Loading...
Specifications (3) 115 r 2c/v .- f4,i /Y4 ii? /,;z -di structural Calculations for Full Lateral & Gravit Anal sis of R Y Y SO 2 � Plan A 1460 CI C G Summer Creek Townhomes Bu1Lo1N Tigard, OR Prepared for Pulte Group July 13, 2010 JOB NUMBER: CEN -090 ** *Limitations * ** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and /or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 117 sheets total including this cover sheet. This Packet of Calculations is Null and Void if Signature above is not Original N Harper '- Houf Peterson Righeilis Inc. sNDINCEPO • I CRO -- LANDSCAPE. ARCRICIGCS• 'JR':EYORS 205 SE Spokane St. Suite 200 o Portland, OR 97202 0 [P] 503.221.1131 0 [F] 503.221.1171 1 104 Main St. Suite 100 o Vancouver, WA 98660 0 [P] 360.450.1 141 0 [F] 360.750.1 141 1133 NW Wall St. Suite 201 o Bend, OR 97701 0 [P] 541.318.1 161 0 [F] 541.318.1 141 Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit A Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, lW: 1 2006 IBC / 2007 OSSC Occupancy Category: II Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed, ASCE 7 -05 Ch. 20 Importance, 1E: 1 ASCE 7 -05 Table 11.5-1 Ss: 0.942 USGS Spectral Response Map Sl : 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength, f' c: 3000 psi Foundations & Slab on Grade Concrete Unit Weight, 7c: 145 pcf Steel Reinforcement Yield Strength, f 60,000 psi Wood Studs (Wall Studs): Hem -Fir #2 2x & 4x Wood Beams & Posts: DF -L #2 6x & Greater Wood Beams & Posts: DF -L# 1 Glulam Beams: 24F -V4 PSL Beams: Fb =2,900 psi, FV= 328psi, E =2.0 Million TS /LSL Beams: Fb =2325 psi, FV= 460psi, E =1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : .1500 psf Assumed 2. All manufactured trusses, joists, and flush beams u.n.o. shall be designed by others. Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 WoodWorks - Sizer version 2002 Bently RAM Advanse • Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP' Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCHITEC rS• SURVEYORS DESIGN CRITERIA 2007 Oregon Structural Specialty Code & ASCE 7 -05 Roof Dead Load RFR:= 2.5.psf Framing RPL := 1.5•psf Plywood RRF := 5.psf Roofing RME := 1.5•psf Mech & Elec RMS := 1 •psf Misc RCG := 2.5.psf Ceiling RIN := 1 •psf Insulation RDL = 15•psf Floor Dead Load FFR := 3 •psf Framing FPL := 4•psf Sheathing FME := 1.5•psf Mech & Elec FMS := 1.5•psf Misc FIN := .5•psf Finish & Insulation FCLG := 2.5.psf Ceiling FDL = 13.psf Wall Dead Load WOOD EX Wa11 := 12•psf INT_Wa11 := 10-psf Roof Live Load RLL := 25.psf Floor Live Load FLL := 40•psf L1 Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP_ Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCNl7 ECTS• SURVEYORS Transverse Seismic Forces Site Class = D Design Catagory = D Building Occupancy Category: II Weight of Structure In Transverse Direction Roof Weight Roof Area := 843-11 -1.12 RFWT := RDL•Roof Area RFgr1- = 14162-lb Floor Weight Floor_Areai := 647.ft FLRw n d := FDL•Floor Area2nd FLR r1.2 = 8411.1b Floor Area3rd := 652•ft FLRWT3rd FDL•Floor Area3rd FLRWT3rd = 8476.1b Wall Weight EX Wall Area (2203)4 1 INT Wall Area (906)•ft WALLWT := EX_Wall EX_Wall_Area + INT Wall 1NT_WallArea WALLWT = 35496-lb WTTOTAL = 66545 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h := 32 Mean Height Of Roof I :_ 1 Component Importance Factor (11.5, ASCE 7 -05) A,:= 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C :_ .02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x := .75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period T := C T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. . (Chapter 22, ASCE 7- 05)...or S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F := 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F,,, := 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) .s. Hat Project: SUMMERCREEK TOWNHOMES UNIT A HP t. Hoof Peterson _ Client: PULTE GROUP Job # CEN-090 ? Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCYITECTS•SURVEYORII SMS := F S Sms = 1.058 (EQU 11.4-1, ASCE 7-05) 2•Sms Sds := - Sd = 0.705 (EQU 11.4-3, ASCE 7-05) SM1 := F SM1 = 0.584 (EQU 11.4-2, ASCE 7-05) 2•Smi Sdl := Sd 1 = 0.389 (EQU 11.4-4, ASCE 7-05) 3 Sdsle Cst := R Cst = 0.108 (EQU 12.8-2, ASCE 7-05) ...need not exceed... 'le Cs := Sdl Cs = 0.223 (EQU 12.8-3, ASCE 7-05) ax T ...and shall not be less then... C 1 := if (0.044- Sd l < 0.01 , 0.01 , 0.044- Sd l 0.5•S1•1" ( S i < 0.6 (EQU 12.8-5&6, ASCE 7-05) C2 := if ,0.01, R Cs := if(Ci > C2 , CI , C2) Cs = 0.031 Cs := if (Cst < Cs , Cs if (Cst < Cs , Cst, Cs Cs = 0.108 V := Cs'WTTOTAL V = 72201b (EQU 12.8-1, ASCE 7-05) E := V.0.7 E = sum ib (Allowable Stress) Harper Project: SUMMERCREEK TOWNHOMES UNIT A o ' Hotif Peterson Cl PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # IANOSCAPE A RCNITECTS•SURVEYOAS Transverse Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 100 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I := 1.00 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X := 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... a2 := 2•.1.20•ft Zone A & B Horizontal Length a2 = 4 ft (Fig 6 -2 note 10, ASCE 7 -05) or 2:= .4•h,; 2. ft a2 = 25.6 ft but not Tess than... a2 := 3 2 ft a2, = 6 ft Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA 19.9•psf PnetzoneH := 3.2•psf Pnetzonec 14.4•psf PnetzoneD 3.3-psf Vertical PnetzoneE 8.81psf PnetzoneF := — 12•psf PnetzoneG 6.4•psf PnetzoneH —9.7.psf Basic Wind Force PA := PnetzoneA'Iw'X PA = 19.9•psf Wall HWC PB := PnetzoneB'Iw'X PH = 3.2•psf RoofHWC PC := PnetzoneC'Iw.X PC = 14.4•psf Wall Typical PD := PnetzoneD'IAN,•X PD = 3.3•psf Roof Typical PE := PnetzoneE'Iw•X PE = — 8.8•psf PF := PnetzoneF'Iw -X PF = — 12•psf PG := PnetzoneG' Ivy' X PG = — 6.4•psf PH := PnetzoneH' Iw• X PH = — 9.7•psf Harper Project: SUMMERCREEK TOWNHOMES UNIT A ° HP Houf Peterson Client: PULTE GROUP Job # CEN -090 i " � Righellis Inc. EMOINCERS •?LANNCRS Designer: AMC Date: Pg. # LANDSCAPE ARCNITECTS•SURVE‘ORS Determine Wind Sail In Transverse Direction WS ZoneA (41 + 59 + 29)-ft WSAILZoneB (19 + 0 + 23).ft WSALZoneC': (391 + 307 + 272)41 WSAILZoneD (0 + 0 + 5)4ft2 WA WSAILZoneA'PA WA = 25671b WB WSAILZoneB'PB WB = 1341b WC WSAILZoneCPC WC = 13968 lb WD WSAILZoneD'PD WD = 161b Wind_Force := WA + WB + WC + WD Wind_Force := 10• psf•(WSAILZoneA + WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind_Force = 166861b Wind Force = 114601b WSAILZoneE := 94•ft WSAILZoneF 108.ft WSAILZoneG 32o•.ft WSAILZoneH 320•ft2 WE := WSAILZoneE•PE WE = — 827 lb WF := WSAILZoneF•PF WF = — 12961b WG WSAILZoneG•PG WG = — 20481b WH := WSAILZoneH'PH WH = — 31041b Uplift := WF + WH + (WE + WG) + RDL f WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneG)] Uplift = 12121b (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION Harper Project: SUMMERCREEK TOWNHOMES UNIT A P Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCNII•ECTS•SURVEYORS Longitudinal Seismic Forces Site Class = D Design Catagory = D Building Occupancy Category: II Weight of Structure In Longitudinal Direction Roof Weight Roof Area = 944 ft Y JbG]^, := RDL -Roof Area RFC = 14162-lb Floor Weight Floor_Area2 = 647 ft F = FDL•Floor Area2nd FLRw = 8411.1b Floor_Area3 = 652 ft • , j ;= FDL•Floor Area3rd FLRj3 = 8476.1b Wall Weight g . WaII.Am. = (2203)4ft INT Wall Area = 906 ft , 4 = EX Wall + INT Wa1l WALLw-r = 35496-lb WTTOTAL = 6654516 Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h = 32 Mean Height Of Roof le = 1 Component Importance Factor (11.5, ASCE 7 -05) A, := 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C = 0.02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x = 0.75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period Zw:— — C ( h n r T a = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 = 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S = 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F = 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F� = 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) 4- Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP t• Houf Peterson. Client: PULTE GROUP Job # CEN -090 Righellis Inc. - - -- ENGINEERS • PLANNERS - Designer: AMC Date: Pg. # LANDSCAPE ARCRI TECTS•SURVE YORS F -S MS= S 1.058 (EQU 11.4 -1, ASCE 7 -05) 2 3 MS := Sds = 0.705 (EQU 11.4 -3, ASCE 7 -05) Au:= F Si SMI = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2 •SMI = Shc = 0.389 (EQU 11.4 -4, ASCE 7 -05) 3 Cts := S R Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) ...need not exceed... Sdt Cs = 0.223 (EQU 12.8 -3, ASCE 7 -05) �= T a •R ...and shall not be less then... „SI if(0.044•Sd I < 0.01, 0.01,0.044•Sd 0.5•S1•Iel (EQU 12.8 -5 &6, ASCE 7 -05) if(S1 <0.6,0.01, J R asok,:= if (CI > C2, CI, C2) Cs = 0.031 ti Cs := if (Cst < Cs , Cs , if (Cst < Csmax , Cst, Cs Cs = 0.108 V := Cs•WTTOTAL V = 72201b (EQU 12.8 -1, ASCE 7 -05) E := V•0.7 E = 50541b (Allowable Stress) Harper Project: SUMMERCREEK TOWNHOMES UNIT A e Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # I•NDECAPE ARCNITEC TS• SURVEYORS Longitudinal Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 110 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I = 1.0 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X = 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... = 2..1.20• ft Zone A & B Horizontal Length a2 — 4 ft (Fig 6 -2 note 10, ASCE 7 -05) or _ .4•h, 2•ft a2 = 25.6 ft but not less than... Snain,:= 3.2.ft 6 ft a = Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA = 19.9•psf PnetzoneB = 3.2•psf PnetzoneC = 14.4 psf PnetzoneD = 3.3•psf Vertical PnetzoneE = —8 . 8 •psf PnetzoneF = — 12.psf PnetzoneG = — 6.4•psf PnetzoneH = —9.7•psf Basic Wind Force ,K,40,,,:= PnetzoneA'Iw•X PA = 19.9•psf Wall HWC = PnetzoneB•lw'X PE = 3.2•psf Roof HWC = PnetzoneC'lw'X Pc = 14.4•psf Wall Typical ,:= PnetZOneD'lw'X PD = 3.3.psf Roof Typical STA A := PnetzoneE'Iw•X PE = —8.8.psf Pte,:= PnetzoneF'Iw'X PF = — 12•psf Pte:= PnetzoneG'Iw'X Pc, = — 6.4•psf ,:= PnetzoneH'lw'X PH = — 9.7•psf Harper Project: SUMMERCREEK TOWNHOMES UNIT A • P : • Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LAN OSCAPE A RO.HItEO Determine Wind Sail In Longitudinal Direction AWaa,49ikoA: (48' +59 +:40)•ft2 Ay SL :_ (10,+ 0 +.44).ft 2 ) := (91 + 137 + 67)4ft N:= '(43 + 0 + 113). ft Wes= WSAILZoneA'PA WA = 29251b WSJ- ZoneB'PB WB = 1731b ,:= WSAI-ZoneC'PC WC = 42481b Wes= WSAILZoneD•PD WD = 5151b Win om:= WA + WB + WC + WD ,i o c = 10•psf•(WSAILZ + WSAI-ZoneB + WSAILz + WSAILZoneD) Wind Force = 78611b Wind_Force = 65201b SAIL 44 := 148•ft A WAS,A Q L := 120•ft n x',444w4:z 323 •ft Mp:= 2 52: 112 V:= WSAILZoneE' WE = - 13021b „WR,;= WSA- ZoneF'PF WF = - 14401b Wes= WSAILZoneG'PG WG = - 20671b Wes:= WSAILZoneH'PH WH = - 24441b 1 N = WF + WH + (WE + WG) + RDL•[WSAILZoneF + WSAII-ZoneH + (WSAILZoneE + WSAILZoneG) } . 6.1 . 12 Uplift = 12431b (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION #9 — L9. Harper Houf Peterson Righellis Pg #: Transverse Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = • 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X. = 1.00 Iw= 1.00 Wind Sail Wind Net Design Wind Pressure (psf) () Pressure (Ibs) Zone A = 19.9 129 W�P 2567 Wall High Wind Zone Horizontal Zone B = 3.2 42 134 Roof High Wind Zone Wind Forces Zone C = 14.4 970 13968 Wall Typ Zone Zone D = 3.3 5 17 Roof Typ Zone Zone E = -8.8 94 • -827 Roof Windward High Wind Zone Vertical Zone F = -12.0 108 -1296 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 320 -2048 Roof Windward Typ Wind Zone Zone H = -9.7 320 -3104 Roof Leeward Typ Wind Zone Total Wind Force =` 16686 Ibs I Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -7275 Ibs Resisting Dead Load= 8472 Ibs El 1197 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms _ Wind Sail Tributary To Diaphragm (ft Zone A Zone B Zone C Zone D Main Floor 41 19 391 0 Upper Floor 59 0 307 0 Main Floor Diaphragm Shear = 6507 Ibs Upper Floor Diaphragm Shear = 5595 Ibs Roof Diaphragm Shear = 4584 Ibs • Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Diaphragm Diaphragm (Ibs) (Ibs) (Ibs) Width (ft) Width (ft) Width jft) A 13.08 • 1737 18 2797 19 2323 Al 24.50 3254 0 0 0 0 B 11.42 1516 18 2797 18.5 2261 E= 49 6507 36 5595 37.5 4584 M- Llo Harper Houf Peterson Righellis Pg #: • Transverse Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D S1 = 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 S • 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 SDS= 0.71 Equ. 11.4 -3, ASCE 7 -05 SDI= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 • Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 • Floor 2 Wt (Ib)= 8411 Floor 3 Wt (Ib)= 8476 Roof Wt (Ib) = 14162 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22609 Trib. Floor 3 Diaphragm Wt (Ib) = 22674 Trib. Roof Diaphragm Wt (Ib) = 21261 Vertical Dist of Seismic Forces Cumulative % total of base shear Rho Check to Shearwalls (Ibs) I to shearwalls Req'd? Vfloor2 (Ib) = 720 100.0% Yes Vfloor3 (Ib) = 1625 85.8% Yes V roof (Ib) = 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft Ibs Ibs Ibs A 102 361 394 114 897 1266 Al 432 0 0 481 0 0 B 113 . 293 449 126 728 1443 Sum 647 654 843 720 1625 2709 Total Base Shear* = 1 5054 LB 1 i *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. /9 — Lk\ Harper Houf Peterson Righellis Pg #: Longitudinal Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) • Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf A. = 1.00 Iw= 1.00 Wind Sail Wind Net Design Wind Pressure (psf) (ft ) Pressure (Ibs) Zone A = E � ~ 19.9 1477 7... �� „ 2925 Wall High Wind Zone Horizontal Zone B = 3.2 54 173 Roof High Wind Zone Wind Forces Zone C = 14.4 295 4248 Wall Typ Zone Zone D = 3.3 156 515 Roof Typ Zone Zone E = -8.8 148 -1302 Roof Windward High Wind Zone Vertical •Zone F = -12.0 120 -1440 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 323 -2067 Roof Windward Typ Wind Zone Zone H = -9.7 252 -2444 Roof Leeward Typ Wind Zone Total Wind Force=l 7861 Ibs I Use to resist wind uplift: Roof Only Total Exterior Wall Area 2203 ft Uplift due to Wind Forces= -7254 Ibs Resisting Dead Load = 8483 lbs E =l 1229 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms . Wind Sail Tributary To Diaphragm (ft Zone A Zone B Zone C Zone D Main Floor 48 10 91 43 Upper Floor 59 0 137 0 Main Floor Diaphragm Shear = 2440 Ibs . Upper Floor Diaphragm Shear = 3147 lbs Roof Diaphragm Shear = 2275 Ibs Wind Distribution To Shearwall Lines . MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm (Ibs) Diaphragm (lbs) Diaphragm (lbs) Width ft Width ft Width ft 1 10 1220 10 1573 10 1137 2 10 1220 10 1573 10 1137 E= 20 2440 20 3147 ' 20 2275 . /4 - Lcz... Harper Houf Peterson Righellis Pg #: • Longitudinal Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D S1 = 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 • Ct = 0.020 Other Fa = 1.12 Fv= 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 SMg 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 SDS= 0.71 Equ. 11.4 -3, ASCE 7 -05 SDI= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (Ib)= 8411 Floor 3 Wt (Ib)= 8476 Roof Wt (Ib) = 14162 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22609 Trib. Floor 3 Diaphragm Wt (Ib) = 22674 Trib. Roof Diaphragm Wt (Ib) = 21261 Vertical Dist of Seismic Forces I Cumulative % total of base shear Rho Check to Shearwalls (Ibs) to shearwalls I Req'd? Vnoo, 2 (Ib) = 720 100.0% Yes Vnoor 3 (lb) = 1625 85.8% Yes Vroof (Ib) = 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft Ibs Ibs Ibs 1 286 291 415 318 725 1334 2 361 361 428 402 900 1375 Sum 647 652 843 720. 1625 2709 Total Base Shear* = I 5054 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. 4 L \'3 Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 'Transvere Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht I k ht I k ht I k (klf) (pll) (ft-k) (ft -k) (k) • 101 Not Used 102 7 1.75 3.50 4.00 w;' 8.00 1.74 18.00 2.80 27.00 2.32 1959 Double 1.40 NG 103 7 1.75 3.50 4.00 v`"4! 8.00 1.74 8.00 2.80 8.00 2.32 1959 Double 1.40 NG 103a 7 4.00 4.00 1.75 OK 8.00 3.25 814 Single 1.40 IV 104 8 4.50 10.50 1.78 OK 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III • 105 8 3.00 10.50 2.67 ox 8.00 • 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III • 106 8 3.00 10.50 2.67 ox 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 109 8 4.58 17.08 1.75 OK 8.00 1.74 18.00 2.80 27.00 2.32 401 Single 1.40 II 110 8 12.50 17.08 0.64 OK 8.00 1.74 8.00 2.80 8.00 2.32 401 Single 1.40 II 111 8 4.50 7.25 1.78 . ox 8.00 _ 1.52. 8.00 2.80 8.00 2.26 907 Double 1.40 VI 112 4.75 1.38 7.25 3.45 ox 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 113 4.75 1.38 7.25 3.45 - OK 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 201 9 3.92 10.79 2.30 OK 9.00 2.80 18.00 2.32 474 Single 1.40 11 201a 9 4.17 10.79 2.16 OK 9.00 2.80 18.00 2.32 474 Single 1.40 II 201b 9 2.71 10.79 3.32 OK 9.00 2.80 18.00. 2.32 474 Single 1.40 II _ 202A 9 2.96 11.96 3.04 OK 9.00 2.80 18.00 2.26 423 Single 1.40 II 202B 9 3.00 1196 3.00 ox 9.00 2.80 18.00 2.26 423. _ Single 1.40 II 203 9 3.00 11.96 3.00 ox 9.00 2.80 18.00 2.26 423 Single 1.40 II 204 9 3.00 11.96 3.00 OK 9.00 2.80 18.00 2.26 423 Single 1.40 II 301 8 3.92 - 13.96 2.04 OK 8.00 2.32 166 Single 1.40 I 302 8 5.79 13.96 1.38 ox 8.00 2.32 166 Single 1.40 I 303 8 4.25 13.96 1.88 OK 8.00 2.32 166 Single 1.40 I 304 8 2.96 5.96 2.70 OK 8.00 2.26 . ,,, 379 Single 1.40 II 305 8 3.00 5.96 2.67 OK 8.00 2.26 379 Single 1.40 II _ Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shears Shear Application ht . Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) A _ L, \ \--1*- Harper Hoof Peterson Righellis Pg #: 1 . Shearwall Analysis Based on the ASCE 7 -05 fransvere Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho "V % Story # Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. _ From Roof Load • Strength Bays Sides Factor Type T (ft) (ft) (ft) ht I k ht I k ht I k (klf) (plt) (p11) (ft -k) (ft -k) (k) 101 Not Used 102 7 1.75 3.50 4.00 ? .' ..a- 8.00 0.11 18.00 0.90 27.00 1.27 651 846 0.10 0.50 Double 0.50 NG 103 7 1.75 3.50 4.00 ' I" 8.00 0.11 8.00 0.90 8.00 1.27 651 846 0.10 0.50' Double 0.50 NG 103a 7 4.00 4.00 1.75 OK 8.00 0.48 0.00 0.00 120 156 0.22 1.14 Single 1.00 1 104 8 4.50 10.50 1.78 ox 8.00 0.13 8.00 0.73 8.00 1.44 219 284 0.25 1.13 Single 1.00 II 105 8 3.00 10.50 2.67 OK 8.00 0.13 8.00 0.73 8.00 1.44 219 284 0.17 0.75 ' Single 0.75 III 106 8 3.00 10.50 2.67 OK 8.00 0.13 8.00 0.73 8.00 1.44 219 284 0.17 0.75 Single 0.75 III 109 8 4.58 17.08 1.75 OK 8.00 0.11 18.00 0.90 27.00 ' 1.27 134 174 0.25 1.15 Single 1.00 . 1 110 8 12.50 17.08 0.64 OK 8.00 0.11 8.00 0.90 8.00 . 1.27 134 174 NA 3.13 Single 1.00 _ 1. 11 1 8 4.50 7.25 1.78 OK 8.00 0.13 8.00 0.73 8.00 1.44 . 316'. 411 0.25 1.13 , Single 1.00 III 112 5 1.38 7.25 3.45 ox 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.08 0.58 Double. 0.58 VII 113 5 138 7.25 3.45 ox 8.00 0.13 8.00 0.73 8.00 1.44 316. 411 0.08 0.58 Double 0.58 VII 201 9 3.92 10.79 2.30 OK 9.00 0.90 18.00 1.27 200 261 0.17 0.87 Single 0.87 II 201a 9 4.17 10.79 2.16 OK 9.00 0.90 18.00 1.27 200 261 0.18 0.93 Single 0.93 11 201b 9 2.71 10.79 3.32 OK 9.00 0.90 18.00 1.27 200 261 0.12 0.60 Single 0.60 II1 202A. 9 2.96 11.96 3.04 OK 9.00 0.73 18.00 1.44 182• 236 0.13 0.66 Single 0.66 III 2028 9 3.00 11.96 3.00 OK 9.00 0.73 18.00 1.44 182 236 0.13 0.67 Single 0.67 11I 203 9 3.00 11.96 3.00 oK 9.00 0.73 18.00 1.44 181 236 0.13 0.67 Single 0.67 111 204 9 3.00 11.96 3.00 'ox 9.00 0.73 18.00 1.44 181 236 0.13 0.67 Single 0.67 III 301 8 _ 3.92 13.96 2.04 OK 8.00 1.27 91 118 0.20 0.98 Single 0.98 I 302 8 5.79 13.96 1.38 oK 8.00 1.27 91 118 0.29 1.45 Single 1.00 . I 303 8 4.25 13.96 1.88 OK .8.00 1.27. 91 118 0.21 1.06 Single 1.00 I 304 8 2.96 5.96 2.70 OK 8.00 1.44 242 315 0.15 0.74 Single 0.74. III 305 8 3.00 - 5.96 2.67 OK 8.00 1.44 _ 242 _ 315 0.15. _ 0.75 _ Single _ 0.75 III Rho Calculation • Does the 1st floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total transverse base shear? Yes Total 1st Floor Wall Length = moo Total # 1st Floor Bays = 4.77 Are 2 bays minimum present along each wall line? No 1st Floor Rho = 1.3 Total 2nd Floor Wall Length = 22.75 Total 4 2nd Floor Bays = 5 Are 2 bays minimum present along each wall line? No 2nd Floor Rho = 1.3 • Total 3rd Floor Wall Length = 19.92 Total # 3rd Floor Bays = 5 Are 2 bays minimum present along each wall line? No 3rd Floor Rho = is Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load "Rho / Total L % Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) 4 Bays = 2 "UH Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load • L 0.5 " (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) /4- t \\S" Harper Houf Peterson Righellis Pg #: • 1 . Shearwall Analysis B ased on the ASCE 7 -05 Longitudinal Shearwalls. Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (kit) (plf) (ft -k) (ft-k) (k) 107 8 15.50 15.50 0.52 OK 10.00 1.22 18.00 1.57 27.00 1.14 1.03 254 Single 1.40 I 71.21 123.49 -0.19 108 8 15.50 15.50 0.52 OK 10.00 1.22 18.00 1.57 27.00 1.14 1.03 254 Single 1.40 I 71.21 123.49 -0.19 l 205 9 - 13.00I 13.00 0.69 OK I 9.00 1.57 18.00 1.14 0.70 I 208 Single 1.40 I 34.62 59.15 -0.07 I 1 206 9 13.00 13.00 - 0.69 OK 9.00 1.57 18.00 1.14 0.70 208 Single 1.40 I 34.62 59.15 -0.07 1 306 8 10.001 10.00 0.80 OK 8.00 1.14 0.29 114 Single 1 1 I 9.10 14.40 0.05 I 307 8 10.00 10.00 0.80 ox 8.00 1.14 0.29 114 Single 1.40 I. 9.10 14.40 0.05 Spreadsheet Column Definitions & Formulas • L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L. > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) • • , 9 - U\c„ Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 ' Longitudinal Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho' V % Story # - Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From_3rd Flr. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (felt) (plf) (plt) (ft -k) (ft -k) (k) 107 8 15.50 15.50 0.52 OK 10.00 0.32 18.00 0.73 27.00 1.33 1.09 153 153 NA 3.88 Single 1.00 I 52.25 130.70 -1.74 108 8 15.50 15.50 0.521 OK 10.00 0.40 18.00 0.90 27.00 1.38 1.09 173 173 NA 3.88 Single 1.00. I 57.35 130.70 -1.40 I 205 206 9 9 13.00 13.00 13.00 13.00 1 0.69 0.69' oK oK I 9.001 0.73 118.00 1.33 0.76 158 158 NA I 2.89 I 'Single I 1.00 I 30.541 64.221 -0.64 9.00 0.90 18.00 1.38 0:76 175 175 NA 2.89 Single ' 1.00 - I 32.85 64.22 -0.45 I 307 I 8 1100:0000 0.001 10.00 0.80 oK I I I I 1 8.00 1.38 035 138 1 138 NA 2:50 1 'Single 1 1.00 I 1101..6007 1 17.401 0.06 I Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes • Total 1st Floor Wall Length = 31.00 Total # 1st Floor Bays = 7.75 Are 2 bays minimum present along each wall line? Yes 1st Floor Rho = 1.0 Total 2nd Floor Wall Length = 26.00 Total # 2nd Floor Bays = 6 Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho = 1.o Total 3rd Floor Wall Length = 20.00 Total # 3rd Floor Bays = s Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho = 1.0 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2•L/H Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear • Shear Application ht Mr (Resisting Moment) = Dead Load' L • 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) Y / ---- ‘,.....\jk- Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Transvere Shearwalls Panel Wall Shear Wall Type Good Fo Uplift Simpson Holdown Good For V (p10 (PR) (lb) (lb) 101 Not Used 102 Simpson Strongwall 103 Simpson Strongwall 103a 814 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 833 104 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 105 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 106 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 109 401 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 110 401 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 111 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 112 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 990 113 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 990 201 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 201a 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 201b 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 202A 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 202B 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 203 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 204 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 301 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 302 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 303 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 , 304 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 305 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Longitudinal Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good For V (p (p0) (Ih) �. (l 107 254 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -192 Simpson None 0 108 254 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -192 Simpson None 0 205 208 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -69 Simpson None 0 206 208 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -69 Simpson None 0 306 133 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 48 Simpson None 0 307 138 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 59 Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. /4 L \CA Transverse Wind Uplift Design . Unit A Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift FIr. Fir. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right • stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 102 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.192 0.832 27.43 0.57 1.69 21.31 20.79 21.31 20.79 103 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.832 0.192 27.43 1.69. 0.57 20.79 21.31 20.79 21.31 103A 8 1.1667 4.00 4.00 3.254 3.254 814 0.04 2.016 1.664 26.03 8.38 6.98 6.00 6.24 6.00 6.24 104 8 1.1667 4.50 10.50 1.516 2.8 2.26 6.576 . 626 0.1 0.8 0.078 25.08 4.61 1.36 5.58 6.06 5.58 6.06 105 8 1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 0.048 0.252 0.156 16.72 0.97 0.68 6.45 6.52 6.45 6.52 106 8 .1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 - 0.048 0.156 0.252 16.72 0.68 0.97 6.52 6.45 6.52 6.45 109 8 1.1667 4.58 17:08 1.737 2.8 2.32 6.857 401 0.152 0.192 0.156 16.31 2.47 2.31 3.63 3.66 201L 201R 4.82 5.09 8.45 8.75 110 8 1.1667 12.50 17.08 1.737 2.8 2.32 6.857 401 0.096 0.156 0.192 44.52 9.45 9.90 3.24 3.21 201 aL 201 bR 4.95 4.88 8.18 8.09 111 8 1.1667 4.50 7.50 1.516 2.8 2.26 6.576 877 0.144 0.8 0.078 35.11 5.06 1.81 8.02 8.51 8.02 8.51 112 8 1.1667 1.50 7.50 1.516 2.8 2.26 6.576 877 0.048 0.252 0.234 11.70 0.43 0.41 11:44 11.46 11.44 11.46 113 8 1.1667 1.50 7.50 1.516 2.8 2.26 6.576 877 0.048 0.234 0.252 11.70 0.41 0.43 11.46 11.44 11.46 11.44 201 9 1.1667 3.92 10.8 2.8 2.32 5.12 474 0.225 0.432 0.156 17.71 3.42 2.34 3.99 4.16 301L 301R 0.83 0.93 4.82 5.09 201a 9 1.1667 4.17 10.8 2.8 2.32 5.12 474 0.225 0.156 0.156 18.84 2.61 2.61 4.14 4.14 302L 302R 0.80 0.80 4.95 4.95 201b 9 1.1667 2.71 10.8 2.8 2.32 5.12 . 474 0.225 0.156 0.432 12.24 1.25 2.00 4.24 4.08 303L 303R 0.91 0.80 5.15 4.88 202A 9 1.1667 2.96 11.958333 2.8 2.26 5.06 423 0.173 0.432 0.052 11.92 2.04 0.91 3.62 3.84 304L 304R 2.60 2.75 6.21 6.59 202B 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.173 0.052 0.216 12.09 0.93 1.43 3.84 3.74 305L 305R 2.74 2.16 6.58 5.91 203 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.309 0.216 0.312 12.09 2.04 2.33 3.62 3.56 3.62 3.56 204_ 9 1.1667 3 11.958333 2.8 2.26 5.06_ 423 0.225 0.312 0.432 12.09 1.95 2.31 3.64 3.57 3.64 3.57 301 8 3.92 13.96 2.32 2.32 166 0.232 0.384 0.204 5.21 3.29 2.58 0.83 0.93 0.83 0.93 302 8 5.79 13.96 2.32 2.32 166 • 0.232 0.204 0.204 7.70 5.07 5.07 0.80 0.80 0.80 0.80 303 8 4.25 13.96 2.32 2.32 166 0.232 0.204 0.384 5.65 2.96 3.73 0.91 . 0.80 0.91 0.80 304 8 2.96 5.96, 2.26 2.26 379 0.232 0.384 0.136 8.98 2.15 1.42 2.60 2.75 2.60 2.75 305 8 3 5.96 2.26 2.26 379 0.232 0.136 1.104 9.10 1.45 4.36 2.74 2.16 2.74 2.16 Spreadsheet Column Definitions & Formulas L = Shear Panel Length g' H = Shear Panel Height ` Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) Transverse Seismic Uplift Design Unit A • Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift FIr. Flr. Roof Shear including Load Load Momen ® Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @•. . floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf kif k k kft kft kft k k k k k k 102 8 1.1667 1.75 3.50 0.114 0.9 1.27 2.284 653 0.152 0.192 0.832 10.40 0.57 1.69 7.91 7.11 0 0 7.91 7.11 103 8 1.1667 1.75 3.50 0.114 0.9 1.27 2.284 653 0.152 0.832 0.192 10.40 1.69 0.57 7.11 7.91 0 0 7.11 7.91 103A 8 1.1667 4.00 4.00 0.481 0.481 120 . 0.04 2.016 1.664 3.85 8.38 6.98 -1.06 -0.69 0 0 -1.06 -0.69 104 8 1.1667 4.50 10.50 0.126 0.73 1.44 2.296 219 0.1 0.8 0.078 8.96 4.61 1.36 1.20 1.93 0 0 1.20 1.93 105 8 1.1667 3.00 10.50 0.126 0.73 1.44 2.296 219 0.048 0.252 0.156 5.97 0.97 0.68 2.04 2.14 0 0 2.04 2.14 106 8 1.1667 3.00 10.50 0.126 0.73 1.44 2.296 219 0.048 0.156 0.252 5.97 0.68 0.97 2.14 2.04 0 . 0 2.14 2.04 109 8 1.1667 4.58 17.08 0.114 0.9 1.27 2.284 134 0.152 0.192 0.156 5.58 2.47 .2.31 0.82 0.86 201L 201R 1.13 1.54 1.95 2.40 110 8 1.1667 12.50 17.08 0.114 0.9 1.27 2.284 134 0.096 0.156 0.192 15.23 9.45 9.90 0.56 0.53 201 aL 201 bR 1.32 1.32 1.88 1.85 111 8 1.1667 4.50 7.50 0.126 0.73 1.44 2.296 306 0.144 0.8 0.078 12.54 5.06 1.81 2.00 2.73 0 0 2.00 2.73 112 8 1.1667 1.50 7.50 0.126 0.73 1.44 2.296 306 0.048 0.252 0.234 4.18 0.43 0.41 3.79 3.82 0 0 3.79 3.82 113 8 1.1667 1.50 7.50 0.126 0.73 1.44 2.296 306 0.048 0.234 0.252 4.18 0.41 0.43 3.82 3.79 0 0 3.82 3.79 201 9 1.1667 3.92 10.80 0.9 1.27 2.17 201 0.225 0.432 0.156 7.63 3.42 2.34 1.16 1.41 301L 301R -0.03 0.13 1.13 1.54 201a 9 1.1667 4.17 10.80 0.9 1.27 2.17 201 0.225 0.156 0.156 8.11 2.61 2.61 • 1.38 1.38 302L 302R -0.06 -0.06 1.32 1.32 201b 9 1.1667 2.71 10.80 0.9 ' 1.27 2.17 201 0.225 .0.156 0.432 5.27 1.25 2.00 1.53 1.28 303L 303R 0.10 -0.06 1.63 1.22 202A 9 1.1667 2.96 11.96 • 0.73 1.44 2.17 181 0.173 0.432 0.052 5.25 2.04 0.91 1.15 1.50 304L 304R 1.28 1.50 2.43 3.00 202B 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.173 0.052 0.216 5.32 0.93 1.43 1.49 1.35 305L 305R • 1.50 0.63 2.99 1.97 203 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.309 0.216 0.312 5.32 2.04 2.33 1.16 1.08 0 0 1.16 1.08 204 9 1.1667 3.00 ' 11.96 . 0.73 1.44 2.17 . 181 '0.225 0.312 0.432 5.32 1.95 2.31 1.19 1.08 0 • 0 1.19 1.08 301 8 0 3.92 13.96 1.27. 1.27 91 0.232 0.384 0.204 2.85 3.29 . 2.58 -0.03 0.13 0 0 -0.03 0.13 302 8 0 5.79 13.96 1.27 1.27. 91 0.232 0.204 0.204 4.21 5.07 5.07 -0.06 -0.06 0 0 -0.06 -0.06 303 8 0 4.25 13.96 1.27 1.27 91 0.232 0.204 0.384 3.09 2.96 3.73 0.10 -0.06 0 . 0 0.10 - 0.06 304 8 0 2.96 5.96 1.44 1.44 242 0.232 0.384 0.136 5.72 2.15 1.42 1.28 1.50 0 0 1.28 1.50 305 8 0 3.00 5.96 . 1.44 1.44 242 0.232 0.136 1.104 5.80 1.45 4.36 1.50 0.63 0 0 1.50 0.63 • Spreadsheet Column Definitions &Formulas -----' L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L 1 Mo (Overtuming Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • • TRANSVERSE UPLIFT CALCULATIONS - SUMMARY UNIT A Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right • k Simpson k k Simpson k . 102 Wind 21.31 Holdown None 0.00 Wind 20.79 None 0.00 103 Wind 20.79 Holdown None 0.00 Wind 21.31 None 0.00 103A Wind 6.00 Holdown HDQ8 w 3HF 6.65 Wind 6.24 HDQ8 w 3HF 6.65 104 Wind 5.58 Holdown HDQ8 w 3HF 6.65 Wind 6.06 HDQ8 w 3HF 6.65 105 Wind 6.45 Holdown HDQ8 w 3HF 6.65 Wind 6.52 HDQ8 w 3HF 6.65 1 106 Wind 6.52 Holdown HDQ8 w3HF 6.65 Wind 6.45 HDQ8 w 3HF 6.65 109 Wind 8.45 Holdown HDQ8 w DF 9.23 Wind 8.75 HDQ8 w DF 9.23 110 Wind 8.18 Holdown HDQ8 w DF 9.23 Wind 8.09 HDQ8 w DF 9.23 111 Wind 8.02 Holdown HDQ8 w DF 9.23 Wind 8.51 HDQ8 w DF '9.23 112 Wind 11.44 Holdown HDU14 14.93 Wind 11.46 HDU14 14.93 113 Wind 1 Holdown HDU14 14.93 Wind 11.44 HDU14 14.93 201 Wind 4.82 Strap MST48x2 5.75 Wind 5.09 MST48x2 5.75 201a Wind 4.95 Strap MST48x2 5.75 Wind 4.95 MST48x2 5.75 201b Wind 5.15 Strap MST48x2 5.75 Wind 4.88 MST48x2 5.75 202A Wind 6.21 Strap MST60x2 8.11 Wind 6.59 MST60x2 8.11 202B Wind 6.58 Strap MST60x2 8.11 Wind 5.91 MST60x2 8.11 _..) 203 Wind 3.62 Strap MST60 4.06 Wind 3.56 MST60 4.06 204 Wind 3.64 Strap MST60 4.06 Wind 3.57 MST60 4.06 ` 301 Wind 0.83 Strap MST37 1.79 Wind 0.93 MST37 1.79 302 Wind 0.80 Strap MST37 1.79 Wind 0.80 MST37 1.79 303 Wind 0.91 Strap MST37 1.79 Wind 0.80 MST37 1.79 . 304 Wind 2.60 Strap MST48 2.88 Wind 2.75 MST48 2.88 305 Wind 2.74 Strap MST48 2.88 Wind 2.16 MST48 2.88 BY A N\ DATE: 6 _ ars3 10 JOB NO.: /1 ,.... _ 0 OF P ROJECT: RE: 3SW s — eo,r Load ❑ ❑ iNx;a\ Loads: U-\ 03100. woos jvS\ IY1S1CAC o L • ❑ Ca ?o c 1 o F sswa \ x %-‘‘400 \bs d er „,,..,,, O Li O u kklx . Loi - = 1 2- 3 31- -r ac "� - --1-- a3 a.3 = Ges O w u a Z , �11 W 3 4-aav-Iw�u 0 • 0 actual < Capati4 : • vk u z M Cc c c.7 U F SSU.)a1 xa = 3at,v -t*- U ❑ CC L tt.gA ‹.. Ca pC.c. f •'!A Cr • O ` LL Z W ❑ Z 0 o x O • U t3 1...',/, N - N W W i Q : 14 LY):7 E � J , ,' 2 3N11 $1 ` 144MkNb i -u)-)N 11 S1A-1.,1, MS Ls-- <I 01 0 Co 0 der p el c6 d ❑ 0 Q . 1 r . �— _ r . io abzau of (rl }.. 0'" 0 f.1 ,1 Aft4 • 1:11 f � �� i( ) dr 4 40 • — ii i - — -_9a 0 Li-'' ;314 fl I NL `'')N(71V 44.1.gva1 Si N1 Mg ... 0 .. 2 `4 r T -4 T C Sw "Pri LEN-IC-11"i+ k WH EAl24 -; I LOPsJ -► 1- tI(5 Ltve ,0- e +r -` 1 `' z: al ,<f N v`1 . irr.-=r_______7 i, . _T r N O ❑ I ❑ o J ( 1 j • r 1 G3 G 1 °. 9 w I, ' � ..:. .� -1-11 �.t.. . iiwz 7 _ ..ua.�..1Kag:-- -.:L:�i'� 2. itli.-::-. - i__,�_u. _..r.-5 =.1 us.J I . r 1 , O ❑ I0b M 6 w 1111 s U: ti c I nt /kfO W tit V-- e Ate. N s 1. N E c 9 T a • C --I 1 t.13 17 ) • SW TrhS LENC-ITH ALLA)c-, VIS (INE V) 0 1 ..-----. .._ __. .._ ___. ■re " li • g a) M • ,V i ------------- (_....... : 110 rn.../ il ':;.■ , • , ii • 1 I . , , I . CI) ti , 1: '11 W 1 , 5 1 • PINIIID ,. 9.) iq • Su r .. . ii • . .1 C7 0 43 0. g 4 r•L..-•!,...,-.1=7,;:-.3,---.Auxzii-gi------7.-.7,-,---A,-----.=,,,,,,-,,..,•7_,,,y,-..,--nr.fm.p.-/-7,;19 ',0 L. ilism■.;•v________....._____._.:••-1 5%) ¶v- LE C-Nn-f AWN 6-1. THicb LtN - 'II 1 - i 41 . 1- )r\r - ) S\ RI- (v\ • . _. • L U tf?..r.f.:Z3Z.=- -:,77,:,''' ., . \......) 1— 9 0 Ili 7' i. . o • 1.1, [ \j) . fe, .< ig 0 , p, 7 ,,,, ... ._._ pi- .,, \ / ----,__ ........ .4,i 7- / -----.:,-- / _.... k R ,,,,,,,,,,,_._ -■;- ____O V 9 0 E 1 3 )1\in s fkl. 1 -- r•rmNd .f4.1-)fl _ cc) CE. .,.--- 2 . . BY A N 4 r DATE: 0 '' 'D‘O` 0 JOB NO.: [r' _0 Ot O OF • PROJECT: RE: I i q m AY cJ\ e r a- poor;- o: house • ❑ ❑ V L1ite.,$ ; b .5'4 - 4 WInd. (Carnkdls) 6.514 LI • Z (At q ph ragrn CJ d,i'Y1= aU Ct � W 1 O x ❑ Cu = 3ao1 pt..P 1 . 0 - -I (I) , C ." 44 • W C r�pac,1oF ur1o1oc1«d dr'aph,evr� U C Lebo lig) =as W x a z 2. \bloc.. of icy rc& vY\ a Z G /12. /Uaa i ;n3 Oct pa u = (ass FLAT ,4> = 35 o 2 2 O E . cr o LL z W ❑ 0 Z . O = O ti o *-. C cu .. !rx e 4 • C x 4- Lb BY t \ c oo, DATE: — 1 _ 0 k JOB NO.: ( Nit ......oct 0 C PROJECT: • Roof a- ' -8 }li? RE: Saes of r•\rn i blOcN -vrn @ Sto it S ❑ ❑ OpT1oto 1. • Z LI i*.r.ol 0 w 1 rialliru 2 TRI t 3 W i D r - . f ± . : ON) ! ► � ! F. \ - VI4 l L- " SotMT = (I'-9 I__ T'o? 91-R'StS IV' 5 0 _I U max sill vtoPt.t4s-C -% - a o W tS ' " U Z W O DE 5I C-It\) WI iv0 Piessuce z 30,, 4 Psi o f. F. R 1 - 3'It" U De s‘ (5 9\oi. }es O 5v., L\-) ' ies r, . To? ?LAIEs 8 Ili' z 1L) (\ Imi^ 13oc. O 1 c 111)LF 0 2 U T ❑ 'g-l= lk-°tc\i* 1Zz = ! 4 q # 0 : 0" E cc LI Z id mvx= _, X #C ❑ Z o 5 So= M _ 51 z nck,X\2- �, 5'.1-5 S x(3.5 523 ) b - 20 SY= V zr Vt. # — VZ# EiN2- to . � FbC - = (8so 5)(1 As') = a3y-1 (aps;. 4 (AI2 .. r.)c • .62 4* N (-1 1(1 a k) U 0-T-N Z /9--- L 2 9 1 BV: A V - \ � i � I (.....,, DATE 6 � , ! \ JOB NO.. C (�• A ' N op 0 1 C PROJECT: RE: Op I0 0 2 ❑ ❑ 2) i\ u o. r (;'m E 2ND C- .009, \60Ak C LT. D w �. W O f lj ❑ Tr ; ,io,d.to, on DINT = 13 - 9 " 0 M004. 10uJe ;i tr G ?-e_r;NIN, = a`--0' o W U Z Q.' 1 u,.) w\_6 Pfe.sJ1 C. = - o.Q-tQ p Z Lou d` as\ bv1 \ ki? b \J CV.. - - - - �, ". pt.F . 0 z 1 ui T 1' 2 g_ A(9 5 R. f O N r mo x = W e pls ,_ ' rah 3 k, cc z v X = V,s i W Z 0 / FL VI. 4 4,2 =019.5 to -3.5 "--- 14 3 l = 5. - af It,? A O U x A DY WV 1+1'` 1 = 6.a5 t- di.s(0, a` 5) +- .. - 2,s` + a is 0, bt j-r s,3(0+ O t 3t,(, 1. 0 r = 1- q .13� ‘ N3 .Yb= .1\ t_. = tit r `(31`,0 - 4s) _ 14t 9 A i °Ft; = (550 ps. - )cl.00,0 1.01,0 )x.sN )y1.1) v.. -.2 -- 64,(..,,. cDL ' b' -(aIa � ,ps : i t, , 0)(1, (� 0.c y 1.4 l . 0)(, ,0> LSi_ 40v c, 0\<___ — Lao • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks. Sizer 7.1 June 24, 2010 12:49:04 COMPANY 1 PROJECT RESULTS by GROUP - NDS 2005 SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF ===== ==== _� _ -� = Not designed by quest - Mnf Trusses request (2) 2x8 Lumber n -ply D.Fir-L No.2 1- 2x8 By Others Not designed by request (2) 2x6 Lumber n -ply Hem -Fir 00.2 2- 2x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 Typ Wall Lumber Stud Hem -Fir Stud 2x6 @16.0 SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR = == =rise== . __ ==== = == QOe :a =ese »tea= ae� =� =aa� Mnf Jst Not designed by request Sloped Joist Lumber -soft D.Fir-L No.2 2x6 016.0 (21 2x8 (1) Lumber n -ply D.Fir-L No.2 1- 208 (2) 2x6 Lumber n -ply D.Fir -L No.2 2- 2x8 By Others Not designed by request By Others 2 Not designed by request (2) 2x12 Lumber n -ply D.Fir -L No.2 2- 2x12 5.125x10.5 Glulam - Unbalan. West Species 24F -V4 DF 5.125x10.5 4X6 Lumber-soft D.Fir -L No.2 • 4x6 (2) 2x6 Lumber n -ply Hem-Fir No.2 2- 2x6 4x6 Lumber Post Hem -Fir No.2 4x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 (2) 2x4 Lumber n -ply Hem -Fir No.2 2- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 916.0 SUGGESTED SECTIONS by GROUP for LEVEL 2 - FLOOR == =aO6Q = � = = :_______ = == Not designed by request Mnf Trusses Mnf Jst Not designed by request Deck Jst Lumber -soft D.Fir -L No.2 2x0 916.0 (2) 2x8 Lumber n -ply D.Fir -L No.2 2- 2x8 3.125x9 Glulam - Unbalan. West Species 24F -V4 DF 3.125x9 4x8 Lumber -soft D.Fir-L No.2 4x8 By Others Not designed by request • By Others 2 Not designed by request (2) 2x10 Lumber n -ply D.Fir-L No.2 1- 2x10 5.125 %12 GL Glulam- Unbalan. West Species 24F -V4 DF 5.125x12 By Others 3 Not designed by request 3.125x14 LSL LSL 1.55E 2325Fb 3.5x14 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 404 Lumber Post Hem -Fir No.2 4x4 406 Lumber Post Hem -Fir No.2 4x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 6x6 Timber-soft Hem -Fir No.2 6x6 (2) 2x4 Lumber n -ply Hem -Fir No.2 2- 2x4 6x6 nol Timber -soft D.Fir -L No:1 6x6 (3) 2x4 Lumber n -ply Hem -Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 916.0 SUGGESTED SECTIONS by GROUP for LEVEL 1 - FLOOR F ns Not designed by request CRITICAL MEMBERS and DESIGN CRITERIA Group Member Criterion Analysis /Design Values =... ....... � -= Mnf Jst = == Not designed by request� -� Deck Jut j65 Bending 0.41 Sloped Joist j30 Bending 0.10 Floor Jst4 unknown Unknown 0.00 (2) 2x8 (1) b35 Bending 0.47 (2) 208 b8 Bending 0.89 3.125x9 b3 Bending 0.06 4x8 b30 Bending 0.12 By Others By Others Not designed by request By Others 2 By Others Not designed by request (2) 2x22 b6 Bending 0.93 (2) 2x10 bl Shear 0.78 5.125X12 GL b10 Bending 0.76 By Others 3 By Others Not designed by request 5.125x10.5 b9 Deflection 0.95 4 %6 620 Bending 0.08 3.125x14 LSL b14 Deflection 0.73 (2) 2x6 c2 Axial 0.91 4x4 c55 Axial 0.07 4x6 c23 Axial 0.80 (3) 2x6 c29 Axial 0.75 6x6 c26 Axial 0.70 (2) 2x4 c39 Axial 0.62 6x6 nol c12 Axial 0.86 (3) 2x4 c31 Axial 0.89 Typ Wall *14 Axial 0.48 Fnd Ind Not designed by request DESIGN NOTES: = ==== 1. Please verify that the default deflection limits are appropriate for your application. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result is considered the final design and appears in the Materials List. 3. ROOF LIVE LOAD: treated as a snow load with corresponding duration factor. Add an empty roof level to bypass this interpretation. 4. BEARING: the designer is responsible for ensuring that adequate bearing is provided. 5. GLULAM: bxd = actual breadth x actual depth. 6. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 7. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 8. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that • each ply 1s equally top - loaded. Where beams are side- loaded, special fastening details may be required. . 9. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 10. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. �-- C \ WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:41:17 Concept Mode: Beam View Floor 2: 8' ta�'� W�D b31 1 l Q 4 0. 415 / : . - . : - : 40 . x . 111 ... .i -- - - _... _ ._ - : _ .. a9 _ U0 - • b1 4L' -0 4 ! . . . ya .. . - 4 1 - a 4Uq yb ..3& Jq q J4 b b& J4 -a ua b2 ` . . .5.5'-b bo - .._ __; ..._ ._ .: _.. ,. , - : .: - - - - - -- : _.. __ . .5z.-0 bf tab 150 : 61 615-b Li5'-a 01 . L ` L0 -0 OU - - .; :: -- .b10 .:.. - -- ` -- - - : , (/ ' • ;.b33 a LI !a Lu a r (4 . _ .:._... .:; _ . ;_. �.. _.. J" • / 3 _ Its a • - •• ... - -- ..... ' - -- ..... -- - - -- _ - _.. - / /L . • b32 . (U la b ._.. . - 14-b -- -- _ - '-- • __ '_ - - - --- 'i bt5.- - 'b1911 _, _ -- _ _ - .:. _ - _ _ _ _. . b ._. 1 II 5 _ y 4, } 3.: n OG3 U : • 64 * : . b14 • : • . : q -a• b1' b30 b2 — I b3 ■ b . : Pi: : :. - . C b" .. i -b .BB\B.B BCCCC CCC C 1CCC CC CCCC C C CC CC1CC CDDD D D DD DlCDD CD DD DD D D DD CDtiDD DE.E E E E EE'EIEEEIEEIEEtEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'2111 '1 :1 :1 !1(1'111212 22:2 44:441414:4141515 5:5:5 141— CIN WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:41:19 Concept Mode: Column View Floor 2: 8 ' ' V� (1 10 1- LOP t c58 . �c14 4 ° 5 0 • �� _ 49 �„ i U4 40 _b .. lUi V 10I b - 40 -0 44 . -0 .. 9 __1: .. 43 -0 V0 c69 c2 c70 ' c71: - - - .- 41 -0 y f ' CB ❑ . 0. 0. - - - .. .. 4 "I -0 VG CS .. - _ -50 -0 V1 ; : : : 0 ' : S0 t5'J .5.50 • 06 _. .._:--- --'-- - -:- __ - -- - -" - - -- - - '-- -- - - - ----- - SL-0 00 , :. - -:�. '- - -. : - c4 - - ::' -` - _ -: .. - - ----- --- _ ... ,51../-0 00 . • .. - . • " .. LV -0 64 -- '. . :- :- - _ -.- _ - _._- ❑. - -- .: - -. - : - ' - -- . . - LC -0 L/ - b " • 251 - : - .. 25 b ' a� c25 c12 c26` .. L3-0 11 : :c 2 : . r b of c73 iy -n IL c3 10-00 r t c78 - _ - la -n • 1U L' . : -: ' 1 4' -0 00 c77. _ '- i L -b 01 ■= 11-0 r_I 04) C31 :: -� c76 c79 ' • " i_�.. b 1._I w : - Ec30 i : 0c32 b.-b.. c55 E i c' 2+-0 .. $BtB.B BC CC C CCC MCC CC CCCCC C CC CC1CC CD DD D D DD D(DDD CD DDDD D D DD CDMD D DE.E E E EE E +EEEEEE(EEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 (1:1 i112(2 22:2 4A :44!4f4 5:5:5 77:7 e' 4- (13 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 24, 2010 13:14:33 • Concept Mode: Beam View Floor 2: 8' f , o Prb b31 ft w ��4 ®' 4s' -6:, • 1U3 ; • : : . : 4r-0 1 UL _ - • 40-0 .. IU'I _ _• . . _ _ _ _. �. ;_ ..._ • _ .. - _ _ __ _ • 45 -b a9 :' 43`b • O . - • • b34.. --- -. -. .. : : : : - i .. - 4L-0 41 :43 y1- yb 4U b a5 -- : _ aJ . J Jb b yl . . JO -b ti a b2 .3.3 a' • 2525 --- -- -- --= - - H - - - - -- - - --- - - - - - - -- - Of -- ---- : 1 tab 0 : 3U b 0 254 • - - Gy-b' L25 E5 oi • . . . . L1 - ;: -: ts i 10.-0 • rb10. L4 b • LJ -b 11 b33 - _ : z-I -b 10 ■ LU -b : i W b 125 b i ! -O 1 - -- -- b32.....__:; -- - - - -. .:_.: -- - - - --- - - - -- - - - '-- - - - -- - -- -- • - - -- -- 10 -b 10 b (U b . � _ ' : -.._ . - - -- - - . - - - - - -- .__.. _ _ _ 14 b b! - . - .. _. _ • IJ b bts_ - : - b16415_ ba 3 - - -.... tae? b4 b14 • . .. b.. bl 0_- • _ b35 - _ - _ 4-b - - -'- - -- 5 -b bU' b30 - - / . II :_ J-t7 b .. b U -0 BStB.B BC CCCCCC C ICCC CC CCCC C CC C.0 CCICCCDDDD 0 DD DtDDD DD DD'DD D D DD C0 DD DEE E E E'.EE EEEEEIEE(EEEEEEEBEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'21(1 1:1:1 ?1(1 :1 142( 22: 22 2! 2i22 12$3(33:3:3 4:4 :4414(4 "4£4!5(5 5:5:5 - 5 5!6(6 • 4- C.19 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 ^ ��� June 24, 2010 13:14:35 {( Concept Mode: Column View Floor 2: 8' �+ � WI)" c58 c14 111 105 . - - . 4 104 103 ' [ : • ! : .. 40 f b 43 -b V0 -C82 7 -- :: c 81: - ::' - . - - 4L -b JI --©. .. .. : Q- -- - - - -- - - -- -- .._ -- 4U b vb. „IV -0 Y4 . : :.. .:_ :: - _ _ Vi : 3 b - - - -. - - ' - - -(] . - : . - - 34 -O Vt./ - . . t3J 3,5-0 3G -b 31' b . .. ❑ -- - _ t54 ._ _ - - -'• --' - -' - --- .... : .. - . Li5-b L 1 b bi Lo b t5ti fu -. c25 - c12 c26 - - - �s n ray.....; D :0: • D . c72 f.. c2 LL -b . L1 'a L u -b i o c7& IV - b 10 -b ! f O f � - . -C78D - - - -' - - _. - _ _ -- -- - . _ t4_ bty- .. :..c77 ._ _...: -= - - - -.. _-- - - - ._. .. .. - b i G bb .. :- -- -- --- • - - - --- - . I I - t b b4 _ - - . : -- -- - - -b V 03} C76 C71 00 3'$ 'r" E C30 0c32 • ; b._b.. 5U, - -❑ r - ®_CS (o.: . . ... -- - - - - - - -- - -- 4 -. c55 c56�'�' 6. C b.. t BB\B.B BC C CC CFCCC CC CCCC C C CC CC\CC CD DDD D DD DfODD CD DD DD D D DD CD'DD DEE E E EEEEtEEEEEI:E E +EEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 1 ;1 :1 1 :1(1:11.12(222:2 5:5 :5 -5P5 '.6(65 :6:6 6 4 - G b WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:44 Concept Mode: Beam View Floor 3: 17' 105 ' -6" l US 4/ b -b - W i 45 =b IOU &9 _ 43' -0 y a b3 5 : b6 : ... . .. 4.2 -b 4U -b' ?b.....[ ..- .'.. -.___ S b 3— : ' yL 3 (-b %/U ' : ' 3 3 4 -b 0 - b7 3S43 - ' - - - -- -- -- - -- - -- --- - - - - - - - S L -b 0( tRS J1 -13 • _ 31_, b 00 .. .. L`J -b . LLS -b 03 . : : L f' - b 0L -- ..i .. :- .. --.-` -- --... Lb b tyU ° b9. . L4 b 23 -b 11 W ____ -b / 3 - i f - b (U ._._ . • i 00_ - - b1ib17 1z -43 1 1 - lU -b 04} -_ - : -b34 zs- bay 1 -b bL ; b8 b b.. bi 5 -b L . b .. V - b BB\B.B BC CCC C CC C} CC CCCC C C CC CC ?CC CDDD D D DD DtDDD CD D D DD D D DD CD ?DD DE.E E E EE E'EIEEE'EEiE EEEEEEE[EEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38'40' 42' 44' 46'48' 50' 52' 54'56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'67'8'91(1 1:1:1 :1112(2 22:2 21213(33;3 :3•3' -3E3 3(3(.4(4 4A :4'41414 441515 5:5 :5 (66:6 :6 77E7T -6" • 4 - ( to WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:42 Concept Mode: Column View Floor 3: 17' 1056 .. , _ . . _ 49' I UL - - 40 -a 101 " -.. - -- ---- _ 40 -0 IUULI' .. - ..__ - .. - 44-0 9 43 -b yu : - : c62 c61 c15 , .".c16 : . 4L -u . ..1 -0 -b 4 .:. :. :: - . .. ... - : _ 30 -0 yL - ; : c17: - 3a "-0 - ..1t3 ..1t3 i".-: - - : --- 34-0 25y 33 -b 0/ I 51-0 00 c18 30 -b : 05 . : " • : • : _ . y Lr. -f7 25G -- _" .: .. ..... . .. .: -: ... -- ----- ----- .. ---- - -- -•- - -- _ - - -- -- Lb -b 01 L5" b c39 c24 .. c23 ... bu - L4 -b rb - - - mei ' 'I :: . ■. (( : f - - : - -- --' -- - - - - -- - - - . - - - --- LL -b / ! C59 LI b . 1c60' Lu -u r 1 r u _.. - lb -0 r 1 c37 : - . • - : - • 13 -b (U - � • -._. .. - - - : :: -" -- _ -- - .. _... - -- -- .. -. 14 - by _ 15 - b 025 c35 l L - G" b4) . «. • n 'c66 c63 - ' - 0 -u °i 5 IN 1E 1 n c756520 cic6c74 00 } - --- - - - - - -. - _ _. -- - - - _. _.. -- -- .. ._ 3-0 : -a L -b I -b 1 U-0 BB\B.B BCCCC C CC CFCCC CC CCCC C CCC CC \CC CD DD D D DD D}DDD DD DD DD D D DD CDIDD DEE E E'EiEE EFEEE!EEiE EEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42'44' 46'48'50' 52'54'56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'67'8'9111 1;1:1 it ;1212(2 "2:2:2 :3 :3 3(3'32344(4'4:4 :4 424!5(5 5:5:5 6B:6 &7(7 77:7 /11;1"--'-- (,f7j-/.' WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:38 Concept Mode: Beam View Roof: 25' 1050 . - . _ . . ... _ . . 49:x,: 1U3 ' : _ - . - - 4 / -0 .. 1 ULtS . _ . - . .. 40 - b 1U 1 40 -0 WO - - - __ - - 44 y� : b23 . : b24 - - - Z ... _. 4 -0 4I 3 - -. - - 34'-O t5`J 3.5 -b 00 . - - - -- - . _ — - 3L -b 250 - - 4V - b 154 - -- - • - --- • - - - -- -----_ .- -- - -. :_ __.._ _ - .. - - -- - - - - - -- - - - -• - - -: -- - - - _ - -. LZS' b t53 - : : L / -b .. /y .. L.5 -0 ;4a/ b25 a :; -= -;. > --= -�- -- , -. - -- - - - - -- - - -- - . .. ..... ... . . LU'-b - I -b 10-10 13 .. : : _ - - - - - - -- .. - l 1 -b (U ..... : . : -- -- _ :. .. .:. .:.... .. ... _ -_ -. - . .. : _ : 14 b -- -- - ' ... ---- b 0 3 b27 . b28 b .. 04 ' L�0 , b._b.. biJ . .. .. S U b .. _ i -b BB1B.6 BCCCCCCCCfCCCCCCCCCCCCC CC''CCCDDDDDDDDECDDCD DD.DDDDDDCDDDDEE EE EEEEFEEEIEEIEEEEEEEEEEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66 68' 70' 72'74' 76' 0'1'2'3'4'5'6'7'8 '9111 1:1 :1 (1'11112(22;2 :22.2422122233:3 , 33(3 "3 /3:4(4'4A :44(4(4'4t4f5(5 5:5 :5 :66!6(66(6(7(77 :77 4 ..._ 6.:0)4) WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:40 Concept Mode: Column View Roof: 25' 1050 -..- - - - -- -- - -_ - - - - -- -_ - 49 104 :: 'IU3 -_ - i---.. .; ._- - . - s - -- - _ -- -- 4 / b . UL / _ 40 -b 9 . : - .. 1111.. 4.5-b WS c42 c43 -.. c44' :c45 _ • - 4L -b I - . --- - - --- - -- -- -- -- - -- .. - - 4I-b' 40 b yb . -- - - "-- '•' ...- 1111 S -b SD -b tSb. SU'-b lb i i c46 LI� it) — - - - • ' - LU -b' lb-b -- ----- -- - - - --- - -- - - -- - -- - - -- -• -- -.. _. 1111__. _.. ii .. - _ - - - - 10-b (U . .. - - _ -- - _ .- _. ._ 14 b 00 --- ' - --- : - _.. :1.111._ .._ .. .. - -- - - EL -b WO _. 11:_ ..- .' --' --:._. ._._ '__ _ — - .- -- -- - - -_ .. -- -- -. ._ 10 -b b� a -b b4 ) 111 . - .__ . c51c50 c52 c53: : u b bat -- / _ b " i 111 - -- - - �-- -- ..-- BB\B.B BCCCCCCCCFCCCCCCCCCCCCCCC\ CCCDDDDDDDD10DDCDDD 'DDDDDDCD'DDDE.EE E E:EE EFEEEIEEiEEEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22'24' 26' 28'30' 32' 34' 36' 38'40' 42 44' 46' 48' S0' 52' 54' S6' 58' 60' 62' 64' 66' 68'70 72'74'76' 0'1'2'3'4'5'6 7'8'91(1 1 :1:1'1,''i (1111. 2f22 :2:22'.2f2 2i2t3(33 :3:3 32!4(4 4A:4.4!414 "4f4E5(5 5:5 :5 6 :6:&6:6(6:6617(7'77:7 17(77' -6" /4" — (n9 COMPANY PROJECT di WoodWorks® SOFIWAREFOR WOOD DESIGN June 24, 2010 12:42 b1 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w61 Dead Partial UD 613.2 613.2 2.50 3.00 plf 2 w 61 Snow Partial UD 795.0 795.0 2.50 3.00 plf . 3 - c61 Dead Point 622 2.50 lbs 4 Snow Point 1192 2.50 lbs 5_j28 Dead Full UDL 47.7 plf 6_j28 Live Full UDL 160.0 plf 7_j33 Dead Full UDL 120.2 plf 8 j33 Live Full UDL 370.0 plf MAXIMUM RE, 0 31 Dead 391 1061 Live 795 1615 Total 1186 2676 Bearing: Load Comb #2 #3 Length 0.63 1.43 Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2 -Plys Self- weight of 6.59 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv* = 67 Fv' = 207 fv * /Fv' = 0.32 Bending( +) fb = 331 Fb' = 1138 fb /Fb' = 0.29 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.05 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 2676, V design* = 1237 lbs Bending( +): LC #3 = D +.75(L +S), M = 1178 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 158e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I =impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. '- -6)0 COMPANY PROJECT ffl WoodWorks® SOFT WARE FOR WOOD DESIGN June 24, 2010 12:43 b3 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j45 Dead Full UDL 17.0 plf 2 j45 Live Full UDL 25.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : A Ip' 9 4 Dead 106 106 Live 112 112 Total 218 218 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Gluiam- Unbal., West Species, 24F -V4 DF, 3- 118x9" Self- weight of 6.48 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 10 Fv' = 265 fv /Fv' = 0.04 Bending( +) fb = 140 Fb' = 2400 fb /Fb' = 0.06 Live Defl'n 0.01 = <L/999 0.30 = L/360 0.04 Total Defl'n 0.03 = <L/999 0.45 = L/240 0.06 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 218, V design = 182 lbs Bending( +): LC #2 = D +L, M = 491 lbs -ft Deflection: LC #2 = D +L EI= 342e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Gluiam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). COMPANY PROJECT i Woodworks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:40 b6 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 Snow • Partial UD 431.2 431.2 0.00 2.00 plf 5 Dead Point 444 5.00 lbs 6 Snow Point 647 5.00 lbs 7 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9 Dead Full UDL 120.2 plf 10 j25 Live Full UDL 370.0 _ plf MAXIMUM REACTIONS llbsl and BEARING LENGTHS lint : 1 0 61 Dead 1436 1389 Live 1803 1803 Total 3239 3192 Bearing: Load Comb #3 # Length 1.73_ 1.70 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in loads; Lateral support top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LCif Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending(+1: LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. G i COMPANY PROJECT f fl WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:50 b8 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1_j14 Dead Full UDL 113.7 plf 2 j14 Live Full UDL 350.0 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 1 61 Dead 357 357 Live 1050 1050 Total 1407 1407 Bearing: Load Comb #2 #2 Length 0.75 0.75 Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 77 Fv' = 180 fv /Fv' = 0.43 Bending( +) fb = 963 Fb' = 1080 fb /Fb' = 0.89 Live Defl'n 0.07 = <L/999 0.20 = L/360 0.33 Total Defl'n 0.10 = L/712 0.30 = L/240 0.34 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 1407, V design = 1123 lbs Bending( +): LC #2 = D +L, M = 2110 lbs -ft Deflection: LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 4- G3 COMPANY PROJECT ea WoodWorks' SOFTWARE FOR WOOD DESIGN June 24, 2010 12:40 b9 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1_150 Dead Partial UD 113.7 113.7 0.00 1.50 plf 2_j50 Live Partial UD 350.0 350.0 0.00 1.50 plf 3_j14 Dead Partial UD 113.7 113.7 3.00 9.00 plf 4_j14 Live Partial UD 350.0 350.0 3.00 9.00 plf 5_151 Dead Partial UD 113.7 113.7 1.50 3.00 plf 6_151 Live Partial UD 350.0 350.0 1.50 3.00 plf 7_j24 Dead Partial UD 120.2 120.2 0.00 3.00 plf 8_j24 Live Partial UD 370.0 370.0 0.00 3.00 plf 9_j25 Dead Partial UD 120.2 120.2 3.00 9.00 plf 10_j25 Live Partial UD 370.0 370.0 3.00 9.00 plf 11.126 Dead Partial UD 120.2 120.2 9.00 12.00 plf 12_j26 Live Partial UD 370.0 370.0 9.00 12.00 plf 13_j52 Dead Partial UD 113.7 113.7 9.00 10.50 plf 14_j52 Live Partial UD 350.0 350.0 9.00 10.50 plf 15_j Dead Partial UD 113.7 113.7 10.50 12.00 plf 16 153 Live Partial UD 350.0 350.0 10.50 12.00 pif • MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 1 0' 121 Dead 1478 1478 Live 4320 4320 Total 5798 5798 Bearing: Load Comb #2 #2 Length 1.74 _ 1.74 • Glulam- Unbal., West Species, 24F -V4 DF, 5- 118x10 -1/2" Self- weight of 12.39 pif included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 138 Fv' = 265 fv /Fv' = 0.52 Bending( +) fb = 2217 Fb' = 2400 fb /Fb' = 0.92 Live Defl'n 0.38 = L /381 0.40 = L/360 0.94 Total Defl'n 0.57 = L/252 0.60 = L/240 0.95 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 5798, V design = 4953 lbs Bending( +): LC #2 = D +L, M = 17395 lbs -ft Deflection: LC #2 = D +L EI= 890e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4_ c,„\l, COMPANY PROJECT d 1 WoodWorks® SOFTWARE FOR woos DESIGN June 24, 2010 12:43 b10 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Pat - Start End Start End tern 1 w39 Dead Partial UD 311.0 311.0 0.00 4.50 No 2 w39 Live Partial UD 680.0 680.0 0.00 4.50 No 3_c39 Dead Point 267 2.00 No 4 c39 Live Point 822 2.00 No 5 j32 Dead Partial UD 120.2 120.2 0.00 0.50 No 6 j32 Live Partial UD 370.0 370.0 0.00 0.50 No 7 Dead Partial UD 120.2 120.2 1.00 4.00 No 8 Live Partial UD 370.0 370.0 1.00 4.00 No 9 Dead Partial UD 120.2 120.2 4.00 4.50 No 10 j34 Live Partial UD 370.0 370.0 4.00 4.50 No 11 j35 Dead Partial UD 120.2 120.2 4.50 7.50 No 12_j35 Live Partial UD 370.0 370.0 4.50 7.50 No 13_j36 Dead Partial UD 113.7 113.7 4.50 16.50 No 14_j36 Live Partial UD 350.0 350.0 4.50 16.50 No 15 j37 Dead Partial UD 100.7 100.7 3.00 4.50 No 16 Live Partial UD 310.0 310.0 3.00 4.50 No 17_j47 Dead Partial UD 120.2 120.2 7.50 13.50 No 18 j47 Live Partial UD 370.0 370.0 7.50 13.50 No 19 Dead Partial UD 120.2 120.2 13.50 16.50 No 20 j48 Live Partial UD 370.0 370.0 13.50 16.50 No 21 149 Dead Partial UD 120.2 120.2 0.50 1.00 No 22 Live Partial UD 370.0 370.0 0.50 1.00 No 23_b32 Dead Point 300 3.00 No 24 Live Point 922 3.00 No MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : .J■ 10' 4'-6" 16-61 Dead 452 4067 1180 Live 847 11291 3436 Uplift 12 Total 1300 15358 4616 Bearing: Load Comb #2 #2 #2 Length 0.50• 4.24 1.27 Cb 1.00 1.09 1.00 'Min. bearing length for beams is 1/2" for exterior supports Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x12" Self- weight of 14.16 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 265 fv /Fv' = 0.60 Bending(*) fb = 1074 Fb' = 2400 fb /Fb' = 0.45 Bending( -) fb = 1396 Fb' = 1844 fb /Fb' = 0.76 Live Defl'n 0.13 = <L/999 0.40 = L/360 0.32 Total Defl'n 0.19 = L/740 0.60 = L/240 0.32 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fb'- 1850 1.00 1.00 1.00 0.997 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Ervin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC 02 = D +L, V = 8357, V design = 6496 ibs Bending( +): LC #2 = D +L, M = 11006 lbs -ft Bending( -): LC #2 = D +L, M = 14310 lbs -ft Deflection: LC #2 = D +L EI= 1328e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (A11 LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. Grades with equal bending capacity in the top and bottom edges of the beam cross- section are recommended for continuous beams. 4. GLULAM: bxd = actual breadth x actual depth. 5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 6. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). i q --- 6 ■ I C COMPANY PROJECT i I WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:44 b13 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 c40 Dead Point 217 5.50 lbs 4 c40 Live Point 668 5.50 lbs 5 c67 Dead Point 518 5.00 lbs 6_c67 Snow Point 778 5.00 lbs 7_c68 Dead Point 573 3.00 lbs 8 c68 Snow Point 942 3.00 lbs 9 w59 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10 w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12_j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13_j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14_j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16_j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 18 b15 Live Point 389 3.50 lbs 19 b32 Dead Point 225 6.50 lbs 20 Live Point 693 6.50 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : :-� � r-' + Fes - ...ir ,. . ,,, �."'r' ,� -^ -r3- - CI le 1 0' 81 Dead 2561 3033 Live 2699 3789 Total 5261 6822 Bearing: Load Comb #3 #3 Length 1.88 2.44 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L/680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC #3 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. / G 1 (0 COMPANY PROJECT dt WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:43 b14 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w33 Dead Partial UD 317.7 317.7 9.00 12.00 plf 2 w33 Live Partial UD 350.0 350.0 9.00 12.00 plf 3 c19 Dead Point 357 9.00 lbs 4 c19 Live Point 1050 9.00 lbs 5 c20 Dead Point 357 3.00 lbs 6 c20 Live Point 1050 3.00 lbs 7 w34 Dead Partial UD 317.7 317.7 0.00 3.00 plf 8 w34 Live Partial UD 350.0 350.0 0.00 3.00 plf 9 c64 Dead Point 165 10.50 lbs 10 c64 Snow Point 225 10.50 lbs 11 Dead Point 165 1.50 lbs 12 Snow Point 225 1.50 lbs 13_j36 Dead Full UDL 113.7 plf 14_j36 Live Full UDL 350.0 plf 15 j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 16_j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 17_j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 18_j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 19_j45 Dead Partial UD 17.0 17.0 1.50 10.50 plf 20_j45 Live Partial UD 25.0 25.0 1.50 10.50 plf 21_j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 22 j46 _Live Partial UD 25.0 25.0 10.50 12.00 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : - ti+-,....ile" �s..71-- a ` .. :- ∎ . o.wR^ `- � ..'ti'- .� --4' , •••-o. - '"'∎�r 3. ••.,- ti.^ -Air- . -� G• � a 7 �. .mo • - ±.1L..- _"n/.^ .r" - C ..: f'� _.... SO.. -.- : . .r..�' ►-� a '-" -... .�^� `°w - 7-. : -.a 'y�,�"'°�� ;i.�._ �"' : • - :..yam- - - •i' .p �� _•. .�„- y - � - '± mo w- � + + r3e. ` _ ..c„ gyma • �. �v. ."",�,., ---" -.sr ._., -,.. a ► . .4111-." `fir - m.... `' }^�- +a... ' - a � %a =+. . -1 71 gr, 1 0' 121 Dead 2351 2351 Live 4350 4350 Total 6701 6701 Bearing: Load Comb #2 #2 Length 2.39 2.39 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 pif included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 163 Fv' = 310 fv /Fv' = 0.52 Bending( +) "fb = 1769 Fb' = 2325 fb /Fb' = 0.76 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.43 = L/333 0.60 = L/240 0.72 ADDITIONAL DATA: FACTORS: FIE CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Ervin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 6701, V design = 5314 lbs Bending( +): LC #2 = D +L, M = 16851 lbs -ft Deflection: LC #2 = D +L E1= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. / 9 bi • r'''' COMPANY PROJECT I WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:41 b20 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j30 Dead Full UDL 21.7 plf 2 130 Live Full UDL 60.0 plf MAXIMUM REAr=TI[INS 1Ihcl and RFARIN(; 1 FNhTHS 1inl - 1 0 ' 3' -6'l Dead 46 46 Live 105 105 Total 151 151 Bearing: Load Comb #2 #2 Length 0.50* 0.50* 'Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x6" Self- weight of 4.57 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 9 Fv' = 180 fv /Fv' = 0.05 Bending( +) fb = 90 Fb' = 1170 fb /Fb' = 0.08 Live Defl'n 0.00 = <L/999 0.12 = L/360 0.02 Total Defl'n 0.00 = <L/999 0.18 = L/240 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 151, V design = 111 lbs Bending( +): LC #2 = D +L, M = 132 lbs -ft • Deflection: LC #2 = D +L EI= 78e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 1-- = : 1 COMPANY PROJECT di WoodWorks® SOFIWARE FOR W000 DESIGN June 24, 2010 12:50 b30 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j41 Dead Partial UD 68.0 68.0 2.00 4.00 plf 2_j41 Live Partial UD 100.0 100.0 2.00 4.00 plf 3_j42 Dead Partial UD 72.2 72.2 0.00 2.00 plf 4 j42 Live Partial UD 106.2 106.2 0.00 2.00 plf MAXIMUM REACTIONS I113s1 and BEARING; I FNCITHS lint i 44 Dead 154 150 Live 209 203 Total 364 353 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x8" Self- weight of 6.03 plf included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 15 Fv' = 180 fv /Fv' = 0.08 Bending( +) fb = 140 Fb' = 1170 fb /Fb' = 0.12 Live Defl'n 0.00 = <L/999 0.13 = L/360 0.03 Total Defl'n 0.01 = <L/999 0.20 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 364, V design = 253 lbs Bending( +): LC #2 = D +L, M = 359 lbs -ft Deflection: LC #2 = D +L EI= 178e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. /49-- 6119 . COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:42 b31 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j65 Dead Partial UD 47.7 47.7 0.00 4.00 plf 2_j65 Live Partial UD 160.0 160.0 0.00 4.00 plf 3_j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4_j28 Live Partial UD 160.0 160.0 4.50 7.50 plf 5 j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 6_j62 Live Partial UD 160.0 160.0 7.50 11.00 plf 7_j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 8 j63 Live Partial UD 160.0 160.0 11.00 17.00 plf 9 j64 Dead Partial UD 47.7 47.7 17.00 20.00 plf 10 j64 Live Partial UD 160.0 160.0 17.00 20.00 plf 11_j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 12 j66 Live Partial UD 160.0 160.0 4.00 4.50 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : I0 20 Dead 619 619 Live 1600 1600 Total 2219 2219 Bearing: Load Comb #2 # Length 0.67 0.67 Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x12" Self- weight of 14.16 plf included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 49 Fv' = 265 fv /Fv' = 0.18 Bending( +) fb = 1082 Fb' = 2400 fb /Fb' = 0.45 Live Defl'n 0.43 = L /553 0.67 = L/360 0.65 Total Defl'n 0.69 = L /350 1.00 = L/240 0.69 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 2219, V design = 1997 lbs Bending( +): LC #2 = D +L, M = 11095 lbs -ft Deflection: LC #2 = D +L EI= 1328e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4 - G 0 COMPANY PROJECT • i %VoodVVorks June 26.2016,3,5 034 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Sher 7.1 LOADS ( ms. Pea pf) : Load Type Distribution Magnitude Location I(t1 Units • Start End End 1 • :62 Dead 2400141 UD 613.2 613.2 5 0.00 2.00 pIf 2w'62 Snow Partial UD 795.0 '195.0 0.00 2.00 pIf 3_029 Dead Partial UD 617.5 617.5 7.50 11.00 pl( 4 :29 Snow Partial UD 901.2 501.2 7.50 11.00 plf 5 Dead Point 1436 11.00 lb4 6 - 015 Snow Point 2404 11.00 IDs :16 Dead Point 1159 17.00 16s 8 016 Snow Point 2404 17.00 1bs 9 :64 Dead Partial UD 617.5 617.5 17.00 19.00 pIf 10 :64 Srmw Partial UD 501.2 501.2 17.00 18.00 pIf 11 061 Ovad 20106 622 7.00 163 12 Snow Point 1192 7.00 lbs. 13062 Dyad Paint 622 4.00 364 14 _ 062 Snow Point 1192 4.00 lb. 15 :63 Dyad Partial UD 613.2 613.2 2.00 4.00 pl( 16,63 6n7w Partial U0 795.0 795.0 2.00 4.00 pl( 17 065 Dead Partial 20 617.5 617.5 19.00 20.00 p18 19:65 Snow Partial UD 501.2 801.2 15.00 20.00 pIf 19 +71 :mad (.460.1 UD 613.2 613.2 7.00 7.50 pIf 20 Snow Partial UD 795.0 795.0 7.00 7.50 plf 21_264 Dead Partial UD 47.7 47.7 17.00 19.00 pIf 22_164 Live Partial UD 160.0 160.0 17.00 19.00 pIf 23_125 Dead Partial 20 4.50 7.50 pif 4_229 Live Partial UD 160.0 160.0 4.50 7.50 pIf . 25_162 Dead Partial UD 47. 47.7 7.50 11.00 plf 26_162 Live Partial UD 160.0 160.0 7.50 11.00 pIf 27_148 Dead Partial UD 120.2 120.2 0.00 2.00 pIf 29_145 Live Partial UD 370.0 310.0 0.00 2.00 pIf 23_132 Dead Partial UD 120.2 120.2 3.50 4.00 pIf 30_132 LSV. Partial UD 370.0 370.0 3.50 4.00 pIf 33_333 Dead Partial U2 120.2 120.2 1.50 7.50 plf 32_333 Live Partial UD 370.0 370.0 4.50 1.50 plf 33_134 Dead Partial UD 120.2 120.2 7.50 8.00 pIf . 34_234 Live Partial U0 370.0 370.0 7.50 3.00 plf 35_135 Dead Partial U0 120.2 120.2 9.00 11.00 plf 36 )35 2.1vv Parr.14.1 00 370.0 370.0 8.00 11.00 pIf 37_147 Desd P4:01a1 UD 120.2 120.2 11.0) 17.00 plf 39_147 11v. Partial UD 370.0 370.0 11.00 17.00 plf 3 167 Dead Partial UD 120.2 120.2 2.00 3.50 pIf 40_267 Live Partial UD 370.0 370.0 2.00 3.50 plf 41_149 Dead Partial UD 120.2 120.2 4.00 4.50 pIf 42_149 Live Partial UD 370.0 370.0 4.02 4.50 pIf 43_363 Dead Partial UD 47.7 47.7 11.0) 17.00 pIf 44 )63 Live Partial UD 160.0 160.0 11.00 17.00 pIf 45_365 Dead Partial UD 47.7 47.7 10.00 20.00 pIf 46 165 Live Partial U0 160.0 160.0 19.0) 20.00 pIf 47 166 Dead Partial UD 47.7 47.7 4.00 4.50 plf 48_166 Live Partial UD 160.0 160.0 4.00 4.50 pIf 49_168 Dead Partial UD 120.2 120. 0 17.00 18.00 pl( 50_268 Live Partial OD 370.0 370.0 17.00 19.00 pIf 51_169 Dyad Partial UD 120.2 120.2 18.00 20.00 plf 52_)69 Live Partial UD 310.0 370.0 18.00 20.00 pIf 53_272 Dead 24:0141 UD 47.7 47.7 2.00 4.00 pIf 54_172 LSve Partial UD 160.0 160.0 2.00 4.00 plf 55_173 Dead Partial UD 47.7 47.7 0.00 2.00 pIf 56 173 Live Partial UD 160.0 160.0 0.00 2.00 olf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • c 1327 Deady 1327 Live 9956 9979 Total 17361 17305 Bearing: Load Cott 13 43 Lens, 5.21 5.19 Glulam -Bat., West Species, 24F -V8 DF, 5- 1/8x22 -1/2" • SW-001W of 26.55 pf Included In WAR La tope DID. bottom. e1 supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using we 2005: 06006: -.n Analv.1• Value - esion Value Analvs1. /De.1an Shea: (v ■ 192 Fv' - 305 (v /07' - 0.60 2ending0•1 fb - 2392 172' - 2604 1b /Fla' - 0.92 Live D.fl'n 0.40 - L/555 0.67 - L /360 0.60 Total Oefl•n 0.94 - L/245 1.00 - L /240 0.94 ADDITIONAL DATA: FACTORS: Fre C0 04 Ct CL CV Cfu Cr C(rt Notes Cn 2.04 14• 265 1.15 1.00 1.00 1.00 1.00 1.00 3 044'1 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 2. 1.9 n1111on 1.00 1.00 - Ent n' 0.55 0311100 1.00 1.00 - Shear : LC 13 - 04.7511.-SI. `/ ■ 17361. 'J design - 13952 104 54:3173141: 1.0 13 ■ 0+.3512-81. M ■ 26169 164-30 Deflection: LC 13 - D+.7511.01 EI■ 9156.06 lb -002 To W [41 Deflection ■ 1.6010ead ad Deflection) 4 Live Load Deflection. ID■dead Ir11ve S -.nrw t: -wind I-1opact o-canatructlon Ca-canc.00010,31 1211 LC'. are listed In the Analvaie 9+0:100 Load cact10.11004: I00 -I90 DESIGN NOTES: 1. Please study that the default deflection Writs are appropriate far your opplication. 2. 0641m design values are tee =Oriole conformhq to A1TC 117 -2001 end mawfaaaed In 400,4040+4 with ANSIMITC A190. 1 -1992 3. GLULAM: hal . actual breadth a actual depth. . 4. Warn Beams vial be laterally supported xcadblu 46 the provisions of NOS Clause 3 3.3. 5. GLULAM: bearing len9th based on smaller of Fcp(tatslonl. Fcp(ca 8 ( 9 ). /4, 61 ..‘. COMPANY PROJECT 111 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:49 b35 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (,ft] Units Start End Start End 1 j21 Dead Partial UD 120.2 120.2 0.50 1.50 plf 2 j21 Live Partial UD 370.0 370.0 0.50 1.50 plf 3_j59 Dead Partial UD 120.2 120.2 0.00 0.50 plf 4_j59 Live Partial UD 370.0 370.0 0.00 0.50 plf 5_j60 Dead Partial UD 120.2 120.2 1.50 3.00 plf 6 j60 Live Partial UD 370.0 370.0 _ 1.50 3.00 plf MAXIMUM RED ^�.,..... ,.. ..,...,. 1 �....�.... , • 31 Dead 188 188 Live 555 555 Total 743 743 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads; Lateral support top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 31 Fv' = 180 fv /Fv' = 0.17 Bending( +) fb = 254 Fb' = 1080 fb /Fb' = 0.24 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 743, V design = 444 lbs Bending( +): LC #2 = D +L, M = 557 lbs -ft Deflection:,LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I =impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 4 - 617. COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:51 c2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1_bl Dead Axial 1056 (Eccentricity = 0.00 in) 2 Rf.Live Axial 2153 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): • • 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 2 -Plys Self- weight of 3.41 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 0.00= 0.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 196 Fc' = 980 fc /Fc' = 0.20 Axial Bearing fc = 196 Fc* = 1644 fc /Fc* = 0.12 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.596 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 3236 lbs Kf = 1.00 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT k. r fl WoodW SOFTWARE FOR WOOD DESIGN June 24, 2010 12:54 c12 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 c24 Dead Axial 1478 (Eccentricity = 0.00 in) 2_c24 Live Axial 4320 (Eccentricity = 0.00 in) 3_b10 Dead Axial 4067 (Eccentricity = 0.00 in) 4 Live Axial 11291 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): • 0' 8' Timber -soft, D.Fir -L, No.1, 6x6" Self- weight of 7.19 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 701 Fc' = 820 fc /Fc' = 0.86 Axial Bearing fc = 701 Fc* = 1000 fc /Fc* = 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1000 1.00 1.00 1.00 0.820 1.000 - - 1.00 1.00 2 Fc* 1000 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 21214 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR W000 DESIGN June 24, 2010 12:53 c23 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b9 Dead Axial 1478 (Eccentricity = 0.00 in) 2 Live Axial 4320 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 9' Lumber Post, Hem -Fir, No.2, 4x6" Self- weight of 3.98 pif included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value _Analysis /Design Axial fc = 303 Fc' = 379 fc /Fc' = 0.80 Axial Bearing fc = 303 Fc* = 1430 fc /Fc* = 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.265 1.100 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 5834 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (A11 LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 4- (,--1 c COMPANY PROJECT 1 1 1 Wo odWorks® f � °4L SOFTWARE FOR WOOD DF31GN June 24, 2010 12:54 c26 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c23 Dead Axial 1478 (Eccentricity = 0.00 in) 2_c23 Live Axial 4320 (Eccentricity = 0.00 in) 3 b10 Dead Axial 1180 (Eccentricity = 0.00 in) 4 Live Axial 3436 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): • .-* _ � • 0' 8' Timber -soft, Hem -Fir, No.2, 6x6" Self- weight of 6.25 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 in Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 346 Fc' = 492 fc /Fc' = 0.70 Axial Bearing fc = 346 Fc* = 575 fc /Fc* = 0.60 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.00 1.00 1.00 0.856 1.000 - - 1.00 1.00 2 Fc* 575 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 10465 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 62G, COMPANY PROJECT 1 WoodWorks SOFTWARE FOR WOOD DESIGN June 24, 2010 12:52 c29 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b13 Dead Axial 3033 (Eccentricity = 0.00 in) 2 Rf.Live Axial 5052 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): I 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 3 -Plys Self- weight of 5.11 pif included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 328 Fc' = 439 fc /Fc' = 0.75 Axial Bearing fc = 328 Fc* = 1644 fc /Fc* = 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.267 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 8126 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD Df$$GN June 24, 2010 12:55 c31 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_b13 Dead Axial 2561 (Eccentricity = 0.00 in) 2 Rf.Live Axial 3599 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 1 0' 8 ' Lumber n -ply, Hem -Fir, No.2, 2x4 ", 3 -Pays Self- weight of 3.25 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 393 Fc' = 443 fc /Fc' = 0.89 Axial Bearing fc = 393 Fc* = 1719 fc /Fc* = 0.23 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.258 1.150 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 6186 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT 41 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:54 c39 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b21 Dead Axial 267 (Eccentricity = 0.00 in) 2 Live Axial 822 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 1 0' 9' Lumber n -ply, Hem -Fir, No.2, 2x4 ", 2 -Plys Self- weight of 2.17 plf included in Toads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 9.00= 9.00 [ft); Ke x Ld: 1.00 x 9.00= 9.00 [ft); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 106 Fc' = 171 fc /Fc' = 0.62 Axial Bearing fc = 106 Fc* = 1495 fc /Fc* = 0.07 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.114 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 1108 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT 1 WoodWorks® SOFFWARE FOR WOOD DESIGN June 24, 2010 12:52 c55 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b30 Dead Axial 154 (Eccentricity = 0.00 in) 2 Live Axial 209 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): • 1 0' 8' Lumber Post, Hem -Fir, No.2, 4x4" Self- weight of 2.53 pif included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 31 Fc' = 470 fc /Fc' = 0.07 Axial Bearing _ fc = 31 Fc* = 1495 fc /Fc* = 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.315 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 384 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 0 /4 9 — Cnir0 BY Ps- DATE: r - a aO 1 O JOB NO.: / 1 ^ • ' -Q ct O OF PROJECT: RE: BeaMs WI Lot,1 ReacH ar5 ❑ ❑ J • Z E \Xaen t tA. -> ak1 S ,d3 i, 303 O 2 ❑ bear() 13 - watts ao all aoa, J O J o w i eo n 1 kAKfak5 "31.0 ' 01V U Z w O d Z bea "3 w - 5 Wat1.S a0 , at) 1A i ao 1g O U 51rue wind reu.di S » se Lsrn+c, r c tio,& Z Or1V wind` Will he_ co, !cLtccfed, 2 0 U El cc o lL Z w ❑ Z O I— • n. O • U t~ a� 4 0 o :4'xa ': J lq (12) \ COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 13:07 b6 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 c44 Snow Point 647 2.00 lbs 3 w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 c45 Dead Point 444 5.00 lbs 6 c45 Snow Point 647 5.00 lbs 7 w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9 j25 Dead Full UDL 120.2 plf 10_j25 Live Full UDL 370.0 plf WIND1 Wind Point 800 2.00 lbs WIND2 Wind Point -910 5.00 lbs MAXIMUM REACTIONS flbsl and BEARING LENGTHS Iinl I: ]5F 98E 1 0' 61 Dead 1436 1389 Live 2089 1803 Total 3525 3192 Bearing: Load Comb #4 #3 Length 1.88 1.70 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.15 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 4 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 4 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC 04 = D +.75(L +S +W) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. • 6;2_ COMPANY PROJECT di WoodWorks® SOFTWARE FOR W000 DESIGN June 24, 2010 13:07 b6 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) • Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 c44 Snow Point 647 2.00 lbs 3 w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5_c45 Dead Point 444 5.00 lbs 6 c45 Snow Point 647 5.00 lbs 7 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9_j25 Dead Full UDL 120.2 plf 10 j25 Live Full UDL 370.0 plf WIND1 Wind Point -800 2.00 lbs WIND2 Wind Point 910 5.00 lbs MAXIMUM REACTIONS (Ibs1 and BEARING LENGTHS (in) : • • • 0' 6t Dead 1436 1389 Live 1803 2172 Total 3239 3561 Bearing: Load Comb #3 #4 Length 1.73 1.90 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Pays Self- weight of 8.02 plf included in loads; Lateral support top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NOS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. ..._ COMPANY PROJECT 1 WoodWorks SOPIWARE FOR WOOD DESIGN June 24, 2010 13:09 b14 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf, or pit) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2 w 68 Live Partial UD 350.0 350.0 9.00 10.50 plf 3 - c19 Dead Point 357 9.00 lbs 4 c19 Live Point 1050 9.00 lbs 5 c20 Dead Point 357 3.00 lbs 6_c20 Live Point 1050 3.00 lbs 7 w66 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8 w66 Live Partial UD 350.0 350.0 0.00 1.50 plf 9 c64 Dead Point 165 10.50 lbs 10_c64 Snow Point 225 10.50 lbs 11 c65 Dead Point 165 1.50 lbs 12 c65 Snow PoiOt. 225 1.50 lbs 13_w67 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14 w67 Live Partial UD 350.0 350.0 1.50 3.00 plf 15_w69 Dead Partial UD 317.7 317.7 10.50 12.00 plf 16_w69 Live Partial UD 350.0 350.0 10.50 12.00 plf 17_j36 Dead Full UDL 113.7 plf 18_j36 Live Full UDL 350.0 plf 19 j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20 j43 • Live Partial UD 25.0 25.0 0.00 0.50 plf 21 j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22 j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 23j45 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24_j45 Live Partial UD 25.0 25.0 1.50 3.00 plf 25_j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26j46 Live Partial UD 25.0 25.0 10.50 12.00 plf ' 27_j70 Dead Partial UD 17.0 17.0 3.00 9.00 plf 28_j70 Live Partial UD 25.0 25.0 3.00 9.00 plf 29_j71 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30 j71 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point 3560 3.00 lbs WIND2 Wind Point -3640 9.00 lbs wind3 Wind Point -3620 0.00 lbs winds Wind Point 3570 12.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : �'..� -_._ _y sus_`- ..Y��,•o� -. _ ?�Yf .«,.. = arz���"r ".aJ= �ra�._ ^,slit. �.-a r. - �.�r•- �„wab[el�laP -......6.: +s..^ �.. . ,M1- Seca•--,.. • - -.i++"'�wa.- ". * l a 121 Dead 2207 2207 Live 4350 4350 Uplift 499 479 Total 6557 6557 Bearing: Load Comb #2 # Length 2.34 2 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) usin NDS 2005: Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 310 fv /Fv' = 0.51 Bending( +) fb = 1735 Flo' = 2325 fb /Fb' = 0.75 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.42 = L/343 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 6557, V design = 5170 lbs . Bending( +): LC #2 = D +L, M = 16527 lbs -ft • Deflection: LC 02 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (A11 LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. /42-63t1 COMPANY PROJECT i WoodWorks SOFTWARE FOR WOOD DESIGN June 24, 2010 13:09 b14 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or p[f ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2 Live Partial UD 350.0 350.0 9.00 10.50 plf 3 Dead Point 357 9.00 lbs 4_c19 Live Point 1050 9.00 lbs 5 c20 Dead Point 357 3.00 lbs 6 c20 Live Point 1050 3.00 lbs 7_w66 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8 Live Partial UD 350.0 350.0 0.00 1.50 plf 9 Dead Point 165 10.50 lbs 10 c64 Snow Point 225 10.50 lbs 11 Dead Point 165 1.50 lbs 12 Snow Point 225 1.50 lbs 13_w67 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14 Live Partial UD 350.0 350.0 1.50 3.00 plf 15 Dead Partial UD 317.7 317.7 10.50 12.00 plf 16 Live Partial UD 350.0 350.0 10.50 12.00 plf 17 j36 Dead Full UDL 113.7 plf 18_j36 Live Full UDL 350.0 plf 19_j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20_j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 21_j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22 j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 23_j45 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24_j45 Live Partial UD 25.0 25.0 1.50 3.00 plf 25_j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26 j46 Live Partial UD 25.0 25.0 10.50 12.00 plf 27 j70 Dead Partial UD 17.0 17.0 3.00 9.00 plf 28_j70 Live Partial UD 25.0 25.0 3.00 9.00 plf 29_j71 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30 j71 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point -3560 3.00 lbs WIND2 Wind Point 3640 9.00 lbs wind3 Wind Point 3620 0.00 lbs winds Wind Point -3570 12.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : .ter-- "ar�te : .s..t _.:,= � r- ..�.:=- .7.='_ . r =.>"?e "^"*: r .;•►.: -..,- �. «.�. :tif • ms's... • '�' � - +��..r- •.+te "„ ` a.�� • - '�eY ' w a.O -:.r - T - Ri.. �.."' � ..-,, _ "•+rwca r :.,,. * - a. - �e r^ IX. I a 121 Dead 2207 2207 Live 4826 4811 Total 7033 7018 Bearing: Load Comb #4 #4 Length 2.51_ 2.51 LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 310 fv /Fv' = 0.51 Bending(*) fb = 1735 Fb' = 2325 fb /Fb' = 0.75 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.42 = L/343 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 6557, V design = 5170 lbs • Bending( +): LC #2 = D +L, M = 16527 lbs -ft Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (A11 LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer.• 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. • 4-C • COMPANY PROJECT Ill WoodWorks, SOFIWARE FOR WOOD OESIGN June 24, 201013:11 b13 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, Psf, or pH ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3_c40 Dead Point 217 5.50 lbs 4 c40 Live Point 668 5.50 lbs 5 c67 Dead Point 518 5.00 lbs 6 c67 • Snow Point 778 5.00 lbs 7 c68 Dead Point 573 3.00 lbs 8 c68 Snow Point 942 3.00 lbs 9 Dead Partial UD 593.7 593.7 5.00 8.00 plf 113_1459 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12 Live Partial UD 310.0 310.0 6.50 8.00 plf 13 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14 j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15 j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16 - j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 Dead Point 126 3.50 lbs 18 b 15. Live Point 389 3.50 lbs 19 b32 Dead Point 225 6.50 lbs 20 Live Point 693 6.50 lbs W1 Wind Point 6590 0.00 lbs W2 Wind Point -6590 3.00 lbs W3 Wind Point 6590 5.00 lbs W4 _Wind Point -6590 8.00 lbs MAXIMUM - ' • . sl and BFARING LENGTHS (in) :;_;._ _ ar- e' ��. -,-, , �,' nn,c �, .,... -.:... ;�-- .7 ,r_ - .. _ b ",- si - �-. . -.,..• =- .�+.m.9a' +ws.. y - '.�ti''► +_ �o _ +�......e......____ �'�` - -a _a...."�aw.. r - w .,r 'r _ 8s4 i+.... r' :± _'^r'. - ,�_ . r n� -+r _ -x'"_. +€r �� ^ ate+ � • 1 a 81 Dead 2561 3033 Live 6406 3789 Uplift 3098 Total 8968 • 6822 Bearing: Load Comb 84 83 Length 3.20 2.44 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom = at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L /680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC8 Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 • Shear : LC 93 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC 63 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC 93 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I =impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. • COMPANY PROJECT f fl WoodWorks® SOfIWARE FOR WOOD DESIGN June 24, 2010 13:11 b13 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 Dead Point 217 5.50 lbs 4_c40 Live Point 668 5.50 lbs 5 c67 Dead Point 518 5.00 lbs 6 Snow Point 778 5.00 lbs 7 Dead Point 573 3.00 lbs 8 Snow Point 942 3.00 lbs 9 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10 w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12 Live Partial UD 310.0 310.0 6.50 8.00 plf 13 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14 Live Partial UD 250.0 250.0 3.50 6.50 plf 15_j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16 j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 Dead Point 126 3.50 lbs 18 Live Point 389 3.50 lbs 19 Dead Point 225 6.50 lbs 20 Live Point 693 6.50 lbs W1 Wind Point -6590 0.00 lbs W2 Wind Point 6590 3.00 lbs W3 Wind Point -6590 5.00 lbs W4 Wind Point 6590 8.00 lbs MAXIMUM RFM T1CZy.illhsl and BEARING LENGTHS lint : __ - '''''...,Iii =.- rte * _ - 'r'a.r ....!._.],n,W7 - _ • .'- ' '...., .,a _ �+c. "�,.1,4 . te r, - .,sue' ' ?.s....,1 .- r „'�aa.yrY - v.�o-- r..h�e _L_---....._&--_ _ � =_:,- -2 ".� --fir • -^iw-_ z = -° -c 0 Ia 81 Dead 2561 3033 Live 2699 7496 Uplift 3381 Total 5261 10529 Bearing: Load Comb #3 #4 Length 1.88 3.76 LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 lb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L /680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Ervin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC 03 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC 03 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I =impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 4.- 6,1,-;`)r. COMPANY PROJECT 111 I I Wo odvVo r k s® June 24. 20'013:19 b34 LC1 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet 109+7.1 LOADS I Re, Per .pR) Load Type 01atr06utlon Magnitude Location I!t) Unita Start Eno End 1 v62 Dead Partial U0 613.2 613.2 6 0.00 2.00 plf 2_v62 Snow Partial U0 795.0 795.0 0.00 2.00 plf 029 Dead Partial UD 617.5 617.5 7.50 11.00 plf v 1 29 Snow Partial U0 901.2 901.2 7.50 11.00 plf 015 Dead Point 1436 11.00 lea 6_015 3000 Point 2404 11.00 lb. 016 Dead Point 1309 17.00 lb. 8 016 Snow Point 2404 17.00 lb. 9 Dead Partial UD 617.5 617.5 17.00 19.00 pl! 10 c64 Snow Partial 0D 901.2 801.2 17.00 18.00 plf 11_061 Dead Point 622 1.00 lea 12 061 Snow Point 1192 7.00 lb2 13 662 Dead Point 622 1.00 lba 14 Snow Point 1192 4.00 lea 15 Dead Partial UD 613.2 613.2 2.00 4.00 pl! 16 SW, Partial UD 795.0 795.0 2.00 1.00 plf 17 Dead Partial U0 617.5 617.5 19.00 20.00 pi! 19 v65 Snow Partial VD 901.2 601.2 19.00 20.00 pl! 19 ,71 Dead Partial UD 613.2 613.2 7.00 7.50 pl! 20_871 Snow Partial UD 795.0 795.0 7.04 7.50 91! 21_164 Dead Partial UD 47.7 47.7 17.00 19.00 pl! 22_164 Live Partial U0 160.0 160.0 17.00 19.00 plf 23_329 Dead Partial UD 47.7 47.7 4.50 7.50 plf 24_129 Live Partial UD 160.0 160.0 4.50 7.50 pl! 25_362 Dead Partial UD 47.7 47.7 1.50 11.00 Of 26 _192 Live Partial U0 160.0 -160.0 7.50 11.00 plf 27_149 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29_146 Live Partial UD 370.0 370.0 0.00 2.00 plf 29_132 Dead Partial UD 120.2 120.2 3.50 4.00 pl! 30_332 L1v8 Partial UD 370.0 370.0 3.50 4.00 plf 31_133 Dead Partial V0 120.2 120.2 1.50 7.50 Of 32_133 Live Partial 0D 370.0 370.0 4.51 7.50 pl! 33_334 Dead Partial '30 120.2 120.2 7 .50 9.00 910 34_334 Live Partial UD 370.0 370.0 7.50 9.00 pl! 35_J35 Dead Partial UD 120.2 120.2 9.00 11.00 pl! 36_135 Live Partial UO 370.0 370.0 6.00 11.00 plf 37_147 Dead Partial U0 120.2 120.2 11.00 17.00 Of 39_147 Ova Partial UD 370.0 370.0 11.00 17.00 pl! 39_367 Dead Partial UD 120.2 120.2 2.00 3.50 plf 40_367 Live Partial UD 370.0 310.0 2.00 3.50 plf 41_141 Dead Partial UD 120.2 120.2 4.00 4.50 911 42_349 Live Partial UD 370.0 370.0 4.00 4.50 plf 43_163 Dead Partial UD 47.7 47.7 11.00 17.00 pl! 44 _163 Live Partial UD 160.0 160.0 11.00 17.00 pl! 45 365 Dead Partial UD 47.7 47.7 19.00 20.00 pl! 46_165 Live Partial U0 160.0 160.0 10.00 20.00 pl! 47_366 Oea3 Partial U0 47.7 47.7 4.00 4.50 pl! 49_168 Live Partial UD 160.0 160.0 4.00 4.50 pl! 49_162 Dead Partial UD 120.2 120.2 17.00 19.00 plf 56160 Live Partial UD 370.0 310.0 17.00 18.00 plf 61_169 Dead Partial UD 120.2 120.2 19.00 20.00 plf 52_169 Live Partial UD 370.0 370.0 19.00 20.00 pl! 53_072 Dead Partial U0 47.7 47.7 Z.00 4.00 911 54 172 Live Partial UD 160.0 160.0 2.00 4.00 Of 55_173 Dead Partial UD 47.7 17.7 0.00 2.00 pl! 56_1 Live Partial 110 160.0 160.0 0.00 2.00 911 WI wind Point 5050 0.00 lb. Wind Point -5650 4.00 lea M3 Mind Point 5950 11.00 lea 111 Wind Point .5950 17.00 16s w5 Wind Point 5950 20.00 16a MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : l Dead 255 x 1 32 , liva 12555 12192 Total 19555 19199 e 0.0.0 0 Lomb 94 15 Lent Comb 5.97 5.95 Glulam -Bal., West Species, 24F -V8 DF, 5.118x22.7/2" 5alhw1914 of 26.55 pre Included In bndR Lateral auppat lope M. both.' al suppala: Analysis vs. Allowable Stress (psi) and Deflection (in) as12N0S20060 Criterion 014121la Value Cealon Value Analysis /Design Shear C+ ■ 102 90• ■ 305 fv /FV' - 0.60 Bending(4) fb . 2392 Flo' ■ 2604 fb /FD' - 0.92 Live Del1'n 0.40. L/595 0.67 - 1/360 0.60 Total Oefl'n 0.94 ■ 0 /295 1.00 - 11210 0.64 ADDITIONAL DATA: FACTORS: F/E CD d Ct CL C! Cfu Cr Clrt Notes Cn LC1 • 97' 265 1.15 1.00 1.00 1.00 1.00 1.00 3 901'4 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - E' 1.0 million 1.00 1.00 - - - - 1.00 - - 3 0010' 0.05 0111100 1.00 1.00 - - - - 1.00 - - 3 Shea: : LC 93 . D4.75(5+6/, V - 17361, V dealgn ■ 13962 180 9,nd1ng( LC 13 ■ 04.7511.4S), M ■ 96199 lee -!t Deflection: LC 93 ■ 04.751148) EI- 6756,06 1b -102 Total °eflaction ■ 1.50(Dead Load Deflection) 4 Live 1..ad Deflection. (084,43 1■110, S.anov W.vind 0.06p.0t - - ono- ruction CI4■0000,ntrac00 (A11 LC's are listed in the Analysis output) Load combinations: I0C -IEC DESIGN NOTES: I. Please verity MN to default deaden emirs are appropriate for war 2. GU= design tarts are for materials conbm,bg to AITC 117 -2001 and mmadamsed In 00681+ a ce rah ANSVA)TC A150.1 -1992 3. GLULAM: brat 0 actual basal1..cted depth. A GOoam Benin shalt be Mersey supported ecwd}g b doe provisions of NOS Claus 33.3. 5. GLULAM: bem0g length based on smear of Fcp(Ieraion). Fcp(wmp n). 4 .... Ci 3 ,-40 COMPANY PROJECT 0001% Woo d V\fo r k s ® NM 24, 20101319 934102 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Steer 7.1 LOADS 1161, psi, m pn) Load Type Distribution Magnitude Location (ft7 Units Start End Start End 1 '62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 2962 Snow 9,071.1 UD 795.0 795.0 0.00 2.00 p17 3929 Deal Partial UD 617.5 617.5 7.50 11.00 plf w29 Snow Partial UD 801.2 801.2 7.50 11.00 plf 5 715 Dead Paint 1436 11.00 lea 6_715 Snow Point 2404 11.00 lbs 016 Dead Point 1359 17.00 108 6016 Snow Point 2104 17.00 lea 9 w64 Dead Partial UP 617.5 617.5 17.00 19.00 plf 113_w64 Snow Partial UD 901.2 801.2 17.00 19.00 plf 11_261 Dead Point 622 7.00 lbs 12 061 Snow Point 1192 7.00 lea 13:062 Dead Paint 822 4.00 168 11 .62 Snow Point 1192 4.00 lbs 15 963 Dead Partial UD 613.2 613.2 2.00 4.00 plf 16963 Snow Partial UD 795.0 795.0 2.0E 4.00 plf 1 Dead Partial UD 617.5 617.5 19.0, 20.00 plf 16965 Snow Partial UD 901.2 801.2 19.00 20.00 plf 19 971 Dead Partial UD 613.2 613.2 7.00 7.50 plf 29871 Snow Partial UD 795.0 795.0 7.71 7.50 plf 21_764 Dead Partial UD 47.7 47.7 17.00 19.00 plf 22_764 Live Partial UD 160.0 160.0 17.00 18.00 plf 23_128 Dead Partial UD 17.7 47.7 4.50 7.50 plf 24_729 Live Partial UD 160.0 160.0 4.50 7.50 plf 25 762 Dead Partial UD 47.7 47.7 7.50 11.00 plf 26_762 Live Partial U0 160.0 160.0 7.50 11.00 plf 27_049 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29 749 Live Partial 00 370.0 370.0 0.00 2.00 plf 29_132 Dead Partial UD 120.2 120.2 3.50 4.00 plf 30_132 Live Partial UD 370.0 370.0 3.50 4.00 plf 31_733 Dead Partial UD 120.2 120.2 4.50 7.50 plf 32 733 Live Partial UD 370.0 370.0 4.50 7.50 plf 33 734 Dead Partial UD 120.2 120.2 7.50 9.00 plf 34_134 Li70 Partial UD 370.0 370.0 7.5C 9.00 p17 35_235 Dead Partial UD 110.2 120.2 9.00 11.00 plf 36_735 Live Partial UD 370.0 370.0 9.00 11.00 plf • 3747 Dead Partial UD 120.2 120.2 11.00 17.00 plf 33_747 Live Partial UD 370.0 370.0 11.00 17.00 plf 39_767 06.1 Partial UD 120.2 120.2 2.00 3.50 plf 40_767 Live Partial UD 370.0 370.0 2.00 3.50 plf 41_749 Dead Partial UD 120.2 120.2 4.00 4.50 plf 42_149 Live Partial UD 370.0 370.0 4.00 4.50 plf 43_763 Goad Partial UD 47.7 47.7 11.00 17.00 pif 44_763 Live Partial U0 160.0 160.0 11.00 17.00 plf 45_765 Dead Pa:t1a1 UD 47.7 47.7 19.00 20.00 plf 46_765 Live Partial UD 160.0 160.0 19.00 20.00 plf 47_766 Dead Partial UD 47.7 47.7 4.00 4.50 pl.' 40766 Live Partial UD 160.0 160.0 4.00 4.50 plf 49_16S Dead Partial UD 120.2 120.2 17.00 19.00 plf 50_169 Live Partial UD 3 370.0 17.00 19.00 plf 51_109 Daad Partial UD 120.2 120.2 19.00 20.00 plf 52_769 Live Partial UD 370.0 370.0 19.00 20.00 plf 53_772 Dead Partial UD 47.7 47.7 2.00 4.00 plf 54_772 Live Partial UD 160.0 160.0 2.00 4.00 p1! 55_773 Dead Partial UD 41.7 47.7 0.00 1.00 plf 56_773 Live Partial UD 160.0 160.0 0.00 2.00 61f N1 Mind Paint -5950 0.00 1ba N2 Wind Point 5950 4.00 lbs 63 Wind Point -5850 11.00 lbs 114 Hind Point 5950 17.00 lb. M5 Mind Point -5950 20.00 1ba MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (In) : r Head 9 902 35fi 9975 Total 17361 17305 Searing: Co. Load 63 93 Length 5.11_ 5.19 Glulam -BaI., West Species, 24F -V8 DF, 5- 1/8x22 -1 /2" se-wdpld of 28.55 P„ Included N bets: Lateral support tape f1A, b00orn0 et supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS2005: Criteria, 00,12.1. Value 0.619n Value Analvala /0vaian Shear 192 Po' ■ 305 fv /FV' . 0.60 6endin9127 fb - 2372 FD' - 2604 fb /Fb' . 0.92 Live 0.11', 0.41 - 1./591 0.67.. L/360 0.61 Total Defl', 0.94. L/294 1.00 - L/240 0.94 ADDITIONAL DATA: FACTORS: F/E CO ci CL C! 070 Cr Cfrt notes Cn LC4 Fv' 265 1.15 1.00 1.00 1.00 1.0) 1.00 3 Pb'4 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 Fcp' 650 1.00 1.00 - - - - 1.00 - - - E' 1.9 mi1117n 1.00 1.00 - - - - 1.00 - - 4 Em1n' 0.95 million 1.00 1.00 - - - - 1.30 - - Shear : LC 03 . 0..7511..5). V . 17361, V design • 13992 lb* 99,1172(41: LC 03 ■ 9'.7511.421. M . 96199 lbs-ft Deflection: LC 44 - 94.7511. El. 8756.06 16 -1,2 Total Doflec:1on - 1.50199.1 Load 067180tion) 4 Live Load Deflection. 19.1901 I■11ve S■2ncv Y■w1n1 1■29,15 P000atructl:r. C2d- c:n :entrate0l 7211 1 . 0 2 , 2 . 11ate1 in the 20.1 /21. 0utput7 Load combinations: ICC --I DESIGN NOTES: 1. Please verity OW the dolma deflection 6rals are eppspdafs far your.994.Dm. 2. GY2am design values are for nalerbb mlfomdn9 to ARC 117.2001 end manufactured in accordance with ANSVAITC A190. 1 -1992 1 GLUTAM: hN e actual breadth s actual depth. 4. GNP= Beams ehu9 be lalera0p supported .5520 79 to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on sma5er of Fcp(Rn: ion), Fcp(cornpn). • 4 - 6)229 COMPANY PROJECT II 1 %Vo June 24, 2010 1320 1134 LC2 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Slue 7.1 LOADS (IW,pa, «pf) : . Load Type Diat:lbutlon 8.3710ude Location (ft) Un1ta Start End Start End 1 062 Dead Partial UD 613.2 613.2 0.00 2.00 pif 2 Snow Partial UD 795.0 795.0 0.00 2.00 plf 3_029 Dead Partial U0 611.5 611.5 7.50 11.00 plf 4_w29 Snow Partial UD 901.2 801.2 7.50 11.00 plf 5 c15 Dead Point 1436 11.00 lbs 6_c15 Snow Point 2404 11.00 lbs 016 Gad Point 1389 17.00 !be d c16 Snow Point 2404 17.00 iba 9 064 Gad Partial UD 617.5 611.5 17.00 18.00 pit 10 061 Snow partial UD 801.2 901.2 17.00 19.00 pif 11 c61 Dead Point 622 7.00 lbs 12 Snow Point 1192 7.00 lbs 5 1c62 2 Gad Point 622 4.00 iba 14 c62 Snow Point 1192 4.00 lbs 15 Gad Partial UO 613.2 633.2 2.00 4.00 plf 16 Snow Partial U0 795.0 795.0 2.00 4.00 pit 17 Gad Partial U0 617.5 617.5 19.00 20.00 plf 10 Snow Partial UD 401.2 901.2 19.00 20.00 pif 19 Gad Partial UD 613.2 613.2 7.00 7.50 pif 20 Snow Partial U0 795.0 795.0 7.00 7.50 pif 21 X61 Dead Partial U0 47.7 47.7 17.00 19.00 plf 22 364 Live Partial UD 160.0 160.0 17.00 18.00 pif 23 Dead Partial U0 31.7 11.7 4.50 7.50 plf 24_128 Live Partial UD 160.0 160.0 4.50 7.50 plf 25_162 Dead Partial U0 47. 47.7 7.50 11.00 pif 26_162 Live Partial UD 160.0 160.0 7.50 11.00 pif 27_240 Gad Partial U0 120.2 120.2 0.00 2.00 elf 29_319 Live Partial UD 370.0 370.0 0.0) 2.00 plf 29_132 Gad Partial V0 120.2 120.2 3.50 4.00 plf 30_332 Live Partial UD 370.0 370.0 3.50 4.00 plf 31_133 Gad Partial UD 120.2 120.2 4.50 7.50 pif 32_133 Llvo Partial U0 370.0 370.0 4.50 7.50 pif 33_334 Dead Parc1al UD 120.2 120.2 7.50 8.00 pif 34_134 Live Partial UD 370.0 370.0 7.50 9.00 pif 35)25 Gad Partial UD 120.2 120.2 9.00 11.00 pif 36 _235 Live Partial U0 370.0 370.0 9.00 11.00 pif 37_147 Gad Partial UD 120.2 120.2 11.00 17.00 plf 30_147 Live Partial UD 370.0 310.0 11.00 17.00 plf 39_167 Gad Partial UD 120.2 120.2 2.00 3.50 pif 40_167 Live Partial UD 370.0 370.0 2.00 3.50 pif 41_149 Gad Partial VD 120.2 120.2 4.00 4.50 pif 42_149 Live Partial UD 370.0 370.0 1.00 4.50 pif 43_163 Gad Partial U0 47.7 47.7 11.00 17.00 plf 44_163 Live Partial U0 160.0 160.0 11.00 17.00 pif 45_365 Dead Partial 00 47.7 47.7 10.00 20.00 plf 46_165 Live Partial UD 160.0 160.0 19.00 20.00 pif 47_366 Gad Partial UD 47.7 47.7 4.00 4.50 pif 40_166 Live Partial UD 160.0 160.0 4.00 4.50 plf 49_169 Gad Partial UD 120.2 120.2 17.00 18.00 plf 50_165 Live Partial UD 370.0 370.0 17.00 10.00 plf 51_369 Gad Partial UD 120.2 120.2 10.00 20.00 pif 52_169 Live Partial U0 3 370.0 10.00 20.00 pif 53_312 Gad Partial UD 47.7 11.1 2.00 4.00 pif 54 _072 Live Partial 110 160.0 160.0 2.00 4.00 plf 55_173 Gad Partial UD 47.7 47.7 0.00 2.00 plf 56_1 Live Partial UD 160.0 160.0 0.00 2.00 pif xl Wind Point -5950 0.00 iba Mind Point 5950 1.00 lbs w3 wind Point -5950 11.00 lbs ' w4 wind Point 5850 17.00 lbs 145 wind Point -5050 20.00 lb.: • MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (In) : Dead 4105 1327 Live 9956 9979 Total 17361 17305 Bearing: Load Comb 43 13 Lenoth 5.21 5.19 Giulam -Bat., West Species, 24F -V8 DF, 5- 118x22 -1/2" 5eAw O%of 2/5.55 plf included in beds: WNW support tope M, bottom 44 e2 0004ta: Analysis vs. Allowable Stress (psi) and Deflection (in) l019 Ems 2006: - Criterlon Analvvi• Value D•sl8n Value Analysis/Deal, Sheer fv • 102 Fv' ■ 305 1V /FV' • 0.6o 80nd1n0) fb ■ 2392 Fb' . 2604 /b /Flu' . 0.52 Live Defl'7 0.41 ■ L /591 0.67 . L /360 0.61 Total Gfl'n 0.94 • L/204 1.00 . 0/240 0.94 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cf:t dotes LC4 ' 00' 165 1.15 1.00 1.00 1.00 1.00 1 00 3 00 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 3 Fop' 650 1.00 1.00 - - - - 1.00 - E• 1.9 million 1.00 1.00 - - - - 1.00 - i Ev1n' 0.95 million 1.00 1.00 - - - - 1.00 - 4 Shear : LC 43 ■ 00.751=09). V ■ 17361. V design ■ 13992 lb. 6eld179)0): LC 43 . 0 =451. M ■ 96199 iba -ft Deflection: LC 44 . 00.75114949) El. 8756006 lb -1n2 Total Deflection • 1.00(Dea0 Load Deflection) 4 Live Load 00210001 /0. 10■dead 1.live 9■anc0 ..wind I.1 Fact C.constructlon CLd.conoentretel) IAll LC'. are listed in the Anal /via output) Load combinations: ICC -ISC DESIGN NOTES: 1. pease verify that 0w detail &0.1040 limits en applp'ffie for yor.pplbatlm. 2. Gbhm design value as fa matabb coWaning le AITC 117 -2031 and manufactured facVad In ac1arbnee vA5 ANSUA)TC 6100.1 -1992 3.GA AN: bud • actual breadth •actual depth. 4. 2Wan Beams shall be latere9f supported 800049619 to the prolsic s of MI5 Clause 13.3. 5. GLULAM: hearing length based an ameba of Fcp(tasbn), Fdp(remp'n). ff '''. 6 1 CI ( ° COMPANY PROJECT 11 I WoodWorks SOFIWAREFOR WOOD DESIGN June 24, 2010 13:23 b34 LC1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ftl Units Start End Start End 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 3 w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5 Dead Point 1436 11.00 lbs 7 Dead Point 1389 17.00 lbs 9 w64 Dead Partial UD 617.5 617.5 17.00 18.00 plf 11 c61 Dead Point 622 7.00 lbs 13 Dead Point 622 4.00 lbs 15 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17 w65 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19 Dead Partial UD 613.2 613.2 7.00 7.50 plf 21_j64 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23 j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25 Dead Partial UD 47.7 47.7 7.50 11.00 plf 27 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31 Dead Partial UD 120.2 120.2 4.50 7.50 plf 33 Dead Partial UD 120.2 120.2 7.50 8.00 plf 35 j35 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39 j67 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41 Dead Partial UD 120.2 120.2 4.00 4.50 plf 43 j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45_j65 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47 j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49 j68 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51_169 Dead Partial UD 120.2 120.2 18.00 20.00 plf 53 j72 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55_j73 Dead Partial UD 47.7 47.7 0.00 2.00 plf W1 Wind Point 5850 0.00 • lbs W2 Wind Point -5850 4.00 lbs W3 Wind Point 5850 11.00 lbs W4 Wind Point -5850 17.00 lbs W5 Wind Point 5850 20.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : . a la 201 Dead 7189 6822 Live 156 302 Total 7238 7018 Bearing: Load Comb 92 92 Length 2.17 2.11 Glulam -Bat., West Species, 24F -V8 DF, 5- 1/8x22 -1/2" Self- weight of 26.55 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 74 Fv' = 238 fv /Fv' = 0.31 Bending( +) fb = 950 Fb' = 2038 fb /Fb' = 0.47 Live Defl'n negligible . Total Defl'n 0.41 = L /585 1.00 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC6 Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 • Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC 61 = D only, V = 7189, V design = 5674 lbs • Bending(+): LC 61 = D only, M = 34217 lbs -ft Deflection: LC 01 = D only EI= 8756e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). • fi .-- G ) Li i COMPANY PROJECT 000% WoodWorks° SOEIA'AREFOR WOOD DESIGN June 24, 2010 13:22 b34 LC2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS I lbs. psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1_w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 3_w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5 c15 Dead Point 1436 11.00 lbs 7 c16 Dead Point 1389 17.00 lbs 9 w64 Dead Partial UD 617.5 617.5 17.00 18.00 plf • 11 c61 Dead Point 622 7.00 lbs 13_c62 Dead Point 622 4.00 lbs 15_w63 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17_w65 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19 w71 Dead Partial UD 613.2 613.2 7.00 7.50 plf 21_j64 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23_j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 27_j48 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29_j32 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31 j33 Dead Partial UD 120.2 120.2 4.50 7.50 plf 33_j34 Dead Partial UD 120.2 120.2 7.50 8.00 plf 35_j35 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39_j67 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41 j49 Dead Partial UD 120.2 120.2 4.00 4.50 plf 43 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45_j65 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47 j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51_j69 Dead Partial UD 120.2 120.2 18.00 20.00 plf 53 j72 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55 Dead Partial UD 47.7 47.7 0.00 2.00 plf . W1 Wind Point -5850 0.00 lbs W2 Wind Point 5850 4.00 lbs W3 Wind Point -5850 11.00 lbs W4 Wind Point 5850 17.00 lbs W5 Wind Point -5850 20.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 1(r 201 Dead 7189 6822 Live . Total 7189 6822 Bearing: Load Comb 01 01 Length 2.16 2.05 Glulam -Bat., West Species, 24F -V8 DF, 5- 118x22 -1/2" Self- weight of 26.55 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 74 Fv' = 238 fv /Fv' = 0.31 Bending( +) fb = 950 Fb' = 2038 fb /Fb' = 0.47 Live Defl'n negligible Total Defl'n 0.41 = L /585 1.00 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LCH Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 Fcp' 650 -. 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC 01 = D only, V = 7189, V design = 5674 lbs Bending( +): LC 01 = D only, M = 34217 lbs -ft Deflection: LC 01 = D only EI= 8756e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI/AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 1 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). -CC1 Harper Project: r Houf Peterson �-�� Client: Job # Righellis In c. ENGINEERS •PLANNERS Designer: Date: Pg. # LANDSCAPE ARCH1rECTS•SURVEYORS W := 10 lb 8•ft•20•ft W = 1600-lb Deck. seSi9Y\ ft Seismic Forces Site Class =D Design Catagory =D Wp •.= Wd 1 '- 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F := 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F v • = 1.722 Vel -based site coefficient @ 1 s -period (Table 1613.5.3(2), 2006 IBC) S • = F S S := F -S1 • 2S ms S : = Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a := 1.0 Rp := 2.5 (Table 13.5 -1, ASCE 7 -05) 4a ds F := p •S' � {i + 2• RP hl•Wp EQU. 13.3 -1 ` J Fpmax:= 1.6•S EQU. 13.3 - Fpmin := . W p EQU. 13.3 - F if(F > Fpmax,Fpmax, if(F < Fpmin,Fpmin,Fp)) F = 338.5171•lb Miniumum Vertical Force 0.2• S ds • W dl = 225.6781 • Ib Clge Harper Project: Houf Peterson Client: Job # R Inc. �{ ENGINEERS • PLANNERS Designer: Date: Pg. # LANDSCAPE ARCHITECYS•SURVEYORS Wdl 10• lb 8•ft•20•ft Wd = 1600-lb ft Seismic Forces Site Class =D Design Catagory =D Wp := Wd Ip - 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) := S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S := 0.942. Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h 32 Mean Height Of Roof F i ='1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F. := 1.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S ms := F S Smi := Fv -S1 2-S ms S : = Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a := 1.0 R := 2.5 (Table 13.5 -1, ASCE 7 - 05) • 4a p • z FP := R 1 + 2- h Wp EQU. 13.3 - Fpmax := 1.6 S I W EQU. 13.3 - Fpmin .3 • 1 p - W P EQU. 13.3 - := if(F > F pmax , Fpmax, if (F < F pmin , Fpmin, F F = 338.5171-lb Miniumum Vertical Force 0.2 • S ds• W dl = 225.6781•lb ( 1 L I H Harper P Houf Peterson COMMUNICATION RECORD Righellis Inc. To El FROM fl MEMO TO FILE 0 E i.16iNEEPS * r-i. W.¢ss L.mosC au Gay ...... .. . ._.. r. . PHONE NO.: PHONE CALL: Q MEETING: fl m 'o CO P1 A. . 2 �� G 11 • Il -1 ra 1l 043 03 c/► 5 ...I) - 3 dl ti �( II I m It I1 \\ rr LI) . r . li . 0 .,� : 0 ,I, \ W O r rs r t -f N. N . n sr: AV '1 e (gf S eX \ DATE: JOB No.: PROJEct: RE' D ex.:ten . 0 ()T=.' P 'f f\& C () P ( \ 1 Y [ hi. a a - • z O E 1- ILI O NAitk... e PV 1 "ry (1 La etmyyrrx:PA tii 0 o --i ( 3(h\co I) gr- i.(a)(e * F inai I I cc < u = • . ' o w u z • e w . . ... z . . , cApiA(.11—/ ( boartk) p= . < . 1 b %;.1 f u r- + \ pt. g . _ 0 i C t? s> Cacpcort z.-. (01 . pL:F- . 12 cf. ut.) A c t u a \ ..._- it,,q5 pL;F ! 1 ! 1 L Lai. ''t .•- 7 .)E- 1;C.')Nj - 1 -----■ . , \) .----; t (2 1 5- r.- . , 1 0 • ci L O C. T .,. 1. .; . ' 3 ° ° ‘ ( ‘111 ‘ (,, z g3I Scs•r1 305'14- x4172 e- le 0,C, =4O 't :, OIL /q—GL/G . 0 0 ' 1 t l +7 0Q -Fl - . 0 0 In`e ", clgkee , i . 1 1 it s7 E fil4 Doog I< k 44 coz (tiov) #aoe -- • gbal i 0 2 u z -n - m .,521 m uo;c6k..Aa 01 ncai r,71: __ z () 0 N‘41- 00119 › z X PI 0 Z 0 01# cv-hq ----- • rn 0 r o 0 1 ' 9 d . : T.... -3qAciD C.1 2 11 9 In El 0 \...,UCT/57: '.. 1Paa_ 'au :1031'021d — .. :• ON ciOr 3J-d° UrAPI ...P .A8 ■, — I • Harper COMMUNICATION RECORD ' 1 e • Houf Peterson Righellis Inc. To 0 FROM [] • MEMO TO FILE 0 ENGINEERS • PLANNERS • LANCS.APE ARGHITECT,■•SURVEVOII,, PHONE NO • PHONE CALL: El MEETING: ED 7J "0 CO r. 75 tli'i 0 • " • t 1 0 1 i t cm 0 1 1 _ p if .. Q) Sb d - ....._v 0 0 8 i _ 0 0 C3 ..5-., • d . 6 W. -- i" 1 .../ • It i ,....1, ' ...(3‘ n --I • CS i • cs p oi . . narper . ' I Houf Peterson COMMUNICATION RECORD Righellis Inc. To 0 FROM 0 MEMO TO FILE El EPOINEE11::•PLAPINERS LAND..CIPE ARCIIITECTS•SUPVEYOR: PHONE NO.: PHONE CALL: El MEETING: El . XI 13 133 • PI . ...,,,....X • 3 ---N1 - P i Th CP, . (.7 '.. 1 • r . 0 . ... -... 0 N • . kJ .-.4:1 . ........................_ . r E 0 7 .... 6 .f...;\ 8-- I r r. > tfi v ......1 -4.. .77 :s.,....4._ . • .....k 70, C. 11 i I . 1 1 . . r 1 . -J.. i........ , .0 • -T3 2 0 "I s e • \ . . • ..).- COMPANY PROJECT 011 111" oo or s SOPIWARE FOR WOOD DESIGN June 8, 2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End ,LIVE Live Point 2.50 200 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 11 ----!- . - ' :,- : -.,,: : : :,:' - , _. , " -- . ,- fs. - .."f: , ;','. - - 7 ,`. - iiTr . ' 4 '1w4-"'f'. -5 f'''-i , t'I' - ', ,: '-'-'-. ;' : --:', " --:--. !'. ?'='• r•! ....- , . ....,:. - f ,-. -, .,.. -::, ,' - -.- - .., , ::: , ,-,;:,:::::.:,!,,. --' :: ,,:. - -1:' ,- .7-:: : " T:72. ''."::":,.- •.:,'" "I ' : - -. • , ' - ; : ,:-.::: -- .1.-. , --- . ".::,- -.,,:;, ,:-..-.--: •i ..' - , -.•::- . ,-- • --•-: : - - :-.. - ---.• • ••• --::-...: :: : . : - - -. 10' 54 Dead Live 100 100 Total 104 104 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 Win.bearInglengtiforbeamsis1ArforeAtedorsupporlt Lumber-soft, Hem-Fir, No.2, 2x6" Self-weight of 1.7 Of included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 405 Flo' = 1048 fb/Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 '1.00 1.00 1.00 1.00 - 2 Fcp' 405 1.00 1.00 - - - 1.00 1.00 - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending(+): LC #2 = L, M = 255 lbs-ft Deflection: LC #2 = L El = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. iq.....(iso ( COMPANY PROJECT 0 1.11 Vito° Works SOFTWARE FON WOOD DESIGN June 8, 2009 16:27 Hand Ra112 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Full UDL 50.0 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 1 ,..._ , .-,.,-, - f - ;-L"---....- . 1' fit :: ..!,.,.. 7 ' "-- '::-'- ' ..',, '',. 7.' '. '' ..' 2 °'' ''';''''.-..''.....' '''. ' ' ' ' .- f a' e ' :-, ?.:''''';:. r -'..- ‘I''' :4 . '-'''':' 7 ...'s - "....'''' . :-. (.4 : "Z ''., -"?' ;- '...- ',' - : 7..- 1__ir. '.., 74_7:7 --,:,-,',.. ..-:-,..,:..„:., , c , . , ., :-..... : ',.,-.' -..... .:.. 7' , L' ,:,: . r, . , : ,: .:. , ''., , ,:‘. ' -..',.•:.-..:.-.,..., ,. : :, . i - :: '..,*. ' : .-_,,;_ :-... ,‘: --,-;,' --'• -,,„:;„; ,.;_ -., .. 4 . ,,,.1.:1..n. LI.; '‘:::;;.,:: ' ,.:. " ' 4./ , r.... ', s : ':_,:." 7. .....‘ -. •. ..:. 7 ., . . . ,, . , . 10' 54 Dead Live 125 125 Total 129 129 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams is 1/2" for exterior supports Lumber-soft, Hem-Fir, No.2, 2x6" Self-weight of 1.7 plf induded in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 256 Fb' = 1048 fb/Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Defl'n 0.03 = <L/999 _ 0.25 = L/240 0.11 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cu LC# Fv' 150 1.00 1.00 1.00 - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Brain' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 129, V design = 106 lbs Bending(+): LC #2 = L, M = 162 lbs-ft Deflection: LC #2 = L El = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 22, 2010 13:57:56 Concept Mode: Reactions te Base of Structure View Floor 2: 8' 1 050 49' -6" LL - • 1600 L- 600 L 4 a tuLr 619 D 619 D - -: !- ' ; ' ; , : ' . ' ; ; : - 3 ; - , . - 40 0 tUtb - ---,----- :._-- -_. .. -- - - - -- - ._ 40 !VU _ - - - --- -- - _ ' - 44'-0 4.5-b y b - 1193 L153 2404 L: • 2404 L .: : : • ; - • . - -- .1&'-b 4 625 /3105911439 D 1394 D ' ..i / • -0 u ua . . 315 L: So n 00 358 D �� b p us 315E ' - b i 100E 358 13 - f� 9613 Lsb ity io 74(847 5611 L ' 756 L _ . .._ zu --0 10 -- 4(452 D 5546 D ' - 2 L� D - - t y b f 4 625 .1 i 0. -b . . . iz 13 50.. ; - :. b b f t ; - . 203 ' . , • . ' 5 D- - - - - " - - - -- tb" -b • ea 908 L - i o b 105 L307 D u - - - • . t c-0 f 4613 - !i -0 .. . A b.. tu-b r 245 L / �2. a 0 o43_ - . : 313 ... -. 50L c 0p s )•74 a :. v t � 599 i t 87 L ; ' 87 L .: - : :: •- - 0-0 .. • bu) --:-_209 ED 5. D- • 1963 D. : 196313 :_' - ;...:. - : : s 0 • -- ' 15 49 . :: : .-10 !irk CO.. -:..__ :, . �m_ 11 236 3 9.:. 1-0 t 78 MD 106D : ' . • i - ' ; : • ' 3 • • ' ; . : i - ' v -b 8B1B.BBCCCC C CC C (CCC CC CCCCC CCC CCICCCD DDD D DM :NODDED DD-DDD D DD C.D "DD DEE E E E EE'EFEEBEE E E+EEEEEE(EEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 666' 68' 70' 72' 74' 76' U1'2'3'4'5'678'91(1 '1:1:1 2( 22 2:2 31354(4 4 ;4:4 - 5:5:5 , 5:5(5 5(5 6(66:6:6.6;6(6;6i6'.7G77 :77.7(77-6" VOOT\ L ?z100T — 7g-0NT Lcles) . . 4.........-( WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 22, 2010 13:57:37 Concept Mode: Reactions at Base of Structure View Floor 2: 8' 0 4 0, ft g : 1600 L :: : 1600 4l -0 ui 619D 619 D: 4n - 1uu ; - - - - 44 -0 � - 43 - b -- - - - -- - - - y/ .. - : 4•1 -0 • 5 13274 L: • • - • 3304 L . _ _ .. 3U y 7153 D : 7072 D so - '.! .. - -. .. - -- . : . - - - - - .. - _.. . - . - 30 -0 35 b g u y 315E 3 s 4 s _n 358 D, si n 00 . . : LV - b 04 . -- :i Lti -b t53 . _: . 315: :- :' Gr -0 uc-- - 100 L - 358 D Lb:-bb ry 96 D : f' • 13 b (0 .* _ .. - _ -- - .. - - LL -0 io 74(84 611 L /56 L - . .. ...- . Lu mo b . /0 41(452 D 5546 D r -0 D 1 y' -b 14-- -- .625 :. _ - : 10 -b it .. 20 D. L 5D i - • /1- .� . .- - 5D-. - - (o-0 n � ' ' 908 L : - - • . : : ' 307 D : br - 46D .. 11 -0 r n -245 L 50 L � ats =7 3D 74D �:b•: 587 4 .. '3 1� L`� 2587 L - . � 587 L o -b 0u) 59 209 LD D-41963 D. - 1963 D - :.. .: 4 s 0 154 D : -its U 9 D 221 c -0.. D LL:.. 725L_ .. 1 b ---- : � • V V 78D 7 DD: 617D'D u " 68!6.6 BC.CCCC CCCtCCC CC CCCCCC CC CC!CC CD D DD DFDDD CD DD:DD D D DD CD!DD DEE EE EEE�EFEEEIEEE EiEEEEEE(EEEEZ 0' 2' 4' 6' 8' 10'12'14'16'18'20'22'24'26'28'30'32'34'36'38'40'42' 44' 46' 48' 50' 52' 54' 56' 58'60' 62'64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'9111 212 2:2;2 2'21253(33:3;3 :4414(4 :4t4(5t5 5:5:5 DOTU\J\ LINci OUr ,4,_ F-2_ : 1 % l x� Harper Houf Peterson Righellis Inc. _ , C. .went Date: 6/24/2010 1:41 PM I system: English Fues name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \F1.ftd\ Design Results Reinforced Concrete Footings GENERAL INFORMATION: Global status Warnings Design Code ACI 318 -05 Footing type Spread Column type Steel Geometry 4, —• i f' ' i 12 in I 4 4.25 ft ~ I ,ter, .r.. x ' '.. I 25ft 4.25ft L.. Pagel tq -- 3 Length 4.25 [ft] Width 4.25 [ft] Thickness 1.00 [ft] Base depth 1.50 [ft] Base area 18.06 [ft2] Footing volume 18.06 [ft3] Base plate length 5.50 [in] Base plate width 5.50 [in] Column length 5.50 [in] Column width 5.50 [in] Column location relative to footing g.c. Centered Materials Concrete, Pc 3.00 [Kip /in2] Steel, fy 60.00 [Kip /in2] Concrete type Normal Epoxy coated No Concrete elasticity modulus : 3122.02 [Kip /in2] Steel elasticity modulus : 29000.00 [Kip /in2] . Unit weight 0.15 [Kip /ft3] Soil Modulus of subgrade reaction 200.00 [Kip /ft3] Unit weight (wet) 0.11 [Kip /ft3] Footing reinforcement Free cover 3.00 [in] Maximum Rho /Rho balanced ratio 0.75 Bottom reinforcement // to L ()x) : 6-#4 @ 9.00" Bottom reinforcement // to B (zz) : 6-#4 @ 9.00" (Zone 1) Load conditions to be included in design Service loads: SC1 DL S1 DL S2 DL +LL S3 DL +0.75LL Design strength loads: DC1 1.4DL D1 1.4DL D2 1.2DL +1.6LL Loads Condition Axial Mxx Mzz Vx Vz [Kip] [Kip *ft] [Kip"ft] [Kip] [Kip] DL 5.55 0.00 0.00 0.00 0.00 LL 15.61 0.00 0.00 0.00 0.00 RESULTS: Status Warnings - Insufficient development length, Section 21.5.4.1 Soil.Foundation interaction Allowable stress 1.5E03 [Lb /ft2] Min. safety factor for sliding 1.25 Min. safety factor for overturning 1.25 Paget Li Controlling condition S2 Condition qmean qmax Amax Area in compression Overturning FS [Lb /ft2] [Lb/ft2] [in] [ft2] ( %) FSx FSz slip S2 1.38E03 1.38E03 0.0826 18.06 100 1000.00 1000.00 1000.00 Bending Factor 4 0.90 Min rebar ratio 0.00180 Development length Axis Pos. Id Ihd Dist1 Dist2 [in] [in] [in] [in] zz Bot. 20.11 7.04 19.75 19.75 xx Bot. 20.11 7.04 19.75 19.75 Axis Pos. Condition Mu 4 *Mn Asreq Asprov Asreq / Asprov Mu/(4 )*Mn) [Kip * ft] [Kip * ft] [in2] [in2] zz Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 1 1 zz Bot. D2 13.38 45.76 1.10 1.20 0.918 0.292 Imil I xx Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 xx Bot. D2 13.38 43.06 1.10 1.20 0.918 0.311 I` ° Shear . Factor 4) 0.75 Shear area (plane zz) 3.10 [ft2] Shear area (plane )o) 2.92 [ft2] Plane Condition Vu Vc Vu/(4*Vn) [Kip] [Kip] xy D2 8.99 46.09 0.260 M I yz D2 8.68 48.88 0.237 Rai Punching shear Perimeter of critical section (b... : 4.67 [ft] Punching shear area 3.31 [ft2] Column Condition Vu Vc Vu /(4)*Vn) [Kip] [Kip] column 1 D2 29.25 104.29 0.374 I 1 I Notes Page3 frt - c J *Soil under the footing is considered elastic and homogeneous. A linear soil pressure variation is assumed. * The required flexural reinforcement considers at least the minimum reinforcement I design bending moment is calculated at the critical sections located at the support faces * Only rectangular footings with uniform sections and rectangular columns are considered. * The nominal shear strength is calculated in critical sections located at a distance d from the support face * The punching shear strength is calculated in a perimetral section located at a distance d/2 from the support faces * Transverse reinforcement is not considered in footings * Values shown in red are not in compliance with a provision of the code *qprom = Mean compression pressure on soil. *qmax = Maximum compression pressure on soil. *Amax = maximum total settlement (considering an elastic soil modeled by the subgrade reaction modulus). * Mn = Nominal moment strength. * Mu /(4 *Mn) = Strength ratio. * Vn = Nominal shear or punchure force (for footings Vn =Vc). * Vu /(4)*Vn) = Shear or punching shear strength ratio. Page4 Beam Shear bco1:= 5.5•in (4x4 post) d := tf – 2-in := 0.85 b := Width b = 36•in V :_ (I)• 4 • f V = 16.32 -kips 3 Vu •= qu (b 2 colt V = 7.83 kips < V = 16.32 kips GOOD Two -Way Shear b8 := 5.5•in Short side column width bL := 5.5 in Long side column width b := 2•(bg + d) + 2.(bL + d) b = 54•in ac := 1.0 ,= 4 + 8 f V = 48.96-kips C3 343c Vnmax :_ 4.2.66• f Vnmax = 32.56 -kips ,a4/4 qu•[b – (b, d)2] V = 15.88-kips < V = 32.56-kips GOOD Flexure 2 qu [(b – bcoll (11 b M = 4.98•ft•kips 2 J I \ 2 J t 0.65 2 , := b-d S = 0.222 -ft 6 F := 5••:1). f F = 162.5•psi M f := — f = 155.47•psi< F = 162.5-psi GOOD 'Use a 3' -0" x 3' -0" x 10" plain concrete footing I Plain Concrete Isolated Square Footing Design: F2 fc := 25001isi Concrete strength f := 60000;psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity Icono := .150.pcf Concrete density y := .100pcf Soil density gall 1500 -psf Allowable soil bearing pressure COLUMN FOOTING Reaction Tgtaldl := 2659-1b PdI := Totaldl Totalll := 7756-lb Pll := Totalll Pd := Pdl + Pll Pd = 10415-lb Footing Dimensions i := 10,in Footing thickness Width := 36-in Footing width A,:= Width Footing Area clnet := gall — tf''Yconc net = 1375•psf Pd Areqd 9net Areqd = 7.575•ft < A = 94ft GOOD Widthreqd := A reg d Widthregd = 2.75•ft < Width = 3.00ft GOOD Ultimate Loads h Pd1 + tf•A'"'Iconc P := 1.4•Pdl + 1.7•PI1 P = 18.48-kips P qu:= A q = 2.05•ksf Plain Concrete Isolated Square Footing Design: F3 f := 2500-psi Concrete strength fy := 60000-psi Reinforcing steel strength E 29000 ;ksi Steel modulus of elasticity 'Yconc 15.0•pcf Concrete density "( := 100•pcf Soil density gall: 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl := 2363-lb Pd1:= Totaldi Totallj := 4575-lb Pll := Total11 Pd := Pdl + Pll P = 6938-lb Footing Dimensions t := 10-in Footing thickness Width := 30-in Footing width A,:= Width . Footing Area clnet gall — tf'"Yconc net = 1375•psf Ptl Areqd gnet A red= q 5.04641 < A = 6.25 ft GOOD Widthreqd A req d Widthregd = 2.25-ft < Width = 2.50ft GOOD Ultimate Loads '= Pdl + tf'A''Yconc P := 1.4 Pd1 + 1.7• P11 P = 12.18• kips P qu:= A q 1.95•ksf Beam Shear b := 5.5. in (4x4 post) d := tg — 2-in := 0.85 b := Width b = 30•in V„ :_ 4. f psi•b•d V„ = 13.6-kips 3 Vu qu r b 2 cell b V = 4.97-kips < V = 13.6 -kips GOOD Two -Way Shear bs c= 5.5-in Short side column width bL 5.5-in Long side column width b, := 2.(bs + d) + 2-(bL + d) b = 54•in 13, := 1.0 Vim:= 4 + 8 • psi•b.d V = 40.8•kips ( fc• 3 3 •I 3 c/ V := 2.66 f psi b d V = 27.13•kips qu•[b — (bc01 + d) V = 9.71 -kips < V = 27.13 -kips GOOD Flexure 2 Mu q [(b — bco ll 11 b Mu = 2.54• 2 / 2 J A:= 0.65 b 2 SSN:= 6 S = 0.185•ft F := 5•cb f psi F = 162.5.psi M a f := s f = 95.19.psi < F = 162.5.psi GOOD lJse a 2' -6" x 2' -6" x 10" plain concrete footing 1 �9 1 \ l/ Plain Concrete Isolated Square Footing Design: F4 f := 2500-psi Concrete strength fy := 60000• -psi Reinforcing steel strength E .'= 29000•ksi Steel modulus of elasticity Iconc 1501pcf Concrete density "( := 100•pcf Soil density gall = 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl:= 5001-lb Pd1 Totaidi Totalll := 76394b Pll := Tota111 Pd := Pdl + Pii Pti = 12640.Ib Footing Dimensions t 12-in Footing thickness • Width := 42-in Footing width 4:= Width Footing Area clnet gall — tf'1'conc net = 1350•psf PU Areqd gnet A red = A ft < A = 12.25 ft GOOD Widthreqd Aregd Widthreqd = 3.06•ft < Width = 3.50 ft GOOD Ultimate Loads := Pd1 + tf'A'"Yconc P := 1.4•Pd1 + 1.7.P11 P = 22.56-kips P qu — A q = 1.84•ksf "R Beam Shear bco1:= 5-5-in (4x4 post) d := tf — 2-in 4:0:= 0.85 b := Width b = 42•in V„ := 4). f psi b d V„ = 23.8 -kips 3 Vu qu r (b 2 col) b V = 9.8•kips < V = 23.8-kips GOOD Two -Way Shear b 5.5•in Short side column width bL 5.5 :-in Long side column width b := 2•(bs + d) + 2•(bL + d) b = 62-in fEl := 1.0 M V,,.•= -r + 8 l f psi -b•d V = 71.4-kips l 3 3 4 3 c := x•2.66• f V„ = 47.48-kips AYA� •= qu - ( bc01 + (1) V = 19.49-kips < V = 47.48-kips GOOD Flexure 2 Mu := qu' [(b - 2 J bcoll 1 M u = 7.45•ft•kips 2 J O 0.65 2 -- d S = 0.405 -ft 6 F := 5 f psi F = 162.5• psi M ft := s f = 127.79•psi< Ft = 162.5-psi GOOD .Jse a 3' -6" x 3' -6" x 12" plain concrete footing /4 —7\1 Plain Concrete Isolated Round Footing Design: f5 f = 3000•psi Concrete strength f := 60000•psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity "Yconc 150•pcf Concrete density ''Ysoil := 120•pcf Soil density gall 1500•psf Allowable soil bearing pressure TYPICAL FOOTING Reaction Total 619-lb Pd1:= Totaldl TotaI11 :Totalfi := 1600•Ib P11 := Totalll Ptl := Pdl + Pll = 2219- lb Footing Dimensions t 12-in Footing thickness Dia := 18.in Footing diameter Tr-Dia Footing Area 4 gnet := gall — tf•lconc q = 1350.psf Ptl Areqd gnet A red= g 1.644 ft 2 < A = 1.77-R GOOD V A .4 Diaregd Diareqd = 1.45-ft < Dia = 1.50 ft GOOD Ultimate Loads , :44,, Pd1 + tf•A•"Yconc P := 1.4•Pdl + 1.7•P11 P = 3.96-kips P qu A qu = 2.24•ksf Beam Shear b 3.5•in (4x4 post) d := t• — 2•in := 0.85 b := cos(45•deg)•Dia b = 12.73•in V, := 4 f psi b•d V = 7.901•kips 3 Vu := qu rb 2 colt b V = 0.91 -kips < V = 7.901 -kips GOOD Two -Way Shear bs := 3.5•in Short side column width bL := 3.5• in Long side column width b := 2-(bs + d) + 2.(bL + d) b = 54 -in (3 := 1.0 M VmA.= (- + 8 • f psi•b•d V, = 23.703•kips 3 3•(3 V := -2.66• f psi•b•d V = 15.76 -kips V qu rb2 — �b + d) V = —0.31 -kips < V„ = 15.76 -kips GOOD Flexure 2 Mu qu [(b — 2 J I\ bcoll (11 2 J -b M = 0.18 -ft -kips A,:= 0.65 b d 2 1 -- S = 0.123 -ft 3 6 F 5 4- f F 178.01•psi M := s u f = 9.9-psi < F = 178.01 -psi GOOD Use a 18" Dia. x 12" plain concrete footing Plain Concrete Isolated Square Footing Design: F6 fc := 2500-psi Concrete strength fy := 60000-psi Reinforcing steel strength Es := 29000•ksi Steel modulus of elasticity /oe = 150.pcf Concrete density /soil := 100•pcf Soil density 9 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaidi := 7072•lb Pdl := Totaldl Tota111.:= 13304-lb P11 := Totalll Pti := Pdl + Pll Pg = 20376•lb Footing Dimensions t := 15•in Footing thickness Width := 48•in Footing width A,:= Width Footing Area clnet clall — tf• /cone lnet = 1313•psf Ptl Areqd gnet Areqd = 15.525•ft < A = 1641 GOOD Widthreqd Areqd Widthreqd = 3.94•ft < Width = 4.00 fl GOOD Ultimate Loads Pdl + tf"A• /cone P := 1.4 Pdl + 1.7•P11 P = 36.72•kips Pu qu A q = 2.29•ksf \S Beam Shear b col :_ 5 (4x4 post) d := tf — 2-in •:1) := 0.85 b := Width b = 48 -in V„ := 0 4 • f psi•b•d V„ = 35.36 -kips 3 Vu — qu (b 2 col) b V = 16.26-kips < V = 35.36•kips GOOD Two -Way Shear bs := 5.5-in Short side column width bL:= 5.5-in Long side column width b := 2-(bs + d) + 2•(bL + d) b = 74-in 3c:= 1.0 V 4 + 8 . f si•b -d V = 106.08-kips 3 343c :_ 2.66 f psi b d V = 70.54-kips Vim= q,; [b — (b + d) V = 31.26-kips < V = 70.54-kips GOOD Flexure 2 Mu qu C b - broil ) b M = 14.3941-kips 2 J 2) A:= 0.65 2 := b d S = 0.78241 6 F := 5•(1)• f psi F = 162.5•psi M u f := s f = 127.75•psi< F = 162.5•psi GOOD .Jse a 4' - x 4' - x 15" plain concrete footing 1(0 Plain Concrete Isolated Square Footing Design: F7 f := 2500-psi Concrete strength f 60000 psi Reinforcing steel strength Es :_. 29000•ksi Steel modulus of elasticity '(cone 150•pcf Concrete density '(soil 100•pcf Soil density g := 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl:= 1200 -lb Pd1:= Totaldi • Total11 := 3200 -lb Pp := Totalll Pt1:= Pd1 + P11 Pt' = 4400 -lb Footing Dimensions tf := 10 -in Footing thickness Width := 24-in Footing width 4,:= Width Footing Area net gall — tf'"(conc net = 1375-psf Pt1 Areqd gnet Areqd = g 3.2 ft < A = 4 -ft GOOD Widthreqd Areqd Widthreqd = 1.7941 < Width = 2.00 ft GOOD Ultimate Loads ,P := Pdi + tf'A''(conc P := 1.4 -Pd1 + 1.7 -P11 P = 7.82•kips Pu qu := — q = 1.96•ksf A Beam Shear bud 5-5-in (4x4 post) d:= tf -2 -in := 0.85 b := Width b = 24 -in V := 4 •f si•b -d V = 10.88 -kips 3 Vu •= qu C / b 2 colt b V = 3.01 -kips .< V = 10.88 -kips GOOD Two -Way Shear bs := 5.5 -in Short side column width bL := 5.5 -in Long side column width b 2•(bs + d) + 2-( + (1) b =54 -in O =1.0 V + 8 •f V = 32.64 -kips 3 '1 3 c . Vnmax :_ 0.2.66• f psi•b•d Vnmax = 21.71 -kips ,V, 44,: -= qu — (bc01 + 0 V = 5.35 -kips < Vnmax = 21.71 -kips GOOD Flexure b - 2 bcol \ r } 11 Mu q 2 I •I 2b M = 1.16- ft•kips A:= 0.65 bd 2 := S= 0.148.1 6 F := 5•41)• f•psi F = 162.5 -psi M n f := f = 54.45•psi < F = 162.5 -psi GOOD .Jse a 2' -0" x 2' -0" x 10" plain concrete footing ?2 6 •,..• 5x] oF.' is'8,s °W . : �o ° ; 'S' c..7E ^ v.. 0 o W z - 1z9 _ 12 _ fi I ° 4 1/V / c� _ 'a `ut - "s� Ie ' a )c. - ( scY ry) * I s o° t'e W 9 -F b= x b (z c +.5,7.c.: t 1 4 =a 4J�� - b ! 'Is'gs-tle _ b/W = 2 g*x ire.1 , :e4cSt:t°1,c.19 -4 <lOCZZX tXs'IXoS1 = .1 '► m • ❑ • a Q t . e 4 <sz' .al b)C Q' t -+ Q }�zz) (, S' eS Z O) - W o Ok_'\1A k: \1 k 1YScc, low 0 VV 3 3 AIii\Ci}. .) a NC) 1") aQ\ --) z D -A i ter- t 6 Z 13 71 = • m A 1 1 1' 1 ISZ 01 ----- (' °1 HJT rt m o n xi r El m 3 i 3 p zinc. -e I -n is • e kt, m 0 J' "\J' , l 11'S. ❑ ❑ +jk ok:>> -20,c • P - +U i _ d - f (un :3a IS`eI"III_lg G IJ v` 4OOj u t o o / :iO3,0.a dO Q b N 3D :'ON or Olae 9 :31V° J-NiVci A9 n ow Bentley- Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:43 AM Units system: English File name: O: \HHPR Projects\CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\Front Load 2.etz\ • M33 =51.9 [Kip`ft] M33= -12.19 [Kip*ft] • • Y Mc'c`f1ex1tS LC \ �' Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:35 AM Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\Front Load.etz\ V I�t of R -c L- • • 'M33 =25.66 [Kiplt] • M33=-30.27 [Kip'ft] l Moment -S LL2/) -c- a I BY i\ W ...., DATE: -- a0 k ' j JOB NO CEM_oct 0 OF PROJECT: 5 ct - OCA f G Si 12., RE: L - .R L(A� aleebu_- 2101 k. Tv 0 v 3 rcE 30.4 tcck w z� 1{7: Z O J a + cr u 0 w 4.11_1_ l 461 k i-- 4 - — 4 w 2 z 0 U Check- 0 v erkurr�A ng Z D Ayr = 30 I t 3o.4-1 4 (a, -bOCab) w...1$ kF 0 fl, e CO,1soCa)(i )C i �)C�aa t- - 3,1530) )- '- ,153(a 0 LL Z to /Ma : 1,°►� X1,5 CAL tr`,S. w Z _ ao .qo6 9 , a0,°l0 co 4— L (ao,g0(;C. t.1 °IS 1rsF (3 41rn;n = ao,coda 6(9,0,cto( Cs,SS3 c -,a 5 D i N < o o� mo,x Q 4 (ao ,�ibG. ) cu a 3L(13-2e,) 3('ac)(aa- acs.sc) .a 3 o ` ° 1- Mrox t , ab 1 � F < 1500 p%1; , CO r ` x 0 ,'...2.2. 4 Bentley- Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:38 AM Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\Rear Load.etz\ M33 =43.24 [Kip'ftj • • • M33= -45.06 [Kip'ft] • Y (�X MGrc\etks LC \ Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:43 AM • Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\Rear Load 2.etz\ • M33 =41.88 [Kiplft] • M33= -46.37 [Kip'ftJ 1 NAGTI\ek;k - LC2 . . _ . _ • .sZ3 • . : r.,,,, v -„ - _._ ;:•'..,,, _ FPM - - - - _ A :',-.= '- -! ( C b N _ .' te _ ti �• a (4 " "�� mow, V ., _ < v ClittS1 r1 b €7 o c (anb b r, '0 r.= .e - / 1 h 1 1 " O ' ','O n v S $4 },1- (-/ - (,.000'ol)(Ut ia)ob =Y vy0 (fizz o om'T/ (00aV91 = -L T-eb- 0 sir ')'0 „I a ; - 'e t`" 'r\ • 431 l m ❑ 0 c , -.:9( 0' 0 0)0b y() \ANN (/) ' C' 11 10 0- fl . 0 = ❑ (fiz)(Poos) / 2:10% "0 = b Inc t "' - b2 0 ')'o . ,,*4 0 ;k). : #<l) P) - L .. - 3 3 0 c- III tvun Z O 3 41 fi ,VD < +rub = 100wkI' m 0 o Z 71 I 91d 41 x 1 x „0 -1, ❑ a `Clu OO Vocn _yo \ :3a :13 road 10 C) _ I s y :'ON eor Q IOC , :31tl0 -- )\I\J :A. la ci73. • --A0 .; • ; (1+'o 1 tnt — C X., ( 00cYcp")( . 1 ,,q.‘..:0 =sv • 70 „ a -174 \ 11 e4veakosIQA -- a-mk\fa\ •; — , v - 10 "." hh .ca< j- sq h zhai_t: 0_ - . \? = ``' w 0 .,- p 0 . = N A Ca14 0 ::: cz..40X(_wo)/ coo0 01)(y62: 1) =ID -7 ": c . S I 'Q ))O ....$ Ai- kt\A 1 SG ( ( - tvi - 40 -- - 59(_000b n)cat0707) 0 0 AS -ft- \ (-II -- chn - '9- - - - - --, Q7. - iikomMrago)/ c.c00 \ ) f . - - - ■0 1 6 6/ • '-‘ C3t:gn = V • "D'o i p - a _s 4.4. - gOftA.1= (l --- SNX:CM 1'0) olo"o = •-, \NI 0 -0 ._, . 0 0 icip 0 (ASsiXel I= Ceti)(900E153'07/ z -,1 si s) 73 l. 0 „Zi o-1 * 13S°2,x -15 =5 1 "YO l') S 4 - Q) C p ( A7S q L °, 1 C V V "`"- 80 ( 1p b Cr Ot - <- --) -k klc\ 3, , -1i scrhs- -%"-c a 0 • m , 0 4 , il l - q _ir_ . _ _ _ . .... x■f 1 IT 111, •,' k 3 4- ‘c:Pc\Ni 0 - v\I 0 g g 0 m -A m 0 4( f F ---''''.----..."'"--- 1 6 F 7 .1 i Li El - kyk..karia Tito\ k :1031 JO ON eor :31va :A9 - fig CZZ't)Z - =- _ 1 s-s1 (7...211 -4 �+z s+s'e �e . R 4 -�,-L' 1 " QS' — � — - 1a c_-+ °12� C) fi = 9 J w = x - �,osE .`∎(1. „St x -,3e x 6u'1 -I-.� °o Sc -1 S11't .;'1C1 — Id -} - t,'2 (, Q' /Z) s'\ -- 6 W ° W5 . 1 ----ka + 9 Q' `) fi ---=-2/W -- 1C12, A - E,' L 0 1 4J`)" _ 6 )\-koof --y 710 a c i s G w -too j f a i - s 4; 2 ' H —I Q b 7661 c ) 1 0'St (iQi )_ D= W > � 5'1 x t s o -la 1 'A Zkr 4 r)'�) - k(cXZ's= -2 - - s) • V co h.ra --. a & - Id h 6' ) 1 0S1) — 5 VI . 17 11 G acn MCI 11 4 - -_ _ __ 'z.0` 1/41. _ _low 'g 0 6'UI uu: ) anQ -1..„;s C4 ci S aco ;v,frrxal 4) ),o3 c(ictue)e-Q,Xtw \ ce - Aa A - A sr 20 . 0 t T) ten_ 45 tc e =- ��\ob� _ �°���� vs-1 s = bi x = o sO 11� 1b'}'b AP m ❑ ')\ 0 S1 < 1°1'1 1b t7 -. 6W z1 • C)$ = C�)1 `) ' 4 C /)` .' s C�)Q 9 C 0s1 ' O )L a ) ' �W 3 K n b.1 I = ()°rrt 4 ct)t'S 4 (1 oW . � Fi al so t OVOVORWAO -1).3‘10 z A p m z o m p t r o r 1 -11 1 1 Ti 1 ❑ 3 0 K 1 1 1 . ^ k q _p t'S r, ��- o 1 G . m ❑ ❑ MS -VL 1— d k" fl :3a 1521 Kicc,x :173 Meld --) d 0 6O V .oNeor 0 t 1 v. Vv ne BY: ' \ DATE: t O JOB NO.: c o o OF P ROJECT: RE: ate) ❑ ❑ 3(((L -2(e) J • Z 0 IA r c, F� xaSC L x \S" DLL a;.271 :. ' ( � ,s L �- 3( a �4� 1) - • ❑ x "` Icy. _ - - \ ,z e _ l • \io .o o Y no,x : r a ?--5- F "1--1 302( .35 2C �,��� ) Ti L Is" �L= 3?�� S k(__; p 2 L .C135 1(3s ). 1.gt\- 0 Sftur fp InadtVtq 3)(L- aC t , <1. J F Cro lL Z ❑ Z 0 O f- O • ti • a ) ti • a O . !a. a n ow Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:42 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes {309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \Interior 2.etz\ M33 =23.55 [wp`n] • • • M33= -17.88 Iwp`KI i\kOmedni LC • y arn. Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:42 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \Interior.etz\ M33= 32.26[KiP*ft] M33= -9.27 [Kip'ft] A 1 a Mefs LCZ ig,F30 ACI 318 -05 Appendix D 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc = 3000 psi fc = 3000 psi h'er = 3.50 inches her =;, 12:00 inches (into the Fc Stem = , '8.00." inches Note: hef above is the the embedment into or cmax = 5.25 inches the foundation and does not consider stem wi Fnd Width = 36.00 inches c = 2.25 inches cmin = 18.00 inches Wc,N= 1.00 cast -in -place anchor Wc,N= 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor = 0.75 strength reduction factor 4, = 0.75 strength reduction fact Calculations Calculations ANc = 68 in` AN = 1296 in' ANo = 110.25 in` ANa = 1296 in` Nb = 8,607 pounds Nb = 55,121 pounds W ed,N = 0.8286 Wed,N = 1.00 Ncb = 4,399 pounds Nth = 55,121 pounds 4,N = 3,299 pounds 4,Ncb = 41,341 pounds Combined Capacity of Stem Wall and Foundation (1)14 = 44,640 0.754,N = 33,480 DATE: 6- R.oto Jo.— CE:Ai -OctO OF PROJECT: RE: Ir\• af\tarti,-)o.11,00 1 ,' 5 0 o - 6a.a.L.vc - . N1-,b5`4,--Ft 2 m 0 8' )‹. 3 74 IS" 0 • . Cr CL - a :-.....14.1-y)10,50 S z Trto CI) 11 4. 1 12" _A s 0, 55 ■N' a 0 = O f svc i Uo l 000) /0, e)Csocx5X-3 (3) • 0.LI-Oct II.) - C act0(0 2 2 - = 31. LZC 4 Lay k_P6- ;.c*. 0 o To) CO 14- e. 1.'" or ( it 41 bar 3 - .3c1-6((.0,000) foi8(3:-....,6)(1..) Lt. Z E 6 • 0 I > m rylvn :, oy, = i . ti) .c4; 5 o .5, • ;'," • 44:3\ Concrete Side Face Blow Out Givens Abrg = 2.15 in` fc = 3000 psi cm*, = 18.00 inches = 0.75 strength reduction factor Calculations N = 231,191 pounds 4,N = 173,393 pounds Concrete Pullout Strength Givens Abrg = 2.15 in` fc = 3000 psi = 0.75 strength reduction factor Calculations N 51,552 pounds 4)N = 38,664 pounds Steel Yield Strength Givens f, = 58,000 psi A = 0.606 in = 0.80 strength reduction factor Calculations N = 35,148 pounds 4N = 28,118 pounds < 33,480 Ductility Met Holdown Check Holdown: HDU14 Holdown Capacity= 14,930 pounds 1.6* Capacity= 23,888 pounds 23,888 < 28,118 Holdown Checks rr t fir as n •, -Lt = C� rnooi {bv9`e o u oa21 : L )C °4 X. 0) o 11 Ups i'c 2 : Ptile)(Z1t1►)Si'la°S1)"10k7 (215.1)( Z) <Q ) 1t/1„n -_r'd CV) _ cZ)`2')s't o �tq lomCN- )0d g "sr '; Qo'1 � Moo\ bc4..\ 11 ST i ,001.5' Si W Ni s ' av,Pos = Cr 00-S1 5 rn -4 °c.hge , M00 1 4 11 CD i ' n O -J1d OS-11 - <SZ) gik) crz, -t v t O : J. j jO ds' +.I �gl) MOO) = (en os))(1'1 .soa\ J3cl' thecae � ci Asi9 „ n i o ° z : o 3 Y, r°ooj 5 01 o1 +IQhI o rn • eldoosi, - -jscl aoS\ = dG5 XNow, • f-14 cracft q•-11 = ' 01 1 91. -)ooh 3 01,1 _ cts6 p- b)( '?l Z & » (3) a 11 Z m o cn 001 - M, )0x! 0sUcl`le? "' o ux S �.- �' -� ( 21, ` P8 °S9 (41°i7 Q(41°i7 F Joo d g0 = 3s s zp3 g ❑ m c r 1 p O 3 Worn- jid 00€ : `3 jSe 1 c m 0 Z G14t40 :. li n :3a :103r02ld a n "ON 9Or :siva :A9