Loading...
Specifications (2) 1Vn5i ,Q61t, -1 i "Ik�i Structural Calculatio for R ECF IVED Full Lateral & Gravity Analy ' o 3 2010 Y OF TIGARD Plan B 1332 �uic Dvisi Summer Creek Townhomes Tigard, OR Prepared for Pulte Group July 13, 2010 JOB NUMBER: CEN -090 ** *Limitations * ** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and /or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 96 sheets total including this cover sheet. This Packet of Calculations is Null and Void if Signature above is not Original Harper HP .Houf Peterson Righellis Inc. ENCluEERS • n LANOSLA, ARCN”TECTJ•6JR,C,OHS 205 SE Spokane St. Suite 200 a Portland, OR 97202 0 [P] 503.221.1131 a [F] 503.221.1171 1 104 Main St. Suite 100 o Vancouver, WA 98660 e [P] 360.450.1 141 e [F] 360.750.1 141 1 133 NW Wall St. Suite 201 o Bend, OR 97701 0 [P] 541.318.1161 0 [F] 541.318.1 141 Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit B Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, lW: 1 2006 IBC / 2007 OSSC Occupancy Category: II Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed, ASCE 7 -05 Ch. 20 Importance, IE: 1 ASCE 7 -05 Table 11.5-1 Ss: 0.942 USGS Spectral Response Map S1: 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength, f'c: 3000 psi Foundations & Slab on Grade Concrete Unit Weight, yc: 145 pcf Steel Reinforcement Yield Strength, f 60,000 psi Wood Studs (Wall Studs): Hem -Fir #2 2x & 4x Wood Beams & Posts: DF -L #2 6x & Greater Wood Beams & Posts: DF -L# 1 Glulam Beams: 24F -V4 PSL Beams: Fb =2,900 psi, FV= 328psi, E =2.0 Million TS /LSL Beams: Fb =2325 psi, FV= 460psi; E =1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : 1500 psf Assumed 2. All manufactured trusses, joists, and flush beams.u.n.o. shall be designed by others. j Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 WoodWorks - Sizer version 2002 Bently RAM Advanse Harper Project: Summer Creek Townhomes UNIT B HP 1 . Houf Peterson. Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS • MANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE ARCHITECTS•SURVEYORS DESIGN CRITERIA 2007 Oregon Structural Specialty Code & ASCE 7 -05 Roof Dead Load RFR:= 2.5.psf Framing RPL := 1.5•psf Plywood RRF := 5•psf Roofing RME := 1.5•psf Mech & Elec RMS := 1.psf Misc RCG := 2.5.psf Ceiling RIN := 1.psf Insulation RDL = 15•psf Floor Dead Load FFR := 3•psf Framing FPL := 4•psf Sheathing FME := 1.5•psf Mech & Elec FMS := 1.5.psf Misc FIN := .5•psf Finish & Insulation FCLG := 2.5.psf Ceiling FDL = 13•psf Wall Dead Load WOOD EX_Wall := 12•psf INT_Wall := 10•psf Roof Live Load RLL:= 25•psf Floor Live Load FLL := 40.psf Harper Project: Summer Creek Townhomes UNIT B HP Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # L ANOSCAPE ARCHITECTS• SURVEYORS Transverse Seismic Forces Site Class = D Design Catagory = D Building Occupancy Category: II Weight of Structure In Transverse Direction Roof Weight Roof Area := 748•ft 2 .1.12 RFWT := RDL•Roof Area RFw-1. = 12566.1b Floor Weight Floor_Area2 := 605•ft FLRWT2nd := FDL•Floor Area2nd FLRW1.2 = 7865• Ib Floor_Area3 600 -ft FLRWT3rd FDL•Floor Area3rd FLRWT3rd = 7800-lb Wall Weight EX Wall Area := (2203).ft INT Wall Area := (906).ft 2 WALL' q' := EX_Wall + 1NT Wall WALLWT = 35496•lb WTTOTAL = 637271b Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h := 32 Mean Height Of Roof l := 1 Component Importance Factor (11.5, ASCE 7 -05) A:= 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C := .02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x := .75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period T := C T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F := 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F, := 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) Harper Project: Summer Creek Townhomes UNIT B ® Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE A RCNITECTS•9URVEYORS SMS := F SMS = 1.058 (EQU 11.4 -1, ASCE 7 -05) 2•SMg Sd := 3 Sd = 0.705 (EQU 11.4 -3, ASCE 7 -05) SMl F•S1 SM1 = 0.584 (EQU 11.4 -2, ASCE 7 -05) Shc := 2 •SMl Sdl = 0.389 (EQU 11.4 -4, ASCE 7 -05) 3 Cst := Sds Ie Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) R ...need not exceed... Csmax := Shc'Ie Csmax = 0.223 (Q 7-05) (EQU 12.8 -3, ASCE 7 -OS TaR ...and shall not be less then... C1 := if(0.044•Sd < 0.01,0.01, 0.044•Sd s 'l e ) 0.5•SI•Iel (EQU 12.8 -5 &6, ASCE 7 -05) C2:= if l Si <0.6,0.01, R J Cs := if(Ci > C2,C1,C2) Cs = 0.031 Cs := if (Cst < Cs Cs if (Cst < Csmax , Cst, Csmax)) Cs = 0.108 := Cs-WTTOTAL V = 69141b (EQU 12.8 -1, ASCE 7 -05) E := V•0.7 E = 4840 1b (Allowable Stress) 6 .--- L.13 Harper Project: Summer Creek Townhomes UNIT B P Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE ARCNITECTS•SORVEYORS Transverse Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 100 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I := 1.00 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X := 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... a2 := 2•.1.16.ft Zone A & B Horizontal Length (Fig 6 -2 note 10, ASCE 7 -05) a2 = 3.2 ft 4 h 2 ft or a2 = 25.6 ft a2 .— 3.2-ft but not less than... a2 =6ft Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA 19.9•psf PnetzoneB 3.2•psf Pnetzonec 14.4•psf PnetzoneD 3.3•psf Vertical PnetzoneE —8.8•psf PnetzOneF —12•psf PnetzoneG 6.4•psf PnetzoneH —9.7•psf Basic Wind Force PA := PnetzoneA'Iw.X PA = 19.9•psf Wall HWC PB := PnetzoneB•h PH = 3.2• RoofHWC PC := PnetzoneC'Iw•X Pc = 14.4•psf Wall Typical PD := PnetzoneD'IH; a PD = 3.3•psf Roof Typical PE := PnetzoneE'IwX PE = — 8.8.psf PF := PnetzoneF'Iw•X PF = — 12•psf Pc, := PnetzoneG'Iw•X Pc, = — 6.4• PH := PnetzoneH'Iw•X PH = — 9.7•psf Harper Project: Summer Creek Townhomes UNIT B HP HoufPeterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE ARCNITECTS•SURVPYORS Determine Wind Sail In Transverse Direction WSAI-ZoneA (55 + 59 + 29)• 1 WSAILZoneB (6 + 0 + 23)• 1 WSJ -ZoneC (429 + 355 + 339)41 WSA LZoneD (0 + 0 + 4)41 WA = WSAILZoneA'PA WA = 28461b WB WSAILZoneB'PB WB = 93 Ib WC := WSAILZoneC'PC WC = 161711b WD := WSAILZoneD'PD WD = 131b Wind_Force := WA + WB + WC + WD Wind Force := 10•psf•(WSAILZoneA + WSAILZoneB + WSATLZonec + WSAI-ZoneD) Wind_Force = 19123 lb Wind Force = 12990 Ib W SAILZoneE := 43412 W SAILZoneF := 43412 WSAILZoneG 334412 WSAILZoneH 327•ft WE WSJ ZoneE'PE WE = —378 Ib WF WSAU-ZoneF'PF WF = —5161b WG WSAILZoneG'PG WG = —21381b WH := WSAILZoneH'PH WH = — 31721b Upliftnet WF + WH + (WE + WG) + RDL•[WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneG)1 .6.1.12 Upliftnet = 1326 Ib (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION 3 - Harper Project: Summer Creek Townhonies UNIT B o ' 1. Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE ARCMITECtS •SURVEVORS Longitudinal Seismic Forces Site Class`= D Design Catagory =:D. Building Occupancy,Category: lI Weight of Structure In Longitudinal Direction Roof Weight Roof Area = 838 ft J:= RDL•Roof Area RFW-I- = 12566•lb Floor Weight Floor_Area2 = 605 ft attA = FDL•F1oor Area2nd FLRWT2nd = 7865.1b Floor_Area3 = 600 ft Rc i= FDL -Floor Area3rd FLRWT3rd = 7800.1b Wall Weight L2( g = (2203). ft INT Wall Area = 906 ft 2 �/ ,bcv= EX_Wa1l •EX_Wall_Area + INT Wal1 WALLW -r = 35496-lb WTTOTAL = 637271b Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h = 32 Mean Height Of Roof Ie = 1 Component Importance Factor (11.5, ASCE 7 -05) ,,:_ .6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C = 0.02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x = 0.75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period ,j,:= C T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 = 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S = 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F = 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F„ = 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) Harper Project: Summer Creek Townhomes UNIT B ;HP Houf Peterson Client: Pulte Group Job # CEN -090 r . Righellis Inc. ENGINEERS '• PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE ARCNITECTS•SURVEYORS - ti := F SMS = 1.058 (EQU 11.4-1, ASCE 7 -05) 2•SMS 5:= Sd = 0.705 (EQU 11.4 -3, ASCE 7 -05) 3 14 F Si SM1 = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2 •SMl ACUA 3 8 c11 = 0.389 (EQU 11.4 -4, ASCE 7 -05) st := S R 1e Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) ...need not exceed... Sd1 Csmax = 0.223 (EQU 12.8 -3, ASCE 7 -05) T R a ...and shall not be less then... := if (0. 044 - Sd I < 0.01, 0.01, 0.044 - Sds-1e) ( 0.5 S1 Iel (EQU 12.8 -5 &6, ASCE 7 -05) nn : =iflS1 <0.6,0.01, `` R J . Acbai x:= if (CI > C2,C1,C2) Cs = 0.031 Cs := if (Cst < Cs Cs if (Cst < Csmax , Cst, Csmax)) Cs = 0.108 := Cs••WTTOTAL, V = 69141b • • (EQU 12.8 -1, ASCE 7 -05) E;= V•0.7 E = 48401b (Allowable Stress) L f Harper Project: Summer Creek Townhomes UNIT B ■• Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE ARCNITECTS•SURVEVORS Longitudinal Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind 'Speed: 110 mph'(3 Sec Gust) Exposure: B Building Occupancy' Category; li I = 1.0 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X = 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) • 2-.11 Zone A & B Horizontal Len Smaller of... a2 = 3.2 ft (Fig 6 -2 note 10, ASCE 7 -05) _ or .4•h 2•ft a2 = 25.6 ft but not less than... R 3•2•ft a = Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA = 19.9 -psf PnetzoneB = 3.21psf Pnetzonec = 14.4•psf PnetzoneD = 3.3•psf Vertical PnetzoneE = — 8.8•psf PnetzoneF = — 12•psf PnetzoneG = —6.4•psf PnetzoneH = —9.7• psf Basic Wind Force := PnetzoneA'Iw- PA = 19.9•psf Wall HWC := PnetZOneB'Iw•X PH = 3.2•psf Roof HWC = PnetzoneC'Iw'X PC = 14.4•psf Wall Typical Pte:= PnetzoneD'Iw•X PD = 3.3•psf Roof Typical • PnetzoneE'l ,.X PE = — 8.8•psf := PnetzoneF'Iw'X PF = — -psf ,:= PnetzoneG'Iw'X PG = — 6.4•psf Pte:= PnetzoneH'Iw'X PH = — 9.7•psf 19) • S Harper Project: Summer Creek Townhomes UNIT B Houf Peterson 1' Righellis Inc. Client: Pulte Group Job # CEN -090 ENGINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE ARCNITECTS•SURVEYORS Determine Wind Sail In Longitudinal Direction A 'Y §:= (58 + 59 + 21)41 N' ' kvuie&:= (0 + 0 + 51)41 y ; n := (98 + 99 + 34)•ft §A ILx := (0 + 0 + 114)41 244,:= WSAILZoneA'PA WA = 27461b 1 WSAILZoneB.PB WB = 1631b ,AQ:= WSAILZoneC'PC WC = 33261b i= WSAnZoneD'PD WD = 3761b in or a := WA + WB + WC + WD Wi d orc �= 10•psf•(WSAILZ + WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind Force = 66121b Wind_Force = 53401b AXSALL7,44 = 151 • ft Nyat ,v„Zva := 138•ft M := 242.1 ,,§Abzw,:= 216.1 2 Wes:= WSAI - ZoneE'PE WE = — 13291b Wes:= WSAILZoneF'PF WF = — 16561b Wes= WSAILZoneG WG = — 15491b ti W .•= WSAILZoneH WH = —2095 Ib 1��:= WF + WH + (WE + WG) + RDL•[WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneG)]•. Upliftn = 901 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION E-LCA Harper Houf Peterson Righellis Pg #: Transverse Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= 11 (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf A. = 1.00 Iw= 1.00 Wind Sail Wind Net Design Wind Pressure (psf) (ft ) Pressure (Ibs) al �,,� R Zone A = 19.9 143 2846 Wall High Wind Zone Horizontal Zone B = 3.2 29 93 Roof High Wind Zone Wind Forces Zone C = 14.4 1123 16171 Wall Typ Zone Zone D = 3.3 4 13 Roof Typ Zone Zone E = -8.8 43 -378 Roof Windward High Wind Zone Vertical Zone F = -12.0 43 -516 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 334 -2138 Roof Windward Typ Wind Zone Zone H = -9.7 327 -3172 Roof Leeward Typ Wind Zone Total Wind Force =j 19123 Ibs I Use to resist wind ,uplift: Roof Only Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -6204 Ibs Resisting Dead Load= 7517 lbs El 1313 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm (ft Zone A Zone B Zone C Zone D Main Floor 55 6 429 0 Upper Floor 59 0 355. 0 I Main Floor Diaphragm. Shear = 7291 lbs Upper Floor Diaphragm Shear = 6286 Ibs Roof Diaphragm Shear = 5546 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Diaphragm (lbs) Diaphragm (Ibs) (lbs) Width ( ft W (ft ) Wid (ft) — A 15.83 2275 20.50 3143 21.33 2773 B 19.50 2802 0.00 0 0.00 0 C 15.42 2215 20.50 3143 21.33 2773 ' E= 50.75 7291 41 6286 42.67 5546 1 -L \0 Harper Houf Peterson Righellis Pg #: Transverse Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = 11 Site Class = D . S1 = 0.34 Ss= 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 • k = 1.00 . 12.8.3, ASCE 7 -05 • . SMg 1.06 Equ. 11.4 -1, ASCE 7 -05 . S 0.58 Equ. 11.4 -2, ASCE 7 -05 Sos= 0.71 ' Equ. 11.4 -3, ASCE 7 -05 Spy= • 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 - Csmin = 0.01' Equ. 12.8 -5 & 6, -ASCE 7 -05 . Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 ' Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 ' Roof Diaphragm Height (ft) = 32 Floor 2 Wt (lb)= 7865 Floor 3 Wt (Ib)= 7800 Roof Wt (Ib) = 12566 Wall Wt (Ib) = 35496 • Trib. Floor 2 Diaphragm Wt (Ib) = 22063 • Trib. Floor 3 Diaphragm Wt (Ib) = 21998 Trib. Roof Diaphragm Wt (Ib) = 19665 • . Vertical Dist of Seismic Forces Cumulative % total of base shear Rho Check to Shearwalls (lbs) I to shearwalls I Req'd? Vn�, z (Ib) = 711 100.0% Yes Vnoor 3 (Ib) = 1595 85.3% Yes V,�f (Ib) = 2534 52.4% Yes , Shear Distribution To Wall Lines , " Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft lbs Ibs lbs ' A 126 299 371 •148 795 1257 B 282 0 0 331 0 , 0 C 197 301 377 231 . , 800 1277 Sum 605 600 ' 748 711' • 1595 2534: Total Base Shear* = 1 4840 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rhb. cg,Liiii Harper Houf Peterson Righellis Pg #: Longitudinal Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf A. _ 1.00 Iw= 1.00 ' Wind Sail Wind Net Design Wind Pressure (psf) () Pressure (Ibs) Zone A = 19.9 138 2746 Wall High Wind Zone Horizontal Zone B = 3.2 51 163 Roof High Wind Zone Wind Forces Zone C = 14.4 231 3326 Wall Typ Zone Zone D = 3.3 114 • 376 Roof Typ Zone Zone E _ -8.8 151 -1329 Roof Windward High Wind Zone Vertical Zone F = -12.0 138 -1656 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 242 -1549 Roof Windward Typ Wind Zone _ Zone H = -9.7 216 -2095 Roof Leeward Typ Wind Zone Total Wind Force 6612 Ibs I Use to resist wind uplift: Roof & Half of Upper Floor Walls Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -6629 Ibs Resisting Dead Load= 10160 lbs • E =I 3531 Lbs...No Net Uplift Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm (ft Zone A Zone B Zone C Zone D Main Floor 58 0 98 0 Upper Floor 59 0 99 0 Main Floor Diaphragm Shear = 2565 Ibs Upper Floor Diaphragm Shear = 2600 lbs Roof Diaphragm Shear = 1447 Ibs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm (Ibs) Diaphragm (Ibs) Diaphragm (Ibs) Width (ft) Width (ft) Width (ft) 1 8 1283 8 1300 8 723 • . 2 8 1283 8 1300 8 723 E= 16 2565 16 2600 16 1447 • g '-- Uill, . Harper Houf Peterson Righellis Pg #: Longitudinal Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D S1 = 0.34 Ss= 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 SMg 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 S 0.71 Equ. 11.4 -3, ASCE 7 -05 SD1= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (lb)= 7865 Floor 3 Wt (Ib)= 7800 Roof Wt (lb) = 12566 Wall Wt (Ib) = 35496 • Trib. Floor 2 Diaphragm Wt (Ib) = 22063 Trib. Floor 3 Diaphragm Wt (Ib) = 21998 Trib. Roof Diaphragm Wt (Ib) = 19665 Vertical Dist of Seismic Forces Cumulative % total of base shear Rho Check to Shearwalls (Ibs) I to shearwalls I Req'd? Vnoor 2 (Ib) = 711 100.0% Yes VFloor 3 (Ib) = 1595 85.3% Yes Vroof (Ib) = 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft Ibs Ibs Ibs 1 275 270 360 • 323 718 1220 2 330 330 388 • 388 877 1315 Sum 605 600 748 711 1595 2534 Total Base Shear* = 4840 LB I • *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Transvere Shearwalls Line Load Controlled By: Wind ' Shear H L Wall H/L Line Load Line Load Line Load - Dead V Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Fir. From 3rd Fir. From Roof Load Sides Factor . Type T (ft) (ft) - (ft) ht k ht k ht k (klf) (pH) (ft-k) (ft -k) (k) 101 8 5.25. 5.25 1.52 OK 8.00 2.28' 18.00 3.14 27.00 2.77 1560 Double 1.40 VIII 102 8 3.88 188 2.06 ox 8.00 2.80 8.00 0.00 723 Single . 1.40. IV 103 8 4.58 8.58 1.75 OK 8.00 2.22 8.00 .3.14 8.00. 2.77 947 Double 1.40 VI 104 8 4.00 8.58 2.00 ox 8.00 2.22 8.00 3.14 8.00 2.77 947 Double 1.40 VI 107 8 ' 4.58 13:08 1.75 oK 8.00 2.28 18.00 3.14 27.00 2.77 626 " Single 1.40 III 108 8 8.50 13.08 0.94 OK 8.00 2.28 18.00 3.14 27.00 2.77 626 Single , 1.40 III 109 . 8 3.88 3.88,. 2.06 OK 8.00 2.80 723. Single 1.40' IV 110 ' 8 1.25 ' 4.50 6.40 • :' ` 8.00 2.22 8.00 3.14 8.00 2.77 1807 Double 1.40 NG %Y -y 111 8 2.00 430 4.00 `,it 8.00 2.22 8.00 3.14 8.00 2.77 .1807 Double 1.40 . NG 112 8 1.25 4.50 6.40. 8.00 2.22 8.00 3.14 8.00 2.77 1807 Double 1.40 NG 201 9 6.79 9.79' 133 ox 9.00 3.14 18.00 2.77 604 Single 1.40 III 202 9 3.00 9.79 3.00 OK 9.00 3.14 18.00 2.77 604 Single 1.40 III 203 9 5.00 5.00 1.80 ox 9.00 '3.14 18.00 2.77 1183 _ . Double 1.40 VII • • 204 Not Used 205 Not Used 206 Not Used 301 8 6.88 10.08 1.16 OK 8.00 2.77 275 Single 1.40 . 1 302 8 3.21 10.08 2.49 ox 8.00 .2.77 275 Single 1.40 I 303 8 5.00 10.00 1.60 OK 8.00 2.77 277 Single 1.40 I 304 8 2.50 10.00 3.20 OK 8.00 2.77 . 277 Single 1.40 I 305 _ 8 _ 2.50 10.00 3.20 OK 8.00 2.77 277 Single 1.40 I Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check • V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L • 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) g L \LA Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Fransvere Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load 'Line Load Dead V Rho *V % Story # Panel Shear Panel M M. Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht k ht k • ht k (kit) (p1f) (plf) (ft-k) (ft-k) (k) 101 8 5.25 5.25 1.52 OK 8.00 0.15 18.00 0.80 27.00 1.26 419 545 0.30 1.31 Single 1.00 IV 102 8 3.88 .3.88 2.06 OK 8.00 0.33 8.00 0.00 0.00 85 111 0.22 0.97 Single 0.97 I 103 8 4.58 8.58. 1.75 OK 8.00 0.23 8.00 0.80 8.00 '1.28 269 350 0.26 1.15 Single 1.00 II 104 8 4.00 8.58 2.00 OK 8.00 0.23 8.00 0.80 8.00 1.28 269 350 0.23 1.00 Single 1.00 II 107 8 4.58 13.08 1.75 OK' 8.00 0.15 18.00 0.80 27.00 1.26 168 219' 0.26 . 1.15 Single • 1.00 .I • 108 8 8.50 13.08 0.94 OK '8.00 0.15 18.00 0.80 27.00 1.26 ' ` 168 219 NA 2.13 Single , .1.00 I • 109 8 3.88 3.88 2.06 OK 8.00 • 0.33 0.00 85 ' 111 . 0.22 0.97 . Single 0.97 1 110 8 1.25 4:50 6.40 .y; s ,, 8.00 0.23 8.00 0.80 8.00 1.28 513 667 0.07 0.31 Double 0.31 NG 111 8 2.00 4.50 4.00 • " " ! ' . 8.00 ' 0.23 8.00 0.80 8.00 1.28 513 667 0.11 -0.50 Double 0.50 NG' 112 8 _ 1.25 _ 4:50 _ 6.40 , - 8.00 0.23 8.00 0.80 8.00 _ 1.28 513 _ 667 0.07 _ 031 _ Double _ 0.31 NG 201 • 9 6.79. • 9.79. 1.33 OK . • 9.00. 0.28. 18.00 1.26 • ' 157 205 0.46 1.51 Single 1.00. I 202 9 3.00 9.79 3.00 ' OK . _ 9.00 0.28 18.00 1.26 157 205 ' 0.20. 0.67 Single 0.67 II 203 9 5.00 5.00 1.80 OK 9.00 _ 0.55 18.00 1.28 _ 366 476 0.34 1.11 • Single 1.00 IV . 204 - Not Used 205 . . Not Used 206 . Not Used . 301 8 .6.88 10.08 1.16. OK 8.00 1.26 125 162 0.34 • 1.72 Single 1.00 I ' 302 8 3.21 10.08 2.49 OK • 8.00 1.26 125, 162 0.16 0.80 Single 0.80 . 303 8 5.00 10.00 1.60 OK . .. 8.00 1.28 128 166 0.25 1.25 Single 1.00 I 304 8 2.50 10.00 3.20 OK 8.00 1.28 128 166 0.12 0.63 Single 0.63 II , • 305 8 2.50 10.00 3.20 OK 8.00 1.28 128 166 - 0.12 0.63 Single 0.63 II Rho Calculation . Does the 1st floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total transverse base shear? Yes • Total 1st Floor Wall Length = 17.71 Total # 1st Floor Bays = 4.43 Are 2 bays minimum present along each wall line? No 1st Floor Rho = 13 Total 2nd Floor Wall Length = 14.79 Total # 2nd Floor Bays = } Are 2 bays minimum present along each wall line? No 2nd Floor Rho = 13 Total 3rd Floor Wall Length = 20,0* Total # 3rd Floor Bays = s Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho = 13 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load *Rho / Total L % Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2 *I/H Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L 0.5 * (.6 wind or .9 seismic) • Uplift T = (Mo-Mr) / (L - 6 in) Harper Houf Peterson Righellis P #: • Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H • L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel M MR Uplift • Panel Lgth: From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht • k ht k (klt) (plt) (ft -k) (ft -k) (k) 105 8 12.75 12.75 0.63 OK 10.00 1.28 18.00 " 1.30 27.00 0.72 1.13 259 Single 1.40 I . 55.75 92.01 0.04 106 8 12.75 12.75 0.63 OK 10.00 1.28 18.00 1.30 27.00 0.72 1.13 259 Single 1.40 1 55.75 92.01 0.04 • 207 9 11.50 11.50 0.78 OK 9.00 1.30 18.00 0.72 0.75 176 Single 1.40• 1 24.71 49.73 -0.47 208 9 1.11.501 11.50 0.78 OK I 9.00 1.30 18.00 _0.72. 0.75 176 Single 1.40 ' • 24.71 49.73. -0.47 306 8 10.00 10.00 0.80 ox 8.00 0.72 0.29 72 Single 1.40 1 5.78 14.40 . -0.30 307 8 10.00 10.00 0.80 OK 8.00 0.72 0.29 72 Single 1.40 1 5.78 14.40 -0.30 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • • • Harper Houf Peterson Righellis Pg #: 1 . Shearwall Analy Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho' V % Story if 'Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd FIr. From 3rd Flr. From Roof . Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht ' k ht k ht' k ' (klf) (plf) (plf) ' (ft-k) (ft-k) (k) 105 8 12.75 12.75 0.63 OK ' 10.00 0.32 18.00 '0.72 27.00 1:22 1.19 177 177' NA 3.19 Single 1.00. 1 49.09 96.89 -0.74 106 8 • 12.75 12.75 0.63 OK 10.00 0.39 18.00 0.88 27.00 1.32 1.19 202 202 NA 3.19 Single 1.00 1 55.17 96.89 -0.24 Single I 207 208 I 9 9 11.50 11.50 11 50 1 0.78 OK . I I 1 9.00 I 0.88 18.00 1.32 • 0.81 191 1 191 I NA I 2.56 I I Single , 1.00 I 38 56 1 53.69 I -0.06 I 306 I 8 1 10.00 1 10.00 0.80 OK I . I I 1 8.00 I 1.22 0.35 • 122 122 I NA 2.50 , Single ' 1.00 I 9.76 17.40 -0.07 I 307 . 8 - 10.00 10.00' 0.80 OK 8.001 1.22 ' 0.35 122 122 ' NA - 2.50 Single ' 1.00 I 9.76 17.40 -0.07 Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total longitudinal base shear? Yes , Does the 2nd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Total 1st Floor Wall Length = 25.50 Total # 1st Floor Bays = 6.33 Are 2 bays minimum present along each wall line? Yes 1st Floor Rho = i.o Total 2nd Floor Wall Length = . 2100 Total # 2nd Floor Bays = s Are 2 bays minimum present along each wall line? Yes • 2nd Floor Rho = 1.0 Total 3rd Floor Wall Length = 20.00 Total # 3rd Floor Bays = s Are 2 bays minimum present along each wall line? Yes, , 3rd Floor Rho = 1.0 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load'Rho / Total L Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2 *L/H Shear Factor = Adjustment For H/L > 2:1 Mo (Overtuming Moment) = Wall Shear ' Shear Application ht Mr (Resistingyoment) = Dead Load' L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) • Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Transvere Shearwalls Panel Wall Shear Wall Type Good For V (pf) (PR) amminneams 101 1560 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 1667 102 723 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 833 103 947 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 104 947 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 107 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 108 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 109 723 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 833 110 Simpson Strongwall 111 Simpson Strongwall 112 Simpson Strongwall 201 604 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 _ 202 604 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 203 1183 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 1276 204 Not Used 205 Not Used 206 Not Used 301 275 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 302 275 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 303 277 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 304 277 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 339 305 277 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 339 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. • E Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Longitudinal Shearwalls _ Panel Wall Shear Wall Type Good For Uplift ' Simpson Holdown Good For V (plfl (PI) OW OW 105 259 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 44 Simpson None 0 106 259 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 44 Simpson None 0 207 176 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -3451, Simpson None 0 208 191 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 59 Simpson None 0 I 306 122 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 " -72 Simpson None 0 307 122 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 -72 Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. 8 -1,6 Transverse Wind Uplift Design Unit B Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left _Right Left Side of @ Right Wall Wall @ Left @ • floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 101 8 1.1667 5.25 5.25 2.28 3.14 2.77 8.19 1560 0.1 0.8 0.208 72.42 5.58 2.47 14.54 14.93 14.54 14.93 102 8 1.1667 3.88 3.88 2.8 2.8 722 0.092 2.432 22.40 10.13 0.69 4.83 6.50 4.83 6.50 103 8 1.1667 4.58 8.58 2.22 3.14 2.77 8.13 948 0.1 0.078 0.078 38.40 1.41 1.41 9.20 9.20 203 R -12.12 -2.91 9.20 104 8 1.1667 4 8.58 2.22 3.14 2.77 8.13 948 0.234 0.117 1.632 33.54 2.34 8.40 9.18 8.14 9.18 , 8.14 107 8 1.1667 4.58 13.08 2.28 3.14. 2.77 8.19 626 0.1 0.192 0.078 25.36 1.93 1.41 5.93 6.01 201L 201R 6.71 6.71 12.65 12.72 108 8 1.1667 8.5 13.08 2.28 3.14 2.77 8.19 626 0.1 0.078 0.384 47.06 4.28 6.88 5.56 5.37 202L 202R 6.77 7.24 12.33 12.60 110 8 1.1667 1.25 4.5 2.22 3.14 2.77 8.13 1807 0.1 0.384 0.078 18.07 0.56 0.18 23.00 23.30 203L 12.13 35.13 23.30 111 8 1.1667 2 4.5 2.22 3.14 2.77 8.13 1807 ' 0.1 0.078 0.208 28.91 0.36 0.62 18.87 18.76 203R -12.12 6.75 18.76 112 8 1.1667 1.25 4.5 2.22 3.14 2.77 8.13 1807_ 0.1_ 0.208_ 1.424 18.07 0.34 1.86 23.17 21.99 • 23.17 21.99 • 201 9 1.1667 6.79 9.79 3.14 2.77 5.91 604 0.172 0.848 0.156 39.13 9.72 5.02 4.90 5.32 301L 301 R 1.45 1.40 6.35 6.71 202 9 1.1667 3 9.79 3.14 2.77 5.91 604 0.172 0.848 0.156 17.29 3.32 1.24 5.10 5.51 3021 - 302r 1.67 1.72 6.77 7.24 203_ 9 1.1667_ 5 5 3.14_ 2.77 5.91 1182_ 0.172 0.848 0.385_ 56.42 6.39 4.08 10.52 10.80 303L 303R 1.61 1.32 12.13 12.12 301 8 6.88 10.09 - 2.77 2.77 275 0.252 0.384 0.468 15.11 8.61 9.18 1.45 1.40 1.45 1.40 302 8 3.21 10.09 2.77 2.77 275 0.252 0.468 0.384 7.05 2.80 2.53 1.67 1.72 1.67 1.72 303 8 5 10 2.77 2.77 277 0.252 0.384 0.858 11.08 5.07 7.44. 1.61 1.32 1.61 1.32 304 . 8 2.5 10 2.77 2.77 277 0.112 0.192 . 5.54 0.83 0.35 2.02 2.13 2.02 2.13 305 8_ 2.5 10 2.77 2.77 277 0.112 0.384 5.54 0.35 1.31 _ 2.13 1.90 2.13 1.90 Spreadsheet Column Definitions & Formulas L = Shear Panel Length I R H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • • Transverse Seismic Uplift Design Unit B Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf. klf k k kft kft kft k k k k k k 101 8 1.1667 5.25 5.25 0.148 0.795 1.257 2.2 419 0.1 0.8 0.208 19.99 5.58 2.47 3.15 3.74 3.15 . 3.74 102 8 ` 1.1667 3.88 3.88 0.331 0.331 85 0.092 2.432 0 2.65 10.13 0.69 -1.91 0.60 -1.91 0.60 103 8 1.1667 4.58 8.58 0.231 0.8 1.277 2.308 269 0.1 0.078 0.078 11.15 1.41 1.41 2.42 2.42 203 R -2.99 -0.56 2.42 104 8 1:1667 4.00 8.58 ' 0.231 0.8 1.277 2.308 269 0.234 0117 1.632 9.74 2.34 8.40 2.18 0.62 2.18 0.62 107 8 1.1667 4.58 13.08 0.148 0.795 1.257 2.2 168 0.1 0.192 0.078 7.00 1.93 1.41 1.29 1.41 201L 201 (part) 1.17 0.34 2.46 1.75 108 8 1.1667 8.50 13.08 0.148 0.795 1.257 2.2 168 0.1 0.078 0.384 12.99 4.28 6.88 1.14 0.85 202L 202R 0.33 1.35 1.47 2.20 110 8 1.1667 1.25 4.50 0.231 0.8 1.277 2.308 513 0.1 0.384 0.078 5.80 0.56 0.18 6.88 7.32 203L 3.00 • 9.87 7.32 111 8 1.1667 2.00 4.50 0.231 0.8 1.277 2.308 513 0.1 0.078 0.208 9.28 0.36 0.62 5.89 5.74 203R, 304L ' -2.99 2.91 5.74 112 8 1.1667 1.25 4.50 0.231 0.8 1.277 2.308 513 0.1 0.208 1:424 5.80 0.34 1.86 7.13 5.36 7.13 5.36 201 9 1.1667 6.79 9.79 0.795 1.257 2.052 210. 0.172 0.848 0.156 13.83 9.72 5.02 0.75 -. . 1.37 .301L 301R -0.13 -0.20 0.62 1.17 202 9 1.1667 3.00. 9.79 0.795 1.257 2.052 210 0.172 0.848 0.156 6.11 3.32 1.24 1.04 1.66 3021 302r 0.11 -0.32 1.15 1.35 203 9 1.1667 5.00 5.00 0.8 1.2 ?7 2.077 415 0.172 0.848 0.385 20.18 6.39. .4.08 2.89 . 3.30 303L 303R • 0.11 -0.32 3.00 2.99 301 8 6.88 10.09 1.257 1.257 • 125 0.252 0.384 0.468 6.86 8.61 9.18 -0.13 ' -0.20 -0.13 -0.20 302 8 3.21 10.09 . . 1.257 1.257 125 0.252 0.468 0.384 3.20 2.80 2.53 0.21 0.29 • 0.21 0.29 303 8 5.00 10.00 1.277 1.277 . 128 0.252 0.384 0.858 5.11 5.07 7.44 0.11 -0.32 0.11 -0.32 304 • 8 2.50 10.00 1.277 1.277 128 0.112 0.192 0 2.55 0:83 0.35 0.72 0.90 ' 0.72 0.90 305 8 _ 2.50 10.00 • 1.277 1.277 128 0.112 0 0.384 2.55 0.35 1.31 0.90 0.55 0.90 0.55 • Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • • TRANSVERSE UPLIFT CALCULATIONS - SUMMARY UNIT b Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right k . Simpson k k Simpson k 101 Wind 14.54 Holdown HD12.w DF 15.51 Wind 14.93 HD12 w DF 15.51 102 Wind 4.83 Holdown HDQ8 w 3HF 6.65 Wind 6.50 HDQ8 w 3HF 6.65 103 Seismic -0:56 Holdown HDQ8 w DF 9.23 Wind 9.20 HDQ8 w DF 9.23 • 104 Wind 9.18 Holdown HDQ8 w DF 9.23 Wind 8.14 HDQ8 w DF 9.23 107 Wind 12.65 Holdown HD12 w DF 15.51 Wind 12.72 HDI2 w DF 15.51 108 Wind 12.33 Holdown HDU14 14.93 Wind 12.60 HDU14 14.93 110 Wind 35.13 Holdown None 0.00 Wind 23.30 None 0.00 111 Wind 6.75 Holdown None 0.00 Wind 18.76 None 0.00 112 Wind 23.17 Holdown None 0.00 Wind 21.99 None 0.00 201 Wind 6.35 Strap MST60x2 8.11 Wind 6.7.1 MST60x2 8.11 202 Wind 6.77 Strap MST60x2 8.11 Wind 7.24 MST60x2 8.11 203 Wind 12.13 Strap CMST12x2 18.43 Wind 12.12 CMST12x2 18.43 301 Wind 1.45 Strap MST48 2.88 Wind 1.40 MST48 2.88 302 Wind 1.67 Strap . MST48 2.88 Wind 1.72 MST48 2.88 303 Wind 1.61 Strap MST48 2.88 Wind 1.32 MST48 2.88 • 304 Wind 2.02 Strap MST48 2.88 Wind 2.13 MST48 2.88 305 Wind 2.13 Strap _ MST48 2.88 Wind 1.90 MST48 2.88 1 • , ',,'e i' S 0.1,...c,,t } -.*= .1'.x$1 ve.v. O ° If -- 9,x.°0 .44 191. X11 *t1 1-IE'. ° 0 1711. q v o * 011 n4Si v g l Ssmj .\ 3!kL gas rooter urn - ro � - ,X1'MSS = 111 .jl m �x 44 0-1,5\ ? - , Ic•1 1 z1\ 4 #OVLS ') S I S 1 \ '4 0 r...�.\ > - t � S 0 i 1 ,. .so - \ - \kjM - SrT; `) AA t SS fig o # 6941 4_ x S1 MSc, z11 4 -ti h - 131 1`L'0 iiOi. -L$ tkt►ZmSS t11 . cCh' q7'1 rS Sce:0 Ql. k x S\ (\ASS QU "131A = Vs - Fd °'vr j,,,LeA ti' JO. JvAAS a\"t`cr^ 36 kl - 1 - e M Ss . \-4 savii 5A.Z\'S = 0 1 o 11 s'8 1 bi-' = '7..)(_4ho'0)( ) m El — 1S " ' * s_ —1 e ' t0�)LS2o'0)<5'b1) 0 `t �-- S , e^ 2 0 � _ �� lZ��t��o) �� - Z io1)�s t o�a)< "b�) o -A S : 111 Worn 0 0 g c "11 s k hh'0 = `t)(obO`O)tJ,,) ? "IS SO ±-,‘ \ %°I 'L° _ <z Z.O'O S'b\) 4 `S'O)<` -'ZO'O V'bt) 0 - to SO ( , e te' e = ( - et 4 (-Zlz -zto o - kg1) -\ Z k 2 111xst0'ox'l,e) { \ 4. (�S'0)`ZtiOO)( 1.) -k<' 'Q)( O'a)t,S " o r y \1\ 'vN\ m "lHo ca )it k o• : `h -0.+. n x1 — AS 'A h %' = vi -r c(szo'o)(s'b%)x,si. F ° ZQ s8�--A ( - c'tIq) tto'0)tk. (StO'O)Ls'b1)) 4*(2tO'01<t2)4- ( ❑ r 3 OiI " t 170cti \'° \J m i o SCS!-A gg .e'g - �daNS N`-)IS3Q " m ❑ ❑ Ss 3N A.v.i.c N 0 CnSid% Z1 tIg4-kS -Q (`) ounsIlLS\Q, :38 cnn,:.,„. :173 road do Q Q' ` V33 .oN aor O\ `_e .AH / i 0 0 , 10 10'6 0 ----- ...,:,- = •S----- . ''•2 .1,--"r''11-..."5,1"-- -- : Z.- 1. 1".'''----z-= Z7,..., . I '.1 1 , , (71 1 ■ ' , . 1: f . • r 1 id i ' 1 ■-li 3 fw ei ,li 1 )1 P g 1 1 1 ,., .1 .. t kO --- / 1 \ . (1), mail MEM Itam C) 0 8- Uki, ......) toPkv) 0\\1\T - A 5A- 'V too 9-- Sw \-- A N 0 )T ❑ ❑ 10 cQ _ Y.I � ; t t l 0 1 ?� • \02. I 0 ______. 103 toy (2. p16) UN■ - a S .3 r - . V 1 - 00( &.• . S \it,j 1-1\1 0 UT - . . . . • • ' 1 i i . . • I' .1 . I I , 11 i • I . . I 1 1 • ' I ---- .:•=.....:Z • . a:_•"7'i• • !..4 i•• 11 1 . . : .. . . r r t 1 •• • ''.• d ,. u ,-. , 0 i• a - I A, • A . 9 . . • P.; . • mil - . 1•;!, ,., • ------ ------! I :-.-...ff,... . 1 ' --. , * _II . . . --,i11-.- , oln t . ----- al:( -- tiito,-.-- i I ---._ZL i I • . •-%1 , . . • . • • . • . . C) . - \ 10'3 . ! ... . 3b..i_ ,. 7 (-.D ,a431 aoT P.06 . 0.. . . Uivo 1- ax):0,:: - Ftocal. - - Sw .1.,iti%/0171— . 3o 1 Zo2_ 6 .:.. 'm 2�_�7 cv . \ \ . H R , \ \ \ . 6 § k § / \ \ \ % • \ , / • . : \ / / /' / • \ 9 \ ' . • / ! ki � • . �.< ._ 7\ _ -'-' . - ... / - \| f ) - - - - ym . L . \ \ 1. 0 b j .\ _ \ \ � \ _ z . e fy \ 1 3o . : _ • R �3� ���4 , . � . C) B ..,L11. /N 3 (LE. LEV L ) LA './Q BY r \ DATE: ..... ` JOB NO.: ( ... N i oct 0 rif■f\C PROJECT: . 4.00F W4.1-- ' 6 }Is` RE: Des iCy\ QC n rn 1 bloc ort @ Sto if S ❑ ❑ • Op none Z • 0 W /f...... . F ;; TRtz Wan ON 1 10 F.F. 1c1'- ; I4" L 0 "So i K r = 9 9 ; Top vans 18 5 ° a Max 5� fl ti_o ,NtA.3C V BPI U 0 W DEslc i W O P(essuc • a Z = - a0,. O`o psi o c--.F. q' -nt," a Des‘r 9 \o,ke3 'Co ✓O t , l'." Leer .k TOP P �.AZES 8 U i 1L) W\ UNJ WO. I (Y1 C1 DC 1911)02 2 U T T ❑ g + = tttoko\i* ytz= ‘4 cm # o - 0" f IL Z z I = W2.' - t q 4 165.35 : 5 #ct ❑ o $ So M ( It „_ 5. � . £- _ _ 5 -i't. Ytx1Z >< S t3.5 5.251 1 L ,><.-- - 6Y . 1' 21. 44/04-4... 1--3 5. Ev = 1 _ 0°19 t __ $11*/,N1- A C3. -.x,25 3 F1; (1-4i) - BSO ? sink. (,)(1 s)(1.1s)= 3:3k;4ps;- < 6(.412 r) a o \ (4r ' = ISO ?Si- Ci -0 = auo 5 '> b2.. 01. xx 0 = N(.-:-A 1(j o () \I: i o n 2 8-L2?) - --Isi y0'i)(0'11�•Ixb•Of C) ' 1 )c o ' :1'1X? -3 - ?c ) l °Ij e \ SV1 ' h t Z _ -) C a -LO 1 ":= (StiW # 4N SV ` h k, = 1 0 4 ' 3.4 `j i° cam' S 4 __. 0 0 4 ` L 4 J +)7`S -b( d-CG'0) ®' h , r + °Z', 4 ('t(3'0)S'h 4 S = T - • Nip= q's'b'C. p = r u4. zN'aetw " 0 tl N' 57 = 4 1'5 1 4. ki ti m 1 3 - Y- f\ O A u s - 1 L - _ - _11 a _ ❑ 3 # 40 i -LT-75a `p �,zm = W O 3 .1 a)-56)1'=") 3 4, _ V/ ? o cn 4 - 1 1 ' x. 0 -'"'d cne _ - A -- )0ZG \ \c` uo -p .00-1 Z 3 sc1 Q,Yy 4'e - = 3 isc`Sa 1c1 '9v,r t`l1 Q.61%aU o m z 0 m O 1iQ -,�N = G\��V+ado ,\v)-ks a ar.n°\ X•oW � o v4,6 -;.1 = INiaa v0 <- '11.Prn q.al ❑ 3 3 0 m -\ ?�00 QNZ �,..J a n �-\ \ () ❑ ❑ Z C 140 :38 :.1.350 8.1 ( J , f Q - N ) :.ON 90r 01- ^ y7 :31VO )\(\r•Vi:- WoodWorks® Sizer SOFTWAR FOR WOOD DESIGN Unit B - Front Load WoodWorks® Sizer 7.1 June 25, 2010 10:52:50 1 COMPANY 1 PROJECT RESULTS by GROUP - NDS 2005 • SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF =. 1108 Trusses W = � '_ Q =6 0 = = == == __ = = =_ = Not designed by request - � (2) 2x8 Lumber n -ply D.Fir-L No.2 1- 2x8 By Others Not designed by request ' (2) 2x10 Lumber n -ply D.Fir-L No.2 2- 2x10 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 (2) 2x4 Lumber n -ply Hem -Fir No.2 2- 2x4 (3) 2x4, Lumber n -ply Hem -Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 616.0 Typ Wall 2x4 Lumber Stud Hem -Fir Stud 2x4 816.0 SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR . .1101 Jot ® �� R ----- Not designed by request ..v--= • landing Lumber -soft D.Fir -L • No.2 2x6 616.0 4x6 Lumber -soft D.Fir-L No.2 4x6 • (2) 2x8 Lumber n -ply D.F1r-L No.2 1- 2x8 1.75x14 LSL LSL 1.55E 2325Fb 1.75x14 By Others Not designed by request By Others 2 Not designed by request 12) 2x10 Lumber n -ply D.Fir-L No.2 2- 2x10 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 (2) 2x4 Lumber n -ply Hem -Fir No.2 3- 2x4 13) 2x4 Lumber n -ply Hem -Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 816.0 Typ Wall 2x4 Lumber Stud Hem -Fir Stud 2x4 816.0 SUGGESTED SECTIONS by GROUP for LEVEL 2 - FLOOR R Mnf Trusses Not designed by request deck joists Lumber -soft D.Fir -L No.2 2x8 816.0 Nnf Jst Not designed by request 3.125x14 LSL LSL 1.55E 2325Fb 3.5x14 • 4x8 Lumber -soft D.Fir -L No.2 • 4x8 . 3.125x10.5 Glulam- Unbalen. West Species 24F -V4 DF 3.125x10.5 5.125x16.5 GL Glulam- Balanced West Species 20F -V7 DF 5.125x16.5 . (2) 2x10 Lumber n -ply D.Fir -L No.2 2- 2x10 4x12 Lumber -soft D.Fir-L No.2 4x12 3.125x141) LSL 1.55E 2325Fb 3.5x14 ' 12) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 13) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 6x6 Timber -soft Hem -Fir No.2 6x6 12) 2x4 Lumber n -ply Hem -Fir No.2 3- 2x4 (3) 2x4 Lumber n -ply Hem -Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 816.0 SUGGESTED SECTIONS by GROUP for LEVEL 1 - FLOOR ... m � � a .. == === = == =__�� _ - _ .. Not designed by request Fnd CRITICAL MEMBERS and DESIGN CRITERIA Group Member Criterion Analysis /Design Values = deck joists j42 a a = = R .. Bending �_= i - = = � = 0.41 T � = = w Mnf Jot Nnf Jet Not designed by request landing j46 Bending 0.17 By Others 3 By Others Not designed by request 4x6 b25 Bending 0.87 (2) 2x8 b7 Bending 0.21 1.75x14 LSL b14 Bending 0.57 3.125x14 LSL b21 Shear 0.41 4x8 620 Bending 0.04 By Others By Others Not designed by request By Others 2 By Others Not designed by request . 3.125010.5' b24 Deflection 0.83 . 5.125x16.5 GL b26 Bending 0.21 12) 2x10 615 Bending 0.93 4x12 b22 Shear 0.16 • 3.125x141) b23 Deflection 0.09 Ftg Ftg Not designed by request (2) 2x6 02 Axial 0.34 (3) 2x6 c64 Axial 0.59 6x6 c36 Axial 0.77 (2) 2x4 025 Axial 0.35 (3) 2x4 c44 Axial 0.84 Typ Wall w15 Axial 0.28 • Fnd Fnd Not designed by request Typ Wall 204 w40 Axial 0.33 ==== s = = = =tee =.= =a.= s =. = ..= ..= = =a ..= ---- = = =....- .-=. . DESIGN NOTES: • 1. Plea ase verify that the default deflection limits are appropriate =a = = = == • fax your application. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result is considered the final design and appears in the Materials List. 3. ROOF LIVE LOAD: treated as snow load with corresponding duration factor. Add an empty roof level to bypass this interpretation. . 4. BEARING: the designer 'is responsible for ensuring that adequate bearing is provided. 5. GLULAM: bad = actual breadth x actual depth. 6. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 7. Sawn lumber bending members shall be laterally supported according to • the provisions of NDS Clause 4.4.1. 8. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. • 9. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 10. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. . g G ' • • • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Rear Load WoodWorks® Sizer 7.1 June 28, 2010 10:56:39 Concept b24Dde: Beam View Floor 2: 8' ■ i l O U4 � r : ,. ��: bu • 4/ - b IULb._..: .. -:' : _ -- 4b. -0- 1U.1/ [ • . : : : ; 40 -0 y9 43'b ytf 44 -0- - - "' _: "..: :' -- ' : ' - --` 1:00 - - - 5 • ,- Sy b 4 - � - - 315.-0' y3 .. .. �f.-0.. 3b - b.. ,. - . so yu . .. : SJ' -b • tits" -.: . :_,,. :: .. - -- - -- - - • . b .51 tab - - ----.. . _ ... .._. 3U' -b: Ly'-b" L /'b " 01 - - - - - 15 --b.. i L3 -b 10 -. .. _ LL -b' • / ( L.1. -0 . /0 : : . . LU'-b 17 14 . .. .. .- .. . 1d -b' • /L--- - : . - -- - �--- :.....:-- • ---- - -- / I -. _ .. _ ._.._... _ -. _ . --- -- - -- -- - - 14 b' f3-tr' . : - • : 11 -0 bb ! - _. . - lU b' bµ} .; . b21 i - 0 41 1 0Z, - • .: • - b 1.- - - : b6 , - b26.- - : -_ _ . _ : - - . - - 3-b .. . b b bu) --b201 b22 S' b C b 1-0 ; Jul . U -b .BB18B BCCCC CCC C}CCC CCCCCC C CCC CCICCCD.DDD D DD DIIDDD DD DDDD D D DD CD'DD DE,E E E EEEI-EEEIEEIE EEEEEEEiEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'67'8'9111 "1;1:1 222 /21313 4A:4 5;5 :5.5!5 (5'5(5'.6(68:6 :6 :7.77.7(77' -6" • • IS —Cd'\2 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks® Sizer 7.1 June 28, 2010 10:04:32 Conceptb24Dde: Beam View Floor 2: 8' • • 1050 49 1o4 . :: . :- . .- - 40 "-b" 1U.5 ` - ' . " : _ 4 / - 0' 1UL -,'. _ _ _ _ ., - 40 IOU' - b1 - : ' ' 44 -0 4 41 0 4U "-b` 0 .. .. .. �.1 _.. ._. 30-b yU .. - - 34 0y 35.x.. 0/ 3 " - b 05 4V -b 10 -t0 . ... .. ... 01 - L. 00 - .--�:'' -: - _. - ' -- ---- --"'- -- -. -: - -- - --- - - -_ - : . - --- GS -b" ll Ll -0" /b - ._: - . --- - -- -=-- `- - - -- -: - - -. -- -- --- - LU' -0 IV-0 10 -0 10-0 / . I : 10 b /U. ....___..._. - .. ... - 14 -10 00 - :: . . 0b_... -: : :...: _: -.' - _ _ ._ ........ . . .. . .. .. __ ,__ _ ... __ .. - b4, _ _ :_ :_ _ b21 b .. O 25 i1 03 - - (._0.. 04 0_ 01� : ' : ':: -. .... _ . . .._ ._ - 0 bu b23 _b20 ; b22- - ._ - - 4-b __ - 3 b II iL:. - 1 b U 45 BBIB B BC CC CCCC CICCC CC CCCCC C CC CC'CC CD DD D D DD DIDDDIJD DD•DDD D DD CD'DD DEE E E E EEEEEEE1EEIE EIEEEEEEEEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72'74' 76' 0'1'2'3'4'5'6'7'8'9111 "1:1 :1 t1: 111' 2( 22; 2 :2 :33 :3 /3 4!4 4:4;4.4'.4(4'4t4 5:5:5 8 :6 :6v:6t6:6f6f707.77 • 6- (_,--) WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN • Unit B - Front Load WoodWorks® Sizer 7.1 June 28, 2010 10:04:34 • Coc60ept Mode: Ccc591mn View Floor 2: 8' 1050. 49' -6" I U4 i - - ... - .. 40' -b.. 'IU3 ' - : - : - -- • 4f'-b • 'IUL - - - 40.-b.. • IUU ? - c57 -c1 c2 i : c46'c58 + : :. . • V/ is .. . -- - .. -. : • VD V4 - ' '1 - ; - - 30-0 3f b" • VL -' -- - - ... - 3'0-17 yV .. - : 34'-0. • 0`J' .. [ 36-0' • 00 : . . _ : - 'c47 .: .:'--- - - -- - - - -- - - - -- 3L-0 0O : : - ' 4E3 . : .. Gy. -0.. La -0 03 :.1 =.1: ' i s : I .: ; I:I ; . .' . . .: : L!' OC - -:. - -- - - Lb - • - - : - - _: / 1 .. El c50 .. G'I -0 • C54 I I r , c68 I V -b r4 c53 . . : LI : . .! 10 b. • ! 3 - • - .. - : - -- .. - - - - : it -0 !G- .:c5._ -: (U._ 1:1 .. : • - :1.1 : . . 14 - b . . OV . - c7 .c56- - , - - - • . 1S'-0 • b4 : ; i . . b-b 033 __- .. , _ - : . -- -- - - --- -- - -- - --- _ - _. -. • 04 c - b b .. • •C40 3 b b ot t ) 4 b • c39 jrn c — s ®; i -b BBIB.B BC.CCC C IC CC C C CCCC C C CC CCICCC D DDD DD DtDDD DD DDDD D D DD D D CD'DD EE EE E:E EEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10'12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 1:1 :1 71 i1 '2(2222 203(33 :3 :3 "313!4(4•4:4k4!4E4AW5(5 5:5 :55:5(5 53f6f68:6 :66!6(6 61657(7 7.77.7 -6" • • • • ' (e\Ld\ WoodWorks®-Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks® Sizer 7.1 June 28, 2010 10:04:29 Concept Mode: Beam View Floor 3: 17' 1050 . . . _ 49'-6 I V4 : :: 46 -b 'I U3 - 41 -b IUItr - ._ -_._- . -: - 4b -b I IV - . -b7 . . ,. y rs � . _ .. - in 4G -b _ yb .: .. - ._ .. .. _ : - -- - .. -- 40 - 13 Sy _b 30 -b yV 34'-O uy 3.3 - 60 - ; : 30 '-0 .. • -:: .1 -- - - _ - -- - - .. Gb. -.. tSL .; - 17 - - ------ - - -- L b25 14: ly LS -b /3 : ' b13:: : : -. - - - - - -- it -o /G b11 I0-0 . by 1 3 - b bf 1 I -b bb 16 -0 b5 - - - y -0 04 :i : 0-U 03 OZ. - - , b._b.. bli .. 111 - b10.: ,b9-'-1, : ..1 -o : - o BB1B.B BCCCCCCCC ECCCCCCCCCCCCCCCICCCD.DDDD DDDtDDD DD DD DDDDDDCD1DDDE.E E E E EEEPEEEIEEIEEIEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18'20' 22'24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 '1 :1:1 11112 (2'2:2 :2 21213(33:33 "31314(4 :4.414f4 741415(5 5;5:5 6',6:6 77:7 • 8..._6c WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks® Sizer 7.1 June 28, 2010 10:04:27 Concept Mode: Column View Floor 3: 17' 1056 . 49' -6° 1 °4 - 415 -b `Y 101 . - 4b -b Iuu 1 ic1 c15 .. . . -_ 44 Oil "" " ._. -- - -- Fif - ^--° -- -:._ .. -._ : ... - - - - ... ._... _ . 41 -0 . . . .. • .: yb Ja b : yJ . - J (-b y L :: :.. ,. .. : : - .- . . ; . - .-- . - - - ". - - - 317._17 yl . - ..lb -b yu J4 b tyb JJ -b • 00 :_. _. . : c38 -- - - - - - - -- - - .z. -0 °t54- L`J -b ts4 - c 2 5 L73 b c61 dU - _':...__ .._"- : -- " - - - - -- - - - -- -- - --- - L4 -0 (J 11 c17 Ls b / / c43 L l -b i _ c : 41. c67 1 y "� (4 c22 - - - : ... 11 . : " _ 1 b -b • /L ' .c24 "c26-- "--- r----- In --t ( u _ I J 11 _ • _ _ . : 14' b bb .11/ b • b4). t I) ..c45. - . c44 4 - b # --- -= c21 - :c20c19 ®8 " : ,. : - : .5 -b L' b" BB\B.B BCCCC CCCCICCC CC CCCCC CCC CCICC CD DDD D DD DIODD CD DD'DD D D DD CDIDD DE.E E E•E!EE.EtEEEIEEiE E'EEEEEEfEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16 18'20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44'46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'67'8'91f 1 1;1:1'1!1 E1'111!2(22.2:2 "21243(33 :3 :3 :4:4.4!414 "4t4E5(5 55 :5 :6 :77 7(77'-6" • • s _ Cci ce9 • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks® Sizer 7.1 June 28, 2010 10:04:23 Concept Mode: Beam View Roof: 25' 140 49 -6 !US --- - -- - : !Ulf : --- _.. - - - - - 44 - a9 : 4b -b V0 - yb - . -'- - - -- ... - .. - - -'-- -- 4L b 4'! -b .. : . f i . - • 4u b Sy . b . :- Sb -b `J-l. -- - - -- -!: ....._- '-- -- ---- - - - 30 -b 0& S4 b • 1525'--. _: ., • .. ... _ . _ -- -- --. .. _ .._ - --- - - ...___ SS -b i ! 00 : • i . : : b16 . .. - __ - .. . .: 00 Lv-b Zr -b• 01 . ' ' L'J . 0U :> G4 _b • ra . rzs .- . • LS b /l rb - . -. ._ b27 - - • -- -- -- - -- - - - -.._ - • LL b 1l b 1 25 b /L lr -O lb b I0 b Ai 1 •-b' 00 1 G'-b 0 - - -- - - - - - -- - - _ b 11 b 00 IU bt ._._ : - ... - -... =-- - -- - - -- -- - '-_.`-- '- --.... - - -- - - -- -- ---- - ._. .. bS5 -. ' - _ � - • b • bL• : b - • s n L b -b U -b BBtBB BCCCCCCCCI DDDDDDCDiDDDEEEE E EEEIEEEIEEEEEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18'20' 22' 24' 26' 28' 30' 32' 34' 36' 38'40' 42'44' 46'48' 50' 52' 54' 56' 58'60' 62'64' 66'68' 70'72' 74' 76" 0'173'4'5'6'7'8'91(1 1:1:1'1:1(11 112( 2 22: 2 2.' 2221243(. 3 , 3 :3 :3 414£5(55:5:5 E:6'6"6!6(6fi(6i7(i'7,77 6" • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks® Sizer 7.1 June 28, 2010 10:04:25 Concept Mode: Column View Roof: 25' 1050 ... . _ _ .. .. _ .. .. _ - . 49' -6" I U4 - - 4 0 -0 I US : ' ; 1 . ; : : : : . „ : : i ' : . : . : 4/ -0 1 UL(. .. - .. - 40 -0 Ill l 40 -0 I VU 'c27 -" - • c28 - - - - 44 -0.. y9 _ _. -b' 4 4 41-0 40 b yb ..1 -0 yLi .. : -`-'::--i. _. ' _.. _ , -: .. - ... - -- ---- - -- - :- -- - . 30-0 - - . - -- - _ ._. _. 34 -0 . 1:1•V 33 -o • Ub -c29 - _ -. 3L -b or .' : 31 "_0 00 ...- _ _ : - - .. SU - li -b 233 -! L1. - b .. 01 ! - :� - -0 - - : [4 - 00 :-t _:. - ___. _. _ .:..._.- - _. - _.: -- - - - - . -_.. .. - ---- b (y L3-0 125 _._ : -,' .._ .. .. - - .. --"- LL -b 1 r c66 L"1 .43 1b - --— -- - -- --' -- - - - --- -'- -- -- LU fb c66 1 -0 f "1 -- - -- - - - - - - - - - - - 13 -13 I . - _._ _ :. ._._... _ _ _. . - -- 14 -0 by i3 . b . 00 ..: _. -- --- -- -` - -'-'- -- -- --= -- -- -_. :.. -. 'IL -b b! i-- ._ - . - 11 -0 03 1 - .._- V-0 b4 : [ _ 0 - 04 .? ` 0-b 01 ) 'C34 f: D b bU • S b L b ,.I — - - - - U -0 $BIB.BBCCCCCCCCICCCCC CCCCCCCCCC\CCCDDDD DD - DD DDDD CD'DDDE.E EEE EEEfEEEIEEIEEiEEEEEEf 0' 2' 4' 6 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 "1:1 :1 1:111 :1 Q1 02 222 212!3(33 :3;3 313!4(4'4A :44'.4(4: 414 "5 :5 :5 :6. 6'6(6- 6(61717'7 :7.7 -6" (. 6 2 ,— Cr-\(::i)::) COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:34 b1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 w27 Dead Partial UD 539.7 539.7 0.00 2.50 plf 2 Rf.Live Partial UD 493.7 493.7 0.00 2.50 plf 3 c14 Dead Point 1074 2.50 lbs 4 c14 Rf.Live Point 1601 2.50 lbs 5 j43 Dead Full UDL 47.7 plf 6 Live Full UDL 160.0 plf MAXIMUM RE • • • I Q Y � 31 Dead 1048 • 1539 • Live 1227 2089 Total 2275 3627 Bearing: Load Comb #2 #2 Length 1.21 1.93 Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2 -Plys Self- weight of 6.59 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv* = 127 Fv' = 207 fv * /Fv• = 0.62 Bending( +) fb = 581 Fb' = 1138 fb /Fb' = 0.51 Live Defl'n 0.01 = <L/999 0.10 = L/360 0.06 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.09 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 3627, V design* = 2356 lbs Bending( +): LC #2 = D +L, M = 2073 lbs -ft Deflection: LC #2 = D +L EI= 158e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. • 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. <8-61 COMPANY PROJECT fi1 WoodWorks® SOFTWARE FOR W000 DES7GN June 28, 2010 10:45 b7 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Dead Full UDL 13.0 plf Load2 Live Full UDL 40.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 10. s Dead 54 54 Live 120 120 Total 174 174 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 10 Fv' = 180 fv /Fv' = 0.05 Bending( +) fb = 120 Fb' = 1080 fb /Fb' = 0.11 Live Defl'n 0.01 = <L/999 0.20 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.30 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 174, V design = 139 lbs Bending( +): LC #2 = D +L, M = 262 lbs -ft Deflection: LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. (110 • COMPANY PROJECT i WoodWorks SOFTWARE FOR WOOD DESIGN June 28, 2010 10:33 b8 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 c30 Dead Point- 59 3.50 lbs 2 c30 Snow Point 75 3.50 lbs 3 w47 Dead Partial UD 96.0 96.0 0.00 3.50 plf 4 Dead Partial UD 78.0 78.0 0.00 5.50 plf 5_j13 Live Partial UD 240.0 240.0 0.00 5.50 plf 6 j14 Dead Partial UD 104.0 104.0 5.50 6.00 plf 7_j14 Live Partial UD 320.0 320.0 5.50 6.00 plf 8 b12 Dead Point 171 5.50 lbs 9 Live Point 469 5.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : A 10' 61 Dead 531 556 Live 761 1189 Total 1292 1744 Bearing: Load Comb #2 #2 Length _ 0.69 0.93 Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2 -Plys Self- weight of 6.59 plf included in loads; • Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv* = 67 Fv' = 180 fv * /Fv' = 0.37 Bending( +) fb = 556 Fb' = 990 fb /Fb' = 0.56 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.13 Total Defl'n 0.05 = <L/999 0.30 = L/240 0.16 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 1744, V design* = 1232 lbs Bending( +): LC #2 = D +L, M = 1984 lbs -ft Deflection: LC #2 = D +L EI= 158e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I =impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: • 1. Please verify that the default deflection limits are appropriate,for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 8.-61( COMPANY PROJECT 111 WoodWorks® SOFIWAREFOR WOOD DESIGN June 28, 2010 10:33 b9 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w51 Dead Partial UD 96.0 96.0 2.00 3.00 plf 2_c32 Dead Point 59 2.00 lbs 3_c32 Rf.Live Point 75 2.00 lbs Load4 Dead Full UDL 13.0 plf Load5 Live Full UDL 40.0 plf • MAXIMUM REP ^rirtme nI...'. .••••1 CDC AQUV'' 1 rIAM(rL1 i:.•1 • I 0' 34 Dead 63 146 Live 85 110 Total 148 256 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 12 Fv' = 207 fv /Fv' = 0.06 Bending( +) fb = 82 Fb' = 1242 fb /Fb' = 0.07 Live Defl'n 0.00.= <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 256, V design = 169 lbs Bending( +): LC #2 = D +L, M = 179 lbs -ft Deflection: LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow w =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. a"-L • COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:33 b10 • Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1_c33 Dead Point 59 1.00 lbs • 2_c33 Snow Point 75 1.00 lbs 3 w52 Dead Partial UD 96.0 96.0 0.00 1.00 plf Load4 Dead Full UDL 13.0 plf Loads Live Full UDL 40.0 plf MAXIMUM REPrr'" le AOIMi r clkirruO 10' 34 Dead 146 63 Live 82 64 Total 229 127 Bearing: - Load Comb #3 #3 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 10 Fv' = 207 fv /Fv' = 0.05 Bending( +) fb = 72 Fb' = 1242 fb /Fb' = 0.06 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 229, V design = 148 lbs Bending( +): LC #3 = D +.75(L +S), M = 157 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. COMPANY PROJECT f fl WoodWorks® SOn WAREEOR WOOD DESIGN June 28, 2010 10:36 b14 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start -End 1 j33 Dead Partial UD 78.0 78.0 0.00 1.50 pif 2_j33 Live Partial UD 240.0 240.0 0.00 1.50 plf 3_j13 Dead Partial UD 78.0 78.0 3.00 8.50 plf 4_j13 Live Partial UD 240.0 240.0 3.00 8.50 pif 5_j34 Dead Partial UD 78.0 78.0 1.50 3.00 plf 6_j Live Partial UD 240.0 240.0 1.50 3.00 plf 7_j46 Dead Partial UD 28.9 28.9 5.00 8.50 pif 8_j46 Live Partial UD 80.0 80.0 5.00 8.50 plf 9 b25 Dead Point 409 5.00 lbs 10 b25 Live Point 1080 5.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • 1 0' g{'1 Dead 553 685 Live 1522 1878 Total 2076 2563 Bearing: Load Comb #2 #2 Length 1.48 1.83 LSL, 1.55E, 2325Fb, 1- 3/4x14" Self- weight of 7.66 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 126 Fv' = 310 fv /Fv' = 0.41 Bending( +) fb = 1324 Fb' = 2325 fb /Fb' = 0.57 Live Defl'n 0.09 = <L/999 0.28 = L/360 0.31 Total Defl'n 0.14 = L /750 0.42 = L/240 0.32 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 2563, V design = 2064 lbs Bending( +): LC #2 = D +L, M = 6308 lbs -ft Deflection: LC #2 = D +L EI= 620e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 6A COMPANY PROJECT I i WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:48 b15 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j5 Dead Full UDL 335.7 plf 2 j5 Rf.Live Full UDL 493.7 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 1 0' 6 Dead 1027 1027 Live 1481 1481 Total 2508 2508 Bearing: Load Comb #2 #2 Length 1.34 1.34 Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2 -Plys Self- weight of 6.59 pif included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 101 Fv' = 207 fv /Fv' = 0.49 Bending( +) • fb = 1055 Fb' = 1138 fb /Fb' = 0.93 Live Defl'n 0.05 = <L/999 0.20 = L/360 0.23 Total Defl'n 0.09 = L/776 0.30 = L/240 0.31 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00' - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 2508, V design = 1864 lbs Bending( +): LC #2 = D +L, M = 3762 lbs -ft Deflection: LC #2 = D +L EI= 158e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD D6(GN June 28, 2010 10:46 b20 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j47 Dead Partial UD 42.5 42.5 0.00 2.50 plf 2 j47 Live Partial UD _ 62.5 62.5 0.00 2.50 plf MAXIMUM REP^firtmo •••••11 DICAnurn 1 cwr•fu0 F:•\ • • • 10' 34 Dead 71 53 Live 91 65 Total 162 118 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports • Lumber -soft, D.Fir -L, No.2, 4x8" Self- weight of 6.03 pif included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 6 Fv' = 180 fv /Fv' = 0.03 Bending(+) fb = 46 Fb' = 1170 fb /Fb' = 0.04 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 162, V design = 99 lbs Bending(+): LC #2 = D +L, M = 118 lbs -ft Deflection: LC #2 = D +L EI= 178e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NOS Clause 4.4.1. • COMPANY PROJECT f fl WoodWorks® SOFrWARE FOR W000 DESIGN June 28, 2010 10:34 b21 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, pst, or pif) : Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern 1 w63 Dead Partial UD 308.0 308.0 6.00 10.00 No 2_w63 Live Partial UD 320.0 320.0 6.00 10.00 No 3_w62 Dead Partial UD 308.0 308.0 2.00 6.00 No 4w62 Live Partial UD 320.0 320.0 2.00 6.00 No 5 Dead Partial UD 369.0 369.0 0.00 2.00 No 6_w32 Snow Partial UD 357.5 357.5 0.00 2.00 No 7_c44 Dead Point 1940 1.50 No 8 c44 Snow Point 2853 1.50 No 9 120 Dead Partial UD 109.0 104.0 6.50 10.00 No 10_j20 Live Partial UD 320.0 320.0 6.50 10.00 No 11 j21 Dead Partial UD 104.0 104.0 6.00 6.50 No 12 Live Partial UD 320.0 320.0 6.00 6.50 No 13_j22 Dead Partial UD 104.0 104.0 2.00 2.50 No 14_j22 Live Partial UD 320.0 320.0 2.00 2.50 No 15_j23 Dead Partial UD 104.0 104.0 2.50 6.00 No 16 j23 Live Partial UD 320.0 320.0 2.50 6.00 No 17_j98 Dead Partial UD 71.5 71.5 0.00 1.50 No 18 j48 Live Partial UD 220.0 220.0 0.00 1.50 No 19 b23 Dead Point 658 0.00 No 20 Snow Point 195 0.00 No • MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : e84• a..:41i4, _ ' - '°F' " - a► � -- � . �r ; ...... - .....;,-.44„„........- - �::-.......4%.„....,..-- � s►-- 5�e?-- `�,:aa � = - fir - 0. 2' 101 Dead 5581 1311 Live 5266 2508 Total 10847 3819 Bearing: Load Comb 90 03 82 Length 0.00 3.50 1.23 Cb 0.00 1.11 1.00 LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight of 15.31 plf included in loads; . Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv. = 139 Fv' = 356 fv' /Fv' = 0.39 Bending( +) fb = 717 Fb' = 2325 fb /Fb' = 0.31 Bending( -) fb = 600 Fb' = 2632 fb /Fb' = 0.23 Deflection: Interior Live 0.05 = <L/999 0.27 = L/360 0.17 Total 0.07 = <1./999 0.40 = L/240 0.17 Cantil. Live -0.03 = L/698 0.13 = L /180 0.26 Total -0.03 = L/788 0.20 = L /120 _ 0.15 'The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LCii Fv' 310 1.15 - 1.09 - - - - 1.00 - 1.00 4 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fb'- 2325 1.15 - 1.00 0.984 1.00 - 1.00 1.00 - - 4 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC 64 = D +S, V = 7237, V design. = 4536 lbs Bending( +): LC 02 = D +L, M = 6833 lbs -ft Bending( -): LC 04 = D +S, M = 5720 lbs -ft Deflection: LC 02 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC • DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 4. The critical deflection value has been determined using maximum back -span deflection. Cantilever deflections do not govem design. • #13-61„kil- COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:35 b22 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w69 Dead Partial UD 369.0 369.0 1.00 2.50 plf 2 Snow Partial UD 357.5 357.5 1.00 2.50 plf 3 j48 Dead Partial UD 71.5 71.5 1.00 2.50 plf 4 j48 Live Partial UD 220.0 220.0 1.00 2.50 plf 5_,j47 Dead Full UDL 42.5 plf 6_j47 Live Full UDL 62.5 plf 7 b23 Dead Point 700 1.00 lbs 8 b23 Snow Point 195 1.00 lbs • MAXIMUM RE " -- -. _ ... - -- _ -• - -- - -- .__..... . 10 2-61 Dead 683 807 Live 341 572 Total 1024 1379 Bearing: Load Comb #3 #3 Length 0.50* 0.63 *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x12" Self- weight of 9.35 plf included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 30 Fv' = 207 fv /Fv' = 0.14 Bending( +) fb = 159 Fb' = 1138 fb /Fb' = 0.14 Live Defl'n 0.00 = <L/999 0.08 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.13 = L/240 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - • 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 1024, V design = 778 lbs Bending( +): LC #3 = D +.75(L +S), M = 978 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 664e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 8- C��';� COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:35 b23 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w33 Dead Partial UD 204.0 204..0 0.00 1.50 plf 2_c18 Dead Point 143 1.50 lbs 3_c18 Rf.Live Point 110 1.50 lbs 4_c19 Dead Point 59 4.50 lbs 5 c19 Rf.Live Point 85 4.50 lbs 6 w34 Dead Partial UD 108.0 108.0 4.50 6.50 plf 7 c20 Dead Point 59 6.50 lbs 8 c20 Rf.Live Point 85 6.50 lbs 9 c21 Dead Point 143 9.50 lbs 10 c21 Rf.Live Point 110 9.50 lbs 11 Dead Partial UD 204.0 204.0 9.50 11.00 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : ..r..'. -"� 0„ - _ . . _ . ..__; �° .-..^ - _.'-'t - k "'�..3 R..� J r: � �, -- ,.... ter - - +r.... -. r . •± '�- ---..- ►,. - - . 7 � .� 1 0 ' 11 Dead. 700 700 Live 195 195 Total 895 895 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 20 Fv' = 356 fv /Fv' = 0.05 Bending( +) fb = 213 Fb' = 2674 fb /Fb' = 0.08 Live Defl'n 0.01 = <L/999 0.37 = L/360 0.03 Total Defl'n 0.05 = <L/999 0.55 = L/240 0.09 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - • - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 895, V design = 639 lbs Bending( +): LC #2 = D +L, M = 2028 lbs -ft Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. • 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. g ......611A COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:47 b24 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 2_j42 Live Partial UD 160.0 160.0 0.00 4.50 plf 3_j43 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4 j43 Live Partial UD 160.0 160.0 4.50 7.50 plf 5_j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 6 j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 7_j45 Dead Partial UD 47.7 47.7 13.00 16.00 plf 8 j45 Live Partial UD _ 160.0 160.0 13.00 16.00 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : IO' 161 Dead 442 442 Live 1280 1280 Total 1722 1722 Bearing: Load Comb #2 #2 Length 0.85 0.85 Glulam- Unbal., West Species, 24F -V4 DF, 3- 1/8x10 -1/2" Self- weight of 7.55 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 70 Fv' = 265 fv /Fv' = 0.26 Bending( +) fb = 1440 Fb' = 2400 fb /Fb' = 0.60 Live Defl'n 0.43 = L/441 0.53 = L/360 0.82 Total Defl'n 0.66 = L/290 0.80 = L/240 0.83 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 1722, V design = 1534 lbs Bending( +): LC #2 = D +L, M = 6890 lbs -ft Deflection: LC #2 = D +L EI= 543e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). • 8-6 4 COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:33 b25 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Dead Full UDL 200.0 plf Load2 Live Full UDL 540.0 plf MAXIMUM REACTInNS (Thal and BFARING I FNGTHS finl • l 0 , 4 4 Dead 409 409 Live 1080 1080 Total 1489 1489 Bearing: Load Comb #2 #2 Length 0.68 0.68 Lumber -soft, D.Fir -L, No.2, 4x6" Self- weight of 4.57 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 89 Fv' = 180 fv /Fv' = 0.50 Bending( +) fb = 1013 Fb' = 1170 fb /Fb' = 0.87 Live Defl'n 0.04 = <L/999 0.13 = L/360 0.30 Total Defl'n 0.06 = L/764 0.20 = L/240 0.31 ADDITIONAL DATA: FACTORS: F/E CD CM. Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 1489, V design = 1148 Ibs Bending( +): LC #2 = D +L, M = 1489 lbs -ft Deflection: LC #2 = D +L EI= 78e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. • 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. .._ a - COMPANY PROJECT 1 WoodWorks® SOFIWAREFOR WOOD DESIGN June 28, 2010 10:57 b25 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psi, or pit ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1_w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 2 w72 Rf.Live Partial UD 493.7 493.7 13.00 14.50 plf 3_w 28 Dead . Partial UD 535.5 535.5 0.00 4.50 plf 4 w28 Rf.Live Partial UD 487.5 487.5 0.00 4.50 plf 5_ c14 Dead Point 1074 7.00 lbs 6 c14 Rf.Live Point 1601 7.00 lbs 7 c15 Dead Point 1074 13.00 lbs 8 c15 Rf.Live Point 1601 13.00 lbs 9 Dead Partial UD 539.7 539.7 14.50 16.00 plf 10_w73 Rf.Live Partial UD 493.7 493.7 14.50 16.00 plf 11 Dead Partial UD 443.7 443.7 5.50 7.00 plf 12 Rf.Live Partial UD 493.7 493.7 5.50 7.00 plf 13 w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 14_w75 Rf.Live . Partial UD 493.7 493.7 4.50 5.50 plf 15_142 Dead Partial UD 47.7 47.7 0.00 4.50 plf 16_j42 Live Partial UD 160.0 160.0 0.00 4.50 plf 17 j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 18 Live Partial UD 160.0 160.0 4.50 5.50 plf 19 j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 20 Live Partial UD 160.0 160.0 7.50 13.00 plf 21 j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 22_j45 Live Partial UD 160.0 160.0 5.50 7.50 plf 23_j Dead Partial UD 47.7 47.7 13.00 14.50 plf 24 j46 Live Partial UD 160.0 160.0 13.00 14.50 plf 25 j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 26 147 Live Partial UD 160.0 160.0 14.50 16.00 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : L . ' • . I a 161 Dead 4328 4101 Live 5296 5376 Total 9624 9477 Bearing: Load Comb #2 #2 Length 2.89 _ 2 Glulam -Bal., West Species, 24F -V8 DF, 5- 118x15" Self- weight of 17.7 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 305 fv /Fv' = 0.52 Bending( +) fb = 2301 Fb' = 2760 fb /Fb' = 0.83 Live Defl'n 0.36 = L/528 0.53 = L/360 0.68 Total Defl'n 0.77 = L/249 0.80 = L/240 0.96 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00• 2 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 9624, V design = 8063 lbs Bending( +): LC #2 = D +L, M = 36854 lbs -ft . Deflection: LC #2 = D +L EI= 2594e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (A11 LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). • /3 ---- 6,,g,s4., COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:36 b26 Design Check Calculation Sheet Sizer 7.1 • LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 2_w37 Snow Partial UD 487.5 487.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5` 535.5 11.00 14.00 plf 4_w38 Snow Partial UD 487.5 487.5 11.00 14.00 plf 5_w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf 6 Snow Partial UD 487.5 487.5 14.00 15.50 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : icy 15'-6 Dead 583 2397 Live 393 2044 Total 976 4441 Bearing: Load Comb #2 #2 Length 0.50* 1.33 *Min. bearing length for beams is 1/2" for exterior supports Glulam -Bal., West Species, 20F -V7 DF, 5- 1/8x16 -1/2" Self- weight of 19.47 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : • Criterion Analysis Value Design Value Analysis /Design Shear fv = 54 Fv' = 305 fv /Fv' = 0.18 Bending( +) fb = 488 Fb' = 2297 fb /Fb' = 0.21 Live Defl'n 0.05 = <L/999 0.52 = L/360 0.09 Total Defl'n 0.14 = <L/999 0.77 = L/240 0.18 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2000 1.15 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - -. 2 Shear : LC #2 = D +S, V = 4441, V design = 3070 lbs Bending( +): LC #2 = D +S, M = 9454 lbs -ft Deflection: LC #2 = D +S EI= 3070e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). '3 1 I • COMPANY PROJECT 1 WoodWorks® SOFJWAREFOR WOOD DESIGN June 28, 2010 10:50 c2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_bl Dead Axial 1539 (Eccentricity = 0.00 in) 2 bl Rf.Live Axial 2089 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 2 -Plys Self- weight of 3.41 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 0.00= 0.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 221 Fc' = 980 fc /Fc' = 0.23 Axial Bearing fc = 221 Fc* = 1644 fc /Fc* = 0.13 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.596 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 3655 lbs Kf = (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. 6,,Q4 COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:52 c25 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b12 Dead Axial 514 (Eccentricity = 0.00 in) 2 Live Axial 1408 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): • 0' 9' Lumber n -ply, Hem -Fir, No.2, 2x4 ", 2 -Plys Self- weight of 2.17 plf included in Toads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 0.00= 0.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 185 Fc' = 380 fc /Fc' = 0.49 Axial Bearing fc = 185 Fc* = 1495 fc /Fc* = 0.12 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.254 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 1942 lbs Kf = 1.00 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT 1 WoodWorks® SOFIWARL FOR WOOD DESIGN June 28, 2010 10:51 c36 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b21 Dead Axial 5634 (Eccentricity = 0.00 in) 2 Rf.Live Axial 7021 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): r .%w.3 Mum "�' 'xm ei r" ""k i x-' c ..^`�'�` ✓ .x 7 N. ...3 �" �'x^ s r �,,, + --s .��sY `f ^i�7"�- �.i'kAx `"a "•��`.�'E.r""a�`J.A"`e Y ,. - �" 'y ^� • k +. i ...""'"�.�r�r:...• --Z r.-`.� '3�:.'.x_.�e:. �...�� F x:., =s ��. �"..� r.� —...� �x� ;�""G�- ._.".1 0' 8' Timber -soft, Hem -Fir, No.2, 6x6" Self- weight of 6.25 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and De flection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 420 Fc' = 548 fc /Fc' = 0.77 Axial Bearing fc = 420 Fc* = 661 fc/Fc* = 0.64 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.15 1.00 1.00 0.829 1.000 - - 1.00 1.00 2 Fc* 575 1.15 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 12705 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:52 c44 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c35 Dead Axial 1940 (Eccentricity = 0.00 in) 2 c35 Rf.Live Axial 2853 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 9' Lumber n -ply, Hem -Fir, No.2, 2x4 ", 3 -Plys Self- weight of 3.25 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 306 Fc' = 363 fc /Fc' = 0.84 Axial Bearing fc = 306 Fc* = 1719 fc /Fc* = 0.18 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.211 1.150 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 4823 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. • 6,:ita2r COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR W000 DEVON June 28, 2010 10:51 c64 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c45 Dead Axial 1940 (Eccentricity = 0.00 in) 2 c45 Rf.Live Axial 2853 (Eccentricity = 0.00 in) 3_b22 Dead Axial 807 (Eccentricity = 0.00 in) 4 Rf.Live Axial 763 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): D 1 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 3 -Plys Self- weight of 5.11 plf included in Toads; Pinned base; Loadface = depth(d); Built-up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 259 Fc' = 439 fc /Fc' = 0.59 Axial Bearing fc = 259 Fc* = 1644 fc /Fc* = 0.16 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.267 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 6404 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. • g_6023 K,> nai pct Houf Peterson COMMUNICATION RECORD Righellis Inc. To ❑ FROM ❑ MEMO TO FILE ❑ L "NGINLENS • CTS• Ln UR r+o3c�p F' nNCnrrer.rs•su NVLo .r.- PHONE NO.: PHONE CALL: ❑ MEETING: ❑ M - 01 ILI A O e v\-. . . , r r gi 17 P e 9) s , 01 g 3.... J 4 .....„ r-1, v ; 5 2. r 9 . p 0 r` / n m b '' P g) & . 8 .- W J oP to. ..C.3-''‘ .. ; ;......t.".". .. . r g 9,2 . g 3 0 'a' V 0 z 0 0.4.. CI 6 G 0 COMPANY PROJECT 1 WoodWorks SOFTWARE FOR W000 DESIGN June 28, 201010:19 b25 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS 1 Ibs, psf, or plf) : Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 w72 . Dead Partial UD 539.7 539.7 13.00 14.50 plf 2 w72 Snow Partial UD 493.7 493.7 13.00 14.50 plf 3 w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 4 w28 Snow Partial UD 487.5 487.5 0.00 4.50 plf 5 c14 Dead Point 1074 7.00 lbs 6 Snow Point 1601 7.00 lbs 7 Dead Point 1074 13.00 lbs 8 Snow Point 1601 13.00 lbs 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 10 w73 Snow Partial UD 493.7 493.7 14.50 16.00 plf 11 w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 12 Snow Partial UD 493.7 493.7 5.50 7.00 plf 13 w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 14 Snow Partial UD 493.7 493.7 4.50 5.50 plf 15 j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 16_j42 Live Partial UD 160.0 160.0 0.00 4.50 plf 17_j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 18_j43 Live Partial UD 160.0 160.0 4.50 5.50 plf 19j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 20_j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 21J45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 22_j45 Live Partial UD 160.0 160.0 5.50 7.50 plf 23j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 24 j46 Live Partial UD 160.0 160.0 13.00 14.50 plf 25 Dead Partial UD 47.7 47.7 14.50 16.00 plf 26 Live Partial UD 160.0 160.0 14.50 16.00 plf • 203A Wind Point 7960 0.00 lbs 203A.1 Wind Point -7960 7.00 lbs 2038.1 Wind Point 7960 13.00 lbs 2038.2 Wind Point -7960 16.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : a 161 Dead 4328 4101 Live 7703 4096 Uplift 2458 Total 12031 8197 Bearing: Load Comb #4 #6 Length 3.61 2 Glulam -Bal., West Species, 24F -V8 DF, 5- 118x15" Self- weight of 17.7 plf included in loads; . Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis /Design Shear fv = 136 Fv' = 305 fv /Fv' = 0.45 Bending( +) fb = 1986 Fb' = 2760 fb /Fb' = 0.72 Live Defl'n 0.27 = L/704 0.53 = L/360 0.51 Total Defl'n 0.68 = L/283 0.80 = L/240 0.85 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 6 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 6 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 3 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 3 Shear : LC #6 = D +S, V = 8344, V design = 6983 lbs Bending( +): LC #6 = D +S, M = 31814 lbs -ft Deflection: LC 03 = D +.75(L +S) EI= 2594e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) ; Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 6513,0 . COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:24 b25 LC1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 3 w 28. Dead Partial UD 535.5 535.5 0.00 4.50 plf 5 - c14 Dead Point 1074 7.00 lbs 7 c15 Dead Point 1074 13.00 lbs 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 11 w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 13 Dead Partial UD 539.7 539.7 4.50 5.50 plf 15_j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 17 j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 19_j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 21_j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 23_j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 25 j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf • .203A Wind Point 7960 0.00 lbs 203A.1 Wind Point -7960 7.00 lbs 2038.1 Wind Point 7960 13.00 lbs 203B.2 Wind Point -7960 16.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : tl • . g 1 0' 161 Dead 4328 4101 Live 3300 Uplift 2458 Total 7572 4101 Bearing: Load Comb #2 #1 Length 2.27 1.23 Glulam-Bal., West Species, 24F -V8 DF, 5- 1/8x15" Self- weight of 17.7 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 70 Fv' = 238 fv /Fv' = 0.29 Bending( +) fb = 978 Fb' = 2160 fb /Fb' = 0.45 Live Defl'n -0.30 = L/632 0.53 = L/360 0.57 Total Defl'n -0.03 = <L/999 0.80 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #1 = D only, V = 4328, V design = 3577 lbs Bending( +): LC #1 = D only, M = 15667 lbs -ft Deflection: LC #2 = .6D +W EI= 2594e06 lb -in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 8......_ G2...,\ COMPANY PROJECT i • WoodWork • softWARE W000 OrSn:N June 28, 2010 10:20 b25 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or p9 ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 _ w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 2 w72 Snow Partial UD 493.7 493.7 13.00 14.50 plf 3 w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 4 w28 Snow Partial UD 487.5 487.5 0.00 4.50 plf 5 Dead Point 1074 7.00 lbs 6 Snow Point 1601 7.00 lbs 7 c15 Dead Point 1074 13.00 lbs 8 Snow Point 1601 13.00 lbs 9 Dead Partial UD 539.7 539.7 14.50 16.00 plf 10_w73 Snow Partial UD 493.7 493.7 14.50 16.00 plf 11 Dead Partial UD 443.7 443.7 5.50 7.00 plf 12 Snow Partial UD 493.7 493.7 5.50 7.00 plf 13 Dead Partial UD 539.7 539.7 4.50 5.50 plf 14 Snow Partial UD 493.7 493.7 4.50 5.50 plf 15 Dead Partial UD 47.7 47.7 0.00 4.50 plf 16 Live Partial UD 160.0 160.0 0.00 4.50 plf • 17_j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 18 j43 Live Partial UD 160.0 160.0 4.50 5.50 plf 19 Dead Partial UD 47.7 47.7 7.50 13.00 plf 20 j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 21 j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 22_j45 Live Partial UD 160.0 160.0 5.50 7.50 plf 23 j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 24 Live Partial UD 160.0 160.0 13.00 14.50 plf 25 j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 26 j47 Live Partial UD 160.0 160.0 14.50 16.00 plf 203A Wind Point -7960 0.00 lbs • 203A.1 Wind Point 7960 7.00 lbs 2038.1 Wind Point -7960 13.00 lbs 2038.2 Wind Point 7960 16.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 1 o 161 Dead 4328 4101 Live 4016 7763 Uplift 2321 Total 8344 11864 Bearing: Load Comb #6 #4 Length 2.50_ 3.56 Glulam -Bal., West Species, 24F -V8 DF, 5- 118x15" Self- weight of 17.7 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 136 Fv' = 305 fv /Fv' = 0.45 Bending( +) fb = 2949 Fb' = 3840 fb /Fb' = 0.77 Live Defl'n 0.42 = L/454 0.53 = L/360 0.79 Total Defl'n 0.69 = L/277 0.80 = L/240 0.87 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 6 Fb'+ 2400 1.60 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #6 = D +S, V = 8344, V design = 6983 lbs Bending( +): LC #4 = Dr.75(L +S +W), M = 47228 lbs -ft • Deflection: LC #4 = D +.75(L +S +W) EI= 2594e06 lb -in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. • (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC . DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 8- 61 32.-- COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:23 b25 LC2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 3 w 28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 5 - c14 Dead Point 1074 7.00 lbs 7 c15 Dead Point 1074 13.00 lbs 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 11 w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 13 w 75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 15_ j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 17_j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 19_j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 21_j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 23_j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 25 j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 203A Wind Point -7960 0.00 lbs • 203A.1 Wind Point 7960 7.00 lbs 2038.1 Wind Point -7960 13.00 lbs 2038.2 Wind Point 7960 16.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 10' 161 Dead 4328 4101 Live 3391 Uplift 2321 Total 4328 7435 Bearing: Load Comb #1 #2 Length 1.30 2.23 Glulam -Bal., West Species, 24F -V8 DF, 5- 1/8x15" Self- weight of 17.7 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 70 Fv' = 238 fv /Fv' = 0.29 Bending( +) fb = 1905 Fb' = 3840 fb /Fb' = 0.50 Live Defl'n 0.10 = <L/999 0.53 = L/360 0.18 Total Defl'n 0.37 = L /525 0.80 = L/240 0.46 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 1.60 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #1 = D only, V = 4328, V design = 3577 lbs Bending( +): LC #2 = .6D +W, M = 30517 lbs -ft Deflection: LC #2 = .6D +W EI= 2594e06 lb -in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). (4-jst COMPANY PROJECT 41 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10 :25 b26 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 2 w37 Snow Partial UD 487.5 487.5 10.50 11.00 plf 3_w 38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4 w38 Snow Partial UD 487.5 487.5 11.00 14.00 plf • 5 w 39 Dead Partial UD 535.5 535.5 14.00 15.50 plf 6 w 39 Snow Partial UD 487.5 487.5 14.00 15.50 plf W1.1 Wind Point 13500 10.50 lbs W1.2 Wind Point -13499 15.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : cr 15'6'' • Dead 583 2397 Live 4182 8392 Total 4704 10789 Bearing: Load Comb #4 #3 Length 1.41 3.24 Glulam-Bal., West Species, 20F -V7 DF, 5- 118x16 -112" Self- weight of 19.47 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : • Criterion Analysis Value Design Value Analysis /Design Shear fir = 181 Fv' = 424 fv /Fv' = 0.43 Bending( +) fb = 2526 Fb' = 3195 fb /Fb' = 0.79 Live Defl'n 0.47 = L/395 0.52 = L/360 0.91 Total Defl'n 0.56 = L/331 0.77 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 2000 1.60 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #4 = .6D +W, V = 10643, V design = 10194 lbs Bending( +): LC #4 = .6D +W, M = 48956 lbs -ft Deflection: LC #4 = .6D +W EI= 3070e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:27 b26 LC1 no II Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 5 w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf W1.1 Wind Point 13500 10.50 lbs W1.2 Wind Point -13499 15.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : I0 15' -6'i Dead 583 2397 Live 4182 8247 Total 4704 10583 Bearing: Load Comb #2 #2 Length 1.41 3.18 Glulam-Bal., West Species, 20F -V7 DF, 5- 1/8x16 -1/2" Self- weight of 19.47 pif included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 181 Fv' = 424 fv /Fv' = 0.43 Bending( +) fb = 2526 Fb' = 3195 fb /Fb' = 0.79 Live Defl'n 0.47 = L/395 0.52 = L/360 0.91 Total Defl'n 0.56 = L/331 0.77 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2000 1.60 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = .6D +W, V = 10643, V design = 10194 lbs Bending( +): LC' #2 = .6D +W, M = 48956 lbs -ft Deflection: LC #2 = .6D +W EI= 3070e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:26 b26 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 2 Snow Partial UD 487.5 487.5 10.50 11.00 plf 3 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4 Snow Partial UD 487.5 487.5 11.00 14.00 plf 5 w 39 Dead Partial UD 535.5 535.5 14.00 15.50 plf 6 w 39 Snow Partial UD 487.5 487.5 14.00 15.50 plf W1.1 Wind Point -13499 10.50 lbs W1.2 Wind Point 13500 15.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • 15-61 Dead 583 2397 Live 393 2044 Uplift 3945 7647 Total 976 4441 Bearing: Load Comb #2 # Length 0.50* _ 1.33 *Min. bearing length for beams is 1/2" for exterior supports Glulam -Bal., West Species, 20F -V7 DF, 5- 118x16 -1/2" Self- weight of 19.47 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 136 Fv' = 424 fv /Fv' = 0.32 Bending( +) fb = 488 Fb' = 2297 fb /Fb' = 0.21 Bending( -) fb = 2193 Fb' = 2940 fb /Fb' = 0.75 Live Defl'n. -0.51 = L/362 0.52 = L/360 0.99 Total Defl'n -0.42 = L/441 0.77 = L/240 0.54 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 2000 1.15 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fb'- 2000 1.60 1.00 1.00 0.919 1.000 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #4 = .6D +W, V = 7647, V design = 7647 lbs Bending( +): LC #2 = D +S, M = 9454 lbs -ft Bending( -): LC #4 = .6D +W, M = 42496 lbs -ft Deflection: LC #4 = .6D +W EI= 3070e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:30 b26 LC2 no II • Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 5 w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf W1.1 Wind Point -13499 10.50 lbs W1.2 Wind Point 13500 15.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : A 10' 15' -6 Dead 583 239 Live Uplift 3945 7647 Total 583 239 Bearing: Load Comb #1 #1 Length 0.50* 0.72 *Min. bearing length for beams is 1/2" for exterior supports Glulam -Bal., West Species, 20F -V7 DF, 5- 118x16 -1/2" Self- weight of 19.47 plf included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 136 Fv' = 424 fv /Fv' = 0.32 Bending( +) fb = 267 Fb' = 1797 fb /Fb' = 0.15 Bending( -) fb = 2193 Fb' = 2940 fb /Fb' = 0.75 Live Defl'n -0.51 = L/362 0.52 = L/360 0.99 Total Defl'n -0.42 = L/441 0.77 = L/240 0.54 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2000 0.90 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 1 Fb'- 2000 1.60 1.00 1.00 0.919 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = .6D +W, V = 7647, V design = 7647 lbs Bending( +): LC #1 = D only, M = 5167 lbs -ft Bending( -): LC #2 = .6D +W, M = 42496 lbs -ft Deflection: LC #2 = .6D +W EI= 3070e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). Harper Project: Houf Peterson ` • � � ' Client: Job # Righellis Inc. ENGINEERS • PLANNERS Designer: Date: - Pg. # LANDSCAPE ARCNITECFS•SURVEYORS Ce W dl 10 lb 8 ft 20 ft W = 1600-lb ft Seismic Forces Site Class =D Design Catagory =D WP :.= Wdl I . - 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) Si := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. Ss := 0:942 Max EQ; 5% damped, spectral responce acceleration at short period z 9 Height of Component h := 32 Mean Height Of Roof F 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F 1.722 Vel -based site coefficient @ 1 s -period (Table 1613.5.3(2), 2006 IBC) S := F S Sml := FvS 2 -S Sds Max EQ, 5% damped, spectral responce acceleration at short period 3 • Exterior Elements &Body Of Connections ap 1.0 R p := 2.5 (Table 13.5 -1, ASCE 7 -05) .4a p • z F := R 1 + 2• h •WP EQU. 13.3 -1 Fpmax:= 1.6•S -W EQU. 13.3 -2 F pmin • EQU. 13.3=3 := if(F > Fpmax,Fpmax,if(Fp < Fpmin,Fpmin,Fp)) F = 338.5171.1b Miniumum Vertical Force 0.2 • S ds• W dl = 225.6781•lb (17—N9L Harper Project: Houf Peterson Client: Job # Righellis Inc. ENGINEERS • PLANNERS Designer: Date: Pg. # LANDSCAPE ARCNITECts•SNRVEYDRS Wdl := 10• lb •8•ft•20•ft Wdl = 1600.1b ft Seismic Forces Site Class =D Design Catagory =D W p • Wd1 Ip• 1:0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S1 = 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. Ss - := '0:942 Max EQ, 5% damped, spectral responce acceleration at short period z := .9 Height of Component h : =: 32 Mean Height Of Roof F := 1.123 Acc -based site coefficient @ .3 s -period (Table 1613.5.3(1), 2006 IBC) F := 1.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S : = F Sml := Fv S1 2-S ms S := Max EQ, 5 % damped,. spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections ap := 1.0 Rp:= 2.5 (Table 13.5 -1, ASCE 7 -05) .4a P • S ds• I p zl F P • R ( i + 2• hl•WP EQU. 13.3 -1 P l J F pmax 1.6•Sds•lp•WP EQU. 13.3 -2 F pmin • EQU. 13.3 -3 F,:= if(F > Fpmax,FPmax,if(Fp < Fpmin,Fpmin,Fp)) F = 338.5171•lb Miniumum Vertical Force 0.2• Sds• Wdl = 225.6781 • Ib g-6*19 1141pC1 . COMMUNICATION RECORD Houf Peterson • Righellis Inc. To Li FROM 0 MEMO TO FILE 0 LAND,“AFE AtiCri,IL.CTS.LONVvr,....S . ..... ... .... _... _. ... _... PHONE No PHONE CALL: 0 MEETING: 0 M 13 CO In 2 E1 0 C.) t I *.al. ° - ti (1 -41 1 c i c ... , 11 ,----. 0 -c) 0.1 (0 Cil ...-- (.).) '0 S ....0 ... „- r 3: . ____I __V■ ?.. 0 * .1 ,S) (i) 0° it , 11 -1 CO ...D 6-, --n — 3:. 7? cm it lc, l'r ( 9" 0 N. 7 1-- 0 5 N, 4, z P 6. V r* r r- r." ^) , -....„ 0...0 0 0 BY: . (POJ DAT: - 501 9 ado f1/4114).61 4 JOB NO.:0 C h 09 o .pRcs..,,T: RE: • -De-CYn - 0 ■ () I - •-= ,4 'PA 1\& e C\79 El o . / ,, • . r 2-,L e, . .. , 0 1- c; L i j NINtk.._ ' C PCPAC. ‘ 1 (I ( ei rrirnal\) m lit 1 : 1 j 3 Y ( ago*/ 1) 4 / I Zr- 1 * inail ' O w O z . • a o Er a. n Z a 0 . LAPIAC. il—t • L " (2 boaraL) ., i ,a‘s1-5 \ 'D \ Lc . A ________ V U IC spacirn be ki.J.Jee n n.a.i V.. . -- a Mac.. _ Et f ! CapocJ:K (01 ki0 Ptc Tual _ i I -7-13-------e-I . . . L, _ \TE.V:C--i . , : 1 - \) —•---- t(.7 !is p . , O - Vs .-e.... (1) Slynp%( So5 ' !.4- x ' ..._ . i 1 i . .0 6 0 e 21 . .._______ ,,L..,..,...,..., I-. - 0 , t . C.. b - --7., = 30 # C - g'61 iti- • • 0 c , 40 8- 61,ct( BY ht c rt i ol ..7 01 0 J..... c 6 g •Q _oqo PROJECT: RE: - De e 129z4±,Z,Luif‘ ectIOLL 0 0 w - -J (2 Z ,L Le-)P1\- C A_T- - .1.. : 0 6 F. W 2 0 0 0 . La 0 x a_ 30 -- 8400 OW alioovF 0 j a o i ()__, 51m?coorN 1-4Du 4 To f esi• 5 _ A'? yTh-,.■ o n _______). -1.-- 2 r t7S " .4_ 0 U I . 4-- -- 'c , 0 re 0 I.L. Z w o g 0 i Lot • M,_ aooff (.40 ) ..... - z. ESCOC3 4t-W T- C -_-_- gboo ftifQ at-loo ..- 1+Do4- 3C 0 i r: 'IS Oke— 9 0 6 t I ti3 I■1 ,:i i CU • 1-■ ?_!,„ 0 °J J • .- I - E]c , .11 ( Harper . :1.s� '' HoufPetersorl COMMUNICATION' RECORD • Righellis Inc._ TO ❑ FROM ❑ MEMO TO FILE ENGINEER, •PLAIT !IERtl IAt:U>:: AV3 AFCNITE CT:•EUf.VEYAkS --' -----' PHONE NO.: PHONE CALL: O MEETING: fl xi -13 m —I m Q j!f n O 9� . d _. -o 0 0 6 1 # Z • 6 $,..., M v) o n -C -+ T c C3 1 m . Z i . 0 0 Harper ' 1"' HoufPeterson COMMUNICATION RECORD Righellis Inc. TO lil FROM El MEMO TO FILED Ei!f INFERS :: •PIA I S �aa >cavE an`GHITEC rs. sv ?vEru RZ PHONE NO.: PHONE CALL: Ill MEETING: ❑ . 11 71 m m. 1 . 2 n ...r g . . . . • 3 ,s --, .....,,„ LI Cr o ., , Q '� V � N . 1 CO r ; r X LI c i Q 1 1 r 1 . . , • 10 z . o '§ 0 • I, COMPANY PROJECT I'1l: WoodWorks SOF/WARPFOR WOOD OESICN June 8, 2009 16:27 Hand RaiI2 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Full UDL 50.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : vt ^ :1. > = kY-_ +c.. ,a _•.�;,: •h , u.,. =. -- ;:t ;. tss'.....�r ;i : : « c:,;:.. ..'v��r,` -,, _ IV 5 Dead Live 125 125 Total 129 129 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 "Min. bearing length for beams is 1/2" for exterior supports Lumber-soft Hem -Fir, No.2, 2x6" Self- weight of 1.7 pif induded in Toads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv /Fv' = 0.13 Bending( +) fb = 256 Fb' = 1048 fb /Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.11 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fir' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Ervin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 129, V design = 106 lbs Bending( +): LC #2 = L, M = 162 lbs -ft Deflection: LC #2 = L EI = 27e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction Lc= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC • DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. C , \ A C° . . C COMPANY PROJECT 1 4 it Wood Works® SORWAREPORWOODOUIGN June 8, 2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: • Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End ,LIVE Live Point 2.50 200 lbs • MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 1 ''Iri.::V:'.7,,.7nVIge.t:i4'MIAMMMnPr'M'T''7,n=3--?,,zA,,,:-•,:_,,,,,,,I.,-.,....., ' . .:• - •_:;';'.,i',! , ':?..:' , :' , :;, isy 51 Dead Live 100 • 100 Total 104 104 Bearing: Load Comb . #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams is 1/2" for exterior supports Lumber-soft, Hem-Fir, No.2, 2x6" Self-weight of 1.7 plf induded in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 405 Fb' = 1048 fb/Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 ' - - 1.00 1.00 1.00 2 F1:0+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fop' 405 1.00 1.00 - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending(+): LC #2 = L, M = 255 lbs-ft Deflection: LC #2 = L El = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC . DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks® Sizer 7.1 June 22,2010 14:13:51 Concept Mode: Reactions at Base of Structure View Roof: 25' • • 105 0 - - - - - -- - . _1280 L. .. . . ... . .1280 L -- -- - - -- 49' -6" 442D : . : • uS s -.-:s 442 D- b 4/ -0 - Ili .. 40. -0.. y / 12272089 L _ 1601 L; : _ _ _ . . 4l -b yo 10481539 D 1074 D. 4 sa b J4 .- • i —: - .. - - --- - -- - -- - -- .. - - - . -- - - .. 3b .. y3 3 ('-b ' • yL ; .; -. - - .. - : - - - - --- --- ...5b•-b• y7 i ! " -- - - - -.. .. .._ 3b -b • ts y 3S -4D 00 :... 75 L : . - • . : • . t•-,0 64 : 59 D L0 -b.. • 1232 L Lb -b • b i : . 1408 L :: '.: 5 D L4.4o. by • • 514 D : L..5••-b. . ■ • • 1 -1080L:: - - . - - '640L ; - : i-u. /0- _409 D . ,, . � Lu -b 7 92 L . 14. .: 4Rnf -;. ': 99 DD_. . I b 10 b / 3 1522 L I r -b rL 99 D I 0 -b. /1 .. . .553 - - - : - ; -- ! • . I0'0 . . (u 98 D- .. 14 -b bJ 225 : 75 L . - - . - I3 - • b/ i 73 74n :--�:.. . , - I I - b bb : 2192 L' 1 u -b • 00 i : 1311 D � °b 220 L 5 -b � L 55 L 4 -b -- 109 ; 58 q: - 021 L . ~ , .. b .. '.. 450 2 1 D - `-5581 D; - - u BB\BBBCCCC CCCICCCCCCCCCCCC CCICCCD. DDDDDDDfDDDCDDDDDDDDDCDiDDDE: EE 'EEEE•EFEEEIEEIEE +EEEEEEEEEEE2 0' 2' 4' 6' 8 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8' 1(1'1:1 :1 111!2(22:2:2 2212$ 3( 33: 3; 3 3.' 3( 3•. 3t3( 4( 44A: 44: 4t 4: 4t4'. 5( 553: 5 5' S(5'Si5'.6(66:6 :6‘6'6(66f64'7(7 7.77 3(.1 L L '''31 p FCDC l'' 1 i.) c-‘ L or -F 12.0m1.- Lt.Derz ,t3...._ '.,. \ WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN • Unit B - Rear Load WoodWorks® Sizer 7.1 June 22, 2010 14:14:21 . Concept Mode: Reactions at Base of Structure View Floor 3: 17' • • 1050 - - - - 1280 L .. 1280 L - -- -..- • . . ..... .. . .. . .-. .. . . . -- - ' -- . 49 u4�- - 442 D :: - :.:... = 442 D ' �. tl .. .11.1( f 2,- _ /UU y -- _ - - 4 -b 4 - 4 • 43 ar. - :: _5296 L 376 L, _.. 4'1 b ' ' 4328 D• : 4101 D _ .. 4u•-b • .5f -U . y1 . : b y J3 -b.. tab' -' ---- - =- L - - - - - - - -- - - JU 00 75 . .. - . . .. Ly -n.. • 154 -- -- -- _ - -- - - - - -- -- __ - -- -' L21 -b • 5 D . - tiL - 765 L1 - :1036 L - • • - • - - .. -- - - -- - -- --- -- Lt b tsu 483 D . ...: : L4 -b 277 D LJ_b.. 141---. '9 Di - 640 E - - - - •- - - - . - - - - - - LL -b /b - 208 .,. } 74[ , . : zu 4) r a 774 L 1 b (4 ' asin1 99D�____. _ _ - - - --- 11S -b • ti 1020 L 99 D - i n- b n r1 368 D - -- . . . - . Ib b • by 225 75 L . - . or 73 V 9d n - i 0: bn 2186 L - 1 u -b • b4-) : 4 Q ; 1298 0: - - - ... --- --. _-- - -- is - • b 4 L 084 • o-b 4-t7 94 LA 306 L4 D- 4 62 L 73 D17E2515 D5 D- • 5647 D • - VA) U CS BBIB.BBC. CCC CCCCtCCC CC CCCC C C CC CCICC CDDDD D DD DFDDD DD DDDD D D DD CDODD DE.E E E E EE:EFEEEIEE!E E+EEEEEEfEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'67'8'91(1 :1 I1(1 :1 £142(2 2:2;2 243(3 3 :3:3 "3l3W(4 :4 £445(5 5:5 :5 f5 :6 :6 616470 777 QQT 1 L . &maw.Lo p411) 3....t ez..... Plain Concrete Isolated Square Footing Design: F1 f 2500-psi Concrete strength fy .=: 60000tpsi Reinforcing steel strength E := 29000.ksi Steel modulus of elasticity Icon 150'pcf Concrete density "(soil : =.'100•pcf Soil density g 1500psf Allowable soil bearing pressure COLUMN FOOTING Reaction Total' : 5647.1b Pd1 := Totaldl Totalp::= 7062•1b Pll := Totalll P := Pd1 + Pit P = 12709-lb Footing Dimensions tf := 12-in Footing thickness Width := 42.in Footing width A,:= Width Footing Area gnet gall — tf•'Yconc net = 1350•psf Ptl Areqd gnet A = 9.414.ft 2 < A = 12.25 ft GOOD Widthreqd A reg d Widthregd = 3.07-ft < Width = 3.50 ft GOOD Ultimate Loads = Pdl + tf'A''Yconc P := 1.4 Pdl + 1.7•P11 P = 22.48•kips Pu qu A q = 1.84•ksf Beam Shear bcoi := 5.5•in (4x4 post) d := tf -2•in := 0.85 b := Width b = 42-in V :_ 4 • f V = 23.8-kips 3 Vu := C qu b 2 col1 V = 9.77-kips < V = 23.8 -kips GOOD Two -Way Shear bg` 5.5:in Short side column width b : 5 Long side column width b := 2•(bg + d) + 2•(bL + d) b = 62•in R := 1.0 V 4 + 8 f psi•b•d V = 71.4-kips (3 3 ' Pc V := 2.66 f psi b d V� = 47.48-kips ,V,,,,x„••= qu•[b — (bc01 + d)2] V = 19.42-kips < V = 47.48-kips GOOD Flexure r 2 2 / I Mu qu' I b — 2 J bcoll 11 b M = 7.43--kips ,:= 0.65 • 1)-(1 S= 0.405.1 6 F := 5•(1) f psi F = 162.5 -psi M f := n f = 127.36•psi< F = 162.5-psi GOOD lJse a 3' -6" x 3' -6" x 12" plain concrete footing Plain Concrete Isolated Square Footing Design: F2 f := 2500. psi Concrete strength f := 60000•psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity Iconc 15013cf Concrete density / := 100-pcf Soil density qall := 1500-psf Allowable soil bearing pressure COLUMN FOOTING Reaction Total := 4101-lb Pd1:= Totaldi Totalll := 5376-lb Pll := Totalll Pll := Pdi + P11 P = 9477•lb Footing Dimensions t := 10•in Footing thickness Width := 36•in Footing width A := Width 2 Footing Area net := gall trYconc net = 1375-psf Ptl A := — clnet A = 6.89241 < A = 941 GOOD Width := Width = 2.63.ft < Width = 3.00 ft GOOD Ultimate Loads Pdi + trA*Iconc P := + 1.7•P11 P = 16.46- kips Pu clu := — = 1.83•ksf Beam Shear (4x4 post) d := tf 2-in := 0.85 b := Width b = 36•in V, := - jb.d V, = 16.32•kips 3 V qu ( 2 b bcolj V = 6.97-kips < V, = 16.32•kips GOOD Two-Way Shear := 5.5-in Short side column width 5.5-in Long side column width b := 2-(bs + d) + 2-(bL + d) b, = 54.in 13 := 1.0 + — )-K-b•d V, = 48.96-kips 3 3- 0c := 44).2.66- = 32.56•kips quf b – tb + d)2] V = 14.14•kips < V = 32.56-kips GOOD Flexure u qu trb - b M := 2 ) ) ( — •b = 4.43-11-kips L 2 A:= 0.65 1)-4:1 "= S = 0.222•ft 3 F := 54•071rsi F = 162.5-psi M ft := f = 138.42-psi< F = 162.5-psi GOOD Use a 3'-0" x 3'-0" x 10" plain concrete footing 1 5- Plain Concrete Isolated Square Footing Design: F2 f := 2500-psi Concrete strength f := 60000• psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity 'Yconc 150•pcf Concrete density 'Ysoit 100•pcf Soil density g := 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 2515-lb Pdl := Totaldl Total11 := 3606-lb P11:= Totalll Pt! := Pdl + Pll P = 6121-lb Footing Dimensions t := 10• in Footing thickness Width := 30•in Footing width M 4,:= Width Footing Area net all – tf•"Yconc net = 1375•psf Ptl Areqd gnet A g 4.452.ft 2 < A = 6.25 ft GOOD Widthreqd Areqd Width = 2.11 -ft < Width = 2.50 ft GOOD Ultimate Loads ,:= Pd1 + tf'A''Yconc P := 1.4•Pdl + 1.7•P11 P = 10.74-kips P qu — qu = 1.72•ksf A g' Beam Shear bc0i := 5.5.in (4x4 post) d := tg — 2.in := 0.85 b := Width b = 30.in V :_ 4 f psi b d V = 13.6•kips 3 Vu •= 9u Cb —b colt b V„ = 4.39-kips < V = 13.6•kips GOOD Two -Way Shear bg = 5.5 -in Short side column width bj := 5:5 in Long side column width b := 2•(bg + d) + 2.(bL + d) b = 54•in (3 := 1.0 + 8 ). f V = 40.8•kips 3 3•13 := 2.66 f psi b d V = 27.13•kips 9u•[b — (bc01 + d)2] V = 8.57-kips < V m = 27.13•kips GOOD Flexure 2 Mu 9u rb — 2 J bcol r 1 M = 2.24-11-kips I \ l2J 0.65 b-d S := -- S = 0.185•ft F := 5.4 f psi F = 162.5-psi M f :_ . —° f = 83.98-psi < F = 162.5-psi GOOD llse a 2' -6" x 2' -6" x 10" plain concrete footing 1 6-3- s k z� .0 0 • O o I < �s3'fb) e --4, xs i-)e (z - '1)'1- z El re lots _Se e n e W o . Q Z,'t,tl of . --A® 5 7i U1'1 " p T T o�= S 1 0t -. 3 ct) vas. sk(.'l))t -t'e4 r)sh -tA ()(5' 1X'x$o w sore -hr. _ , ( )vgs cS•�)1i. „'e `')St'L° + 6 S'l glrs')(oS1 °o)= aW . Fi I 'e' vc.■ = C 11 . t'4 4 4 lolo! + tb' 4 4 b1 = s 6 .uin{Ya^O -Pav@ Ill z n m p n A r> O O .( ,‘....1 m -1 t I 1 I 1 1 1 Z ?I r � , _ �, _� 11s, II . ❑ ❑ KL I� � �gI bbt 9katblE �eb'b� ?°°1 9u°--q Q , ,!' r) :38 '• / :103 ( d .1SOE't — A SCreb d0 )30 (N ti� )'ON 90!' 010C (—)0 :31tlQ i\\\1 — Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:48 AM Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit B\FDN \Front Load.etz\ M33 =81.13 [Kip'ft] • M33 = -23.24 [Kip•ft] Y X v \,o . `ritt y Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:49 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit B\FDN\Front Load 2.etz\ • M33 =48.59 [Kip'ftj Y M33= -54.65 [Kip'ftj • • (6, . , . . . ---,,,- --„,„ :-.-c...1)-we,...s 15-k aw eLc :-.-- +.%'O --S — CztixsrDsica (-too'b-fic--%4Q-) •=. v . ,,,: .., , --s-v - • -yo g • : aq 0 .-.1.-. ,..,..,= .c :::> CD • a f *YakkglaA ' •!, = .mci -, 10 '.- ilivea< i SQ: )1 2 = .::01' , SIX_Orri + Olk\o - 4290 1 0‘0 ' WO N it cant 0 ,..,_ cz L 0-0Q67.- 9 -=-- v '- 1 - 0 „ol — AO, ." vii = - ,Dy) - (91n -- ob ,, ,Ngrzian oloi 0 -= \Awe ( Lcod :No . . ..1 = . i p - a - s • -- k - i,11. . 0 . z -ri .. 0 0 C / C V V -= ' ‘O s K c■ S lil ho*Ot) - • <-- ---) ). _1 -..j scrbs- ‹,.•-c,1.-4'k).0 • • - - - - - "- - Y m i \g ' c _ ___ . ..... t: = - - - - - 11 V " • -- - - - - - - - - - - - . - 103 rONd .. N -a -) :...or olot ( i)Inc__ :.Ava - )'\%\1 :A. BY DATE: J08 NO.: l PROJECT: RE: U mT- . 0 — Recap' L 0 o CC1yr WJ Z 1��wY� O W - i O . 2.000 ZpU� W 0 - 1 a U al ea a O Mor = 54,S3 k.Ft Me., ci) +- a. (4,34 t .D CIL433) _ (US- 34 f-OI DL U ❑ AT : td x a' 7( 1, / O z .x = NI f V _ 4' !34 t a (3 . ∎> _ a. ---. e — oo Ft ❑ o - la.i • _ C7 47ma,x = C, st- 4. M IL., L(12, INO :n civtn 1.7n C. _ di1 1 . _ (v2. No,n -) 0 , a tsc- at_ (y.t ,) 2( i- • O • U v - N "l nr y a x : B - V.3 Bentley. Harper Houf Peterson Righellis • Inc. Current Date: 6/22/2010 10:57 AM Units system: English File name: O:WHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit C\FDN\Rear Load 2.etz\ • • M33 =36.82 [Kip`ft] M33= -50.22 [Kip`ft] • y d 8— 1�k ACI 318 -05 Appendix D 1.125" Diameter Bar Capacity at Standard Stem Wall Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc = 3000 psi fc = 3000 psi hi = 17.00 inches h = Y ^12:00; ..' inches (into the Foundation) Stem = i ,_ inches Note: hef above is the the embedment into only the the foundation and does not consider stem wall embedment Fnd Width = • 36.00 inches C = 2.25 inches Cmin = 18.00 inches Wc,N= 1.00 cast -in -place anchor Wc,N= 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor = 0.75 strength reduction factor 4) = 0.75 strength reduction factor Calculations Calculations ANC = 408 in` AN = 1 296 in` ANo = 2601 in` AN = 1296 in` Nb = 92,139 pounds Nb = 55,121 pounds Wed, = 0.7265 Wed.N = 1.00 Ncb = 10,500 pounds N = 55,121 pounds (Kb = 7,875 pounds 4 )Ncb = 41,341 pounds Combined Capacity of Stem Wall and Foundation �Ncb = 49,216 0.754)Ncb = 36,912 • • �r� Concrete Side Face Blow Out Givens Ab = 2.75 in` fc = 3000 psi c = 18.00 inches = 0.75 strength reduction factor Calculations Nsb = 261,589 pounds 4Nsb = 196,192 pounds Concrete Pullout Strength Givens A brg = 2.75 in` fc = 3000 psi = 0.75 strength reduction factor Calculations N = 66,000 pounds 4'N = 49,500 pounds Steel Yield Strength Givens f, = 58,000 psi A = 0.763 in = 0.80 strength reduction factor Calculations N = 44,254 pounds DNS = 35,403 pounds < 36,912 Ductility Met Holdown Check Holdown: HD19 Holdown Capacity= 16,380 pounds 1.6* Capacity= 26,208 pounds 26,208 < 35,403 Holdown Checks ACI 318 -05 Appendix D 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc = 3000 .psi fc = 3000 psi h = 3.50 inches h = ;;42:00 inches (into the Fc Stem = , 8600 . inches Note: hef above is the the embedment into or c = 5.25 inches the foundation and does not consider stem WE Fnd Width = 36.00 inches C m;n = 2.25 inches C mjn = 18.00 inches kv 1.00 cast -in -place anchor W 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor = 0.75 strength reduction factor = 0.75 strength reduction fact, Calculations Calculations AN = 68 in` AN = 1296 in` AN = 110.25 in` A = 1296 in` Nb = 8,607 pounds Nb = 55,121 pounds W ed,N - 0.8286 Wed.N = 1.00 Ncb = 4,399 pounds N = 55,121 pounds 4Ncb = 3,299 pounds 4Ncb = 41,341 pounds Combined Capacity of Stem Wall and Foundation O = 44,640 0.754N = 33,480 • Concrete Side Face Blow Out Givens Abrs = 2.15 in` fc = 3000 psi cmin = 18.00 inches = 0.75 strength reduction factor Calculations Nsb = 231,191 pounds 4Nsb = 173,393 pounds Concrete Pullout Strength Givens Abre = 2.15 in` fc = 3000 psi = 0.75 strength reduction factor Calculations N = 51,552 pounds 4 N = 38,664 pounds Steel Yield Strength Givens f = 58,000 psi A = 0.606 in = 0.80 strength reduction factor Calculations N = 35,148 pounds 4 Ns = 28,118 pounds < 33,480 Ductility Met Holdown Check Holdown: HDU14 Holdown Capacity= 14,930 pounds 1.6* Capacity= 23,888 pounds 23,888 < 28,118 Holdown Checks 1 BY: IkKk V DATE: w 1 Q JOB NO.: C N,040 OF PROJECT: RE: r \ Wall ' CookiP3 ❑ ❑ t s; d s c` V L i Icliono _ Z ! w 0 2 � aSC ?sF)= 300 PLC UxC\1 ❑ • $ ct(z xevels`(∎3 sc) = a O5 p� floor o 40 650 pc��C e ta) _ 333 puP 5Vem r o Z ( ISO ?c )(w = 100 w PLr w $ � -, tr a (�FC)(.2 levels)C40 = bUp P".F S tour' O Teal load. = 11-8 t +- tOOu) 2 MOO( sbrp =1.Soo psP = IS00pc.-P • W 1115 I. + 100 LO S CSOOW - (4).= ONO x. (Gs" & 0 Z ❑ o e rear c v kx) td N r O 1- a DL, asCo-)- - Zoo « (1) leve►s)(L psF Per 1tiocx--- 401N Uso.F C'in_ ebr = 333 51-e w> = too w P ''ti'1 01+2 C aso 0181 psf) - 306 pt- coo p LL (c2_)(4-o =•-• or20 p CytN2s) = 4-S PLC - • � i TL e any- 3+ a3u3 +- loOw c lsv©(Au !.> e ur;1-s 4 �L Same as , minus Sto x load T L.. \ 3b q �- ∎ GO W W = 1.00 <. O e ts‘ 5)C 2 1 -I 1 to tool" 4Ui 5kvy CC I►iYt5() : 00 v LL o ($�z >C4o�Cz> = 1 2 h o ? L . \ = , s . t o u r - T L a6a9 t IO0w LA) 2 , 2 -'• v s2 a4 t n►