Loading...
Specifications (3) uvtciaolo o, IV � /?/ ire-7 / Structural Calculations for Full Lateral & Gravity Analysis of RECEIVED Plan A 1460 SEP 2 3 2010 CITY OF TIGARD Summer Creek Townhomes BUILDING DIVISIOr Tigard, OR Prepared for Pulte Group July 13, 2010 JOB NUMBER: CEN -090 ** *Limitations * ** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and /or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 117 sheets total including this cover sheet. This Packet of Calculations is Null and Void if Signature above is not Original 0 Harper Houf Peterson Righellis Inc. ENGI,C.RO • PLANNERS LANDSCAPE ARC■ITECTS•IIVRVC,JR5 205 SE Spokane St. Suite 200 • Portland, OR 97202 ♦ [P] 503.221.1131 ♦ [F] 503.221.1171 1104 Main St. Suite 100 ♦ Vancouver, WA 98660 • [P] 360.450.1 141 ♦ [F] 360.750.1 141 1 133 NW Wall St. Suite 201 ♦ Bend, OR 97701 • [P] 541.318.1161 ♦ [F] 541.318.1 141 Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit A Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, lW: 1 2006 IBC / 2007 OSSC Occupancy Category: II Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed, ASCE 7-05 Ch. 20 Importance, IE: 1 ASCE 7 -05 Table 11.5-1 Ss: 0.942 USGS Spectral Response Map Si: 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength, Pc: 3000 psi Foundations & Slab on Grade Concrete Unit Weight, yc: 145 pcf Steel Reinforcement Yield Strength, f 60,000 psi Wood Studs (Wall Studs): Hem -Fir #2 2x & 4x Wood Beams & Posts: DF -L #2 6x & Greater Wood Beams & Posts: DF -L# 1 Glulam Beams: 24F -V4 PSL Beams: Fb =2,900 psi, FV= 328psi, E =2.0 Million TS /LSL Beams: F,b =2325 psi, FV= 460psi, E =1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : .1500 psf Assumed 2. All manufactured trusses, joists, and flush beams u.n.o. shall be designed by others. Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 WoodWorks — Sizer version 2002 Bently RAM Advanse • -. _ Harper Project: SUMMERCREEK TOWNHOMES UNIT A H: ^ P ' Houf Peterson. Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • vEANNERS Designer: AMC Date: Pg. # I.ANOSCAPE ARCNITEC re. SURVEYORS DESIGN CRITERIA 2007 Oregon Structural Specialty Code & ASCE 7 -05 Roof Dead Load RFR := 2.5.psf Framing • RPL := 1.5.psf Plywood • RRF := 5.psf Roofing RME := 1.5.psf Mech & Elec RMS := 1 •psf Misc RCG := 2.5.psf Ceiling RIN := 1 •psf Insulation RDL = 15•psf Floor Dead Load FFR := 3 •psf Framing FPL := 4•psf Sheathing FME := 1.5.psf Mech & Elec FMS := 1.5.psf Misc FIN := .5•psf Finish & Insulation FCLG := 2.5.psf Ceiling FDL = 13•psf Wall Dead Load WOOD EX Wall := 12.psf INT_Wall,,;,i := 10•psf Roof Live Load RLL := 25.psf Floor Live Load •FLL := 40.psf #— LI Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDGCAPE ARCHITECTS•OUFVEYOR6 Transverse Seismic Forces Site Class = D Design Catagory = D Building Occupancy_Category: lI Weight of Structure In Transverse Direction Roof Weight Roof Area := 8434t 2 •1.12 RFC T := RDL•Roof Area RFgrl• = 14162•lb Floor Weight Floor_Area2nd := 647•ft FLRVVT2 := FDL•Floor Area2 FLRWT2nd = 8411-lb Floor Area3rd 652•ft FLRWT3rd FDL-Floor_Area3rd FLRWT3rd = 8476•Ib Wall Weight EX Wall Area :_ (2203)•ft INT Wall Area:= (906)•ft WALLwT := EX_Wall + INT Wall - INT_Wall_Area WALLwT = 35496•Ib WTTOTAL = 66545 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h := 32 Mean Height Of Roof l := 1 Component Importance Factor (11.5, ASCE 7 -05) A,:= 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C :_ .02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x := .75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period T := C T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. . (Chapter 22, ASCE 7- 05)...or S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F := 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F� := 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) /4— L2. Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP i• Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCM TEC T8• SLRVE V ORS S MS Fa SMs = 1.058 (EQU 11.4 -1, ASCE 7 -05) Sds 2 3MS Sds = 0.705 (EQU 11.4 -3, ASCE 7 -05) SM1 Fv SM1 = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2• SM1 Sdl := 3 Sd1 = 0.389 (EQU 11.4 -4, ASCE 7 -05) Cst := Sds'Ie Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) R ...need not exceed... Cs := Shc Ie Cs = 0.223 (EQU 12.8 -3, ASCE 7 -05) T ...and shall not be less then... C1 := if(0.044•Sd < 0.01, 0.01,0.044•Sd ( 0.5- S1 -k (EQU 12.8 -5 &6, ASCE 7 -05) C2:= if l S1 <0.6,0.01, J R Cs := if(Ci > C2,C1,C2) Csmin = 0.031 Cs := if (Cst < Cs < Cs ,Cst,Cs Cs = 0.108 V := Cs•WTTOTAL V = 72201b (EQU 12.8 -1, ASCE 7 -05) E := V•0.7 E = 5054 1b (Allowable Stress) /7 \3 Harper Project: SUMMERCREEK TOWNHOMES UNIT A • B P Hoof Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCNITECr5. SURVEYORS Transverse Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 100 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I := 1.00 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X := 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... a2 := 2•.1.20•ft Zone A & B Horizontal Length a2 — 4 ft (Fig 6 -2 note 10, ASCE 7 -05) or AL:= .4•hn 2 f a2 = 25.6ft but not Tess than... Amin 3-2-ft a = 6 ft Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA 19.91psf PnetzoneB 3.2• psf Pnetzonec 14.4•psf PnetzoneD 3.3•psf Vertical PnetzoneE 8.8•psf PnetzoneF — 12•psf PnetzoneG :_ — 6.4•psf PnetzoneH 9.7•psf Basic Wind Force PA := PnetzoneA'Iw•X PA = 19.9•psf Wall HWC PB := PnetzoneB'Iv,•X PH = 3.2• Roof HWC PC := PnetzoneC'Iw.X PC = 14.4•psf Wall Typical PD := PnetzoneD'Irv.X PD = 3.3•psf Roof Typical PE := PnetzoneE' Iw -X PE = — 8.8•psf PF := PnetzoneF I X PF = —12• psf Pc, := PnetzoneG' I X PG = — 6.4• psf PH := Pnet oneH'lWX PH = — 9.7•psf 4- L`-I . Harper Project: SUMMERCREEK TOWNHOMES UNIT A 1. :• Houf Peterson .: Client: PULTE GROUP Job # CEN -090 Righellis Inc. __- ENGINCERS ♦ PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCNITECTS•SURVEYORS Determine Wind Sail In Transverse Direction WSAILZoueA (41 59 + 29)-ft 2 WSAILZoneB (19 + 0 + 23)41 WSAILZonec =_ (391 + 307 + 272)41 WS11- ZoneD := (0 + 0 + 5)•ft WA WSAILZoneA•PA WA = 25671b WB := WSAILZoneB•PB WB = 1341b WC := WSAILZoneC'PC WC = 13968 lb WD := WSAILZoneD'PD WD = 16 Ib Wind_Force := WA + WB + WC + WD Wind_Force := 10•psf•(WSAILZ + WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind_Force = 16686 Ib Wind_Force = 11460 Ib WSAILZoneE 94•ft2 W SAILZoneF 108 • ft WSAILZoneG 320412 W SAILZoneH := 320 • ft WE := WSAILZoneE.PE WE = —827 Ib ' WF WSAILZoneF•PF WF = —1296 lb WG WSAILZoneG'PG WG = — 20481b WH := WSAILZoneB WH = — 31041b UPliftnet WF + WH + (WE + WG) + RDLIWSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneG) }.6.1.12 Upliftnet = 1212 Ib (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION _:_ } Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP r Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCHITECTS•SNRVEYORS Longitudinal Seismic Forces Site Class = D Design Catagory =D Building Occupancy Category: 1I Weight of Structure In Longitudinal Direction Roof Weight Roof Area = 944 ft Mow= RDL•Roof Area RFWT = 14162•Ib Floor Weight Floor_Area2 = 647 ft LIAKTA FDL•Floor Area2nd FLRwT2 = 8411.1b Floor_Area3 = 652 ft • Llawu FDL•Floor Area3rd FLRgrr3rd = 8476•Ib Wall Weight nc.. .411.ACea = (2203).ft INT Wall Area = 906 ft ,= EX_Wa11 + INT_Wall WALLwr = 35496•lb WTTOTAL = 66545 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h = 32 Mean Height Of Roof Ie = 1 Component Importance Factor (11.5, ASCE 7 -05) ,,: 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C = 0.02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x = 0.75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period C h x T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 = 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S = 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F = 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F, = 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) 4 -U Harper Project: SUMMERCREEK TOWNHOMES UNIT A • Or Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. - -- ENGINEERS • ..CANNERS - Designer: AMC Date: Pg. # LANDSCAPE ARCNI TECT9•SURYEYOR9 := F SMs = 1.058 (EQU 11.44, ASCE 7 -05) 2 • SMs 5:= 3 Sds = 0.705 (EQU 11.4 -3, ASCE 7 -05) S1 SM1 = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2 •SM1 := 3 Shc = 0.389 (EQU 11.4 -4, ASCE 7 -05) := S R le Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) ...need not exceed... e Shc s Cs = 0.223 (EQU 12.8 -3, ASCE 7 -05) '�= Ta•R ...and shall not be less then... ,:= if 0.044• Sd I < 0.01, 0.01, 0.044 Sds' le) 0.5•S1.1e1 (EQU 12.8 -5 &6, ASCE 7 -05) , := ifl Sl <0.6,0.01, R J if(Ci > C2,C1,C2) Cs = 0.031 N Cs .= if (Cst < Cs ,Cs (Cst <Cs Cst, Cs Cs = 0.108 V := Cs•WTTOTAL V = 7220 lb (EQU 12.8 -1, ASCE 7 -05) E := V•0.7 E = 50541b (Allowable Stress) iwv 4 �r Harper Project: SUMMERCREEK TOWNHOMES UNIT A s Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LPE ANDES AR CNITEC TS• SLi R'%EYORS Longitudinal Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 110 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I = 1.0 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X = 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... A lk= 2•.1.20•ft Zone A & B Horizontal Length a2 — 4 ft (Fig 6 -2 note 10, ASCE 7 -05) or / 9k= .4-11,-2- ft a2 = 25.6 ft but not less than... 'I:= 3.2 -ft 6 ft a = Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA = 19.9•psf Pnet2OneB = 3.2•psf PnetzoneC = 14.4•psf PnetzoneD = 3.3•psf Vertical PnetzoneE = —8.8•psf PnetzoneF = — 12•psf PnetzoneG = — 6.4•psf PnetzoneH = — 9.7•psf Basic Wind Force , := PnetzoneA'Iw'X PA = 19.9•psf Wall HWC Pte:= PnetzoneB'Iw'X Pg = 3.2 -psf Roof HWC Pte:= PnetzoneC'Iw PC = 14.4•psf Wall Typical Par= PnetzoneD'Iw.X PD = 3.3•psf Roof Typical M PA:= PnetzoneE'Iw'X PE _ — 8.8•psf ,,:= PnetzoneF'Iw'X PF = — 12•psf Pte:= PnetzoneG'Iw•X PG, _ — 6.4•psf := PnetzoneH'Iw• PH = — 9.7•psf gk Harper Project: SUMMERCREEK TOWNHOMES UNIT A '•:P Houf Peterson Client: PULTE GROUP Job # CEN -090 Rigllellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE A RCNIrEC Determine Wind Sail In Longitudinal Direction An:= (48 +.59 + 40) -ft : =(10 +0 +44)41 MANI ,`:= (91 + 137 + 67)•ft :_ (43 + 0 + 113) -ft Wes= WSAILZoneA'PA WA = 29251b W „:= WSAILZoneB WB = 1731b = WSAII- ZoneC'PC WC = 42481b • = WSAILZoneD'PD WD = 515 Ib i d o ce := WA + WB + WC + WD Wi d orce 4 y RA := 10. psf•(WSAILZoneA + WSAILZoneB + WSAI-ZoneC + WSAILZoneD) Wind Force = 7861 lb Wind_Force = 6520 Ib Aw,§mALI 47ioY L;= 148412 yla7 120•ft M 323•ft N neg:= 252412 WSAILZoneE'PE WE = - 13021b ,:= WSAILZoneF'PF WF = - 14401b Wes:= WSAILZoneG'PG WG = - 20671b • := WSAILZoneH'PH WH = -2444 Ib WF + WH + (WE + WG) + RDL•[WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneG)1'. Upliftnet = 12431b (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION A9— L9 Harper Houf Peterson Righellis Pg #: Transverse Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = • 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X= 1.00 Iw= 1.00 Wind Sail Wind Net Design Wind Pressure (psf) (ft2) Pressure (Ibs) Zone A = 19.9 129 2567 Wall High Wind Zone Horizontal Zone B = 3.2 42 134 Roof High Wind Zone Wind Forces Zone C = 14.4 970 13968 Wall Typ Zone Zone D = 3.3 5 17 Roof Typ Zone Zone E = -8.8 94 -827 Roof Windward High Wind Zone Vertical Zone F = -12.0 108 -1296 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 320 -2048 Roof Windward Typ Wind Zone Zone 11 = -9.7 320 -3104 Roof Leeward Typ Wind Zone Total Wind Force =l 16686 lbs I Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -7275 Ibs Resisting Dead Load = 8472 Ibs E =I 1197 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Dia hragm (ft Zone A Zone B Zone C Zone D Main Floor 41 19 391 0 Upper Floor 59 _ 0 307 0 Main Floor Diaphragm Shear = 6507 lbs Upper Floor Diaphragm Shear = 5595 Ibs Roof Diaphragm Shear = 4584 Ibs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR. ROOF ' Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Diaphragm Diaphragm Width (ft) (lbs) Width (ft) (lbs) Width (ft) (Ibs) A 13.08 1737 18 2797 19 2323 Al 24.50 3254 0 0 0 0 B 11.42 1516 18 2797 18.5 2261 E= 49 6507 36 5595 37.5 4584 Harper Houf Peterson Righellis Pg #: Transverse Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D S1 = 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct= 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 SMs • 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 Sp 0.71 Equ. 11.4 -3, ASCE 7 -05 Sal= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = ' 0.01 Equ. 12.8 -5 & 6; ASCE 7 -05 . Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 • Floor 2 Wt (Ib)= 8411 Floor 3 Wt (Ib)= 8476 Roof Wt (lb) = 14162 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22609 Trib. Floor 3 Diaphragm Wt (Ib) = 22674 Trib. Roof Diaphragm Wt (Ib) = 21261 Vertical Dist of Seismic Forces Cumulative % total of base shear Rho Check to Shearwalls (Ibs) I to shearwalls Req'd? V floor 2 (Ib) = 720 100.0% Yes Vfl 3 (Ib) = 1625 85.8% Yes V (Ib) = 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line l Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft Ibs Ibs Ibs A 102 361 394 114 897 1266 Al 432 0 0 481 0 0 B 113 . 293 449 126 728 1443 Sum 647 654 • 843 720 1625 2709 Total Base Shear* = I 5054 LB • *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. /41-- Lk\ • Harper Houf Peterson Righellis Pg #: Longitudinal Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: • Basic Wind Speed = 100 mph • Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf A. = 1.00 Iw= 1.00 Wind Sail Wind Net Design Wind Pressure (psf) () Pressure (Ibs) Zone A = 19.9 147 - 2925 Wall High Wind Zone Horizontal Zone B = 3.2 54 173 Roof High Wind Zone Wind Forces Zone C = 14.4 295 4248 Wall Typ Zone Zone D = 3.3 156 515 Roof Typ Zone Zone E _ -8.8 148 -1302 Roof Windward High Wind Zone Vertical Zone F = -12.0 120 -1440 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 323 -2067 Roof Windward Typ Wind Zone Zone H = -9.7 252 -2444 Roof Leeward Typ Wind Zone Total Wind Force =l 7861 Ibs I Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -7254 Ibs Resisting Dead Load = 8483 Ibs El 1229 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm (ft Zone A Zone B Zone C Zone D Main Floor 48 10 91 43 Upper Floor 59 0 137 0 Main Floor Diaphragm Shear = 2440 Ibs Upper Floor Diaphragm Shear = 3147 Ibs Roof Diaphragm Shear = 2275 Ibs Wind Distribution To Shearwall Lines . MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm (Ibs) Diaphragm (Ibs) Diaphragm (Ibs) Width (ft) Width (ft) Width (ft) 1 10 1220 10 1573 10 1137 2 10 1220 10 1573 10 1137 E= 20 2440 20 3147 ' 20 2275 . A - 1.,,,..../._ Harper Houf Peterson Righellis Pg #: Longitudinal Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D S1 = 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv= 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 Sp 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 SDS= 0.71 Equ. 11.4 -3, ASCE 7 -05 S 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = - 0.01 Equ. 12.8 -5 & 6, ASCE 7-05 Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (Ib)= 8411 Floor 3 Wt (lb)= 8476 Roof Wt (Ib) = 14162 • Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22609 Trib. Floor 3 Diaphragm Wt (Ib) = 22674 - Trib. Roof Diaphragm Wt (Ib) = 21261 Vertical Dist of Seismic Forces Cumulative % total of base shear Rho Check to Shearwalls (Ibs) I to shearwalls Req'd? V„Oor 2 (Ib) = 720 100.0% Yes VFl 3 (Ib) = 1625 85.8% Yes Vroor (lb) = 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft Ibs Ibs Ibs 1 286 291 415 318 725 1334 2 361 361 428 402 900 - 1375 Sum 647 652 - -843 720 1625 2709 Total Base Shear* = ( 5054 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. l ' 4 2----- L...\,e- Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 "Transvere Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht I k ht I k ht I k, (klf) (plf) (ft -k) (ft-k) (k) 101 Not Used - 102 7 1.75 3.50 4.00 '4 8.00 1.74. 18.00 2.80 27.00 2.32 1959 Double 1.40 NG 103 7 1.75 3.50 4100 ;:;; -,' 8.00 1.74 8.00 2.80 8.00 2.32 1959 Double 1.40 NG 103a 7 4.00 4.00 1.75 oic 8.00 3.25 814 Single 1.40 IV 104 8 4.50 10.50 1.78 ox 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 105 8 3.00. 10.50 2.67 ox 8.00 . 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 106 8 3.00 10.50 2.67 ox 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 109 8 4.58 17.08 1.75 OK 8.00 _ 1.74 18.00 2.80 27.00. 2.32 401 Single 1.40 II 110 8 12.50 17.08 0.64 ox 8.00 1.74 8.00 2.80 8.00 2.32 401 Single 1.40 II 11 1 8 4.50 7.25 1.78 OK 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 112 4.75 1.38 7.25 3.45 OK 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 113 4.75 1.38 7.25 3.45 OK 8.00 1.52 8.00 .2.80 8.00 2.26 907 Double 1.40 VI • 201 9 3.92 10.79 2.30 ox 9.00 2.80 18.00 2.32 474 Single 1.40 II 201a 9 4.17 10.79 2.16 OK 9.00 2.80 18.00 ' 2.32 ' 474 Single 1.40 II 201b 9 2.71 10.79 3.32 OK 9.00 2.80 18.00. 2.32 474 Single 1.40 II . 202A 9 2.96 11.96 3.04 OK 9.00 2.80 18.00 2.26 423 Single 1.40 II 202B 9 3.00 11.96 3.00 ox 9.00 2.80 18.00 2.26 423 Single 1.40 II 203 9 3.00 11.96 3.00 OK 9.00 2.80 18.00 2.26 423 . Single 1.40 1I 204 9 3.00 11.96 3.00 ox 9.00 2.80 - 18.00 2.26 _ 423 Single 1.40 II 301 8 3.92 - 13.96 2.04 OK _ 8.00 ' 2.32 166 Single 1.40 I 302 8 5.79 13.96 1.38 ox 8.00 2.32 166 Single 1.40 I 303 8 4.25 13.96 1.88 OK 8.00 2.32 166' Single 1.40 I 304 8 2.96 5.96 2.70 ox 8.00 2.26 379 Single 1.40 II 305 8 3.00 5.96 2.67 OK 8.00 2.26 379 Single 1.40 II Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line • H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load • L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • • /4 - L, 1, Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 fransvere Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho•V % Story # Panel Shear Panel M M Uplift Panel Lgth. From 2nd Fir. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht I k ht I k ht I k (klf) (plf) (pH) (ft-k) (ft-k) (k) 101 Not Used 102 7 1.75 3.50 4.00 ' ger"" 8.00 0.11 18.00 0.90 27.00 1.27 651 846 0.10 0.50 Double 0.50 NG 103 7 1.75 330 4.00 : = 5ry 8.00 0.11 8.00 0.90 8.00 1.27 651 846 0.10 0.50 Double 0.50 NG 103a 7 4.00 4.00 1.75 OK 8.00 0.48 0.00 0.00 120 156 0.22 1.14 Single 1.00 1 104 8 4.50 10.50 1.78 OK 8.00 0.13 8.00 0.73 8.00 1.44 219 284 0.25 1.13. Single 1.00 11 105 8 3.00 10.50 2.67 OK 8.00 0.13 8.00 0.73 8.00 1.44 219 284 0.17 0.75 Single 0.75 III • 106 8 3.00 10.50 2.67 OK 8.00 0.13 8.00 0.73 8.00 1.44 219 284 0.17 0.75 Single 0.75 III 109 8 4.58 17.08 1.75 OK 8.00 0.11 18.00 0.90 27.00 - 1.27 134 174 0.25 1.15 Single 1.00 . 1 1 10 8 12.50 17.08 0.64 OK 8.00 0.11 8.00 0.90 8.00 1.27 134 174 NA 3.13 Single 1.00 I. 11 1 8 4.50 7.25 1.78 OK 8.00 0.13 8.00 0.73 8.00 1.44 316'. 411 0.25 1.13 Single 1.00 III 112 5 1.38 7.25 3.45 . OK 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.08 0.58 Double 0.58 VII . 113 5 1.38 7.25 3.45 OK 8.00 0.13 8.00 0.73 8.00 1.44 316. 411 0.08 0.58 Double 0.58 VII 201 9 3.92 10.79 2.30 OK . 9.00 0.90 18.00 1.27 200 261 0.17 0.87 Single _ 0.87. II 201a 9 4.17 10.79 2.16 OK 9.00 0.90 18.00 - 1.27 200 261 0.18 0.93 Single 0.93 II 201b 9 2.71 10.79 3.32 oK 9.00 0.90 18.00 1.27. 200 261 0.12 0.60 Single 0.60 111 202A 9 .2.96 11.96 3'.04 OK 9.00 0.73 18.00 1.44 182 236 0.13 0.66 Single 0.66. 111 202B 9 3.00 11.96 3.00 OK 9.00 0.73 18.00 1.44 182 236 0.13 0.67 Single . 0.67 III 203 9 3.00 11.96 3.00 OK 9.00 0.73 18.00 1.44 181 236 0.13 . 0.67 Single 0.67 1I1 204 - 9 3.00 11.96 3.00 'OK 9.00 0.73 18.00 1.44' 181 236 0.13 _ 0.67 Single _ 0.67 III • 301 8 3.92 13.96 2.04 OK 8.00 1.27 91 118 0.20 0.98 Single 0.98 1 302 8 5.79 13.96 1.38 OK ,. 8.00 1.27 91 118 0.29 1.45 Single 1.00 I 303 8 4.25 13.96 1.88 OK 8.00 1.27 91 118 0.21 1.06 Single 1.00 1 304 8 _ 2.96 5.96 2.70 OK 8.00 1.44 242 315 0.15 0.74 Single 0.74 III 305 8 - 3.00 5.96 2.67 OK 8.00 1.44 242 315 0.15. 0.75 Single `.0.75 _ 111 . Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total transverse base shear? Yes Total 1st Floor Wall Length = 18.00 Total # 1st Floor Bays = 4.77 Are 2 bays minimum present along each wall line? No 1st Floor Rho = 1.3 Total 2nd Floor Wall Length = 22.75 Total # 2nd Floor Bays = s Are 2 bays minimum present along each wall line? No 2nd Floor Rho = 1.3 • Total 3rd Floor Wall Length = 19.92 Total # 3rd Floor Bays = s Are 2 bays minimum present along each wall line? No 3rd Floor Rho = 1.3 • Spreadsheet Column Definitions & Formulas • L = Shear Panel Length H • Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load•Rho / Total L °A Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2•L/H Shear Factor = Adjustment For H/L > 2:I Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load • L 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) /4- ...-- t\c"' Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft)_ (ft) ht k ht k ht k (klf) (plt) (ft -k) (ft -k) (k) 107 • 8 15.50 15.50 0.52 ox 10.00 1.22 18.00 1.57 27.00 1.14 1.03 254 Single 1.40 I 71.21 123.49 -0.19 108 8 15.50 15.50 0.52 ox 10.00 1.22 18.00 1.57 27.00 1.14 1.03 254 Single 1.40 I 71.21 _ 123.49 -0.19 205 9 13.00 13.00 0.69• ox 9.00 1.57 18.001 1.14 0.701 208 Single 1.40 I 34.62 59.15 -0.07 I 206 ' 9 13.00 13.00 0.69 ox 9.00 1.57 18.00 1.14 0.70 208 Single 1.40 I 34:62 59.15 -0.07 306 8 10.00 10.00 0.80 ox I 8.00 1.14 1 0.29 114 Single 1.40 I 9.10 14.40 0.05 I 307 8 10.00 10.00 0.80 ox 8.00 1.14 0.29 114 Single 1.40 I 9.10 14.40 0.05 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L • 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) • Ac "-- .....\, 6 Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho* V % Story # Panel Shear Panel M Ma Uplift Panel Lgth. From 2nd FIr. From 3rd Flr! From Roof Load Strength Bays. Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klf) (plf) (pit) (ft-k) (ft -k) (k) 107 8 15.50 15.50 0.521 OK 10.00 0.32 18.00 0.73 27.00 1.33 1.09 153 153 NA 3.88 Single 1.00 I 52.25 130.70 -1.74 108 8 15.50 15.50 0.52 f OK 10.00 0.40 18.00 0.90 27.00 1.38 1.09 173 173 NA 3.88 Single 1.00 , I 57.35 130.70 -1.40 I 205 9 13.00 13.00 0.69 oK I 1 9.00 I 0.73 1 18.00 1.33 0.76 158 158 NA ' 2.89 L Single 1.00 _ I 30.541 64.221 -0.64 206 9 13.00 13.00 0.69 ox 1 9.00 0.90 1'18.00 138 0.76 175 175 NA 2.89 [ Single 1.00 I 32.85 64.22 -0.45 307 88 1 10.001 10.00 00..8800 .801 oK I ( + I 1 8.00 1.38 0.35 138 138 I NA I 2:50 Single I 1.00 I 11.001 17.401 0.06 I Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Total 1st Floor Wall Length = 31.00 Total # 1st Floor Bays = 7.70 Are 2 bays minimum present along each wall line? Yes 1s • t Floor Rho = 1.0 Total 2nd Floor Wall Length = 26.00 Total # 2nd Floor Bays = 6 Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho = 1.0 Total 3rd Floor Wall Length = 20.00 Total # 3rd Floor Bays = s Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho = 1.o Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load•Rho / Total L % Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2 Shear Factor = Adjustment For H/L > 2:1 Mo (Overtuming Moment) = Wall Shear ' Shear Application ht Mr (Resisting Moment) = Dead Load * L 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Transvere Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good For , V (per (plt) (lb) (lb) 101 Not Used 102 Simpson Strongwall 103 Simpson Strongwall 103a 814 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 833 104 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 105 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 106 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 109 401 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 110 401 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 111 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 112 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 990 113 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 - 990 - 201 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 201a 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 201b 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 202A 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 202B 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 203 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 204 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 - 301 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 302 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 303 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 304 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 305 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 - 495 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Longitudinal Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good Fo V (plf) (pb) ( (lb) 107 254 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -192 Simpson None 0 108 254 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -192 Simpson None 0 205 208 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -69 Simpson None 0 206 208 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -69 Simpson None 0 306 133 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 48 Simpson None 0 307 138 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 59 Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. ,4 \C\ Transverse Wind Uplift Design . • Unit A Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear ® Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. • Flr. Roof Shear including Load Load Momen @ Left ® Right Left Right Left Side of @ Right Wall Wall @ Left @ floors ® Left ® t House Side of Above Above Right above if Right House @ Left ® • walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 102 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.192 0.832 27.43 0.57 1.69 21.31 20.79 21.31 20.79 103 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.832 0.192 27.43 1.69 0.57 20.79 21.31 20.79 21.31 103A 8 1.1667 4.00 4.00 3.254 3.254 814 0.04 2.016 1.664 26.03 8.38 6.98 6.00 6.24 6.00 6.24 104 8 1.1667 4.50 10.50 1.516 2.8 2.26 6.576 626 0.1 0.8 0.078 25.08 4.61 1.36 5.58 6.06 5.58 6.06 105 8 1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 0.048 0.252 0.156 16.72 0.97 0.68 6.45 6.52 6.45 6.52 106 8 1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 - 0.048 0.156 0.252 16.72 0.68 0.97 6.52 6.45 6.52 6.45 109 8 1.1667 4.58 17.08 1.737 2.8 2.32 6.857 401 0.152 0.192 0.156 16.31 2.47 2.31 3.63 3.66 201L 201R 4.82 5.09 8.45 8.75 110 .8 1.1667 12.50 17.08 1.737 2.8 2.32 6.857 401 0.096 0.156 0.192 44.52 9.45 9.90 3.24 3.21 201 aL 201 bR 4.95 4.88 8.18 8.09 111 8 1.1667 4.50 7.50 1.516 2.8 2.26 6.576 877 0.144 0.8 0.078 35.11 5.06 1.81 8.02 8.51 8.02 8.51 112 8 1.1667 1.50 7.50 1.516 2.8 2.26 6.576 877 0.048 0.252 0.234 11.70 0.43 0.41 11:44 11.46 11.44 11.46 113 8 1.1667 1.50 7.50 1.516 2.8 2.26 6.576 877 0.048 0.234 0.252 11.70 0.41 0.43 11.46 11.44 11.46 11.44 201 9 1.1667 3.92 10.8 2.8 2.32 5.12 474 0.225 0.432 0.156 17.71 3.42 2.34 3.99 4.16 301L 301R 0.83 0.93 4.82 5.09 201a 9 1.1667 4.17 10.8 2.8 2.32 5.12 474 0.225 0.156 0.156 18.84 2.61 2.61 4.14 4.14 302L 302R 0.80 0.80 4.95 4.95 201b 9 1.1667 2.71 10.8 2.8 2.32 5.12 , 474 0.225 0.156 0.432 12.24 1.25 2.00 4.24 4.08 303L 303R 0.91 0.80 5.15 4.88 202A 9 1.1667 2.96 11.958333 2.8 2.26 5.06 423 0.173 0.432 0.052 11.92 2.04 0.91 3.62 3.84 304L 304R 2.60 2.75 6.21 6.59 202B 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.173 0.052 0.216 12.09 0.93 1.43 3.84 3.74 305L 305R 2.74 2.16 6.58 5.91 203 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.309 0.216 0.312 12.09 2.04 2.33 3.62 3.56 3.62 3.56 204 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.225 0.312 0.432 12.09 1.95 2.31 3.64 3.57 3.64 3.57 301 8 3.92 13.96 2.32 2.32 166 0.232 0.384 0.204 5.21 3.29 2.58 0.83 0.93 0.83 0.93 302 8 5.79 13.96 2.32 2.32 166 • 0.232 0.204 0.204 7.70 5.07 5.07 0.80 0.80 0.80 0.80 303 8 4.25 13.96 2.32 2.32 166 0.232 0.204 0.384 5.65 2.96 3.73 0.91 0.80 0.91 0.80 304 8 2.96 5.96 2.26 2.26 379 0.232 0.384 0.136 8.98 2.15 1.42 2.60 2.75 2.60 2.75 305 8 3 5.96 2.26 2.26 379 0.232 0.136 1.104 9.10 .1.45 4.36 2.74 2.16 2.74 2.16 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height 4 ` Wall Length = Sum of Shear Panels Lengths in Shear Line �°° V (Panel Shear) = Sum of Line Load / Total L Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) • Transverse Seismic Uplift Design Unit A Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Fir. FIr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of ® Right Wall Wall @ Left @. floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 102 8 1.1667 1.75 3.50 0.114 0.9 1.27 2.284 653 0.152 0.192 0.832 10.40 0.57 1.69 7.91 7.11 0 0 7.91 7.11 103 8 1.1667 1.75 3.50 0.114 0.9 1.27 2.284 653. 0.152 0.832 0.192 10.40 1.69 0.57 7.11 7.91 0 0 7.11 7.91 103A 8 1.1667 4.00 4:00 0.481 0.481 120 . 0.04 2.016 1.664 .3.85 8.38 6.98 , -1.06 -0.69 0 0 -1.06 -0.69 104 8 1.1667 4.50 10:50 0.126 0.73 ..1.44 2.296 219 0.1 0.8 0.078 8.96 4.61 1.36 1.20 1.93 0 0 1.20 1.93 105 8 1.1667 3.00 10.50 0.126 0.73 1.44 2.296 219 . 0.048 0.252 0.156 5.97 0.97 0.68 2.04 2.14 0 0 2.04 2.14 106 8 1.1667 3.00 10.50 0.126 0.73 1.44 2.296 219 0.048 0.156 0.252 5.97 0.68 0.97 2.14 2.04 0 0 2.14 2.04 109 8 1.1667 4.58 17.08 0.114 0.9 1.27 2.284 134. 0.152 0.192 0.156 5.58 2.47 2.31 0.82 0.86 201L 201R 1.13 1.54 1.95 2.40 110 8 1.1667 12.50 17.08 0.114 0.9 127 2.284 "134 0.096 0.156 0.192 15.23 9.45 9.90 0.56 0:53 201 aL 201 bR 1.32 1.32 1.88 1.85 111 8 1.1667 4.50 7.50 0.126 0.73 1.44 2.296 306 0.144 0:8 • 0.078 12.54 5.06 1.81 2.00 2.73 0 0 2.00 2.73 112 8 1.1667 1.50 7.50 0.126 • 0.73 1.44 2.296 306 0.048 0.252 0.234 4.18 0.43 0:41 3.79 3.82 0 0 3.79 3.82 113 8 1.1667 1.50 . 7.50 0.126 0.73 1.44 2.296 306 0.048 0.234 0.252 4.18 0.41 0.43 3.82 3.79 0 0 3.82 3.79 201 9 1.1667 3.92 10.80 - " 0.9 1.27 2.17 201 0.225 0.432 0.156 - 7.63 3.42 2.34 1.16 1.41 301L 301R -0.03 0.13 1.13 1.54 201a 9 1.1667 4.17 10.80 0.9 1.27 2.17 201 0.225 0:156 0.156 8.11 2.61 2.61 • 1.38 1.38 302L 302R -0.06 -0.06 1.32 1.32 201b 9 1.1667 2.71 10.80 0.9 ' 1.27 2.17 201 0.225 0.156 0.432 5.27 1.25 2.00 1:53 1.28 303L 303R 0.10 -0.06 1.63 1.22 202A 9 '1.1667 • 2.96 11.96 0.73 1.44 2.17 181. . 0.173 0.432 0.052 5.25 2.04 0.91 1.15 1.50 304L 304R 1.28 1.50 , 2.43 3.00 202B 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.173 0.052 0.216: • 5.32 0:93 1.43 1.49 1.35 305L 305R " 1.50 0.63 2.99 1.97 203 9 1.1667 3.00 11.96 0.73 1144 2.17 181 0.309 0.216 0.312 • 5.32 2.04 2.33 1.16 1.08 0 0 1.16 1.08 204 9 1.1667 3.00 • 11.96 '0.73 • 1.44 2.17 181 "0.225 • 0.312 0,432 5.32 1.95 2.31 1.19 1.08 0 0 1.19 1.08 301 8 0 3.92 13.96 1.27. 1.27 91 0.232 0.384 0.204 2.85 3.29 2.58 -0.03 0.13 0 0 -0.03 0.13 302 8 0 5.79 13.96 1.27 1.27 91 0.232 0.204 0.204 - 4.21 5.07 5.07 -0.06 -0.06 0 0 -0.06 -0.06 303 8 0 4.25 13.96 1.27 1.27 91 0.232 0.204 0.384 - 3.09 2.96 3.73 0.10. -0.06 0 0 0.10 - 0.06 304 8 0 2.96 5.96 1.44 1.44 242 0.232 0.384 0.136 5.72 2.15 1.42 1.28 1.50 0 0 1.28 1.50 305 8 0 3.00 5.96 . 1.44 1.44 242 0.232 0.136 1.104 5.80 . 1.45 4.36 1.50 0.63 0 0 1.50 0.63 Spreadsheet Column Definitions & Formulas ,-- L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L 1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • TRANSVERSE UPLIFT CALCULATIONS - SUMMARY UNIT A Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right • k Simpson k k Simpson k . 102 Wind 21.31 Holdown None 0.00 Wind 20.79 None 0.00 103 Wind 20.79 Holdown None 0.00 Wind 21.31 None 0.00 103A Wind 6.00 Holdown HDQ8 w 3HF 6.65 Wind 6.24 HDQ8 w 3HF 6.65 104 Wind 5.58 Holdown HDQ8 w 3HF 6.65 Wind 6.06 HDQ8 w 3HF 6.65 105 Wind 6.45 Holdown HDQ8 w 3HF 6.65 Wind 6.52 HDQ8 w 3HF 6.65 1 106 Wind 6.52 Holdown HDQ8 w 3HF 6.65 Wind 6.45 HDQ8 w 3HF 6.65 109 Wind 8.45 Holdown HDQ8 w DF 9.23 Wind 8.75 HDQ8 w DF 9.23 110 Wind 8.18 Holdown HDQ8 w DF 9.23 Wind 8:09 HDQ8 w DF 9.23 111 Wind 8.02 Holdown HDQ8 w DF 9.23 Wind 8.51 HDQ8 w DF '9.23 112 Wind 11.44 Holdown HDU14 14.93 Wind 11.46 HDUI4 14.93 113 Wind 11.46 Holdown HDU14 14.93 Wind 11.44 HDUI4 14.93 201 Wind 4.82 Strap MST48x2 5.75 Wind 5.09 MST48x2 5.75 201a Wind 4.95 Strap MST48x2 5.75 Wind 4.95 MST48x2 5.75 201b Wind 5.15 Strap MST48x2 5.75 Wind 4.88 MST48x2 5.75 202A Wind 6.21 Strap MST60x2 8.11 Wind 6.59 MST60x2 8.11 PO 202B Wind 6.58 Strap MST60x2 8.11 Wind 5.91 MST60x2 8.11 _-.) 203 Wind 3.62 Strap MST60 4.06 Wind 3.56 MST60 4.06 204 Wind 3.64 Strap MST60 4.06 Wind .3.57 MST60 4.06 ` 301 Wind 0:83 Strap . MST37 1.79 Wind 0.93 MST37 1.79 302 Wind 0.80 Strap MST37 1.79 Wind 0.80 MST37 1.79 303 Wind 0.91 Strap MST37 1.79 Wind 0.80 MST37 1.79 304 Wind 2.60 Strap MST48 2.88 Wind 2.75 MST48. 2.88 305 Wind 2.74 Strap MST48 2.88 Wind 2.16 MST48 2.88 . -.' ••= `;'• .'• = : ' Fr: ; t ici •C E :•::: = 'IVI ' . 5 iii F , n 0 71 ..1 S 0 9 o rn Z 7 1 p .. 0 ;0 0: cnk4 1 TOC) 0) '", V e)rk k 1 \ O 1 El ,.. 0 -4 01 b = qN 1 s e MSS o 3 C Z F) --I 00 . ° rprod -> poniv 6 z tirrev-4t- Veil 2 = Z n CWO r ' n 7 Coo tsc3,- 7..- 9:e c.. _4_ ki 4 . _t / qt\ 0 0 , 0 ‘Iyx•t) J'aA scy\ 00H, =--- —of, .\ ‘ecf\ d 0 Gli ntaY)) o ri m 0 m , m 0 A- Foo i 1-.) >eN-_, - : s \kYx) freQ 'tc\f) z - , o "D\o■ sW -\%(\\,-- \oor,r) ookm - *DC - Vkt) : syvoi Vo\mv( 0 0 VOCri ..S0Q1 — -lc, v,lit cnc,g ' 103 rOdd 0100 N D ai ue - 9 :31VO :' oN nor o • 0 . ., , , ,... . . . ,,,, . ,1, . . ., . . 5 W TN IS LEt r$$ NLONC- %7H1s LI 14 ...-n 0 P u --: Ri V — i -,., )P (15)' R_ I55 ? / I I O . L ([4) IO TiZEID kS IN 1 ".." tj i I i � � P i _! 9 . c IC _____[ _ _ 0 (-- 0 :::: F ri. . ' 0 ? -2 .1-' 01,,, . . . z . ........ d • . . O G � ❑ 10b SW 115 LC N -�TFt -.11 T AN�wNti 7 AWNJCA T14 LINT: O Z !g V I t cs _3 ,:y . 1 i ..3rvii S HAI L-7/Nov 3-zt.aRm /INN! 4.t.t.1-1WIrl S1-1-11 Nc 0) 0 1 " — - . '+:..:..., -_..i.... iF:e_.iv., -.w�.... t. -e. a4 :.. :ri: £E `� -:.,.,+ I F C n 9 � - O ? _ ,y h; 2 Wo 2 Q. J 3 CA O 1 o 1 o jfl _ o 3ny» sTL i-wvoi Id - -#(T) N' +11L -)N 1 c 5 1 -N1- MS f- . c . . . E. . --i IS ) 5N -- r\-t-ts LeNcnTH ALuvc, vis Lii1/4fc aos ....._ ________,, ,04.. -----_, 1 til 1 ! • I I . .., • : ...... Pt,. • ...----).-- . 1 1 . 11 . 11 .. 10101 . 110101 . 010 I 11 , . ,. • c_____ • ,,, 0 A .-- L i., [.; ,...., , . , I I i . ■ ! 1 i . ,.. , . —11 \ 1....? . 1 f i TI . X 0 9) 'i.1,! r • 0 61 6 LA 51 1) ii ii Vs. •:, r 1 i ,, Iv !; I 1 C7 _ A ',0(::. i • S w 1 . 1 r ■ 1 4 a LE N J C - ‘ r1+' Au,)N.J G - N . 1 1 - 1 1 e t . L I N E : • 3vp S►l-u- - )NQ +.1,1-)ry - Squ, MS -LQ. w �,�C+a ., r ... .. ......,..<.. . .a ie: ..'A :�... -� , — , . , _ r ... r w_r " " t{'n,r L - --.. , j _�. ,..._,._ —el 1- 3 tt u J L �, i M ; a 0 - 7.. r: ir. \i . f �! l 7 . 61 - fe, 0 `~� 9 OE N f gds. L) r•rm ft -t- -) tvl"l ) R MS CC i ,cam BY: AN■C. DATE: ' JO8 NO.: Gem A' ter, G O OF PROJECT: RE: ' 0 c 0\01yo tfCM e r a\- FcOT\ - OP hovsc_, ❑ id - ❑ V Ltrte r. ( a o5 2 4 Wind (co fr s) C.514 0 W oli ph gm tai d'11'� = au Pt O M Q - J /� o o o Ca c I of cm toto .I[-ed Glra ehvu0»1 Is. �S' 1 8o i \.4 = ava 9%-f 0 !. woct_ dred Tint TY\ z 6 /12., Nvc 1;n3 Oct pau _ (ass pi-F-) 1,4� = 351 w = - 0 I M Z 0 U f . m O u. Z w ❑ . Z O O s H a O • C3 o :4' c5 bA z U a x 4- L b BY i - DATE: _. J08 NO.: ( e.r . ivi Oct . C PROJECT: , Ra ° V al- 5 ile RE: Des ,or of r■rn Polac\orn @ Si o it S ❑ ❑ OPTION Z' i J O '*_. 0 W , ~ W o TR113 w!-Dris: ON a! F. 1c1'- VI4 SOI NT = c1 91/2" ; To' 'PLR :MS 18'- 5'S cc o W iS U Z W O Q. E s 1 C-,�i l,.) 'MD Pressure, Z = - 30,0_`opC o r. F. a 1 - 3 -k ID" 'De s \'jn P \o \4-es co 5 :1 S j;i ket - ..y. . - TOP 4LAI B I la' z LiJiP l (J`i vi%d! t Or) CI of I °1'jLF 7 f o G , G --- 1----1- _ _.... -' _.. w T fi ❑ '., e i v a c 0o # gz= l 4 q a, of o - f IL z w ( V j rmx= $ q 6 .35 5 #ct Li 8 . V rn.x = 1 4-a°1 # ' S — 5 � :> = 6 ci t�- /4w'- 1-3.-s c Fb ('r = (8 SOpSL)(i.0( As) = a3k--t( , c (Al2 . N -Jc O. . ..6D r (4F 1 = (SO 5-L (t. :). = at-i 0 i5 7 , q::.Z o:.._ x x 0 NC-, i (1 o e60 2 /9--- L2G A \� 6 \ C A M o 0 DATE: JOB NO.. PROJECT: RE: COPT 10 1 0 2 . ❑ ❑ • Z 2)U1 Up n.rf C. 2ND swot ii W \o& 1 oor\ P t'cin e 3w Two f, 0 1-. W o E ❑ T6b iiJ,a ry or zroiNT - 13` -9n o M lower e� cper = 12.' - O " 0 w 0 Z z Q? Sk W Y.n_d pc es D1 _ - a;o .Q.t! PS F Z Loci c_ CYn bv 0 1 ) b \0 CY.. _ aqs Q t.- . 0 17 ui U Z T T ff rr-- R f Li. Z 1 �� DES � 5 o a (l a$/ 6 ,mA f l q Se. 3 ,S,‘:, = C►,c - /3s.? IT S;66 kN 1 i 42 ' �� c.y 1Z � .S" L A y= Q. C s. a d L,.1. = 0,b � r E 0 gip ▪ ';: d 3 ,1 i S, to _ 0, NJ xm 0 ,,_... 1 - 6.as t- 34,S(0,515) +- .251 a4 , • to, 7-.)ts 3fi s,3 (04- o t ,tai + 0 r y y. 13S 1N3 S\,,,_ .N\,.._ = 0176 # c =. 1 4 - 09 - p5 L, ` Ft; -= (850 p 5 , )0 ,00,o)0 ( 1, 0 - Y I.CS) 4-1 - Flo' =(a aS vpsZXt,tn i3O)(1,of (_), it, _ LSL /q - L3o WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:49:04 COMPANY 1 PROJECT RESULTS by GROUP - NDS 2005 . SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF L = 636..= = =_____- ___ -_�_ _ Mnf Trusses Not designed by request (2) 2x8 Lumber n -ply D.Fir -L No.2 1- 2,0 • By Others Not designed by request (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 Typ Wall Lumber Stud Hem -Fir Stud 2x6 @16.0 SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR Mnf Jst Not designed by request Sloped Joist Lumber -soft D.Fir -L No.2 2x6 @16.0 (2) 2x8 (1) Lumber n -ply D.Fir -L No.2 1- 2x0 (2) 2x8 Lumber n -ply D.Fir -L No.2 2- 2X8 By Others Not designed by request By Others 2 Not designed by request (2) 2x12 Lumber n -ply D.Fir-L No.2 2- 2x12 5.125x10.5 Glulam - Unbalan. West Species 24F -V4 OF 5.125x10.5 4X6 Lumber -soft D.Fir -L No.2 4x6 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 4x6 Lumber Post Hem -Fir No.2 4x6 (3) 2x6 Lumber n -ply Nem -Fir No.2 3- 2x6 (2) 2x4 Lumber n -ply Hem -Fir No.2 2- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 916.0 SUGGESTED SECTIONS by GROUP for LEVEL 2 - FLOOR ==== Mnf Trusses =_= = = �� s Not designed by request =____ = = = = =L == • Mnf Jet Not designed by request Deck Jst Lumber -soft D.Fir-L No.2 2x8 916.0 (21 2x8 Lumber n -ply D.Fir-L No.2 2- 2,0 3.125x9 Glulam - Unbalan. West Species 24F -V4 DF 3.125x9 43E6 Lumber -soft D.Fir -L No.2 4x6 By Others Not designed by request • By Others 2 Not designed by request (2) 2x10 Lumber n -ply D.Fir -L No.2 1- 2x10 ' 5.125X12 GL Glulam - Unbalan. West Species 24F -V4 DF 5.125x12 By Others 3 Not designed by request 3.125x14 LSL 1.51. 1.55E 2325Eb 3.5x14 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 4x4 Lumber Post Hem -Fir No.2 4x4 4x6 Lumber Post Hem -Fir No.2 4x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 6x6 Timber -soft Hem -Fir No.2 6x6 ' (2) 2x4 Lumber n -ply Hem -Fir No.2 2- 2x4 6x6 not Timber -soft D.Fir-L No:1 6x6 (3) 2x4 Lumber n -ply Hem -Fir •No.2 3- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 @16.0 SUGGESTED SECTIONS by GROUP for LEVEL 1 - 81.00A = = == =� = = = = = =� == ^ u Not designed request �_ Fnd CRITICAL MEMBERS and DESIGN CRITERIA Group Member Criterion Analysis /Design Values . = Mnf Jot =____� = == Mnf Jst Not designed by request ===== == ________ _ _ Deck Jai j65 Bending 0.41 Sloped Joist j30 Bending 0.10 Floor Jst4 unknown Unknown 0.00 (21 2)78 (1) b35 Bending 0.47 • (2) 2,0 b8 Bending 0.89 3.125x9 b3 Bending 0.06 4x8 b30 Bending 0.12 By Others By Others Not designed by request By Others 2 By Others Not designed by request (2) 2x12 b6 Bending 0.93 (2) 2x10 bl Shear 0.78 5.125X12 GL b10 Bending 0.76 • By Others 3 By Others Not designed by request 5.125x10.5 b9 Deflection 0.95 406 b20 Bending 0.08 3.125x14 LSL b14 Deflection 0.73 (2) 2x6 c2 Axial 0.91 4x4 c55 Axial 0.07 4x6 e23 Axial 0.80 • (3) 2x6 c29 Axial 0.75 6x6 e26 Axial 0.70 (21 2x4 c39 Axial 0.62 6x6 nol c12 Axial 0.86 (3) 2x4 c31 Axial 0.89 Typ Wall w14 Axial 0.48 Fnd Fnd Not designed by request ________- ______ = = = )sm===sue _ __ _- _ DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate = -= for your application. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result is considered the final design and appears in the Materials List. 3. ROOF LIVE LOAD: treated as w load with corresponding esponding duration factor. Add an empty roof level to bypass thisinterpretation. 4. BEARING: the designer is responsible for ensuring that adequate bearing is provided. 5. GLULAM: bxd = actual breadth x actual depth. 6. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 7. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 8. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that ' each ply is equally top - loaded. Where beams are side- loaded, special fastening details may be required. . 9. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 10. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:41:17 Concept Mode : Beam View Floor 2 : 8 ' ta N ��D b31 N 1050 a - 4 104 425 -b' iiiig - IUL 40 / E ! - - I UU . , - 44 -0 y g 43 b VD r . ' b1 - - 4L -0 1 JO 4 U'- yb i i 3 J' b J 1. 35 25y : b2 33'-0 25 _ 60 - . 253 L! -0 LO 'b 40 0 t5U- - :'' :b10 L4 b b 3 3 - W -b its 0 11 -0 /L._._. _ -- - _- - b32.. • - -- : -- . ... - . !0 -b 14 0 bu_....b1015 b/ bb... IG -b -- - -- (u b 0 _ 0G, 25 -0 1 -0" i b4 b14 . • ._ b b ' bu' b30 : b3 _.. __ .� 4 -0 • b 2 _ b : . :: : ,..•.„ . :. G 0 ! 0 . ,...,...e, 881B .B BC CCCCCC C iCCC CC CCCC C C CC CCICC CD DDD D DD DEDD CD DD DD D D DD CD 6 E E EEEEFEEEIEEiEEEEEEEHEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16'18' 20' 22'24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 4-4' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 - 1; - i :1 Z (22.2:2 2(2 :3<3'3i3 "313(4(4 4:4 :4414(4 4(4(53 5:5:5.5!5(55(5S6t6 6:6:6 "6(6171' 7(77' -6" 141— (-'1 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:41:19 Concept Mode: Column View Floor 2: 8' VAN r LOP( D 1050 • ■ c58 -- -- ❑ .. N 49 -6 ..,[ :: tVU0 44' 0.. y9 :: - - 43 - • V0 : . C69 - . C2 'C70 . C71 ; C 7 1 : - : ' ? - • • : - - - - 4G -0 J4 _ .. 321-0 y3 : 1 : - .. - 3/ 0 y i : . : 0 : 30-0 y 00 _- _ - __ _ __ _ _- _ ___ - _. 3L -0 0 / : . : : .:. .: • . 61 -0 210-- ._...:_ :: --- - - c4 -__...- - - - - -- - -- - - - --- - - -._ _. - "--- ---- 6Vy-b .: ' :. - . . .. Ly -b 213 L/ -b 01 - 25 -b t :. i c25 c12 y - . c26 • L4 -b ..-, _ -:cZ �.-'- - -=- --Q. ..< : -- .. _ _. _ ... - - - - _...---- Lu-0 / o c73 /L . • C3 10.x.. JU __ - - -- -- -'-- --- WS_ .c77 -._ • - - ` '. _ _:.-` . _..:. _ ._ .: --- - -- - -- .. _ iz-b _ - 1 1 -0 00 - -- • - - - ---'- - - -- -- - - - - - - 00 - : . ---- - - y-b 04)_ c31 - -: -�c76 -- -- - -- :c79 : : - -- - - -- -- . -- - • - .. 0 bL,i I7 O4 r' c30 : : 0 c32 . [ : . • 13 i - • - - - ._...._. - 4-0 _ C55 C : . : � 0 B1B. 66CCCCCCCCFCCCCCCCCCCCCCCCiCCCD D FD DDDDDDDDCDDD- DDDDDDCD?DDDE. EEEE:EEEFEEEiEE!EE'EEEEEEIEEEEZ V B 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48` 50' 52' 54' 56' 58' 60' 62' 64' 60 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 '1:1 :1 it T1 ( 112( 22: 2:22!2f2"2i22(33 :3:3 4:4:4“1(414 55:5.5 :5(5:5(5b468:6 :6ro 616fi:67G 7:77'7.7477' -6" 4 G(3 WoodWorks®Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 24, 2010 13:14:33 Concept Mode: Beam View Floor 2: 8' I(ZUX� � 1050.... • . b31 , �`-- 49'-6:, 104 :: •. -: . 425-0 I UG - - - 4b -b 10 1 100 : ; ' 44 - r .. - - -- - n y9 - 43-b y ts 034 4L -b y! ■ 4I -b 4U b y 4 - _ :_ - - .. _ - ... 323 -b 3 y l 3b -b q u a b2 -n : tan tsa ill -b L L25 -0 Z b 23 L5 -0 ry 010 ± GS' -b /0 my LL n . . . ...................... U L . I . If -b !G in -n r I b32 :. __.. _ 13 -b 025. - - 010 15 - -- - - - -- - - - - -- . - b r n b _� OD : .. b41- - -. � 3 = : - -- . -- - - -.-. .- .". -- - - -- Ii IU' b y -0 nzs ■ b4 b14 ■ . b n.. t b30�'— - - - b35 1 - s - b �" 3 - --- • - -- - - - - - -- - 029 n 1 BB1B.B BC CCC C CC C ECCC CC C CCC C C CC CCCC CDDDD D DD DtODD CD DD DDD D DD CDIDD DEE E E E EEEI EEEtEEIE EEEEEE €tEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5 1 :1 :1 222 (2 4:4:4-4!4(4 5:5 :5.5.5(5 {516(6 6:6:6.6'.6(6'6E6g17 77;7 - 6" 4 - GL-1 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 24, 2010 13:14:35 Concept Mode: Column View Floor 2: 8' Q 0 � U) -s c58 c14 r �JVJ� °4 " 0 . :: . : .. " , . 40 t U3� 4! -b • tUlb '- - - - ---- - -- -' 44 -b tUU J9 _. V0 -c82. ,• .° c81'" • .. _ -. _ 43 b • J/ ...D. :. _.. E} -- - - -':- - -- _ -- - --- - -- - - : _ - - - - 4U -0 J5 Jb . . 3J b : - -- Sl -b Sn b V I : . : --- - - - - - .30 -0 - D -b 33 • SL b • t5b C4 03 _ .. L • t54:-- .: _ . . - .:_. D -. : . • . . .1� b . : - • . , :I - - c25 c12 - - c26. is n • ! is D D D c72 . . ' rr LL n b 1b c2 ©c73 �y rb . 10 . -0 iG._ C78.: __:. _.:._:_ ii Ir b _ _ to b .. 10 . 47 . !U _ . - - - - -- -'-- - - - • - - -- -- .. '14-0 b25 : c77 . - _... -- - -' ._ _ _ _ .- --.. . 1 1 / - 0 . • 00 _ bL c30 ©c32 i51 -- -- n - _ .. -- - - --- • . .. .. _ - b b bU Y . ..;Cb /G7U - - • 4-0 c55 c56E'°�` o n .. • .BB1B.8 BCCCC CCC CFC.CC CC CCCC C C CC CC \CC CD DDD D DD DtODD DD DD•DD D D DD CD1DD DEE E E E EEEFEEEEEE E'EEEEEE }EEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'21(1 (111 1 2(2222 5 5 (5"5(516166:6 :6 :7 -6" 4 - C.-i- WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:44 Concept Mode: Beam View Floor 3: 17' 1050 49 -6 1114 b.. IUS ! --� -. -- -" - - -- - -- - -- -- 4 /' -b IUIl -- _ - ` --* - -- - 40 -0 9 -- - 43-0 `V0 b35 b 6 : , _ - 4L -b yb - - 41 b.. 40 -b' JD ' Sy b `J3 VL , .. 30 -0 Vi '.. 60 b' JU 34'-b LSJ b7 Si-b LS ( 3 1 -b Lib -.... : -- -.' -- ..- _ - - 3U -b LSD - .. • L�J " -b .. 03 L!' b" • - 0 I Lb - b tSU L (y : L.3- LL -0 ! / b 1 - b /b . ..,• _ . LU b (a IV -0 10-0 fi b20 -b21_._. -, : 10-0 14-0 00_ _ b11•17- Ic-b bb : oz? . b8 tit -- - ._. . -_. ,...,-- - - --..: - :.. - - - - 4 -b . -b . - 1-0 BB1 BBBCCCCCCCCI CCCCCCCCCCCCCCCICCCDDDDDDDDIDDD "CDDDDDDDDDCDIDDDE.EEEEiEE fEEE:EEIEEEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 166' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 75' 0'1'2'3'4'5'6'7'8'91(1 1;1:1.1'1(1 222 4:4:4.4!4(4'4!4;5(5 '5:5:5 "6(6 7,7:7 -6" . 4 - ( L WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load Woodworks® Sizer 7.1 June 24, 2010 12:58:42 Concept Mode: Column View Floor 3: 17' 1056. 49' -6" 7 V4 42S - i UL - 40 -0 . - - •IUI --- .. - - -.. - 40 -0 • IVU - - - .. _ - --- - - - - - -- - 44 -0 y9- .: 4 y23 c62 c61 :: c15 - c16 - 44 -b 4U -t5 4 - :: . - .. - - ' i -: [ - - - _ ,50.-0 3(•-b • V I : ® • ' S6 -O • 023 -- ; - - .. ; -- --- --- - - ---- -- - - - -- - - - ...- - SG -0 • 01 S . 1 _ • t3b r - --= - C18- - - - "- - . ill -b 265 ' . . C ; .: ; . ; .. - 1.-.0 0.5 L / - . : ' a l LD•-b• bU c39 c24 c23 L4 -b" • ry _ LS -n • f7 • : 0 - IJ._b. f 4 �- " - ---- - - :.. -- - -- ' =t - - - - ... 123 - b' /l C37� - - - -' - -- - - - - -- ..- - - iD-b • -- .. .. -- -.. - - - •14-0 -. - . - - - - 1.-b. b23 - - .C35.._ - - • :. -� -- - - -- . : • . IL -b or 1 1 -u • 00 - - - - - -- - -- -- "- - - - - - .. .IU._b. b4) - :f• •7)- c66 - " -- - c63'- :. 23 -b • uL '1- II:. t c 756520 c1'c6c74 n b bU - 4 -b : L • I b 1 U-0 .61111B.B BC CC C CC CiCCC CC CCCC C CCC CCICCCDDDD D DD DODDD CD DD'DD D D DD CD\DDDE.E E E E E EEFEEEIEEIE EjEEEEEEEEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 13' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42'44' 46'48' 50' 52' 54' 56' 58'60' 62' 64' 66' 68' 70 74' 76' 0'1'2'3'4'5'67'8'9111 1:1 :1 2122;22 212 2i 2c.3t33:33 - 414 5: 5: 5 5t515 7.7:7 -6" • / 4 1 --. ---- (1_,';'...1.' WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:38 Concept Mode: Beam View Roof: 25' • 49'-6 t U4 - 40 0 I U.S. - _ 4/ -0.. 11.12 : _ .. - -- 40-23 IUI _ : -- 423'-0' 1VU - .. - _ - - .. 44 -0 y0 :023 2324 - 4L -0 /- - ... 'x - 42- .._._:_.__.: -- -- -- _. -- -- -- -- - - 4'1 -0 ---- --...- - - - -- r- .._ VZ ; .:. ! :' : .. .; .. .. _ ... - - - -- -- .. 327 -0 J I 323 -b - 34 -0 0y : 33'-0 0/ : ! i 31 -b 00 L`J -23 254 - - - -:--:;,.._. -.; : - -- - - - - - : ' : - : :': -- -- . - - - - - - - - - - - - - - -- -- - - - -.--- - - - 225 -0 253 2 / =0 Lry -b 01 L5 0 LSV ': . -- - -' -- - -- - . -- ' -- - - L4 -0 (J - - _ .. t3_0. 10- ._` .'. '--,-' .` .... :. ... ..: . :..._..:- - - - -- - - --- -_ .----- ._ - ---- - - -- -- - - - LL -b . ! 2 (t i _ 025:_ . 25 L 1 23 14 = - - -- -- -. .. 1-0 /3 - - : l(-0 _ .. - -- (U_....: -i .i ; _._.._ _'__• _ -- .. .__ ... 14 b by is ... :- : .: : _ - _. : 13-0 00 '. _ 1 L -0 00....:_ .: ' : : : _ _. - - - -- -- - b . 04 ) _ ! b27' : : :..a : b d -0 04 i no 13i u1 b b - . . iii ' - - -. ; .. - . _ 4 -0 __ - - ___ __ -__ .. _._. _ -__ ___ ___._ _ -__. - - 3 -0 i Lb i -b BBIB.B BCCCCC 'DDDE,EEE E EEEFEEEEEEEEEEEEEEEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'678'9111 1;1:1 22:2 5: 5: 5. 5! 5( 5 5i5s6( 68 :6 :66'666670 '777 ie.7 .-- (I?, . WoodWorks®Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:40 Concept Mode: Column View Roof: 25' 1050 499 -6" 104 - 4 O 7UL - - .. _ - 4/ 0 to - J J 4.5 0 JO C42 c43 C44 C45 : : G -b !- al• - -... 4U b JO. .__ J4 .. _ .. - .. : .. . - .50'-0 yS . 1- b VG Sb b J7 - -. - -- -" - - - -- - -_ 00 - ._. ..; ..., -- -_ = .. - -- - - - • - --- --- -- - - - - - -- - - - --- -- -- --. SS b' O/ :. .. _ SL b 0b. _ : OD ,10 -b L y. -0 03 L! - 07 L5'-b' 00 :. . _ . ..; 4 -b 1 / c46� _ _ lb b I ( _ - - __ 10 ' (U _. -..: _. - - - _. 74 -b by _ I,/ -0 00.--- :. -- - :..1 .. .. .. .. ... _ 04 c51050- c52... c 53 :. 21-b b OV S -0 I O BBB 1.B BC C C C CC CFCCC C C CCCCC CCC CCt DDD DDD D }DDD CD D D DO D D DD CDIDD DE E E E E EE EFEEEEEE EEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42 44'46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'9111 1 :1: i t 1'1112(2 2 :2:722(2 212f3(33 :33 4:4:44'.4(4 4!4(5(5'5 :5 :5 6t6 E :6 :6m'.6(6T627(7 77:7<<.7177' -6" / """ G9 COMPANY PROJECT 1 WoodWorks® SOFTWARE fOR WOOD DESIGN June 24, 2010 12:42 b1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w61 Dead Partial UD 613.2 613.2 2.50 3.00 plf 2 w61 Snow Partial UD 795.0 795.0 2.50 3.00 plf . 3 Dead Point 622 2.50 lbs 4_c61 Snow Point 1192 2.50 lbs 5_j28 Dead Full UDL 47.7 plf 6_j28 Live Full UDL 160.0 plf 7_j33 Dead Full UDL 120.2 plf 8 j33 Live _ Full UDL 370.0 plf • MAXIMUM RE p o 1 0' 31 Dead 391 1061 Live 795 1615 Total 1186 2676 Bearing: Load Comb #2 #3 Length 0.63_ 1.43 • Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2 -Plys Self- weight of 6.59 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv* = 67 Fv' = 207 fv * /Fv' = 0.32 Bending( +) fb = 331 Fb' = 1138 fb /Fb' = 0.29 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.15 = L/240 _ 0.05 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 2676, V design* = 1237 lbs Bending( +): LC #3 = D +.75(L +S), M = 1178 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 158e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 4- _ 6 0 COMPANY PROJECT r 1 WoodWorks® SOFTWARE FOR WOOD DEVON June 24, 2010 12:43 b3 Design Check Calculation Sheet Sizer 7.1 • LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j45 Dead Full UDL 17.0 plf 2 j45 Live Full UDL 25.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : A Ip' gl Dead 106 106 Live 112 112 Total 218 218 Bearing: - Load Comb #2 #2 Length 0.50* • 0.50* *Min. bearing length for beams is 1/2" for exterior supports Glulam- Unbal., West Species, 24F -V4 DF, 3- 118x9" Self- weight of 6.48 pif included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : • Criterion Analysis Value Design Value Analysis /Design Shear fv = 10 Fv' = 265 fv /Fv' = 0.04 Bending( +) fb = 140 Fb' = 2400 fb /Fb' = 0.06 Live Defl'n 0.01 = <L/999 0.30 = L/360 0.04 Total Defl'n 0.03 = <L/999 0.45 = L/240 0.06 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Ervin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 218, V design = 182 lbs Bending( +): LC #2 = D +L, M = 491 lbs -ft Deflection: LC #2 = D +L EI= 342e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). • COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:40 b6 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 c44 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 c45 Dead Point 444 5.00 lbs 6c45 Snow Point 647 5.00 lbs 7 _ w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8_w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9 j25 Dead Full UDL 120.2 plf 10 j25 Live Full UDL 370.0 _ plf MAXIMUM REACTIONS (Ibs1 and BEARING LENGTHS (inl : Cgi o' s Dead 1436 1389 Live 1803 1803 Total 3239 3192 Bearing: Load Comb #3 • #3 Length 1.73 _ 1.70 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L -live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR W000 DESIGN June 24, 2010 12:50 b8 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1_j14 Dead Full UDL 113.7 plf 2 j14 Live Full UDL 350.0 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : • A 1, 64 Dead 357 357 Live 1050 1050 Total 1407 1407 Bearing: Load Comb #2 #2 Length _ 0.75 0.75 • Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 pif included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 77 Fv' = 180 fv /Fv' = 0.43 Bending( +) fb = 963 Fb' = 1080 fb /Fb' = 0.89 Live Defl'n 0.07 = <L/999 0.20 = L/360 0.33 Total Defl'n 0.10 = L/712 0.30 = L/240 0.34 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 1407, V design = 1123 lbs Bending( +): LC #2 = D +L, M = 2110 lbs -ft Deflection: LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 4-G COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:40 b9 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j50 Dead Partial UD 113.7 113.7 0.00 1.50 plf 2_j50 Live Partial UD 350.0 350.0 0.00 1.50 plf 3_j14 Dead Partial UD 113.7 113.7 3.00 9.00 plf 4_j14 Live Partial UD 350.0 350.0 3.00 9.00 plf 5_j51 Dead Partial UD 113.7 113.7 1.50 3.00 plf 6_j51 Live Partial UD 350.0 350.0 1.50 3.00 plf 7_j24 Dead Partial UD 120.2 120.2 0.00 3.00 plf 8_j24 Live Partial UD 370.0 370.0 0.00 3.00 plf 9 j25 Dead Partial UD 120.2 120.2 3.00 9.00 plf 10_j25 Live Partial UD 370.0 370.0 3.00 9.00 plf 11j26 Dead Partial UD 120.2 120.2 9.00 12.00 plf 12_j26 Live Partial UD 370.0 370.0 9.00 12.00 plf 13j52 Dead Partial UD 113.7 113.7 9.00 10.50 plf 14_j52 Live Partial UD 350.0 350.0 9.00 10.50 plf 15_j53 Dead Partial UD 113.7 113.7 10.50 12.00 plf 16 153 Live Partial UD 350.0 350.0 _ 10.50 12.00 plf • MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : L A • 1p, 121 Dead 1478 1478 Live 4320 4320 Total 5798 5798 Bearing: Load Comb #2 #2 Length 1.74 1.74 Glulam- Unbal., West Species, 24F -V4 DF, 5- 118x10 -1/2" Self- weight of 12.39 plf included in loads; Lateral support top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 138 Fv' = 265 fv /Fv' = 0.52 Bending( +) fb = 2217 Fb' = 2400 fb /Fb' = 0.92 Live Defl'n 0.38 = L /381 0.40 = L/360 0.94 Total Defl'n 0.57 = L/252 0.60 = L/240 0.95 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 5798, V design = 4953 lbs Bending( +): LC #2 = D +L, M = 17395 lbs -ft Deflection: LC #2 = D +L EI= 890e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of F,cp(tension), Fcp(comp'n). Ci ,4 COMPANY PROJECT i WoodWorks® SOFIWAREFORWOOOOf5IGN June 24, 2010 12:43 b10 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Pat - Start End Start End tern 1 w39 Dead Partial UD 311.0 311.0 0.00 4.50 No 2 w39 Live Partial UD 680.0 680.0 0.00 4.50 No 3_c39 Dead Point 267 2.00 No 4 Live Point 822 2.00 No 5 j32 Dead Partial UD 120.2 120.2 0.00 0.50 No 6 Live Partial UD 370.0 370.0 0.00 0.50 No 7 Dead Partial UD 120.2 120.2 1.00 4.00 No 8 Live Partial UD 370.0 370.0 1.00 4.00 No 9 Dead Partial UD 120.2 120.2 4.00 4.50 No 10_j34 Live Partial UD 370.0 370.0 4.00 4.50 No 11 j35 Dead Partial UD 120.2 120.2 4.50 7.50 No 12 j35 Live Partial UD 370.0 370.0 4.50 7.50 No 13_j36 Dead Partial UD 113.7 113.7 4.50 16.50 No 14_j36 Live Partial UD 350.0 350.0 4.50 16.50 No 15j37 Dead Partial UD 100.7 100.7 3.00 4.50 No 16 j37 Live Partial UD 310.0 310.0 3.00 4.50 No 17_j47 Dead Partial UD 120.2 120.2 7.50 13.50 No 18_j47 Live Partial UD 370.0 370.0 7.50 13.50 No 19_j48 Dead Partial UD 120.2 120.2 13.50 16.50 No 20 j48 Live Partial UD 370.0 370.0 13.50 16.50 No 2049 Dead Partial UD 120.2 120.2 0.50 1.00 No 22 j49 Live Partial UD 370.0 370.0 0.50 1.00 No 23 Dead Point 300 3.00 No 24 Live Point 922 3.00 No MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : J.. ID 4'-6" 16.61 - Dead 452 4067 1180 Live 847 11291 3436 Uplift 12 Total 1300 15358 4616 Bearing: Load Comb #2 #2 #2 Length 0.50` 4.24 1.27 Cb 1.00 _ 1.09 1.00 'Min. bearing length for beams is 1/2" for exterior supports Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x12" ' Self- weight of 14.16 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 265 fv /Fv' = 0.60 Bending( +) fb = 1074 Fb' = 2400 fb /Fb' = 0.45 Bending( -) fb = 1396 Fb' = 1844 fb /Fb' = 0.76 Live Defl'n 0.13 = <L/999 0.40 = L/360 0.32 Total Defl'n 0.19 = L/740 0.60 = L/240 0.32 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fb'- 1850 1.00 1.00 1.00 0.997 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 8357, V design = 6496 lbs Bending( +): LC #2 = D +L, M = 11006 lbs -ft Bending( -): LC #2 = D +L, M = 14310 lbs -ft Deflection: LC #2 = D +L EI= 1328e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming toAITC 117 -2001 and manufactured in accordance with ANSI/AITC A190.1 -1992 3. Grades with equal bending capacity in the top and bottom edges of the beam cross- section are recommended for continuous beams. 4. GLULAM: bxd = actual breadth x actual depth. 5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 6. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4 _ ci(ic COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DEMON June 24, 2010 12:44 b13 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2_w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 c40 Dead Point 217 5.50 lbs 4_c40 Live Point 668 5.50 lbs 5_c67 Dead Point 518 5.00 lbs 6 c67 Snow Point 778 5.00 lbs 7 Dead Point 573 3.00 lbs 8 c68 Snow Point 942 3.00 lbs 9 w59 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10 w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 1037 Dead Partial UD 100.7 100.7 6.50 8.00 pif 12_j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13_j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14_j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16_j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 18 - b15 Live Point 389 3.50 lbs 19 - b32 Dead Point 225 6.50 lbs 20 Live Point 693 6.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : ---mo w - _ - :s-- _ - 27 , .-. , -- °rte" -- ,.. - r - .c _: . _; � _.: ...mss 4a - -.12. " . .4L",t...- ,y.�- - ∎ - -f.. .. .. g . 10' 81 Dead 2561 3033 Live 2699 3789 Total 5261 6822 Bearing: Load Comb #3 #3 Length 1.88 2.44 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NOS 2005: Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L/680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emirs' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC #3 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S -snow W =wind I- impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. • K --- 6,1 1 (0 COMPANY PROJECT f fl WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:43 b14 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w33 Dead Partial UD 317.7 317.7 9.00 12.00 plf 2 w 33 Live Partial UD 350.0 350.0 9.00 12.00 plf 3 - c19 Dead Point 357 9.00 lbs 4 c19 Live Point 1050 9.00 lbs 5 c20 Dead Point 357 3.00 lbs 6 c20 Live Point 1050 3.00 lbs 7 Dead Partial UD 317.7 317.7 0.00 3.00 plf 8 - w34 Live Partial UD 350.0 350.0 0.00 3.00 plf 9 c64 Dead Point 165 10.50 lbs 10 c64 Snow Point 225 10.50 lbs 11 Dead Point 165 1.50 lbs 12 c65 Snow Point 225 1.50 lbs 13 j36 Dead Full UDL 113.7 plf 14 j36 Live Full UDL 350.0 plf 15_j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 16 j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 17D44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 18 j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 19 j45 Dead Partial UD 17.0 17.0 1.50 10.50 plf 20_j45 Live Partial UD 25.0 25.0 1.50 10.50 plf 21_j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 22 j46 Live Partial UD _ 25.0 25.0 10.50 12.00 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : s..._ . . --. :- -, `""...r- , r_- .r .. - `o- -•" -02.,. -„�. �-- r_ a '" ..., ,w � ' �� .....s _I...4 ' .,, :'° - -I..'s....-'- `+war -.' "" ., .!s.. +- .,,r -'' ••i.. _.--- 1 0' 121 Dead 2351 2351 Live 4350 4350 Total 6701 6701 Bearing: Load Comb #2 #2 Length _ 2.39 _ 2.39 LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight 0815.31 plf included in loads; Lateral support top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 163 Fv' = 310 fv /Fv' = 0.52 Bending( +) -fb = 1769 Fb' = 2325 fb /Fb' = 0.76 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.43 = L/333 0.60 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 6701, V design = 5314 lbs Bending( +): LC #2 = D +L, M = 16851 lbs -ft Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. /9 "-- LA :'I COMPANY PROJECT 41 WoodWorks® SOFTWARE FOP W000 DESIGN June 24, 2010 12:41 b20 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j30 Dead Full UDL 21.7 plf 2 j30 Live Full UDL 60.0 plf MAXIMUM REA(_TIANS (Ihsl and RFARINC. 1 FN(ITHR /in1 • A 10' 3 ' - Dead 46 46 Live 105 105 Total 151 151 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x6" Self- weight of 4.57 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 9 Fv' = 180 fv /Fv' = 0.05 Bending( +) fb = 90 Fb' = 1170 fb /Fb' = 0.08 Live Defl'n 0.00 = <L/999 0.12 = L/360 0.02 Total Defl'n 0.00 = <L/999 0.18 = L/240 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 151, V design = 111 lbs Bending( +): LC #2 = D +L, M = 132 lbs -ft Deflection: LC #2 = D +L EI= 78e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 14L- rrO COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:50 b30 Design Check Calculation Sheet Sizer 7.1 LOADS ( ibs, psf, or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j41 Dead Partial UD 68.0 68.0 2.00 4.00 plf 2_j41 Live Partial UD 100.0 100.0 2.00 4.00 plf 3_j42 Dead Partial UD 72.2 72.2 0.00 2.00 plf 4 j42 Live Partial UD 106.2 106.2 0.00 2.00 plf MAXIMUM REACTIONS 11hs1 and REARING 1 FNGTHS lint I 4 A Dead 154 150 Live 209 203 Total 364 353 Bearing: Load Comb #2 #2 - Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x8" Self- weight of 6.03 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 15 Fv' = 180 fv /Fv' = 0.08 Bending( +) fb = 140 Fb' = 1170 fb /Fb' = 0.12 Live Defl'n 0.00 = <L/999 0.13 = L/360 0.03 Total Defl'n 0.01 = <L/999 0.20 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 364, V design = 253 lbs Bending( +): LC #2 = D +L, M = 359 lbs -ft Deflection: LC 02 = D +L EI= 178e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. /4- 6 19 COMPANY PROJECT i WoodWorks® SOFTWARE FOR W000 DESIGN June 24, 2010 12:42 b31 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j65 Dead Partial UD 47.7 47.7 0.00 4.00 plf 2_j65 Live Partial UD 160.0 160.0 0.00 4.00 plf 3_j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4_j28 Live Partial UD 160.0 160.0 4.50 7.50 plf 5_j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 6j62 Live Partial UD 160.0 160.0 7.50 11.00 pif 7_j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 8_j63 Live Partial UD 160.0 160.0 11.00 17.00 plf 9_j64 Dead Partial UD 47.7 47.7 17.00 20.00 plf 10_j64 Live Partial UD 160.0 160.0 17.00 20.00 plf 11_j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 12 j66 Live Partial UD 160.0 160.0 4.00 4.50 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 1 I0 201 Dead 619 619 Live 1600 1600 Total 2219 2219 Bearing: Load Comb #2 # Length 0.67 0.67 Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x12" Self- weight of 14.16 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : • Criterion Analysis Value Design Value Analysis /Design Shear fv = 49 Fv' = 265 fv /Fv' = 0.18 Bending( +) fb = 1082 Fb' = 2400 fb /Fb' = 0.45 Live Defl'n 0.43 = L /553 0.67 = L/360 0.65 Total Defl'n 0.69 = L /350 1.00 = L/240 0.69 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 2219, V design = 1997 lbs Bending( +): LC #2 = D +L, M = 11095 lbs -ft Deflection: LC #2 = D +L EI= 1328e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4 _ r COMPANY PROJECT ' i WoodVVorks June 24, 201015:15 934 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Steer 7.1 LOADS (ms, pa. oron) Load Type Distribution Magnitude Lo7atlon 1ft1 Unite Start End Start End • 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf • 2 /162 Snow Partial UD 195.0 195.0 0.00 2.00 plf 5w29 Dead Partial UD 617.5 611.5 1.50 11.00 pif 529 Snow Partial UD 901.2 901.2 7.50 11.00 pif 5:e15 Dead Point 1426 11.00 lbs 6_:15 Snow Point 2404 11.00 lbs _016 Dead Point 1389 17.00 lbs 6_016 Snow Point 2404 1 1b. w61 Dead Partial UD 617.5 611.5 17.00 19.00 pif 00 064 Snow Partial UD 901.2 901.2 17.00 18.00 plf 11 061 Dead Point 622 7.00 lb. ' 12 Snow Point 1192 7.00 1b. 13:62 Dead Point 622 4.0C lbs _ :62 Snow Point 1192 4.00 lb. 15 063 Dead Partial UD 613.2 613.2 2.00 1.00 plf 165463 Snow partial U0 7 95.0 795.0 2.00 1.00 pif 175465 Dead Partial UD 617.5 617.5 19.00 20.00 pif 195465 Snow partial UD 001.2 601.2 18.00 20.00 plf 19 w71 Dead Partial UD 613.2 613.2 7 .00 7.50 pif 20 Snow Partial VD 7 95.0 795.0 7.00 7.50 pif 21 364 Dead Partial UD 47.7 47.7 17.00 19.00 pl! 22_364 Lire Partial UD 160.0 160.0 1 18.00 pif 23_129 Dead Partial UD 41.7 47.7 4.50 7.50 p1! 24_129 Live Partial UD 160.0 160.0 1.50 7.50 pif . 25_162 Dead Partial UD 17.1 47.7 7.50 11.00 pif 26_162 Live Partial UD 160.0 160.0 7.50 11.00 pif 1_349 Dead Partial UD 120.2 120.2 0.00 2.00 pif 29 349 Live Partial UD 310.0 370.0 0.00 2.00 pif 29132 Dead Partial UD 120.2 120.2 3.50 4.00 plf 30 332 Live Partial UD 370.0 370.0 3.50 4.00 plf 31_131 Dead Partial UD 120.2 120.2 4.50 7.50 p1! 32_333 Live Partial UD 370.0 370.0 4.50 7.50 pif 33_334 Dead Partial UD 120.2 120.2 7.50 3.00 pif . 34_134 Live Partial UD 370.0 310.0 1.50 9.00 pif • 35_335 Dead Partial ID 120.2 120.2 9.00 11.00 pif 36_335 Live Partial UD 370.0 370.0 8.00 11.00 pif 37_347 Dead Partial U0 120.2 120.2 11.00 17.00 plf 39_147 Live Partial UD 370.0 310.0 11.00 17.00 plf 39_367 Dead Partial UD 120.2 120.2 2.00 3.50 pif 1 367 Live Partial UD 370.0 370.0 2.00 3.50 pif 41_149 Dead Partial UD 120.2 120.2 4.00 4.50 pif 42_149 Live Partial UD 310.0 370.0 4.00 4.50 plf 43_763 Dead Partial 00 47.7 47.7 11.00 17.00 pif 14_363 Live Partial UD 160.0 160.0 11.00 17.00 plf 45_165 Dead Partial UD 47.7 47.7 18.00 20.00 plf 4 365 Live Partial UD 160.0 160.0 19.00 20.00 plf 41 366 Dead Partial UD 47.7 47.7 4.00 4.50 pif 42_166 Live Partial UD 160.0 160.0 1.00 1.50 plf 49_169 Dead Partial UD 120.2 110.2 17.00 19.00 plf 56369 Live Partial UO 370.0 370.0 17.00 13.00 plf , 51_169 Dead Partial 0D 120.2 120.2 16.00 20.00 plf 52_363 Live Partial U0 370.0 370.0 19.00 20.00 pif 51_1 Dead Partial UD 47.7 47.7 2.00 4.00 plf 54_172 Live Partial UD 160.0 160.0 2.00 4.00 pif 55_173 Dead Partial UD 47.7 47.7 0.00 2.00 pif 56 173 Live Partial UD 160.0 160.0 0.00 2.00 0lf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (In) : Dead - t,405 - 1327, Live 9956 9979 Total 17361 17305 Searing: Load C:rb f3 43 Lane, 5.21 _ 5.9 • Glulam -Bal., West Species, 24F -V8 DF, 5- 118x22 -1/2" 5 owbr8 0126.55 pD Included In ORR. Laval support lope full, mean• m .Upped.: Analysis vs. Allowable Stress (psi) and Deflection (in) ,,,m9 Nos ton: Cr0teritn Analysis Value Cesicn Value AnalV.1. /Dee1,n shear (v . 182 F . . 305 !v /9v' . 0.60 dandl:0 fb . 2392 617' . 2604 fb /PD' . 0.92 1150 D.11 el1'n 0.40 . L/515 0.61 ■ L/360 0.60 Total Defl'n 0.94. uses 1.00 - 1/240 0.94 ADDITIONAL DATA: FACTORS: F/E CD 01 C: CL CV Cfu Cr Clrt NNotea LC4 Fv' 265 1.15 1.00 1.00 1.00 1.00 1.00 3 60'♦ 2400 1.15 1.00 1.00 1.000 0. 1.00 1.00 1.00 1.00 - 3 - 1.9 million 1.00 1.00 - - - - 1.00 - - 3 0 :10• 0.95 01111:0 1.00 1.00 - - - - 1.00 - - 3 Shear : LC 73 - 00.75IL -S1, `/ 17361, '/ design ■ 12992 lbs 6erd0ng1 :1: LC 43 ■ 0,.75(L•51, 0 . 96199 lbs -ft Deflection: LC 13 ■ D0.75(1.0SI Er. 3756.06 2b-!n2 Total Oefle7tio: . 1.50(Dead Lead Deflection) 4 Live Load Cellectlon. . (D.dead '^live S -anew W.wind 1-impact C■cln4tru7ticn CLd■:cncentrated) (A11 LC'a are listed in the Analysis output' . Load corbinations: ICC -I9c DESIGN NOTES: I. Rene win that the defau8 deflection Web en appropriate for your application. 2. Gideon deign sabres an for metered* radambg to AITC 117 -2001 end manufactured N accodanca with ANSPAITC A150. 1 -1992 3. GLULASt tam . equal breadth, ached depth. . 4. Melon Beane Rol be lateraiy supported .50orang t0 the provisions or NDS Clause 3.13. 5. GLUTAM: bearing length based on smaller of Fcp(Ieeim), F0p(compn). 4-, c.,-,;‘ COMPANY PROJECT I WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:49 b35 Design Check Calculation Sheet Sizer 7.1 LOADS ( ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 j21 Dead Partial UD 120.2 120.2 0.50 1.50 plf 2 Live Partial UD 370.0 370.0 0.50 1.50 plf 3_ j59 Dead Partial UD 120.2 120.2 0.00 0.50 plf 4 Live Partial UD 370.0 370.0 0.00 0.50 plf 5 j60 Dead Partial UD 120.2 120.2 1.50 3.00 plf • 6 j60 Live _ Partial UD 370.0 370.0 1.50 3.00 _ plf MAXIMUM RE!„ -.... S 111 . ......... . • • 34 Dead 188 188 Live 555 555 Total 743 743 Bearing: Load Comb #2 # Length 0.50* 0.50* "Min. bearing length for beams is 1/2" for exterior supports Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads; Lateral support top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 31 Fv' = 180 fv /Fv' = 0.17 Bending( +) fb = 254 Fb' = 1080 fb /Fb' = 0.24 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 743, V design = 444 lbs Bending( +): LC #2 = D +L, M = 557 lbs -ft Deflection:,LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. • COMPANY PROJECT WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:51 c2 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_bl Dead Axial 1056 (Eccentricity = 0.00 in) 2 Rf.Live Axial 2153 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 1 • 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 2 -Plys Self- weight of 3.41 pif included in Toads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 0.00= 0.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 196 Fc' = 980 fc /Fc' = 0.20 Axial Bearing fc = 196 Fc* = 1644 _ fc/Fc* = 0.12 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.596 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 3236 lbs Kf = 1.00 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. („1 D\A3 COMPANY PROJECT WoodW orks° SOFTWARE FOR WOOD DESIGN June 24, 2010 12:54 c12 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c24 Dead Axial 1478 (Eccentricity = 0.00 in) 2_c24 Live Axial 4320 (Eccentricity = 0.00 in) 3_b10 Dead Axial 4067 (Eccentricity = 0.00 in) 4 Live Axial 11291 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 8 , Timber-soft D.Fir -L, No.1, 6x6" Self- weight of 7.19 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using Nos 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 701 Fc' = 820 fc /Fc' = 0.86 Axial Bearing fc = 701 Fc* = 1000 fc /Fc* = 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC #. Fc' 1000 1.00 1.00 1.00 0.820 1.000 - - 1.00 1.00 2 Fc* 1000 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 21214 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. / ( L4 COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:53 c23 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b9 Dead Axial 1478 (Eccentricity = 0.00 in) 2 Live Axial 4320 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 9' Lumber Post, Hem -Fir, No.2, 4x6" Self- weight of 3.98 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 303 Fc' = 379 fc /Fc' = 0.80 Axial Bearing fc = 303 Fc* = 1430 fc /Fc* = 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.265 1.100 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 5834 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES 1. Please verify that the default deflection limits are appropriate for your application. 4 - ` COMPANY PROJECT 0 � 11 W oodWorks SOFTWARE FOR WOOD ON June 24, 2010 12:54 c26 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c23 Dead Axial 1478 (Eccentricity = 0.00 in) 2_c23 Live Axial 4320 (Eccentricity = 0.00 in) 3 b10 Dead Axial 1180 (Eccentricity = 0.00 in) 4 Live Axial 3436 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): �.. .as.�;Y --- '"�� �; �� - ��'3'� � ..� �-r—u� ✓ -�'p' tea' .�..a�. � ,-± i� 0' 8' Timber -soft, Hem -Fir, No.2, 6x6" Self- weight of 6.25 plf included in Toads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 346 Fc' = 492 fc /Fc'. = 0.70 Axial Bearing fc = 346 Fc* = 575 fc/Fc* = 0.60 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.00 1.00 1.00 0.856 1.000 - - 1.00 1.00 2 Fc* 575 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 10465 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: • 1. Please verify that the default deflection limits are appropriate for your application. /41— 2(12 COMPANY PROJECT 1 WoodWorks SOFTWARE FOR WOOD DESIGN June 24, 2010 12:52 c29 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b13 Dead Axial 3033 (Eccentricity = 0.00 in) 2 Rf.Live Axial _ 5052 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 1 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 3 -Plys Self- weight of 5.11 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 328 Fc' = 439 fc /Fc' = 0.75 Axial Bearing fc = 328 Fc* = 1644 fc /Fc* = 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.267 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 8126 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. • 4 __ C., ;2)2- COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:55 c31 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b13 Dead Axial 2561 (Eccentricity = 0.00 in) 2 Rf.Live Axial 3599 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 1 0' 8 ' Lumber n -ply, Hem -Fir, No.2, 2x4 ", 3 -Plys Self- weight of 3.25 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 393 Fc' = 443 fc /Fc' = 0.89 Axial Bearing fc = 393 Fc* = 1719 fc /Fc* = 0.23 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.258 1.150 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 6186 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) • (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. (6-)00 COMPANY PROJECT i WoodWorks® SOFTWARE FOR Woos DESIGN June 24, 2010 12:54 c39 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b21 Dead Axial 267 (Eccentricity = 0.00 in) 2 Live Axial 822 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 9' Lumber n -ply, Hem -Fir, No.2, 2x4 ", 2 -Plys Self- weight of 2.17 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 106 Fc' = 171 fc /Fc' = 0.62 Axial Bearing fc = 106 Fc* = 1495 fc /Fc* = 0.07 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.114 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 1108 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. 61,2,,oll COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:52 c55 • Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b30 Dead Axial 154 (Eccentricity = 0.00 in) 2 Live Axial 209 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 0' 8' Lumber Post, Hem -Fir, No.2, 4x4" Self- weight of 2.53 pif included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 31 Fc' = 470 fc /Fc' = 0.07 Axial Bearing fc = 31 Fc* = 1495 fc /Fc* = 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.315 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 384 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. Cn 0 BY ANAL DATE: ( ` aO 1 O JOB NO.: C E 1 _ 69.0 OF P ROJECT: RE: 'Beams i5 wI Lc i.r M l tea ,x• `S ❑ ❑ w 6 Z F W �o.e \ to -> t Jc s �d3 3O O 2 ❑ bat,v % 3 , Walls ao arl ao J O J a Cr U lOeokm I k i . - U tl:s a0 - 6 ao 0 Z w O S z a b eav Z `3 ti -.) �uat I,s AO 1 , do1 °: ao%g 0 U 5trce w6a, ceadierm >> setsm+c r cifi cw Z 2 OY1tu wrack Luak c tcotcAVec1. x 0 0 E O lL Z w ❑ Z 0 H a o U w GJ ~ N ." a s o.°n x i q — (I \ COMPANY PROJECT i WoodWorks® SOFIWARF FOR WOOD DESIGN June 24, 2010 13:07 b6 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 c44 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 9 w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 c45 Dead Point 444 5.00 lbs 6 c45 Snow Point 647 5.00 lbs 7 w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 6 w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9_j25 Dead Full UDL 120.2 plf 10j25 Live Full UDL 370.0 plf WIND1 Wind Point 800 2.00 lbs WIND2 Wind Point -910 5.00 lbs MAXIMUM REACTIONS (lhsl and.BEARING LENGTHS lint : I 0' 61 Dead 1436 1389 Live 2089 1803 Total 3525 3192 Bearing: Load Comb #4 #3 Length 1.88_ 1.70 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.15 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 4 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 4 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #4 = D +.75(L +S +W) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 67;2_ COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 13:07 b6 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1_c44 Dead Point 444 2.00 lbs 2 c44 Snow Point 647 2.00 lbs 3 w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 c45 Dead Point 444 5.00 lbs 6_c45 Snow Point 647 5.00 lbs 7 w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9__j25 Dead Full UDL 120.2 plf 10 j25 Live Full UDL 370.0 plf WIND1 Wind Point -800 2.00 lbs WIND2 Wind Point 910 5.00 lbs MAXIMUM REACTIONS (Ibsl and REARING LENGTHS (inl l o' 61 Dead 1436 1389 Live 1803 2172 Total 3239 3561 Bearing: Load Comb #3 #4 Length 1.73 _ 1.90 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 pif included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. ...._ COMPANY PROJECT i I WoodWorks SOFIWAREFOR WOOD DESIGN June 24, 2010 13:09 b14 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psi, or pif) : Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2 w68 Live Partial UD 350.0 350.0 9.00 10.50 plf 3_c19 Dead Point 357 9.00 lbs 4_c19 Live Point 1050 9.00 lbs 5_c20 Dead Point 357 3.00 lbs 6_c20 Live Point 1050 3.00 lbs 7_w66 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8 w66 Live Partial UD 350.0 350.0 0.00 1.50 plf 9 Dead Point 165 10.50 lbs 10_c64 Snow Point 225 10.50 lbs 11 c65 Dead Point 165 1.50 lbs 12 Snow Point 225 1.50 lbs 13 w67 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14 w67 Live Partial UD 350.0 350.0 1.50 3.00 plf 15 w69 Dead Partial UD 317.7 317.7 10.50 12.00 plf 16 w69 Live Partial UD 350.0 350.0 10.50 12.00 plf 17 Dead Full UDL 113.7 plf 18 Live Full UDL 350.0 plf 19 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20_j43 • Live Partial UD 25.0 25.0 0.00 0.50 plf 21_j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22 j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 23 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24 j45 Live Partial UD 25.0 25.0 1.50 3.00 plf 25_j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26J46 Live Partial UD 25.0 25.0 10.50 12.00 plf 27 j70 Dead Partial UD 17.0 17.0 3.00 9.00 plf 28_j70 Live Partial UD 25.0 25.0 3.00 9.00 plf 29_j71 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30 j71 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point 3560 3.00 lbs WIND2 Wind Point -3640 9.00 lbs wind3 Wind Point -3620 0.00 lbs winds Wind Point 3570 12.00 _ lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : - mom 7..1 ".3'�` -- - `fi - -'°. s a -P1.4 4-- : gym- ,r.eca • 14 - .� .ie-- �. �.e 1 0' 121 Dead 2207 2207 Live 4350 4350 Uplift 499 479 Total 6557 6557 Bearing: Load Comb 02 02 Length , 2.34 2 LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight of 15.31 plf included in loads; • Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 FV' = 310 fv /Fv' = 0.51 Bending( +) fb = 1735 Flo' = 2325 fb /Fb' = 0.75 Live Defl'n 0.25 = 1/573 0.40 = L/360 0.63 Total Defl'n 0.42 = L/343 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LCN Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC 02 = D +L, V = 6557, V design = 5170 lbs Bending( +): LC 02 = D +L, M = 16527 lbs -ft • Deflection: LC 02 = D +L EI= 1241e06 lb -in2 . Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. /42-63Gf COMPANY PROJECT i WoodWorks® SOFIWAREFOR WOOD DESIGN June 24, 2010 13:09 b14 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2 Live Partial UD 350.0 350.0 9.00 10.50 plf 3 Dead Point 357 9.00 lbs 4 Live Point 1050 9.00 lbs 5 c20 Dead Point 357 3.00 lbs 6_c20 Live Point 1050 3.00 lbs 7 w66 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8 w66 Live Partial UD 350.0 350.0 0.00 1.50 plf . 9 c64 Dead Point 165 10.50 lbs 10_c64 Snow Point 225 10.50 lbs 11 c65 Dead Point 165 1.50 lbs 12 Snow Point 225 1.50 lbs 13 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14 Live Partial UD 350.0 350.0 1.50 3.00 plf 15 w69 Dead Partial UD 317.7 317.7 10.50 12.00 plf 16_w69 Live Partial UD 350.0 350.0 10.50 12.00 plf 17 136 Dead Full UDL 113.7 plf 18 j36 Live Full UDL 350.0 plf 19_j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20_j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 21 j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22 j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 23_j45 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24_j45 Live Partial UD 25.0 25.0 1.50 3.00 plf 25_j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26_j46 Live Partial UD 25.0 25.0 10.50 12.00 plf 27_j70 Dead Partial UD 17.0 17.0 3.00 9.00 plf 28_j70 Live Partial UD 25.0 25.0 3.00 9.00 plf 29_j71 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30 j71 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point -3560 3.00 lbs WIND2 Wind Point 3640 9.00 lbs wind3 Wind Point 3620 0.00 lbs winds Wind Point -3570 12.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : � '-- <. ..r" . -sew , "C. � �- .. - � `, ...". `� • I Cr 121 Dead 2207 2207 Live 4826 4811 Total 7033 7018 Bearing: Load Comb #4 #4 Length 2.51 2.51 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self - weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 310 fv /Fv' = 0.51 Bending(*) fb = 1735 Fb' = 2325 fb /Fb' = 0.75 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.42 = L/343 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Ervin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 6557, V design = 5170 lbs • Bending(*): LC #2 = D +L, M = 16527 lbs -ft Deflection: LC 02 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd =concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer: 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 4- 3C COMPANY PROJECT I Wood I SOFIWARE FOR WOOD DESIGN June 24, 2010 13:11 b13 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, pst, or p11) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 c40 Dead Point 217 5.50 lbs 4 c40 Live Point 668 5.50 lbs 5_c67 Dead Point 518 5.00 lbs 6 c67 • Snow Point 778 5.00 lbs 7 Dead Point 573 3.00 lbs 8 c68 Snow Point 942 3.00 lbs 9 w59 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10_w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12_j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13_j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14 138 Live Partial UD 250.0 250.0 3.50 6.50 plf 15 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16_j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17_b15 Dead Point 126 3.50 lbs 18 b15. Live Point 389 3.50 lbs 19 Dead Point 225 6.50 lbs 20 Live Point 693 6.50 lbs W1 Wind Point 6590 0.00 lbs W2 Wind Point -6590 3.00 lbs W3 Wind Point 6590 5.00 lbs W4 Wind Point -6590 8.00 lbs MAXIMUM RFACTIONS /lhsl and BFARING LENGTHS lint -�+r.i .�" --r... . ..�'.+ r :.- n_ 'J��■ +R.. : _ - - - . <"..� "V. ...k..-...- +..a+ T v`sa�= -^ � K ' - sa.... ... _.mom of '.- �' _ Y m..... Via.. ` -_ ��-�.�1!' ,::, .fca..= ^ .."". 1 0' 81 Dead 2561 3033 Live 6406 3789 Uplift 3098 Total 8968 . 6822 Bearing: Load Comb #4 #3 Length 3.20 2.44 LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.29 Total Defl'n 0.14 = L/680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 • Shear : LC 03 = D +.751L +S), V = 6822, V design = 5122 lbs Bending( +): LC 03 = D +.751L +S), M = 12340 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. • • 4 - (573G COMPANY PROJECT i WoodWorks® 5OEIWAREFOR WOOD DESIGN June 24, 2010 13:11 b13 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs. psf, or pif) : Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 Dead Point 217 5.50 lbs 4 c40 Live Point 668 5.50 lbs 5 Dead Point 518 5.00 lbs 6 c67 Snow Point 778 5.00 lbs 7 Dead Point 573 3.00 lbs 8 Snow Point 942 3.00 lbs 9 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10_w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12 Live Partial UD 310.0 310.0 6.50 8.00 plf 13_j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14 j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16_j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 Dead Point 126 3.50 lbs 18 Live Point 389 3.50 lbs 19 Dead Point 225 6.50 lbs 20 b32 Live Point 693 6.50 lbs W1 Wind Point -6590 0.00 lbs W2 Wind Point 6590 3.00 lbs W3 Wind Point -6590 5.00 lbs W4 Wind Point 6590 8.00 lbs MAXIMUM REACTIONS 11bR1 and BEARING, I FNGTHS (inl : ..a.._ 4.-;,;. .-..w . s , - .: .fi -.,,. aa�. e- . �"�r- .:+cw'±+ '^za,=- �va._` - � tr ..;. -' .�4- = s , =--�. ,.� : ���„� ".- � ., 4 a+ -.:..- r, ,�_ - ,,,� "__ 5 _ . Ir..- r r .fir "` ,,,72,-,- � .i► _s-. "' � .`- - :,.;�.... ..:11 .r ,. ' -... -.7 .. .." s..: -.sue - r ' - .s.... ...--± .'-...e ..- tears �`..s- '7::""'"..7.=- - .� 1y...r-- ....ar..2:- - ...' I 0' 81 Dead 2561 3033 Live 2699 7496 Uplift 3381 Total 5261 10529 Bearing: Load Comb #3 #4 Length _ 1.88_ 3.76 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L /680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC 03 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 4 - (...,7-;-3-- COMPANY PROJECT 111 I I Wo od VVo rks® Asa 24.271013:19 071 LC1 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Sher 7.1 LOADS (O Pa.. pl) Load Type Distribution Magnitude Location [ft] Unita Start End Start End 1 962 Dead Partial UD 613.2 613.2 0.00 2.00 plf 2 Snow Partial U0 195.0 795.0 0.00 2.00 plf 3 Dead Partial UD 617.5 617.5 1.50 11.00 pif 4 Snow Partial UD 901.2 901.2 1.50 11.00 plf 5 715 Dead Point 1436 11.00 lb. 5015 Snow Point 2404 11.00 Iba l 016 Dead Point 1399 17.00 lb. 8 016 Snow Point 2404 11.00 lba 9964 Dead Partial UD 617.5 617.5 11.00 19.00 pif l0_464 Snow Partial U0 901.2 801.2 11.00 18.00 plf 11 761 Dead Point 622 7.00 lbs 12 Sncw Point 1192 7.00 l0e 13 062 Dead Point 622 4.00 Its 14 062 Snow Point 1192 4.00 Abe 15463 Daad Partial UD 613.2 613.2 2.00 4.00 plf 16 063 Snow Partial UD 735.0 795.0 2.00 4.00 plf 17465 Wad Partial UD 617.5 617.5 19.00 20.00 plf 10 Snow Partial UD 901.2 601.2 16.00 20.00 plf 19 Wad Partial UD 613.2 613.2 7.00 7.50 plf 20 Snow Partial UD 195.0 795.0 7.00 7.50 plf 21_164 Deed Partial UD 47.7 47.7 17.00 19.00 plf 22_264 Live Partial UO 160.0 160.0 17.00 19.00 plf 23 )26 Wad Partial UD 47.7 47.7 4.50 7.50 plf 21 )'c9 Live Partial UD 160.0 160.0 4.50 7.50 plf 25262 Wad Partial U0 47.7 47.7 7.50 11.00 plf 26 _262 Live Partial U0 160.0 160.0 1.50 11.00 plf 27_249 Dead Partial U0 120.2 120.2 0.00 2.00 plf 29,48 Live Partial UD 370.0 370.0 0.00 2.00 plf 29_232 Wad Partial UD 120.2 120.2 3.50 4.00 plf 30_232 Live Partial UO 370.0 370.0 3.50 4.00 plf 31_233 Wad Partial U0 120.2 120.2 4.50 7.50 plf 32_233 Live Partial 00 370.0 370.0 4.50 7.50 plf 33_331 Wad Partial UD 1 :0.2 120.2 7.50 9.00 plf 34_334 Live Partial UD 370.0 370.0 7.50 9.00 plf 35_)35 Wad Partial UD 120.2 120.2 9.00 11.00 plf 36_235 Live Partial UD 370.0 370.0 8.00 11.00 plf 37_247 Lead Partial UD 120.2 120.2 11.00 17.00 plf 38_247 Live Partial UD 370.0 370.0 11.00 17.00 plf 39_361 Dead Partial UD 120.2 120.2 2.00 3.50 plf 40_267 live Partial VD 370.0 370.0 2.00 3.50 plf 41_349 Wad Partial U0 120.2 120.2 4.00 4.50 plf 42_349 Live Partial U0 3370.0 370.0 4.00 4.50 plf 40163 Wad Partial U0 47.7 47.7 11.00 11.00 plf 44_263 Live Partial UD 160.0 160.0 11.00 17.00 plf 45_265 Wad Partial UD 47.7 47.7 19.00 20.00 plf 46_165 Live Partial UD 160.0 160.0 19.00 20.00 plf 47_266 Gad Partial UD 47.7 47.7 4.00 4.50 plf 46_266 Live Partial VD 160.0 160.0 4.00 4.50 plf 49_369 Wad Partial UD 1:0.2 120.2 11.00 19.00 plf 50_269 Live Partial UD 370.0 370.0 17.00 19.00 plf 51 269 Wed Partial UD 120.2 120.2 19.00 20.00 plf 52 069 Live Partial UD 370.0 370.0 19.00 20.00 plf 53)72 Dead 2.05141 UD 41.7 47.7 2.00 4.00 p11 51 )72 Live Partial UD 160.0 160.0 2.00 4.00 plf 55)73 Dead Partial UD 47.7 47.7 0.00 2.00 plf 56) Live Partial UD 160.0 160.0 0.00 2.00 plf pl Wind Point 5950 0.00 lb. 02 Nlnd Point -5950 4.00 Iba 713 Wind Point 5950 11.00 104 N4 Mind Point -5850 17.00 108 N5 Nind Point 5550 _ 20.00 _ 00s MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (In) : • 2 Dead 405 2 172 Live 12150 12112 Total 19555 19499 E =7.0 0 Load Comb 44 14 Lenath 5.97 5.94 Glulam -Bat., West Species, 24F -V8 DF, 5- 118x22 -112" SW -4wlpt M 29.55 dM bds: Lewd support tope 5A. bcCom• al supports; Analysis vs. Allowable Stress (psi) and Deflection (In) N.Ng NOS 200s: Criterion Analysis Value De.1dn Value Anelv.1./De.1on Shear fv 162 Fv' 305 11)70' 0.60 Sending(t) 1b . 2392 FD' . 2604 f0 /FD' . 0.92 Live Def1'n 0.40. L/595 0.67. L /360 0.60 Total Defl'n . 0.84. L/295 1.00. L/240 0.94 ADDITIONAL DATA: FACTORS: F/E CD GM Ct CL C! Cfu Cr 01rt s Cn LCI • 11' 265 1.15 1.00 1.00 1.00 1.00 1.00 3 617'4 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 Fop' 650 1.00 1.00 - - - - 1.00 - - E' 1.9 million 1.00 1.00 - - - - 1.00 - - 3 Ervin' 0.65 m1111or 1.00 1.00 - - - - 1.00 - - 3 Shear LC 63 . 04.75(145), V 17361, V design . 13992 Abe 6.001 0(,): LC 13 . 04.7511451. M ■ 96199 lba -ft Deflection: LC 13 D4.750. EI. 8756806 lb -1n: Total Deflection . 1.5010620 Load Deflection) 4 Live Load Deflection. (D.dead L.11ve 5.onow nvind I■irpac: - ons.ructlan CLd.7oncant :.ted) (A11 L o listed in the Analyst: output) - Load ccm0inaticne: ICC -IEC DESIGN NOTES: 1. Phase verify Mal 01.11.2.2911.117154, MR, am •ppropM• for 962 appcaSan. 2 Glulan design values are for =WPM . 06 , 6 .0 7 84 , 9 6 0 2 1 7 . 2 0. 1 .0 06 7 18 6 0 7 71 , 0 , 11 0 1 eccadance w6O ANSI/AIM AIWA -1992 3. GLULAM: 006 a x9154 breadth actual depth. 4. GWhm Beams shall W hten9y supported according to the prMSlun of NOS Chute 3.3.3. • i GLULAM: bearing length Weed on meet 01 Fcp(taaol). Fcp[co. n). 4 - COMPANY PROJECT 0 00 0 Ilk Woodworks Juno 24, 2010 13:19 b34 lC2 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Sher 7.1 • LOADS 1 1bs, pd, or Of ) Load Type Distribution Magnitude Location 'ft/ Units Start End Start End _v62 Dead Partial 110 613.2 613.2 0.00 2.00 pif _v62 Snow Partial UD 795.0 795.0 0.00 2.00 plf _029 Dead Partial U0 617.5 617.5 7.50 11.00 plf _v29 Snow Partial UD 901.2 601.2 1.50 11.00 pit c15 Dead Point 1436 11.00 lb. _c15 Snow Point 2404 11.00 lba _cl6 Dead Point 1399 11.00 lba _016 Snow Point 2404 11.00 lbs v64 Dead Partial UD 611.5 61 17.00 19.00 plf ITS v64 Sncv Partial UD 101.2 601.2 17.00 19.00 plf 1 cal Dead Point 122 7.00 lba 2 Snow Point 1192 7.00 lbs 3 Dead Point 622 4.00 lbs 1 062 Snow Point 1192 4.00 lba 5_w63 Dead Partial UD 613.2 613.2 2.00 4.00 plf 62463 Snow Partial UD 195.0 795.0 2.00 4.00 plf 465 Dead Partial UD 61 617.5 16.00 20.00 pif 94,65 Snow 9a00191 UD 901.2 601.2 19.00 20.00 pif 9 Dead Partial UD 613.2 613.2 7.00 7.50 pif 20 471 Snow Partial UD 795.0 795.0 7.00 1.50 plf 21_764 Dead Partial UD 47.7 47.7 17.00 19.00 elf 22_364 Live Partial UD 160.0 160.0 17.00 19.00 elf 23_126 Dead Partial UD 47.7 47.7 4.50 7.50 plf 24_329 Live Partial UD 160.0 160.0 4.50 7.50 pif 25_162 Dead Partial UD 47.7 47.7 7.50 11.00 pif 26_362 Live Partial UD 160.0 160.0 7.50 11.00 plf 07_141 Dead Partial UD 120.2 120.2 0.00 2.00 plf 2976 Live UD 370.0 370.0 0.00 2.00 pif Partial 29 732 Dead 93071.0 Partial U0 120.2 120.2 3.50 4.00 pif 30_132 Live Partial UD 370.0 370.0 3.50 4.00 plf 3 333 Dead Partial UD 110.2 120.2 4.50 7.50 plf 32_133 Live Partial U0 370.0 370.0 4.50 7.50 pif 33_134 Dead UD 120.2 320.2 7.50 9.00 plf Partial 313 9.90121 34 Live Partial UD 370.0 370.0 1.50 9.00 plf 35_335 Dead Partial UD 110.2 120.2 9.00 11.00 plf 36_135 Live Partial VD 370.0 310.0 9.00 11.00 plf 37_347 Dead Partial UD 120.2 120.2 11.00 17.00 plf 39_717 Live Partial VD 370.0 370.0 11.00 17.00 pif 39_167 Dead Partial UD 100.2 120.2 2.00 3.50 elf 40_367 Live Partial UO 370.0 310.0 2.00 3.50 plf 41_349 Dead Partial UD 120.2 120.2 4.00 4.50 plf 42_349 Live Partial 00 370.0 370.0 4.00 4.50 pif 43_163 Dead Partial 0 47.7 47.7 11.00 17.00 plf 413 U 63 Live Partial UD 160.0 160.0 11.00 17.00 plf 45_165 Dead Partial UD 41.7 47.1 18.00 20.00 plf 46_365 Live Partial UD 160.0 160.0 18.00 20.00 plf 47 766 Dead Partial UD 47.7 47.7 4.00 4.50 plf 48 366 Live Partial UD 160.0 160.0 4.00 4.50 plf 49_166 Dead Partial U0 120.2 120.2 17.00 19.00 plf 50_166 Liva Partial UD 210.0 370.0 17.00 19.00 pif 51_169 Dead Partial UD 120.2 120.2 16.00 20.00 plf 52_369 Live Partial U0 370.0 310.0 16.00 20.00 plf 53172 Dead Partial UP 47.7 47.1 2.00 4.00 plf 54_372 Live Partial UD 160.0 160.0 2.00 4.00 plf 55_773 0443 Partial UD 47.7 47.7 0.00 2.00 pif 56 773 plf wl Wind Partial UD 160.0 160.0 0.00 2.00 6104 104 Point -5950 0.00 104 Wind Point 5650 4.00 lba M3 wind Point -5650 11.00 lbs 64 Mind Po1nt 5950 17.00 lba 05 wind Point -5950 20.00 lba MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : Dead 5 4127 Live 9956 9979 Total 17361 17305 • Searing: Lead Comb 63 43 Length 5.21 5.19 Glulam -BaI., West Species, 24F -V8 DF, 5- 118x22 -112" Sdfoo 1pid .128.55 pl/ Fbtlad In Ia..: Legend support laps full, bottoms 916upports; Analysis vs. Allowable Stress (psi) and Deflection (in) um, 80s2669: Criterion Analysis Value De3i0n Value Analysis/Cession Sheer FY' ■ 305 fv /F0' ■ 0.60 Bendingl*l 00 - 16' . 2604 f0 /06' - 0.92 Live 0ef1'n 0.41 . L /511 0.67 - 1/360 0.61 Total 04f1'n 0.64 - L/264 1.00 - L/240 0.94 ADDITIONAL DATA: 0160005: F/E CD CN Ct CI, CV Cfu Cr 06:5 Cn LC4 60' 265 1.15 1.00 1.00 1.00 1.00 1.00 3 90'. 2400 1.15 1.00 3.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 E 1.9 million 1.00 1.00 - - - - 1.00 - - 4 E63n' 0.95 6111106 2.00 1.00 - - - - 1.70 - - 4 Shea[ : LC 13 - 06.7611.:51, V 17361, V design . 13992 1bs Pe0ding1 LC 13 - 0..751L•S1, M v 56149 lbs-ft Deflection: LC 44 . 0'.75(L EI. 5756406 lb -002 Total Deflection . 4.10(1ead Wad D.f11ct0cn) 4 Live Load Deflection. ' ID■de.d Ls11ve S■anov ` -5183 1- 10pact C.c1natructicn 0L.00003700.1.3l (All LC's ere listed In the Analysis output) Load combinations: ICC -I00 DESIGN NOTES: 1. Please renty that the defn2 deflection Welts era epploprhb for you apparatbn. 2. Gpdam design vWem are for ns terbb 28,04469 to ARC 1174001 and mvwfaclur6d in eccardarce nth ANSVAITC 4190.1 -1992 3. GLUTAM: Ord 4 actual breadth 9 actual depth. 4. Glut= Beams tug be Igo* supported according lo the provisions of 805 Clause 3.3.3. 5. GLULAM: besting length based On 6ma6er of Fcp7aoian), Fcp(rmryn). /4 C1 9 COMPANY PROJECT 0 11P- 111111 1 I I W June 24, 2010 1320 D34 LC2 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Meer 7.1 LOADS Ilm,p.f.o.pll) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w62 Dead Partial UD '613.2 613.2 0.00 2.00 pl! 2_062 Snow Partial UD 795.0 195.0 0.00 Z.00 pif 3_w29 Dead Partial UD 611.5 617.5 7.50 11.00 plf 4 0029 Snow Partial UD 801.2 801.2 1.50 11.00 pif 5 o15 Dead Point 1436 11.00 Ibs 6_c15 Snow Point 2404 11.00 lba t 016 Dead Point 1309 17.00 lb. 9016 Snow Point 2404 17.00 lba 9 Dead Partial UD 617.5 617.5 17.00 10.00 pif 10 0064 Snow Partial V0 901.2 001.2 17.00 18.00 pif 11 c61 Dead Point 622 1.00 Ibs 12 Snow Point 1192 7.00 Ibs 13_.62 Dead Point 622 4.00 Ibs 14 c62 Stow Point 1192 4.00 1ba 15 Dead Partial DD 613.2 613.2 2.00 4.00 pif 16 Snow Partial UD 795.0 795.0 2.00 4.00 pl! 11 Dead Partial UD 617.5 617.5 10.00 20.00 pl! 19065 Snow Partial UD 001.2 901.2 10.00 20.00 plf 19 0071 Dead Partial U0 613.2 613.2 7.00 7.50 pit 20 0071 Snow Partial UD 795.0 795.0 7.00 7.50 pIf 21 164 Dead Partial Up 4 47.7 17.10 18.00 pl! 22_164 L116 Partial UD 160.0 160.0 17.:0 18.00 plf 23_329 Dead Partial UD 47.7 47.7 4.50 7.50 p11 24_128 Live Partial VD 160.0 160.0 4.50 7.50 plf 25_3 Dead Partial OD 47.7 47.7 7.50 11.00 p11 26_162 Live Partial UD 160.0 160.0 7.50 11.00 pl! 27_346 Dead Partial U0 120.2 120.2 0.00 2.00 pif 29_149 Live Partial UD 370.0 370.0 0.00 2.00 pif 29_132 Dead Partial VD 120.2 120.2 3.50 4.00 pif 30_332 Live Partial UD 370.0 310.0 3.50 1.00 pif 31 133 Dead Partial UD 120.2 120.2 4.50 7.50 pif 32 133 Live Partial UD 370.0 370.0 4.50 1.50 pit 33_334 Dead Partial UD 120.2 120.2 1.50 0.00 plf 34_334 Li':, Partial UD 370.0 370.0 7.50 8.00 pif 39335 Dead Partial UD 120.2 120.2 9.00 11.00 pif 36_33 Live Partial DD 370.0 370.0 8.00 11.00 pl! 3l 541 Dead Partial DD 120.2 120.2 11.00 17.00 pl! 38_347 Live Partial UD 370.0 370.0 11.00 17.00 pl! 3 361 Dead Partial UD 120.2 120.2 2.00 3.50 pif 40_167 Live Partial U0 370.0 370.0 2.00 3.50 plf 41_149 Dead Partial U0 120.2 120.2 4.00 4.50 pl! 4249 Lira Partial UD 370.0 370.0 4.00 4.50 plf 43_163 Dead Partial UD 47.7 47.7 11.00 17.00 pl! 44_163 Live Partial U0 160.0 160.0 11.00 17.00 pl! 45_165 Dead Partial 00 47.7 17.7 10.00 20.00 plf 46 365 Live Partial UD 160.0 160.0 19.00 20.00 pl! 47 Dead Partial UD 4.00 4.50 pit 46166 Llva Partial UD 160.0 160.0 4.00 1.50 plf 49169 5.43 Partial ID 120.2 120.2 17.00 18.00 pif 5268 Li:•, Partial 00 310.0 370.0 17.10 18.00 plf 51 369 Dead Partial UD 120.2 120.2 19.10 20.00 pif 52 369 Live Partial UD 370.0 370.0 10.10 20.00 pif 53_172 Daad Partial UD 47.7 47.7 2.00 4.00 plf ' 54_372 L1va Partial UD 160.0 160.0 2.00 1.00 011 55_173 Dead Partial U0 17.7 0.00 2.00 pl! 5 373 Ltva Partial UD 160.0 160.0 0.00 2.00 pif M1 Mird Point -5850 0.00 1b. M2 Mind Point 5850 4.00 lba 63 Mind Point -5950 11.00 lba M4 Mind Point 5850 17.00 lb. 05 M100 Point -5850 20.00 Ibs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • 1 U 1 Dead 4 1405 127 1000 9956 93075 100.1 17361 17305 Bearing: Lo 0 Load Comb 13 Length 5.21 5.19 Gluiam -Bal., West Species, 24F -V8 DF, 5-118x22-1/2" Sw«al0M of 25.55 pD Included In loads Lateral swot fop- full, bottom. al support; Analysis vs. Allowable Stress (psi) and Deflection (in) using NO3 mob: . Criterion Analv4ia Value 'Deafen Value Analvsls /Design Shear Iv - 182 Pe ■ 305 2'2/00• - 0.60 Bending(*) 1b ■ 2392 Fla' ■ 2604 fb /Fb• . 0.92 Live Defl'n 0.41 ■ L/591 0.67 - L/360 0.61 Total De11•n 0.91 - L/294 1.00 ■ L/240 0.94 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV C!u Cr Cfrt , LCI ' F:' 265 1.15 1.00 1.00 1.00 1.00 1.00 3 46 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 Fop' 650 1.00 1.00 - - - - 1.00 - E• 1.9 million 1.00 1.00 - - - - 1.00 - - Lein' 0.95 million 1.00 1.00 - Shear : LC 03 - 00.15(1151, V 17361, V design ■ 13982 lba • 8ending( LC 43 ■ 00.75(1.16), M . 06199 Ilan-ft Deflection: LC 04 . D..751L050IU E.I. 7756,06 16-1r.2 Total Deflection . 1.50(0ead Load 1011,0tion1 0 Live Load Deflection. (D■dead L-11ve 5 ■anew W.wind I ■impac C- c0natru0tlon CLd.concentrated) 1011 LCD are listed In the Analysis output) Load combinations: 1C' -261 DESIGN NOTES: 1. please vorlfy that Ur defmA dell Y 09 BMb are apprg8NM for ya r application. 2. G4bm dtalpn vales are for materials 1o60o mag M A1TC 117.2031 and munitrlaad In accordance with ANSI/AITC 20190.1.1992 3. GLUM 4114] it actual breadth 0 actual depth. 0. Gatlin &lama 011.8 be Irterally supported aoosdaly 10 Be provisions of NOS Clause 3.3.3. 5. GLULAM: Gearing length Wed an smear of Fcp(lembr), Fopiwmp'n). /19 '''' 6 / q ° COMPANY PROJECT el 1 WoodWorks SOFMARE FOR WOODOfSICN June 24, 2010 13:23 b34 LC1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf, or p16) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 3 w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5_c15 Dead Point 1436 11.00 lbs 7 c16 Dead Point 1389 17.00 lbs 9 Dead Partial UD 617.5 617.5 17.00 18.00 plf 11 c61 Dead Point 622 7.00 lbs 13_c62 Dead Point 622 4.00 lbs 15_w63 Dead Partial UD 613.2 613.2 2.00 4.00 plf 7 1 w65 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19 w71 Dead Partial UD 613.2 613.2 7.00 7.50 plf 2064 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23_j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25_j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 2 j48 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29 j32 Dead Partial UD 120.2 120.2 3.50 4.00 plf 3l j33 Dead Partial UD 120.2 120.2 4.50 7.50 plf 33_j34 Dead Partial UD 120.2 120.2 7.50 8.00 plf 35_j35 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39 j67 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41 Dead Partial UD 120.2 120.2 4.00 4.50 plf 43 j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45_j65 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47_j Dead Partial UD 47.7 47.7 4.00 4.50 plf 49j68 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51_j,69 Dead Partial UD 120.2 120.2 18.00 20.00 plf 53_j72 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55 j73 Dead Partial UD 47.7 47.7 0.00 2.00 plf 81 Wind Point 5850 0.00 • lbs W2 Wind Point -5850 4.00 lbs W3 Wind Point 5850 11.00 lbs W4 Wind Point -5850 17.00 lbs W5 Wind Point 5850 20.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : A, la 201 Dead 7189 6822 Live 156 302 Total 7238 7018 Bearing: Load Comb 82 62 Length 2.17 2.11 Glulam -Bal., West Species, 24F -V8 DF, 5- 1/8x22 -1/2" Self- weight of 26.55 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 74 Fv' = 238 fv /Fv' = 0.31 Bending( +) fb = 950 Fb' = 2038 fb /Fb' = 0.47 Live Defl'n negligible . Total Defl'n 0.41 = L /585 1.00 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 .Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC 61 = D only, V = 7189, V design = 5674 lbs . Bending( +): LC 81 = D only, M = 34217 lbs -ft Deflection: LC 61 = D only EI= 8756e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). • 14-GILi COMPANY PROJECT • II 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 13:22 b34 LC2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psi, or p11) : Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 3 w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5 c15 Dead Point 1436 11.00 lbs 7 c16 Dead Point 1389 17.00 lbs 9 w64 Dead Partial UD 617.5 617.5 17.00 18.00 plf • 11 c61 Dead Point 622 7.00 lbs 13 c62 Dead Point 622 4.00 lbs 15 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19 Dead Partial UD 613.2 613.2 7.00 7.50 plf 21 j64 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23_j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25 j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 27 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29 j32 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31 j33 Dead Partial UD 120.2 120.2 4.50 7.50 plf 33_j34 Dead Partial UD 120.2 120.2 7.50 8.00 plf 35_j35 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39 j67 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41 j49 Dead Partial UD 120.2 120.2 4.00 4.50 plf 43_j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45_j65 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47_j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49_j68 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51_j69 Dead Partial UD 120.2 120.2 18.00 20.00 plf 53j72 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55_j73 Dead Partial UD 47.7 47.7 0.00 2.00 plf . W1 Wind Point -5850 0.00 lbs W2 Wind Point 5850 4.00 lbs W3 Wind Point -5850 11.00 lbs W4 Wind Point 5850 17.00 lbs W5 Wind Point -5850 20.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : /-! - • 10' 201 Dead 7189 6822 Live Total 7189 6822 Bearing: Load Comb 81 • 91 Length 2.16 2.05 Glulam -Bal., West Species, 24F -V8 DF, 5- 1/8x22 -1/2" Self- weight of 26.55 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 74 Fv' = 238 fv /Fv' = 0.31 Bending( +) fb = 950 Fb' = 2038 fb /Fb' = 0.47 Live Defl'n negligible Total Defl'n 0.41 = L/585 1.00 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 Fcp' 650 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC 91 = D only, V = 7189, V design = 5674 lbs Bending( +): LC 111 = D only, M = 34217 lbs -ft Deflection: LC 81 = D only EI= 8756e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live S =snow W =wind I =impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) . Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSUAITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4 -CA2 Harper Project: •° 1 Houf Peterson IT F.! Client: Job # Righellis Inc. ENGINEERS • PLANNERS Designer: Date: Pg. # LANDSCAPE ARCRI(ECFS•SURVEYORS W := 10 lb •8•ft•20•ft Wdl = 1600-lb Deck _ VSi9Y\ 11 Seismic Forces Site Class =D Design Catagory =D Wp `= Wdl 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F := 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F 1.722 Vel -based site coefficient @ 1 s -period (Table 1613.5.3(2), 2006 IBC) S := F S S nit := F -S i 2•S S : = Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a := 1.0 R := 2.5 (Table 13.5-1, ASCE 7 -05) 4a • r z F := p IP •I 1 + 2- h�•Wp EQU. 13.3 - Fpmax 1.6•S EQU. 13.3 -2 Fpmin := . EQU. 13.3 - F,= if(F > F pmax , Fpmax, if(F < Fpmin, FpmimFp)) F = 338.5171-lb Miniumum Vertical Force 0.2-Sds-Wdl = 225.6781•lb Gq • Harper Project: Houf Peterson Client: Job # Righellis Inc. ENGINEERS .• PLANNERS Designer: Date: Pg. # LANDSCAPE ARCNITEC(S•SURVEYORS Wdl := 10 lb •8•ft•20•ft Wdl = 1600-lb ft Seismic Forces Site Class =D Design Catagory =D W := Wdl I 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. Ss := 0.942. Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F = '1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F,, := 1.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) Sm • = F S := F .S1 2 • S ms Sds :_ Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a := 1.0 R 2.5 (Table 13.5 -1, ASCE 7 -05) .4a p• S ds'Ip z F P := R (1 + 2 hl Wp EQU. 13.3 -1 FPmax I'6''S W EQU. 13.3 -2 • FPmin :_ 3.S ds• l p' W p EQU. 13.3 -3 if(F > F pmax , FPmax, if(F < F pmin , Fpmin, F F = 338.5171.1b Miniumum Vertical Force 0.2 • S ds• W dl = 225.6781.1b Cl L I H din flamer Houf Peterson . COMMUNICATION RECORD Righellis Inc. To 0 FROM El MEMO TO FILE 0 i. • P1. ri n. I: li S 1,10S.A11 . ANTFCT:i*S0k...E PHONE NO.: PHONE CALL: Er MEETING: Ei . . X '0 03 m X . -< 2 • % ... • — r1 9, C it 3 c l I G • • - . . AP _4: IL . -i • , 1 . o , CO • .11 .,--- tr- 3. _ _ .. . . -0 2. 6.--" '-, • . - I I 14". . . . .. . ... . . . . .. . . . . . ... • —I>. . . . .Z.J . . • Cll 1 . •er) 6- re (--.‘ —...... CPI —C • . . Nt-- • ....0 • N. I ---)....4 t . , II N . -... N... . 7 . • • s• ' z ,) . . .... 0 . i . • z 1 . N.. . 0 ni S. • . N. . ‘.--- 0 N... , . . . . . _ C) BY: Ari (55IWN DATE: JOB NO.: ' PRCiJ Eel': RE: Dc \ . 0 )P l i' V C-PO\N C 1PNC \l '‘, ' 0 E] _ i c • . 21 61 w - NP CPrpAc rry (tL C'ornirritrO . L i' El Li 0 w (1 .$ 5 3)(tagi 4 NCA- 1 i) - 3=- . 1(7i. 4 1rai I . w < 0 = . 0 w U z a a a x a n Z a a . LAPR(.11—/ • -1 ( 2 boaraS) iz < z •a\sT--5 = 7-: 1 pLP . 1„-- 0 . 0 ic pctc.1( \e n Act.s; \s . 3 (ac. w 1 2 1 ut..) P% r. To a ‘ ,...._ tG PL;F: ! I 1 1 1 _ ________ • ' • . . 1 1 i rY) 0 n r) 3 ' e) 0 ! T e-------4 e 2 I t T ( ... 1 - Q3I 4tilt- \\i'Nf\pScs•r\ 305'14- x4122' • 4-GLIG BY: pfffibef C ( t. ) .jr i DATE: JOB NO.: - - - . . PROJECT: RE: - Decv--, Pcz,...)±2.2jf\ec.. b.....92:3_`: E a -I • 0 kr Z 2 J . < 0 z a, 0 T-T-c,.. 61-too owl a9o04* 34," z i < 0 _ z ()._ 51ri\coon 1-1Du4 D 2 To ff.55:. .1 i x 0 o m O - ct d ti. z w a 6 0 . Lot P,s os:' i\A:-. acoit (40" ) 20014' > Bow 4t-1// 1 1 T-= c .=- 8600 3.5" t , ( 9;&400 -'? I+DO4 3C ( = i r s. .. . I FE)c- ..1 71 --,-- • Harper ' I s ' Houf Peterson COMMUNICATION RECORD Righellis Inc. To ❑ FROM u MEMO TO FILE El ENGINEERS • ERY • L Af:G.'.:APc ARCMITE C I'TST.i•5U2VEYyli PHONE NO.: PHONE CALL: O MEETING: 0 M - 0 to m Q < -g C 1 (-) O if — A: 3 sv � '� d 9-1 --' L -� 8 ' 0 0 4 At w LI 3 --� '' W. 4 n o I ... 1 (13 \ . . n vil T c9 -H - 0 m z 0 • narpCr Inc. ufPeteTTrs.on COMMUNICATION RECORD Righellis To ❑ FROM E MEMO TO FILE 0 E,•!GINEEIt:< • PLAr!':ERS LA::D:Y aPE +acHu rECrs•su ?vEVORZ PHONE NO.: PHONE CALL: 0 MEETING: El . . 17 -u w m Q 0 a g ) XI -,,,,„ 1 ... ... ...mom ....., 1 1 o d m Q V" � .� - 1 ..d ... > v. 0 C 1 r ;:. O -0 o O e COMPANY PROJECT 40 ' II lily WoodWorks® UNTWAWEFORWOODOMMN June 8, 2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE ,Live Point 2.50 200 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 1 t':fe-w4"-ti',7-tt.,V.Tr'..P,t;N:'c.ii`"--1'4:,7'',:-.',r'''",,,,r.'-- - 10' 54 Dead Live 100 100 Total 104 104 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams Is 1/2" for exterior supports Lumber-soft, Hem-Fir, No.2, 2x6" Self-weight of 1.7 pff included In loads; Lateral support top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 405 Pb' = 1048 fb/Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 '1.00 1.00 1.00 1.00 - 2 Fop' 405 - 1.00 1.00 - - - - 1.00 1.00 - - El 1.3 million 1.00 1.00 - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending(+): LC #2 = L, M = 255 lbs-ft Deflection: LC #2 = L El = 27e06 lb-in2 Total Deflection - 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. )42 ....... .1%, (I Wi ( • COMPANY PROJECT ' III Woo or s OD SOFIWARE FON WOOD DESIGN June 8, 2009 16:27 Hand Ra1l2 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End ,LIVE Live pull UDL _ 50.0 .plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : :...:ft:t. :gZ,..1; 7. .„.,.:. `- ::::.. 1 : C .--.::. 1 ,: ." :.t :*::::: IL,;:: '...': ' #:.":::: V., .•;.! - . ' '',... C ;c:: . V - *, ..;:.:.,_''' , j .,;-' .tf i ,:.! ,',,'-...", sr. r, ; _:-.. :::' .: '.'. 10' 51 Dead Live 125 125 Total 129 129 Bearing: Load Comb #2 #2 Length 0.50* 0.50* _ Cb 1.00 1.00 *Min. bearing length for beams is 112 for exterior supports Lumber-soft, Hem-Fir, No.2, 2x6" Self-weight of 1.7 plf included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear Iv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 256 Fb' = 1048 fb/Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.11 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fop' 405 1.00 1.00 - - 1.00 1.00 - - El 1.3 million 1.00 1.00 - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 129, V design = 106 lbs Bending(+): LC #2 = L, M = 162 lbs-ft Deflection: LC #2 = L RI = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 4 ..._ Gs 1 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 22, 2010 13:57:56 105 Concept Mode: Reactions Base of Structure View Floor 2: 8' 49 6 0 0.P L 1600 - : 600 L :. -_ 4 � n .. is tri 619D . . 619D 40.-0 ° . y9 43 b V0 : -t : . ._ : - - : - 41'-0 • .. : .. : : : .. y5 1193 L'153 12404 L::.2404 L , . ..- 3a -b 4 i 625 D105911439 D 1394 D u : : : 315 L. ! • ss bu. • nb "35817i' oz b . .. • 03 - : - - - - --- - _ - L2:1-0 . • • u i 100 L '• _ - -- 74(847 5611 L 4452 D . 5546 D - iz 203D in n e a 1 0 5 L 908L : 307 , : i�- b - 40 \ 46 D` 1 . II b ::.245 L ,y a -b • b4} - 3 D "50 L : - -- -- ..+� _ ._ 0 -0 03 74 b.. f '1 � ._ 7 b t� 599 -- - �• 87 L; • - . 871:- . ' ._ •- - : - - a � .. • bu, _ :.209 LD 6D-'•1963D : -•]- 19630 : - 43 ' s 1540 • - /o � 7 b.. _ - _ �L : ;... 11 D . - _ I -b ' • : : :_ ; • ; 78 Di D ' : 106D: : • : i ; BB \B.B BCCCCCCC( CCCCCCCCCCCCCCCICCCDDDDDDDD1CDD :CDDD :DDDDDDC.D'DDDEEEE E EBEFEEEIEE :EEiEEEEWEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22'24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66'68'70'72'74'76' 0'1'2'3'4'5'6'7'8'9111 - 1;1:1 , 11111:111212 22:2 4A :4 :5 515! 616 8:6 :6 816'-7(7 :77.7(77'-6" T N C-1 . L 1O UT 4 — H WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 22, 2010 13:57:37 Concept Mode: Reactions at Base of Structure View Floor 2: 8' • 104 40, -a„ • '(us 600 L 1600 L.__ ; 4f -0 Ulf 619D - :619D - _ - uo -un 0 • IVo 4.5 -15 • 00 ; 13274 L - - . 3304 L : - sa a • 4 . _ .7153 D _ _ .- : - . - - . 7072D ; . . : .. - - -- - -- 315 �s .5( -t aL _ _ .50 -n a y 315E Ss4 un 358 D -. ..1Z -0 - . : . (--: - .--- _- .._ -- - --- _ - - ..51.1 -b ....' - -- • - - - - - - . -. -. L0 -0 • us 315E z r -b oz 358 D m n • ui 100E`. L n • M • 1 96 D L4 -b f a Li-b /b--:-.;•:: 74(84 611 L_.,, d f 56 L �u . r 0 41452 D - -5546 D �. r 5 �') D n r4 ;.: 625 .. .. • - . : isu i Z - - :203 D -. _ 5 DL . 1 n •- - n = - ri.. 5D i -b 0 y • ' -- 908 L . _ .. . . a • bu 3 07 D . . . • - `�, 0 "! i a n • 4 D : �u. • ._: .245E : yuon • 50 L : is u nos � 3D 7 �.�.. • n i - : 599 4' ::••• 0 b • �fii♦ 2587 L • 58 L ' buy 209 LD 8 D 1963 D : =,:: ; 1963 D = <- - • : : -. - s n 154 D .;:., ,•-its u '' c b.. ( i Dl-L:.- ..725 L219D - �.n � 78 D7 DO 6170' D u -o BB1B.BBC.CCC CCCCICCC CC CCCC C CCCCCICC CDDD D D DD DtDDD CD DDDDD D DD CDDD DE,E E E E EE�EEEEEIEEIE EfEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18'20'22' 24' 26' 28' 30' 32'34'36'38' 40' 42' 44' 46'48' 50' 52'54' 56' 58' 60' 62' 64'66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 1 :1 :1 1:1(1'1(12(2 222 414' 4A: 4. 4( 4( 4T 4t4S5( 5 '5:5:5 7:77 • • \\) (Ou - H arper Houf Peterson Righellis Inc. •V C Date: 6/24/2010 1:41 PM I system: English Fue name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \talcs \Unit A \foundations\F1.ftd\ Design Results Reinforced Concrete Footings GENERAL INFORMATION: Global status Warnings Design Code ACI 318 -05 Footing type Spread Column type Steel Geometry A 1 4 4.25 ft 6- 1 A 4.25 ft ft 4.25 ft Pagel Length 4.25 [ft] Width 4.25 [ft] Thickness 1.00 [ft] Base depth 1.50 [ft] Base area 18.06 [ft2] Footing volume 18.06 [ft3] • Base plate length 5.50 [in] Base plate width 5.50 [in] Column length 5.50 [in] Column width 5.50 [in] Column location relative to footing g.c. Centered Materials Concrete, Pc 3.00 [Kip /in2] Steel, fy 60.00 [Kip /in2] Concrete type Normal Epoxy coated No Concrete elasticity modulus . 3122.02 [Kip /in2] Steel elasticity modulus : 29000.00 [Kip /in2] . Unit weight 0.15 [Kip /ft3] Soil Modulus of subgrade reaction 200.00 [Kip /ft3] Unit weight (wet) 0.11 [Kip /ft3] Footing reinforcement Free cover : 3.00 [in] Maximum Rho /Rho balanced ratio . 0.75 Bottom reinforcement // to L (xx) : 6-#4 @ 9.00" Bottom reinforcement // to B (zz) : 6-#4 @ 9.00" (Zone 1) Load conditions to be included in design Service loads: SC1 DL S1 DL S2 DL +LL S3 DL +0.75LL Design strength loads: DC1 1.4DL D1 1.4DL D2 1.2DL +1.6LL Loads Condition Axial Mxx Mzz Vx Vz [Kip] [Kip "ft] [Kip*ft] [Kip] [Kip] DL 5.55 0.00 0.00 0.00 0.00 LL 15.61 0.00 0.00 0.00 0.00 RESULTS: Status Warnings - Insufficient development length, Section 21.5.4.1 Soil.Foundation interaction Allowable stress 1.5E03 [Lb /ft2] Min. safety factor for sliding 1.25 Min. safety factor for overturning 1.25 Paget 4 il --- F Controlling condition S2 Condition qmean qmax Amax Area in compression Overturning FS [Lb /ft2] [Lb /ft2] [in] [ft2] ( %) FSx FSz slip S2 1.38E03 1.38E03 0.0826 18.06 100 1000.00 1000.00 1000.00' Bending Factor 0.90 Min rebar ratio 0.00180 Development length Axis Pos. Id Ihd Dist1 Dist2 [in] [in] [in] [in] zz Bot. 20.11 7.04 19.75 19.75 • xx Bot. 20.11 7.04 19.75 19.75 Axis Pos. Condition Mu 4) * Mn Asreq Asprov Asreq/Asprov Mu/(4)*Mn) [Kip *ft] [Kip *ft] [in2] [in2] zz Top DC1 0.00 0.00 0.00 0.o� 0.000 0.000 I 1 zz Bot. D2 13.38 45.76 1.10 1.20 0.918 0.292 I?= gi I xx Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 I xx Bot. D2 13.38 43.06 1.10 1.20 0.918 0.311 I i Shear Factor 4 0.75 Shear area (plane zz) 3.10 [ft2] Shear area (plane )0) 2.92 [ft2] Plane Condition Vu Vc Vu /($*Vn) [Kip] [Kip] xy D2 8.99 46.09 0.260 11 I yz D2 8.68 48.88 0.237 l'i - 1 Punching shear Perimeter of critical section (b... : 4.67 [ft] Punching shear area 3.31 [ft2] Column Condition Vu Vc Vu /(4)*Vn) [Kip] [Kip] column 1 D2 29.25 104.29 0.374 1 ` 3 ` = I Notes Page bt - I.S..--- * Soil under the footing is considered elastic and homogeneous. A linear soil pressure variation is assumed. * The required flexural reinforcement considers at least the minimum reinforcement * — I design bending moment is calculated at the critical sections located at the support faces * Only rectangular footings with uniform sections and rectangular columns are considered. * The nominal shear strength is calculated in critical sections located at a distance d from the support face "The punching shear strength is calculated in a perimetral section located at a distance d/2 from the support faces * Transverse reinforcement is not considered in footings *Values shown in red are not in compliance with a provision of the code "gprom = Mean compression pressure on soil. *gmax = Maximum compression pressure on soil. *Amax = maximum total settlement (considering an elastic soil modeled by the subgrade reaction modulus). * Mn = Nominal moment strength. * Mu /(4:1)*Mn) = Strength ratio. * Vn = Nominal shear or punchure force (for footings Vn =Vc). Vu /(4)*Vn) = Shear or punching shear strength ratio. Page4 Beam Shear b 5.5 -in (4x4 post) d := tf – 2•in := 0.85 b := Width b = 36 -in V := 4, 4 3 • — : epsi•b•d V = 16.32 -kips Vu •= qu lb 2 col) b V = 7.83 -kips < V = 16.32 -kips GOOD Two -Way Shear bs 5.5 -in Short side column width bL := 5.5-in Long side column width b := 2 -(bg + d) + 2•(bL + d) b = 54 -in Rc := 1.0 N V = (0- + 3 cJ /• f V = 48.96 -kips 11 V :_ 2.66 f psi b d Vnmax = 32.56 -kips := qu — ( + d)2] V = 15.88 -kips < V = 32.56-kips GOOD N Y Flexure 2 Mu := 9u I b –2 J (_)b b olj 1 M = 4.98 -ft-kips := 0.65 2 1:= b•d S = 0.222 -ft 6 F := 54- f F = 162.5 -psi M ft — ° f = 155.47 -psi< F = 162.5 -psi GOOD S !Use a 3' -0" x 3' -0" x 10" plain concrete footing Plain Concrete Isolated Square Footing Design: F2 f := 2500 Concrete strength • f 60000.psi Reinforcing steel strength E = 29000•ksi Steel modulus of elasticity '(colic 150•pcf Concrete density /soil il := 1100.pcf Soil density gall 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl:= 2659..1b Pdl := Total Totalll := 7756. lb Pll := Totalll Ptl Pdl + Pll P = 10415.1b Footing Dimensions tg := 10-in Footing thickness Width := 36-in Footing width A := Width 2 Footing Area clnet gall — tf•"Yconc net = 1375•psf Pd Areqd greet Areqd = 7.575•11 < A = 9•ft GOOD Widthreqd Aregd Width = 2.75-ft < Width = 3.00 ft GOOD Ultimate Loads ,P, := Pd1 + tf'A P„ := 1.4•Pdl + 1.7-Pll P = 18.48-kips P qu A q = 2.05•ksf Plain Concrete Isolated Square Footing Design: F3 f := 2500•psi Concrete strength f 60000.psi Reinforcing steel strength • E 29000 ksi Steel modulus of elasticity "Yconc 150•pcf Concrete density '(soil := 100•pcf Soil density • gall :_ 1500•,psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl := 2363•1b Pd1:= Totaldi Total11 := 4515 Ib Pll := Totalll PEI Pd1 + P11 PH = 6938•lb Footing Dimensions t = i0-in Footing thickness Width := 307in Footing width • A := Width Footing Area cinet gall — tf•1'conc gnet = 1375•psf P Areqd = 5.046 ft A = 6.2541 GOOD gnet Areqd Widthreqd A reg d Widthreqd = 2.25-ft < Width = 2.50 ft GOOD Ultimate Loads = Pdl + tf•A•"Yconc P„ := ' •4•Pd1 + 1.7•P11 P = 12.18.kips Pu qu := A qu = 1.95•ksf r - Beam Shear b 5.5-in (4x4 post) d := tf — 2•in := 0.85 b := Width b = 30•in V :_ 00 — - f V = 13.6-kips 3 Vu •_ qu (b 2 colt V = 4.97-kips < V = 13.6 -kips GOOD Two -Way Shear bs •:= 5:5•in Short side column width bL = 5.5 in Long side column width b := 2•(bs + d) + 2•(bL + d) b = 54 -in p := 1.0 V im:= 4 + 8 f psi -b•d V = 40.8 -kips C 3•0 cJ V itmax := x•2.66• f psi•b•d V = 27.13 -kips ,VK;= qu — (bcol + 0 V = 9.71 -kips < V = 27.13 -kips GOOD Flexure r 2 Mu q,; I b — bcoll 1 b M = 2.54 -ft -kips 2 J 2 := 0.65 2 4.v. 13-4:1 S = 0.185•ft F := 5 -•:13- f F = 162.5-psi M n f := f = 95.19 -psi < F = 162.5 -psi GOOD .Jse a 2' -6" x 2' -6" x 10" plain concrete footing I f Plain Concrete Isolated Square Footing Design: F4 f = 2500-psi Concrete strength f := 60000-psi Reinforcing steel strength E 29000•ksi Steel modulus of elasticity `(cone := 150-pcf Concrete density • (soil : = 100•pcf Soil density call := 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totald := 5001.1b Pdi := Totaldi Totally := 7639-lb P11 := Total11 P := Pd1 + 1 ii Ptl = 12640• lb Footing Dimensions t := 12-in Footing thickness Width := 42•in Footing width A := Width Footing Area net gall — tf''Yconc net = 1350•psf Ptl Areqd gnet A red= q 9.363. ft 2 < A = 12.25.11 GOOD Width Aregd Widthregd = 3.06- ft < Width = 3.50 ft GOOD Ultimate Loads = Pdl + tf A'Iconc P := 1.4•Pdi + 1.7•P11 P = 22.56.kips P q := — A q = 1.84•ksf Beam Shear bcol 5.5 -in (4x4 post) d:= tf -2•in := 0.85 b := Width b = 42 -in V„ := (I)• 4 - ' f V„ = 23.8-kips 3 Vu •= qu rb 2 colt b V = 9.8:kips < V = 23.8-kips GOOD Two -Way Shear bs := 5:5 in Short side column width bL := 5.5:• in Long side column width b 2 -(bs + d) + 2•(bL + d) b = 62.in P := 1.0 V 4 + 8 f V = 71.4-kips C3 3•0c V„„, := x•2.66• f V„„,,, = 47.48-kips ,Wyd; qu — ( + d) Vu = 19.49-kips < V„ . = 47.48 -kips GOOD Flexure b — 2 Mu qu 2 b col ](}b M = 7.45 ft kips 0.65 d 2 := S = 0.405 -ft 6 F := 5 f psi F = 162.5-psi M ft := s u f = 127.79 -psi< F = I62.5 -psi GOOD lJse a 3' -6" x 3' -6" x 12" plain concrete footing /4 —7\1 Plain Concrete Isolated Round Footing Design: f5 f := 3000-psi Concrete strength f 60000 psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity 'Yconc 150•pcf Concrete density ^'soil := 120•pcf Soil density an •1500•psf Allowable soil bearing pressure TYPICAL FOOTING Reaction Totaldi := 619.1b Pdl := Totaldi Tota := 1600-lb Pll := Totalll P := Pdi + Pll Pd = 2219-lb Footing Dimensions t 12 -in Footing thickness Dia := 18-in Footing diameter p Tr•Dia Footing Area '4' 4 gnet gall — tf'"Yconc net = 1350-psf Pt1 Areqd gnet A red q = 1.644 ft < A = 1.77 ft GOOD Areqd 4 Dia regd Diaregd = 1 . 45 ft < Dia = 1.50 ft GOOD Ultimate Loads n7vt�h' Pd1 + tf'A''Yconc • P := 1.4•1 + 1.7•P11 P = 3.96-kips P gu — " A q = 2.24•ksf 4— — \e3 Beam Shear := 3.5-in (4x4 post) d := tf — 2-in := 0.85 b := cos(45•deg)•Dia b = 12.73•in V :_ 4) 4 • f V = 7.901•kips 3 — Vu cu'( b 2 colt V = 0.91 -kips < V = 7.901•kips GOOD Two -Way Shear bs 3.5-in Short side column width bL := 3:5-in Long side column width b := 2•(bs + d) + 2•(bL + d) b = 54•in (3 := 1.0 Vim:= 4 8 + . f psi b d V = 23.703 -kips (3 3 - Rc 4.2.66• f psi•b -d V = 15.76-kips Qu'[b — (bcol + d) V„ = —0.31 •kips < V„ = 15.76-kips GOOD Flexure 2 Mu Qu [(b — 2 J bcoll 1 2J 1 b M = 0.18•ft•kips ,,:= 0.65 b d 2 ,:= S = 0.123•ft 6 F =5.4• f F 178.01•psi M f := u f = 9.9•psi < F = 178.01 -psi GOOD Use a 18" Dia. x 12" plain concrete footing • Plain Concrete Isolated Square Footing Design: FG f := 2500-psi Concrete strength f := 60000-psi Reinforcing steel strength Es := 29000•ksi Steel modulus of elasticity conc 150•pcf Concrete density '(soil 100-pcf Soil density gall := 1500.psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl:= 7072-lb Pd1 Totaldl Totalll := 13304-lb Pll := Totalll Pt! := Pdl + P11 P = 20376-lb Footing Dimensions t := 15-in Footing thickness Width := 48-in Footing width A := Width Footing Area net gall — tf"(conc qnet = 1313-psf Ptl Areqd = gnet A red= g 15.525 ft < A = 16 ft GOOD Widthreqd A reg d Widthreqd = 3.94-ft < Width = 4.00 ft GOOD Ultimate Loads Pdl + tf'A''(conc P := 1.4•Pdl + 1.7•Pll P = 36.72-kips P qu A qu = 2.29-ksf F \S- Beam Shear bcoi := 5.5-in (4x4 post) d := tf — 2-in := 0.85 b := Width b = 48-in V„ :_ 43 4 f psi•b•d V„ = 35.36•kips 3 Vu qu 2 colt V = 16.26-kips < V = 35.36•kips GOOD Two -Way Shear bs := 5.5-in Short side column width bL := 5.5• in Long side column width b := 2-(bs + d) + 2-(bL + d) b = 74-in Oc := 1.0 X + 8 f p si•b•d V„ = 106.08 -kips 3 3'13c V := 2.66 f psi b d V = 70.54-kips „Vµ= qu [b2 — �b + d) V = 31.26-kips < V = 70.54 -kips GOOD Flexure 2 Mu = q. [(i3 - bc (i) b M = 14.39 -ft -kips • 2 J 2 := 0.65 d 2 1:= = 6 S = 0.782•ft F := 5 -�• f psi F = 162.5 -psi M ft := s u f = 127.75•psi< F = 162.5 -psi GOOD 'Ise a 4' -0" x 4' -0" x 15" plain concrete footing Plain Concrete Isolated Square Footing Design: F7 f := 2500-psi Concrete strength f := 60000.psi Reinforcing steel strength E : 29000•ksi Steel modulus of elasticity 'Yconc 150"pcf Concrete density "Ysoil := 100•pcf Soil density an := 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 1200 -lb Pdl := Totaldi Totalll := 3200.lb Pp := Total11 Pt1:= Pd1 + P11 Pg = 4400-lb Footing Dimensions t := 10-in Footing thickness • Width := 24•in Footing width A:= Width Footing Area g net := gall — tf'iconc qnet = 1375•psf Ptl Areqd gnet A re d = q = 3.2 ft < A = 441 GOOD Widthreqd := Areqd Widthreqd = 1.79-ft < Width = 2.00 ft GOOD Ultimate Loads wdk'= Pdl + tf'A'"Yconc P„ := 1.4•Pd1 + 1.7•Pi1 P = 7.82•kips P qu := — A A qu = 1.96•ksf Beam Shear bcoi := 5.5-in (4x4 post) d := tf — 2-in := 0.85 b := Width b = 24-in V:= 4 f V„ = 10.88•kips 3 Vu qu (b 2 cotl b V = 3.01 -kips < V = 10.88•kips GOOD Two -Way Shear bs := 5.5,in Short side column width bL := 5.5-in Long side column width b := 2.(bg + d) + 2 -(bL + d) b = 54•in ac := 1.0 V (- + 8 f psi•b -d V = 32.64.kips 3 343c Vrumax :_ x•2.66• f psi•b•d Vnmax = 21.71 -kips A U= , [b - ( q bc01 + (1) V = 5.35 -kips < V = 21.71 -kips GOOD Flexure 2 b — bcol (1 Mu qu 2 12 I'b M = 1.16 ft kips A 0.65 b d 2 1:= S = 0.148 -ft 6 F := 5 .0• f c psi F = 162.5 -psi M ft := s u f = 54.45 -psi < F = 162.5 -psi GOOD lJse a 2'-0" x 2' -0" x 10" plain concrete footing BY: n A " C DATE: ..... a° 0 JO8 NO.: ce Ni ....oct 1 OF PROJECT: C r ,t T n0 v + A - y n+ Load u )( aa 3 e x .as' RE: y> ❑ ❑ 1 1L'/(0 tiE %1: W v..c h J Z 35.11 tr �, ' ` 1 �., a .31.3k 2.363 w f w I i O w 6. , U , S l0. 1 1 4 Cr 0 U Z W O S cc a Z �' 0 z Ch.c'- Overi% r y f o MOT = 35,1 1 4-1 \.1 k o = 58.5- 1kc=t MQ (0 ,1 1 , 5 ( . 3 .3,$ I ) 4- a. - 6( • 3(a ,zS ) + a,3L -C,►> z = a(.,a Ir.-P- IL w M cZ m. = C0t155)C1,5 227Ct I) i- 2.363 (1a, >t-a (.3C i ❑ Z f a i aa3 ' )S M /CA = a ' S8.S 1 _ q _a3 F t e = l : Ct 11 2 25 + a .363 (2) q , = Q } 6 M _ al 005 i _ 4 L(aa.osix.i. -)-1-� o.6,as,sF IN- 3 (-3,5)(22. (3.S )(1.:0 1 - 9-" "" = ( • _ 6 M = 0.145 t.... j 131_ b -L. . M 2a3 _ 3e5 = F,S, : o ok— '� M 5`$,51 cu =. F4 o aO •= A., - x /4 '..r.1 Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:43 AM Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \talcs \Unit A \foundations\Front Load 2.etz\ • M33 =51.9 [Kip'ft] • • M33= -12.19 [Kip'ft] • X IVlcmexts C.1 /� Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:35 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\Front Load.etz\ UM IT Pt \-- - M33 =25.66 [Kip'ft] M33= -30.27 [Kip'ftj • 1 Mmen L(- V 1 "AO Sd C Q 1 ce ' 1 }% xvw (S7s• s)e - ,eeX(-)- (b' O) x.ouu- 0 ° 0> -) tom+ �Sfi. i° ( ' °10To'o‘e = `'' "W to Sb 1" 1 �2-�.- �')(27 Ct�xt) �°,S'S Qb've) { 41010' of emu, to 0)Do lob o`e - 10 S'lc 4b't °WilJo 42 )b •1 0'ee ( %e)SSt't, c9.51'€, (,t *e)L1I)Lt)C i9s'vo) = ssW ( 31 '°)11 = cgrcc19 -Ce) 4- 1 - b' OZ. A 1 fi' 10W rou %Q.J .pa l p W iD 1 --- -- ' wof 1460 CiMe Z - vvlt✓ e Vc?a - d 1■.Nf 'S � .3 ooi 1Dks ON nor ()lot-9 31V0 �WY 3d 1.03 road A9 CD • 0 - n 0 0 3 ❑ x ' o • 0 ONI133V4 :11VO 3NOHd 080038 NOI1VOINf1INWO0 ❑ 31Id Ol OW3W ON 3NOHd n o Bentley. Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:38 AM • Units system: English File name: O: HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\Rear Load.etz\ • M33 =43.24 (Kip *ft] • M33= -45.06 [Kip'ft] • Mrrks 11. • enttey Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:43 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \Rear Load 2.etz\ M33 =41.88 IKipIt) • M33= -46.37 Iwp J\Asreervk - LoCeL BY A w ‘L DATE: e / 0 + 0 7 JOB NO.: & -0 et() OF PROJECT: RE: Rear Load cbo VI n) 0 .. a x L x 12" FTC, ii z 0 7 Amok = ON + A - >4\:;a01- I ❑ _ = .Unit\ -AIL Li 0 J cr Q U O W Z Um gl L - O a ADM r - - o.aoA Cd - 2- U ' to Z .a.= As�� / .Sb SL E .Tr.y C► > it t4 e 1t' o,C, As =o, 3g3t &' xa' o . a= 0.3°13t6Q OOO)l0 ,8C3000)Cv+) t� z CD iA" ®e c!0`0. - 6°l ' Z 110 11 0,000 - v ' 9 /0 CI 6 . = ab,. KFt oJ_ ► a yy � � 1 // 1� I ' � /�Y o.- ? NZ ct...�s. W `(v,-O o I{ O I .:3000 2. OM .- 0,90(0,4140(40,000 A /Z) = 31, as f' T f ll� S Q 2 4 0 , C , , As r. O G' "1 t (u • a = o, (01 4 (440a5) I ac - 3000 - )C - v4- °0-(03-9 `i'_ "9 o .. ^ e 4 O .S C ( Ic .ct,Y'I ,'33) s 5 3 A y > P n%x % • o i l _ a tV J ' bofloc► i Lt p, a� !a• - , - - - - 4, 4 xx=, i /4-2,-5- Tho '; ..-`1) .. > : Irk eil* e = ( 1/4... 1 .4.9 b , 0 -s9Q:xt'olkskm.:Mob'o 1.- u\N 0 '„ 1-11 _.':')t — tzliiixpx)s)ca'o/ (Yogyscivg ) 4%.1,.2.0 v • 7 a ,;,,• dq 0 E 5' 5) S I - 2 . = N 1 4 2 6 1-L 0 7: cl...10LCACEX_C2) V) / ( 0 k ) 'D'O "01 a s 4 knit i , ., • ss ‹ £'t 10 -7-- (iwc.ovic VL/ 2z n.o Lcooto,vt 9 :- No • -a.t c = cv --DT) i p a ..s 4 q) 1-ffig . 9 • . (J€' 9( 4R? 1 ..... S 1 Ornc TO) 013 0 ID 0 Ntlat -_-, Ctki)C000 Sri on (000,,v,,,,.0)_:--,0 0 m z m t' s) o 73 C. .. 0 K '111"0 --= 5 I ""D in v s 4 r \)\.1. 0 q7Eqpi c ‘fs‘ci = \c• - 0 z ='\113 C Z 1 P - hCrOt - <-- --) k.1(\ -6 -i a — C- J - k !v() o m z 0 b h#2 C 0 . ,-- 0 • 4, il l - _i • -13 1.1 1 ; c6 10 . i ?:, - t ... ‘6 'It x 0 9 31 . 1 g r;- 4-- - 1 nQA )(i x /- E k.),4003- VI)01 Nuoij :3 ,, :103 roa d JO :31VCI :Aa BY p \N‘c _ . DATE: c)-aolo JOB NO.: ^ c 0 OF PROJECT: y� 'l, + ` b x 3+x 1.ZSI RE: U1 1A- A 1n� (Vim+ ❑ ❑ z aL.o3k�t O W 5.a \c �, 1,61., O E 0 1 k .. - 1 I. L____i_k___1- J , 6 k 4 ----- 'I t o W U Z W O • I Z Check_ Overiwnwv\9 O Kor = ac, .03 at✓ Mrz., (t�Co f 5." ,Ca) 4- T ILL(() = 4 t • t m M Cb")(o.ts-o Ct - 5Y5)(4) 4-5 ,,(() +-1, LL(2) = sc, 12. o - M /! � - _ (4 = 1.(1 > 1,s off. L._ z I�IVr 4310 a a X = M �Q _ 4taL -a� -o3 _ -a9�FE e= a.-)-(DA Ft sA i-s, ;-�,b6 31_(3 2e..) — 3(Z)( co - a(a,--100) Foy 5ho .1 t er, l Ga ci t4' < USe, 36(.6 t o re s , S - I . OM ( MY) ir1y U i 5 , Mor a. (r. ,fly. - - o s; Mg_ = �5.a 1-- X 3.222) 4 -(I,LL +3,2) i" 4 DI_ vie .5R. 51. a"i µs, to 4-Li D � '2 eo. e."0\ a " Mt,� M. (s,2t- 3.ZY(.)a- - (I,LL 4 - go es of 51.0., c o rc.o.t2+ - 4Dt_ x x I,SMo < M(Z a 1, S(aL , 03 - ) k-1-s.ctc, 4-4- DI_ x bL- - I. 5 +o► fcc)kin0 I 3 O1 i F- boo \-k n.y _ Lit 1� . &3: 'r 3DL M9,..- Lt-G.1)6 A-31))---- 1,SMncM 1,5 (2,U3) S ";711- a- 391,___ \ a.\ 5 '- D5 °' LC +- fang x ac. x 15" DI..° a .asor__ C7. M/Q _ (-1-C, .b(o i3J yy _ STD _1,"}-�- FE (a.as•1- s,'z+s.2)-1,b� +3. iS,S) e,= t Cl niYiaoc s 4 C 1S , 5 I> \ . a mq o me 3C (L- 2(1,22)1 14 D,--- _ b 7 x, O L • c • 0 -U = z ❑ m Z T1 O AO • 3 191501 tA, .11 a } JOV6 -g - 1 -34' qbrq L 1) fi = 'C 0 SAC.. ) , ht 'I a ( 1W - � ?C 4.. o' 1 'e - c_s -E..�' 4) � `) �' `) = W rk 1 ,51 $- g x O) Gut t _ c(5 )Z r c))59-1)-z,-)2, - D .Z7 4_0 "11 r o r r 3 le3T = 1 51 x R istx- � 3 ° } r) a-k m 0 � r .. m -9L-1)q ❑ ❑ 40 Q cO ( v ) :'oN eor ®l oe ` 9 •31V0 V v :A9 A 'Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:42 AM Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes\calcs \Unit A \foundations \Interior 2.etz\ M33 =23.55 [I<ip'ft] M33= -17.88 [Kip •tt] • • Y i Nvimeoft LC ( 14 - x=2°1 n d .Hannay Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:42 AM Units system: English File name: O: HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\Interior.etz\ M33 =32.26 [Kip'ft] M33= -9.27 [Kip'ft] l ,',omen s L CZ - ACI 318 -05 Appendix D 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc = 3000 psi fc = 3000 psi h' = 3.50 inches h = 12.00 inches (into the Fc Stem = 8.00: inches Note: hef above is the the embedment into or cmax = 5.25 inches the foundation and does not consider stem wi Fnd Width = 36.00 inches c m;n = 2.25 inches c m;n = 18.00 inches 4 1.00 cast -in -place anchor Wc,N= 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor = 0.75 strength reduction factor = 0.75 strength reduction fact' Calculations Calculations ANc = 68 in` A = 1296 in` AN = 110.25 in` AN° = 1296 in` Nb = 8,607 pounds Nb = 55,121 pounds Wed,N = 0.8286 Wed.N = 1.00 Ncb = 4,399 pounds Ncb = 55,121 pounds 4Ncb = 3,299 pounds 4N = 41,341 pounds Combined Capacity of Stem Wall and Foundation (1)■ = 44,640 0.754N = 33,480 Br: 11n \ \11n \\ l/! _ DATE: / //. Roto r, 1 `� `'V f� 1 Jos No. : Cenk) (`fb° OF G! �- PROJECT: RE: 1:1\ineUG14. 1 1 . . _ ._ k Ni. (:) -5, 5 0 0 . Mrn�x = 3a .alL k F' . D m E ❑ 8 x. 3 x. IS' 0 J M k a =_1 S 10 Sc.' b. Z Tr(6 C1)14 4 e 12" .A s o,5b°1∎N A = 0,5?)9 114,000) /O . it.) 0.40°1 � uaq z 0M�= 0,ao(0 ;(�d#000�(12 v, IL) M - 31,aL3( 4- 1.55 k : G6- • Ok 0 "tt U TTA) (t - tore " h Or (1) 61 Fjais u_ z a= o .3 (.o xx /0. &C )(-3L) ❑ o 0.a-i-611.1 jj 0 . ff M A= 0 " /Z) - c.9. > Mm,n rr C v, iii ., N AI" -� 1 W ~ u u M • iq--(---:\ Concrete Side Face Blow Out Givens Abrs = 2.15 in` fc = 3000 psi c = 18.00 inches = 0.75 strength reduction factor Calculations N = 231,191 pounds 4)Nsb = 173,393 pounds Concrete Pullout Strength Givens Abre = 2.15 in` fc = 3000 psi = 0.75 strength reduction factor Calculations N 51,552 pounds 4)N = 38,664 pounds Steel Yield Strength Givens f = 58,000 psi A = 0.606 in = 0.80 strength reduction factor Calculations N = 35,148 pounds 4)Ns = 28,118 pounds < 33,480 Ductility Met Holdown Check Holdown: HDU14 Holdown Capacity= 14,930 pounds 1.6* Capacity= 23,888 pounds 23,888 < 28,118 Holdown Checks -7?°3 BY: DATE: JOB NO.. kJ I . PROJECT: RE: 3 \ m Wall ' Vookif■3 ❑ ❑ e S des CUP Boi � O • 2 tt_ ° asc t C tt inc ); 300 PLC wool ❑ $ rIC.2. 1evexs>(13 s0 _ _C:)b _C:) pL..p Stoor O d 401N (t50Fc�x')1 (�l1z7) _ 333 pe.F 5i • w ( >( tSO p c )( w ) — 100w Ps: ;--- _ r. w = r w - -; Z LL o 0:5c . leveis)�.4O t - s buo P■-F Mor' o 0 Q z Td1/4x1 ocad.. = V-Vb (4- wow Pi.F' . 2 ` M o % Sbp = lsoo . " - - - S0 t pcP • w O t + (cow CS0oLu ,,_ _ 0 - cu = 1.0(0 C , , X ts,► ci & • o O o e rear '? � vnti. ek bu i kd x Y D = t F_ a D1- a5C10: 3co pk..F. u4c,kti 6912. levels)(t e aN-1- pt.F .P koot^ 4k1N (L5O pc F X' /1 )( / tz') = 333 LP. S 0 t50 W) _ toot. Oa 11psc = 306p..c P LL: 0)(221 4a = 1 91...F C11)>C25) = 4-S0 PLF o g : a, . - 11 a34 3 i 100 v..) ' 4-4 . :: a3 13 r Ioo . Is-00“.) 4) G xa -= W � t.(1- �' a,\ ‘N @ vnit Pt' a x e unjer, 6 1 Som. as p ltr , Sloer lcxd. T L \'A cI ■ 00 W w 1.00 << o-C1St @ Pa(ivua.tt DI- ° as(12,(2) = (oc.) pa wu tl (b)t2 Xc3L (i-) _ 4 Ito cx F Stool' 40 kr4(1507c0)( _ 333PLC 51 (Ci►►zXt50 WY:100 W LL o (612(.4o)Cf = 1Za0 pt.a- ,YEacx rt_ : 0,6a9 t 100 L W = 1 23i U52, .24 IN