Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Specifications (3)
Structural Calculations for i Full Lateral & Gravity Analysis of y y so) 3 2010 Plan A 1460 ncTIGAR1 C\ t oNSt Summer Creek Townhomes 8U1L°1NG Tigard, OR Prepared for Pulte Group July 13, 2010 JOB NUMBER: CEN -090 ** *Limitations * ** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and /or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 117 sheets total including this cover sheet. This Packet of Calculations is Null and Void if Signature above is not Original Harper '- Houf Peterson Righellis Inc. ,oGI,CVnG • ••■ERG BAR OS APL hRC'.1TECTO• OVR`:EVORS 205 SE Spokane St. Suite 200 • Portland, OR 97202 0 [P] 503.221.1131 • [F] 503.221.1171 1 104 Main St. Suite 100 o Vancouver, WA 98660 0 [P] 360.450.1 141 0 [F] 360.750.1 141 1133 NW Wall St. Suite 201 o Bend, OR 97701 0 [P] 541.318.1 161 0 [F] 541.318.1 141 Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit A Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, IW: 1 2006 IBC / 2007 OSSC Occupancy Category: 11 Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed, ASCE 7-05 Ch. 20 Importance, IE: 1 ASCE 7 -05 Table 11.5-1 Ss: 0.942 USGS Spectral Response Map S1: 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength, f'c: 3000 psi Foundations & Slab on Grade Concrete Unit Weight, yc: 145 pcf Steel Reinforcement Yield Strength, f 60,000 psi Wood Studs (Wall Studs): Hem -Fir #2 2x & 4x Wood Beams & Posts: DF -L #2 6x & Greater Wood Beams & Posts: DF -L# 1 Glulam Beams: 24F -V4 PSL Beams: Fb =2,900 psi, FV= 328psi, E =2.0 Million TS /LSL Beams: Fb =2325 psi, FV= 460psi, E =1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : 1500 psf Assumed 2. All manufactured trusses, joists, and flush beams u.n.o. shall be designed by others. Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 WoodWorks - Sizer version 2002 Bently RAM Advanse Harper Project: SUMMERCREEK TOWNHOMES UNIT A 'HP 11, Houf Peterson. C lient: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # I.ANOSCAPE ARCHI TEC f9• SURVEYORS DESIGN CRITERIAA. 2007 Oregon Structural Specialty Code & ASCE 7 -05 Roof Dead Load RFR := 2.5•psf Framing RPL := 1.5•psf Plywood RRF := 5 •psf Roofing RME := 1.5•psf Mech & Elec RMS := 1-psf Misc RCG := 2.5•psf Ceiling RIN := 1.psf Insulation RDL = 15.psf Floor Dead Load FFR := 3.psf Framing FPL := 4•psf Sheathing FME := 1.5•psf Mech & Elec FMS := 1.5•psf Misc FIN := .5•psf Finish & Insulation FCLG := 2.5•psf Ceiling FDL = 13.psf Wall Dead Load WOOD EX. Wall := 12•psf INT_Wall := 10 -psf Roof Live Load RLL := 25•psf Floor Live Load FLL := 40•psf /1- LI Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP t. Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: • Pg. # LANDSCAPE ARCHIT ECTS• SURVEYORS Transverse Seismic Forces site class = D Design Catagory =:D Building Occupancy Category: II Weight of Structure In Transverse Direction Roof Weight Roof Area := 843•ft2.1.12 RFWF := RDL•Roof Area RFWr = 14162•1b Floor Weight Floor Area2nd := 64741 FLRWT2 := FDL•Floor Area2nd FLRWr2nd = 8411-lb Floor_Area3 652 -ft FLRWr3rd := FDL•Floor Area3rd FLRWf3 = 8476.1b Wall Weight EX Wall Area := (2203)• 1 INT_;Wall Area := (906)•ft WALLWr := EX_Wall Area + INT Wall WALLw-r = 354964b WTTOTAL = 66545 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h 32 Mean Height Of Roof I := 1 Component Importance Factor (11.5, ASCE 7 -05) A,:= 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C := .02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x := .75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period T := C T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. • (Chapter 22, ASCE 7- 05)...or S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F := 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F, := 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP t. Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCHITECTS• SURVEYORS S MS Fa•Ss SMS = 1.058 (EQU 11.4 -1, ASCE 7 -05) 2 •SMS Sd := 3 Sd = 0.705 (EQU 11.4 -3, ASCE 7 -05) S := F S1 SMi = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2 •SMi Shc := 3 Sdi = 0.389 (EQU 11.4 -4, ASCE 7 -05) Cst := Sds Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) R ...need not exceed... Cs := Sdi le Cs = 0.223 (EQU 12.8 -3, ASCE 7 -05) T R ...and shall not be less then... C1 := if(0.044•Sd < 0.01,0.01, 0.044•Sd s •l e ) ( 0.5•S1•Iel (EQU 12.8 -5 &6, ASCE 7 -05) C2:= if l Si <0.6,0.01, J l R Cs := if (CI > C2, CI , C2) Cs = 0.031 Cs := if(Cst < Cs Cs if(Cst < Cs , Cst, Cs Cs = 0.108 V := Cs• WTTOTAL V = 72201b (EQU 12.8 -1, ASCE 7 -05) E := V•0.7 E = 50541b (Allowable Stress) /1 ‘:3 Harper Project: SUMMERCREEK TOWNHOMES UNIT A P Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCNITECTS•SUF Transverse Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 100 mph (3 Sec Gust) Exposure: B Building Occupancy Category : II I := 1.00 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X := 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... a2 := 2•.1.20.ft Zone A & B Horizontal Length a2 = 4 ft (Fig 6 -2 note 10, ASCE 7 -05) or 2 .4hn2ft a2 =25.6ft but not less than... Amin = 3'2'ft a2 = 6 ft Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA 19.9•psf Pnetzone$ 3.2•psf PnetzoneC := 14.4 psf PnetzoneD := 3.3 *psf Vertical PnetzoneE := - 8.81psf PnetzorieF- 12 •psf PnetzoneG := — 6.4•psf Pnetzone-I 9.7.psf Basic Wind Force PA := PnetzoneA'Iw•X PA = 19.9•psf Wall HWC PB := PnetzoneB'Iw'X PH = 3.2 -psf Roof HWC PC := PnetzoneC'Iw'X PC = 14.4 -psf Wall Typical PD := PnetzoneD'Iw X PD = 3.3 -psf Roof Typical PE := PnetzoneE'Iw'X PE = —8.8 -psf PF := PnetzoneF'Iw'X PF = —12 -psf PG := PnetzoneG'Iw'X PG = — 6.4•psf PH := PnetzoneH'Iw•X PH = — 9.7•psf Harper Project: SUMMERCREEK TOWNHOMES UNIT A Hoof Peterson � Client: PULTE GROUP Job # CEN -090 Righellis Inc. - -- ENGINEERS • ,LANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCH TEC T$• SURVEYORS Determine Wind Sail In Transverse Direction WSAILZoneA (41 59 +' 29 )•ft 2 WSAILZoneB = (19 + 0 + 23)•ft WSAILZoneC':= (391 + 307 + 272) -ft WSJ -ZoneD (0 + 0 + 5)•ft WA WSAILZoneA•PA WA = 25671b WB := WSAILZoneB'PB WB = 134 lb WC := WSAII- ZoneC•PC WC = 13968 lb WD := WSAILZoneD•PD WD = 161b Wind_Force := WA + WB + WC + WD Wind_Force := 10•psf•(WSAILZ + WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind_Force = 16686 Ib Wind Force = 11460 lb WSAILZoneE 94•$2 WSAILZoneF 108•ft WSAILZoneG := 320'ft2 WSAILZoneH 320•ft WE := WSAILZoneE'PE WE = —8271b WF WSAILZoneF'PF WF = —1296 Ib WG = WSAILZoneG WG = —2048 Ib WH := WSAILZoneH•PH WH = — 31041b Upliftnet := WF + WH + (WE + WG) + RDL f WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneG) •. 6.1 . 12 Upliftnet = 12121b (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION Harper Project: SUMMERCREEK TOWNHOMES UNIT A ° P Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCHITECTS•SURVEYORS Longitudinal Seismic Forces Site Class = D Design Catagory = D Building Occupancy Category: 11 Weight of Structure In Longitudinal Direction Roof Weight Roof Area = 944 ft := RDL•Roof Area RF' = 14162-lb Floor Weight Floor_Area2 = 647 ft M F G:= FDL•Floor Area2 FLRW nd = 8411• lb Floor_Area3 = 652 ft • I 6g,A FDL•Floor Area3 FLRWT3rd = 8476-lb Wall Weight NAL Ar A: _ (2203)-ft 2 INT Wall Area = 906 ft NV ;= EX Wal1 + INT Wall WALLw-r = 35496-lb WTTOTAL = 66545 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h = 32 Mean Height Of Roof = 1 Component Importance Factor (11.5, ASCE 7 -05) A, := 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C = 0.02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x = 0.75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period T h n ) x �,,�„ := C t � T a = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 = 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S = 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F = 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F, = 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) - Harper Project: SUMMERCREEK TOWNHOMES UNIT A ;HP : Aouf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. - -- ENGINEERS • PLANNERS - Designer: AMC Date: Pg. # LANDSCAPE ARCNIt EGTS• SURVE YORE A := F SMs = 1.058 (EQU 11.4 -1, ASCE 7 -05) 2 - SMg := 3 Sd = 0.705 (EQU 11.4 -3, ASCE 7 -05) := F� Si SMI = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2 - SM1 = SdI = 0.389 (EQU 11.4 -4, ASCE 7 -05) 3 := S R Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) ...need not exceed... SdI T Csmax = 0.223 (EQU 12.8 -3, ASCE 7 -05) ea ...and shall not be less then... if(0.044•Sds•l < 0.01,0.01,0.044- Sd r 0.5-S1-1e (EQU 12.8 -5 &6, ASCE 7 -05) ifSI <0.6,0.01, if(Ci > C2,CI,C2) Cs = 0.031 Cs := if (Cst <Cs „ if (Cst <Cs Cs = 0.108 M V := Cs•WTTOTAL V = 72201b • (EQU 12.8 -1, ASCE 7 -05) E := V -0.7 E = 50541b (Allowable Stress) 1Z/ Harper Project: SUMMERCREEK TOWNHOMES UNIT A e ' Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE A RCN■TECTS• SURVEYORS Longitudinal Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 110 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I = 1.0 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X = 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... = 2•.1.20•ft Zone A & B Horizontal Length = 4 ft (Fig 6 -2 note 10, ASCE 7 -05) or ,_ .4 h 2 ft a2 = 25.6 ft but not less than... 2.— 3.2•ft 6ft a = Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA = 19.9•psf PnetzoneB = 3.21psf PnetzoneC = 14.4•psf PnetzoneD = 3.3•psf Vertical PnetzoneE = —8.8.psf PnetzoneF = — 12.psf PnetzoneG = —6.4•psf PnetzoneH = —9.7•psf Basic Wind Force PnetzoneA'Iw•X PA = 19.9•psf Wall HWC ,:= PnetzoneB'Iw'X PB = 3.2•psf Roof HWC = PnetzoneC'Iw'X Pc = 14.4•psf Wall Typical , = PnetzoneD'Iw'X PD = 3.3•psf Roof Typical ,:= PnetzoneE' Iw X PE = — 8.8•psf := PnetzoneF'Iw•X PF = — 12•psf Pte:= PnetzoneG' Iw' X Pc, = —6.4• psf P, := PnetzoneH'Iw•X PH = — 9.7•psf Harper Project: SUMMERCREEK TOWNHOMES UNIT A P Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. .� ENGINEERS PLANNERS Designer: AMC Date: Pg. # LANOSCAPE ARCNIrEC S•SURVEYORS Determine Wind Sail In Longitudinal Direction (48 40)41 NWA, 74044,:= (10 + 0 +.44)•ft Wnnv := (91 + 137 + 67)•ft S z := (43 + 0 + 113)41 Wes= WSAILZoneA'PA WA = 29251b Yvg, := WSJ- ZoneB'PB WB = 1731b ,:= WSJ- ZoneC'PC WC = 42481b = WSJ- ZoneD'PD WD = 515 lb Wtww := WA + WB + WC + WD d F = 10•psf•(WSAILZ + WSAI-ZoneB + WSAI-ZoneC + WSAILZoneD) Wind Force = 7861 lb Wind Force = 6520 Ib n)w5 :_. 148 • ft := 120..8 W = 323 • t1 VN:= 252=11 WF WSAILZoneE'PE WE = — 13021b ,WF„ WSA- ZoneF'PF WF = —1440 Ib = WSAILZoneG'PG WG, = —2067 Ib := WSAILZoneH'PH WH = — 24441b ,UP,Mx3v'= WF + WH + (WE + WG) + RDL•[WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneG)]'• Upliflnet = 12431b (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION # 9 - L�. Harper Houf Peterson Righellis Pg #: Transverse Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= 11 (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X= 1.00 Iw= 1.00 Wind Sail Wind Net Design Wind Pressure (psf) () Pressure (Ibs) Zone A = 19.9 129 2567 Wall High Wind Zone Horizontal Zone B = 3.2 42 134 Roof High Wind Zone Wind Forces Zone C = 14.4 970 13968 Wall Typ Zone Zone D = 3.3 5 17 Roof Typ Zone Zone E = -8.8 94 -827 Roof Windward High Wind Zone Vertical Zone F = -12.0 108 -1296 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 320 -2048 Roof Windward Typ Wind Zone Zone H = -9.7 320 -3104 Roof Leeward Typ Wind Zone Total Wind Force =l 16686 Ibs I Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -7275 Ibs Resisting Dead Load= 8472 Ibs E_I 1197 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm (ft Zone A Zone B Zone C Zone D Main Floor 41 19 391 0 Upper Floor 59 0 307 0 Main Floor Diaphragm Shear = 6507 lbs Upper Floor Diaphragm Shear = 5595 lbs Roof Diaphragm Shear = 4584 Ibs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Diaphragm Diaphragm Width (ft) (lbs) Width ft (Ibs) (lbs) W (ft ) A 13.08 1737 18 2797 19 2323 Al 24.50 3254 0 0 0 0 B 11.42 1516 18 2797 18.5 2261 E= 49 6507 36 5595 37.5 4584 9 L10 Harper Houf Peterson Righellis Pg #: Transverse Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D 51 = 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 SMg • 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 S 0.71 Equ. 11.4 -3, ASCE 7 -05 Spf= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = ' 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 ' Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 • Floor 2 Wt (Ib)= 8411 Floor 3 Wt (lb)= 8476 Roof Wt (Ib) = 14162 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22609 Trib. Floor 3 Diaphragm Wt (Ib) = 22674 Trib. Roof Diaphragm Wt (Ib) = 21261 • Vertical Dist of Seismic Forces I Cumulative % total of base shear I Rho Check to Shearwalls (Ibs) to shearwalls Req'd? V floor 2 (Ib) = 720 100.0% Yes Vfloo, 3 (Ib) = 1625 85.8% Yes Vroof (lb) = 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line • Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft Ibs lbs lbs A 102 361 394 '114 897 1266 Al 432 0 0 481 0 0 B 113 • 293 449 126 728 1443 Sum 647 654 843 720 1625 2709 Total Base Shear* = I 5054 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. /4 Lk1 ,------ Harper Houf Peterson Righellis Pg #: Longitudinal Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf A.= 1.00 Iw= 1.00 Wind Sail Wind Net Design Wind Pressure (psf) () Pressure (Ibs) Zone A = 19.9 147 - 2925 Wall High Wind Zone Horizontal Zone B = 3.2 54 173 Roof High Wind Zone Wind Forces Zone C = 14.4 295 4248 Wall Typ Zone Zone D = 3.3 156 515 Roof Typ Zone Zone E = -8.8 148 -1302 Roof Windward High Wind Zone Vertical Zone F = -12.0 120 -1440 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 323 -2067 Roof Windward Typ Wind Zone Zone H = -9.7 252 -2444 Roof Leeward Typ Wind Zone • Total Wind Force =l 7861 Ibs I Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -7254 Ibs Resisting Dead Load = 8483 Ibs El 1229 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm (ft Zone A Zone B Zone C Zone D Main Floor 48 10 91 43 Upper Floor 59 0 137 0 Main Floor Diaphragm Shear = 2440 Ibs Upper Floor Diaphragm Shear = 3147 Ibs Roof Diaphragm Shear = 2275 Ibs Wind Distribution To Shearwall Lines . MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Diaphragm Diaphragm (Ibs) (Ibs) (Ibs) Wid (ft) Wi dth (ft ) Width ft 1 10 1220 10 1573 10 1137 2 10 1220 10 1573 10 1137 E= 20 2440 20 3147 ' 20 2275 — A - L, el_ Harper Houf Peterson Righellis Pg #: Longitudinal Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = 11 Site Class = D S1 = 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 SMg 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 S 0.71 Equ. 11.4 -3, ASCE 7 -05 Spi= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (Ib)= 8411 Floor 3 Wt (Ib)= 8476 Roof Wt (Ib) = 14162 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22609 Trib. Floor 3 Diaphragm Wt (Ib) = 22674 Trib. Roof Diaphragm Wt (Ib) = 21261 Vertical Dist of Seismic Forces Cumulative % total of base shear Rho Check to Shearwalls fibs) I to shearwalls I Req'd? V (Ib) = 720 100.0% Yes Vo 3 (Ib) = 1625 85.8% Yes V, ad (lb) = 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear • sq ft sq ft sq ft Ibs Ibs Ibs 1 286 291 415 318 725 1334 2 361 361 428 • 402 900 1375 Sum 647 652 -843 720 1625 2709 Total Base Shear* _ I 5054 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. 4 LV3 Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 'Transvere Shearwalls Line Load Controlled By: Wind Shear 1-1 L Wall H/L Line Load Line Load Line Load Dead V Panel ' Shear Panel M0 MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht I k ht I k ht I k (kip (pll) (ft -k) (ft -k) (k) 101 Not Used • 102 7 1.75 3.50 4.00 ,i >: ' 8.00 1.74 18.00 2.80 27.00 2.32 1959 Double 1.40 NG 103 7 1.75 3.50 4.00 ° + "='?y 8.00 1.74 8.00 2.80 8.00 2.32 1959 Double 1.40 NG • 103a 7 4.00 4.00 1.75 OK 8.00 3.25 814 Single 1.40 IV 104 8 4.50 10.50 1.78 OK 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 105 8 3.00 10.50 2.67 OK 8.00 . 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 106 8 3.00 10.50 2.67 OK 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 109 8 4.58 17.08 1.75 ox 8.00 1.74 18.00 2.80 27.00 2.32 401 Single 1.40 II 110 8 12.50 17.08 0.64 ox 8.00 1.74 8.00 2.80 8.00 2.32 401 Single 1.40 II 111 8 4.50 7.25 1.78 .ox 8.00 1.52. 8.00 2.80 8.00 2.26 907 Double 1.40 VI 112 4.75 1.38 7.25 3.45 ox 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 113 4.75 1.38 7.25 3.45 OK 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 201 9 3.92 10.79 2.30 OK 9.00 2.80 18.00 2.32 474 Single 1.40 II . 201a 9 4.17 10.79 2.16 OK 9.00 2.80 18.00 2.32 474 Single 1.40 11 201b 9 2.71 10.79 3.32 OK 9.00 2.80 18.00. 2.32 474 Single 1.40 II 202A 9 2.96 11.96 3.04 OK 9.00 2.80 18.00 2.26 423 Single 1.40 II 202B 9 3.00 1196 3.00 ox 9.00 2.80 18.00 2.26 423 Single 1.40 II 203 9 3.00 11.96 3.00 ox 9.00 2.80 18.00 2.26 423 Single 1.40. lI 204 9 3.00 11.96 3.00 ox 9.00 2.80 18.00 2.26 423 Single 1.40 II 301 8 3.92 - 13.96 2.04 OK 8.00 2.32 166 Single .1.40 I 302 8 5.79 13.96 1.38 OK 8.00 2.32 166 Single 1.40 I 303 8 4.25 13.96 1.88 OK 8.00 2.32 166' Single 1.40 I 304 8 2.96 5.96 2.70 ox 8.00 2.26 379 ' Single 1.40 II 305 8 3.00 5.96 2.67 ox 8.00 2.26 379 Single 1.40 II Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) /4 - L, \LA: Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 fransvere Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho'V % Story # • Panel Shear Panel Mo Ma Uplift Panel Lgth. From 2nd Flr. From 3rd FIr. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht I k ht I k ht I k (klf) (pif) (plf) (ft -k) (ft -k) (k) 101 Not Used 102 7 1.75 3.50 4.00 �� ' 8.00 0.11 18.00 0.90 27.00 1.27 651 846 0.10 0.50 Double 0.50 NG ww_ 103 7' 1.75 330 4.00 *i??, 8.00 0.11 8.00 0.90 8.00 1.27 651 846 0.10 0.50 Double 0.50 NG 103a 7 4.00 4.00 1.75 OK 8.00 0.48 0.00 0.00 120 156' 0.22 1.14 Single 1.00 I 104 8 4.50 10.50 1.78 OK 8.00 0.13 8.00 0.73 8.00 1.44 219 284 0.25 1.13 Single 1.00 _ II 105 8 3.00 10.50 2.67 OK 8.00 0.13 8.00 0.73 8.00 1.44 219 284 0.17 0.75 ' Single 0.75 III 106 8 3.00 10.50 2.67 OK 8.00 0.13 8.00 0.73 8.00 1.44 219 284 0.17 0.75 _ Single 0.75 III _ 109 8 4.58 17.08 1.75 OK 8.00 0.11 18.00 0.90 27.00 1.27 . 134 174 0.25 1.15 Single 1.00 1 110 8 12.50 17.08 0.64 oK 8.00 0.11 8.00 0.90 8.00 1.27 134 174 NA 3.13 Single 1.00 1. 111 8 4.50 7.25 1.78 OK 8.00 0.13 8.00 0.73 8.00 1.44 ' 316 411 0.25 1.13 Single 1.00 III 112 5 1.38 7.25 3.45 OK 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.08 0:58 Double 0.58 VII 113 5 1.38 7.25 3.45 OK 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.08 0.58 Double 0.58 _ VII 201 9 3.92 10.79 2.30 OK . 9.00 0.90 18.00 1.27 200 261 0.17 . 0.87 Single 0.87. II 201a 9 4.17 10.79 2.16 OK 9.00 .0.90 18.00 1.27 200 261 0.18 0.93 Single 0.93 II 201b 9 2.71 10.79 3.32 OK 9.00 0.90 18.00 1.27 200 261 0.12 0.60 Single 0.60 III 202A 9 2.96 11.96 104 OK 9.00 0.73 18.00 1.44 182 236 0.13 0.66 Single 0.66 111 202B 9 3.00 11.96 3.00 OK 9.00 0.73 18.00 1.44 182 236 0.13 0.67 Single 0.67 III 203 9 3.00 11.96 3.00 OK ' 9.00 0.73 18.00 1.44 181 236 0.13 0.67 Single 0.67 III 204 - 9 3.00 11.96 3.00 OK . 9.00 0.73 18.00 1.44 ' 181 236 0.13 0.67 Single _ 0.67 RI 301 8 3.92 13.96 2.04 oK 8.00 1.27 91 118 0.20 0.98 Single 0.98 1 302 8 5.79 13.96 1.38 oK 8.00 1.27 91 118 0.29 1.45 Single 1.00 . I 303 8 4.25 13.96 1.88 OK 8.00 1.27. 91 118 0.21 1.06 Single 1.00 1 304 8 2.96 5.96 2.70 OK 8.00 1.44 • 242 315 0.15 0.74 Single 0.74 III • 305 8 3.00 5:96 2.67 OK 8.00 1.44 242 315 0.15 0.75 Single 0.75 III Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total transverse base shear? Yes • Total 1st Floor Wall Length = 18.00 Total # 1st Floor Bays = 4.77 Are 2 bays minimum present along each wall line? No 1st Floor Rho = u Total 2nd Floor Wall Length = 22.75 Total # 2nd Floor Bays = s Are 2 bays minimum present along each wall line? No 2nd Floor Rho = 13 Total 3rd Floor Wall Length = 19.92 Total # 3rd Floor Bays = s Are 2 bays minimum present along each wall line? No 3rd Floor Rho = u Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load'Rho / Total L % Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2 Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load • L 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) \ S '''' ' L Harper Houf Peterson Righellis Pg #: 1 . Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Fir. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft).. (ft) ht k ht k ht k (kit) (plf) (ft-k) (ft -k) (k) 107 8 15.50 15.50 0.52 ox 10.00 1.22 18.00 1.57 27.00 1.14 1.03 254 Single 1.40 I 71.21 123.49 -0.19 108 8 15.50 15.50 0.52 OK 10.00 1.22 18.00_ 1.57 27.00 1.14 1.03 254 Single _ 1.40 I 71.21 123.49 -0.19 1 205 9 13.00 13.00 0.69 ox 9.00 1.57 118.00 1.14 1 0.70 208 Single 1.40 I 34.62 59.15 -0.07 I 206 9 13.00 13.00 0.69 OK 9.00 1.57 18.00 1.14 0.70 208 Single 1.40 I 34.62 59.15 -0.07 1 306 8 10.001 10.00 0.80 ox 8.001 1.14 0.29 114 Single I 1.40 I 9.10 14.40 0.05 I 307 8 10.00 10.00 0.80 ox 8.00 1.14 0.29 114 Single 1.40 I 9.10 14.40 0.05 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 " (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) • /4 --- \....16 Harper Hoof Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 ' Longitudinal Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V ltho•V % Story # • Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr: From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (kit) (plf) (plf) (ft-k) (ft -k) (k) 107 8 15.50 15.50 0.52 OK 10.00 0.32 18.00 0.73 27.00 1.33 1.09 153 153 NA 3.88 Single ' 1.00 I 52.25 130.70 -1.74 108 8 15.50 15.50 0.52 OK 10.00 0.40 18.00 0.90 _ 27.00 1.38 1.09 173 173 NA 3.88 Single 1.00 , 1 57.35 130.70 -1.40 205 206 I 9 9 1 13.00 13.00 1 13.00 13.00 1 oK 1 oK I 1 9.00 0.73 18. 1.33 0.76 158 158 1 NA 2.89 Single 1.00 1 30.541 64.221 -0.64 I ` 9.00 0.90 18.00 1•.38 0 ;76 175 175 NA 2.89 Single ' 1.00 • I 32.85 64.22 -0.45 I 306 8 10.00 307 8 10.00 10.00 0.80 1 OK I I 1 I 1 8 ..0000 1.38 0.35 13 3 3 8 138 I NNAA 1 22.5500 Single 1 11..0000 I 11 00 1 17.40 1 0.06 Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Total 1st Floor Wall Length = 21.00 Total # 1st Floor Bays = 7.75 Are 2 bays minimum present along each wall line? Yes 1st Floor Rho = 1.0 Total 2nd Floor Wall Length = 26.00 Total # 2nd Floor Bays = 6 Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho = 1.0 Total 3rd Floor Wall Length = 20.00 Total # 3rd Floor Bays = s Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho = 1.0 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2•1./H Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear ' Shear Application ht Mr (Resisting Moment) = Dead Load • L 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) /9 ..-- ‘....\:).-- Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Transvere Shearwalls Panel Wall Shear Wall Type Good Fo Uplift Simpson Aoldown Good For V (PR) (PB) (b) - (lb) 101 Not Used 102 Simpson Strongwall 103 Simpson Strongwall 103a 814 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 833 104 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 105 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 106 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 109 401 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 110 401 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 111 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 112 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 990 113 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 990 201 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 201a 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 201b 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 202A 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 202B 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 203 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 204 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 301 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 302 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 303 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 , 304 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 305 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Longitudinal Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good For V (p (PI) (lb) (lb) 107 254 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -192 Simpson None 0 108 254 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 _ -192 Simpson None 0 205 208 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -69 Simpson None 0 206 208 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -69 Simpson None 0 306 133 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 48 Simpson None 0 307 138 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 59 Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. Transverse Wind Uplift Design . Unit A Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. • Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ floors ® Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) . (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 102 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.192 0.832 27.43 0.57 1.69 21.31 20.79 21.31 20.79 103 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.832 0.192 27.43 1.69 - 0.57 20.79 21.31 20.79 21.31 103A 8 1.1667 4.00 4.00 3.254 3.254 814 0.04 2.016 1.664 26.03 8.38 6.98 6.00 6.24 6.00 6.24 104 8 1.1667 4.50 10.50 1.516 2.8 2.26 6.576 626 0.1 0.8 0.078 25.08 4.61 1.36 5.58 .6.06 5.58 6.06 105 8 1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 0.048 0.252 0.156 16.72 0.97 0.68 6.45 6.52 6.45 6.52 106 8 .1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 • 0.048 0.156 0.252 .16.72 0.68 0.97 6.52 6.45 6.52 6.45 109 8 1.1667 4.58 17:08 1.737 2.8 2.32 6.857 401 0.152 0.192 0.156 16.31 2.47 2.31 3.63 3.66 201L 201R 4.82 5.09 8.45 8.75 110 8 1.1667 12.50 17.08 1.737 2.8 2.32 6.857 401 0.096 0.156 0.192 44.52 9.45 9.90 3.24 3.21 201aL 201 bR 4.95 4.88 8.18 8.09 111 8 1.1667 4.50 7.50 1.516 2.8 2.26 6.576 877 0.144 0.8 0.078 35.11 5.06 1.81 8.02 8.51 8.02 8.51 112 8 1.1667 1.50 7.50 1.516 2.8 2.26 6.576 877 0.048 0.252 0.234 11.70 0.43 0.41 11 :44 11:46 11.44 11.46 113 8 1.1667 1.50 7.50 1.516 2.8 2.26 6.576 877 0.048 0.234 0.252 11.70 0.41 0.43 11.46 11.44 11.46 11.44 201 9 1.1667 3.92 10.8 2.8 2.32 5.12 474 0.225 0.432 0.156 17.71 3.42 2.34 3.99 4.16 301L 301R 0.83 0.93 4.82 5.09 201a 9 1.1667 4.17 10.8 2.8 2.32 5.12 474 0.225 0.156 0.156 18.84 2.61 2.61 4.14 4.14 302L 302R 0.80 0.80 4.95 4.95 201b 9 1.1667 2.71 10.8 2.8 2.32 5.12 , 474 0.225 0.156 .0.432 12.24 1.25 2.00 4.24 4.08 303L 303R 0.91 0.80 5.15 4.88 202A 9 1.1667 2.96 11.958333 2.8 2.26 5.06 423 0.173 0.432 0.052 11.92 2.04 0.91 3.62 3.84 304L 304R 2.60 2.75 6.21 6.59 202B 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.173 0.052 0.216 12.09 0.93 1.43 3.84 3.74 305L 305R 2.74 2.16 6.58 5.91 203 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.309 0.216 0.312 12.09 2.04 2.33 3.62 3.56 3.62 3.56 204 9 1.1667 3_ 11.958333 2.8_ 2.26 5.06 423 0.225 0.312_ 0.432 12.09 1.95 2.31 3.64 3.57 3.64 3.57 301 8 3.92 13.96 2.32 .2.32 166 0.232 0.384 0.204 5.21 3.29 2.58 0.83 0.93 0.83 0.93 302 8 5.79 13.96 2.32 2.32 166 • 0.232 0.204 0.204 7.70 5.07 5.07 0.80 0.80 0.80 0.80 303 8 4.25 13.96 2.32 2.32 166 0.232 0.204 0.384 5.65 2.96 3.73 0.91 . 0.80 0.91 0.80 304 8 2.96 5.96 2.26 2.26 379 0.232 0.384 0.136 8.98 2.15 1.42 2.60 2.75 2.60 2.75 305 8 _ 3 5.96 2.26 2.26 379 0.232 0.136 1.104 9.10 1.45 4.36 2.74 2.16 2.74 2.16 Spreadsheet Column Definitions & Formulas L = Shear Panel Length A' H = Shear Panel Height ` Wall Length = Sum of Shear Panels Lengths in Shear Line r..°' V (Panel Shear) = Sum of Line Load / Total L 1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) Transverse Seismic Uplift Design Unit A Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Fir. Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of ® Right Wall Wall @ Left @. floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k pif kif k k kft kft kft k k k k k k 102 8 1.1667 • 1.75 3.50 0.114 0.9 1.27 2.284 653 0.152 0.192 0.832 10.40 0.57 1.69 7.91 7.11 0 0 7.91 7.11 103 8 1.1667 1.75 3.50 0.114 0.9 1.27 2.284 653 0.152 0.832 0.192 10.40 1.69 0.57 7.11 7.91 0 0 7.11 7.91 103A 8 1.1667 4.00 4.00 0.481 0.481 120 . 0.04 2.016 1.664 3.85 8.38 6.98 -1.06 -0.69 0 0 -1.06 -0.69 104 8 1.1667 4.50 10.50 0.126 0.73 1.44 2.296 219 0.1 0.8 0.078 8.96 4.61 1.36 1.20 1.93 0 0 1.20 1.93 105 8 1.1667 3.00 10.50 0.126 0.73 1.44 2.296 219 0.048 0.252 0.156 5.97 0.97 0.68 2.04 2.14 0 0 2.04 2.14 106 8 1.1667 3.00 10.50 0.126 0.73 1.44 2.296 219 0.048 0.156 0.252 5.97 0.68 0.97 2.14 2.04 0 . 0 . 2.14 2.04 109 8 1.1667 4.58 17.08 0.114 0.9 1.27 2.284 134 0.152 0.192 0.156 5.58 2.47 2.31 0.82 0.86 201L 201R 1.13 1.54 1.95 2.40 110 8 1.1667 12.50 17.08 0.114 0.9 1.27 2.284 134 0.096 0.156 0.192 15.23 9.45 9.90 0.56 0.53 201 aL 201 bR 1.32 1.32 1.88 1.85 111 8 1.1667 4.50 7.50 0.126 0.73 1.44 2.296 306 0.144 0.8 0.078 12.54 5.06 1.81 2.00 2.73 0 0 2.00 2.73 112 8 1.1667 1.50 7.50 0.126 0.73 1.44 2.296 306 0.048 0.252 0.234 4.18 0.43 0.41 3.79 3.82 0 0 3.79 3.82 113 8 1.1667 1.50 7.50 0.126 0.73 1.44 2.296 306 0.048 0.234 0.252 4.18 0.41 0.43 3.82 3.79 0 0 3.82 3.79 201 9 1.1667 3.92 10.80 0.9 1.27 2.17 201 0.225 0.432 0.156 7.63 3.42 2.34 1.16 1.41 301L 301R -0.03 0.13 1.13 1.54 201a 9 1.1667 4.17 10.80 0.9 1.27 2.17 201 0.225 0.156 0.156 8.11 2.61 2.61 • 1.38 1.38 302L 302R -0.06 -0.06 1.32 1.32 201b 9 1.1667 2.71 10.80 0.9 ' 1.27 2.17 201 0.225 .0.156 0.432 5.27 1.25 2.00 1.53 1.28 303L 303R 0.10 -0.06 1.63 1.22 202A 9 1.1667 2.96 11.96 0.73 1.44 2.17 181 0.173 0.432 0.052 5.25 2.04 0.91 1.15 1.50 304L 304R 1.28 1.50 2.43 3.00 202B 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.173 0.052 0.216 5.32 0.93 1.43 1.49 1.35 305L 305R • 1.50 0.63 2.99 1.97 203 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.309 0.216 0.312 5.32 2.04 2.33 1.16 1.08 0 0 1.16 1.08 204 9 1.1667 3.00 11.96 '0.73 1.44 2.17 181 "0.225 0.312 0.432 5.32 1.95 2.31 1.19 1.08 0 0 1.19 1.08 301 8 0 3.92 13.96 1.27. 1.27 91 0.232 0.384 0.204 2.85 3.29 2.58 -0.03 0.13 0 0 -0.03 0.13 302 8 0 5.79 13.96 1.27 1.27 91 0.232 0.204 0.204 4.21 5.07 5.07 -0.06 -0.06 0 0 -0.06 -0.06 303 8 0 4.25 13.96 1.27 1.27 91 0.232 0.204 0.384 3.09 2.96 3.73 0.10 -0.06 0 . 0 0.10 - 0.06 304 8 0 2.96 5.96 1.44 1.44 242 0.232 0.384 0.136 5.72 2.15 1.42 1.28 . 1.50 0 0 1.28 1.50 305 8 0 3.00 5.96 . 1.44 1.44 242 0.232 0.136 1.104 5.80 1.45 4.36 1.50 0.63 0 0 1.50 0.63 Spreadsheet Column Definitions & Formulas .--/ L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • TRANSVERSE UPLIFT CALCULATIONS - SUMMARY UNIT A Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right k Simpson k k Simpson k . 102 Wind 21.31 Holdown None 0.00 Wind 20.79 None 0.00 103 Wind 20.79 Holdown None 0.00 Wind 21.31 None 0.00 103A Wind 6.00 Holdown HDQ8 w 3HF 6.65 Wind 6.24 HDQ8 w 3HF 6.65 104 Wind 5.58 Holdown HDQ8 w 3HF 6.65 Wind 6.06 HDQ8 w 3HF 6.65 105 Wind 6.45 Holdown HDQ8 w 3HF 6.65 Wind 6.52 HDQ8 w 3HF 6.65 i 106 Wind 6.52 Holdown HDQ8 w 3HF 6.65 Wind 6.45 HDQ8 w 3HF 6.65 109 Wind 8.45 Holdown HDQ8 w DF 9.23 Wind 8.75 HDQ8 w DF 9.23 110 Wind 8.18 Holdown HDQ8 w DF 9.23 Wind 8.09 HDQ8 w DF 9.23 111 Wind 8.02 Holdown HDQ8 w DF 9.23 Wind 8.51 HDQ8 w DF '9.23 112 Wind 11.44 Holdown HDU14 14.93 Wind 11.46 HDU14 14.93 113 Wind 11.46 Holdown HDU14 14.93 Wind 11.44 HDU14 14.93 201 Wind 4.82 Strap MST48x2 5.75 Wind 5.09 MST48x2 5.75 201a Wind 4.95 Strap MST48x2 5.75 Wind 4.95 MST48x2 5.75 201b Wind 5.15 Strap MST48x2 5.75 Wind 4.88 MST48x2 5.75 202A Wind 6.21 Strap MST60x2 8.11 Wind 6.59 MST60x2 8.11 nib 202B Wind 6.58 Strap MST60x2 8.11 Wind 5.91 MST60x2 8.11 _; 203 Wind 3.62 Strap MST60 4.06 Wind 3.56 MST60 4.06 204 Wind 3.64 Strap MST60 4.06 Wind 3.57 MST60 4.06 1 301 Wind 0.83 Strap MST37 1.79 Wind 0.93 MST37 1.79 302 Wind 0.80 Strap MST37 1.79 Wind 0.80 MST37 1.79 • 303 Wind 0.91 Strap MST37 1.79 Wind 0.80 MST37 1.79 304 Wind 2.60 Strap MST48 2.88 Wind 2.75 MST48 2.88 305 Wind 2.74 Strap MST48 2.88 Wind 2.16 MST48 2.88 • By A N\C DATE: ao JOB NO.: c teN c yq OF PROJECT: RE: SS UJ r, a.X — - Rear - Loci& ❑ ❑ Ax i x\. Loads: Uki ki j3 f' CJ woo\ s -3‘.)\- inns ice oci w Z 9vk� ay_ W \ t- WOO \ \ o - C' i (A \ kS CYxc. a 0 W E 2 t ❑ Ca ?roc 1 1i. o P 5swa \ x-i- _'y oo \bs v er, wo,i 1 O w 04 O w kk Low = V a. � -1-- a3 a3 = G35 tb5 W = 3 �-aa it watt h_ „..411,5 a actual < Ca.p0,64 - • vk U_ Z 7 f Cc xic - - U c SSW a,1X5 = 3a(�v U v Ce • O Li- Z W ❑ Z O O = F d O • c6 cam.. s o . on :. :xa x /4 1..:.:3 n 3 2 3 (111 S i-11J 1 -16,01v 91 -= M14Nb i1J )N 11 S1kly MS II- 0 X01 1:1 I et 0 Ir E li w . ! T ;' C d „ 1 (-4 L-------„,-1 ------ 0 • 0 __) 4 • , 0 ka- ! 'j � ♦ 6i }�tt ` cC 1 1 , , ,, I ` i 1 i' 01 I 1 / , < -j 1:,i ‘ ..t . 01 ! I , i I i • \ . 0 e -11V1 `Y 0 3 S4N1. )Nm'V }Ali:rva'1 Still MS • 0 c) � . 1 _ 2 1 L _3 ci, c I 3N1 s +u, rnv .3-4.2.0m gI NAct +u-t-') ry %I S14-1j. rn S LP Q01 r.] 9 � Y, b &_)1 1..... O - p. _ T er J 3 43 kcp ;; ° o L ! ❑ - Q \-3 *w i 1 E VJ O �fl < • O b' 3"/ /1 57 • L L»vm NJ 3 1NS'fi Cr) hN +4I.9N91 c5 - N CD 0 • 1 c 1 C Z. . ---1 IS 105 17 ) . . Sw 1)-1 LeNc-)TH A LON)C-1 'NIS L WE V) 0 g ' ,----. • -!4 -..1 P • I I -..... ,.... 1 , I ) i . T==-' 1 _ 11 :11 , I ! 1 , ""ri 1 iltE5 ! 1 ,. ...- ilA 3, 6" c).) I LI I • gs' • „ • •• •,, , . , 0 b . 5\i‘) -- j\r,■$ Let ALoNG-. THvb Ltm...- • - V'11 SIfrU- I-)Nm'd -{d S\fkJ v m �O Ci r • _ .. _. _. :..._ _ .. _. _ O P 9 M :T `' T d 0 cti r (-1 L - C d ' C ., ..- \ / �� 10- ___- _, ,,, '4 I-- o ii.1 A ,„;, c> -- 9 OE .3rN n gL 11- v) r•rm\j 1-0-)N l .,k . MS d' co 2 BY: A N\c....." DATE: ' a 0\ JOB NO.: NJ ,....-0 G O OF PROJECT: RE: 1. 00 YYI t (Kr\Ser a\-- Ronk- of hovSC_. ❑ ❑ V urte S, ; b .5'4 Win {,,, (cmlko Is) C.51.4 `I Z ck ao t L 0 W ollgPhr�grn ta 0 x • 2W ❑ CO = la pl.g. 1 o �,.s► W Cot cI of unlolocked diuphYue»1 W = ClbOI 1 4 \ 3 . Woc G1rctyh lrn a Z Gh2.a tae P i n3 eq pa u = �-� JC. 655 pl ,k4) w � 393'> o 2 2 0 U f cc O li Z W ❑ Z 0 F a O ti o j n. tv • c' 0 '_on c = x yo /4 - L b . -- e, - 1 - --(7/ =x AO . ,' < IQ> ( s 1 Oht = 'c,:)-1) 7Sd OS1 — C at , 2 3 _ 52. S - k_ ' c..) _ =AS �( _( s2- '2) __ � . cg's ; Z1x,�4_.Zus W s- # 1 .4LS - z (SL'Sl)t b t - - Z - x�W \ J m ❑ O A - O 3 00-; 0 4 bbh\ . 4 \010111 - k . ❑ 4 0 M '.. _ _____a__ 3 3 C - 1 4 4.. .E o 1 , )O pool vtvN) 'k'.n1 z 4 2 1.1 -,9 sa una aol "'.1, ?-C =,t al i 1". \.:)% O SD -'O \ d v.)Co SKI -, 114ItZ —, "3': o aJossa)d QNirn f"'-7l S?Q o m ill z n '1 -'91 n O 7: -- )eytr4' 1O0 - a1 k} _ 1S x VW o „s -,el s -Na aos - ••� ,, ;b = sNIoS ❑ 3 No :Ri Ca '�1 m 0 „biEt ,b1 .a• � VAIINIPZE / m o ��'� z 1 • i .7 N01.20 ❑ D CPOAS & v∎ J° v.Co'SzCI :32:1 - . 4 8 14. Q - it'd ao65 173 road Q f Y a) Q ' \— 1.l .i !h :31V4 / \1\).\-1 :A. V :•ON BOf BY: -'AA V DATE ' V1 - \ 2 ` , ( JOB NO C \ .. r' ' . 0 / V , A ` (�J) V N lA` PROJECT: RE: OP i o" 2 . ❑ ❑ 13 uo. (rte . 2ND F A.00ic '` ` Dc c \l oo . { v� s e 3 Two D w � ' i W D F f L ❑ TOO 1 - 1 -.)! .it on tNT = 13'7.9" 0 a Max 1ou r . 'tc� tr 0 ? -er:37 ^.y = V22-0t O w U Z (_ La 0 . Q.e vukr\,d pres °,ace 2;0.O- T'S 1_ Z Loo d o \ NioQ \ LY9 b \C7 04-. - p1.F- 0 V T T Z O O t) b , . T.s" W r1 • Z It - N,s,b = (1,c )135) = S :66, a- , Z , _ (0. ) _ ,a ,(,,B N'+ 1." 1Z 4,2 = 4 4.E ik,l 1-- 3.5 "--- --\ A3,s,.^ 5,1c It} O • c3 r A y Q.,I, .Nz p a _= C 3,4,5,6 = 0 \N, 1 = C�.3,S t- aLf.s(0,5` 5 ) +- - + a9 ,s- C , t':' 1- s,• # o t• zil.(,? t 0 r = - 4 - y•13s ‘N Y,) = - = tqUiTilitc .'A. _ 140:9 -p. Li. V NI' • S v = 1 - _ L,5ai.4 au> „i c- e = v� C,, C MC .CLC,7 C.s�,C� Cr A 'F = (850 p.5 AL , 00, (al 1.5(I. ( t )( 14 14 - 3. `psi. fi b ' = �a a, 7s Yt, Ai , f O. )(),0> ESL d k- 4- L3o • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:49:04 COMPANY 1 PROJECT RESULTS by GROUP - NDS 2005 . SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF '6 9013 Trusses ' a =3II3D.yL - ....aJasa Not designed by request L = ....II. (2) 2x8 Lumber n -ply D.Fir-L No.2 1- 2x9 By Others Not designed by request (2) 2x6 Lumber n -ply Hem-Fir No.2 2- 2x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 ' Typ Wall Lumber Stud Hem -Fir Stud 2x6 @16.0 SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR L6 Mn0 Jat Not designed by request Sloped Joist Lumber -soft D.Fir -L No.2 2x6 916.0 (2) 2x8 (1) Lumber n -ply D.Fir -L No.2 1- 2x8 (2) 2x8 Lumber n -ply D.Fir -L No.2 2- 2x0 By Others Not designed by request By Others 2 Not designed by request (2) 2x12 Lumber n-ply D.Fir -L No.2 2- 2x12 5.125x10.5 Glulam- Unbalan. West Species 24F -V4 DF 5.125x10.5 406 Lumber -soft D.Fir -L No.2 • 4x6 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 4x6 Lumber Post Hem -Fir No.2 4x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 (2) 2x4 Lumber n -ply Hem -Fir No.2 2- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 016.0 SUGGESTED SECTIONS by GROUP for LEVEL 2 - FLOOR 666 Mnf Trusses �� 6 66 n Not designed by request � 6 m 6� 66�� 6 Mnf Jet Not designed by request Deck Jst Lumber -soft D.Fir-L No.2 2x8 @16.0 (2) 2x8 Lumber n -ply D.Fir-L No.2 2- 2x6 3.125x9 Glulam- Unbalan. West Species 24F -V4 DF 3.125x9 4x8 Lumber-soft D.Fir-L No.2 4x8 By Others Not designed by request • By Others 2 Not designed by request (2) 2x10 Lumber n -ply D.Fir-L No.2 1- 2x10 5.125012 GL Glulam- Unbalan. West Species 24F -V4 DF 5.125x12 By Others 3 Not designed by request 3.125x14 LSL LSL 1.55E 2325Fb 3.5x14 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 4x4 Lumber Post Hem -Fir No.2 4x4 • 4x6 Lumber Post Hem -Fir No.2 4x6 . (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 6x6 Timber -soft Hem -Fir No.2 6x6 (2) 2x4 Lumber n -ply Hem -Fir No.2 2- 2x4 6x6 nol Timber -soft D.Fir-L No'.1 6x6 (3) 2x4 Lumber n -ply Hem -Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 @16.0 SUGGESTED SECTIONS by GROUP for LEVEL 1 - FLOOR O9 0*4 - ��� - - � =666666666 N .II'a' .- ._ -� -. ot designed by request CRITICAL MEMBERS and DESIGN CRITERIA Group Member Criterion Analysis /Design Values ' Mnf Jst �=� Mnf Jst as 6i66 Not designed by request v= ' Deck Jst j65 Bending 0.41 Sloped Joist j30 Bending 0.10 Floor Jst4 unknown Unknown 0.00 (2) 2x8 (1) b35 Bending 0.47 (2) 2x8 b8 Bending 0.89 3.125x9 b3 Bending 0.06 4x8 b30 Bending 0.12 By others By Others Not designed by request By Others 2 By Others Not designed by request (2) 2x12 b6 Bending 0.93 (2) 2x10 bl Shear 0.7B 5.125X12 GL 610 Bending 0.76 By Others 3 By Others Not designed by request 5.125x10.5 b9 Deflection 0.95 4X6 b20 Bending 0.08 3.125x14 LSL b14 Deflection 0.73 (2) 2x6 e2 Axial 0.91 4x4 c55 Axial 0.07 4x6 *23 Axial 0.80 (3) 2x6 *29 Axial ' 0.75 6x6 *26 Axial 0.70 . (2) 2x4 c39 Axial 0.62 6x6 nol c12 Axial 0.86 (3) 2x4 c31 Axial 0.89 Typ Wall *14 Axial 0.48 Fnd Fnd Not designed by request ' a�= �� - - - --== ...aenu= =sue DESIGN NOTES: 1. Please : ve verify that the 66 �a6� default deflection limits are appropriate for your e application. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result 1s considered the final design and appears in the Materials List. 3. ROOF LIVE LOAD: treated as w load with corresponding duration factor. Add an empty roof level to bypass this r interpretation. 4. BEARING: the designer is responsible for ensuring that adequate bearing is provided. 5. GLULAM: bxd = actual breadth x actual depth. 6. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 7. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. B. BUILT -UP BEAMS: it is a s umed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not a eeding 4 times the depth and that ' each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. . 9. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 10. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:41:17 Concept Mode: Beam View Floor 2: 8 ' �r�1. y T U � p 1)31 V N 1 0 : ■ �. 49 - 0 WS 4 /-b 4b 1U1 40 _ 45 44 a o .. b1 43- 4L -0 4 1 -b 41I b 3y b SD b VU , b2 _ J4 -b Si -0 156 - _.. .__ - - -. . - .: -- - -- : - .., ' - -- ............. ..... ..... . .'. .. -- - , - - - _ - " "- JL - 0 150 ' - _ --- .. - - --- .31 " b 3lJ-b 2V -0 151 . . L0 -b b10 24 -6 ry : L.3 L L1 -b rtr -- :- - - -b 33 - - , • LU-b : ._... _ . .._ ... ... Its D / - 1/-b /L ..... :- - - - - b3 . - -- . .. - -- - - - - -- - -- - --- --- - - ---. - -- _ _ _. _ - ib b lb -9 (U. -- - - _ - • 14-b bZ5 -- b19 -- - - - _ .. _ _ _ - II b . Bil ' * . ' , o/ Ub 00 _ y -b ts -ta 02 - b4 b14 : ■ b -b bU' b30 -- . b3 • • - 4 _ -r b ,..a b2 II .. -'. BB1 8. 8BCCCCCCCCFCCCCCCCCCCCCCCC\ CCCDDDDDDDD (CDDCDDD•DDDDDDCDIDDDE.EEEEEE tEEEIEEIEE 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' U1'2'3'4'5'6'7'8'91(1 '1:1:1 (112(2 22:2 4A:4 5 :5:5 515(55(5(6(68:6:646!6(6".6(6 7(7 7,77 7177'-6" 141— C•17 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:41:19 Concept Mode: Column View Floor 2: 8' V1(j 1 J ( _ LOP V 1050 ❑ c58 0 c14 . " .- :: �� 49' -6 WIb 4b IV 9 .. :, 44 - y ts - .. c c2 : c70 c71 42 - . :: LSy 33 -a : 3U -b tS5 ❑ .: :. Ly - U" 63 [/ - b" 02. ..._..- - -'.. .-- `- - -- -- --- - - -- - -•-- --" - - -- Lb-b Wi : ' - c 25 c = c 26; :: i ' - ;. .... 24 - ry [3 -b 1/ : C2 z _a !b- - - :. -c73 - " - -- --- - >- - - - - ..._.. -- - - -- - -- -- - -- • -- - ... - -- Lu -U ❑ .. , . . .;.- : .. - ... _- .. .. Its -b .. / i - - - - iU - -- .._._ ---- --- l4 -b I-3 LI - - - - - - -"- !3-a 00 c77 ._ - - : .. - - - -- _ 1L -b ba -a b4) ... . C31 - . - C76 -- c79 - - - - - -- - .. b - a • ba III / -b.. az l cow c30 0 c32 b b bt)� ,: ID �CS />: -. .... -- -- S b c55 ❑' b .. •- 1 0 -0 BBAB.B BC CC C CCC C ICCC CC CCCCC C CC CC\CC CDDD D D DD DEDDD CD DD DD ID D DD CD!DD DE.E E E E EE EFEEEIEEiE EIEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36 38' 40' 42' 44' 46' 48 50' 52' 54' 56' 58' 60' 62' 64' 66 68' 70' 72' 74' 76' 0'1'2'3'4'5'67'8'91(1 '1 ;1:1'1.'1 E1.1 i 12(2'222 int3'3:3:3 4A:4 ;4t4 4(415(5 5:5:5 6:6:645?6(6 Fi 6'.7(7 77.7 7' -0' 4- Cie-- WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 24, 2010 13:14:33 Concept Mode: Beam View Floor 2: 8' (4[1/41?-.. 1 o/- ��/ 1T b31 • O ! .. . - _ .. ' _ . " .. 46, - 4 '103 • 1 UL - 413 •IUI - .. 44- y9- _ ::. : . . . � 1334 4,5'-0* • .. .. -- --�- - - - -: yb 1" 41 -b • 40 b . _ .... ... _ 351 5iJ '''_ -.--- ' -._ ..--- - - - - - -'- - - --- - • -`- Jb - SO b • y u 34 -0 • t:5 b2 3J -b 00 --• : --:-: ._. ` _�__ _..: .:--- --- - - - - -- : - -- -- -- - -- - - - - - - • - - • - -- - '- • 00 .. : - :. .. :. _ - - 60 :. .: : Lb : ..5•1•-10 3U b • " . -- G`9 -b • • 131 Lb b -. _. • ._ • 1310 L u • G3 b • / / imili1�:' " � ..� - - LL -b /! 1333' ,. Guio L -b" /0 . -. 1�. -0 i • !3 i / - !G b ..__ :._ •... '_..1332 _.._.. • • - . _ _.:_..__..:.....: - - - -- -- - -- - - - -- - - -- - - -- - - - - -- - - - - - -- 1 13'-13 15 b" _ 14- . 13 0 bb. .. : - 1319 -- - -- .. • - .... �: - . . - lL-b b/ Ii b'" • 104). .. - .. _ - � 3:: _ . • : i ... . i_:_. . _ ... ___. 1U 13 a o u 45 r -b nz b4 • : ' b14 IR.:. . '. b .. b ll b30��� - :- b35 - - -- .. - . . • _..) .., 1329 • 4-t7 J-b L . b .. ; ; ... . - . . .: . . . .BB\B.B BC CCCCCC C FCCC CC CCCC C CCC CCICC CD DDD D DD D}DDD CD DD :DO D D DD CD10D DE:E EE E'EE•EPEEEIEEiE EIEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38'40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66'68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 1 :1 :1 M12(2 '222 2E2'2k213 (333 :3 :3E331314E44A :4.41 4(4'41415(55:5 :5.51515 6 :7 • • 4 — Ce)li WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 n June 24, 2010 13:14:35 Concept Mode: Column View Floor 2: 8' Q liw c58 c14 ► j � �JU 0 ..❑ �] 4,: • "I UJ� - - - -- ' - - - _ _ : - 4/ -b 40-0 40 -b IUV - - 44 -0- 4 ,5-0 0 : 'C82 - - - C81 _ - - - - -- - - 4L - 0 • �r p. suo V1.5 ' Jy b • yL - . : c3 .. . .. . _ - - . - - - JO -0 JV . by JJ -b 250 ---... -- -- -- -- - - - - - : - -- JL b 00 .- ..-. c4 . .. ._ ...... --- _ - -- - - - -- _ - - -' - - JU -o • 00 . . Gy -0 L / - bL __ -... - -.... - --- - - - - ... - - .. - - Lb --- '- - -- --- -- - -- _ 1:1 c25 - c12 ; c26: . its 0 ... .O : D' . � .. .... _ ._ . c72 c2 c73 LU . . LG-0 L'I '-b -� ' . ; . .. ... ..:.. i:J b i ii b i� b lU - --- : . - - . . _.. __ -- - -- ------- _. 14 -b by �� __ . - -- -- -_ - -. - . - . - . 13-0 !G 0 I I b 00 _ .:. c31 -C76 : c71 - : _ . _ _ _ . _ } _ _ u� u 01. C30 ®c32: b . b .. 0U5 ❑ • : COFC /U • . ; . .. . .. :- - - -- - -- COP b c55 c56 is: . . b .. .BB\B,B BCCCCCCCC}CCC CC CCCCCCCC CCICCCDDDDDCDDFODDCD DD- DDDDDDCDIDDDE,EE E E EE E}EEEIEE'EEIEEEEEE!EEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1'1A:1 (111112(2 22:2 - 3:3:3 , 3:3:3"3/3W (4 4A :4.4!4(4 5:5 :5 :5(5 , 6:6(6;6(6 1 .7(7 777 ^o" 4 - C ,- )i ; WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:44 Concept Mode: Beam View Floor 3: 17' 1O5 0 . _ . 49'-6u . . 10.5' - _ -- - --- ° -- - - _ ... - 4b_b.. IUI 44 y9 : . V0 . b35 b6. ... - 4,5 /. . . yb 4U b' y3_. -.. yG - : :. . -- . . 3! - it) b - so' b 34' b uy ; b7 ' ss - b ' SL -b Of Jt - b : - .__._:. .._ /V b9' LS' b . 125 -b !3 I -b /L- -_ -- „ b21 -- ` :_ r't ; b20 . • 1 1 4 - b bb _.. b1ib17. ic-b bas .. 0L. - • b8: .. b' -b 01, , . .. 4-0 t5U .- - ._ - - - -- -J - Gb.. BB1B.B BC CC C C CC C ICCCCC CCCC C C CC CC1CC CD DDD D DD DtODD_CD DD DDD D DD CD1DD DEE EE E:EEEEEEEEEE EEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66 68' 70' 72' 74' 76' 0'1'2'3'4'5'67'8'91(1 1 :1:1 (1 '111122 22:2 32:3 "313(4(4 4:4:4 5 :5 :5 5f5E6(6 8 :6 :6‘6.'6(6'6t6'.7(7'7 :7.7 7'.7(77 . 4— LolL) WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:42 Concept Mode: Column View Floor 3: 17' 1050 .. . _ 49'-6„ I U4 40:-:b 1US . ` '`_-.: _. __ . . • . - - - ---- -- - 4/ -0 IUL O _ - - 40 IVU I: - [ - - - ... - - '- -- - — -- -- -- 44.0 y9... 43-0 96 c62 - c61 c15 C16 42 b 94 .. . . :.. . - .. ... _ 30 -0 __ _ - .. .. .- _ • V c17- - - 30 -0 • 91 _; . .,_.. ® 30-0 JV :. ; _ : -- - - -- .' _..--- --- 34-0 ,y 33 -0 00 .. - 3L -b Lib - ' - - - . . - . - - c18 .: .. . . . _. . . . . - : - SU-0 ZSL : - ' - . _ _ . ' .... ... .: .. ..... _ - - - - - - . : . .. _._.__ _ . _ .. - - . ' • - - - - - - - . - - - - - L b 01 - - - - 23 -b °V. c39 c24 c23 G4 0' LS 0 - L 0 /b : I1 c60' , LU / I ' 3-3 C37 - -- • - _ -- -- - - - - - - - - -- -- _ _ .. _ (U - - • ■_.. .._ .: .. -.- -'_.. -. .- - --- ._. .. • .. _. - 4-b 09 3-0 00 .__f _c35.. :_ - '- -: - ...... ._ : .. L -0 0f :- .. - i : : - - i _ : - .- . 1. -0 05 - - - - - - 9 -0 • 7). 0 -0 b43 - .. C 66 - - - C63 - uc ■ I.. '11 c756520 c1 6c74 a b Cb 1 -0 B8113.B BC CCC C CC CFCCC CC CCCC C CCC CC \CC CDDDD D DD DICDD CD DDDD D D DD CD!DD DE.E E EE EEEFEEEIEEIE EEEEEE €EEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70'• 72' 74' 76' 0'1'2'3'4'5'678'91(1 1 :1 :1 2 :22 :33 - 3!3(4 (4'4:4 :4 :5 :5 15(5 :6 6!7(7•77:7 • • /q --- (2„7.,‘"'''.1.- WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:38 Concept Mode: Beam View Roof: 25' 1050 49' 40 -13 1U.5 . ' ... - 4 ( -0.. U :-. „ - - - 1V - 44 -0 .. y9 . 4.5 b' y es b23 b24 . 4L -b !'010:--i - -- ' _..__ - - -- -- - - - - - -- - 41 -0 4 b' ..5 -b y s - - - '_ 00 _-- -_. . ; ---- '- - .. '- - -- - - -- -- -- -- - -- - - --- - - -- -- . _ .. - • 3L b 25( . . . . .5 1 - 250 1V - 25.5 : Li -0 Z25 -10 01 - -- 25 -0 !y LS -0 b25.i L1 -b 1`.:5 -0 (4 .----_-. -_. .. - - .. -. . --- -- _ . .. Its -b Ib b (2.1 14 -0 bJ 13 -b b0 1 bb. 11-1-t b43 - - -, .;-- _;. b27- .. -;_.:. _-- =- b28 - -- • _ • :: - - -- 01 bt15 ' ;- 4-b .L -0 BBIB.B BCCCCC CCCfCCC CCCCCCC • CCCCC•CCCDDDDDDDDICDDDD DD'DDDDDDCD'DDDEE:EEE E°EE EtEEEIEEIEEEEEEEEEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18'20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66 68' 70' 72' 74' 76' 0'1'2'3'4'5'678'9111 1:1:1'1111'1 111.212 22:2 44:4414E4•414E5(5 5:5:5.5!5(5'515'. 616 8:6:6 6E617(7'7:77 <7.7E77'-6" 4 - 6.7).) WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:40 Concept Mode: Column View Roof: 25' 1050 „ ... 49' -5 04 . : . 1 0' -b IUS `I' - '.- -' "..; -- - - -- 4/.-0 I u - 40 -0 'IUIb _ - :_._ .._. - _. - - -” - - -- - - 40-0 I UU _ : • : - , - - - - 44 -0 9 ! ; . : : 1 43 -0 a o c42 c43 c44 c45 4L -0 / ..- --- d- "- -._. -- :. _. .: --- - 41. V0 -. - _ - 40 y 3y -b • UU - : 34-0" 00 _ ... 1;111.: _..; __ :;_ _ _. .... ..: ... .. . . . . . _- _. _ _ ___ ___ __ _ -_.. __ _. ._ -.. 3L -0 0 - J1 - 00. . . : --- - .---. ---- `- -- -- - -- :_ - -- - -- -- -- -. --- -- -- - - - - - -- - 30 -b 03 : .: .: .. .. LV -0 04 -- :-:',- - -- -- ... ::..: .... -" - -- --. .. -- - - - - - -- - -- "--- -' -.. --- -" L0 -0 • 253 • - - L! -b !b" "-- - - -- - -I -: - c46 - -- - - - --- -- - • - -. -. -- ---- -- --- : -- LL -0 -_ 11 /0 - j -- -. -- - - --"-- -- • - --" - - - - -- - LU -b• f4 -'--- - -. ._ _ lb -b - --. .-- - t - -._ ._- - /L._ :: - -- - " --- -- - - -----_ ... ._ - . -- - - -_.. ..- -. ..- -- -. .- 10-0 (U--- ".. _ -_- .._:_ - -- . "i. _ _. - - -- "- 14 -b ::.- ._.:_ -...- :c. 0y _ _ .. .. - - -- - -- - - - 13-0 b1 .. - - 1 1 -0 00 "--= -- :... . -..: . ..-.. .. ._ __ - .._ ... - -- --... .. .. _ 1U-b -: _ 04) ._. _ ,._c51c50- c52-- - - - -- -- -- -c53 - :- - ... - a 03 - - : . -- -• -- -- f -0.. b0 340 1111) . - - - - - -- - -- - - - -. - - -- - - - -- -- - -- ... - - . -- --- -b I b' BB\B.B BC CCCC CC CFCCC CC CCCCC C CC CCICC CD DDD D DD DFDDD CD DD'DD D D DD CD1DD DEE E E EEE EFEEEIEEiE E!EEEEEEFEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' • 0'1'2'3'4'5'67'8'9111 1: 1: 1 1'' i( 1 :11112(22.22 :3:3 4A:4.4!4(4 4t4E5t5 5: 5: 5 5. '5(5'5(5!6166:6:6 7.77'71717T -6" 4. — ( -"- 19 COMPANY PROJECT I WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:42 b1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w61 Dead Partial UD 613.2 613.2 2.50 3.00 plf 2_w61 Snow Partial UD 795.0 795.0 2.50 3.00 plf . 3 Dead Point 622 2.50 lbs 4 Snow Point 1192 2.50 lbs 5 j28 Dead Full UDL 47.7 plf 6_j28 Live Full UDL 160.0 plf 7_j33 Dead Full UDL 120.2 plf 8 j33 _Live Full UDL 370.0 plf MAXIMUM RE o Dead 391 1061 Live 795 1615 Total 1186 2676 Bearing: Load Comb #2 #3 Length 0.63 1.43 Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2 -Plys Self- weight of 6.59 plf included in Toads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv* = 67 Fv' = 207 fv * /Fv' = 0.32 Bending( +) fb = 331 Fb' = 1138 fb /Fb' = 0.29 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.05 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emirs' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 2676, V design* = 1237 lbs Bending( +): LC #3 = D +.75(L +S), M = 1178 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 158e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. A Q__ ( 0 COMPANY PROJECT i I WoodWorks® SOFTWARE FOR W000 DESIGN June 24, 2010 12:43 b3 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j45 Dead Full UDL 17.0 plf 2 j45 Live Full UDL 25.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 1 0' 9 Dead 106 106 Live 112 112 Total 218 218 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Glulam- Unbal., West Species, 24F -V4 DF, 3- 1/8x9" Self- weight of 6.48 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 10 Fv' = 265 fv /Fv' = 0.04 Bending( +) fb = 140 Fb' = 2400 fb /Fb' = 0.06 Live Defl'n 0.01 = <L/999 0.30 = L/360 0.04 Total Defl'n 0.03 = <L/999 0.45 = L/240 0.06 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 218, V design = 182 lbs Bending( +): LC #2 = D +L, M = 491 lbs -ft Deflection: LC #2 = D +L EI= 342e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). • 6:11, 0 COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:40 b6 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ins, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 w44 Snow • Partial UD 431.2 431.2 0.00 2.00 plf 5 c45 Dead Point 444 5.00 lbs 6_c45 Snow Point 647 5.00 lbs 7 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9_j25 Dead Full UDL 120.2 plf 10 j25 Live Full UDL 370.0 plf MAXIMUM REACTIONS (Ibs1 and BEARING LENGTHS (inl Dead 1436 1389 Live 1803 1803 Total 3239 3192 Bearing: Load Comb #3 #3 Length 1.73 1.70 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D+.75(L+S), M = 4247 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. J -.i COMPANY PROJECT i WoodWorks® SOFIWARE FOR W000 DESIGN June 24, 2010 12:50 b8 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1j14 Dead Full UDL 113.7 plf 2 j14 Live Full UDL 350.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • 1 64 Dead 357 357 Live 1050 1050 Total 1407 1407 Bearing: Load Comb #2 #2 Length 0.75 0.75 Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 77 Fv' = 180 fv /Fv' = 0.43 Bending( +) fb = 963 Fb' = 1080 fb /Fb' = 0.89 Live Defl'n 0.07 = <L/999 0.20 = L/360 0.33 Total Defl'n 0.10 = L/712 0.30 = L/240 0.34 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 1407, V design = 1123 lbs Bending( +): LC #2 = D +L, M = 2110 lbs -ft Deflection: LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 4- 613 COMPANY PROJECT WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:40 b9 Design Check Calculation Sheet Sizer 7.1 • LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j50 Dead Partial UD 113.7 113.7 0.00 1.50 plf 2_j50 Live Partial UD 350.0 350.0 0.00 1.50 plf 3_j14 Dead Partial UD 113.7 113.7 3.00 9.00 plf 4_j14 Live Partial UD 350.0 350.0 3.00 9.00 plf 5_j51 Dead Partial UD 113.7 113.7 1.50 3.00 plf 6_j51 Live Partial UD 350.0 350.0 1.50 3.00 plf 7_j24 Dead Partial UD 120.2 120.2 0.00 3.00 plf 8_j24 Live Partial UD 370.0 370.0 0.00 3.00 plf 9_j25 Dead Partial UD 120.2 120.2 3.00 9.00 plf 10_j25 Live Partial UD 370.0 370.0 3.00 9.00 pif 11_j26 Dead Partial UD 120.2 120.2 9.00 12.00 plf 12_j26 Live Partial UD 370.0 370.0 9.00 12.00 plf 13_j52 Dead Partial UD 113.7 113.7 9.00 10.50 plf 14_j52 Live Partial UD 350.0 350.0 9.00 10.50 plf 15_j53 Dead Partial UD 113.7 113.7 10.50 12.00 plf 16 j53 Live Partial UD _ 350.0 350.0 10.50 12.00 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : I v 121 Dead 1478 1478 Live 4320 4320 Total 5798 5798 Bearing: Load Comb #2 #2 Length 1.74 1.74 • Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x10 -1/2" Self- weight of 12.39 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 138 Fv' = 265 fv /Fv' = 0.52 Bending( +) fb = 2217 Fb' = 2400 fb /Fb' = 0.92 Live Defl'n 0.38 = L/381 0.40 = L/360 0.94 Total Defl'n 0.57 = L/252 0.60 = L/240 0.95 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 5798, V design = 4953 lbs Bending( +): LC #2 = D +L, M = 17395 lbs -ft Deflection: LC #2 = D +L EI= 890e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). c.:1\ COMPANY PROJECT ill 1 WoodWorks SOFOWAREFOR WOOD DIS1GN June 24, 2010 12:43 b10 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Pat - Start End Start End tern 1 w39 Dead Partial UD 311.0 311.0 0.00 4.50 No 2 w 39 Live Partial UD 680.0 680.0 0.00 4.50 No 3 Dead Point 267 2.00 No 4 c39 Live Point 822 2.00 No 5_j32 Dead Partial UD 120.2 120.2 0.00 0.50 No 6_j32 Live Partial UD 370.0 370.0 0.00 0.50 No 7 j33 Dead Partial UD 120.2 120.2 1.00 4.00 No 8 Live Partial UD 370.0 370.0 1.00 4.00 No 9_ j34 Dead Partial UD 120.2 120.2 4.00 4.50 No 10_j34 Live Partial UD 370.0 370.0 4.00 4.50 No 11 j35 Dead Partial UD 120.2 120.2 4.50 7.50 No 12 Live Partial UD 370.0 370.0 4.50 7.50 No 13_j36 Dead Partial UD 113.7 113.7 4.50 16.50 No 14_j36 Live Partial UD 350.0 350.0 4.50 16.50 No 15 j37 Dead Partial UD 100.7 100.7 3.00 4.50 No 16 Live Partial UD 310.0 310.0 3.00 4.50 No 17_j47 Dead Partial UD 120.2 120.2 7.50 13.50 No 18 j47 Live Partial UD 370.0 370.0 7.50 13.50 No 19 j48 Dead Partial UD 120.2 120.2 13.50 16.50 No 20 j48 Live Partial UD 370.0 370.0 13.50 16.50 No 21_j49 Dead Partial UD 120.2 120.2 0.50 1.00 No 22_j49 Live Partial UD 370.0 370.0 0.50 1.00 No 23_b32 Dead Point 300 3.00 No 24 Live Point 922 3.00 No MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • I i g ), 10' 4'-6" 16-61 Dead 452 4067 1180 Live 847 11291 3436 Uplift 12 Total 1300 15358 4616 Bearing: Load Comb #2 #2 #2 Length 0.50` 4.24 1.27 Cb 1.00 1.09 1.00 'Min. bearing length for beams is 1/2" for exterior supports Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x12" Self- weight of 14.16 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 265 fv /Fv' = 0.60 Bending( +) fb = 1074 Fb' = 2400 fb /Fb' = 0.45 Bending( -) fb = 1396 Fb' = 1844 fb /Fb' = 0.76 Live Defl'n 0.13 = <L/999 0.40 = L/360 0.32 Total Defl'n 0.19 = L/740 0.60 = L/240 0.32 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fb'- 1850 1.00 1.00 1.00 0.997 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 8357, V design = 6496 lbs Bending( +): LC #2 = D +L, M = 11006 lbs -ft Bending( -): LC #2 = D +L, M = 14310 lbs -ft Deflection: LC #2 = D +L EI= 1328e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W=wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. Grades with equal bending capacity in the top and bottom edges of the beam cross- section are recommended for continuous beams. 4. GLULAM: bxd = actual breadth x actual depth. 5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 6. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4 -- 1 ; li '-;;:' COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:44 b13 Design Check Calculation Sheet • Sizer 7.1 • LOADS (Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 c40 Dead Point 217 5.50 lbs 4 c40 Live Point 668 5.50 lbs 5 c67 Dead Point 518 5.00 lbs 6_c67 Snow Point 778 5.00 lbs 7 c68 Dead Point 573 3.00 lbs 8 c68 Snow Point 942 3.00 lbs 9 w59 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10 w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11_j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12_j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13_j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15 j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16_j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 18 b15 Live Point 389 3.50 lbs 19 b32 Dead Point 225 6.50 lbs 20 b32 Live Point 693 6.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : :.., - .a �-, _ t---� - :.,..,,..ti,_. -. .r m a- - . ,,r _ s - ..-- er - ...Won*: !' p ; -' p 6 = s:� - = '-r- ..�'^ -p:y = .=,.....--' -- -7- �■- • 0' gi Dead 2561 3033 Live 2699 3789 Total 5261 6822 Bearing: Load Comb #3 #3 Length 1.88_ _ 2.44 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L/680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC #3 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC #3 = D+.75(L+S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. • 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. el COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:43 b14 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w33 Dead Partial UD 317.7 317.7 9.00 12.00 plf 2 w33 Live Partial UD 350.0 350.0 9.00 12.00 plf 3 c19 Dead Point 357 9.00 lbs 4 Live Point 1050 9.00 lbs 5 c20 Dead Point 357 3.00 lbs 6 c20 Live Point 1050 3.00 lbs 7 w34 Dead Partial UD 317.7 317.7 0.00 3.00 plf 8 w 34 Live Partial UD 350.0 350.0 0.00 3.00 plf 9 - c64 Dead Point 165 10.50 lbs 10 c64 Snow Point 225 10.50 lbs 11 c65 Dead Point 165 1.50 lbs 12 c65 Snow Point 225 1.50 lbs 13_j36 Dead Full UDL 113.7 pif 14_j36 Live Full UDL 350.0 plf 15_j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 16 j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 17_j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 18 j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 19 j45 Dead Partial UD 17.0 17.0 1.50 10.50 plf 20_j45 Live Partial UD 25.0 25.0 1.50 10.50 plf 21 j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 22 _Live Partial UD 25.0 25.0 10.50 12.00 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : , • 1 ''^•7 , ... ` - ,, -.. ,,'" • ,„ . _ ■- -. --;-'4'....---.:g! 10. 121 Dead 2351 2351 Live 4350 4350 Total 6701 6701 Bearing: • Load Comb #2 #2 Length 2.39 2.39 • LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 163 Fv' = 310 fv /Fv' = 0.52 Bending( +) -fb = 1769 Fb' = 2325 fb /Fb' = 0.76 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.43 = L/333 0.60 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 6701, V design = 5314 lbs Bending( +): LC #2 = D +L, M = 16851 lbs -ft Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. /49- ...---- ' Ll 1 r'40- COMPANY PROJECT WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:41 b20 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j30 Dead Full UDL 21.7 plf 2 Live Full UDL 60.0 plf MAXIMUM REA(TIANS Mel and RFORIN( 1 FNPTHS lint I 3 -6 Dead 46 46 Live 105 105 Total 151 151 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x6" Self- weight of 4.57 plf included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 9 Fv' = 180 fv /Fv' = 0.05 Bending( +) fb = 90 Fb' = 1170 fb /Fb' = 0.08 Live Defl'n 0.00 = <L/999 0.12 = L/360 0.02 Total Defl'n 0.00 = <L/999 0.18 = L/240 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 151, V design = 111 lbs Bending( +): LC #2 = D +L, M = 132 lbs -ft • Deflection: LC #2 = D +L EI= 78e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. (.-'1 14* COMPANY PROJECT di WoodWorks® SOFTWARE FOR W000 DESIGN June 24, 2010 12:50 b30 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j41 Dead Partial UD 68.0 68.0 2.00 4.00 plf 2_j41 Live Partial UD 100.0 100.0 2.00 4.00 plf 3_j42 Dead Partial UD 72.2 72.2 0.00 2.00 plf 4 j42 Live Partial UD 106.2 106.2 0.00 2.00 plf MAXIMUM REACTIANS Ilhsl and RFARING I FN(;THS lint 0 ' 41 Dead 154 150 Live 209 203 Total 364 353 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x8" Self- weight of 6.03 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 15 Fv' = 180 fv /Fv' = 0.08 Bending( +) fb = 140 Fb' = 1170 fb /Fb' = 0.12 Live Defl'n 0.00 = <L/999 0.13 = L/360 0.03 Total Defl'n 0.01 = <L/999 0.20 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 364, V design = 253 lbs Bending( +): LC #2 = D +L, M = 359 lbs -ft Deflection: LC #2 = D +L EI= 178e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. . COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD 0(5165 June 24, 2010 12:42 b31 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j65 Dead Partial UD 47.7 47.7 0.00 4.00 plf 2_j65 Live Partial UD 160.0 160.0 0.00 4.00 plf 3_j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4 j28 Live Partial UD 160.0 160.0 4.50 7.50 plf 5_j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 6_j62 Live Partial UD 160.0 160.0 7.50 11.00 plf 7_j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 8 j63 Live Partial UD 160.0 160.0 11.00 17.00 plf 9_j64 Dead Partial UD 47.7 47.7 17.00 20.00 plf 10_j64 Live Partial UD 160.0 160.0 17.00 20.00 plf 11_j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 12 j66 Live Partial UD 160.0 160.0 4.00 4.50 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 10' 20 Dead 619 619 Live 1600 1600 Total 2219 2219 Bearing: Load Comb #2 # Length 0.67 0.67 Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x12" Self - weight of 14.16 plf included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 49 Fv' = 265 fv /Fv' = 0.18 Bending( +) fb = 1082 Fb' = 2400 fb /Fb' = 0.45 Live Defl'n 0.43 = L /553 0.67 = L/360 0.65 Total Defl'n 0.69 = L /350 1.00 = L/240 0.69 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 2219, V design = 1997 lbs Bending( +): LC #2 = D +L, M = 11095 lbs -ft Deflection: LC #2 = D +L EI= 1328e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4- G 20 COMPANY PROJECT I Wood hoe 24, 201013:15 b34 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Stier 7.1 LOADS (ms. wt. or on Load Type Distribution Magnitude Location /ft) Unite • Start End Star: End l • w62 Daad Partial UD 613.2 613.2 0.00 2.00 plf 2 w62 Snow Partial (10 795.0 795.0 0.00 2.00 plf 3 Dead Partlal U0 617.5 617.5 .50 11.00 plf 4 'w29 Snow Partial UD 901.2 901.2 7.50 11.00 plf 5 Dead Point 1436 11.00 lbs 6 _ Point 2404 11.0) lbs _c16 Dead Point 1389 1.09 lbs 9:16 Point 2404 177.00 lbs 01+64 Dead Partial UO 611.5 617.5 17.00 18.00 plf 1 Snow Partial UO 901.2 601.2 17.02 18.00 plf 11 261 Dead Point 622 1,0 lbs 12 c61 Snow Point 1192 7.01 lba 1]_062 Dead Point 622 4.0 lbs 14 Snow Point 1192 4.0) 15 Dead Partial UD 613.2 613.2 2.00 4.00 p12 plf 16 Snow Partial U0 795.0 7 95.0 2.0 4.00 plf 17 Dead Partial U0 617.5 617.5 19.0) 20.00 plf 19:w65 Snow Partial 00 901.2 801.2 18.03 20.00 plf 19 971 Dead Partial UD 613.2 613.2 7.0) 7.50 plf 29971 Snow partial UD 195.0 795.0 7.03 7.50 plf 21_164 Dead Partial UO 47.7 47.7 17.03 13.00 plf 22_164 Live Partial. UO 160.0 160.0 17.0) 18.00 plf 23_129 Dead Partial UD 47.7 4.50 7.50 plf 24 Live Partial U0 160.0 160.0 4.53 7.50 plf . 25 Dyad Partial UD 47.7 47.7 7.50 11.00 plf 26 162 Live Partial 00 160.0 160.0 7.50 11.00 plf 21_143 Dead Partial UD 120.2 120.2 0.00 2.00 plf 22_143 Live Partial UD 370.0 370.0 0.02 2.00 plf 29_132 Dead Partial UD 120.2 120.2 3.52 4.00 plf 00_332 943 Partlal UD 370.0 370.0 3.50 4.00 plf 31 0 333 1 11 Partial UD 120.2 120.2 4.52 7.50 plf 32_133 Live Partial UD 310.0 370.0 4.50 7.50 plf 33_1'_4 Dead Partial UD 120.2 120.2 , 7.5) 2.00 plf . • 134 Live Partial UD 370.0 310.0 7 .50 3.00 plf 35_235 Dead Partial UD 120.2 120.2 9.0) 11.00 plf 36335 Live Partial UD 370.0 370.0 8.02 11.00 plf 37_347 Dead Partial UD 120.2 120.2 11.0) 11.00 plf 39_141 Live Partial UD 370.0 370.0 11.02 17.00 plf 39_167 Dead Partial U0 120.2 120.2 2.02 3.50 plf 40_067 Live Partial UD 370.0 370.0 2.0) 2.50 plf 41_249 Dead P1rt1a1 (10 120.2 120.2 4.09 4.50 plf 42_349 Live Partial U0 371.0 310.0 4.00 4.50 plf 43_163 Dead Partial UD 47.7 47.7 11.0) 17.00 plf 163 Live Partial UD 160.0 160.0 11.00 17.00 elf 45_365 Dead Partial UD 47.7 47.7 18.0) 20.00 plf 46165 Live Partial UD 160.0 160.0 19.00 20.00 elf 47_166 Dead Partial Up 4.0 4.50 plf 48_166 Live Partial UD 160.0 160.0 4.00 4.50 plf 49_36B Dead Partial UD 120.2 120.2 17.00 10.00 plf 50_36e Live 2lrtial UD 370.0 310.0 17.00 19.00 p11 1f , 51_169 Deed Partial UD 120.2 120.2 18.0) 20.00 plf 52_169 Live Partial UD 370.0 370.0 19.0) 20.00 plf 53_172 Dead Partial UD 47.7 47.7 2.0) 4.00 plf 54_172 Live Partial UD 160.0 160.0 2.0 4.00 plf 55 173 Dead Partial UD 47.7 47.7 0.02 2.00 plf 56 - 773 Live Partial UO 160.0 160.0 0.01 2.00 elf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (In) : 1. Q Dead .405 1327 Live 9956 9971 Total 17361 17305 Searing: Load CcnL 43 0 Lano:h 5.21 5.19 Glulam -BaI., West Species, 24F -V8 DF, 5- 118x22 -1/2" See-weight as 28.55 p6 Included N loads; latml support IOW hB, bottom. al aupporla: Analysis vs. Allowable Stress (psi) and Deflection (in) ewe, hes lone: Criterion Analysis Value -e 1.110 Tnalpala/0ealan Shear fv . 132 Fv. - 305 fv /FV• . 0.60 Bendlrgl'l fb . 2392 P6' - 2604 fb /4t' . 0.92 Live Defl'n 0.40 - L/5 0.67 - L/360 0.60 Total Defl'n 0.34 - L/285 1.00 ■ L /240 0.94 ADDITIONAL DATA: FACTORS: F/E CD CH Ct CL C2 Cfu Cr Cfrt s LCI Fv-' 265 1.15 1.00 1.00 1.00 100 1 00 3 Ft,. 2400 1.15 1.00 1.00 1.100 0.911 1.00 1.00 1.00 1.00 - 3 Fop' 650 1.00 1.00 - - - - 1.00 - - E• 1.9 n1111on 1.00 1.00 - - - - 1.00 - - 3 Enin' 0.95 million 1.00 1.00 - - - - 1.10 - - Shear : LC 43 - 00.7511. -51, V 17361, 'J design . 13302 lbs Bend1:3(11: LC 43 ■ 0:.7511.31, 14 - 36199 lbs -ft Deflection: LC 43 ■ 00.1501.411 DI- 7756006 16 -in2 Total Deflection - 1.5030ead Load Deflection) 0 Live Load Oeflec01on. (D■dead L-11ve 5 ■snow ■,0101 I -Sr ;act 0.0:natruction CLi■2oncentrated) (All LC'a are listed in the Analysis output, Load combinations, ICC -IBC DESIGN NOTES: 0. Pbma verify that the default deflection Snits ant appmpWe for your &peerRion. 2. Gleam deelpn values m for me0Mals conforming to AITC 117 -2001 end manufactured In accordance with ANSUAITC A190.1 -1992 3. GLULAM: bad - actual breadth 8 actual depth. 4. Gbdarr, Beams shag be eater* sweated according to the provisions of NCO Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(9er0ion), Fep(eompn). 4-, c.,,,.a COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:49 b35 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 j21 Dead Partial UD 120.2 120.2 0.50 1.50 plf 2_j21 Live Partial UD 370.0 370.0 0.50 1.50 plf 3_j59 Dead Partial UD 120.2 120.2 0.00 0.50 plf 4_j59 Live Partial UD 370.0 370.0 0.00 0.50 plf 5_j60 Dead Partial UD 120.2 120.2 1.50 3.00 plf • 6 160 Live Partial UD 370.0 370.0 1.50 3.00 plf MAXIMUM R - - - ' 31 Dead 188 188 Live 555 555 Total 743 743 Bearing: Load Comb #2 #2 Length 0.50* 0.50* 'Min. bearing length for beams is 1/2' for exterior supports Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 31 Fv' = 180 fv /Fv' = 0.17 Bending( +) fb = 254 Fb' = 1080 fb /Fb' = 0.24 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 743, V design = 444 lbs Bending( +): LC #2 = D +L, M = 557 lbs -ft Deflection:,LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. • (---(a COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:51 c2 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End l bl Dead Axial 1056 (Eccentricity = 0.00 in) 2 Rf.Live Axial 2153 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): D • 1 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 2 -Plys Self- weight of 3.41 plf included in Toads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 0.00= 0.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 196 Fc' = 980 fc /Fc' = 0.20 Axial Bearing fc = 196 Fc* = 1644 fc /Fc* = 0.12 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.596 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 3236 lbs Kf = 1.00 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT It WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:54 c12 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c24 Dead Axial 1478 (Eccentricity = 0.00 in) 2 Live Axial 4320 (Eccentricity = 0.00 in) 3 Dead Axial 4067 (Eccentricity = 0.00 in) 4 Live Axial 11291 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): • 0' 8' Timber-soft D.Fir -L, No.1, 6x6" Self- weight of 7.19 pif included in Toads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 701 Fc' = 820 fc /Fc' = 0.86 Axial Bearing fc = 701 Fc* = 1000 fc /Fc* = 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC #. Fc' 1000 1.00 1.00 1.00 0.820 1.000 - - 1.00 1.00 2 Fc* 1000 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 21214 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 4— GV.di COMPANY PROJECT 1 WoodWorks® SOFFWARFFOP WOOD DESIGN June 24, 2010 12:53 c23 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1_b9 Dead Axial 1478 (Eccentricity = 0.00 in) 2 Live Axial 4320 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 1 0' 9' Lumber Post, Hem -Fir, No.2, 4x6" Self- weight of 3.98 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 303 Fc' = 379 fc /Fc' = 0.80 Axial Bearing fc = 303 Fc* = 1430 fc /Fc* = 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.265 1.100 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 5834 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 4 - �yt/ • • COMPANY PROJECT WoodVVorks® `' -- SOFTWARE FOR WOOD DESIGN June 24, 2010 12:54 c26 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End . 1_c23 Dead Axial 1478 (Eccentricity = 0.00 in) 2_c23 Live Axial 4320 (Eccentricity = 0.00 in) 3_bl0 Dead Axial 1180 (Eccentricity = 0.00 in) 4 Live Axial _ 3436 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): • 8' • Timber -soft, Hem -Fir, No.2, 6x6" Self- weight of 6.25 pif included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using 2005 : • Criterion Analysis Value Design Value Analysis /Design Axial fc = 346 Fc' = 492 fc /Fc' = 0.70 Axial Bearing fc = 346 Fc* = 575 fc /Fc* = 0.60 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.00 1.00 1.00 0.856 1.000 - - 1.00 1.00 2 Fc* 575 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 • Axial : LC #2 = D +L, P = 10465 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. • 4z- 6 2fo • COMPANY PROJECT 41 WoodWorks® SOFIWAAFwR WOOD DESIGN June 24, 2010 12:52 c29 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b13 Dead Axial 3033 (Eccentricity = 0.00 in) 2 Rf.Live Axial 5052 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 8 ' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 3 -Plys Self- weight of 5.11 pif included in Toads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft); Ke x Ld: 1.00 x 8.00= 8.00 [ft); Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 328 Fc' = 439 fc /Fc' = 0.75 Axial Bearing fc = 328 Fc* = 1644 fc /Fc* = 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.267 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 8126 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. • 4 ....._ COMPANY .PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:55 c31 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b13 Dead Axial 2561 (Eccentricity = 0.00 in) 2 Rf.Live Axial 3599 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 1 o 8' Lumber n -ply, Hem -Fir, No.2, 2x4 ", 3 -PIys Self- weight of 3.25 pif included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 393 Fc' = 443 fc /Fc' = 0.89 Axial Bearing fc = 393 Fc* = 1719 fc /Fc* = 0.23 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.258 1.150 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 6186 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) • (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT i 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:54 c39 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b21 Dead Axial 267 (Eccentricity = 0.00 in) 2 Live Axial 822 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 1 0' 9' • Lumber n -ply, Hem -Fir, No.2, 2x4 ", 2 -Plys Self- weight of 2.17 pif included in Toads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 106 Fc' = 171 fc /Fc' = 0.62 Axial Bearing fc = 106 Fc* = 1495 fc /Fc* = 0.07 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.114 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 1108 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. • 7ie COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:52 c55 • Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b30 Dead Axial 154 (Eccentricity = 0.00 in) 2 Live Axial 209 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): • • 1 0' 8' Lumber Post, Hem -Fir, No.2, 4x4" Self- weight of 2.53 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 31 Fc' = 470 fc /Fc' = 0.07 Axial Bearing fc = 31 Fc* = 1495 fc /Fc* = 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.315 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 384 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. frq DATE: r _ - &O 1 0 JOB NO.: / ' E - Q / / ` OF PROJECT: RE: 'Beams tau 1 Lak.r4 t Read; ars ❑ ❑ w D W ‘ceaen ( -> t�.x�ll s '�03 = 303 O 2 ❑ bec&v l3 Qualls aoaP aoa 3 O � 0 oe AYn Wok as a.O? ' a V -'1 O w U Z w beai wat1.5 ao► , a0 ao eg 0 5 knce. >> seismic_ r c,h cw OrnVk6 war& U, U he c a t c L)tc? t. 0 f Er O li Z ❑ Z O O = a O C Y N _ a 7 on o • ( �►�yy �.y COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 13:07 b6 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 c44 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 9 w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 Dead Point 444 5.00 lbs 6 c45 Snow Point 647 5.00 lbs 7_w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf • 8 w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9_j25 Dead Full UDL 120.2 plf 10_j25 Live Full UDL 370.0 plf WIND1 Wind Point 800 2.00 lbs WIND2 Wind Point -910 5.00 lbs 'MAXIMUM REACTIONS fibs) and BEARING LENGTHS (inl • • I 0' 61 Dead 1436 1389 Live 2089 1803 Total 3525 3192 Bearing: Load Comb #4 #3 Length _ 1.88_ 1.70 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Pays Self- weight of 8.02 plf included in loads; Lateral support top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.15 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 4 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 4 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #4 = D +.75(L +S +W) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 632__ COMPANY PROJECT lit WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 13:07 b6 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) • Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 c44 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 51c45 Dead Point 444 5.00 lbs 6_c45 Snow Point 647 5.00 lbs 7 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9 Dead Full UDL 120.2 plf 10 j25 Live Full UDL 370.0 plf WIND1 Wind Point -800 2.00 lbs WIND2 Wind Point 910 5.00 lbs MAXIMUM REACTIONS libsl and BEARING LENGTHS lint : • 10' 61 Dead 1436 1389 Live 1803 2172 Total 3239 3561 Bearing: Load Comb #3 #4 Length 1.73 1.90 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : • Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. ...._ COMPANY PROJECT i. WoodWorks° SOFTWARE FOR WOOD DESIGN June 24, 2010 13:09 b14 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2 w 68 Live Partial UD 350.0 350.0 9.00 10.50 plf 3 Dead Point 357 9.00 lbs 4 Live Point 1050 9.00 lbs 5 c20 Dead Point 357 3.00 lbs 6 c20 Live Point 1050 3.00 lbs 7 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8 Live Partial UD 350.0 350.0 0.00 1.50 plf 9 - c64 Dead Point 165 10.50 lbs 10_c64 Snow Point 225 10.50 lbs 11 c65 Dead Point 165 1.50 lbs 12_c65 Snow Poiot 225 1.50 lbs 13_w67 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14_w67 Live Partial UD 350.0 350.0 1.50 3.00 plf 15 w69 Dead Partial UD 317.7 317.7 10.50 12.00 plf 16 w69 Live Partial UD 350.0 350.0 10.50 12.00 plf 17_j36 Dead Full UDL 113.7 plf 18_j36 Live Fu11 UDL 350.0 plf 19_j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20_j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 21_j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22 j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 23_j45 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24_j45 Live Partial UD 25.0 25.0 1.50 3.00 plf 25_j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26 j46 Live Partial UD 25.0 25.0 10.50 12.00 plf 27 j70 Dead Partial UD 17.0 17.0 3.00 9.00 plf 28j70 Live Partial UD 25.0 25.0 3.00 9.00 plf 29_j71 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30_j71 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point 3560 3.00 lbs WIND2 Wind Point -3640 9.00 lbs wind3 Wind Point -3620 0.00 lbs winds Wind Point 3570 12.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : .mss 7� - Ja Q- .'�'�e Wit'.,- , rte. -..c. - -+,...= ar . - .�:.'........+ro;a. ..- -- .'dm. -. ' ''°s.."s" p' 1 Dead 2207 2207 Live 4350 4350 Uplift 499 479 Total 6557 6557 Bearing: Load Comb 92 - #2 Length _ 2.34 2.34 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 310 fv /Fv' = 0.51 Bending( +) fb = 1735 Fb' = 2325 Eb /Fb' = 0.75 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.42 = L/343 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC 02 = D +L, V = 6557, V design = 5170 lbs . Bending( +): LC 02 = D +L, M = 16527 lbs -ft Deflection: LC 02 = D +L EI= 1241e06 lb -in2 . Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 6'-631-f COMPANY PROJECT f fl WoodWorks® SOFIWAREFOR WOOD DESIGN June 24, 201013:09 b14 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2_w 68 Live Partial UD 350.0 350.0 9.00 10.50 plf 3 c19 Dead Point 357 9.00 lbs 4 Live Point 1050 9.00 lbs 5 c20 Dead Point 357 3.00 lbs 6 Live Point 1050 3.00 lbs 7 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8 Live Partial UD 350.0 350.0 0.00 1.50 plf . 9 - c64 Dead Point 165 10.50 lbs 1( Snow Point 225 10.50 lbs 11 c65 Dead Point 165 1.50 lbs 12_c65 Snow Point 225 1.50 lbs 13_w67 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14 Live Partial UD 350.0 350.0 1.50 3.00 plf 15 w69 Dead Partial UD 317.7 317.7 10.50 12.00 plf 16_w69 Live Partial UD 350.0 350.0 10.50 12.00 plf 17_j36 Dead Full UDL 113.7 plf 18_j36 Live Full UDL 350.0 plf 19_343 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20_343 Live Partial UD 25.0 25.0 0.00 0.50 plf 21_344 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22_j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 23345 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24_345 Live Partial UD 25.0 25.0 1.50 3.00 plf 25_j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26_346 Live Partial UD 25.0 25.0 10.50 12.00 plf 27_370 Dead Partial UD 17.0 17.0 3.00 9.00 plf 28_370 Live Partial UD 25.0 25.0 3.00 9.00 plf 29_371 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30_371 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point -3560 3.00 lbs WIND2 Wind Point 3640 9.00 lbs wind3 Wind Point 3620 0.00 lbs wind5 Wind Point -3570 12.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : -: ,7iaz.� w.. "'"qe�q' -- � , t - '� ' -••••• -- = 'a.wr- s! .^ . --` - :.- - �ralt.s,itc �- - =- .. ,.... +-- :- r - ' ,= . '� ",- -- ' ---- :. �. 111t_. .,. =,. � � �° - aa• k -' +- ..:4emegp +...» -_ : - __ '' � -s-.. • I (r 121 Dead 2207 2207 Live 4826 4811 Total 7033 7018 Bearing: Load Comb #4 #4 Length 2.51 2.51 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 310 fv /Fv' = 0.51 Bending( +) fb = 1735 Fb' = 2325 fb /Fb' = 0.75 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.42 = L/343 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 6557, V design = 5170 lbs • Bending( +): LC #2 = D +L, M = 16527 lbs -ft Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer: 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 4- G3C COMPANY PROJECT di WoodWorks® I SOFTWARE FOR WOOD Drs5CN June 24, 201013:11 b13 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, pst, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3_c40 Dead Point 217 5.50 lbs 4_c40 Live Point 668 5.50 lbs 5_c67 Dead Point 518 5.00 lbs 6 c67 • Snow Point 778 5.00 lbs 7 Dead Point 573 3.00 lbs 8 Snow Point 942 3.00 lbs 9 w59 Dead Partial UD 593.7 593.7 5.00 8.00 plf 1 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11_j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13_j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14 j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15 j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16_j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 18 Live Point 389 3.50 lbs 19 Dead Point 225 6.50 lbs 20 Live Point 693 6.50 lbs W1 Wind Point 6590 0.00 lbs W2 Wind Point -6590 3.00 lbs W3 Wind Point 6590 5.00 lbs W4 Wind Point -6590 8.00 lbs MAXIMUM ACTIONS (Ihcl and RFARIN(;1 FNGTHS lint b ...� ---t...- _ '. - ` • +a" -sue y-"" 77:-.2r4-•-•......= -- �._.'S:" - _:....' .Z.0c -. -..,ems R . e^ -r.. -J -�-- ."t-- 7,_ -- -'� r ...�.. , ..,tom' • 1` a --- _.. '�"' ���Y...�-' "L +:t .- f ...a,•.,. _._ .... - t► ..- .ms's-`_ .' .• f -----.4-4;=,-, . 0., ...I... • 10' 81 Dead 2561 3033 Live 6406 3789 Uplift 3098 Total 0968 6822 Bearing: • Load Comb 04 03 Length 3.20 2.44 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <1/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L /680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC 03 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC 03 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC 03 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. COMPANY PROJECT 1 WoodWorks® SOHWARFFOR WOOD OESIGN June 24, 2010 13:11 b13 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, pst, or pit ) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 Dead Point 217 5.50 lbs 4 Live Point 668 5.50 lbs 5 Dead Point 518 5.00 lbs 6 Snow Point 778 5.00 lbs 7 Dead Point 573 3.00 lbs 8 Snow Point 942 3.00 lbs 9 Dead Partial UD 593.7 593.7 5.00 8.00 plf lb _w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12 j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13 j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14 Live Partial UD 250.0 250.0 3.50 6.50 plf 15_j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16 j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 Dead Point 126 3.50 lbs 18 Live Point 389 3.50 lbs 19 b 32 Dead Point 225 6.50 lbs 20 b 32 Live Point 693 6.50 lbs W1 Wind Point -6590 0.00 lbs W2 Wind Point 6590 3.00 lbs W3 Wind Point -6590 5.00 lbs W4 Wind Point 6590 8.00 lbs MAXIMUM REACTIONS Ilhel and BFARIN(8 I FNGTHS (in) : .:: ". -.,: .. . ,-^ -��„ -- - ,, =+ •-n. ; -.- - 7: . s . -.i.... :. - '∎aor--: ,, ," -, - � , - _= t��°•--- II',_.. � +��- _ L eo 81 2561 3033 Live 2699 7496 Uplift 3381 Total 5261 10529 Bearing: Load Comb #3 04 Length 1.88 3.76 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L /680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC #3 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd =concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 4.-67:;-i--- COMPANY PROJECT I Wo V\/o r k s® June 24, 201013:19 634 LC1 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Nam 7.1 LOADS (OS, psLorp0) Load Typo Dlatrlbution Magnitude Location [ft] Unita Start End Start End 1_w62 Dead Partial UD 613.2 613.2 0.00 2.00 pif 2 w62 Snow partial U0 795.0 795.0 0.00 2.00 pif 2 Dead Partial U0 617.5 611.5 7.50 11.00 pif 6w29 Snow Partial UD 901.2 901.2 7.50 11.00 plf 5 Dead Point 1436 11.00 lbs 6 115 Snow Point 2404 11.00 lba 7 016 Dead Point 1309 17.00 lb. 6616 Snow Point 2404 17.00 D. 9 w64 Dead Partial UD 617.5 617.5 17.00 19.00 pif 10 764 Snow Partial UD 901.2 801.2 17.00 18.00 pif 11 .61 Dead Point 622 7.00 lba 12_661 Snow Point 1192 7.00 lba 13_662 Dead Point 622 4.00 iba 14 662 Snow Point 1192 4.00 lb. 15'63 head Partial UD 613.2 613.2 2.00 4.00 pif 16 263 Snow Partial UD 795.0 795.0 2.00 4.00 pif 17 Dead Partial UD 617.5 617.5 19.00 20.00 pif 19.465 Snow Partial UD 901.2 601.2 16.00 20.00 plf 19 Dead Partial UD 613.2 613.2 7.00 7.50 pif 20 271 Snow Partial U0 795.0 795.0 7.00 7.50 plf 21_164 Dead Partial UD 47.7 47.7 17.00 19.00 plf 22_164 Live Partial U0 160.0 160.0 17.00 19.00 plf 23_126 Dead Partial UD 47.7 47.0 4.50 7.50 plf 24_126 Live Partial U0 160.0 160.0 4.50 7.50 plf 25_162 Doled Partial UD 47.7 1.50 11.00 plf 261 62 Live Partial UD 160.0 -160.0 7.50 11.00 pif 27_146 Dead Partial 180 120.2 120.2 0.00 2.00 plf 29_148 Live Partial U0 370.0 370.0 0.00 2.00 plf 29_132 Dyad Partial UD 120.2 120.2 3.50 4.00 pif 30_132 Live Partial UD 370.0 370.0 3.50 4.00 plf 31_133 Dead Partial UD 120.2 120.2 4.50 7.50 plf 32_133 Live Partial UD 370.0 370.0 4.50 7.50 plf 33_034 Dyad Partial U0 120.2 120.2 7.50 9.00 pif 34_134 Live Partial UD 370.0 370.0 7.50 6.00 pif 35_135 Dead Partial UD 120.2 120.2 9.00 11.00 pif 26_135 L176 Partial UD 370.0 370.0 2.00 11.00 pif 37_147 Dead Partial UD 120.2 120.2 11.00 17.00 pif 39_147 61ve 64r61.1 00 370.0 370.0 11.00 17.00 pif 39167 Dead Partial UD 120.2 120.2 2.00 3.50 plf 40_167 Live Partial UD 370.0 310.0 2.00 3.50 pif 41343 Dead Partial UD 120.2 120.2 4.00 4.50 pif 42_149 Live Portia] UD 370.0 370.0 4.0C 4.50 plf 43_163 Dead Partial UD 47.7 47.7 11.00 17.00 pif 44 _163 Live Partial UD 160.0 160.0 11.0C 17.00 pif 45_165 Dead Partial UD 47.7 47.7 17.00 20.00 of 46_165 L1ve Partlal UD 160.0 160.0 16.00 20.00 pif 44: -;:: 66 0.23 Partial Up 47.7 4.00 4.50 pif L11. Partial 110 160.0 160.0 4.00 1.50 plf 49_169 Dead Partial 0D 120.2 120.2 17.00 18.00 plf 50_166 Live Partial U0 370.0 370.0 17.00 10.00 plf 51 269 Dyad Partial U0 120.2 120.2 19.00 20.00 plf 52 169 Live Partial UD 370.0 370.0 19.0: 20.00 plf 5a_1 Dead Partial UD 41.1 47.7 2.00 4.00 pif 54_172 Live Partial UD 160.0 160.0 2.00 4.00 pif 55_173 Dyad Partial UD 47.1 47.7 0.00 2.00 pif 56 _173 Live Partial UD 160.0 160.0 0.00 2.00 pif w1 wind Point 5950 0.00 lb. 42 wind Point -5650 4.00 166 ,43 Wind Point 5650 11.00 lea W4 wind Point -5650 17.00 lba 085 Mlnd _ Point _ 5 20.00 166 MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 0340 9405_ '3327 Live 12150 12172 Total 19555 19499 Posting: Load Comb 64 64 Lenore 5.97 - 5.85 Glulam -Bal., West Species, 24F -V8 DF, 5- 118x22 -1/2" 560 -ed9N of 2655 p0 Included In loam; Lalere1 atpport lope 704. bo0am 43 supports: Analysis vs. Allowable Stress (psi) and Deflection (In) eau, NOB nos: Criterion An.lval. Value De41,7 V.lu. Analysis /06.3017 [v ■ 102 87' - 306 17 /60 - 0.60 aending1.1 fb . 2392 6b' ■ 2604 fb /45' - 0.92 Live 0ef1'n 0.40 - L /595 0.67 . L /360 0.60 Total 0001', 0.91 ■ L/285 1.00 - 1/240 0.04 ADDITIONAL DATA: FACTORS: F/E C0 C CL C/ Cfu Cr Cfrt Wotan Cn LC4 F:' 265 1.15 1.00 1.00 1.00 1.00 1.00 3 90.4 2100 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 - E' 1.9 million 1.70 1.00 - Ecn' 0.05 .11110: 1.00 1.00 - - - - 1.00 - - 3 Shea: : LC 13 - 04.7516401, V ■ 17261, V design - 13982 ll:e 9er..ding1 LC 13 ■ 0..7516481. M ■ 96199 its -ft Deflection: LC 63 - 0..75(6451 EI- 7756.06 1b -172 Total 060160tion ■ 1.50(0ead Load Deflection) 4 Lire Load 0,01617117. (D0dead L.11' :e S ..avow btwind Ielrya :t C■_on,trocti0n C4:■:on :ant :atoll 1011 60'6 aro listed In the Analyale output) :,cad combinations: ICC -20C DESIGN NOTES: 1. Please verify 1043 the mfndt anetibn limes an appropriate for your applca0on 2 GU= design values an for materials conforming to AITC 1114001 and manufactured in accordance oah ANSUAITC 4190.1 -1992 3. GLULAM: bed a actual breadth a *dual dep00. 4. Glut= Bears than be bter439 supp ited according to the provisions of ND5 Clerw 333. 5. OLULAM: beor0g length based on vr.0er of Fcp(0.5tim), Fep(camp n) f. - 7, 01,-.2, 4 - c.i ; . COMPANY PROJECT 1 %Vo dVVo r k s ® June 24, 20101319 b34 LC2 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Sber 7.1 LOADS ilb pa, oplf) Load Type Distribution Magnitude Location Iftl Units Start End Start End 1_062 Dead Partial UD 613.2 613.2 0.00 2.00 pif 062 Snow 2a:tial U0 795.0 195.0 0.00 2.00 plf 7_029 Dead Partial UD 617.5 611.5 7.50 11.00 plf w29 Snow Partial U0 801.2 901.2 7.50 11.00 plf 5 015 Dead Point 1436 11.00 lbs 6_015 Snow Point 2404 11.00 lbs 016 Dead Point 1399 17.00 lbs 9 016 Snow Point 2401 17.00 its 9 Dead Partial VD 617.5 617.5 17.00 19.00 plf 132.64 Snow Partial UD 001.2 001.2 17.00 19.00 plf 11_261 Dead Point 622 7.50 lb. 2 1261 Snow Point 1192 7.00 lbs 13 Dead Point 622 4.00 lb. 14:062 Snow Point 1192 4.00 lbs 15 063 Dead Partial UD 613.2 613.2 2.00 1.00 plf 16 Snow Partial UD 795.0 195.0 2.00 4.00 plf 17:w65 Dead Partial UD 617.5 617.5 10.00 20.00 plf 19 Partial U0 901.2 801.2 10.00 20.00 plf 1 071 Dead Partial U0 613.2 613.2 7.00 7.50 plf 20 Snow Partial V0 795.0 795.0 7.00 7.50 plf 21_364 Dead Partial UD 47.7 47.7 17.00 19.00 plf 22_364 Live Partial VD 160.0 160.0 17.00 18.00 cif 23_328 Dead Partial VD 47.7 47.7 4.50 7.50 plf 24_329 Live Partial U0 160.0 160.0 1.50 7.50 plf 25_362 Dead Partial UD 41.7 41.1 7.50 11.00 plf 26_162 Live Partial UD 160.0 160.0 7.50 11.00 plf 27_146 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29_342 Live Partial VD 370.0 370.0 0.00 2.00 pl.' 25_132 Dead Partial UD 120.2 120.2 3.50 4.00 plf 30_132 Live Partial 00 310.0 370.0 3.50 4.00 plf 31_333 Dead Partial VD 120.2 120.2 4.50 1.50 plf 32 133 Live Partial U0 310.0 310.0 4.50 1.50 plf 33_134 Dead Partial VD 120.2 120.2 7.50 9.00 plf 34_134 Live Partial UD 370.0 370.0 7.50 9.00 plf 35_335 Dead Partial UD 120.2 120.2 8.00 11.00 plf 36_335 Live Partial V0 370.0 310.0 9.00 11.00 plf 37_347 Dead Partial 00 120.2 120.2 11.00 17.00 pit 39_147 Partial VD 310.0 370.0 11.00 17.00 p1f 3 - 167 Dead Partial VD 120.2 120.2 2.00 3.50 elf 40_167 Live Partial UD 310.0 370.0 2.00 3.50 plf 41_349 Dead Partial U0 120.2 120.2 4.00 1.50 plf 42_349 Live Partial UD 370.0 310.0 4.00 4.50 plf 43_363 Dead Partial UD 47.7 41.7 11.00 17.00 plf 44_363 Live Partial UD 160.0 160.0 11.00 17.00 plf 45_165 Dead Partial UD 47.7 47.7 19.00 20.00 plf 46_365 Live Partial UD 160.0 160.0 10.00 20.00 01! 47_166 Dead Partial 00 41.7 47.7 4.00 4.50 plf 48_366 Live Partial UD 160.0 160.0 4.00 4.50 plf 49_360 Dead Partial UD 120.2 120.2 17.00 19.00 plf 50 369 Live Partial 110 370.0 370.0 17.00 19.09 plf 51 ]63 Dead Partial UD 120.2 120.2 10.00 20.00 plf 5269 Live Partial UD 310.0 370.0 19.00 :0.00 plf 53 5 12 Dead Partial UD 47.1 41. 2.00 4.00 pit 51 31 Live Partial UD 160.0 160.0 2.00 4.00 plf 55_173 Dead Partial VD 41.7 47.7 0.00 2.00 plf 56_173 Live Partial U0 160.0 160.0 0.00 2.00 plf N1 Wind Point -5950 0.00 lba 92 Wind Point 5950 4.00 lb. N3 Mind Point -5950 11.00 lb. Wind Point 5950 17.00 lb. 415 Wind Point -5950 20.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : a 9 Dead 955 Live 9956 9305 T 11361 17305 Searing: Load Corp 13 Length 5.23 11 9.19 Glulam -Bat., West Species, 24F -V8 DF, 5- 118x22 -112" Sal -wdpbt of 25.55 p5644ded In lads: Lateral support top. fu0, bo4Wm a supports: Analysis vs. Allowable Stress (psi) and Deflection (In) usiap Nos 2506: Criterion ' 0042,ala Value 09,100 Va1us A nalv,la /Davlon Shear 192 Fv' - 305 fv /27' - 0.60 6end209)') fb - 2352 Flo - 2604 fb /Fb' ■ 0.92 Live 0.fl'n 0.41 ■ L /591 0.67. L /360 0.61 Total Defl'n 0.94 . L/294 1.00 - L /240 0.54 ADDITIONAL DATA: FACTORS: F/E CD Ci CL CV Cfu Cr Cfrt Notes Cn LC4 02' 265 1.15 1.00 1.00 1.00 1.02 1.00 3 20'4 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 Fop' 650 1.00 1.00 - - - - 1.00 - - - E' 1.9 million 1.00 1.00 - - - - 1.00 - - 4 Emi0' 0.95 01111on 1.00 1.30 - - - - 1.00 - - 4 Shear : LC 03 . 60.1511.1), v ■ 17361, V design ■ 13592 lb:: 8end1n9(+): LC 13 • 00.15(L10), N . 16189 lb. -ft Deflection: LC 94 • 00.75(L E1. 0756s06 lb -Sn2 Total Deflection . 2.50(0oad Load Deflection) 0 Live Load Deflection. 1D0d.ad .■live 5 ■Scow Y.w0nd 1.lcpac C-c.n.truct lam C11■00n:entrate3l (All LC's are hated in the Analysis output) Load c0 binatl4ns: 10C -I00 DESIGN NOTES: 1. Please Penn that the default delbc5n4 hogs are spr W 9Ia8. looms app0ratlen. 2. Ggtan resign vanes are to OWmials c9nfo n Ing to AITC 117 -2001 and manufactured in accada ce with AN50AITC A190.1 -1992 3. GLULAM: bed a actual breadth actual depth. 4. GMan Beams shag be later* suppaied ecc0nbng to the pmisions of N05 Clues. 3.3.3. 5. GLULAM: bearing length based on srnager of Fcp(tensiln), Fcp(canpn). 14 6;729 COMPANY PROJECT f fl Wo od V\/or k s® Jae 24, 20101525 934 LC2 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet SRN 7.1 LOADS 1196.pr,aepn) Load Typo D1atr16ut1on Magnitude Location (ft) Units , Start End Start End 1 1162 Dead Partial UD 613.2 613.2 0.00 2.00 p12 2 Snow Partial UD 1 95.0 195.0 0.00 Z.00 plf 3_1129 Dead Partial UD 611.5 611.5 7.50 11.00 pif 4 1129 Snow Partial UD 901.2 801.2 1.50 11.00 plf 5 Dead Point 1136 11.00 lbs 6 Snow Point 2104 11.00 lbs 7 Dead Point 1389 11.00 lbs 6 016 Snow Point 2404 11.00 lba 9 Dead Partial UD 611.5 61 11.00 18.00 pif 10 w64 Snow Partial UD 801.2 001.2 1 19.00 pif 11 061 Dead Point 622 1.00 lbs 12 570w Point 1192 1.00 103 15062 Dead Point 622 4.00 lie 14 062 Snow Point 1192 4.00 lbs 15_w63 Dead Partial 00 613.2 613.2 2.00 4.00 plf 1 063 Snow Partial U0 135.0 195.0 2.00 1.00 plf 17 Doad Partial UD 611.5 611.5 16.00 20.00 pif 16765 Snow Partial UD 901.2 501.2 19.00 20.00 pif 19 1111 Wad Partial UD 613.2 613.2 1.00 1.50 pif 201111 Snow Partial UD 195.0 795.0 1.00 1.50 p1! 21 164 Wad Partial UD 47.1 41.1 11.00 19.00 plf 22 064 L1vo Partial UD 160.0 160.0 11.00 18.00 pif 23329 Dead Partial UD 47.7 41.1 1.70 1.50 plf I:16: L1vo Partial 00 160.0 160.0 4.50 1.50 pif Dead Partial UD 41.7 47.1 7.50 11.00 pif 26_162 Live Partial UD 160.0 160.0 1. 11.00 pif 27 - 149 Wad Partial UD 120.2 120.2 0.00 2.00 pif 29_149 Live Partial UD 310.0 370.0 0.00 2.00 pif 29_132 Dead Partial UD 120.2 120.2 3.50 4.00 pit 30_132 Live Partial UD 310.0 310.0 3.50 4.00 pif 31 133 Dead Partial UD 120.2 120.2 4.50 1.50 711 32 LSva Partial 00 370.0 370.0 4.50 .50 pif 33_134 Dead 7.001,1 UD 120.2 120.2 7.50 6.00 p1! 34_334 Use Partial UD 370.0 370.0 7.50 8.00 pif 35 _135 Wad Partial UD 120.: 120.2 9.00 11.00 pif 36_135 Liv. Partial UD 370.0 370.0 6.00 11.00 plf 37_147 Dead Partial UD 120.2 120.2 11.00 11.00 plf 38_147 Live Partial U0 370.0 370.0 11.00 11.00 pif 39_167 Wad Partial UD 120.2 120.2 2.00 3.50 pit 40_167 Live Partial UD 310.0 370.0 2.00 3.50 pif 41_149 Wad Partial UD 120.: 120.2 4.00 4.50 plf 42 _149 LSva Partial UD 310.0 310.0 4.00 4.50 plf 43_163 Wad Partial UD 47.1 47.1 11.00 11.00 pif 44_163 Live Partial UD 160.0 160.0 11.00 11.00 pif 45 _165 Wad Partial UD 41.7 47.7 18.00 20.00 pif 46_165 L1',9 Partial UD 160.0 160.0 19.00 20.00 plf 47_166 Wad Partial UD 47.1 47.7 4.0) 4.50 pif 49_366 Live Partial UD 160.0 160.0 4.00 4.50 pif 49_169 Wad Partial VD 120.2 120.2 17.03 16.00 pif 50_169 Live Partial UD 370.0 370.0 17.00 10.00 pif 51_169 Wad Partial 0D 120.2 120.2 15.00 20.00 pif 52_169 Live Pe05151 UD 110.0 370.0 15.00 20.00 pif 53 112 Wad Partial UD 47.1 47.7 2.00 4.00 711 ' '51 272 L1va Partial UD 160.0 160.0 2.00 1.00 pif 55 173 Wad Partial UD 11.1 47.7 0.00 2.00 pif 56_313 LIV. Partial U0 160.0 160.0 0.00 2.00 plf 41 01nd Point -5950 0.00 lbs Wind Point 5850 4.00 lbs 43 Mind Point -5850 11.00 lbs 0e Wind Point 5850 17.00 lbs. 05 Hind Point -5E50 20.00 lbs • MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • 1a ^' Dead 4105 9 919 Live 9956 9979 Total 17361 17305 Soaring: Load Comb 13 93 Length 5.21_ 5.19 Glulam -Bai., West Species, 24F -V8 DF, 5- 1/8x22 -1/2" S.0-welp1 of 2555 pif Included In Ids: Wend support lop. NO, bdtorn4 at 94970916: Analysis vs. Allowable Stress (psi) and Deflection (in) n,mgNpa37D5: . Criterion A,.....s Value Wa1on Value Analyala /Deafen Shaer !v . 182 Fv' . 305 tv /FV' . 0.60 8end1ng111 fb . 2392 ED' ■ 2604 !b /86' ■ 0.92 Live De11'n 0.41. L/591 0.61 . L/360 0.61 Total Wfl'o 0.64 ■ L /254 1.00 ■ L/240 0.94 ADDITIONAL DATA: FACTORS: F/E CO Of Ct CL 00 Cfu Cr Cfrt 0 LC/ 70' 265 1.15 1.00 1.00 1.00 1.00 1.00 3 p8'. 2400 1.15 1.00 1.00 3.000 0.941 1.00 1.00 1.00 1.00 - 3 Fcp' 650 1.00 1.00 - - - - 1.00 - E 1.9 million 1.00 1.00 - - - - 1.00 - - 0000' 0.15 million 1.00 1.00 - Shear : LC 13 . 0,.751L'6), V . 17361, V da4lgn . 13992 lbs 9.00104)41: LC 43 . 01.1511.151, M ■ 86199 187 -16 Dafla0ticn: LC 14 ■ D..7511..0•0) EI. 9156006 1b -1n: Total 0.!lacti0n . 1.5010vad Load Deflection) 4 Live Load Deflection. (0.dead L.11ve S■oncw .wind I.1opac C- 00026ructlo0 CLd.ccn0006040ed) 1A11 LC'o 407 listed in the Anal output) Load coollmt I00 -400 DESIGN NOTES: 7. Pleas* yaity Ow Oa WNW d ROW &Mt76 me approplrte for your app40Nm. 2. G6tlam daalgn value, am for =Wits canfa9075 10 AITC 117 -2001 and maf619 2iaed In accordance wM ANSUA1TC AIWA-1992 3. GLULAM: tad a ad0ai Neadh, aduai deph. 4. GMar1 Beams shall De IalvaPy suppaled according to the provisions of NOS Class 33.3. 5. GLULAM: bearing length based an emann of Foy(tenslcn). Fcp(000 n). illI 61 qC)I COMPANY PROJECT 1 WoodWorks® SOFIWAREEOR WOOD DESIGN June 24, 2010 13:23 b34 LC1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pit) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 3 w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5 c15 Dead Point 1436 11.00 lbs 7 c16 Dead Point 1389 17.00 lbs 9 Dead Partial UD 617.5 617.5 17.00 18.00 plf 11 c61 Dead Point 622 7.00 lbs 13 Dead Point 622 4.00 lbs 15 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19_w71 Dead Partial UD 613.2 613.2 7.00 7.50 plf 21 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23 j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25 Dead Partial UD 47.7 47.7 7.50 11.00 plf 27 j48 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29 j32 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31 Dead Partial UD 120.2 120.2 4.50 7.50 plf 33 Dead Partial UD 120.2 120.2 7.50 8.00 plf 35 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39_j67 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41 j49 Dead Partial UD 120.2 120.2 4.00 4.50 plf 43 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51:169 Dead Partial UD 120.2 120.2 18.00 20.00 plf 53_j72 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55_j73 Dead Partial UD 47.7 47.7 0.00 2.00 plf W1 Wind Point 5850 0.00 • lbs W2 Wind Point -5850 4.00 lbs W3 Wind Point 5850 11.00 lbs W4 Wind Point -5850 17.00 lbs W5 Wind Point 5850 20.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 1 la 201 Dead 7189 6822 Live 156 302 Total 7238 7018 Bearing: Load Comb 82 02 Length 2.17 2.11 Glulam -Bat., West Species, 24F -V8 DF, 5- 118x22 -1/2" Self- weight of 26.55 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 74 Fv' = 238 fv /Fv' = 0.31 Bending( +) fb = 950 Fb' = 2038 fb /Fb' = 0.47 Live Defl'n negligible . Total Defl'n 0.41 = L /585 1.00 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC6 Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC 61 = D only, V = 7189, V design = 5674 lbs . Bending( +): LC 01 = D only, M = 34217 lbs -ft Deflection: LC 01 = D only EI= 8756e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). • 4 -GIL( I COMPANY PROJECT 1 WoodWorks® SOFnwARF we w000 OFSIGN June 24, 2010 13:22 b34 LC2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, pst, or pit) : Load Type Distribution Magnitude Location (ft) Units Start End Start End 1_w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 3 w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5 c15 Dead Point 1436 11.00 lbs 7 c16 Dead Point 1389 17.00 lbs 9 w64 Dead Partial UD 617.5 617.5 17.00 18 plf • 11 c61 Dead Point 622 7.00 lbs 13 Dead Point 622 4.00 lbs 15 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19 w71 Dead Partial UD 613.2 613.2 7.00 7.50 plf 21 j64 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23_j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25 j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 27_j48 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29_j32 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31 j33 Dead Partial UD 120.2 120.2 4.50 7.50 plf 33_j34 Dead Partial UD 120.2 120.2 7.50 8.00 plf 35_j35 Dead Partial 1.10 120.2 120.2 8.00 11.00 plf 39_j67 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41_j Dead Partial UD 120.2 120.2 4.00 4.50 plf 43 j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47_j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49 j68 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51_j69 Dead Partial UD 120.2 120.2 18.00 20.00 plf 53_j72 Dead Partial UD 47.7 97.7 2.00 4.00 plf 55_j73 Dead Partial UD 47.7 47.7 0.00 2.00 plf . W1 Wind Point -5850 0.00 lbs W2 Wind Point 5850 4.00 lbs W3 Wind Point -5850 11.00 lbs W4 Wind Point 5850 17.00 lbs W5 Wind Point -5850 20.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : la 20) Dead 7189 6822 Live . Total 7189 6822 Bearing: Load Comb 81 81 Length _ 2.16 2.05 Giulam -Bal., West Species, 24F -V8 DF, 5- 118x22 -1/2" Self- weight of 26.55 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 74 Fv' = 238 fv /Fv' = 0.31 Bending( +) fb = 950 Fb' = 2038 fb /Fb' = 0.47 Live Defl'n negligible Total Defl'n 0.41 = L /585 1.00 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC0 Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC 81 = D only, V = 7189, V design = 5674 lbs Bending( +): LC 81 = D only, M = 34217 lbs -ft Deflection: LC 81 = D only EI= 8756e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Giulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 1 4. Giulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4 - (1'1 2-- n Harper Project: H o Houf Peterson Client: Job # Righellis Inc. -- ENGINEERS . PI,AKNERS ^_- - --- Designer: Date: Pg. # LANDSCAPE ARGNICECTS•SURVEYORS Wdl := 10 lb 8•ft•20 -ft W = 1600-lb lJ -'- ‘ ft 2 Seismic Forces Site Class =D Design Catagory =D W •= Wd - P i�� 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F := 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F = 1.722 Vel -based site coefficient @ 1 s -period (Table 1613.5.3(2), 2006 IBC) S := F S Smi := FvS1 2 -S ms S • = Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a := 1.0 R := 2.5 (Table 13.5 -1, ASCE 7 -05) 4a • r z l F := p • 1 + 2• h•W RP EQU. 13.3 -1 ` J Fpmax l.6•S EQU. 13.3 -2 Fpmin := .3•Sds•Ip -Wp EQU. 13.3 -3 F if(F > Fpmax,Fpmax,if(Fp < Fpmin,Fpmin,Fp)) F = 338.5171 -lb Miniumum Vertical Force 0.2•S = 225.6781 -lb GICT5 Harper Project: Houf Peterson Client: Job # • Righellis Inc. �{ ENGINEERS .• PLANNERS Designer: Date: Pg. # LANDSCAPE ARCNITEC(S• SURVEYORS W := 10. lb •841•20•ft W = 1600-lb ft Seismic Forces Site Class =D Design Catagory =D Wp := Wdl - 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) I : S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S • = 0.942. Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F :_ . 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F v : = 1.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) Sms := F S := F -S 2-S ms S Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a p ' •- 1.0 R := 2.5 (Table 13.5 -1, ASCE 7 -05) 4a •Sds' FP := p •rl + 2 z h l •Wp EQU. 13.3 - Fp := 1.6•S -I W EQU. 13.3 -2 Fpmin := . 3•S ds .I p . Wp EQU. 13.3 - = if(F > F pmax , Fpmax, if(F < F pmin , Fpmia, Fp)) F = 338.5171.1b Miniumum Vertical Force 0.2.S = 225.6781•lb C L I LI 0 HP Harper Houf Peterson COMMUNICATION RECORD Righellis Inc. To FROM u MEMO TO FILE n 1.-A,INE'Eas • Fl.Nt,H, 1. ,,CtliTtif.,..501.,, - --- .... . ... . . PHONE NO.: PHONE CALL: cf MEETING: El A 1:7 03 m Z, -, • 2 • m 0 i C 13 II r I 3 _ _z. 0 —0 07 A SR II 0°- ,.../ , ....c4 Cri *Z (--- --• (r .9 01 --C. • - 1 . ....0 • LP\ ' -4.,...i .0 1 '■ 7 0 , S N s 1 03 • . z r 9 0 fs r - N. <--- 0 -..... , r) By, AnilAyx Cgi.......) . DATE: JOB NO.: P RE: D E..c, \e--, 1 t (') P t.-. V p, IA C r)PNc \i 2(,, 0 0 . - DKX_INC-1 Ili - Z LL - O L F- W O 2 \\IP‘k \-- e 1=t-Pc_ t - ry (1 L. Corntros0 x El , J (1.3.3)(1a241hat,i () r_- I(;a.1,0 *inai; 0 , cr = w z • 9 w 0 , LAPIAC i'nt L1,1" ( I l 'a, 19 (91 st incti LY.51-4 ■1.1].. * (z a) Et- < w 1 la x").1 f- z aNsr5 --= r4-\ . 0 U i C pClt C fin Noe.h)Jee n fkci. \s ....- 3' Mac. - _ l i ) Ca po c t lrt.) zz ( k pt.:F. . ID 6 1 12 I kiki /t rt.)o \ _.....-_ tt,,q H 5 icx,..F . tTh . -7->ei 1 . . _ c , ___ \) — t(7 15 Pt.r. • . i i ! i 1 i (2.) Sl c ' !4, x 02_ I 9 = d_____; ,.. e 2 ;-. AL( ri ■ C T C 4 g i •:', ___:. r 4( _-- s7,-.3 07, v..-z v', • , r)t_ : ,---: .- - „ .. , (nrooJt' )70)tOock. ' Sx■ry\pso-r\ 505'14- x4122 e_ tz" 0,c, =4o i# :. OIL -- V . L • , ;,. 1 -pip 1 lg. trc) 8 4 I . i; t c7) • ( 4-) • i I i g i a . 6 -A0 st, . (-) 0 - • . - -v)a+t ,.- OOh -/ cwee . 1 1 • 1 1 ,IS°2 I 1 it-ctaee 17: N 900$ - 0 . . fil-if. CX)09=- 1 ‹ k 44 002 • (00t7) #ooe r.:14 • x 0 2 0 m z -a . o - x 0 .,5-1.-1., K ....,4_______ 1 ,,,,,, 0 e,a, 1,5,a.), 1 . ,-,...q, ,Qsdwits --() z fc.41,s. *00.11.erno.00h9.....)::_ii. (,) > 3 z h`n z pa m 0 Ok* Gaiiq ' . z 0 0. m 7, 17 0 m --I 9 in El El - __. . . 0-777- );:)\----1717 • - - ,- C CI ' aCi_ • ael :J..031 . — - • ON 80f :31VCI kinc jeCk :A. - 1 Harper COMMUNICATION RECORD ' 1 .• Houf Peterson Righellis Inc. To El FROM El MEMO To FILE D ENGINEERS • PLANNERS LAnC,c4PE ARCHITECT.■•SURVCVG1k4 PHONE NO.: PHONE CALL: El MEETING: El 7J 1:1 M El 0 . :5 ri t (II " • 1 I 7I 0 r .... 37 ..0 -C --V 0 0 • 8 _o 0 0 . . . , 31. 0 4 14 1 03 .1 a u) . 1, 0 W. 11 la T I S- ..,.., . ..( . n -1 -C. t cs 1> \.... • cs; L. 0 z , i. . ,...........\. . • __, harper HoufPeterson COMMUNICATION RECORD Righellis Inc. To ❑ FROM ❑ MEMO TO FILE ❑ E4!GIN... • PIA, : ER, t A':O.Cq pF iRCHu rE[r ;. sua vEra R. PHONE No PHONE CALL: III MEETING: ❑ C0 m A m .g > q R --- s -'''-• A -v (.. * 1, MOM 110 1 O d m 0 II cliNS . 1 r ; 1.-` 0 ut U 1 To C 1 1 r . 0 L :1, m Z 0^ p N v` • COMPANY PROJECT fl WOO Wor s® ... SOFTWARE FOR WOOD DESIGN June 8, 2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Point 2.50 200 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : ., - , . :.... ..--:: , -- -,,,,, . ,. . ---: t:- - - - . ,,,,,-, -,- -7';'"7 1 7 , '.:F. ; -- 7 1 r . :,1:-..:•:::., 7: .::: -,..," :.: - :". : la 54 Dead Live 100 100 Total 104 104 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams Is 1/2" for exterior supports Lumber-soft, Hem-Fir, No.2, 2x6" Self-weight of 1.7 pif Included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 405 Fb' = 1048 fb/Fb' = 0.39 Dead Defl'n 0.00 .., <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L/999 _ 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv 150 1.00 1.00 1.00 ' - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 '1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending(+): LC #2 = L, M = 255 lbs-ft Deflection: LC #2 = L El = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. ( COMPANY PROJECT 'lit 1/Vood Works® SOFFWARE FON WOOD DESIGN June 8, 2009 16:27 Hand Ral12 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End ,LIVE Live Full UDL 50.0 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : ‘t,..' s .. :6,',": , t - . - ::-.- - , -- y.' - r:F:•--`, - : , -,. 4,,,- 7.....: 4 '-: , ....- -". L7‘. - '. - -7 - i -, . --,- 1 .. " 4 ---. ,- ,, - , - ; -.--- ' ,; ... -., r --- ;-2.,e - . - ;':;:z." . :' - ' - . -- -r'_; - ''''' - '±‘ 1 "'-:/ii: --- , - .:r - .. - =•::: , ": '"' ' .7 • •.7 - : --- -. ..: 4^ '? -, _•'7. '':: :: :',;"- ' .'T ',.. HI ::::.".;::;',.::,:,: .:-"t:;: ::-. f.:" , ..i'...„',i , ,.- ..--..•,-.:- ci.',;`;•.,st', e; ,...7. .: - -., • .., : • ,•:;: •-.=.•,‘• :,...:• • ... • . . 10' 5i Dead Live 125 125 Total 129 129 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams is 1/7 for exterior supports Lumber-soft; Hem-Fir, No.2, 2x6" Self-weight of 1.7 plf induded in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 256 Fb' = 1048 fb/Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.11 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 129, V design = 106 lbs Bending(+): LC #2 = L, M = 162 lbs-ft Deflection: LC #2 = L El = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC • DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 22, 2010 13:57:56 Concept Mode: Reactions � / Base of Structure View Floor 2: 8' 1050 49: -6 • use 1600 L 600 L 4� -0. 0 +UL! 619 D : - - — 619D - *1 : : - - - 40 -b IUI 4b WU o:. • : - - • - - - - • " - 44 • y - - 44 -b `Jtf 4L -b ! L 1 5 3 :. L • : • -` - ' ___.. ' - 4 s a - o ' • 625 D10 11439 D 1394 D bo. -o.. as . " - arty a't + 35._0 ua - : . : 315 L. : . 33- -> : ;; --- " 358 D` is - : - : : :: ilb 315 L' : '' 358 D F 847 . - 5611 L • 75 L. _ ro 452 D 5546 D 25 L� D 625 - -- -:... --. ... i 203D - =- 5D n -0 . i -- ey 908 E - : - 307 s : -\ 't r50 Lf�:741 7 - nu � �• 87 L;' - - 87 L - . ..--- - - - - -• - - . - - y 8 D- • • 1963 D . 1963 D : . _ _ a -b 154D - :. • -1151-)DL : 2363 D.:: = c b • -�I 78 Di D ; 106D: : u -0 .BB8 18.BC.CCC CCC C(CCC CC CCCC C C CC CCICCCD D DD DIDDD:CD DD DDD D DD C "DD DEE E E EEEEFEEEIEEE EEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91 t1 1: 1: 1 1' 1( 1: 1I142t2 2;2:2 "313;4(4 411 :4 :5 :5 6(68:6 :6 (7'77 :7.7.7(77' -6" VOOTt'JE L is Ve.0 NIT wD • . i9- F 1 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 22, 2010 13:57:37 Concept Mode: Reactions at Base of Structure View Floor 2: 8' 1 0 4 0- 4 •l u 1600 L: 1600 L 4 r -0 C ui� 619D •._.. 619D 4o - ° WU . . . .. - - 44 -0 a9 / � 43 - 0 • - - - - - _ - -- -- 41 -0 ao 13274 L _ - : • -_ _ _:. • ' 3304 L 4 s a b 4 7153 D -- .. - : . _ 7072 D. : - _ ... - - as - 0 V • 30 -0 • 315 358 L ss � • is r D : 31 b u : - : 315L z/ -t • 358 D • Hsu 100 L `; J G4 _ b 6 -9r* L3' -0 io 74(84 611 L : ' f56L _ _. "- zu-k • f 0 41452 D: 5546 D S 0 D __ _ t q - to r4 625 ___ - ri. 203D 5D i � Oy -307 908 L . , i� -0: * . • 00 • ' . D or 46D A 11 -0 e" eb - -: - 245 L i • 50 - . bb : , s 3D 74D ... r'0.. ) • _ - '� ' : • n 1 - au • 599 L��42587 L. 587 L' 0 -0 4 .. s 2 09 L D8 Di1963 D �. 1963 D ::.: r S-0 ;. 154 D :: -iu u t b D LL :._ 725 2219 D _.._.. - ..: - - 1,4) .,..1 : :: '78D7DD: • 617D'D : . . • u b BBtB.B BC.CCCCCCCICCCCC CCCC C CCC CCICCCD.DDD D DDDIDDD DD DD DD D DDD CD \DD DE E E E EEEEEtEEEIEEE E EEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18'20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'678`91 :1 :iii:1 (11 ii 2(2'2:2 :2 2212,3(33 :3:3 :313WW"4A :44!4(4 414, 5155; 5: 5< 5.' S( 5 5i 5! 6( 6 6:6 :6.6?6E6"6i6i7(77.7.7 6" • • ¼DOTLt'J\ Lp (our • . • / 4,_. F-2_ : L �, 1 Harper Houf Peterson Righellis Inc. Cwrent Date: 6/24/2010 1:41 PM 1 system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \F1.ftd\ Design Results Reinforced Concrete Footings GENERAL INFORMATION: Global status Warnings Design Code ACI 318 -05 Footing type Spread Column type Steel Geometry j12 in h 4.25 ft I ft ji 4.25 ft ft 4.25 ft Pagel Length 4.25 [ft] • Width 4.25 [ft] Thickness 1.00 [ft] Base depth 1.50 [ft] Base area 18.06 [ft2] Footing volume 18.06 [ft3] • Base plate length 5.50 [in] Base plate width 5.50 [in] Column length 5.50 [in] Column width 5.50 [in] Column location relative to footing g.c. Centered Materials Concrete, Pc 3.00 [Kip /in2] Steel, fy : 60.00 [Kip /in2] • Concrete type Normal Epoxy coated No Concrete elasticity modulus : 3122.02 [Kip /in2] Steel elasticity modulus : 29000.00 [Kip /in2] Unit weight 0.15 [Kip /ft3] Soil Modulus of subgrade reaction 200.00 [Kip /ft3] Unit weight (wet) 0.11 [Kip /ft3] Footing reinforcement Free cover . 3.00 [in] Maximum Rho /Rho balanced ratio 0.75 Bottom reinforcement // to L (xx) : 6-#4 © 9.00" Bottom reinforcement // to B (zz) . 6-#4 © 9.00" (Zone 1) Load conditions to be included in design Service loads: SC1 DL S1 DL S2 DL +LL S3 DL +0.75LL Design strength loads: DC1 1.4DL D1 1.4DL D2 1.2DL+1.6LL Loads Condition Axial Mxx Mzz Vx Vz [Kip] [Kip'ft] [Kip *ft] [Kip] [Kip] DL 5.55 0.00 0.00 0.00 0.00 LL 15.61 0.00 0.00 0.00 0.00 RESULTS: Status Warnings - Insufficient development length, Section 21.5.4.1 Soil.Foundation interaction • Allowable stress 1.5E03 [Lb /ft2] Min. safety factor for sliding 1.25 Min. safety factor for overturning 1.25 Pa �.( 1- F Controlling condition S2 Condition qmean qmax Amax Area in compression Overturning FS [Lb /ft2] [Lb /ft2] [in] [ft2] ( %) FSx FSz slip S2 1.38E03 1.38E03 0.0826 18.06 100 1000.00 1000.00 1000.00 Bending Factor 4 0.90 Min rebar ratio 0.00180 Development length Axis Pos. Id Ihd Disti Dist2 [in] [in] [in] [in] zz Bot. 20.11 7.04 19.75 19.75 xx Bot. 20.11 7.04 19.75 19.75 Axis Pos. Condition Mu 4 *Mn Asreq Asprov Asreq/Asprov Mu/(4)*Mn) [Kip*ft] [Kip *ft] [in2] [in2] zz Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 I i zz Bot. D2 13.38 45.76 1.10 1.20 0.918 0.292 I F+ I xx Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 I I xx Bot. D2 13.38 43.06 1.10 1.20 0.918 0.311 Irte i Shear Factor 4) 0.75 Shear area (plane zz) 3.10 [ft2] Shear area (plane )x) 2.92 [ft2] Plane Condition Vu Vc Vu/(4)*Vn) [Kip] [Kip] xy D2 8.99 46.09 0.260 I`-ri I yz D2 8.68 48.88 0.237 I+'z1 Punching shear Perimeter of critical section (b... : 4.67 [ft] Punching shear area 3.31 [ft2] Column Condition Vu Vc Vu /(4)*Vn) [Kip] [Kip] column 1 D2 29.25 104.29 0.374 f: °-='I I Notes Page i - ?.S.--- *Soil under the footing is considered elastic and homogeneous. A linear soil pressure variation is assumed. The required flexural reinforcement considers at least the minimum reinforcement I design bending moment is calculated at the critical sections located at the support faces * Only rectangular footings with uniform sections and rectangular columns are considered. * The nominal shear strength is calculated in critical sections located at a distance d from the support face * The punching shear strength is calculated in a perimetral section located at a distance d/2 from the support faces * Transverse reinforcement is not considered in footings * Values shown in red are not in compliance with a provision of the code *qprom = Mean compression pressure on soil. *qmax = Maximum compression pressure on soil. *Amax = maximum total settlement (considering an elastic soil modeled by the subgrade reaction modulus). * Mn = Nominal moment strength. * Mu /(4 *Mn) = Strength ratio. * Vn = Nominal shear or punchure force (for footings Vn =Vc). * Vu /(4)*Vn) = Shear or punching shear strength ratio. • • Page4 Beam Shear bcol 5.5•in (4x4 post) d := tf — 2-in := 0.85 b := Width b = 36-in V :_ 4 f V = 16.32-kips 3 Vu 9u rb toll b V = 7.83-kips < V„ = 16.32-kips GOOD 2 Two -Way Shear 1:, := 5.5 -in Short side column width bL := 5.5-in Long side column width b := 2•(bg + d) + 2•(bL + d) b = 54-in (3 =1.0 Vim:= 4 + 8 f psi•b•d V = 48.96-kips (3 3'O V umax := •2.66• f V = 32.56-kips := 9u•[b — (bcol + d)2] V = 15.88-kips < V = 32.56-kips GOOD Flexure b — bcol 2 (1l Mu 9u' 2 12J•b M = 4.98-ft-kips A:= 0.65 l := c 13-d 2 S = 0.222.11 6 F := 54- f psi F = 162.5•psi Mu u f = 155.47•psi< F = 162.5•psi GOOD S Pee a 3' -0" x 3' -0" x 10" plain concrete footing Plain Concrete Isolated Square Footing Design: F2 fe := 2500 :psi Concrete strength f := 60000 :psi Reinforcing steel strength E := 29000' -ksi Steel modulus of elasticity Iconc : 150'pcf Concrete density 'Ysoil := .100;pcf Soil density 9 := .1500 -psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl:= 2659-lb Pd1:= Totaldl Total!' := 7756.1b Pll := Tota111 P := Pdl + Pu Pd = 10415-lb Footing Dimensions if 10 Footing thickness Width := 36 -in Footing width A := Width Footing Area clnet gall — tf'"Yconc net = 1375.psf Ptl Areqd gnet Areqd = 7.575•ft < A = 9•ft GOOD Widthregd Aregd Widthregd = 2.75•ft < Width = 3.00ft GOOD Ultimate Loads = Pelt + tf P := 1.4•Pdl + 1.7 -P11 P = 18.48 -kips P qu:= — q = 2.05•ksf A • Plain Concrete Isolated Square Footing Design: F3 fe := 2500-psi Concrete strength fy := 60000-psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity /conc := 150•pcf Concrete density /soil := 100 pcf Soil density gall.:° 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totala := 2363=1b Pd1:= Totaldl Totallj := 4575• lb Pll := Totalll := Pdl + P11 PU = 6938-lb Footing Dimensions t := 10-in Footing thickness Width : =. 30-in Footing width A := Width 2 . Footing Area gnet := la11 — tf /conc net = 1375•psf P Areqd 9net A red= q 5.046 ft < A = 6.25 ft 2 GOOD Widthreqd := Areqd Widthreqd = 2.25- ft < Width = 2.50 ft GOOD Ultimate Loads P2 41 Pd1 + tf'A• /conc P := 1.4 Pdl + 1.7• Pll P„ = 12.18• kips P qu := A q = 1.95•ksf • - V.61' Beam Shear bcoi '5.5'in (4x4 post) d := tf – 2•in := 0.85 b := Width b = 30•in V :_ 4 • f V = 13.6-kips 3( 1 V := qu I b 2 bcol ) .b Vu = 4.97-kips < V = 13.6-kips GOOD Two -Way Shear bs := 5.5-in Short side column width bL := 5.5•in Long side column width b := 2.(bg + d) + 2•(bL + d) b = 54•in ti := 1.0 N V -= 0•( + 8 /• f psi•b•d V = 40.8•kips 3 3.0 V := f )si•b•d V iimax = 27.13.kips A7 qu•[b – (bc0i + d) V = 9.71-kips < V uu a .= 27.13•kips GOOD Flexure 2 Mu qu I b – bcol) 11 b M = 2.54•ft•kips 2 2 ,:= 0.65 2 , .:= b •d 6 S = 0.185.ft F := 5 oto• f psi F = 162.5•psi M ft := —" f = 95.19 -psi < F = 162.5 -psi GOOD S 'Use a 2' -6" x 2'-6" x 10" plain concrete footing 1 Plain Concrete Isolated Square Footing Design: F4 fc := 2500-psi Concrete strength f := 60000-psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity 'Yconc := 150•pcf Concrete density 'Yso •= 100•pcf Soil density all 1500-psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 5001-lb Pd] := Totaldl Totalll := 7639-lb Pll := Totalll Ptl := Pd1 + Pll P = 12640-lb Footing Dimensions t := 12• in Footing thickness • Width := 42•in Footing width A := Width Footing Area net gall — tf Yconc lnet = 1350•psf P Areqd gnet Amid = 9.363-ft 2 < A = 12.25 ft GOOD Widthreqd Aregd Widthreqd = 3.06-ft < Width = 3.50 ft GOOD Ultimate Loads F A;A ' Pdl + tf P := 1.4•Pd1 + 1.7 P11 P = 22.56 -kips P qn — q = 1.84 -ksf A Beam Shear bcoi := 5.5•in (4x4 post) d := tf — 2-in �:= 0.85 b := Width b = 42-in V, 10. f psi b d V„ = 23.8-kips 3 Vu qu (b 2 colt b V„ = 9.8•kips < V = 23.8-kips GOOD Two -Way Shear fi 5:5• in Short side column width bL 5.5=in Long side column width b,:= 2•(bg + d) + 2-(bL + d) b = 62•in Rc := 1.0 _ (0•r + 8 / f psi b d V = 71.4-kips 3 343c V,,, :_ 4.2.66• f -d V„ = 47.48-kips • qu — (bcol + d) V = 19.49 -kips < V = 47.48-kips . GOOD Flexure 2 Mu := qu [(13 — bcoll 11 b M = 7.45-11-kips 2 J 2J ,:= 0.65 2 •— bd S= 0.405.1 6 F 5. f F 162.5-psi M a ft := S f = 127.79•psi< Ft = 162.5-psi GOOD jJse a 3' -6" x 3' -6" x 12" plain concrete footing /q _711 Plain Concrete Isolated Round Footing Design: f5 f 3000.psi Concrete strength f := 60000.psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity 'mode := 150•pcf Concrete density '`Ysoil := 120-pcf Soil density g 1500•psf Allowable soil bearing pressure TYPICAL FOOTING Reaction Totaldi := 61 9.1b Pd1:= Totaldl Total11 := 16001b Pll := Totalll P := Pdl + P11 Ptl = 2219• lb Footing Dimensions t := 12 -in Footing thickness 18•in Footing diameter _ Tr Dia Footing Area 4 net gall — tf' Yconc net = 1350 -psf PtI Areqd gnet A red= g 1.644 ft < A = 1.7741 GOOD I A 4 Dia Diareqd = 1.45 -ft < Dia = 1.50 ft GOOD Ultimate Loads = Pdl + tf•A•'Yconc P := 1.4•Pdl + 1.7 -P11 P = 3.96 -kips P gu := A ch = 2.24 -ksf �/ \3 Beam Shear bcot 3.5 -in (4x4 post) d := tf — 2•in := 0.85 b := cos(45•deg)•Dia b = 12.73•in V„ :_ f psi b d V„ = 7.901 -kips 3 VU •= qu (b bco1) c V, = 0.91 -kips < V = 7.901 -kips GOOD Two -Way Shear bs := 3.5 -in Short side column width bL := 3.5 -in Long side column width b,:= 2-(bs + d) + 2 -(bL + d) b = 54 -in (3 := 1.0 MVO.= 4 + 8 f psi b d V„ = 23.703•kips 3 343c • V„„, :_ 2.66 f psi b d V„„,„, = 15.76-kips M VO= q — kbc01 + d) V = —0.31-kips < V„,„ = 15.76-kips GOOD Flexure 2 Mu == 9u Cb — 2 J j(2) boll 1 b M = 0.18•ft -kips A,:= 0.65 2 , := b•d 6 S = 0.123•ft F 5•(1:•- f psi F 178.01•psi M u ft := s f = 9.9-psi < F = 178.01•psi GOOD Use a 18" Dia. x 12" plain concrete footing j -.14 Plain Concrete Isolated Square Footing Design: F( f := 2500.psi Concrete strength f := 60000-psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity ''cone 150•pcf Concrete density ''soil 100 -pcf Soil density gall 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 7072-lb Pd1:= Totaldl Totalll 13304• lb Pll := Total11 P := Pd) + Pll Pg = 20376•1b Footing Dimensions t := 15 • in Footing thickness Width := 48•in Footing width A:= Width Footing Area gnet ga11 — tf''conc gnet = 1313•psf PtI Areqd gnet A red = A ft < A = 16 ft GOOD Width Are; Widthreqd = 3.94•ft < Width = 4.00 ft GOOD Ultimate Loads = Pdl - tf'A'•'conc P := 1.4•Pdl + 1.7 -Pll P = 36.72-kips P qu A qu = 2.29•ksf /4-F\S Beam Shear b 5.5 in (4x4 post) d:= tf -2•in := 0.85 b := Width b = 48-in • V := 4 f psi b d V = 35.36•kips 3 Vu qu (b 2 col) b V„ = 16.26-kips < V = 35.36•kips GOOD Two -Way Shear / bs := 5.5 in Short side column width bL := 5.5•in Long side column width b := 2-(bs + d) + 2-(bL + d) b = 74•in (3 := 1.0 _ + 8 l f psi b d V = 106.08•kips (- 30c Vum, :_ 2.66 f psi b d V mmm = 70.54•kips = q [b — O + d) V = 31.26-kips < V mmi = 70.54•kips GOOD Flexure r 2 Mu •= q I b - bcol) 11 b M = 14.39• ft- kips 2 2 A:= 0.65 b •d 2 ,:= S = 0.78241 6 F := 5•4:1D• f F 162.5-psi M u f := f = 127.75•psi< F = 162.5-psi GOOD 1Jse a 4' -0" x 4' -0" x 15" plain concrete footing 1 (e7 Plain Concrete Isolated Square Footing Design: F7 f :_ 2 -psi Concrete strength fy := 60000 -psi Reinforcing steel strength Es :- - 29000•ksi Steel modulus of elasticity 'Ycoac 150-pcf Concrete density Ysoil := 1001 )0 Soil density gall :_. 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl. := 1200 -lb Pd1 Totaldi Totallj := 3200 -lb PH := Total!! P := Pdl + P11 Pg = 4400 -lb Footing Dimensions tf := 10 -in Footing thickness Width := 24 -in Footing width A:= Width Footing Area gnet := gall – tf'Yconc net = 1375 -psf PU Areqd gnet A 3.2-11 < A = 4 -ft GOOD re Width := A reg d Widthreqd = 1.79 -ft < Width = 2.00 ft GOOD Ultimate Loads 2 := Pdl + tf•A•"Yconc P := 1.4- Pd1 + 1.7 -Pll P = 7.82• kips P qu := — q = 1.96-ksf A Beam Shear bcol 5.5•in (4x4 post) d:= tf -2•in cto:= 0.85 b := Width b = 24•in V, :_ 4 f psi b d V = 10.88 -kips 3 Vu •= qu C b 2 colt b V = 3.01 -kips < V = 10.88-kips GOOD Two -Way Shear b := 5.5•in Short side column width bL:= 5.5•in Long side column width b := 2•(bs + d) + 2•(bL + d) b = .54- in (3 := LO M V,= 4 + 8 f psi•b -d V = 32.64-kips 3 3:O Vnmax := (0•2.66• f psi -b•d Vnmax = 21.71-kips ,V,,,,,y�,,•= qu'[ — (bcol + d) V = 5.35-kips < unmax = 21.71-kips GOOD Flexure 2 b b ( Mu clu' 2 b M = 1.16 ft kips A:= 0.65 2 ,:= b6 S = 0.148•ft F 5.0• f F 162.5-psi M f := S u f = 54.45-psi < F = 162.5-psi GOOD 'Use a 2' -0" x 2' -0" x 10" plain concrete footing • ?2' j Q1.L: - 1 7 1 b = "d a 7 ( s' ow ,..,N —A o ; 'S,A: 0 0 1-zQ 1 ci J-1 g-hl °o = W9 — = u" --tzia nci --i_c-t-tx s- __) c-r-e..xv .-) -. . see -V'o m �.EA�..' 1' so'�r * I so °t,e W 9 4 = '4'47w-b. (Z2c.9s: e + Szc.,' Li itic:1 =a 4dce2"b — 1s'gs-eme. = bIW = 2 gfx .J Q'e‘€ C') ce.nQ.' t 4.' t1) c.ere_.'.. 'Kos tio) = -2'zW z El Qt . e 4 <SZ 1 0)q-1Q . -4 L i)(ZZ)(_s' 5'� s S °) `,_ v\ o n O-k.'\1 -t t.'\\4 1\'S4. .1.01n o v� 3 3 1,Ao J c p a NQ 10 \'3 D i' - ( et t Z x = m z n +` i +'i- --- 01- ,$Z'f)-- o { I r i ' O m 1 3 t 3 0 k:3 ki.. '' 1Ii11'Sq, ❑ ❑ Ark o :m .c -..-11 - �p q n 1O �[ Fool kuo..�i - d + !un :32! VOU 1400j, ' au tqu / :,03road ao Q b0_ ' VV 'oN eor 0 1 1 alva ) — dew i Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:43 AM Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \Front Load 2.etz\ • M33 =51.9 [Kip'ftj M33 =12.19 [Kip'ft] • Mcmets L L, fi._"2.0 na• Bend Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:35 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\Front Load.etz\ • 'M33 =25.66 [KipIt] • • M33= -30.27 [Kip *ft] • A M erk LC.V) 5 BY: p W ...., DATE: +. AO k 0 JOB NO.: e E M.....0 ct 0 OF PROJECT: 5-1/27C1 '[ OO f i t si RE: UN \T A - 1R Lo(v grwou_- 2:161, k , ❑ ❑ 1 , 3 30.4\‘cq J_ Z I ^ F - 9.153 ' 4.153 r L f ❑ V >- _. �. o w O x ce a. Z as 4 O U Check- 0verkFur Z Mo T 30 t fi 30.414 (a - 160Cab) 111.1$ is 2 O U Pk = (o,tsc)Ca)(1)(I +- - 3,153(►) )- 1-,153(ar) ❑ = asaAL 1LFr W ❑ Z ao .qob "- -rnry.,e .= QO AO o C (ao,Cto� &1 ) 4 . ; l .1 as V-sV (alaa t 2,Y:2z . ) -1 - 9-neNi r• = a0P1.0(0 _ .(;_o(W),C1001.5 yr ,:a4s o • cJ ° min <o : o �-mc.x 4 Q _ 4(zU,Gt> . " 3 3( a)(29,- . -c� - Ws) Po yo 0 - X 22 Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:38 AM • Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations Rear Load.etz\ M33 =43.24 [Kiplft] • • M33= -45.06 [Kip'ft] Y M5 rc\x*s - t L /-Ta3 # ,Bent Le Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:43 AM Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \Rear Load 2.etz\ • M33 =41.88 IwP`nl • M 46 . 37 IwP`ftl Y' Mmer# - LCZ "C:' BY A A LL DATE: / , JOB NO.: Ce. A = C OF PROJECT: RE: 'Rear load, _c'oobn5 Li o 0 "x x12" pre, Mrro.x . ()nt} A 4 0.2 t t o _ _ U cvA-15I c_ O ce O w L ' 2-•� A 4-40 Un +4 �Mr= 4.010As, (d - a / M b Sc ` fir. C i> 4 e O, C , A s = C) , 3ci3A.- a' Ol = o. 39.3 (0,006) , (soot:5)(2,+) 0.40ct ( z 0 A� ©, clo6,- + c - )�60,o 066,.- IL) l FCt a 14 ot_9 _I. &v 00) E0I VC.3 00 ) '3 real- Tfl j t$ S a'" or C , CU., 114 us/ 0.614 (64oaO /o, 5C j 7. 0, .(03.1 lb) Oi L3el (1.), o h o =- 4_U_ S ffl Ic��, l 33) S 3 ,,q y •• o11- 4.1 Via, <r _ x yQ 4-2J-256- By OF PROJECT RE Vrank kw& -FocAifs‘ 0 0 S -C x L.)k IV Li 7 ---------- 7_____ -- 1). F- o w O 2 Lii E I = 0 r\ \ A 51A 'f..ct "Id 3 rt 0 D. Qn■ A- 1_-5_33.1._1: _ . < C .... ga3 A 4 0 z „ re a_ i A ---- . 0 uno-- 1 -54AS ,---. < • Qn■ k C --> - 4.0.04 at, z 2 �\r.= a °00 +3•6 ( -"e'\ 1) 2 a 0.c. 5 c k. x 0 ').,) ' ....,(3.1 . li_ Z . a .:_- kL71,(4000 ) Uo,613a06)(4".?,)::- 1 Li 6 • el 0 MO Cat410160C0D I ;IR? tz., ) I- CL oo 0 TILL , c, M. kLent,„sz- __L..' _ ._.1 az. ( \,(5 ko,azo"S-42:).--:-. b.(.42- xi it 5 vig!' 01tAr, :.-. 0,cko(-V.Kat5')(1..otoo0)Ctiar - xy1(, ) zrcl 4:4 ) "irk) •tr c e to" ac. k t ,- ( \ .2.9-0C(00 L 000 - ) / COI f 6)0_096)(..4 -- n - -: 0, 8 t 0 = ' - 84.bs r--c4. >b3-qq:-Ot- 0 - .;... 0 •c4 ,,, -)' gi T; -.;L!, teoso-■\ve, rmymey*, • . "Tr sveke r2." o,c, • As. 0.71 -..: t 1\1 , ( 0,155(.0,co6) /0,5 cscco biz) — a. qt. ,1,1 • °7-46112.7) BY j\ N‘C DATE: c D20 1 0 JOB NO.: C _ A _ ^ c ° OF P ROJECT: y� ` {/� _ � t ?)1)(11)‹ ?)1)(11)‹ 1.25) RE: U 1 1� 1 1 1 1 �. J ❑ ❑ .z aL.obtct $ 2 L❑ 1 1 t- I. _.3 fr J CC ti 1---1 1- a 0 W O Z W O • I Z Check.. OverfvrinwN9 0 F- I A - = aC:..o3 1 o Mkt (tI0a1S6XI S)) 4)f 4 5 , 2■(a) 4- 1,t,L(4) = (-Ft ,a L E M' _ (til°' , s(5 ' ct ,5I5)(4 4 5 .a ( )+ - Le L (l) = S • 12. ° .. M� _ 4 = I L1 > 1,S .' . 0\e-- Mor c�►(o�03 IL • Z 0 = X Mfa _ 4 4t�tL- ot�,o3 1ra e.= a 1 Ft I- II S , 4 1-5,2 ►-1,bb 3 t..(P 2e..' 3( 5 -a(a,-)-o0) Fcsr 5N. to f-P l uu cl to: u52 Sla1b to CeY --F Qver1 ril'n3C o c.) „: Me .z,(.a4- 3.2I U5e $Rk �' 4 S,9 ( o �'7 DL @ eo. e"cA • is; °' . Mtn = (S,Zt-3.zY(9)a- -(I.�L 4- 3,2)(z) -,qT�L aF 510,L, • a • o -g,!:,:: -_-7-_ &o, 12 a- 4-DL.- 1(sC;L ) LI-S,c1(, i-Lf DI 4? '' 1J 1--- - 1, -- 3 -I. 5-1-6 fooling s 13e o\( i - , To o \ n.c3 - _ C.b \ MIL - (5 4- (1,1L4- 3.2)(S) +30`-- 1- j 3DL Mrs_ Lt -C,bb 3 ))L 1,SMocM \,5 (2‘„,0) ;211- 4- 391, tit_ Q.115 ' - 75 ° a (0q- lung x @f x 15” �_ - a -aso� k = M /Q 4(,:b(:, A-3 D (. = a't .Sv __,_\:-)--)- F E (a.as+s.�t ,2,0,(,Li -3.z� Is .(. e , = 122 g-,,.X 4(ls -s ►) = a bqo N �� 3C2-0. 4 - a r BY p C .. DATE: CI - 33 tO JOB NO : e r " .. ..„ 00to OF PROJECT: RE C) \ — M0■ . ,( = '4 ( M.. 0 El 3 ( -2(e, . . -1 0 c Z P 0 W k"*1-u) (, )(aSC L x \S" pt_z_-• O 2 E * — iv\ x _______ _ / = ,bt_. -3- 3( -,(. .,...; \ ,v2.. e.„.= 1. \to C , - w , , ) 0 z w 0 , a--- - a. - s - \-,-,c- Ni z , , • 30_ "5 QC - 2( I ,19.5) ) < ) 2 2 1 L *G35 O C 3 YY\O■c z-- 4( i (./6ss 3( 3)(L,- •a(1 ,i4) .=.- 1.qt y5 F- 0 `f.- co-r 9(10{4- { lock d I A O • - , 0 u_ z w 0 6 0 . I— n_ • = ' ' . . 0 a) 1-1 :,.. li .4 i 0 i. : . Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:42 AM Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A\foundations \Interior 2.etz\ • M33 =23.55 [Kip ft] M33= -17.88 [Kip *ft] y N�! LC I .Bentiev Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:42 AM Units system: English File name: O:*IHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \Interior.etz\ 'M33=32.26 IKIP *ft] M33= -9.27 [Kip'ft] A X MorRenIrs L ( t 4 ,T 30 ACI 318 -05 Appendix D 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc = 3000 psi fc = 3000 psi h' = 3.50 inches h = 12:00 `'a inches (into the Fe Stem = ,.'.8:00: , inches Note : hef above is the the embedment into or cmax = 5.25 inches the foundation and does not consider stem wE Fnd Width = 36.00 inches cmin = 2.25 inches e = 18.00 inches Wc,N= 1.00 cast -in -place anchor W 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor = 0.75 strength reduction factor = 0.75 strength reduction fact Calculations Calculations ANc = 68 in` AN = 1296 AND = 110.25 in' AN = 1296 in` Nb = 8,607 pounds Nb = 55,121 pounds Wed,N = 0.8286 Wed,N = 1.00 N = 4,399 pounds Nth = 55,121 pounds 4N = 3,299 pounds +NDb = 41,341 pounds Combined Capacity of Stem Wall and Foundation 4■Db = 44,640 0.754 )N = 33,480 " 2-2 9 0 ! " W < ( 2? - b d °e v \NZ -0 H o 0 z E Z 0 ' 0/ ( 0 71: 1 0 o o SPOC1 L -) 11,1 rb4 C1-11 0 0 i 1 qS (Ei, 7_ - 1)(000 0)0b 0 NI 100-h 0 = • OF_X 000 ” ( 3'0/ (000'07 6 = AO -LN 6as'o „2.1 ( C), -A.1_ • qinT -0 0 fr z 0 0 > , ,s i g ri g o ri -4 4j ° * cnie'tc_ xv\ia 0 0 :103r0Nd AO 0 0 'oN scr oioe -9 Concrete Side Face Blow Out Givens Abrs = 2.15 in` fc = 3000 psi c = 18.00 inches = 0.75 strength reduction factor Calculations Nsb = 231,191 pounds 4 Nsb = 173,393 pounds Concrete Pullout Strength Givens Abrg = 2.15 in` fc = 3000 psi = 0.75 strength reduction factor Calculations N 51,552 pounds 4 N = 38,664 pounds Steel Yield Strength Givens f = 58,000 psi A = 0.606 in = 0.80 strength reduction factor Calculations N = 35,148 pounds RN = 28,118 pounds < 33,480 Ductility Met Holdown Check Holdown: HDU14 Holdown Capacity= 14,930 pounds 1.6* Capacity= 23,888 pounds 23,888 < 28,118 Holdown Checks N 1 fie as n • r' T2 tkQ' 1 . (r) (flOOi { be`11E o 11 ..sfxo1 -3nd 032t : rr 001 : t rn C) 17 ) 9 Fats i,dc22 = " 1'1I6)ct'li)C,i'6050)Moi7 6-16 a)lh= czx£ 11 nr z,d 001 _ c o - la ,,51 -a-co ,1 4o - m MOO\ \o Ss1'1 J001.5 SMIlUd s� ?WOOS y . v 0 5 (Y) 001 ° t.h£'e b Moo 4- cc.fi ^., 5 a P O oS-fi - cs ‘). dn d ( )C. b) :11 dam. J (l _ +..1 VI) moot = <rn oS) )( 21 12 its S_sc = Ualg) v 3 os9 mok7 .moo\ Jac) tree : � �S C-1 ' i.1)`s - ‘0i mid cao� _ L -1. Sr :7Q cJ v I?1 l 3n j �. J`pa.� ❑ Z TI O O �1S ".) )© °t = -(Y) - o r, CY10o�� M C7 . C)1 + I I M • i" 'sd 00S1 = dq5 x 1'4 cnO01 ( 2,-i1 = V 1 --) 3-`8 Ofie) d � sc Q i)(,51W\ ?1 Z k ,3 QJ 4 - 11 ma o M 001 M')( d' ost )(Zile) m o �+ _ n A Joois dna' ga < �S L9cspiv k 13 g ❑ worn. j1 00s _C3s67,1)1js' n �Q o m Z sCourpmg s� S a 0 :1D3 road an "ON 9or :3LVa •g