Loading...
Specifications /t'2, ism, 1, Structural Calculations for 7 : COO Full Lateral & Gravity Analysis 3 201 Plan B 1332 SEP 2 uiL ING D V S 0SJ Summer Creek Townhomes BuI�D Tigard, OR Prepared for Pulte Group July 13, 2010 JOB NUMBER: CEN -090 ** *Limitations * ** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and /or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 96 sheets total including this cover sheet. • This Packet of Calculations is Null and Void if Signature above is not Original Harper Houf Peterson Righellis Inc. E R41'If LRS • AYNER4 EAI4OSCALE ANC"ITEC TS.EIVN'i CVONS 205. SE Spokane St. Suite 200 o Portland, OR 97202 0 [P] 503.221.1131 0 IF] 503.221.1171 1104 Main St. Suite 100 o Vancouver, WA 98660 0 [P] 360.450.1 141 .o [F] 360.750.1141 1 133 NW Wall St. Suite 201 o Bend, OR 97701 0 [P] 541.318.1161 e [F] 541.318.1 141 Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit B Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, lW: 1 2006 IBC / 2007 OSSC Occupancy Category: II Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed, ASCE 7 -05 Ch. 20 Importance, IE: 1 ASCE 7 -05 Table 11.5-1 Ss: 0.942 USGS Spectral Response Map Si: 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength, f' c: 3000 psi Foundations & Slab on Grade Concrete Unit Weight, yc: 145 pcf Steel Reinforcement Yield Strength, f 60,000 psi Wood Studs (Wall Studs): Hem -Fir #2 2x & 4x Wood Beams & Posts: DF -L #2 6x & Greater Wood Beams & Posts: DF -L# 1 Glulam Beams: 24F -V4 PSL Beams: Fb =2,900 psi, FV= 328psi, E =2.0 Million TS /LSL Beams: Fb =2325 psi, FV= 460psi, E =1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : 1500 psf Assumed • 2. All manufactured trusses, joists, and flush beams.u.n.o. shall be designed by others. Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 WoodWorks - Sizer version 2002 Bently RAM Advanse Harper Project: Summer Creek Townhomes UNIT B HP b. Houf Peterson. Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS - Designer: AMC Date: June 2010 Pg. # LANDSCAPE ARCNITECTS *SURVEYORS DESIGN CRITERIA 2007 Oregon Structural Specialty Code & ASCE 7 -05 Roof Dead Load RFR:= 2.5•psf Framing RPL := 1.5.psf Plywood RRF := 5•psf Roofing RME := 1.5.psf Mech & Elec RMS := 1 •psf Misc RCG := 2.5•psf Ceiling RENT := 1 •psf Insulation RDL = 15•psf Floor Dead Load FFR := 3.psf Framing FPL := 4•psf Sheathing FME := 1.5.psf Mech & Elec FMS := 1.5.psf Misc FIN := .5•psf Finish & Insulation FCLG := 2.5•psf Ceiling FDL = 13•psf Wall Dead Load WOOD EX_Wa11 := 12•psf 1NT_Wa1l := 10•psf Roof Live Load RLL := 25•psf Floor Live Load FLL := 40•psf .6—L\ Harper Project: Summer Creek Townhomes UNIT B HP t Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. -- ENGINEERS • ?CANNERS Designer: AMC Date: June 2010 Pg. # L AND6CAPE ARCHITECTS• SURVEYORS Transverse Seismic Forces Site Class = D Design Catagory = D Building Occupancy Category: II Weight of Structure In Transverse Direction Roof Weight Roof Area := 74841 RFwT := RDL•Roof Area RFWT = 12566-lb Floor Weight Floor Area2nd := 605.ft FLRVy1.2 := FDL•Floor_Area2nd FLRWT2nd = 7865•Ib Floor Area3rd 600•ft 2 FLRwT3rd FDL•Floor Area3rd FLRWT3rd = 7800-lb Wall Weight EX Wall Area := (2203)•$ INT Wall Area := (906).ft 2 WALLw-1• := EX_Wall + INT Wall WALLw-r = 35496.1b WTTOTAL = 637271b Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h := 32 Mean Height Of Roof I := 1 Component Importance Factor (11.5, ASCE 7 -05) A,:= 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C := .02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x := .75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period T := C „) T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) Si := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F := 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F := 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) S- -11_ Harper Project: Summer Creek Townhomes UNIT B ' a HP Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS '• PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE ARCNITEC T9•9URVEYORS SMS := F SMS = 1.058 (EQU 11.4 -1, ASCE 7 -05) Sds •= 2 •SMS 3 Sds = 0.705 (EQU 11.4 -3, ASCE 7 -05) SM1 := F S1 SM1 = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2 •SMl Sdl := 3 Shc = 0.389 • (EQU 11.4 - ASCE 7 - 05) Cst := Sds Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) R • ...need not exceed... Csmax := Shc'Ie Csmax = 0.223 (EQU 7-05) U 12.8 -3, ASCE 7 -OS T , ...and shall not be less then... C1 := if(0.044•Sd < 0.01,0.01,0.044•Sd ( 0.5•S1•Iel (EQU 12.8 - 5 &6, ASCE 7 - 05) C2:= if l S1 <0.6,0.01, l R J Cs := if (CI > C2,C1,C2) Csmin = 0.031 Cs := if (Cst < Cs Cs if (Cst < Csmax ,Cst, Csmax)) Cs = 0.108 := Cs WTT6TAL V = 69141b (EQU 12.8 -1, ASCE 7 -05) E := V•0.7 E = 48401b (Allowable Stress) /3 L13) Harper Project: Summer Creek Townhomes UNIT B Houf Peterson Client: Pulte Group Job # CEN-090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # LANOSCAPE ARCNUECPS•SURVEVOR6 Transverse Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7-05) Basic Wind Speed: 100 Mph (3:Sec Gust) Exposure : B Building Occupancy CategOry:- I 1.00 Importance Factor (Table 6-1, ASCE 7-05) h = 32 Mean Roof Height X := 1.00 Adjustment Factor (Figure 6-3, ASCE 7-05) Smaller of.. a2 := - 2..1,16.ft Zone A & B Horizontal Length (Fig 6-2 note 10, ASCE 7-05) a2 = 3.2 ft .4-h a2 = 25.6 ft or but not less than... a2, := 3.2.ft = 6 ft Wind Pressure (Figure 6-2, ASCE 7-05) Horizontal Pnet := 19 - 9 •W PnetzoneB 3 - 2 *Psf Pnetzonec := 14.4.psf Pnet 3.3-psf Vertical priet := -8.8-pSf Pneti := 12-psf Pnet := -6.4.psf F'Petzene11:= - 9- 7 "Psf Basic Wind Force • PA := PnetzoneAlw' X PA = 19.9-psf Wall HWC PB := PnetzoneW Iw' X P13 = 3.2 Roof HWC PC := PnetzoneCke X Pc = I4.4.psf Wall Typical PD := PnetzoneD' PD = 3.3.psf Roof Typical PE := PnetzoneE' X PE = - 8.8-psf PF := PnetzoneF' Ivy' X PF = - 12-psf PG := PnetzoneG' X PG = - 6.4.psf PH := PnetzoneH' Iw' X PH = - 9.7.psf -UA Harper Project: Summer Creek Townhomes UNIT B HP Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE ARCHITECTS• SURVEYORS Determine Wind Sail In Transverse Direction WSAILZoneA (55 + 59 + 29)4( WSAILZoneB (6 + 0 + 23)41 WSAILZoneC (429 + 355 + 339)• 1 WSAILZoneD (0 + 0 + 4)4t WA := WSAILZoneA'PA WA = 2846 Ib WB WSAILZoneB'PB WB = 931b WC = WSAILZoneC'PC WC = 161711b WD WSAILZoneD'PD WD = 13 Ib Wind_Force := WA + WB + WC + WD Wind_Force := 10•psf•(WSAILZoneA + WSAILZoneB + WSAILZonec + WSAILZoneD) Wind_Force = 19123 lb Wind Force = 129901b WSAI ZoneE := 4 " 2 WSAILZoneF 43•$ WSAILZoneG 334412 WSJ -ZoneH 327•ft WE WSAILZoneE'PE WE = —3781b WF WSAILZoneF'PF WF = — 5161b WG WSAILZoneG'PG WG = — 21381b WH WSAILZoneH'PH WH = — 31721b Upliftnet WF + WH + (WE + WG) + RDL f WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneG) }. 6.1 . 12 Upliftnet = 1326 Ib (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SIIEARWALL HOLDDOWN CALCULATION ` Harper Project: Summer Creek Townhomes UNIT B • 0 :Pt : Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE ARCHITECTS• SURVEYORS Longitudinal Seismic Forces Site Class = D Design.Catagory =:•D Building Occupancy Category: II Weight of Structure In Longitudinal Direction Roof Weight Roof Area = 838 ft := RDL•Roof Area RFw-I• = 12566-lb Floor Weight Floor_Area2 = 605 ft abuc= FDL•Floor Area2nd FLRwT2nd = 7865• lb Floor Area3rd = 600 ft wank= FDL•Floor Area3rd FLRWT3rd = 7800.1b Wall Weight E AtcA .: (2203)•ft 2 INT Wall Area = 906 ft A EX_Wa11 + INT Wall Area WALLWT• = 35496.1b WTTOTAL = 63727 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h = 32 Mean Height Of Roof l = 1 Component Importance Factor (11.5, ASCE 7 -05) 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C = 0.02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x = 0.75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period ^ T A := C - T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) St = 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S = 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F = 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F, = 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) Harper Project: Summer Creek Townhomes UNIT B HP Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE ARCHITECTS•SURVEYORS := F SMs = 1.058 (EQU 11.4-1, ASCE 7 -05) 2•SMg := 3 Sds = 0.705 (EQU 11.4 -3, ASCE 7 -05) = F Si SM1 = 0.584 (EQU 11.4 -2, ASCE 7 =05) 2 •SM1 := 3 Shc = 0.389 (EQU 11.4 -4, ASCE 7 -05) ,,:= Sds Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) R ...need not exceed... Sdrle "S "'= Csmax = 0.223 (EQU 12.8 -3, ASCE 7 -05) T •R a ...and shall not be less then... Cam:= if (0.044. Sd < 0.01, 0.01, 0.044• Sds• le) 0.5-S1-1e (EQU 12.8 -5 &6, ASCE 7 -05) := ifl S1 <0.6,0.01, • R J tiR ,,:= if (CI > C2, CI, C2) Cs = 0.031 a:= if (Cst < Cs Cs ,if(Cst < Csmax,Cst,Csmax)) Cs = 0.108 V := Cs•WTTOTAL V = 69141b •,;(EQU 12.8 -1, ASCE 7 -05) E := V•0.7 E = 48401b (Allowable Stress) 8 Harper Project: Summer Creek Townhomes UNIT B A P ► Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS ECTE�SURYEVpgs • PLANNERS Desgner: AMC Date: June 2010 Pg. # LANDSCAPE Longitudinal Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 110 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II h, = 1.0 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X = 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of.. 2-.1-16-ft Zone A & B Horizontal Length _ 3 2 ft (Fig 6 -2 note 10, ASCE 7 -05) or a2 = 25.6 ft 3 2 ft but not less than... .v' a = 6 ft Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA = 19.9•psf PnetzoneB = 3.2•psf Pnetzonec = 14.4•psf PnetzoneD = 3.3•psf Vertical PnetzoneE = — 8.8•psf PnetzoneF = —12 psf PnetzoneG = — 6.4•psf PnetzoneH = — 9.7•psf Basic Wind Force PnetzoneA'Iw• PA = 19.9•psf Wall HWC. PnetzoneB'Iw X PB = 3.2• psf Roof HWC P,N.= PnetzoneC'Iw'X Pc= 14.4•psf Wall Typical Pte:= PnetzoneD'Iw•X PD = 3.3•psf Roof Typical := PnetzoneE'Iw•X PE = — 8.8.psf := PnetzoneF'Iw'X PF = — 12•psf Pte:= PnetzoneG'Iw PG = — 6.4•psf Pi:= PnetzoneH'Iw'X PH = — 9.7•psf 19) Harper Project: Summer Creek Townhomes UNIT B HP Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENG • PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE ARCHITECTS•SURVEYORS Determine Wind Sail In Longitudinal Direction Maza,:= (58 + 59 + 21)41 n`iwiS acw:= (0 + 0 + 51).ft Nn ,R := (98 + 99 + 34)•ft NtNNmpn'= (0 + 0 + 114)•ft Wes= WSAILZoneA'PA WA = 27461b „ = WSAILZoneB'PB WB = 1631b := WSAILZoneC'PC WC = 33261b WSAII- ZoneD'PD WD = 3761b n w or e := WA + WB + WC + WD NWi d 10•psf•(WSAILZ + WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind Force = 66121b Wind_Force = 53401b ,,..N= 151•ft 2 A UX1 4 4 941. 4„:= 13841 W AIL : = 242•ft 2 26,§,v,„494441,:= 1,:= 216•ft2 W ^:= WSAILZoneE'PE WE = — 13291b WA:= WSAILZoneF'PF WF = — 16561b Wes:= WSAILZoneG'PG WG = — 15491b Wes= WSAILZoneH'PH WH = — 20951b 1 ft := WF + WH + (WE + WG) + RDL•[WSAILZoneF + WSAILzoneH + (WSAILZoneE + WSAILZoneG)]'.6.1.12 Upliftnet = 901 1b (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION E-LCA Harper Houf Peterson Righellis Pg #: Transverse Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= 11 (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf t= 1.00 Iw= 1.00 Wind Sail Wind Net Design Wind Pressure (psf) ( ft2 ) Pressure (Ibs) Zone A = 19.9 143 • 2846 Wall High Wind Zone Horizontal Zone B = 3.2 29 93 Roof High Wind Zone Wind Forces Zone C = 14.4 1123 16171 Wall Typ Zone Zone D = 3.3 4 13 Roof Typ Zone Zone E = -8.8 43 . -378. Roof Windward High Wind Zone . Vertical Zone F = -12.0 43 -516 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 334 -2138 Roof Windward Typ Wind Zone Zone H = -9.7 327 -3172 Roof Leeward Typ Wind Zone Total Wind Force =l 19123 Ibs I Use to resist wind .uplift: Roof Only Total Exterior Wall Area= 2203 ft . Uplift due to Wind Forces= -6204 Ibs Resisting Dead Load= 7517 Ibs E =l 1313 Lbs...No Net Uplift I • Wind Distribution Tributary to Diaphragms • Wind Sail Tributary To Diaphragm (ft Zone A Zone B Zone C Zone D Main Floor 55 6 429 0 Upper Floor 59 0 355 0 Main Floor Diaphragm.Shear = 7291 Ibs Upper Floor Diaphragm Shear = 6286 Ibs Roof Diaphragm Shear = 5546 Ibs • Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Diaphrag (Ibs) Diaphragm (lbs) (lbs) Width fft Width ft ) Width (ft) .v.. A 15.83 2275 20.50 3143 21.33 2773 B 19.50 2802 0.00 0 0.00 0 C 15.42 2215 20.50 3143 21.33 2773 ` Z= 50.75 7291 41 6286 42.67 5546 .__J L- \ Harper Houf Peterson Righellis Pg #: - Transverse Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D . S1= 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 , Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv= 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 S 1.06 Equ. 11.4 -1, ASCE 7 -05 , S 0.58 Equ. 11.4 -2, ASCE 7 -05 Sos= 0.71 • Equ. 11.4 -3, ASCE 7 -05 Spy= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = • 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 Csmax = 0.22 Equ. 12.8- 3,.ASCE 7 -05 Base Shear coefficient, v = 0.076 . Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 • Roof Diaphragm Height (ft) = 32 , Floor 2 Wt (Ib)= 7865 Floor 3 Wt (Ib)= 7800 • Roof Wt (Ib) = 12566 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22063 Trib. Floor 3 Diaphragm Wt (Ib) = 21998 Trib. Roof Diaphragm Wt (Ib) = 19665 Vertical Dist of Seismic Forces Cumulative % total of base shear Rho Check to Shearwalls (Ibs) I to shearwalls I Req'd? Vfloor2 (Ib) = 711 100.0% Yes Vfl 3 (Ib) = 1595 85.3% Yes Vroof (lb) = 2534 52.4% Yes e Shear Distribution To Wall Lines • , Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft Ibs Ibs Ibs ' A • 126 299 371 •148 795 • 1257 B 282 0 0 331 0 0 C 197 301 377 231 , , 800 1277- • -. Sum 605 . 600 748 711 1595 2534, Total Base Shear* = I 4840 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. g '-. Lofk Harper Houf Peterson Righellis Pg #: Longitudinal Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: • Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) . Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= 11 (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf = 1.00 Iw= 1.00 Wind Sail Wind Net Design Wind Pressure (psf) () Pressure (Ibs) Zone A = 19.9 138 2746 Wall High Wind Zone Horizontal Zone B = 3.2 51 163 Roof High Wind Zone Wind Forces Zone C = 14.4 231 3326 Wall Typ Zone Zone D = 3.3 114 376 Roof Typ Zone Zone E _ -8.8 151 -1329 Roof Windward High Wind Zone Vertical Zone F = -12.0 138 -1656 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 242 -1549 Roof Windward Typ Wind Zone Zone H = -9.7 216 -2095 Roof Leeward Typ Wind Zone Total Wind Force =l 6612 Ibs Use to resist wind uplift: Roof & Half of Upper Floor Walls Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -6629 Ibs Resisting Dead Load= 10160 Ibs • E =I 3531 Lbs...No Net Uplift Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm (ft Zone A Zone B Zone C Zone D Main Floor 58 0 98 0 Upper Floor 59 0 99 0 • Main Floor Diaphragm Shear = 2565 Ibs Upper Floor Diaphragm Shear = 2600 Ibs Roof Diaphragm Shear = 1447 Ibs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm (Ibs) Diaphragm (Ibs) Diaphragm (Ibs) Width ft Width ft Width ft 1 8 1283 8 1300 8 723 • 2 8 1283 8 1300 8 723 £= 16 2565 16 2600 16 1447 LAt. Harper Houf Peterson Righellis Pg #: Longitudinal Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D S1= 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct= 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 SM, 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 Sp 0.71 Equ. 11.4 -3, ASCE 7 -05 • SIM= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 ' Equ. 12.8 -5 & 6, ASCE 7 -05 Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (Ib)= 7865 Floor 3 Wt (Ib)= 7800 Roof Wt (Ib) = 12566 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22063 Trib. Floor 3 Diaphragm Wt (Ib) = 21998 • Trib. Roof Diaphragm Wt (Ib) = 19665 Vertical Dist of Seismic Forces Cumulative % total of base shear Rho Check to Shearwalls (Ibs) I to shearwalls I Req'd? • VOoor 2 (Ib) = 711 100.0% Yes Veoor 3 (Ib) = 1595 85.3% Yes Vroor (lb) = 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft Ibs Ibs Ibs 1 275 270 360 • 323 718 1220 2 330 .330 388 388 877 1315 Sum 605 600 748 711 1595 2534 • Total Base Shear* = I 4840 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. Harper Houf Peterson Righellis Pg #: • • Shearwall Analysis Based on the ASCE 7 -05 Transvere Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load - Dead V Panel Shear Panel M M Uplift Panel Lgth. From 2nd Flr. From 3rd FU. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klf) (plt) (ft-k) (ft -k) (k) 101 8 5.25 5.25 1.52 ox 8.00 2.28 18.00 3.14 27.00 2.77 1560 Double 1.40 VIII ' 102 .8 3.88 3.88 2.06 OK 8.00 2.80 8.00 0.00 723 Single 1.40 IV 103 8 .4.58 8.58 1.75 ox 8.00 2.22 8.00 114 8.00- . 2.77 947 Double' 1.40 VI 104 8 4.00 8.58 2.00 ox 8.00 2.22 8.00 3.14 8.00. 2.77 947 Double 1.40 VI 107 8 4.58 13.08 1.75 oK 8.00 • 2.28 18.00 3.14 27.00 2.77 626 Single. 1.40 III 108 8 8.50 13.08 0.94 OK 8.00 2.28 18.00 3.14 27.00 2.77 626 Single 1.40 III 109 8 3.88 3.88. 2.06 oK 8.00 2.80 723. Single 1.40 IV 110 8 1.25 ' 4.50 6.40 8.00 2.22 8.00 3.14 8.00 2.77 1807 Double 1.40 NG 111 8 2.00 4.50 4.00 b'.•`" 8.00 2.22 8.00 3.14 8.00 2:77 . 1807 Double 1.40 . NG 112 8 1.25 4.50 6.40 ' 8.00 2.22 8.00 3.14 8.00 .2.77 • 1807 Double 1.40 NG • 201 9 6.79 9:79 1.33 OK 9.00 3.14 18.00 2.77 604. Single 1;40 III . 202 9 3.00 9.79 3.00 oK 9.00 3.14 18.00 2.77 604 Single 1.40 III 203 9 _ 5.00 5.00 1.80 oK _ 9.00. 3.14 _ 18.00 237 1183 _ . Double _ 1.40 -VII 204 Not Used 205 Not Used 206 Not Used ' 301 8 6.88 10.08 1.16 OK 8.00 2.77 275 Single 1.40 I 302 8 3.21 10.08 2.49 OK 8.00 .2.77 275 Single 1.40 I 303 8 5.00 10.00 1.60 OK 8.00 2.77 277 Single 1.40 I 304 8 2.50 10.00 3.20 of( 8.00 2.77 . 277 Single 1.40 • I 305 8 2.50 10.00 3.20 oK 8.00 2.77 277 Single 1.40 I Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • • • L3' ULk Harper Houf Peterson Righellis Pg #: Shearwall Analysis • Based on the ASCE 7 -05 Transvere Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho *V % Story # Panel Shear Panel M . MR Uplift Panel Lgth. From 2nd Flr. From 3rd FIr. _ ' From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht k ht k ht. k (klt) (plf) (plf) (ft -k) (ft-k) (k) 101 8 5.25 5.25 1.52 OK 8.00 0.15 18.00 0.80 27.00 126 419 545 0.30 1.31 Single 1.00 IV 102 8 3.88 . 188 2.06 OK 8.00 0.33 8.00 0.00 0.00 85 111 0.22 0.97 Single 0.97 ' I 103 8 4.58 8.58 1.75 OK 8.00 023 8.00 0.80 8.00 1.28 269 350 0.26 1.15 Single 1.00 I1 104 8 4.00 _ 8.58 2.00 OK 8.00 0/3 8.00 0.80 8.00 1.28 269 350 0.23 1.00 _ Single 1.00 II 107 8 4.58 13.08 1.75 OK' ,8.00 0.15 18.00 0.80 27.00 1.26 168 219' 0.26 1.15 Single 1.00 1 108 8 8.50 13.08 0.94 OK •8.00 0:15 18.00 0.80 27.00 1.26 • 168 219 NA 2.13 Single 1.00 I • 109 8 3.88 3.88 2.06 OK 8.00 • 033 0.00 • 85 111 0.22 0.97 Single 0.97 . I . 110 8 1.25 4:50 6.40 ': , ,, 8.00 0.23 8.00 0.80 8.00 1.28. 513 667 0.07 031 Double 0.31 NG 111 8 200 4:50 4.00 . " 8.00 • 023 8.00 0.80 8.00 128 513 667 0.11 •0.50 Double 0.50 Na • 112 8 125 4:50 6.40 • 4 .,y�,' 8.00 0:23 8.00 0.80 8.00 128 513 667. 0.07 031 Double 031 NG . - t•; 201 9 6.79 •9.79. 1.33 OK 9.00 , 0.28. 18.00 - 1.26 ' 157 ' 205. 0.46 1.51 -Single 1.00. • 1 202 9 3.00 9.79 3.00 ' OK . 9.00 0.28 18.00 1.26 157 205 0.20 0.67 Single 0.67 11 203 9 _ 5.00 _ 5.00 _ 1.80 OK _ 9.00 0.55 18.00 1.28 366 _ 476 0.34 1.11 - Single _ .1.00 IV , 204 Not Used . . . • 205 - Not Used - . 206 - • Not Used 301 8 6.88 10.08 1.16 OK 8.00 1.26 ' 125 • 162 0.34 1.72 Single 1.00 I 302 8 3.21 10.08 2.49 OK 8.00 126 125 162 0.16 0.80 . Single 0.80 _I 303 8 . 5.00 10.00 1.60 OK , 8.00 1.28 128 166. 0.25 1.25 Single 1.00 1 304 8 2.50 10.00 320 OK 8.00 1.28 128 166 0.12 0.63 Single 0.63 II 305 8 2.50 10.00 3.20 OK 8.00 1.28 128 166 - 0.12 0.63 Single 0.63. II Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total transverse base shear? Yes Total 1st Floor Wall Length = 17.71 • Total # 1st Floor Bays = 4.43 • Are 2 bays minimum present along each wall line? No 1st Floor Rho = 1.3 Total 2nd Floor Wall Length = 14.79 • Total # 2nd Floor Bays = 3 Are 2 bays minimum present along each wall line? No 2nd Floor Rho = 13 Total 3rd Floor Wall Length = 20.05 • Total # 3rd Floor Bays = Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho = 1.3 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load *Rh0 / Total L % Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2 *L/H Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) ss IL 5 Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H • L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel M MR Uplift Panel Lgth: From 2nd Fir. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (Idf) (plf) (ft-k) (ft-k) (k) 105 8 12.75 12.75 0.63 OK 10.00 1.28 18.00 1.30 27.00 0.72 1.13 259 Single 1.40 1 . 55.75 92.01 0.04 106 8 12.75 12.75 0.63 ox • 10.00 1.28 18.00 1.30 27.00 0.72 1.13 259 Single ' 1.40 I 55.75 92.01 0.04 207 9 11.50 _11.50 0.78 ox , I 9.00 1 18.00 0.72 0.75 176 Single 1.40 I 24.71 49.73 -0.47 208 9 11.50 11.50 0.78 OK 9.00 1.30 18.00 0:72. 0.75 176. Single 1.40 - ' I 24.71 49.73 =0.47 I 306 I 8 10.00 10.00 0.80 OK 8.00 0.72 0.29 72 Single 1.40 I 5.78 14.40 -0.30 I 307 I 8 10.00 10.00 0.80 ox _ 8.00 0.72 0.29 72 Single 1.40 I 5.78 14.40 -0.30 • Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height • Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load' L * 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) • • g __Loa Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V , Rho! V % Story # 'Panel Shear Panel M Ma Uplift Panel Lgth: • From 2nd Flr. From 3rd Flr: From•Roof Load Strength Bays Sides Factor Type T • (ft) (ft) (ft) ht • k ht k ht' k ' (kif) (plf) (plf) (ft-k) (ft -k) (k) 105 8 12.75 12.75 0:63 OK 10.00 032 18.00 0.72 27.00 •1.22 1.19' 177 177 . NA 3.19 Single 1.00. 1 49.09 96.89 -0.74 106 8 12.75 12.75 _ 0.63 oK 10.00 0.39 _ 18.00 0.88 27.00 1.32 1.19 ' 202 202 NA 3.19 Single 1.00 1 55.17 96.89 -0.24 I 208 1 9 9 11.50 11.50 0.78 au 11.50 11.50 0.78 bK 1 • 1 9.00 I 0.88 1 18.001 132 0.81 191 1 191 I NA _ 2.56 Single I -1.00 • 1 31.56 1 69 -0.06 I • I 306 8 10.00 10.00 0:80 oK 8.00 1:22 0.35 • . 122 122 NA 2.50 Single - 1.00 • 1 9.76 17.40 =0.07 I 307 1 . 8 10.00 1 10.00' 0:80 OK I n I • 1 8.00 122 , 0.35 ,122 122 .1 NA 2.50 I Single 1.00 I 9.76 1 17.40 -0.07 Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes , Total 1st Floor Wall Length = MO Total # 1st Floor Bays = 6.34 • Are 2 bays minimum present along each wall line? Yes 1st Floor Rho = 1.o ' • Total 2nd Floor Wall Length = 23.00 Total # 2nd Floor Bays = s Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho = 1.0 Total 3rd Floor Wall Length = zo.00 ' Total # 3rd Floor Bays = s . Are 2 bays minimum present along each wall line? Yes, , 3rd Floor Rho = 1.0 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check • V (Panel Shear) = Sum of Line Load'Rho / Total L % Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2•L/H Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear • Shear Application ht Mr (Resistingyoment) = Dead Load • L • 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • • • 4 8 1 ..-- tissi2i Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Transvere Shearwalls Panel Wall Shear Wall Type Good For V (PR) (p 101 1560 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 1667 102 723 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 833 103 947 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 104 947 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 107 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 108 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 109 723 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 833 110 Simpson Strongwall 111 Simpson Strongwall 112 Simpson Strongwall 201 604 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 202 604 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 203 1183 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 1276 204 Not Used 205 Not Used 206 Not Used 301 275 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 302 275 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 303 277 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 304 277 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 339 305 277_ 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 339 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY Longitudinal Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good For V (plf) (PI) (ib) (►b) 105 259 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 44 Simpson None 0 106 259 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 44 Simpson None 0 207 176 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -345 Simpson None 0 208 191 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 =59 Simpson None 0 306 122 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 -72 Simpson None 0 307 122 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 -72 Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design Toads. 8 -Lik9 Transverse Wind Uplift Design Unit B Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor. Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Fir. Flr. Roof Shear including Load Load Momen @ Left @ Right Left , Right Left Side of @ Right Wall Wall @ Left @ floors ® Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k' k kft kft kft k k k k k k 101 8 1.1667 • 5.25 5.25 2.28 3.14 2.77 8.19 1560 0.1 0.8 0.208 72.42 5.58 2.47 14.54 14.93 14.54 14.93 102 8 1.1667 3.88 3.88 .2.8 2.8 722 0.092 2.432 22.40 10.13 0.69 4.83 6.50 4.83 6.50 103 8 1.1667 4.58 8.58 2.22 3.14 2.77 8.13 948 0.1 0.078 0.078 38.40 1.41 1.41 9.20 9.20 203 R -12.12 -2.91 9.20 104 8 1.1667 4 8.58 2.22 3.14 2.77 8.13 948 0.234 0.117 1.632 33.54 2.34 8.40 9.18 8.14 9.18 8.14 107 8 1.1667 4.58 13.08 2.28 3.14 2.77 8.19 626 0.1 0.192 0.078 25.36 1.93 1.41 5.93 6.01 201L 201R 6.71 6.71 12.65 12.72 108 8 1.1667 8.5 13.08 2.28 3.14 2:77 8.19 626 0.1 0.078 0.384 47.06 4.28 6.88 5.56 5.37 202L 202R 6.77 7.24 12.33 12.60 110 8 1.1667 1.25 4.5 2.22 3.14 2.77 8.13 1807 • 0.1 0.384 0.078 18.07 0.56 0:18 23.00 23.30 203L 12.13 35.13 23.30 111 8 1.1667 2 4.5 2.22 3.14 2.77 8.13 1807 0.1 0.078 0.208 28.91 0.36 0.62 18.87 18.76 203R -12.12 6.75 18.76 112 8 1.1667 1.25 4.5 2.22 3.14 2.77 8.13 1807 0.1 0.208 1.424 18.07 0.34 1.86 23.17 21.99 23.17 21.99 201 9 1.1667 6.79 9.79 3.14 2.77 5.91 604 0.172 0.848 0.156 39.13 .9.72 5.02 4.90 5.32 301L 301R 1.45 1.40 6.35 6.71 202 9 1.1667 3 9.79 3.14 2.77 5.91 604 0.172 0.848 0.156 17.29 3.32 1.24 5.10 5.51 3021 302r 1.67 1.72 6.77 7.24 203 9 1.1667 5 5_ 3.14 2.77_ 5.91 1182 0.172 0.848 0.385 56.42 6.39 4.08 10.52 10.80 303L 303R 1.61 1.32 12.13 12.12 301 8 6.88 10.09 2.77 2.77 275 0.252 0.384 0.468 15.11 8.61 9.18 1.45 1.40 1.45 1.40 302 8 3.21 10.09 2.77 2.77 275 0.252 0.468 0.384 7.05 2.80 2.53 1.67 1.72 1.67 1.72 303 8 5 10 2.77 2.77 277 0.252 0.384 0.858 11.08 5.07 7.44 1.61. 1.32 1.61 1.32 304 8 , 10 2.77 2.77 277 0.112 0.192 5.54 0.83 0.35 2.02 2.13 2.02 2.13 305_ 8 _ 2.5 . 10 2.77 2.77 277 - 0.112 0.384_ 5.54 0.35 1.31 2.13 1.90 2.13 1.90 Spreadsheet Column Definitions & Formulas (A L = Shear Panel Length H = Shear Panel Height ` Wall Length = Sum of Shear Panels Lengths in Shear Line �•• -+ V (Panel Shear) = Sum of Line Load / Total L Mo (Overturning Moment) = Wall Shear * Shear Application ht • Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) • • Transverse Seismic Uplift Design Unit B Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 101 8 1.1667 5.25 5.25 0.148 0.795 1.257 2.2 419. 0.1 0.8 0.208 19.99 5.58 2.47 3.15 3.74 3.15 3.74 102 8 1.1667 3.88 3.88 0.331 0.331 85 0.092 2.432 0 2.65 10.13 0.69 -1.91 0.60 -1.91 0.60 103 8 1.1667 4.58 8.58 0.231 0.8 1.277 2.308 269 0.1 0.078 0.078 11.15 1.41 1.41 2.42 2.42 203 R -2.99 -0.56 2.42 104 8 1.1667 4.00 8.58 0.231 0.8 1.277 2.308 269 0.234 0.117 1.632 9.74 2.34 8.40 2.18 0.62 2.18 0.62 107 8 1.1667 4.58 13.08 0.148 0.795 1.257 2.2 168 0.1 0.192 0.078 7.00 1.93 1.41 1.29 1.41 201L 201 (part) 1.17 0.34 2.46 1.75 108 8 1.1667 8.50 13.08 0.148 0.795 1.257 2.2 168 0.1 0.078 0.384 12.99 4.28 6.88 1.14 0.85 202L 202R 0.33 1.35 1.47 2.20 110 8 1.1667 1.25 4.50 0.231 0.8 1.277 2.308 513 0.1 0.384 0.078 5.80 0.56 0.18 6.88 7.32 203L 3.00 • 9.87 7.32 111 8 1.1667 2.00 4.50 0.231 0.8 1:277 2.308 513 0.1 0.078 0:208 9.28 0.36 0.62 5.89 5.74 203R, 304L • -2.99 2.91 5.74 112 8 1.1667 - 1:25 4.50 0.231 0.8 •1.277 - 2.308 513 0.1 0.208 1.424 5.80 • 0.34 . 1.86 • - 7.13 5.36 7.13 5.36 201 9 1.1667 6.79 9.79 0.795 1.257 2.052 . 210. 0.172 0.848 0.156 13.83 9.72 5.02 - 0.75 - 1.37 301 L -301R -0.13 -0.20 0.62 1.17 202 9 1.1667 3.00. 9.79 0.795 1.257 2.052 . 210 0.172 0.848: 0.156 6.11 3.32 • 1.24 1.04 1.66 3021 302r 0.11 -0.32 1.15 1.35 203 9 1.1667 5.00 . .5.00 . 0.8 1.277 2.077 415 0.172 0.848 •0.385 20.18 6.39 _ 4.08 2:89 • 3.30 303L 303R . 0.11 -0.32 3.00 2.99 301 8 6.88 10.09 • 1.257 .1.257 . 125 0.252 0.384 0.468 6.86 8.61 9.18 -0.13 -0.20 -0.13 -0.20 302 8 3.21 10.09 1.257 1.257 125 0:252 0.468 0.384 3.20 . 180 2.53 0.21 0.29 • 0.21 0.29 303 8 5.00 10.00 - 1.277 1.277 128 0.252 0.384 0.858 .5.11 5.07 7.44 0.11 -0.32 - 0.11 -0.32 304 • 8 2.50 10.00 1.277 1.277 '128 0.112 0.192 0 2.55 0.83 0.35 ' ' . 0.72 0.90 0.72 0.90 305 8_ 2.50 10.00 1.277 1.277 128 0.112 0 0.384 2.55 0.35 1.31 0.90 0.55 0.90 0.55 Spreadsheet Column Definitions & Formulas L = Shear Panel Lengt H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line t V (Panel Shear) = Sum of Line Load / Total L LV 1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • • TRANSVERSE UPLIFT CALCULATIONS - SUMMARY UNIT b Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right k • Simpson k k Simpson k 101 Wind 14.54 Holdown HD12 w DF 15.51 Wind 14.93 HD12 w DF 15.51 102 Wind • 4.83 Holdown HDQ8 w 3HF . 6.65 Wind 6.50 HDQ8 w 3HF 6.65 • 103 Seismic -0.56 Holdown HDQ8 w DF 9.23 Wind 9.20 HDQ8 w DF 9.23 104 Wind 9:18 Holdown HDQ8 w DF 9.23 Wind 8.14 HDQ8 w DF 9.23 107 Wind 12.65 Holdown HD12 w DF 15.51 Wind 12.72 HDI2 w DF 15.51 108 Wind 12.33 Holdown HDU14 14.93 Wind 12.60 HDUI4 14.93 110 Wind 35.13 Holdown None 0.00 Wind 23.30 None 0.00 111 Wind 6.75 Holdown None 0.00 Wind 18.76 None 0.00 112 Wind 23.17 Holdown None 0.00 Wind 21.99 None 0.00 201 Wind 6.35 Strap MST60x2 8.11 Wind 6.71 MST60x2 8.11 202 Wind 6.77 Strap MST60x2 8.11 Wind 7.24 MST60x2 8.11 • 203 Wind 12.13 Strap CMST12x2 18.43 Wind 12.12 CMSTI2x2 18.43 301 Wind 1.45 Strap MST48 2.88 Wind 1.40 MST48 ' 2.88 302 Wind 1.67 Strap . MST48 2.88 Wind 1.72 MST48 2.88 303 Wind 1.61 Strap MST48 2.88 Wind 1.32 MST48 2.88 304 Wind 2.02 Strap MST48 2.88 Wind 2.13 MST48 2.88 305 Wind • _ 2.13 Strap MST48 2.88 Wind _ 1.90 MST48 2.88 M I "�J BY: . I A (� DATE: L ) a0 JOB NO.: Ct .. ... °C `/' \' OF PROJECT: RE: D1S 1V-181..)Tt00 OF 5 \ R– %R 'i O►J 5T1VMNEsS ❑ ❑ W DESIGKJ SH 2EA'= $.asb 1...pS J It O W I- IJJ $ AXM\ La od w : At.L 11 , ❑ (ta,51 lq,SN.o.o►5) t(2 +)(0.012.))+ ((iq.s>(o.o \5 ) 47,1)(044( = 1 .TO luips DL Li 0'2- 5' aici5 "72-c)) - ((tq,S)(o.oz5 x ; 1L) = 1.3 1< 5\-- °� 0 Tofia1 _ 3.04 -ki ?S o W VoN .\.. 11\ : La r ( oi, Olo,otsYo.St 0 fr. (2'r-)(oori)(o Jr (►q5)(o,o\sl( (a1a)(0.o►sX111ti Z t(16)(9.01A ("12.)(aolAz b_ Cz.)- a_ala v..;ns DI_ 0 (1q,5),o,o25>(o t- C1q.s- (o e 1z) = a.(...%1 kips s1_ o z ("17,10.0 = 0.44 }ts vs LL D TW-0 \ 5 ,333 f 0 O wall 112 . O (i 9.4)(o.o► sle°1 1- (2-)-')(o,o► L)(2. F 0 A ( 13)( = 'a :31c5 ti \ - -..5 tk- & o (19.G,)(o a . `13"i V-. 9s SL 0 0 ( "I- 0.040 = O.4 4- 1L ?s LL I- Toul - 5.N2.. V– 5 41 GFres ReA 5 -ti ( o.e s s WALL T`1 Pe Psllowah \e Shear Oc; Fa- Y. 5 h 54 rtp,LF4- a.R = k l u,, loo 55w \5 x'r 1860_ 0.35" 5 :_Q..\33 . 111 5Sw24x S'r30# 0.3k 1ba34 #- _.0,6. 4 112 Ssw IS K 1 )9 # o 35" S3 1 LC 1 OAii3. w 1..._ 1.a..4_,, Shy o x 1 x,,51 - - < \'r(o # 1-.> t 2 ■ )r. lF < 1 S vr- iF 111 = SSwaix')- at, wUl\ Wow shear t i E t Ski�_s5 S nisi V x L 3 11a t�i6o� o,-` 5�t � �. 0 �� - 1 � `1-4`to# O . ;4 \rt? .� of ` w� lr.s9'® 1►1 h2,. - V61 0 0 O 3rG tMi. Oa s l YE5'51. -it t • • 8 '1.-:t i , , . ( 0 0 ‘0.) - i...1 s 1 IV f 1 rd ') 0. 1 , A . 14 d , r.,.., I I, , 1 1 i 1: f ...1 1 14 i i i ;01 ; 11 1 '....; • k °e l it i'L. . ---___ 1 - - I S I i 1 _ ; ak C) 0 ONI\l' `Q) - A 5-1-- V' 1_00 9-. S\N1 1- P N 0 UT o 0 , . 1 1 C) ' •, • .„ . VI • • -....1 0 . • I ,... i --1 11 • ' ' ...1 . ';'; \ 0 1 . •... ............. - 1 ___ _.. _ _.- • • . 0 . . . 1 ' 103 104 I 0 (1E02-, t_DPI-i u iv ■-_\-- ?-.) - a3 TLOOR.... sv,) • 1 i i 1 1 ' , ; I I . 1 I 1 , I I 2.0 I aoao i C ; 1 In: 11 i • . . d on k - 0 i' 9 .:' m !,1 ■ ki ki P, .1 i [ 1 ._, ... , ..ii k r ---a;rz- N-=.;- - -z , 1 - \i ; I -- at -- . t 11 . ---- I I T1 - _____ I kl aOS aoto I CI) NtiT o SE D U M 1 - f - 5 - 5w 1.,ANOLYT— . ® 80, . ?,,,, .„......_..„..,,,„,......„.. - ", , :iFi 1 41:c.........!;',..A.. -.,'L,: 1 ' :f p; : C: " 'i.V v -� fJ aqq77 �+ 7 31 1 ' r ' 1 i 1 .,, ;41 .....5) .11 c:i: f P'i t.: G;; ai- • I } I: f ig ,i) ; r . ‹ n 1.1---- — -+ 6 ;: ed L 11 t V, VI o k ri } f . 4 0 „rte . v \k,._iy'Y: « ''t 30$ C) 3o1 ` 1 2 B -, 1, ,11- U N IT i- 3 (LO LEVEL \A) ‘,/ Mfr BV t'` 1111V \ DATE. ....._ ........1 0 JOB NO.: G A , PROJ ECT: s c ROOF a.'- 8. '7s`. RE: Des ;Q'{'� QF r +rn 1 bt.ac' rt @ Sto qtr ❑ ❑ Op o Z o 2 LI. W ►�. . TRtb (0i.cxTtt ON) ► \ - V14' f Li -. SO = oft 9X z" i / T o? et_ P- "S 18 - 5 " 0 a Max still A it_oV .mAJC -• = o z tsi-v' G ill U O W DEsic- i W 1 MD PCessuXe, Et a Z = - a0,aro psi ° c- F. 9 3 - +it's 4 IDes\cy 9 khkes 'co 5c)\ c' } '•, le in Toy v LAIES 5' - 118' 2 Lui r \ J ^. - [o1 tyi$ + lcAlp0 D f p T T ❑ r+ = Ittcr‘s 'Rz= i y 9`1 o - 0 " f ce LL Z z N\ M �x = S�� _ - I ° i 4 1(1-g-51 . 52 - � $tct ❑ o g I-- a V nr.■x T. l y 1. Ft 1 {L .fib M 5.7:.1._ C,x12 � \ 5 ��' S (3.5 S) I -4 - 6 I`.. i/tN� 1-3' Srv= V _ I # s .2 .#1,NZ A (3 s\ki Ls) e 6. . . Fb (IX) = (8sopsrNi.A 5)(1,1e)= a3L1c,p5,. ( 6c412 •- vir- o • xm a : 4-F v . = ISO psi. (:,c). = aLlo s t.. 7 .•.0 \c. = IT , i N(1 1( 0 c3 2 I-L2?) 1 N By , 4i A DATE. 5- \ .2- , ! i JOB No C (1 A : — 0 1 . 0 C PROJECT: RE: op-i-1010 2 ❑ ❑ z ji\t up (I'M c IND - CLOO2. W \Occ\ lo❑'f1 P C0.Yre 3 T‘-009-. F. w O 2 L' ❑ Tr;b t h On KatiNT = 13 - c" D Mo x 1u r c: Ov£r Cj - \22-0 O w w Q.e. W►r\ri p•e_sx - e 2.O.O ?5 F Z Loud. on bv\ \ \ v9 b \ca c. _ puv- O L 1- -� 1- 1 (.u' U_ - T Z T r( (� 7 2 g= , 1,(49 ,7 YJ R. 2 O Mma x = tU2 as - = ggIG Ft, ❑ v -" t s u cc z V r`no — �' . i w 0 z Ic_ ,ra,k, (1,C )CliS .: S."6610 f ' if. 12. 1i i Ls" i-- 1� 1 . A1,s,:, = 5,1S 1N' r. e t o a': Ck 3,'4 ,5,6= 0 u.! 4 '''. 4' S , '-` 6 4- 0 +- S : 6 4= 0 = G.aS t. a4.S(0,51s)+ - (, .2s+ a Co, 't,3S ' ) - 5,3bt0 t �,t., #.0 Z = y. 135 kr- .\,, ... /At_ = tclUiti # Ct)(ri\U.;4s) ,-_- 1 409- p6 (... L 44.13 +N.1" ` A 6`}.3 'Ft; = (sso psi)( ,00,A1AX1,0)(1,s1(i.0 (t.0 -(1:t) VI--c- .7- lbt = (a3 0.c\Y1.Z -1t.U)(,,0) Ls� 4o \9_-) ? sc: O\c___ .8 - 1,21 • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks40 Sizer 7.1 June 28, 2010 10:52:50 ' COMPANY 1 PROJECT • RESULTS by GROUP - NDS 2005 SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF - = Mnf Trusses = � .. = =ma = � = Not designed by request m � v � v =�� (2) 2x8 Lumber n -ply D.Fir-L 80.2 1- 2x8 • By Others Not designed by request ' (2) 2x10 Lumber n -ply D.Fir-L No.2 2- 2x10 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 . (2) 2X4 Lumber n -ply Hem -Fir No.2 2- 2x4 (3) 2x4, Lumber n -ply Hem -Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 816.0 Typ Wall 2x4 Lumber Stud Hem -Fir Stud 2x4 816.0 SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR . X 14 0 Jet � = - Not designed by request -._ -6a- e landing Lumber-soft D.Fir-L • No.2 2x6 816.0 4x6 Lumber-soft D.Fir-L No.2 4x6 (2) 2x8 Lumber n -ply D.Fir -L No.2 1- 2x5 1.75x14 LSL LSL 1.55E 2325Fb 1.75x14 • By Others Not designed by request By Others 2 Not designed by request (2) 2x10 Lumber n -ply D.Fir-L No.2 2- 2x10 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 (2) 2x4 Lumber n -ply Hem -Fir No.2 3- 2x4 (3) 2x4 Lumber n -ply Hem -Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 816.0 Typ Wall 2x4 Lumber Stud Hem -Fir Stud 2x4 816.0 SUGGESTED SECTIONS by GROUP for LEVEL 2 - FLOOR • Mnf Trusses ...en: Not designed by request ��s = =�� =_ deck joists Lumber -soft D.Fir -L No.2 2x8 816.0 Mnf Jst Not designed by request 3.125x14 LSL LSL 1.55E 2325Fb 3.5x14 • 4x8 Lumber -soft D.Fir -L No.2 4x8 3.125x10.5 Glulam- Unbalan. West Species 24F -V4 DF 3.125x10.5 5.125x16.5 GL Glulam- Balanced West Specie. 20F -V7 DF 5.125x16.5 (2) 2x10 Lumber n -ply D.Fir -L No.2 2- 2x10 4x12 Lumber-soft D.Fir -L No.2 4x12 3.125x141) LSL 1.55E 2325Fb 3.5x14 • (2) 2x6 Lumber n -ply Hem-Fir No.2 3- 2x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 6x6 Timber -soft Hem -Fir No.2 6x6 (2) 2x4 Lumber n -ply Hem -Fir No.2 3- 2x4 (3) 2x4 Lumber n -ply Hem -Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem-Fir Stud 2x6 816.0 SUGGESTED SECTIONS by GROUP for LEVEL 1 - FLOOR Fnd =�® • _ .= = . ..a Not designed by request � = =m =v CRITICAL MEMBERS and DESIGN CRITERIA • Group Member Criterion Analysis /Design Values deck joists a- �j42 a = ..= == =.. Bending a � 0.41 a � E9 �� Mnf J.t Mnf Jst Not designed by request landing j46 Bending 0.17 By Others 3 By Others Not designed by request 4x6 b25 Bending 0.87 (2) 2x8 b7 Bending 0.21 1.75x14 LSL b14 Bending 0.57 3.125x14 LSL b21 Shear 0.41 4x8 b20 Bending 0.04 By Others By Others Not designed by request By Others 2 By Others Not designed by request . 3.125x10.5 b24 Deflection 0.83 . 5.125x16.5 GL b26 Bending 0.21 (2) 2x10 b15 Bending 0.93 4x12 b22 Shear 0.16 • 3.125x141) b23 Deflection 0.09 Ftg Ftg Not designed by request ' (2) 2x6 c2 Axial 0.34 (3) 2x6 064 Axial 0.59 • 6x6 036 Axial 0.77 (2) 2x4 025 Axial 0.35 (3) 2x4 044 Axial 0.84 Typ Wall w15 Axial 0.28 . Fnd Fnd Not designed by request Typ Wall 2x4 040 Axial 0.33 DESIGN NOTES: v ase = 1. Plea verify that the default deflection limits are appropriate for your application. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result is considered the final design and appears in the Materials List. • 3. ROOF LIVE LOAD: treated as a snow load with corresponding duration factor. Add an empty roof level to bypass this interpretation. . 4. BEARING: the designer-is responsible for ensuring that adequate bearing 1s provided. 5. GLULAM: bxd = actual breadth x actual depth. 6. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 7. Sawn lumber bending members shall be laterally supported according to . the provisions of NDS Clause 4.4.1. 8. BUILT -UP BEAMS: it is a s umed that each ply is a single continuous member (that 1s, no butt joints a e present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side- loaded, special fastening details may be required. • 9. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 10. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. • . - g--6, . • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Rear Load WoodWorks® Sizer 7.1 June 28, 2010 10:56:39 Conceptb24Dde: Beam View Floor 2: 8' i IN '040 _ .:. , . .. , ,. . - -- � 4iS �: 1U3 ' :; : ; :: • 41 • - ' - • . - - -- - 4b . f - .- -- 4b. .. ''-b25: : - - • - - . - - .. : :. .: y9 --- - - - -- - - --- ----- 43' b' y0 4; . b .. yb. . • : : S . b .. y3 , ..50 ' ..54 0y - 33 -b 231 : . .. .. ... • Si b 00 234...:_ .:_...:. L/ tiL Lb -b' 0 1 1 • - - - - - L0"•-0- i NJ :. 14 -b : • . . : z...1---10. i [ i !! LL b .: • ; . [ 1y b 11 -0 I b'-b • 1�� (U .. . 14 by .. - --- • -- - - - .. .. _ .. .. 3-b to :. • : 1 b • 00 t 1 I b' • b4 :: = . . b21 6 --0 bL 01 b6 b26.: . bU - • • a - t3 • ; b2011 b22 ib2 4 b 3 b I b v U -0 . BBB. BBCCC.CCCCCtC CCC.D. DDDDDDDIDDDDDDDDDDDDDCD1DDDE .EEE E EE'EFEEEIEEIEEIEEEEEBEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22'24' 26' 28' 30' 32' 34' 36' 38' 40' 42'44'46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0 3'4'56'7'8'9111 - 1 :1 :1'1:111 "1(1.2(2'2:2:2 21221243(3'3 :3: 33! 3(3 - 31314(4 4A :44'.4(4'4t4t5t5 5:5:5 6(66:6 :6 :77 ^7(77-6" • • • • S Cdr\-)...- WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks® Sizer 7.1 June 28, 2010 10:04:32 Conceptb24ode: Beam View Floor 2: 8' • i• 1050 49'-6 IU3 41 - 0 1U4 1 - - 40-0 . W1 _.. -• _ ...- -- - 40 -b.. I Vu . .b1 . -- -- - - - 44' -17 y tf ... : -. .: : . : : ': -. ' : -.. .50 I7 VI : ; , : • : .50 - 04 ; SS : 230 - ;: -- --- ::-: :. - -, _.... ----� -----•�-;:':--- - -� ...-- -;.:' ?:--- -� -� - - .. - � - .50 -0 00 ; , : .: 44 -b 134 :::' ...- -... --- -- -• - -- - --: - - - - - - Lt3' -b 0,5 : . . .. . . " 4!'-0 01 : _ : [ .. 40-0 00 -. .: .t .y -_...: .-` -- - -- -- - - - --. - _._ -- - -- --- - : - - ' .. - -- 24-0 123' -- - - --- -- -:- -..._ - --- - . - ....._. - -- -_ .. - ---- - ... ... - - LL -0 !/ L1 -0 10 p LU'-0 10 _ - - .. _ - - 14-0 .., - --- -- -- � � -� - 23 -: � 1 0 / . - ' . 1__ -.t_ ___,:..:...:.. _:.. : _.. .. _.__ / . i _ .,: ,_: - .; -. ... _.. ,. -. - - .. - - � -: 10' 023 : -.. .: - : _ .. - - - - - - - 14 -b 00 .. - ;__ :- ..!._- - - -. . -- - - --- - -- b4 - - - - > .. - -- 25 -b - -- -- -- -- -- -- -- - - - bG b b1 26;-'::'- .... - : -. - - - -- - -0 bu _ 020 .. 022 -023 : - 4 s -n L . b .. I b BB \B.B BC CC CC CC CICCC CC CCCC C C CC CCICC CD DD D DD DIDDD'DD DDDDD D DD CD1DD DEE E E E E EEEEEEIEEIE EEEEEEBEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'9111 1;1:1.1!1 (17111 2(22.222!2E2 :3:3.3'- 3E3 "313E414 4A:4.4',4t4 5:5:5.5!5(5:5i516(6 f:6 :6.6:6(6 :8164717 7.7.7.77(77' -6" • /3 --- Gro16° WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks® Sizer 7.1 June 28, 2010 10:04:34 Co:c60ept Mode: Ccc59imn View Floor 2: 8' 1050. . . . : : . . . . . . . . . . .. : _ . _ . : ... .. . . ._ - - -- - - 49' -6 'IU3 : _ : . - i --- 4/' -0 • 1U•/ 40. -0. • 1 uu b ; c57 -c1 c2 c46 c58 • _ -: • - -- -- --- - - 4.1.0.. &3 31 :-./U 34 -0 • • 00 047 : - . - - 3G -0 01 1'1 tab: - :: • - - - -- -- - - ... . .:. • . .. . : - --- - - _ .... 3U 00 . 048 . _ • , < . L`J• _ 4 0 .. 10-0: 03 I . 1 I 1 G /•-t7.. 01 !- c63 - - GO•� 00 - � : • _ - -- - .- - - - - - - '- - L4 -b • 1J 1::1 r : c49 G3 -b f23 • . _ ._ -.. . ZZ -b 1 / 1 • c50 - - - - - L'1 -0 . : • • i4 . . 1 c53 • __ = l l $ i �:_b .. /3 •. -. i j .. - - -- -- -- 1 /•-0.. /G.. - c5 2 ' ' c5, .._ .I n. -u ( 0 - - - - - i :: • 1 1 ... .: .: . . . . - -: I73 c7 - - .c56 - - - - .. .13-0 05 - - V-0 033 : - - - .. - -- -- - -- -- - -- 01 -C40 c64 ; - : c36 - • _ _..:. 4 45 ot _ ■ __... Ii i _ b b .c39 � - - - .5 -0 : A i -b 1 U -b BB\B.B BC.CC C C CCCiCCC CC CCCCC CCC CCICCCD DDD i DD DHDDD DD DD DD D D DD CD(DD DE.E E E EEEEFEEEDEEIE EtEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66'68' 70' 72' 74' 76' 0'1'2'3'4'5'67'8'9111 - 1:1:1 , 110 71 £112(22:22 :33 :4 :44 ?4(4:4£4(5(5 5:5 :5 515 616 0:6:6.6 ?6t6 B16E717'7.7,7 ?E77' - 6" • g '-- (e\'-d\ WoodWorks ®' Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks® Sizer 7.1 June 28, 2010 10:04:29 Concept Mode: Beam View Floor 3: 17' 105 49'-6" 104 " 40 0' 10.5 i ; .. . 4/ -b 'IUL / . : - - 40 -0 IU IS7 40'-0 a9. -: sue. 43 -b `J! - 4'1 -0 yb -' Sy -0.. `91 : 40 -b yU : : i ce . . bb ____. .__._...- ___: -__ ... _ _ • - . SL - 0/ _ 00 e : , .. - - - - -- 20 - b . . LY L/' -b b8 -:- ... -: __ - .-- -- - -- - -- 20'-0' 00._.... . -` - -_. -•; -- - -- -.. _ .. L4 -0 10 : .. • ' • ' - -` - LL --0 1/ 21-0 10 Lt./ b /5 - - ' - - - .. - 1y-0 f4_.. .s_;_ ___ ---..:- -- ----- - -=- =-- _ :.. .- -- -- -- - -- --. 70 0 /3 '. b13:: - i1 0 - /L b1 ._ o-u • .: :. . .. /U --- .. " -.._. _... _ _i 14'-0 0y :: - :- ' : -'- :.: .. --- 13 025 _:: ___ -`--` -=-- -- - 'IL -0 : - 11'0 00 IU -b b4 t5 - 03 3. -- - - - - . -: / -b.. 02, : : : ; b i .: • . _ _ 3 -0 bU, . ■ .r - �; b10 .: b9 - . 3 n • L'b '"I U b BB \B.B BC CCC C CC CtCCCCC CCCC C C CC CCICCCD.DDD D DD DIDDD DD DD DD D D DD CD1DD DEE E E EEE'EFEEEIEEIE EIEEEEtEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 (1711122 2:2 :2 :3 :3 "313W(4'4A :4.4!4(4" 41415( 5 - 5:5 :5 515!6(6 E:6 :6'65(6:61617Ci 7:77 -6" 8......6c WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks® Sizer 7.1 June 28, 2010 10:04:27 Concept Mode: Column View Floor 3: 17' 1050 . _ . . 49 ,. 104 [ :: 415 -b IUS - - - , -- -- - - 41 -b - - IUL •I U'I n 40 -b !UV c14- c15 44 b 41 -b yb - • 4U -b J . S( b & .50 -0 • LS`J SS -b 00 - : C38 `„ i -- -- - - - - • - - - .5L. -0 O ( :: 1 1 3T-0 uo c25 ��u � • _. .:. .. .. Lb -0 25U C61 L4 b (y CI C17 L..5.-0 /b - , c23. i : -- - - - - - Gu-b r4 c22 - �7 idu - b • 1G c24: - - 'c26 - -- -• . : - 10-b (u. 1_i I I : 14'-0 00 . --- -. -`- ::.- -- - - --- .. -- .IL -b.. bb .. .. i : I .0 -b OJS .. - - ! . -b .. 01- : c.45 -:; . 1:c44 .- - µ - _..) . "7 - c219 68 J -0 1 b BB1B.B BCCCCC CC CFCCC CC CCCCCC CC CC \CC CD DD D D DD DIDDD CD DD'DD D D OD CDIDD DEE E E E`:EEEtE EEIEEiE EEEEEEElEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4' 5'67'8'91111:1 :1X1!1(1'1!1121 2222<2!2f221 243( 33: 3 3 - 4A:4 , 4'.4(4" 414 5 55: 5. 5! 5t5•51516(6 •7:77 • s_c/lc,„ WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks® Sizer 7.1 June 28, 2010 10:04:23 Concept Mode: Beam View Roof: 25' 1050. . _ . - .. 49' -6" !U4 3 : ' 40 0 1U 4! b' t UL _ RAJ,. b15 44.0.. - maims- 43 O V/ , .. 41 -0" 41.1 -b y4 . J• 'I 3 3 VU _ - b 0' 34' -0 tsy - 33 -0 00 ....: - ..:_____: ____ _.. ,._;__._ .__. ____ :- _t.._. i i. _._ _ _ _ _ _ _______ 7 . ._ _ _ _ __ _ __ __ _ . .. 3L -0 231 :: 00 . : "b 16 . .. .. _ .. - - 4y - 0 0 .. !34 235 . GO 43 L! b` 131 . 15 -b .. 230: , : L4 -b' f L 3 -b 11 LL b 1b ?: b27' aib .. 125 b 10 -0 11 . JU.._._t - - 14 '' 0 b0 IL -0 ` y-O b4 23 O 035 . . -. - - bU3 b18 . - t 7 ■ r� 0 -b U 0 BB1BB BC CCC C CC CFCCC CC CCCC C C CC CCICCCD DDD D DD D1CDD CD DD DDD D DD CDEDD DE.E E E EE EEFEEEIEEiE EEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76" 0'1'2'3'4'5'6'7'8'91(1 •1 :1:1 '111 :1112(2"2:222!2422213i33 :3 :3 31314(4 4A '.4 "4/41515 5 :5:5.5:5(5: 515!6(66:6 :6 -B 6717'7.7 :7 6" • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks® Sizer 7.1 June 28, 2010 10:04:25 Concept Mode: Column View Roof: 25' • 1050 . 49' 425 -b • '1U.3 .: :. . - 4/ -0 IUi 4b' b I VU :c27 :... c28 - _ - _ 44._J.. y9_ ®. 4,3 -b `JC 4Z / , :. , , 4i -b 4U b 30-0 4 .. - • _ . t5& 00-- . - 1 / - c66 • C65 : b4 -- - - _: -- -- 25-0 0 15 c34 - c35- 4 - �., • � , . . L' b 1 -b BB1BB BCCC C CCC CtCCC CC CCCC C C C.0 CC \CC CD DDD D DDDIDDD'CD DD•DD D D DD CD!DD DEE E EB!EE EFEEEIEE!E BEEEEEEfEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 1:1:1 221243( 33: 3: 3 3 .'3:3 5:5:5 E 67(7 . 77:7 , 77(77 . -6" E...._ cs\e?....3 COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:34 b1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End l w27 Dead Partial UD 539.7 539.7 0.00 2.50 plf 2_w27 Rf.Live Partial UD 493.7 493.7 0.00 2.50 plf 3 c14 Dead Point 1074 2.50 lbs 4 c14 Rf.Live Point 1601 2.50 lbs 5 Dead Full UDL 47.7 plf 6 Live Full UDL _ 160.0 plf MAXIMUM RE • • a I 0' 31 Dead 1048 1539 • Live 1227 2089 Total 2275 3627 Bearing: Load Comb #2 #2 Length 1.21 1.93 Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2 -Plys Self- weight of 6.59 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design • Shear fv* = 127 Fv' = 207 fv * /Fv' = 0.62 Bending( +) fb = 581 Fb' = 1138 fb /Fb' = 0.51 Live Defl'n 0.01 = <L/999 0.10 = L/360 0.06 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.09 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 3627, V design* = 2356 lbs Bending( +): LC #2 = D+L, M = 2073 lbs -ft • Deflection: LC #2 = D +L EI= 158e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. • 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 8-61 COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DE June 28, 2010 10:45 b7 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Dead Full UDL 13.0 plf Load2 Live Full UDL 40.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : A 1 is 6{ Dead 54 54 Live 120 120 Total 174 174 Bearing: Load Comb #2 # Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 pif included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 10 Fv' = 180 fv /Fv' = 0.05 Bending( +) fb = 120 Fb' = 1080 fb /Fb' = 0.11 Live Defl'n 0.01 = <L/999 0.20 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.30 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 174, V design = 139 lbs Bending( +): LC #2 = D +L, M = 262 lbs -ft Deflection: LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 8.- 6110 • COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:33 b8 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c30 Dead Point 59 3.50 lbs 2 Snow Point 75 3.50 lbs 3_w47 Dead Partial UD 96.0 96.0 0.00 3.50 plf 4 Dead Partial UD 78.0 78.0 0.00 5.50 plf 5_j13 Live Partial UD 240.0 240.0 0.00 5.50 plf 6_j14 Dead Partial UD 104.0 104.0 5.50 6.00 plf 7_j14 Live Partial UD 320.0 320.0 5.50 6.00 plf 8 b12 Dead Point 171 5.50 lbs 9 Live Point 469 5.50 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : A lo. st Dead 531 556 Live 761 1189 Total 1292 1744 Bearing: Load Comb #2 #2 Length 0.69_ 0.93 • Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2 -Plys Self- weight of 6.59 plf included in (dads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv* = 67 Fv' = 180 fv * /Fv' = 0.37 Bending( +) fb = 556 Fb' = 990 fb /Fb' = 0.56 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.13 Total Defl'n 0.05 = <L/999 0.30 = L/240 0.16 The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 1744, V design* = 1232 lbs Bending( +): LC #2 = D+L, M = 1984 lbs -ft Deflection: LC #2 = D +L EI= 158e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: • 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that • each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. • COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:33 b9 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1w51 Dead Partial UD 96.0 96.0 2.00 3.00 plf 2 _ c32 Dead Point 59 2.00 lbs 3_c32 Rf.Live Point 75 2.00 lbs Load4 Dead Full UDL 13.0 plf Load5 Live Full UDL 40.0 plf MAXIMUM REP'-'i '° oCAnr11■ir► 1 CIAI"rue i:..1 • 1 0 31 Dead 63 146 Live 85 110 Total 148 256 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 12 Fv' = 207 fv /Fv' = 0.06 Bending( +) fb = 82 Fb' = 1242 fb /Fb' = 0.07 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 256, V design = 169 lbs Bending( +): LC #2 = D +L, M = 179 lbs -ft Deflection: LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. (-)11.cL COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:33 b10 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c33 Dead Point 59 1.00 lbs • 2 c33 Snow Point 75 1.00 lbs 3_w52 Dead Partial UD 96.0 96.0 0.00 1.00 plf Load4 Dead Full UDL 13.0 plf Loads Live Full UDL 40.0 plf MAXIMUM REP^rrnr.ic era.,... 4 12G Clime. coots-rue . • • 10' 34 Dead 146 63 Live 82 64 Total 229 127 Bearing: Load Comb #3 #3 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 pif included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 10 Fv' = 207 fv /Fv' = 0.05 Bending( +) fb = 72 Fb' = 1242 fb /Fb' = 0.06 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 229, V design = 148 lbs Bending( +): LC #3 = D +.75(L +S), M = 157 lbs -ft Deflection: LC #3 = D+.75(L +S) EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. g 61 COMPANY PROJECT 11 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:36 b14 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j33 Dead Partial UD 78.0 78.0 0.00 1.50 pif 2_j33 Live Partial UD 240.0 240.0 0.00 1.50 plf 3_j13 Dead Partial UD 78.0 78.0 3.00 8.50 plf 4_j13 Live Partial UD 240.0 240.0 3.00 8.50 plf 5_j34 Dead Partial UD 78.0 78.0 1.50 3.00 plf 6_j34 Live Partial UD 240.0 240.0 1.50 3.00 plf 7_j46 Dead Partial UD 28.9 28.9 5.00 8.50 plf 8_j46 Live Partial UD 80.0 80.0 5.00 8.50 plf 9 b25 Dead Point 409 5.00 lbs 10 b25 Live Point 1080 5.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • y -�, 1 0' 8x' Dead 553 685 Live 1522 1878 Total 2076 2563 Bearing: Load Comb #2 #2 Length 1.48 1.83 LSL, 1.55E, 2325Fb, 1- 3/4x14" Self- weight of 7.66 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 126 Fv' = 310 fv /Fv' = 0.41 Bending( +) fb = 1324 Fb' = 2325 fb /Fb' = 0.57 Live Defl'n 0.09 = <L/999 0.28 = L/360 0.31 Total Defl'n 0.14 = L /750 0.42 = L/240 0.32 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 2563, V design = 2064 lbs Bending( +): LC #2 = D +L, M = 6308 lbs -ft Deflection: LC #2 = D +L EI= 620e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. CA, COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN • June 28, 2010 10:48 b15 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j5 Dead Full UDL 335.7 plf 2 15 Rf.Live Full UDL 493.7 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 10. 61 Dead 1027 1027 Live 1481 1481 Total 2508 2508 Bearing: Load Comb #2 #2 Length 1.34 1.34 Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2 -Plys Self- weight of 6.59 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 101 Fv' = 207 fv /Fv' = 0.49 Bending( +) fb = 1055 Fb' = 1138 fb /Fb' = 0.93 Live Defl'n 0.05 = <L/999 0.20 = L/360 0.23 Total Defl'n 0.09 = L/776 0.30 = L/240 0.31 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00' - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 2508, V design = 1864 lbs Bending( +): LC #2 = D +L, M = 3762 lbs -ft Deflection: LC #2 = D+L EI= 158e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:46 b20 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j47 Dead Partial UD 42.5 42.5 0.00 2.50 plf 2 j47 Live Partial UD 62.5 62.5 0.00 2.50 plf MAXIMUM REfir-rirmuo E "` ^` �"�1 °rwnu.:r 1 cwrr_ E:w► • • 10' 31 Dead 71 53 Live 91 65 Total 162 118 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports • Lumber -soft, D.Fir -L, No.2, 4x8" Self- weight of 6.03 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 6 Fv' = 180 fv /Fv' = 0.03 Bending(+) fb = 46 Fb' = 1170 fb /Fb' = 0.04 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 162, V design = 99 lbs Bending(+): LC #2 = D +L, M = 118 lbs -ft Deflection: LC #2 = D +L EI= 178e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. COMPANY PROJECT I Woodworks' SOFTWARE FOR WOOD DESIGN June 28, 201010:34 b21 Design Check Calculation Sheet Sizer 7.1 LOADS (tbs, pst, or p11) • Load Type Distribution Magnitude Location [ft) Pat- . Start End Start End tern 1 w63 Dead Partial UD 308.0 308.0 6.00 10.00 No 2_w63 Live Partial UD 320.0 320.0 6.00 10.00 No 3_w62 Dead Partial UD 308.0 308.0 2.00 6.00 No 4 w62 Live Partial UD 320.0 320.0 2.00 6.00 No 57w32 Dead Partial UD 369.0 369.0 0.00 2.00 No 6 Snow Partial UD 357.5 357.5 0.00 2.00 No 7 Dead Point 1940 1.50 No 8 Snow Point 2853 1.50 No 9 Dead Partial UD 104.0 104.0 6.50 10.00 No 10_j20 Live Partial UD 320.0 320.0 6.50 10.00 No 11 j21 Dead Partial UD 104.0 104.0 6.00 6.50 No 12_j21 Live Partial UD 320.0 320.0 6.00 6.50 No 13_j22 Dead Partial UD 104.0 104.0 2.00 2.50 No 14_j22 Live Partial UD 320.0 320.0 2.00 2.50 No 15 j23 Dead Partial UD 104.0 104.0 2.50 6.00 No 16_j23 Live Partial UD 320.0 320.0 2.50 6.00 No 17 j48 Dead Partial UD 71.5 71.5 0.00 1.50 No 18 Live Partial UD 220.0 220.0 0.00 1.50 No . 19 b23 Dead Point 658 0.00 No 20 b23 Snow Point 195 0.00 No • MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : R rtaY .�_ 7 -sye +,. s'�" """' *mss- t�.'„yai*- ._ r te . 1 . . -..-.- a � 10 , Dead 5581 1311 Live 5266 2508 Total 10847 3819 Bearing: Load Comb #0 #3 #2 Length 0.00 3.50 1.23 Cb 0.00 _ 1.11_ _ 1.00 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv. = 139 FV' = 356 fv /Fv' = 0.39 Bending( +) fb = 717 Flo' = 2325 fb /Fb' = 0.31 Bending( -) fb = 600 Fb' = 2632 fb /Flo' = 0.23 Deflection: Interior Live 0.05 = <L/999 0.27 = L/360 0.17 Total 0.07 = <L/999 0.40 = L/240 0.17 Cantil. Live -0.03 = L/698 0.13 = L /180 0.26 Total -0.03 = L /788 0.20 = L /120 _ 0.15 The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.0Q - - - - 1.00 - 1.00 4 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Flo.- 2325 1.15 - 1.00 0.984 1.00 - 1.00 1.00 - - 4 Fcp' 800 - - 1.00 - - - - 1.00 - - - . E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #4 = D +S, V = 7237, V design' = 4536 lbs Bending( +): LC #2 = D +L, M = 6833 lbs -ft Bending( -): LC #4 = D +S, M = 5720 lbs -ft Deflection: LC 02 = D +L EI= 124 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC • DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. I 4. The critical deflection value has been determined using maximum back -span deflection. Cantilever deflections do not govem design. g__61,‘,---1_ • COMPANY PROJECT WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:35 b22 Design Check Calculation Sheet Sizer 7.1 LOADS I lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w69 Dead Partial UD 369.0 369.0 1.00 2.50 plf 2 w69 Snow Partial UD 357.5 357.5 1.00 2.50 plf 3 j48 Dead Partial UD 71.5 71.5 1.00 2.50 plf 4_j48 Live Partial UD 220.0 220.0 1.00 2.50 plf 5_147 Dead Full UDL 42.5 plf 6_j47 Live Full UDL 62.5 .plf 7 b23 Dead Point 700 1.00 lbs 8 b23 Snow Point 195 1.00 lbs MAXIMUM RE' -- -- - -- • • • Dead 683 807 Live 341 572 Total 1024 1379 Bearing: Load Comb #3 #3 Length 0.50* 0.63 *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x12" Self- weight of 9.35 plf included in Toads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 30 Fv' = 207 fv /Fv' = 0.14 Bending( +) fb = 159 Fb' = 1138 fb /Fb' = 0.14 Live Defl'n 0.00 = <L/999 0.08 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.13 = L/240 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 3 Fcp' 625 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 1024, V design = 778 lbs Bending( +): LC #3 = D +.75(L +S), M = 978 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 664e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. s_ 6 \<6 COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:35 b23 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w33 Dead Partial UD 204.0 204.0 0.00 1.50 plf 2_c18 Dead Point 143 1.50 lbs 3_c18 Rf.Live Point 110 1.50 lbs 4_c19 Dead Point 59 4.50 lbs 5_c19 Rf.Live Point 85 4.50 lbs 6_w34 Dead Partial UD 108.0 108.0 4.50 6.50 plf 7 c20 Dead Point 59 6.50 lbs 8 c20 Rf.Live Point 85 6.50 lbs 9 c21 Dead Point 143 9.50 lbs 10_c21 Rf.Live Point 110 9.50 lbs 11 w35 Dead Partial UD 204.0 204.0 9.50 11.00 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : i 1 0' 11 Dead. 700 700 Live 195 195 Total 895 895 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports • LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; • Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 20 Fv' = 356 fv /Fv' = 0.05 Bending( +) fb = 213 Fb' = 2674 fb /Fb' = 0.08 Live Defl'n 0.01 = <L/999 0.37 = L/360 0.03 Total Defl'n 0.05 = <L/999 0.55 = L/240 0.09 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 895, V design = 639 lbs Bending( +): LC #2 = D +L, M = 2028 lbs -ft Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. g .......61E:\ COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:47 b24 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j42 Dead Partial UD 47.7 47.7 0.00 4.50 pif 2_j42 Live Partial UD 160.0 160.0 0.00 4.50 plf 3_j43 Dead Partial UD 47.7 47.7 4.50 7.50 pif 4j43 Live Partial UD 160.0 160.0 4.50 7.50 plf 5_j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 6j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 7_j45 Dead Partial UD 47.7 47.7 13.00 16.00 plf 8 j45 Live Partial UD 160.0 160.0 13.00 16.00 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : I0' 164 Dead 442 442 Live 1280 1280 Total 1722 1722 Bearing: Load Comb #2 #2 Length 0.85 0.85 Glulam- Unbal., West Species, 24F -V4 DF, 3- 1/8x10 -1/2" Self- weight of 7.55 plf included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 70 Fv' = 265 fv /Fv' = 0.26 Bending( +) fb = 1440 Fb' = 2400 fb /Fb' = 0.60 Live Defl'n 0.43 = L/441 0.53 = L/360 0.82 Total Defl'n 0.66 = L/290 0.80 = L/240 0.83 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 1722, V design = 1534 lbs Bending(+): LC #2 = D +L, M = 6890 lbs -ft Deflection: LC #2 = D +L EI= 543e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 8 4 COMPANY PROJECT di WoodWorks® SOFTWARE FOR W000 DESIGN June 28, 2010 10:33 b25 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Dead Full UDL 200.0 plf Load2 Live Full UDL 540.0 plf MAXIMUM REACTIONS final and SFARING LFN(;THS linl • 10 4{ Dead 409 409 Live 1080 1080 Total 1489 1489 Bearing: Load Comb #2 #2 Length 0.68 0.68 • Lumber -soft, D.Fir -L, No.2, 4x6" Self- weight of 4.57 pif included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 89 Fv' = 180 fv /Fv' = 0.50 Bending( +) fb = 1013 Fb' = 1170 fb /Fb' = 0.87 Live Defl'n 0.04 = <L/999 0.13 = L/360 0.30 Total Defl'n 0.06 = L/764 0.20 = L/240 0.31 ADDITIONAL DATA: FACTORS: F/E CD CM. Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 1489, V design = 1148 lbs Bending( +): LC #2 = D +L, M = 1489 lbs -ft Deflection: LC #2 = D +L EI= 78e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. COMPANY PROJECT 1 WoodWorks® SOFtWAREFOR woos Ofsrcry June 28, 2010 10:57 b25 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 2 Rf.Live Partial UD 493.7 493.7 13.00 14.50 plf 3 w28 Dead . Partial UD 535.5 535.5 0.00 4.50 plf 4 w28 Rf.Live Partial UD 487.5 487.5 0.00 4.50 plf 5 Dead Point 1074 7.00 lbs 6 Rf.Live Point 1601 7.00 • lbs 7 c15 Dead Point 1074 13.00 lbs 8 c15 Rf.Live Point 1601 13.00 lbs 9 Dead Partial UD 539.7 539.7 14.50 16.00 plf 10w73 Rf.Live Partial UD 493.7 493.7 14.50 16.00 plf 11 w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 12 w 74 Rf.Live Partial UD 493.7 493.7 5.50 7.00 plf 13 w 75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 14 w75 Rf.Live Partial UD 493.7 493.7 4.50 5.50 plf 15_142 Dead Partial UD 47.7 47.7 0.00 4.50 plf 16 j42 Live Partial UD 160.0 160.0 0.00 4.50 plf 17 Dead Partial UD 47.7 47.7 4.50 5.50 plf 18 Live Partial UD 160.0 160.0 4.50 5.50 plf • 19_j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 20 j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 21 Dead Partial UD 47.7 47.7 5.50 7.50 plf 22 j45 Live Partial UD 160.0 160.0 5.50 7.50 plf 23_j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 24 j46 Live Partial UD 160.0 160.0 13.00 14.50 plf 25 Dead Partial UD 47.7 47.7 14.50 16.00 plf 26 _Live _ Partial UD 160.0 160.0 _ 14.50 16.00 plf • MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : I 37 16t Dead 4328 4101 Live 5296 5376 Total 9624 9477 Bearing: Load Comb #2 #2 Length 2.89 2.84 Glulam -Bal., West Species, 24F -V8 DF, 5- 118x15" Self- weight of 17.7 Of included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 305 fv / Fv' = 0.52 Bending( +) fb = 2301 Fb' = 2760 fb /Fb' = 0.83 Live Defl'n 0.36 = L/528 0.53 = L/360 0.68 Total Defl'n 0.77 = L/249 0.80 = L/240 0.96 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00. 2 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 9624, V design = 8063 lbs Bending( +): LC 02 = D +L, M = 36854 lbs -ft Deflection: LC 02 = D +L EI= 2594e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (A11 LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp n). • COMPANY PROJECT 11 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:36 b26 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 2_w37 Snow Partial UD 487.5 487.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4_w38 Snow Partial UD 487.5 487.5 . 11.00 14.00 pif 5_w39 Dead Partial UD 535.5 535.5 14.00 15.50 pif 6 w39 Snow Partial UD 487.5 487.5 14.00 15.50 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 15-6 Dead 583 2397 Live 393 2044 Total 976 4441 Bearing: Load Comb #2 #2 Length 0.50* 1.33 *Min. bearing length for beams is 1/2" for exterior supports Glulam-Bal., West Species, 20F -V7 DF, 5- 1/8x16 -1/2" Self - weight of 19.47 pif included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 54 Fv' = 305 fv /Fv' = 0.18 Bending( +) fb = 488 Fb' = 2297 fb /Fb' = 0.21 Live Defl'n 0.05 = <L/999 0.52 = L/360 0.09 Total Defl'n 0.14 = <L/999 0.77 = L/240 0.18 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2000 1.15 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - 2 Shear : LC #2 = D +S, V = 4441, V design = 3070 lbs Bending( +): LC #2 = D +S, M = 9454 lbs -ft Deflection: LC #2 = D +S EI= 3070e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). (, i COMPANY PROJECT 1 WoodWorks® SOFtWAREFOR WOOD DESIGN June 28, 2010 10:50 c2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_bl Dead Axial 1539 (Eccentricity = 0.00 in) 2 bl Rf.Live Axial 2089 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): D . 1 0' 8' • Lumber n -ply, Hem -Fir, No.2, 2x6 ", 2 -Plys Self- weight of 3.41 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 0.00= 0.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 221 Fc' = 980 fc /Fc' = 0.23 Axial Bearing fc = 221 Fc* = 1644 fc /Fc* = 0.13 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.596 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 3655 lbs Kf =1.00 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. 6 Q (Lk COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:52 c25 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_b12 Dead Axial 514 (Eccentricity = 0.00 in) 2 Live Axial 1408 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 0' 9 ' Lumber n -ply, Hem -Fir, No.2, 2x4 ", 2 -Plys Self- weight of 2.17 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 0.00= 0.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 185 Fc' = 380 fc /Fc' = 0.49 Axial Bearing fc = 185 Fc* = 1495 fc /Fc* = 0.12 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.254 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 1942 lbs Kf = 1.00 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. • 8, 60\5 COMPANY PROJECT tfl 1 SOFTWARE FOR WOOD DESIGN June 28, 2010 10:51 c36 Design Check Calculation Sheet • Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b21 Dead Axial 5634 (Eccentricity = 0.00 in) 2 Rf.Live Axial 7021 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): • � ��`� -� s,.�ia� "7 -'a�,. ' -3�,,, x'5+;: °"� "� c^�... - -.... .2'"rS. 1 �..t.. �'�_'T'ii�t" .� "c•E �+.W� "z%' ' C`" �� -.:-; l� °:.w_ �+�z�'''. " -.i ...,�°'�' Ya._.'� A� �-��- :+.'M -L� ��.r.���....�� +__^'•'.. �- '�"r...'j z�3= -_ 0' 8' Timber -soft, Hem -Fir, No.2, 6x6" Self- weight of 6.25 pif included in Toads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 420 Fc' = 548 fc /Fc' = 0.77 Axial Bearing fc = 420 Fc* = 661 fc /Fc* = 0.64 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' .575 1.15 1.00 1.00 0.829 1.000 - - 1.00 1.00 2 Fc* 575 1.15 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 12705 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT di WoodWorks® SOFTWARE FOP W000 DESIGN June 28, 2010 10:52 c44 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c35 Dead Axial 1940 (Eccentricity = 0.00 in) 2 Rf.Live Axial 2853 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 9' Lumber n -ply, Hem -Fir, No.2, 2x4 ", 3 -Plys Self- weight of 3.25 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 306 Fc' = 363 fc /Fc' = 0.84 Axial Bearing fc = 306 Fc* = 1719 fc /Fc* = 0.18 • ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# • Fc' 1300 1.15 1.00 1.00 0.211 1.150 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 4823 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC • DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. 8._ COMPANY PROJECT 111 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:51 c64 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c45 Dead Axial 1940 (Eccentricity = 0.00 in) 2_c45 Rf.Live Axial 2853 (Eccentricity = 0.00 in) 3_b22 Dead Axial 807 (Eccentricity = 0.00 in) 4 Rf.Live Axial 763 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 3 -Plys Self- weight of 5.11 pif included in Toads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 259 Fc' = 439 fc /Fc' = 0.59 Axial Bearing fc = 259 Fc* = 1644 fc /Fc* = 0.16 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.267 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 6404 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. II4111C1 Q HoufPeterson COMMUNICATION RECORD Righellis Inc. TO ❑ FROM 0 MEMO TO FILE 0 .. -._. ENGINEERS •PLANNERS LANDSC_P F. nRCRlrECrs•svavevoRS PHONE NO.: PHONE CALL: Ill MEETING: III XI "0 MI XI m . O m af... ....■ r 5 ;11 iii:i ;'. r 3...„ e 9) r ,„ cil 3.... J 4 ....,, 2 v e ; F* 4.___ . r p — `/ 8' 8 Pe" r? c .9- ; �'' �' r S g V g . o m ljr. Z Z 6 0 0 COMPANY PROJECT /gill WoodWorks® • SOFTWARE FOR WOOD DESIGN June 28, 2010 10:19 b25 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs. psf, or pit) : Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w72 . Dead Partial UD 539.7 539.7 13.00 14.50 plf 2 Snow Partial UD 493.7 493.7 13.00 14.50 plf 3 w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 4 Snow Partial UD 487.5 487.5 0.00 4.50 plf 5 c14 Dead Point 1074 7.00 lbs 6 c14 Snow Point 1601 7.00 lbs 7 c15 Dead Point 1074 13.00 lbs 8 Snow Point 1601 13.00 lbs 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 10w73 Snow Partial UD 493.7 493.7 14.50 16.00 plf 11 _ w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 12 w74 Snow Partial UD 493.7 493.7 5.50 7.00 plf 13 Dead Partial UD 539.7 539.7 4.50 5.50 plf 14 w75 Snow Partial UD 493.7 493.7 4.50 5.50 plf • 15_j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 16 j42 Live ' Partial UD 160.0 160.0 0.00 4.50 plf 17 Dead Partial UD 47.7 47.7 4.50 5.50 plf 18 j43 Live Partial UD 160.0 160.0 4.50 5.50 plf 19 j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 20_j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 21_j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 22 j45 Live Partial UD 160.0 160.0 5.50 7.50 plf 23 j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 24_j46 Live Partial UD 160.0 160.0 13.00 14.50 plf 25_j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 26 j47 Live Partial UD 160.0 160.0 14.50 16.00 plf • 203A Wind Point 7960 0.00 lbs 203A.1 Wind Point -7960 7.00 lbs 2038.1 Wind Point 7960 13.00 lbs 2038.2 Wind Point -7960 16.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : I a 161 1 Dead 4328 4101 Live 7703 4096 Uplift 2458 Total 12031 8197 Bearing: Load Comb #4 #6 Length 3.61 2.46 Glulam -Bal., West Species, 24F -V8 DF, 5- 118x15" Self- weight of 17.7 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis /Design Shear fv = 136 Fv' = 305 fv /Fv' = 0.45 Bending( +) fb = 1986 Fb' = 2760 fb /Fb' = 0.72 Live Defl'n 0.27 = L/704 0.53 = L/360 0.51 Total Defl'n 0.68 = L/283 0.80 = L/240 0.85 ' ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 6 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 6 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 3 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 3 Shear : LC #6 = D +S, V = 8344, V design = 6983 lbs Bending( +): LC #6 = D +S, M = 31814 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 2594e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) I Load combinations: ICC -IBC DESIGN NOTES: • 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). S .,...-.. 60:19.3-3 COMPANY PROJECT I WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:24 b25 LC1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 31w28. Dead Partial UD 535.5 535.5 0.00 4.50 plf 5 c14 Dead Point 1074 7.00 lbs 7 c15 Dead Point 1074 13.00 lbs 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 11 w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 13 w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 15_j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 17_j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 19_j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 21_j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 23_j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 25_j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf • .203A Wind Point 7960 0.00 lbs 203A.1 Wind Point -7960 7.00 lbs 203B.1 Wind Point 7960 13.00 lbs 203B.2 Wind Point -7960 16.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • 10' 161 Dead 4328 4101 Live 3300 Uplift 2458 Total 7572 4101 Bearing: Load Comb #2 #1 Length 2.27 1.23 • Glulam -Bal., West Species, 24F -V8 DF, 5- 1/8x15" Self- weight of 17.7 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 70 Fv' = 238 fv /Fv' = 0.29 Bending( +) fb = 978 Fb' = 2160 fb /Fb' = 0.45 Live Defl'n -0.30 = L/632 0.53 = L/360 0.57 Total Defl'n -0.03 = <L/999 0.80 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #1 = D only, V = 4328, V design = 3577 lbs Bending( +): LC #1 = D only, M = 15667 lbs -ft Deflection: LC #2 = .6D +W EI= 2594e06 lb -in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 62...._6 20\ COMPANY PROJECT (II WoodWork SOFTWARE FOR WOOD DESIGN June 28, 2010 10:20 b25 LC2 • • Design Check Calculation Sheet Sizer 7.1 LOADS l Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 2 Snow Partial UD 493.7 493.7 13.00 14.50 plf 3 w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 4 w28 Snow Partial UD 487.5 487.5 0.00 4.50 plf 5 c14 Dead Point 1074 7.00 lbs 6 c14 Snow Point 1601 7.00 lbs 7 c15 Dead Point 1074 13.00 lbs 8 Snow Point 1601 13.00 lbs 9 Dead Partial UD 539.7 539.7 14.50 16.00 plf 10 w73 Snow Partial UD 493.7 493.7 14.50 16.00 plf 11_w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 12 Snow Partial UD 493.7 493.7 5.50 7.00 plf 13 Dead Partial UD 539.7 539.7 4.50 5.50 plf 14 Snow Partial UD 493.7 493:7 4.50 5.50 plf 15 j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 16 j42 Live Partial UD 160.0 160.0 0.00 4.50 plf • 17_143 Dead Partial UD 47.7 47.7 4.50 5.50 plf 18 j43 Live Partial UD 160.0 160.0 4.50 5.50 plf 19 Dead Partial UD 47.7 47.7 7.50 13.00 plf 20_144 Live Partial UD 160.0 160.0 7.50 13.00 plf 21 j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 22 Live Partial UD 160.0 160.0 5.50 7.50 plf 23 Dead Partial UD 47.7 47.7 13.00 14.50 plf 24 Live Partial UD 160.0 160.0 13.00 14.50 plf 25 Dead Partial UD 47.7 47.7 14.50 16.00 plf 26 Live Partial UD 160.0 160.0 14.50 16.00 plf 203A Wind Point -7960 0.00 lbs • 203A.1 Wind Point 7960 7.00 lbs 2038.1 Wind Point -7960 13.00 lbs 2038.2 Wind Point 7960 16.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : • 161 Dead 4328 4101 Live 4016 7763 Uplift 2321 Total 8344 11864 Bearing: Load Comb #6 #4 Length 2.50 3.56 Glulam -Bal., West Species, 24F -V8 DF, 5- 118x15" Self- weight of 17.7 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 136 Fv' = 305 fv /Fv' = 0.45 Bending( +) fb = 2949 Fb' = 3840 fb /Fb' = 0.77 Live Defl'n 0.42 = L/454 0.53 = L/360 0.79 Total Defl'n 0.69 = L/277 0.80 = L/240 0.87 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 6 Fb'+ 2900 1.60 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #6 = D +S, V = 8344, V design = 6983 lbs Bending) +): LC 04 = D +.75(L +S +W), M = 47228 lbs -ft Deflection: LC 04 = D +.75(L +S +W) EI= 2594e06 lb -1n2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. • (D =dead L =live S =snow W =wind 1= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC . DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSUAITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). • g- 63? COMPANY PROJECT i WoodWorks® SOFIWARFFOR WOOD DESIGN June 28, 2010 10:23 b25 LC2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 3 w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 5 c14 Dead Point 1074 7.00 lbs 7 c15 Dead Point 1074 13.00 lbs 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 11 w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 13 Dead Partial UD 539.7 539.7 4.50 5.50 plf 15_j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 17_j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 19_j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 21_j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 23_j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 25_j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 203A Wind Point -7960 0.00 lbs 203A.1 Wind Point 7960 7.00 lbs 203B.1 Wind Point -7960 13.00 lbs 203B.2 Wind Point 7960 16.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : A 10' 161 Dead 4328 4101 Live 3391 Uplift 2321 Total 4328 7435 Bearing: Load Comb #1 #2 Length 1.30 2.23 Glulam -Bal., West Species, 24F -V8 DF, 5- 118x15" Self- weight of 17.7 pif included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design • Shear fv = 70 Fv' = 238 fv /Fv' = 0.29 Bending( +) fb = 1905 Fb' = 3840 fb /Fb' = 0.50 Live Defl'n 0.10 = <L/999 0.53 = L/360 0.18 Total Defl'n 0.37 = L /525 0.80 = L/240 0.46 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 1.60 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #1 = D only, V = 4328, V design = 3577 lbs Bending( +): LC #2 = .6D +W, M = 30517 lbs -ft Deflection: LC #2 = .60 +W EI= 2594e06 lb -in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). COMPANY PROJECT f fl WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:25 b26 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1w37 Dead . Partial UD 535.5 535.5 10.50 11.00 plf 2 _ w37 Snow Partial UD 487.5 487.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4_w38 Snow Partial UD 487.5 487.5 11.00 14.00 plf 5 w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf 6 w39 Snow Partial UD 487.5 487.5 14.00 15.50 plf W1.1 Wind Point 13500 10.50 lbs W1.2 Wind Point -13499 15.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 1 0' 15' -61 • Dead 583 2397 Live 4182 8392 Total 4704 10789 Bearing: Load Comb #4 #3 Length 1.41 3.24 Glulam -Bal., West Species, 20F -V7 DF, 5- 118x16 -1/2" Self- weight of 19.47 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : • Criterion Analysis Value Design Value Analysis /Design Shear fv = 181 Fv' = 424 fv /Fv' = 0.43 Bending( +) fb = 2526 Fb' = 3195 fb /Fb' = 0.79 Live Defl'n 0.47 = L/395 0.52 = L/360 0.91 Total Defl'n 0.56 = L/331 0.77 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 2000 1.60 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #4 = .6D +W, V = 10643, V design = 10194 lbs Bending( +): LC #4 = .6D +W, M = 48956 lbs -ft Deflection: LC #4 = .6D +W EI= 3070e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). COMPANY PROJECT 1 WoodWo SOFTWARE FOR WOOD DESIGN June 28, 2010 10:27 b26 LC1 no II Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 5 w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf W1.1 Wind Point 13500 10.50 lbs W1.2 Wind Point -13499 15.50 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 1 0' 15' -6 Dead 583 239 Live 4182 8247 Total 4704 10583 Bearing: Load Comb #2 #2 Length 1.41 3.18 Glulam-Bal., West Species, 20F -V7 DF, 5- 118x16 -1/2" Self- weight of 19.47 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 181 Fv' = 424 fv /Fv' = 0.43 Bending( +) fb = 2526 Fb' = 3195 fb /Fb' = 0.79 Live Defl'n 0.47 = L/395 0.52 = L/360 0.91 Total Defl'n 0.56 = L/331 0.77 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2000 1.60 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = .6D +W, V = 10643, V design = 10194 lbs Bending( +): LC' #2 = .6D +W, M = 48956 lbs -ft Deflection: LC #2 = .6D +W EI= 3070e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 61,;5===- COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:26 b26 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 2_w37 Snow Partial UD 487.5 487.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4 Snow Partial UD 487.5 487.5 11.00 14.00 plf 5 w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf 6 w39 Snow Partial UD 487.5 487.5 14.00 15.50 plf W1.1 Wind Point -13499 10.50 lbs W1.2 Wind Point 13500 15.50 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : • O 15' -61 Dead 583 2397 Live 393 2044 Uplift 3945 7647 Total 976 4441 Bearing: Load Comb #2 #2 Length 0.50* 1.33 *Min. bearing length for beams is 1/2" for exterior supports Giulam -Bal., West Species, 20F -V7 DF, 5- 1/8x16 -1/2" Self- weight of 19.47 plf included in loads; Lateral support top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 136 Fv' = 424 fv /Fv' = 0.32 Bending( +) fb = 488 Fb' = 2297 fb /Fb' = 0.21 Bending( -) fb = 2193 Fb' = 2940 fb /Fb' = 0.75 Live Defl'n. -0.51 = L/362 0.52 = L/360 0.99 Total Defl'n -0.42 = L/441 0.77 = L/240 0.54 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 2000 1.15 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fb'- 2000 1.60 1.00 1.00 0.919 1.000 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #4 = .6D +W, V = 7647, V design = 7647 lbs Bending( +): LC #2 = D +S, M = 9454 lbs -ft Bending( -): LC #4 = .6D +W, M = 42496 lbs -ft Deflection: LC #4 = .6D +W EI= 3070e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Giulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Giulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). COMPANY PROJECT I WoodWorks® SOflWARE FOR WOOD DEOGN June 28, 2010 10:30 b26 LC2 no II • Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 5 w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf W1.1 Wind Point -13499 10.50 lbs W1.2 Wind Point 13500 15.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : A 1F-6 1 Dead 583 2397 Live Uplift 3945 7647 Total 583 239 Bearing: Load Comb #1 #1 Length 0.50* 0.72 *Min. bearing length for beams is 1/2" for exterior supports Glulam-Bal., West Species, 20F -V7 DF, 5- 1/8x16 -1/2" Self - weight of 19.47 plf included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 136 Fv' = 424 fv /Fv' = 0.32 Bending( +) fb = 267 Fb' = 1797 fb /Fb' = 0.15 Bending( -) fb = 2193 Fb' = 2940 fb /Fb' = 0.75 Live Defl'n -0.51 = L/362 0.52 = L/360 0.99 Total Defl'n -0.42 = L/441 0.77 = L/240 0.54 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2000 0.90 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 1 Fb'- 2000 1.60 1.00 1.00 0.919 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = .6D +W, V = 7647, V design = 7647 lbs Bending( +): LC #1 = D only, M = 5167 lbs -ft Bending( -): LC #2 = .6D +W, M = 42496 lbs -ft Deflection: LC #2 = .6D +W EI= 3070e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 8-165/2). Harper Project: t- Houf Peterson Client: Job # _ Righellis Inc. ENGINEERS • PLANNERS Designer: Date: Pg. # LANDSCAPE ARCM TEC. rS• SURVEYORS W dl := 10 lb-8—ft-20— Wdl = 1600-lb ft Seismic Forces Site Class =D Design Catagory- =D Wp := W dl 1 : .1.0 Component Importance Factor " (Sect 13.1.3, ASCE 7 -05) S ; =0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S 0:942 Max EQ 5% damped, spectral responce acceleration at short period z 2= 9 Height of Component h := 32 Mean Height Of Roof F := 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1); 2006 IBC) F 1.722 VeI -based site coefficient @ 1 s- period (Table 1613.5.3(2); 2006 IBC) S := F Sml := Fv -S1 2-S ms S Max EQ, 5% damped; spectral responce acceleration at short period Exterior Elements &Body Of Connections a := 1.0 R p := 2.5 (Table 13.5 -1, ASCE 7=05) 4a -Sds. F P := p ' •(1 + Rp hl W p EQU. 13.3 -1 J Fpmax 1.6- S -I -W EQU. 13.3 -2 Fpmin := • S ds• l p -W p EQU. 13.3 - F if(F > Fpmax,Fpmax,if(Fp < Fpmin,Fpmin,Fp)) F = 338.5171.1b Miniumum Vertical Force 0.2 -S W = 225.6781-lb `5-612,9' „ . Harper Project: Houf Peterson Client: Job # Righellis Inc. ENGINEERS '.• •CANNERS Designer: Date: Pg. # LANDSCAPE ARCNITECrS•SLIRVEYORS Wdl 10- lb •8•ft•20•ft W = 1600•lb ft Seismic Forces Site Class =D Design Catagory =D W p Wdl I 1:0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. Ss := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z : =..9 Height of Component li := 32 Mean Height Of Roof F := 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F := 1.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S := F S := F S 2-S ms Sds := Max EQ, 5% damped,. spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections ap := 1.0 Rp 2.5 (Table 13.5 -1, ASCE 7 - 05) .4a p•Sds• I p ( F P := R I I + 2 h) Wp EQU. 13.3 -1 P ` FP := 1.6•S -W EQU. 13.3 -2 Fpmin := .3- Sds•Ip•Wp EQU. 13.3 -3 F if(Fp> F pmax ,F Pmax ,if ( F p <Fpmin,FPmin,Fp)) F = 338.5171•Ib Miniumum Vertical Force 0.2- Sd = 225.6781.1b g9 i eterson 12. . COM MUNICATION RECORD . Righellis Inc. To El FROM lIl MEMO TO ALE 0 i:1.16,1CLioS • OL,,,P$ L•INDS:1APE ..t<C,111"1,1 • — — --- --- - — --. • -- - — .. PHONE No PHONE CALL: E MEETING: 0 M - 0 CO RI XI J . '5 2 ,.... 7.1 it 3 —I ii -( rb 0 03 0 * . . -0 35zi ti. ?... . If .../ • ---1 co ...c.) m s .....,0 01 4 S dr) 4 0 , 1--- 0 • s .0 0 N. l i 0 15- S N I, z \ .q 4— 0 C9 —, • -.... 0 0 , J V • _or: 4 Q1b aZ27VZ..) yo 1121 "a ,, I,' -1 7 SQ \ s '\s -3/# Icce = y 4 bad — 100 G,A . 1 rno.lk.� A -� O +d) s� .� (` . C! �. 2 ; z 1 { (z 1 "° , P-1 1 - �. _ - ro e q �.94. 1 N F . ....„.1a s c, -- (\ o D o T o la _ - �_- -' C) o le* 1 i - -1 dSb ' 11 = 1 = o • ❑ ) 'O 0 1---� ,; = s ;flit+ U as c�.1 act Cu 17C�S 1 o V _tic! , ..= X c-1S \Di -- \ Z �� r`°I1 It D �Spltioq Z) N. �c� J !IOW ' � �° 9 � °► I = . o 1'7 ti � V y Z � o � n 1i o m nl o a m p 1=1 3 m J � o ?� (7 rRx�3Q .. , / m 1 xZ . _.. __. ❑ ❑ A_L`)LJ.�,J'J -.. H,i 10 ) . • :38 :lo3road• J R roN eOf Q 31V0.� U8 ��0jjj� nib pat o� , 1 -- L-h9 --s AL 1 p kA , • -1701+t -.' 001-Pe • 1 1 „s° IN 14 CX)09 7 -- - ( k 34 DOZ I) u • codol • -. •_, . 0 0 ■—■ Z Li rn z 'n o ,T, " x -07 1 „srtl .1. 4------ 1 o 1 • 110h kj0SdkkAlg "--() 0 g 0 _z 4400he 1 4 4 , f ---- • z » -0 73 m o■# cmig .11-- Z6 rn 0 o P xi c altV ) ° C e = VI F 0 o F, / In —I 2 a 6 . ) 171 0 0 ) ;IDE MU./ Qba ,„„ i 9 ) : ON eor 1 0 0 Cl i Q” a -)r 41741Q3' KA‘LkUd ' AB . -- I Harper • II ' HOUfPeterSOn COMMUNICATION' RECORD • Righellis Inc. To p FROM p MEMO TO FILE Q ENGINEEP • PLAIINERB -- ••_ LANDSO1PE ARCHITECT.:•EURVET011_ ------ -- ---- - °-- -•- - °-- PHONE NO.: PHONE CALL: p MEETING: p Al - CO m < ``` n O ° �( ►1 32 . 3 L s' d . . g Ca, 0 G# cii .7 1 , 6 V . M 9) b I -i Fp, T 0 --- . , _ . z 0 .......0 na. per P HoufPeterson COMMUNICATION RECORD Righellis Inc. TO ❑ FROM ❑ MEMO TO FILE ❑ E ... ENS • ---- -- E : L id GINEEi TE • CTS• .� +:DSt.1GE An'LHI CTS•SV ?V_YV NZ "'"— ---- PHONE NO.: PHONE CALL: ❑ MEETING: . �1 1:I Ca r. P.1 . A m m i „.. ., .......; d ,. • , 1 O ki ,, 0 G 0 n 1 U . a C 0 i 1 r • -.le ,....:. . . o ri m a” i S . '0 COMPANY PROJECT II WO odWorks® SOPDVARE FOR WOOD DESIGN June 8, 2009 16:27 Hand Rai12 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Full UDL 50.0 Plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : .7 • ' : . ; ' ' Dead Live 125 125 Total 129 129 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams is 1/2" for exterior supports Lumber-soft; Hem-Fir, No.2, 2x6" Self-weight of 1.7 plf included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 256 Fb' = 1048 fb/Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.11 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 1.00 1.00 1.00 1.00 - E' 1.3 million 1.00 1.00 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 1.00 1.00 - 2 Shear : LC #2 = L, V = 129, V design = 106 lbs Bending(+): LC #2 = L, M = 162 lbs-ft Deflection: LC #2 = L El = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. (4) C COMPANY PROJECT i tt WoodWorks 0 SOFTWARE FOR WOOD DESIGN June 8, 2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Point 2.50 200 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : e,- .x.«wc '±, o f y... -r.,- v. ,, ;+ .'-r ^ v* : r ;' .. 10' 51 Dead Live 100 Total 104 100 Bearing: 104 Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 "Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, Hem -Fir, No.2, 2x6" Self- weight of 1.7 plf induded in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv /Fv' = 0.13 Bending( +) fb = 405 Fb' = 1048 fb /Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending( +) LC #2 = L, M = 255 lbs -ft Deflection: LC #2 = L EI = 27e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction Lc= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are a for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. - - Col q C • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks® Sizer 7.1 June 22, 2010 14:13:51 Concept Mode: Reactions at Base of Structure View Roof: 25' • • 1050. 1280 L .. .1280 L .. 49'-6" 104 442 D .;s= 442 D i 42f b' IUS - 4/ -b IUU .. .: _ _ - - 44-0. y/. -- • 12272089 L_ ;1601 L :.: .: : : 41'-0 ao .., . 10481539 D :1074 D 4U -0* ...: i . . - -- - 54'_0.. tSb SS - 1575 . .,- i. .c - -- - - - - -_..-- SL -b CIO .. . _ [ : ` - - - - - :: - . . . - _ 00 -b 00 75 L . . 2V-0 _ . L0-b - - - - -- - -- -- - - - .. 59 D: _. : _ 123 L - : • Lb -b is 1 1408 L :. :12' L 5 -u. • au 514 D 556 D . L4 -b I a _ 640 L r r -1 08 0 L: - LL b rb 409D :i 1 z u n r o 792 L : 1 y . b .. , r4 .. a 1 - 99 DD . .: izs -b' r5 1522 L; Ir-b r i ..... .. . 553 D • I o• -o ny -• 225 .98 D ' : :. , 75 L : 14 ' -o.. br 73 . -- ' : : -:. ;. , n - :• : . -- -- . -- - . - - - - -- _. - - _ - - - ! C b' bu 2192 L : iu -b b0 1311 D : a -b 15-b nG . ... . .... . .. .. .BBIBBBCCCC CCCICCCCCCCCCCCCCCCCCD. DDD DD.DEEEEEEE 'EtEEEIEEIEEEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8' 1t1 1 :1 :1 221213( 33 :33 414! 515 5: 5: 5 5! 5( 5'51516( 66: 6: 6 .6'6t613(617(77.7.7.7.7f17' -6" 3.1L.L a D • FCD 0 7 j Cr \ L pc,1 ()QT.. "F Zo,i T Lot WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN • Unit B - Rear Load WoodWorks® Sizer 7.1 June 22, 2010 14:14:21 . Concept Mode: Reactions at Base of Structure View Floor 3: 17' • • 1050 1280 L . 1280 L . _ : : : 49' -6 :14 - - 442 D ; ; : : 442 D - S �(s. o.. IUL - -- - - - " 40 lUi i' �� 43-0 IVUa X _ - : - - - 4"-0 1XJr a9_ - 443 -b 4.4 a • ar. _5296 L : ' : . ill 376 L: _..- -- . y - : ' 4328 D ; :•.:' 4101 D - .: , .. 3y: b.: • 9.5 31 - b bl... ` • : : 33 b t b 33 -b - - - - - -- - - 3V -b 03 75 L : - - . Ly. -0.. 04 : : '- - - • - . 253 9 D: - -- _ 26 -b Lr -b a u i 765 11 ' :: ' 1036 L . . -- • G5 b ' '511- • :. .483 D . -.: .. . 24 -b • ry 277 D Ls b. /ts - 9 DI . - - -: -- , 640 E - - -- :.:... ....;.. -- • -- -- ._. _ - .. LL -a ii • fC . 208 1 _- - - _ - __ _ LU -b" r tr 774. L . ; w -b : : (4 : : Ain!. ; i ; - • - 99 DD_ _ . :._" : - : - I ts -b r 3 L 99 D • . . • rt 368 "' : D . : .. :. - t0 • rU . , 225 98 :75 L : 14 b ` 13-b it -es a/ 73 l - 74 n 1 I " bb 'S 2186 L ---. - - - .IU-b. a3 1298 D is - b .. b'i . - b -b . b� 4L 084 L ! • . 4-t> .: 94 Li i 306 L4 D. - 4 ` 62 L , . - - - ; . ` - :: =_ _ - - �_b • 73 D17E2515 D 5 D _.. 5647 D i =_ . : :. _ - -b • I 1.) 4) BBtB.B BC. CCC CCC CICCC CC CCCCC. C CC CC \CC CD DO D D DD DtDDD C0 DD DD D D DD CD'DD DE.E E E EEEEFEEEIEBE EEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'34'5'67'8'91(1 1;1:1•1!1(1:1(112(2 2 :2:2 (2'212(3(33:3;3 4A :4 5;5:5 6; 6 :6:66(6.6i617(7'777 -6° • OOT IKC -, L jOuT - i o PID B _ c e 2,.. _, Plain Concrete Isolated Square Footing Design: F1 t:= 2500 Concrete strength f 60000-psi Reinforcing steel strength E 29000•ksi Steel modulus of elasticity • Yconc 150;.pcf Concrete density 'Ysoil 100•pcf Soil density :g :=.1500-psf Allowable soil bearing pressure COLUMN FOOTING Reaction 'Total& := 5647-1b Pd1 := Totaldi Totahl := 7062-lb Pll := Totall P := Pd1 + Pll Ptl = 12709-lb Footing Dimensions tf':= 12-in Footing thickness Width := 42,in Footing width Width Footing Area net := gall — tf•"Yconc gnet = 1350•psf Ptl Areqd := gnet A re g d= 9.414•ft < A = 12.25•ft GOOD Widthreqd := Aregd Widthreqd = 3.07- ft < Width = 3.50 ft GOOD Ultimate Loads Pdl + tf•A•"Yconc P := 1.4•Pdl + 1.7 Pll P = 22.48• kips P qu := A q = 1.84•ksf 3 Beam Shear bco1 = 5.5-in (4x4 post) d := tf — 2-in := 0.85 b := Width b = 42•in V := (0• - • f V = 23.8•kips 3 Vu .— qu (b 2 bcol) V = 9.77-kips < V = 23.8•kips GOOD Two -Wav Shear b ';- • 5.5:in Short side column width b'L := 5.5•in Long side column width b := 2•(bs + d) + 2•(bL + d) b = 62-in Rc := 1.0 4 8 ,V .= + f psi•b•d V = 71.4-kips 3 3 Pc Vnmax := 2.66 f psi b d Vnmax = 47.48-kips ,Nµ;= qu'[b — ( bc01 + (1) V„ = 19.42-kips < Vnmax = 47.48-kips GOOD Flexure r 2 Mu qu I b bcoll 1 b M = 7.43-ft-kips \ 2 / I 2 := 0.65 ' 2 •— b•d S = 0.405•ft 6 F := 5.4' f psi F = 162.5-psi M f := n f = 127.36•psi< F = 162.5-psi GOOD 'Use a 3' -6" x 3' -6" x 12" plain concrete footing Plain Concrete Isolated Square Footing Design: F2 f := 2500 -psi Concrete strength f • 60000•psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity '(cone 150•pcf Concrete density '(soil 100•pcf Soil density gall 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 4101•1b Pd1 Totaldi Totalll := 5376-lb Pll := Totalll P := Pdl + Pll P = 9477• lb Footing Dimensions t := 10•in Footing thickness Width := 36•in Footing width ;= Width Footing Area clnet gall — tf'^Iconc net = 1375.psf Ptl Areqd gnet Areqd = 6.89241 < A = 9 ft 2 GOOD Widthreqd A req d Widthreqd = 2.63.ft < Width = 3.00ft GOOD Ultimate Loads ,:= Pdl + tf'A'•(conc P := 1.4-1 1.7•P11 P = 16.46.kips P qu — qu = 1.83•ksf A Beam Shear bcol 5 :5.in (4x4 post) d := tf — 2-in := 0.85 b := Width b = 36•in V :_ f psi b d V = 16.32-kips 3 Vu •= qu ( — 2 colt b Vu = 6.97-kips < V = 16.32•kips GOOD Two -Way Shear b' _ 5.5•in Short side column width bi := 5.5.in Long side column width b := 2.(bg + d) + 2•( + d) b = 54-in ac := 1.0 Vim= 44)•( + 8 1• f p si b d V = 48.96-kips 3 10 := 2.66• f psi•b•d V = 32.56-kips ,V = qu'[b — (bcol + d) V = 14.14.kips < V =,32.56•kips GOOD Flexure 2 Mu qu rb - bcoll 11 b M = 4.43-ft-kips I 2 J 2 ,Z:= 0.65 2 5, := b d S = 0.222• ft 6 F := 5•431• f psi F = 162.5-psi M f := s u f = 138.42•psi< F = 162.5•psi GOOD 'Use a 3' -0" x 3' -0" x 10" plain concrete footing (#0 Plain Concrete Isolated Square Footing Design: F2 f := 2500-psi Concrete strength f := 60000-psi Reinforcing steel strength E := 29000 -ksi Steel modulus of elasticity 'Yconc 150•pcf Concrete density /soil 100.pcf Soil density gall := 1500 -psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 2515-lb Pdl := Totaldi Total11:= 3606-lb Pp := Totalll P Pd1 + Pll P = 6121•lb Footing Dimensions t := 10• in Footing thickness Width := 30.in Footing width ,A,:= Width 2 Footing Area net gall — tf"Yconc net = 1375.psf Ptl Areqd gnet A q 4.452 ft 2 < A = 6.2541 GOOD Widthreqd A req d Widthreqd = 2.11 .ft < Width = 2.50 ft GOOD Ultimate Loads := Pd1 + tf'A''Yconc P := 1.4•Pd1 + 1.7•P11 P = 10.74-kips P qu — A A q = 1.72•ksf Ve.? Beam Shear beo = 5.5 in (4x4 post) d:= tf -2.in := 0.85 b := Width b = 30-in Vn 4 • f psi b d V = 13.6•kips 3 Vu •= 9u C co b – 2 t b V = 4.39-kips < V = 13.6•kips GOOD Two -Way Shear bs := 5.5•in Short side column width bL := 5.5•in Long side column width b := 2 -(bg + d) + 2 -(bL + d) b = 54-in Oc := 1.0 Vim= 4 + 8 � f psi•b•d V = 40.8-kips (3 3 -(3 V := 4.2.66• f psi -b•d V� = 27.13-kips ,V,,,,•= 9u•[b – ( bcol + d) V = 8.57-kips < V = 27.13 -kips GOOD Flexure b r 2 ) Mu 9u' I b – .col 1 M = 2.24-ft-kips A,:= 0.65 2 _ b d S = 0.18541 F := 5•(13• f -psi F = 162.5-psi M f := — u f = 83.98-psi < F = 162.5-psi GOOD lUse a 2' -6" x 2' -6" x 10" plain concrete footing 6 . - _ , A .- v .; x m b ... g.,:: ,..tt � • U M O A =': b n i N 0c: A 0 O H • C:1 _s(4, b ) ' _ (-z - 'ITk _ Ao S1>i sfi1'I `-E, 1�h 'Th _ x``)un p • m .. O Z.' tmott E 10t 3 (t)\z3S.5} 1))litiC4c#,1)Sh't -4 (xs'ix'x z s°► e fir_. = ( 1)\$S'S cs; ( +1,1S'1)(,815'C)(0S1 °p)= ?!W I e' 10cr.1 = 009 SCt'4 -k g 6101 - F - t.4i 4 al: 1p1 =. laW o Z z n . O y , P O 11 1 i m • O ri 31 1 ! 1 1! 1-1—__t_ ■ —1_1_ 2 • F „S\ x „ Ic- ,',Q1 ❑ a �t�S'S �Sct.'L �Sb'L° ? °� 9u°-'3- 21 -\v() :38 1 / :103 road 71 SOet - Sa'b d0 obo • � - )1\\\1 , ):'ON 80r ot0 C o (/�" 1 =31,,Q A9 • entt - Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:48 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit B \FDN \Front Load.etz\ M33 =81.13 [Kip *ft] • • M33 = -23.24 [Kip'ft] Y A 84 \Q n ao e tt y Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:49 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit B\FDN\Front Load 2.etz\ M33=48.59 [Kip"ft] • i • • Y M33= -54.65 [Kip'ft] • • • 4\‘ BY \nu DATE . a) L i k t CI JOB NO C to ..... OR 0 C PROJECT RE Vr Wail ccokvo__ . _ E S-L" (_t_)k IV , . ir, K . L I w 4 -- •-- L" ft _ _ . ...UA‘ .i._._ _ ___. _ t 2 n t,, OrNik- C. -. In ,(4 4 - 1 4 6 - - 0 z PAINtur\ - 0 -si-t.,St-ct-- C -, - 40.0(4 at • o 2 2 ON\C\ 53 5 OS 12.) o c A -a (4,1■.. - 2- x-sck, t te. 11" 0 „ 0 0 6 0 05 a 0 . 01"Alf‘ = 0 . 9 1 6 (.00.6 \Li 60 - 1 4! zo, ) F- CL - _________v / Co, trY.3 ---- 6 . 1 - 42 - �M ,- 0 tcvo Citg0_06)(15 -:---' a On..t.C+..1 4. > S I • . 0 V-. lirk. tr s' e vo" o,c. -4 a.,- (\.2,00“,a,0007/co.boovsIA-2N)= 0 = . o 6 --' - = - .... - 0 .,.... -, 1:1.4 :=-1 I= • `: •c\eojAkk 4se, Yrt-TeiNeXI Ri o bo .72 _ Tr - A-4 e re o,c. • As_.-. o.. 1m ch, k5.1■4\n.---.. 0 cloCorilye)(40 I 0475) ( iS ''''' ° , 4 6- +/2) = sa _ BY DATE: JOB NO.: 1 PROJECT: RE: UN) vt. B 4. C -Rear Load ❑ ❑ C {� j 0 i 5-4.:5 -$YA O W i- f g 1 ZOUD Z pt7D W 1 1 - 0 _. 1 CC U 1,6 —1 O Mor = .54,53 .Ft Mg.,- ,PL(.. + a. (4 , 344)+ - a(tL.33) = q t°tD_ 2 1,s(sq.s3) k 4.,.(..L }apk.- DI _ 6.1u. k-;ps. 0 ❑ Pteo •=- 4c8 x a' s ,_5',a u. z x = mi L+ t A(8. 1� _ � a.t e = 0„-1.-4 Ft 0 a grrsw,x = a + 3 - M t.: La "l �(12,1)(.0 :n�) 0. 49.. 1.sf k. SL L (z..)C 1st a C lt))1- 4 I , s : , o 1(-- 9-vii en Q : to tA . ` • C C 1 -2. (o. 1-> „ o- aso 5- • 1 O t j t II" a" " bA a - B-VA3 ntl ~ Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:57 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit C\FDN\Rear Load 2.etz\ • M33 =36.82 [Kip'ft] M33= -50.22 [Kip`ft] Y A X 8— \ ACI 318 -05 Appendix D 1.125" Diameter Bar Capacity at Standard Stem Wall Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc = 3000 psi fc = 3000 psi h' = 17.00 inches h = ;::.,'12:00 ...i inches (into the Foundation) Stem = 800: :inches Note: hef above is the the embedment into only the the foundation and does not consider stem wall embedment Fnd Width = • 36.00 inches C = 2.25 inches c m;n = 18.00 inches W 1.00 cast -in -place anchor W 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor = 0.75 strength reduction factor 4) = 0.75 strength reduction factor Calculations Calculations AN = 408 in` AN = 1296 in` AN = 2601 in` ANo = 1296 in` Nb = 92,139 pounds Nb = 55,121 pounds Wed,N = 0.7265 Wed,N = 1.00 Nth = 10,500 pounds Nth = 55,121 pounds 4)N = 7,875 pounds 4)Nob = 41,341 pounds Combined Capacity of Stem Wall and Foundation old) = 49,216 0.754)N = 36,912 1 Concrete Side Face Blow Out Givens Abrg = 2.75 in` fc = 3000 psi c m;n = 18.00 inches = 0.75 strength reduction factor Calculations Nsb = 261,589 pounds 4Nsb = 196,192 pounds Concrete Pullout Strength Givens Ab = 2.75 in` fc = 3000 psi = 0.75 strength reduction factor Calculations N = 66,000 pounds 4 N = 49,500 pounds Steel Yield Strength Givens f, = 58,000 psi A = 0.763 in = 0.80 strength reduction factor Calculations N = 44,254 pounds 4 Ns = 35,403 pounds < 36,912 Ductility Met Holdown Check Holdown: HD19 Holdown Capacity= 16,380 pounds 1.6* Capacity= 26,208 pounds 26,208 < 35,403 Holdown Checks ACI 318 -05 Appendix D 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc = 3000 psi fc = 3000 psi h' = 3.50 inches hef = 1;2 00 inches (into the Fe Stem = 8 ; 00 inches Note: hef above is the the embedment into or Cmax = 5.25 inches the foundation and does not consider stem Inn Fnd Width = 36.00 inches C m;n = 2.25 inches C m;n = 18.00 inches Wc,N= 1.00 cast -in -place anchor Wc,N= 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor = 0.75 strength reduction factor 4) = 0.75 strength reduction fact Calculations Calculations ANC = 68 in` AN = 1296 in` AN = 110.25 in` AND = 1296 in` Nb = 8,607 pounds Nb = 55,121 pounds Wed,N = 0.8286 Wed,N = 1.00 NDb = 4,399 pounds N = 55,121 pounds 4)N = 3,299 pounds 4)N = 41,341 pounds Combined Capacity of Stem Wall and Foundation (K = 44,640 0.754)N = 33,480 • ;V-V-)r Concrete Side Face Blow Out Givens Abrg = 2.15 In` fc = 3000 psi c = 18.00 inches = 0.75 strength reduction factor Calculations N = 231,191 pounds 4Nsb = 173,393 pounds Concrete Pullout Strength Givens A brg = 2.15 in` fc = 3000 psi = 0.75 strength reduction factor Calculations N = 51,552 pounds 4 N = 38,664 pounds Steel Yield Strength Givens f = 58,000 psi A = 0.606 in = 0.80 strength reduction factor Calculations N = 35,148 pounds 4)N, = 28,118 pounds < 33,480 Ductility Met Holdown Check Holdown: HDU14 Holdown Capacity= 14,930 pounds 1.6* Capacity= 23,888 pounds 23,888 < 28,118 Holdown Checks BY Ik e ' L I DATE: • \ /1 01 0 JOB NO.: C c N / c( /0 OF r� PROJECT: • RE: S\ Wa ' Vooki ❑ ❑ . s i des OF Bui Ida no 0 f tit.° asFtCtt ?se) 30o PLC u. \1 . L ❑ • $ ct,(2levees )(13 se) - a05 ?Ls Moor' ce J 4olN C►sopccIlt,.��1Z-)_ 333 p 51 0 Z C 150 pc�)( . = 100 w Pis:- i -- ( O w x t v Er a Z LL o (8F'6)(2 levels ')(4-o ps .c) = (olio P`.F Stoor' O Z TOAal load. = ■ l .1- toou) 1 z 'N'D % Vop = tsoo psF = tSdopLP • w O 1 l i S I.+ (COw '►mow „,,_. . O - w = 100 (4 c x. t.S o E o a . LL Z Di o e 'le a C' i, crnk, or b'i i td `r , D x F a a. ascit.= 300 pc.F u .-r,0% (9xZteve►s)Cl esf a34 PtF .P too:— 4o1N (isopcF X'ln_ Cb ) = 333 �.F s1-e 01t2)(tso u.), s ) = toow P (18)( I' ?sc r = Sub p.- P • coO F • LL: ( = 1-2) P Lc CriC25) _ 4-Co pU • la • S TL ti a343 t loOvJ a o a 3 u% r IoUw Is x a w... I (vi- I! a, ‘\ N € JY\ 441 fl x e unil`b 6 C. Same cis minus -Sloes locals TI-2 \'A C } 1 OO uJ W 1.00 != Q 1S \ PaCivocAlI DI- 0 .sCn..)(Z) = (2OC) p wct 11 (b)(2 X (3 _ 41l0 ?1. S loch a 40k lso?MC'itz >C = 33pLc 51 -err (c ls0 1.0) .100 w LL o . (t'f..2.. (- 40)(2 -) = 17520 Pl.'s= ,Stour Tl_ : a6a9 }loot() LA) = I,=5`)`1- 231 x•., us.a a4lN g --- 4c7r1