2.96 11.96 3.04 OK 9.00 2.80 18.00 2.26 423 Single 1.40 II - 202B 9 3.00 11.96 3.00 ox 9.00 2.80 18.00 2.26 423 Single 1.40 II 203 9 3.00 11.96 3.00 co( • 9.00 2.80 18.00 2.26 423 Single 1.40 II 204 9 3.00 1 1.96 3.00 ox 9.00 2.80 18.00 2.26 423 Single 1.40 II 301 8 3.92 - 13.96 2.04 OK 8.00 2.32 166 Single 1.40 I 302 8 5.79 13.96 1.38 OK 8.00 2.32 166 Single 1.40 I 303 8 4.25 13.96 1.88 ox 8.00 2.32 166 Single 1.40 I 304 8 2.96 5.96 2.70 ox _ 8.00 2.26 . 379 Single 1.40 II 305 8 3.00 5.96 2.67 OK 8.00 2.26 379 Single 1.40 II Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check • V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear • Shear Application ht . Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) A - L, \ 4. Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 fransvere Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho'V % Story # Panel Shear Panel' M Ma t Uplift Panel Lgth. From 2nd FIr. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht I k ht I k ht I k (klf) (pll) (plf) (ft -k) (ft-k) (k) 101 Not Used 102 7 1.75 3.50 4.00 • . 8.00 0.11 18.00 0.90 27.00 1.27 651 846 0.10 0.50 Double 0.50 NG litdar 103 7 - 1.75 350 4.00 . a ' • . s 8.00 0.11 8.00 0.90 8.00 1.27 651 846 0.10 0.50 Double 0.50 NG 103a 7 4.00 4.00 1.75 OK 8.00 0.48 0.00 0.00 120 156 0.22 1.14 Single 1.00 I 104 8 4.50 10.50 1.78 OK 8.00 0.13 8.00 0.73 8.00 144 219' 284 0.25 1.13 Single 1.00 II 105 8 3.00 10.50 2.67 OK 8.00 0.13 8.00 0.73 8.00 1.44 , 219 284 0.17 0.75 Single 0.75 III 106 8 3.00 10.50 2.67 OK 8.00 0.13 8.00 0.73 8.00 1.44 219 284 0.17 0.75 Single 0.75 III 109 8 4.58 17.08 1.75 OK 8.00 0.11 18.00 0.90 27.00 1.27 134 174 0.25 1.15 Single 1.00 I 110 8 12.50 ' 17.08 0.64 OK 8.00 0.11 8.00 0.90 8.00 1.27 . 134 174 NA 3.13 Single 1.00 I . 111 8 4.50 7.25 1.78 ox 8.00 0.13 8.00 0.73 8.00 1.44 316. 411 0.25 1.13 Single 1.00 BI 112 5 1.38 7.25 3.45 ox 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.08 0.58 Double 0.58 VII 113 5 1.38 7.25 3.45 OK 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.08 0.58 Double 0.58 VII 201 9 3.92 10.79 2.30 OK • . 9.00 0.90 18.00 1.27 200 261 0.17 0.87 Single 0.87. II 201a _ 9 4.17 10.79 2.16 OK 9.00 0.90 18.00 1.27 200 261 0.18 0.93 Single 0.93 II , 201b _ 9 2.71 10.79 3.32 otc 9.00 0.90 18.00 1.27 200 261 0.12 0.60 Single 0.60 III 202A 9 2.96 11.96 3.04 OK 9.00 0.73 18.00 1.44 182 236 0.13 0.66 Single 0.66 III , 202B 9 3.00 11.96 3.00 ox 9.00 0.73 18.00 1.44 182 236 0.13 0.67 Single 0.67 III 203 9 3.00 11.96 3.00 OK 9.00 0.73 18.00 1.44 181 236 0.13 0.67 Single 0.67 III 204 ' 9 3.00 11.96 3.00 bK 9.00 0.73 18.00 1.44 181 236 0.13 0.67 Single 0.67 III 301 8 3.92 - 13.96 2.04 OK 8.00 1.27 91 118 0.20 0.98 Single 0.98 I 302 8 5.79 13.96 1.38 OK 8.00 1.27 91 118 0.29 1.45 Single 1.00 I 303 8 4.25 13.96 1.88 OK 8.00 1.27 91 118 0.21 1.06 Single 1.00 I 304 8 2.96 5.96 2.70 OK 8.00 1.44 242 315 0.15 0.74 Single 0.74 III 305 8 3.00 5.96 2.67 OK 8.00 1.44 242 315 0.15 _ 0.75 Single 0.75 III Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total transverse base shear? Yes ' Total 1st Floor Wall Length = taw Total # 1st Floor Bays = 4.77 Are 2 bays minimum present along each wall line? No 1st Floor Rho = 1.3 Total 2nd Floor Wall Length = 22.75 Total # 2nd Floor Bays = s Are 2 bays minimum present along each wall line? No 2nd Floor Rho = 1.3 Total 3rd Floor Wall Length = 19.92 • Total # 3rd Floor Bays = s Are 2 bays minimum present along each wall line? No 3rd Floor Rho = u Spreadsheet Column Definitions & Formulas • L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load•Rho / Total L % Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2'L/H Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear' Shear Application ht Mr (Resisting Moment) = Dead Load' L 0.5' (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) /4- ..-- t \ c Harper Houf Peterson Righellis Pg #: • Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Wind • Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (kit) (plf) (ft-k) (ft -k) (k) 107 8 15.50 15.50 0.52 OK 10.00 1.22 18.00 1.57 27.00 1.14 1.03 254 Single 1.40 I 71.21 123.49 -0.19 108 8 15.50 15.50 0.52 OK 10.00 1.22 18.00 1.57 27.00 1.14 1.03 254 Single 1.40 I 71.21 123.49 -0.19 1 205 9 13.00 1 13.00 - 0.69 ox I I 1 9.00 1.57 18.00 1.14 l 0.70 208 I Single 1.40 I 34.62 59.15 -0.07 I 206 9 13.00 13.00 0.69 OK I 9.00 1.57 18.00 1.14 r 0.70 208 Single 1.40 I 34.62 59.15 ` -0.07 306 8 10.001 10.00 0.80 OK 1 8.00 1.14 0.29 114 Single 1.40 I 9.10 14.40 0.05 I 307 8 10.001 10.00 0.80 ox 8.00 1.14 0.29 114 Single 1.40 I 9.10 14.40 0.05 Spreadsheet Column Definitions & Formulas • L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Seismic Shear H L WaII H/L Line Load Line Load Line Load Dead V Rho•V % Story # Panel Shear Panel M M Uplift Panel Lgth. From 2nd Flr. From 3rd Flr: From Roof Load Strength Bays, Sides Factor Type T (ft) (ft) ( ht k ht k ht k (kif) (plf) (pif) (ft-k) (ft -k) (k) 107 8 15.50 15.50 0.521 OK 10.00 0.32 18.00 0.73 27.00 1.33 1.09 153 153 NA 3.88 Single 1.00 I 52.25 130.70 -1.74 108 _ 8 15.50 15.50 0.52 OK 10.00 0.40 18.00 0.90 27.00 1.38 1.09 173 173 NA 3.88 Single 1.00 I 57.35 130.70 -1.40 I 205 9 13.001 13.00 0.69 OK I I 9.00 1 0.73 1 18.00 1.33 0.76 158 I 158 NA 2.89 I Single I . 1.00 I 30.54 1 64.22 -0.64 f 206 9 13.00 13.00 0.69 OK 9.00 0.90 18.00 1.38 0:76 175 175 NA 2.89 Single ' l 1.00 - I 32.85 64.22 -0.45 1 306 8 10.00 1 10.00 0.80 I OK I I I ' I 8.00 1.33 0.35. 133 133 I NA I 2.50 Single 1 1.00 I 10.67 1 17.40 0.02 I 307 8 10.00 10.00 0.80 oK 8.00 1.38 035 138 138 NA 2.50 Single 1.00 I 11.00 17.40 0.06 Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Total 1st Floor Wall Length = 31.00 Total # 1st Floor Bays = 7.75 Are 2 bays minimum present along each wall line? Yes 1st Floor Rho = 1.0 Total 2nd Floor Wall Length = 26.00 Total # 2nd Floor Bays = 6 Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho = 1.0 • Total 3rd Floor Wall Length = 20.00 Total # 3rd Floor Bays = s Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho = i.o Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load•Rho / Total L % Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2•L/H Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear • Shear Application ht Mr (Resisting Moment) = Dead Load' L • 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) \I.,...V) Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Transvere Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good For V (plf) (per (lb) Oh) 101 Not Used 102 Simpson Strongwall 103 Simpson Strongwall 103a 814 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 833 104 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 105 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 106 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 109 401 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 110 401 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 111 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 112 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 990 113 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 990 201 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 201a 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 201b 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 202A 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 202B 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 203 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 204 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 _ 301 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 302 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 303 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 , 304 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 305 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. 6 \ Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Longitudinal Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good For V (pif) (PI nb) (lb) 107 254 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -192 Simpson None 0 108 254 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -192 Simpson None 0 205 208 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -69 Simpson None 0 206 208 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -69 Simpson None 0 306 133 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 48 Simpson None 0 307 138 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 59 Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design Toads. /4-- L \CI Transverse Wind Uplift Design . Unit A Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of ® Right Wall Wall @ Left @ - floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) • (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 102 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.192 0.832 27.43 0.57 1.69 21.31 20.79 21.31 20.79 103 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.832 0.192 27.43 1.69 0.57 20.79 21.31 20.79 21.31 103A 8 1.1667 4.00 4.00 3.254 3.254 814 0.04 2.016 1.664 26.03 8.38 6.98 6.00 6.24 6.00 6.24 104 8 1.1667 4.50 10.50 1.516 2.8 2.26 6.576 626 0.1 0.8 0.078 25.08 4.61 1.36 5.58 6.06 5.58 6.06 105 8 1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 0.048 0.252 0.156 16.72 0.97 0.68 6.45 6.52 6.45 6.52 106 8 1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 • 0.048 0.156 0.252 16.72 0.68 0.97 6.52 6.45 6.52 6.45 109 8 1.1667 4.58 17.08 1.737 2.8 2.32 6.857 401 0.152 0.192 0.156 16.31 2.47 2.31 3.63 3.66 201L 201R 4.82 5.09 8.45 8.75 110 8 1.1667 12.50 17.08 1.737 2.8 2.32 6.857 401 0.096 0.156 0.192 44.52 9.45 9.90 3.24 3.21 201 aL 201 bR 4.95 4.88 8.18 8.09 111 8 1.1667 4.50 7.50 1.516 2.8 2.26 6.576 877 0.144 0.8 0.078 35.11 5.06 1.81 8.02 8.51 8.02 8.51 112 8 1.1667 1.50 7.50 1.516 2.8 2.26 6.576 877 0.048 0.252 0.234 11.70 0.43 0.41 11:44 11.46 11.44 11.46 113 8 1.1667_ 1.50 7.50 _ 1.516 2.8 2.26 6.576 877 0.048 0.234 0.252 11.70 0.41 0.43 11.46 11.44 11.46 11.44 201 9 1.1667 3.92 10.8 2.8 2.32 5.12 474 0.225 0.432 0.156 17.71 3.42 2.34 3.99 4.16 301L 301R 0.83 0.93 4.82 5.09 201a 9 1.1667 4.17 10.8 2.8 2.32 5.12 474 0.225 0.156 0.156 18.84 2.61 2.61 4.14 4.14 302L 302R 0.80 0.80 4.95 4.95 201b 9 1.1667 2.71 10.8 2.8 2.32 5.12. 474 0.225 0.156 .0.432 12.24 1.25 2.00 4.24 4.08 303L 303R 0.91 0.80 5.15 4.88 202A 9 1.1667 2.96 11.958333 2.8 2.26 5.06 423 0.173 0.432 0.052 11.92 2.04 0.91 3.62 3.84 304L 304R 2.60 2.75 6.21 6.59 202B 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.173 0.052 0.216 12.09 0.93 1.43 3.84 3.74 305L 305R 2.74 2.16 6.58 5.91 203 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.309 0.216 0.312 12.09 2.04 2.33 3.62 3.56 3.62 3.56 204 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.225 0.312 0.432 12.09 1.95 2.31 3.64 3.57 3.64 3.57 301 8 3.92 13.96 2.32 2.32 166 0.232 0.384 0.204 5.21 3.29 2.58 0.83 0.93 0.83 0.93 302 8 5.79 13.96 2.32 2.32 166 0.232 0.204 0.204 7.70 5.07 5.07 0.80 0.80 0.80 0.80 303 8, 4.25 13.96 2.32 2.32 166 0.232 0.204 0.384 5.65 2.96 3.73 0.91 0.80 0.91 0.80 304 8 2.96 5.96 2.26 2.26 379 0.232 0.384 0.136 8.98 2.15 1.42 2.60 2.75 2.60 2.75 305 8 3_ 5.96 2.26 2.26 379 0.232 0.136 1.104 9.10 1.45 4.36 2.74 2.16 2.74 2.16 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L 1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load' L 0.5 • (.6 wind or .9 seismic) • Uplift T = (Mo-Mr) / (L - 6 in) Transverse Seismic Uplift Design Unit A Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @. floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf kif k k kft kft kft k k k k k k _ 102 8 1.1667 1.75 3.50 0.114 • 0.9 1.27 2.284 653 0.152 0.192 0.832 10.40 0.57 1.69 7.91 7.11 0 0 7.91 7.11 103 8 1.1667 1.75 3.50 0.114 0.9 1.27 2.284 653 0.152 0.832 0.192 10.40 1.69 0.57 7.11 7.91 0 0 7.11 7.91 103A 8 1.1667 4.00 4.00 0.481 0.481 120 0.04 2.016 1.664 3.85 8.38 6.98 -1.06 -0.69 0 0 -1.06 -0.69 104 8 1.1667 4.50 10.50 0.126 0.73 1.44 2.296 219 0.1 0.8 0.078 8.96 4.61 1.36 1.20 1.93 0 0 1.20 1.93 105 8 1.1667 3.00 10.50 0.126 0.73 1.44 2.296 219 0.048 0.252 0.156 5.97 0.97 0.68 2.04 2.14 0 0 2.04 2.14 106 8 1.1667 3.00 10.50 0.126 0.73 1.44 2.296 219 0.048 0.156 0.252 5.97 0.68 0.97 2.14 2.04 0 0 . 2.14 2.04 109 8 1.1667 4.58 17.08 0.114 0.9 1.27 2.284 134 0.152 0.192 0.156 5.58 2.47 2.31 0.82 0.86 201L 201R 1.13 1.54 1.95 2.40 110 8 1.1667 12.50 17.08 0.114 0.9 1.27 2:284 134 0.096 0.156 0.192 15.23 9.45 9.90 - 0.56 0.53 201aL 201bR 1.32 1.32 1.88 1.85 111 8 1.1667 4.50 7.50 0.126 0.73 1.44 2.296 306 0.144 0.8 0.078 12.54 5.06 1.81 2.00 2.73 " 0 0 2.00 2.73 112 8 '1.1667 1.50 7.50 0.126 0.73 1.44 2.296 306 0.048 0.252 0.234 4.18 0.43 0.41 3.79 3.82 0 0 3.79 3.82 113 8 1.1667 1.50 7.50 0.126 0.73 1.44 2.296 306 0.048 0.234 0.252 4.18 0.41 0.43 • 3.82 3.79 0 0 3.82 3.79 201 9 1.1667 3.92 10.80 - 0.9 1.27 2.17 201 0.225 0.432 0.156 7.63 3.42 2.34 1.16 1.41 301L 301R -0.03 0.13 1.13 1.54 201a 9 1.1667 4.17 10.80 0.9 1.27 2.17 201 0.225 0.156 0.156 8.11 2.61 2.61 • 1.38 1.38 302L 302R -0.06 -0.06 1.32 1.32 201b 9 1.1667 2.71 10.80 0.9 ' 1.27 2.17 201 0.225 0.156 0.432 5.27 1.25 2.00 1.53 1.28 303L 303R 0.10 -0.06 1.63 1.22 202A 9 1.1667 2.96 11.96 0.73 1.44 2.17 181 0.173 0.432 0:052 5.25 2.04 0.91 1.15 1.50 304L 304R 1.28 1.50 2.43 3.00 202B 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.173 0.052 0.216 , 5.32 0.93 1.43 1.49 1.35 305L 305R • 1.50 0.63 2.99 1.97 203 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.309 0.216 0.312 5.32 2.04 2.33 1.16 1.08 0 0 1.16 1.08 204 9 1.1667 3.00 11.96 '0.73 1.44 2.17 181 0.225 0.312 0.432 • 5.32 1.95 2.31 1.19 1.08 0 0 1.19 1.08 301 8 0 3.92 13.96 1.27 1.27 91 0.232 0.384 0.204 2.85 3.29 2.58 -0.03 0.13 0 0 -0.03 0.13 302 8 0 5.79 13.96 1.27 1.27 91 0.232 0.204 0.204 4.21 5.07 5.07 -0.06 -0.06 0 0 -0.06 -0.06 303 8 0 4.25 13.96 1.27 1.27 91 0.232 0.204 0.384. 3.09 2.96 3.73 0.10 -0.06 0 . 0 0.10 -0.06 304 8 0 2.96 5.96 1.44 1.44 242 0.232 0.384 0.136 5.72 2.15 1.42 1.28 1.50 0 0 1.28 1.50 305. 8 0 3.00 5.96 . 1.44 1.44 242 0.232 0.136 1.104 5.80 1.45 4.36 1.50 0.63 0 0 1.50 0.63 Spreadsheet Column Definitions & Formulas ,--- L = Shear Panel Length 11 = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) TRANSVERSE UPLIFT CALCULATIONS - SUMMARY UNIT A Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right k Simpson k k Simpson k . 102 Wind 21.31 Holdown None 0.00 Wind 20.79 None 0.00 103 Wind 20.79 Holdown None 0.00 Wind 21.31 None 0.00 103A Wind 6.00 Holdown HDQ8 w 3HF 6.65 Wind 6.24 HDQ8 w 3HF 6.65 104 Wind 5.58 Holdown HDQ8 w 3HF 6.65 Wind 6.06 HDQ8 w 3HF 6.65 105 Wind 6.45 Holdown HDQ8 w 3HF 6.65 Wind 6.52 HDQ8 w 3HF 6.65 106 Wind 6.52 Holdown HDQ8 w 3HF 6.65 Wind 6.45 HDQ8 w 3HF 6.65 109 Wind 8.45 Holdown HDQ8 w DF 9.23 Wind 8.75 HDQ8 w DF 9.23 110 Wind 8.18 Holdown HDQ8 w DF 9.23 Wind 8.09 HDQ8 w DF 9.23 111 Wind 8.02 Holdown HDQ8 w DF 9.23 Wind 8.51 HDQ8 w DF '9.23 112 Wind 11.44 Holdown HDUI 14.93 Wind 11.46 HDU14 14.93 113 Wind 11.46 Holdown HDUI4 14.93 Wind 11.44 HDU14 14.93 201 Wind 4.82 Strap MST48x2 5.75 Wind 5.09 MST48x2 5.75 201a Wind 4.95 Strap MST48x2 5.75 Wind 4.95 MST48x2 5.75 201b Wind 5.15 Strap MST48x2 5.75 Wind 4.88 MST48x2 5.75 202A Wind 6.21 Strap MST60x2 8.11 Wind 6.59 MST60x2 8.11 202B Wind 6.58 Strap MST60x2 8.11 Wind 5.91 MST60x2 8.11 _; 203 Wind 3.62 Strap MST60 4.06 Wind 3.56 MST60 4.06 204 Wind 3.64 Strap MST60 4.06 Wind 3.57 MST60 4.06 ' 301 Wind 0.83 Strap MST37 1.79 Wind 0.93 MST37 1.79 302 Wind 0.80 Strap MST37 1.79 Wind 0.80 MST37 1.79 303 Wind 0.91 Strap MST37 1.79 Wind 0.80 MST37 1.79 304 Wind 2.60 Strap MST48 2.88 Wind 2.75 MST48 2.88 305 Wind 2.74 Strap MST48 2.88 Wind 2.16 MST48 2.88 BY DATE: 6 _ ao to JOB NO.: C eN ' O C / 0 OF PROJECT: - !N; RE: 3a)1/43 al'i:A - Teo,r Loack- El 0 w - Axial LOCIA U WI 0 c. ti- w 0 6: z : . CkA i a \ ‘ 00k.d- ?- C) 0 w I- w O 2 l i j 0 Capo A oP Sswa \ x. ,-.-:. `-‘`-.100 v T . f - wc ,kk\ Li 0 _I Cr < u O w Gc,kuo.1 . Loaa:. ._.= o z . . . • = 3 ttactv-iwoul ii z O aCtUCk I < Capaii4 : • I: < 0 - Z D 2 C 9a C-T 41 - 1 ) 0 c ... SSW a 1 )(5 = 3 it- U o UK:, 2 u_ • z w E 6 0 = 1— a_ = . ..f • 00 " 0 ' -.• cu .--, -.,. 5 L' 77: ';'!' a.. -'• .4 : -:. _-; ' g o • AN 4 0 C 1 03 0 5 J TN IS LEnI&ttI JikL.NC -. MIS LI NC -.0. 1 0 - i -- i ,:t UP (1,lR.ij6E S / 0 L l«) 'o" rt2EJaps7 (.1V O r''' f'A 1 i' ; 1/ 1 v !`` 9 F ' ; ; O . r c- 9- ) , r -= . • z d r 0 G 'il \ 0b Sw �k v.,1. NC -►�ri+ q -ri T N�wNti` 76 ALuyc TW-I S LINc O Z ,g , J T J -4 1 a SW - r LENC -ITlt o.tiyWft742 -= Pc Wnrc -► 11415 LI 0 , r ----- -. -_--_-----__ "�i' fi t o - .1-11 � N r C iI 1 • r 1 ❑ (f'% r 3P 1 G o . 6 ,''� 1 4111 • -M A - .� Y+.�' vac ._4-41 :..-• + `•- q icYL•.7.M.. r ,.. r ss-w. r . ` - t ..•..r:•+r•> : ' m S w 1 LC= Iv &i nt ArN 11 IA) tt c.k Alwt-, - n+.1 s L 1 Nc c P t...) .g. c . . . . ---i IN 105 17 ) . SN 1"\-hs Le NC-)TH ALUkic-t lifts 1,1WC .g. , . IZS...,?!.!.X.7,-M..,=.;;72.=,..71-r..7R1,■,,,r,,,- o5 ..2... '..., a 4 _____. 1 ,,_. il -.....—„-.......--..-..., ....-----' 4., • • I' lj ---1. ------ -3><..-.,,,,,, . 1 • 1 I g 2) 1 : I • 'ii • .-,'-'' I ././ N . c••••••••• • ■ii I • I 1 I I . . , §' • ( s - i -- ) 1 _.? r ; • 1/4.... 6 LA 1 r . . • ,! I ■ I ' .1 1 1 i C7 _ :4 s — 7 , ,:,..,:i :‘,...74-..1-g;.:-.4.-7 a o 6 effineral,• 510 "j\r\v 1...e kac.-Nn+ tvt.oNc--, - nil% UNer- , Su-LL 1-- )N 0- \'0 --Lo /----; L--u ,,,a o h . 9 0 T O 3 1:•• V I 4 C a .,--60---------------- .......) 0 t 0 RI 0 ... 94- .-3 --- gi ---‹ .... V" '9 OE 3f\in g 1 1- r m cr ,® k cE 2 BY: f J N\c_ DATE: 6 .... JOB NO.: (' ' ,._-() CL 0 OF PROJECT: RE: T j \c (c f5 1 OEr\ e( al r V o 1 Gov c-/ ❑ ❑ �� `� • Z VL,ne.B : 6, 5 4 wind (Carko 6.5 4 • F W (Al q p. ragv n (AA ell = a0 Ct o F • i ❑ CO = ' pL.F 1 Cr a ,sue o o c Ccti of unl0tOc.lced G(ia � = box 1,4) =asacA-f woct_ dial* t l Z Gil L., Jvcu /;n3 eel pu# = 655pAl,t4)= 351s> w = • OK- 2 f U w • O U. Z w ❑ Z 0 o I F d O • U t a> ►ter 6' o • 4- L I . BY i k. A DATE: Joe No.: c e. iv on , 1 f\ \ C PROJECT: ROOF &,'f' -8 }W.. RE: Des ;or..., oc r-1 m 1 , olocv,rrct @ Sto S ❑ ❑ • ; OPTION 1. LT Z T w •4 O lAMI►fI F- W T9.1 t3 w ON) 1t•�! F.F. \a'- VIq" f El SO J T = 9 97z" ; / Toy PLAns 18 5" x a 1 x SO 1-0PL .K -a•.= o W %S 3" /. U p W DE slc -,I\J W iNip Pressure rt = - W., psC z r. F. 9 ' - 3 -+ Ib' a 0€ P, 51311 0\} C S o C ;pc r\ �S \J ' . k. i '..��.' ;"` ; ?o? 41-Poi Es Fy' - f18' u 2 lu, -ktr\ uj' . t 0 CI DC 191pL1a 2 o G , IT -- l'a U T T ❑ R, e 4a��i* g-,... kt4 a 14 6- o', f a_ z W N1c f\�x ; $ z - 1q (* 5:1 pct ❑ Z k12- ' 5.15 �= M_ Z F L , s 3.55.25) -- SY. i _ 1ggc $Z */)N� p\ (37A7.2.5) C Fb(' -w = (BSO )(1.15)= a3L-4.,, C 60cl 12 NJ ci s o to I S O � SL 7 �7 : - o v 0 NC - Ti \--) 0 e 6 cm /4 2---- L 29 ( \O -, < Or I X ° ' 1 X 1 ' 1 7. '0),9'1)cO' " .3-e.e7= ,c‘i 1so c,r z -1.44 (!'1)(o )cS cyiio'► o'00 ;d OSg) = �`th, s_ S-&‘ h k- = 1 oil' C:.# Q + e° 4 0 + °t'S .1.c ,4�'O1,S;' �,r, + _ 1•,- +L5tg'0)s'h6 4 S�•, = ? N' p = °I `S' t,'%. p = • � . C ` n 0 R _ ` I z c7 .5Z.,'.5 I ' ,'S. g Ni s q., r = Zst Zt- fi n„c3`,° Y- - �S-�'i °�'St -DS t Z1 m r \ ° SA: 0 ao-s _ r ` 3 „S t _- _ q — (2 ❑ 0 0 -'1Q ,Q = - A1)0I \\ C,o, uo -,i,JO'' z . j - .8 g o _ = a :, .1d '9\ C(' v6'S acA o m m O n A !,0 - z: vkt.Aaao J"0 -k' J. arVk0 x\OW > r o 46.—;,1 iNNI UO Y O,Cri C) l ❑ 3 z 0 m -I "600ri Cr "a - Q J UCaO\t d o z m --600-`t C�7 ? V,1.k ) do ��R " m . ❑ ❑ Z CIO' IdO :3a :103 rot] d 0)90.- • ./ 0 ~ N.),) ..oN eor o, - . ` -.9 31.0 1\i , ,Ae j 44// / �} 44 VVV WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load Wood/Yorks. Sizer 7.1 June 24, 2010 12:49:04 COMPANY 1 PROJECT RESULTS by GROUP - NDS 2005 . SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF = = Trusses =____ .. ______ = - .. - - = - .. =a = = Mnf Not designed by request (2) 2x8 Lumber n -ply D.Fir-L No.2 1- 2x8 • By Others Not designed by request (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 Typ Wall Lumber Stud Hem -Fir Stud 2x6 916.0 SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR Mnf Jot ==IIII =II= = � = ����Not designed by request =_____ Sloped Joist Lumber -soft D.Fir -L No.2 2x6 916.0 (2) 2x8 (1) Lumber n -ply D.Fir-L No.2 1- 2x8 (2) 2x8 Lumber n -ply D:Fir-L No.2 2- 2x8 By Others Not designed by request By Others 2 Not designed by request (2) 2x12 Lumber n -ply D.Fir -L No.2 2- 2x12 5.125x10.5 Glulam- Unbalan. West Species 24F-V4 DF 5.125x10.5 4 %6 Lumber-soft D.Fir -L No.2 4x6 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 4x6 Lumber Post Hem -Fir No.2 4x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 (2) 2x4 Lumber n -ply Hem -Fir No.2 2- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 916.0 SUGGESTED SECTIONS by GROUP for LEVEL 2 - FLOOR Mnf Trusses _ ____�_�___- Not designed by request Mnf Jst Not designed by request Deck Jst Lumber -soft D.Fir -L No.2 2x0 916.0 (2) 2x8 Lumber n -ply D.Fir -L No.2 2- 2x8 3.125x9 Glulam- Unbalan. West Species 240 -V4 DF 3.125x9 4x8 Lumber -soft D.Fir-L No.2 408 By Others Not designed by request • By Others 2 Not designed by request (2) 2x10 Lumber n -ply D.Fir -L No.2 1- 2x10 ' 5.125 %12 GL Glulam- Unbalan. West Species 24F -V4 DF 5.125x12 By Others 3 Not designed by request 3.125x14 LSL LSL 1.55E . 2325Fb 3.5x14 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 9x4 Lumber Post Hem -Fir No.2 4x4 . 4x6 Lumber Post Hem-Fir No.2 4x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 6x6 Timber-soft Hem -Fir No.2 6x6 (2) 2x4 Lumber n -ply Hem -Fir No.2 2- 2x4 6x6 nol Timber-soft D.Fir-L Noll 6x6 (3) 2x4 Lumber n -ply Hem -Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 916.0 SUGGESTED SECTIONS by GROUP for LEVEL 1 - FLOOR = = - Fnd ___� Not designed byrequest = .... �s•_ = = =_ CRITICAL MEMBERS and DESIGN CRITERIA Group Member Criterion Analysis /Design Values Mnf .70* Mnf Jot Not designed by request • Deck Jst j65 Bending 0.41 Sloped Joist j30 Bending 0.10 Floor Jst4 unknown Unknown 0.00 (2) 27E8 (1) b35 Bending 0.47 (2) 2x8 bB Bending 0.89 3.125x9 b3 Bending 0.06 4x8 b30 Bending 0.12 By Others By Others Not designed by request By Others 2 By Others Not designed by request (2) 2x12 b6 Bending 0.93 (2) 2x10 bl Shear 0.78 5.125012 GL b10 Bending 0.76 By Others 3 By Others Not designed by request 5.125x10.5 b9 Deflection 0.95 4 %6 b20 Bending 0.08 3.125x14 LSL b14 Deflection 0.73 (2) 2x6 c2 Axial 0.91 4x4 c55 Axial 0.07 4x6 c23 Axial 0.80 (3) 2x6 c29 Axial 0.75 . 6x6 c26 Axial 0.70 . (2) 2x4 c39 Axial 0.62 6x6 nol c12 Axial 0.86 (3) 2x4 c31 Axial 0.89 Typ Wall w14 Axial 0.48 Fnd Fnd Not designed by request = '_________`_______________ =n` = = =z = = == DESIGN NOTES: 1. Please = verify that the default deflection limits are appropriate for your application. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result is considered the final design and appears in the Materials List. 3. ROOF LIVE LOAD: treated as a snow load with corresponding esponding duration factor. Add an empty roof level to bypass this interpretation. 4. BEARING: the designer is responsible for ensuring that adequate bearing is provided. 5. GLULAM: bxd = actual breadth x actual depth. 6. Glulam Beams shall be laterally supported according to the provisions of N05 Clause 3.3.3. 7. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 8. BUILT -UP BEAMS: it is a s umed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply 1s equally top - loaded. Where beams are side- loaded, special fastening details may be required. . 9. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 10. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. • -- CC\ WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:41:17 Concept Mode: Beam View Floor 2: 8' 01 01 lv X ' -� - -� - _. - -- -: - -- : -.- -- 46 b IUS '- - .. - - _ 4/ -b 1 UL - - 40 -0 1U 1 b - : _- - - -- --- -- - - - - - -- _ 44-0 9 ; . 4L-0 / yn 4l -0 4U 43 yb 3y' b y3.. . 30 -b 30 b 34 -b yU b2 uJ 33 -b . - -- - -- - -- - b/ 00 .. 00 '� .. 31b 3U -0 4V -0 04 LO' n L/ -b Lb 'b 0 I - . - L b -0 bv ..: b1U Iv (/ , b33 _ -0 /b r i • - : -.: - . , - u - 0 L L /L...... _:- •- - -- b32._' _... -- - - -- --- - - - - -- - -- -• -- -- - lb - n r 1 .- -.:- - to -o . --. _. - ..- - -- - - --- - - -- - - -- - -- - '-- - 14 -b b(U -•. •' .. -- - - - - - .. _ 1 0 3 bt5 _.... 019/15_. - '- - - - - .. _ _ 1u o b( 00 1111 00 ., y b bL,3 '. b4 b14 • b b eu b30 b3 s b 11 - _. b2 1., . L n I -b .. �1 _. .. _ - V -0 BBtB.B BC CCCCCC C1CCC CC CCCC C C CC CCtCC CD DD D D DD DFCDD CD DD'DD D D DD CD(DD DE.E E E E•EEEI€EEIEEIE EEEEEEE(EEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4 5'6'7'8'91(1 '1 :1 :1 2:22.2(2(2 44 44'4(4 5,5:5 15(5 7.77.7'.7f77'-6 ' 14Z— CI Woodworks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load Woodworks® Sizer 7.1 June 24, 2010 12:41:19 Concept Mode: Column View Floor 2: 8' NT LOP 1050 - -- 0 c58 0 c14 . 49'-6" I 0 40 -b 103 4/ -b IUL 40 -0 IUI 4b' 10U : - - - -' - - - - 44 .. 9 43 -0 �t5 c69 . CZ ; c 7 0 C71' : 4L O yL - c3 - - -_ - .- - -- - .: - -- 3b -b :.._ 4:I 33 -b 23/ .5 I -b 64 Li0 -0 253 .. L/ -b 25L --. _ -. .._ --' '-- - _. _. - ..__.. .._ .. .- - Z0 -0 6l 15 - 25y ... c25 c12 ... :. c 26 L3 - b (4 0 /L_ : c3 . _. - -- - - _ Ib-b /U 14 -0 btl_ � - - ---- _ . '_ _ .... -- - - .. _ _ - IL -b a3 �y c31 c76 -- - . - --- - c79 ; :. 6.-e bL. 4 - CT - t iC3O 0c32 1 0 -b - : c55 c "g• -I� �. �.. BB\B.B B C CC C CCC CCCCC CC CCCC C C CC CC1CC CD DDO DDD DEDDD CD DD'DO D D DD CD'DD DEE EE E.EE'EEEEE EEiE EEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'67'8'91(1 1 ;1:1 21213( 33:3:3 :4 41415(55 ;5 :5 516E 68;6 :6 :7 6" • (le-6 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 24, 2010 13:14:33 Concept Mode: Beam View Floor 2: 8' 1(Z1'� kp U) b31 - , l �- �T ° ! .. . - 49'-6 425 -b 1U.5 47 1 UL 40 - 0 iU i - - - ._. _ .. _ .. 45 -C3 1UU - .. :- " ': - - - - - - - . -- : 43 . -b . 0 : .- --- - b3 : .... . 4 _ - 30 b s. -' , 3b b WI Sb b 34 -b ua ' b2 3o JL b 231 ; - - - _ - .. - . _ „- --'-- - - -•-- -'--- -. --' . - .. 3I' b ' 3U b Ly b' 6 . L! L25 - b 0 ' b - - _ Lb b 01 : Z0 -0 L4 -b :;b10 Ls -b Ib - - - -:: b33 * ; - . -�- _ ---- -• -- -- - - - - - - L e fro .: _ - - -- -- � - - - - - - - - - - . -.. I . _, _ r L 632 ' . 10 -0 (0 :i i - - -- - .. -_ 14 -b 00 • ; b1911 iu � b1 - bb y -0 ooh - 3 ;• -: - . .- _:.. - ... --- 0 025 b4 II ' b14 : : ■ . b . b .. ou b30 : . . i.... - - b . . 4 �. J -- - .. - - - - -- _ _ 4 .._ 3 b L' b I b BB\B.B BCCCCCCCCPCCCCCCCCCCCCCCCCCCDDDDDDDDIDDDCDDD DDDDDDCD'DODE,EEE E EE EtEEEIEEIEE+EEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 111 :1 (171 ri (2(2 222.22(2 212(3(33 :3 :3 4:4 :44".4(4'4(4(5(5 5 :5 :5 6t6E;6 16.6 ?6t6. 6(6'.7(7 4 - (ni-i WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 24, 2010 13:14:35 Concept Mode: Column View Floor 2: 8' (� I rwl-c 105 c58 c14 ��. 415 b 1U3 - : . : : : : 1 : : : : 41 -b 1UL/ - - - - 40-0 1U t 40 W U - 44 -0 :. ■3 i -c82 - ' -: c81• :: 42'-0 • - 4U-0 b -- : : : - :.:: -- .. - .. .. . . _ _ _ 3 O �J U4 : - - - 30 -0 y3 ` - --- -- -- - - -- 3 /-b yL e3 .. - S0 -b yU 5 J4 - 0 0( 31'-0 00 i _ LV -0 G25 -0 L /'-b t3L .: . ............ - t. - : -- :- -- r _-- Lb -0 - - - - - -. ...._- - -- -- - -- - -- i °I : • - - c25 'c12 c26 L4 -0 Qs : ■ 0 0 0c72 . . LG-b ib c2 . .: ©c73 : GU (4 - - __ ._ : C: __' ._. .. - _. _.- - - -- .. 1 -b l3. _ _ - . . 11 -0 11 _ c3 - -- .._ - - _ - - lb -0 (U -0 : - . 14 - 0 - 00_.::. : _ - .. 0/ - ...... : , - .. - - 1140 00 - - 0 00 - - V - 0 b4 }- _C31 c76... -, c71- !;-.- - -- -- -- - - - - -- - -- "- - b -0 02 . c3O : : 0 c32 : - o BB\8.B BC CCC CCC CICCC CC CCCC C CCC CCCC DDD D DD DDDD DD oDIDDDDE5DCDiDDDEEEE E EEE }EEEIEEEE.FEEEEE!EEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60'62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3 '4'5'6'7'8'9111'1:1 :1'1.'1(1 :11 142(222:222E2 213133:33 313" 31 3Wt 4" 424:4 4! 4E4 '4E4(5155:5:5'5 :6 167g"7.7 :7 6" 4 ..-- Colc WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:44 Concept Mode: Beam View Floor 3: 17' 1050 49' -6" i UHF : .: 40 b l OS ' IULC 4 ._ - - 0-0 lUlb 44 y9_ 0 b35 - - b6 4G -o y( yo - U - .. 4i o .. 4-b y3 . - - yi Jb b ay b7 SS - b ' SL -o 3U -b LSD _ Ly - OS ; ..._.L... L0 -b b9 24 -b i iy -b b21 -. - - _.: -- -=- • -- - : --- - - - --- - - - - - - -- - -- - - - - - - --- b- rl ; b20 lo -o I b b2S . .: - b1Fb17- b4• :.b34 ,. i sb • 0J I oL, b8 _ b . b .. bl o-b bu BB18.8 BCCCCC CCCICCCCC CCCCCCCCCC \CCCDDDDD DE/ DtDDDCDDD DDDDDDCD'DDIE.EE E E'EE EtEEE'EBEEEEEEEEFEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38'40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62'64' 66' 68' 70' 72'74' 76' 0'1'2'3' 4'5'6'7'8'91(1'1.1:1.1(1(1'1(11 2122 222.2E221243(33:33.3'.3(3 - 323(4( 4 424:4.4'.4(4 . 414 (5(55:5;5.5(5(5515E6(66:6:6•6 (6.6(67C7 7 ;7:7.7.7E77' -6" - CIL WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:42 Concept Mode: Column View Floor 3: 17' 1050 .. _ 49' 1U4 4ti " -b WL luib - - - -- _. _ _ 40 -0 9 . 43 -b C16 V0 : : ': c62 c61 ". c15 ... _. : : - 4L - b .- ---... .5V-b V.5 if 45 VZ c17- - ... 60-0 bi- ' 3O -O by .. Ji-b 00 c18-. .50 -b 0.5 L/ - ti L' "_ .. : .. .. _ -- -- - .. — - L0-0 03 L0 -0 tSy : , c39 c24 c23 _ LS L / ! .: C59 - - - z -b 10 -• - I/ . -- -- - - ` - .. .. - I1 Lu-b -- - -- - -- - - "- - -- -" -- -' (U_- , � _.. _. :. - - -- --- .s :: - ' "' - - .- .. . -_ . -... _- 14 - -b O`J .. .:. - ------ --- . - - -- - -- - . 1.5 - 00 s . c35. -- - - . - - _ - _L._,..:_.: " - - -` -- -. . - . 1L -b 010 10 -0 w3 .7) c66 c63 0 -b nG . i i - . n c756520 c1 c6c74 bid.. EG7; . Ed - gyp_; . 5 b �..� _.. b L'-b BB\B.B BCCC C C CC CFCCC CC CCCC C C CC CC \CC CDDDD D DD DIODD DD DD DD D D DD CDIDD DE E E E EiEEEFE EEIEEIE EEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70172' 74' 76' 0'1'2'3'4'5'6'7'8' 9141 '1 :111X1'.14111102222 . 2f2S3433133 , 3' . 3E3 - 3t3f4t44A :4.41 414' 41415155 :5 :5.5!515 '7177.7.7 -6" /5 ---- G4''''Ir WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:38 Concept Mode: Beam View Roof: 25' 1050 • 49'46" 7 V4 10 -b 40-0 • IUI - 40 44 -b.. • VIS - • • . : : b23 b24- : :- • . : - . . . . _._. µG- 1- - --- .. - .. - - - y n 41 b 41.1-0 • yb Jy' b S- ` ` ,. : . : : : ...... --..- . yL ;.1 .:. , . : -I -- - ... - . . . . _ . Jb - n" • Sb b o J4'-b • dy 3S ors - : -- � . - - -.,_ _ - - - . _ JL n 0/ .; • .. J143.. 00 -.- =-. . - - -- - - --- -_ : - ... - -- .50 -0 00 L 2/0 -0 0,5 . : . ; ; : . ; : . , , I , ' I ' : 1/ -b .:....: - - . .. . -- - - .. .. • -- Lb b 01 L 5 -b • • =- .--' - - --- .- - - - - - - --- - - __. _ - 14 -0 11 -10 • 1/ : b25 . " -._: ' . L1 -n /0 r0 . • w -b /J '[ - - • t r - . - - . - . 11 - 0 .. - -- . -- - - 10. -0 • • (U. ..._. .: ._.. ny _ 10.-0 • 00 ---- � . -. - - .. - --- . IL - n 0/ . . . - 0 . 1 n43._: b • nL L00 n . n.. D ID • bUS °a- : . 1e* 4 b • , .. .. .. . L -b" • i b U-b BB\B.B BCCCCCCCC(CCCCC CCCCCCCCCCtCCCDDDDDDDD(DDI/CDDD DDDDDDCDIDDDEE EE EEEE(EE.EIEEIEE'EEEEEEtEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30'32 34' 36' 38'40' 42' 44' 46'48' 50' 52' 54' 56' 58'60' 62'64'66'68' 70' 72'74' 76' 0'1'2'3'4'5'6'7'8'9111 . 1;1:1/1 111 :1112(.2222 4:4:4•4!4(4 'A/4(.5(5 5 ;5 :5 6Z :6/6 :6(661647(77 :77 7-6" //‘7 ..-- 6071:•-:) WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:40 Concept Mode: Column View Roof: 25' 1050 . -. -- .... . _ - - . .- ._ . 49' -6 1 V4,, - - - - - - 4ts' -b' 1U.5 :. - - -- .: . - . - -- - - - - - - . -. 4/ -q • UL tl : :.. - - 40 - 0 23 c42 c43 c44 c45 _ .. . _ - 4L -q • 4I 4U b V4 ___ :. . .i. : .: - -- --- • — .. -- - Jo • WI 30 -b . yV 4 b 230. _ - _ -- - - -- - - --_ - - - - - - - -- - 3U -b • 04 - - -." -.:_.:__- :. - - ' --- ... -. _.- -:- ... - '— ...... ... _ • - L0 -0 03 .. . . .. L/ _q.. 10 .. : _ .. _.. _ .: - -_ `- _..-- - -- - - - - -- - -. ....- --._ ..- • - - -- - --- - - - LL -t) c46: - • : : __ 10 (U__. _- - - . -- .. : : '_ -- - _ _ • .. -- -- 14 -0 . Of . .. : - - :- - - I I -0 q0 -. -- - - - -- - - . - -b 04i ... : c51 c50.. c52 - c53. _ is -b • ql 0 -b bU .- . . • . .... 4 b L . q .. '-'-'t V -b BBVB.B BC CC C C CC CtCCC CC CCCCC C CC CCCC CD DD D D DD DtODD:CD DD°DD D D DD CD}DD DE.E E E EEE•EFEEEIEEE EEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38'40' 42' 44' 46'48' 50' 52' 54' 56' 58' 60' 62' 64' 60 68' 70' 72' 74' 76' 0'1 '2'3'4'5'6'7'8'91 i1 1:1:1 t1 t2i 22: 2: 2 22E2' 212t3t 33; 3: 3 3'. 3i3'3<'3f4i4'4A :4 415(5 5: 5: 5 5t 5i 5 56'. 6t 68: 6' 66:6t6'.621717 '7:7,7 4 — C-e1C • COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:42 b1 Design Check Calculation Sheet Sizer 7.1 LOADS ( ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w61 Dead Partial UD 613.2 613.2 2.50 3.00 plf 2 w 61 Snow Partial UD 795.0 795.0 2.50 3.00 plf 3 - c61 Dead Point 622 2.50 lbs 4 Snow Point 1192 2.50 lbs 5328 Dead Full UDL 47.7 plf 6_j28 Live Full UDL 160.0 plf 7_j33 Dead Full UDL 120.2 plf 8 j33 Live _ Full UDL _ 370.0 _ plf MAXIMUM RE • • 1 ==f- 1 3 Dead 391 1061 Live 795 1615 Total 1186 2676 Bearing: Load Comb #2 #3 Length 0.63 1.43 Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2 -Plys Self- weight of 6.59 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv* = 67 Fv' = 207 fv * /Fv' = 0.32 Bending( +) fb = 331 Fb' = 1138 fb /Fb' = 0.29 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.15 = L/240 _ 0.05 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 2676, V design* = 1237 lbs Bending( +): LC #3 = D +.75(L +S), M = 1178 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 158e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. AQ 6-1 0 COMPANY PROJECT I I WoodWorks® SOFTWARE FOR W000 DESIGN June 24, 2010 12:43 b3 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j45 Dead Full UDL 17.0 plf 2 j45 Live Full UDL 25.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • A i 91 Dead 106 106 Live 112 112 Total 218 218 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Glulam- Unbal., West Species, 24F -V4 DF, 3- 1/8x9" Self- weight of 6.48 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : • Criterion Analysis Value Design Value Analysis /Design Shear fv = 10 Fv' = 265 fv /Fv' = 0.04 Bending( +) fb = 140 Fb' = 2400 fb /Fb' = 0.06 Live Defl'n 0.01 = <L/999 0.30 = L/360 0.04 Total Defl'n 0.03 = <L/999 0.45 = L/240 0.06 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 218, V design = 182 lbs Bending( +): LC #2 = D +L, M = 491 lbs -ft Deflection: LC #2 = D +L EI= 342e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). • 'U COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:40 b6 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 w44 Snow • Partial UD 431.2 431.2 0.00 2.00 plf 51c45 Dead Point 444 5.00 lbs 6_c45 Snow Point 647 5.00 lbs 7 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9_j25 Dead Full UDL 120.2 plf 10 j25 Live Full UDL 370.0 plf MAXIMUM REACTIONS (Ibs1 and BEARING LENGTHS (in1 : • 1 0 61 Dead 1436 1389 Live 1803 1803 Total 3239 3192 Bearing: Load Comb #3 • #3 Length _ 1.73 1.70 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys • Self- weight of 8.02 plf included in Toads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:50 b8 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1_j14 Dead Full UDL 113.7 plf 2 j14 Live Full UDL 350.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • 0. 6+ Dead 357 357 Live 1050 1050 Total 1407 1407 Bearing: Load Comb #2 #2 Length 0.75 0.75 Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 pif included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 77 Fv' = 180 fv /Fv' = 0.43 Bending( +) fb = 963 Fb' = 1080 fb /Fb' = 0.89 Live Defl'n 0.07 = <L/999 0.20 = L/360 0.33 Total Defl'n 0.10 = L/712 0.30 = L/240 0.34 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 1407, V design = 1123 lbs Bending( +): LC #2 = D +L, M = 2110 lbs -ft Deflection: LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 4- &3 COMPANY PROJECT i 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:40 b9 Design Check Calculation Sheet Sizer 7.1 • LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1_j50 Dead Partial UD 113.7 113.7 0.00 1.50 plf 2_j50 Live Partial UD 350.0 350.0 0.00 1.50 plf 3_j14 Dead Partial UD 113.7 113.7 3.00 9.00 plf 4j14 Live Partial UD 350.0 350.0 3.00 9.00 plf 5 j51 Dead Partial UD 113.7 113.7 1.50 3.00 plf 6_j51 Live Partial UD 350.0 350.0 1.50 3.00 plf 7_j24 Dead Partial UD 120.2 120.2 0.00 3.00 plf 8_j24 Live Partial UD 370.0 370.0 0.00 3.00 plf 9_j25 Dead Partial UD 120.2 120.2 3.00 9.00 plf 10_j25 Live Partial UD 370.0 370.0 3.00 9.00 plf 11.j26 Dead Partial UD 120.2 120.2 9.00 12.00 plf 12_ Live Partial UD 370.0 370.0 9.00 12.00 plf 13j52 Dead Partial UD 113.7 113.7 9.00 10.50 plf 14_j52 Live Partial UD 350.0 350.0 9.00 10.50 plf 15_j53 Dead Partial UD 113.7 113.7 10.50 12.00 plf 16 j53 Live Partial UD 350.0 350.0 10.50 12.00 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 10' 121 Dead 1478 1478 Live 4320 4320 Total 5798 5798 Bearing: - Load Comb #2 #2 Length _ 1.74 1.74 • Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x10 -112" Self- weight of 12.39 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 138 Fv' = 265 fv /Fv' = 0.52 Bending( +) fb = 2217 Fb' = 2400 fb /Fb' = 0.92 Live Defl'n 0.38 = L/381 0.40 = L/360 0.94 Total Defl'n 0.57 = L/252 0.60 = L/240 0.95 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 5798, V design = 4953 lbs Bending( +): LC #2 = D +L, M = 17395 lbs -ft Deflection: LC #2 = D +L EI= 890e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Ecp(tension), Fcp(comp'n). cliq COMPANY PROJECT 1 WoodWorks® $OFIWAREFOR WOOD DESIGN June 24, 201012:43 b10 Design Check Calculation Sheet Sizer 7.1 LOADS I Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Pat - Start End Start End tern 1 w39 Dead Partial UD 311.0 311.0 0.00 4.50 No 2 w39 Live Partial UD 680.0 680.0 0.00 4.50 No 3 c39 Dead Point 267 2.00 No 4 c39 Live Point 822 2.00 No 5_j32 Dead Partial UD 120.2 120.2 0.00 0.50 No 6 j32 Live Partial UD 370.0 370.0 0.00 0.50 No 7 Dead Partial UD 120.2 120.2 1.00 4.00 No 8 Live Partial UD 370.0 370.0 1.00 4.00 No 9_j34 Dead Partial UD 120.2 120.2 4.00 4.50 No 10_j34 Live Partial UD 370.0 370.0 4.00 4.50 No 11 j35 • Dead Partial UD 120.2 120.2 4.50 7.50 No 12_j35 Live Partial UD 370.0 370.0 4.50 7.50 No 13 j36 Dead Partial UD 113.7 113.7 4.50 16.50 No 14_j36 Live Partial UD 350.0 350.0 4.50 16.50 No 15_j37 Dead Partial UD 100.7 100.7 3.00 4.50 No 16 j37 Live Partial UD 310.0 310.0 3.00 4.50 No 17 j47 Dead Partial UD 120.2 120.2 7.50 13.50 No 18_j47 Live Partial UD 370.0 370.0 7.50 13.50 No 19 j48 Dead Partial UD 120.2 120.2 13.50 16.50 No 20_j48 Live Partial UD 370.0 370.0 13.50 16.50 No 21_j49 Dead Partial UD 120.2 120.2 0.50 1.00 No 22_j49 Live Partial UD 370.0 370.0 0.50 1.00 No 23_b32 Dead Point 300 3.00 No 24 b32 Live Point 922 3.00 No MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : ), lo' 4' -6" 16-61 Dead 452 4067 1180 Live 847 11291 3436 Uplift 12 Total 1300 15358 4616 Bearing: Load Comb #2 #2 #2 Length 0.50• 4.24 1.27 Cb 1.00 1.09 _ 1.00 'Min. bearing length for beams is 1/2" for exterior supports Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x12" • Self- weight of 14.16 p8 included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 265 fv /Fv' = 0.60 Bending(.-) fb = 1074 Fb' = 2400 fb /Fb' = 0.45 Bending( -) fb = 1396 Fb' = 1844 fb /Fb' = 0.76 Live Defl'n 0.13 = <L/999 0.40 = L/360 0.32 Total Defl'n 0.19 = L/740 0.60 = L/240 0.32 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb', 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fb'- 1850 1.00 1.00 1.00 0.997 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC 92 = D +L, V = 8357, V design = 6496 lbs Bending( +): LC #2 = D +L, M = 11006 lbs -ft Bending( -): LC #2 = D +L, M = 14310 lbs -ft Deflection: LC #2 = D +L EI= 1328e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. Grades with equal bending capacity in the top and bottom edges of the beam cross- section are recommended for continuous beams. 4. GLULAM: bxd = actual breadth x actual depth. 5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 6. GLULAM: bearing Length based on smaller of Fcp(tension), Fcp(comp'n). 14. --- (:, P I ;:'' COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:44 b13 Design Check Calculation Sheet . Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2_w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 c40 Dead Point 217 5.50 lbs 4 Live Point 668 5.50 lbs 5 Dead Point 518 5.00 lbs 6 c67 Snow Point 778 5.00 lbs 7 c68 Dead Point 573 3.00 lbs 8_c68 Snow Point 942 3.00 lbs 9 w59 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10 w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12_j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14_j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15_j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16_j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 18 b15 Live Point 389 3.50 lbs 19 b32 Dead Point 225 6.50 lbs 20 Live Point 693 6.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : ^ ..�.x s. -"e�i. , .,_. -- Asa �, , �-'�` i _: 7 .......... a ' 4,'!r - 7 sid'r9 ... tier.. , a:.... 10' 0i Dead 2561 3033 Live 2699 3789 Total 5261 6822 Bearing: Load Comb #3 #3 Length 1.88_ 2 LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criteribn Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L/680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC #3 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. K --- L 11‘.' ,,---, COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:43 b14 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w33 Dead Partial UD 317.7 317.7 9.00 12.00 plf 2 w 33 Live Partial UD 350.0 350.0 9.00 12.00 plf 3 - c19 Dead Point 357 9.00 lbs 4 c19 Live Point 1050 9.00 lbs 51c20 Dead Point 357 3.00 lbs 6 c20 Live Point 1050 3.00 lbs 7 w34 Dead Partial UD 317.7 317.7 0.00 3.00 plf 8_w34 Live Partial UD 350.0 350.0 0.00 3.00 plf 9 c64 Dead Point 165 10.50 lbs 10 c64 Snow Point 225 10.50 lbs 11 Dead Point 165 1.50 lbs 12 Snow Point 225 1.50 lbs 13 Dead Full UDL 113.7 plf 14_j36 Live Full UDL 350.0 plf 15 j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 16 Live Partial UD 25.0 25.0 0.00 0.50 plf 17 Dead Partial UD 17.0 17.0 0.50 1.50 plf 18 j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 19 Dead Partial UD 17.0 17.0 1.50 10.50 plf 20 Live Partial UD 25.0 25.0 1.50 10.50 plf 21_j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 22 j46 Live Partial UD 25.0 25.0 10.50 12.00 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : _ "'".- r r - -3_ ".•••••••••- '° + � ya. ►- . r _ c _ - �-. ^' .. - ".- 5.ra.... z-e ''a"i' - ma-..... - - - : .�_z, _ ; ,.x -�- _..........714,... .wz.. - ...mac - '1. �. -.fir '°� ......- ��-• 2.• u..,..1...-"..... ar � --- ..- r; _ .a.,..,...`^y - .f�...- -,- 1m' ar r_ . �_�,....... - 4...�.- -•y. - • - ` ""L�- �T..d'ot ---• 4?_r -.! ° .G - - ..� - '^-....ate' - '-^" - yr�+rG- - " .n - MI C 1 0' 12i Dead 2351 2351 Live 4350 4350 Total 6701 6701 Bearing: Load Comb #2 #2 Length 2.39 2.39 • LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 163 Fv' = 310 fv /Fv' = 0.52 Bending( +) •fb = 1769 Fb' = 2325 fb /Fb' = 0.76 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.43 = L/333 0.60 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Ervin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 6701, V design = 5314 lbs Bending( +): LC #2 = D +L, M = 16851 lbs -ft Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. / 9 - ---- 1 : 4 1 n''' COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:41 b20 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j30 Dead Full UDL 21.7 plf 2 130 Live Full UDL 60.0 plf MAXIMUM RErT1[1NS (Mal and RFARIN( 1 FNrTI1S /inl • • A 1 Dead 46 46 Live 105 105 Total 151 151 Bearing: Load Comb #2 #2 Length 0.50* 0.50* 'Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x6" Self- weight of 4.57 plf included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 9 Fv' = 180 fv /Fv' = 0.05 Bending( +) fb = 90 Fb' = 1170 fb /Fb' = 0.08 Live Defl'n 0.00 = <L/999 0.12 = L/360 0.02 Total Defl'n 0.00 = <L/999 0.18 = L/240 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 151, V design = 111 lbs Bending( +): LC #2 = D +L, M = 132 lbs -ft • Deflection: LC #2 = D +L EI= 78e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. / 4 - bk /41) • COMPANY PROJECT 1 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:50 b30 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j41 Dead Partial UD 68.0 68.0 2.00 4.00 plf 2_j41 Live Partial UD 100.0 100.0 2.00 4.00 plf 3_j42 Dead Partial UD 72.2 72.2 0.00 2.00 plf 4 j42 Live Partial UD 106.2 106.2 0.00 2.00 plf MAXIMUM REACTInNS llhcl and BFARING I FN(;THS lint : • 0 . 44 Dead 154 150 Live 209 203 Total 364 353 Bearing: Load Comb #2 #2 . Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x8" Self- weight of 6.03 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 15 Fv' = 180 fv /Fv' = 0.08 Bending( +) fb = 140 Fb' = 1170 fb /Fb' = 0.12 Live Defl'n 0.00 = <L/999 0.13 = L/360 0.03 Total Defl'n 0.01 = <L/999 0.20 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 364, V design = 253 lbs Bending( +): LC #2 = D +L, M = 359 lbs -ft Deflection: LC #2 = D +L EI= 178e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. / 14- 7 19 . COMPANY PROJECT i I WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:42 b31 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j65 Dead Partial UD 47.7 47.7 0.00 4.00 plf 2_j65 Live Partial UD 160.0 160.0 0.00 4.00 plf 3_j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4_j28 Live Partial UD 160.0 160.0 4.50 7.50 plf 5_j62 Dead Partial UD 47.7 47.7 7.50 11.00 pif 6_j62 Live Partial UD 160.0 160.0 7.50 11.00 plf 7_j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 8_j63 Live Partial UD 160.0 160.0 11.00 17.00 plf 9_j64 Dead Partial UD 47.7 47.7 17.00 20.00 plf 10_j64 Live Partial UD 160.0 160.0 17.00 20.00 plf 11_j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 12 j66 Live Partial UD 160.0 160.0 4.00 4.50 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 1 10' 20 Dead 619 619 Live 1600 1600 Total 2219 2219 Bearing: Load Comb #2 #2 Length 0.67 0.67 Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x12" Self- weight of 14.16 pif included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 49 Fv' = 265 fv /Fv' = 0.18 Bending( +) fb = 1082 Fb' = 2400 fb /Fb' = 0.45 Live Defl'n 0.43 = L /553 0.67 = L/360 0.65 Total Defl'n 0.69 = L/350 1.00 = L/240 0.69 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 2219, V design = 1997 lbs Bending( +): LC #2 = D +L, M = 11095 lbs -ft Deflection: LC #2 = D +L EI= 1328e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4 - G COMPANY PROJECT ' i Wood vVorks ® Jan. 24, 2010 13 I5 b34 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Otto 7.1 LOADS I m•.p. 9 .a. Pit Lced Type Distribution Magnitude Location !ft) Unit. Start End Start End . l_062 Dead Partial UD 613.2 613.2 0.00 2.00 plf 2 v62 Snow Partial UD 395.0 795.0 0.00 :.00 plf 3_029 Dead 1 UD 613.5 617.5 7.50 11.00 plf 029 Snow Partial UD 001.2 601.2 7.50 11.00 plf 5 415 Dead Point 1436 11.00 lba 6315 Sno✓ Point 2404 11.00 lba 416 Dead Point 11:9 11.00 lb. 416 Snow Point 2404 13.00 lba 9 3 v64 Dead Partial UD 61 611.5 13.00 19.00 plf 10 061 Sr.✓ Partial UD 901.2 201.2 17.00 10.00 plf 11 061 Dead Point 622 7.00 1ba ' 12 Snow Point 1192 3.00 16. 13_362 Dead Point 622 4.00 1b. 362 Snow Point 1192 4.00 1b. 15 063 Dead Partial UD 613.2 613.2 2.00 4.00 plf 16 Snow Partial U0 395.0 195.0 2.00 4.00 plf 17 Dead Partial U0 611.5 617.5 19.00 20.00 plf 13 v65 Snow Partial u0 901.2 801.2 19.00 20.00 plf 19 Dead Partial UD 613.2 613.2 1.00 7.50 plf 20 Snow Partial UD 795.0 795.0 7.00 7.50 plf 21_J64 Dead Partial UD 47.7 43.3 11.00 19.00 plf 22 164 Live Partial U0 160.0 160.0 11.00 12.00 plf 23129 Dead Partial UD 47.7 47.7 4.50 1.50 plf 24 129 Live Partial UD 160.0 160.0 4.50 1.50 plf . 25 ]62 Dead Partial U0 43.1 47.7 3.50 11.00 plf 26_162 Live Partial UD 160.0 160.0 3.50 11.00 plf 3_142 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29_113 Live Partial UD 370.0 330.0 0.00 2.00 plf 29_132 Dead Partial UD 120.2 120.2 3.90 4.00 plf 30_132 Live Partial VD 310.0 310.0 3.50 4.00 plf • 31_133 Dead Partial VC 120.2 120.2 4.50 7.50 pit 32_133 Live Partial UD 330.0 370.0 4.50 7.50 plf 33_134 Dead Partial UD 120.2 120.2 1.50 9.00 plf . 34_134 Live Partial UD 370.0 330.0 1.50 3.00 plf • 35_135 Dead Partial UD 120.2 1 :0.2 9.00 11.00 plf 3 ]3 Live 2.0 U0 310.0 370.0 8.00 11.00 plf 3_]1: Dead Partial U0 120.2 120.2 11.00 17.00 plf 39_147 Live Partial VD 130.0 110.0 11.00 11.00 plf 39_163 Dead Partial U0 120.2 120.2 2.00 3.50 plf 40_361 Live Partial UD 310.0 330.0 2.00 3.50 plf 41_149 Dead Partial 00 120.2 120.2 4.00 4.50 plf 42_149 Live Partial U0 330.0 370.0 1.00 4.50 plf 43_163 Dead Partial UO 47.7 47.1 11.00 1].00 plf 44_163 Live Partial UD 160.0 160.0 11.00 17.00 plf 45_165 Dead Partial UD 11.1 47.1 18.00 20.00 plf 46 165 Live Partial UD 160.0 160.0 19.00 20.00 210 47 166 Dead Partial UD 47.7 47.7 4.10 4.50 plf 46166 Live Partial U0 160.0 160.0 4.00 4.50 plf 49_168 Dead Partial U0 120.: 1 :0.2 17.00 18.00 plf 50_169 Live Partial UD 370.0 310.0 17.00 12.00 plf 51_169 Dead Partial U0 120.2 120.2 19.00 20.00 plf 52_16? Live Partial U0 370.0 310.0 19.00 20.00 plf 53_172 Dead Partial UD 47.3 41.7 2.00 4.00 plf 54 172 Live Partial U0 160.0 160.0 2.10 4.00 plf 55 113 Dead Partial UD 47.1 41.7 0.00 2.00 plf 56 173 _Live Partial UD 160.0 160.0 0.00 2.00 olf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : G ° Dead 455 - 14, Love 93 1305 Total 37361 11003 gearing: . Lad Cobb 2 3 19 4 LorntS 4 5.21 _ 5.19 Glulam -Bat., West Species, 24F -V8 DF, 5- 118x22 -112" SdTeRdle 09 25.55 pa Included bl bads: Lateral support tope ful, balim. al auppatsi Analysis vs. Allowable Stress (psi) and Deflection (In) Udng Nos 200d: Criterion Ana1vaia Vale. D.vien Value Ana1Ya1. /0e.1an Shear 23 - 192 Fv. . 305 fv /FV' - 0.60 Bending(') fb - 2392 FO' - 2604 10/12' • 0.92 Live Oefl'n 0.40 - L/595 0.67 - L/360 0.60 Total Def3'n 0.34 - L/225 1.00 - 1/240 _ 0.94 ADDITIONAL DATA: FACTORS: F/E CD 09 CL CV Cfu Cr Cart LC9 F0' :65 1.15 1.00 1.00 1.00 1.00 1.00 3 12'4 2400 1.15 1.00 1.00 1.000 0. 1.00 1.00 1.00 1.00 - 3 Fop 650 1.00 1.00 - E' 1.9 million 1.00 1.00 - - - Ervin' 0.55 million 1.00 1.00 - - - Shear : LC 93 - D•.151L•S1. v ■ 17361, 'J de.fgn ■ 13992 16s end13g(41: LC 13 - D4. 0 ■ 96159 1be -ft Deflection: LC 13 ■ 04.75(105) 9756006 1b -in2 Total 0,91,3tion ■ 1.50(0ead Load Deflection) • Live Load Deflection. (0-dead 1311ve 6 ■onto 1: - wind I•1rpa< C- c001tructi:3 CLd-c3ncentreted) 1011 Le's are listed in the Analyvio output) • Load ror.Ll0.01009: IR -IBC DESIGN NOTES: I. Please verity that Me default deflection Ones are approplate for your appalDon. a Glutam design values are for mdenab conforming to AITC 117 -2001 and nWnutabaad In accordance with ANSPAITC A190.1•1992 3. GLU1AAt 0.1 a actual breadth 0 actual depth. . 4. GMam Bemis shag be laterally supported according to the provisions of NOS Clore 33.3. 5. GLULAM: bearbg Iength Weed on ama0er of Fop(tensim), Fcp(mmpn). 4-, (,.,2;\ COMPANY PROJECT I WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:49 b35 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1_j21 Dead Partial UD 120.2 120.2 0.50 1.50 plf 2_j21 Live Partial UD 370.0 370.0 0.50 1.50 plf 3_j59 Dead Partial UD 120.2 120.2 0.00 0.50 plf 4_j59 Live Partial UD 370.0 370.0 0.00 0.50 plf 5_j60 Dead Partial UD 120.2 120.2 1.50 3.00 plf 6 j60 Live _ Partial UD _ 370.0 370.0 1.50 3.00 _ plf MAXIMUM R - - - - - - • I p' 34 Dead 188 188 Live 555 555 Total 743 743 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 31 Fv' = 180 fv /Fv' = 0.17 Bending( +) fb = 254 Fb' = 1080 fb /Fb' = 0.24 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 743, V design = 444 lbs Bending( +): LC #2 = D +L, M = 557 lbs -ft Deflection:,LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd =concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. • COMPANY PROJECT 1 WoodWorks® SOFTWARE FDR WOOD DESIGN June 24, 2010 12:51 c2 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End l bl Dead Axial 1056 (Eccentricity = 0.00 in) 2 Rf.Live Axial 2153 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): • 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 2 -Plys Self- weight of 3.41 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 0.00= 0.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 196 Fc' = 980 fc /Fc' = 0.20 Axial Bearing fc = 196 Fc* = 1644 fc /Fc* = 0.12 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.596 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 3236 lbs Kf = 1.00 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT i 1 Woo SOFTWARE FOR W000 DESIGN June 24, 2010 12:54 c12 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or ptf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c24 Dead Axial 1478 (Eccentricity = 0.00 in) 2 c24 Live Axial 4320 (Eccentricity = 0.00 in) 3 b10 Dead Axial 4067 (Eccentricity = 0.00 in) 4 Live Axial _ 11291 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): I> •. f'6' x ['• f � a �.eaa.^• - s:..c.r .� ".`.fi`W+.!.. ti, �^' x s."-#` r - 0' 8 , Timber -soft, D.Fir -L, No.1, 6x6" Self- weight of 7.19 pif included in Toads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 701 Fc' = 820 fc /Fc' = 0.86 Axial Bearing fc = 701 Fc* = 1000 fc /Fc* = 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1000 1.00 1.00 1.00 0.820 1.000 - - 1.00 1.00 2 Fc* 1000 1.00 1.00 1.00 - 1.000 - - .1.00 1.00 2 Axial : LC #2 = D +L, P = 21214 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. - CH COMPANY PROJECT di WoodWorks SOFTWARE FOR WOOD DESIGN June 24, 2010 12:53 c23 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b9 Dead Axial 1478 (Eccentricity = 0.00 in) 2 Live Axial 4320 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 9' Lumber Post, Hem -Fir, No.2, 4x6" Self- weight of 3.98 plf included in Toads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 303 Fc' = 379 fc /Fc' = 0.80 Axial Bearing fc = 303 Fc* = 1430 fc /Fc* = 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.265 1.100 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 5834 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 4-- CI f :.. COMPANY PROJECT %VoodVVorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:54 c26 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c23 Dead Axial 1478 (Eccentricity = 0.00 in) 2_c23 Live Axial 4320 (Eccentricity = 0.00 in) 3b10 Dead Axial 1180 (Eccentricity = 0.00 in) 4 Live Axial 3436 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): s 7y.�-' ° 'L - n " * ,,. a ;�, t� yam^ .. s.ra+•a � ,• x �.p_� "'. ;} 7F�_a'. F ,1' • 4 iw �?' • 0' 8 , Timber -soft, Hem -Fir, No.2, 6x6" Self- weight of 6.25 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 346 Fc' = 492 fc /Fc' = 0.70 Axial Bearing fc = 346 Fc* = 575 fc /Fc* = 0.60 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.00 1.00 1.00 0.856 1.000 - - 1.00 1.00 2 Fc* 575 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 10465 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2L) COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:52 c29 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b13 Dead Axial 3033 (Eccentricity = 0.00 in) 2 Rf.Live_ Axial 5052 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): t> e 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 3 -Plys Self- weight of 5.11 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 328 Fc' = 439 fc /Fc' = 0.75 Axial Bearing fc = 328 Fc* = 1644 fc /Fc* = 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.267 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 8126 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. • COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:55 c31 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_b13 Dead Axial 2561 (Eccentricity = 0.00 in) 2 Rf.Live Axial 3599 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 1 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x4 ", 3 -Plys Self- weight of 3.25 plf included in Toads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 393 Fc' = 443 fc /Fc' = 0.89 Axial Bearing fc = 393 Fc* = 1719 fc /Fc* = 0.23 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.258 1.150 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 6186 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. ,42 -� COMPANY PROJECT di WoodWorks® SOFSWARE FOP WOOD DESIGN June 24, 2010 12:54 c39 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b21 Dead Axial 267 (Eccentricity = 0.00 in) 2 Live Axial 822 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 1 0' 9' Lumber n -ply, Hem -Fir, No.2, 2x4 ", 2 -Plys Self- weight of 2.17 pif included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 106 Fc' = 171 fc /Fc' = 0.62 Axial Bearing fc = 106 Fc* = 1495 fc /Fc* = 0.07 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.114 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 1108 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT 111 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:52 c55 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b30 Dead Axial 154 (Eccentricity = 0.00 in) 2 Live Axial 209 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 1 0' 8' Lumber Post, Hem -Fir, No.2, 4x4" Self- weight of 2.53 plf included in Toads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 31 Fc' = 470 fc /Fc' = 0.07 Axial Bearing fc = 31 _ Fc* = 1495 fc /Fc* = 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.315 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 384 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. frq BY DATE: ( _ r &O \O JOB NO.: C E • , �Q S ` OF P ROJECT: RE: 13eam6 wI Lai-cleat Read-coos ❑ ❑ w F W b eam ( - > Watt s X 303 O z ❑ bear() 13 --, Wcttl5 ao as ao O � U Z w O � Q becks 3L. walls ao1 , 30 t A 7' ao 5 trice tend 'eckc,b m1S >> se tsmz c. reach GY'N Z 2 0 WAY U)1tt h2 ca cutcAve;k , 2 0 f O ce Z w ❑ Z O O • 0. o 6 . a> • r = 3 o o,o a x ,� • COMPANY PROJECT ea WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 13:07 b6 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 c44 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4_w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 c45 Dead Point 444 5.00 lbs 6_c45 Snow Point 647 5.00 lbs 7_w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9 j25 Dead Full UDL 120.2 plf 10_j25 Live Full UDL 370.0 plf WIND1 Wind Point 800 2.00 lbs WIND2 Wind Point -910 5.00 lbs MAXIMUM REACTIONS (Ibsl and BEARING LENGTHS linl 10' 61 Dead 1436 1389 Live 2089 1803 Total 3525 3192 Bearing: Load Comb #4 #3 Length _ 1.88 _ 1.70 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.15 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 4 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 4 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #4 = D +.75(L +S +W) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NOS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. • 141- COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DFSICN June 24, 2010 13:07 b6 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 c45 Dead Point 444 5.00 lbs 6_c45 Snow Point 647 5.00 lbs 7_w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9_j25 Dead Full UDL 120.2 plf 10_j25 Live Full UDL 370.0 plf WIND1 Wind Point -800 2.00 lbs WIND2 Wind Point 910 5.00 lbs MAXIMUM R - • = - : • I • 10, 61 Dead 1436 1389 Live 1803 2172 Total 3239 3561 Bearing: Load Comb #3 #4 Length 1.73 1.90 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 pif included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' 0.78 • Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C =construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. ..._ (5-33 • COMPANY PROJECT f WoodWorks® SOFTWAREFOR WOOD DESIGN June 24, 201013:09 b14 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, pst, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2 w68 Live Partial UD 350.0 350.0 9.00 10.50 plf 3 Dead Point 357 9.00 lbs 4 c19 Live Point 1050 9.00 lbs 5 c20 Dead Point 357 3.00 lbs 6_c20 Live Point 1050 3.00 lbs 7_w66 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8 w66 Live Partial UD 350.0 350.0 0.00 1.50 plf 9 Dead Point 165 10.50 lbs 10 c64 Snow Point 225 10.50 lbs 11 c65 Dead Point 165 1.50 lbs 12_c65 Snow Point 225 1.50 lbs 13 w67 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14 w67 Live Partial UD 350.0 350.0 1.50 3.00 plf 15_w69 Dead Partial UD 317.7 317.7 10.50 12.00 plf 16_w69 Live Partial UD 350.0 350.0 10.50 12.00 plf 17_j36 Dead Full UDL 113.7 plf 18_j36 Live Full UDL 350.0 plf 19_j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20_j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 21_j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22 j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 23 j45 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24 j45 Live Partial UD 25.0 25.0 1.50 3.00 plf 25_j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26 j46 Live Partial UD 25.0 25.0 10.50 12.00 plf 27 j70 Dead Partial UD 17.0 17.0 3.00 9.00 plf 28_j70 Live Partial UD 25.0 25.0 3.00 9.00 plf 29_j71 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30 j71 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point 3560 3.00 lbs WIND2 Wind Point -3640 9.00 lbs wind3 Wind Point -3620 0.00 lbs winds Wind Point 3570 12.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : r , ter, -,.,,, .._ - --.�_ - - s .r -. "'�C,:t,� - _ -~ s- " -- .� � _ - _' "'. = " r ` i _ . At ac.. , --' � ' '. -.,._ "_ 9 : °� .. ::.r -� - .- .r., _ -�� ,- �, � �. .fir . -, .. mac..- . .S_ -� '- �.-= 4�a -44,- =r za a t� .�. I 121 Dead 2207 2207 Live 4350 4350 Uplift 499 479 Total 6557 6557 Bearing: Load Comb 02 42 Length 2.34 _ 2.34 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; • Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 158 Fv' = 310 fv /Fv' = 0.51 Bending( +) fb = 1735 Fb' = 2325 fb /Fb' = 0.75 Live Defl'n 0.25 = L/573 0.40 = L /360 0.63 Total Defl'n 0.42 = L/343 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC 02 = D +L, V = 6557, V design = 5170 lbs . Bending( +): LC 02 = D +L, M = 16527 lbs -ft Deflection: LC 92 = D +L EI= 1241e06 lb -in2 . Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S =snow W =wind I= impact C= construction CLd =concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC • DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. /4'-63Gf COMPANY PROJECT i WoodWorks® SOFIWARFFOR WOOD [MON June 24, 2010 13:09 b14 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2_w68 Live Partial UD 350.0 350.0 9.00 10.50 plf 3_c19 Dead Point 357 9.00 lbs 4_c19 Live Point 1050 9.00 lbs 5 c20 Dead Point 357 3.00 lbs 6 Live Point 1050 3.00 lbs 7 w66 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8 Live Partial UD 350.0 350.0 0.00 1.50 plf . 9 Dead Point 165 10.50 lbs 10_c64 Snow Point 225 10.50 lbs 11 c65 Dead Point 165 1.50 lbs 12 Snow Point 225 1.50 lbs 13 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14 w67 Live Partial UD 350.0 350.0 1.50 3.00 plf 15 w69 Dead Partial UD 317.7 317.7 10.50 12.00 plf 16 Live Partial UD 350.0 350.0 10.50 12.00 plf 17_j36 Dead Full UDL 113.7 plf 18_j36 Live Full UDL 350.0 plf 19_j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20_j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 21_j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22 j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 23 j45 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24_j45 Live Partial UD 25.0 25.0 1.50 3.00 plf 25 j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26 Live Partial UD 25.0 25.0 10.50 12.00 plf 27_j70 Dead Partial UD 17.0 17.0 3.00 9.00 plf 28_j70 Live Partial UD 25.0 25.0 3.00 9.00 plf 29_j71 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30 j71 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point -3560 3.00 lbs WIND2 Wind Point 3640 9.00 lbs wind3 Wind Point 3620 0.00 lbs winds Wind Point -3570 12.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : ^ �^ -.•�i . r te ( •,�"•��!ii T_- ..z "0+" ., _' wi : _ ""' ..,. _ .. .. _ ,/` • I a 121 Dead 2207 2207 Live 4826 4811 Total 7033 7018 Bearing: Load Comb 44 04 Length _ 2.51 2.51 LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 310 fv /Fv' = 0.51 Bending( +) fb = 1735 Fb' = 2325 fb /Fb' = 0.75 Live Defl'n 0.25 = L/573 0.40 = L /360 0.63 Total Defl'n 0.42 = L/343 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 6557, V design = 5170 lbs • Bending( +): LC #2 = D +L, M = 16527 lbs -ft Deflection: LC 42 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer.' 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. • COMPANY PROJECT di WoodWorks® SOFTWARE FOR W000 bf ICN June 24, 2010 13:11 b13 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psi, or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2_w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3_c40 Dead Point 217 5.50 lbs 4_c40 Live Point 668 5.50 lbs 5_c67 Dead Point 518 5.00 lbs 6_c67 - Snow Point 778 5.00 lbs 7_c68 Dead Point 573 3.00 lbs 8_c68 Snow Point 942 3.00 lbs 9 w59 Dead Partial UD 593.7 593.7 5.00 8.00 plf 115_w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11_j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12_j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13 138 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14_j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15_j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16_j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 18 b15. Live Point 389 3.50 lbs 19 b32 Dead Point 225 6.50 lbs 20 b32 Live Point 693 6.50 lbs W1 Wind Point 6590 0.00 lbs W2 Wind Point -6590 3.00 lbs W3 Wind Point 6590 5.00 lbs W4 Wind Point -6590 8.00 lbs MAXIMUM REAC isl and BEARING LENGTHS (Jill _ ...1........„... ` - .+c.."'.`iie. i - -_` --1.. - „,...,, r ,"-----_- � ._ p :'rra -L" "a - ....."- au3r, -,:4x '. - �:'� :: a r t ,,,,,:_,.___. 07 .,„<-_-_ - .._• -_ m.3 te. -� �R "=•._. -.- _ . : � -.. _ � .. ter:-= - _. v74:ay ".a i +.4 ,= _�;:..._ *m'aa- ''~'r?,.'°... -- . re- " - �.ris 1 n 81 Dead 2561 3033 Live 6406 3789 Uplift 3098 Total 8968 • 6822 Bearing: Load Comb 94 93 Length 3.20_ _ 2.44 LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight of 15.31 Of included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L /680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC 03 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC 03 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC 03 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live S =snow W =wind I= impact C =construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. . 4 - ("13G COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 13:11 b13 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, pst, or plt) : Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2_w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3_c40 Dead Point 217 5.50 lbs 4 c40 Live Point 668 5.50 lbs 5 Dead Point 518 5.00 lbs 6 c67 Snow Point 778 5.00 lbs 7 Dead Point 573 3.00 lbs 8 c68 Snow Point 942 3.00 lbs 9 w59 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10_w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12_7j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13_j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14_j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15_j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16 j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 Dead Point 126 3.50 lbs 18 Live Point 389 3.50 lbs 19 Dead Point 225 6.50 lbs 20 b32 Live Point 693 6.50 lbs W1 Wind Point -6590 0.00 lbs W2 Wind Point 6590 3.00 lbs W3 Wind Point -6590 5.00 lbs W4 Wind Point 6590 8.00 lbs MAXIMUM Rk.ACT_lfl & and BEARING LFNGTHS lint : .'..-o..4.- . cam• -_1- i... ` . ",,,,.,. = , -. 1 4.. ._ <..- ""ti - t- • a.....: -.:.�• mss. • .,,r- .n a r�-•.- ..w „ ,► a � Z- •....0.- -..s..._ -,,..=......--.....- -. - -`o,_a t .w -- �.. --.. • - = se, ---..-.722....""_ ..."' -+. - ..--+- .ic � `-'.. -- • . c , ' .^ `-' -s mss . --- '--- r . - .-- mss- . . . ,�-- • - ■�..�. 1:''' i=ea - •_ -_ . "^ -... 44... ' lf 10' 81 Dead 2561 3033 Live 2699 7496 Uplift 3381 Total 5261 10529 Bearing: Load Comb 43 84 Length 1.88 3.76 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self -weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L/680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC 113 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC 83 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC 83 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 4 -6.,,7`;'"i-- COMPANY PROJECT di %Vood VVo r k June 21, 2010 1319 EJ6 LC1 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Mod 7.1 LOADS Imp. pae. Load 77pe Distribution Magnitude Location Iftl Unite Start End Start End 1 v62 Dead Partial U0 613.2 613.2 0.00 2.00 pif 2 0r00 Partial 00 795.0 795.0 0.00 2.00 plf 3 429 Dead Partial UD 617.5 617.5 7.50 11.00 pif 6v29 Snow Partial UD 901.2 901.2 7.50 11.00 pif 5 Dead Point 1436 11.00 lba 6_015 Snow Point 2404 11.00 ibs 016 pad Point 1399 17.00 las 9 c16 Snow Point 2404 17.00 ibs 9 Dead Partial UD 617.5 617.5 17.00 19.00 pif 10 061 Snow Partial UD 901.2 601.2 17.00 18.00 pif 11 :61 Dead Point 622 7.00 lb. 12 Snow Point 1192 7.00 1b. 13 c62 Dyad Point 622 4.10 lb. 15 ,62 Snow Point 1192 4.00 10, 1S Dead Partial UD 613.2 613.2 2.00 4.00 plf 16 Snow Partial UD 795.0 795.0 2.00 4.00 011 17 Dead Partial U0 617.9 617.5 19.00 20.00 pif 19 Snow Partial U0 901.2 601.2 19.00 20.00 pif 16 peal Partial OD 613.2 613.2 7.00 7.50 pif 20:w71 Snow Partial 0D 795.0 795.0 7 .00 7.10 plf 21_364 Dead Partial UO 17.00 19.00 p10 22_364 Live Partial UD 160.0 360.0 17.00 19.00 pif 23)29 Dead Partial 00 17.7 47. 4.50 7.50 pif 24_329 Lira Partial 1.10 160.0 160.0 4.50 7.50 plf 25_362 Dead Pare1•1 VD 47.7 17,7 7.50 11.00 plf 26_162 00.3 Pa rt Sal UD 160.0 • 160.0 7.50 11.00 pif Live 27 X19 Dyad Partial 00 120.2 120.2 0.00 2.00 pif 29 310 LSVO Partial OD 370.0 370.0 0.00 2.00 plf 29_532 Dead Partial VD 320.2 120.2 3.50 4.00 plf 30_332 Live Partial UD 370.0 370.0 3.50 4.00 p1 31_333 Dead Partial VD 120.2 120.2 4.50 7.50 pif 0 32_333 Live P4rt11 VD 370.0 370.0 4.50 7.50 pif 33_534 Dead Partial VD 120.2 120.2 7 .50 4.00 pif 34_534 Live Partial UD 370.0 370.0 7.50 9.00 plf 35_335 Dead Partl•1 U9 120.2 120.2 9.00 11.00 plf 36_535 Live Partial UD 370.0 370.0 9.00 11.00 2 37 3 347 Dead Partial UD 120.2 120.2 11.00 17.00 plf 39_347 Live Partial OD 370.0 370.0 11.00 17.00 pif 39_36 Dead Partial VD 120.2 120.2 2.00 3.50 p1! 40_367 Live Partial U0 370.0 310.0 2.10 3.50 pit 41_149 Dead Partial UD 120.2 120.2 4.10 4.50 pif 42_149 Live Partial UD 379.0 370.0 4.60 4.50 pif 43_563 Dead Partial OD 47.7 47.7 11.00 17.00 pif 44_563 Live Partial U0 160.0 160.0 11.00 17.00 plf 45_365 Dead Partial UD 47. 47.7 10.00 20.00 p1! 46_165 Live Partial UD 160.0 160.0 19.00 20.00 pif 47_566 Dead Partial 00 47.7 41.1 4.00 4.50 44 317 166 Liva Partial UD 160.0 160.0 4.00 4.50 plf PIP 49_169 Dead Partial UD 120.2 120.2 17.00 19.00 plf 50 168 Live Partial UD 370.0 370.0 17.00 30.00 plf 51 369 D..7 Partial UD 120.2 120.2 16.00 20.00 plf 52_369 Live Partial UD 370.0 370.0 19.00 20.00 pif 53_172 Dead Partial UD 47.7 47.7 2.00 4.00 pif 54_372 Live Partial UD 160.0 160.0 2.00 4.00 pif 55_171 117a7 Partial UD 47.7 47.7 0.00 2.00 pif 56_113 Live Partial UD 160.0 160.0 0.00 2.00 pif 01 wind Point 5950 0.00 ibs 02 Mind Point -5850 1.09 ibs 03 third Point 5950 11.0) 104 114 711nd Point -5650 17.0) ibs 37 0 35 wind Point 5950 20.0) ibs • MAXIMUM REACTIONS (ibs) and BEARING LENGTHS (in) : • • Dead 20 5 2 12 Live 1 172 21 172 total 19555 19499 Curing, Load Comb 94 II Length 5.67 5.85 Glulam -Bat., West Species, 24F -V8 DF, 5- 118x22 -1/2" Self -were al 2E55 Mr Included In bad; Wool app1C lop. 1444. baton. al mopeds: Analysis vs. Allowable Stress (psi) and Deflection (in) esmp ems 2905: Criterion Analvala Value Donlon Value Analvaln /Des100 Shear 00 ■ 192 Fv' - 305 fv /90' ■ 0.60 360317,(.) !b - 2392 90' - 2604 fb /Aa' - 0.92 Live 0301'n 0.40 ■ L /595 0.6 - L /360 0.60 Total Defl'n 0.91 - L/295 1.00 - 0/210 0.94 ADDITIONAL DATA: FACTORS: F/E 00 31 CC CL C/ Cfu Cr C1rt Nor. Cn 1.01 37' 265 1.15 1.00 1.00 1.00 1.00 1.00 3 30'4 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 . E 1.9 million 1.00 1.00 - - 000,' 0.95 11111:00 1.00 1.00 - - - - 1.00 - - 3 Shear 1 LC e3 - 0 V 17361, V dee137 - 13982 10. Send1n91 LC 03 - 0 M 5.6199 100 -06 Deflec01:7. LC 93 ■ D4.751L401 EI. 8756.06 10 -172 Total D001eccicn ■ 1.50)0453 Load Deflection) • Live Load Deflact100. 10■deed L.110. S -Ono+ W.wind I■17Fao - - 0ne.ruct100 CLd- c0n03ntrat0d) (A11 LC'. are listed in the Analysis output) Load o- 0binat1o0a: I00 -110 DESIGN NOTES: 1. Please verify Mal the Maud daflectlan Opals are appriprute for your 34 66l6. 2. Gluten design values are for materials 00nfam ng to ARC 117.2031 and nwwfactuad In atadape 0603 ANSVAITC 0190.1.1992 3. GLUOAM: bad a aCUal breadth 1 who! depth. • 4. GU= femme shall lea Wera79 supported accadlrp to Ilm p nisians of NOS Chu* 3.33. 5. MOLAR: bearing leoph baud on ane3er 01 Fcp(t9M494), Fcp(ranp n). 4 _ „13?) COMPANY PROJECT i WOo d\A/o r k June 24, 00101118 b34LC2 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Ozer 7.1 LOADS I Ib., PS1,ar P0) Load Type Distribution Magnitude Location MI tl Units Start End Start End 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 21462 Snow Partial UO 795.0 795.0 0.00 2.00 plf 3_w29 Dead Partial U0 617.5 617.5 7.50 11.00 plf 4_6 Snow Partial UD 801.2 901.2 7.50 11.00 p10 5 c15 Dead Point 1436 11.00 lbs 6 c15 Snow Point 2404 11.00 1bs c16 Dead Point 1399 17.00 1bs 9 Point 2404 17.00 lbs 9 Dead Partial U0 611.5 617.5 17.00 13.00 plf CO w64 Snow Partial UD 901.2 801.2 17.00 18.00 plf 11 Dead Point 622 7.00 lba 12 Snow Point 119: 7.00 lbs 13_c62 Dead Point 622 4.00 104 14 Snow Point 1192 4.00 lbs 15 Dead Partial U0 613.2 613.2 2.00 4.00 plf 16 Snow Partial UO 795.0 795.0 2.00 4.00 plf 171465 Dead Partial UD 61 617.5 19.00 20.00 plf 18 \65 Snoa Partial UO 901.2 801.2 18.00 20.00 plf 191471 Dead Partial UD 613.2 613.2 7.00 7.50 p11 20 Snow Partial 1.10 795.0 795.0 7.00 7.50 plf 2164 Dead Partial UD 47.7 47.7 17.00 19.00 pi[ 22_164 Live Partial UD 160.0 160.0 17.00 18.00 plf 23_129 Dead Partial 0D 47.7 47.7 4.50 7.50 p1f 24_129 Live Partial UD 160.0 160.0 4.50 7.50 plf 25_362 Dead Partial UD 47.7 47.7 7.50 11.00 plf 26_162 Live Partial UD 160.0 160.0 7.50 11.00 plf 27_149 Daad Partial UD 120.2 120.2 0.00 2.00 plf 29_348 Live Partial UD 370.0 370.0 0.00 2.00 plf 29_332 Dead Partial UD 120.2 120.2 3.50 4.00 plf 30_132 Live Partial UD 370.0 370.0 3.50 4.00 plf 31_133 Dead Partial UD 120.2 120.2 4.50 7.50 plf 32_133 Live Partial UD 370.0 370.0 4.50 7.50 plf 33_134 Dead Partial U0 120.2 120.2 7.50 9.00 plf 34 134 Live Partial UD 370.0 310.0 7.50 9.00 plf 35 335 Cud Partial U0 120.2 120.2 9.00 11.00 plf 36_315 Live Partial UD 370.0 370.0 9.00 11.00 plf 37_347 Dead Partial UD 120.2 120.2 11.00 17.00 plf 35_347 Live 64:5141 00 370.0 370.0 11.00 17.00 plf 3 367 Dead Partial 170 120.2 125.2 2.00 3.50 plf 40_167 Live Partial UD 3 370.0 2.00 3.50 plf 41_149 Dead Partial UD 120.2 120.2 4.00 4.50 plf 2_149 Live Partial UD 370.0 370.0 4.00 4.50 plf 43_163 Dead Partial UD 47.7 47.7 11.00 17.00 of 44_163 Live Partial UD 160.0 160.0 11.00 17.00 plf 45_165 Dead Partial UD 47.7 47.7 19.00 20.00 pif 46_165 Live Partial UD 160.0 160.0 19.00 20.00 plf 47_166 Dead Partial UD 47.7 41.7 4.00 4.50 p12 40_366 Live Partial UD 160.0 160.0 4.00 4.50 plf 45163 Dead Partial UD 120.2 120.2 17.00 19.00 plf 50_368 Live Partial UD 370.0 370.0 17.00 19.00 p1f 51_369 Dead Partial UD 120.2 120.2 19.00 20.00 plf 52 _169 Live Partial U0 370.0 370.0 14.00 20.00 p1f 53_172 Dead Partial UD 47.7 47.7 2.00 4.00 plf 54_372 Live Partial UD 160.0 160.0 2.00 4.00 p11 55 ,373 0943 Partial U0 47.7 47.7 0.00 2.00 plf 56 373 Live Partial UD 160.0 160.0 0.00 2.00 plf 01 Hind Point -5850 0.00 lbs Hind Point 5950 4.00 109 243 Wind Point -5850 11.00 lbs 04 Wind Point 5950 17.00 1bs H5 Hind 00170 -5950 20.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : Le a 0ea3 k405 1317 Live 9956 9974 Total 17261 17305 Bell ring L9ad C ,rb 13 93 !+ Lenot 5 _1 5.19 Glulam -Bat., West Species, 24F -V8 DF, 5- 118x22 -1/2" 548- welgfd of 2055 Of included In beds: Lateral support tope 940, ba blee et supports: Analysis vs. Allowable Stress (psi) and Deflection (In) .0. Nos na05: Criterion Analysis Value Damien Value Analv.19 /Da,1en Shur 192 305 fv/FV' - 0.60 695215g].) 16 - 2392 90' . 2604 fb /Fb' - 0.92 Live Detl'n 0.41 - L/591 0.67- . L /360 0.61 Total 0.11'n 0.44 - L /194 4 1.00 - L/240 0.74 ADDITIONAL DATA: 406205S: F/E CO Ci CL CV Cfu Cr Cfrt LC4 4v' 265 1.15 1.00 1.00 1.00 1.00 Notes 1.00 Ft, 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 Fcp' 650 1.00 1.00 - - - - 1.00 - - E' 1.9 million 1.00 1.00 - - - - 1.00 - - 4 Crain' 0.95 million 1.:0 1.00 - - - - 1.70 - - 4 Shear : LC 13 - 0 :.7511'41, V ■ 17361, V design ■ 12932 10, Pending]," LC 93 - °*.7511 0 ■ 36189 lbs -1t Deflection: LC 2. 4 .. 00.751 L454H1 02. 6756906 lb -Sn2 Total Deflection . 1.60)0eai Load D,fl,ctlon) 4 Live Load Deflection. (0.3943 i ■11ve .S.anow .bwlnd 1.1cpact o-c :n,tructl,n 017- 0,7,05trat.fl 1011 LC's 602 listed in the Analy504 output) Load carbin.01:::. 160 -200 DESIGN NOTES: 1. Rear verify that IM default deflection Anit. era appropriate for your app4utlan. 2. Glut= delpn values era for materials cord4a0.9 b ARC 117 -2131 and manufactured in auadarca with ANSUAITC 6190.1 -1992 3. GLUTAM: 46614 actual breadth 0 actual depth. 4. GM= Beams shall be teen* supported accord%to Um mansions of N05 Clause 3.3.3. 5. GLULAM: beorap ONO Laudon smaller of Pop(4nsbn). Fcp( jn). / C 279 • COMPANY PROJECT I Wo od VVor k s® 24,701013"!0 1/34 LC2 SOF7WARFFOR WOOD DEVON Design Check Calculation Sheet Meer 7.1 LOADS (1b,pa(«pei : Load Type Dlatrlbotion Magnitude Location 1151 Unite Start End Start End 1 662 Dead Partial UO 613.2 613.2 0.00 2.00 plf 2 v62 Snob Partial U0 795.0 795.0 0.00 2.00 plf 3_029 Deed Partial UD 617.5 617.5 7.50 11.00 plf 029 Snow Partial UD 901.2 801.2 7.50 11.00 pif 5 Dyad Point 1136 11.00 lba 6 Snow Point 2404 11.00 11a . 7 - 016 Dead Point 1369 17.00 lba 6016 Snow Point 2404 17.00 100 9 Dead Partial UD 617.5 617.5 17.00 18.00 plf 10064 Snow Partial UD 901.2 601.2 17.00 19.00 plf 11 061 Oval Point 622 7.00 lba 12 Snow 60106 1192 7.00 102 19062 Dead Point 622 1.00 102 14_062 Snow Point 1192 4.00 lba 15 663 Daad Partial VD 613.2 613.2 2.00 4.00 plf 16 763 Snow Partial UD 795.0 795.0 2.00 4.00 plf 17 065 Deed Partial UD 617.5 617.5 16.00 20.00 plf 19665 Snav Partial 110 901.2 101.2 18.00 20.00 plf 19 771 Daad Partial UD 613.2 613.2 7.00 7.50 plf 20 Snow Partial UD 795.0 795.0 7.00 7.50 plf 21 164 Dead Partial UD 47.7 17.7 17.00 10.00 plf 22_364 Live Partial UD 160.0 160.0 17.00 18.00 plf 23_120 Dead Partial U0 47.7 47.7 4.50 7.50 plf 24 _128 Live Partial U0 160.0 160.0 4.50 7.50 plf 25_562 Dead Partial VD 47.7 47.7 7.50 11.00 plf 26 ,362 Live Partial UD 160.0 160.0 7.50 11.00 plf 27_149 Dead Partial 00 120.2 120.2 0.00 2.00 cell 28_349 Live Partial U0 370.0 370.0 0.00 2.00 plf 29_132 Dead Partial UD 120.2 120.2 3.50 4.00 plf 30_332 Live Partial UD 370.0 370.0 3.50 4.00 plf 31_133 Dead Partial UD 120.2 120.2 4.50 7.50 plf 32_133 Live Partial UD 370.0 370.0 4.50 7.50 plf 33_134 Dead Partial UD 120.2 120.2 7.50 0.00 plf 34_134 Live Partial UD 370.0 370.0 7.50 9.00 plf 35 _135 Dead Partial VD 120.2 120.2 8.00 11.00 p11 36 - 335 Live Partial 0D 370.0 370.0 8.00 11.00 plf 37_547 Dead Partial UO 120.2 120.2 11.00 17.00 cell 38_147 Live Partial UD 370.0 370.0 11.00 11.00 plf 39_167 Dead Partial 110 120.2 120.2 2.00 3.50 plf 40_167 Live Partial UD 370.0 370.0 2.00 3.50 plf 41_149 Dead Partial UD 120.2 120.2 4.00 4.50 plf 42349 Live Partial UD 370.0 370.0 4.00 4.50 plf IJ_163 Dead Partial 00 47.7 47.7 11.00 17.00 plf 44_161 Live Partial U2 160.0 160.0 11.00 17.00 plf 45_165 Dead Partial U0 17.7 47.1 18.00 20.00 plf 19165 Live Partial U0 160.0 160.0 19.00 20.00 plf 47 166 Dead Pert101 UD 47.7 47.7 1.00 4.50 plf 48 166 Live Partial UD 160.0 160.0 1.00 4.50 plf 49_169 Dead Partial UD 120.2 120.2 17.00 19.00 plf 50_169 Live Partial UD 310.0 3 17.00 16.00 plf 51_169 Dead Partial 0D 120.2 120.2 15.00 20.00 plf 52_169 Live Partial 110 370.0 310.0 18.00 20.00 plf 53_172 Dead Partial U0 17.7 47.7 2.00 4.00 p11 54_172 Liao Partial U0 160.0 160.0 2.10 4.00 plf 55_573 Goad Partial UD 47. 47.7 0.00 2.00 plf 56 173 Live Partial U0 160.0 160.0 0.00 2.00 plf 01 lard Point -5950 0.00 lba Mind Point 5850 4.00 lb. 03 Vird Point -5650 11.00 lba 04 Mind Point 5850 17.00 lba 55 1ird Point -5150 20.00 lba • MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • . 1 Dead LA - 1327 Live 9956 9919 Total 17361 17305 Bearing: Load qcb 03 03 Length 5.21. 5.19 Glulam -Bal., West Species, 24F -V8 DF, 5- 118x22 -1/2" sa0."cpt6 a 28.55 p6 0714901n bads; Lateral support top. AC, babas. at wawa; Analysis vs. Allowable Stress (psi) and Deflection (in) oabagres tows: . Criterion Anelyaia Value Design Value Analvnla /Cee19n Shea[ 182 Fv' - 305 1v /21' - 0.60 Bending(*) lb - 2392 FD' ■ 2604 Lb /6b' ■ 0.92 Live Dofl'n 0.41 - L/591 0.67 - L/360 0.61 Total Doff, 0.04 ■ 1/294 1.00 - 1 /240 0.54 ADDITIONAL DATA: FARMS: F/E CD CM Ct CL 00 Cfu Cr Cfrt Motel, Cn 110 60' 265 1.15 1.00 1.00 1.70 1.00 1.00 3 00'4 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.30 1.00 - 3 Fop' 650 1.00 1.00 - - - - 1.00 - E 1.1 01111,0 1.00 1.00 - - - - 1.00 - Dein' 0.15 million 1.00 1.00 - Shear : LC 43 - 01. v ■ 17361, V design . 13982 lba eerdin9( LC 13 - 01.15(1,0), M 6 80199 lba-ft Deflection: LC 44 - 6..75(1464u) EI- 9756006 lb -1n2 Total Dellect1on - 1.10(0ead Load Deflection) 0 Live Load Deflection. (0'd0ad 1.1100 0.4090 W.wind 1 1170405 C■00natru0tlon CIA-csn90900.tod) (A11 LC'e are listed in the Analyst. output) Load combinations: I00 -I11C DESIGN NOTES: 1. Plana a wiry oia the Maud deflection Enda aro appropriate fa Sae sppEcabn 2. G76m design sabres are ha 7098(1lb ce do o8 g to AITC 1174001 and rnaa0aa,090 0 accordance with ANSUARC A190.9 -1992 3. OLULA6t Dad • actual breadth a equal depth. 4. G3bm Beano Mall Se Mara]] supported xmdtrg to the provisions of NDS Cause 3.3.3. 5. OMAN: bearbg length based on smear of Fcpgerebn), Fcp(cangn). /41 .". 6 / 4 ° COMPANY PROJECT 1 WoodWorks SOFTWARE FOR WOOD DESIGN June 24, 2010 13:23 b34 LC1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or ptf) : Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 3 w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5 c15 Dead Point 1436 11.00 lbs 7 c16 Dead Point 1389 17.00 lbs 9 w64 Dead Partial UD 617.5 617.5 17.00 18.00 plf 11 c61 Dead Point 622 7.00 lbs 13 Dead Point 622 4.00 lbs 15 w63 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17 w65 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19 w71 Dead Partial UD 613.2 613.2 7.00 7.50 plf 21_j64 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23_j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25_j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 27_j48 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29_j32 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31_j33 Dead Partial UD 120.2 120.2 4.50 7.50 plf 33_j34 Dead Partial UD 120.2 120.2 7.50 8.00 plf 35_j35 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39j67 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41_j49 Dead Partial UD 120.2 120.2 4.00 4.50 plf 43_j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45 j65 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49 j68 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51_j69 Dead Partial UD 120.2 120.2 18.00 20.00 plf 53_j72 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55_j73 Dead Partial UD 47.7 47.7 0.00 2.00 plf W1 Wind Point 5850 0.00 • lbs W2 Wind Point -5850 4.00 lbs W3 Wind Point 5850 11.00 lbs W9 Wind Point -5850 17.00 lbs W5 Wind Point 5850 20.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : la 201 Dead 7189 6822 Live 156 302 Total 7238 7018 Bearing: Load Comb 82 82 Length 2.17 2.11 Giulam -Bal., West Species, 24F -V8 DF, 5- 1/8x22 -1/2" Self- weight of 26.55 plf included in loads; Lateral support top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 74 Fv' = 238 fv /Fv' = 0.31 Bending( +) fb = 950 Fb' = 2038 fb /Fb' = 0.47 Live Defl'n negligible Total Defl'n 0.41 = L /585 1.00 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC0 Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC 01 = D only, V = 7189, V design = 5674 lbs . Bending( +): LC 81 = D only, M = 34217 lbs -ft Deflection: LC 81 = D only EI= 8756e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Giulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Giulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). . 4-G11-ff COMPANY PROJECT 00 . 1 I 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 13:22 b34 LC2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psi, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 3_w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5 c15 Dead Point 1436 11.00 lbs 7 c16 Dead Point 1389 17.00 lbs 9 w64 Dead Partial UD 617.5 617.5 17.00 18.00 plf • 11 c61 Dead Point 622 7.00 lbs 13 Dead Point 622 4.00 lbs 15 w63 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17 w65 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19 . Dead Partial UD 613.2 613.2 7.00 7.50 plf 21 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23_j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25_j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 27_j48 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29_j32 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31_j Dead Partial UD 120.2 120.2 4.50 7.50 plf 33_j34 Dead Partial UD 120.2 120.2 7.50 8.00 plf 35_j35 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39_j67 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41j49 Dead Partial UD 120.2 120.2 4.00 4.50 plf 43_j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45J65 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49_j68 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51_j69 Dead Partial UD 120.2 120.2 18.00 20.00 plf 53_j72 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55 j73 Dead Partial UD 47.7 47.7 0.00 2.00 plf . W1 Wind Point -5850 0.00 lbs W2 Wind Point 5850 4.00 lbs W3 Wind Point -5850 11.00 lbs W4 Wind Point 5850 17.00 lbs W5 Wind Point -5850 20.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : A 201 Dead 7189 6822 Live Total 7189 6822 Bearing: Load Comb 41 81 Length 2.16 2.05 Glulam-Bal., West Species, 24F -V8 DF, 5- 118x22 -1/2" Self- weight of 26.55 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 74 Fv' = 238 fv /Fv' = 0.31 Bending( +) fb = 950 Fb' = 2038 fb /Fb' = 0.47 Live Defl'n negligible Total Defl'n 0.41 = L /585 1.00 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LCi! Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 Fcp' 650 -. 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC 81 = D only, V = 7189, V design = 5674 lbs Bending( +): LC 81 = D only, M = 34217 lbs -ft Deflection: LC 81 = D only EI= 8756e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4 - Gt°1 2- Harper Project: II Houf Peterson 'w Client: Job # Righellis Inc. ENGINEERS • PLANNERS Designer: Date: Pg. # LANDSCAPE ARCNI(ECTS•SURVEYORS Wdl := 10• lb •8•ft•20•ft Wd1 = 1600-lb 1/�- 1,'[•- 'Sig' l� ft Seismic Forces Site Class =D Design Catagory =D W '= W dl i 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F := 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F es • = 1.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S : = F SmI := F S 2 •Sms S • = Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a := 1.0 Rp := 2.5 (Table 13.5 -1, ASCE 7 -05) • 4a p • z FP :_ 1 + 2• h • Wp EQU. 13.3 -1 Fpmax 1.6•Sd EQU. 13.3 -2 Fpmin := . EQU. 13.3 -3 F if(F > Fpmax,Fpmax,if(Fp < Fpmin,FpmimFp)) F P = 338.5171•lb Miniumum Vertical Force 0 . 2 •Sds•Wdl = 225.6781•lb l CiLl Harper Project: Houf Peterson Client: Job # Righellis Inc. ENGINEERS • PLANNERS Designer: Date: Pg. # LANDSCAPE ARCNITECTS•SURVEVORS W dl •= 10 lb -8-ft-20-ft Wdl = 1600-lb ft 2 Seismic Forces Site Class =D Design Catagory =D W Wd �P r�� := 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S := 0.942. Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F a - = •1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F� = 1.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S : = F S S : = F - S 2S ms S ds : = Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections ap := 1.0 R 2.5 (Table 13.5 -1, ASCE 7 -05) 4a • z FP := p Rp l JJ •(1 + 2 hl Wp EQU. 13.3 -1 F pmax := 1.6• S W EQU. 13.3 -2 F pmin := . S ds . I p . Wp EQU. 13.3 - 4,:= if(Fp> F pmax ,F pmax ,if ( F p <Fpmin, Fpmin,Fp)) F = 338.5171•lb Miniumum Vertical Force 0.2 • S ds• W dl = 225.6781•lb 0 tiarper HP Houf Peterson COMMUNICATION RECORD Righellis Inc. To 0 FROM 0 MEMO TO FILE 0 t■Jc:11•ICE:IS • PL.011 lArlbSeArli At.i.tilTVCrliv5UN,L",,S PHONE NO.: PHONE CALL: 0 MEETING: 0 M - 13 CO S1 A A . - 5 . e MI P. ,.. L -1-1 O 11 3 us .i ' • c .3 II ...1 il . (t. 03 II r -1) • -a C...n S -.0 3. -- s , _ ..e. ?.. 4 01 * -- 0 .. 67 '4, 11 (4- '1" ,• . ...., 0- -- c 1,1 V i .9 0 . .....c) ..Z\.. • vi \ . 0 —.C. %I...A.1 .... cili . —4.....t • N N i t 0 0 03 5 \ le z r \ 0 r. r r" N. (----- n -.. (-) -, to %- -4 0-hil To 11 - a ,: 1,17 Y - 1 7 1 1 0, 0 ■).0sOAkio lce - Tool Cn_k ,IN0J1k) . •• - `4 r. ) ' • .2 .. • ,a ili 1 •;i V co l ' ----7.----- I ..,2 - z),0( -i i , c.4cs uoc-36u-AG c - sn ; • !, ;1 . 4 ' c 4______LL_______ ! i riz • • • i , - I l• I 1 1 -and St9 --1- • 2 n • . - 1 0 ) :-- Cli so rid Na ‘) o - ti . - sv.o\I U i4r•t Ciuovds )1 0 . _iv__ . 0 3 a I = Z ( t 1 1 1 T. .. It K-0 .)Vdtip z 6 a A, . rn 0 z „1 . . . . 0 tat,rx)aci _ , . 1 a pou/ rrec)1 =-- i voLipreocc.c& - r. 0 0 g V.0 Fni • k_l_lvdd_AdD -- mcIN K ?.1 C ) E al 0 El 1 )7 uo3rp. ON oor , 3.1.VC3 vr jou\IN . .A8 t 1 -)E3 1 1 ■ = 0 r. i Cn Fr li c) 170Q+t '.' 001 -, cigee i 1 1 4 • &) sree -7 N I # 00Q$ -= D = f)(14 000g 7 — 1 Ej47 00Z tt # Doe - w 9 0 z 7 1 p ,;) • • z El -0- --r- 0 0 E „ z ...1. ----- 1 uoT.,u,n l&S 01 m c CICAH \J oo,dkulg -- n z 2, *too.he .- NI41.00hg ---- D.z_L i---, ):. -1 6 z he; -a xi . m c li tt7 )4 ocC .= v) z° rn ).° r O ri 3 0 al 4 0" 00Z ' 1 x 0 $ ° e T. - Ca‘60 2 .21 v a r .. rn O o • :103 fOhl d — - - , .0N eor :31VCI VP-0'3 fiCAM - .... - 1 Harper • "' n HOU L fPete T r�S011 COMMUNICATION RECORD _ Righellis Inc. To ❑ FROM ❑ MEMO TO FILE ❑ ENGINEERS • PLAIINERti - - - -- LANC::.:APE ARCNITECT.:•SURVEYGIi i . PHONE No.: PHONE CALL: ❑ MEETING: ❑ A X co m 0 f. if - [..c. s. d Q, _ o ° # Z. 01 3 ,, 6 t). �n m V r 1 1 ... c? CS M r { 6� 1 .. 0 m z ■ 0 111.alp CI ..- COMMUNICATION RECORD 4 1 1 .• Houf Peterson Righellis Inc. To 0 FROM 0 MEMO TO FILE 0 EOGINCER: • PLA LA .DSC1PF AnCHITECTS•Su YoR, PHONE NO.: PHONE CALL' 0 MEETING: 0 xi 31 a, rl g ... ,..1 1 " 3 Th i - 111 0 'N. N111111111111 ""ui ... .t! -i> .. "1. ..----- E 7t.'N d 0 ut ii• 3:0 -L k.../ C 1 r -i-N > ...-1 0 .....1 c . .....C. 7 X - . . ....S) C. '''■ 1 1 I • ; r I , ,.. . -0 z 0 cf, la la- • • 1 COMPANY PROJECT 11 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 8, 2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Point 2.50 200 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : -,....- -, :, .,:., -......„,,,:. ts.,,J,.. ','$••«:t.• ..-..!‘„.■ f. " / •:,,....:• .' • : . .,.....' "'''...1,- , ; y i'.'"';' : :,:, r•'‘' .. ..';',..- • .:-. . ' , - '''-. ,.... ^. , • IV 54 Dead Live 100 100 Total 104 104 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams is 1I2 for exterior supports Lumber-soft, Hem-Fir, No.2, 2x6" Self-weight of 1.7 Of induded In loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/v' = 0.13 Bending(+) fb = 405 Fb' = 1048 fb/Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 '1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending(+): LC #2 = L, M = 255 lbs-ft Deflection: LC #2 = L El = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. • ( COMPANY PROJECT i■ ■ di Wood Works® SOMME FON WOOD OESION June 8, 2009 16:27 Hand Ra112 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Full UDL 50.0 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : la 51 Dead Live 125 125 Total 129 129 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Mn. bearing length for beams is 1/2" for exterior supports Lumber-soft, Hem-Fir, No.2, 2x6" Serf-weight of 1.7 plf included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 256 Fb' = 1048 fb/Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.11 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Moil- 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp 405 - 1.00 1.00 - - - - 1.00 1.00 - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 129, V design = 106 lbs Bending(+): LC #2 = L, M = 162 lbs-ft Deflection: LC #2 = L El = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 14,_6(51 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 22, 2010 13:57:56 Concept Mode: Reactions Base of Structure View Floor 2: 8' 105 -- . . - . 1 . 49.-6 40 -13 i us .' 1600 L 600 L 4 / ._n. u,, 6190 • 6190 : . 4ou lulu- : wu y9 - - = . .: 43-0 yr-- - -..t - - - t . . 4'1 -n yo • •' • 1193 L153 12404 L:_2404 L - : - 4 sa 4 . 7 ` ' 625 0105911439 D :- 1394 D - - . - :. 3'�-b • o a 315 L: . ss -n u na ' ' • • -3580'; 3G -n 251 - 3 1 -b 00 .. . . L`J -b -.. .._ ._._.__. Ltl-b 153 3 : Lr uL \ - 358 D Lb -b is i 100 L Lo . -0 �� 96 D. - F _ Zs o ro- �' LL -b / r 74(847 5611 L ...... _ _ 756 L • L ' rn .._. : . _ . Lu -n • • t* 4(452 D 55460 - 25 L1 D . i s -n r4 625 :_.. _ = iu -n r 3 S pro r G 203 D DL = 1 n b ' I i 5 D tn-0 e - • :. 908 L - = _ 14 b b . _` _ B C L1:x . : . 'U - 465 : ` - o4)_.. - --; :245 L-- 1 50 L , . : - • ' v-btr b� 599 t 87 L . . . . . . .... . . ... . . .. . . . . ... . . .... . ..: L-- o b;. bu . 2 09 LD 8 DI 1963 D D . - , . :. 3 a 1540. ; -tuu ' : � n.. --07 7 �78 D� D• - • _ - 11 2363 : . :_ ...___ - 1 _b • . . 10613 ' u . .BBIB.B BCCC C C CC CICCC CC CCCC C C CC CCICCCD.DDD D DD DIDDDCD DD -DDD D DD CD1DD DE.E E E E EE'EFEEEEEiE E+EEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 6 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(11A:1.1(1 (1:1112(2 222 4A :44'.414 :5 515(616 6:6:6 616'.7(7 :7.7.7(77-6" VOOTJE t 1 0 UT — 71e.O I.ST w . 4,F1 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 22, 2010 13:57:37 Concept Mode: Reactions at Base of Structure View Floor 2: 8' 1 O5 - - - - -- -- --- - - - - -- - - 49� b.. IV3g 600 L - s 1600 L : 4r -0 " ' IL / 619D 619 D! • 4o n r IVVb . -. 44 -1? `Jj 9 " / q ' �II - 43 -b C \.. 4L -b • yr_ : .. . . .. . _ . - - - - .. 4'1 -b V0 40 -b ya .:.13274 L • • . 3304 L:._ ;_ .. . - -- - - -- ,.5 - y4 .: 7 153 D' • - ; . -- -- - . - - . 7072 D ' : . . . . - - "- - - 3t5 -b as sr -o y '1. .- -:. :--- ' -' -- • • ; .. 3b -b q u a 315 L 33 c b r - - 358 D - . 3 - I -b _- .- ... - -.._ ---- .. - L0 t}3 3 15 L . .. - Lr -b 25L < • 358 D - - - - - - - Lb -b 01 ; 100 L - `- La. -o . • '''''U 96D _ G4 _ r y - L S'-b i o 74(84 611 L rr 56 L _ _ cu 0' ' 4 r 0 .... - •(452 D `5546 D 5 Ll D :=. w y 0 C4- -- . :625 -- .. • • :_ :_ .Ib_b.. ,� 203 D : 5 DL in-0 r 1 - 5 D - _ . . - 10 -0 • oy 908E 13 • • oo .: 10517307 Q - - - • --- -- -. ...- - iL-a• or 1 1 -0 r bb- 24 D - . - .. _ _ . .. " I -b 3D 50 L -: / ` o -0 74D r 0.. bL S �; _ - 01�-- 599 _ - -- ' 4' - =: - - -- _ _:___ - • -- .. - - 0 . b .. • Lti�fi♦ 2587 L, : ' i . - . 587 L= • au� 209 1540. LD8 D?11963 D:.: .�; .�. 1963 D s . ' - u : . Lb D LL; .- 725L 1 b :78 D7D3; 617D'D : . b V BB 18.8 BC.CCCC CC CtCCCCC CCCC C CCC C \CC CDDDD D DD DIDDD CD DD DD D D DD CD?DD DE E E E EIEEEIEEEEEIE E+EEEEEEtEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38'40'42'44'46'48'50'52'54'56'58'60'62'64' 66' 68' 70' 72'74'76' 0' 1' 2' 3' 4' 5' 678' 91( 1" 1: 1: 1 1: 1( 11 ( 12( 22.' 2: 222( 221M33: 3; 3 3'. 3(373214(4 :44!4(4'445(55:5 :5 6(66:6 :6 :616707 :7.7 6" • • Oort\ tdi tUUT' . 14 -2- . $E Har per Houf Peterson Righellis Inc. CI . ent Date: 6/24/2010 1:41 PM l system: English Flit name: O:'HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \F1.ftd\ Design Results Reinforced Concrete Footings GENERAL INFORMATION: Global status Warnings Design Code ACI 318 -05 Footing type Spread Column type Steel Geometry 1 in 1 4 4.25 ft a r ,� '`; 4.25 ft ft • 4.25ft Pagel p3 Length 4.25 [ft] Width 4.25 [ft] Thickness 1.00 [ft] Base depth 1.50 [ft] Base area 18.06 [ft2] ' Footing volume 18.06 [ft3] Base plate length 5.50 [in] Base plate width 5.50 [in] Column length 5.50 [in] Column width 5.50 [in] Column location relative to footing g.c. Centered Materials Concrete, Pc 3.00 [Kip /in2] Steel, fy 60.00 [Kip /in2] Concrete type Normal Epoxy coated No Concrete elasticity modulus : 3122.02 [Kip /in2] Steel elasticity modulus : 29000.00 [Kip /in2] . Unit weight 0.15 [Kip /ft3] Soil Modulus of subgrade reaction 200.00 [Kip /ft3] Unit weight (wet) 0.11 [Kip /ft3] Footing reinforcement Free cover : 3.00 [in] Maximum Rho /Rho balanced ratio : 0.75 Bottom reinforcement // to L (xx) . 6-#4 @ 9.00" Bottom reinforcement // to B (zz) : 6-#4 © 9.00" (Zone 1) Load conditions to be included in design Service loads: SC1 DL S1 DL S2 DL +LL S3 DL +0.75LL Design strength loads: DC1 1.4DL D1 1.4DL D2 1.2DL +1.6LL Loads • Condition Axial Mxx Mzz Vx Vz [Kip] [Kip *ft] [Kip *ft] [Kip] [Kip] DL 5.55 0.00 0.00 0.00 0.00 LL 15.61 0.00 0.00 0.00 0.00 RESULTS: Status Warnings - Insufficient development length, Section 21.5.4.1 Soil.Foundation interaction Allowable stress : 1.5E03 [Lb /ft2] Min. safety factor for sliding 1.25 Min. safety factor for overturning 1.25 Paget 4 Controlling condition S2 Condition qmean qmax Amax Area in compression Overturning FS [Lb /ft2] [Lb /ft2] [in] [ft2] ( %) FSx FSz slip S2 1.38E03 1.38E03 0.0826 '18.06 100 1000.00 1000.00 1000.00 Bending Factor 4) 0.90 Min rebar ratio 0.00180 Development length Axis Pos. Id Ihd Dist1 Dist2 . [in] [in] [in] [in] zz Bot. 20.11 7.04 19.75 19.75 roc Bot. 20.11 7.04 19.75 19.75 Axis Pos. Condition Mu 4 *Mn Asreq Asprov Asreq/Asprov Mu/(4) *Mn) [Kip *ft] [Kip *ft] [in2] [in2] zz Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 1 1 zz Bot. D2 13.38 45.76 1.10 1.20 0.918 0.292 1 1 1 xx Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 1 1 xx Bot. D2 13.38 43.06 1.10 1.20 0.918 0.311 1" ` 1 Shear Factor 4) 0.75 Shear area (plane zz) 3.10 [ft2] Shear area (plane xx) 2.92 [ft2] Plane Condition Vu Vc Vu/(4i" Vn) [Kip] [Kip] xy D2 8.99 46.09 0.260 l' I yz D2 8.68 48.88 0.237 1 7,4 1 Punching shear . Perimeter of critical section (b... : 4.67 [ft] Punching shear area 3.31 [ft2] Column Condition Vu Vc Vu /(4)*Vn) [Kip] [Kip] column 1 D2 29.25 104.29 0.374 I' 1 . -- =1 I Notes Page c *Soil under the footing is considered elastic and homogeneous. A linear soil pressure variation is assumed. * The required flexural reinforcement considers at least the minimum reinforcement * " I design bending moment is calculated at the critical sections located at the support faces • Only rectangular footings with uniform sections and rectangular columns are considered. • The nominal shear strength is calculated in critical sections located at a distance d from the support face • The punching shear strength is calculated in a perimetral section located at a distance d/2 from the support faces " Transverse reinforcement is not considered in footings * Values shown in red are not in compliance with a provision of the code *qprom = Mean compression pressure on soil. •gmax = Maximum compression pressure on soil. *Amax = maximum total settlement (considering an elastic soil modeled by the subgrade reaction modulus). • Mn = Nominal moment strength. * Mu /(4 •Mn) = Strength ratio. * Vn = Nominal shear or punchure force (for footings Vn =Vc). * Vu /(4)" Vn) = Shear or punching shear strength ratio. Page4 Beam Shear bcoi 5.5 iri (4x4 post) d := tf – 2 -in := 0.85 b := Width b = 36 -in V„ :_ 4. • f V„ = 16.32-kips 3 Vu au (b 2 toll b V„ = 7.83-kips < V = 16.32-kips GOOD Tw.o-Wav Shear bs := 5.5 in Short side column width bL := 5.5-in Long side column width b := 2-(bs + d) + 2 -(bL, + d) b = 54•in O := 1.0 V im 3 3•�3 j := ( + 8 f psi b d V = 48.96 kips V := 2.66 f psi b d V = 32.56•kips A y HA := 9u•[b2 – (bcol + d)2] V = 15.88-kips < Vnmax = 32.56•kips GOOD Flexure 2 9u [(b – bcoll 11 b M = 4.98. 1 -kips 2 J 2 J A:= 0.65 2 b-d S = 0.222•ft F 5 .0- f F 162.5•psi M ° f :_ — f = 155.47•psi< F = 162.5•psi GOOD 'Use a 3' -0" x 3' -0" x 10" plain concrete footing 1 Plain Concrete Isolated Square Footing Design: F2 f: 2500-psi Concrete strength f := 60000-psi Reinforcing steel strength • E 29000•ksi Steel modulus of elasticity Icon c: =• 150•pcf Concrete density 'Ysoil; := .1DO.pcf Soil density gall : =.1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl: =.2659-lb Pd1:= Totaldl Tota111:= 7756-lb P 11 := Totalll Pti Pd1 + Pll P = 10415-lb Footing Dimensions ty := 10•in Footing thickness Width := 36•in Footing width ,A := Width Footing Area qnet gall — tf'Yconc qnet = 1375•psf PU Areqd := gnet Areqd = 7.575•ft < A = 9-11 GOOD Widthreqd Aregd Widthreqd = 2.754ft < Width = 3.00ft GOOD Ultimate Loads ,:= Pd1 + tf•A•"Yconc P := 1.4•Pdl + 1.7•P11 P = 18.48-kips P clu := A q = 2.05•ksf Plain Concrete Isolated Square Footing Design: F3 fc := 2500•psi Concrete strength f := 60000:psi Reinforcing steel strength Es := 29000•ksi Steel modulus of elasticity 'Yconc 1501p0f Concrete density Ysoil l00 pcf Soil density gall 1500.psf Allowable soil bearing pressure COLUMN FOOTING Reaction Tbtaldl:= 23634b Pdl:= Totaldl Totallj 4575.1b Pll := Total!' Pg := Pdl + P11 P = 6938 -lb Footing Dimensions t = 10 -in Footing thickness Width := 30-in Footing width • A := Width . Footing Area gnet gall — tf1'conc gnet = 1375 -psf Ptl Areqd := gnet A red= g 5.04641 < A = 6.2541 GOOD Widthregd A Widthregd = 2.254ft < Width = 2.50 ft GOOD Ultimate Loads • := Pdl + tf'A'"Yconc P := 1.4 Pd1 + 1.7-P11 P = 12.18• kips P qu:= A q 1.95•ksf • • 1 Beam Shear bco1,: ='5.5•in (4x4 post) d := tf — 2•in := 0.85 b := Width b = 30•in V:= 4 • f V = 13.6-kips 3 Vu •= qu r b 2 co11 b V = 4.97-kips < V = 13.6•kips GOOD Two -Way Shear bs : =. 5.5•in Short side column width bL := 5.5• in Long side column width b, := 2•(bs + d) + 2•(bL+ d) b = 54.in (3 := 1.0 V ••( + 8 J• f si•b•d V = 40.8•kips 3 3A V := x•2.66• f V = 27.13-kips ,y.44,, := qu — (bc01 + d) V = 9.71 -kips < Vn = 27.13 -kips GOOD Flexure u 2 Mu q rb - bcoll r 1 M = 2.54 -ft-kips I 2 J • l A,:= 0.65 2 := b6 S = 0.185 -ft F := 5•k• f F = 162.5-psi M a ft := s f = 95.19 -psi < F = 162.5 -psi GOOD lUse a 2' -6" x 2' -6" x 10" plain concrete footing /9 ° Plain Concrete Isolated Square Footing Design: F4 f := 2500.psi Concrete strength f -= 60000tpsi Reinforcing steel strength E 29000•ksi Steel modulus of elasticity "Yconc := 150•pcf Concrete density 'Ysoil 100•pcf Soil density gall 1500.psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl 5001•lb Pdl:= Totaldl Totalll := 7639•Ib Pll := Total!' P := Pdl + Pll P = 12640•lb Footing Dimensions tf := 12•in Footing thickness • Width := 42•in Footing width A := Width Footing Area ( Ind gall – tf'"(cone tint = 1350•psf PtI Areqd gnet A red= q 9.36341 < A = 12.25 ft GOOD Widthreqd Aregd Width = 3.06.ft < Width = 3.50 ft GOOD Ultimate Loads ,Pdj.:= P + tf. A' P := 1.4•Pd1 + 1.7•P11 P = 22.56 - kips Pu qu — q = 1.84•ksf A • 4-- "R Beam Shear b 5.5 -in (4x4 post) d:= tf -2•in := 0.85 b := Width b = 42 -in V := (0 4 f psi•b•d V = 23.8 -kips 3 Vu •= ch.( b - 2 colt b V = 9.8•kips < V = 23.8 -kips GOOD Two -Way Shear b := 5.5-:in Short side column width bL : 5.5 in Long side column width b := 2•(bs + d) + 2•(bL + d) b = 62 -in P := 1.0 Vim= 4 (- + 8 /- f V =71.4 -kips l3 3.0 V a , := x•2.66• f psi•b•d V umax = 47.48 -kips = qu [b — O + (1) V = 19.49 -kips < V umax = 47.48-kips GOOD Flexure 2 b — bcol1 r1 Mu qu' 2 J •I 2 M = 7.45 -ft -kips A 0.65 2 •— b d S = 0.405 -ft 6 F := 5•(1)• f psi F = 162.5-psi M u f := s f = 127.79 -psi< F = 162.5 -psi GOOD IlJse a 3' -6" x 3' -6" x 12" plain concrete footing j Plain Concrete Isolated Round Footing Design: f5 f := 3000• psi Concrete strength f := 60000-psi Reinforcing steel strength Es := 29000•ksi Steel modulus of elasticity 'Yconc 150•pcf Concrete density toil 120•pcf Soil density gall := 1500•psf Allowable soil bearing pressure TYPICAL FOOTING Reaction Totaldl:= 619-lb Pdl:= Totaldl Total11:= 1600-1b Pll := Totalll Pll := Pd1 + Pll Ptl = 2219-lb Footing Dimensions t := 12-in Footing thickness Dia := 18-in Footing diameter rr Dia Footing Area 4 gnet gall — tf' lnet = 1350•psf Ptl Areqd gnet A red= g 1.64411 < A = 1.77 ft GOOD J Aregd 4 Diareqd Dia = 1.45•ft < Dia = 1.50 ft GOOD 7r Ultimate Loads Pd1 + tf•A'"Yconc P := 1.4•Pd1 + 1.7•P11 P = 3.96•kips P qu A qu = 2.24•ksf tq le-3 Beam Shear bcol := 3.5.in (4x4 post) d := t• — 2-in := 0.85 b := cos(45•deg)•Dia b = 12.73•in V f psi•b d V = 7.901•kips 3 Vu qu (b - 2 colt b V = 0.91 .kips < V = 7.901 •kips GOOD Two -Way Shear bs := 3.5 -in Short side column width bL := 3.5 -in Long side column width 13 := 2.(bs + d) + 2.(bL + d) b = 54.in (3 := 1.0 �V= 4 + . 8 . •psi f V = 23.703 -kips 3 3.13c \T :_ -2.66• f V mm , ax = 15.76.kips ,wyy = qu•[b — (bcol + d) V = —0.31-kips < V im= = 15.76-kips GOOD Flexure 2 Mu == qu [(b — 2 / I I bcoll r 2 J 11 b M = 0.18•ft• kips A,:= 0.65 bd 2 :_ S= 0.123.1 6 F 5•1:1:•• f F 178.01•psi Mu S a f 9.9•psi < F 178.01•psi GOOD Use a 18" Dia. x 12" plain concrete footing Plain Concrete Isolated Square Footing Design: F f := 2500 -psi Concrete strength f := 60000 -psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity '(cone: 150•pcf Concrete density '(soil == 100 -pcf Soil density gall := 1500 -psf Allowable soil bearing • pressure COLUMN FOOTING Reaction Totaldl':= 7072-lb Pdl Total Total11 := 13304-lb P11:= Totalll Pu := Pdl + Pll PU = 20376•Ib Footing Dimensions t := 15-in Footing thickness Width := 48 -in Footing width ,A,:= Width Footing Area gnet gall – tf'"Yconc gnet = 1313. P Areqd == gnet A red= q 15.525 ft < A = 16 ft GOOD Widthreqd Areqd Widthreqd = 3.94•ft < Width = 4.00 ft GOOD Ultimate Loads pi`:_ Pd1 + tf'A'lconc P„ := 1.4•Pd] + 1.7•P11 P„ = 36.72-kips P qu =_ — qu = 2.291sf A Beam Shear b col := 5.5-in (4x4 post) d := tf — 2•in := 0.85 b := Width b = 48-in V„ :_ 4) 4 f psi b d V„ = 35.36-kips 3 Vu qu (b 2 col) b V„ = 16.26-kips < V = 35.36 -kips GOOD Two -Way Shear b8 := 5.5-in Short side column width bL :=. 5.5• in Long side column width b := 2 -(bs + d) + 2 -(bL + d) b = 74.in (3 1.0 ^ V„= + 8 b -d V„ = 106.08•kips (- 3•0c)' fc•psi V , max :_ 4.2.66• f psi•b•d V, = 70.54 -kips A qu [b — O + d) V„ = 31.26 -kips < V, = 70.54 -kips GOOD Flexure 2 b — bcol1 M := qu 2 I . r 2 .b M = 14.39-ft-kips A,,:= 0.65 5:= 13-d 2 S = 0.782 -ft 6 F := 5•41) r F 162.5 -psi M u ft := s f = 127.75•psi< F = 162.5-psi GOOD 'Use a 4' -0" x 4' -0" x 15" plain concrete footing Plain Concrete Isolated Square Footing Design: F7 f := 2500•psi Concrete strength fy : 60000•psi Reinforcing steel strength E :-= 29000-ksi Steel modulus of elasticity 'Yconc := 150pcf Concrete density 'Ysoil 100•pcf Soil density g := 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 1200-lb Pd1:= Totaldi Totalll := 3200 P11 := Totalll Ptl Pd1 + Pll P = 4400-lb Footing Dimensions t := 10• in Footing thickness Width := 24-in Footing width A,:= Width Footing Area net gall — tf'1'conc gnet = 1375.psf PU Areqd gnet Areqd = 3 < A = 4-11 GOOD Width Areqd Width = 1.79-ft < Width = 2.00 ft GOOD Ultimate Loads iwc1l.,' Pd1 + tf'A''Yconc P := 1.4 Pdl + 1.7•P11 P„ = 7.82-kips P qu A q = 1.96•ksf Beam Shear b := 5.5.in (4x4 post) d := tf — 2-in 14) := 0.85 b := Width b = 24•in V :_ 0) 4 f p si -b•d V, = 10.88•kips 3 Vu — qu (b - 2 toll b V = 3.01 .kips < V = 10.88•kips GOOD Two -Way Shear bs := 5 :5.in Short side column width bL := 5.5.in Long side column width b 2.(bs + d) + 2•(bL + d) b =•54•in (3 := 1.0 Vim= 9 + 8 / f psi b d V = 32.64. kips l3 3•0 Vnmax := x•2.66• f psi•b•d Vnmax = 21.71.kips = qu [b — (b + d) V = 5.35 -kips < Vnma, = 21.71 -kips GOOD Flexure 2 b — bcoll r 11 Mu qu 2 f . I 2) M = 1.16 ft kips A:= 0.65 2 •— b•d S = 0.148•ft 6 F := 5. f psi F = 162.5 -psi M u ft := s f = 54.45 -psi < F = 162.5 -psi GOOD .Jse a 2' - 0" x 2' - 0" x 10" plain concrete footing 10\3 - &if :,, ., = .,; , ,-„, :.„ F. x0 0.., O F.,.: ;DAR q b o 7 4 ' ° C = ctL°t = �W j 1 qh1 °o = W9 — = v,uu 4-E-)( .5 ,- ) ( 9(s') - 1z$ -ia - .c) °- c ,• 1Xc so' rr) * " I so° *e,'e W 9 = x °1 (Z)c.9c.' e + c 4-i ---- a 4J %•e:b ts'QS-e L — bIW =7( c roc :e- cst:t9c.. e t.4 Li0C7- Z)(S't - )c 'I)(os,io) = �zv\ . lip 'eave = o xi (,l � Z'b 9" ` e 4 QS -+ Q 1 ) J )(_s' C'k5' o �' °) -,73 W o � AJ Ok..'\t A x'\\ -t \\'S =. 1o` o vV 3 3 au;urrt.)allo 11av D �p -1 ter, t Z 13 x, = m -�c. _ - F O 3 3 p Z a G) r k j+ kl7 '' \ lYSI, ❑ o All 01:11 Mk A ,, • 5 � ' x x �� pool kuo.A� - d - ±un 3a u QU ` ' �.i00j, fau IGPTO 1031 ..) Q bO- ' S e3 oN eor Olae alva ).\1\JV "e Bentley - Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:43 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \Front Load 2.etz\ M33 =51.9 [Kip *ft] • • M33= -12.19 [KiPIft] • • • MOments � L 1 f n a• Bentley' Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:35 AM Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\Front Load.etz\ UM IT A - E-- • 'M33 =25.66 [Kip•ft] M33= -30.27 [Kip *ft] Nomenik Y ((s s)e- ftke)) C 1 po - Na) -3s Sb "1 °is ' SA:lob' ( 'S ' ®b'Ot',°) 7 x'4*AAt ° , O > v lkA.X-V lOb' we 9-3`')S' S - a �3 S �1'�il - °1vb'et = X s - 71Q S'iC 410'l = ° W/ -.4 w r 131 V b'e`e (� e)�i51't r ( 4 9SSV€ 4 )LII)ci)( 0s1 o) = 'sW l cs1't, IA OZ 'fit crleZ 'S 'GQt_koo j. p*5 'ON eor u'\AA-t VAAJ t 0v 6utUJ()aft0 - a ur' - Acme cycyzn Nrn 31\10 1.03 - 0 d 0 0 O m n 0 :0NI1331/4 ❑ :11d0 3N0Hd 3 0101 NO IIVOINf1W WOO ON 3N01-Id Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:38 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\Rear Load.etz\ M33 =43.24 [Kip • M33= -45.06 [Kip'tt • e /Vrctrks 1.x..1 Ben tley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:43 AM Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A\foundations\Rear Load 2.etz\ • M33 =41.88 [Kip`ft] • • M33=- 46.37[Kip ft] Y A X • MGrfAex\A-%- LC . y I _�.i�. mn 1 i - 0 f; o 1-4, ( FO r psj r 1 , -,, w' vy O n °oitr i ao4 a "10 ; x�ODU 4 < h �j�' �C S� cc-cc �)xs'3 c) s nfi .. 0 C 4 0 --S °) b u W - JO - ZN1h1'1 =Ski "o „V sit vu. ( o -, Loaa'O )(1-t1h'0)ob'0 : u yy 0 (1+2 ��o�'0/ coo ti v =: L7 1 ((90 0 0)0b, ° 0 v w � o ( )( Cl ` o/ Co00' a"9) 2.b %' 0 = '0 , 'D'O CV 0 ,Act) dal 3 3 ,' c 1S b = e ( Ib dob'o =410 F, t m O n 13 r 0 ( -kAl -` ❑ m 0 2 11 ��t „Z1 )(.1 x „ -�� o 0 J R (;/O3 VO :103 road • i0 C) N b : ON 6o, 010 J :a1vO \ :AB ci73 • ---)\o ,4- ---es.,.,,,„ .,, .1 Irk.,1-e = Li„ ,,o),..0 .,_,,, ,v;_co =sv • "'0 „7.1 P iv-44- C\ ki._ g• 6'4 0 r4uravxmia "at\WcC6a.‘ = V ' 5' a 1 0 -: < .)--3 sQ3 2 = Czk ..-- sIXprr \ ? 0 )0'0 ='; ` 0 ' (N) A cai.k.) 0= c,z-txockx)(52› c000 0°O(\ k) ' T) ) 01 0 S # VIA I 0,Y SS < £'1' t -= cS..er... ' 7i3kLot . 2 z t '07 - :51)(000bi)cg+a) o - kAw 0 . o% &so- riA Zii -:- ( 9 :NO e .A1)11 C 3kP, -1- ‘ = \7 6 7 0 titl - 4- -1 - 1 1. = ( - 1 t,) 01 0 . 0 '''' u \ii 0 x o o (NI \ c... ,c1, - •TI -=,- Ce7)(90X,Von L ox z - ri L . 0 "7.4 o -V * - 13S°2i( -E,'N''11 2:5 - "Y0 ); - -( ) .-\ "`.1- C.1 C T S V ' \D . o - c l-i‘Q T) -Ir E C \ i ° V0 Q \110 . 3 1i t .... <.- ---) -k Ak\ -i 4--cl --oun - a = \Avtivi z o • m - • - IP 1 3 i . MO- › m , o ,e-- II I --a- i . -- - - - IP A6 \s-4- \dk\ --P a 1 , m 0 m • 0 4 a z - c) r _ 1 _ _ •38 l V 001 AV4Y : 103COU c l JO ON eor , As BY j\g D ATE: ao 1 O JOB NO.: ^ a 0 OF \ P ROJECT: eIx3'x 1.251 RE: Url+k A _,‘‘,..0. 5uJ ❑ ❑ F . W 5.a \e 1 WI. f f 0 1 t.- 1 t■ ____L___- J o w 1---g--1.----i, I' a' U Z W O z a z Checl_.Overfvrnon9 0 M or" = aro.03 lc.-G6- Ma. ( msoii 4 5,aCa)+- I'LL - 4 +1,ale. E Mk ik. _ (b.(0.150 Ct,s/5)(4- 4-S ,a,(4. ) +- I , W. (2) = s . l 0 ❑ M9.. _ 4 1-1,°00 = i L 1,S 0\4- 0 Mor - at, o ❑ a X = Nil r 4 t�1, -a�,o3 1,aq�FE e_= a1 Ft 9-4 i-5,2 +-I,bb 3 L(I? -2e.' - 3( -QCa, ot)) ic--e- ShG‘e"-1 \- -e' --1 use 3 too (e \sf olI (iJ'n my i r ; 5` Mor = a(..,,p - - -- - , - -- o M>zL = ( . `3 .a 1-3.2 2) ¥- (l,LL43.2�.b�+' 4t u Stk. s1- �. a Mtn _ — (s,2t-3.ZX.)3- -(I, 4-3.2)(2' qoL or^ 51c1/41.2 o X60,12 -4DL Ex -- 1: <MR_ a 1,S(aL,03 S 4S,ci. +-4 DL x - b L - 1, 3 : e 5+d 1004 - ►r\ 0 13e OIL i F , _ T D o \ n . c 3 - .!,.t \ o i . . MaL,_ (5 4- (1,1A4- 3,2X5) +30\ -- . 33,'}' Me.._ t1- G,D6t37L 1,SM ° c M \,5(2(.c)) S ;71)- 4- 3 PL. 0\___ a.\15 K-■ 75 ° ''' ('Cl-- fang x ac� X 15" 1 )\_° a .asot� 5 7---- M / Q .= 4 (, .b . tt- 3 D I(, a v = a'f .5`tp __ F k. a.asts.2t 5,2+- 1,Lbfi3.Z 15,51 e_z___ 4:22 6100c 4(15,50 = 0,,,q0 Ne) 3C2t(L-2C 1,22) /4 - mo BY: W (... DATE: 0 JOB NO : C ki „ DCA 0 OF PROJECT: RE: C) \ -- MO■Y = 0 CI 3 ( L)(L -2(e) w .. J 0 - Z B. . P E. x \s" pu=-- a,;.24 -,■c;■ 1- w O 2 E - J\A/ = . Li — z: \n.. e-- 1. \?), 0 v4 04 1L . In- C t , ..) o z i rt a. • 30 - " Co -2.(1,,2)) L i 1- -A kS" D\---: p = 46,t261- - a G ,03 / 0 3 ( 3)(L - 'D,C 1 ,i 4.)) ■ .ckt y5.- 0 \,-- Ccrr 9nor 4.- fP it AP) lax.d ( ii\J 2 o - z o 14- z 0 g o x 1- a = . - o 'a 0 •`') 1 : g l a 'J Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:42 AM Units system: English File name: O: HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes\calcs \Unit A \foundations \Interior 2.etz\ M 23 . 55 IKip ft1 M33= -17.88 NI:eft] Mome61-5 LC, I y �1 °► n ow . entLe . Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:42 AM Units system: English File name: 0A1-IHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \Interior.etz\ • M33 =32.26 [Kip *ft] • • M33= -9.27 [Kip'ft] 3 x Me L. CZ ,f 30 ACI 318- 05.Appendix D 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens f c = 3000 psi f c = 3000 psi h' = 3.50 inches hef = : `: ;12:00. inches (into the Fe Stem = ;; .,8:00 , inches Note: hef above is the the embedment into or cam, = 5.25 inches the foundation and does not consider stem WE Fnd Width = 36.00 inches c = 2.25 inches c = 18.00 inches Wc,N= 1.00 cast -in -place anchor W 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor = 0.75 strength reduction factor 4, = 0.75 strength reduction fact Calculations Calculations AN = 68 in` AN = 1296 in` ANo = 110.25 in` A = 1296 in` Nb = 8,607 pounds Nb = 55,121 pounds Wed,N = 0.8286 Wed,N = 1.00 Nib = 4,399 pounds N = 55,121 pounds 4,Ntb = 3,299 pounds 4 = 41,341 pounds Combined Capacity of Stem Wall and Foundation (1)k = 44,640 0.754,N = 33,480 BY i - -C....., DATE: 6 Row JOB NO.: Cee'Ai 0 O OF PROJECT: RE: I ar e" + ( r 1 - 0 r l, } ? 5 ❑ ❑ nA ,_W O 2 E ❑ 8` X. 3' x !S 0 0 U ca a �1 =- t13a1��11.�CJ�'iG: b Z • Tru C.>> - I: 4 1 (2" .A s; 0, S8 ° I 1 N A = C seci 14o,0o0' /o, -3 (..) z O MA= U,aoC sbq Lo r - °I& O / N. 2 w 3i.ac.zCtis - 6) _ l L LOJV k_Y6 . N. 2 O TTAI) (i) itel °' t'1,1 or (.2.) tt 4 1 bars f cr LL • Z a = 0.34-6(4.0,000) of 5( )& ) El o . o.a'l-3 O i V Nk A = 0 . q 0 (0 :6'1 3 (I 2 - ° ` ) :- a0..gt > M m,n - ' Q - , N 1-+ ;x 00 M u "' W 'a _ 4---C-1 Concrete Side Face Blow Out Givens Abrg = 2.15 in` fc = 3000 psi c min = 18.00 inches = 0.75 strength reduction factor Calculations Nsb = 231,191 pounds 4)Nsb = 173,393 pounds Concrete Pullout Strength Givens Abrg = 2.15 in` fc = 3000 psi = 0.75 strength reduction factor Calculations N 51,552 pounds 4)N = 38,664 pounds Steel Yield Strength Givens f = 58,000 psi A = 0.606 in = 0.80 strength reduction factor Calculations N = 35,148 pounds_ 4)N = 28,118 pounds < 33,480 Ductility Met Holdown Check Holdown: HDU14 Holdown Capacity= 14,930 pounds 1.6* Capacity= 23,888 pounds 23,888 < 28,118 Holdown Checks as n r- �Z F�3' 1 moOl- bt9e n�optr cc()Qs1)(z14) Wes 310 !c 'le)c.t'Iry.,p —1.001f &1 0 11 c X zKq 1 i nnn . ,d 001 = (71.)L11) 5t p I 51 '4-CO ' 00 � rn Oo \ { VAcc.1 ca g r v► f t b „d g un N>, \ke. for 1 = ? x CrO051 5 M001 -4 ce.hVe =' • gi moot 4 ccf��� : - u. 5 5) 9 o 0001 _<rn OS) )(1112) LU -ts d c.es = ( z1 x{o Js9"1( b ___)001s =136 t�cc'2 _ 3c-' Si )Lci?na17,( b) - t vory) --)d °' - : 01).sr :7G 0 ° 1\} (l am `�ut3. JD a..i' m ❑ Z :: �1'S1 x 0 °t =M - r mopes .5 rn0CA + I MI1 O �n . �doos1- . ooS1 dqg x aW, 1414 MOO) 19,4 = '9O I,01. - ) 5 N 6 ate) = c S 0-9( ,S1na} Z)03Q) o r ) • ! ' rn 001 = (_`")0'60-s, 1)<-z�le `" ° n Li11J( 1,x��OS1) r i 1, r JoolS � go = vs �9 ar\al 7)13 ❑ 3 wo j-id 00E tcoall)l3st o 1Q o o 2 al rip ng CDsi)S 0 Worn :3e1 .103 road an ON Bor :3iva n8