Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Specifications
Vk 61 - 1.40 Z /s3 , /hc( Structural Calculations for Full Lateral & Gravity Analysis oRECMFD Plan C 1 186 SEP 232010 CITY OF TIGARD Summer Creek Townhomes BUILDING DIVISION Tigard, OR • Prepared for Pulte Group July 13, 2010 JOB NUMBER: CEN -090 ** *Limitations * ** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and /or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 98 sheets total including this cover sheet. This Packet of Calculations is Null and Void if Signature above is not Original Harper HP'.. .Houf Peterson Righellis Inc. EtIGI4EERO • PIANNErtS “PiDSCARE A ,ECTO•IIJR,CVORS 205 SE Spokane St. Suite 200 o Portland, OR 97202 0 [P] 503.221.1131 0 [F] 503.221.1171 1104 Main St. Suite 100 o Vancouver, WA 98660 0 [P] 360.450.1 141 0 [F] 360.750.1141 1 133 NW Wall St. Suite 201 o Bend, OR 97701 0 [P] 541.318.1 161 0 [F] 541.318.1141 • Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit C • Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, Ir : 1 2006 IBC / 2007 OSSC Occupancy Category: II Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed, ASCE 7 -05 Ch. 20 Importance, IE: 1 ASCE 7 -05 Table 11.5 -1 Ss: 0.942 USGS Spectral Response Map Sl : 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength, f' c: 3000 psi Foundations & Slab on Grade Concrete Unit Weight, yc: 145 pcf Steel Reinforcement Yield Strength, f 60,000 psi Wood Studs (Wall Studs): Hem -Fir #2 2x & 4x Wood Beams & Posts: DF -L #2 6x'& Greater Wood Beams & Posts: DF -L #1 Glulam Beams: 24F -V4 PSL Beams: Fb =2,900 psi, FV= 328psi, E=2.0 Million TS /LSL Beams: Fb =2325 psi, FV= 460psi, E =1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : 1500 psf Assumed 2. All manufactured trusses, joists, and flush beams u.n.o. shall be designed by others. Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 WoodWorks — Sizer version 2002 Bently RAM Advanse Harper Project: Summer Creek Townhomes UNIT C d H' Houf Peterson Client: Pulte Group Job # CEN -090 Righellis lnc. ENGINEERS• PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE ARCHITECTS• SURVEYORS DESIGN CRITERIA 2007 Oregon Structural Specialty Code & ASCE 7 -05 Roof Dead Load RFR:= 2.5 -psf Framing RPL := 1.5.psf Plywood RRF := 5.psf Roofing RME := 1.5•psf Mech & Elec RMS := 1 •psf Misc RCG := 2.5•psf Ceiling RIN := 1 •psf Insulation RDL = 15psf Floor Dead Load FFR := 3 •psf Framing FPL := 4•psf Sheathing FME := 1.5 -psf Mech & Elec FMS := 1.5•psf Misc FIN := .5•psf Finish & Insulation FCLG := 2.5•psf Ceiling FDL = 13•psf Wall Dead Load WOOD EX. Wallm 1 INT Waller : l0 psf Roof Live Load ItLL : 25.psf Floor Live Load ,FLL := 40.psf Harper Project: Summer Creek Townhomes UNIT C P Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. - ENGINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE ARCNITECTS•SURVEYORS Transverse Seismic Forces Site Class = D Design Catagory = D Building Occupancy Category: 11 Weight of Structure In Transverse Direction Roof Weight Roof Area := 748.ft 2 .1.12 RF' rI• := RDL•Roof Area RFC = 12566-lb Floor Weight Floor_Area2 := 605 • ft 2 FLRw := FDL•Floor Area2nd FLR „d = 7865-lb Floor Area3rd 600•ft FLRWT3rd FDL•Floor Area3rd FLRWT3rd = 7800.1b Wall Weight EX Wall Area := (2203)•ft 1NT Wall Area := (906)•ft WALL q := EX Wall + 1NT Wall 1NT Wall_Area WALLW T• = 35496-lb WTTOTAL = 637271b Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h„ := 32 Mean Height Of Roof l := 1 Component Importance Factor (11.5, ASCE 7 -05) A,:= 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C := .02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x := .75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period T := C „) T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F := 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F, := 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) ; Harper Project: Summer Creek Townhomes UNIT C 8' _P Houf Peterson Client: Pulte Group Job # CEN -090 4 x . Righellis Inc. • ENGINEERS'♦ PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE ARCHITECTS• SURVEYORS S MS Fa•Ss SMS = 1.058 (EQU 11.4 -1, ASCE 7 -05) Sds := 2 3MS Sds = 0.705 (EQU 11.4 -3, ASCE 7 -05) SM1 := F S1 SM1 = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2•,SM1 Sdl := 3 Shc = 0.389 (EQU 11.4 -4, ASCE 7 -05) Cst := Sds -le Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) R ...need not exceed... Cs := Shc le Cs = 0.223 (EQU 12.8 -3, ASCE 7 -05) T ...and shall not be less then... C1 := if(0.044•Sd < 0.01 , 0.01 , 0.044- Sd l ".S1 le (EQU (EQU 12.8 -5 &6, ASCE 7 -05) C2 := if l Si < 0.6,0.01, R J Cs := if(Ci > C2,C1 ,C2) Cs = 0.031 Cs := if (Cst < Cs < Cs ,Cst;Cs &x )) Cs = 0.108 �V,:= Cs- :WTTOTAL V = 69141b (EQU 12.8 -1, ASCE 7 -05) E := V•0.7 E = 48401b (Allowable Stress) Harper Project: Summer Creek Townhomes UNIT C HP Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE ARCHITECTS•SURVEYORS Transverse. Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 100 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I := 1.00 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X := 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) a2 := 2•.1.16•ft Zone A & B Horizontal Length Smaller of... a2 = 3.2 ft (Fig 6 -2 note 10, ASCE 7 -05) or a2 = 25.6 ft but not less than... a2 := 3-2-ft a2 =6ft Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA 19.9•psf PnetzoneB 3.2•psf PnetzoneC 14.4•psf PnetzoneD 3.3•psf Vertical PnetzoneE 8.81psf PnetzoneF 12•psf PnetzoneG 6.4•psf PnetzoneH —9.7•psf Basic Wind Force PA := PnetzoneA'IN X PA = 19.9•psf Wall HWC PB := PnetzoneB'IN a PH = 3.2. Roof HWC PC := PnetzoneC'IN X PC = 14.4•psf Wall Typical PD := PnetzoneD'IH X PD = 3.3•psf Roof Typical PE := Pnet2oneE'IN,.X PE = — 8.8•psf PF := PnetzoneF'Iw.X PF = — 12• PG := PnetzoneG'Iw•X Pc, = — 6.4•psf PH := PnetzoneH'Iw.X PH = — 9.7 -psf Harper Project: Summer Creek Townhomes UNIT C HP Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE ARCHITECTS•SURVEYORS Determine Wind Sail In Transverse Direction WSATZoneA (55 + 59 + 29 ) . ft 2 WSAII-ZoneB (6 + 0 + 23)•ft WSAII-ZoneC (429 + 355 + 339)41 WSAILZoneD (0 + 0 + 4)•ft 2 WA WSAII WA = 28461b WB := WSAII- ZoneB•PB WB = 93 Ib WC WSAILZoneC•PC WC = 161711b WD := WSAILZoneD'PD WD = 131b Wind_Force := WA + WB + WC + WD Wind_Force, := 10•psf•(WSAILZ + WSAILZoneB + WSJ ZoneC + WSAILZoneD) Wind_Force = 19123 Ib Wind_Force = 12990 Ib W SAILZoneE 43412 WSAII-ZoneF 43•ft WSJ -ZoneG := 334412 WSAILZoneH 32741 WE := WSAILZoneE'PE WE = –378 lb WF WSAII ZoneF'PF WF = — 5161b W0 := WSAILZoneG•PG WG = – 21381b WH := WSAILZoneH'PH WH = – 31721b Upliftnet WF + WH + (WE + WG) + RDL•[WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZone4 • .6.1.12 Upliftnet = 13261b (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION C �� Harper Project: Summer Creek Townhomes UNIT C HP Houf Peterson Client: Pulte Group Job # CEN -090 5 ` ' Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE A RCNITECTS•SURVEYORS Longitudinal Seismic Forces Site Class = D Design Catagory = D Building Occupancy Category: II Weight of Structure In Longitudinal Direction Roof Weight Roof Area = 838 ft RDL•Roof Area RF' r1- = 12566-lb Floor Weight Floor_Area2 = 605 ft Sa.NWAKIA:= FDL•Floor Area2nd FLRAy1a = 7865-lb Floor_Area3 = 600 ft E FDL•Floor Area3rd FLRWF3rd = 7800.1b Wall Weight EX._W_411_ (2203)- ft INT Wall Area = 906 ft yatota,:= EX_Wa11 + INT Wa11 INT_Wall_Area WALLS = 35496-lb WTTOTAL = 63727 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h = 32 Mean Height Of Roof I = 1 Component Importance Factor (11.5, ASCE 7 -05) 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C = 0.02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x = 0.75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period C ( h n� x T a = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) t S1 = 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S = 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F = 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F� = 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) C -LSO Harper Project: Summer Creek Townhomes UNIT C HF Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE A RCNITECTS•SURVEVORS 5:= F SMS = 1.058 (EQU 11.4 -1, ASCE 7 -05) 2 • SMS lksv:— 3 Sd = 0.705 (EQU 11.4 -3, ASCE 7 -05) AKI A := F Si SM1 = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2. SM1 AskIA:= Shc = 0.389 (EQU 11.4 -4, ASCE 7 -05) Sds Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) := ...need not exceed... Cs _ Shc Cs 0.223 (EQU 12.8 -3, ASCE 7 -05) ww n — Ta R R max = ...and shall not be less then... := if(0.044• Sd I < 0.01, 0.01,0.044• Sd •Ie) 0.5 Sl l l (EQU 12.8 -5 &6, ASCE 7 -05) ,:= if(S1 < 0.6,0.01, J R u i*:= if(Ci > C2,Cl,C2) Csmm = 0.031 N Cs .= if (Cst < Cs < Csmax,Cst,Csmax)) Cs = 0.108 M V : = Cs.WTTOTAL V = 691416 (EQU 12.8 -1, ASCE 7 -05) E ms := V•0.7 E = 4840 Ib (Allowable Stress) Harper Project: Summer Creek Townhomes UNIT C 11 P Houf Peterson Client: Pulte Group Job # CEN -090 • Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE ARCHITECTS•SURVEYORS Longitudinal Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed:-110 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I = 1.0 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X = 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... a 2- .1 =16-ft Zone A & B Horizontal Length a2 _ 3 2 ft (Fig 6 -2 note 10, ASCE 7 -05) or ,9k= .4•hn2•ft a2 =25.6ft but not less than... S 3.2.1 a = Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA = 19.9•psf PnetzoneB = 3.2•psf PnetzoneC = 14.4•psf PnetzoneD = 3.3•psf Vertical PnetzoneE = — 8.8•psf PnetzoneF = — 12•psf PnetzoneG = —6.4•psf PnetzoneH = —9.7•psf Basic Wind Force • PnetzoneA'IWX PA = 19.9•psf Wall HWC := PnetZOneB'Iw'X PB = 3.2•psf Roof HWC • PnetzoneC'Iw'X PC = 14.4•psf Wall Typical PnetzoneD'Iw'X PD = 3.3•psf Roof Typical ' := PnetzoneE'Iw'X PE = — 8.8•psf := PnetzoneF'Iw'X PF = —12.psf PnetzoneG'Iw'X _ Pc, = — 6.4•psf ,:= PnetzoneH' I X PH = — 9.7• psf Harper Project: Summer Creek Townhomes UNIT C NP ' Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # t ANCSCAPE ARCHITECTS• SURVE(ORS Determine Wind Sail In Longitudinal Direction nlw iak9i := (58 + 59 + 21).1 A ly m w:_ (0 + 0 + 51).ft A AI :_ (98 + 99 + 34)41 5 N := (0 + 0 + 114)•ft WSAII- ZoneA'PA WA = 2746 Ib = WSAILZoneB'PB WB = 1631b WSAILZoneCPC WC = 33261b = WSAILZonelYPD WD = 3761b Wi := WA + WB + WC + WD Wi 11.x= 10•psf•(WSAILZ + WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind Force = 66121b Wind_Force = 5340 Ib MNA,Am74,IL = 151412 �pav:= 138•ft2 ZSAII.9 242•ft N�:= 216 -ft2 A Y, WSAILZoneE'PE WE = — 13291b Wes:= WSAILZoneF.PF WF = — 16561b Wes= WSAILZoneG'PG WG = — 15491b ag,:= WSAILZoneH'PH WH = — 2095 lb U li := WF + W11 + (WE + WG) + RDL•[WSAILZoneF ± WSAILZoneH + (WSAILZoneE + WSAILZoneG)]'.6.1.12 Uplift net = 901 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION Harper Houf Peterson Righellis Pg #: Transverse Wind Line Shear Distribution ASCE 7-05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= 11 (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf A. = 1.00 • • Iw= 1.00 Wind Sail • Wind Net Design Wind Pressure (psf) (ft2) Pressure (Ibs) Zone A = 19.9 143 2846 Wall High Wind Zone Horizontal Zone B = 3.2 29 93 Roof High Wind Zone Wind Forces Zone C = 14.4 1123 161 Wall Typ Zone • Zone D = 3.3 4 13 Roof Typ Zone Zone E = -8.8 43 -378 Roof Windward High Wind Zone Vertical Zone F = 12.0 43 -516 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 334 -2138 Roof Windward Typ Wind Zone Zone H = -9.7 327 -3172 Roof Leeward Typ Wind Zone Total Wind Force =l 19123 Ibs I Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -6204 Ibs Resisting Dead Load= 7517 Ibs E =l 1313 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm (ft Zone A Zone B Zone C Zone D Main Floor 55 6 429 • 0 Upper Floor 59 0 355 0 • Main Floor Diaphragm Shear = 7291 lbs Upper Floor Diaphragm Shear = 6286 Ibs Roof Diaphragm Shear = 5546 lbs • Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm (lbs) Diaphragm Ibs Diaphragm Width (ft Width ( ) (ft) (lbs) Width (ft ) (Ibs) A 15.83 2321 6.58 1150 19.00 2773 • B 19.00 2785 18.00 3143 0.00 0 C 14.92 2186 11.42 1994 19.00 2773 E= 49.75 7291 36' 6286 38.00 5546 • Harper Houf Peterson Righellis Pg #: Transverse Seismic Line Shear Distribution . Seismic Design Category = D Occupancy Category = II Site Class = D S1= 0.34 Ss= 0.94 • Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7-05 k = 1.00 • 12.8.3, ASCE 7 -05 S 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 S 0.71 Equ. 11.4 -3, ASCE 7 -05 . Spy= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (Ib)= 7865 Floor 3 Wt (Ib)= . 7800 Roof Wt (Ib) = 12566 Wall Wt (Ib) = 35496 • Trib. Floor 2 Diaphragm Wt (Ib) = 22063 Trib. Floor 3 Diaphragm Wt (Ib) = 21998 Trib. Roof Diaphragm Wt (Ib) = 19665 Vertical Dist of Seismic Forces Cumulative % total of base shear Rho Check to Shearwalls (Ibs) I to shearwalls I Req'd? Veoor 2 (Ib) = 711 100.0% Yes V noo, 3 (lb) = 1595 85.3% Yes Vroof (Ib) = 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft • Ibs Ibs Ibs • A 124 105 326 168 314 • 1185 B 273 259 0 369 775 0 C 129 169 371 174 506 1349 • Sum 526 533 697 711• 1595 2534 Total Base Shear* = I 4840 LB I *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. C,--L l U . Harper Houf Peterson Righellis Pg #: Longitudinal Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph • Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, 11 (ft) = 32 Roof Pitch = 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X = 1.00 Iw= 1.00 Wind Sail Wind Net Design Wind Pressure (psf) () Pressure (Ibs) • Zone A = 19.9 138 2746 Wall High Wind Zone Horizontal Zone B = 3.2 51 163 Roof High Wind Zone Wind Forces Zone C = 14.4 231 3326 Wall Typ Zone Zone D = 3.3 114 376 Roof Typ Zone Zone E = -8.8 151 -1329 Roof Windward High Wind Zone • Vertical Zone F = -12.0 138 -1656 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 242 -1549 Roof Windward Typ Wind Zone Zone H = -9.7 • 216 -2095 Roof Leeward Typ Wind Zone Total Wind Force =l 6612 Ibs I Use to resist wind uplift: Roof & Half of Upper Floor Walls Total Exterior Wall Area 2203 ft Uplift due to Wind Forces= -6629 Ibs Resisting Dead Load= 10160 Ibs El 3531 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms . Wind Sail Tributary To Diaphragm (ft Zone A Zone B Zone C Zone D Main Floor 58 0 98 0 Upper Floor 59 0 99 0 Main Floor Diaphragm Shear = 2565 Ibs Upper Floor Diaphragm Shear = 2600 Ibs Roof Diaphragm Shear = 1447 Ibs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary • Line Shear Tributary Line Shear Wall Line Diaphragm (Ibs) Diaphragm (Ibs) Diaphragm (Ibs) Width ft) Width ift) Width (ft) 1 8 1283 8 1300 - 8 723 2 8 1283 8 1300 8 723 E= 16 2565 16 2600 16 1447 C — LA 2.__ Harper Houf Peterson Righellis Pg #: Longitudinal Seismic Line Shear Distribution • Seismic Design Category = D Occupancy Category = II Site Class = D S1= 0.34 • Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = • 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 S 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 Sos= 0.71 Equ. 11.4 -3, ASCE 7 -05 SD1= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 &6, ASCE 7 -05 Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (Ib)= 7865 Floor 3 Wt (Ib)= 7800 Roof Wt (Ib) = 12566 Wall Wt (Ib) = 35496 . • .Trib. Floor 2 Diaphragm Wt (Ib) = 22063 , Trib. Floor 3 Diaphragm Wt (Ib) = 21998 Trib. Roof Diaphragm Wt (Ib) = 19665 Vertical Dist of Seismic Forces % total of base shear Rho Check to Shearwalls (Ibs) 1Cumulative to shearwalls I Req'd? Vfloor2 711 100.0% Yes Vnoor 3 (lb) = 1595 85.3% Yes Vroot (lb) = 2534 52.4% Yes Shear Distribution To Wall Lines . Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line . Floor 2 Floor 3 Roof Shear Shear Shear . ,sq ft sq ft sq ft Ibs • Ibs Ibs 1 275 270 360 323 718 1220 2 330 330 388 388 877 1315 . Sum 605 600 748 711 1595 2534 Total Base Shear* = I 4840 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. Harper Houf Peterson Righellis Pg #: Shearwall Analysis , ' Based on the ASCE 7 -05 Transvere Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel Mo MR Uplift Panel Lgth. - From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht , k ht k ht k (kif) (plf) (ft -k) (ft -k) (k) 101 8 5.17 5.17 1.55 ox 8.00. 2.32 18.00 1.15 27.00 2.77 1209 Double 1.40 VII 102 8 4.00 4.00 2.00 OK 8.00 2.79 8.00 3.14 1482 Double 1.40 VIII 103 8 3.83 7.33 ' 2.09 ox 8.00 2.19 8.00 1.99 8.00 2.77 948 Double 1.40 VI 104 8_ 3.50 7.33 2.29 ox 8.00 2.19 8.00 1.99 8.00 2.77 948 Double 1.40 VI 105 8 4.25 12.75 1.88 OK 8.00 2.32 18.00 1.15 27.00 2.77 490 Single 1.40 II 106 8 8.50 12.75 0.94 OK 8.00 2.32 18.00 1.15- 27.00 2.77 490 Single 1.40 I1 • 107 8 1.25 1.25. 6.40 [ ".`# 8.00 2.19 18.00 1.15 27.00 2.77 4887 Double 1.40 NG 108 8 1.25 3:50 6.40 � ,,,1 8.00 2.19 8.00 . 1:99 8.00 2.77 1987 Double 1.40 NG 109 8 1.25 3.50 6.40 %:'4tr` 8.00 2:19 8.00 1.99 8.00 2.77 1987 Double 1.40 NG 110 , 8 1.00 3.50 8.00 : . ' ;;;!, 8.00 2.19 8.00 1.99 8.00 2.77 1987 Double 1.40 NG 201 9 5.58 9.17 1.61 ox 9.00 1.15 18.00 2.77 428. .Single 1:40 II 202 9 3.58 9.17 2.51 ox 9.00 1.15 18.00 2.77 428 Single 1.40 II 202A 9 3.50 3.50 2.57 OK - 9.00 3.14' 898 Double 1.40 VI 203 9 7.00 7.00 - 1.29 ox . 9.00 1.99 18.00 2.77 681 Single 1.40 IV . 301 8 6.00 10.00 1.33 ox 8.00 2.77 277 Single 1.40 I 302 8 4.00 10.00 2.00 OK 8.00 2.77 277 Single 1.40 I 303 8 4.96 9.92 1.61 OK 8.00 2.77 280 Single 1.40 I 304 8 4.96 9.92 1.61 ox 8.00 2.77 .280 Single 1.40 I Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) • • ( VC-I'' Harper Houf Peterson Righellis Pg #: Shearwall Analysis . Based on the ASCE 7 -05 • fransvere Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho *V % Story #: Panel Shear Panel M Ma Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Strength Bays Sides • Factor Type T (ft) (ft) (ft) ht k • ht k ht k (klf) (plf) (plf) (ft -k) (ft -k) (k). 101 8 5.17 5.17 1.55 OK 8.00 0.17 18.00 0.31 27.00 1.19 323 419 0.31 . 1.29 Single :1.00 111 102 8 4.00 4.00 2.00 OK 8.00 0.37 8.00 0.78 0.00 286 .372. 0.24 1.00 Single • 1.00 111 . 103 8 _ 3.83 7.33 2.09 OK 8.00 0.17 8.00 0.51 8.00 1.19 254 331 0.23 • ,0.96 Single 0.96 II 104 8 3.50 7.33 2.29 OK 8.00 0.17 8.00 0.51 8.00 1.19 254 331 0.21 0.88 Single 0.88 11I 105 8 4.25 12.75 1.88 OK 8.00 0:17 18.00 _ 0.31 27.00 1.19. 131 170 0.26, 1.06 Single 1.00 I • 106 8 _ 8.50 12.75 0.94 OK 8.00 0.17 18.00 0.31 27.00 1.19 131 • 170 NA 2.13 Single 1.00 I ' 107 8 1.25 1.25 6.40 8.00 0.27 18.00 0.51 27.00 1.19 • 1572 2044. , 0.08 0.31 Double 0.31 NG 108 8 1.25 3.50 6.40 `; '. 8.00 0.27 8.00 0.51 8.00 1.19. 561 730 0.08 0.31 Double 0.31 NG 109. 8 1.25 3.50 6.40 ` ��,`4 ti 8.00 0.27 8.00 0.51 8.00 1.19 561 730 0.08 0.31 Double 0.31 NG , 110 8 1.00 3.50 8.00 { • 8.00 _ 0.27 8.00 0.51 8.00 1.19 561 730 _ 0.06 0.25 _ Double 0.25 NG 201 9 5.58 9.17 1.61 oK 9.00 031 18.00 1.19. 164 , 213 0.28 1.24 , Single' 1.00 I . 202 9 _ 3.58 9.17 2.51 OK 9.00 0.31 18.00 1.19 164 • 213 0.18 0.80 Single 0.80 II 202A 9 3.50 3.50 2.57 OK • 9.00 0.78 0.00 221 288 0.18 0.78 Single 0.78 BI 203 9 7.00 7.00 1.29 OK 9.00 0.51 18.00 1.19 242 314 0.36 ' 1.56 Single " 1.00 11 301 8 6.00 10.00 1.33 OK 8:00 1.19 119 154 0.30 1.50 Single 1.00 1 302 8 _ 4.00 10.00 2.00 OK • 8.00 1.19 • 119 154 0.20 -1.00 - Single 1.00 - I 303 8 4.96 9.92 1.61 OK 8.00 - 1.19 119 155 0.25. 1.24. Single 1.00 1 304 8 4.96 9.92 1.61 OK 8.00 1.19 119 155 0.25 1.24 Single 1.00 I • Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total transverse base shear? Yes Total 1st Floor Wall Length = 16.50 • Total # 1st Floor Bays = 4.13 Are 2 bays minimum present along each wall line? No 1st Floor Rho= u • Total 2nd Floor Wall Length = 19.67 Total # 2nd Floor Bays = 4 Are 2 bays minimum present along each wall line? No lnd Floor Rho = 1J Total 3rd Floor Wall Length = 19.92 Total # 3rd Floor Bays = s Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho = 1.0 • Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load *Rho / Total L % Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2 *L/H Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • C - L \ Harper Houf Peterson Righellis Pg #: Shearwall Analysis . B ased on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T . (II) (ft) (ft) ht k ht k ht k (klf) (plt) (ft -k) (ft-k) (k) 105: 8 - 12.75 12.75 0.63 ox 10.00 1.28 18.00 1.30 27.00 0.72 1.13 259 Single 1.40 I 55.75 92.01 0.04 106 8 12.75 12:75 0.63 OK 10.00 1.28 18.00 130 27.00 0.72 1.13 259 Single 1.40 I 55.75 92.01 0.04 204 ' 9 11.50 11.50 0.78 OK. 9.001 1.30 18.00 0.72 0.75 176 Single 1.40 I 24.71 49.73 -0.47 I 205 9 11.50 11.50. 0.78 OK 9.00 1.30 18.00 0.72 0.75 176 Single 1.40 I 24.71 49.73 -0.47 I 305 8 10.00 10.00 0.80 OK 8.00 0.72 0.29 72 Single 1.40 I 5.78 14.40 -0.30 306 8 10.00 10.00 0.80 ox 8.00 0.72 0.29 72 Single 1.40 I 5.78 14.40 -0.30 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • • Harper Houf Peterson Righellis P9 #: Shear Analysis B ased on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By Seismic Shear H L Wall H/L Line Load Line Load Line Load • Dead V Rho•V % Story' # Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd FIr. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (kW (pll) (pit) (ft-k) (ft -k) (k) 105 8 12.75 12.75 0.631 OK 10.00 0.32 18.00 0.72 27.00 1.22 1.19 177 177 NA 3.19 Single 1.00 I 49.09 96.89 -0.74 106 8 12.75 12.75 0.63 OK 10.00 0.39 18.00 0.88 27.00 1.32 1.19 202 202 NA 3.19 Single 1.00 I 55.17 96.89 -0.24 I 204 9 11.50 1 11.50 1 0.78 OK I 9.00 0.72 1 1 8.00 , 1.22 0.81 169 169 I NA I 2.56 I Single ' 1.00 I 28.42 53.69 -0.34 I 205 9 11.50 11.50 0.78 OK 9.00 0.88 18.00 1.32 0.81 191 191 I NA I 2.56 Single 1.00 I 31.56 53.69. ' -0.06 305 8 10.00 10.00 0.80 OK 8.00 1.22 0.35 _. 122 122 NA 2.50 Single 1.00 I 9.76 17.40 -0.07 306 I 8 10.00I 10.00I 0.80I .oOK 8.00 1.32 0.35 132 I 132 NA I - 2.50 I Single '1.00 ' I 10.52. 17.40 0.01 • Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Total 1st Floor Wall Length = 25.50 Total # 1st Floor Bays = 6-15 Are 2 bays minimum present along each wall line? Yes 1st Floor Rho = i.o Total 2nd Floor Wall Length = 23.00 Total # 2nd Floor Bays = 5 Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho = 1.o Total 3rd Floor Wall Length = 20.00 Total # 3rd Floor Bays = s Are 2 bays minimum present along each wall line? Yes - 3rd Floor Rho = i.o Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load•Rho / Total L % Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2•L/H Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear • Shear Application ht Mr (Resisting Moment) = Dead Load • L • 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) C -- Uri' Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Transvere Shearwalls Panel Wall Shear Wall Type Good For V (plf) (Plf) Insinaminnsr 41111.1.11.ff 101 1209 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 1276 102 1482 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 1667 103 948 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 104 948 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 , 105 490 1/2" APA Rated Plyw'd w/ 8d Nails g 4/12 495 106 490 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 •495 107 Simpson Strongwall 108 Simpson Strongwall 109 Simpson Strongwall 110 Simpson Strongwall 201 428 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 202 428 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 202A 898 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 203 681 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 833 301 277 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 302 277 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 303 280 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 304 280 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Longitudinal Shearwalls Panel Wall Shear Wall Type - - Good For. Uplift Simpson Holdown. Good For • V (PM - • (Ib) 105 259 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 44 Simpson None 0 106 , 259 _1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 44 Simpson None 0 204 176 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -345 Simpson None 0 I 205 191 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 _` -59 Simpson None 0 305 122 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 -72 Simpson None 0 306 132 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 8 Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. • Transverse Wind Uplift Design • UnitC Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ • floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls - Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k • 101 8 1.1667 5.21 5.21 2.321 1.15 2.773 6.244 1199 0.1 . 0.192 0.208 54.53 2.36 2.44 11.28 11.27 201 L 201 R 4.97 • 5.11 16.25 16.38 102 8 1.1667 4.00 4.00 2.785 3.143 5.928 1482 0.092 0.192 51.09 1.50 0.74 14.34 14.47 14.34 14.41 103 8 1.1667 3.83 7.33 2.186 1.994 2.773 6.953 948 0.1 0.24 0.078 31.98 _ 1.65 1.03 9.30 9.41 203R (1/2) 3.83 9.30 13.24 104 8 1.1667 3.50 7.33 2.186 1.994 2.773 6.953 948 0.1 0.078 0.192 29.20 0.89 1.28 9.56 9.48 9.56 9.48 105 8 "L1667 4.58 13.08 2.321 1.15 2.773 6.244 477 0.1 0.192 0.078 19.10 1.93 1.41 4.39 4.47. 201L 201R 4.97 5.11 9.36 9.58 106 8 1.1667 8.50 13.08 2.321 1.15 2.773 6.244 477 0.1 0.078 0.384 35.43 4.28 6.88 4.11 3.91 202L 202R 5.35 5.22 9.46 9.13 107 8 1.1667 1.25 4.75 2.186 1.994 2.773 6.953 1464 0.048 0.192 0.045 14.64 0.28 0.09 18.77 18.92 18.77 18.92 108 8 1.1667 1.25 • 4.75 2.186 1.994 2.773 6.953 1464 0.048 0.045 0.192 14.64 0.09 0.28 18.92 18.77 18.92 18.77 109 8 1.1667 1.25 4.75 2.186 1.994 2.773 6.953 1464 . 0.1 0.24 0.208 14.64 0.38 0.34 18.70 18.73 ' 203R 7.65 18.70 26.38 110 8 1.1667 1.00 4.75 2.186 1.994 2.773 6.953_ 1464 0.1 0.208 0.192 . 11.71 _ 0.26 0.24 19.81 19.83 304R 1.65 19.81 21.48 201 9 1.1667 5.875 9.75 1.15 2.773 3:923 402 0.172 - 0.432 0.156 23.22 5.51 3.88 3.39 3.56 301L 301R 1.58 1.55 4.97 5.11 202 9 1.1667 3.875 9.75 1.15 2.773 3.923 402 0.172 0.156 0.432 15.32 1.90 2.97 3.66 3.49 302L - 302R 1.69 1.72 5.35 5.22 202A 9 1.1667 3.833 3.833 3.143 3.143 820 0.142 0.816 28.29 ` 4.17 1.04 6.73 7.22 6.73 7.22 203_ 9 1.1667 7.083 7.083 1.994 2.773 4.767_ 673 0.172 0.468 0.192 46.14 7.63 5.67 5.87 6.03 ' 303L 303R 1.65 1.62 .7.52 7.65 301 8 5.958 9.916 2.773 2.773 280 0.24 0.384 0.432 13.33 _ 6.55 6.83 1.58 1.55 1.58 1.55 302 8 3.958 9.916 2.773 ' 2.773 280 0.24 0.432 0.384 8.85 3.59 3.40 1.69 1.72 1.69 1.72 303 , 8 4.958 9.916 2.773 2.773 280 0.24 0.384 0.432 11.09 _ 4.85 5.09 1.65 1:62 1.65 1.62 304_ 8 4.958 9.916 2.773_ 2.773 280 0.24 0.432 0.384 11.09 5.09 4.85 1.62 1.65 1.62 1.65 Spreadsheet Column Definitions & Formulas L = Shear Panel Length - 1I = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift (Mo -Mr) / (L - 6 in) 1 r N G • • Transverse Seismic Uplift Design Unit C Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ floors @ Left @ t • House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft " kft kft k k k k k k 101 8 1.1667 5.21 5.21 0.168 0.314 1.185 1.667 320 0.1 0.192 0.208 15.08 2.36 2.44 2.75 2.74 201 L 201 R 0.65 0.85 3.40 3.59 102 8 1.1667 4.00 4.00 0.369 0.775 1.144 286 0.092 0.192 0 10.06 1.50 0.74 2.49 2.68 0 0 2.49 2.68 103 8 1.1667 3.83 7.33 0.174 0.506 1.349 2.029 277 0.1 0.24 0.078 9.62 1.65 1.03 2.44 2.61 0 203R(1/2) 1.01 2.44 3.62 104 8 1.1667 3.50 7.33 0.174 0.506 1.349 -2.029 277 0.1 0.078 0.192 8.78 0.89 1.28 2.66 2.54 0 0 2.66 2.54 105 8 1.1667 4.58 13.08 0.168 0.314 1.185 1.667 127 0.1 0.192 0.078 5.28 1.93 1.41 0.87 0.98 201L 201R 0.65 0.85 1.52 1.84 106 8 1.1667 8.50 13.08 0.168 0.314 1.185 - 1.667 127 0.1 0.078 0.384 9.80 4.28 6.88 0.74 0.45 202L 202R 1.22 1.02_ 1.97, 1.47 107 8 1.1667 1.25 4.75 0.174 0.506 1.349 2.029 427 0.048 0.192 0.045 4.84 0.28 0.09 6.12 6.34 0 0 6.12 6.34 108 8 1.1667 1.25 4.75. 0.174 0.506 1.349 2.029 427 0.048 0.045 0.192 4.84 0.09 0.28 6.34 . 6.12 .0 0 6.34 6.12 109 8 1.1667 1.25 4.75 0.174 0.506 1.349 2.029 427 0.1 0.24 .0.208 4.84 0.38 0.34 6.00 6.05 0 203R 2.02 6.00 8.07 110 8 1.1667 1.00 4.75 0.174 0.506 1.349 2.029 ' 427 0.1 0.208 0.192 .3.87 0.26 0.24 "7:28 7.31 0 304R 0.21 7.28 7.52 201 9 1.1667 5.88 9.75 • 0.314 1.185 1.499 154 0.172 0.432 0.156 8.96 5.51 3.88 0.68 0.93 301L 301R -0.03 -0.08 0.65 0.85 202 9 1.1667 3.88 9.75 0314 - 1.185 1.499 154 0.172 0.156 0.432 5.91 1.90 " 2.97 1.09 0.84 • 302L 302R - 0.14 0.18 1.22 1.02 202A 9 1.1667 3.83 3.83 0.775 0.775 202 0.142 0.816 '0 6.98 4.17 1.04 .0:84 1.57 0 - 0 ' 0.84 1.57 203 9 1.1667, 7.08 7.08 0.506 1.349 1.855 262 0.172 0.468 0.192 18.27 '7.63 5.67 1.61 1.86 303L 303R '0.21 0.16 1.82 2.02 301 8 0 5.96 9.92 1.185 1.185 120 0.24 0.384 0.432 5.70 - 6.55 6.83 -0.03 • -0.08 0 0 -0.03 -0.08 302 8 0 3.96 9.92 1.185 1-:185 • 120 0.24 0.432 0.384 3.78 ` 3.59 3.40 0.14 . 0.18. 0 0 0.14 0.18 303 8 0 4.96 9:92 1.349 1.349 136 0.24 0.384 0.432 5.40 4.85 5.09 0.21 0.16 0 0 0.21 0.16 304 8_ 0 4.96 9.92 1.349 1.349 136 0.24 0.432 0.384 5.40 5.09 4.85 0.16 0.21 0 0 0.16 0.21 Spreadsheet Column Definitions & Formulas L = Shear Panel Length - H = Shear Panel Height • Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) . Uplift T = (Mo -Mr) / (L - 6 in) `' TRANSVERSE UPLIFT CALCULATIONS - SUMMARY UNIT C Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right • k Simpson k k Simpson k 101 Wind 16.25 Holdown HD19 w DF 19.07 Wind 16.38 HD19 w DF 19.07 102 Wind 14:34 Holdown HDU14 14.93. Wind 14:47 HDU14 14.93 103 Wind 9.30 Holdown HDU14 14.93 Wind 13.24 HDU14 14.93 104 Wind 9.56 Holdown HDU14 14.93 Wind 9.48 HDU14 14.93 105 Wind 9.36_Holdown HDU14 14.93 Wind 9.58 HDU14 14.93 106 Wind 9.46 Holdown HDU14 14.93 . Wind 9.13 HDU14 14.93 107 Wind 18.77 Holdown None 0.00 Wind 18.92 None 0.00 108 Wind . 18.92 Holdown None 0.00 Wind 18.77 None 0.00 109 Wind 18.70 Holdown None 0.00 Wind 26.38 None 0.00 110 Wind 19.81 Holdown None 0.00 Wind 21.48 None 0.00 201 Wind 4.97 Strap MST48x2 T 5.75 Wind • 5.11 MST48x2 5.75 202 Wind' 5.35 Strap MST48x2 5.75 . Wind 5.22 MST48x2 5.75 202A Wind 6.73 Strap MST60x2 8.11 Wind 7.22 MST60x2 '8.11 • 203 Wind 7.52 Strap MST60x2 8.11 Wind 7.65 MST60x2 8.11 301 Wind 1.58 Strap MST48 2.88 Wind 1.55 MST48 2.88 302 Wind 1.69 Strap MST48 2.88 Wind 1.72 MST48 2.88 303 Wind 1.65 Strap MST48 2.88 Wind • 1.62 MST48 2.88 • 304 Wind 1.62 Strap MST48 2.88 Wind 1.65 • MST48 2.88 n 1 1 I 1 1 10\ . C) 1 1.11.r) 0 . i:. . ,. ..1 .., ..,. 1 III 4, .3 i 1 ..; . 1 , _ .r IP , • 0 ..i. 1: --Q •-.., 1 1 il • '.; p , . . , . • ,.. • . '6 4 . . ,, , l'; I -.--- 1 ' ; ' : ' :-..-2,;;;•1'...Li..;::. c-) • , vf , i . , . , 1 , . , , . ii i• . _ , illi. , -....-..,- . I .-.... I Ti-r1 . , 0 I . 1 i • I , ..-0-.-.. ! ;. ..r . .' . .. ,, W , S i--1 : 4 );:i; --':',."4:1' -; -.V. . 1 0 I 1 0 L, 6 , 3 C) % 1I3 Pree c ‘, Si ?* 14 t' t;d1f UNiT C. La 40 105 gammagma 0 eamicalamisili 102 +t f log 110 ©— , ti 1 10 lab UNIT C t sr Fwoe, C FR.®N T L. 0 wo La- sw LIVVroui 2.oiv aoa Q Of 11 I YYYY ;,..i t 4,C •S - .- V R j} �� i ` jI fi sol ;.= )7 I • n , I '- - II i r I <\ ill 4 ► I ` 1 . I ■ i 1 I 0 e. - --, ...., : ._.:.7-7---73-- , pL,.,< 9... ‘1/49 (''l -1-00i0Vl ens 'o®.‘d. at.a -D ,N,A t\in . . 9 \ e/ ---. J Z Q Ik o £off .1 I _,,, e . .. . ._ . .. 1 . . - /1\ ____!___._..1 . . i , 1 , 1 1 J 1- i . .. I 1 ___...; . ill ____I ��� �E �_ r .. . J i ________I . . . tI , , L (F 1 • .., ' C 1.. ,t p t t� _ i it i i K. �� q9 ' 1 ZQR 10 BY: r DATE: \ 9JJIfJ JOB NO.: C OF PROJECT: RE: C_,\OC .1c,_ - 0-1apinraym Aira`p6eer - ❑ ❑ w -. J Z IL w u'= `�2°►1 1 •1.0?� L ❑ LINE QupQER Lre B upfer II. 3li}2, O w U Z V L— a o ' -5 2D,s' .1\ 15'-q" 3---v--1 Q LAwSPr LANE ES LA NEC. U I cam 2 `\R u_� =- rUY1bgeYS 2 dI t 60 Liao T� 3143 o -- 30A‘ ana1y &e_ f�' �\4 sae oP w= I�b�64rt: W o 'I7 asi T CA r n / J.- CI ,°0 : - q,46,k..y ,S1oss� ! Lti T--- C'S dunec � ❑ w — 3143(2. , s • a L.�re C = t ley 3 *t 3l2 Line 3 = 3'4' 2# 3 V060 2l2$ c;s'cx <IS,S' ba°I - 1 (. • b x 23b avapwc TJ I A ph ragm v.) t a-4h =K. . Ft ►Li o c� — Vat PLF a) a) _ r a ONO \oc ed b (I2r d ick f6 \ C ci o t v,.,' 0 ,4-5 - as 01. po�- a 6 :. x a V),t0ctclv13 re. , .‘soiphrkcItY\_ o .. � oi ` -A8 S CN1 .1`(°aug tSYYD 7�, p1t \,C) '-' T 1 al Wp ��i `)17) S \,YYCs \o L''Ac'n - v9 - A0 •.- # Sion\ 7 - Ail -C :3'0 011 - Ao • . - Qt) 1,1 "7 "A Q i *° 1 601 - )10 # 09%17 `fit 118'1 __ 201 �� • - 0°1\ 'A 1 13 -L0k Jbays Cl 1I7 r d t1 h'e ' °i t -► oS1'1 + 1 ( ' ' � = ' 1/41 H s nit -»So N O': # SID 01 7 $ X511 C 11 ° L )N #S < *1 1° C- k . bat • _ 10 i• )01 • - t -OC)t31 4 (301 <` a '-)N t ong\ < # b$cc..`lb t01 v " 0 �a'n 11 YX`A fit ° o 14Q ) 1° th `CJ 4S1,01 teetmss 0 11 (=rep0 #sfios Sce-'o #5111 4.c CfSS 1001 b tv-t is oiE'o ova\ -tus msS got o # -VI \S. g x.10 .44-01G1 tx 51(fY s -to\ x � c(+011V .A I o ❑ o Z - rC'.S$2, = ln� 0 0 -,S 9' 1 = ` -+ (')(, 2 0'0)Q21) -= c110'0)cti -t 01)`S\O'O)( 191- LOL ?'°'°)( ) + (')<7-10. 1 ( ) p 0 0 \1 At T., \ \fi =\nkol -.s 5t\ 10 = Vico(sco_ .o 1)_ ..1 s2oy o Z �o orb t _ c- 1.1019 2 1 , 7xs; - c �S1o: o ) t , )i rti,Xsto o)ccat) 4 c- ocyo - & -c „ 1 -aws)SSb R woort [( 0 tot s o aw.y 3 0 01 ` rn t h' = v1"-}o3. -13 m Q sv 1 -�''S < 1 OQ' 0 = `zl s.LXS2O'0)(k �) m 0 - 1 � St - 0 - c -lis SIO 0)(Zf +`Zto'o) gx,) o •� „s1 auinsse) 4.01 \1`om o ❑ 3 Woo \'° m 2 11 � o Sd 1 H7HS ■`- )tSd, ” ❑ ❑ �5��1 LS NQ C13S1d__ -1 S 30 (NOtl(let?aisla :3a 173 road do Q10 J O 3 ) "ON Bar Q\O mae, O 31v0 .AB BY: p - DATE: /56! e A ®6 0 JOB NO.: ciem OF J le 0 PROJECT: •'� RE: ❑ ❑ w Load a�pv1ccc�l 1to Pc we s =C1 b 11)(2) I "6 as it J ( _ L 0 2 T DiGkO r ) ( CL9rn W iG (® F }, 2 ° 3e+-aaY- U co = (a0.4 ixs- (,,}mod A -- -a'- -, Z 3. b'D.a . 0 CA c ,•k i oc b\acked cl eq0 ratsin LA 1.111 nay 10 e -.'IZ" o.c., ::.(5 1.1,4) Z - 40-4 pt_F a o ov._ 2 2 O U 2 • if O Li_ Z ❑ O w O = F a o ti - i W x C �a°)i BY: A I\ L DATE: 6 _, 1'- I 1 - 0 \ JOB NO.: C 1 f ...... 0 Ct 0 OF PROJECT: RE: QPT100 2 ❑ ❑ nail u (1M . 2,U� Root . • W -�c�,\ Cin - PC e 3 T�.,00vZ i_ W O f 2w ❑ T( 1, ialh OC 3t JT - 13: -°I" Li a Moo( 1uw6e r c- = Y ,r op -e6 \fng 12`- O w U Z Z Loud. on b..)\1 vv b\.vc.- = 9Ali pl..F O U T Z g=3,(05--(%, n F O 1.s u • f r�rClE7A. U W ❑ Z 0 O a I J , Z = � N i l.:15) 6.45 t wa vv, T 12 At i ic.,,,.(. 7. Ci.s fl lis J3 s.,6® IN4 Z y = Cog (,3.5'' _ a .6B t,,,4 WWI 1.S a. 1.5" A4,2= R- ,s,(.. c o <3 A : 1 y i L„Uas u?- i. - a d,,1, = o.ns t w o d 39,5,6 = D 1N) ; x a '' z I = 6.as t- a4.s(0,51s.) 4 -6.2 + a9,s Co, t` -s ")t 5',3 (0+o t �.t,� i 0 •� LL a ¥ S.36t0 4' C,36t - 0 L a r =' `c).=. - = (9- # C0(11_6 :4S) = 1 4-Q PS I: Z - 4 y. t3s 1N' C A 41.3-s ..pb = (6so pa ,:ii,L' (■,A1,011,0)0. 1 (t.o( 1 ,o )(1:I:S) l+i a3 . pS1 fi ID' = (a3asrs` ,00.0.0.cki1.iiI.0)(1,0) t-sL 4otcb ?s` o_L3O BY AM DATE: —. kol ......._ \._ 0 JOB NO ( E N 4/ ... OF P ROJ ECT: 9 2 ° v a VW RE: Des ., of nrc. 1'0100-Ant e Stolr 5 El El I 0 w - OpTioN) 1.... _I 0 E Z P ii Ai 41 1- W O 2 M. i Z U thtti ON) F.F. A 1 2 L i l n - 501/1/41T =--- CIL 9 Y2." lea 1-09 9LB,Tes le- 5 J 0 J Kax. 50 it-CIPLNI#JC--.::: AP < cc 0 o u z - w o D e 5 1 c-,iv w WO Pressuce ct ii - .0.1.055 pse O f.f. p€s\ c' We o 5pooc\ co 1 ‘ iein Toy vtAIES BI- 118" u z UJi ON WOACK [00C Oc lcAMpLF 2 . 1' T • D g, r.ictone .g ‘t4 co i:k o'"0" x o - tz o LL z w Mcno, 1 r: 51 itct 0 6 '6 o 1 5 a_ V , \ -.: 1-314L_....f _... ftlici,,,,z_ O . O ci t lt .1 .--' P. TN:641 7: ISO psi. (t,(0) atIOs L s> , 12,2,,, ... o v... z.r : g - VIA o eU 2.. -L,3 • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C - FRONT LOAD WoodWorks® Sizer 7.1 June 28, 2010 13:26:08 COMPANY 1 PROJECT RESULTS by GROUP - NDS 2005 SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF c = Mnf Trusses v re. . . =6 Not designed by request �_��� (2) 2x10 Lumber n -ply D.Fir-L No.2 2- 2x10 (3) 2.6 Lumber n -ply Hem -Fir No.2 3- 2x6 • Typ Wall Lumber Stud Hem -Fir Stud 2x6 016.0 • SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR = =re >�m == -_ -- = Not designed by request = ® = Mnf Jot (2) 208 Lumber n -ply D.Fir -L No.2 1- 208 By Others Not designed by request By Others 2 Not designed by request 4x6 Lumber -soft D.Fir -L No.2 4x6 1.75x14 LSL 1.51. 1.55E 2325Fb 1.75x14 (2) 2.6 Lumber n -ply Hem -Fir No.2 2- 2x6 6x6 Timber -soft Hem -Fir No.2 6x6 12) 2x4 Lumber n -ply Hem -Fir No.2 2- 2x4 (3) 2x4 Lumber n -ply Hem -Fir No.2 3- 2x4 • Typ Wall Lumber Stud Hem -Fir Stud 2x6 616.0 SUGGESTED SECTIONS by GROUP for LEVEL 2 - FLOOR . = Mnf 1008000 � � � a= == � === Not designed by request Q = �� = =a= Deck Joist Lumber -soft D.Fir-L No.2 208 616.0 Mnf Jot Not designed by request • Landing Lumber -soft 0.Fir -l. No.2 2x6 016.0 (2) 2x8 Lumber n -ply D.Fir -L No.2 2- 2x8 4x8 Lumber -soft D.Fir-L No.2 488 By Others Not designed by request 2.125.10.5 Glulam- Unbalan. West Species 24F -V4 DF 3.125x10.5 5.25014 PSL P51. 2.0E 2900Fb 5.25014 4.6 Lumber -soft D.Fir -L No.2 4.6 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 404 Lumber Post Hem -Fir No.2 404 • 4x6 Lumber Post Hem -Fir No.2 • 4x6 6x6 Timber -soft Hem-Fir No.2 6x6 • (2) 204 Lumber n -ply Hem -Fir No.2 2 -'2x4 (3) 2.4 Lumber n -ply Hem -Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 @16.0 SUGGESTED SECTIONS by GROUP for LEVEL 1 - FLOOR Fnd Not designed by request �� =tea • CRITICAL MEMBERS and DESIGN CRITERIA Group Member Criterion Analysis /Design Values Deck Joist jB Bending 0.41 Mnf Jot Mnf Jet Not designed by request Landing j27 Bending 0.17 12) 2x8 bl Bending 0.96 408 b19 Bending 0.05 . By Others By Others Not designed by request By Others 2 By Others Not designed by request 2.125.10.5 b12 Deflection 0.83 12) 2x10 b6 Bending 0.85 5.25x14 PSL b18 Deflection 0.79 406 b21 Bending 0.88 1.75x14 LSL b23 Bending 0.71 Ftg Ftg Not designed by request 12) 2x6 c10 Axial 0.88 484 c42 Axial - 0.04 4x6 c50 Axial 0.25 13) 2x6 816 Axial 0.87 6x6 c23 Axial 0.48 12) 2x4 c28 Axial 0.84 (3) 2.4 c12 Axial 0.41 Typ Wall w12 Axial 0.24 • • Fnd Fnd Not designed by request D ems==:: �____ DESIGN NOTES: > =s: = = = == ==sn��s- ='= =_'_•_ • 1. Please verify that the default deflection limits are appropriate for your application. • 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result • is considered the final design and appears in the Materials List. • 3. ROOF LIVE LOAD: treated as w load with corresponding duration factor. Add an empty roof level to bypass this interpretation. 4. BEARING: the designer is responsible for ensuring that adequate • bearing is provided. 5. GLULAM: bxd = actual breadth x actual depth. • 6. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 7. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 8. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that • each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 9. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 10. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. • • • • • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C - FRONT LOAD WoodWorks® Sizer 7.1 June 28, 2010 13:16:53 Concept b 2 de: Beam View Floor 2: 8' 1050 i . ... .. _ . - - - 4 9' -6" : IU.3 : _: - `'- - -'- : -- - -- • _ 4f -0' I0 4n b. b 40 ' 44' -b' I0 y9 b1 43 -n V1 .- -- - . .. .. - -- - --- 4U � .. yn V4 . - .: _ VS Sts' b 30 -0 yu - uy ..1.1-0 • S 23/ S.I. .. • 00 .. :. :.. - - --- _ - : - .... _ SU b "35 . .. . . , . ... . . 1V .: - - - _ - - - - --- - -. --- - -- - - - - - - - - - - LtS b L/ b'" 25L : ••• - - - L0 i0 )♦t _ 24 b fy LS-b LL b 11 L -0 lb .....: _ __ -- -- - Lt1-0 10 - I V -b.. f4 f3 .. �i - - - - _ -: - - -- 11-0 14 =b21 ro n • /U _I 14 -b na ny b10 is b n • or : ! - n • ■ : . ; : . . I I 00 - _ y -b n 3 3 :.. b18 � n .. • b _ b19IIb20__ • _:: . ' • ' . : 4-n II S b' I l 0 -b .BB18.B BC CC C C CC C FCCC CC CCCCCC CC CCICC CD.DDD D DDDIDDD DD DD DD D D DD CD \DD DE.E. EE EEEEFEEEIEEIE EEEEEEE1EEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18'20' 22'24'26' 28' 30' 32' 34' 36' 38'40' 42' 44'46'48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'678'91 (1 1:1 :1 1 i1 (2 22:2 2 2(2(3(33 :3;3 "3!3!4(4'4;4:4.44(4' 4W5(5•5',5'.5.5!5(515(56(6 6:6:6 f (6i7(7'7.7.7.7.7(7T 6" • VA I LCPi0 • • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C - REAR LOAD WoodWorks ®Sizer 7.1 - June 28, 2010 13:26:28 . Concept b 2 de• Beam View Floor 2: 8' 49'-6 'IUS ..-----;-- =. :: • - '-'. 4/•-0 40 -0 IU'i 40-0 • IV a9 b18 : '; . .. .a.._ _ • 43_0.. JO . .. ... - - 4L yl - --.: : " -- -- � -- ... ..__.. 4'1 yb .. -: ;: -.. -. -- 4U•-0" • 5 3•-b• `JL t - i - [ :-`: - - - -' - -- - 30.-0.. U ; .: i - -- : -- - - - -- - 34 . x • 0/ :- ;: : ;; : : : - 3.1.0.. . : • .; tsb , 3U •-b CI L0 -0 ssU b24 .: -r :. _... L4 " -0 " / / . ; :: .. L.I.Q. / 5 . . - I •-0• • / 4 10 -0 • ' : _<-- . : by - t' - • -- _: • ; : : . . :: 13.-0 00_ .; : : ; b10 = IL.�. . - . .. .- - -- ii-o- • bJ V n 3 b11 b19 • • • � e .. bG b b buy .b21ii b20 ._: : • S -b � • jjIII[[ L' -b.. .BB \B.B BCCCC C CCCICCC CC CCCCC C CC CCtCCCD.DDD D OD DIDDD OD DD'0DD D DD CDIDDDEE E E?ElEE.EIEEEIEEIEEEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'67'8'9111 - 1:1 :1 /( 42(22:2:2 243(33 :3:3 , 3'313 :3131414 :44'.414 41415(5 5:5:5 6:6:6 • . �� '� O`( Loo. c C (13 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C - FRONT LOAD WoodWorks® Sizer 7.1 June 28, 2010 13:16:55 Concept Mode: Col limn View Floor 2: 8' • c24 c25 1050 'IU4 ... 49 �,, - 4r -b. IUL - _ _ - _ - -. - 40-0 • '1111 r ! _ _ _ - - - 40.-b 9 ' .. _- Cl - c2 .,.:. 8 _ _' - : • yts . ' • Jr • yb ._ : . 4 b J4 Sy b ..50'-0 S • [ .. .. - -- . • y L - - - if -b S0-0 yV i -0 • 053 .5.5.-0 • : S • ; tab ? . 05 c50 c51 154 • - Ly' - --_'__ - Lb - b. 1St • . 5 !y • Z...1 -0 • 10 . i. :: . : • . . -- - -- -- - - . LL q • rq : :' i : • LU U !b C am. - IJ b 14 - . ... . !3 . 1Ic35 1 -4 : - i . . . f 1 c '14 -b bo bb :c22- - • . 1z -0 II b 0! UU . . : . . is ..• _ _: ... -.. ._ - • b5 _ - - y -0 • t5 n� r � c23 c41 • bU . 1,U •::9 . :. : - - c42 c43; S U L . b .. BB18.B BC CCC CCC CtCCC CC CCCCC CCC CCICCCDDDD D DD D }DDD CD DD -DD D D. DD CDIDD DEE E E EEE'EIEEEIEEIE EEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' U1'2'3'4'5'67'8'91(1 :1 (110(2(2'2:2 :2 2E222SM3 :13 "31314(4'4:4 :44! 4(474£4(515 5:5:5 _-- ( Li . WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C - FRONT LOAD WoodWorks® Sizer 7.1 June 28, 2010 13:16:49 Concept Mode: Beam View Floor 3: 17' 1050._.. -. -- :: ': 49 -6 104 . : 10.5 - . - r - _ • _: ::--. - - : 4 /'-b I ULtl ' : - _ - - • - - - 40 . -0 .. 101 40-0 l7 Iuy : : b4 ; _. - - 43-0 V/ 41 b Jb - .. - 40.-o yS '-_.'-' _, J r. -.. .. - - - -- - • -- -- -- 30 - - - 34'-0 t5`J .. JS -0 t525--. .. .:__..:__:_: -: -. _ ---. ::---- - --- -- --- -- - - - -- ---- -- - - - -- -- - --- ..1G -0 • 0r J 1' • 255..... :. b22 • - - - - -- Ly _� . 253 . . : L /' -b .. oz b24 Lb -b •e .. - ! f L.1. -0. 10 - Iy - 0 11 :: • . 1b. -0 11 ., - 014 - - ------ )0 -o• 00 ; : : : :..: 'IG -b 0 - ..- - :: -- - --- - .. - - . - - - - 1 I - 0 bb IU -0 oaf b17: : : � n • 00 ; ' .. 4 -0 .. L'0 . . _ _ I -0 :JV V -b BBt8.B BC CC C CCC C ICCC CC CCCCC CCCCC \CCCD.DDD DDDDIDDD CD DD'DD D D DD C.DODDDLE E E EEE:EhEEEIEEIEE+EEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42'44' 46'48' 50' 52' 54' 56' 58'60'62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'67'8'91(1 1;1 :1.11111(1(2(222:2 :33 313(3 "3t3g(4.4;4 :4 5:5:5 C E$ WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C - FRONT LOAD WoodWorks® Sizer 7.1 June 28, 2010 13:16:46 Concept Mode: Column View Floor 3: 17' .'04�' _ - 4-b UJ . . ' S_ 4 f - b 40x 44 b c9 clO 43 -b' .. .. 41/ yb :: s • : - • s.19 -b : :. . 5 1 . - b y-I it) -0 30 • . : J4'-b ' 25 5 J.I _ - JL 6.1'0- tsb. i .50 ts5 . c48 . _ . 04:: . 1 1 1 1 --. - - - .. ._. - -- - ._ La 4 3 L/ b • 254 :r • .: .. - - -- - - - i. -.. . - _ - - .. ...--- LO'b' • 25u 1 1 . f 4._b . I'd L 1! L L.1 -b 10----:: _ _ _ . : LO -0 10 : c12 : 17 -b.. /Z ; - . .. . :. 11- c26 c27 :. .. ... . .. _ . fU . . 025 ---- ` -- ' - - " - -- • ` - ' --- -- 1L-b t i b 00 : . • . : • . _ .. -- - -- • . - -- t o b 03 a - b • • 0. c39'' ; c40 � n bG . a ds t - _ _ 4- . l •• sb . .BB1B.B BCCCCCCC C tCCC CC CCCC C CCC CCICCCD DDD D DD DtDDD CD DD :DD DDDD C.D!DD DE,E E E E EEEEEEIEEIEEitEEEEEtEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0' 1'2'3'4'5'6'7'8'91(1 i :1 :1'1'.1(1'1!1'- 2(2 !2(221253(33:3 :3 .63'31314(4 4A:4.4.4(4'4E4i5(5 5:5:5.5!5(5'515 6(68:6:6- fi?6(6.65657(7 ?(77-6" • • • C — 61 (0 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C - FRONT LOAD • WoodWorks® Sizer 7.1 June 28, 2010 13:16:41 Concept Mode: Beam View Roof: 25' 1050 .. .. ..- . .. . _ .. 49' -6 104 ; . : - - - - - - - • 40 - 0' 1 US : : - . - - .1 - 41.- a 40 -0 IU.I 40-1) • 9 - -- - b5 : .: . : 43_b yf um.. 4 .. - — 41-0 y0 :' - -- ; - - 40 V'l 30 - b' `VU - -- - - - Oy 3.3-0 01 : 31 -b • tab .- SU'-b tso , . . . . .. Ly" +� 04 . 0) .. .. .. _ L/' b' Lis 0' OL- . Lb ' 01 - : 1b. -0.. 0U_ 24 -0 Iti ; ' LG -0 • (b :: ' ` LU' b b I y • 14 T0•-b .11 . -0 lb b' J U 14 b 01 _ - - - - .. "-- ., - - - 11 _b' (0b. .. - _ .. • . V . b .. b0 - V -0 • b 4 ) - ' .; - ' � e °L ' I • - b . b .. b ( � ` -ti b U� 4 -0 • 3-b' .. . . .. . .. L'b _1 -0 BB1B.B BCCCC C CC CICCC CC CCCCC C CC CCICCCD DD D D DD DIDDD DD DDDD D D DD CD(DD DE,E E EEEEEEEEIEEIE EEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'678'91(1 "1:1 :1'1 ?1(1'1 i1 2(2 22:2 '33:3 4A:44!4(4 "4E415(5 5:5:5 ?5(5 5(5!6{6 8:6: 6 :7.7 -6" • • C — 6t1).'-' WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C - FRONT LOAD WoodWorks® Sizer 7.1 June 28, 2010 13:16:44 Concept Mode: Column View Roof: 25' 1050. .. 49'-6" 104 4t5 " -b - 4 / '-b ;11S1 . : : . : . 4 0' Iuy9 c13. : c14 43 -b 41 O. 0 40 -b y0 .3 - 3. 3/ . J l . 35 -b " JU J4 .5Z -0 o .. • 37-b. • 03 :: : : ' : . i : : -- - .. . . .. L1 - 0U-- ---: - .- --'--- " - -_... _.. - -. - -- -- - -- - -- --- - -. -- - --- -- : Z4 -0 • ! ! - 1 . -0 10 : ' = .. LU-0 10 I y . _ . f4 • . .: [ i .. - -- --- .. _.__ 16-0' 13 _ ' 1 -O 1L .. :_ :. .: 10-0 1U 14-0 0f ': i + - - .. ---- - .. .. 1 f . -O . 1,-.* a d D . ba c 16 b c15 : 1 . b .. 00 4 -b b I O" p'-'4 U-0 .BB\B.B BC CCC C CCC (CCC CC CCCC C C CC CCICCCD DDD D DD DIDDD CD DD DDD D DD CD\DD DEE E E EEEEFEEEIEEIE EiEEEEEEJEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42'44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 "1 :1:1 13171(12(2222 (3133:33 :313E4 {44A :44',4(4" 42415[55:5 :5 6166: 6 :6 • • C C,.- \ (t) COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:20 j8 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Live Full UDL 53.3 plf Load2 Dead Full UDL 13.3 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : I 8 1 Dead 64 64 Live 213 213 Total 277 277 Bearing: Load Comb #2 #2 Length 0.50 *' 0.50* "Min. bearing length for joists is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 2x8" Spaced at 16" c/c; Self- weight of 2.58 plf included in loads; Lateral support: top = full, bottom= at supports; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using .NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 32 Fv' = 180 fv /Fv' = 0.18 Bending( +) fb = 506 Fb' = 1242 fb /Fb' = 0.41 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.09 = <L/999 0.40 = L/240 0.23 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.15 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 277, V design = 235 lbs Bending( +): LC #2 = D +L, M = 554 lbs -ft Deflection: LC #2 = D +L EI= 76e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wipd I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. C.- 6;11 COMPANY PROJECT 11 1 WoodWorks® SOFTWARE FOR W000 DESIGN June 28, 2010 13:21 j27 • Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Live Full UDL 53.3 plf Load2 Dead Full UDL 17.3 plf MAXIMUM REACTIONS llbsl and BEARING LENGTHS lint : • • A 1 44 Dead 39 39 Live 107 107 Total 145 145 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for joists is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 2x6" Spaced at 16" c/c; Self- weight of 1.96 plf included in Toads; Lateral support: top = full, bottom= at supports; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 20 Fv' = 180 fv /Fv' = 0.11 Bending( +) fb = 230 Fb' = 1345 fb /Fb' = 0.17 Live Defl'n 0.01 = <L/999 0.13 = L/360 0.07 Total Defl'n 0.01 = <L/999 0.20 = L/240 0.07 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.15 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 .1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 145, V design = 112 lbs Bending( +): LC #2 = D +L, M = 145 lbs -ft Deflection: LC #2 = D +L EI= 33e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. C,10 COMPANY PROJECT i WoodWorks® SOFTWARE FOR W000 OES.GN June 28, 2010 13:26 131 Y Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w56 Dead Partial UD 498.0 498.0 0.00 6.00 plf 2 w56 Rf.Live Partial UD 450.0 450.0 0.00 6.00 plf 3_c46 Dead Point 938 5.00 lbs 4 c46 Rf.Live Point 1350 5.00 lbs MAXIMUM RE • CTIf1NS llhcl and RFARINC; 1 FN(;THS linl • - .K .., , te. � { �-! �.► -- tz - .3 � 6. - - � 4 - ` te r - ... s+�'+ - Tl..i4a . 1 . . t.: � --.....4- ' m.74. 4.. _+ ..;.y -" a -1 _:ca.- ' 'B�F.s ^^r.^+ -71-,-;.;e=-42,==r- �.3r - �7-"' c7 �' _ 'e`.-.. �' �1.... �, „� . � s . w- ^-sue �. _„, - .... .ir =. .'•='te- -+.m 'C '_ _ ..;-at _ ."�y�sc .. z:.. su -,24 - +r.. e,,,,,, • Ti m' ^ -TC . -. i r ' - -" z ,....� -. - ms ...., -+.. .y "c _ *.m. t 0' 61. Dead 1673 2298 Live 1575 2475 Total 3248 4773 . Bearing: • Load Comb #2 #2 Length _ 2.32 3.41 LSL, 1.55E, 2325Fb, 1- 314x14" Self- weight of 7.66 pif included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv* = 207 Fv' = 356 fv * /Fv' = 0.58 Bending( +) fb = 1159 Fb' = 2674 fb /Fb' = 0.43 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.15 Total Defl'n 0.07 = L/980 0.30 = L/240 • 0.24 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0:80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 4773, V design* = 3386 lbs Bending( +): LC #2 = D +L, M = 5520 lbs -ft Deflection: LC #2 = D +L EI= 620e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. c.._ G 0 • COMPANY PROJECT i f WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:21 b1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w33 Dead Partial UD 402.0 402.0 0.00 1.50 plf 2 w33 Rf.Live Partial UD 450.0 450.0 0.00 1.50 plf 3_c9 Dead Point 985 1.50 lbs 4_c9 Rf.Live Point 1470 1.50 lbs 5 j9 Dead Full UDL 47.7 plf 61j9 Live Full UDL 160.0 plf Load? Live Full UDL 40.0 plf Load8 _Dead Full UDL 13.0 plf MAXIMUM RI • 1 0' 31 Dead 1043 742 Live 1541 1204 Total 2585 1946 Bearing: Load Comb #2 #2 , Length 1.38 1.04 Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2006 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 135 Fv' = 207 fv /Fv' = 0.65 Bending( +) fb = 1196 Fb' = 1242 fb /Fb' = 0.96 Live Defl'n 0.01 = <L/999 0.10 = L/360 0.14 Total Defl'n 0.03 = <L/999 0.15 = L/240 0.19 • • ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 2595, V design = 1961 lbs Bending( +): LC #2 = D +L, M = 2619 lbs -ft • Deflection: LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DEVGN June 28, 2010 13:18 b12 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j8 Dead Partial UD 47.7 47.7 0.00 4.50 plf 2_j8 Live Partial UD 160.0 160.0 0.00 4.50 plf 3_j9 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4_j9 Live Partial UD 160.0 160.0 4.50 .7.50 plf 5_j10 Dead Partial UD 47.7 47.7 7.50 16.00 plf 6 j10 Live Partial UD 160.0 160.0 7.50 16.00 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 1 0' 164 Dead 442 442 Live 1280 1280 Total 1722 1722 Bearing: Load Comb #2 #2 Length 0.85 0.85 Gluiam- Unbal., West Species, 24F -V4 DF, 3- 1/8x10 -1/2" Self- weight of 7.55 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 70 Fv' = 265 fv /Fv' = 0.26 Bending( +) fb = 1440 Fb' = 2400 fb /Fb' = 0.60 Live Defl'n 0.43 = L/441 0.53 = L/360 0.82 Total Defl'n 0.66 = L/290 0.80 = L/240 0.83 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 1722, V design = 1534 lbs Bending( +): LC #2 = D +L, M = 6890 lbs -ft Deflection: LC #2 = D +L EI= 543e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Giulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Gluiam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). • -� V6 COMPANY PROJECT 1 I WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:17 b17 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w49 Dead Partial UD 402.0 402.0 4.00 7.50 plf 2_w49 Snow Partial UD 450.0 450.0 4.00 7.50 plf 3_c15 Dead Point 938 4.00 lbs 4 c15 Snow Point 1350 4.00 lbs Loads Dead Full UDL 13.0 plf Load6 Live Full UDL 40.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : mot- �- •'- 4.°- -rte. -= �. �., _ _ Araisextr. .�,n. - "= . `= ;neAm 1 0 ' 7'-6'1 Dead 843 1656 Live 997 1927 Total 1841 3584 Bearing: Load Comb #4 #4 Length 1.31 2.56 LSL, 1.55E, 2325Fb, 1- 3/4x14" Self- weight of 7.66 plf included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 162 Fv' = 356 fv /Fv' = 0.45 Bending( +) fb = 1511 Fb' = 2674 fb /Fb' = 0.57 Live Defl'n 0.06 = <L/999 0.25 = L/360 0.22 Total Defl'n 0.12 = L/722 0.37 = L/240 0.33 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 4 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 4 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 4 Emin' 0.80 million - 1.00 - - - - 1.00 - - 4 Shear : LC #4 = D +S, V = 3584, V design = 2643 lbs Bending( +): LC #4 = D +S, M = 7198 lbs -ft Deflection: LC #4 = D +S EI= 620e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. �- Cl/ d tV COMPANY PROJECT 111 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:51 b18 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 c16 Dead Point 938 5.00 lbs 2 Rf.Live Point 1350 5.00 lbs 3 w37 Dead Partial UD 498.0 498.0 15.00 16.00 plf 4 w37 Rf.Live Partial UD 450.0 450.0 15.00 16.00 plf 5 w 54 Dead Partial UD 498.0 498.0 14.50 15.00 plf 6 w 54 Rf.Live Partial UD 450.0 450.0 14.50 15.00 plf 7 w 55 Dead Partial UD 96.0 96.0 6.00 7.00 plf 8 w 56 Dead Partial UD 498.0 498.0 0.00 6.00 plf 9 w 56 Rf.Live Partial UD 450.0 450.0 0.00 6.00 plf 10 c39 Dead Point 843 7.00 lbs 11 Rf.Live Point 1147 7.00 lbs 121c40 Dead Point 1656 14.50 lbs 13 c40 Rf.Live Point 2077 14.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • 10' 181 Dead 3950 3630 Live 3994 3956 Total 7944 7586 Bearing: Load Comb #2 #2 Length _ 2.77 2.64 Glulam- Unbal., West Species, 16F -E3 DF, 5- 118x16 -1/2" Self- weight of 19.47 plf included in loads; • Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 117 Fv' = 247 fv /Fv' = 0.47 Bending( +) fb = 1443 Fb' = 1831 fb /Fb' = 0.79 Live Defl'n 0.21 = L/935 0.53 = L/360 0.38 Total Defl'n 0.49 = L/391 0.80 = L/240 0.61 ADDITIONAL DATA: • FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 215 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 1600 1.15 1.00 1.00 1.000 0.995 1.00 1.00 1.00 1.00 - 2 Fcp' 560 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.79 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 7944, V design = 6613 lbs Bending( +): LC #2 = D +L, M = 27966 lbs -ft Deflection: LC #2 = D +L EI= 3070e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I =impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSUAITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). COMPANY PROJECT 1 WoodWorks® SOFIWARF FOR WOOD OENGN June 28, 2010 13:26 b18.1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w63 Dead Partial UD 402.0 402.0 0.00 1.00 plf 2_w63 Rf.Live Partial UD 450.0 450.0 0.00 1.00 plf 3_c9 Dead Point 985 1.00 lbs 4 c9 Rf.Live Point 1470 1.00 lbs 5 c10 Dead Point 985 7.00 lbs 6_c10 Rf.Live Point 1470 7.00 lbs 7_w64 Dead Partial UD 402.0 402.0 7.00 9.50 plf 8_w64 Rf.Live Partial UD 450.0 450.0 7.00 9.50 plf 9_j25 Dead Full UDL 47.7 plf 10_j25 Live Full UDL 160.0 plf Loadll Dead Full UDL 13.0 plf Load12 Live Full UDL 40.0 Plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • 1 0' 9'x'1 Dead 1977 2047 Live 3226 3189 Total 5204 5236 Bearing: Load Comb #2 #2 Length 2.56 2.58 Glulam- Unbal., West Species, 24F -V4 DF, 3- 118x10 -1/2" Self- weight of 7.55 pif included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in)`using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 195 Fv' = 305 fv /Fv' = 0.64 Bending( +) fb = 2004 Fb' = 2760 fb /Fb' = 0.73 Live Defl'n 0.18 = L/627 0.32 = L/360 0.57 Total Defl'n 0.34 = L/335 0.47 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# ' Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million.1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 5236, V design = 4256 lbs Bending( +): LC #2 = D +L, M = 9589 lbs -ft Deflection: LC #2 = D +L EI= 543e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). COMPANY PROJECT 111 WoodWorks® SOFTWARE FOP WOOD DESIGN June 28, 2010 13:21 b19 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j24 Dead Full UDL 51.0 plf 2 j24 Live Full UDL 75.0 plf MAXIMUM REP ' 1rTh o 15=A151111.1f1 1 CMI TLI , ;.,% 10' • 34 Dead 86 86 Live 112 112 Total 198 198 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x8" Self- weight of 6.03 pif included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 7 Fv' = 180 fv /Fv' = 0.04 Bending( +) fb = 58 Fb' = 1170 fb /Fb' = 0.05 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 198, V design = 118 lbs Bending( +): LC #2 = D +L, M = 149 lbs -ft Deflection: LC #2 = D +L EI= 178e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. � -6,1\1c- COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:17 b23 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j14 Dead Partial UD 78.0 78.0 0.00 7.00 plf 2_j14 Live Partial UD 240.0 240.0 0.00 7.00 plf 3_j29 Dead Partial UD 78.0 78.0 7.00 10.50 plf 4_j29 Live Partial UD 240.0 240.0 7.00 10.50 plf 5_j31 Dead Partial UD 26.0 26.0 7.00 10.50 plf 6_j31 Live Partial UD 80.0 80.0 7.00 10.50 plf 7_b24 Dead Point 409 7.00 lbs 8 Live Point 1080 7.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : '!*".4t--4007.: �` Vi � ..---- � - +,.:.,ice '..rte +w ., -- •�► - �..,,, • .,.-.'amt-''. . -,. --_- �,"r 5-- ." " p • g0' 10'-6 Dead 601 798 Live 1667 2213 Total 2268 3012 Bearing: Load Comb #2 #2 Length 1.62 - 2.15 LSL, 1.55E, 2325Fb, 1- 3/4x14" Self- weight of 7.66 plf included in loads; Lateral support: top= full, bottom= at supports; .Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 154 Fv' = 310 fv /Fv' = 0.50 Bending( +) fb = 1658 Fb' = 2325 fb /Fb' = 0.71 Live Defl'n 0.18 = L/714 0.35 = L/360 0.50 Total Defl'n 0.27 = L/462 0.52 = L/240 0.52 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 3012, V design = 2515 lbs Bending( +): LC #2 = D +L, M = 7897 lbs -ft Deflection: LC #2 = D +L EI= 620e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. C CP\TD COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:17 b24 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End Loads Dead Full UDL 200.0 plf Load2 Live Full UDL 540.0 plf MAXIMUM REACTIONS Ilhsl and RFARING LENGTHS 1inl 0' 44 Dead 409 409 Live 1080 1080 Total 1489 1489 Bearing: Load Comb #2 #2 Length 0.68 0.68 Lumber -soft, D.Fir -L, No.2, 4x6" Self- weight of 4.57 pif included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : _ Criterion Analysis Value Design Value Analysis /Design Shear fv = 89 Fv' = 180 fv /Fv' = 0.50 Bending( +) fb = 1013 Fb' = 1170 fb /Fb' = 0.87 Live Defl'n 0.04 = <L/999 0.13 = L/360 0.30 Total Defl'n 0.06 = L/764 0.20 = L/240 0.31 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 1489, V design = 1148 lbs Bending( +): LC #2 = D +L, M = 1489 lbs -ft Deflection: LC #2 = D +L EI= 78e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR Woos DESIGN June 28, 2010 13:22 c10 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c14 Dead Axial 938 (Eccentricity = 0.00 in) 2 Rf.Live Axial 1350 (Eccentricity = 0.00 in) 3_b4 Dead Axial 47 (Eccentricity = 0.00 in) 4 b4 Live Axial 120 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 9 , Lumber n -ply, Hem -Fir, No.2, 2x6 ", 2 -Plys Self- weight of 3.41 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 151 Fc' = 172 fc /Fc' = 0.88 Axial Bearing fc = 151 Fc* = 1644 fc /Fc* = 0.09 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.104 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 2485 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. C - el2C COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:25 c12 Design Check Calculation Sheet Sizer 7.1 LOADS (ibs, psf, or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b23 Dead Axial 601 (Eccentricity = 0.00 in) 2 Live Axial 1667 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 0' 9' Lumber n -ply, Hem -Fir, No.2, 2x4 ", 3 -Plys Self- weight of 3.25 pif included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 146 Fc' = 356 fc /Fc' = 0.41 Axial Bearing fc = 146 Fc* = 1495 fc /Fc* = 0.10 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.238 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 2297 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT i' fl Woo SOFTWARE FOR WOOD DESIGN June 28, 2010 13:23 c16 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b6 Dead Axial 938 (Eccentricity' = 0.00 in) 2 b6 Rf.Live Axial 1350 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 1T Lumber n -ply, Hem -Fir, No.2, 2x6 ", 3 -Plys Self- weight of 5.11 pif included in Toads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 17:00= 17.00 [ft]; Ke x Ld: 1.00 x 17.00= 17.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 96 Fc' = 110 fc /Fc' = 0.87 Axial Bearing fc = 96 Fc* = 1644 'fc /Fc* = 0.06 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.067 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 2375 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT 1 W oodWorks ® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:25 c23 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b18 Dead Axial 3978 (Eccentricity = 0.00 in) 2 Rf.Live Axial 3994 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): • 0' 8' . Timber -soft, Hem -Fir, No.2, 6x6" Self- weight of 6.25 plf included in Toads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design' Value Analysis /Design Axial fc = 265 Fc' = 548 fc /Fc' = 0.48 Axial Bearing fc = 265 Fc* = 661 fc /Fc* = 0.40 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.15 1.00 1.00 0.829 1.000 - - 1.00 1.00 2 Fc* 575 1.15 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 8022 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. ea3 COMPANY PROJECT All WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:23 c28 Design Check Calculation Sheet Sizer7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b24 Dead Axial 409 (Eccentricity = 0.00 in) 2 Live Axial 1080 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): i,w,t`B 4 m il tM 1 -i .+ 11'1 +J,� !'` ki.^r' c, �:¢e t ?! v^+',t 7S z4±-t. a , ix ilkAl. 0' 9• Lumber n -ply, Hem -Fir, No.2, 2x4 ", 2 -Plys Self- weight of 2.17 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.o0 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design 'Value Analysis /Design Axial fc = 144 Fc' = 171 fc /Fc' _ 0.84 Axial Bearing fc = 144 Fc* = 1495 fc /Fc* = 0.10 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.114 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 1509 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. �- (\iLV COMPANY PROJECT I WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:22 c42 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_b19 Dead Axial 86 (Eccentricity = 0.00 in) 2 _Live Axial 112 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 1 0' 8' Lumber Post, Hem -Fir, No.2, 4x4" Self- weight of 2.53 pif included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 18 Fc' = 470 fc /Fc' = 0.04 Axial Bearing fc = 18 Fc* = 1495 fc /Fc* = 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.315 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 218 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:22 c50 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c48 Dead Axial 599 (Eccentricity = 0.00 in) 2 c48 Live Axial 1660 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): • o' 8' Lumber Post, Hem -Fir, No.2, 4x6" Self- weight of 3.98 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 119 Fc' = 468 fc /Fc' = 0.25 Axial Bearing fc = 119 Fc* = 1430 fc /Fc* = 0.08 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.327 1.100 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 2291 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 11.ill p CI . COMMUNICATION RECORD HP Houf Peterson Righellis Inc. To 0 FROM 0 MEMO TO FILE 0 - FIIGINi:URS • Pt. At4 NI: Ii S LANDSCAFE ARCHIrbl:I.,•SURVE,ORS .—.. — - .... . _ . . PHONE NO.: PHONE CALL: 0 MEETING: 0 71 13 In 7. Cfi Z5 Cr t_ in 7: II/ CK :::1 C ....; k 4 s...1 6` g g .-- c.x.) .k.--.- ... ..„,,.. . . 9 0 , . rn — IA N .... 2 ' `sji- . Coft --.... C 0....) t ,.. w o z ‘... V ''. • S 0 • • 0 -,1 COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:36 b17 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf) : . Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w49 Dead Partial UD 402.0 402.0 4.00 7.50 plf 2_w49 Snow Partial UD 450.0 450.0 4.00 7.50 plf 3_c15 Dead Point 938 4.00 lbs 4 c15 Snow Point 1350 4.00 lbs Loads Dead Full UDL 13.0 plf Load6 Live Full UDL 40.0 plf wind Wind Point 2240 4.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : r"' �,-...__.� -._ �- .ems._."' �" r ... ` ....+- 'ms . s -. ade ` _. , , m _ ;,......;.--e$2.-.-- • � :�= ;=. -_ ,.. _ _ ""-'^. ` ...:'i' ? ",r;,;� - 'c ��_. _ ` "w --=:. te - 'F ... . - 'Y.r- :: '•R 'ti. - - .M�. . ._ 'i+. -+r '1 �� �� i ........._ > " tea -..., .mss ^* % �, -`- 3y � _ -- .....r...% ..-"'" �° ��. �►."' ,.,-..::_. .. - �.. - te r 1 0 7-61 Dead 843 1656 Live 1645 2454 Total 2488 4110 Bearing: Load Comb #4 #4 Length 1.78 2.94 LSL, 1.55E, 2325Fb, 1- 3/4x14" Self- weight of 7.66 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 162 Fv' = 356 fv /Fv' = 0.45 Bending( +) fb = 1511 Fb' = 2674 fb /Fb' = 0.57 Live Defl'n 0.09 = <L/999 0.25 = L/360 0.34 Total Defl'n 0.15 = L /580 0.37 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 6 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 6 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 4 Emin' 0.80 million - 1.00 - - - - 1.00 - - 4 Shear : LC #6 = D +S, V = 3584, V design = 2643 lbs Bending( +): LC #6 = D +S, M = 7198 lbs -ft Deflection: LC #4 = D +.75(L +S +W) EI= 620e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. C - & Th COMPANY PROJECT f fl WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:36 b17 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w49 Dead Partial UD 402.0 402.0 4.00 7.50 plf 2 w49 Snow Partial UD 450.0 450.0 4.00 7.50 plf 3 c15 Dead Point 938 4.00 lbs 4 c15 Snow Point 1350 4.00 lbs Loads Dead Full UDL 13.0 plf Load6 Live Full UDL 40.0 plf wind Wind Point -2240 4.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : . +em - .4 ,-; • -_• 'rte =- .-� �"° -s -++�.. - ..�` -`i. rP'r't �f► . • „ ' e..te- „nr 1 0' 7'-6'1 Dead 843 1656 • Live 997 1927 Uplift 528 189 Total 1841 3584 Bearing: Load Comb #6 #6 Length 1.31 2.56 LSL, 1.55E, 2325Fb, 1- 3/4x14" Self- weight of 7.66 Of included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NOS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 162 Fv' = 356 fv /Fv' = 0.45 Bending( +) fb = 1511 Fb' = 2674 fb /Fb' = 0.57 Bending( -) fb = 469 Fb' = 1114 fb /Fb' = 0.42 Live Defl'n 0.06 = <L/999 0.25 = L/360 0.22 Total Defl'n 0.12 = L/722 0.37 = L/240 0.33 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 6 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 6 Fb'- 2325 1.60 - 1.00 0.299 1.'00 - 1.00 1.00 - - 8 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 6 Emin' 0.80 million - 1.00 - - - - 1.00 - - 6 Shear : LC #6 = D +S, V = 3584, V design = 2643 lbs Bending( +): LC #6 = D +S, M = 7198 lbs -ft Bending( -): LC #8 = .6D +W, M = 2235 lbs -ft Deflection: LC #6 = D +S EI= 620e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: • 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. - C12_,C1 COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:41 b18 Ic1 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c16 Dead Point 938 5.00 lbs 2 Snow Point 1350 5.00 lbs 3_w37 Dead Partial UD 498.0 498.0 15.00 16.00 plf 4 w37 Snow Partial UD 450.0 450.0 15.00 16.00 plf 5 w54 Dead Partial UD 498.0 498.0 14.50 15.00 plf 6_w54 Snow Partial UD 450.0 450.0 14.50 15.00 plf 7 Dead Partial UD 96.0 96.0 6.00 7.00 plf 8 w56 Dead Partial UD 498.0 498.0 0.00 6.00 plf 9 w56 Snow Partial UD 450.0 450.0 0.00 6.00 plf 10 c39 Dead Point 843 7.00 , lbs 11 c39 Snow Point 1147 7.00 lbs 12 c40 Dead Point 1656 14.50 lbs 13 c40 Snow Point 2077 14.50 lbs WIND1 Wind Point 8750 0.00 lbs WIND2 Wind Point -8750 7.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : � 0 161 Dead 3950 3630 Live 5866 3956 Uplift 1588 Total 9816 7586 Bearing: Load Comb #3 #2 Length 2.95 2.28 Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x16 -1/2" Self- weight of 19.47 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 117 Fv' = 305 fv /Fv' = 0.38 Bending( +) fb = 1443 Fb' = 2747 fb /Fb' = 0.53 Bending( -) fb = 1354 Fb' = 2743 fb /Fb' = 0.49 Live Defl'n -0.43 = L/446 0.53 = L/360 0.81 Total Defl'n -0.26 = L/737 0.80 = L/240 0.33 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes. Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.15 1.00 1.00 1.000 0.995 1.00 1.00 1.00 1.00 - 2 Fb'- 1850 1.60 1.00 1.00 0.927 1.000 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - • E' 1.8 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #2 = D +S, V = 7944, V design = 6613 lbs Bending( +): LC 412 = D +S, M = 27966 lbs -ft Bending( -): LC #4 = .6D +W, M = 26233 lbs -ft Deflection: LC #4 = .6D +W EI= 3453e06 lb -in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). C_ (3O COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:41 b18 1c2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 c16 Dead Point 938 5.00 lbs 2 c16 Snow Point 1350 5.00 lbs 3_w37 Dead Partial UD 498.0 498.0 15.00 16.00 plf 4_w37 Snow Partial UD 450.0 450.0 15.00 16.00 plf 5 w54 Dead Partial UD 498.0 498.0 14.50 15.00 plf 6 w 54 Snow Partial UD 450.0 450.0 14.50 15.00 plf 7 w 55 Dead Partial UD 96.0 96.0 6.00 7.00 plf 8 w 56 Dead Partial UD 498.0 498.0 0.00 6.00 plf 9 w 56 Snow Partial UD 450.0 450.0 0.00 6.00 plf 10 c39 Dead Point 843 7.00 lbs 11 Snow Point 1147 7.00 lbs 12 c40 Dead Point 1656 14.50 lbs 13 c40 Snow Point 2077 14.50 lbs WIND1 Wind Point -8750 0.00 lbs WIND2 Wind Point 8750 7.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : A 10' 161 Dead 3950 3630 Live 3994 5838 Uplift 1396 Total 7944 9468 Bearing: Load Comb #2 #3 Length _ 2.38 2.84 Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x16 -1/2" Self- weight of 19.47 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 168 Fv' = 424 fv /Fv' = 0.40 Bending( +) fb = 2579 Fb' = 3822 fb /Fb' = 0.67 Live Defl'n 0.41 = L/467 0.53 = L/360 0.77 Total Defl'n 0.58 = L/331 0.80 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 2400 1.60 1.00 1.00 1.000 0.995 1.00 1.00 1.00 1.00 - 3 Fcp' 650 - 1.00 1.00 - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 3 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D +.75(S +W), V = 10637, V design = 9461 lbs Bending( +): LC #3 = D +.75(S +W), M = 49976 lbs -ft Deflection: LC #3 = D +.75(S +W) EI= 3453e06 lb -in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSUAITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). L_ 631, COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:41 b1 B Ic2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 c16 Dead Point 938 5.00 lbs 2 c16 Snow Point 1350 5.00 lbs 3 w37 Dead Partial UD 498.0 498.0 15.00 16.00 plf 4 Snow Partial UD 450.0 450.0 15.00 16.00 plf 5 w54 Dead Partial UD 498.0 498.0 14.50 15.00 plf 6 w54 Snow Partial UD 450.0 450.0 14.50 15.00 plf 7_w55 Dead Partial UD 96.0 96.0 6.00 7.00 plf 8 w56 Dead Partial UD 498.0 498.0 0.00 6.00 plf 10 c39 Dead Point 843 7.00 lbs 12 c40 .Dead Point 1656 14.50 lbs WIND1 Wind Point -8750 0.00 lbs WIND2 Wind Point 8750 7.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 10' 161 Dead 3950 3630 Live 960 3670 Uplift 1396 Total 4910 7300 Bearing: Load Comb #2 #3 Length 1.47 2.19 Glulam- Unbai., West Species, 24F -V4 DF, 5- 118x16 -1/2" Self- weight of 19.47 pif included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 135 Fv' = 424 fv /Fv' = 0.32 Bending( +) fb = 2202 Fb' = 3822 fb /Fb' = 0.58 Live Defl'n 0.31 = L/614 0.53 = L/360 0.59 Total Defl'n 0.48 = L/398 0.80 = L/240 0.60 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 2400 1.60 1.00 1.00 1.000 0.995 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 3 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D +.75(S +W), V = 8361, V design = 7630 lbs Bending( +): LC #4 = .6D +W, M = 42673 lbs -ft Deflection: LC #3 = D +.75(S +W) EI= 3453e06 lb -in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C =construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI/AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 6;gL COMPANY PROJECT 1 WoodWorks® SOFIWARE FOR WOOD DESIGN • June 28, 2010 13:42 b18 Ic1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c16 Dead Point 938 5.00 lbs 2 c16 Snow Point 1350 5.00 lbs 3_w37 Dead Partial UD 498.0 498.0 15.00 16.00 pif 4 Snow Partial UD 450.0 450.0 15.00 16.00 plf 5 w 54 Dead Partial UD 498.0 498.0 14.50 15.00 plf 6_w 54 Snow Partial UD 450.0 450.0 14.50 15.00 plf 7 w55 Dead Partial UD 96.0 96.0 6.00 7.00 plf 8 w 56 Dead Partial UD 498.0 498.0 0.00 6.00 plf 10 c39 Dead Point 843 7.00 lbs 12 Dead Point 1656 14.50 lbs WIND1 Wind Point 8750 0.00 lbs WIND2 Wind Point -8750 7.00 lbs MAXIMUM REACTIONS (Ibs) BEARING LENGTHS (in) : 10' 161 Dead 3950 3630 Live 3591 1065 Uplift 1588 Total 7541 4695 Bearing: Load Comb #3 #2 Length 2.26 1.41 Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x16 -1/2" Self- weight of 19.47 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 74 Fv' = 305 fv /Fv' = 0.24 Bending( +) fb = 933 Fb' = 2747 fb /Fb' = 0.34 Bending( -) fb = 1354 Fb' = 2743 fb /Fb' = 0.49 Live Defl'n -0.43 = L/446 0.53 = L/360 0.81 Total Defl'n -0.26 = L/737 0.80 = L/240 0.33 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.15 1.00 1.00 1.000 0.995 1.00 1.00 1.00 1.00 - 2 Fb'- 1850 1.60 1.00 1.00 0.927 1.000 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC 82 = D +S, V = 4910, V design = 4172 lbs Bending( +): LC #2 = D +S, M = 18077 lbs -ft Bending( -): LC #4 = .6D +W, M = 26233 lbs -ft Deflection: LC #4 = .6D +W EI= 3453e06 lb -in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C =construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI/AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 6 COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:43 beam under 202a LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End dead Dead Full Area 13.00 (1.33)* psf live Live Full Area 40.00 (1.33)* psf wall Dead Partial UD 90.0 90.0 0.00 3.83 plf Windl Wind Point 7380 0.00 lbs Wind2 Wind Point -7380 3.83 lbs *Tributary Width (ft) MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : rt Vi �s. .d„ _ .,.. ��*e+ • 1 0' 16 Dead 565 302 Live 1646 427 Uplift 1538 Total 2211 729 Bearing: Load Comb #3 #2 Length 0.84 0.50* *Min. bearing length for beams is 1/2" for exterior supports PSL, 2.0E, 2900Fb, 3- 1/2x14" Self- weight of 15.31 pif included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 160 Fv' = 464 fv /Fv' = 0.34 Bending( +) fb = 324 Fb' = 2433 fb /Fb' = 0.13 Bending( -) fb = 2163 Fb' = 2842 fb /Fb' = 0.76 Live Defl'n -0.46 = L /415 0.53 = L/360 0.87 Total Defl'n -0.42 = L/456 0.80 = L/240 0.53 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 290 1.60 - 1.00 - - - - 1.00 - 1.00 4 Fb'+ 2900 1.00 - 1.00 0.839 1.00 - 1.00 1.00 - - 2 Fb'- 2900 1.60 - 1.00 0.613 1.00 T 1.00 1.00 - - 4 Fcp' 750 - - 1.00 - - - - 1.00 - - - E' 2.0 million - 1.00 - - - - 1.00 - - 4 Emin' 1.04 million - 1.00 - - - - 1.00 - - 4 Shear : LC #4 = .6D +W, V = 5224, V design = 5224 lbs Bending( +): LC #2 = D +L, M = 3088 lbs -ft Bending( -): LC #4 = .6D +W, M = 20612 lbs -ft Deflection: LC #4 = .6D +W EI= 1601e06 lb -in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 6 • COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:43 beam under 202a LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End dead Dead Full Area 13.00 (1.33)* psf live Live Full Area 40.00 (1.33)* psf wall Dead Partial UD 90.0 90.0 0.00 3.83 plf Windl Wind Point -7380 0.00 lbs Wind2 Wind Point 7380 3.83 _ lbs *Tributary Width (ft) MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 'hr ��,,+e.-- �nt!'� .'+��.- '"C� .�i '�c�..v�.+M'.`c 1 16 1 Dead 565 302 Live 427 1696 Uplift 1380 Total 992 1950 Bearing: Load Comb #2 #4 Length 0.50* 0.74 *Min. bearing length for beams is 1/2" for exterior supports PSL, 2.0E, 2900Fb, 3- 112x14" Self- weight of 15.31 pif included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 181 Fv' = 464 fv /Fv' = 0.39 Bending( +) fb = 2352 Fb' = 2842 fb /Fb' = 0.83 Live Defl'n 0.44 = L/435 0.53 = L/360 0.83 Total Defl'n 0.48 = L/398 0.80 = L/240 0.60 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 290 1.60 - 1.00 - - - - 1.00 - 1.00 4 Fb'+ 2900 1.60 - 1.00 0.613 1.00 - 1.00 1.00 - - 4 Fcp' 750 - - 1.00 - - - - 1.00 - - - E' 2.0 million - 1.00 - - - - 1.00 - - 4 Emin' 1.04 million - 1.00 - - - - 1.00 - - 4 Shear : LC #4 = .6D +W, V = 6000, V design = 5909 lbs Bending( +): LC #4 = .6D +W, M = 22412 lbs -ft Deflection: LC #4 = .6D +W EI= 1601e06 lb -in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. (j1 COMPANY PROJECT WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:44 b18 REAR LC1 Design Check Calculation Sheet Sizer7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w63 Dead Partial UD 402.0 402.0 0.00 1.00 plf 2 w63 Snow Partial UD 450.0 450.0 0.00 1.00 plf 3 c9 Dead Point 985 1.00 lbs 4 c9 Snow Point 1470 1.00 lbs 5 c10 Dead Point 985 7.00 lbs 6 c10 Snow Point 1470 7.00 lbs 7_w64 Dead Partial UD 402.0 402.0 7.00 9.50 plf 8 Snow Partial UD 450.0 450.0 7.00 9.50 plf 9 Dead Full UDL 47.7 plf 10 j25 Live Full UDL 160.0 plf Loadll Dead Full UDL 13.0 plf Load12 Live Full UDL 40.0 plf W1 Wind Point 6190 1.00 lbs W2 Wind Point -6190 7.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • • 1 0' 9'-61 Dead 1977 2047 Live 5352 2391 Uplift 2667 Total 7329 4439 Bearing: Load Comb #4 #3 Length 3.61 2.19 Glulam- Unbal., West Species, 24F -V4 DF, 3- 118x10 -1/2" Self- weight of 7.55 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 297 Fv' = 424 fv /Fv' = 0.70 Bending( +) fb = 1693 Fb' = 2760 fb /Fb' = 0.61 Bending( -) fb = 1580 Fb' = 2844 fb /Fb' = 0.56 Live Defl'n 0.14 = L/837 0.32 = L/360 0.43 Total Defl'n 0.29 = L/386 0.47 = L/240 0.62 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fb'- 1850 1.60 1.00 1.00 0.961 1.000 1.00 1.00 1.00 1.00 - 8 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 3 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 3 Shear : LC #4 = D +.75(L +S +W), V = 7329, V design = 6491 lbs Bending( +): LC #3 = D+.75(L +S), M = 8104 lbs -ft Bending( -): LC 08 = .6D +W, M = 7558 lbs -ft Deflection: LC #3 = D +.75(L +S) El= 543e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). C- G3 COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 201013:44 b18 REAR LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w63 Dead Partial UD 402.0 402.0 0.00 1.00 plf 2_w63 Snow Partial UD 450.0 450.0 0.00 1.00 plf 3 c9 Dead Point 985 1.00 lbs 4 c9 Snow Point 1470 1.00 lbs 5 c10 Dead Point 985 7.00 lbs 6 c10 Snow Point 1470 7.00 lbs 7_w64 Dead Partial UD 402.0 402.0 7.00 9.50 plf • 8 w64 Snow Partial UD 450.0 450.0 7.00 9.50 plf 9 Dead Full UDL 47.7 plf 117)_j25 Live Full UDL 160.0 plf Loadll Dead Full UDL 13.0 plf Load12 Live Full UDL 40.0 plf W1 Wind Point -6190 1.00 lbs W2 Wind Point 6190 7.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 1 0' 9'_61 Dead 1977 2047 Live 2420 5324 Uplift 2709 Total 4397 7371 Bearing: Load Comb #3 #4 Length 2.16_ 3.63 Glulam- Unbal., West Species, 24F -V4 DF, 3- 1/8x10 -1/2" Self- weight of 7.55 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 299 Fv' = 424 fv /Fv' = 0.70 Bending( +) fb = 3225 Fb' = 3840 fb /Fb' = 0.84 Live Defl'n 0.24 = L/468 0.32 = L/360 0.77 Total Defl'n 0.40 = L/283 0.47 = L/240 0.85 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 2400 1.60 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #4 = D +.75(L +S +W), V = 7371, V design = 6533 lbs Bending( +): LC #4 = D +.75(L +S +W), M = 15434 lbs -ft Deflection: LC #4 = D +.75(L +S +W) EI= 543e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I =impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for-your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). CI- • Harper Project: • 1-1P ' Houf Peterson. Client: Job # Righellis Inc. ENGINEERS • PLANNERS Designer: Date: Pg. # LANDSCAPE A RCRITECTS•SURVEVORS 'De c.�c. fles t ca r1 Wdl 10. lb •8•ft.20•ft W = 1600•lb ft Seismic Forces Site Class =D Design Catagory =D W p • = W dl J :_ 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S • = 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F • -= 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F 1.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S := F S S • = F S 2• Sms S :- Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a := 1.0 R := 2.5 (Table 13.5 -1, ASCE 7 -05) 4a • r z1 F := pR P -(1 + 2 h WP EQU. 13.3 -1 P `` Fpmax:= 1.6.S EQU. 13.3 -2 F pmin .3.S EQU. 13.3 -3 F if(Fp > Fpmax,FPmax,if(Fp < Fpmin,Fpmin,Fp)) F = 338.5171•lb Miniumum Vertical Force 0.2• S ds ' W dl = 225.6781 • lb L 6113e) L Harper Project: • P :'• Houf Peterson Client: Job # Righellis Inc. ENGINEERS • PLANNERS Designer: Date: Pg. # LANDSCAPE ARCHITECTS• SURVEYORS Wdl 10 lb -8-ft-20-ft W = 1600-lb ft Seismic Forces Site Class =D Design Catagory =D W := Wdl - P i�� 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period i := 9 Height of Component h := 32 Mean Height Of Roof Fa := 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F := 1.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S := F S Smi := F 2 • S ms S ds • = Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a := 1.0 R := 2.5 (Table 13.5 -1, ASCE 7 -05) 4a •Sds•i F P : RP J = p P •I ( 1 + 2• z hl W EQU. 13.3 - Fpmax 1.6•S EQU. 13.3 - • F pmin := .3 • S ds• l p• W p EQU. 13.3 - := if(F > F pmax ,F pmax ,if ( F p <FpmimFpmin,Fp)) F = 338.5171•lb Miniumum Vertical Force 0.2•Sds W dl = 225.6781•lb C- (130\ V HP Hou f Peterson COMMUNICATION RECORD Righellis Inc. . TO El FROM D MEMO TO FILE ILI ENGINEURS • PLArlf4V{IS LAnt),CA,E ARCHITECTS•SURVI,ORS PHONE NO • PHONE CALL: 0 MEETING: 0 M "0 CO RI XI . 75 0 . L PI 0 .. 0 C) E -ri f..1 - F ' c 4 1 S ...1) 6 --- .... 4 IP 3 _...... ?.. - (r A, it ( .- ...... . _ir NI II 16 ).,13 ...,-) pi I 3. * ..... (11 # c.A ,---- lc, C....C. . . C.) 4 ._ vl_ 1 .... 1.....• \ I .0 • -4. s I , , a ... .... 7 . c.,.. . i z . ___.. 4-- 0 '••■ ... . -... 1 g'S Q • . . • 9 • BY : ke(160( 651 .-•' • . WA DATE. • ' 0Ai 9\0 \ L; . . Joe NO.: , cie . m ,.(,), 6 1:0 .. !PROJECT: . , RE: • DCY--) : D ■ f)1==' t-4.'i IA C r)Pf\C \T'Y 1L s o i • . IDE-cur./6, tr. . , F- w O 2 . NPII.L . ePr ory (ibe .0.\rnIrnay‘ w 0 O 7 1 (t..$3itYAI () '' 1(01.10CiP I . k • u z • 8 w i . cr 0_ , , 0 . . 0 L.APRC.Iti .17 z • O ' = (I to ".a. 6 Vii 44. 414■1)(12. v.1.),. * (2. boards) • 1 x • V iC spacirn T • f , . . , 0 g • . ut) A c. r i ' al =.__ v pt.,... 1 i ,: o a : i I . =_ —.., . . .. , • P ei a 1_,E.V1-1. g.,.. \-)E.‘C-ThNI ■ \) - - - 1 -- - kl, .95 pii-- , . ; . • !I 1 1 1 1 ( S • 22) SItrn\por) rys0 2_ - _ 0 — e v2ii ° T R)'=" c - 3 3S . fr (F+ < 40 1% - v.f, • , 0 t 1> - •- 1 e‘re..x\J t 1 kOcAcSL = SC34° 4 (\ l\ t o S\ ry\?5(5.Y1 3D5 x4122 E ti" 0 ,C , =..- 4(40 i# :, OIL • C— Cf",0\ . N. ''' ', By: p cimod c mur\ DA TE: O DATE \ 1 i \ \ a Jos No.: ' 1 7 C" ---- ' _L t \J - L , . PROJECT: . . RE: " DeC... T a , f-.:_.... 0. o • 0 0 . .. . _I 0 L -E Z P 1...6( C. i..i. • 0 . 1_ w • . . O 2 • . .4____ zoo-o . J . 'N =.. ao 0 #( 4(I \) 0 _.i w , . o z LII 0 x x 0_ 8o T= C. „.. 6 k .. . . _,- a-toot* • 0 _ • z ()_., 5try\bOr 1-11Du 4 ° To , ( - 5%'5... k01` _____ -1.- . 0 0. / I- C El • x 0 Q t 0 '11. Z w El 6 O x L.CDPt l' C.nes a, : • • M .r..- ao•oit. (z.0" zoo or..... ocio - T= C 1-_-. Bboo..itiki i . 4---. (38(6.4t- • 345 I . 1 @,f3L:, e- 9.-4.00 .-.. H-Do4 • i • i . . Ok4-V CI) ,- ; 0 b a • :=. i ow / 1 t > -- 4--> -r ___ . . Harper COMMUNICATION RECORD Houf Peterson Righellis Inc. To 0 FROM El MEMO TO FILE 0 ENGiNEEN!: .WiTNNERS LANDSCAPE ARCHITECTP•SURVCYGRS. .---------- ..... ----.--.--... PI-IONE NO.: PHONE CALL: 0 MEETING: 0 • Pil • r? —.IS C 7 H RI El b VI X 1 I r) ni in (b , k..../ . ,.., It cil 0 er .— 3 su s1.5 Q.' . ..c -- 2g _.°' o 8 C3 E . • ------ d . cli .._..../ ....., , 6 Cr\ .... 9 1.... F. I IN, F1.2 v , 1 _ <------ — . c.- -C ...c"" . . . (c) C.) t 11 . C — I j r_. (.. . . . . ..... • ---.... t CTh -- -- Houf Peterson . COMMUNICATION RECORD . . • • . Righellis Inc., To 0 FROM 111 • MEMO TO FILE 0 . . EMOINEEIIS • PLA!iUERS LA ARCIi/TECTs•supvEYORC . PHONE NO.: PHONE CALL: 0 MEETING: 0 . . . . . • . 17 '17 177 . m • M < . . . rn 0 . . : §C) . . . . ..."'.....". • . S.. . . . . . . - 0 .." Zi Cr S . . . . . N . . I . . . -\.. .. . ... . . ■ • 'I" . .... . • C's‘ 0 ' .. . , .........., • . . ' , 4 . • N 1 0 i...) -c-, . . . • iri . ......,. . -f- . • ..i c... . ,_ r - E • ,, t • 7 . . • », ""'% 0 1/4. '-.....r . . . H . il . . ... . . CS > ir 0 . •c•• • . ..7 ,..."...4 . . . . • . ---, Li • V C . IN . .. . . . .. . . • .. . r . .. . .. . . . . . . .• • . • . :....-... . :5- . . . . . -0 • z •-0 • . . . . C. . . ..“----,. ( ..)5 . • ......—,, . . . . (....\ • - ,--D . . . • • '‘, 0 . . . . . . . . V - . . • . COMPANY PROJECT iD Wood Works® SORWAREFORIAMWODUMN June 8, 2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Point 2.50 200 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : :,f • 7.,;. '4.7" ."'" " P7 - 1' • • • : ,•• '` • I 0' 51 Dead Live 100 100 Total 104 '-104 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams Is 1/2" for exterior supports Lumber-soft, Hem-Fir, No.2, 2x6" Self-weight of 1.7 Of Included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 405 Fb' = 1048 fb/Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.14 ADDITIONAL. DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fc'P 405 - 1.00 1.00 1.00 1.00 - E' 1.3 million 1.00 1.00 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending(+): LC #2 = L, M = 255 lbs-ft Deflection: LC #2 = L El = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. q/5 • i C COMPANY PROJECT .. ... ..1:it:' 1/1/oodWorks® smiwwwwwooponwill . June 8, 2009 16:27 Hand Ra 112 Design Check Calculation Sheet Sizer 8.0 LOADS: • Load Type Distribution Pat-. Location [ft] Magnitude Unit tern Start End Start End LIVE Live Full UDL 50.0 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : . ..:;., 1: ; - 2,:, ;_ :/` .1 I N. ,±...,.., .,•,.., -,•• ;. .-:::••::: ';' • *.!- •z ••:.;'., ...T. • 1 0' 5 Dead • Live 125 125 Total 129 129 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb _ 1.00 1.00 *Min. bearing length for beams is 1/2" for exterior supports • Lumber-soft; Hem-Fir, No.2, 2x6" Self-weight of 1.7 plf induded in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 256 Fb' = 1048 fb/Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.11 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L,. V = 129, V design = 106 lbs Bending(+): LC #2 = L, M = 162 lbs-ft Deflection: LC #2 = L El = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C - FRONT LOAD. WoodWorks® Sizer 7.1 June 22, 2010 14:24:15 Concept Mode: Reactions at Base of Structure View Floor 2: 8' 105 • - 4 -b 1 u4 1280 L.: ' - 1280 L : • - -. IuJ 442 D . = . 442 D 4r -b : -i 1U1 i • 4b b 45 b i Vy • • . � -- - - - 44-b" • ya _ • 4.i b V0 15411204 L 1470 L - :: : -. • 4L' b a b " . 1047746 D):992 D ' :.._.. • ' _ sy 0' `J4 JO b y1.. ' Jb•-b • yu 34 b 25/ :: - t54. - , - -- OZ . _.: '1660 L:-;_..: -- -r. :: -: -=;: •553 L. - . ..: .: : . :.. - . • -: • .. : •=: --:- : . • . _ _. .. Lb'-0 t5.1 .200 D 599 D i • = c • 25U ..4 Mi u • . L4 b.. fy 1080 L ; : : L.5-0 / / 409 D 640E ; .. . . LL -b • rr 208D 4 • LU••b • f 4 i d• -b 480E : 1667 L• =:: i = rU 300D.; _. -: • ib' b 14 b by 1100 L98 D L.. - .- , • . . . . . - - _ .. - 1., -o • bLS- - :.: -. X 75 L.. - - - - - - -- .. 1L'-b • n - 40�D409D' It -to .:._ ',. 24D 11../-b • V 0,,, • , , 113 . , - _ - -- /. -�. 994 L :. 3978 : ( :3658 D -; .3956 L - :. . .. . 8113E -•'. ':633D'3386D• ;• ...._- 1b .. - V -b . BBIB. BBCCCCCCC MCC CC CCCCCCCCCCI CCCDDDDDDDDfODDCDDD• DDDDDDCDDDDEEEEEEEEIEEEIEE !EEEEEEEEUEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'56'7'8'91(1 - 1 :1 :1 1!1(1'11112(22 12242(2 212(3(33 :33 4A :4414(4 "414(5(553:5 5155(5!6(68:6 :6. 6!6(6;61617(77.7.7 . c " (af\ ()C)*-6 • • 001 W\ La. OLi -- C_ e V \ . • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C - REAR LOAD WoodWorks® Sizer 7.1 June 22, 2010 14:22:33 Concept Mode: Reactions at Base of Structure View. Floor 2: 8' 1050 49, - 6„ • '104 1280 L 1280 L : • 42:5-0 Ius 442 D • 442 D 4/ -b • 'IUL :: _ 40•-0 lU7 : . : 43 -b (Ulf : -p. - - - 44 9......:', - :. ; ink 43- b 26 U '; L 4u' b y5 1977 DI. ■ .. ; 2047 D= :. -' .. ,.1•--b• y4.. - - - - - - - - -- - - -- - -- 315-0 , . . : S f -b y 1 Sb o• • y U i s-: i- : t [ - -. : . -- -- -- - --:- - -- - - : J4.40.. • t5y 33 : . : i i tar - ,..51 -b' t5b • tsL :1 !2068 L := :. . • 689 L --`. - - =-- =-- ---- -- -- - -- --- - -:: _ ... -:'- gib b.. I:" 731 D_ 244 D_ �4 tD f y 1080 L LS - /25 640 L Lc_b 1 - 409D ' 208 - - l0 LU b.. • (4 :: . : . . IS • .• -- 4 80E i I I o rL --- -- - .: .._ Iu•-b -- - - - -- - - -- -- - - - - -- - -- - -- - -- - -- - -- -- 1776E . . - 10 -b r u 300 U_ . . . . 14-0 buy 1080 L98 p 1 . '1 .5 • Or 409D409D= --. 75L: - -- - - - - . -- -- - - :- 11 - 0 bb_ : ./.5 u 24 D - - - 1u -0 00 - bG b b.. • b-i _ • 113 L 113 LEO Li0 L12077 L ' 4 -b 113LD38113 L23D801656D - . cb :6 DID'a86D u-tD 13616.6 BC.CCC C CCCICCC CC CCCCC CCC cdc CDDD D D DD DODD CD DDDD D D DD CD1DD DBE E E:E EbbEEEIEE E E+EEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60'62'64'66'68'70'72'74'76' 0' 1' 2' 3' 4' 5' 6' 7' 8' 91( 11: 1: 1 11 ( 1" 111 2(2222 , 22(22iM(33:33 , 3!3E3 :3134(444 :44E4(4741445t5 :5 :5 65:6 :6 6" \&eGC \-00 . • C- 7 . Plain Concrete Isolated Square Footing Design: F2 f := 2500-psi Concrete strength f := 60000 -psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity /conc 150•pcf Concrete density /soil 100•pcf Soil density gall := 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl := 3978 -lb Pdl := Totaldl Totalll := 3994-lb Pp := Totalll Ptl := Pdl + P11 P = 7972.1b Footing Dimensions t := 10•in Footing thickness Width := 30•in Footing width A := Width Footing Area net gall — tf /conc net = 1375•psf Pu Areqd gnet A red = A ft < A = 6.2541 GOOD Widthreqd A req d Widthreqd = 2.41-ft < Width = 2.50ft GOOD Ultimate Loads , := Pd1 + tf'A' /conc P := 1.4•Pd1 + 1.7•P11 P = 13.45•kips P 9u:= A qu = 2.15•ksf C -� Beam Shear Om := -5.5' in (4x4 post) d := tf – 2 . in := 0.85 b := Width b = 30•in V„:= 4 • f V = 13.6-kips 3 Vu qu rb 2 colt b V = 5.49-kips < V = 13.6-kips . GOOD Two -Way Shear / bs := 5;5 in Short side column width bL :_ .5.5• in Long side column width b := 2.(bs + d) + 2.(bL + d) b = 54-in 13 := 1.0 ,up,:= 4 3 3 + - 1• f V = 40.8•kips ( c V := x•2.66• f psi•b•d V = 27.13•kips „y44„:= qu•[b – (bcoi + d) V„ = 10.73•kips < V = 27.13 -kips GOOD Flexure 2 b bcol1 j {).b 1 M := qd 2 I M = 2.8•ft•kips 1,:= 0.65 2 := bd S= 0.185 -ft 6 Ft := 5- - f F = 162.5 -psi M u f := f = 105.14 -psi< F = 162.5 -psi GOOD S else a 2' -6" x 2' -6" x 10" plain concrete footing — V 1 BY: \J\u DATE / \r ` 1 a ( 0 JOB No C . / • M 09, O OF PROJECT: RE: S \ Wall ' TOCAVAy .J 0 J e Sides OP Boy Id.,< rvai_s _ Z D w 0 2 t ° asFc(vt ?4 ) -,3oo pi vx 1 ❑ $ c1(2.1evels 5P' - a CA) pt_c Sloor 0 - 40 t4 C► - elt_z� .m _ 333 P�,P 5}-e ° z ( ►Sopc0(w _ 1o0 w PLC i - - - w = 1 0(.2 1 w -j a LL o (S F Ievels \�s�> -- bU0 cA,F door - 0 z 1 loud = tifb l t- toOu) pLF! MOO( % sbp =1soo psF = tSODpLP • J o 1 1 18 I + iC t ' QOW - w = 1 .00 c LS " & • 0 • Z ❑ z e rear Frrm� v±r 1d \ r\op 0 O = ▪ a DL a5 ( t Ll= W pLF INGxkt Matevets)(► cf.- = a39- Pt.F koor- 4 0►N(ISO FX'I12 Cegl = 33 5}-e 01(2)Ctso w toOw C 1"+ pst = 3rJb coo P LL: ° ° ' E. o a3�13 i- toow lsoo� �• a W■ toq m at uni A' e U v„ 1-s Same cc.s mtv .lac r toads TLS 13Zq k- k.00uJ w : L ! QS-e. tS' e Pay 1v btr o asCt2 >(2)= (00 1 ' wutl (B)(2 X t3Lz _ 411 c,F bar 40tn2C+sUpcF,Cia)(ejt-1,) _ 33310%-G 51-err) Ntz)( .50 u)) 100 w LL o (6`/.z 4o)Cz,> ! 125to et-v- , toUc Tl_ iOO LA) = Use_ aq ( N i z ; v • :;-g• (IQ 9 . • ,-:,_ = .0 ; c7; - g ' 2 0 f = (.0 9 7-411.)c.S'Iji (Z-) bV0°0 = (-s C)b --tz7v X NaLLA f . ,si I, • e 'e - - 0 --I x 0 _s ":" 4'1' _•1 I C.— V,' Ste --" I NT - kr - e:' x 9 E m z m NO • f 4 . E 010-6 c 91117-4 L-L9 iol 4- (b)(s K . -= m 4- (.4.-)LeY i7 ' (i ) 1 a NIS 5' i ?S' 00, 0c0.51 ' 0) F O 9) -31)aWD z -0 x, . z , --s1- z 0 m 0 0 xi 1_1•_. 1 1 ; s_ _i_.; • 1 r 9017 I 1 1 101 K 0 m 0 ill Scrt,,1 sA 1:1 . 7< ‘ ' 1-til Orn 300V 11 ‘1 9, 1 A 11 C ) -- x ,c1,1 , , z _ 6 0 roi kusui - D AN() - Li ' 1031 AO 0 6C ).".." r j °) 'ON e°1- n ., Benue Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:53 AM • Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit C\FDN\Front Load.etz\ • • • M33 =83.44 [IGp'ft] • M33= -12.21 [Kip'ft] Y r• Bentley.- Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:54 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit C\FDN \Front Load 2.etz M33 =43.5 [Kip'ft] • • M33= -40.04 [Kip "ft] • Y 4 C -4F?) BY: DATE: ` 4 & O �O JOB NO.: cam-octo OF PROJECT: RE: U NWT 13 C -Rear Load ❑ ❑ 2oUv Zoo° O � I cr Q u 1 o Z b ' - —� ` `` 1, b w o rl d aA.t' �:a '9 1 �-- a O Mor= 54,,3v.St NI �� DLO) 4- a. (4,3q> a (1 (..33) = `l 34 t- Ot DL Ke = oI0x_ Q,;11,1.1.) + L,LLf -a 1- 5(Sq,s3 a`.`` toi DL t = G .124, Y.-ps Pwco\ lei' x at. Z X= M /Q = 4 S •34 t o (8.1- q. " � - } e oo-) Ft ct u. Z .I a C A- .X = a (.N1 al ► 4 , L W- No,317 0.4a a s St-- 3ZL (2,YAS) a (tt,)-2- 4 0 ci ' '7' x a � - = a C-` . .Elenttey Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:57 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit C\FDN\Rear Load 2.etz\ • • . M33=36.82 [Kip *ft] M33= -50.22 [Kip'ft] X • BY A \Nvc.. DATE: - Sc) ti Q,©1 JOB NO.: CeN Ci V OF PROJECT: I RE: U fl + C - In\-criar SLO S1.01k It ❑ ❑ z '.ate ,(--fir t, (hk F-W o 1 t 2 E ° w ° 1-- a' -1-- - - 4` 1 x a a w ChfCV-- Over Turn 1 0 0 M II a M = - 4,a(214- LL(. ()+ DL(L4) = ay.3.- 1-4Dt.. f Mrk - 3,2(0t I.(C(i.)» -4DL. y- L.52tyc�L O I,sMoT < a9 -31 fi'4 Di. DL, 13 , WI. V-;ps ° Arta. = 8'xi.a.5'xQ.5 & o E LL i )q = LE e 4-(x ,52.- �a .`�5 . 5 . 19 . i o, 3 -m �t I- a a1.(o t °- \'rny.x = (46 _ Li(I,L 1) Oda 36 ksv (.1.s = . ay_. 3 L ( 8 - 2e) g(4 O Q c N ►.y .a.= i o o 1 -_ q a ct Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 1:17 PM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit C\FDN\Interior.etz\ M33 =60.31 [Kip'ft] M33 =- 6358E -12 [Kip'ft] - - _ - _ _ - — M33=-18.91E-10 (Khali] • M33= -21.22 [Kip*ft] rt Bentley' Harper Houf Peterson Ri hellis Inc. P 9 Current Date: 6/22/2010 1:17 PM Units system: English . File name: O: HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit C\FDN \Interior 2.etz\ M33 =55.84 [Kip • • • M33=65:17E :11 [Kip'ft]- - - M33= 21.46E -11 [Kip'ft] M33= -25.6 [Kip'ft1 Y C P, 3 BY' k q\'(... DATE' JOB NO : ce c L ° OF PROJECT: RE: In\--ericir AT-(...4--tr •tc 5 7 k -47( 3 011 Mti*.ik 0 2 L i i 0 CC z _ Tr OM rb" 0:1C, : As= O13 E 6 0 x 0 IA a --= 0 4 4106, csLYI.6, -- _ ,_ ,_\ .(t, ect,9 -€- - - _6,0 - , , f rog — - .• — • : Primok. \33 A5, , - 0 . ' ' Ue. liP TOp _ 41gall . 6 t ; A., :=1 t• 8 )( S ?c t; _ _ i 0 to • ','-' 0_,' 0,C A , z‘.‘ a4! (o,3o,o,06)/ , 0, (3000)( 3 1 - 2 ,) -.-- - 0 : 2 :' - , 3 / 2 ) -7- 3(0.50‘ v_c)c °t .01- \cft (z) tt-t4 3a)r% e bottory-% o‘c T (3) t4-4 V3c,t‘is .17-Y\0 As-r 0 , 559 ttf q = ,O, 559(40,000 ko15)(30 0)(3 x 12_) — 0, 409 IN 0 Mr\ = : OP.1.0(6,sb)(zooh Ca 1 - U = - i'3 4 3 `r.... > LO, 3) ', DATE: - &A,k ) ac JOBNO t\J ciD OF PROJECT: RE: L-c- . . w 6 A `1•4er or \k.) - Cork 0 w w O 2 ‘tociucle, Caf\cf6r., (A).i'vb Mor ,0 9 — - ° rN/ o (-4:10)L paY2) -7A00 e eck_ -e-nd • w ) ( + eL6i--3.a112> t DILA) = _ J-(1I4 41alt) • . . 1.S " V-- 0 DL 1— 0 z 't.`)( '6 cg. 0 6 0 = 1- EL I5(0 - 1 - '40.2) L5 1, 0 c t Q t■ . A- - 5„a6)) e Ct 15 S ,VG)(0, 5 4 131_ •iy7-L ( - _ --- 0. 8c1 Y.S, 4 - ) 1- 4 6C - 0 o 1-1 (1) 06.1 7-1 • 4 - •Y,! ACI 318 -05 Appendix D 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc = 3000 psi fc = 3000 psi h'ef = 3.50 inches h = 12.00 inches (into the Fc Stem = 8.00 inches Note: hef above is the the embedment into or cmax = 5.25 inches the foundation and does not consider stem wz Fnd Width = 36.00 inches c = 2.25 inches c mie = 18.00 inches Wc,N= 1.00 cast -in -place anchor yr 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor = 0.75 strength reduction factor 4) = 0.75 strength reduction fact' Calculations Calculations AN = 68 in` AN = 1296 in` ANo = 110.25 in` AN = 1296 in` Nb = 8,607 pounds Nb = 55,121 pounds Wed.N = 0.8286 Wed,N = 1.00 • Nob = 4,399 pounds Nth = 55,121 pounds +Ntb = 3,299 pounds 4)NCb = 41,341 pounds Combined Capacity of Stem Wall and Foundation o = 44,640 0.754)N = 33,480 Concrete Side Face Blow Out Givens Abrg = 2.15 in` fc = 3000 psi cmin = 18.00 inches = 0.75 strength reduction factor Calculations Nsb = 231,191 pounds (INsb = 173,393 pounds Concrete Pullout Strength Givens Abts = 2.15 in` fc = 3000 psi = 0.76 strength reduction factor Calculations N = 51,552 pounds 4N p = 38,664 pounds Steel Yield Strength Givens f = 58,000 psi A = 0.606 in = 0.80 strength reduction factor Calculations N = 35,148 pounds DNS = 28,118 pounds < 33,480 Ductility Met Holdown Check Holdown: HDU14 Holdown Capacity= 14,930 pounds 1.6* Capacity= 23,888 pounds 23,888 < 28,118 Holdown Checks t*.t. ACI 318 -05 Appendix D . 1.125" Diameter Bar Capacity at Standard Stem Wall Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc = 3000 psi fc= 3000 psi h' = 17.00 inches hef = x'+';.12:00.'• inches (into the Foundation) Stem = y8 00_ ' inches Note: hef above is the the embedment into only the the foundation and does not consider stem wall:embedment Fnd Width = 36.00 inches c = 2.25 inches c m;n = 18.00 inches Wc,N= 1.00 cast -in -place anchor Wc,N= 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor = 0.75 strength reduction factor 4> = 0.75 strength reduction factor Calculations Calculations ANc = 408 in AN = 1296 !n` ANo = 2601 in` A = 1296 in` Nb = 92,139 pounds Nb = 55,121 pounds Wed,N — 0.7265 Wed,N = 1.00 N = 10,500 pounds N = 55,121 pounds 4)NCb = 7,875 pounds 4)N = 41,341 pounds Combined Capacity of Stem Wall and Foundation Nob = 49,216 0.750N = 36,912 • C-- 1,5 Concrete Side Face Blow Out Givens Abrg = 2.75 in` fc = 3000 psi cmin = 18.00 inches = 0.75 strength reduction factor Calculations N = 261,589 pounds (I)Nsb = 196,192 pounds Concrete Pullout Strength Givens Abrg = 2.75 in` fc = 3000 psi = 0.75 strength reduction factor • Calculations N = 66,000 pounds 4'N = 49,500 pounds Steel Yield Strength Givens f = 58,000 psi A = 0.763 in = 0.80 strength reduction factor Calculations N = 44,254 pounds 4)Ns = 35,403 pounds < 36,912 Ductility Met Holdown Check Holdown: HD19 Holdown Capacity= 16,380 pounds 1.6* Capacity= 26,208 pounds • 26,208 < 35,403 Holdown Checks \dC)It