Loading...
Specifications (3) I //b5r 24/t - f, /r/,/ti /I /kg structural Calculations for Q;CEN Full Lateral & Gravity Analysis of Plan A 1460 SEP 23 2010 IAGPOJ G Summer Creek Townhomes $uIL°w Tigard, OR Prepared for Pulte Group July 13, 2010 JOB NUMBER: CEN -090 ** *Limitations * ** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and /or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. • 117 sheets total including this cover sheet. This Packet of Calculations is Null and Void if Signature above is not Original • Harper Houf Peterson Righellis Inc. ENiINC.I7C • Pt A..1ERO LANDOGA PL ARC,.I tE GTJ• OVRVCY)R5 205 SE Spokane St. Suite 200 a Portland, OR 97202 a [P] 503.221.1131 a [F] 503.221.1171 1 104 Main St. Suite 100 o Vancouver, WA 98660 e [P] 360.450.1 141 e [F] 360.750.1 141 1133 NW Wall St. Suite 201 a Bend, OR 97701 e [P] 541.318.1 161 e [F] 541.318.1 141 Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit A Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, IW: 1 2006 IBC / 2007 OSSC Occupancy Category: 11 Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed, ASCE.7 -05 Ch. 20 Importance, IE: 1 ASCE 7 -05 Table 11.5-1 Ss: 0.942 USGS Spectral Response Map Si: 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength, f' c: 3000 psi Foundations & Slab on Grade Concrete Unit Weight, yc: 145 pcf Steel Reinforcement Yield Strength, f 60,000 psi Wood Studs (Wall Studs): Hem -Fir #2 2x & 4x Wood Beams & Posts: DF -L #2 6x & Greater Wood Beams & Posts: DF -L #1 Glulam Beams: 24F -V4 PSL Beams: Fb =2,900 psi, FV= 328psi, E =2.0 Million TS /LSL Beams: Fb =2325 psi, FV= 460psi, E =1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : .1500 psf Assumed 2. All manufactured trusses, joists, and flush beams u.n.o. shall be designed by others. Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 WoodWorks - Sizer version 2002 Bently RAM Advanse Harper Project: SUMMERCREEK TOWNHOMES UNIT A Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS — Designer: AMC Date: Pg. # 1 ANIISCAPE ARCHITEC re. SURVEYORS DESIGIN CRITERIA. 2007 Oregon Structural Specialty Code & ASCE 7 -05 Roof Dead Load RFR:= 2.5.psf Framing RPL := 1.5•psf Plywood RRF := 5 •psf Roofing RME := 1.5•psf Mech & Elec RMS := 1 •psf Misc RCG := 2.5•psf Ceiling RIN := 1.psf Insulation RDL = 15.psf Floor Dead Load FFR := 3.psf Framing FPL := 4•psf Sheathing FME := 1.5.psf Mech & Elec FMS := 1.5.psf Misc FIN := .5.psf Finish & Insulation FCLG:= 2.5.psf Ceiling FDL = 13-psf Wall Dead Load WOOD EX. Wall := 12•psf 1NT_Wallwt := 10•psf Roof Live Load RLL:= 25.psf Floor Live Load FLL := 40•psf #- L1 Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP' Houf Peterson Cl PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCHITECTS •SURVEYORS Transverse Seismic Forces Site Class = D Design Catagory = D Building Occupancy Category: 11 Weight of Structure In Transverse Direction Roof Weight Roof Area := 843.12.1.12 RFWT.:= RDL•Roof Area RFwr = 14162.1b Floor Weight Floor_Area2 := 647•ft FLRw := FDL•Floor Area2nd FLRWT2nd = 8411-lb Floor Area3rd 652.1 FLRwT3rd FDL•Floor Area3rd FLRWT3rd = 8476•1b Wall Weight EX Wall Area := (2203)• 1 TNT Wall Area:= (906)• 1 WALL T := EX_Wal1 + INT WaIl WALLw -r = 35496.1b • WTTOTAL = 66545 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h := 32 Mean Height Of Roof I := 1 Component Importance Factor (11.5, ASCE 7 -05) A,:= 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C :_ .02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x := .75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period T := C T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. . (Chapter 22, ASCE 7- 05)...or S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F := 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F, := 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) 4 Lel_ Harper Project: SUMMERCREEK TOWNHOMES UNIT A =HP '• Houf Peterson Client: PULTE GROUP Job # CEN -090 _° Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARC,ITECTS•SURVEYORS S MS Fa SMS = 1.058 (EQU 11.41, ASCE 7 -05) 2 •SMS S := 3 Sd = 0.705 (EQU 11.4 -3, ASCE 7 -05) SM1 FvS1 SM1 = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2 •SMl Shc := 3 Sdl = 0.389 (EQU 11.4 -4, ASCE 7 -05) Cst := Sds le Cst = 0. 108 (EQU 12.8 -2, ASCE 7 -05) R ...need not exceed... Cs Shc'Ie Cs = 0.223 (EQU 12.8 -3, ASCE 7 -05) max := .l..R max a ...and shall not be less then... C1 := if(0.044•Sd < 0.01, 0.01, 0.044.Sd s •l e ) ( 0.5•S1•Ie1 (EQU 12.8 -5 &6, ASCE 7 -05) C2:= if l S1 <0.6,0.01, J R Csmin := if (C1 > C2,C1,C2) Cs = 0.031 Cs := if (Cst < Cs Cs if (Cst < Csmax , Cst, Cs Cs = 0.108 V := Cs- WT10TAL V = 72201b (EQU 12.8 -1, ASCE 7 -05) E := V•0.7 E = 5054 1b (Allowable Stress) /1 \3 ;.. Harper Project: SUMMERCREEK TOWNHOMES UNIT A a !P° Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • ?CANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCHITECTS• SUR•%EVORS Transverse Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 100 mph (3 Sea Gust) Exposure: B Building Occupancy Category: II I := 1.00 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X := 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... a2 := 2..1.20.ft Zone A & B Horizontal Length a2 = 4 ft (Fig 6 -2 note 10, ASCE 7 -05) or 2,= .4•hn 2 ft a2 = 25.6 ft but not less than... a2 := 3 2 ft a2 = 6 ft Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA 19.91psf PnetzoneB 3.2.psf Pnetzonec := 14.4•psf PnetzoneD 3.3.psf Vertical PnetzoneE -8.8•psf PnetzoneF — 12•psf PnetzoneG —6.4•psf PnetzoneH 9.7•psf Basic Wind Force PA := PnetzoneA'Iw'X PA = 19.9 - psf Wall HWC PB := PnetzoneB'Iw.X PH = 3.2•psf Roof HWC PC := PnetzoneC'Iw•X PC = 14.4•psf Wall Typical PD := PnetzoneD'Iw•X PD = 3.3•psf Roof Typical PE := PnetzoneE' 'IV X PE = — 8.8• PF := PnetzoneF'Iw'X PF = — 12• PG := PnetzoneG•Iw'X Pr, = — 6.4.psf PH := PnetzoneH'INVX PH = — 9.7•psf � -LEI Harper Project: SUMMERCREEK TOWNHOMES UNIT A HY Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. EMOINCERS • PLANNERS ^- Designer: AMC Date: Pg. # LANDSCAPE ARCNITECT SI SURVEFORS Determine Wind Sail In Transverse Direction WSAILZoneA (41 59_ +29)•ft WSA1LZoneB : (19 • 0 ± 23)-ft WSAILZonec-:= (391 + 307 + 272)-ft WSAILZbtieD (0 ± 0 + 5)•ft WA := WSAILZoneA'PA WA = 2567Ib WB WSAILZoneB•PB WB = 134 lb WC WSAILZoneC'PC WC = 139681b WD WSJ- ZoneD•PD WD = 161b Wind_Force := WA + WB + WC + WD Wind_Force := 10.psf•(WSAILZ + WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind_Force = 16686 Ib Wind_Force = 11460 Ib W SAILZoneE 94• ft WSAI1ZoneF '108•ft2 W SAILZoneG 320 • ft WSAILZoneH 320•ft2 WE := WSAILZoneE.PE WE = —8271b WF := WSAILZoneF•PF WF = — 12961b WG WSAILZoneG•PG WG = —2048 lb WH := WSAILZoneH'PH WH = — 31041b Upliftnet WF + WH + (WE + WG) + RDL•[WSAILZoneF + WSAII-ZoneH + (WSAILZoneE + WSAILZoneG)1•.6.1.12 Upliftnet = 12121b (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION Harper Project: SUMMERCREEK TOWNHOMES UNIT A ;a. P Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCNITECTS•SURVEYORS Longitudinal Seismic Forces Site Class = D Design Catagory = D Building Occupancy Category: II Weight of Structure In Longitudinal Direction Roof Weight Roof Area = 944 ft RDL•Roof Area RFC = 14162-lb Floor Weight Floor_Area2 = 647 ft c h:= FDL•Floor Area2nd FLR' 1 f2nd = 8411-lb Floor_Area3 = 652 ft • w )= FDL•Floor Area3rd FLRWT3rd = 8476-lb Wall Weight .7 ..W.C.At : = (2203) -ft INT Wall Area = 906 ft 241406w= EX Wal1 Area + 1NT Wa1l WALLw -r• = 35496•1b WTTOTAL = 66545 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h = 32 Mean Height Of Roof l = 1 Component Importance Factor (11.5, ASCE 7 -05) 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C = 0.02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x = 0.75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period T C T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7M5) S1 = 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S = 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F = 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F, = 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) 4- L Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS - -- Designer: AMC Date: Pg. # LANDSCAPE ARCM TECTS•SNRL'EYORS A := F SMs = 1.058 (EQU 11.4 -1, ASCE 7 -05) 2•SMS Sds = 0.705 (EQU 11.4 -3, ASCE 7 -05) 3 5:= Si SM1 = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2 •SM1 = 3 Shc = 0.389 (EQU 11.4 -4, ASCE 7 -05) ,,:= S R Ie Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) ...need not exceed... s Shc•Ie Csmax = 0.223 (EQU 12.8 -3, ASCE 7 -05) T a •R ...and shall not be less then... := if(0.044•Sd < 0.01,0.01,0.044•Sd 0.5•S1.1e1 (EQU 12.8 -5 &6, ASCE 7 -05) := if(S1 <0.6,0.01, J R a if(Ci > C2,C1,C2) Cs = 0.031 Cs = if(Cst < Cs < Csmax,Cst,Csmax)) Cs = 0.108 ,:= CS•WTTOTAL V = 72201b (EQU 12.8 -1, ASCE 7 -05) E := V•0.7 E = 50541b (Allowable Stress) 1. Harper Project: SUMMERCREEK TOWNHOMES UNIT A s ' Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCHITECTS• SUP,EYORS Longitudinal Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 110 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I = 1.0 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X = 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... = 2•.1-20•ft Zone A & B Horizontal Length = 4 ft (Fig 6 -2 note 10, ASCE 7 -05) or = .4•hn 2•ft a2 = 25.6 ft but not less than... .— 3.2.ft 6 ft nin= Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA = 19.9•psf PnetzoneB = 3.2•psf PnetzoneC = 14.4.psf PnetzoneD = 3.3•psf Vertical PnetzoneE = — 8.8•psf PnetzoneF = — 12•psf PnetzoneG = —6.4• psf PnetzoneH = — 9.7•psf Basic Wind Force := PnetzoneA.lw• PA = 19.9.psf Wall HWC PnetzoneB•Iw' PB= 3.2•psf Roof HWC = PnetioneC'Iw•X PC = 14.4•psf Wall Typical := PnetzonecrIw•X PD = 33•psf Roof Typical Pte:= PnetzoneE' Iw• X PE = —8.8• psf ,:= PnetzoneF•Iw•X PF = —12.psf Pte:= PnetzoneG•Iw•X PG = —6.4.psf ,:= PnetzoneH•Iw•X PH = —9.7-psf Harper Project: SUMMERCREEK TOWNHOMES UNIT A HF' Houf Peterson Client: PULTE GROUP Job # CEN -090 Righell is Inc. 7� ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE A RCNITECTS•SUR`lETORS Determine Wind Sail In Longitudinal Direction i`vw w PR ,:= (48 +39, +:40)412 ASnE te a,:= (10 + 0 + . 44) •ft Mggate4: (91 + 137 + 67)•ft :_ (43 ± 0 + 113)•f3 NA WSAILZoneA'PA WA = 2925 ,W = W SAILZoneB' PB WB = 173 Ib A T A g N := WSA- ZoneC'PC WC = 42481b aPv:= WSAILZoneD'PD WD = 515 Ib Wind Fo ce := WA + WB + WC + WD d o ce = 10•psf•(WSAILZ + WSAILZoneB + WSAILZonec + WSAILZoneD) Wind Force = 7861 Ib Wind Force = 6520 Ib AexA := 148•fft2 12011 WW AN��:= 323.112 N:= 252 -ft 2 A TA„:= WSAILZoneE'PE WE = — 13021b A W„ v g„:= WSJ- ZoneF WF = — 14401b Wes= WSAILZoneG.PG WG = —2067 lb Wes:= WSAILZoneH'PH WH = —2444 lb AURMr,4„,:= WF + WH + (WE + WG) + RDL•[WSAILZoneF + WSAILZoneH + (W SAILZoneE + WSAILZ6neG)]'. Upliftnet = 12431b (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION ' - L . Harper Houf Peterson Righellis Pg #: Transverse Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category 11 (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X= 1.00 Iw= 1.00 Wind Sail Wind Net Design Wind Pressure (psf) ( ) Pressure (Ibs) Zone A = 19.9 129 2567 Wall High Wind Zone Horizontal Zone B = 3.2 42 134 Roof High Wind Zone Wind Forces Zone C = 14.4 970 13968 Wall Typ Zone Zone D = 3.3 5 17 Roof Typ Zone Zone E = -8.8 94 -827 Roof Windward High Wind Zone Vertical Zone F = -12.0 108 -1296 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 320 -2048 Roof Windward Typ Wind Zone Zone H = -9.7 320 -3104 Roof Leeward Typ Wind Zone Total Wind Force =l 16686 Ibs I Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -7275 Ibs • Resisting Dead Load= 8472 Ibs E =l 1197 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm (ft _ Zone A Zone B Zone C Zone D Main Floor 41 19 391 .0 Upper Floor 59 0 307 0 Main Floor Diaphragm Shear = 6507 Ibs Upper Floor Diaphragm Shear = 5595 Ibs Roof Diaphragm Shear = 4584 Ibs • Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Diaphragm Diaphragm Width (ft (lbs) Wi dth (ft ) (Ibs) Width (ft ) (lbs) A 13.08 1737 18 2797 19 2323 Al 24.50 3254 0 0 0 0 B 11.42 1516 18 2797 18.5 2261 E= 49 6507 36 5595 37.5 4584 - "I-• Harper Houf Peterson Righellis Pg #: Transverse Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D S1 = 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 SMg • 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 SDS= 0.71 Equ. 11.4 -3, ASCE 7 -05 SD1= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 ' Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (Ib)= 8411 Floor 3 Wt (Ib)= 8476 • Roof Wt (Ib) = 14162 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22609 ' Trib. Floor 3 Diaphragm Wt (Ib) = 22674 Trib. Roof Diaphragm Wt (Ib) = 21261 Vertical Dist of Seismic Forces I Cumulative % total of base shear I Rho Check to Shearwalls (Ibs) to shearwalls Req'd? V floor 2 (Ib) = 720 100.0% Yes Vs = 3 (Ib) = 1625 85.8% Yes Vroot (Ib) = 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft Ibs Ibs Ibs A 102 361 394 114 897 1266 Al 432 0 0 481 0 0 B 113 293 449 126 728 1443 Sum 647 654 843 720 1625 2709 Total Base Shear' = I 5054 LB i *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. /4 — L,\ ,----- • Harper Houf Peterson Righellis Pg #: Longitudinal Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf A = 1.00 Iw= 1.00 Wind Sail Wind Net Design Wind Pressure (psf) ( ) Pressure (Ibs) Zone A = 19.9 147. 2925 Wall High Wind Zone Horizontal Zone B = 3.2 54 173 Roof High Wind Zone Wind Forces Zone C = 14.4 295 4248 Wall Typ Zone Zone D = 3.3 156 515 Roof Typ Zone Zone E = -8.8 148 -1302 Roof Windward High Wind Zone Vertical • Zone F = -12.0 120 -1440 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 323 -2067 Roof Windward Typ Wind Zone Zone H = -9.7 252 -2444 R oof Leeward Typ Wind Zone Total Wind Force =l 7861 Ibs I Use to resist wind uplift: Roof Only Total Exterior Wall Area 2203 ft Uplift due to Wind Forces= -7254 Ibs Resisting Dead Load = 8483 Ibs E_) 1229 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm (ft Zone A Zone B Zone C Zone D Main Floor 48 10 91 43 Upper Floor 59 0 137 0 • Main Floor Diaphragm Shear = 2440 lbs . Upper Floor Diaphragm Shear = 3147 Ibs Roof Diaphragm Shear = 2275 Ibs Wind Distribution To Shearwall Lines . MAIN FLOOR UPPER FLOOR ROOF Tributary. Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Diaphragm (Ibs) Diaphragm (lbs) (lbs) Width (ft) Wi dth (ft) Width (ft _ -�--r- -mss- -; --- ,�- � ---� —� .. _ . ... 1 10 1220 10 1573 10 1137 2 10 1220 10 1573 10 1137 E= 20 2440 20 3147 ' 20 2275 /4 - I, Cl.... Harper Houf Peterson Righellis Pg #: Longitudinal Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D S1 = 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 S 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 SDS= 0.71 Equ. 11.4 -3, ASCE 7 -05 Soi= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 . Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (Ib)= 8411 Floor 3 Wt (Ib)= 8476 Roof Wt (Ib) = 14162 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22609 Trib. Floor 3 Diaphragm Wt (Ib) = 22674 Trib. Roof Diaphragm Wt (Ib) = 21261 Vertical Dist of Seismic Forces I Cumulative % total of base shear I Rho Check to Shearwalls (Ibs) to shearwalls Req'd? Vnoor 2 (Ib) = 720 100.0% Yes Vfloor 3 (Ib) = 1625 85.8% Yes Vroof (Ib) = 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear • sq ft sq ft sq ft Ibs Ibs Ibs 1 286 291 415 318 725 1334 2 361 361 428 402 900 1375 Sum 647 652 843 720 1625 2709 Total Base Shear* = ( 5054 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. 4 L..\76 Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Transvere Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel ' Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht I k ht I k ht I k (klf) (p1f) (ft -k) (ft -k) (k) 101 Not Used • 102 7 1.75 3.50 4.00 :',2 8.00 1.74' 18.00 2.80 27.00 2.32 1959 Double 1.40 NG 103 7 1.75 3.50 4.00 's 8.00 1.74 8.00 2.80 8.00 2.32 1959 Double 1.40 NG 103a 7 4.00 4.00 1.75 OK 8.00 3.25 814 Single 1.40 IV 104 8 4.50 10.50 1.78 OK 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 II1 105 8 3.00 10.50 2.67 OK 8.00 . 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 106 8 3.00 10.50 2.67 OK 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 109 8 4.58 17.08 1.75 OK 8.00 1.74 18.00 2.80 27.00 2.32 401 Single 1.40 II 110 8 12.50 17.08 0.64 OK 8.00 1.74 8.00 2.80 8.00 2.32 401 _Simi1e 1.40 II 111 8 4.50 7.25 1.78 OK 8.00 1.52. 8.00 2.80 8.00 2.26 907 Double 1.40 VI 112 4.75 1.38 7.25 3.45 ox 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 113 4.75 1.38 7.25. 3.45 OK 8.00 1.52 8.00 2.80 8.00 2.26 907. Double 1.40 VI 201 9 3.92 10.79 2.30 ox 9.00 2.80 18.00 2.32 474 Single 1.40 II 201a 9 4.17 10.79 2.16 ox .9.00 2.80 18.00 2.32 474 Single 1.40 II 201b 9 2.71 10.79 3.32 ox 9.00 2.80 18.00. 2.32 474 Single 1.40 II 202A 9 2.96 11.96 3.04 OK 9.00 2.80 18.00 2.26 423 Single 1.40 II 202B 9 3.00 11.96 3.00 OK 9.00 2.80 18.00 2.26 423 Single 1.40 II 203 9 3.00 11.96 3.00 OK 9.00 2.80 18.00 2.26 423 Single .1.40 II 204 9 3.00 11.96 3.00 ox 9.00 2.80 18.00 2.26 423 Single 1.40 II 301 8 3.92 • 13.96. 2.04 OK 8.00 2.32 166 Single 1.40 I 302 8 5.79 13.96 1.38 ox 8.00 2.32 166 Single 1.40 I 303 8 4.25 13.96 1.88 OK 8.00 2.32 166' Single 1.40 I 304 8 2.96 5.96 2.70 OK 8.00 2.26 . 379 Single 1.40 II 305 8 3.00 5.96 2.67 OK 8.00 2.26 379 Single 1.40 II Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht . Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) /I - L \Lt: Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 fransvere Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho* V % Story # • Panel Shear Panel M M Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht I k ht I k ht I k (klf) (plf) (plf) (ft-k) (ft-k) (k) 101 _ Not Used 102 7 1.75 3.50 4.00 yj , 8.00 0.11 18.00 0.90 27.00 1.27 651 846 0.10 0.50 Double 0.50 NG 103 7 . 1.75 330 4.00 is. 't. 8.00 0.11 8.00 0.90 8.00 1.27 651 846 0.10 • 0.50 Double 0.50 NG 103a 7 4.00 4.00 1.75 OK 8.00 0.48 0.00 0.00 120 156 0.22 1.14 Single 1.00 I 104 8 4.50 10.50 1.78 OK 8.00 0.13 8.00 0.73 8.00 1.44 219 284. 0.25 1.13 Single 1.00 II 105 8 3.00 10.50 2.67 OK 8.00 0.13 8.00 0.73 8.00 1.44 219 284 0.17 0.75 • Single 0.75 III 106 8 3.00 10.50 2.67 OK 8.00 0.13 8.00 0.73 8.00. 1.44 _ 219 284 0.17 0.75 Single 0.75 III 109 8 4.58 17.08 1.75 OK 8.00 0.11 18.00 0.90 27.00 1.27 134 174 0.25 1.15 Single 1.00 I 110 8 12.50 17.08 0.64 OK 8.00 0.11 8.00 0.90 8.00 1.27 134 174 NA 3.13 Single 1.00 . I. 111 8 4.50 7.25 1.78 OK 8.00 0.13 8.00 0.73 8.00 1.44 • 316 411 0.25 1.13 Single 1.00 III 112 5 1.38 7.25 3.45 roc 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.08 0:58 Double 0.58 VU 113 5 ' 1.38 7.25 3.45 OK 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.08 0.58 Double 0.58 _ VII _ 201 9 3.92 10.79 2.30 OK 9.00 0.90 18.00 1.27 200 261 0.17 0.87 Single 0.87. II 201a 9 4.17 10.79 2.16 OK 9.00 0.90 18.00 1.27 200 261 0.18 0.93 Single 0.93 II 201b 9 2.71 10.79 3.32 OK 9.00 0.90 18.00 1.27 . 200 261 0.12 0.60 Single 0.60 III 202A 9 2.96 11.96 3.04 OK 9.00 0.73 18.00 1.44 182 236 0.13 0.66 Single 0.66 111 202B 9 3.00 11.96 3.00 OK 9.00 0.73 18.00 1.44 182 236 0:13 0.67 Single 0.67 III 203 9 3.00 11.96 3.00 OK 9.00 0.73 18.00 1.44 181 236 0.13 0.67 Single 0.67 BI 204 ' 9 3.00 11.96 3.00 'OK 9.00 0.73 18.00 1.44 181 236 0.13 _ 0.67 Single 0.67. III 301 8 3.92 13.96 2.04 OK 8.00 1.27 91 118 0.20 0.98 Single 0.98 I 302 8 5.79 13.96 1.38 oK 8.00 1.27 91 , 118 0.29 1.45 Single 1.00 . I 303 8 4.25 13.96 1.88 OK 8.00 1.27 • 91 118 0.21 1.06 Single 1.00 I 304 8 2.96 5.96 2.70 OK 8.00 1.44 • 242 315 0.15 0.74 Single 0.74 III 305 8 3.00 5.96 2.67 OK 8.00 1.44 242 315 0.15 0.75 Single 0.75 III Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total transverse base shear? Yes Total 1st Floor Wall Length = 1 &00 Total # 1st Floor Bays = 4.77 Are 2 bays minimum present along each wall line? No 1st Floor Rho = 1.3 Total 2nd Floor Wall Length = 22.73 Total 4 2nd Floor Bays = 5 Are 2 bays minimum present along each wall line? No 2nd Floor Rho = 13 Total 3rd Floor Wall Length = 19.92 Total 4 3rd Floor Bays = s Are 2 bays minimum present along each wall line? No 3rd Floor Rho = 1.3 • Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load *Rho / Total L °/ Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2 *UH Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load • L • 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) /4- ..-- \...,...\\S' Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Fir. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (kit) (plf) (ft -k) (ft-k) (k) 107 ' 8 15.50 15.50 0.52 OK 10.00 1.22 18.00 1.57 27.00 1.14 1.03 254 Single 1.40 1 71.21 123.49 -0.19 108 8 15.50 15.50 0.52 OK 10.00 1.22 18.00 1.57 27.00 1.14 1.03 _ 254 Single 1.40 1 71.21 123.49 -0.19 1 205 9 13.00 13.00 0.69 oK I 9.00 1.57 18.00 1.14 0.70 208 I Single 1.40 1 34.62 59.15 -0.07 I 206 9 13.00 13.00 0.69 OK 9.00 1.57 18.00 1.14 0.70 208 Single 1.40 1 34.62 59.15 =0.07 1 306 8 10.00 - 10.00 0.80 OK 8.00 1.14 0.29 114 ` Single 1.40 1 9.10 14.40 I 0.05 I 307 8 10.00 10.00 0.80 OK 8.00 1.14 0.29 114 I Single 1.40 I 9.10 14.401 0.05 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear • Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) • • / -- _x6 Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho•V % Story # Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klt) (plt) (pit) (ft-k) (ft-k) (k) 107 8 15.50 15.50 0.521 OK 10.00 0.32 18.00 0.73 27.00 1.33 1.09 153 153 NA 3.88 Single 1.00 I 52.25 130.70 -1.74 108 8 15.50 15.50 0.52 OK 10.00 0.40 18.00 0.90 27.00 1.38 1.09 173 173 NA 3.88 Single 1.00 , 1 57.35 130.70 -1.40 205 9 13.00 13.00 0.69 OK 9.00 0.73 18.00 1.33 0.76 158 158 NA 2.89 Single 1.00 I 30.54 64.22 -0.64 I 206.1. 9 1 13.00 13.00 0.69 I OK I 1 9.00 0.90 18.00 1'.38 0:76 175 175 NA 2.89 Single I 1.00 • I 32.85 1 64.22 I -0.45 I 306 307 I 8 1 10.00 10.00 0.80 1 OK 1 1 1 1 88..0000 1.38 0 ..3355 138 I. 138 1 NA I 2:50 Single 1 1 . .0 0 0 0 1 1 11 00 1 17.40 0.06 Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Total 1st Floor Wall Length = 31.00 Total # 1st Floor Bays = 7.75 Are 2 bays minimum present along each wall line? Yes 1st Floor Rho = 1.0 Total 2nd Floor Wall Length = 26.00 Total # 2nd Floor Bays = 6 Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho = 1.0 Total 3rd Floor Wall Length = 20.00 Total # 3rd Floor Bays = s Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho = 1.0 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load'Rho / Total L Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2•L/H Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear • Shear Application ht Mr (Resisting Moment) = Dead Load • L 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) ■ 19 .--- ‘.......\:). • Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Transvere Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good For V (pH) (PB) nb) (lb) 101 Not Used 102 Simpson Strongwall 103 Simpson Strongwall 103a 814 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 833 104 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 105 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 106 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 109 401 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 110 401 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 111 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 112 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 990 113 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 990 201 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 201a 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 201b 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 202A 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 202B 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 203 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 204 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 - 301 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 302 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 303 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 , 304 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 305 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 - NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. /5L \_,V2) Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Longitudinal Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good For V (PM (p (lb) (ib) 107 254 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -192 Simpson None 0 108 254 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -192 Simpson None 0 205 208 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -69 Simpson None 0 206 208 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -69 Simpson None 0 306 133 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 48 Simpson None 0 307 138 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 59 Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. /4-- \1/4_,\P\ Transverse Wind Uplift Design . Unit A Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Fir. Flr. Roof Shear including Load Load Momen @ Left ® Right Left Right Left Side of @ Right Wall Wall @ Left @ floors @ Left @ t House Side of Above Above Right • above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 102 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.192 0.832 27.43 0.57 1.69 21.31 20.79 21.31 20.79 103 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0:832 0.192 27.43 1.69 0.57 20.79 21.31 20.79 21.31 103A 8 1.1667 4.00 4.00 3.254 3.254 814 0.04 2.016 1.664 26.03 8.38 6.98 6.00 6.24 6.00 6.24 104 . 8 1.1667 4.50 10.50 1.516 2.8 2.26 6.576 626 0.1 0.8 0.078 25.08 4.61 1.36 5.58 6.06 5.58 6.06 105 8 1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 0.048 0.252 0.156 16.72 0.97 0.68 6.45 6.52 6.45 6.52 106 8 .1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 • 0.048 0.156 0.252 16.72 . 0.68 0.97 6.52 6.45 6.52 6.45 109 8 1.1667 4.58 17 :08 1.737 2.8 2.32 6.857 401 0.152 0.192 0.156 16.31 2.47 2.31 3.63 3.66 201L 201R 4.82 5.09 8.45 8.75 110 .8 1.1667 12.50 17.08 1.737 2.8 2.32 6.857 401 0.096 0.156 0.192 44.52 9.45 9.90 3.24 3.21 201 aL 201 bR 4.95 4.88 8.18 8.09 111 8 1.1667 4.50 7.50 1.516 2.8 2.26 6.576 877 0.144 0.8 0.078 35.11 5.06 1.81 8.02 8.51 8.02 8.51 112 8 1.1667 1.50 7.50 1.516 2.8 2.26 6.576 877 0.048 0.252 0.234 11.70 0.43 0.41 11:44 11.46 11.44 11.46 113 8 1.1667 1.50 7.50 1.516_ 2.8 2.26 6.576 877 0.048 0.234 0.252 11.70 0.41 0.43 11.46 11.44 11.46 11.44 201 9 1.1667 3.92 10.8 2.8 2.32 5.12 474 0.225 0.432 0.156 17.71 3.42 2.34 3.99 4.16 301L 301R 0.83 0.93 4.82 5.09 201a 9 1.1667 4.17 10.8 2.8 2.32 5.12 474 0.225 0.156 0.156 18.84 2.61 2.61 4.14 4.14 302L 302R 0.80 0.80 4.95 4.95 201b 9 1.1667 2.71 10.8 2.8 2.32 5.12 . 474 0.225 0.156 .0.432 12.24 1.25 2.00 4.24 4.08 303L 303R 0.91 0.80 5.15 4.88 202A 9 1.1667 2.96 11.958333 2.8 2.26 5.06 423 0.173 0.432 0.052 11.92 2.04 0.91 3.62 3.84 304L 304R 2.60 2.75 6.21 6.59 2028 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.173 0.052 0.216 12.09 0.93 1.43 3.84 3.74 305L 305R 2.74 2.16 6.58 5.91 203 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.309 0.216 0.312 12.09 2.04 2.33 3.62 3.56 3.62 3.56 204 9 1.1667 3_ 11.958333 2.8 2.26 5.06_ 423 0.225 0.312_ 0.432 12.09 1.95 2.31 3.64 3.57 3.64 3.57 301 8 3.92 13.96 2.32 2.32 166 0.232 0.384 0.204 5.21 3.29 2.58 0.83 0.93 0.83 0.93 302 8 5.79 13.96 2.32 2.32 166 0.232 0.204 0.204 7.70 5.07 5.07 0.80 0.80 0.80 0.80 303 8 4.25 13.96 2.32 2.32 166 0.232 0.204 0.384 5.65 2.96 3.73 0.91 0.80 0.91 0.80 304 8 2.96 5.96 2.26 2.26 379 0.232 0.384 0.136 8.98 2.15. 1.42 2.60 2.75 2.60 2.75 305_ 8 3 5.96 2.26 2.26 379 0.232 0.136 1.104 9.10 1.45 4.36 2.74 2.16 2.74 2.16 Spreadsheet Column Definitions & Formulas L = Shear Panel Length 11= P Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L 1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) Transverse Seismic Uplift Design Unit A • Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking ® Stacking From From Uplift Uplift Flr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall ® Left @. floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 102 8 1.1667 1.75 3.50 0.114 0.9 1.27 2.284 653 0.152 0.192 0.832 10.40 0.57 1.69 7.91 7.11 0 0 7.91 7.11 103. 8 1.1667 1.75 3.50 0.114 0.9 1.27 2.284 653 0.152 0.832 0.192 10.40 1.69 0.57 7.11 7.91 0 0 7.11 7.91 103A 8 1.1667 4.00 4'.00 0.481 0.481 120 • 0.04 2.016 1.664 3.85 8.38 6.98 -1.06 -0.69 0 0 -1.06 -0.69 104 8 1.1667 4.50 10.50 0.126 0.73 1.44 2.296 219 0:1 • 0.8 0.078 8.96 4:61 1.36 1.20 1.93 0 0 1.20 1.93 105 8 1.1667 3.00 10.50 0.126 0.73 1.44 2.296 219 0.048 0.252 0.156 5.97 0.97 0.68 2.04 2.14 0 0 2.04 2.14 106 8 1.1667 3.00 10.50 . 0.126 0.73 1.44 2.296 219 0.048 0.156 0.252 5.97 0.68 0.97 2.14 2.04 0 0 . 2.14 2.04 109 8 1.1667 4.58 17.08 0.114 0.9 1.27 2.284 134 0.152 0.192 0.156 5.58 2.47 2.31 0.82 0.86 201L 201R 1.13 . 1.54 1.95 2.40 110 8 1.1667 12.50 17.08 0.114 0.9 1.27 2.284 134 0.096 0.156 0.192 15.23 9.45 9:90 0.56 0.53 201 aL 201 bR 1.32 1.32 1:88 1.85 111 8 1.1667 4.50 7.50 0.126 0.73 1.44 2.296 306 0.144 0.8 0.078 12.54 5.06 1.81 2.00 2.73 0 0 2.00 2.73 112 8 1.1667 1.50 7.50 0.126 0.73 1.44 2.296 306 0.048 0.252 0.234 4.18 0.43 0:41 3.79 3.82 0 0 3.79 3.82 113 8 1.1667 1.50 7.50 0.126 0.73 1.44 2.296 306 0.048 0.234 0.252 4.18 0.41 0.43 3.82 3.79 0 0 3.82 3.79 201 9 1.1667 3.92 10.80 0.9 1.27 2.17 201 0.225 0.432 0.156 7.63 3.42 2.34 1.16 1.41 301L 301R -0.03 0.13 1.13 1.54 201a 9 1.1667 4.17 10:80 0.9 1.27 2.17 201 0.225 , 0.156 0.156 8.11 2.61 - 2.61 • 1.38 1.38 302L 302R -0.06 -0.06 1.32 1.32 201b 9 1.1667 2.71 10.80 0.9 ' 1.27 2.17 201 0.225 .0.156 0.432 5.27 1.25 2.00 1.53 1.28 303L 303R 0.10 -0.06 1.63 1.22 202A 9 1.1667 2.96 11.96 0.73 1.44 2.17 181 0.173 0.432 0.052 5.25 2.04 0.91 1.15 1.50 304L 304R 1.28 1.50 2.43 3.00 202B 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0:173 0.052 0.216 5.32 0.93 1.43 1.49 1.35 305L 305R • 1.50 0.63 2.99 1.97 203 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.309 0.216 0.312 5.32 2.04 2.33 1.16 1.08 0 0 1.16 1.08 204 9 1.1667 3.00 ' 11.96 '0.73 1.44 2.17 . 181 - 0.225 0.312 0.432 5.32 1.95 2.31 1.19 1.08 0 0 1.19 1.08 • 301 8 0 3.92 13.96 1.27. 1.27 9 0.232 0.384 0.204 2.85 3.29 2.58 -0.03 0.13 0 . 0 -0.03 0.13 302 8 0 5.79 13.96 1.27 1.27. 91 0.232 0.204 0:204 4.21 5.07 5.07 -0.06 -0.06 0 0 -0.06 -0.06 303 8 0 4.25 13.96 1.27 1.27. 91 0.232 0.204 0.384 '3.09 2.96 3.73 0.10 -0.06 0 0 0.10 - 0.06 304 8 0 2.96 5.96 . 1.44 -.1.44 242 0.232 0.384 0.136 5.72 . 2.15 1.42 1.28 1.50 0 0 • 1.28 1.50 305 8 0 3.00 5.96 . 1.44 1.44 242 0.232 0.136 1.104 -_ 5.80 - 1.45 4.36 1.50 0.63. 0 0 1.50 0.63 Spreadsheet Column Definitions & Formulas ----- • L = Shear Panel Length 11= Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L 1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) - • TRANSVERSE UPLIFT CALCULATIONS - SUMMARY UNIT A Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right • k Simpson k k Simpson k . 102 Wind 21.31 Holdown None 0.00 Wind 20.79 None 0.00 103 Wind 20.79 Holdown None 0.00 Wind 21.31 None 0.00 103A Wind 6.00 Holdown HDQ8 w 3HF 6.65 Wind 6.24 HDQ8 w 3HF 6.65 104 Wind 5.58 Holdown HDQ8 w 3HF 6.65 Wind 6.06 HDQ8 w 3HF 6.65 105 Wind 6.45 Holdown HDQ8 w 3HF 6.65 Wind 6.52 HDQ8 w 3HF 6.65 I 106 Wind 6.52 Holdown HDQ8 w 3HF 6.65 Wind 6.45 HDQ8 w 3HF 6.65 109 Wind 8.45 Holdown HDQ8 w DF 9.23 Wind 8.75 HDQ8 w DF 9.23 110 Wind 8.18 Holdown HDQ8 w DF 9.23 Wind 8.09 HDQ8 w DF 9.23 111 Wind 8.02 Holdown HDQ8 w DF 9.23 Wind 8.51 HDQ8 w DF '9.23 112 Wind 11.44 Holdown HDU14 14.93 Wind 11.46 HDU14 14.93 113 Wind 11.46 Holdown HDU14 14.93 Wind 11.44 HDU14 14.93 201 Wind 4.82 Strap MST48x2 5.75 Wind 5.09 MST48x2 5.75 201a Wind 4.95 Strap MST48x2 5.75 Wind 4.95 MST48x2 5.75 201b Wind 5.15 Strap MST48x2 5.75 Wind 4.88 MST48x2 5.75 202A Wind 6.21 Strap MST60x2 8.11 Wind 6.59 MST60x2 8.11 202B Wind 6.58 Strap MST60x2 8.11 Wind 5.91 MST60x2 8.11 _, 203 Wind 3.62 Strap MST60 4.06 Wind 3.56 MST60 4.06 204 Wind 3.64 Strap MST60 4.06 Wind 3.57 MST60 4.06 ` 301 Wind 0.83 Strap MST37 1.79 Wind 0.93 MST37 1.79 302 Wind 0.80 Strap MST37 1.79 Wind 0.80 MST37 1.79 303 Wind 0.91 Strap MST37 1.79 Wind 0.80 MST37 1.79 304 Wind 2.60 Strap MST48 2.88 Wind 2.75 MST48 2.88 305 Wind 2.74 Strap MST48 2.88 Wind 2.16 MST48 2.88 • BY / ` %C DATE: ao t o JOB NO.: C .,\J ...„_Sc 0 OF PROJECT: j U.) r �', RE: SS : X`)r _ "Reo,r Look& ❑ ❑ i�Xia\ Loads; Uk \ls- Wlflrf V..ia 11s -)Q\ �Y�si �. 0 J O - Z p o w �pU' a W ! (1 'vk. -KA•) \ c,� a . �< j Cl l 1 UC.cj 271 0 ,- W O E 2 2 ❑ Cupric. i kv U P SSwa, \ sin- _ ' Qa \bs v er a x,.t \ p J • w Gc kurA . Loca . = f-' 3'- - - a. �- -r a3 a.3 = u s� khS o W W = 3 4-aai/wau Z �� actual < CF_ u, c�fki 0 a U_ Z D f Ca9ac- C-7 . SSW a1XE5 = 3at,0 #- U ❑ Cc#tvca. &Co.. eat 1 i'1_ O f tJ ° X o Z W ❑ Z 0 o = 1- a o U C 0 N Po 3 :xa P. 14 1.2-47,7 0 . 11 . . . . a..) . 1 . 0 .. 5w TN x ►s Le it wC N 7x•►s LI W C .....,..1 16 v r ` + L � f�1,4 10" TfZEAt7� � / I I I E j !wi `' I t I I - - ±' 9 r L ____ J ® I _ n r 5Y)r- 'r i` j 1 f 1 c 1 10b ❑ Sw TR1S I.E NC-1TH AN -►" 76 ALOYC Tbf-■ S LINE° O Z r J .1 -4 I C3i 33) S Tk5 LEN iTI+ 0.N`II,U►isliz_ PrLonal Tarts LINE 0 _ ._. 1CY-+ —4 ci o I , o g 4 •PI i N _c 0 'n • r 0 r ❑ 1 ❑ o I c iii (f) r 7 c — O , e a ; 1_ .- g:�7. — . r .. f,4 � i o . sM .. J nr �v_ . :.... �� {. ._,_..:i >: �/..� r.. -: i ..L -._`J -�'I 0 I Ob m S W 1-Nis Lt N C-,Tlt As-N i% UJ tfitiz- Awkit -, Th t S L I NE 1 0 c • 1 1 5w - rtts Lc NC -)r1-1 Awtic, ilt1s LAnrt O ao5 S„." :.r ..._...._.� �z:-_:..- �._.` T.: r: � ":..tr_:3��rr:��`�,35m��t ^.:�:. ""'^ w;,y. 01 Vh z • c_____ 1 vt g l'j ' Imo , i 1 -1 , I , Rionan §. • cs;)".- 9) '149 _..? P r r :, ii . ii g' . . 3, 1 r i a 1 i • ;vvp S I I-u. 1") No .{.L L t r S\ -U, (N k'''',:..%1 ' no:i.."._:::7777.,.J. ...-'-'- ..,...... ..-. ' ._,... . ‘_. T.',.:r....:.=..:±.-. ',.... -1 I—LI 6:4 1 o J 9 MS 0 `i1 _ r 1i i; fr c a 4 C . ', q h. ( 1 C , \ /.�- ��.�`� J J J- -- go- „„.., ,...._, 0 ,,, ,..„,„ _ ,...,..... & m ® ,..___ , . / \ - - --- 90E l „r„ r1 s,,,11. v� Nr m 1-Lt. I-) Nal :,‘ RI M S Q o n 2 BY: / DATE. - ao\ C JOB NO.: c iem O OF 0 - PROJECT: • RE: 1io,01 m ti a\-- o - oP hovsc. • \ I ❑ El V Dreg = 0 0524 told. (Ctrnkdls) 4.514 '` • Z (At q phragYn (k)i COY) = ao ct 1 1_ W O E ❑ Cu = lao1 pL.F 1 . Li o w Ca 2O.C,' I of yr\lotoc.ked dla phvut w = O of 1,4 = asackF 0 2. wooc drcl t ve\ 1 a U Z Gila_ Nai I ;n3 Cq puu = Cass p■AI ,L1 = 353 7 w ov-- f E 0 U E cr O li. Z w ❑ . Z O O = H d O • U o ti p„ C a) �" co .� a x • 4- tab BY I. DATE: _ JOB NO.: PROJECT: Ro9 al-' - 8 }led_ RE: Des ,o of r rn PolOc lnn @ Sfic' $ ❑ El OPTION 1. J Z o w ` il�VA . O Tam?, Wirral. ON ►�! F.F. lq'- 1 ❑ - 501 ■J T = q'- 9 rt2" �i _ Top ?LWr 181- 511 0 < M, 510 t`toPt..NIAK -o= o W tS' U z a De 51 c-,c\i W mil) Pcessuce Er '- - -'if , ✓ PST o r. R - 3 - +It" U 0 e-- r P 9\o\ es •Q 5pc)`('�, c'.,i t'_r13}' y . To? ?LPilES B 1l$ J z U..1i V\ 1A:1,t\ dk, s r)elri O 1 C A1 pLP o 2 ❑ R, _ Ua°ti gz= kg ac1 14 C'-0" f ce Z La IA rn�.x = _WS!: _ -1 q 4365.3S . s .y 21 #Ct ❑ Z o F- U nr.cx - 1 4-GM # ! M i" 51:2_,Itta.,2_02-:. i WA 5.1.5' Ls AIMS , S = e, (3.-A:5•25) 1 P = 64 t = i / }►J I--3 5' Sv= V _ t� C 6Z #j,Nz A (3 s,S,2 S1 - =b (*.) 7 (3SO 5 ) 6.1s >= 33q(c,ps: <. ( 12 r-)(a e. o _ .c f s (.4. E � _ ISO psi- (-(0 = auo P 7 C>Z . o ' c4 Tr ` N (---N 1 f 1 o e Ici (5 --, f -- ‘ . 2 /44- 29 BY 6 - o JOB NO. C 0 �•� ! � DATE: V� � ' "') ' , / \ . (�: � . P ROJECT: RE: OPTIU0 2 i f cm e. 2,.)D Foote Li W ‘16 O11 OOf - - Case 3. TwoV. F- • W O 2 L ❑ TOO t_A_? : - th on ZIA,INIT = 13 0 J S Moo( 1o,,..ie r Cr -lc o�er;N1 ^ (3 = ∎2.' " o'i o W 0 F . 7)e. k Y1 U IANd ?f ° s, E ao .ae6 PS Z Lou dd ccN bv11 u9 b\o c-_ _ aktp pLF-- . O a k 1- G 1 I l/ U T T Z // rr-- R. f O mox =l a 1 .7 - ,_ go ?tv t, ❑ t, _ T.s" wry U. Z 4 rc o.X _ IL 5 ► * a �s W F a.. 1 1, 2. = l y I x $1 (o. a15 I n.J° _ t vA " IZ r , It 1,s,t, = (1,c = x`•`66 ,No . ; , 12� r G 1 _ Co. � s .3.s' _ a . (,,,t awwil ; .s" A 4,2 = Q 4 .S ikil' L 3.5" A 3,s, y - 5,1C 1 t•P° Ay= Q.,i, ,1,41- Q. • ': d , ,, O. b`� 3 ! t-) 5 f : 6, 3,q,s,6 = 0 1NJ �s . o _ xma -= 0 = 6.15 t. a4.,(a,e,)l Jr..2.. + a C 9,b )fi s,31c,+, © t ;1,(, # 0 - r = 1 ye13s ‘1,1 ,Y),, ,_ _ N\t. .,._ tql ik r0(1 =. 144:1 •r = V _ S1: _ = 5 e Cs,,C: Cr ��o C CMC�CLCf - L v ' J 7� �r� "F,,, = (5 50 p$A 1,o\(\,o IA q fi = C b a3a _cpsi 1, ,0)(k 1,0. _ (t.0)(,.o) LsL" ti: 4 - L._o . • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:49:04 COMPANY 1 PROJECT RESULTS by GROUP - ND5 2005 SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF = = Mnf Trusses y =a'96II � = Not designed by request � ________ == === _ (2) 208 Lumber n -ply D.Fir -L No.2 1- 200 • By Others Not designed by request (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 Typ Wall Lumber Stud Hem -Fir Stud 2x6 916.0 SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR - = Mnf 331 i==ce =TAT 901 designed T by request �� == ` =a �� Sloped Joist Lumber -soft D.Fir-L No.2 2x6 816.0 (2) 2x8 (1) Lumber n -ply D.Fir -L No.2 1- 2x8 (2) 208 Lumber n -ply D:Fir-L No.2 2= 2x8 By Others Not designed by request By Others 2 Not designed by request (2) 2x12 Lumber n -ply D.Fir -L No.2 2- 2x12 5.125x10.5 Glulam - Unbalan. West Species 24F -V4 DF 5.125x10.5 4X6 Lumber -soft D.Fir -L No.2 • 4x6 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 4x6 Lumber Post Hem -Fir No.2 4x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 (2) 2x4 Lumber n -ply Hem -Fir No.2 2- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 916.0 SUGGESTED SECTIONS by GROUP for LEVEL 2 - FLOOR =a Mnf Tru = = es - s- �� = � = � =T - Not designed by request �___��__�_ :_ Mnf Jot Not designed by request Deck Jot Lumber -soft D.Fir -L No.2 208 816.0 (21 2x8 Lumber n -ply D.Fir-L No.2 2- 2)0 3.125x9 Glulam - Unbalan. West Species 24F -V4 DF 3.125x9 4x8 Lumber -soft D.Fir-L No.2 408 By Others Not designed by request • By Others 2 Not designed by request (2) 2x10 Lumber n -ply D.Fir -L No.2 1- 2x10 ' 5.125X12 GL Glulam - Unbalan. West Species 24F -V4 DF 5.125012 By Others 3 Not designed by request 3.125x14 LSL LSL 1.55E 2325Fb 3.5014 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 4x4 Lumber Post Hem -Fir No.2 4x4 • 4x6 Lumber Post Hem -Fir No.2 4x6 . (3) 2x6 Lumber n -piy Hem -Fir No.2 3- 2x6 6x6 Timber-soft Hem -Fir No.2 6x6 (2) 2x4 Lumber n -ply Hem -Fir No.2 2- 204 6x6 nol Timber -soft D.Fir -L No:1 6x6 (3) 2x4 Lumber n -ply Hem -Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 816.0 SUGGESTED SECTIONS by GROUP for LEVEL 1 - FLOOR ==Fnd =�- _ -_ ^ =====-__�-___-- _- - - - Not designed by request CRITICAL MEMBERS and DESIGN CRITERIA Group Member Criterion Analysis /Design Values • = = ac = = = Mnf Jot Not designed by request = == aa = == = =m= :===as _ Mnf J Deck Jst j65 Bending 0.41 Sloped Joist j30 Bending 0.10 • Floor Jst4 unknown Unknown 0.00 (2) 2x8 (1) b35 Bending 0.47 (2) 2x8 b8 Bending 0.89 3.125x9 b3 Bending 0.06 4x8 b30 Bending 0.12 By Others By Others Not designed by request By Others 2 By Others Not designed by request (2) 2x12 b6 Bending 0.93 (2) 2x10 bl Shear 0.78 5.125X12 GL b10 Bending 0.76 • By Others 3 By Others Not designed by request 5.125x10.5 b9 Deflection 0.95 4 %6 b20 Bending 0.08 3.125x14 LSL b14 Deflection 0.73 (2) 2x6 c2 Axial 0.91 404 c55 Axial 0.07 4x6 c23 Axial 0.80 (3) 2x6 c29 Axial 0.75 . 6x6 c26 Axial 0.70 (2) 2x4 o39 Axial 0.62 6x6 nol c12 Axial 0.86 (3) 2x4 c31 Axial 0.09 Typ Wall w14 Axial 0.40 Fnd Fnd Not designed by request ' DESIGN NOTES: 1. Please verify that the default deflection limits are a =� a--= ppropriate for your application. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result is considered the final design and appears in the Materials List. 3. ROOF LIVE LOAD: treated as a snow load with corresponding duration factor. Add an empty roof level to bypass this interpretation. 4. BEARING: the designer is responsible for ensuring that adequate bearing is provided. 5. GLULAM: bxd = actual breadth x actual depth. 6. Glulam Beams shall be laterally supported according to the provisions of NOS Clause 3.3.3. 7. Sawn lumber bending members shall be laterally supported according to the provisions of ND5 Clause 4.4.1. 8. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that ' each ply is equally top- loaded. Where beams are side - loaded, special fastening details may be required. ' 9. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 10. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of ND5 Clause 15.3. WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:41:17 Concept Mode: Beam View Floor 2: 8' tam � b31 1� 0 . . 4V-6" 103 _.... ._ : . : : - - - -- -- - - 4 b 1UL - .. _ .. 40 0 • IU1b - -- - - - -- - -- -- - .-- 40 IUtt - - _ 44-0 t. - ' - ' : b1 42-0 4 0 4U 0 y b _ -: - -_: :;_ 3y . 0 .. J4 ' 36 - 0 y3- yL S1 b 30_0 30 b Vt.) 1 : b2 ' _ 34 -t7 33 -b 00 - • - - _.. _ - - -- -- 0! tSb 0 - 6 .11 -6 L Ltl -0 03 • 02 - - ..:......:... -- - - - - --- --- -- .. -- - - -_ -- :. .. - -- - -- 01 : 20•‘b 20 -b ry ra® ; L4 -b • i / • L - b b3 i - -- LU -b /0' - _ - ; - - W : ; - lb b U._.. .... : . .... . .. . I : - I4-0 0y b6 ...:.b1911 12 -0 or 00 b b4 3. e)2 P. b4 : b14 • b. -b. 01 -. • .. . _. - - - ' bu' b30'� b3 4 -0 b2 b . _ . . ....i - .. --- 0 -b BB\B.B BCCCCCCCCICCC CCCCCCCCCCCC \CCCDDDDDDDDFDDDCDDD DDDDDDCD'DDDE•EEE E EEEtEEEIEE EEEEEEEEtEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'45'67'8'9111 1:1 :t 1.'1(1 14142( 2' 2: 2: 24 !2(22/2(3(33.3;3 4A:4414(4 +.445(5 5: 515 , 515(5515(6(68:6:6v?6(6"6(617(7 7 ;77 , 77477-6" 141— CI WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:41:19 Concept Mode: Column View Floor 2: 8' J»J 1 LC�i D 1050 ❑ c58 .: �c14 _ 49' -6 iU4 40-0 IIU3 : _' .'_. - - - --' - .. '- 4 -b 101 4 b -0 VI) - - 43 n 25 c69 c2 c70 - ; - ' c71: - 4L -a ©:. 9 /----" .. - -- - -- - --- - -- - - - --- --- - - -- - -- 41 a as - ..® ❑ . ©. 4U - b 3J a J4 _" : -:[ - 325 -a J i ; — ..:--' -- Q 30-0 J4 -0 .. 00 '- -- -.. - :-__.:..-- -: -- - ... - -- - -._ - .. „L-0 00 : _. .. C4 :. . - . ..5V-0 00 . . : . : ' ❑ : . .. .. L`J-b 04 - - : • : - - - ' --- : _ : . -':.. - - -- ..-:- --- . ...: -- --- -:- - - - --- ---- -- __.. _. L25-b 6,5 - - L /-b 25 L- -.._ .. _:_......:.. .-- ---- -- - - - - - --- -- - --- - -- -- .. - -- __ ._ - L0 -b tg - c25 c12 c26 : ; L4-a Li -10 (0- ---: 0 ❑. DC72: . ... --- - LL -b . -- D . _. c73 ' LU -b f4---- --= ' --- ` . 0 .: .: ._ .---- ----- - .- - -- ... ._. ._ .. .. ' its - b ' / L _ . C3 • ,.. .. - - . •I • -b .. 1 1 t -c78 - - - - . -. )0-a (0 . 14 - a 0y ©'.- :. - - -- _ ...— - -- - . 13-0 00. __.:.c77. . IL -b 01 ' ...... ; : : - I1 -0 bb- IU 0 boa. c79 . : - -- - - - - - - ) - -- - - 25 -a acs "` O irgc30 ° : ®c32 a b.. b U7 ,. ❑ : : '0 . �:CS„ : . .. : -- -- .._ .._.___.._ 4 -b 3 a c55 c . L. - • .,., ❑ u -a .BB1B.B BC CC C CC C}CCC CC CC CCC C CC CC1CC CD DD D D DD beDD CD DD°DD D D DD CD!DD DE.E BB E:EB EI-EEEiEEIE EIEEEEEBBEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 1 :1 :1 1111 1142( 22: 2: 2 , 2t2E2"203 €33;3:3 4+:44.'414 41445(5 5. 5: 5 5; 5t 5753S61.6 6: 6 :6 6" 4 - Ce)`-'6, WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 24, 2010 13:14:33 Concept Mode: Beam View Floor 2: 8' g�? t ��/1 - b31 l't F-- ��J CT L� 04 0 ii! . . _ _ . -. I -.-- - - --: ---- . --:-:` -- -- - - - 49'-6" 4 1U.3 - : - 41 1 UL _ 40 -b.. IUI __. .: .. IVU - - 44 - y9 .: ; V0 : -. • bill :.. i .. -- ; : : -. - L 4 a • yr • ■ yb - 4u b Vb . .. 3V -b .. .: . . .. 3t3 b 3 if -tb .: :. .. 30 43 34 -b ?:$ b2 33 -b 01 130 . uo t34 = Ly'-p 03 .: . . : `. : : :. .:. - - L! b tar a =b10 ` L4 b • LS -b rG : ��•- 8 _ II LL -b ! b33 ; L I r b i♦ GU b 1y" b 10 -0 I / -b rL---- ' -- - ---b32 _._.. .; -- - - -- - ... - - - -- -- - - - - -- - •- - - - -- - - -- - --_ - -- - - - - -- io -to rU is. • IJ b by' 13-0 bu. : - b19�1 I I - b .. br �- bb b5 _ iv b y-b 031 3 u n .. 0L? b4 "� b14 I. b .. b oi l ) , b30�' .� 2 4- _ b35 .. �..� b9 b t7 3-L7 L . b .. 8818.88c CCC C CC C ICCC CC CCCC C C CC CCICCCD DDD D DD DODD CD DD DDD D DD CDIDD DEE E E EEE EFEEEIEEE EiEEEEEEEEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'67'8'91(1 '1 :1 :1 ?1(1'1(1'2(2 22: 2 22( 2 2 1243(33:33 313f4(4'4A :4.4 14(4'4(415(5 5:5:5 • • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 24, 2010 13:14:35 Concept Mode: Column View Floor 2: 8' Q OQ WO- c c58 014 1r + 1050 ■ . :. _ 49'-6" , Ivu , . V0 - c82 - - c81:-• -. 4L -b -b 4C Jt . -- { . - - -- -- - - ... - ' -- - -._ 4U "-0 - . . a &n . VZ C3 - • .. • 30 • `JI ... - - -- -_ __. 34 -b ti-V . 63 -0 • SL b 23f - - SI -a - . c4 .. -' . - ' -- - - _ .- 235 . ill-0 L�J -b 23.5 L1 - - .. - Lt5-b b" • Lb b fu - - c25 c12 c26 ?Z4 -0 _ ZS-10 C72 ' LL a 1 ! L - a CZ ,. ra c73 _ -b ib b f t• - " c78 - • - 13 -a fu II : - - ... - _ _ .. - . .. . ' 1 4 a bV 13 -0 00. .: _ c77. - - - ------ - ----- - . - . -- .. .- - 0f -.. .. - 1 I -: r C31 c76 ; ' c71 is a • Sa • . c55 � .. C b.. 0 ' i -b ., -1 u a .BB18.B BCCCC CCC CI-CCC CC CCCC C CCC CC \CC CD DD D D DD DFDDD CD DD DD D O DD CD'DD DEE E E EiE EE!EEEiEEIEE+EEEEEE!EEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'678'9111 "1:1 :1 111'111121222:2 53:5•51515'-51516165;6:6 4_ ....._ (......is WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:44 Concept Mode: Beam View Floor 3: 17' 1050 . .. 49' -6 1V4 : : IUS 40 b" 41' b IUlb- 4 9-- ..._._ 43 0 o : : b3 b6 - - :: 4L-0 /. ' x._11. yb 41-n 4U -0 Jy b 3— " - - .. 3/-b JV 34 -0 by b7 ss -b ' ;_ _ . . - 0( J • b' t5b JU b 00 L V - b 154: .. ,. .. _ :. :.-' ,. Lt3 -b 0,5 : L / - b ...- -• L-t:, 01 L - b 00 i _. ` - 1 L.5-0 b9 : 24-0 L -b / / ' b22 : 41,0 rtr LU-b ro , 1 -b Ib'b 1/-0 IL- -- b21- 0 -0 i b20 fU . 14-b bu_. .b1lb17. I . -b 04 _:._ .b34 . _ ..: 0 03 ' / -b o� 0U � 4 -b BB\B.B BCCCCCCCCFCCCCCCCCCCCCCCCICCCDDDDDDDDIDDDCDDD DDDDDDCDiDDDEEE E EEE.EiEEEEE EEiEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 1 0 6 ' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'678'91(1 1 :1 :1'1 ±1(1 :1( 112(22:2:22!2222(322:3:3 - 2( 4A 4: 4: 4. 4! 4 (4 "4t4E5(55:5:5 :66'.6(6 "6.6170'7,7 :7 -6" • 4 - (fr (.0 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:42 Concept Mode: Column View Floor 3: 17' 1050. :- --- ... . . - - - -- 49'-6'• IU4y - - - • - . . . - 40' b.• IU3 - • '.- : • - - - - -- -- 4/ -0 wL _ .. _. -- - - 40-4 •IU'1 -- - : 40-25 IVU - .. _ - -- -- -- -- -- 44 -b . 9-: 43 - b I.-10 ; : . c62 c61 ": c15 - . .c16 42 - 0 I:1/ - . :. -__.- - - - _. .. .4444 - •_.__ - 4i -b • y0 ' . : 3y -b 4 ::. -: 444 -: --. -- 30 -0 `J3 31 -b U V • _ ®-- '.-_- ...___ .. .. .._ _ - - . :.. - - " - : - - --- 34-0 by 33'25 t5 L5' -- .... _. .. ; - ; 444 4 -- ; . . - - :'; - - - - - - - -- - -- - - - -- - - , -- • -- -- SL-0 250 ; ..... __. ... .. - -- - C18-'- .-- - - - ` - -- ---- - .5U -b • 60 0 ; .: .. - .. L•-•25. 04 '; :: : 225 03 • . . :. : ' : • : • ' s - L! •-b 2Z - . .. .. - -- .:.- - --._. _.. : • . -..._.. : -- -' - - - ---.� .. .. Lb -;b 25 I : 10 • y c39 c 24 c23 , • L4 25 L'1059 - '-- • - -- -- 4444 - -- .. - ... _ • - ..- LL -b • /0 - - - - ... - 1 o- - - • --- - - -- - - LU -b .b • .i - - IJ45 : 11 = . its b' J3 : • - t- - .. - - - _ '11 40 • • • -- -• _.. - . -.--- " - - --- . -- 10 -0 .. ' (U .... : . . ._ .: ._- - -_ ..: ..._ ..... '. .: _ - .. .. .. .. '14 -b b0 c 35 . 1 L 25 • 251 . . i I. -25 025 - ` -- .:.. ..-- - _. ... - 1 U' - b • n y -b • 254 • 7) c66 c63 25 b • 1 . b .. OZ.' ■ q 11 c756520 . c1c6c74 25'25 015- : .Ink,-,•. - •- - __. - • - : - 5-25 bV 3� ...? - - - 4444. -- -- - -- - .- - - -- - - -b G -b 1 . ." -- -.- : - ' .-'-.` - --.. -- 4444 - - - _. ... - - --- --- 811113B BC C C CC CFCCC CC CCCC C CCC CCICCCDODD D DD DFCDD DD DD DD D D OD CD6D DEE E EEEEEFEEE(EEIE EEEEEEEtEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 10 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42'44' 46' 48' 50' 52' 54' 56' 58'60' 62' 64' 66' 68' 70'. 72' 74' 76' 0'1'2'3'4'5'67'8'91(1 1 :1:1 111212222 2.22'22'.30 3 :33 {4'4:4:4.4!4(4 - 414(515 5 ;5 :5 :6 (6(717 ?.7.7 • • 4------ (,f7J1r- WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:38 Concept Mode: Beam View Roof: 25' 1050 49' -6" 104 .. 40 0 103. - .. - 4/ -0.. IUL� - - - - - - _ - - 40-0 WO ... -- .. -- - 44. -0.. . . : .. y� . ' b23 : :. b24 ' : : 4Z a u . n . 3y -b 4 - -- .. :.... : 30 -0 y3 :.. 3r b.. yL . - - : • _ .. .. -: - - - -- - - - :- --- 30 -b U -' - - - - 34' t5`J .. : 33-0 LSO: ':: _.__, U .__..:- •- •__.._ - -_. � : � .. 3'-0 OD .. .. - Ly Lt5' 03 . .. L/ - . . . 01 L5 -n fy L3 -0 /0 - LL -b / / • b25... : L I -b ro - 2 U-0 rn _ I-n Loo f4 ; / 3 _ - - - - - - - 1 1' -0 ru 14 b . 1 S-0 I I 00 l0 - b b5 y -0 04 ) b b28 - = Ls n -0 3 -n L -0 BBIB.B BCCCC C CC C }CCC CC CCCC CC CC CC ±CC CD DD D D DD DtDDD CD DD DDD D DD CDIDO DE.E E E E EEEEEEIEEiE EEEEEEE(EEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46'48' 50' 52' 54' 56' 58'60' 62' 64' 66'68' 70'72'74'76' 0'1'2'3'4'5'6'7'8'9111 '1:1 :1'1 !1(1'1112(2 22:222(222(3(3 (4'4A :4.4(4(4 "4(4(5(5 5:5:5 777 -6 " i le-/ ...-- (43 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:40 Concept Mode: Column View Roof: 25' 1050 . 49 1L14;-1 : 13-0 1U3. _-..._ ._ ._ . -:--- - -: -- :. _ .. ..- - -- --- . - 4 /.-b. 1U4 _ .. -- _ 40-0 I 413 b IU IVU 44 -b 6 c42 c43 : c44 c45 : ' 4L -o V0 4U 43 130 - Ly -b os ' - - L! -o 236 -- -----i -- --- -. .: - - - -- -- --- - -- - --- - - - - - --- - - - - - -- - ---- .:: - - --- - - - -- - -- .. -- - --- - Lb'-0 _ - - • rW L3-6 (25 - -- - . .- - -- _ ..- - - -. _ ._ .. .. ... _.. -- --- --- - LL -b . . : Cf� 6 /! z -b /0 -`- '- --`- - -- ..- -- - c47--; - - ----- ...-- - -- - - .. -- LU -0 (3 1 .. 1`J " (4_ :_ -- -- - -- -- - Q - __ .. : 16 -0 --- -- ._ /G ._ - 113-'6 f . .. - • - : .: - : -- ._--. - --. 10-0 (U. .. :... ...... .. 14-0 I'3 _ _ .. .. -- - I 3-0 IL b ()I - : --- - : - I I - 3 013 _.. -; Ill -b 0 4 ) _ c51:,-50,. c52 - c53- - - - - -:_ .. _ b oa t r -o bL @8 b.. 01 - • - . a , . - --- - - - - -- - .- - -, - : - : -- 0-13 bU) 3-3 L b B BIB.B BC CCC C CC C-CCC CC CCCC C CCC CCICCCD DD D D DD DFDDD CD DD -DD D D DD CDID D DEE E E E :EE EFEEE'EE E EEEEEEBEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8`G1(1 1 :1 :1 €12(2 22 :72:2E2' 2243( 33: 3: 3 3' 3(3'31344(44A :44'4(4'4W5(5'5:5 :5 E :6 :6 7:7:7 4 -619 COMPANY PROJECT I WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:42 bt Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w61 Dead Partial UD 613.2 613.2 2.50 3.00 plf 2 w61 Snow Partial UD 795.0 795.0 2.50 3.00 plf . 3 c61 Dead Point 622 2.50 lbs 4 c61 Snow Point 1192 2.50 lbs 5_j28 Dead Full UDL 47.7 plf 6_j28 Live Full UDL 160.0 plf 7_j33 Dead Full UDL 120.2 plf 8 j33 Live _ Full UDL 370.0 plf MAXIMUM RE. g Dead 391 1061 Live 795 1615 Total 1186 2676 Bearing: Load Comb #2 #3 Length 0.63 _ 1.43 Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2 -Plys Self- weight of 6.59 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv* = 67 Fv' = 207 fv * /Fv' = 0.32 Bending( +) fb = 331 Fb' = 1138 fb /Fb' = 0.29 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.05 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 2676, V design* = 1237 lbs Bending( +): LC #3 = D +.75(L +S), M = 1178 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 158e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I =impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 4- ..... (,,,.10 COMPANY PROJECT i 1 WoodWorks® SOFTWARE FOR W000 DESIGN June 24, 2010 12:43 b3 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j45 Dead Full UDL 17.0 plf 2 145 Live Full UDL 25.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 10' 91 Dead 106 106 Live 112 112 Total 218 218 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Glulam- Unbal., West Species, 24F -V4 DF, 3- 118x9" Self- weight of 6.48 plf included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : • Criterion Analysis Value Design Value Analysis /Design Shear fv = 10 Fv' = 265 fv /Fv' = 0.04 Bending( +) fb = 140 Fb' = 2400 fb /Fb' = 0.06 Live Defl'n 0.01 = <L/999 0.30 = L/360 0.04 Total Defl'n 0.03 = <L/999 0.45 = L/240 0.06 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 218, V design = 182 lbs Bending( +): LC #2 = D +L, M = 491 lbs -ft Deflection: LC #2 = D +L EI= 342e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). • SV COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:40 b6 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 c44 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 Dead Point 444 5.00 lbs 6 c45 Snow Point 647 5.00 lbs 7 w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9 Dead Full UDL 120.2 plf 10 j25 Live Full UDL 370.0 plf MAXIMUM REACTIONS (Ibsl and BEARING LENGTHS (inl : � 6 � Dead 1436 1389 Live 1803 1803 Total 3239 3192 Bearing: Load Comb #3 # • Length 1.73 1.70 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. COMPANY PROJECT eft WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:50 b8 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1j14 Dead Full UDL 113.7 plf 2 j14 Live Full UDL 350.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 1 0' 61 Dead 357 357 Live 1050 1050 Total 1407 1407 Bearing: Load Comb #2 #2 Length 0.75 0.75 Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 pif included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 77 Fv' = 180 fv /Fv' = 0.43 Bending( +) fb = 963 Fb' = 1080 fb /Fb' = 0.89 Live Defl'n 0.07 = <L/999 0.20 = L/360 0.33 Total Defl'n 0.10 = L/712 0.30 = L/240 0.34 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 1407, V design = 1123 lbs Bending( +): LC #2 = D +L, M = 2110 lbs -ft Deflection: LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC • DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 4_ G3 COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:40 b9 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 j50 Dead Partial UD 113.7 113.7 0.00 1.50 plf 2_j50 Live Partial UD 350.0 350.0 0.00 1.50 plf 3_j14 Dead Partial UD 113.7 113.7 3.00 9.00 plf 4_j14 Live Partial UD 350.0 350.0 3.00 9.00 plf 5_j51 Dead Partial UD 113.7 113.7 1.50 3.00 plf 6_j51 Live Partial UD 350.0 350.0 1.50 3.00 plf 7_j24 Dead Partial UD 120.2 120.2 0.00 3.00 plf 8j24 Live Partial UD 370.0 370.0 0.00 3.00 plf 9_j25 Dead Partial UD 120.2 120.2 3.00 9.00 plf 10_j25 Live Partial UD 370.0 370.0 3.00 9.00 plf 11j26 Dead Partial UD 120.2 120.2 9.00 12.00 plf 12_j26 Live Partial UD 370.0 370.0 9.00 12.00 plf 13_j52 Dead Partial UD 113.7 113.7 9.00 10.50 plf 14_j52 Live Partial UD 350.0 350.0 9.00 10.50 plf 15_j53 Dead Partial UD 113.7 113.7 10.50 12.00 plf 16 j53 Live Partial UD 350.0 350.0 10.50 12.00 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : icy 121 Dead 1478 1478 Live 4320 4320 Total 5798 5798 Bearing: Load Comb #2 #2 Length 1.74 1.74 Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x10 -1/2" Self- weight of 12.39 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 138 Fv' = 265 fv /Fv' = 0.52 Bending( +) fb = 2217 Fb' = 2400 fb /Fb' = 0.92 Live Defl'n 0.38 = L/381 0.40 = L/360 0.94 Total Defl'n 0.57 = L/252 0.60 = L/240 0.95 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 5798, V design = 4953 lbs Bending( +): LC #2 = D +L, M = 17395 lbs -ft Deflection: LC #2 = D +L EI= 890e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). ...._ COMPANY PROJECT eft WoodWorks® SOFTWARE FOR woos DESIGN June 24, 2010 12:43 b10 Design Check Calculation Sheet Sizer 7.1 LOADS I lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Pat - Start End Start End tern 1 w39 Dead Partial UD 311.0 311.0 0.00 4.50 No 2 w39 Live Partial UD 680.0 680.0 0.00 4.50 No 3 c39 Dead Point 267 2.00 No 4 Live Point 822 2.00 No 5_j32 Dead Partial UD 120.2 120.2 0.00 0.50 No 6 j32 Live Partial UD 370.0 370.0 0.00 0.50 No 7 Dead Partial UD 120.2 120.2 1.00 4.00 No 8 Live Partial UD 370.0 370.0 1.00 4.00 No 9 Dead Partial UD 120.2 120.2 4.00 4.50 No 10 j34 Live Partial UD 370.0 370.0 4.00 4.50 No 11 Dead Partial UD 120.2 120.2 4.50 7.50 No 12 j35 Live Partial UD 370.0 370.0 4.50 7.50 No 13_j36 Dead Partial UD 113.7 113.7 4.50 16.50 No 14_j36 Live Partial UD 350.0 350.0 4.50 16.50 No 15_j37 Dead Partial UD 100.7 100.7 3.00 4.50 No 16_j37 Live Partial UD 310.0 310.0 3.00 4.50 No 17_j47 Dead Partial UD 120.2 120.2 7.50 13.50 No 18 j47 Live Partial UD 370.0 370.0 7.50 13.50 No 19 Dead Partial UD 120.2 120.2 13.50 16.50 No 20 Live Partial UD 370.0 370.0 13.50 16.50 No 21_j49 Dead Partial UD 120.2 120.2 0.50 1.00 No 22 j49 Live Partial UD 370.0 370.0 0.50 1.00 No 23_b32 Dead Point 300 3.00 No 24 Live Point 922 3.00 No MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : ), l0' 4'-6" 16-61 Dead 452 4067 1180 Live 847 11291 3436 Uplift 12 Total 1300 15358 4616 Bearing: Load Comb #2 #2 #2 Length 0.50• 4.24 1.27 Cb 1.00 1.09 1.00 'Min. bearing length for beams is 12" for exterior supports Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x12" Self- weight of 14.16 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 265 fv /Fv' = 0.60 Bending(*) fb = 1074 Fb' = 2400 fb /Fb' = 0.45 Bending( -) fb = 1396 Fb' = 1844 fb /Fb' = 0.76 Live Defl'n 0.13 = <L/999 0.40 = L/360 0.32 , Total Defl'n 0.19 = L /740 _ 0.60 = L/240 _ 0.32 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fb'- 1850 1.00 1.00 1.00 0.997 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 8357, V design = 6496 lbs Bending( +): LC #2 = D +L, M = 11006 lbs -ft Bending( -): LC 02 = D +L, M = 14310 lbs -ft Deflection: LC #2 = D +L EI= 1328e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow N =wind I= impact C= construction CLd= concentrated) All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. Grades with equal bending capacity in the top and bottom edges of the beam cross- section are recommended for continuous beams. 4. GLULAM: bxd = actual breadth x actual depth. 5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 6. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). i q --- 6 • c i - ,---- - COMPANY PROJECT ell WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:44 b13 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 Dead Point 217 5.50 lbs 4 Live Point 668 5.50 lbs 5 Dead Point 518 5.00 lbs 6 c67 Snow Point 778 5.00 lbs 7 Dead Point 573 3.00 lbs 8 c68 Snow Point 942 3.00 lbs 9 w59 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10 w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12_j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13_j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14_j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15_j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16_j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 18 b15 Live Point 389 3.50 lbs 19 b32 Dead Point 225 6.50 lbs 20 Live Point 693 6.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : . ^t H - , ._e�a. - u. - y am �"i .r -- - sue • ...= .e�r- ,`ea._ - Vii' ... _ -+ =�. , .-, r'�'i .su__.y-- .--,. yo-"'_'' '"c " -� r ,..r ' 10' 81 Dead 2561 3033 Live 2699 3789 Total 5261 6822 Bearing: Load Comb #3 #3 Length 1.88 2.44 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NOS 2005 : Criteribn Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L/680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC #3 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. • 1 4 --- G 1 (442 COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:43 b14 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 w33 Dead Partial UD 317.7 317.7 9.00 12.00 pif 2 Live Partial UD 350.0 350.0 9.00 12.00 plf 3 c19 Dead Point 357 9.00 lbs 4_c19 Live Point 1050 9.00 lbs 5_c20 Dead Point 357 3.00 lbs 6_c20 Live Point 1050 3.00 lbs 7 w34 Dead Partial UD 317.7 317.7 0.00 3.00 plf 8 w34 Live Partial UD 350.0 350.0 0.00 3.00 plf 9 c64 Dead Point 165 10.50 lbs 10 c64 Snow Point 225 10.50 lbs 11 Dead Point 165 1.50 lbs 12 Snow Point 225 1.50 lbs 13 Dead Full UDL 113.7 plf 14 Live Full UDL 350.0 plf 15 Dead Partial UD 17.0 17.0 0.00 0.50 plf 16_j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 17_j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 18 j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 19 Dead Partial UD 17.0 17.0 1.50 10.50 plf 20 Live Partial UD 25.0 25.0 1.50 10.50 plf 21 Dead Partial UD 17.0 17.0 10.50 12.00 plf 22 Live Partial UD 25.0 25.0 _ 10.50 12.00 _ plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : :-.1-...:„...- e.. „.,,: .- ..._= --� .. - � fir.. =' . _-,• .. �s .:- ,,.:.ie -. . �ma- Gti7-- • •..." woaP .�►: - .r; -c � J 10' 121 Dead 2351 2351 Live 4350 4350 Total 6701 6701 Bearing: Load Comb #2 #2 Length 2.39 2.39 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 163 Fv' = 310 fv /Fv' = 0.52 Bending( +) fb = 1769 Fb' = 2325 fb /Fb' = 0.76 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.43 = L/333 0.60 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 6701, V design = 5314 lbs Bending( +): LC #2 = D +L, M = 16851 lbs -ft Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) • Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:41 b20 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j30 Dead Full UDL 21.7 plf 2 j30 Live Full UDL 60.0 plf MAXIMUM REACTIANS /Ihcl and RFARINn 1 FN(THS tint • A 1 3'_6'4 Dead 46 46 Live 105 105 Total 151 151 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x6" Self- weight of 4.57 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 9 Fv' = 180 fv /Fv' = 0.05 Bending( +) fb = 90 Fb' = 1170 fb /Fb' = 0.08 Live Defl'n 0.00 = <L/999 0.12 = L/360 0.02 Total Defl'n 0.00 = <L/999 0.18 = L/240 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 151, V design = 111 lbs Bending( +): LC #2 = D +L, M = 132 lbs -ft • Deflection: LC #2 = D +L EI= 78e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 7.) COMPANY PROJECT di WoodWorks® SOFTWARE FOR W000 DESIGN June 24, 2010 12:50 b30 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j41 Dead Partial UD 68.0 68.0 2.00 4.00 plf 2_j41 Live Partial UD 100.0 100.0 2.00 4.00 plf 3_j42 Dead Partial UD 72.2 72.2 0.00 2.00 plf 4 j42 Live Partial UD 106.2 106.2 0.00 2.00 plf MAXIMUM REACTIONS Mal and RFARING I ENGTHS lint A 1 0' 44 Dead 154 150 Live 209 203 Total 364 353 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x8" Self- weight of 6.03 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 15 Fv' = 180 fv /Fv' = 0.08 Bending( +) fb = 140 Fb' = 1170 fb /Fb' = 0.12 Live Defl'n 0.00 = <L/999 0.13 = L/360 0.03 Total Defl'n 0.01 = <L/999 0.20 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 364, V design = 253 lbs Bending( +): LC #2 = D +L, M = 359 lbs -ft Deflection: LC #2 = D +L EI= 178e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. - 619 • COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:42 b31 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1_j65 Dead Partial UD 47.7 47.7 0.00 4.00 plf 2_j65 Live Partial UD 160.0 160.0 0.00 4.00 plf 3_j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4_j28 Live Partial UD 160.0 160.0 4.50 7.50 plf 5_j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 6_j62 Live Partial UD 160.0 160.0 7.50 11.00 plf 7_j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 8_j63 Live Partial UD 160.0 160.0 11.00 17.00 plf 9_j64 Dead Partial UD 47.7 47.7 17.00 20.00 plf 10_j64 Live Partial UD 160.0 160.0 17.00 20.00 plf 11_j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 12 j66 Live Partial UD 160.0 160.0 _ 4.00 4.50 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : IO' 20 Dead 619 619 Live 1600 1600 Total 2219 2219 Bearing: Load Comb #2 # Length 0.67 0.67 Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x12" Self- weight of 14.16 plf included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : • Criterion Analysis Value Design Value Analysis /Design Shear fv = 49 Fv' = 265 fv /Fv' = 0.18 Bending( +) fb = 1082 Fb' = 2400 fb /Fb' = 0.45 Live Defl'n 0.43 = L /553 0.67 = L/360 0.65 Total Defl'n 0.69 = L/350 1.00 = L/240 0.69 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 2219, V design = 1997 lbs Bending( +): LC #2 = D +L, M = 11095 lbs -ft Deflection: LC #2 = D +L EI= 1328e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4 - G2 o COMPANY PROJECT • I i %Vo od vVor ks® June 24, 201013:15 b31 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Sher 7.1 LOADS ( 46 0 PA.90) : Load Type Distribution Magnitude Location (ft) Units Start End Start End 12462 Dead Partial UD 613.2 613.2 0.00 2.00 pif 2 :62 Snow Partial UD 795.0 795.0 0.00 2.00 plf 2029 Dead Partial Up 617.5 613.5 7.50 11.00 pif 4_w29 Snow Partial UD 901.2 901.2 7.50 11.00 plf 5_015 Dead Point 1436 11.00 l0a 6 c15 Snow Point 2104 11.00 lira 17:16 Dead Point 1369 17.00 1b. B 506 Snow Point 2404 17.00 115 9 061 Dead Partial UD 617.5 613.5 17.00 19.00 plf 10 w64 0500 6.65143 UP 601. 601.2 17.00 16.00 pif 11_061 0e41 20195 622 7.00 10a • 12 c61 Snow Point 1192 7.00 3os 1] 562 Dead 2,165 632 4.00 lb. li 062 Point 1192 4.00 3b. 15 Dead Partial UD 613.2 613.2 2.00 4.00 plf 16 Snow Partial UD 795.0 795.0 2.00 4.00 pif 17 Dead Partial DO 617.5 617.5 19.00 20.00 pif 19,65 Snow Partial UD 301.2 901.2 16.00 20.00 plf 19 Dead Partial UD 613.2 613.2 7.00 7.50 pif 20 v71 5n:w Partial UD 795.0 795.0 7.00 7.50 pif 21 364 Dead Partial UD 47.7 47.7 17.00 19.00 pif 22 164 Live Partial UD 160.0 160.0 1 16.00 pif 23 129 Dead Partial UD 47.7 47.7 4.50 7.50 pif 24 329 Live Partial UD 160.0 160.0 4.50 7.50 pif . 25 162 Dead Partial UD 47.7 47.7 7.50 11.00 pif 26_162 Live Partial U0 160.0 160.0 7.50 11.00 pif 27_148 Dead Partial UD 120.2 120.2 0.0D 2.00 pif 25149 Live Partial UD 370.0 3 0.00 2.00 pif 29132 Dead Partial UD 120.2 120.2 3.50 1.00 pif 30_132 Live Partial UD 370.0 370.0 3.50 4.00 pif 31 333 Dead Partial UC 120.2 120.2 4.50 7.50 pif 32_133 Live 2.65141 UD 370.0 330.0 4.50 7.50 plf 33_134 Dead Partial UD 120.2 1:0.2 7.50 6.00 pif . 34 )34 Live Partial UD 370.0 310.0 7 .50 9.00 pif • 35_535 Dead Partial UD 120.2 120.2 9.00 11.00 pif 36_335 Live Partial UD 310.0 370.0 9.00 11.00 pif 33 )47 Dead Partial UD 120.2 120.2 11.00 17.00 pif 39_141 Live Partial UD 370.0 370.0 11.00 17.00 pif 3 )67 Dead Partial UD 120.2 120.2 2.00 3.50 pif 40_167 L1' :e Partial UD 310.0 370.0 2.00 3.50 pit 41 )49 Dead Partial UD 120.2 120.2 4.00 4.50 pif 42_349 Live Partial UD 370.0 370.0 4.00 4.50 pif 43_163 Dead Partial UD 47.7 47.7 11.00 17.00 plf 44_363 Live Partial UD 160.0 160.0 11.00 17.00 pif 45_165 Dead Partial UD :7.7 47,7 00.00 20.00 plf 46_165 Live Partial UD 160.0 160.0 39.00 20.00 plf 47 366 Dead Partial UD 47.7 41.7 4.00 1.50 pif 49166 Live Partial UD 160.0 160.0 4.00 4.50 pif 49_168 Dead Partial UD 120.2 120.2 17.00 10.00 plf 50_166 Live Partial UD 370.0 330.0 17.00 19.00 pif 51_169 Dead Partial UD 120.2 120.2 16.00 20.00 pif 52_169 Live Partial UD 370.0 370.0 19.00 20.00 plf 53_172 Dead Partial UD 47.7 47.7 2.00 4.00 plf 54_172 Live Partial UD 160.0 160.0 2.00 4.00 plf 55_173 Dead 7551054 UD 47.7 47.7 0.00 2.00 pif 56 173 Live Partial UD 160.0 160.0 0.00 2.00 elf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 1 C. +d Dead .405 7327 Live 9956 9979 Total 17361 _7305 Bearing: =cad Comb 13 13 Lenoth 5.21 - 5.19 Glulam -Bar., West Species, 24F -V8 DF, 5- 118x22 -1/2" Sell -waists of 20.55 p0 ylqudeu In loads: Lateral support top- full, bottom. et supports: Analysis vs. Allowable Stress (psi) and Deflection (in) °sing sos zoos : Criterion A,a1n2e V ee Value /c 1en lue Aealvsle ee1an Shear fv - ls=ua C Po' - 305 fv /Fv: - 0.60 Bendln fir - 2392 2604 fent, - 0.92 6,61 Live Defl'n 0.40 - L/595 0..67 67 . L7 0.60 Total Defl'n 0.94 - L/295 1.00 ■ L /240 200 0.94 ADDITIONAL DATA: FACTORS: F/E CD 0I Ct CL C/ Cfu Cr Cfr[ a Cn LCa Fv' :65 1.15 1.00 1.00 1.00 1.00 1.00 3 Fir'• 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 - E• 1.9 .1111:: 1.00 1.00 - - - - 1.00 - - ] Enin' 0.65 milli:: 1.00 1.00 - Shear : Lc 73 ■ D+.751L -S1. v - 37361, '/ design - 13352 103 0.131:3(01: LC 13 - 0+.'514001. le 96199 les - ft Deflection: 1.c 03 ■ 1..75(4•5) EI- 9756006 to -in2 Total Deflection .. 1.50(0ea3 Load Deflection) : Live Load Deflection. (0-dead 4-live 5 -anew Wmwind I.1,Fae 0.- construction CLd-concentrat001 1011 LC', are listed in the Analysis output) Load :5,000atione: 1CC -IBC DESIGN NOTES: 1. Please wiry that the default deflection Ones are apptopdate for your application. 2. Gddam design values are fee materiels conforming to AITC 117 -2001 end manufactured In accordance with ANSOAITC A190.1 -1992 3. GLULAM: bed . equal breadth a actual depth. . 4.644.9, Bevns s be later*P/ supported according to the prwidons of NOS Clause 3.3.3. 5. GLULAM: bearing leyph based on smaller Of Fcp(loabn), Fep(compn). ige4 C...°2 a COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:49 b35 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 j21 Dead Partial UD 120.2 120.2 0.50 1.50 plf 2_j21 Live Partial UD 370.0 370.0 0.50 1.50 plf 3_j59 Dead Partial UD 120.2 120.2 0.00 0.50 plf 4_j59 Live Partial UD 370.0 370.0 0.00 0.50 plf 5_j60 Dead Partial UD 120.2 120.2 1.50 3.00 plf 6 j60 Live _ Partial UD 370.0 370.0 _ 1.50 3.00 _ plf MAXIMUM RE? lI•...,, LO • ..,, . x.11.1.1% V" ..,,,..,. , • • 34 Dead 188 1 88 Live 555 555 Total 743 7 43 Bearing: Load Comb #2 #2 Length 0.50* 0.50* `Min. bearing length for beams is 1/2" for exterior supports Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis /Design Shear fv = 31 Fv' = 180 fv /Fv' = 0.17 Bending( +) fb = 254 Fb' = 1080 fb /Fb' = 0.24 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 743, V design = 444 lbs Bending( +): LC #2 = D +L, M = 557 lbs -ft Deflection:,LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. la Il �/ COMPANY PROJECT di. WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:51 c2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_bl Dead Axial 1056 (Eccentricity = 0.00 in) 2 Rf.Live Axial 2153 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): • • 0' 8 , Lumber n -ply, Hem -Fir, No.2, 2x6 ", 2 -Plys Self- weight of 3.41 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 0.00= 0.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 196 Fc' = 980 fc /Fc' = 0.20 Axial Bearing fc = 196 Fc* = 1644 fc /Fc* = 0.12 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.596 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 3236 lbs Kf = 1.00 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT ' �I WoodWorks® SOFTWARE FOR WOOD DEDGN June 24, 2010 12:54 c12 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c24 Dead Axial 1478 (Eccentricity = 0.00 in) 2 c24 Live Axial 4320 (Eccentricity = 0.00 in) 3_b10 Dead Axial 4067 (Eccentricity = 0.00 in) 4 Live Axial 11291 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): • 0' 8' Timber -soft; D.Fir -L, No.1, 6x6" Self- weight of 7.19 pif included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 701 Fc' = 820 fc /Fc' = 0.86 Axial Bearing fc = 701 Fc* = 1000 fc /Fc* = 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1000 1.00 1.00 1.00 0.820 1.000 - - 1.00 1.00 2 Fc* 1000 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 21214 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. • 4— GeD,H COMPANY PROJECT 1 WoodWo SOFTWARE FOR WOOD DESIGN June 24, 2010 12:53 c23 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b9 Dead Axial 1478 (Eccentricity = 0.00 in) 2 Live Axial 4320 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 9' Lumber Post, Hem -Fir, No.2, 4x6" Self- weight of 3.98 pif included in Toads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 303 Fc' = 379 fc /Fc' = 0.80 Axial Bearing fc = 303 Fc* = 1430 fc /Fc* = 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.265 1.100 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 5834 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES! 1. Please verify that the default deflection limits are appropriate for your application. 4- ��� COMPANY PROJECT rtit W oodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:54 c26 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c23 Dead Axial 1478 (Eccentricity = 0.00 in) 2_c23 Live Axial 4320 (Eccentricity = 0.00 in) 3_b10 Dead Axial 1180 (Eccentricity = 0.00 in) 4 Live Axial 3436 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): • 0' 8' Timber -soft, Hem -Fir, No.2, 6x6" Self- weight of 6.25 pif included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : • Criterion Analysis Value Design Value Analysis /Design Axial fc = 346 Fc' = 492 fc /Fc' = 0.70 Axial Bearing fc = 346 Fc* = 575 - fc /Fc* = 0.60 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.00 1.00 1.00 0.856 1.000 - - 1.00 1.00 2 Fc* 575 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 • Axial : LC #2 = D +L, P = 10465 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 4.— 21(4f2 COMPANY PROJECT 1 WoodWorks SOFTWARE FOP WOOD DESIGN June 24, 2010 12:52 c29 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b13 Dead Axial 3033 (Eccentricity = 0.00 in) 2 Rf.Live Axial 5052 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): • 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 3 -Plys Self- weight of 5.11 pif included in Toads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 328 Fc' = 439 fc /Fc' = 0.75 Axial Bearing fc = 328 Fc* = 1644 fc /Fc* = 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.267 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 8126 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. 4 ...._ COMPANY PROJECT i WoodWorks® SOFIWAR£ FOR W000 D£51GN June 24, 2010 12:55 c31 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 b13 Dead Axial 2561 (Eccentricity = 0.00 in) 2 Rf.Live Axial 3599 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): D 0' 8' n -ply, Hem -Fir, No.2, 2x4 ", 3 -Plys Self- weight of 3.25 plf included in Toads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 393 Fc' = 443 fc /Fc' = 0.89 Axial Bearing fc = 393 Fc* = 1719 fc /Fc* = 0.23 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.258 1.150 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 6186 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) • (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT i i WoodWorks® SOh7WARf fOR WOOD O(SfGY June 24, 2010 12:54 c39 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b21 Dead Axial 267 (Eccentricity = 0.00 in) 2 Live Axial 822 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 9' • Lumber n -ply, Hem -Fir, No.2, 2x4 ", 2 -Plys Self- weight of 2.17 plf included in Toads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 106 Fc' = 171 fc /Fc' = 0.62 Axial Bearing fc = 106 Fc* = 1495 fc/Fc* = 0.07 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.114 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 1108 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:52 c55 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b30 Dead Axial 154 (Eccentricity = 0.00 in) 2 Live Axial 209 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 1 0' 8' Lumber Post, Hem -Fir, No.2, 4x4" Self- weight of 2.53 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 31 Fc' = 470 fc /Fc' = 0.07 Axial Bearing fc = 31 Fc* = 1495 fc /Fc* = 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.315 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 384 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 0 fr q CnO‘ BV: DATE: 0 - &O 1 O JOB NO.: C EN —Q 9 OF PROJECT: RE: 13eams wl Lakr4t Read;arNs ❑ ❑ Z . 0 Wain b -> tN�tl S X03 343 O 2 L ❑ beu. t3 -, Uuhs aoal aoa 3 J O o W 1Deo r 1 t y- Wafts � O? ' a n ' U Z W O a Z beoo m -- y -' wcAtt,s aao1 , aa 1 A 7' aokg O U 5knce u,ixt. recu kiar. > se ismic_ reach Z 2 Or\1. w'rd wi lA he cot tcotcAveci , 2 O U f Et O li Z w ❑ Z O O = 1- a o ti -. g o . e'o / (1 \ COMPANY PROJECT 1 WoodWorks® SOFlWARE FOR WOOD DESIGN June 24, 2010 13:07 b6 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 c44 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 c45 Dead Point 444 5.00 lbs 6_c45 Snow Point 647 5.00 lbs 7 w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9 Dead Full UDL 120.2 plf 10_j25 Live Full UDL 370.0 plf WIND1 Wind Point 800 2.00 lbs WIND2 Wind Point -910 5.00 lbs 'MAXIMUM REA • , . sl and BEARING LENGTHS (inl 0' 61 Dead 1436 1389 Live 2089 1803 Total 3525 3192 Bearing: Load Comb #4 #3 Length 1.88 1.70 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.15 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 4 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 4 Shear : LC 43 = D+.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC 03 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #4 = D +.75(L +S +W) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. COMPANY PROJECT ell WoodWorks® SOFRVARE FOR WOOD DESIGN June 24, 2010 13:07 b6 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) • Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 c44 Snow Point 647 2.00 lbs 3w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 _ w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 c45 Dead Point 444 5.00 lbs 6 c45 Snow Point 647 5.00 lbs 7 w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8_w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9 j25 Dead Full UDL 120.2 plf 10 j25 Live Full UDL 370.0 plf WIND1 Wind Point -800 2.00 lbs WIND2 Wind Point 910 5.00 lbs MAXIMUM REACTIONS fibs) and BEARING LENGTHS • 1 0' 61 Dead 1436 1389 Live 1803 2172 Total 3239 3561 Bearing: Load Comb #3 #4 Length 1.73_ 1.90 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 pif included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that [s, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. COMPANY PROJECT I WoodWorks® SOFIWAREFOR WOOD DESIGN June 24, 2010 13:09 b14 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs. psf, or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2 Live Partial UD 350.0 350.0 9.00 10.50 plf 3 Dead Point 357 9.00 lbs 4 Live Point 1050 9.00 lbs 5 c20 Dead Point 357 3.00 lbs 6 c20 Live Point 1050 3.00 lbs 7 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8 w66 Live Partial UD 350.0 350.0 0.00 1.50 plf 9 c64 Dead Point 165 10.50 lbs 10_c64 Snow Point 225 10.50 lbs 11 c65 Dead Point 165 1.50 lbs 12_c65 Snow Point 225 1.50 lbs 13 w67 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14 w67 Live Partial UD 350.0 350.0 1.50 3.00 plf 15_w69 Dead Partial UD 317.7 317.7 10.50 12.00 plf 16_w69 Live Partial UD 350.0 350.0 10.50 12.00 plf 17_j36 Dead Full UDL 113.7 plf 18 j36 Live Full UDL 350.0 plf 19_j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20 j43 • Live Partial UD 25.0 25.0 0.00 0.50 plf 21_j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22 j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 23_j45 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24 j45 Live Partial UD 25.0 25.0 1.50 3.00 plf 25_j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26 j46 Live Partial UD 25.0 25.0 10.50 12.00 plf 27_j70 Dead Partial UD 17.0 17.0 3.00 9.00 plf 28_j70 Live Partial UD 25.0 25.0 3.00 9.00 plf 29 j71 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30 j71 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point 3560 3.00 lbs WIND2 Wind Point -3640 9.00 lbs wind3 Wind Point -3620 0.00 lbs winds Wind Point 3570 12.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : _.a_. -fie- .r.....r� .e:e ..- --*�- ... .-'�. v.,..,.. ' .►.. Ar , a Q .,:. - », _ . e a . -- ,rn� ti,f - =r __4_,...-....9....,i,.....,.„„_,..,.._. ` 4 ,.`. .^a `TM°.'... _ - �. '�.. mr-Aie 121 Dead 2207 2207 Live 4350 4350 Uplift 499 479 Total 6557 . 6557 Bearing: Load Comb #2 • # Length 2.34 2 LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight of 15.31 plf included in loads; • Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 310 fv /Fv' = 0.51 Bending( +) fb = 1735 Fb' = 2325 fb /Fb' = 0.75 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.42 = L/343 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC 02 = D +L, V = 6557, V design = 5170 lbs . Bending( +): LC #2 = D +L, M = 16527 lbs -ft Deflection: LC #2 = D +L EI= 1241e06 lb -in2 . Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. /4 3(1 COMPANY PROJECT .. WoodWorks® SOFTWARE FOR WOOD OFSIGN June 24, 201013:09 b14 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2 w68 Live Partial UD 350.0 350.0 9.00 10.50 plf 3 c19 Dead Point 357 9.00 lbs 4 Live Point 1050 9.00 lbs 5 c20 Dead Point 357 3.00 lbs 6 c20 Live Point 1050 3.00 lbs 7 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8 Live Partial UD 350.0 350.0 0.00 1.50 plf . 9 c64 Dead Point 165 10.50 lbs 10 c64 Snow Point 225 10.50 lbs 11 Dead Point 165 1.50 lbs 12 Snow Point 225 1.50 lbs 13 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14 w67 Live Partial UD 350.0 350.0 1.50 3.00 plf 15 w69 Dead Partial UD 317.7 317.7 10.50 12.00 plf • 16 Live Partial UD 350.0 350.0 10.50 12.00 plf 17 j36 Dead Full UDL 113.7 plf 18_j36 Live Full UDL 350.0 plf 19_j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20_j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 21 j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22 j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 23j45 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24 j45 Live Partial UD 25.0 25.0 1.50 3.00 plf 25 j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26_j46 Live Partial UD 25.0 25.0 10.50 12.00 plf 27 j70 Dead Partial UD 17.0 17.0 3.00 9.00 plf 28 j70 Live Partial UD 25.0 25.0 3.00 9.00 plf 29_j71 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30 j71 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point -3560 3.00 lbs WIND2 Wind Point 3640 9.00 lbs wind3 Wind Point 3620 0.00 lbs winds Wind Point -3570 12.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : .. " -de w�/►�... _ - � . _ - - -' .i - �,c + � - '° ..,5, - - .... -- ..mod - s _-* *- 4r- :∎fta^_R -^ ^_.. .: � i� 2 -. " aes I a 121 Dead 2207 2207 Live 4826 4811 Total 7033 7018 Bearing: Load Comb 04 04 Length 2.51 2.51 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NOS 2005: Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 310 fv /Fv' = 0.51 Bending(*) fb = 1735 Fb' = 2325 fb /Fb' = 0.75 Live Defl'n 0.25 = L/573 0.90 = L/360 0.63 Total Defl'n 0.42 = L/343 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 6557, V design = 5170 lbs • Bending( +): LC #2 = D +L, M = 16527 lbs -ft Deflection: LC 02 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer: 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 4 - G 3C- COMPANY PROJECT 1 WoodWorks I SOFTWARE FOR WOOD DESIGN June 24, 201013:11 b13 LC1 Design Check Calculation Sheet Sizer7.1 LOADS (lbs, psf, or p11) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2_w 58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 c40 Dead Point 217 5.50 lbs 4 c40 Live Point 668 5.50 lbs 5_c 67 Dead Point 518 5.00 lbs 6 • Snow Point 778 5.00 lbs 7 c68 Dead Point 573 3.00 lbs 8 c68 Snow Point 942 3.00 lbs 9 w 59 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10_w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12 Live Partial UD 310.0 310.0 6.50 8.00 plf 13_j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14 j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15 j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16_j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 18 Live Point 389 3.50 lbs 19 Dead Point 225 6.50 lbs 20 Live Point 693 6.50 lbs W1 Wind Point 6590 0.00 lbs W2 Wind Point -6590 3.00 lbs W3 Wind Point 6590 5.00 lbs W4 Wind Point -6590 8.00 lbs MAXIMUM CTIONS llhsl and BEARING LENGTHS lint --ma' '`'r..: r wR +c.. ` --:° i, 1-1--Z- �m,rir ^ec. ': `1",.. ,�- 1"-*ari - l .---.7. ..r .,�_ Air ' -rn om ' - "- .r ^' .v :* .t."- ` = .� .- -.r. � .' y '.` r ,.. - : '�•► . " L+,°Y^ - ^ ' '�7 � - _ � - � • 1 0' 81 Dead 2561 3033 Live 6406 3789 Uplift 3098 Total 8968 6822 Bearing: Load Comb 84 83 Length 3.20 2.44 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <1/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L /680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 ' Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC 03 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC 83 = D +.75(L +S), H = 12340 lbs -ft Deflection: LC 83 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. • . 4 - (5.73G COMPANY PROJECT i. WoodWorks® SOFIWARE FOR WOOD DESIGN June 24, 2010 13:11 b13 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf, or pif ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1_w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 Dead Point 217 5.50 lbs 41 Live Point 668 5.50 lbs 5 c67 Dead Point 518 5.00 lbs 6 Snow Point 778 5.00 lbs 7 Dead Point 573 3.00 lbs 8 Snow Point 942 3.00 lbs 9 Dead Partial UD 593.7 593.7 5.00 8.00 plf lb _w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12 Live Partial UD 310.0 310.0 6.50 8.00 plf 13_j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14 j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16_j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 18 Live Point 389 3.50 lbs 19 Dead Point 225 6.50 lbs 20 b32 Live Point 693 6.50 lbs W1 Wind Point -6590 0.00 lbs W2 Wind Point 6590 3.00 lbs W3 Wind Point -6590 5.00 lbs W4 Wind Point 6590 8.00 lbs MAXIMUM R • k • r • = - : ■ I ..{•,_,...'"". . 1*.~.. -^'� - .-a ._:a -. -: e = - :: .- "� ``',It " 1. - - -m . te fr A '+- . . ..1, - .....,-.. �!4: �+r t 's.- -w g yre --2.72-&"'": '-'- ...� ...... . *e .- ^. ` . -- .... ... ..1.4.......--- :�- �'"y - - at...-7...4r. .is* -:�u- ..-fi - _...�„m .... ."+ -' '-w. -.."" .� '' - _ "'mac � mss - :arm +�4. �6,r 'r wi - _ '4".-"" _ ' � -,�• 'R mom .. - .- 4 .�+ •-•' "•∎ 'T .r: 'r.ial ate +r , ..-.. r 'w.r- �^ .� '" t : -. "..7.:"- - .--:::,..-....--- 1 0' 81 Dead 2561 3033 Live 2699 7496 Uplift 3381 Total 5261 10529 Bearing: Load Comb #3 #4 Length 1.88 3.76 LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L /680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC #3 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 4 -6,--;:;1-- COMPANY PROJECT I Wo V\/o r k s® June 24, 201013:19 634 LC1 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet spar 7.1 LOADS I Ma. Pot 6<gf) : Load Type Distribution waanitudo Location Ift) Unit. Start End Start End 1 ,,62 Dead Partial U0 613.2 613.2 0.00 2.00 pif 2 Snow Partial U0 795.0 795.0 0.00 2.00 pif 029 Dead Partial UD 617.5 617.5 7.50 11.00 plf 4 v29 Snow Partial VD 801.2 901.2 7.50 11.00 plf 5 Dead Point 1436 11.00 16. 6_015 Snow Point 2404 11.00 1ba 016 Dead Point 1399 17.00 lba 6 Snow Point 2604 17.00 lbs 9 Dead Partial UD 617.5 617.5 17.00 19.00 pif 15_064 Snow Partial UD 901.2 901.2 17.00 19.00 plf 11 061 Dead Point 622 7.00 1b4 12 Snow Point 1192 7.00 lb. 1] 062 Dead Point 622 4.00 lba 14 Snow Point 1192 4.00 lb. 15 Dead Partial UD 613.2 613.2 2.00 4.00 pif 16 w63 Snow Partial UD 795.0 795.0 2.00 4.00 pif 17 065 Dead Partial UD 61 617.5 19.00 20.00 pit 19 Snow Partial UD 901.2 601.2 19.00 20.00 elf 19 Dead Partial UD 613.2 613.2 7.00 7.50 pif 20 w71 Snow Partial UD 795.0 195.0 7 .00 7 .50 plf 21_)64 Dead Partial UD 47.7 47.7 17.00 19.00 plf 22_164 Live Partial UD 160.0 160.0 17.00 19.00 pif 23_129 Dead Partial UD 47.7 47.7 4.50 7.50 pif 26_226 Live Partial UD 160.0 160.0 4.50 7.50 pif 25_262 Dead Partial VD 7.50 11.00 plf • 26 .262 Live Partial UD 160.0 160.0 7.50 11.00 p1f 27_249 Dead Partial 00 120.2 120.2 0.00 2.00 pif 29_149 Live Partial UD 170.0 370.0 0.00 2.00 pif 29_232 Dead Partial UD 220.2 120.2 S.50 4.00 pif 30_132 Live Partial 00 370.0 370.0 3.50 4.00 plf 31_133 Dead Partial U0 120.2 120.2 4.50 7.50 pif 32_131 Live Partial UD 370.0 370.0 4.50 1.50 pif 33_134 Dead Partial U0 110.2 120.2 7.50 9.00 plf 34_234 Live Partial. UD 370.0 370.0 7.50 9.00 plf 35_235 Dead Partial UD 120.2 120.2 9.00 11.00 pif 36_135 Live Partial U0 310.0 370.0 8.00 11.00 pif 37_147 Dead 2475141 UD 120.2 120.2 11.00 17.00 plf 39_)47 Live Partial UD 370.0 370.0 11.00 17.00 pif 39_167 Dead Partial UD 120.2 120.2 2.00 3.50 pif 40_)67 Live Partial UD 370.0 370.0 2.00 3.50 pif 41,J41 Dead Partial U0 120.2 120.2 4.00 4.50 pif 42_149 Live Partial VD 370.0 370.0 4.00 4.50 plf 43_163 Dead Partial UD 47.7 47.7 11.00 17.00 pif 44_163 Live Partial UD 160.0 160.0 11.00 11.00 pif 45_)65 Dead Partial UD 47.7 47.7 19.00 20.00 pif 46_165 Live Partial DD 160.0 160.0 19.00 20.00 pif 47_)66 Dead Partial U0 4 47.7 4.00 4.50 pif 49_166 Live Partial UD 160.0 160.0 4.00 4.50 pif 49167 Dead Partial UD 120.2 120.2 17.00 19.00 plf 50_)69 Live Partial U0 310.0 370.0 17.00 16.00 pif 51 269 Dead Partial UD 120.2 120.2 19.00 20.00 pif 52_369 Live Partial UD 370.0 370.0 19.00 20.00 pif 53_772 Doad Partial U0 47.7 47.7 2.00 4.00 plf 54 172 Live Partial U0 160.0 160.0 2.00 4.00 pif 55_173 Dead Partial DD 47.7 47.1 0.00 2.00 pif 56_1 Live Partial DJ 160.0 160.0 0.00 2.00 pif Wind Point 5950 0.00 lba 82 wind Point -5950 4.00 lb. 93 wind Point 5950 11.00 lba wind Point -5950 17.00 lb. W5 wind Point 5950 20.00 lbe MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : I a- Dead 7405 1727 Live 12150 12172 Total 19555 19499 Bearing: Wad Comb 14 44 Length 5.87 S.es Glulam -BaI., West Species, 24F -V8 DF, 5- 118x22 -1/2" Se9Owdpht of 26.55 pis Included In beds; Wed support top' b4 bottom. at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) beteg Pros 2ma: Criterion Analvaia value Deeion Yalu* Aoalvsia /De.1On . Shea: 27 ■ 192 Fv' - 305 f: /Far' - 0.60 - 9en41n91.) fb a 2392 Fb' . 2604 fb /00' - 0.92 L1ve Defl'n 0.40 . 1/595 0.67 ■ L /360 0.60 Total Defl'n 0.94 ■ L/265 1.00 ■ L /240 0.94 ADDITIONAL DATA: FACTORS: F/E CD CN Ct CL Cf Cfu Cr C1rt Note. Cn 004 • 6:' 265 1.15 1.00 1.00 1.00 1.00 1.00 3 00'. 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 Fcp' 650 1.00 1.00 - - E• 1.9 million 1.00 1.00 - Frain' 0.65 million 1.00 1.00 - shear : LC 13 - 0..75(059), 0 17381. V deal9n - 13992 lbe 9endingt.l: Lc 13 . D..75(1551. 9 96199 lte -ft Deflection: LC 43 . 0..75/0.5) EI. 6756.06 lb -2n2 Total Deflection ■ 1.50)0ead Load Deflection) • Live Wad 097100ti07. ID■dead 1.-live S ■an7v W.wind I■1mpa:t C- :gnstrvction 21.C■concentrated) 1 = c ' . . : . a e lister. in the Anal 7419 output) Load comninat1cna: I00.I00 DESIGN NOTES: 1. Plate ver9y that the default deflection bMS ate eppombee for your app9mfian. 2. G6mm design value, afe foe mateW6 radormem to AI1C 117 -2571 ord menufaciued N accordance nth ANSOAITC A190.1.1992 3. GLUTAM: bed a actual breadth a actual depth. 4. Gable Beans stud be Pdara9y .opperled acceldbg to the p 06150, of NOS CN1na 3.3.3. 5. GLULAM: bearing length based on smaller of Fop(terubn). Pcp(oam: n). (i. _ 4 - Cri3 0 COMPANY PROJECT i Woodworks® June 24, 20101319 b34LC2 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Stet 7.1 LOADS I lbs. Psl. Ld Load Type Distribution Magnitude Location (ft) Units Start End Start End l w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf v Partial UD 795.0 795.0 0.00 2.00 plf 5w29 29 Dead Partial UD 611.5 617.5 7.50 11.00 plf 329 Snow Partial UD 801.2 801.2 7.50 11.00 plf 5 c15 Dead Point 1436 11.0D lie 5_c15 0nmw Point 2404 11.00 Ins 016 Dead Point 1399 17.00 lbs 5 c16 Point 2404 17.00 lba 9 Dead Partial UD 611.5 617.5 17.00 19.00 pif 10 4.464 Snow Partial UD 901.2 801.2 17.00 19.00 plf 11 Dead Point 622 7.00 lbs 12 Snow Point 1192 7.00 Ina 13:c62 Dead Point 622 4.00 lbs 14_762 Snow Point 1192 4.00 lbs 15 w63 Dead Partial UD 613.2 613.2 2.00 4.00 plf 15 v63 Snow 0.0 UD 795.0 795.0 2.00 4.00 plf 17 Dead Partial UD 611.5 611.5 19.00 20.00 pif 18965 Snow Partial UD 901.2 801.2 19.00 20.00 pif 19 Dead Partial UD 613.2 613.2 7.00 7.50 plf 20 wll Snow Partial UD 795.0 795.0 7.00 7.50 plf 21_264 Dead Partial UD 47.7 47.7 17.00 19.00 pif 22_164 Live Partial UD 160.0 160.0 17.00 18.00 cif 23_229 Dead Partial UD 47.7 47.7 4.50 7.50 pif 24_329 Live Partial 'JD 160.0 160.0 4.50 7.50 plf 25 62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 26_3762 Live Partial UD 160.0 160.0 7.50 11.00 pif 27_248 Dead Partial UD 120.2 120.2 0.00 2.00 pif 28_740 Live Partial UD 370.0 370.0 0.00 2.00 pif 23_932 Dead Partial UD 120.2 120.2 3.50 4.00 pif 3 332 Live Partial UD 370.0 370.0 3.50 4.00 plf 31 333 Dead Partial U0 120.2 120.2 4.50 7.50 pif 32_133 Live Partial UD 310.0 370.0 4.50 7.50 plf 33_334 Dead Partial UD 120.2 3:0.2 7.50 9.00 p11 02 34 334 Live Partial UD 370.0 370.0 7.50 9.00 pif 35 335 Dead Partial UD 120.2 120.2 9.00 11.00 pif 36 _235 Live Partlai UD 370.0 370.0 9.00 11.00 pif 37_747 Dead Partial UD 120.2 120.2 11.00 17.00 pif 36_74/ Live Partial UD 370.0 370.0 11.00 17.00 pif 9 3 167 Dead Partial U0 1:0.2 120.2 2.00 3.50 pif 40_367 Live Partial UD 370.0 370.0 2.00 3.50 pif 41_349 Dead Partial UD 120.2 1:0.2 4.00 4.50 pif 42-149 Live Partial UD 370.0 370.0 4.00 4.50 pif 43_263 Dead Partial UD 47.7 47.7 11.00 17.00 pif 44_163 Live Partial UD 160.0 160.0 11.00 17.00 pif 45_765 Dead Partial VD 47.7 47.7 19.00 20.00 p11 46_265 Live Partial VD 160.0 160.0 16.00 20.00 plf 47_266 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49_266 I.100 iva Partial UD 160.0 160.0 4.00 4.50 pif 49_266 Dead Partial UD 120.2 120.2 17.00 .0 pif 50 03 168 Lima Partial UD 370.0 370.0 17.00 19.000 pif 51_262 Dead Partial UD 120.2 120.2 19.00 20.00 plf 52 _269 Live Partial UD 370.0 370.0 19.00 20.00 pif 53_172 Dead Partial UO 41.7 47.7 2.00 4.00 pif 54_172 Live Partial VO 160.0 160.0 2.00 4.00 p11 55_373 Dead Partial VD 47.7 41.7 0.00 2.00 p11 56_17] Live Partial UD 16 0.0 160.0 0.00 2.00 102 plf pl Wind Point -5950 0.00 1ba M2 61nd Point 5850 4.00 lbs M3 Wind Point -5850 11.00 lbs MI Mind Point 5950 17.00 lb. M5 Wind Point -5950 20.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : • • Dead �5 Live 9956 6976 Total 17361 17 eearin3: Wad Comb 43 13 Length 5.21 5.19 Glulam -Bat., West Species, 24F -V8 DF, 5- 1/8x22 -1/2" Self-weight 0629.55 p0 Included In bads; Lateral support top f02, bollan. el supports: Analysis vs. Allowable Stress (psi) and Deflection (in) using NOS zoos Criterion 0041 2.13 Value Design Value Ana1vs1. /Cecicn Shear 162 FY' - 305 fv /FV' - 0.60 6endingl.) Ib - 2372 60' - 2604 fb /00' - 0.92 Live Defl'n 0.41 - L /531 0.67.- L/360 0.61 Total Cefl'n 0.94 - L/264 1.00 - L/240 0.94 ADDITIONAL DATA: FACTORS: F/E CO C4 Cc CL CV C1u Cr Cfr[ 5 - 144 60' 265 1.15 1.00 1.00 1.00 1.00 1.00 3 02'. 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 Fop' 650 1.00 1.00 - - - - 1.00 - - E' 1.9 million 1.00 1.00 - - - - 1.00 - - 4 Ervin' 0.95 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC 03 - 1..15(1, V 11361. V design - 13382 lbs Pendln3(4.1: LC 93 - D..75(L.S), M - 76169 lb. -1t Deflection: LC i4 - 10.75(L0000) 11. 8756006 10 -1n2 Total Deflection - 1.50(Dead Wad Deflection) • Live Load Deflectio, ID■dead 9r11ve S -snow ..wind 1- Impact 0-0onatructicn CLi■ccnc,7to,0edl (All LC'e are listed in the Analysis output, Load combinations: 101 -120 DESIGN NOTES: 1. Plena verify that the default dNectlon &nib are approprfab lot your appaanon. 2. G6Eam design valve are IR materhb imfomdng b AJTC 1174001 and manufactured in accordance wR7 ANSVARC A190 .14992 3. GUAM: bad " actual breadths actual depM. 4. Glut= Beams shin be Warmly supported according b the pro0Sbns of NOS Clause 3.3.3. 5. GLULAM• beating length based on smatter of FR/pension), Fcp(ampn). • 6)779 COMPANY PROJECT di WoodVVorks® Ana 24 20101]:20 034 LC2 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Saar 7.1 LOADS ( lbL last f ) Load typo D1atr1butlon Magnitude Location (ft] Unita Start End Start End l 062 Dead Partial U0 613.2 613.2 0.00 2.00 plf 2 Snow Partial U0 795.0 795.0 0.03 2.00 plf 3 029 Wad Partial U0 611.5 611.5 7.50 11.00 plf 4 Snw Partial UD 901.2 801.2 7.50 11.00 plf 5 Wad Point 1436 11.0) its 6_015 Snow Point 2404 11.00 lba 016 Wad Point 1389 17.00 lba 6016 Inc. Point 2404 17.00 lba 9 Dead Partial UD 617.5 617.5 17.00 18.00 plf 15_064 Snow Partial UD 901.2 801.2 1 19.00 plf 11_061 Dead Point 622 7.00 105 12 061 Snow Point 1192 7.00 lta 13 Wad Point 622 4.00 Its 14 Snow Point 1192 4.00 its 15 063 Wad Partial UD 613.2 613.2 2.00 4.00 plf 16 Snow Partial UD 795.0 795.0 2.00 4.00 plf 17 Dead Partial UD 617.5 617.5 18.00 20.00 plf 16065 Snow Partial UD 101.2 901.2 18.00 20.00 plf 19 Wad Partial UD 613.2 613.2 7.00 7.50 plf 20 Snow Partial UD 795.0 795.0 7.00 7.50 plf 21 ]64 Dead Partial UD 47.7 47.7 17.00 19.00 plf 22_164 Live Partial UD 160.0 160.0 17.00 18.00 plf 23_129 Dead Partial UD 47.7 11.7 4.50 7.50 plf 24,28 Live Partial UD 160.0 160.0 4.50 1.50 plf 25_062 Dead Partial UD 47.7 47.7 7.50 11.00 plf 26_]62 Live Partial UD 160.0 160.0 7.50 11.00 plf 27_148 Wad Partial UD 120.2 120.2 0.00 2.00 all 08_]19 Live Partial UD 370.0 370.0 0.00 2.00 plf 29_132 Dead Partial UD 3 120.2 3.50 4.00 plf 3 ]32 LSV3 Partial U0 370.0 370.0 3.50 4.00 plf 01_133 Dead Partial UD 120.2 120.2 4.50 7.50 plf 32_033 Live Partial U0 370.0 370.0 4.50 7.50 plf 33_]34 Wad Partial U0 120.2 120.2 7.50 8.00 plf 34_134 Live Partial U0 370.0 370.0 7.50 6.00 plf 35 _135 Dead Partial UD 120.2 120.2 9.00 11.00 plf 36_135 Live Partial UD 370.0 370.0 8.00 11.00 plf 37_147 Wad Partial VD 120.2 120.2 11.00 17.00 plf 38_]17 Live Partial UD 370.0 370.0 11.00 17.00 plf 39_167 Wad Partial U0 120.2 120.2 2.00 3.50 plf 40_167 L0vo Partial U0 370.0 370.0 2.00 3.50 plf 41_149 Wad Partial U0 120.2 120.2 4.00 4.50 pl.! 12_149 Live Partial VD 370.0 370.0 4.00 4.50 plf 43_163 Wad Partial UD 47.7 47.7 11.00 17.00 plf 44_163 Live Partial UD 160.0 160.0 11.00 17.00 plf 45_065 Dead Partial UD 47.7 47.7 10.00 20.00 plf 46_165 LSVa Partial UD 160.0 160.0 19.00 20.00 plf 47_166 Wad Partial UD 47.7 47.7 4.00 4.50 p1 48_166 Live Partial UD 160.0 160.0 4.00 4.50 plf 49_169 Wad Partial UD 120.2 120.2 17.0C 15.00 plf 50_160 Live Partial UO 370.0 370.0 17.00 15.00 p1f 51 169 Wad Partial U0 120.2 120.2 19.00 20.00 plf 52_169 Live Partial UO 310.0 370.0 10.00 20.00 plf 53_372 Dead Partial UD 47.7 41.7 2.0C 4.00 p1! 5472 Live Partial VD 160.0 160.0 2.00 4.00 plf 55,7] Wad Partial UD 47.7 47.7 0.0C 2.00 plf 56 ]73 Llva Partial UO 160.0 160.0 0.00 2.00 elf M1 Mind Point -5850 0.00 1 M- Mind Point 5950 4.00 1.01 0. ba 143 961 Point -5850 11.00 Dos M4 Mind 03 10. 90105 5850 17.00 105 115 Wind . Point _ -5950 20.00 10a MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (In) : Live 955 Live 9956 9979 Total 11J61 17305 Searing: Lead Comb 13 13 -eneth 5.21 5.19 Glulam -BaI., West Species, 24F -V8 DF, 5- 118x22 -1/2" S.d-MegN *26.55 pd handed In bad.: UMW sl1pp*t lop` hq banana M supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NOS 2569 Criterion An.1701. Value Deafen value Analvaia /Desi,n Shear fv - 182 Fv• - 305 1v /FV' - 0.60 Bending( 92 - 2392 FP' - 2604 I0 /46' - 0.52 Live Defl•n 0.41 - L /591 0.67 - L/360 0.61 Total Wfl'n 0.84 - 9.0254 1.00 - 1/240 0.94 ADDITIONAL DATA: FACTORS: F/E CD OM Ct CL N Cfu Cr Cfrt Mote. Cn LC4 9v' 265 1.15 1.00 1.00 1.00 1.00 1.00 3 1o'4 2100 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 Fop 650 1.00 1.00 - - - - 1.00 - E' 1.9 m11110n 1.00 1.00 - - E010' 0.15 million 1.00 1.00 - Shear : LC 43 - 00.75(L451, V a 17361. V dealgn - 13992 10a B.ndingl01: LC 43 - 04.751L461, 0 - 06109 100 -ft Deflection: LC 44 - D..751L46.4) EI. 3756006 10 -1n2 Total Deflection - 1.50(Dead Load Deflection) 4 Live Load Deflection. 10.dead L-11ve 0.ancw W.wind I ■lmpac C■c2natructlon CLd- 0007.7tra,.7) (A11 LC', are listed in the Analyst, output) Load combinations: ICC -1BC DESIGN NOTES: 1. pews. verify that Ina defad denegb, Data era appgpde far Rut application. 2. Gu d4dgn wawa am for rwdarab rmf1ndng lo AITC 117 -2001 and n nufactvad In accordance van ANSOAITC A190.1 -1992 3. GLULAM: bad a actual breaths nand depth. d. GWarn Beams shall be Tate* supported DeateD649 to the pals ons of NOS Cb4..3 3.3. 5. GL6IAM:6...141) NAPA baud an smaller a Fogleman). FcRatra n). COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 13:23 b34 LC1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 3 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5 Dead Point 1436 11.00 lbs 7 Dead Point 1389 17.00 lbs 9 Dead Partial UD 617.5 617.5 17.00 18.00 plf 11 c61 Dead Point 622 7.00 lbs 13 Dead Point 622 4.00 lbs 15 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17 w65 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19 Dead Partial UD 613.2 613.2 7.00 7.50 plf 21 164 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23 j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25 j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 27 j48 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29_j32 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31 j33 Dead Partial UD 120.2 120.2 4.50 7.50 plf 33 Dead Partial UD 120.2 120.2 7.50 8.00 plf 35 j35 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39 167 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41_j49 Dead Partial UD 120.2 120.2 4.00 4.50 plf 43 j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45 j65 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47_j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49 j68 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51_169 Dead Partial UD 120.2 120.2 18.00 20.00 plf 53 j72 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55_j73 Dead Partial UD 47.7 47.7 0.00 2.00 plf W1 Wind Point 5850 0.00 • lbs W2 Wind Point -5850 4.00 lbs W3 Wind Point 5850 11.00 lbs W4 Wind Point -5850 17.00 lbs W5 Wind Point 5850 20.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : • I ICY 2 01 Dead 7189 6822 Live 156 302 Total 7238 7018 Bearing: Load Comb 82 82 Length 2.17 2.11 Glulam -Bal., West Species, 24F -V8 DF, 5- 118x22 -1/2" Self- weight of 26.55 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 74 Fv' = 238 fv /Fv' = 0.31 Bending( +) fb = 950 Fb' = 2038 fb /Fb' = 0.47 Live Defl'n negligible . Total Defl'n 0.41 = L /585 1.00 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 • Ervin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC 81 = D only, V = 7189, V design = 5674 lbs . Bending( +): LC 81 = D only, M = 34217 lbs -ft Deflection: LC #1 = D only EI= 8756e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). • 4 -GIL( I COMPANY PROJECT 1 WoodWorks° SOFTWARE FOR WOOD DESIGN June 24, 2010 13:22 b34 LC2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf, or plf ) : Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 3 w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5 c15 Dead Point 1436 11.00 lbs 7 c16 Dead Point 1389 17.00 lbs 9 w64 Dead Partial UD 617.5 617.5 17.00 18.00 plf • 11 c61 Dead Point 622 7.00 lbs 13 c62 Dead Point 622 4.00 lbs 15_w63 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17 w65 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19 Dead Partial UD 613.2 613.2 7.00 7.50 plf 21_j64 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23_j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25_j62 Dead Partial 1.10 47.7 47.7 7.50 11.00 plf 27 j48 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31_j33 Dead Partial UD 120.2 120.2 4.50 7.50 plf 33_j34 Dead Partial UD 120.2 120.2 7.50 8.00 plf 35_j35 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39 j67 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41_j49 Dead Partial UD 120.2 120.2 4.00 4.50 plf 43_j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45J65 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49_j68 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51j69 Dead Partial UD 120.2 120.2 18.00 20.00 plf 53_j72 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55_j73 Dead Partial UD 47.7 47.7 0.00 2.00 plf . W1 Wind Point -5850 0.00 lbs W2 Wind Point 5850 4.00 lbs W3 Wind Point -5850 11.00 lbs W4 Wind Point 5850 17.00 lbs W5 Wind Point -5850 20.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : A 201 Dead 7189 6822 Live Total 7189 6822 Bearing: Load Comb 81 H1 Length 2.16 2.05 Glulam -Bal., West Species, 24F -V8 DF, 5- 118x22 -1/2" Self- weight of 26.55 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 74 Fv' = 238 fv /Fv' = 0.31 Bending( +) fb = 950 Fb' = 2038 fb /Fb' = 0.47 Live Defl'n negligible Total Defl'n 0.41 = L /585 1.00 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC#I Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC 111 = D only, V = 7189, V design = 5674 lbs Bending( +): LC 81 = D only, M = 34217 lbs -ft Deflection: LC 81 = D only EI= 8756e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSUAITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). - (141 2_ Harper Project: Houf Peterson Client: Job # Righellis In c ENGINEERS • PLANNERS Designer: Date: Pg. # LANDSCAPE ARCH; rECTS•SURVEYORS Wdl := 10 lb 8- ft•20•ft Wdl = 1600.1b VC 'i _ 'Sig Y\ ft 2 Seismic Forces Site Class =D Design Catagory =D Wp •= W dl 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F : = 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) Fv • = 1.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S : F S mi : =F 2 • S ms S ds • Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a := 1.0 Rp := 2.5 (Table 13.5 -1, ASCE 7 -05) 4a •Sds' p F := R 1 + 2• hl•Wp EQU. 13.3 - F pmax := 1.6- Sds•1p -Wp EQU. 13.3 - F pmin := .3- S ds' 1 p -W p EQU. 13.3 - F if(F > Fpmax,Fpmax,if(Fp < Fpmin,Fpmin,Fp)) F = 338.5171 -lb Miniumum Vertical Force 0.2•Sds'Wdl = 225.6781 -lb Gig Harper Project: Pm Houf Peterson Client: Job # Righellis Inc. Designer: ENGINEERS • PLANNERS Designer: Date: Pg. # LANDSCAPE ARCHITECTS•S URVEYORS Wdl 10. lb 8•ft•20•ft W = 1600-lb ft 2 Seismic Forces Site Class =D Design Catagory =D Wp := Wdl - 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S := 0.942. Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F = 1 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F v := 1.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S • = F Sml := F -S1 2-S ms S := Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a := LO R := 2.5 (Table 13.5 -1, ASCE 7 -05) 4a • r z FP := p ' •I 1 + 2 hl W EQU. 13.3 -1 R P Fpmax 1.6• S W EQU. 13.3 -2 F pmin : = .3- S ds -l EQU. 13.3 -3 F,:= if(F > F pmax , Fpmax, if(F < F pmim Fpmim F F = 338.5171.1b Miniumum Vertical Force 0.2•S = 225.6781•lb 142-- H diii. Harper HoufPeterson COMMUNICATION RECORD Righellis Inc. TO ❑ FROM ❑ MEMO TO FILE ❑ Eir1:IN[EN] + N> - •-_--- ae - ---- rs.;•- - -- -vans PHONE NO.: PHONE CALL: O MEETING: P1 M. Q RI L 11 a -4 It i� . �° '1 W cJ► � : _ 5 3 T n c' of c'' - Li) . NI 1 1 i t o • ro m ■ N O r • O 0. r r ti n Oht9 -AO'; - 4 0 D'C' 11 .1 -jP II C aq \-X Ic-e = V‘I)4 4- 1 , 00 = Op\ Cr) 1 +/).t4E-S. . . ) ' le v -z „ ,, ; ,, c " • ____i_i_______ e na, d • . 0 -,----- 1 1 9 n . - 1G) ... Clioodyr E. R S\ !s0V. U 4 CU )1 0 - ___A K • V • -tc! \_,L, = c z c_IS\O ii to au -i> ( A z , A, /44. ki,r)idkilD 13 • • m f 0 9 • t o .1994 erre,' '="-nc (.11VW4Vel)Le6.1) r O i ( OUIVJc.:0 ?") ) q 0 2 11 F in 1 -3/ 41 10aa . O 0 WI A.1\ -- .)\-\:Jd r\i'r-J ,. ..) 1 a LA`") C „ • :43,-peief • - - 0,ON eor :3.1.Va - 1\1( . 619 AWV , Af3 t i i, :,., • , . ... 11 g • crg 8 A ' CA z 0 )1 c) f10 ii '.' 00 / . 1 I itsoe 1 lt-92 Ni44 D- . , rii4 0o09 --:- 1. < I/ -14 002 . 0 9 Li z -ri . o - m El ,--9, ---r- . ....t., ■..AQ‘c al - 7),IS , 3..) , 01 ciH vosdwits --n i z oo he N 1 44 . 00 z », 13 „z om i ' nm . . , r: 0 0 " 0 . ._4 : c, -.3.D cAkc)01 q 0 6 ? • WI 0 0 — mT --- ..)w:A:z7 - >o c j, '';1 :133f0Hd _ - -- ON 801" .B.I.VCI kirAllq jeCkald :Ag v - I Harper COMMUNICATION RECORD ' 1 1 Houf Peterson Righellis Inc. To [j FROM 0 MEMO TO FILE D - =- EIiGINEEPS • PLAIINERS LA_CS.:APP. ARCHITECT., SURVETCIi i PHONE NO.• PHONE CALL: O MEETING: 0 XI '0 m PI m < L. RI a: .... ,, 0 al II p 3 v sb d L -C g N _ 'o 0 o 0 fj: a d 6 W. 4 S n o _(13 - CS T :1-= 0 0 z • 0 • tnarpei 1 ' IloufPeterson COMMUNICATION RECORD Righellis Inc. To ❑ FROM ❑ MEMO TO FILE 0 Eosi NEEN.; • PLAH':ERa 1A..D C iPF. 4nCH1TECTS. SU, VEYLIR, PHONE NO.: PHONE CALL: O MEETING: 0 13 11 w m 73 < m 1:....._ g ,.......<% 3 . 0 u. _i_.. N. I. d 1 li 1 • r L 0 0 U e • . COMPANY PROJECT ? fel oo or s® .., SOFTWARE FOR WOOD DESIGN June 8, 2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End ,LIVE Live Point 2.50 200 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : „,„,,.., ,::. ,,,,,,.,,, .,....:, .,,,,,t...„-f....m;:fF,,,f:,-,,:.:,.; 6,T.intr.0 *I'f,'ic: t': .?,,,=',"..' -;• P -:' 9,: 1 ',..-. : -... I'v. •-:-- . , 4-......3, ; : :,....---c-,,,,..44,- .: ,.......,....=- ...„;.,--„,.... ,_;,..--;.;.-- :,:"...4.... :..- 1,-. .i....,..,..,:,•, -..:-.:,.. ..,. r.... ,,,, s: ',..-,.." ...---- . ;-... - . .-.. . I a 51 Dead Live 100 100 Total 104 104 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams is 1/2" for exterior supports Lumber-soft, Hem-Fir, No.2, 2x6" Self-weight of 1.7 pff induded in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 405 Flo' = 1048 fb/Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 1 - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 '1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design . 103 lbs Bending(+): LC #2 = L, M = 255 lbs-ft Deflection: LC #2 = L El = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. ( COMPANY PROJECT I1 i : la WOO WOr S ® somwmammwooponwN June 8, 2009 16:27 Hand Rail2 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End ,LIVE Live Full UDL 50.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : ,1 75-,-"t'i '''2-.,'-'_'''.1!".i":`-'i',.;•--r-".".'-i;'''' ' '1 " f ' 7 '- .:','' - q;: .- ::;' , ,1:, --,:::;•-' c! ',' , .--_, i.‘ -: fC': ,..:" . ''' -' , 1:'" . ;.•• -;- i '. '... : ', : , , -'...'. ',', -,-,•:,,.... . :: : : .: -- '..';'.: .. '', : -: t*: ' -7 'f::: :-:. ',....:.; "4 -., ',.:., -..j ::-I ''...-r'...: " ..: ".L. ' ;.--' , 7. 2 - ':_-;,, . 7 --„: -; • : . - ., - -. , . , , , : . 10' 54 Dead Live 125 125 Total 129 129 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams is 112" for exterior supports Lumber-soft; Hem-Fir, No.2, 2x6" Seff-weight of 1.7 plf included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fir = 19 Fv' = 150 fv/Fv' . 0.13 Bending(+) fb = 256 Fb' = 1048 fb/Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.11 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 129, V design = 106 lbs Bending(+): LC #2 = L, M = 162 lbs-ft Deflection: LC #2 = L El = 27e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 4 ....._Gsi WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks ®Sizer 7.1 June 22, 2010 13:57:56 Concept Mode: Reactions� / Base of Structure View Floor 2: 8' 105 49,-6 : a . - - 16001_: 600 L 42s 0, UL 619D : : -6190 0-0 - - 4 WU 44'b yg ... ........ . . .._. .._ . _ . _ 43 -b ytS: :i'.. •: -- - .. - . - 4L - -0 y0 : 1193 L15312404 L::„ 2404 L . t _ : .;. -_ - - _: : -- -- _ = Sa - 0 " 4 ' 625 D1 0 5 9 11 439 D - 1394 D .: - : 3° -b : JL . 3b b V1 3b -b b ua : 315L: - . . : 33-00 �� 358 D; . . Si 0 b • -- - - -. - - --- - - -- - .. . - - 30 -0' 00 LV -b 04 315 L' 20.-1 3 . _. 0 0 i : 100 L : \ 358 D tSt : - - i - _ .. - - - - L4 -b L 96 D �: Ls - !b ;! b r r 74(847 5611 L 756 L • c1 i 0 : 4(452 D 5546 D 2-5-116 1 y -0: 625 L, i3 50 it-0 /4 203 D: _ 10 -0 !i 5D 10 -b 0y 105 L 908 L ..,. 14 -0 307 D - 11 "12 -b ! 460• • ii -b I0 -0 b ' 245E < 9 -b b4} 3 D - "- 5.0 L - - is -b b3 • .7- _ ):74 r � : : . - - bL c 1 I b 0u' 599 t �• 87 L .. 8 7 L _. _ - .. - _ - b - ..) 209LD 1963 D. = 19630 -' - 4. • :154 0 . - • 0 Uln, : 2363D. . _ _ c b .. - 11_ _ I -0 .,,,I • !78 Did : 106D • 0- .BB1B.B BCCCC C CC CICCC CC CCCCC CCC CCICC CD D DD D}DDD:CD DDDDDD DD CD'DD DEE EE E E E EEEEEEE(EEEE-Z 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 :1 111111 2(2222 343 - 3x3!4(4 4A:4 '5:5:5 6:6:6-6f6(616e7(7 77:7 , 77(77-6" VOOT\ L PcjOu - r F N IT w . 4.-- F ( WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 22, 2010 13:57:37 Concept Mode: Reactions at Base of Structure View Floor 2: 8' } 0�-::.�. 49 , - 6 1u3 1600 L :. 1600 L..: 4 r -b u .i 619D ;..: 40 - • (VU - 44 - b `3 -- .ck.ii .i . - - - - -- -- _ 43-6 yt) \ " 4L -a a • 13274 L • • 3304 L 3a -b 4 7153 D 7072 D Sts a yI. : . _ . ...: .... ... : 35-0 • ny 315 L 33 -n 156 . .._ .. ;. : : . • "358 D : - : .._: . ..- - 3L -b • of 31 -0 1 : - . • 315 L. _ _ - -- - -- - z t - b -• -- -- 3 58 D. b( 100L ` 10 6° 96 D .. - G4 -0 i b : 74(84 611 L . . ' 56 L" cu b • r 0 -. 4 1(452 D 5546 D r - 0 D I y b ;625 • - i2 203 D . -- • - . - - 5 D l ..:. .. - : ._ - i b � . ri : 5D . - Io-b • I b� 105 L 908 1 i L - 307 D b r • 46 D r I I -b e bb -2.45L-::; yu� 3D b 50 L ..�/ 0 -b • OZ. 74 D ra -b: '315:-"' 599 L587 L • t 1 '687 L - - - -- - - --- - -- 0-0 • 0,Y.) y:2 209 L13:5 D -11963 D . : :1963 D . - ' - 4 -0 154 D . s u L -b .___ ...as ALL - 725L : :. : : - 1 -b --t : - ' .._ :' . .78 D7 DO 617 D' D v -b B\ BB B B.CCCC CCCICCC CC CCCC C C CC CC1CC CD.DDD D DDDIDOD GD DDDD D DDD CD \DD DE.E E E EEEEtEEEIEEIE E EEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40'42' 44' 46' 48' 50' 52' 54' 56' 58'60'62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7 '8'91(1 11(11 (112(222:2 "3t314t4 4A:4 51516(6 6:6 ?6(6761617(77:7:7.7 6" • \- DOTL u OUT 1...) 'EN LctztD 4._ F.2._ ��ta� ►Ben 69 Vi a Harper Houf Peterson Righellis Inc. C .went Date: 6/24/2010 1:41 PM I system: English Foy name: O:U-IHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \F1.ftd\ Design Results Reinforced Concrete Footings GENERAL INFORMATION: Global status Warnings Design Code ACI 318 -05 Footing type Spread Column type Steel Geometry 1 1 in k 4.2,5ft 1 4.25 ft ft 4.25 ft Pagel Length 4.25 [ft] Width 4.25 [ft] Thickness 1.00 [ft] Base depth 1.50 [ft] Base area 18.06 [ft2] Footing volume 18.06 [ft3] Base plate length 5.50 [in] Base plate width 5.50 [in] Column length 5.50 [in] Column width 5.50 [in] Column location relative to footing g.c. Centered Materials Concrete, Pc 3.00 [Kip /in2] Steel, fy 60.00 [Kip /in2] Concrete type Normal Epoxy coated No Concrete elasticity modulus : 3122.02 [Kip /in2] Steel elasticity modulus : 29000.00 [Kip /in2] Unit weight 0.15 [Kip /ft3] Soil Modulus of subgrade reaction 200.00 [Kip /ft3] Unit weight (wet) 0.11 [Kip /ft3] Footing reinforcement Free cover . 3.00 [in] Maximum Rho /Rho balanced ratio 0.75 Bottom reinforcement // to L (xx) : 6-#4 @ 9.00" Bottom reinforcement // to B (zz) : 644 @ 9.00" (Zone 1) Load conditions to be included in design Service loads: SC1 DL S1 DL S2 DL +LL S3 DL +0.75LL Design strength loads: DC1 1.4DL • D1 1.4DL D2 1.2DL +1.6LL Loads Condition Axial Mxx Mzz Vx Vz [Kip] [Kip*ft] [Kip *ft] [Kip] [Kip] DL 5.55 0.00 0.00 0.00 0.00 LL 15.61 0.00 0.00 0.00 0.00 RESULTS: • Status Warnings - Insufficient development length, Section 21.5.4.1 Soil.Foundation interaction • Allowable stress 1.5E03 [Lb /ft2] Min. safety factor for sliding 1.25 Min. safety factor for overturning 1.25 Paget Fli Controlling condition S2 Condition qmean qmax Amax Area in compression Overturning FS [Lb /ft2] [Lb /ft2] [in] [ft2] ( %) FSx FSz slip S2 1.38E03 1.38E03 0.0826 18.06 100 1000.00 1000.00 1000.00 Bending Factor 4 0.90 Min rebar ratio 0.00180 • Development length Axis Pos. Id Ihd Dist1 Dist2 . [in] [in] [in] [in] : zz Bot. 20.11 7.04 19.75 19.75 xx Bot. 20.11 7.04 19.75 19.75 Axis Pos. Condition Mu 4> *Mn Asreq Asprov Asreq/Asprov Mu/(4)*Mn) [Kip *ft] [Kip *ft] [in2] [in2] • zz Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 I 1 zz Bot. D2 13.38 45.76 1.10 1.20 0.918 0.292 IE'n1 I xx Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 1 xx Bot. D2 13.38 43.06 1.10 1.20 0.918 0.311 1` Shear Factor 0.75 Shear area (plane zz) 3.10 [ft2] Shear area (plane )x) 2.92 [ft2] Plane Condition Vu Vc Vu/(4 *Vn) [Kip] [Kip] xy D2 8.99 46.09 0.260 i i I yz D2 8.68 48.88 0.237 lfzI • Punching shear Perimeter of critical section (b... : 4.67 [ft] Punching shear area 3.31 [ft2] Column Condition Vu Vc Vu /(4 *Vn) [Kip] [Kip] column 1 D2 29.25 104.29 0.374 F 1 Notes Page il ?'S*...- *Soil under the footing is considered elastic and homogeneous. A linear soil pressure variation is assumed. *The required flexural reinforcement considers at least the minimum reinforcement design bending moment is calculated at the critical sections located at the support faces * Only rectangular footings with uniform sections and rectangular columns are considered. * The nominal shear strength is calculated in critical sections located at a distance d from the support face * The punching shear strength is calculated in a perimetral section located at a distance d/2 from the support faces * Transverse reinforcement is not considered in footings * Values shown in red are not in compliance with a provision of the code *gprom = Mean compression pressure on soil. *qmax = Maximum compression pressure on soil. *Amax = maximum total settlement (considering an elastic soil modeled by the subgrade reaction modulus). * Mn = Nominal moment strength. * Mu /(4 *Mn) = Strength ratio. * Vn = Nominal shear or punchure force (for footings Vn =Vc). * Vu /(4)" Vn) = Shear or punching shear strength ratio. Page4 (^ Beam Shear bcol := 5.5•in (4x4 post) d := tf – 2•in := 0.85 b := Width b = 36•in V :_ 4 f psi•b•d V„ = 16.32 -kips 3 Vu qu 2 col) b V = 7.83-kips < V = 16.32-kips GOOD Two -Way Shear bs := 5.5-in Short side column width bL:= 5.5-in Long side column width b,:= 2.(bs + d) + 2.(bL + d) b = 54•in ac := 1.0 ( 4 + 8 f psi b d V = 48.96.kips 3 3•(3 Vnmax := x•2.66• f psi•b•d ' Vnmax = 32.56 -kips µ VS.= q, [b — ( bcol + d) V = 15.88-kips < Vn = 32.56.kips GOOD Flexure 2 b – bcol Mu = qu C ( 1 ) b M = 4.98 11-kips 2 2 A := 0.65 2 := bd S= 0.222.11 6 F := 5.0 f F = 162.5-psi M f :_ — f = 155.47•psi< F = 162.5 -psi GOOD 'Use a 3' -0" x 3' -0" x 10" plain concrete footing Plain Concrete Isolated Square Footing Design: F2 f - := 2500:psi Concrete strength f := .60000Ipsi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity 'hone := .150•pcf Concrete density ' isoil := .100.pcf Soil density 9a11 = . 1500.psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl: =.2659.1b Pdl:= Totaldi Totalil := 7756.1b Pll := Totalll P := Pdl + Pll P ti = 10415-lb Footing Dimensions tf := 10.in Footing thickness Width := 36•in Footing width A := Width Footing Area clnet gall — tf' net = 1375 -psf P Areqd := gnet A = 7.575•ft < A = 94ft GOOD Widthregd A reg d Widthregd = 2.75•ft < Width = 3.00 ft GOOD Ultimate Loads M = Pd1 + tf•A•Iconc P := 1.4•Pdl + 1.7•Pll P = 18.48-kips P qu:= A qu= 2.05•ksf Plain Concrete Isolated Square Footing Design: F3 fe := 2500-psi Concrete strength f := 60000-psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity '(cone 150•)cf Concrete density '(soil 100•pcf Soil density g 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl := 2363=1b Pd1:= Totaldl Tota111 := 4575-lb Pit := Total!! P := Pdl + Pll P = 6938-lb Footing Dimensions t := 10•in Footing thickness Width : =. 30-in Footing width ,:= Width . Footing Area clnet gall — tf•"(conc net = 1375•psf Ptl Areqd = 5.046 ft < A = 6.25 ft GOOD gnet Areqd Widthreqd A req d Widthreqd = 2.25-ft < Width = 2.50 ft GOOD Ultimate Loads P := Pdl + tf'A' P := 1-413d1+ 1.7•P11 P = 12.18-kips P q — q„= 1.95•ksf A - Vl• Beam Shear bcoi 5.5•in (4x4 post) d := tf — 2•in := 0.85 b := Width b = 30•in V V:= 4 • f V, = 13.6 -kips 3 Vu := qu r b 2 toll b Vu = 4.97-kips < V = 13.6-kips GOOD Two -Way Shear b8 := 5.5•in Short side column width bL:= 5.5-in Long side column width 13 := 2•(bg + (1) + 2.(bL + d) b = 54-in (3 := 1.0 • M VO.= 43•( + 8 1• f -b•d V = 40.8•kips 3 3•0 V := 443.2.66- f )si•b•d V = 27.13•kips := qu [b — (b„1 + d) V = 9.71 -kips < Vn = 27.13 -kips GOOD Flexure 2 Mu qu - (b — b 11 b M„ = 2.54•ft -kips 2 2 1,:= 0.65 b 2 := � S = 0.185.ft F := 5 •41)- f psi F = 162.5-psi M u f := s f = 95.19•psi < F = 162.5 -psi GOOD kJse a 2' -6" x 2' -6" x 10" plain concrete footing Plain Concrete Isolated Square Footing Design: F4 f := 2500-psi Concrete strength f 60000-psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity Yconc 150 pcf Concrete density '(soil 100•pcf Soil density gall := 1500.psf Allowable soil bearing pressure COLUMN FOOTING Reaction Tota1di := 5061-lb Pd1:= Totaldl Total11 :Totalti := 7639-lb P11 := Total11 Ptl = Pdl + Pll Pti = 12640-lb Footing Dimensions t := 12-in Footing thickness Width := 42.in Footing width 4,:= Width Footing Area cinet gall — tf''yconc net = 1350•psf Pfl Areqd gnet Areqd = 9.36341 < A = 12.2541 GOOD Widthreqd Areqd Width = 3.06-ft < Width = 3.50 ft GOOD Ultimate Loads A ta:= Pdl + t f'A''Yconc P := 1.4• Pd1 + 1.74 P = 22.56-kips • P q := — q = 1.84•ksf A Beam Shear bcol == 5.5•in (4x4 post) d:= tf -2.in := 0.85 b := Width b = 42-in V :_ 0 4 f psi b d V = 23.8-kips 3 Vu •= 9u (b b colt b V„ = 9.8:kips < V = 23.8-kips GOOD 2 Two -Way Shear / bs := 5:5 -in Short side column width bL := in Long side column width b := 2•(bg + d) + 2•(bL + d) b = 62•in fi := 1.0 VU.= 4 + 8 f psi b d V = 71.4-kips 3 c ) Vnmax := 2.66• f Vnmm = 47.48•kips ,Hy{,. Qu — (bc01 + (1) V = 19.49-kips < Vn,nax = 47.48-kips . GOOD Flexure 6- bcoll 1 Mu 9u I b M = 7.4541-kips . 2 A t:= 0.65 2 , := b•d 6 S = 0.405. 1 F := 5.43• f F = 162.5-psi M ft := — S f = 127.79 -psi< Ft = 162.5-psi GOOD lJse a 3' -6" x 3' -6" x 12" plain concrete footing /4-7\1 Plain Concrete Isolated Round Footing Design: f5 f := 3000•psi Concrete strength f, := 60000-psi Reinforcing steel strength E := 29000!ksi Steel modulus of elasticity "Ykonc 150•pcf Concrete density "(soil := 120 -pcf Soil density gall := 1500 psf Allowable soil bearing pressure TYPICAL FOOTING Reaction Totaldi := 619-lb Pdl := Totaldi Total11 := 1600413 Pll := Totalll Ptl Pdl + Pll Pd = 2219-lb Footing Dimensions t := 12-in Footing thickness Dia := 18;in Footing diameter ir•Dia A• Footing Area 4 qnet gall — tf•"Yconc qnet = 1350•psf Pd Areqd := gnet A q 1.644 ft < A = 1.7741 GOOD V A .4 Dia Dia = 1.45•ft < Dia = 1.50 ft GOOD 7T Ultimate Loads Z := Pdl + tf•A•'Yconc P := 1.4•Pd1 + 1.7•P11 P = 3.96-kips P qu — qu = 2.24•ksf A Beam Shear b 3.5•in (4x4 post) d := tf — 2-in := 0.85 b := cos(45- deg)•Dia b = 12.73•in V :_ 4 • f psi -b•d V = 7.901•kips 3 Vu qu r b 2 col) b V = 0.91 -kips < V = 7.901 -kips GOOD Two -Way Shear bg := 3.5•in Short side column width bL : 3.5•in Long side column width b := 2•(bg + d) + 2•(bL + d) b o = 54•in (3 := 1.0 V 4 4 + . 8 f psi b d V = 23.703-kips 3 343c := 2.66 f psi b d V nm a x = 15.76-kips qu — (bcol + d) V = —0.31-kips < V = 15.76-kips GOOD Flexure r b — 2 b /f 2 2 J Mu clu I coll 11 b M = 0.18. ft-kips := 0.65 2 , := b•d S = 0.123.ft 6 F := 5 f psi F = 178.01 •psi M f := s u f = 9.9 -psi < F = 178.01 -psi GOOD I Use a 18" Dia. x 12" plain concrete footing Plain Concrete Isolated Square Footing Design: FG fe : = 2500-psi Concrete strength f := .60000 -psi Reinforcing steel strength Es := 29000•ksi Steel modulus of elasticity come 150•pcf Concrete density "Ysoil := 100 -pcf Soil density g := 1500•psf Allowable soil bearing pressure COLUMN FOOTING - Reaction Totald 7072 -lb Pd1:= Totaldl Totalij := 13304 -lb Pll := Totalll Pd := Pdi + Pll Pg = 20376•lb Footing Dimensions t := 15•in Footing thickness Width := 48-in Footing width • A := Width Footing Area clnet q 11 — tf' net = 1313•psf Pu Areqd gnet Areqd = 15.525-11 < A = 16 ft GOOD Widthreqd Areqd Width = 3.94. ft < Width = 4.0011 GOOD Ultimate Loads Pdl + tf'A''Yconc P := 1.4 Pdl + 1.7•P11 P = 36.72-kips P qu A q = 2.29•ksf eq. Beam Shear b = 5.5•in (4x4 post) d := tf — 2-in •:1) := 0.85 b := Width b = 48-in V, := 4 4 • f V = 35.36•kips 3 Vu — qu ( b 2 t o l l •b V„ = 16.26-kips < V = 35.36•kips GOOD Two -Way Shear bs := 5.5-in Short side column width bL : 5.5• in Long side column width b := 2-(bs + d) + 2•(bL + d) b = 74-in := 1.0 M VO= (I)•( + 8 )• fpsi•b•d V, 106.08-kips 3 3 Pc V mtax := x•2.66 f psi b d V = 70.54-kips ^ V .= qu [b2 — (b + 0 V„ = 31.26•kips < V 70.54-kips GOOD Flexure rb— bcoll2 I —J 11 M := qu I J b M = 14.39-ft-kips 2 2 A:= 0.65 2 1:= b d 6 S = 0.782• ft F := 5 f psi F = 162.5-psi M u f := f = 127.75•psi< F = 162.5-psi GOOD lJse a 4' -0" x 4' -0" x 15" plain concrete footing -.1(0 Plain Concrete Isolated Square Footing Design: F7 f := 2500•psi Concrete strength f := 60000-psi Reinforcing steel strength Es := 29000•ksi Steel modulus of elasticity Yconc := 150•pcf Concrete density "Ysoil = 100-pcf Soil density ql : 1500.psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 1200-lb Pd1:= Totaldi • Tot* := 3200.1b Pll := Totalli Pt1 Pdl + Pll Pil = 4400 -lb • Footing Dimensions tg := 10 -in Footing thickness • Width := 24 -in Footing width A := Width Footing Area net gall – tf'"Yconc net = 1375-psf P Areqd gnet Areqd = 3.2 ft < A = 4 ft GOOD Widthreqd A req d Widthregd = 1.79 -ft < Width = 2.00 ft GOOD Ultimate Loads := Pdl + tf'A''Yconc P := 1.4•Pdl + 1.7•Pll P = 7.82•kips P qu := — q = 1.96•ksf A Beam Shear bcoi 5.5'in (4x4 post) d:= tf -2•in • := 0.85 b := Width b = 24-in V :_ c 4 • f V = 10.88•kips 3 vu:_ qu (b 2 colt b V = 3.01 -kips ,< V = 10.88• kips GOOD Two -Way Shear bs := 5.5-in Short side column width bL:= 5.5-in Long side column width b := 2-(bs + d) + 2•(bL + d) b =.54•in (3 := 1.0 ^V= 4 + 8 • psi•b•d V = 32.64-kips 3 3•13 fc Vnmax := 4.2.66• f Vnmax = 21.71•kips := q, [b — ( b 01 + d) V = 5.35-kips < V = 21.71-kips GOOD Flexure 2 b — bcol ] { 2 J I M qu' 2 b M = 1.16 ft kips A:= 0.65 2 •— b 6 S = 0.148•ft 6 F := 5 •� f psi F = 162.5•psi M n f := f = 54.45-psi < F = 162.5•psi GOOD .Jse a 2' -0" x 2' -0" x 10" plain concrete footing I - ?)1 BY ANC DATE: ( ) 1 0 JOB NO C/^' Kr —O 0 OF PROJECT: Combne& Toah 1 / v � + A - Y' + tad a a' x 3'- b" X i .as' RE: y � I 35.111u , . e -- 1 - o w nj D.3•314. 2.363V- w 1 ■ W L ❑ i , J O w U Z w x cr a Z ��► - 0 -1 0 Crc. Overiumi' i 3 `n o `A OT = 35,11 ) )r'►1 -'"'i o = 58.s 1 kr= t MrL o .3,s ')C22)(I I) 4 " a. 6L3(q,2s >4- a,3t., ao z = &c.,?, )-Rm. ❑ o MR2= Co15o�(I151SISAC2 CI1 > a3 + .�3(1 a. fia I) F 0. i "\z,21) 1:-Y xt M/cA = '6'-Sitt.S► = q_a3Ft e= 1:'1'1 Ct n,-32.(3-+D,31.3(0 Q 6M _ as osi L(aa,O5 ► .1 "4-0 � 0. rlrw.x = ,�. _ � - } X215 k p,1- 15 (3 ,5)( � (3.S )C. y- 13L 0-L z M� _ 23---- = 30$ _ c,s, s o o\ Mo 5`S51 -. a qxi a -= A., I r q9 Bentley- Harper Houf Peterson Righellis Inc. A Current Date: 6/22/2010 10:43 AM Units system: English File name: O: \HHPR Projects\CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\Front Load 2.etz\ • M33 =51.9 (KipIt] M33= -12.19 Iwp • NlMms4 S LC.\ fi,'2,0 n Bentley' Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:35 AM Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A\foundations\Front Load.etz\ UN 1T Pt -CV-- - 'M33 =25.66 [Kip • • • M33= -30.27 [Kip *ft] Y Mmen Lc - 1 BY: \ W ...., DATE: ( a k O JOB NO.: c- p 9 Ct 0 OF PROJECT: 5 -d T Oo i ,r. s1 , RE: UN 1 T A - R . L(A. Q1L,t, . 21e55 k 30.41 , 4 30.41mk. 1- W 9.153 4.153v- O x L ❑ ITN ; 1. y y .1,--- 0 J ),c_______i_ 1 X U 11 U Z W O D d a sas} ') Z O R. U Check Ove(4u ri1raj Z 2 MO • 30 , 41 fi 30.4-14 (a, bi0Cadi = 11L. l8 kFE 0 e ( i)Caa.) +- '1 \SSG) )- 1,1S3(at) z Ma. /m ^ i,qt )1,5 ov— Fr Si W Z 1- x = aaa,� t, - 11�,1� s. q_42F e= s�.sLC-E ao .9.0b ( 4rai r. = a0, .o . 6?_(9,0,cto�`�C ,�6 = - ,.a 4_ (2)(.22 CZ)E.2.2-YZ 3 L (t3 -Z4-) 3(a)(2a- acc.s 3 0 .,t21.0,-,', t lMv..x _ t: ab 1 1� F c t500 p§S a. O .. , x 4 , F-22, ...,.# Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:38 AM Units system: English File name: O: HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\Rear Load.etz\ M33 =43.24 [Kip'ft] • M33= -45.06 [Kip'ft] Y 1 • M5r\ks t L nao Behtteu_ Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:43 AM • Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \Rear Load 2.etz\ M33 =41.88 [Kip • M33= -46.37 [Kip'ftl MGMeA9N LC 4 rt � x "' co p N ( 44(44 OR � Ca -710 '. x yV < hb' S (�c.�i'1x `�� "nfi °` w ! e (�b S9< 000 r b,Kii 9 'o) b : L'W- ciN s»'0, (Dot fi 19 '0 = b -7j 1 hi To Z" Ski � Z,' (z1 o -, 9L 000'040c1-t3'4)0b'0 = u yy 0 i tx0004,( b al coo o � . 'o =- 0 O 8371 `°r = m ❑ (1/601,/0---:;99(900'0,)CloC.°00V0.--zuvie) 0 - N1100 - 11°0 El (+ ( o Co00' 0 ) 2,12% 0 = b 0 'T'o . 11.1 a ; # c') P"'1 - • O 3 3 (lb - p)dc)b . o = `"WO • F I'9 t „in • Z -Lcia . `U fl = UAKa = in m O r aPfi .. < l dA " = XOWJ o z � - X 71 „zi X1 x „°--1, c1/4,i‘R003- `9O071 u03road • ^y/`y N . v im ) ' \I f0 o ' Y mac+ 'ON BOr Q 1 0 C � I :..v. �� Y :A9 . _... .,.. , IrknI-to.....c, z--- (1,",0 ......s - — (z6xcials)ca -,,, .„ ,.. q4c.2.0 =5 '0 ...) „1.1 a -%,_:,.. Cr4 E -4oakosxxx - a 1\\*NcC6av, ! - - .0 .- 1 Cs ".- II g< ' Sq h = r : \ ? 0‘0' 0 ' 'WO .-;, P 0 . w N ' 21L 0 ,.., czA9( Loa° oT( \ \) - , ■. I z-- g s A- \r\A I - 710 - .• SS < t..'1 t --= c.c.. . 1 ) c.::-.... czi zz tc.) 4 cl - S (90 obn)cg.tc1.417) oV 0 , %;0 &-s # NI Zt)71 - (707 / U00 )c_ ' \ ) 2. • NO "- .ua 4 ). - - t0. z' 9 - u 0 . . , _C2 .4-2.'1-''s\)(:c00 Nil (i\z'g 1 y.900si.croif Lcoo olvn ' 0) v _ , 0 p, z m o 13 .. o ,,Tii 0-17 4+ - 13gt,x - 'WV() S I - \J � 1P - I) Cr 0 - <- --) -k k, - S <-21 -mi 5 l' 4_•€.:0 - C- kj - k`, 0, , iY f 4 .4 c- A No . . 0 • 0 * II/ - I -/- " - '' 111r I S(4 I A' \ v0 - - 4 - ' k‘\)() =-- 'l , 0 K o m -1 d 71 6 F 714-- L 1 V V IgfrI 1 x 1- E ii I b `6 - ‘,1%:kopt vtoi kvsai..3 V : :103 1 d d Jo , ON eOr V3jVO :ASI BY: p \N\c _ DATE: c - ao 1 0 Joe No L t.:7.dd c\..1 A /S _ 0 OF PROJECT: b J >C (,zs t RE: U y� \ 1 Q 1 ` 1r (�� ❑ ❑ z aL.okFt FO W s.a \ ICThi . L,b6 f 2 ` ❑ t �J: t• ► 1- J o W U Z W O w a Z Check..._ Overt irnlw 9 O Kor' = Lo.O3 kCt M. (610,1So , 53X4 ) +°(a:V.a)4- 11LL( ). -1 .SL 2 MAR _ (b/D Ct .. )(4 . ,a(1) +-1 i LLG. ) . s(. t2 o ❑ M9. 1-i-t,c1(0 = k,t, ) 1,5 o' Z Mor a(o.03 o d — - "' l a _ 4L-o3 : i' - ' -� v e.= a 1 Ft SA t 4.1,66 gvrwc i t G\ _ 1a _a 0 = a, � --- ox 3 L(P, -2.e.) ` Q.� - 3C '5 - a(a.- -oi >> easr i(,< ,61 tenyv 1 caci tvie. use 360 to Ce\ Sf QUe (lfinin3 CI 8 Mor .--- a (., •off -- _ • c ����= (5.a f3.2�(2�4 (I,�L�3.ZL)� SFks� O , 4 5 , ° t + Li DL er a M e,R. = (s,2 (0) 4-- (I, LC 3 - 3.2 - L DL-- of 5io t, �oa - 6.0 12+ -4 -DL .r. 4 x a L, I, Mo < M R 1 s 4s,ct( +-Lt Di_ x Jt_- - I.') 3 :. 5+d faoh, 3e 0\c_ i F- Sb 011 cv3 - _, Ct IofS9 . Mal. - ( 1- (1,1A,+- ?.2)(s)+ 3D\- . 3 1.'3- )- 3D1_ Me= t1 -C,.D b }' ))L LS M o c i\A tz. 1.5 (2-C, 0 G ;71) 3 nL- I o Q.115 Y._■ 75 go Gq- [mg X acl, ›C 15" 1)1 f a.a`ZSOr_. x = M/c - 4(,.b( � - 3 DL —a v — a->r.Sb . 1, - }- - )- FE a,asi- s. z+3,Z�- r,b4t3. - is,5 1 — e— 1,22 inr x = 4(S,(5 i) = a„ q0 N fi 302,0.,- . 1,220 /4 - - BY: p4! t`J� DATE: -30t0 JOB NO.: Ce • �iVl � Ocl U OF PROJECT: RE: rX = 4 C DI_ r 4 - 3.a(o) ❑ ❑ 3 (t -IL - 2(e ) J 0 0 W k c0 F - xasC L. x \S„ nom_ a.22v �;s) a �� . ix a_ 30 "5 - z(■i\2))) a Z .t _ 1 Co 435 o 9"M Li- C l to, (.3s _ — .q� �,F k F� Shcrr� Ym 1c�a_� i h f rc a Li. Z W ❑ Z D O = F- Cl. O Li A N F..i ' • a. - N • a . 3 o a =a Z n e Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:42 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \Interior 2.etz\ M33 =23.55 IKIP'n] • • M33= -17.88 [KiP'h] Y e �� LL ( .Bette Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:42 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes\calcs\Unit A \foundationsdnterior.etz\ • M33 =32.26 [KIP *ft] • M33= -9.27 [Kip *ft] Mefs L CZ 0-f30 ACI 318 -05 Appendix D 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc = 3000 psi fc = _ 3000 psi h = 3.50 inches h ;12:00 inches (into the Fe Stem = inches inches Note : hef above is the the embedment into or cma), = 5.25 inches the foundation and does not consider stem %AA Fnd Width = 36.00 inches = 2.25 inches emir, = 18.00 inches Wc,N= 1.00 cast -in -place anchor yi 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor = 0.75 strength reduction factor = 0.75 strength reduction fact Calculations Calculations ANc = 68 in` AN = 1296 in` AN = 110.25 in` ANa = 1296 in` Nb = 8,607 pounds Nb = 55,121 pounds Wed,N = 0.8286 Wed,N = 1.00 N 4,399 pounds Nib = 55,121 pounds �N = 3,299 pounds 4Ncb = 41,341 pounds Combined Capacity of Stem Wall and Foundation (j)■ = 44,640 0.75�N� = 33,480 ,rn 20. ,• 6-4 0 • rz: %• EA 0 c7, 0 ` < Clb tk,z 0 13 -1 X 0 c Z 0 ' 0/ ( 1° ° 1 °,) 2 .b 9 -: 0 = p • 5 -Pocl (I) 0 3 1J1 q.S 1 iN ( ')7 .1%e..1 t)(000 0)0b 0 •I''`A \N bOh'0 O)(. (000 63S'Q = bas'o=v ,,zi (t) 0 19 % '01d-71 13 73 • m 0 Z O 7] r 0 4jit;c3' L- • 0 ri 0 0 G . Y)t-Y1 4\- :3e1 .1.03r08.1 0 0 r\ ) ON 801' soio —9 aiva Concrete Side Face Blow Out Givens Abrs = 2.15 in` fc = 3000 psi C = 18.00 inches = 0.75 strength reduction factor Calculations Nsb = 231,191 pounds 4>Nsb = 173,393 pounds Concrete Pullout Strength Givens Abrs = 2.15 in` fc = 3000 psi = 0.75 strength reduction factor Calculations N 51,552 pounds 4N = 38,664 pounds Steel Yield Strength Givens f = 58,000 psi A = 0.606 in = 0.80 strength reduction factor Calculations N = 35,148 pounds 4)Ns = 28,118 pounds < 33,480 Ductility Met Holdown Check Holdown: HDU14 Holdown Capacity= 14,930 pounds 1.6* Capacity= 23,888 pounds 23,888 < 28,118 Holdown Checks -7t3-2D BY: DATE: JOB NO.. Vr PROJECT: RE: \ \-C, WW1 Voo i `3 �...�� ❑ ❑ Z Sides v But larnejs - F 0 2 tk. aSFt(tt ?s 300 pty uJoo M ❑ b clCZ levels>(13 $0 - 2- a. ?Lc floor 0 4o►N Ct5opc�X ?' �1t2._ 333 pLP 51 o w ( tS0 pc F�C w ~ ) = 100 w Per i w ° k CC a _ Z LL o 03c0(2. lev e ls��.40 , -- L40 •■.F _S IoOr 0 R. Z TOW toad. = V -1-`e) 1 ¥- LoOu) 01..f../ . 2 'Mo x sbp =1500 psC • lSOQpLP • W m 0 1'1 I + tOoLZ s vs-cow ,,..' -. - 1.0(40 ^ec 16." ii 0 o It. Z ❑ o e rear F- r--cmk., cc- Yx.) ► rd+v.cp O = I- a DLo as(O:. co pc.P- watt ( / isF e9 M PLF .Pkoor 4010650pc_F X'in_ � = 333 u S _ P �1 (t u-), s ) - Wow Clef(1 - + Fsc)= Subpt -c F LL: (c60:1,4-6) 1-2L) P Lc Clb >C2s) = 4-s0 ptF o ti 0 :t. TL ti a3(..3 t 100tA-) a = - .0 a3k-■3 +- loUw c 1SOOCA) x a - c if ( 09' --\\ ‘N @ LYN t F} x e t., n; I 6 i C. . = Savne cis tt mtAu lour toads . 1 - 1 - 0 ` ) \ 'Yb 0 1 t- 100 uJ W — 1.00 `, tJs - 1St t L. Q as(12)(2) = (000 per- (Null (B)cz Xt3x2 � _ 4l( L.F SIoor (atNCISOK k _ 33 pk.c 51-etr (CI' ItzXAsc, w1=100 LL ° (5 = \Tho pace \sta - rt_: a6a°i }100w LA) = 1,b11- 231►., =• use a4 IN