Loading...
Specifications (3) inm)rzoiO —/ Y`7 Ikt i /96 , Structural Calculations for Full Lateral & Gravity Analysis of Plan A 1460 RECENFD SEP 2 3 2010 Summer Creek Townhomes CITY OFTIGARD Tigard, OR BUILDING DIVISION Prepared for Pulte Group July 13, 2010 JOB NUMBER: CEN -090 ** *Limitations * ** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and /or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 117 sheets total including this cover sheet. This Packet of Calculations is Null and Void if Signature above is not Original Harper Houf Peterson Righellis Inc. nci ER6 • , R6 LARJBCA D[ ARCr.I T[CT,6 0 VR`i[1 "ORS 205 SE Spokane St. Suite 200 ♦ Portland, OR 97202 ♦ [P] 503.221.1131 ♦ [F] 503.221.1171 1104 Main St. Suite 100 ♦ Vancouver, WA 98660 ♦ [P] 360.450.1 141 ♦ [F] 360.750.1 141 1133 NW Wall St. Suite 201 ♦ Bend, OR 97701 • [P] 541.318.1161 • [F] 541.318.1141 Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit A Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, lW: 1 2006 IBC / 2007 OSSC Occupancy Category: II Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed, ASCE.7 -05 Ch. 20 Importance, IE: 1 ASCE 7 -05 Table 11.5-1 Ss: 0.942 USGS Spectral Response Map Si: 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength, Pc: 3000 psi Foundations & Slab on Grade Concrete Unit Weight, y 145 pcf Steel Reinforcement Yield Strength, f 60,000 psi Wood Studs (Wall Studs): Hem -Fir #2 2x & 4x Wood Beams & Posts: DF -L #2 6x & Greater Wood Beams & Posts: DF -L# 1 Glulam Beams: 24F -V4 PSL Beams: Fb =2,900 psi, FV= 328psi, E =2.0 Million TS /LSL Beams: Fb =2325 psi, FV= 460psi, E =1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : .1500 psf Assumed 2. All manufactured trusses, joists, and flush beams u.n.o. shall be designed by others. Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 WoodWorks — Sizer version 2002 Bently RAM Advanse Harper Project: SUMMERCREEK TOWNHOMES UNIT A . ` { IP '• Houf Peterson. C lient: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # I.ANDSCAPE ARCHI TEC 18• SIIR'VEYORS DESIGN CRITERIA 2007 Oregon Structural Specialty Code & ASCE 7 -05 Roof Dead Load RFR := 2.5.psf Framing RPL := 1.5.psf Plywood RRF:= 5•psf Roofing RME := 1.5.psf Mech & Elec RMS := 1 •psf Misc RCG := 2.5.psf Ceiling RIN := 1 •psf Insulation RDL = 15.psf Floor Dead Load FFR := 3.psf Framing FPL := 4•psf Sheathing FME := 1.5.psf Mech & Elec • FMS := 1.5.psf Misc FIN := .5•psf Finish & Insulation FCLG := 2.5.psf Ceiling • FDL = 13;psf Wall Dead Load WOOD EX. Wall := 12•psf 1NT_Wall := 10•psf Roof Live Load RLL := 25•psf Floor Live Load FLL := 40•psf /1 LI • Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP c Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE A RCHITECTS•SURVEYOR8 Transverse Seismic Forces Site Class = D Design Catagory = D Building Occupancy Category: II Weight of Structure In Transverse Direction Roof Weight Roof Area := 843-ft •1.12 RFIArr := RDL•Roof Area RFwyr = 14162-lb Floor Weight Floor Area2nd := 647•ft FLRw - und := FDL•Floor Area2nd FLR n d = 8411-lb Floor_Area3 652 -ft FLRWT3rd FDL•Floor Area3 FLRgrT3rd = 8476-lb Wall Weight EX Wall Area := (2203).ft TNT Wall_Area := (906)•ft WALL := EX_Wall + INT Wall WALLw -r = 35496-lb WTTOTAL = 66545 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h := 32 Mean Height Of Roof I := 1 Component Importance Factor (11.5, ASCE 7 -05) ,&,:= 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C := .02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x := .75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period T := C T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. • (Chapter 22, ASCE 7- 05)...or S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F := 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F� 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) <'. Harper Project: SUMMERCREEK TOWNHOMES UNIT A P Hou Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCHITECTS• 9LJRVEVORS S MS Fa - Ss SMS = 1.058 (EQU 11.4 -1, ASCE 7 -05) 2 •SMS S := 3 Sd = 0.705 (EQU 11.4 -3, ASCE 7 -05) SM1 := F S1 SM1 = 0.584 (EQU 11.4 -2, ASCE 7 -05) Sdl 2 3 M1 Sd1 = 0.389 (EQU 11.4 -4, ASCE 7 -05) Cst := Sds Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) R ...need not exceed... Csmax := Shc'Ie Csmax = 0.223 (Q 7-05) (EQU 12.8 -3, ASCE 7 -OS T ...and shall not be less then... C1 := if(0.044• Sd l < 0.01, 0 . 01 , 0 . 044 •Sds'Ie) ( 0.5•S1•Ie1 (EQU 12.8 -5 &6, ASCE 7 -05) C2 := if l S1 < 0.6,0.01, R J Csmm := if(Ci > C2,C1,C2) Csmir, = 0.031 Cs := if (Cst < Cs Cs if (Cst < Csmax, Cst, Cs Cs = 0.108 V := Cs-WTTOTAL V = 72201b (EQU 12.8 -1, ASCE 7 -05) E := V•0.7 E = 50541b (Allowable Stress) 2 ;; .. Harper Project: SUMMERCREEK TOWNHOMES UNIT A B P Hoof Peterson Client PULTE GROUP Job # CEN -090 Righellis Inc. END.NEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCN.TECTS• SVP` /EYORS Transverse Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 100 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I := 1.00 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X := 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... a2 := 2•.1.20 -ft Zone A & B Horizontal Length — 4 ft (Fig 6 -2 note 10, ASCE 7 -05) or ,,= .4•hn2•ft a2 =25.6$ but not Tess than... a := 3 2 ft a = 6 ft Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA 19.9•psf PnetzoneB 3.2•psf PnetZOnec := 14.4•psf PnetzoneD 3.31psf Vertical PnetzoneE :_ — 8.8•psf PnetzoneF —12•psf PnetzoneG —6.4•psf PnetzoneH 9.7•psf Basic Wind Force PA := PnetzoneA'Iw'X PA = 19.9•psf Wall HWC Pg := PnetzoneB-Iw-X PB = 3.2•psf Roof HWC PC := PnetzoneC' Ivy X PC = 14.4•psf Wall Typical PD := PnetioneD'Iw PD = 3.3•psf Roof Typical PE := PnetZOneE.Iw -X PE = —8.8.psf PF := PnetzoneF'Iw -X PF = — 12•psf PG := PnetzoneG'Iw'A PG = —6.4.psf PH := PnetzoneH'Iw•X PH = — 9.7•psf { Harper Project: SUMMERCREEK TOWNHOMES UNIT A I3P: Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. -- ENGINEERS PLANNERS__^- Designer: AMC Date: Pg. # L.NDSCAPE A NCNtTECTS.SUAVE,ORS Determine Wind Sail In Transverse Direction WSAILZoneA (41+ 59 + 29)-ft WSAtZoneB ( + 0 t 23 WSAILZonec':= (391 + 307 + 272)41 WSAiLZoneD (0 +0 + 5)•ft WA := WSAILZoneA•PA WA = 25671b WB := WSAILZoneB'PB WB = 134 lb WC := WSAILZoneC•PC WC = 13968 lb WD WSAILZoneD•PD WD = 161b Wind_Force := WA + WB + WC + WD Wind_Force := 10•psf•(WSAILZ + WSAILZoneB + WSAI-ZoneC + WSA Wind_Force = 16686 Ib Wind Force = 114601b WSAILZoneE 9441 WSAH-ZoneF := 108:ft WSAILZoneG 320•ft2 WSAII- ZoneH := 320 - ft2 WE := WSAILZoneE•PE WE = -827 lb WF := WSAILZoneF•PF WF = - 12961b WG := WSAILZoneG•PG WG = - 20481b WH := WSA WH = - 31041b Upliftnet WF + WH + (WE + WG) + RDLIWSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneG)1 .6.1.12 Upliftnet = 12121b (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION UC Harper Project: SUMMERCREEK TOWNHOMES UNIT A P :• Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCHITECTS•SNRVEYORS Longitudinal Seismic Forces Site Class = D Design Catagory = D Building Occupancy Category: I1 Weight of Structure In Longitudinal Direction Roof Weight Roof Area = 944 ft , F ,:= RDL•Roof Area RFwi = 14162•lb Floor Weight Floor_Area2 = 647 ft N F= FDL•Floor Area2nd FLRwu = 8411•1b Floor_Area3 = 652 ft sx,A�= FDL•Floor Area3rd FLRw1 = 8476.Ib Wall Weight k2 ..W 11L NA. _ (2203)• ft INT Wall Area = 906 ft 2CaltmaA:= EX Wall Area + INT Wall •INT_Wall_Area WALLS = 35496-lb WTTOTAL = 66545 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h = 32 Mean Height Of Roof = 1 Component Importance Factor ' (11.5, ASCE 7 -05) ,&:= 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C = 0.02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x = 0.75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period := C T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) St = 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S = 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F = 1.123 Acc -based site coefficient ® .3 s- period (Table 11.4 -1, ASCE 7 -05) F„ = 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) 4- L10 Harper Project: SUMMERCREEK TOWNHOMES UNIT A i;1 = SHE : Houf Peterson Client: PULTE GROUP Job # CEN -090 - Righell is Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCM IECTS•SURVE YORD N := F S SMs = 1.058 (EQU 11.4 -1, ASCE 7 -05) 2- SMS Sd = 0.705 (EQU 11.4 -3, ASCE 7 -05) 3 S A= F Si SM1 = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2 - SM1 AdJA Shc = 0.389 (EQU 11.4 -4, ASCE 7 -05) Sds le Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) R ...need not exceed... Shc le Cs = 0.223 (EQU 12.8 -3, ASCE 7 -05) '�'s s" _ T a -R R ...and shall not be less then... Cam:= if(0.044- Sd < 0.01 ,0.01,0.044- Sd r 0.5•S1 -le J (EQU 12.8 -5 &6, ASCE 7 -05) if(S1 <0.6,0.01, R 90 if (CI > C2 , CI , C2) Cs = 0.031 C := if( Cst< Cs ,Cs <Cs Cs = 0.108 ,:= Cs•WTTOTAL V = 72201b (EQU 12.8 -1, ASCE 7 -05) E- V -0.7 E = 50541b (Allowable Stress) Harper Project: SUMMERCREEK TOWNHOMES UNIT A e ' Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. -__ ENGINEERS • PLANNERS Designer: AMC Date: Pg. # L ANDCCAPE ARCN.TECTS• SURVEYORS Longitudinal Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 110 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I = 1.0 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X = 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... = 2..1.20.ft Zone A & B Horizontal Length = 4 ft (Fig 6 -2 note 10, ASCE 7 -05) A 9Z;= .4•hn•2•ft a2 = 25.6 ft but not less than... 2 uwv.— 3 .2 • ft 6 ft a = Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA = 19.9•psf PnetzoneB = 3.2•psf PnetzoneC = 14.4•psf PnetzoneD = 3.3•psf Vertical PnetzoneE = —8.8•psf PnetzoneF = — 12•psf PnetzoneG = —6.4.psf PnetzoneH = —9.7•psf Basic Wind Force P PnetzoneA'Iw X PA = 19.9•psf Wall HWC Pte:= PnetzoneH ' Ivy' X PB = 3.2•psf Roof HWC ,:= PnetzoneC'Iw•X PC = 14.4•psf Wall Typical := PnetzoneD'Iw; X PD = 3.3•psf Roof Typical Pte= PnetzoneE'IN,•X PE = — 8.8•psf ,,:= PnetzoneF' PF = — 12•psf Pte:= PnetzoneG'Iw'X PG = — 6.4•psf µPR:= PnetzoneH'Iw -X PH = —9.7.psf Harper Project: SUMMERCREEK TOWNHOMES UNIT A P Houf Peterson Client: PULTE GROUP Job # CEN -090 • - Righellis Inc. -_ -- ENGINEERS • PLANNERS - Designer: AMC Date: Pg. # LANO$CAPE A RCNITECTS•SURVETORS Determine Wind Sail In Longitudinal Direction M,:_ (48 +` -59=+- 40):8 At § '= (10 + 0 + 44)4 1 W AIL :_. (91 + 137 + 67)41 V := (43 + 0 + 113)•ft N WT= WSAILZoneA'PA WA = 29251b ,W,:= WSJ- ZoneB'PB WB = 173 lb WU:= WSAILZoneC'PC WC = 42481b = WSJ- ZoneD'PD WD = 5151b WinN := WA + WB + We + WD Wi orc := l0•psf•(WSAILZ + WSAILZoneB + WSAI-ZoneC + WSAILZoneD) Wind Force = 7861 lb Wind_Force = 65201b 2 MM ,awe = 148 • t Nail,:= 120•ft2 irA:= 323• n/�'w�iw`�'I z , := 252 ft Wes,:= WSAILZoneE'PE WE = — 13021b tF„,,:= WSAILZoneF'PF WF = — 14401b Wes= WSAILZoneG'PG WG = — 20671b = WSAILZoneH'PH WH = — 24441b ,V,MugJv'= WF + WH + (WE + WG) + RDL•[WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZone4 . 6.1 . 12 Uplift = 1243 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION g t91. Harper Houf Peterson Righellis Pg #: Transverse Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 . Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X= 1.00 Iw= 1.00 Wind Sail Wind Net Design Wind Pressure (psf) () Pressure (Ibs) Zone A = 19.9 129 2567 Wall High Wind Zone Horizontal Zone B = 3.2 42 134 Roof High Wind Zone Wind Forces Zone C = 14.4 970 13968 Wall Typ Zone Zone D = 3.3 5 17 Roof Typ Zone Zone E = -8.8 94 -827 Roof Windward High Wind Zone Vertical Zone F = -12.0 108 -1296 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 320 -2048 Roof Windward Typ Wind Zone Zone H = -9.7 320 -3104 Roof Leeward Typ Wind Zone Total Wind Force =l 16686 Ibs I Use to resist wind uplift: Roof Only Total Exterior Wall Area 2203 ft Uplift due to Wind Forces= -7275 Ibs Resisting Dead Load = 8472 Ibs E =l 1197 Lbs...No Net Uplift 1 Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm (ft Zone A Zone B Zone C Zone D Main Floor 41 19 391 0 + Upper Floor 59 0 307 0 Main Floor Diaphragm Shear = 6507 Ibs Upper Floor Diaphragm Shear = 5595 lbs Roof Diaphragm Shear = 4584 Ibs • Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Diaphrag Diaphragm (lbs) (lbs) (lbs) Width (ft) Width (ft) Width (ft) A 13.08 1737 18 2797 19 2323 Al 24.50 3254 0 0 0 0 B 11.42 1516 18 2797 18.5 2261 E= 49 6507 36 5595 37.5 4584 9 - Lo Harper Houf Peterson Righellis Pg #: Transverse Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D S1 = 0.34 Ss = 0.94 . Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct= 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 S • 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 So,= 0.71 Equ. 11.4 -3, ASCE 7 -05 Spy= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = ' 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 • ' Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 • Floor 2 Wt (Ib)= 8411 Floor 3 Wt (Ib)= 8476 Roof Wt (Ib) = 14162 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22609 ' Trib. Floor 3 Diaphragm Wt (Ib) = 22674 Trib. Roof Diaphragm Wt (Ib) = 21261 Vertical Dist of Seismic Forces Cumulative % total of base shear Rho Check to Shearwalls (Ibs) I to shearwalls Req'd? VFl. 2 (Ib) = 720 100.0% Yes Vfioor 3 (Ib) = 1625 85.8% Yes V r00f (Ib) = 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft Ibs Ibs Ibs A 102 361 394 114 897 1266 Al 432 0 0 481 0 0 B 113 293 449 126 728 1443 Sum 647 654 843 720 1625 2709 Total Base Shear* = ( 5054 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. /4 — L11 - Harper Houf Peterson Righellis Pg #: Longitudinal Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph • Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X= 1.00 Iw= 1.00 Wind Sail Wind Net Design Wind Pressure (psf) (ft ) Pressure (Ibs) Zone A = 19.9 147 . 2925 Wall High Wind Zone Horizontal Zone B = 3.2 54 173 Roof High Wind Zone Wind Forces Zone C = 14.4 295 4248 Wall Typ Zone Zone D = 3.3 156 515 Roof Typ Zone Zone E = -8.8 148 -1302 Roof Windward High Wind Zone Vertical Zone F = -12.0 120 -1440 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 323 -2067 Roof Windward Typ Wind Zone Zone H = -9.7 252 -2444 Roof Leeward Typ Wind Zone Total Wind Force =l 7861 Ibs I Use to resist wind uplift: Roof Only Total Exterior Wall Area 2203 ft Uplift due to Wind Forces= -7254 Ibs Resisting Dead Load = 8483 Ibs E =l 1229 Lbs...No Net Uplift 1 Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm (ft • Zone A Zone B Zone C Zone D Main Floor 48 10 91 43 Upper Floor 59 0 137 0 Main Floor Diaphragm Shear = 2440 Ibs Upper Floor Diaphragm Shear = 3147 Ibs Roof Diaphragm Shear = 2275 Ibs Wind Distribution To Shearwall Lines . MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Diaphragm Diaphragm (Ibs) (Ibs) (Ibs) Width ft Width ft Width ft 1 10 1220 10 1573 10 1137 2 _ 10 1220 10 1573 10 1137 E= 20 2440 20 3147 ' 20 2275 . A _ Lr2.... Harper Houf Peterson Righellis Pg #: - Longitudinal Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = 11 Site Class = D S1 = 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv= 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 SMg 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 SDS= 0.71 Equ. 11.4 -3, ASCE 7 -05 SDI= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (Ib)= 8411 Floor 3 Wt (lb)= 8476 Roof Wt (Ib) = 14162 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22609 Trib. Floor 3 Diaphragm Wt (Ib) = 22674 Trib. Roof Diaphragm Wt (Ib) = 21261 Vertical Dist of Seismic Forces Cumulative % total of base shear I Rho Check to Shearwalls (Ibs) to shearwalls Req'd? Vfloor 2 (lb) = 720 100.0% Yes Vfl 3 (Ib) = 1625 85.8% Yes Vroor (lb) = 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft Ibs Ibs Ibs 1 286 291 415 318 725 1334 2 361 361 428 • 402 900 1375 Sum 647 652 -843 720 1625 2709 Total Base Shear* = 1 5054 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. 4— L,\,e3 • Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 "Transvere Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd FIr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht I k ht I k ht I k (klf) (plf) (ft -k) (ft -k) (k) • 101 Not Used 102 7 1.75 3.50 4.00 '' "% 8.00 1.74 18.00 2.80 27.00 2.32 1959 Double 1.40 NG 103 7 1.75 3.50 4.00 ' 8.00 1.74 8.00 2.80 8.00 2.32 1959 Double 1.40 NG 103a 7 4.00 4.00 1.75 OK 8.00 3.25 814 Single 1.40 IV 104 8 4.50 10.50 1.78 OK 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III • 105 8 3.00 10.50 2.67 OK 8.00 . 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III • 106 ' 8 3.00 10.50 2.67 OK 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 109 8 4.58 17.08 1.75 ox 8.00 1.74 18.00 2.80 27.00 2.32 401 Single 1.40 II 110 8 12.50 17.08 0.64 ox 8.00 1.74 8.00 2.80 8.00 2.32 401 Single 1.40 II 111 8 4.50 7.25 1.78 ox 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 112 4.75 1.38 7.25 3.45 ox 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 113 4.75 1.38 7.25 3.45 ox 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 201 9 3.92 10.79 2.30 OK 9.00 2.80 18.00 2.32 474 Single 1.40 II 201a 9 4.17 10.79 2.16 OK 9.00 2.80 18.00 ' 2.32 474 Single 1.40 11 201b 9 2.71 10.79 3.32 OK 9.00 2.80 18.00. 2.32 474 Single 1.40 11 _ 202A 9 2.96 11.96 3.04 OK 9.00 2.80 18.00 2.26 423 Single 1.40 II 202B 9 3.00 11.96 3.00 OK 9.00 2.80 18.00 2.26 423 Single 1.40 II 203 9 3.00 11.96 3.00 ox 9.00 2.80 18.00 2.26 423 Single 1.40 II 204 9 3.00 11.96 3.00 ox 9.00 2.80 18.00 2.26 423 Single 1.40 II , 301 8 3.92 - 13.96 2.04 OK 8.00 2.32 166 Single 1.40 I 302 8 5.79 13.96 1.38 OK 8.00 2.32 166 Single 1.40 I 303 8 4.25 13.96 1.88 OK 8.00 2.32 166 Single 1.40 I 304 8 2.96 5.96 2.70 OK 8.00 2.26 379 Single 1.40 II 305 8 3.00 5.96 2.67 ox 8.00 2.26 379 Single 1.40 II Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check • V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht . Mr (Resisting Moment) = Dead Load * L * 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) if - L, \4. Harper Houf Peterson Righellis Pg #: 1 . Shearwall Analysis Based on the ASCE 7 -05 Cransvere Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead ' V Rho "V % Story # • Panel Shear Panel ' M MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht k ht I k ht k (kit) (plf) (p11) (ft -k) (ft -k) (k) 101 Not Used 102 7 1.75 3.50 4.00 8.00 0.11 18.00 0.90 27.00 1.27 651 846 0.10 0.50 Double 0.50 NG 103 7' 1.75 3.50 4.00 ;„ „ 8.00 0.11 8.00 0.90 8.00 1.27 651 846 0.10 0.50 Double ' 0.50 NG 103a 7 4.00 4.00 1.75 OK 8.00 0.48 0.00 0.00 120 1511 0.22 1.14 Single 1.00 I 104 8 4.50 10.50 1.78 co( 8.00 0.13 8.00 0.73 8.00 1.44 - 219 284 0.25 1.13 Single 1.00 11 105 8 3.00 10.50 2.67 OK 8.00 0.13 8.00 0.73 8.00 1.44 219 284 0.17 0.75 Single 0.75 III 106 8 3.00 10.50 2.67 OK 8.00 ' 0.13 8.00 0.73 8.00 1.44 219 284 0.17 0.75 Single 0.75 III ' 109 8 4.58 17.08 1.75 OK 8.00 0.11 18.00 0.90 27.00 1.27 ' 134 174 0.25 1.15 Single 1.00 I 110 8 12.50 17.08 0.64 OK 8.00 0.11 8.00 0.90 8.00 1.27 134 174 , NA 3.13 Single 1.00 1. 111 8 4.50 7.25 1.78 OK 8.00 0.13 8.00 0.73 8.00 1.44 316. 411 0.25 1.13 Single 1.00 III 112 5 138 7.25 3.45 OK 8.00. 0.13 8.00 0.73 8.00 1.44 316 411 0.08 0.58 Double 0.58 VII . 113 5 1.38 7.25 3.45 OK 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.08 0.58 Double 0.58 VII 201 9 3.92 10.79 2.30 OK 9.00 0.90 18.00 1.27 200 261 0.17 0.87 Single 0.87 II 20Ia 9 4.17 10.79. 2.16 OK 9.00 0.90 18.00 1.27 200 261 0.18 ' 0.93 Single 0.93 11 201b 9 2.71 10.79 3.32 oii 9.00 0.90 18.00 1.27 200 261 0.12 0.60 Single 0.60 III 202A 9 2.96 11.96 3.04 OK 9.00 0.73 18.00 1.44 182 236 0.13 0.66 Single 0.66 III 202B 9 3.00 11.96 3.00 OK 9.00 0.73 18.00 1.44 182 236 0.13 0.67 ' Single 0.67 III 203 9 3.00 11.96 3.00 OK 9.00 0.73 18.00 1.44 181 236 0.13 0.67 • Single 0.67 III 204 ' 9 3.00 11.96 3.00 'oK 9.00 0.73 18.00 1.44 ' 181 236 0.13 0.67 Single 0.67 III 301 8 3.92 13.96 2.04 oK 8.00 1.27 91 118 0.20 0.98 Single' 0.98 I 302 8 5.79 13.96 1.38 oK 8.00 1.27 91 118 0.29 1.45 Single 1.00 . I 303 8 4.25 13.96 1.88 OK 8.00 1.27 91 118 0.21 1.06 Single 1.00 I 304 8 2.96 5.96 2.70 OK 8.00 1.44 242 315 0.15 0.74 Single 0.74 III • 305 8 3.00 5.96 2.67 oK 8.00 1.44 242 315 0.15 0.75 Single 0.75 III • Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total transverse base shear? Yes Total 1st Floor Wall Length = is.00 Total # 1st Floor Bays = 4.77 Are 2 bays minimum present along each wall line? No Ist Floor Rho = u Total 2nd Floor Wall Length = 22.75 Total # 2nd Floor Bays = s Are 2 bays minimum present along each wall line? No 2nd Floor Rho = 1J • Total 3rd Floor Wall Length = 19.92 Total # 3rd Floor Bays = s Are 2 bays minimum present along each wall line? No 3rd Floor Rho = 1.3 . • Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load "Rho / Total L % Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2 "IJH Shear Factor = Adjustment For 1-I/L > 2:1 Mo (Overturning Moment) = Wall Shear " Shear Application ht Mr (Resisting Moment) = Dead Load * L " 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) /.44- ..-- t \c'. Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Wind • Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klf) (plf) (ft -k) (ft-k) (k) 107 8 15.50 15.50 0.52 OK 10.00 1.22 18.00 1.57 27.00 1.14 1.03 254 Single 1.40 1 71.21 123.49 -0.19 108 8 15.50 15.50 0.52 ox 10.00 1.22 18.00 _ 1.57 27.00 1.14 1.03 254 Single 1.40 1 71.21 123.49 -0.19 205 9 13.00 13.00 0.69 OK 9.00 1.57 18.00 1.14 0.70 208 Single 1.40 1 34.62 59.15 -0.07 206 9 13.00 113.00 0.69 OK 1 9.00 1.57 18.00 1.14 1 0.70 208 I Single 1.40 1 34.62 59.15 -0.07 1 306 8 , 10.00 10.00 0.80 ox 8.00 1 1.14 0.29 114 Single 1.40 I 9.10 14.40 0.05 I 307 8 10.00 10.00 0.80 ox 8.00 r 1.14 0.29 114 Single 1.40 1 9.10 14.40 0.05 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L • 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) /9 "--- L\.\C) Harper Houf Peterson Righellis Pg #: Shearwall Analysis B ased on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Seismic • Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho* V % Story # Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr: From Roof Load Strength Bays. Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (kif) (plf) (plf) (ft-k) (ft -k) (k) 107 8 15.50 15.50 0.521 OK 10.00 0.32 18.00 0.73 27.00 1.33 1.09 153 153 NA 3.88 Single 1.00 1 _52.25 130.70 -1.74 108 8 _ 15.50 15.50 0.52 OK 10.00 0.40 18.00 0.90 27.00 1.38 1.09 173 173 NA 3.88 Single 1.00 1 57.35 130.70 -1.40 1.00 1 205 9 I 206 ' 9 1 13.00 1 13 00 1 0.69 OK 1 1 1 9.00 1 0.90 1'18.00 1.38 0.76 175 175 1 NA 1 2.89 Single 1 1.00 1 32.851 64.221 -0.45 I ` 307 8 1 1 1100..0000 0.801 oK 1 l 1 8.0 1 1.38 00..3355 138 138 1 NNAA 2.50 1 Single 1 11..0000 I 11.00 1 1177..4400 0.06 l Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total longitudinal base shear? Nes Does the 3rd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes • Total 1st Floor Wall Length = 31.00 Total # 1st Floor Bays = 7.75 Are 2 bays minimum present along each wall line? Yes 1st Floor Rho = 1.0 Total 2nd Floor Wall Length = :woo Total # 2nd Floor Bays = 6 Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho = 1.0 Total 3rd Floor Wall Length = 20.00 Total # 3rd Floor Bays = s Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho = 1.0 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load *Rho / Total L % Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2 *L/H Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load *L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Transvere Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good For , V (plf) (1) (Ib) (lb) 101 Not Used 102 Simpson Strongwall 103 Simpson Strongwall 103a 814 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 833 104 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 105 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 106 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 109 401 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 110 401 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 111 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 112 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 990 113 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 990 201 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 201a 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 201b 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 202A 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 202B 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 203 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 204 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 301 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 302 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 303 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 , 304 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 305 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design Toads. 4 - �� Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Longitudinal Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good For V (p (pb) (1b) r (lb) 107 254 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -192 Simpson None 0 108 254 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -192 Simpson None 0 205 208 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -69 Simpson None 0 206 208 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -69 Simpson None 0 306 133 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 48 Simpson None 0 307 138 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 59 Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. Transverse Wind Uplift Design . • Unit A Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift FIr. FIr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of ® Right Wall Wall @ Left @ . floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 102 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.192 0.832 27.43 0.57 1.69 21.31 20.79 21.31 20.79 103 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.832 0.192 27.43 1.69 0.57 20.79 21.31 20.79 21.31 103A 8 1.1667 4.00 4.00 3.254 3.254 814 0.04 2.016 1.664 26.03 8.38 6.98 6.00 6.24 6.00 6.24 104 8 1.1667 4.50 10.50 1.516 2.8 2.26 6.576 626 0.1 0.8 0.078 25.08 4.61 1.36 5.58 6.06 5.58 6.06 105 8 1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 0.048 0.252 0.156 16.72 0.97 0.68 6.45 6.52 6.45 6.52 106 8 1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 • 0.048 0.156 0.252 16.72 0.68 0.97 6.52 6.45 6.52 6.45 109 8 1.1667 4.58 17.08 1.737 2.8 2.32 6.857 401 0.152 0.192 0.156 16.31 2.47 2.31 3.63 3.66 201L 201R 4.82 5.09 8.45 8.75 110 8 1.1667 12.50 17.08 1.737 2.8 2.32 6.857 401 0.096 0.156 0.192 44.52 9.45 9.90 3.24 3.21 201 aL 201 bR 4.95 4.88 8.18 8.09 111 8 1.1667 4.50 7.50 1.516 2.8 2.26 6.576 877 0.144 0.8 0.078 35.11 5.06 1.81 8.02 8.51 8.02 8.51 112 8 1.1667 1.50 7.50 1.516 2.8 2.26 6.576 877 0.048 0.252 0.234 11.70 0.43 0.41 11.44 11.46 11.44 11.46 113_ 8 1.1667 1.50 7.50 1.516 2.8_ 2.26 6.576 877 0.048 0.234 0.252 '11.70 0.41 0.43 11.46 11.44 11.46 11.44 201 9 1.1667 3.92 10.8 2.8 2.32 5.12 474 0.225 0.432 0.156 17.71 3.42 2.34 3.99 4.16 301L 301R 0.83 0.93 4.82 5.09 201a 9 1.1667 4.17 10.8 2.8 2.32 5.12 474 0.225 0.156 0.156 18.84 2.61 2.61 4.14 4.14 302L 302R 0.80 0.80 4.95 4.95 201b 9 1.1667 2.71 10.8 2.8 2.32 5.12 . 474 0.225 0.156 .0.432 12.24 1.25 2.00 4.24 4.08 303L 303R 0.91 0.80 5.15 4.88 202A 9 1.1667 2.96 11.958333 2.8 2.26 5.06 423 0.173 0.432 0.052 11.92 2.04 0.91 3.62 3.84 304L 304R 2.60 2.75 6.21 6.59 202B 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.173 0.052 0.216 12.09 0.93 1.43 3.84 3.74 305L 305R 2.74 2.16 6.58 5.91 203 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.309 0.216 0.312 12.09 2.04 2.33 3.62 3.56 3.62 3.56 204 9 1.1667 3 11.958333_ 2.8 2.26 5.06 423 0.225 0.312 0.432 12.09 1.95 2.31 3.64 3.57 3.64 3.57 301 8 3.92 13.96 2.32 2.32 166 0.232 0.384 0.204 5.21 3.29 2.58 0.83 0.93 0.83 0.93 302 8 5.79 13.96 2.32 2.32 166 • 0.232 0.204 0.204 7.70 5.07 5.07 0.80 0.80 0.80 0.80 303 8 4.25 13.96 2.32 2.32 166 0.232 0.204 0.384 5.65 2.96 3.73 0.91 0.80 0.91 0.80 304 8 2.96 5.96 2.26 2.26 379 0.232 0.384 0.136 8.98 2.15 1.42 2.60 2.75 2.60 2.75 305 8 _ 3 5.96_ 2.26 2.26 379 0.232 0.136 1.104 9.10 1.45 4.36 2.74 2.16 2.74 2.16 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line ° V (Panel Shear) = Sum of Line Load / Total L 1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) Transverse Seismic Uplift Design Unit A Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Fir. Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of ® Right Wall Wall @ Left @. floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k pif klf k k kft kft kft k k k k k k 102 8 1.1667 1.75 3.50 0.114 0.9 1.27 2.284 653 0.152 0.192 0.832 10.40 0.57 1.69 7.91 7.11 0 0 7.91 7.11 103 8 1.1667 1.75 3.50 0.114 . 0.9 1.27. 2.284 653 0.152 0.832 0.192 10.40 1.69 0.57 7.11 7.91 0 0 7.11 7.91 103A 8 1.1667 4.00 4.00 0.481 0.481 120 0.04 2.016 1.664 3.85 8.38 6.98 -1.06 -0.69 0 0 -1.06 -0.69 104 8 1.1667 4.50 10.50 0.126 0.73 1.44 2.296 219 0.1 0.8 0.078 8.96 4.61 1.36 1.20 1.93 0 0 1.20 1.93 105 8 1.1667 3.00 10.50 0.126 0.73 1.44 2.296 219 0.048 0.252 0.156 5.97 0.97 0.68 2.04 2.14 0 0 2.04 2.14 106 8 1.1667 3.00 10.50 0.126 0.73 1.44 2.296 219 0.048 0.156 0.252 5.97 0.68 0.97 2.14 2.04 0 0 . 2.14 2.04 109 8 1.1667 4.58 17.08 0.114 0.9 1.27 2.284 134 0.152 0.192 0.156 5.58 2.47 2.31 0.82 0.86 201L 201R 1.13 1.54 1.95 2.40 110 8 1.1667 12.50 17.08 0.114 0.9 1.27 2.284 134 0.096 0.156 0.192 15.23 9.45 9.90 0.56 0.53 201 aL 201bR 1.32 1.32 1.88 1.85 111 8 1.1667 4.50 7.50 0.126 0.73 1.44 2.296 306 0.144 0.8 0.078 12.54 5.06 1.81 2.00 2.73 0 0 2.00 2.73 112 8 1.1667 1.50 7.50 0.126 0.73 1.44 2.296 306 0.048 0.252 0.234 4.18 0.43 0.41 3.79 3.82 0 0 3.79 3.82 113 8 1.1667 1.50 7.50 0.126 0.73 1.44 2.296 306 0.048 0.234 0.252 4.18 0.41 0.43 3.82 3.79 0 0 3.82 3.79 • 201 9 1.1667 3.92 10:80 - 0.9 1.27 2.17 201 0.225 0.432 0.156 7.63 3.42 2.34 1.16 1.41 301L 301R -0.03 0.13 1.13 1.54 201a 9 1.1667 4.17 10.80 0.9 1.27 2.17 201 0.225 0.156 0.156 8.11 2.61 2.61 1.38 1.38 302L 302R -0.06 -0.06 1.32 1.32 201b 9 1.1667 2.71 10.80 0.9 ' 1.27 2.17 201 0.225 0.156 0.432 5.27 1.25 2.00 1.53 1.28 303L 303R 0.10 -0.06 1.63 1.22 202A 9 1.1667 2.96 11.96 0.73 1.44 2.17 181 0.173 0.432 0.052 5.25 2.04 0.91 1.15 1.50 304L 304R 1.28 1.50 2.43 3.00 202B 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.173 0.052 0.216. 5.32 0:93 1.43 1.49 1.35 305L 305R ' 1.50 0.63 2.99 1.97 203 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.309 0.216 0.312 5.32 2.04 2.33 1.16 1.08 0 0 1.16 1.08 204 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 "0.225 • 0.312 0.432 5.32 1.95 2.31 1.19 1.08 0 0 . 1.19 1.08 301 ' 8 0 3.92 -13.96 1.27 1.27 91 0.232 0.384 0.204 2.85 3.29 2.58 -0.03 0.13 0 0 -0.03 0.13 302 8 0 5.79 13.96 1.27 1.27 91 0.232 0.204 0.204 4.21 5.07 5.07 -0.06 -0.06 0 0 -0.06 -0.06 303 8 0 4.25 13.96 1.27 1.27 91 0.232 0.204 0.384 '3.09 2.96 - 3.73 0.10 -0.06 0 . 0 . 0.10 -0.06 304 8 0 2.96 5.96 1.44 1.44 242 0.232 0.384 0.136 5.72 2.15 1.42 1.28 1.50 0 0 1.28 1.50 305 .8 0 3.00 5.96 . 1.44 1.44 242 0.232 0.136 1.104 5.80 1.45 4.36 1.50 0.63 0 0 1.50 0.63 Spreadsheet Column Definitions & Formulas _..--- L = Shear Panel Length 11= Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L 1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) TRANSVERSE UPLIFT CALCULATIONS - SUMMARY UNIT A Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right ' k Simpson k k Simpson k . 102 Wind 21.31 Holdown None 0.00 Wind 20.79 None 0.00 103 Wind 20.79 Holdown None 0.00 Wind 21.31 None 0.00 103A Wind 6.00 Holdown HDQ8 w 3HF 6.65 Wind 6.24 HDQ8 w 3HF 6.65 104 Wind 5.58 Holdown HDQ8 w 3HF 6.65 Wind 6.06 HDQ8 w 3HF 6.65 105 Wind 6.45 Holdown HDQ8 w3HF 6.65 Wind 6.52 HDQ8 w 3HF 6.65 1 106 Wind 6.52 Holdown HDQ8 w 3HF 6.65 Wind 6.45 HDQ8 w 3HF 6.65 109 Wind 8.45 Holdown l-IDQ8 w DF 9.23 Wind 8.75 HDQ8 w DF 9.23 110 Wind 8.18 Holdown HDQ8 w DF 9.23 Wind 8.09 HDQ8 w DF 9.23 111 Wind 8.02 Holdown HDQ8 w DF 9.23 Wind 8.51 HDQ8 w DF '9.23 112 Wind 11.44 Holdown HDU14 14.93 Wind 11.46 HDU14 14.93 113 Wind 11.46 Holdown HDU14 14.93 Wind 11.44 HDU14 14.93 201 Wind 4.82 Strap MST48x2 5.75 Wind 5.09 MST48x2 5.75 201a Wind 4.95 Strap MST48x2 5.75 Wind 4.95 MST48x2 5.75 _201b Wind 5.15 Strap MST48x2 5.75 Wind 4.88 MST48x2 5.75 202A Wind 6.21 Strap MST60x2 8.11 Wind 6.59 MST60x2 8.11 202B Wind 6.58 Strap MST60x2 8.11 Wind 5.91 MST60x2 8.11 _; 203 Wind 3.62 Strap MST60 4.06 Wind 3.56 MST60 4.06 204 Wind 3.64 Strap MST60 4.06 _Wind 3.57. MST60 4.06 1 301 Wind 0.83 Strap MST37 1.79 Wind 0.93 MST37 1.79 302 Wind 0.80 Strap MST37 1.79 Wind 0.80 MST37 1.79 303 Wind 0.91 Strap MST37 1.79 Wind 0.80 MST37 1.79 304 Wind 2.60 Strap MST48 2.88 Wind 2.75 MST48 2.88 305 Wind 2.74 Strap MST48 2.88 Wind 2.16 MST48 2.88 BY DATE: 6 010 to JOB NO c e . ,,,,,o q 0 OF PROJECT: • RE: 3SW ‘ '')' — -\. e OtX r LOCk Cw‘ [1 El w - At Loads: uk\ki wInG wools _J 0 - Z LI- F: c3o,:cacag___ w‘f-■?,i uk...ick)\ :. Ckx i a k \ ock.d. 2 : 1 0 0 W F- tal O X L i' E CcA?0 4i QP Sv1/4.)a,1 sn- ---. 4'400 vos y e,- Lkx,14\ Li 0 , , < 0 . kkIX), _ LocA .:= 1"4-31- -i- a;icci-- 1- a o z , 0 . : - 39a4-t-/wati , 2 z O adwl < Capaci4 :. 0141 F- < 0 D 2 Ca 9a Cr 41-d) C.) SSW a 1 k 5 = 3ctLo it__ 0 a L IVA (-.. (Ck eat 1 x ci li- Z W El 6 0 = = •; : O 0 6 . O '-' 4 6 . . - t . 0 • = r:4 ::fu:.=), : : •,';. .© . T. 5W TN IS LENXs+n+ bkWNC- ,11kIS Ltt4C . _n 0 ,� �� �•.� UC ( "1 RI ) SE N O r - ,` I I vi 9 . a . 111 _ _ / - - - r. 0 r - ❑ - ❑ ?-.), ..), • . cp. . . . z. . d o i 1 • a kob SVv R\c, I.CNf L4 A 7 AlLN( Tl4-t 5 LINT-,'+ • . Z iC • x 0 c. _3 1 3ry ! i s i-ku t ?rvrn ,al l rn Jli rv-i +u-t -') N =1"I S 1-N1 Ns 0I 1 ,7 ._i_�r,..M «._ . .77' .._,_- _-:..'-�s.:2:- 4 �a » ':t"= .ittPai. .''C. 2t n Q 41) 1..... If1r tl o 2 J T er J 3 3 c t i D § — O L.� .� 1 , 9. _Ii • d rs.._.,,,,,..._,,,,...C.iiiialtiliammizialisusliailwanstimst 1,..., t01 0 3n►» 57 : L t)NO »d . -14rTh Nb +11 -9Na1 Sikh MS p c 1 C E 1 SW Tats LcNCiTH Aw n)c, -ntIs cIAJt O w __ ( �� �' . -.. _.. 1 `_.� -`... ' _ .., _ . _. � >:T , _",, .I.o ; 11 0 g 1 1 fl i �� 'fi • i ll rift 1 'Ti C i ) , ' . �i j 8 , o f I ' r • . !; . !, . !, i ,., g . . i .; O q .: a'_h... ' :; ..kv:_ax'?' *ri=: `w :i: :- " .__... : , ,- q X �(�_ '.0 L. SW 'IV LetiC -n+ Ato NC-N MI' LINT-- ---- T-) S 11-u- L-- ry m'd -}{ L L- rJ 1 S \ , MS 0 1_, iil 4 { r \9 1 <11 .... ; K� L C . ----..,, } gi- t . S o '' o 1, - - , 0. - . - ...:47. s - t-a"."..7-..r.tr,;,.--7trit..1-- ---0 i'.." .... 9 O N 11 is t.- Non -1 Lt. -) � Nal mat i-\,1 M S n Cr BY: DAYS: 6 - aO\ O JOB NO.: C _/ 1 Cl O OF P ROJECT: RE: D AVn YYI ckr\ e a\--- Ron l-- oc- hovsc_. ❑ ❑ V L rxe8 ‘a .5 � } �{ winds ( CQ fC ts) (,.5'14 0 W olt q phra gtm tui d'f1'1 = aU Ct 1 • L ❑ CO = laoi pt..P 1 • Li o W Cvl Racy Y, or ul&ociCed dia phva0vn W Ctbo 1,t.6 = ava9A. . Z woc Glrcthtovv z Gilt_ Jva.s i ;n Cap6u'°i) = (as5 pt-Ft ,4); 353 oic- 0 f 2 0 U F ¢ O Li. Z w ❑ Z 0 I- • a O • U N N� a • y ` <; c O .' z u s 4- L I DATE: JOB NO c BY 1 i ) PROJECT: RE: 1)es \ cr QT r■rn l ola }nn e sfia s w - • r OPTiDN . 1. J Z i*-110 0 W 1V� /I W TRtz wirr- : ()I.) 1-'' F .F. la' VIA" f • ❑ �Q 1 h,1 I = I 9 , TO? I'La-ns le- 54 x a o W `S /. U m a De 5IC -1.1 W11\11) PCessuce z - - 30 psC o r. F. R - 3 - 1D' D a € \c'if1 9\o, - C© y es f �})o , \j'..l tei : j -h' Top YlA1ES B IV U J z l.j i"t(\ wk''-.1. ! oc?f? ov 1 °11 pL9 D 2 u 1 u g, = ltt°l°\i* R7.= ! 4 co # O : o )I U. Z o f� t^0.a ,, x = $ z _ -a Cts.as _ j1�. vrct F- a. So M_ 5\2 ! ,T 5-, s - 0.51025) 1 P SY = u _ tq _ CaZE{1114 A (..5 5.25) Fb (‘*) - (8so .)0,(,)(i .$)(1.1s)= a3y(., c (A1-2.. .. NJc S o - r , H -E ? _ ISO ?SL (i•(°) = auo sL 7 �Z .. av 0 NC--, crid • oC)uten. /9- -L29 A _;v\L - o E K . - Q BY: � DAT 6 JOB NO. C . PROJECT: RE: OPT 10 0 2 ❑ ❑ im t.Ji1 up CI r'n e. 2tiD • C k.001 D W N oce, >� oor1 PCc re e 3w Twos 1- W O f ❑ T6 \D l,A)1 a f ' t ` \ on +JUNE" -' \3! Li 0 Moo( 1uvie r �to,r over,xi -\ = V-22-011 �-o'i o W U Z LiJ . Cesk I W q16 pres °ten e = - ao,Q.`) p P Z Lou d, cTn bv11 v \o1v cIC-. _ a pL.F- 0 k T. Lu' Z T 1' f 0 Mreo x= we, a - � a Agtgb * k, ❑ t -..-... I S Z Vr�ra x _ 1LSf * W I 0 d i,2. I L I`7s/ boats 1N$ 1 \L‘" I2 t =e. z = ( 1,513,5) _ •`66 , 1 1 11_ _ r,1 = (o.I,3.5.3 = a .tab ,,,,4 WWI i.s S. nil. i-- 3.5 "-°-- -\ A 3,s, :^ . 5.1c L �. ' �I a:1 =a 0 1 - OS t - a4.s(0,5`45) a is C <, a=r )fiS,'3b + ota,(,) -t o - 4- s, 4- Ci 4- 5,3 # 0 .Y,_= M c_. _ tqc1 � C . 02. yA =. 1409- ps I -- 4 LI . VIS vti'' Si _ v - : c95G. - - a s� L b = " Vb C% C MC.cLct c�u Cr A 6 " F, ® (55.o p,iI,00,o/I,oX\,o ")(t.�)1.o t ')(Lt) li-_ fi b' = (aa, s--› s.t.)(LO 01 I.Z t.c)(,,o) L L dY- 4 - L3o . • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:49:04 COMPANY 1 PROJECT RESULTS by GROUP - NDS 2005 . SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF __Mnf Truss. Not = --== -3 Not deaigned by request (2) 2.8 Lumber n -ply D.Fir-L No.2 1- 2.8 By Others Not designed by request (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 Typ Wall Lumber Stud Hem -Fir Stud 2x6 016.0 SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR --a Mnf Jst - T13- 3�t �v33 � 3 Not designed by request 33 request = =v Sloped Joist Lumber -soft D.Fir -L No.2 2x6 016.0 (2) 2.8 (1) Lumber n -ply D.Fir-L No.2 1- 208 (2) 2.8 Lumber n -ply D:Fir-L No.2 2- 2.8 By Others Not deigned by request By Others 2 Not designed by request (2) 2x12 Lumber n -ply D.Fir -L No.2 2- 2.12 5.125x10.5 Glulam- Unbalan. West Species 24F -V4 DF 5.125.10.5 4X6 Lumber -soft D.Fir -L No.2 • 4x6 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2.6 4x6 Lumber Post Hem -Fir No.2 4.6 (3) 2.6 Lumber n -ply Hem -Fir No.2 3- 2x6 (2) 2x4 Lumber n -ply Hem -Fir No.2 2- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 016.0 SUGGESTED SECTIONS by GROUP for LEVEL 2 - FLOOR 3 Mnf = Truss es ==_ ===3333 = = == Not designed by request 3_ = ==�3aa_ = =a3 Mnf Jet Not designed by request Deck Jst Lumber -soft D.Fir -L No.2 2.8 016.0 (2) 2.8 Lumber n -ply D.Fir -L No.2 2- 208 3.125.9 Glulam- Unbalan. West Species 24F -V4 DF 3.125.9 4.8 Lumber-soft D.Fir -L No.2 408 By Others Not deaigned by request • By Others 2 Not designed by request (2) 2x10 Lumber n -ply D.Fir-L N0.2 1- 2.10 5.125X12 GL Glulam- Unbalan. West Species 24F -V4 DF 5.125012 By Others 3 Not designed by request 3.125.14 LSL LSL 1.55E . 2325Fb 3.5x14 (21 2.6 Lumber n -ply Hem -Fir 00.2 2- 2x6 4x4 Lumber Post Hem -Fir No.2 4x4 4x6 Lumber Post Hem -Fir Nc.2 4x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2.6 6x6 Timber -soft Hem -Fir No.2 6.6 12) 2x4 Lumber n -ply Hem -Fir No.2 2- 204 6x6 nol Timber-soft D.Fir -L 00'.1 6x6 (3) 2x4 Lumber n -ply Hem -Fir No.2 3- 2.4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 016.0 SUGGESTED SECTIONS by GROUP for LEVEL 1 - FLOOR 33 =333=_=-- -3 =3== a = = ====3= = : ==33 Not deigned by request CRITICAL MEMBERS and DESIGN CRITERIA Group Member Criterion Analysis /Design Values . Mnf Jst Mnf Jot 33 Not designed by request=a33=a3a==3aa== == -�_ Deck Jst j65 Bending 0.41 Sloped Joist j30 Bending 0.10 • Floor Jet4 unknown Unknown 0.00 (2) 2x8 (1) b35 Bending 0.47 (2) 2x8 b8 Bending 0.69 3.125.9 b3 Bending 0.06 • • 408 b30 Bending 0.12 By Others By Others Not designed by request By Other. 2 By Other. Not designed by request (21 2.12 b6 Bending 0.93 (2) 2.10 bl Shear 0.78 5.125X12 GL b10 Bending 0.76 • By Others 3 By Others Not designed by request 5.125x10.5 b9 Deflection 0.95 406 b20 Bending 0.08 3.125.14 LSL b14 Deflection 0.73 (2) 2x6 c2 Axial 0.91 4.4 c55 Axial 0.07 4x6 c23 Axial 0.80 (3) 2x6 c29 Axial 0.75 . 6.6 c26 Axial 0.70 . (2) 2.4 c39 Axial 0.62 6.6 nol • c12 Axial 0.86 (3) 2x4 c31 Axial 0.89 Typ Wall w14 Axial 0.48 Fnd Fnd Not designed by request ' DESIGN NOTES: 3 1. Please erify that the default deflection limits are appropriate a>= a for your application. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result is considered the final design and appears in the Materials List. 3. ROOF LIVE LOAD: treated as snow load with corresponding esponding duration factor. Add an empty roof level to bypass this interpretation. 4. BEARING: the designer is responsible for ensuring that adequate bearing is provided. 5. GLULAM: bxd = actual breadth x actual depth. 6. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 7. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 8. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, o butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that ' each ply is equally top - loaded. Where beam. are side - loaded, special fastening details may be required. 9. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 10. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. WoodWorks®Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:41:17 Concept Mode: Beam View Floor 2: 8 'tOi1 T �^ b31 M 1r 104 ..... : 7. tS b (U .. - - - - 4 / - - S ULb 40" 0 ' / : tY . ..,._,.__.,. ...... _-,- - _ _ IVU - 4b a9. m ts b1 :. -- . .. _ 4,5-0 ._ - - -- --- - -- •-- --...-- ---- - - -- .:_.... _. 41_x yb . 4U b :_ _ ._ _ .. _ - --- _ C. .- _ -:. ... - 3f -b VG .50 -0 y'1 Sb b VU - _ - - 34 -0 0V b2 ' . . J3 -b SL b 60 . . 03 ..51 U ' I: t53 LLS b L/ -b Lb 0 tST L5 - ry is well!! - L4 -b r _b33 - r b - i f . ti -b L r4t . -- Its b I/ -0 6 3 2 ' . O -0 b0 - -= b19115 i u b 01 : - - 00 ._. 00 _ - b - o2, • b4 b14 • b -b bu' b30� b3 - • . 3 - b »..� b2 -b L b" I -b BBIB.B BCCCCCCCC}CCC CC CCCCC CCC CCICCCDDDDDDDDICDD CD DD DDDDDDCDIDDDE.E E E E EE E }EEE(EE1EEEEEEEEIEEEEZ 0' 2' 4' 6' 8 10' 12' 14' 16 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'678'91(1 1:1 :1 :2 2!2(221243(33 :3:3 44:44'4f4 5 :5 :5 - 6:6 :6 7.77 141— Cl WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:41:19 Concept Mode: Column View Floor 2: 8' VAN 1 LOP D 1050 ❑ c58 c14 4 �-: • : - ... 4Y-6" i U4 - 40 -0 1 UL - - _ . . . . . . . . 4b'-o IUi I U(t - .. 44 -la .. 9. : .. : 43 -b JtS - - : • c69 . c2 'c7O . c71- .. . - - - -- . - - - -- 41 -b Jb 4U" b O --- -- - - -- .. :: _ - - .._... .. --- 3y -o 3 3 ( -0 .. y . t : _ :__':. `--- -'- - -'=- '- -. - -- - - 30 -0 t5 .. .. 33 -0 0tl -:- '--' -' - - _. .: - -- - - -- - --- - - -_ -.. -- - '- -- - - 3L-0 0/ :; .; ; - - 3I' -0 00 : ... , _. - - : c4 .. :-: -- ._ -' . - .. - 30' -0 - .. .. on Ly _b 05 L /.-b. 23L - " :-.:- - ...:_ . - - - -- --' .- _ - - -- - .. .- - ..--.... _. Lb 0 01 10-0 bL) :: 'c25 c12 c26; .: : : : - . L4 -0 r o u . ' ❑ 0 ° c 72 « - b c2 . fb - :- i - - -; - - - . -- _ _- - - . -- - • - Z0 -u l (4 .. --- . ❑. . ; ..•.-=-- --- - --- ----- -- - - --- -- ... _. ... '10 -b /1 --- -- -- ---- 10-0 11 • - c78 . -- - , - -- 15 -b (0 - : - --- ---- ---- - - ' __. . - '14 bJ .: .- - --: . -0 00-. :.c77 .. - _ : -. .:.._ :. -. _ IL -b 00� 10 -b 04) . _c31 c76 -- - -- --- -c79 =- -- -- -- - - - - - - _ _ 0-b b � c3O : 0 c32 b 01 ❑. ❑ .. nn .Cb /1: -- -... -: -- -- - - - --- - -- ._._ - - - - - 0-b .. .L. .: .: . �:- - : - -- --- --- .. c55 c �� 3 b .. Ll ti BB \B.B BC CC C C CC CFCCC CC CCCC C C CC CC'CC CD DD D D DD DtDDD CD DD DD D D DD CD1DD DEE EE E:EEEFEEEiEEiE EIEEEEEEEEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'56'7'8'9111 1 ;1 :14!1111 112( 222: 222422213t33:33 :444(4'4(4(5(55:5:5 6;6:6‘6!616 1 7.7:7 e" • 4- (_erf..- WoodWorks®Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 24, 2010 13:14:33 Concept Mode: Beam View Floor 2: 8' (2.f O U.) Pr b31 ` 1 49'-6" )4 .... 46 - b' 11.1Z - - 40 - b • IUI 4 b 1151) . € ..: - - - - .. - - - 44 b.. a9 . .: . acs b34 4 of � _ -- --__ "• - -- 4U -' ab .. _ _ .... ... Jy b • as : 3C -b 3( b' 30 b WI ' - - -+ -- ..: -- - - i.- 30 b - 34 -b b y b2 33 -b' • ba - tib - -- - - ---- _ _ - -- _ 3 U bD .. .. : ii - La -b L1 -b .. i : _. . s 'i _ Lb b 0 Lbw' 00 ;610 _ - �4 b (t5 ` di1f- ® . a : . .. . . LL -b • • 1b 633 --- -- -�- =- :.... - _ -.._. . - - -- - - -- - z y b. r 5 . I - / 3 - '. ..- : . _ : ::.. - : • . _ . . - • ItS'b - I1 -0 632 -_.._ . . (U - - -- -- - - .. -- --- - - -- -- 14 � . ._. .__ _ ...__ ._ - ... 13 - ' ba : .. - i 615 .b19 - -- - - -- - - - - -- - - .. - -. ._ iu b bf bb. _ . - b b4 3 : : u b bL3 , � _ b4 6 14 • .: b . b .. bid 630 635 . 4 -b _.., . - -- 3 - -- - -- -- t7 :....... u BB1B.B BC CCC C CC C(CCC CC CCCC C CCC CCICCCDDDD D DD D16DD CD DD'DD DD. DD CDIDD DE,E E E E EEEFEEE(EEIEEEEEEEEEEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'67'8'91(1 1 :1 :1 (12(2 3 :33 "3(3W(4 4A:44!4E4'4( 445(5 :5 :5 5(5(5 "5 ?5!6(66: 6:6 • • 4- Cli WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load Woodworks® Sizer 7.1 June 24, 2010 13:14:35 Concept Mode: Column View Floor 2: 8' skPrik. WS Q • 1050. 1 - 1 c58 D c14 : . .. 49' -6" -- . 104 411 -b .. : Ivy9 a n t) c82 c81; •.; " 4L -0 0 ._ ..--- -- .. yb .- 4U -0 yb. - ' : . 3 b �J .. ' • yL c3 - ' - - 3b -b 3 • tSy 33 -b ' • ur of b 24b - - i _ .. .. C4._ _.... _ .. - -- 3U' - • t5D L -b . 01 - L5 -b °°- - c25 c c Z4 -0 r y Ls b • !ZS 0 O. .. • - - LG . • !b -- - - -. C2 - -- : [ ._ : : . - - • .: - - - - '- -- GU -0 • i ,, -o i t c3 0-b� r I c78 10 -b . ru D: 74 b by . 13 -b 00 t�A u - b • b4} ., _ C31 - c76 - : : -- - - - - - - - b -b 03 - b.. oz? C30 ®C32: .. b._b.. • r bU) O : ®fir cTu Cb� • - _ - .. - _ - - - -- 4 -o • c55 _ _ :C56�"®'p, i .. _ -0 - b .BB.B BC.CCC CCC C!CCC C C C \B CC C C CC CCICC CD DDD D DD D!CDD DD DD°DD D D DD CD'DD DE.E Et EiEE EtEEEIEEE EiEEEEEE!EEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'678'910 - 1:1 : 1 112(2 22:2 IA 4:4 :44(4(4 "441515 5:5:5.5:5(5515 6168:6:6 :$16`.70 :77.7!77' 6" • 4 ....._ cis WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:44 Concept Mode: Beam View Floor 3: 17' 1050 4 9"-6" iO4 - !US� 1UZ 40 -0 4tl b' 1U1 140 -0 --- - - --- - - -- - - - 1UU 44 -0 y9 43 0 y is b35 • b6 4L -a ya *MdlE=M:INIMMElmi ... 41 n 4U -0 yb' 3y b' 3( U' yU - 34'-0 by . b7 .53 -0 00 -- , -- - - -- - - r - - .- - . -- - - '- -- -- - -- _ - - - - 3L b 00 : ._. = . . 4U -t) 00 - 03 01 • Lb -n tyU..._ ! b9. -'. -_. - - ---- -- L4 -n L3 -b / / b22 . _ ci s , I 40 /L. __ • -b21 . - _..._. :.. -. ri ; b20 : -_ - . .. - - 10 -0 14 b • bu_ - ..b1Fb17. Ub .. 04 .; .. .b34 o 1 H b8: BB1B.B BC CC C C CC CFCCC CC CCCCC C CC CC}CC CD DD D D DD DFCDD CD DDDD D D DD CD'D DDE.E E E E'E E'EFEEEEEiE EEEEEEEFEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0' 1' 2' 3' 4' 5' 6' 7' 8' 91( 1 1: 1: 1 1! 11 1' 1: 112 22: 2 2 344 {44;4 :4.4.4(4'44: 5( 55: 5: 5 5!5t5515:6(66:6:6 77:7'77177' -6" • 4 - (...i (6. WoodWorks®Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:42 Concept Mode: Column View Floor 3: 17' 'IMO' _ . . . 49' -6° • 10.4 - . - . : i - - : _ : . - -- -- - - - : - - - -- 4/-0 'I ill - • - - : _ ._ _ 40-b 1UU - i .. , -.: : - 44'0 y9 43 -b y cs . , . c62 c61 . c15 - c16 , .. . , . .... 4L -b yb 4U - b yb_ Sy -b yS. -.. 3 / - b yL c17 . . .. _ so -b - y 1- 6 : : . . 60 -o 00' - j - -- : -- -- - - - - --- - - --- — -'— - - .— - - --- --- ..)L -0 00 ; . i c18-..:. ' : : : 3U -b OD 0 Ly b' __ ., __ _ . -_ _ _ ____.._ Lb - -0 ' i51 ,Z0" -0 6y c24 : c23 - - J 1 . fb -- : - — fa - - - - - - - - - - - - - — LU b : t4 i - 11. . I0 b Ib b r 1 ! _ _ _ b -b • f U_.. _ _. ._ :: _ - - - - - -- - - 14 -b -- -- -- - bt5 E ._.. 12-o br r - b bb - '1Ub b4 -c66 , c63 0-b o2 • " -. n c756520 c1c6c74 ` b_b . L -b . _r• --- - -- -- ---- -• .-- .-' • - _ - -- -- - -- - - --- .,.. U - 8B113.B BC CC CC CC CICCC CC CCCC CC CC CC \CC CDDDD 0 DD DECDD DD DD•DD D D OD CD(DD DE E E E E EEEFEEEIEEIE EEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 266' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70'. 72' 74' 76' 0 1;11 (1:1fl 32(22,2;2 , 2.`2(2'212(3 {33 :3:3 4(4 4A;4.4!4E4'4t445(5 5 ;5 :5 :6 7.77 -6" • • • 4 --"" (..,,N--'ir WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:38 Concept Mode: Beam View Roof: 25' 1050 , , _ . 49,x,. I U4 40-0 • 103 .. - - - - 4/ -b.. I UL t3.. . _ - _ 40 -b 40 I U'I ... .: n y • b23 : : -:- b24 42 -d Jb . 4 n 0&-b JJ- J 1 -b JU i b t3J 33' - .52 b 01 .. J I -b { 234 - --- - - - - - - - - - -- : -: - -- 225 " -b bJ L -n .. 01 - . 20 -0 t3U _ . 24 b 1 ZS -0 123 _ - -- - - - - /f : . b25', : -: - - - - �u n rb fL nn . . 00 :. .- bb- `.. — b27 b28 b .. n 3 b L b I -b I ... V -b BB\B.B BC CCCCCC CfCCC CC CCCC C C CC CC`CC CD DDD D DD DFDDD DD DDDDD D DD CDID D DEE E E E:EE EtEEEIEEIE E!EEEEEEiEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'9111 '1:1 :1 2 {33 :3:3320 4 {4 4!5(5 5 :5 60717 777 -6" 4._ 6, • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:40 Concept Mode: Column View Roof: 25' _ '0�. .. - - - --- - - ---- - 415 " -b' 4n 43 iuy0 c42 c43: c44 c45 : - -- -.' - - _ _ ._ -... - -- 4Z - b • ' ,.5 -b y1. 3* -b yu 34 -b' bb . : ` = JU -b 0* Ly -0 - - - - - - -- -- --- -- - -- -' - - 20 -0 b3 ; - L! -b .. 0 I 10 -0 !1 . . L1 -b" J 7 c47 .. .. W-0 6 .:. : . - - 1 1J -b IL. Ib -b - - . .. - -- i 0 -b • J U -- ............ . - _ - .. ._ ._ 14 -b 00 .__.: _. . . -' -- - = --- • :. .. .-- "- - ." - 1L -b' bb y-0 b43 _ c51 c50- c52' - c,53:- 0 -b bi .:. --- - - - -- b-b bU 3-0 L ._ b .. : u - b BB \B.B BC CC C C CC C 1CCC CC CCCCC CCC CCtCC CD DDD D DD DIODD CD DD:DD D D DD CDSDD D EE E E EEE'EEEEEEEIE EiEEEEEE1EEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38'40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5678'9i (1 1:1:14 ti (1:1t1 2(2 "222 - 3;33 , 3!3i3"3r.i$4(4 4A:4414E4 5:5:5 6:6:6; 6 :7 -6" /4 — 6_,19 COMPANY PROJECT i WoodWorks® SOFIWARF FOR WOOD DESIGN June 24, 2010 12:42 b1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w61 Dead Partial UD 613.2 613.2 2.50 3.00 plf 2 w 61 Snow Partial UD 795.0 795.0 2.50 3.00 plf . 3 - c61 Dead Point 622 2.50 lbs 4 Snow Point 1192 2.50 lbs 5 j28 Dead Full UDL 47.7 plf 6_j28 Live Full UDL 160.0 plf 7_j33 Dead Full UDL 120.2 plf 8 j33 Live Full UDL 370.0 plf MAXIMUM RE. • Dead 391 1061 Live 795 1615 Total 1186 2676 Bearing: Load Comb #2 #3 Length 0.63 1.43 Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2 -Plys Self- weight of 6.59 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv* = 67 Fv' = 207 fv * /Fv' = 0.32 Bending( +) fb = 331 Fb' = 1138 fb /Fb' = 0.29 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.05 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 2676, V design* = 1237 lbs Bending( +): LC #3 = D +.75(L +S), M = 1178 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 158e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I =impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. "Q - 6 0 COMPANY PROJECT 1 WoodWo SOFTWARE FOR WOOD DESIGN June 24, 2010 12:43 b3 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 j45 Dead Full UDL 17.0 plf 2 j45 Live Full UDL 25.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : A I0 94 Dead 106 106 Live 112 112 Total 218 218 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Glulam- Unbal., West Species, 24F -V4 DF, 3- 118x9" Self- weight of 6.48 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value ,Analysis /Design Shear fv = 10 Fv' = 265 fv /Fv' = 0.04 Bending( +) fb = 140 Fb' = 2400 fb /Fb' = 0.06 Live Defl'n 0.01 = <L/999 0.30 = L/360 0.04 Total Defl'n 0.03 = <L/999 0.45 = L/240 0.06 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - 1.00 - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 218, V design = 182 lbs Bending( +): LC #2 = D +L, M = 491 lbs -ft Deflection: LC #2 = D +L EI= 342e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). COMPANY PROJECT I WoodWorks" SOFTWARE FOR WOOD DESIGN June 24, 2010 12:40 b6 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 Snow Point 647 2.00 lbs 3 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 Dead Point 444 5.00 lbs 6 Snow Point 647 5.00 lbs 7 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9_j25 Dead Full UDL 120.2 plf 10 j25 Live Full UDL 370.0 _ plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • I 0' 61 Dead 1436 1389 Live 1803 1803 Total 3239 3192 Bearing: Load Comb #3 #3 Length 1.73 _ 1.70 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in loads; Lateral support top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:50 b8 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j14 Dead Full UDL 113.7 plf 2 j14 Live Full UDL 350.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : A 0. 6+ Dead 357 357 Live 1050 1050 Total 1407 1407 Bearing: Load Comb #2 #2 Length _ 0.75 0.75 Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 77 Fv' = 180 fv /Fv' = 0.43 Bending( +) fb = 963 Fb' = 1080 fb /Fb' = 0.89 Live Defl'n 0.07 = <L/999 0.20 = L/360 0.33 Total Defl'n 0.10 = L/712 0.30 = L/240 0.34 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 1407, V design = 1123 lbs Bending( +): LC #2 = D +L, M = 2110 lbs -ft Deflection: LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 4_ 613 COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:40 b9 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 j50 Dead Partial UD 113.7 113.7 0.00 1.50 plf 2_j50 Live Partial UD 350.0 350.0 0.00 1.50 plf 3_j14 Dead Partial UD 113.7 113.7 3.00 9.00 plf 4_j14 Live Partial UD 350.0 350.0 3.00 9.00 plf 5_j51 Dead Partial UD 113.7 113.7 1.50 3.00 plf 6_j51 Live Partial UD 350.0 350.0 1.50 3.00 plf 7_j24 Dead Partial UD 120.2 120.2 0.00 3.00 plf 8_j24 Live Partial UD 370.0 370.0 0.00 3.00 plf 9_j25 Dead Partial UD 120.2 120.2 3.00 9.00 plf 10_j25 Live Partial UD 370.0 370.0 3.00 9.00 plf 11j26 Dead Partial UD 120.2 120.2 9.00 12.00 plf 12_j26 Live Partial UD 370.0 370.0 9.00 12.00 plf 13_j52 Dead Partial UD 113.7 113.7 9.00 10.50 plf 14_j52 Live Partial UD 350.0 350.0 9.00 10.50 plf 15_j Dead Partial UD 113.7 113.7 10.50 12.00 plf 16 j53 Live Partial UD 350.0 350.0 10.50 12.00 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 0' 121 Dead 1478 1478 Live 4320 4320 Total 5798 5798 Bearing: Load Comb #2 #2 Length 1.74_ _ 1.74 Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x10 -1/2" Self- weight of 12.39 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 138 Fv' = 265 fv /Fv' = 0.52 Bending( +) fb = 2217 Fb' = 2400 fb /Fb' = 0.92 Live Defl'n 0.38 = L/381 0.40 = L/360 0.94 Total Defl'n 0.57 = L/252 0.60 = L/240 0.95 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 5798, V design = 4953 lbs Bending( +): LC #2 = D +L, M = 17395 lbs -ft Deflection: LC #2 = D +L EI= 890e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C =construction CLd =concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). C )4 COMPANY PROJECT f fl WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:43 b10 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Pat - Start End Start End tern 1 w39 Dead Partial UD 311.0 311.0 0.00 4.50 No 2 w39 Live Partial UD 680.0 680.0 0.00 4.50 No 3_c39 Dead Point 267 2.00 No 4 c39 Live Point 822 2.00 No 5_j32 Dead Partial UD 120.2 120.2 0.00 0.50 No 6_j32 Live Partial UD 370.0 370.0 0.00 0.50 No 7_j33 Dead Partial UD 120.2 120.2 1.00 4.00 No 8 ^ j33 Live Partial UD 370.0 370.0 1.00 4.00 No 9_j34 Dead Partial UD 120.2 120.2 4.00 4.50 No 10j34 Live Partial UD 370.0 370.0 4.00 4.50 No 11 j35 - Dead Partial UD 120.2 120.2 4.50 7.50 No 12_j35 Live Partial UD 370.0 370.0 4.50 7.50 No 13_j36 Dead Partial UD 113.7 113.7 4.50 16.50 No 14_j36 Live Partial UD 350.0 350.0 4.50 16.50 No 15 j37 Dead Partial UD 100.7 100.7 3.00 4.50 No 16_j37 Live Partial UD 310.0 310.0 3.00 4.50 No 17_j47 Dead Partial UD 120.2 120.2 7.50 13.50 No 18_j47 Live Partial UD 370.0 370.0 7.50 13.50 No 19 j48 Dead Partial UD 120.2 120.2 13.50 16.50 No 20_j48 Live Partial UD 370.0 370.0 13.50 16.50 No 21_j49 Dead Partial UD 120.2 120.2 0.50 1.00 No 22 j49 Live Partial UD 370.0 370.0 0.50 1.00 No 23 Dead Point 300 3.00 No 24 Live Point 922 3.00 No MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : la 4-6' 16-61 Dead 452 4067 1180 Live 847 11291 3436 Uplift 12 Total 1300 15358 4616 Bearing: Load Comb #2 #2 #2 Length 0.50* 4.24 1.27 Cb 1.00 _ 1.09 1.00 'Min. bearing length for beams is 1/2" for exterior supports Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x12" Self- weight of 14.16 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 265 fv /Fv' = 0.60 Bending(*) fb = 1074 Fb' = 2400 fb /Fb' = 0.45 Bending( -) fb = 1396 Fb' = 1844 fb /Fb' = 0.76 Live Defl'n 0.13 = <L/999 0.40 = L/360 0.32 Total Defl'n 0.19 = L/740 0.60 = L/240 0.32 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fb'- 1850 1.00 1.00 1.00 0.997 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Ervin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 8357, V design = 6496 lbs Bending( +): LC #2 = D +L, M = 11006 lbs-ft Bending( -): LC #2 = D +L, M = 14310 lbs-ft Deflection: LC #2 = D +L EI= 1328e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. Grades with equal bending capacity in the top and bottom edges of the beam cross- section are recommended for continuous beams. 4. GLULAM: bxd = actual breadth x actual depth. 5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 6. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4 ...... Glc COMPANY PROJECT I WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:44 b13 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 c40 Dead Point 217 5.50 lbs 4 c40 Live Point 668 5.50 lbs 5 Dead Point 518 5.00 lbs 6_c67 Snow Point 778 5.00 lbs 7 Dead Point 573 3.00 lbs 8 Snow Point 942 3.00 lbs 9 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10 _w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12_j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13_j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15 j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16_ j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 18 b 15 Live Point 389 3.50 lbs 19 b 32 Dead Point 225 6.50 lbs 20 Live Point 693 6.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : fir^^ ---- s-r.' is��Q- i re ° - ,yam"' -- �r.�� ..:-..`�'w.a -C . _" - � *si -te ----,.---_ " �= " - "' E0m - ..,.. : """*,,,� ;.s,:'= s - � s . ... t ` . - ...tit r _- - 1 0' 8t Dead 2561 3033 Live 2699 3789 Total 5261 6822 Bearing: Load Comb #3 #3 Length 1.88 2.44 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L/680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC #3 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. • 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. G 4 COMPANY PROJECT di WoodWorks® SOFIWARE FOR WOOD DESIGN June 24, 2010 12:43 b14 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w33 Dead Partial UD 317.7 317.7 9.00 12.00 plf 2 w 33 Live Partial UD 350.0 350.0 9.00 12.00 plf 3 - c19 Dead Point 357 9.00 lbs 4 c19 Live Point 1050 9.00 lbs 5 c20 Dead Point 357 3.00 lbs 6 c20 Live Point 1050 3.00 lbs 7 Dead Partial UD 317.7 317.7 0.00 3.00 pif 8 Live Partial UD 350.0 350.0 0.00 3.00 plf 9 Dead Point 165 10.50 lbs 10_c64 Snow Point 225 10.50 lbs 11 c65 Dead Point 165 1.50 lbs 12 Snow Point 225 1.50 lbs 13336 Dead Full UDL 113.7 plf 14_j36 Live Full UDL 350.0 plf 15_j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 16_j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 17 j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 18 Live Partial UD 25.0 25.0 0.50 1.50 plf 19 Dead Partial UD 17.0 17.0 1.50 10.50 plf 20_j45 Live Partial UD 25.0 25.0 1.50 10.50 plf 21 j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 22 _Live Partial UD 25.0 25.0 _ 10.50 12.00 pif MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : , .....r -•...- �+.. t... --}'- !�u..� "" ...A_ •n.r• -- r te- °a...'.. " ��'� �s T.i +:�= �':", „_ '' _ tea.'.`. •s�.+.T�I'...- ' -..' __, I ma c.._ ,- '� 1� .:u..." _ ms - '- . a . 'gy m - - e 1 0' 121 Dead 2351 2351 Live 4350 4350 Total 6701 6701 Bearing: Load Comb #2 #2 Length 2.39 2.39 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 163 Fv' = 310 fv /Fv' = 0.52 Bending( +) -fb = 1769 Fb' = 2325 fb /Fb' = 0.76 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.43 = L/333 0.60 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 6701, V design = 5314 lbs Bending( +): LC #2 = D +L, M = 16851 lbs -ft Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. /4 ---- LI COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:41 b20 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j30 Dead Full UDL 21.7 plf 2 j30 Live Full UDL 60.0 plf MAXIMUM REA(=TICINS /ihcl and RFORIN( 1 FN(THS /inl • • 1 0 ' 3'-6'( Dead 46 46 Live 105 105 Total 151 151 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x6" Self- weight of 4.57 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 9 Fv' = 180 fv /Fv' = 0.05 Bending( +) fb = 90 Fb' = 1170 fb /Fb' = 0.08 Live Defl'n 0.00 = <L/999 0.12 = L/360 0.02 Total Defl'n 0.00 = <L/999 0.18 = L/240 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 151, V design = 111 lbs Bending( +): LC #2 = D +L, M = 132 lbs -ft Deflection: LC #2 = D +L EI= 78e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:50 b30 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j41 Dead Partial UD 68.0 68.0 2.00 4.00 plf 2_j41 Live Partial UD 100.0 100.0 2.00 4.00 plf 3_j42 Dead Partial UD 72.2 72.2 0.00 2.00 plf 4 j42 Live Partial UD 106.2 106.2 0.00 2.00 plf MAXIMUM REACTIONS llhsl and RFARINr 1 FNGTHS linl A 4 Dead 154 150 Live 209 203 Total 364 353 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x8" Self- weight of 6.03 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 15 Fv' = 180 fv /Fv' = 0.08 Bending( +) fb = 140 Fb' = 1170 fb /Fb' = 0.12 Live Defl'n 0.00 = <L/999 0.13 = L/360 0.03 Total Defl'n 0.01 = <L/999 0.20 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 364, V design = 253 lbs Bending( +): LC #2 = D +L, M = 359 lbs -ft Deflection: LC #2 = D +L EI= 178e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. (f,) . COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR W000 DESIGN June 24, 2010 12:42 b31 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1_j65 Dead Partial UD 47.7 47.7 0.00 4.00 plf 2_j65 Live Partial UD 160.0 160.0 0.00 4.00 plf 3_j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4 j28 Live Partial UD 160.0 160.0 4.50 7.50 plf 5 j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 6_j62 Live Partial UD 160.0 160.0 7.50 11.00 plf 7 j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 8_j63 Live Partial UD 160.0 160.0 11.00 17.00 plf 9_j64 Dead Partial UD 47.7 47.7 17.00 20.00 plf 10_j64 Live Partial UD 160.0 160.0 17.00 20.00 plf 11_j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 12 j66 Live Partial UD 160.0 160.0 4.00 4.50 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : V 20+ Dead 619 619 Live 1600 1600 Total 2219 2219 Bearing: Load Comb #2 # Length 0.67 0.67 Glulam- Unbal., West Species, 24F -V4 DF, 5- 118x12" Self- weight of 14.16 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 49 Fv' = 265 fv /Fv' = 0.18 Bending( +) fb = 1082 Fb' = 2400 fb /Fb' = 0.45 Live Defl'n 0.43 = L /553 0.67 = L/360 0.65 Total Defl'n 0.69 = L /350 1.00 = L/240 0.69 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 2219, V design = 1997 lbs Bending( +): LC #2 = D +L, M = 11095 lbs -ft Deflection: LC #2 = D +L EI= 1328e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4-G 20 COMPANY PROJECT Wo od V\/or k s® June 24, 201013:15 b34 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Sher 7.1 LOADS II31sp21, or Pi() : Load type Distribution Magnitude Vocation Ift) Un1ta Start End_ Star: End • 1 062 Dead Partial 00 613.2 613.2 0.00 2.00 plf 2 862 Snow Partial U0 795.0 7 95.0 0.0D 2.00 plf 3029 Dead Partial UD 617.5 617.5 1.50 11.00 plf 4 029 Snow Partial UD 801.2 201.2 1.50 11.00 plf 5:015 Dead Point 1436 11.00 lbs 6_015 Snow Point 2404 11.00 lbs 016 Dead Point 1339 11.00 lb. 9 116 Snow Point 2404 11.00 lb. 9 064 Dead Partial UD 61 617.5 17.00 19.00 plf 0_064 Snow Partial UD 901.2 801.2 11.00 18.00 plf 11_061 Dead P7155 62 7.00 102 12_061 Snow Point 1192 7.00 lb. 13 062 Dead Point 622 4.00 lbs 14 Snow Point 1192 4.00 lbs 15 Dead Partial UD 613.2 613.2 2.00 4.00 plf 16 '063 Snow Partial UD 795.0 795.0 2.00 1.00 pif 17_065 Dead Partial UD 617.5 617.5 13.00 20.00 plf 19_065 Snow Partial UD 901.2 801.2 18.00 Z0.00 plf 19 .071 Dead Partial UD 613.2 613.2 7.00 7.50 plf 20 w71 Snow Partial UD 795.0 795.0 7.00 7.50 plf 21 364 Dead Partial UD 47.1 47.7 17.00 19.00 plf 22_164 Live Partial UD 160.0 160.0 17.00 19.00 plf 23_329 Dead Partial UD 47.7 47.7 4.50 7.50 plf 24 129 Live Partial UD 160.0 160.0 4.50 7.50 plf . 25162 Dead Partial UD 47.7 47.7 7.50 11.00 plf 26_162 Live Partial U0 160.0 160.0 7.50 11.00 plf 27_149 Dead Partial UD 120.2 120.2 0.00 2.00 plf 23_149 Live 7405141 UD 370.0 310.0 0.00 2.00 plf 29_132 Dead Partial UD 120.2 120.2 3.50 4.00 plf 30_332 Live Partial UD 310.0 370.0 3.50 4.00 plf • 3 31 133 Dead Partial UD 120.2 120.2 4.50 7.50 plf _133 Live Partial VD 370.0 370.0 4.50 7.50 plf 33_134 Dead Partial V0 120.2 120.2 7.50 9.00 plf . 34_114 Live Partial U0 370.0 370.0 7.50 9.00 plf • 35_335 Dead Partial UD 120.2 120.2 9.00 11.00 plf 3 135 Live Partial UD 370.0 310.0 8.00 11.00 plf 37_147 Dead Partial UD 120.2 120.2 11.00 17.00 plf 39 347 Live Partial UD 370.0 370.0 11.00 17.00 plf 39 Dead Partial UD 120.2 120.2 1.00 3.50 plf 40 367 Live Partial UD 3 370.0 2.00 3.50 plf 41_149 Dead Partial U0 120.2 120.2 4.00 1.50 plf 42_141 Live Partial U0 3 370.0 4.00 1.50 plf 43_163 Dead Partial UD 47.7 47.7 11.00 17.00 plf 44_363 Live Partial UD 160.0 160.0 11.00 17.00 plf 45_365 Dead Partial UD 47.7 47.1 18.00 20.00 plf 46_165 Live Partial UD 160.0 160.0 19.00 20.00 plf 166 Dead Partial UD 47.7 47.7 4.00 1.50 plf 49366 Live Partial UD 160.0 160.0 4.00 4.50 plf 49_169 Oaad Partial UD 120.2 120.2 17.00 19.00 plf 50 j99 Live Partial UO 370.0 370.0 17.00 19.00 plf • 51_169 Dead Partial UD 120.2 120.2 18.00 20.00 plf 52_367 Live Partial UD 370.0 370.0 19.00 20.00 plf 53 372 Dead Partial UD 2.00 4.00 plf 54_172 1.17e 64:5101 UD 160.0 160.0 2.00 4.00 plf 55 173 Dead Partial UD 47.7 47. 0.00 2.00 plf 561 Live 70051.1 00 160.0 160.0 0.00 2.00 olf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 3V 1.2 Dead 440x5 127 Live 9956 9979 Total 17361 17305 Rearing: Load Comb 20 83 Lernth 5.21 5.19 Glulam -Bath., West Species, 24F -V8 DF, 5- 118x22 -1/2" S 10 . 4 w 1 9 14 d 29.55 pt Inducted b beds: lateral support tap` Am, batten. 09 supports: Analysis vs. Allowable Stress (psi) and Deflection (in) using NOS20PS: I Criterion Analysla 'Value 0eafan Value Analvsls /Dealon 07 ■ 102 305 f./Iv' - 0.60 1,57 fb - 2392 Fla' - 2604 fb /Fla' a 0.92 L176 De(1'n 0.40. L/595 0.67 - L /360 0.60 Total Oe.. n 0.34 - L/245 1.00 - L/240 0.84 ADDITIONAL DATA: FACTORS: F/E CO 574 Ct CL 0/ cfu Cr Cfrt Notes Cn 11-'4 F1 ' 265 1.15 1.00 1.00 1.00 1.00 1.00 3 Fb'♦ 2400 1.15 1.00 1.00 1.000 7.944 1.00 1.00 1.00 1.00 - 3 Fop' 650 1.00 1.00 - E' 1.9 million 1.00 1.00 - - - - 1.00 - - 3 Erin' 0.65 million 1.00 1.00 - Shear : LC e3 - 0 -5), v 17361, 'V design ■ 13992 1bs 94nd1ng1•1: LC 13 - D..7511.0), M ■ 56199 See -ft Deflection: LC 13 - D..7511,00) ES" 3756.06 lb -in2 Total Deflection - 1.50(Dead Load Deflection) 0 Live Load Deflection. ID.dead Loalve S■sncw 1(4w1nd 1.1rpact c 71315715fon CLd..c,ncentrated) (A11 Lc'e • e listed in the Analysis output) . Load combinatlona: 111 -S00 DESIGN NOTES: 1. Rosso verify that to default deflection Inns are appr1pWe for your app1uibn. 2. GSA= destpn values are Ss' materlab wMorminp to ARC 117 -2001 and m.Madured In eccordanca with ANSOAITC A190.1 -1992 3. GLUTAM: hot • .Nn1 breadth 2 actual depth. • 4. CAC= Beams shall be laterally supported 4x430954 to the pro isions of ND5 Clause 3 3.3. 5. GLULAM: bearing length based an mallard FtpOerabn), Fop(rornp'n). 4-,, COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:49 b35 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1_j21 Dead Partial UD 120.2 120.2 0.50 1.50 plf 2j21 Live Partial UD 370.0 370.0 0.50 1.50 plf 3_j59 Dead Partial UD 120.2 120.2 0.00 0.50 pif 4_j59 Live Partial UD 370.0 370.0 0.00 0.50 plf 5_j60 Dead Partial UD 120.2 120.2 1.50 3.00 plf 6 j60 _Live Partial UD 370.0 370.0 1.50 3.00 plf MAXIMUM RE! r.RAT..., . • I 0 31 Dead 188 188 Live 555 555 Total 743 743 Bearing: Load Comb #2 #2 Length 0.50* _ 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 31 Fv' = 180 fv /Fv' = 0.17 Bending( +) fb = 254 Fb' 1080 fb /Fb' = 0.24 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 743, V design = 444 lbs Bending( +): LC #2 = D +L, M = 557 lbs -ft Deflection:,LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. - 6-13(a. COMPANY PROJECT f fl WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:51 c2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End l bl Dead Axial 1056 (Eccentricity = 0.00 in) 2 Rf.Live Axial 2153 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): D 1 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 2 -Plys Self- weight of 3.41 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 0.00= 0.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 196 Fc' = 980 fc /Fc' = 0.20 Axial Bearing fc = 196 Fc* = 1644 fc /Fc* = 0.12 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.596 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 3236 lbs Kf = 1.00 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. ..,.... COMPANY PROJECT i 11 W oodW orks SOFJWAREFOR WOOD DESIGN June 24, 2010 12:54 c12 Design Check Calculation Sheet Slier 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c24 Dead Axial 1478 (Eccentricity = 0.00 in) 2 c24 Live Axial 4320 (Eccentricity = 0.00 in) 3 b10 Dead Axial 4067 (Eccentricity = 0.00 in) 4 Live Axial 11291 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): • Q' 8• Timber -soft, D.Fir -L, No.1, 6x6" Self- weight of 7.19 pif included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 701 Fc' = 820 fc /Fc' = 0.86 Axial Bearing fc = 701 Fc* = 1000 fc /Fc* = 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1000 1.00 1.00 1.00 0.820 1.000 - - 1.00 1.00 2 Fc* 1000 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 21214 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 4 GeD4,9 COMPANY PROJECT di WoodWorks® SOFTWARE FOP WOOD DESIGN June 24, 2010 12:53 c23 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_b9 Dead Axial 1478 (Eccentricity = 0.00 in) 2 Live Axial 4320 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 9' Lumber Post, Hem -Fir, No.2, 4x6" Self- weight of 3.98 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 9.00= 9.00 (ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 303 Fc' = 379 fc /Fc' = 0.80 Axial Bearing fc = 303 Fc* = 1430 fc /Fc* = 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.265 1.100 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 5834 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 4 - : COMPANY PROJECT D %Voo SOFTWARE FOR WOOD DESIGN June 24, 2010 12:54 c26 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c23 Dead Axial 1478 (Eccentricity = 0.00 in) 2c23 Live Axial 4320 (Eccentricity = 0.00 in) 3 _ b10 Dead Axial 1180 (Eccentricity = 0.00 in) 4 b10 Live Axial _ 3436 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): I C • 0' 8' Timber -soft, Hem -Fir, No.2, 6x6" Self- weight of 6.25 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 346 Fc' = 492 fc /Fc' = 0.70 Axial Bearing fc = 346 Fc* = 575 fc /Fc* = 0.60 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.00 1.00 1.00 0.856 1.000 - - 1.00 1.00 2 Fc* 575 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 10465 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 42. -- 6 2L) COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:52 c29 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_b13 Dead Axial 3033 (Eccentricity = 0.00 in) 2 Rf.Live Axial 5052 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 1 0' 8 Lumber n -ply, Hem -Fir, No.2, 2x6 ", 3 -Plys Self- weight of 5.11 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 328 Fc' = 439 fc /Fc' = 0.75 Axial Bearing fc = 328 Fc* = 1644 fc /Fc* = 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.267 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 8126 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. • 4 0_ COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD D AGN June 24, 2010 12:55 c31 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b13 Dead Axial 2561 (Eccentricity = 0.00 in) 2 Rf.Live Axial 3599 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 1 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x4 ", 3 -Plys Self- weight of 3.25 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 393 Fc' = 443 fc /Fc' = 0.89 Axial Bearing fc = 393 Fc* = 1719 fc /Fc* = 0.23 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.258 1.150 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 6186 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) • (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. -c ,v COMPANY PROJECT i WoodWorks® SOFfWAREFOR WOOD OESIG.N June 24, 2010 12:54 c39 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b21 Dead Axial 267 (Eccentricity = 0.00 in) 2 Live Axial 822 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 0' 9' Lumber n -ply, Hem -Fir, No.2, 2x4 ", 2 -Plys Self- weight of 2.17 pif included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 106 Fc' = 171 fc /Fc' = 0.62 Axial Bearing fc = 106 Fc* = 1495 fc /Fc* = 0.07 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.114 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 1108 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. C l9 COMPANY PROJECT 1 i WoodWorks® SOFTWARE MP WOOD OESIGN June 24, 2010 12:52 c55 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pit ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b30 Dead Axial 154 (Eccentricity = 0.00 in) 2 Live Axial 209 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 1 0' 8' Lumber Post, Hem -Fir, No.2, 4x4" Self- weight of 2.53 pif included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 31 Fc' = 470 fc /Fc' = 0.07 Axial Bearing fc = 31 Fc* = 1495 fc /Fc* = 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.315 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 384 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 0 /49 — C610 BY: Al\k- DATE: 0 - aO 10 JOB No.: C E • , _ 690 OF PROJECT: RE: 'Beams w 1 lthkr4l Rear is aos ❑ o J • Z l W l o.rr\ b - > Watts ,O3 303 O 2 0 beam t3 -, Watts aaal aoa O J a Cr o U Z w O rr a Z beam - 3I.-i -, WcA tts a0 , ao1A ao 1 g 0 U 5 tnce wind Cecu iais » se ismic re d-1 S Z 2 Or\Vk wmcK uu+ t t b c a t c utc� ;.� , 0 U El f ct O U- Z w ❑ Z O O 2 1- a o • 0 r a> r eD ' a -8 • - x 62—( \ COMPANY PROJECT eit WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 13:07 b6 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c44 Dead Point 444 2.00 lbs 2_c44 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 Dead Point 444 5.00 lbs 6 Snow Point 647 5.00 lbs 7 w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9_j25 Dead Full UDL 120.2 plf 10_j25 Live Full UDL 370.0 plf WIND1 Wind Point 800 2.00 lbs WIND2 Wind Point -910 5.00 lbs 'MAXIMUM REACTIONS fibs) and BEARING LENGTHS lint : 0' 61 Dead 1436 1389 Live 2089 1803 Total 3525 3192 Bearing: Load Comb #4 #3 Length 1.88 1.70 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Pays Self- weight of 8.02 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.15 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 4 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 4 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #4 = D +.75(L +S +W) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. • - 6i 32- COMPANY PROJECT i WoodWorks® SOFTWARF FOR WOOD DESIGN June 24, 2010 13:07 b6 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 c44 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 Dead Point 444 5.00 lbs 6_c45 Snow Point 647 5.00 lbs 7 w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9_j25 Dead Full UDL 120.2 plf 10 j25 Live Full UDL 370.0 plf WIND1 Wind Point -800 2.00 lbs WIND2 Wind Point 910 5.00 lbs MAXIMUM REACTIONS Ilhsl and BEARING LENGTHS lint : • 0' • 64 Dead 1436 1389 Live 1803 2172 Total 3239 • 3561 Bearing: Load Comb #3 #4 Length 1.73 1.90 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Pays Self- weight of 8.02 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 13:09 b14 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2 w68 Live Partial UD 350.0 350.0 9.00 10.50 plf 3_c19 Dead Point 357 9.00 lbs 4_c19 Live Point 1050 9.00 lbs 5 c20 Dead Point 357 3.00 lbs 6 Live Point 1050 3.00 lbs 7 w66 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8_w66 Live Partial UD 350.0 350.0 0.00 1.50 plf 9 c64 Dead Point 165 10.50 lbs 10_c64 Snow Point 225 10.50 lbs 11 c65 Dead Point 165 1.50 lbs 12 c65 Snow Point 225 1.50 lbs 13 w67 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14 w67 Live Partial UD 350.0 350.0 1.50 3.00 plf 15w69 Dead Partial UD 317.7 317.7 10.50 12.00 plf 16_w69 Live Partial UD 350.0 350.0 10.50 12.00 plf 17_j36 Dead Full UDL 113.7 plf 18_j36 Live Full UDL 350.0 plf 19_j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20_j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 21 j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22_j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 23_j45 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24 j45 Live Partial UD 25.0 25.0 1.50 3.00 plf 25 j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26_j46 Live Partial UD 25.0 25.0 10.50 12.00 plf 27J70 Dead Partial UD 17.0 17.0 3.00 9.00 plf 28 j70 Live Partial UD 25.0 25.0 3.00 9.00 plf 29_j71 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30 j71 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point 3560 3.00 lbs WIND2 Wind Point -3640 9.00 lbs wind3 Wind Point -3620 0.00 lbs winds Wind Point 3570 12.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : � 1� .:.....-7,-;.„--_...'"----.......- . - ..r-.7-_,....___ s~- - �.u, s a -� sue- = 8 -- a.s.-- •- -•e- -_ _Am., . Via. - 1 `� - �. . - a. ---.;. - m..r1.75. ,1� - �. .. ter. � .. _......a "" I a 121 Dead 2207 2207 Live 4350 4350 Uplift 499 479 Total 6557 6557 Bearing: Load Comb #2 02 Length 2.34 2.34 LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight of 15.31 plf included in loads: • Lateral support top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 310 fv /Fv' = 0.51 Bending( +) fb = 1735 Fb' = 2325 fb /Fb' = 0.75 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.42 = L/343 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 6557, V design = 5170 lbs . Bending( +): LC 02 = D +L, M = 16527 lbs -ft Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L=live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 1 Cal COMPANY PROJECT i WoodWorks® SOFIWARFFOR WOOD DESIGN June 24, 2010 13:09 b14 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2 w68 Live Partial UD 350.0 350.0 9.00 10.50 plf 3_c19 Dead Point 357 9.00 lbs 4_c19 Live Point 1050 9.00 lbs 5_c20 Dead Point 357 3.00 lbs 6 c20 Live Point 1050 3.00 lbs 7 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8 Live Partial UD 350.0 350.0 0.00 1.50 plf . 9 Dead Point 165 10.50 lbs 10_c64 Snow Point 225 10.50 lbs 11 Dead Point 165 1.50 lbs 12 c65 Snow Point 225 1.50 lbs 13_w67 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14_w67 Live Partial UD 350.0 350.0 1.50 3.00 plf 15_w69 Dead Partial UD 317.7 317.7 10.50 12.00 plf 16w69 Live Partial UD 350.0 350.0 10.50 12.00 plf 17 j36 Dead Full UDL 113.7 plf 18 Live Full UDL 350.0 plf 19 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20 j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 21_144 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 23 j45 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24_j45 Live Partial UD 25.0 25.0 1.50 3.00 plf 25 j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26 146 Live Partial UD 25.0 25.0 10.50 12.00 plf 27 j70 Dead Partial UD 17.0 17.0 3.00 9.00 plf 28_j70 Live Partial UD 25.0 25.0 3.00 9.00 plf 29_j71 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30 j71 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point -3560 3.00 lbs WIND2 Wind Point 3640 9.00 lbs wind3 Wind Point 3620 0.00 lbs wind5 Wind Point -3570 12.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : - - -F '� -.. _ .' - -- e rr - :? 7 ma y �� ..o +ar.._.. .,*�� •_ °'....., s .'w' v . _.. fi r.► - r a- - --r - � -i: :. `�4-__- --, • r.- .w --'R^- '_ .. - -.�.i► _..•+^ ,rum-•- -�-.^- % I 121 Dead 2207 2207 Live 4826 4811 Total 7033 7018 Bearing: Load Comb #4 #4 Length 2.51 2.51 LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 310 fv /Fv' = 0.51 Bending( +) fb = 1735 Fb' = 2325 fb /Fb' = 0.75 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.42 = L/343 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 600 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Frain' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 6557, V design = 5170 lbs • Bending( +): LC 42 = D +L, M = 16527 lbs -ft Deflection: LC 02 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer: 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 4 - G 3C- COMPANY PROJECT di WoodWorks® ! SOFTWARE FOR WOOD DESIGN June 24, 2010 13:11 b13 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS( Ibs, pst, or pH ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2_w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 c40 Dead Point 217 5.50 lbs 4 c40 Live Point 668 5.50 lbs 5_c67 Dead Point 518 5.00 lbs 6_c67 Snow Point 778 5.00 lbs 7 c68 Dead Point 573 3.00 lbs 8 Snow Point 942 3.00 lbs 9 Dead Partial UD 593.7 593.7 5.00 8.00 plf 1 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11_j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12 j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13 j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14_j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15_j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16 j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 Dead Point 126 3.50 lbs 18 Live Point 389 3.50 lbs 19 b32 Dead Point 225 6.50 lbs 20 b32 Live Point 693 6.50 lbs W1 Wind Point 6590 0.00 lbs W2 Wind Point -6590 3.00 lbs W3 Wind Point 6590 5.00 lbs W4 Wind Point -6590 8.00 lbs MAXIMUM R ACTIONS (Ihs) and BEARING LENGTHS (Inl a . - - ,az..-.4 -T1 Y � , --,- .�. ate+ - �" - _,, -r te "27r_ �•' -3'+.. _ !M.. + r• 'ecw - ?� .e^ .1� � +0... - '° ��° r��r„•� - -, .t - '� s�.atr „,v, r.`�...� - ..�_-�q�1W '�.1� '"+±jQ.. - -tea 'ecY.. r �.� t . . s .rs. _ `�l . - .= a- .' �aaa.'/ == 'slur• .�. =_ 2 -Sim -i -z s am_ --,,,- -- +te-" - ' j - - e ' -- " - ---, ■,- -- L - , -sJr ^+ '�` _ .7 : "- -_ � ..4 1 0' 81 Dead 2561 3033 Live 6406 3789 Uplift 3098 Total 8968 • 6822 Bearing: Load Comb 84 83 Length 3.20 2.44 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' - 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L /680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC 83 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC 83 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC 93 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. • . 4 - C.7(42 COMPANY PROJECT 1 WoodWorks SOFTWARE FOR WOOD OESIGN June 24, 201013:11 b13 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ((bs, pst, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2_w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3_c40 Dead Point 217 5.50 lbs 4 c40 Live Point 668 5.50 lbs 5 c67 Dead Point 518 5.00 lbs 6 c67 Snow Point 778 5.00 lbs 7 Dead Point 573 3.00 lbs 8 c68 Snow Point 942 3.00 lbs 9 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10_w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12 Live Partial UD 310.0 310.0 6.50 8.00 plf 13 j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14_j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15_j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16 j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 Dead Point 126 3.50 lbs 18 Live Point 389 3.50 lbs 19 Dead Point 225 6.50 lbs 20 b32 Live Point 693 6.50 lbs W1 Wind Point -6590 0.00 lbs W2 Wind Point 6590 3.00 lbs W3 Wind Point -6590 5.00 lbs W4 Wind Point 6590 8.00 lbs MAXIMUM REACTI(1NS llhal and BFARING LFNGTHS (in) : = :... - e " - - s.::x= - =s ue - ' ° '` 3*mr. - -cam._ - - ,..".r - - s - - w. -- ,y ... - ,„_.. `ar a '-'=`� '� • _ - - �--'". " . . �r.. r.� .wwm�� it s -" ..v, .s -= 'r .r.,r - _ �� -_ ,..,_"�7�.!o"L ..� � �z.ra-s�os : ^�.'r - -.� _ � 're,°'.+c' .. � I (r 81 Dead 2561 3033 Live 2699 7496 Uplift 3381 Total 5261 10529 Bearing: Load Comb #3 #4 Length 1.88 _ 3.76 LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L /680 0.40 = L /240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC 03 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC 03 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 4 - (.-_-)-3--- COMPANY PROJECT 1 Wood \A'o r k s® June 24.20101119 034 LC1 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Stec 7.1 LOADS (lb;p4I.or pif) l Load T7pe D1etrlbutlon Magnitude Loudon [ft] Unita Start End Start End l_062 Dead Partial U0 613.2 613.2 0.00 2.00 plf 3 062 Snow Partial UD 795.0 795.0 0.00 2.00 plf 7 0 3 29 Dead Partial VD 617.5 611.5 7.50 10 11.00 plf 4 029 Snow Partial VD 901.2 901.2 7.70 11.00 plf 5 c25 Dead Point 1436 11.00 lbe 6_.15 - Point 2404 11.00 lb. c16 Dead Point 1389 17.00 lba 9 016 Snow Point 2404 17.00 lba 3 064 Dead Partial UD 61 611.5 17.00 18.00 plf IO_064 Show Partial UD 901.2 901.2 17.00 19.00 plf 11 761 Dead Point 622 7.00 lb. 12 Sncw Point 1192 7.00 lb8 13:062 Dead Point 622 4.00 108 14062 Snow Point 1192 4.00 lb. 15863 Dead Partial UD 613.2 613.2 2.00 4.00 plf 16063 Snow Partial U0 735.0 795.0 2.00 4.00 plf 17_w65 Dead Partial UO 61 611.5 15.00 20.00 plf 8 19 65 Snow Partial U0 901.2 601.2 15.00 20.00 pit 19 Dead Partial UD 613.2 613.2 7.00 7.50 plf 20:w71 0000 Partial UD 795.0 735.0 7.00 7 .50 plf 21_164 Dead Partial UD 47. 47.7 17.00 15.00 plf 22_164 Live Partial UD 160.0 160.0 17.00 19.00 plf 23729 Dead Partial UD 47.7 47.7 4.50 7.50 plf 24_029 Live Partial U0 160.0 160.0 4.53 7.50 pit 25_162 Dead Parti.1 UO 47.7 47.7 7.50 11.00 plf 16_162 Live Partial UD 160.0 160.0 7.52 11.00 plf 27_149 Dead Partial UD 120.2 120.2 0.03 2.00 pit 29_148 Livo Partial U0 310.0 370.0 0.03 2.00 plf 29_132 Dyad Partial UD 120.2 120.2 3.5) 4.00 pit JD73 Live Partial UD 370.0 3 3.50 1.00 pif 317]3 Dead Partial UD 120.2 120.2 4.50 7.50 plf 22_133 Live partial 1 UD 370.0 370.0 4.50 7.50 plf 23134 Dead Partial 00 120.2 120.2 7.50 9.00 plf 34_134 Live Partial UD 310.0 370.0 7.50 9.00 pit 35_135 Deal Partial U0 120.2 120.2 9.00 11.00 p11 26_135 Live Partial UD 370.0 310.0 9.00 11.00 p1 27_147 Deal Partial UD 120.2 120.2 11.00 17.00 plf 28_147 Live Partial 0D 3 370.0 11.00 17.00 plf 39_167 067 Dead Partial U0 120.2 120.2 2.00 3.50 plf 40 12 167 Live Partial U0 370.0 310.0 2.00 3.50 plf 41 043 Dead Partial UD 120.2 120.2 4.00 4.50 plf 42 149 Live Partial UD 370.0 370.0 4.00 4.50 plf 43_163 Deal Partial UD 41.1 47.7 11.00 17.00 plf 44_163 Live Partial UD 160.0 160.0 11.00 17.00 plf 45_165 Dead Partial UD 47.7 47.7 19.00 20.00 plf 46_165 Live Partial UD 160.0 160.0 19.00 20.00 plf 47_766 Dead Partial U0 47.7 47.7 4.00 4.50 plf 48_166 Live Partial 00 160.0 160.0 4.00 4.50 plf 49_162 Dead Partial 00 120.2 120.2 17.00 19.00 plf 50_168 Live Partial UD 370.0 370.0 17.00 18.00 plf 51_169 Dead Partial 0D 120.2 120.2 19.00 20.00 plf 52_069 Live 2a2tf41 UD 370.0 310.0 16.00 20.00 plf 53_112 Dead Partial U0 47.7 47.7 2.00 4.00 plf 54 312 Live Partial UD 160.0 160.0 2.00 4.00 plf 55 173 Daad Partial UD 41.7 47.1 0.00 2.00 plf 56_1 Live Partial UD 160.0 160.0 0.0C 2.00 plf WI Hind Point 5950 0.00 164 02 06100 50100 -5850 4.00 104 M3 wind Point 5950 11.00 10a 84 Mind Point -5550 17.00 103 MS Mind Point 5950 20.00 1b. MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • • : 1 4 6 Dead 1 2105 'Al27 Live 12150 12172 Total 19555 19499 Basing: Load Comb /4 44 Lenxth 5.67 5.05 GIuIam -Bat., West Species, 24F -V8 DF, 5- 118x22.1/2" Self -weight x128.55 plf Included 04 bads; Warm nlpPVt top` Ad. Worn* d 6uppl4te; Analysis vs. Allowable Stress (psi) and Deflection (in) 5.1009 Criterion AnalVala Value 0oal0n Value Analvala /Daai0n . Shear lv - 182 Po' - 305 1v /F0' - 0.60 5endin4(41 16 - 2392 Mb' ■ 2604 I0 /90' - 0.92 Live Den 0.40 ■ L /595 0.67 - 1/760 0.60 4 Total De11'n 0.94 - L/295 1.00 - L /240 0.94 ADDITIONAL DATA: • FACTORS: F/5 CD CM C: CL C! Cfu Cr ^_frt Mot. Cn LC1 Po' 205 1.15 1.00 1.00 1.00 1.00 1.00 3 F0'. 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 Fop' 650 1.00 1.00 - - E• 1.8 01111on 1.00 1.00 - - 5010' 0.95 million 1.00 1.00 - Sheer : LC 13 - 04.751E V - 11361, V d.algn ■ 13962 lta 5eoding141: LC 13 - 04.7511 2 - 3 6109 lta -1t 0801e0010n: LC 43 ■ 0 EI- 8756006 10 -102 Total Dofl.Oticn ■ 1.50(0=,3 Load Deflection) 4 Live Load 0011+0ticn. (D■dead 1 -11,4 ...snow 0-14ind I■1rpaot C- 0,0400uctfon 014- conrentratedl ( 0 1 1 1 , ' . . : . listed In the Analysis output) Load combination.: ICC -100 DESIGN NOTES: 1. Please wally 0hal the defau5 dehdbn knits are appropriate fa your appBCaibn. 2. Grmen design =aloes are for materials conlormF:g to AITC 117.2001 end manufactured o4 orcadace with ANSVAITC A190.1 -1992 3. GLULAM: bed = actual 0200015 a actual depth. • 4. Ghdam Beams shall bebleral4 supported ermording to the provhbnsof NCO Clause 3.3.3. 5. GLULAM: beano length based on swain of Fep(Iaruion). Fep(ta2W'n). 4 - 6,,32) COMPANY PROJECT i Woodworks June 24, 201 °1118 b30LC2 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Sur 7.1 LOADS WS Psi, 01 Pt) ' Load Type Distribution Magnitude Location (ft) Unite Start End Start End 1_962 Dead Partial U0 613.2 613.2 0.00 2.00 pif 962 Snow Partial UD 195.0 795.0 0.00 2.00 pif 3 929 Dead Partial U0 617.5 617.5 7.50 11.00 pif 4_929 Snow Partial UD 901.2 601.2 7.50 11.00 pif 5_115 Dead Paint 1436 11.00 lbs 6_715 Sr.' Point 2404 11.00 lbs 716 Dead Point 1399 17.00 lbs 6016 Snow Pint 2404 17.00 Its 9964 Dead Partial UD 617.5 617.5 17.00 16.00 plf 0 : 964 Snow Partial UD 901.2 601.2 17.00 19.00 pif 1 1 161 Daad Point 622 7.00 Ins 12 761 Snow Point 1192 7.00 lbs 13 762 Daad Point 622 4.00 1bs 14 762 Snow Point 1192 4.00 lbs 15963 Dead Partial UD 613.2 613.2 2.00 4.00 pif 16_763 Partial U0 795.0 795.0 2.00 4.00 pif 17965 Dead Partial U0 61 617.5 19.00 20.00 pif 16965 Snow Partial U0 901.2 001.2 10.00 20.00 p11 19 911 Dead Partial UD 613.2 613.2 7.00 7.50 pif 20:971 Snow Partial UD 795.0 795.0 7.00 7.50 plf 21_364 Dead Partial UD 47.7 47.7 17.00 19.00 pif 22_364 Live Partial UD 160.0 160.0 11.00 18.00 p1f 23_128 Dead Partial UD 47.7 47.7 4.50 7.50 p11 24_129 Live Partial UD 160.0 160.0 4.50 7.50 pit 25_162 Daad Partial UD 47.7 47.7 7.50 11.00 pif 26_362 LSva Partial UD 160.0 160.0 7.50 11.00 pif 27_349 Dead Partial UD 120.2 120.2 0.00 2.00 pif 29_340 Live Partial UD 370.0 370.0 0.00 2.00 p11 29 332 Dyad Partial U° 120.2 120.2 3.50 4.00 plf 30_332 Live Partial UD 370.0 370.0 3.50 4.00 pif 31 133 Dead Partial UD 120.2 120.2 4.50 7.50 pit 32133 Live Partial UD 370.0 370.0 4.50 7.50 pit 33 _ 334 Dyad Partial 00 120.2 120.2 7.50 9.00 pif 34_134 Live Partial UD 3 370.0 7.50 9.00 plf 35_135 Dead Partial UD 120.2 120.2 9.00 11.00 pif 36_135 Live Partial UD 370.0 370.0 9.00 11.00 pif 37_347 Dead Partial UD 120.2 120.2 11.00 17.00 pif 38_147 Live Partial UD 370.0 370.0 11.00 17.00 plf 39_367 Daad Partial UD 120.2 120.2 2.00 3.50 pif 40_367 Live Partial UD 370.0 370.0 2.00 3.50 Of 41_349 Daad Partial UD 120.2 120.2 4.00 4.50 p12 2_349 Liva Partial UD 370.0 370.0 4.00 4.50 pif 43_163 Daad Partial UD 47.7 47.7 11.00 17.00 plf 44_363 Ova Partial U0 160.0 160.0 11.00 17.00 pif 45_165 Dead Partial UD 47.7 47.7 19.00 20.00 plf 46_365 Live Partial UD 160.0 160.0 18.00 20.00 pif 47_166 Dead Partial UD 47.1 47.7 4.00 4.50 pif 46_166 Llva Partial UD 160.0 160.0 4.00 4.50 p11 49_16: Dead Partial UD 120.2 120.2 17.00 19.00 pif 50_165 Live Partial UD 370.0 370.0 17.00 19.00 pif 51_369 Dead Partial U0 1:0.2 120.2 19.00 20.00 pif 52_369 Live Partial UD 370.0 310.0 19.00 20.00 pif 53_3/2 Dead Partial UD 47.7 47.7 2.00 4.00 of 54_372 Live Partial UD 160.0 160.0 2.00 4.00 plf 55 _173 [bad Partial UD 47.7 47.7 0.00 2.00 p11 56_)73 Live 0.05140 UD 160.0 060.0 0.00 2.00 cif N1 Wind Point -5650 0.00 014 Wind Point 5050 4.00 lbs N3 Wind Point -5850 11.00 1b4 N4 Mind Point 5950 17.00 lbs N5 Wind Paint -5950 • 20.00 lba MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : Dead )305 "+ Live 9956 9976 Total 17361 17305 Bearing: Load Comb 43 13 Lenoth 5.21 • Glulam -Bala, West Species, 24F -V8 DF, 5- 118x22 -112" 5ee.ad4d of 25.55 pif Included In loads; Lem' a44pp,rt lop. M, b0CVns at supports; Analysis vs. Allowable Stress (psi) and Deflection (In) using Nos 2005: crit.rlln Analysis Value Dealoe Value Analvela /0.e1an Shear 192 Fv' ■ 305 1v /F0' - 0.60 Bending/ -1 fb - 23 Fb' - 2604 Lb /Fb' - 0.92 Live 0.11'n 0.41 ■ L /591 0.61 . L /360 0.61 total 0,31'n 0.94. L/284 1.00 - L /240 0.94 ADDITIONAL DATA: FACTORS: F/5 CD CM Ct CL C/ Cfu Cr Cfrt Motes Cn K1 9v' 265 1.15 1.00 1.00 1.00 1.03 1.00 3 90'' 2400 1.15 1.00 1.00 1.000 0.944 0.00 0.00 0.00 1.00 - 3 Fop' 650 1.00 1.00 - - E' 1.9 million 1.00 1.00 - - - - 1.00 - - 4 E0in' 0.95 million 1.00 1.00 - - - - 1.00 - - Shear : LC 43 - D V 17361, V design - 13562 004 0.7717g14): LC 43 . D M ■ 96189 lbs-ft Deflection: LC i4 - 04.75)2.5441 El- 8756.06 lb -in2 Total Deflection . 1.50(04.1 Wad Deflection) 4 Live Load 0,11.211 ;n. (o-dead L.11ve 5 ■ano9 ..wind 3-icpact C■rnatructi75 CL]■ccncent,.tell (All LC'4 are listed in the Analy.14 output) Load combinations: ICC -120 DESIGN NOTES: 1. Please malty Out to default deescean RNs are appwprlsle for your application. 2. GBbm design values are for materials oWaming to ARC 117.2001 and 1+4.029 .4224 in accordance wen ANS0AITC A190.1.1992 3. GLULAM: 5+4 82550/ breadth z actual depth. 4. Gb111 Beans Mal be Laterally 339609484 ,aaArq to the provisions ,d NOS Claw 33.3. 5. GLULAM: bearing length baud on smaller of 90909 sion), Fep(comp'n). COMPANY PROJECT f fl Woo d wo r k s ® .Ana24,201013 20 034(02 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Sze 7.1 LOADS ( l•, ps•. ' Load Type - Distribution Magnitude Location [05] Unita Start End Start End 1 662 Dead Partial U0 613.2 613.2 0.00 2.00 plf 2 Snow Partial UD 795.0 795.0 0.00 2.00 plf 3 629 Dead Partial UD 617.5 617.5 7.50 11.00 plf 4 w29 Snow Partial UD 801.2 801.2 7.50 11.00 plf 5 c15 Dead Point 1436 11.00 lbs 6_015 Snow Point 2104 11.00 lbs 7 c16 Dead Point 1389 17.00 054 8 Snob Point 2104 17.00 lb. 9464 Dead Partial UD 617.5 617.5 17.00 18.00 plf 10 064 Sncw Partial UD 901.2 901.2 17.00 19.00 plf 11 c61 Dead Point 622 7.00 Dos 12 Snow Point 1192 7.00 lbs 13 Dead Point 622 4.00 lbs 14 Snow Point 1192 1.00 Lb. 10 Dead Partial UD 613.2 613.2 2.00 4.00 plf 16063 Snow Partial UD 795.0 795.0 2.00 1.00 plf 17 665 Dead Partial OD 617.5 617.5 19.00 20.00 plf 16065 Snow Partial UD 901.2 901.2 18.00 20.00 plf 19471 Dead Partial UD 613.2 613.2 7.00 7.50 plf 20471 Snow Partial UD 795.0 795.0 0.00 7.50 plf 23 ]64 Dead Partial ID 47.1 47.7 17.00 19.00 plf 22_164 L1va Partial UD 160.0 160.0 17.00 18.00 plf 23_129 Daad Partial UD 47.7 47.7 4.50 7.50 plf 1428 Live Partial 10 160.0 160.0 4.50 7.50 plf 25_162 Dead Partial UD 47.7 47.7 7.50 11.00 plf 26_162 Live Partial UD 160.0 160.0 1.50 11.00 plf 27_140 Dead Partial VD 120.2 120.2 0.00 2.00 plf 28_349 Live Partial UD 370.0 370.0 0.0D 2.00 plf 29_332 Dead Partial UD 120.2 120.2 3.50 1.00 plf 30_132 Live Partial UD 370.0 370.0 3.50 1.00 plf 31_333 Dead 24:tial UD 120.2 120.2 4.50 7 .50 plf 92_133 0.10a 2405101 UD 370.0 370.0 4.57 7 .50 pit 33_131 Dead Partial UD 120.2 120.2 7.50 8.00 pi/ ]1_J ]1 Live Partial UD 370.0 370.0 7.52 8.00 plf 35 135 Dead Partial ID 120.2 120.2 9.00 11.00 plf 36_j35 Live Partial UD 370.0 370.0 9.00 11.00 plf 07-547 Dead Partial U0 120.2 120.2 11.00 17.00 plf 38_111 Live Partial UD 310.0 370.0 11.00 17.00 p10 39_167 Dead Partial U0 120.2 120.2 2.00 3.50 plf 40_167 Live Partial UD 370.0 370.0 2.00 3.50 plf 41_149 Dead Partial UD 120.2 120.2 1.00 4.50 plf 42_)49 Live Partial UD 370.0 370.0 4.00 4.50 plf 43_j63 Dead Partial 0.'D 17.7 47.7 11.00 17.00 plf 44_263 Live Partial UD 160.0 160.0 11.00 17.00 Of 45_265 Dead Partial UD 19.00 20.00 plf 46_265 Live Partial U0 160.0 160.0 16.00 20.00 plf 47_166 Dead Partial UD 47.7 47.7 4.00 4.50 010 49_166 Live Partial UD 160.0 160.0 4.00 4.50 plf 49_169 Dead Partial UD 120.2 120.2 17.00 19.00 plf 50_169 1.17e 66051a1 UD 370.0 370.0 17.00 16.00 pif 51 169 Dead Partial UD 120.2 120.2 19.00 20.00 plf 52 Live Partial UD 370.0 370.0 10.00 20.00 plf 5] 172 Doad Partial UD 17.7 47.7 2.00 4.00 plf . 54_172 Live Partial UD 160.0 160.0 2.00 4.00 plf 55_173 Dead Partial UD 47.7 17.7 0.00 2.00 plf 56 173 Live Partial UD 160.0 160.0 0.00 2.00 plf N1 Mind Point -5950 0.00 lbs 112 Wind Point 5850 4.00 lb. A3 Wind Point -5850 11.00 lbs 64 Mind Point 5850 17.00 lbs 55 501n7 00105 -5 20.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • 4 Daad 956 9 929 Liva 9956 9305 Total 11363 11305 Bearing: Wad Cccb 13 63 Len7:h 5.21 5.19 Glulam -BaI., West Species, 24F -V8 DF, 5- 118x22 -112" Onfoong09 Of 26.55 or 4¢toded to bads: Intend support tope eA. 566505• sown* Analysis vs. Allowable Stress (psi) and Deflection (in) .15598a09 . C riterion Ane1' /Pis Value Darien Value Analvala /Desion Shea[ 192 Fv . 305 0':20, . 0.60 Bending(*) 1b . 2392 Fb' . 2601 1b /Fb' . 0.92 Live Dell'n 0.41 ■ L/591 0.67 . 1/360 0.61 Total Dofl'n 0.91 ■ L/294 1.00 w 0./240 0.94 ADDITIONAL DATA: FACf010: F/E CD CM Ct CL 00 Clu Cr C1rt Wotan Cn LC. 17' 265 1.15 1.00 1.00 1.00 1.00 1.00 3 90'. 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 Fry' 650 1.00 1.00 - - - - 1.00 - - E' 1.9 million 1.00 1.00 - - - - 1.00 - - 501n' 0.05 million 1.00 1.00 - Shea[ : LC 73 . 01.75I1.151, V ■ 17361, V design ■ 13992 1bn Beod1ng111: LC 13 . 01.7511.191, 14 . 06199 ]5n -Lt Deflection: LC 14 • 01.751=•5.01 EIe 9756606 lb -in2 Total Deflection . 1.50(0ead Load Deflection, • Live load Deflection. (■dead L.11ve S ■sncv Rewind Ie10pact C- ccnatructlon CIA000nrentrated) (A11 LC'4 are listed in the Mslysis output, Load combinations. ICC -IBC DESIGN NOTES: 1. Please verify OA Um def.W deflacti0n Ponds are appropriate for you 6pp11oa6bn. 2. GSdsm design vetoes are b =OMR, conforrrdrg to AITC 117.2001 and mandac(uad In accordance MO AN5VAITC A193.1.1992 3. GLULAM: Cad a anal beadto r.dud depth. 4. GU= Beane dull be latency supported according to Oar preASbns of NDS Claus 3.3.3. 5. OLUTAM: bearing length based on mailer of Fcp(larelm), Fep(ctmpo). 141 - 0 64 4 COMPANY PROJECT i WoodWorks® SOF MARFwR woos DESIGN June 24, 2010 13:23 b34 LC1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or p11 ) Load Type Distribution Magnitude Location [ft] Units Start End Start End _ 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 3 w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5 c15 Dead Point 1436 11.00 lbs 7 c16 Dead Point 1389 17.00 lbs 9 Dead Partial UD 617.5 617.5 17.00 18.00 plf 11 c61 Dead Point 622 7.00 lbs 13 Dead Point 622 4.00 lbs 15 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17 w65 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19 Dead Partial UD 613.2 613.2 7.00 7.50 plf 21_j64 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25 j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 27 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31 Dead Partial UD 120.2 120.2 4.50 7.50 plf 33 j34 Dead Partial UD 120.2 120.2 7.50 8.00 plf 35 j35 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41 j49 Dead Partial UD 120.2 120.2 4.00 4.50 plf 43 j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45_j65 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47_j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49j68 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51_169 Dead Partial UD 120.2 120.2 18.00 20.00 plf 53 j72 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55 Dead Partial UD 47.7 47.7 0.00 2.00 plf W1 Wind Point 5850 0.00 • lbs W2 Wind Point -5850 4.00 lbs W3 Wind Point 5850 11.00 lbs W4 Wind Point -5850 17.00 lbs W5 Wind Point 5850 20.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : I a 201 Dead 7189 6822 Live 156 302 Total 7238 7018 Bearing: Load Comb 02 #2 Length 2.17 2.11 Glulam -Bal., West Species, 24F -V8 DF, 5- 118x22 -1/2" Self- weight of 26.55 plf included in loads; Lateral support top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 74 Fv' = 238 fv /Fv' = 0.31 Bending( +) fb = 950 Fb' = 2038 fb /Fb' = 0.47 Live Defl'n negligible . Total Defl'n 0.41 = L /585 1.00 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC 01 = D only, V = 7189, V design = 5674 lbs . Bending( +): LC 01 = D only, M = 34217 lbs -ft Deflection: LC 01 = D only EI= 8756e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4 -Ci 4 COMPANY PROJECT WoodWorks® SOFTWARE FOR W000 DESIGN June 24, 2010 13:22 b34 LC2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 3 w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5 c15 Dead Point 1436 11.00 lbs 7 c16 Dead Point 1389 17.00 lbs 9 w64 Dead Partial UD 617.5 617.5 17.00 18.00 plf • 11 c61 Dead Point 622 7.00 lbs 13 Dead Point 622 4.00 lbs 15 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19 Dead Partial UD 613.2 613.2 7.00 7.50 plf 21_j64 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23_j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25_j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 27j48 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29_j32 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31_j33 Dead Partial UD 120.2 120.2 4.50 7.50 plf 33_j34 Dead Partial UD 120.2 120.2 7.50 8.00 plf 35j35 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39 j67 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41 j49 Dead Partial UD 120.2 120.2 4.00 4.50 plf 43_j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45_j65 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49_j68 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51_j69 Dead Partial UD 120.2 120.2 18.00 20.00 plf 53 j72 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55_j73 Dead Partial UD 47.7 47.7 0.00 2.00 plf . W1 Wind Point -5850 0.00 lbs W2 Wind Point 5850 4.00 lbs W3 Wind Point -5850 11.00 lbs W4 Wind Point 5850 17.00 lbs W5 Wind Point -5850 20.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : II A Ia 201 Dead 7189 6822 Live Total 7189 6822 Bearing: Load Comb 81 81 Length _ 2.16 2.05 Glulam -Bal., West Species, 24F -V8 DF, 5- 118x22 -1/2" Self- weight of 26.55 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 74 Fv' = 238 fv /Fv' = 0.31 Bending( +) fb = 950 Fb' = 2038 fb /Fb' = 0.47 Live Defl'n negligible Total Defl'n 0.41 = L /585 1.00 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LCH Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb`+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 Fcp' 650 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC 81 = D only, V = 7189, V design = 5674 lbs Bending( +): LC 81 = D only, M = 34217 lbs -ft Deflection: LC 81 = D only EI= 8756e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) . Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glu]am Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4 - Ci 2- Harper Project: :• Houf Peterson Client: Job # Righellis Inc. J( ENGINEERS • ,CANNERS Designer: Date: Pg. # LANOSCAPE ARCNIrECTS•SURVEYORS W • = 10 lb •8•ft -20•ft Wdl = 1600-lb Deck 0 ft Seismic Forces Site Class =D Design Catagory =D W p := Wd I ' 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S := • 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F := ▪ 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F v • = 1.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S : = F S S mi := F v -S i 2 • S ms S ds := Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a := 1.0 Rp := 2.5 (Table 13.5 -1, ASCE 7 -05) 4a • ( z l FP := p I 1 + 2 RP J Wp EQU. 13.3 -1 Fpmax 1.6- Sd EQU. 13.3 -2 F pmin .3- S ds .I p -W p EQU. 13.3 -3 F if(F > Fp Fp if(F < FpmimFpmin,Fp)) F = 338.5171 -Ib Miniumum Vertical Force 0.2 = 225.6781 -lb Clq Harper Project: Houf Peterson Client: Righellis Inc. Job # ENGINEERS • >LANNERS Designer: Date: Pg. # LANDSCAPE ARCNITECTS•SURVEVCRS Wdl 10- lb 8•ft•20•ft W = 1600.lb ft Seismic Forces Site Class =D Design Catagory =D WP := Wdl 1 P 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S := 0.942. Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F := .1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F := 1.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S : = F S : =F 2 • Sms S := Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a 1.0 R := 2.5 (Table 13.5 -1, ASCE 7 -05) 4a •S- z p ds F := RP 1 + 2 hJ Wp EQU. 13.3 -1 Fpmax 1.6- Sd W EQU. 13.3 -2 Fpmin := •3•Sds•Ip -Wp EQU. 13.3 -3 F := if(F > F pmax , Fpmax, if(F < F pmin , Fpmin, Fp)) F = 338.5171.1b Miniumum Vertical Force 0.2 • S ds• W dl = 225.6781.1b Cl H 0 HP tiarper Houf Peterson COMMUNICATION RECORD Righellis Inc. To 0 FROM El MEMO TO FILE 0 V,I o f Lo:10SCort ANC.t.Ii PHONE NO • PHONE CALL: E MEETING: 11 xJ RI A . • L 01 I / c ° ti AP - —4 1 1 ( I 1 ' t---- ..,. 0 -.-- ()I S •;- 3 6— ,...$) _ (T■ . . —0 ,...0 0 -,-) 07 ' 11 • ( %of 0 -fro ....0 tr, m .......4 # ....w 4* ..t1 6. 1 . er ` __... ....6 —C. . N t_vi ... ....1 ....0 LT) . -4, . i 1 °N. 0 o • S N 's 1 z 0 iv 0. r I "`.. el , 0 By: Coir DATE: f\Th tiff Joe No.: PROJECT: , . RE: D e- Vt AL o o . .. rial Datti.461 — Z LL 0 E ( I La CrInCIN L i j 0 .1i (t : 1) g.- 1.“2 it inai I 0 w , 1 0 z • a w . 3 l' Z • • tAPFAC.11--/ 4,J" z - 0 ' ,. (16 -a, i,(01. * ( boara) 1 i 7Sa‘sr5 _ r i - . A 2 - If" ----- 0 [cox. - _ • IC spacin5 \oe-h.),Je_e n Act.s; V..-, = - 3 4 0 • t! co,cpCt Alj .:: (o w ID 6 I I . g II u0 Ptcridos.1 ..,..- ti,915 .,. . i 'i 1 T . _ •_-_---__ • . • P e U - . 7.)E_S\C—,N3 1 , \) --=.- 1.(7,95 , c)LF- . 1 i • . i i i 1 14 iry-,T•*,01 S EN '5 ' ! 4 - 4 1 ( 2._ i c6 0 ______.—. 4 ----",' ' co I T, • I. (5. = • C T . • 4017 1 • , (") t._ ! C'IrOW t' )7U) tOock . ' 30 D314tii S\\NApscrrN 3D5'14- x'41.22 =4O / - • By: NA) e f . Cpi I ■ Ur\ . DATE • J 0 B No. : - - - • PROJECT: RE: - 1) , e(L Po,,c.,)r Coir ., . DD w - Li z O E -o I- W x 1 1' 0 :j N = ao0 At( 4a" ‘> a , < 0 . ,-. sifoo isiN1 o z . 0 e4 ci. 34," Tr C _, 6400-0‘ki al-woli* 1' a u i U 51trncoOrl Hpu4 2 To f e ‘' 5 ten 0 U 0 M O " x ci w 0 6 0 . Lot I- EL M._ aoo# (40" ) zoo tr > sow qs-11:i d 1 T- C _..-:. Bbob thki -=-- aa8G-x- O(:) -', I+Do4 31 ( o r i 0 k4.- 9 1-■ 0.0 =4 , . Po il Harper . 1 "' HOUfPeterson COMMUNICATION RECORD Righellis Inc. To E FROM 0 MEMO TO FILE E n G In E E p7 PLA,I;:E7$ L A”C•S.:9PE ARCNITEUT.:•SURVEYGIi . i °'- -° PHONE NO.• PHONE CALL: 0 MEETING: O xl "0 m m < - 1C 7d H ft U� ) Il 0 «« �� �� 3;:, 4...1 r rf3 a) s. d • L £ O�► ^ O 0 (b G_ 4 # . ck2 W L 1, 6 V. 0 3.1 at 1 ...(3%." . n c T - cs 4 is , I _ 1 . . 0 . z 0 • narper HOUfPCtC7r.SOII COMMUNICATION RECORD Righellis Inc. TO ❑ FROM ❑ MEMO TO FILE Ep.f • PLA!:::ERS L A::O DlL1PF. oacNiTECrs. suavEraR: PHONE NO.: PHONE CALL: ❑ MEETING: El ..-o -0 CO P.1 k , m R " . . . . . " 3 4 1 NI __, .... ... ,iiiiiii ---f G I NN ..I 7 C 1 1 r t I ,. O m 0 0 r 13 • COMPANY PROJECT 11 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 8, 2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Point 2.50 200 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : lo. 54 Dead Live 100 100 Total 104 104 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams is 1/2" for exterior supports Lumber-soft, Hem-Fir, No.2, 2x6" Self-weight of 1.7 Of induded in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fla = 405 Fb' = 1048 fb/Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.14 ADDITIONAL DATA. FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 ' - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 '1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending(+): LC #2 = L, M = 255 lbs-ft Deflection: LC #2 = L EI = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. ( COMPANY PROJECT 0 I ' 1 i, 1/1/oodWo r ks SOFTWARE FOR WOOD OES(GN June 8, 2009 16:27 Hand Rall2 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Full UDL 50.0 Plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : ---------,- ---- - '''''-- ' --- : 4---.. '-'---::-. ' - 7` - `i' ' ' . ''''''''' ''''`. •' -'''' -" ''' '-'"'-- 4 ": 'I.. --' ' ' ". - - ,-'.- - - V --, - ,---.- ..: ' Iv 10. 54 Dead Live 125 125 Total 129 129 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams is 1/2" for exterior supports Lumber-soft, Hem-Fir, No.2, 2x6" Self-weight of 1.7 plf included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear el, = 19 Fv' = 150 fv/Pv' = 0.13 Bending(+) fb = 256 Pb' = 1048 fb/Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.11 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 129, V design = 106 lbs Bending(+): LC #2 . L, M = 162 lbs-ft Deflection: LC #2 = L El = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 22, 2010 13:57:56 Concept Mode: Reactions� / Base of Structure View Floor 2: 8' t050 ' 1 49' -6 1 U4 . : 40 b.. IU.P - '- . 160017 , : --- - - --- 600 17 ;`. . - - . - _ 4r U4/ 619D t. 619D 40 " -" `J. - ' :: . ; . ; [ - - - - - - - - -. 43 -b' V0 - "_ -- 1193 17'153 2404 L:. _ 2404 L .3V -b :: 4 - ' 625 01059 11439 D" 1394 D • - ' - - - - - oo -b `J3 3 !-b as 315 L: • . .34 -0 00 -- - :- ''- - -- - -: , '358 D =-- -:- - .--- :..'_ - :- ; -- - - - -- - - - - - .- - 3L-b Lib -- -- --: __c . . .-_- -- - - -- -- .. - --- -- - - -- - - - .. - - - ill-b LV -b L .. • -' - - -- - -- - '- - -- - ' -'- -- b' es • : :, . 315L Ll -ci bL Lb -b �yk ? 358 0: b1 100 L , . L' .. . _ - Lo.-0 .. (V 96 D L3 - b ! r 74(847 5611 L 756 L. _ . L ' -b r n 4(452 D 5546 D 25 0 0 I y -b !4 625 : , - _ 16 - 0 r 3 L, .: ' 5 DL I r . - !L • 203 D � - __.. • ' 'Ib - b ! I - 5 D- -- - - - - ... - - - -- 15 -13" by :: :. 17908 L ' ! -- -,'- - - - - - .. . 13 o • b .105 307 D - .- 1 - --. ' - :. - _ -- " -' .`�`� 460 1 " 245 L V -b b4)...1 3 D 50 L u -b t; 74 . nL 599 87 L 87 L 0-0 buy 209 LD 8 D' n963 D _.; 1963 D ': s -- n 154 0 -/u u -:. .7.7 7 , ' t . :. - 11 2363 0 _ .' , .. .. . 1 -b 1 106 u -b EB' B .BBC C 78 Di D D: CC C CC C}CCC CC CCCCC C CC CC1 C D DD D}DDD:DD DD DDD D DD C.D'DD D EE E E E EEEEEEEEiEE+EEEEEE}EEEEZ 0' 2' 4' 6' 8' 10'12'14'16'18'20'22'24'26'28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 6 6' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 '1 :1 :1 :1 f1022:2:2 2243( 33; 33< 3'- 3f3 4;4:4.4,4(4 :5 :6 70 7.7.7 , 7.7(77' -6" T ( -, . • L p 4.......F.-1 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 22, 2010 13:57:37 Concept Mode: Reactions at Base of Structure View Floor 2: 8' 1u3 Cal 600 L 1600E 4f -a Wig RIZ/ .: 619D - 619 D 4n -n • -I LP 7VVa ... - r _ -- -- 44 -b • y 9 : : ` 43 -b f .:: .. 4 - b V� : 13274 L_ - 3304 L: 4 sa b 4 . 7153 D ; . -- - 7072 D .. . , - _ ors -a V __. ._ -_ .-- --- .. _ 30 -0 ua 315E - Ss-0 025...- 358 D _ 31 n 25 .. ' - 31 -n . 253 .. : : _ 315 L _ : .- 1/ -0 251 .- _ 358 D' - ... _ .. - .. _- - - Lb -b 01 100 L L0.-0 . • uu - 96 D - • 14 -b : : : -. i _ : :. : . : io -� - - - 74(84 611 L . .�f56 L . zu n r o MI452D..5546D r. 5LD w:-13 i4 625L, 5 . ira o • rL :203 - 10 -0 -- f U 14 -0 a� 105 ,-908 L iL. • 307 D : ar - 46D`� 11-43 eb 245 L 10 -0 ,- . 3D 50L.. u a f " -a nt 74 D a . a .. • 01 599 2587 L , . ' 4 587 " L:. - . - b -b nun 209 LD8 D: 1963 D 1963 D _ s-0 154 D .. . : eft; u L -b ' - t -- -.•� A LL : 725 L22.1 9 D... - ''�1 :78 D7 DO: 617 D' D v -a • BBtBB . BC.CCCCCCCICCC CC CCCC CC CCCCICC C D.DDD D DDDtDDD DD DD DD D D DD CD'DD DE E E E EEE EIEEEIEEIEE +EEEEEE(EEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22'24' 26' 28' 30' 32' 34' 36' 38' 40'42' 44' 46' 48' 50' 52' 54' 56' 58'60'62'64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 - 1 :1 :1‘1 !1 (1'1 (1 (2(2•22:2‘22(2212(3(3•3:33 4;4:44(4(4 "4(4.5(5 5:5 :5 6 - 6B :661616 :6167U 7:7:7 • OOTL \) jOUT • /4,... F-2,_ : n R •V Harper Houf Peterson Righellis Inc. 9 Date: 6/24/2010 1:41 PM I system: English Fuu name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A\foundations \F1.ftd\ Design Results Reinforced Concrete Footings GENERAL INFORMATION: Global status Warnings Design Code ACI 318 -05 Footing type Spread Column type Steel Geometry i 1 in �+ 4.25 ft ' I ft ,, rri %' 1425ft ,01 • M' T 84yY }y ft • leggagnial 4.25ft Pagel Length 4.25 [ft] • Width 4.25 [ft] Thickness 1.00 [ft] Base depth 1.50 [ft] Base area 18.06 [ft2] • Footing volume 18.06 [ft3] Base plate length 5.50 [in] Base plate width 5.50 [in] Column length 5.50 [in] Column width 5.50 [in] Column location relative to footing g.c. Centered Materials Concrete, Pc 3.00 [Kip /in2] Steel, fy 60.00 [Kip /in2] Concrete type Normal Epoxy coated No Concrete elasticity modulus : 3122.02 [Kip /in2] Steel elasticity modulus : 29000.00 [Kip /in2] Unit weight 0.15 [Kip /ft3] Soil Modulus of subgrade reaction 200.00 [Kip /ft3] Unit weight (wet) 0.11 [Kip /ft3] Footing reinforcement Free cover : 3.00 [in] Maximum Rho /Rho balanced ratio : 0.75 Bottom reinforcement // to L ()ox) : 644 @ 9.00" Bottom reinforcement // to B (zz) : 644 @ 9.00" (Zone 1) Load conditions to be included in design Service loads: SC1 DL S1 DL S2 DL +LL S3 DL +0.75LL Design strength loads: DC1 1.4DL • D1 1.4DL D2 1.2DL +1.6LL Loads Condition Axial Mxx Mzz Vx Vz [Kip] [Kip *ft] [Kip•ft] [Kip] [Kip] DL 5.55 0.00 0.00 0.00 0.00 LL 15.61 0.00 0.00 0.00 0.00 RESULTS: Status Warnings - Insufficient development length, Section 21.5.4.1 Soil.Foundation interaction Allowable stress 1.5E03 [Lb /ft2] Min. safety factor for sliding 1.25 Min. safety factor for overturning 1.25 Paget 4 /9 --- F Controlling condition S2 Condition qmean qmax Amax Area in compression Overturning FS [Lb /ft2] (Lb/ft2] [in] [ft2] ( %) FSx FSz slip S2 1.38E03 1.38E03 0.0826 - 18.06 100 1000.00 1000.00 1000.00 Bending Factor 4 0.90 Min rebar ratio 0.00180 Development length Axis Pos. Id Ihd Dist1 Dist2 [in] [in] [in] [in] zz Bot. 20.11 7.04 19.75 19.75 xx Bot. 20.11 7.04 19.75 19.75 Axis Pos. Condition Mu 4)*Mn Asreq Asprov Asreq/Asprov Mu/(4)*Mn) [Kip * ft] [Kip [in2] [in2] zz Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 I 1 zz Bot. D2 13.38 45.76 1.10 1.20 0.918 0.292 I {► I xx Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 [ I xx Bot. D2 13.38 43.06 1.10 1.20 0.918 0.311 1 1 Shear . Factor 4) • 0.75 Shear area (plane zz) 3.10 [ft2] Shear area (plane )0 2.92 [ft2] Plane Condition Vu Vc VW(4'Vn) [Kip] [Kip] xy D2 8.99 46.09 0.260 l' 1 yz D2 8.68 48.88 0.237 f -•i 1 Punching shear Perimeter of critical section (b... : 4.67 [ft] Punching shear area 3.31 [ft2] Column Condition Vu Vc Vu /(4)'Vn) [Kip] [Kip] column 1 D2 29.25 104.29 0.374 I`L-1 I • Notes • Page c *Soil under the footing is considered elastic and homogeneous. A linear soil pressure variation is assumed. * The required flexural reinforcement considers at least the minimum reinforcement * design bending moment is calculated at the critical sections located at the support faces * Only rectangular footings with uniform sections and rectangular columns are considered. * The nominal shear strength is calculated in critical sections located at a distance d from the support face * The punching shear strength is calculated in a perimetral section located at a distance d/2 from the support faces * Transverse reinforcement is not considered in footings * Values shown in red are not in compliance with a provision of the code *qprom = Mean compression pressure on soil. *gmax = Maximum compression pressure on soil. *Amax = maximum total settlement (considering an elastic soil modeled by the subgrade reaction modulus). * Mn = Nominal moment strength. * Mu /(4)*Mn) = Strength ratio. * Vn = Nominal shear or punchure force (for footings Vn =Vc). * Vu /(4*Vn) = Shear or punching shear strength ratio. • Page4 r^ Beam Shear bcol := 5.5•in (4x4 post) d:= tf -2•in := 0.85 b := Width b = 36•in V :_ 4 f psi b d V = 16.32• kips 3 Vu • qu (b 2 colt b V = 7.83 kips < V = 16.32 kips GOOD Two -Way Shear bg := 5.5.in Short side column width bL := 5.5•in Long side column width b := 2•(bg + d) + 2•(bL + d) b = 54 -in P : =1.0 Vim.= + 8 f V = 48.96•kips 3 343c V„, := 2.66• f psi•b -d V im= = 32.56•kips ,V ,:= q — (bc01 + d) V = 15.88 -kips < V = 32.56-kips GOOD Flexure 2 b — bcol (1 2 Mu qu 2 M = 4.98•ft•kips A t:= 0.65 2 := b6 S = 0.222•ft 6 F 5 -(13- f F 162.5-psi M ft := s f = 155.47•psi< F = 162.5.psi GOOD 'Use a 3' -0" x 3' -0" x 10" plain concrete footing 1T2 Plain Concrete Isolated Square Footing Design: F2 2500.psi Concrete strength • fy := 60000-psi Reinforcing steel strength E 29000•ksi Steel modulus of elasticity lconc = '150•pcf Concrete density 'Ysoii =_ .100.pcf Soil density 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 2659413 Pd1:= Totaldl Tota111 := 7756-lb Pll := Totalll Ptl Pdl + Pll Pd = 10415 Footing Dimensions tg := 10•in Footing thickness Width := 36-in Footing width A := Width Footing Area net 9a11 — tf'"Yconc net = 1375•psf Ptl Areqd gnet Areqd = 7.575•ft < A = 9•ft GOOD Widthreqd Aregd Widthreqd = 2.75-ft < Width = 3.00 ft GOOD Ultimate Loads , � = Pd1 + tf'A'1'cone P := 1.4•Pd1 + 1.7•P11 P = 18.48-kips P qu := A q = 2.05 -ksf Plain Concrete Isolated Square Footing Design: F3 fc := 2500•psi Concrete strength f := 60000•psi Reinforcing steel strength Es 29000`•ksi Steel modulus of elasticity 'Yconc ;= 150• Concrete density "Ysoii := 1OO'pcf Soil density g 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl := 23631b Pd1:= Totaldl Ttitalp := .4575•lb P11 := Total11 Pt1 Pd1 + P11 Pd = 6938.1b Footing Dimensions t := 10-in Footing thickness Width := 30-in Footing width Width . Footing Area clnet gall — tf•'Yconc gnet = 1375•psf Ptl Are 5.046•ft < A = 6.25 -ft 2 GOOD gnet Aregd = Widthregd Aregd Widthregd = 2.25-ft < Width = 2.50ft GOOD Ultimate Loads Pd1 + tf•A•"Yconc P := 1.4 Pd1 + 1.7• Pll P = 12.18• kips P q :_ — q = 1.95•ksf A Beam Shear bcol '5.5•in (4x4 post) d := tf — 2•in := 0.85 b := Width b = 30•in V := (1)• 4 • f V = 13.6-kips 3 Vu •— qu r b 2 colt b V = 4.97-kips < V = 13.6-kips GOOD Two -Way Shear bs 5.5.in Short side column width bL := 5.5•in Long side column width 13 := 2•(bg + d) + 2-(bL + d) b = 54-in (3 := 1.0 _ ( 4 + s J f psi b d V = 40.8 -kips ` 3 3 • (3 Vmnax := x•2.66• f Vnmax = 27.13-kips ,N40 qu.[b — (bcoi + d) V = 9.71 -kips < Vntnax = 27.13-kips GOOD Flexure 2 Mu qu' I b — 2 J broil (11 2J _b M = 2.5441-kips A:= 0.65 2 S := b� S = 0.185•ft F := 5•4:13• f psi F = 162.5•psi M ft := a f = 95.19-psi < F = 162.5•psi GOOD lUse a 2' -6" x 2' -6" x 10" plain concrete footing Plain Concrete Isolated Square Footing Design: F4 f := 2500.psi Concrete strength f := 60000tpsi Reinforcing steel strength E : := 29000•ksi Steel modulus of elasticity "(colic I50 pcf Concrete density ysoil 100,pcf Soil density gall : 1500.psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl:= 5001.1b • Pd1 := Totaldl Tota111:= 7639•lb Pll := Totalp Pd Pd1 + P11 Pt1= 12640•lb Footing Dimensions t := 12-in Footing thickness • • Width := 42• in Footing width A Width Footing Area qnet gall — t£' qnet = 1350•psf P Aregd gnet A red = A 9.36341 < A = 12.25 ft GOOD Widthreqd A reg d Widthregd = 3.06-ft < Width = 3.50ft GOOD Ultimate Loads • = Pd1 + tf'A'•Yconc P„ := 1.4 PdI + 1.7•P11 P = 22.56. kips P qu — q = 1.84•ksf A • • ifq Beam Shear b60i := 5.5•in (4x4 post) d := tg — 2•in := 0.85 b := Width b = 42-in V, :_ 4 • f V„ = 23.8-kips 3 ( Vu == qu'I b —bad) b V, = 9.8•kips < V = 23.8-kips GOOD Two -Way Shear b = 5.5-in Short side column width bL 5.5 -in Long side column width b := 2•(bg + d) + 2-(bL + d) b = 62-in (3 := 1.0 Vim.= + 8 f psi•b•d V = 71.4•kips (- 3 3•0c := 0.2.66• f V = 47.48 -kips ,XM = qu [b 2 — (bcol + d) V = 19.49 -kips < V� = 47.48-kips GOOD Flexure 2 Mu qu[( — bcoll r 11 b M = 7.45 -ft -kips 2 J l A t:= 0.65 b•d 2 . := 6 S = 0.405•ft 3 F := 54• f F = 162.5 -psi M f := U f = 127.79 -psi< F = 162.5-psi GOOD S , .Jse a 3' -6" x 3' -6" x 12" plain concrete footing :Pel Plain Concrete Isolated Round Footing Design: f5 f c , = 3000•psi Concrete strength f := 60000•psi Reinforcing steel strength Es := 29000•ksi Steel modulus of elasticity '(cone 1 50.pcf Concrete density '(soil 120.)cf Soil density gall : 1500•psf Allowable soil bearing pressure TYPICAL FOOTING Reaction Total := 619-lb Pd1:= Totaldi Totalll 1600 -lb Pll := Totalll P := Pdi + Pp P = 2219• lb Footing Dimensions t := 12-in Footing thickness Dia := 18-in Footing diameter ►r• Dia 14:= 4 Footing Area clnet gall — tit "(cone gnet = 1350•psf Ptl Areqd gnet A q 1.644 ft 2 < A = 1.7741 GOOD Areqd -4 Diareqd Dia = 1.4541 < Dia = 1.50 ft GOOD Ultimate Loads , := Pd1 + tf'A''Yconc P := 1.4- Pal + 1.7•P11 P = 3.96-kips P qu A q = 2.24•ksf • Beam Shear b�1:= 3.5•in (4x4 post) d := tf — 2•in 0:= 0.85 b := cos(45•deg)•Dia b = 12.73•in V:= 4 • f V = 7.901•kips 3 Vu •= qu (b 2 colt b V = 0.91 .kips < V = 7.901 .kips GOOD Two -Way Shear bs 3.5.in Short side column width bL := 3.5•in Long side column width b := 2.(bg + d) + 2.(bL + d) b = 54•in (3 := 1.0 v + . 8 / f psi•b -d V = 23.703•kips 3 3•pc V„ := 2.66 f psi b d V = 15.76•kips = q,; [b 2 - (b co i + d) V = —0.31 .kips < V = 15.76.kips GOOD Flexure 2 Mu := qu r b — 2 b coll 1 M = 0.18ft -kips I\ ]( = 0.65 2 , := b-d 6 S = 0.123•ft F := 5 f F = 178.01 -psi M u f := s f = 9.9•psi < F = 178.01 .psi GOOD Use a 18" Dia. x 12" plain concrete footing Plain Concrete Isolated Square Footing Design: FG f := 2500.psi Concrete strength f,:= 60000-psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity "Yconc 150• Concrete density 'Ysoil := 100.pcf Soil density gall := 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl:= 7072•1b Pdl := Totaldl Total11 := 13304.1b Pll := Totalll Pd := Pdl + P11 PU = 20376.1b Footing Dimensions t := 15-in Footing thickness Width := 48.iri Footing width • A:= Width Footing Area clnet gall — tf•"Iconc net = 1313•psf Pti Areqd := gnet A red = A 11 < A = 16 ft GOOD Widthreqd Aregd Widthreqd = 3.94-ft < Width = 4.0011 GOOD Ultimate th = 4 • Pd1 + tf•A•'Yconc P := 1.4 Pdl + 1.7•P11 P = 36.72•kips P qu A qu = 2.29•ksf \S- Beam Shear b col := 5.5•in (4x4 post) d := tf — 2-in scp:= 0.85 b := Width b = 48-in V :_ 4 4 • f V„ = 35.36-kips 3 Vu qu 2 col) b V = 16.26-kips < V = 35.36-kips GOOD Two -Way Shear bg := 5.5-in Short side column width bL:= 5.5-in Long side column width b := 2•(bg + d) + 2 -(bL + d) b = 74 -in := 1.0 V Of 4 + 8 f V = 106.08-kips 3 3 (3, := 2.66 f psi b d V = 70.54•kips q„-[b 2 — 0, + d) V = 31.26-kips < V = 70.54•kips GOOD Flexure [(b r 1 M := au- . — .b M = 14.3941-kips 2 J ` 2J A:= 0.65 2 , := b-d 6 S = 0.782.ft F := 5.0• f F = 162.5 -psi M u f := f = 127.75•psi< F = 162.5-psi GOOD 'Use a 4' -0" x 4' -0" x 15" plain concrete footing Plain Concrete Isolated Square Footing Design: F7 f := 2500•psi Concrete strength fy := 60000-psi Reinforcing steel strength E : =. 29000•ksi Steel modulus of elasticity 1'conc := 150 :pcf Concrete density 'Ysoi1 100 -pcf Soil density gd11:= 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl: 1200- lb Pd1 Total dl Total11 := 3200•1b Pll := Totalll Ptl Pdl + P11 P = 4400-lb Footing Dimensions t := 10• in Footing thickness Width := 24•in Footing width A := Width Footing Area clnet clall — tf•lconc net = 1375•psf Ptl Areqd 9net A red q = 3.2 ft < A = 441 GOOD Widthreqd A reg d Widthreqd = 1.7941 < Width = 2.00 ft GOOD Ultimate Loads = Pdl -I" tf'A''Yconc P := 1.4 Pdl + 1.7•P11 P = 7.82•kips P clu A q = 1.96•ksf Beam Shear bcoi := 5-5-in (4x4 post) d := tf — 2 -in 4:1:•:= 0.85 b := Width b = 24 -in V:= 4 - f V = 10.88 -kips 3 Vu •= qu (b — bco1) b V = 3.01 -kips < V = 10.88 -kips GOOD 2 Two -Way Shear bs := 5;5 =in Short side column width bL := 5.5 -in Long side column width b := 2 -(bs + d) + 2-(bL + d) b = 54 -in R := 1.0 ^ V,= 4 + 8 f psi•b•d V = 32.64 -kips ( 3 343 Vnmax := 4.2.66• fc•psi•b•d Vnmax = 21.71-kips ,Vµ;= qu — (bc0i + d) V = 5.35 -kips < V = 21.71 -kips GOOD Flexure b — bc0i 2 ]{}b 1 Mu qu' 2 M = 1.16 -ft -kips • A:= 0.65 2 •— b 6 S = 0.148 -ft 6 F := 5 f psi F = 162.5-psi M f := f = 54.45-psi < F = 162.5-psi GOOD 'Use a 2'-0" x 2' -0" x 10" plain concrete footing BY A{` " C DATE: ...._, ' ] ^ 1 / ' JOB NO.: Ce k ^o 1 OF PROJECT: C zyy) \ 01n . ec t T y `) v � + A - rove+ Load (,J a a x 3 e " x 1 .as RE: ❑ ❑ • IF btiv tv-10, ,. J O 3 5.11 t ni a.3c3k- 0 W a.3+�3� 0 I' W ❑ , F J I u 4 ----A- - -k a Z Che.c..1- 0veciuYn;yn 2 o AOT = 35,11 4- \ , 'k1 \,1 o = S$.51 o M Q. Co A CA 1, 5.)(3 , s C2�C 1 C) 4 " a . 6 V3(a .25) * ; ,lea, %) cr z = acoa Ii-F• 1=1 o \A 2 tz. = Co,150-Ci,5)(15)(227)(1) i- a -363( j ) I- a , 'G, `4-F AQ= M/CA = (0 a_a3Ft e.= t: C t i( ;32c3 a ,3b3LZ) Q } 6M - a`•,os1 - 4 L(aa _ p. nno.x ^ _ 4�tSIC S F t51- Tilt_ ( 3 . 7 Cz> — t ,n = C _6M =0, 145 ....j 1 3L V ;";"5 N Me_ "5 = 5:5 = •F,5. (Me-- a O Mo sS,s a� [x A., ;W, x iq-q9 n o• Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:43 AM Units system: English File name: O: HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \Front Load 2.etz\ • M33 =51.9 [Kip *ft] M33= -12.19 [Kip'ft] • Y A { X Moments LC. \f i _7` Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:35 AM Units system: English File name: O: HHPR Projects \CEN - Centex Homes (309)\CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\Front Load.etz\ • 'M33 =25.66 [Kip M33= -30.27 [Kip'ft) Y 1 M rruenis LCV9 - = BY \\kL DATE: ' . auto JOB NO.: C E M ` -0 e 0 OF PROJECT: 3A7c\ 'COCA CNv{ i 3C. • RE: UN 1 P\ - .1iRR l,oc�� pi,46 k. ❑ ❑ v 3 3 tk i J Z , J IIILLL F- w 9.1c5%..' 14'3k J p J a l Cr u O w U Z w 0 I X d aa' Z O R U Cheat.- over+ur�i»ng Z D Mo = 30 fi 30,41-1 (a," -b� JCao) - 11l.. l$ VcE 2 0 MI. = Co,tso"C,a�C►1(1 +- - 3,1530) .1,1S3CaI) u_ z Mrz.lnno J..- �,qb 1,5 ; , o+� r°, , w 0 F CL i X = aa A(a U c Jc. `t — 11 �o ,1 `i 2 Y E. e s . (o c.b ao .qoe c l- )< ^ ao.go L 4-- ( (ao.gOL L.5 ) ; ( .► qs sF 9 -pair. = ao,°tob _ C9,0,c10(N5 i _�a C2. (.2z '), C'egC3<'2-V- o (A-m+ N< o : • o 04-mo.x 4 Q _ 4 Cao ,quo) N "" 3 L (r3-2e) • & s ' ) ) 3 0 _ -., c 4 - 0\o■x ' 1. "ab1 C < tS 0psi e 0Vc Qi MM u "' a -F.-2-2- J Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:38 AM • Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309)10EN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A\foundationsRear Load.etz\ M33 =43.24 [Kip•ft] • • • M33= -45.06 [Kip'ft1 I e ' x A `nt`e Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:43 AM • Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \Rear Load 2.etz\ M33 =41.88 [KIP *ft] ■ M33= -46.37 IKip'hl Y A Mme - Lc2- BY A N \L DATE: aolo JOB No �, A p- e 0 OF � y "�J� PROJECT: RE ear Lad, coobn5 0 o t -o'' x L x i2" FT 0 f W\MO ■X = . On;k A > . 4- . -at ❑ _ _ = U o- 151 c. -� O . Z Un■ i lL 0 oMn= 0.( yd - z .a= ASSN /U,bSZ f T r-9 C 4 e a," o, c , As.---0,_313t xa' a= 0.3(13( “),000) /0, b csood)(14) 0 (D P‘V*1 = Of C 10(0 :6Ct '‘ )((3 1 C) .0 00 — ° 14C41 /2.) ❑ z = l-Ft p r' of 4LI 16r,oao) 1 o,U2ooOYL24- OkI = o,ao(o, 1- 1)(co,000 '- / ) = 3L aCt T f t i 4 S e au orC, As OdCo IL.; tNZ- a. = a, 614 (6c oco) /a e(3 o X-z.4) 0_,1.39: IA) o, b�9 o o - -, ,.5 (7 ∎(.0,x 1,33) S 3 ,a LI > Ait . , e to-p i boron- if..) W n 1 1% 42A72,-S- MO '; 'lilt coil" e. = ( 0 -59 (9 0 0'01X : sciA20)Ob'0 1-1 ..''')t = ( 214)carsn'oi (5(x) 1 0-) , t, , c1) ,,. . v;_co =sv • 'D' 0 i?-kv- C\ - ,--- • Cio ° E.1 > '*.kak)...kcx.u, 'al\ wcc6av, • ; , 5 a . = 0 ^:: c,Z.tX000E)(9> V) / L000 01 \) - -1 I -=,s1 • , ' 0 „ol a _.5 Ai- 7 .. • s . t - 4 a -1 (oo o son )c_Gto~4t ) o 0 --: ■=kw 0 - Lcoo' ,f- NO r 0 • - , l_ ii " c ,:lki;0 1- \ = 4 V e i tA a .s 41- q irill_ • - -- vit - l - t z' ' 5 .1 ( 9 ( r2 iE 47; 1 — S9(. 00 6 1 0/1011'9 013'0 l ' - ' u Ni 0 6 0 0 1111;) to N k ' \ ■:: Qt ii)(000 CA9 Lox 013,..iln I 0) -,-= v 4 0 __ _ z -r, K '174 0 47 44 13 S'i< 0 = 'DO n Cr k ?S C T S V :-"° o 0\00 IP h 0 — (— --) A \- 1.6A,-E - - ,\ :::: \mytkvi Z 1:1 13 • m 0 , . m , 0 It V 1 3 C Z t 3 g 0 RI -I RI 0 , = , I 1 X 1- ts I El" sOcic0 1P001 NY'°,13. iBa . , 103fOLId JO :31va , A9 -fc. - < - L ) N oV 6' — <, s-s9b -= x ZZ:\ =-- _I S•si c1• €411147. - 's- isse•e) • R 4 k.. c - n - °)2,• = bJw _X. - \(L „s1 x - ,3e x o -�3`l Q � OS� " � o cc--\ y-A S l 1 T z_ - '16 4 - I'2 -5 ( Q' s'1 ` ` W oW \ 4 i' = 6v ,-k o o f -6! - )\o aC iS Gut •e 2k.'1 - -7.---- ' b 16 ri c) (5.01e).S'l w> °V '1 xJx ao — let) - F Z1 ' 09 =- �- hua--.0 a �ah+��'5fi _ ` a s }� s a sn - 1G f) t"t� W . F " 0 'g I ❑ 66 kw-I-) a to -}-s Asa) c- c i - )9 1S ?co I- -- . )01 ../ 4_4 Fr f >u s .) c . L°)�° 1, - t 7� — C - aZ- c r 1 ) -1 c 43 t CA: e =a - s bbre• = � ���� q s� �y � s L = b/ x o _ _ �e _lo o �O ' S'1 < 1 ° 1 '1 _ 1■ - \iN, o z1 • = (z) `71' � 4 ci)t' s4 C�)��XS''X°Slia)�a) =. v4w 3 3 °1b' 1fi = ("Irv( -I y X5'1xOsl'pkg) = Qw . o a 1 Z , � D Y F 60i Vi) ct -)QJ\Q - VaVO Z A o m z o 4- A l b ---i- ;e4 m 0 P A r i � � 0 3 m 0 m o on 1 . k___21 ' 'e'S m 0 I A gcrc `e z m ❑ ❑ x MS-3cl1I— J �■un :a 151.1 ,� x rg :173 road 1�!� r • AO VO N C ) 'ON 8Of 0 t Ot J '31va :AB "TkNN.cf (4 • g. _ b 0_. • 0 - � = z ❑ m Z -t O AO 3 ► p,oc,l uw,c14 i_kov6 rOj A gb' L_sS /' ` ) }; = '"°\K'k 3 SC,` �� a 1 ,51 x� ), C\J1 c(S31' 1)z 1-'C rn L7N -3sc\ S -• = x m o l c� ` _' v r Q\ • � — � L ' \ �0 9 � I > / � = No; ^ ❑ m m • -I „S\ X S‘eX- 13 °) a� z o m = x`ow_ko 3a :103 roa 40 0100—N yl ON eor o e - :31VO ! \N \ 1 one n al Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:42 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309)\CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \Interior 2.etz\ M33 =23.55 [Kip'ft] • • • • • M33= -17.88 [Kip' ft] Y MoThey4-46 LC I .�'.i .Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:42 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \Interior.etz\ M33 =32.26 [Kip *ft] M33= -9.27 [Kip'ft] A I x MorRen-\--s LC--& f ,a() ACl 318- 05.Appendix D 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc = 3000 psi fc = 3000 psi h' = 3.50 inches h = `. ',?;:12 :00 - inches (into the Fc Stem :'8:00 : inches Note: hef above is the the embedment into or c = 5.25 inches the foundation and does not consider stem m Fnd Width = 36.00 inches C min = 2.25 inches c m;n = 18.00 inches Wc,N= 1.00 cast -in -place anchor W 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor = 0.75 strength reduction factor 4, = 0.75 strength reduction fact' Calculations Calculations AN = 68 in` AN = 1296 in AN = 110.25 in AN = 1296 in` Nb = 8,607 pounds Nb = 55,121 pounds Wed,N = 0.8286 Wed,N = 1.00 N = 4,399 pounds N = 55,121 pounds 4,N = 3,299 pounds 4,NDb = 41,341 pounds Combined Capacity of Stem Wall and Foundation ON = 44,640 0.754,N = 33,480 123 -- H Tn z=:: E b z :. n O ' ,‘a LA"kA) W < Qb ( ( 0 = u VP) (19(900spa '0 («O'o))tb2.• o = o wCl , $ s - b 44. (1) Cllbohlo- z 1)(a00'oCx Si0)010'0 VAN e (000'011 6GS Q -e 17 ‘ 1 Z 4 - ( , ' ) J, • c - �) - s'c) obi0 = uwo D 0 • r 11 51 x � x g ❑ 3 m 0 W ❑ ❑ 1 A-00S' rtxmlioA-k 'kui :3d :103 road i0 0 0 r\/: oN eor 0 / O? S 31V° , / l " \ .n9 Concrete Side Face Blow Out Givens Abrg = 2.15 in fc = 3000 psi C = 18.00 inches = 0.75 strength reduction factor Calculations Nsb = 231,191 pounds 4)Nsb = 173,393 pounds Concrete Pullout Strength Givens A br9 = 2.15 in` fc = 3000 psi = 0.75 strength reduction factor Calculations N = 51,552 pounds 4)N = 38,664 pounds Steel Yield Strength Givens f = 58,000 psi A = 0.606 in = 0.80 strength reduction factor Calculations N = 35,148 pounds 4N = 28,118 pounds < 33,480 Ductility Met Holdown Check Holdown: HDU14 Holdown Capacity= 14,930 pounds 1.6* Capacity= 23,888 pounds 23,888 < 28,118 Holdown Checks lq -732D N / I as ( (N+ 1 e2 t F�3' 1 = cn poi { 6 'e9r2 YWs � -' a or21 : L 9 ) o rn m 00\ : lrn CIS)c111, ) Dais : (7'i1)C,P Jn01f &id °11h =(.z 5. 1 x z)(:(8,) _r,d C)01 _ cZ)`29se p �4 \l s1 a-c0 ' QO`t —_:- (O0\ b tic.. \ Sl l _3001 Sr Ulw awes = -*,ur) N' 1•e LT1 M = o C 7 00_S1 rn 001-1 �•r 'e • , • S oS t+ _ (SZ) ) d J-1d c')o = J sc t, l xgl) moo) = <rnOS))(2ij) s end use _ z ("'1 (4) x 3 x{ os , ) ", —)001 is :Yid t , �c12 _ lA - i rim do \ �� t oak -So '�V.t» 's ,) Y� a m ❑ z m • o 3 HS] )©° l = ("Y) - CY oos M 0Q1 + 1 gh 1 0 rn • dndoos1= 3 sd 0 S do , )(N OW z 4 Cn001 4 1 g = 'psoa) -1 -)°°11- 3, pt,°) =056 O P)(1a.na1 Zi."(2) a x in ` � M 001 `� )0 )`Z /g) m 0 _ 11 UJI S' d ,d ��� _ Emi Luu1 Nl r> 0 JooiS 31d go _ v s 0-4.9<stanl 2)13 g ❑ 3 mrn jid 00s = c3s61.1)1Js1° S1(1 o rp1. ng �CD sa ' ❑ o &) j 11 a S :38 :103108d an ON 8Or 31Vp AS