Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Specifications (3)
ti1/[e.0I p 0 i 0 -• 1 7f , /71 05 Structural Calculations for Full Lateral & Gravity Analysis of RECEIVED Plan A l 460 SEP 2 3 2010 CITY OF TIGARD Summer Creek Townhomes BUILDINGDIVISIOr Tigard, OR Prepared for Pulte Group July 13, 2010 JOB NUMBER: CEN -090 ** *Limitations * ** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and /or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. • 117 sheets total including this cover sheet. This Packet of Calculations is Null and Void if Signature above is not Original 0 Harper Houf Peterson Righellis Inc. ENGINEEnOoPLANNERO IA N OOCAPE ARC N 1 T E GT,•OVR`•Cl QM 5 205 SE Spokane St. Suite 200 ♦ Portland, OR 97202 ♦ [P] 503.221.1131 ♦ [F] 503.221.1171 1104 Main St. Suite 100 ♦ Vancouver, WA 98660 • [P] 360.450.1 141 ♦ [F] 360.750.1 141 1 133 NW Wall St. Suite 201 ♦ Bend, OR 97701 • [P] 541.318.1 161 ♦ [F] 541.318.1 141 Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit A Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, IW: 1 2006 IBC / 2007 OSSC Occupancy Category: II Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed, ASCE 7-05 Ch. 20 Importance, IE: 1 ASCE 7 -05 Table 11.5-1 Ss: 0.942 USGS Spectral Response Map S1: 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength, Pc: 3000 psi Foundations & Slab on Grade Concrete Unit Weight, yc: 145 pcf Steel Reinforcement Yield Strength, f 60,000 psi Wood Studs (Wall Studs): Hem -Fir #2 2x & 4x Wood Beams & Posts: DF -L #2 6x & Greater Wood Beams & Posts: DF -L# 1 Glulam Beams: 24F -V4 PSL Beams: Fb =2,900 psi, FV= 328psi, E =2.0 Million TS /LSL Beams: Fb =2325 psi, FV= 460psi, E =1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : 1500 psf Assumed 2. All manufactured trusses, joists, and flush beams u.n.o. shall be designed by others. Structural Analysis Software Used: Mathcad 1 1 Microsoft Excel 2000 WoodWorks - Sizer version 2002 Bently RAM Advanse • Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP Houf Peterson c lient: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCRITEC FS• SURVEYORS DESIGN CRITERIA 2007 Oregon Structural Specialty Code & ASCE 7 -05 Roof Dead Load RFR:= 2.5.psf Framing RPL := 1.5•psf Plywood RRF := 5•psf Roofing RME := 1.5•psf Mech & Elec RMS := 1.psf Misc RCG := 2.5.psf Ceiling RIN := 1 •psf Insulation RDL = 15.psf Floor Dead Load FFR := 3 •psf Framing FPL := 4•psf Sheathing FME := 1.5•psf Mech & Elec FMS := 1.5•psf Misc FIN := .5•psf Finish & Insulation FCLG := 2.5.psf Ceiling F.DL = 13•psf Wall Dead Load WOOD EX Wa11 := 12•psf 1NT_Wa11 := 10•psf Roof Live Load RLL:= 25•psf Floor Live Load •FLL := 40•psf M- LI Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP, Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. -- ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCH1TEC,S• SURVEYORS Transverse Seismic Forces Site Class = D Design Catagory = D Building Occupancy_Category: 11 Weight of Structure In Transverse Direction Roof Weight Roof Area := 843.11 RFW-r := RDL•Roof Area RFwy1• = 14162.1b Floor Weight Floor Area2nd := 647. ft FLRw-12nd := FDL•Floor Area2nd FLRw = 8411•1b Floor_Area3 := 652•ft FLRw FDL•Floor Area3rd FLRw - r3rd = 8476-lb Wall Weight EX Wall Area := (2203).ft INT Wall_Area := (906). ft WALL\VT := EX_Wall EX_Wa11_Area + INT Wa11 1NT_Wall_Area WALLw -r = 35496•lb WTTOTAL = 66545 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h := 32 Mean Height Of Roof I := 1 Component Importance Factor (11.5, ASCE 7 - 05) Z:= 6.5 Responce Modification Factor (Table 12.2 - 1, ASCE 7 - 05) C :_ .02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x :_ .75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period T := C T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. . (Chapter 22, ASCE 7- 05)...or S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F := 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F, := 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) 14 Le-2_ Harper Project: SUMMERCREEK TOWNHOMES UNIT A Y P Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCNITECTS•SL'RVEVORS S MS Fa SMS = 1.058 (EQU 11.4 -1, ASCE 7 -05) S := 2 3MS Sd = 0.705 (EQU 11.4 -3, ASCE 7 -05) S := F Si SMl = 0.584 (EQU 11.4 -2, ASCE 7 -05) Shc 2 3 Shc = 0.389 (EQU 11.4 -4, ASCE 7 -05) Cst := Sds'Ie Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) R ...need not exceed... Cs Shc Ie Cs 0.223 (EQU 12.8 -3, ASCE 7 -05) max := ,I. R max = a ...and shall not be Tess then... C1 := if(0.044•Sd < 0.01,0.01,0.044•Sd ( 0.5•S1•Iel (EQU 12.8 -5 &6, ASCE 7 -05) C2 := if l S1 <0.6,0.01, R J Cs := if (CI > C2,C1,C2) Cs = 0.031 Cs := if(Cst < Cs , Cs if(Cst < Cs , Cst, Cs Cs = 0.108 V := Cs•WTTOTAL V = 72201b (EQU 12.8 -1, ASCE 7 - 05) E := V•0.7 E = 50541b (Allowable Stress) / \3 Harper Project: SUMMERCREEK TOWNHOMES UNIT A 1 s P Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. -•� ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE APCNITEC TS• SUPVE VOSS Transverse Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 100 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I := 1.00 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X := 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... a2 := 2•.1.20•ft Zone A & B Horizontal Length = ft (Fig 6 -2 note 10, ASCE 7 -05) or 2 — .4hn-2ft a2 =25.6ft but not less than... a2 := 3 2 ft a = 6 ft Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA 19•9•psf Pnet := 3.2•psf Pnetzonec 14.4.psf PnetzoneD 3.3•psf • Vertical PnetzoneE = — 8.8•psf PnetzoneF 12•psf PnetzoneG —6.4•psf PnetzoneH 9.7•psf Basic Wind Force PA := PnetzoneA'Iw'X PA = 19.9•psf Wall HWC PB := PnetzoneB' 'Iv X PH = 3.2•psf Roof HWC PC := PnetzoneC'Iw•X PC = 14.4.psf Wall Typical PD := PnetzoneD' I • X PD = 3.3 -psf Roof Typical PE := PnetzoneE'Iw.X PE = —8.8 -psf PF := PnetzoneF'Iw'X PF = — 12•psf Pc, := PnetzoneG.Iw -X Pc, = —6.4 -psf PH := PnetzoneH' Iw• X PH = —9.7• psf LEI Harper Project: SUMMERCREEK TOWNHOMES UNIT A 8' Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINCERS • PLANNERS --- Designer: AMC Date: Pg. # LANDSCAPE ARCNITEC TS• SUR VS ORS Determine Wind Sail In Transverse Direction WSmilaZoneA (414- 59 + 29)•t WSAILZoneB (19 + 0 ± 23).ft WSAILZoneC (391 + 307 + 272)•11 WSAILZoneD := (0 ± 0 + 5) ft 2 WA := WSAII- ZoneA•PA WA = 25671b WB WSJ- ZoneB•PB WB = 134 Ib WC WSAILZoneC•PC WC = 139681b WD WSJ ZoneD'PD WD = 161b Wind_Force := WA + WB + WC + WD Wind_Force := 10•psf•(WSAILZ + WSAILZoneB + WSAILZoneC + WSA Wind_Force = 16686 Ib Wind_Force = 114601b WSAILZoneE := 94.11 W S -ZoneF 108.11 WSAILZoneG 320.112 WSAII-ZoneH 320.1112 WE := WSAILZoneE•PE WE = —8271b WF := WSAILZoneF•PF WF = —1296 Ib WG := WSAILZoneG•PG WG = — 2048 Ib WH := WSAILZoneH'PH WH = — 31041b Upliftnet WF + WH + (WE + WG) + RDL•[WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneG)1•• Uplift = 12121b (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION UC- Harper Project: SUMMERCREEK TOWNHOMES UNIT A Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCNITECTS• SGRVEVORS Longitudinal Seismic Forces Site Class = D Design Catagory =•D Building Occupancy. Category: II Weight of Structure In Longitudinal Direction Roof Weight Roof Area = 944 ft EFL:= RDL•Roof Area RFwT = 14162-lb Floor Weight Floor_Area2 = 647 ft = FDL•Floor Area2nd FLRwT2nd = 8411-lb Floor_Area3 = 652 ft • a i= FDL•Floor Area3rd FLRWT3rd = 8476-lb Wall Weight (2203)•ft 1NT Wall Area = 906 ft ,J da,,:= EX Wa11 + INT Wall- INT_Wall_Area WALLw -r = 35496-lb WTTOTAL = 665451b Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h = 32 Mean Height Of Roof Ie = 1 Component Importance Factor (11.5, ASCE 7 -05) 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C = 0.02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x = 0.75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period J Ct.(hn)X Ta = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 = 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S = 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F = 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F„ = 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) 4- L.le Harper Project: SUMMERCREEK TOWNHOMES UNIT A P Houf Peterson. Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCM rECTS•SURVE YORS ,5:= F SMS = 1.058 (EQU 11.4 -1, ASCE 7 -05) 2 -SMS := Sds = 0.705 (EQU 11.4 -3, ASCE 7 -05) 3 S= F Si SMr = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2 •SM1 = Sd1 = 0.389 (EQU 11.4 -4, ASCE 7 -05) 3 Q Cs := S R Ie Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) ...need not exceed... Cs Ta Csmax = 0.223 (EQU 12.8 -3, ASCE 7 -05) AYw�A v� = T•, R R ...and shall not be less then... E j := i f(0.044- Sd -l <0.01,0.01,0.044- Sd 0.5•S1•Ie (EQU 12.8 -5 &6, ASCE 7 -05) if(S1 <0.6,0.01, ) R a if(Ci > C2,C1,C2) Cs = 0.031 Cs = if (Cst < Cs Cs if (Cst < Csmax , Cst, Csma,c)) Cs = 0.108 ,,:= Cs•WTTOTAL V = 72201b (EQU 12.8 -1, ASCE 7 -05) E:= V•0.7 E = 50541b (Allowable Stress) Harper Project: SUMMERCREEK TOWNHOMES UNIT A 0 HouF Peterson Righellis Inc. Client: PULTE GROUP Job # CEN -090 -_ CNGINEERG • PLANNERS Designer: AMC Date: Pg. # L.NDG:APE ARCM TEC TS•SU! EYORS Longitudinal Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 110 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I = 1.0 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X = 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... A= 2•.1-20•ft Zone A & B Horizontal Length a2 = 4 ft (Fig 6 -2 note 10, ASCE 7 -05) or ;= .4•h 2- ft a2 = 25.6 ft but not less than... S 3-2-ft 6 ft a = Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA = 19.9•psf PnetzoneB = 3.2•psf • PnetzoneC = 14.4•psf PnetzoneD = 3.3•psf Vertical PnetzoneE = —8.8•psf PnetzoneF = — 12•psf PnetzoneG = —6.4•psf PnetzoneH = — 9.7•psf Basic Wind Force PnetzoneA• X PA = 19.9•psf Wall HWC = PnetzoneB•Iw•X PH = 3.2•psf Roof HWC PnetzoneC•Iw•X Pc = 14.4•psf Wall Typical ,P�:= PnetzoneD'Iw X PD = 3.3•psf Roof Typical P5 PnetzoneE'Iw• PE = — 8.8•psf &:= PnetzoneF•Iw• PF = — 12•psf Pte:= Pnet PG = — 6.4•psf Pte:= PnetzoneH•Iw•X PH = — 9.7•psf /9 L . Harper Project: SUMMERCREEK TOWNHOMES UNIT A S P- t• Houf Peterson ,.� Client: PULTE GROUP Job # CEN -090 ' Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # L ANOSCAPE ARCHITECTS• SURVEVORS Determine Wind Sail In Longitudinal Direction ,„)W jkz, (48 + 59 + 40)•ft :_(10 +0 +44) -ft n`iLn '� n� gairCn:= (91 + 137.+ 67)41 Nr N:= (43 + 0 + 113)41 W,,,�,j= WSAILZoneA'PA WA = 29251b := WSAILZoneB'PB WB = 173 Ib N U A = WSAILZoneC'PC WC = 4248 Ib W, i= WSAILZoneD'PD WD = 515 Ib Wind Fo ce := WA + WB + WC + WD ) orc = 10•psf•(WSAILZ + WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind Force = 7861 Ib Wind_Force = 65201b m = 148 • ft A ,:= 120 -ft N WSAIL:= 323•ft Sti:= 252 -ft2 Wes:= WSAILZoneE'PE WE = – 13021b „W,F WSAI-ZoneF'PF WF = – 14401b W = WSAILZoneG WG = – 20671b h W . )= WSAILZoneH'PH WH = – 24441b WF + WH + (WE + WG) + RDL•[WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneG) }. 6.1 . 12 Uplift = 12431b (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION #9— L. Harper Houf Peterson Righellis Pg #: Transverse Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = • 6 /12 . Building Category II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X= 1.00 Iw= 1.00 Wind Sail Wind Net Design Wind Pressure (psf) () Pressure (Ibs) Zone A = 19.9 129 2567 Wall High Wind Zone Horizontal Zone B = 3.2 42 134 Roof High Wind Zone Wind Forces Zone C = 14.4 970 13968 Wall Typ Zone Zone D = 3.3 5 17 Roof Typ Zone Zone E = -8.8 94 -827 Roof Windward High Wind Zone Vertical Zone F = -12.0 108 -1296 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 320 -2048 Roof Windward Typ Wind Zone Zone H = -9.7 320 -3104 Roof Leeward Typ Wind Zone Total Wind Force =l 16686 Ibs I Use to resist wind uplift: Roof Only Total Exterior Wall Area 2203 ft Uplift due to Wind Forces= -7275 Ibs Resisting Dead Load = 8472 Ibs E =I 1197 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Dia hragm (ft Zone A Zone B Zone C Zone D Main Floor 41 1 391 0 Upper Floor 59 0 307 0 Main Floor Diaphragm Shear = 6507 lbs Upper Floor Diaphragm Shear = 5595 Ibs Roof Diaphragm Shear = 4584 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Diaphragm Diaphragm (lbs) (lbs) (lbs) Width (ft) Width (ftt y r - Width (ft) A 13.08 1737 18 2797 19 2323 Al 24.50 3254 0 0 0 0 B 11.42 1516 18 2797 18.5 2261 . E= 49 6507 36 5595 37.5 4584 — 4 - Lo . Harper Houf Peterson Righellis Pg #: Transverse Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D S1 = 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 SMg • 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 SDS= 0.71 Equ. 11.4 -3, ASCE 7 -05 SD1= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 ' Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 • Floor 2 Wt (Ib)= 8411 Floor 3 Wt (Ib)= 8476 Roof Wt (Ib) = 14162 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22609 Trib. Floor 3 Diaphragm Wt (Ib) = 22674 Trib. Roof Diaphragm Wt (Ib) = 21261 Vertical Dist of Seismic Forces Cumulative % total of base shear Rho Check to Shearwalls (Ibs) I to shearwalls Req'd? N./floor z (Ib) = 720 100.0% Yes V�,�, (Ib) = 1625 85.8% Yes Vr mf (Ib)= 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft Ibs Ibs Ibs . A 102 361 394" 114 897 1266 Al 432 0 0 481 0 0 B 113 293 449 126 728 1443 Sum 647 654 843 720 1625 2709 Total Base Shear* = ( 5054 LB 'Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. ' - Lk.1 ,------- Harper Houf Peterson Righellis Pg #: Longitudinal Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph • Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X= 1.00 Iw= 1.00 Wind Sail Wind Net Design Wind Pressure (psf) () Pressure (Ibs) Zone A = 19.9 147 • 2925 Wall High Wind Zone Horizontal Zone B = 3.2 54 173 Roof High Wind Zone Wind Forces Zone C = 14.4 295 4248 Wall Typ Zone Zone D = 3.3 156 515 Roof Typ Zone Zone E = -8.8 148 -1302 Roof Windward High Wind Zone Vertical Zone F = -12.0 120 -1440 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 323 -2067 Roof Windward Typ Wind Zone Zone H = -9.7 252 -2444 Roof Leeward Typ Wind Zone Total Wind Force =l 7861 lbs I Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -7254 lbs Resisting Dead Load = 8483 lbs El 1229 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Dia hragm (ft Zone A Zone B Zone C Zone D Main Floor 48 10 91 43 Upper Floor 59 0 137 0 Main Floor Diaphragm Shear = 2440 lbs Upper Floor Diaphragm Shear = 3147 Ibs , Roof Diaphragm Shear = 2275 Ibs Wind Distribution To Shearwall Lines . MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm (lbs) Diaphragm (lbs) Diaphragm (lbs) Width (ft) Widthjft) Width ft) 1 10 1220 10 1573 10 1137 2 10 1220 10 1573 10 1137 E= 20 2440 20 3147 ' 20 2275 . A - 1,,,e-2,.._ Harper Houf Peterson Righellis Pg #: Longitudinal Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D S1 = 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 SMS 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 S 0.71 Equ. 11.4 -3, ASCE 7 -05 SIM= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (Ib)= 8411 Floor 3 Wt (Ib)= 8476 Roof Wt (Ib) = 14162 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22609 Trib. Floor 3 Diaphragm Wt (Ib) = 22674 - Trib. Roof Diaphragm Wt (Ib) = 21261 Vertical Dist of Seismic Forces Cumulative % total of base shear Rho Check to Shearwalls (Ibs) I to shearwalls Req'd7 V000r 2 (Ib) = 720 100.0% Yes Vn 3 (Ib) = 1625 85.8% Yes Vr, (Ib) = 2709 53.6% Yes Shear Distribution To Wall Lines I Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft Ibs Ibs Ibs 1 286 291 415 318 725 1334 2 361 361 428 402 900 1375 Sum 647 652 -843 720 1625 2709 Total Base Shear* = ( 5054 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. 1 4 2- ' L \,e''' Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 "Transvere Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel ' Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht J k ht I k ht I k, (klf) (plt) (ft-k) (ft -k) (k) • 101 Not Used 102 7 1.75 3.50 4.00 '4 1 8.00 1.74 18.00 2.80 27.00 2.32 1959 Double 1.40 NG 103 7 1.75 3.50 4.00 * 2, :: 8.00 1.74 8.00 2.80 8.00 2.32 1959 Double 1.40 NG 103a 7 4.00 4.00 1.75 OK 8.00 3.25- 814 . Single 1.40 IV 104 8 4.50 10.50 1.78 OK 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 105 8 3.00. 10.50 2.67 OK 8.00 . 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 106 8 3.00 10.50 2.67 OK 8.00 1.52 ' 8.00 2.80 8.00 2.26 • 626 Single 1.40 III 109 8 4.58 17.08 1.75 OK 8.00 1.74 18.00 2.80 27.00 2.32 401 Single 1.40 II 110 8 12.50 17.08 0.64 OK 8.00 1.74 8.00 2.80 8.00 2.32 401 Single 1.40 II 111 8 4.50 7.25 1.78 OK 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 112 4.75 1.38 7.25 3.45 ox 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 113 4.75 1.38 7.25 3.45 OK 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 201 9 3.92 10.79 2.30 OK 9.00 2.80 18.00 2.32 474 Single 1.40 II 201a 9 4.17 10.79 2.16 ox 9.00 2.80 18.00 2.32 474 Single 1.40 II 201b 9 2.71 10.79 3.32 OK 9.00 2.80 18.00. 2.32 474 Single 1.40 II 202A 9 2.96 11.96 3.04 OK 9.00 2.80 18.00 2.26 423 Single 1.40 11 202B 9 3.00 11.96 3.00 OK 9.00 2.80 18.00 2.26 423 Single 1.40 II 203 9 3.00 11.96 3.00 ox 9:00 2.80 18.00 2.26 423 . Single 1.40 II 204 9 3.00 11.96 3.00 OK 9.00 2.80 18.00 2.26 423 Single 1.40 II 301 8 3.92 - 13.96 2.04 OK 8.00 2.32 166 Single 1.40 I 302 8 5.79 13.96 1.38 _ ox 8.00 2.32 166 Single 1.40 I 303 8 4.25 13.96 1.88 ox 8.00 2.32 166 Single 1.40 I 304 8 2.96 5.96 2.70 OK 8.00 2.26 , 379 Single 1.40 II 305 8 3.00 5.96 2.67 OK 8.00 2.26 379 Single 1.40 II Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht . Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) / - L \‘..4. Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 fransvere Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho'V % Story # Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht I k ht I k ht I k (klf) (pif) (p1f) (ft-k) (ft -k) (k) 101 Not Used 102 7 1.75 3.50 4.00 "' ' 8.00 0.11 18.00 0.90 27.00 1.27 651 846 0.10 0.50 Double 0.50 NG 103 7 1.75 3.50 4.00 r 1 • - 8.00 0.11 8.00 0.90 8.00 1.27 651 846 0.10 0.50 Double 0.50 NG 103a 7 4.00 4.00 1.75 OK 8.00 0.48 0.00 0.00 120 156' 0.22 1.14 Single 1.00 1 104 8 4.50 10.50 1.78 OK 8.00 0.13 8.00 0.73 8.00 1.44 219' 284 0.25 1.13 Single 1.00 II 105 8 3.00 10.50 2.67 OK 8.00 0.13 8.00 0.73 8.00 1.44 219 284 0.17 0.75 Single 0.75 III 106 8 3.00 10.50 2.67 OK 8.00 0.13 8.00 0.73 8.00 1.44 219 _ 284 0.17 _ 0.75 Single 0.75 _ III 109 8 4.58 17.08. 1.75 OK 8.00 0.11 18.00 0.90 27.00 ' 1.27 134 174 0.25 1.15 Single 1.00 . 1 110 8 12.50 17.08 0.64 OK 8.00 0.11 8.00 0.90 8.00 1.27 134 174 NA 3.13 Single 1.00 1 . 11 1 8 4.50 7.25 1.78 OK 8.00 0.13 8.00 0.73 8.00 1.44 316' 411 0.25 1.13 Single 1.00 III 112 5 1.38 7.25 3.45 . OK 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.08 0.58 Double 0.58 V 1 • . 113 5 1.38 7.25 3.45 OK 8.00 0.13 8.00 0.73 8.00 1.44 316. 411 0.08 _ 0.58 Double 0.58 _ VII 201 9 3.92 10.79 2.30 OK . 9.00 0.90 18.00 1.27 200 261 0.17 . 0.87 Single 0.87. II 201a 9 4.17 10.79 2.16 OK 9.00 0.90 18.00 1.27 • 200 261 0.18 0.93 Single 0.93 U 201b 9 2.71 10.79 3.32 OK 9.00 0.90 18.00 1.27 200 261 0.12 0.60 Single 0.60 III 202A 9 2.96 11.96 3.04 OK 9.00 0.73 18.00 1.44 182 236 0.13 0.66 Single 0.66 III 202B 9 3.00 11.96 3.00 - OK 9.00 0.73 18.00 1.44 182 236 0.13 0.67 Single 0.67 111 203 9 3.00 11.96 3.00 OK 9.00 0.73 18.00 1.44 181 236 0.13 0.67 Single 0.67 III 204 - 9 3.00 11.96 3.00 'OK 9.00 0.73 18.00 1.44 • 181 236 0.13 0.67 Single 0.67 BI 301 8 3.92 13.96 2.04 oK 8.00 1.27 91 118 0.20 0.98 Single' 0.98 I 302 8 5.79 13.96 1.38 oK 8.00 7.27 91 118 0.29 1.45 Single 1.00 I 303 8 4.25 13.96 1.88 OK 8.00 1.27 91 118 0.21 1.06 Single 1.00 1 • 304 8 2.96 5.96 2.70 OK 8.00 1.44 - 242 315 0.15 0.74 Single 0.74. III 305 8 3.00 5:96 2.67 oK 8.00 1.44 242 315 0.15. 0.75 _ Single 0.75 111 • Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total transverse base shear? Yes Total 1st Floor Wall Length = 18.00 Total # 1st Floor Bays = 4.77 Are 2 bays minimum present along each wall line? No 1st Floor Rho = 1.3 Total 2nd Floor Wall Length = 22.75 Total # 2nd Floor Bays = s Are 2 bays minimum present along each wall line? No 2nd Floor Rho = 1.3 • Total 3rd Floor Wall Length = 19.92 Total # 3rd Floor Bays = s Are 2 bays minimum present along each wall line? No 3rd Floor Rho = u Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load *Rho / Total L % Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2•L/H Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load • L • 0.5 ' (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) /4- ..-- t\c' Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Fir. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (kit) (plt) (ft -k) (ft -k) (k) 107 8 15.50 15.50 0.52 OK 10.00 1.22 18.00 1.57 27.00 1.14 A 1.03 254 Single 1.40 1 71.21 123.49 -0.19 108 8 15.50 15.50 0.52 OK 10.00 1.22 18.00 1.57 27.00 1.14 1.03 254 Single 1.40 1 71.21 123.49 -0.19 1 205 206 9 9 13.00 13.00 13.00 13.00 0.69 0.69 o ox x I 9.00 1.57 118.00 1.14 0.70 208 Single 1.40 I 34.62 159.15 -0.07 9.00 1.57 18.00 1.14 0.70 208 Single 1.40 I 34.62 59.15 , -0.07 1 306 8 10.00 10.00 0.80 ox 8.001 1.14 0.29 114 Single 1.40 I 9.10 14.40 0.05 I 307 8 10.00 10.00 0.80 OK 8.00 1.14 0.29 114 Single 1.40 I 9.10 14.40 0.05 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load' L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Seismic • Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho•V % Story # Panel Shear Panel M Ma Uplift Panel Lgth. From 2nd Flr. From 3rd Flr: From Roof Load Strength Bays. Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (kit) (plf) (plf) (ft -k) (ft -k) (k) 107 8 15.50 15.50 0.52 oK 10.00 0.32 ' 18.00 0.73 27.00 1.33 1.09 153 153 NA 3.88 Single 1.00 I 52.25 130.70 -1.74 108 8 15.50 15.50 _ 0.52 1 OK 10.00 0.40 18.00 0.90 27.00_ 1.38 1.09 173 _ 173 NA 3.88 Single ' 1.00 I 57.35 _ 130.70 -1.40 I 206 1 9 1 13 00 13 00 0.69'1 OK 1 1 1 . 9 9.00 00 1 0.90 1' 18.00 1.38 0.76 175 1 175 ( NA 1 2.89 I Single 1 1.00 I 32.85 1 64.22 1 -0.45 307 8 1 10.00 1 10 00 0.801 OK I I I ' I 8 8.00 00 I 1.38 0.35 138 138 1 NA I 2.50 Single I 1.00 I 1100 1 17.40 0.06 I Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes • Total 1st Floor Wall Length = 31.00 Total # 1st Floor Bays = 7.75 Are 2 bays minimum present along each wall line? Yes 1st Floor Rho = 1.0 Total 2nd Floor Wall Length = 16.00 Total # 2nd Floor Bays = 6 Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho = 1.0 Total 3rd Floor Wall Length = 20.00 Total # 3rd Floor Bays = s Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho = 1.0 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Story Strength = L / Total Story L (Required for walls with 11/L > 1.0, for use in Rho check) # Bays = 2•UH Shear Factor = Adjustment For H/L > 2:1 Mo (Overtuming Moment) = Wall Shear • Shear Application ht Mr (Resisting Moment) = Dead Load • L 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) i Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Transvere Shearwalls Panel Wall Shear Wall Type Good Fo Uplift Simpson Holdown Good For V (pif) (PM (ib) (lb) 101 Not Used 102 Simpson Strongwall 103 Simpson Strongwall 103a 814 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 833 104 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 105 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 106 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 109 401 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 110 401 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 111 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 112 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 990 113 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 990 201 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 201a 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 201b 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 202A 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 202B 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 203 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 204 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 301 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 302 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 303 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 , 304 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 305 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. - ��,� Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Longitudinal Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good For V (p (PII) (lb) (lb) 107 254 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -192 Simpson None 0 108 254 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -192 Simpson None 0 205 208 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -69 Simpson None 0 206 208 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -69 Simpson None 0 306 133 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 48 Simpson None 0 307 138 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 59 _ Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. /4 ---- L \.9 Transverse Wind Uplift Design . • Unit A Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. • Fir. Roof Shear including Load Load Momen (gi Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ Floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ ' walls Right • stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 102 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.192 0.832 27.43 0.57 1.69 21.31 20.79 21.31 20.79 103 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.832 0.192 27.43 1.69 0.57 20.79 21.31 20.79 21.31 103A 8 1.1667 4.00 4.00 3.254 3.254 814 0.04 2.016 1.664 26.03 8.38 6.98 6.00 6.24 6.00 6.24 104 8 1.1667 4.50 10.50 1.516 2.8 2.26 6.576 626 0.1 0.8 0.078 25.08 4.61 1.36 5.58 6.06 5.58 6.06 105 8 1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 0.048 0.252 0.156 16.72 0.97 0.68 6.45 6.52 6.45 6.52 106 8 1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 • 0.048 0.156 0.252 16.72 0.68 0.97 6.52 6.45 6.52 6.45 109 8 1.1667 4.58 17.08 1.737 2.8 2.32 6.857 401 0.152 0.192 0.156 16.31 2.47 2.31 3.63 3.66 201L 201R 4.82 5.09 8.45 8.75 110 .8 1.1667 12.50 17.08 1.737 2.8 2.32 6.857 401 0.096 0.156 0.192 44.52 9.45 9.90 3.24 3.21 201 aL 201 bR 4.95 4.88 8.18 8.09 111 8 1.1667 4.50 7.50 1.516 2.8 2.26 6.576 877 0.144 0.8 0.078 35.11 5.06 1.81 8.02 8.51 8.02 8.5I 112 8 1.1667 1.50 7.50 1.516 2.8 2.26 6.576 877 0.048 0.252 0.234 11.70 0.43 0.41 11.44 11.46 11.44 11.46 113 8_ 1.1667 1.50 7.50 1.516 2.8 2.26 6.576_ 877 0.048 0.234 0.252 11.70 0.41 0.43 11.46 11.44 11.46 11.44 201 9 1.1667 3.92 10.8 2.8 2.32 5.12 474 0.225 0.432 0.156 17.71 3.42 2.34 3.99 4.16 301L 301 R 0.83 0.93 4.82 5.09 201a 9 1.1667 4.17 10.8 2.8 2.32 5.12 474 0.225 0.156 0.156 18.84 2.61 2.61 4.14 4.14 302L 302R 0.80 0.80 4.95 4.95 201b 9 1.1667 2.71 10.8 2.8 2.32 5.12 , 474 0.225 0.156 0.432 12.24 1.25 2.00 4.24 4.08 303L 303R 0.91 0.80 5.15 4.88 202A 9 1.1667 2.96 11.958333 2.8 2.26 5.06 423 0.173 0.432 0.052 11.92 2.04 0.91 3.62 3.84 304L 304R 2.60 2.75 6.21 6.59 202B 9 1.1667 3 11.958333 2.8 2:26 5.06 423 0.173 0.052 0.216 12.09 0.93 1.43 3.84 3.74 305L 305R 2.74 2.16 6.58 5.91 203 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.309 0.216 0.312 12.09 2.04 2.33 3.62 3.56 3.62 3.56 204 9 1.1667 3 2.8 2.26 5.06_ 423 0.225 0.312 0.432 12.09 1.95 2.31 3.64 3.57 3.64 3.57 301 8 3.92 13.96 2.32 2.32 166 0.232 0.384 0.204 5.21 3.29 2.58 0.83 0.93 0.83 0.93 302 8 5.79 13.96 2.32 2.32 166 • 0.232 0.204 0.204 7.70 5.07 5.07 0.80 0.80 0.80 0.80 303 8 4.25 13.96 2.32 2.32 166 0.232 0.204 0.384 5.65 2.96 3.73 0.91 0.80 0.91 0.80 304 8 2.96 5.96 2.26 2.26 379 0.232 0.384 0.136 8.98 2.15 1.42 2.60 2.75 2.60 2.75 305 8 3 5.96 2.26 2.26 379 0.232_ 0.136 1.104 9.10 .1.45_ 4.36 2.74 2.16 2.74 2.16 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line �°`' V (Panel Shear) = Sum of Line Load / Total L 1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) • Transverse Seismic Uplift Design Unit A Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. FIr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @. floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 102 8 1.1667 1.75 3.50 0.114 0.9 1.27 2.284 653 0.152 0.192 0.832 10.40 0.57 1.69 7.91 7.11 0 0 7.91 7.11 103 8 1.1667 1.75 3.50 0.114 0.9 1.27 2.284 653 . 0.152 .0.832 0.192 10.40 1.69 0.57 7.11 7.91 0 0 7.11 7.91 103A 8 1.1667 4.00 4 . .00 0.481 0.481 120 . 0.04 2.016 1.664 3.85 8.38 6.98 . -1.06 -0.69 . 0 0 -1.06 -0.69 104 8 1.1667 4.50 10.50 0.126 0.73 1.44 2.296 219 0.1 0.8 0.078 8.96 4.61 1.36 1.20 1.93 0 0 1.20 1.93 105 8 1.1667 3.00 10.50 0.126 0.73 1.44 2.296 219 . 0.048 0.252 0.156 5.97 0.97 0.68 2.04 2.14 0 0 2.04 2.14 106 8, 1.1667 3.00 10.50 0.126 0.73 1.44 2.296 219 0.048 0.156 0.252 5.97 0.68 0.97 2.14 2.04 0 . 0 2.14 2.04 109 8 1.1667 4.58 17.08 0.114 0.9 1.27 2.284 134 0.152 0.192 0.156 5.58 2.47 .2.31 0.82 0.86 201L 201R 1.13 1.54 1.95 2.40 110 8 1.1667 12.50 17.08 0.114 0.9 1.27 2.284 '134 0.096 0.156 0.192 15.23 9.45 9.90 ' 0.56 0.53 201aL 201bR 1.32 1.32 1.88 1.85 111 8 1.1667 4.50 7.50 0.126 0.73 1.44 2.296 306 0.144 0.8 0.078 12.54 5.06 1.81 2.00 2.73 0 0 2.00 2.73 112 8 1.1667 1.50 7.50 0.126 0.73 1.44 2.296 306 0.048 0.252 0.234 4.18 0.43 0.41 3.79 3.82 0 0 3.79 3.82 113 8 1.1667 1.50 7.50 0.126 0.73 1.44 2.296 306 0.048 0.234 0.252 4.18 0.41 0.43 3.82 3.79 0 0 3.82 3.79 201 9 1.1667 3.92 10.80 - 0.9 1.27 2.17 201 0.225 0.432 0.156 7.63 3.42 2.34 1.16 1.41 301L 301R -0.03 0.13 1.13 1.54 201a 9 1.1667 4.17 10.80 0.9 1.27 2.17 201 0.225 0.156 0.156 8.11 2.61 2.61 • 1.38 1.38 302L 302R -0.06 -0.06 1.32 1.32 201b 9 1.1667 2.71 10.80 0.9 ' 1.27 2.17 201 0.225 .0.156 0.432 5.27 1.25 2.00 1:53 1.28 303L 303R 0.10 -0.06 1.63 1.22 202A 9 1.1667 2.96 11.96 0.73 1.44 2.17 181 0.173 0.432 0.052 5.25 2.04 0.91 1.15 1.50 304L 304R 1.28 1.50 2.43 3.00 202B 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.173 0.052 0.216 ; " 5.32 0:93 ' 1.43 1.49 ' 1.35 305L 305R • 1.50 0.63 2.99 1.97 203 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.309 0.216 0.312 5.32 2.04 2.33 1.16 1.08 0 0 1.16 1.08 204 9 1.1667 3.00 ' 11.96 0.73 1.44 2.17 . 181 0.225 0.312 0,432 5.32 1.95 2.31 1.19 1.08 0 0 1.19 1.08 • 301 8 0 3.92 13.96 ' 1.27 1.27 91 0.232 0.384 0.204 2.85 3.29 2.58 -0.03 0.13 0 0 - 0.03 0.13 302 8 0 5.79 13.96 1.27 1.27 91 0.232 0.204 0.204 4.21 5.07 5.07 -0.06 -0.06 0 0 -0.06 -0.06 303 8 0 4.25 13.96 1.27 1.27 91 0.232 0.204 0.384 3.09 2.96 3.73 0.10 -0.06 0 0 0.10 - 0.06 304 8 0 2.96 5.96 1.44 1.44 242 0.232 0.384 0.136 5.72 2.15 1.42 1.28 1.50 0 0 1.28 1.50 305 8 0 3.00 5.96 . 1.44 1.44 242 0.232 0.136 1.104 5.80 . 1.45 4.36 1.50 0.63 0 0 1.50 0.63 • Spreadsheet Column Definitions & Formulas ----- L = Shear Panel Length II= Shear Panel Height ‘ Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L 1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) TRANSVERSE UPLIFT CALCULATIONS - SUMMARY UNIT A Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right • k Simpson k k Simpson k . 102 Wind 21.31 Holdown None 0.00 Wind 20.79 None 0.00 103 Wind 20.79 Holdown None 0.00 Wind 21.31 None 0.00 103A Wind 6.00 Holdown HDQ8 w 3HF 6.65 Wind 6.24 HDQ8 w 3HF 6.65 104 Wind 5.58 Holdown HDQ8 w 3HF 6.65 Wind 6.06 HDQ8 w 3HF 6.65 105 Wind 6.45 Holdown HDQ8 w 3HF 6.65 Wind 6.52 HDQ8 w 3HF 6.65 1 106 Wind 6.52 Holdown HDQ8 w 314F 6.65 Wind 6.45 HDQ8 w 314F 6.65 109 Wind 8.45 Holdown HDQ8 w DF 9.23 Wind 8.75 HDQ8 w DF 9.23 110 Wind 8.18 Holdown HDQ8 w DF 9.23 Wind 8.09 HDQ8 w DF 9.23 111 Wind 8.02 Holdown HDQ8 w DF 9.23 Wind 8.51 HDQ8 w DF '9.23 112 Wind 11.44 Holdown HDU14 14.93 Wind 11.46 HDU14 14.93 113 Wind 1 Holdown HDU14 14.93 Wind 11.44 HDU14 14.93 201 Wind 4.82 Strap MST48x2 5.75 • Wind 5.09 MST48x2 5.75 201a Wind 4.95 Strap MST48x2 5.75 Wind 4.95 MST48x2 5.75 201b Wind 5.15 Strap MST48x2 5.75 Wind 4.88 MST48x2 5.75 202A Wind 6.21 Strap MST60x2 8.11 Wind 6.59 MST60x2 8.11 202B Wind 6.58 Strap MST60x2 8.11 Wind • 5.91 MST60x2 8.11 _-.) 203 Wind 3.62 Strap MST60 4.06 Wind 3.56 MST60 4.06 204 Wind 3.64 Strap _ MST60 4.06 Wind 3.57 MST60 4.06 ` 301 Wind 0.83 Strap MST37 1.79 Wind 0.93 MST37 1.79 302 Wind 0.80 Strap MST37 1.79 Wind 0.80 MST37 1.79 303 Wind 0.91 Strap MST37 1.79 Wind 0.80 MST37 1.79 304 Wind 2.60 Strap MST48 2.88 Wind 2.75 MST48 2.88 305 Wind 2.74 Strap MST48 2.88 Wind 2.16 MST48 2.88 • 64 E ) CD I■4 ID g 1 ▪ 0 2 El m z - n o ,o 0: C-t 01b, q)(1(Y)SS o \a l*P Y)) 0 3 3 ;10 I P/ 19 C 6 0 > 1 morn/It Vei) 2 = C-1142-f‘ CCA1 tsgc) Qe 4- --Uck`e 4 -t,q .t, r'cri Val-Y ly Jaz\ sq.\ 00 —L \ , ecn do cnk(td) • 6 m • 0 OA Foo D!' \k\OrY1 r...)(Y\ 1 z - o - DP %LA\ SMOrl) Olc•fl :1001 v El ‘ 9001 -)Y)Q8. k,x,ar_e cnss :j31 :31VO JO 901" C C . 0 . 5W TN �S LeN(rTt$ I\WNC -+ mIS Lk ' ...-1-1 . � 151 RIE. ( E: __- UF 1 fl 0 0 ( ---- _ -- 1 0 r . ,---) . cp. . . . z. . _ d .. 0 t0Et) Sw 1*1S LCNGITR • 76 AI.UNCA 1 t 5 L1NC.7 O Z • 0 J T 1 a SW "(BLS LENC -IT ft 0.Nywif -e (L PcLUnNc-, Tt+L$ LLNE 0 i,,, ______ � C L v'i 1 ii N " --i • I� - c1 ' O r ❑ ? ' ❑ r Y G O -c.,, v 1 ; H „- a:u:_� !.. 3.,_� "t•,^+eri xra a.,...r n.�. :�..,. ' I a 103 en s w TH s Lt+ ti t, - /soil)! UJ tte - t-e" Alwrt-, T*i s Li NE' c 9 a C • . . E. • 4--i IN ) (C52)- , . SW IMIS LENC-+TH AWNE, MS (INC 1 ;05 . V) 0 0 11 . ti l - 0 9,) R 1 N , 1 J ) • ,• . ....-- ‹- 1 = _.---.7--_, =' ' • 'A,,, 0 $1 ::•1 . 1 , 1 , I 1 c ____ r... . : ,! .,, r • , IP, IF • .. ,, . 1 5 5vo -r\,-,■c Ler.c.-Nri.+- AtonJe, min LANS' • G . 3> a 3 I SAN - mot r L aci114 Pwi c-1 `it s Unr ' 306 o -a1 Q II P Y./ .1 I> 5k-------------------tj' ‘ 3.. ) . Cil p 5 f ,: 0 „,k ,:,, c__, . ,A -- 1 n1 £ L ...-.. � i.`r_•__. -_ 2 ��._J._..+..il- !:'_�.�: } �.a::`S,_::Y....� __._._.�...�+a....a a....:d:. -n *b..'.n. -1�?7 309— SW 1 (. t N c-i rn+ Pc w N (.—, TI-I 15 UNIT BY: AN\c, DATE: 6 , aO\ 0 JOB NO.: C A ' _ IF 0 c� 0 OF � `v � PROJECT: RE: 1vOn nn kfc ■MSG'e( ak Ran\ oG hovsc , ❑ ❑ • Z VL�ne8 = (5 2-4 wind fcar,kots) 6.5 4 0 W di q phragrn ck,i d irl = Ct O f li O 0 w Cot c,' j_oF ur,�,to(,t «d dick phvr4ern � W = 0180 X ti — asap. a z 0 ... Woc►L diaph coin Z 6/12_ ivca 1;1.13 C'q ,cu ) _ (ass pt-P)1 ,4) = 351 •> w = • o►s. f 2 O U f it O ti Z w ❑ 2 0 F. • a o • 6 o N f" 1)a E o an:: -• a : 1 x : • 4- Lb BY i . DATE: �. I Joe No.: `►'��,� C� �� C E. - cam PROJECT: ROOF ali - 5IV RE: Des icy, oc r 1 blOc.v-vrn @ Sto 1r $ ❑ - r ONION 1. J Z [Riot! o w ~ W TRIZ WIDTH_ ON 1.a F.F_ 1q'- ��14' t E SO 1 N T _ q'- q 1 12' 1 _ 1 9LPrns 151- 5'1 il o . a . Kax 5I - A ►__oP .141 {,>� -.= o Mil W %S U Z W ° d e s 1 c-Ini w t v0 Piessuce Z = - 30 o f.F. R - 3 -Ib' Oe\3jn P \o‘, }es 'co ;par\ cv'' te_r_ ?OP4lAIES 5 Il o 2 o ?-1= 1' T E Ig c i c \# 'R-i= ! 4 (I° 0 C - 0 ' E U- Z W N1 max = 11212: _ I C V365-4 1 Ct I- . U Prate _ 1 4. t = S x(3.5 I . = 64 t z 4 /1N3.. }- 3�' 1 SY _ V 1: e (61,.#I11,+1- rn s Fk ( %,-w) - (Bso /i .$)(1.1s )= a31-1(„- 12 N-'c1 S. 6 a te . - _ r _ 'e_ il o iv , -i - Aso psi (t•(fl ' ). = at-10 i s.1 7 �Z o +t 'AA& „r N(..--, (j • o ic-i ern Z 9-L BY: il\A V DATE 6 \ �- - , ( \ JOB NO.. C (�: ! - 0 qj 0 U � C N V� PROJECT: RE: OPf to 2 ❑ ❑ Z 1 `..)i . \ 2 . Up f ±rt\ 2. 2ND •Loo+2 `` 1 pcc\ \ oorl k Faye 3 Twos O w 1- W D F W " 13' -qn ❑ Tr ;_�.�:�l.f on �o1NT — 0 J MOO( i u we r S ( 0._r\ 3 = 12 0 0 W CJo_ wk r Ptes(:•asce = - a,0.0. C'S F Z Loo C 0 , UV 11 v13 \o\O c_k. = alep pL- 0 V 1- L 1- 1/ I. U_ T 1 Z I ` A(47 E U MmlY•x= Lu a 11,2) = gal�O!� 3 ----.----- T.s" w 1 S ❑ Z ° (19)(1. I- - �.�5 w� 1 2 W° Ic. -s,s-,L, = (1,S = -.. 10 i ''' b >- a.bi3 1'Z Is" S" 1 - 3.S O ti H .,1, tAS� L Q.) "" a — _ ci „I. = O,?a°i a + 1 0 1 - 6. 25t- a4 .S(0,51?) f9.ZS +a4i )fi513b+0 .i.,4 r s 1 - 4.135,N S._ V _ _ ..tlo i 91‘45 `�L . b - T C, C N,C�.0 �. LC� Cs � Cf • Fb = (Sjd Pf ; AI.0(i.o/►,°I\,o)( (Lo)(t.o)(i,i) 4-1 = a346. I B S . •b' = ca3a, t,c))i.o)(,010.c,ii.z>(t.o )(1,o) L L_ 4- 1,30 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN I Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:49:04 COMPANY 3 PROJECT RESULTS by GROUP - NOS 2005 . SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF = Mnf Trusses ses� =- = � = � ' � e= IIE65 801. designed by request - -- (2) 2x8 Lumber n -ply D.Fir-L No.2 1- 2x8 • By Others Not designed by request (2) 2x6 Lumber n - ply Hem -Fir No.2 2- 2x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 Typ Wall Lumber Stud Hem -Fir Stud 2x6 @16.0 SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR Mnf Jot Not designed by request Sloped Joist Lumber -soft D.Fir -L No.2 2x6 816.0 (2) 2x8 (1) Lumber n - ply D.Fir -L No.2 1- 2x6 (21 208 Lumber n -ply D.Fir -L No.2 2- 2x8 By Others Not designed by request By Others 2 Not designed by request (2) 2x12 Lumber n-ply D.Fir -L No.2 2- 2x12 5.125x10.5 Glulam- Unbalan. West Species 24F -V4 DF 5.125010.5 4 %6 Lumber-soft D.Fir-L No.2 • 4x6 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 4x6 Lumber Post Hem -Fir No.2 4x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 (2) 2x4 Lumber n - ply Hem -Fir No.2 2- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 816.0 . SUGGESTED SECTIONS by GROUP for LEVEL 2 - FLOOR Mnf Trusses Not designed by request = = = � =R = = = = =__ Mnf Jst Not designed by request Deck Jot Lumber -soft D.Fir -L No.2 2x8 816.0 (2) 2x8 Lumber n -ply D.Fir -L No.2 2- 2x8 . 3.125x9 Glulam- Unbalan. West Species 24F -V4 DF 3.125x9 408 Lumber -soft D.Fir-L No.2 408 By Others Not designed by request • By Others 2 Not designed by request (2) 2x10 Lumber n - ply D.Fir-L No.2 1- 2x10 ' 5.125X12 GL Glulam- Unbalan. West Species 24F -04 DF 5.125x12 By Others 3 Not designed by request 3.125x14 LSL LSL 1.55E . 23258b 3.5x14 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 4x4 Lumber Post Hem -Fir No.2 4x4 4x6 Lumber Post Hem -Fir No.2 4x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 6x6 Timber -soft Hem -Fir No.2 6x6 (2) 2x4 Lumber n -ply Hem -Fir No.2 2- 204 6x6 nol Timber-soft D.Fir -L No:l 6x6 (3) 2x4 Lumber n -ply Hem -Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 816.0 SUGGESTED SECTIONS by GROUP for LEVEL 1 - FLOOR ========- �_= s -s == = = '=� �_ Not designed by request Fnd CRITICAL MEMBERS and DESIGN CRITERIA Group Member Criterion Analysis /Design Values . = - = = = = Mnf Jst u = � Mnf Jot Not designed by request =____ Deck Jot j65 Bending 0.41 Sloped Joist j30 Bending 0.10 Floor Jst4 unknown Unknown 0.00 (2) 2x6 (1) b35 Bending 0.47 (2) 2x8 b8 Bending 0.89 3.125x9 b3 Bending 0.06 4x8 b30 Bending 0.12 By Others By Others Not designed by request By Others 2 By Others Not designed by request (2) 2x12 b6 Bending 0.93 (2) 2x10 bl Shear 0.78 5.125 %12 GL b10 Bending 0.76 By Others 3 By Others Not designed by request 5.125010.5 b9 Deflection 0.95 406 b20 Bending 0.08 3.125x14 LSL b14 Deflection 0.73 (2) 2x6 c2 Axial 0.91 4x4 c55 Axial 0.07 4x6 c23 Axial 0.80 (3) 2x6 c29 Axial 0.75 . 606 c26 Axial 0.70 . (2) 2x4 c39 Axial 0.62 6x6 nol c12 Axial 0.86 (3) 2x4 c31 Axial 0.89 Typ Wall w14 Axial 0.48 Fnd Fnd Not designed by request DESIGN NOTES: 1. Please erify that a = =� = = =_ a the default deflection limits are appropriate for your application. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result is considered the final design and appears in the. Materials List. 3. ROOF LIVE LOAD: treated as snow load with corresponding esponding duration factor. Add an empty roof level to bypass thisinterpretation. 4. BEARING: the designer is responsible for ensuring that adequate bearing is provided. 5. GLULAM: bxd = actual breadth x actual depth. 6. Glulam Beams shall be laterally supported according to the provisions of ND5 Clause 3.3.3. 7. Sawn lumber bending members shall be laterally supported according to the provisions of ND5 Clause 4.4.1. 8. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that • each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. ' 9. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 10. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of ND5 Clause 15.3. Woodworks ®Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:41:17 Concept Mode: Beam View Floor 2: 8'� ���� ^ b31 1�'v IU4 �' � . - - , -- -. _ 40-b !US : _ - -- -- _ 4/ -0 40 -O WI ._ - --- - - - -. ._ ._ 40-0 !zit/ b1 42'-0 f - --- - - ---- - -- • -- ..._.. - - - -- - . .. .- ... 41 - a as .. ... .. . ..... ......... . . . .. .. . . . .. . 40 as 3b 3 J -a y 1 1:I b2 ' . . . 33 -a 01 �: n 00 . a ti o _ L a - - .. D L0 L0 01 40 -0 // . .. ; - 4 b33 1 -0 - - 1 3 - - _ . 1 / -0 /L -• - - • b32. - _ _.. .. . - 10 -0 / t lU - .i 10 -b - -- - ---- --- - -- - - -- -- -.... _ .. - - - - -- --- - - -- - ■ (U :. __ -- - - - - '- - 140 00 -... b19� 2 -17 a0 - - - -- __ ._. .___. -. .. _ _. ..-- - -- . . - - - lu b a0 a o rs -u a ? -" b4 b14 • e -n 0& b30 b3 b2 bs 4 0 r . a .. _ , _a ..., U - BBIB.B BCCCCCCCCICCC CCCCCCCCCCCC ICCCDDDDDDDDICDDCDDD DDDDDDCDIDD DE.EE E E EE'EFEEEIEEEE:EEEEEEIEEEE7_ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0 1'2'3'4'5'678'9111 1; 1: 1 1! 111' 102( 221 2: 2‘2 2E22f2:3(33:3:3 4A:44'414'4(415(5 515:5 6:6:6 Z!7(7 7:717 7' -6" 14.-- (jf-I:-.N WoodWorks®Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:41:19 Concept Mode: Column View Floor 2 : 8 ' V t J T LoND c58 c14 1050 -❑ 0 :: 49'-6" IUS: IU I _ . .. - - .. -"- ----- --- - - ..- "-- - -- .- .- -- -- 4 -b . ._ . - - I - - - -- --- 444 - 0 -b UU - b V0 9 • c69 -. c c70 _ - c71. : 42 - 0 - yb �.: 0 .❑: . ❑ . : . .. _. .__.- .__.. ._. - - .. -- 4U -0 y0 y..i J / VG - c 3 : - : - - 60 -b yi : : -b so isy SS -b " - S I'-b 230' - - - -" -- -'.--- - C4 s - - -- - .. - ----- _. - ---- --- 3U 250 . . : ❑ - _ 2V - b 23 4 "::; -- -- - - -- �:" --- - -"-- --- - -- - .. ' t"-)- : -" :c25 c12 i 7.._ ... c26 -._ ... - - - -"- --- 24 -0 (0 0 ❑ D• c72- -- ---- .. - - - - - - LL-0 1/ :C2 41 -ID ! b -F1C73 : Lu -b /0 _ _ _ - - - I ts b /2 _ .. ' c3 _ - :. __.. ---'-- - - - --- - .. - - -- -- • '- _ b.- ! 1 • C78 - - l o' -0 fU - -- -- .. : 14-b _c77 -- : - - - - -. . - -- - -- - - - IU o 04).. . c31 ;_ . - c76 - - -- c79- = - --- - - -- - .. - _ 23 o. oe 'ir ti c30 • i 0 c32 0 -b bu s ❑. . ❑ .- . ��cb /3" -. -- 4-b 3 b c55 C L. -b .. E b U BBtB. BCCCCCCCCFCCCCCCCCCCCCCCC \CCCDDDDDDDDfDDDCDDD DDDDDDCD'DDDE.E EE E.EEEFEEE€EiEEEEEEEfEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'5111 1:i:1 1111 1112t22: 2: 22! 2E221213133:3;3'3'.313 4;4 :4.4:414•441515 5: 5: 5' 5; 5( 5" 515b( 6b:6 :6'6!6E66t6'.717 7:7717.7f77' 6" 4- c WoodWorks®Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 24, 2010 13:14:33 Concept Mode: Beam View Floor 2: 8' `9. 1 i1 /1� • 1050• •.. b31 a CT - - -- - - 49'-6" '104 h .. 40 -0' '1U3 0 - ' ' - . _ 4! '-b • 1UG, "- - 4b "-b IUIl _ - --- ._ _ .-- -"-- 4b I VU _ - . - 44 "-b.. • • 9 43 b.. t11 - • : • b3 4 - 4L . -0 . y! .: - - - - - - - - - - -- 4'I •� . `,fib _ - .: .. : .. i.' _ 3 `: :: : : • : .. . . . . : _ 3 -b Sb b rsa b2 33 - 0 • 00 -.. .. -: -- : -- -- - - - - - -- - - - --- - -- - -" -- SL 'b tab 3U -b . - : : v "43 " 254 :.. di _ L l . -b .. 211E : .._ - - _ -- --- - -- ._ .. Lb -b t5U • - :: b10 : i • -- • - - - - - L4 -b b33 ft) [ -15- LU-b r b - : - . : - . y.-b • b32 r i - - : o n rU - 4-b � �. 15 i b b • 1�0 - -- - y -b • b4) ,• -1,13. -- — • .. - . --- `- -_ ___ ._ - t5 -b 0G. b4 • :' b14 •.: • •■ . b.. • u' b30. • b3i 4 b b ..5* -0 b.. i b" .BB\B.B BC CC C CC C FCCC CC CCCC C C CC CC1CC CD DDD D ODDFDDD CD DD DD D D. DD CD(DD DEE E E E EEEEEEEEIE EEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'67'8'51(1 - 1:1:1 , 1 ?1(1 :1(1 22:2 , 202 . 2 1 1 213(3 3 :3:3 314(4 :44!4(4 5 :5 :5 6:6:6 • • 4 - (..1L-1 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 24, 2010 13:14:35 Concept Mode: Column View Floor 2: 8' ' k 1iwi. 4 c58 c14 + �JV4 J 1 0 50 ❑ ❑ .. 4a„ • , -b •tU3� 4! - t� . 40 -0 1til :. _ _ - - -. .. -- - --- -' 4041 y9 4 WS i - c82 c81 ' - 4L -b y1 ._❑ ❑ r _ 4U- yb 1 - - - - Sy 0 4 3 3 /-b • 30 b W s b b JU - -- --- o - - - 34-0 uy 33 -0 00 . 3L b 0 ( 3 1' -0 . i 00. _ - . . .-- - - C -- :i -' --` --- - _4444 - - • - .. - .. - 00 t54 . LI'b 25L .; _ . . - . . . . _ : E .. " 4 4 ' 4 4 - ' - _ _ . , . . - - "-- - - - � - _ - r _ . - - ---- 01 Z0 -0 rsu c25 c12 c26 _.. - L4 b (0 . ❑ .❑. . : . - -- - _ ... _ ... -- - . - -- L.3.-0 (0 H . . . - --i.. -.` - 4444 4444 - --- -- - - - - - --- 444 - -- - LU-b Q /b iy b !0 . a . • f 4 ' - - ® - : . . • 'c78 C3 i b • (U • ❑. ., 13_u 00_ . . : -c77 __ _. .: -- 44 44 - - .- -- - -- - -- - -- - -' - -...... 1r - -- 0b_.. ._. _.. '-- -' -- '--- - .-. .. _ 10 - b 4 }_ .c3 • -- -c76_- c71- - .. _ _ 1L, c30 I 1 10 y o ©c32; • 01 -- - - _ __ _ b 0 c55 c5- 6 .7i7} o c 1.. • ❑ . - - -- U n BB1B.B BC CCC C C C CtCCC CC CCCC C C CC CC1CC CD DD D D DD DIODD DD DD°DDD D DD CD'D D DE.E E E EIEE EtEEEEEE E'EEEEEE!EEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'9111 '.1 M t1:1 112( 22: 2: 22.' 2( 2203( 33: 3; 3 3' .3:3 :4.4!4(4'44‘,5t5 5;5 :5 6:6 :616 '627(7 '77,7 4 - cis WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:44 Concept Mode: Beam View Floor 3: 17' 1050 4Y-6 1 UL . . 40 -b IU 4 D' - b ( V U 44 -b V9— - 43 -b ._i V0 b ■ . ■ • : : . ' 4 1 -b • 4L b . .. a5 .._.. . Vi.. • .54 -0 ..1L -0 Of 3t -b Lib ..__ __.:. .- -- -- -- - -- - - ... -- - -- JU - - b 03 ' . . 2/ -0 bi Lb n - - - OU.. -._ ._ _.. 4-b L /r ' b22 41 n fo 1y -b b20 .b21_._.., _: io 0 /L- -- .. - - -- - _.... r i b11b _ -- 1.4 -0 O b. : oz? b8 , -b 3 b BB1B.8 BC CCC C CC C ICCC CC CCCC C C CC CCICCCD DD D D DD DtDDD CD DD'DD D D DD CD1DD DEE E E EiE E'EFEEEEEE EEEEEEEtEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' U1'2'3'4'5'6'7 8'9,1(1 '1;1 :1 1;12(2 2:2;2 :3 3 4:4 :4.4'.4(4'4i4f5(5'5:5: 5 7.77 -6" • 41 --- (.`".°:.,) (0 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load Woodworks® Sizer 7.1 June 24, 2010 12:58:42 Concept Mode: Column View Floor 3: 17' 1050. 49' -6" (U4 40 -b IU3 - -- - - - -- --"--- ---' - - -- ---" 41 -0 IULb _ i - - - 40-0 IUI / ---_ - . .� - .. -.'_ _. -- -- --- 40-0 O - - - 44 IVU 9. : ; 43 -0 /s c62 c61 c15 c16 4L -b / —L! -. _. 41 b m ! :: ..... 3y" b VL c17- in -b `.i _ _ -- -- "- -- - - 34-0 tl`.1 33 -0 00 . - ._.._." -. .. -.. __- _ -- ---.. - - - - -- - - -- -'- - SL-0 0 / - _ 00 c18- _ :: : 3U -b t53 - . _ .. L / -b 01 : L0-0 • a y c39 c24 c23 L3 -b try Vii. im - 11059 - - - -- - -. _ - - - -- -- - -- - - -- -- "- LL -b r / C59. . , L1 - 0 /0 - - -- ---- -- - - --- -- - 11 c 60- - - - - - - - - - - -- LU -0 b - 17_0 l4 .. ..- ----- - - -- 11 " - --- --- - ----•-- -- - - "- -' -. I ts - IL - ---. :- - _ l0 r 1 ' c37. - "-- ---. - - .. --- '-- - ---- ID -b 74 -0 00 c35 IL -0 00 - . ... ---: ... -" . - -- IU. -0 b4 3 • ' • • 7) c66 c63 6 -n 01_5 _fs_ II: . - n c756520 c1 c6c74. : - . - .- - BB\B.B BC CCC C CC CECCC CC CCCCC CCC CCICC CD DDD D DD DtCDD CD DD DD D D DD CDIDD DEE E E E EE'EFE EEIEEIE E EEEEEEfEEEEZ 0' 2 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'678'81(1 1: 1: 1' 1.' 1( 1; 1f12f22; 2; 2. 2 2 :4.4!4(4 - 44 :5:5 (7r 7.7 :7 -6'• /2 .----- (f.11:"1". WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:38 Concept Mode: Beam View Roof: 25' 1050 :... 49' 1 U3 .. .. - 4 ( -b.. 1U 1 0/ 43 11)0 _ - - -; • - - - -- - _. 44 - b y9 ' 43 -b' y ts b23 : ... b24 4c-0 (--- - i - 11i — - - - --- -- _ 4'1 -b y4 - : ; :. _ - : - -_ - __ .__ -_ - 313' X16 3 / - b . yU ' 34 -b by 3.; -0 0 ( .. 3 1 -b tab .Z - b 233 L / -b 25L [ ':-- _ ._ -_ ..-- . _ - - -, - -- _ ., -- --- .. -' Lb -0 01 Lb -ca bU. .. -- -:- [ -- --- - .' _ .: --. - _ - -.... -- -- - -- .- -- - - - - - - L4 -0 Li -0 123- -. ". __:__ .. ' - --- _ .- - • -' - - - - - -- -- -- -- - - - - LL -b io :. ;. ;..._ ._.b25. Li n (L --- -- - -- --- . '..:. --- -- ---- -- .._: _ . ..._ _ -. b -b (0 ... _ .. :. .: .-- - __ .. 4 -b 13 . L -b 0013 - -- - . b27::- ... - b28 o-b b1 .. 0-b 00 � 4 - b L'_b 1 -b U b BBIB.B BC CCC C CC CECCC CC CCCCC C CC CC \CC CD DDD D DD DICDD DD DDDDD D DD CD'DD DE.E E E E EE EEEEEEEE E EEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91E1 1;1:1 1111,2( 2' 222E2 2(2 {4 4;4:44:4(4 4E4(5(5 5:5:5 :5(5'5E5!6(6 6;6 :6 -70 7:77 /Z./ ..-- (1 Ifi) WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:40 Concept Mode: Column View Roof: 25' 10 _ ' IU.5 1 -J -' - -- ---- --- - - -- - _ -' - -- -- ' -- - . -. -- - -- - .. 4t3' O' ._ -... ! _ _ -. _ _ . -. _. --- 4b b IUi - 45 - b 1VU 44 -0 tlt5 , . - : G42 c43 : � - c44 c45- - - - - -- -. - - -- - _ -- - - -- 44 -0 • 41 -0 .. Sy b y3 31- ._ .E - _ - - --- -- - - b y . - -. - 35' b .. _: .. - - - -- --- - - - -- — -- -- -. -- -- -- - - - - SL -b 00 - SU b 03 L`J _b 253 - L 1 -ID 6L L -0 0 1 23 - 4 - b 723 - - - ' - - - - " - - -:- C46 - L L 1 c47 .. .. -- - -- 1-0 . 14. : _. . -- - --- Its b 1 i - -- - -- - - - - .. - .. 13-0 ru _. - t3 13-0 00 _ _. . _ _: _. .- -- - - -__ .. ... - - - -- - -- -- - - - IL b bb .. .. .. ... -. - -- - -- - ... ..-- - .. .- -- - - -- - 043 ... _ c51 C50_ 052 053 23 -b 03, .. � l -b U 43 BB\B.B BC CCC C CC CICCC CC CCCCC C CC CCICCCD DDD D DD DICDD CD DD DD D D DD CD'DD DEE E E E EEEIEEE'EEE EEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16'18'20'22'24'26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' U1'2'3'4'5'6'7'8'91 (1 1 :1:1.111(1 :1(1' 2:22 2'•2(2 2(2(3(33:3 :3 4A:4.4'4(4 5:5:5.5;5(5 5(5!6(6 6:6'66:6(6'62717 777 / - - - - ( . .n9 COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:42 b1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or Of ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w61 Dead Partial UD 613.2 613.2 2.50 3.00 plf 2 Snow Partial UD 795.0 795.0 2.50 3.00 plf . 3 c61 Dead Point 622 2.50 lbs 4 c61 Snow Point 1192 2.50 lbs 5_j28 Dead Full UDL 47.7 plf 6_j28 Live Full UDL 160.0 plf 7_j33 Dead Full UDL 120.2 plf 8 j33 Live _ Full UDL _ 370.0 plf • MAXIMUM RE • ')i 3 � 0' Dead 391 1061 Live 795 1615 Total 1186 2676 Bearing: Load Comb #2 #3 Length 0.63_ 1.43 Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2 -Plys Self - weight of 6.59 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv* = 67 Fv' = 207 fv * /Fv' = 0.32 Bending( +) fb = 331 Fb' = 1138 fb /Fb' = 0.29 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.05 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 2676, V design* = 1237 lbs Bending( +): LC #3 = D +,75(L +S), M = 1178 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 158e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. /kJ - 6,1 0 COMPANY PROJECT ill 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:43 b3 Design Check Calculation Sheet Sizer7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j45 Dead Full UDL 17.0 plf 2 j45 Live Full UDL 25.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : A Ip' g 4 Dead 106 106 Live 112 112 Total 218 218 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Glulam- Unbal., West Species, 24F -V4 DF, 3- 118x9" Self- weight of 6.48 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 10 Fv' = 265 fv /Fv' = 0.04 Bending( +) fb = 140 Fb' = 2400 fb /Fb' = 0.06 Live Defl'n 0.01 = <L/999 0.30 = L/360 0.04 Total Defl'n 0.03 = <L/999 0.45 = L/240 0.06 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 218, V design = 182 lbs Bending( +): LC #2 = D +L, M = 491 lbs -ft Deflection: LC #2 = D +L EI= 342e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). • cl‘r COMPANY PROJECT WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:40 b6 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 c44 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 w44 Snow • Partial UD 431.2 431.2 0.00 2.00 pif 5 c45 Dead Point 444 5.00 lbs 6 c45 Snow Point 647 5.00 lbs 7 w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9 Dead Full UDL 120.2 pif 10 j25 Live Full UDL 370.0 plf MAXIMUM REACTIONS (Ibsl and BEARING LENGTHS • 1 0' 61 Dead 1436 1389 Live 1803 1803 Total 3239 3192 Bearing: Load Comb #3 • #3 Length 1.73_ _ 1.70 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in loads; Lateral support top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I =impact C= construction CLd =concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. COMPANY PROJECT f fl WoodWorks SOFf WARE FOP WOOD DESIGN June 24, 2010 12:50 b8 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1_j14 Dead Full UDL 113.7 plf 2 114 Live Full UDL 350.0 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : • Dead 357 357 Live 1050 1050 Total 1407 1407 Bearing: Load Comb #2 #2 Length 0.75 0.75 Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 77 Fv' = 180 fv /Fv' = 0.43 Bending( +) fb = 963 •Fb' = 1080 fb /Fb' = 0.89 Live Defl'n 0.07 = <L/999 0.20 = L/360 0.33 Total Defl'n 0.10 = L/712 0.30 = L/240 0.34 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 1407, V design = 1123 lbs Bending( +): LC #2 = D +L, M = 2110 lbs -ft Deflection: LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:40 b9 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 j50 Dead Partial UD 113.7 113.7 0.00 1.50 plf 2_j50 Live Partial UD 350.0 350.0 0.00 1.50 plf 3_j14 Dead Partial UD 113.7 113.7 3.00 9.00 plf 4_j14 Live Partial UD 350.0 350.0 3.00 9.00 plf 5_j51 Dead Partial UD 113.7 113.7 1.50 3.00 plf 6_j51 Live Partial UD 350.0 350.0 1.50 3.00 plf 7_j24 Dead Partial UD 120.2 120.2 0.00 3.00 plf 8_j24 Live Partial UD 370.0 370.0 0.00 3.00 plf 9_j25 Dead Partial UD 120.2 120.2 3.00 9.00 plf 10_j25 Live Partial UD 370.0 370.0 3.00 9.00 plf 11_j26 Dead Partial UD 120.2 120.2 9.00 12.00 plf 12_j26 Live Partial UD 370.0 370.0 9.00 12.00 plf 13_j52 Dead Partial UD 113.7 113.7 9.00 10.50 plf 14_j52 Live Partial UD 350.0 350.0 9.00 10.50 plf 15_j Dead Partial UD 113.7 113.7 10.50 12.00 plf 16 j53 Live Partial UD _ 350.0 350.0 10.50 12.00 plf • MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : L _ . 10 121 Dead 1478 1478 Live 4320 4320 Total 5798 5798 Bearing: - Load Comb #2 #2 Length _ 1.74 1.74 Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x10 -1/2" Self- weight of 12.39 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 138 Fv' = 265 fv /Fv' = 0.52 Bending( +) fb = 2217 Fb' • 2400 fb /Fb' = 0.92 Live Defl'n 0.38 = L/381 0.40 = L/360 0.94 Total Defl'n 0.57 = L/252 0.60 = L/240 0.95 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 5798, V design = 4953 lbs Bending( +): LC #2 = D +L, M = 17395 lbs -ft Deflection: LC #2 = D +L EI= 890e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I =impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4 ci)q COMPANY PROJECT f fl WoodWorks® SOFIWARE FOR woos DESIGN June 24, 2010 12:43 b10 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Pat - Start End Start End tern 1 w39 Dead Partial UD 311.0 311.0 0.00 4.50 No 2 w39 Live Partial UD 680.0 680.0 0.00 4.50 No 3_c39 Dead Point 267 2.00 No 4_c39 Live Point 822 2.00 No 5_j32 Dead Partial UD 120.2 120.2 0.00 0.50 No 6 j32 Live Partial UD 370.0 370.0 0.00 0.50 No 7 Dead Partial UD 120.2 120.2 1.00 4.00 No 8 Live Partial UD 370.0 370.0 1.00 4.00 No 9 j34 Dead Partial UD 120.2 120.2 4.00 4.50 No 10_j34 Live Partial UD 370.0 370.0 4.00 4.50 No 11 j35 Dead Partial UD 120.2 120.2 4.50 7.50 No 12 j35 Live Partial UD 370.0 370.0 4.50 7.50 No 13_j36 Dead Partial UD 113.7 113.7 4.50 16.50 No 14_j36 Live Partial UD 350.0 350.0 4.50 16.50 No 15j37 Dead Partial UD 100.7 100.7 3.00 4.50 No 16_j37 Live Partial UD 310.0 310.0 3.00 4.50 No 17 j47 Dead Partial UD 120.2 120.2 7.50 13.50 No 18 Live Partial UD 370.0 370.0 7.50 13.50 No 19 Dead Partial UD 120.2 120.2 13.50 16.50 No 20 j48 Live Partial UD 370.0 370.0 13.50 16.50 No 21_j49 Dead Partial UD 120.2 120.2 0.50 1.00 No 22 j49 Live Partial UD 370.0 370.0 0.50 1.00 No 23 Dead Point 300 3.00 No 24 Live Point 922 3.00 No MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 10' 4'-6" 16 -61 Dead 452 4067 1180 Live 847 11291 3436 Uplift 12 Total 1300 15358 4616 Bearing: Load Comb 02 82 02 Length 0.50+ 4.24 1.27 Cb 1.00 1.09 _ 1.00 'Min. bearing length for beams is 1/2" for exterior supports Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x12" • Self- weight of 14.16 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 265 fv /Fv' = 0.60 Bending( +) fb = 1074 Fb' = 2400 fb /Fb' = 0.45 Bending( -) fb = 1396 Fb' = 1844 fb /Fb' = 0.76 Live Defl'n 0.13 = <L/999 0.40 = L/360 0.32 Total Defl'n 0.19 = L/740 0.60 = L/240 0.32 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL Cv Cfu Cr Cfrt Notes Cn LC0 Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fb'- 1850 1.00 1.00 1.00 0.997 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emir' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC 02 = D +L, V = 8357, V design = 6496 lbs Bending( +): LC 02 = D +L, M = 11006 lbs -ft Bending( -): LC 02 = D +L, M = 14310 lbs -ft Deflection: LC 02 = D +L EI= 1328e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live S =snow W =wind I= impact C= construction CLd =concentrated) (A11 LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. Grades with equal bending capacity in the top and bottom edges of the beam cross- section are recommended for continuous beams. 4. GLULAM: bxd = actual breadth x actual depth. 5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 6. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). iq --- 6 I C COMPANY PROJECT 1 1 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:44 b13 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 c40 Dead Point 217 5.50 lbs 4 c40 Live Point 668 5.50 lbs 5 c67 Dead Point 518 5.00 lbs 6 c67 Snow Point 778 5.00 lbs 7 c68 Dead Point 573 3.00 lbs 8_c68 Snow Point 942 3.00 lbs 9 w59 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10 w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12_j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13_j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14_j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15_j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16_j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 18 b 15 Live Point 389 3.50 lbs 19 b 32 Dead Point 225 6.50 lbs 20 Live Point 693 6.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : mss, ,, -- _+s... -- ,�_ - • - - ......�ia.p::,. - -,.. ...a. �- a,.�• ` ., -1.s.- ...A;...e• ;a� = �s.dt - moa - _ + ms - wrr - � ��.. a . -... - .mw. +-""' ' �► _+,'.�' mss. _.__,.. -.a r` °°� 4.--i7 ' r _.^ '" -, - -• A .-r "re+c "•,...-- - -• -. ,•r s. -� 0. -w ..." ." -,-- r.er -- " `'?ni:c..'"Z.- - .•.-- - ... r te �4i .s_. ''''' I0' 81 Dead 2561 3033 Live 2699 3789 Total 5261 6822 Bearing: Load Comb #3 #3 Length 1.88 2.44 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 pif included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L/680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC #3 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. • 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. /4 ..--- 6,1 1 (0 COMPANY PROJECT f fl WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:43 b14 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w33 Dead Partial UD 317.7 317.7 9.00 12.00 plf 2 w33 Live Partial UD 350.0 350.0 9.00 12.00 plf 3_c19 Dead Point 357 9.00 lbs 4 c19 Live Point 1050 9.00 lbs 5 c20 Dead Point 357 3.00 lbs 6 c20 Live Point 1050 3.00 lbs 7_w34 Dead Partial UD 317.7 317.7 0.00 3.00 pif 8_w34 Live Partial UD 350.0 350.0 0.00 3.00 plf 9 c64 Dead Point 165 10.50 lbs 10 c64 Snow Point 225 10.50 lbs 11 Dead Point 165 1.50 lbs 12 c65 Snow Point 225 1.50 lbs 13_j36 Dead Full UDL 113.7 plf 14_j36 Live Full UDL 350.0 plf 15_j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 16 j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 17_j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 18_j44 Live Partial UD 25.0 25.0 0.50 1.50 pif 19_j45 Dead Partial UD 17.0 17.0 1.50 10.50 pif 20_j45 Live Partial UD 25.0 25.0 1.50 10.50 plf 21_j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 22 146 Live Partial UD 25.0 25.0 10.50 12.00 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : -- ., '�' �...��'' - � ' * � : � - v �' -� .,--...a."--"-...- SC qia�= « - `ti p ,r!� ` . iiti�a� *- �'+�"" L4 I 0' 12 Dead 2351 2351 Live 4350 4350 Total 6701 6701 Bearing: Load Comb #2 #2 Length 2.39 2.39 LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 163 Fv' = 310 fv /Fv' = 0.52 Bending( +) fb = 1769 Fb' = 2325 fb /Fb' = 0.76 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.43 = L/333 0.60 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 6701, V design = 5314 lbs Bending( +): LC #2 = D +L, M = 16851 lbs -ft Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. / 9 --- L'q 1 -r4''' COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:41 b20 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j30 Dead Full UDL 21.7 plf 2 j30 _Live Full UDL 60.0 _ plf MAXIMUM REACTIANS (ihcl and RFARINCI 1 FN(:THS (inl • 0 3' -6'1 Dead 46 46 Live 105 105 Total 151 151 Bearing: Load Comb #2 #2 Length 0.50* 0.50* 'Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x6" Self- weight of 4.57 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 9 Fv' = 180 fv /Fv' = 0.05 Bending( +) fb = 90 Fb' = 1170 fb /Fb' = 0.08 Live Defl'n 0.00 = <L/999 0.12 = L/360 0.02 Total Defl'n 0.00 = <L/999 0.18 = L/240 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 151, V design = 111 lbs Bending( +): LC #2 = D +L, M = 132 lbs -ft Deflection: LC #2 = D +L EI= 78e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 14- 2 ' COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DES GN June 24, 2010 12:50 b30 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j41 Dead Partial UD 68.0 68.0 2.00 4.00 plf 2_j41 Live Partial UD 100.0 100.0 2.00 4.00 plf 3_j42 Dead Partial UD 72.2 72.2 0.00 2.00 plf 4 j42 Live Partial UD 106.2 106.2 0.00 2.00 plf MAXIMUM REACTIONS final and RFARING LFNGTHS lint A 1 44 Dead 154 150 Live 209 203 Total 364 353 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x8" Self- weight of 6.03 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 15 Fv' = 180 fv /Fv' = 0.08 Bending( +) fb = 140 Fb' = 1170 fb /Fb' = 0.12 Live Defl'n 0.00 = <L/999 0.13 = L/360 0.03 Total Defl'n 0.01 = <L/999 0.20 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 364, V design = 253 lbs Bending( +): LC #2 = D +L, M = 359 lbs -ft Deflection: LC #2 = D +L EI= 178e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. /49- --- C 19 . COMPANY PROJECT 1 WoodWorks® SOFfWARF FOR WOOD DESIGN June 24, 2010 12:42 b31 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j65 Dead Partial UD 47.7 47.7 0.00 4.00 plf 2_j65 Live Partial UD 160.0 160.0 0.00 4.00 plf 3_j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4_j28 Live Partial UD 160.0 160.0 4.50 7.50 plf 5_j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 6_j62 Live Partial UD 160.0 160.0 7.50 11.00 plf 7_j63 Dead Partial UD 47.7 47.7 11.00 17.00 pif 8_j63 Live Partial UD 160.0 160.0 11.00 17.00 plf 9_j64 Dead Partial UD 47.7 47.7 17.00 20.00 plf 10_j64 Live Partial UD 160.0 160.0 17.00 20.00 pif 11_j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 12 j66 Live Partial UD 160.0 160.0 4.00 4.50 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : I0' 20 Dead 619 619 Live 1600 1600 Total 2219 2219 Bearing: Load Comb #2 #2 Length 0.67 • 0.67 Glulam- Unbal., West Species, 24F -V4 DF, 5- 118x12" Self- weight of 14.16 pif included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 49 Fv' = 265 fv /Fv' = 0.18 Bending( +) fb = 1082 Fb' = 2400 fb /Fb' = 0.45 Live Defl'n 0.43 = L/553 0.67 = L/360 0.65 Total Defl'n 0.69 = L/350 1.00 = L/240 0.69 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 2219, V design = 1997 lbs Bending( +): LC #2 = D +L, M = 11095 lbs -ft Deflection: LC #2 = D +L EI= 1328e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). C420 COMPANY PROJECT f fl Wood\A June 24.20101215 034 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Sbar7.1 LOADS (bs,pe5 or pR) : Load Type Distribution Magnitude Location 1ft1 Unite Start End Start End 1_062 Dead Partial UD 613.2 613.2 0.00 2.00 plf 2 062 Snow Partial. UD 795.0 195.0 0.00 2.00 pif 3029 Dead Partial UD 617.5 617.5 7.50 11.00 pif 4 029 Snow Partial VO 001.2 901.2 7.50 11.00 pif 5 Dyad Point 1436 11.00 lbs 6 515 Snow Point 2404 11.00 lbs 7_516 Dead Point 1389 17.00 lbs 9 516 Snow Point 2404 17.00 161 9 Dead Partial UD 617.5 617.5 17.00 19.00 pif 13_064 Snow Partial UD 001.2 901.2 17.00 10.00 pif 1 1561 Dead Point 022 7.00 les 12 Snow Point 1192 7.00 10 13_:62 Dead Point 622 4.00 lb3 14 562 Snow Paint 1192 4.00 lbs 15 Dead Partial UD 613.2 633.2 2.00 4.00 pif 16 Snow Partial U0 795.0 195.0 2.00 4.00 plf 17%65 Dyad Partial UD 610.5 617.5 19.70 20.00 pif 18 Snow Partial UD 901.2 001.2 10.00 20.00 pif 19 Dead Partial UD 613.2 613.2 7.00 1.50 pif 20 Snow Partial UD 795.0 795.0 7.70 7.50 pif 21_164 Dead Partial UD 47.7 41.7 17.70 19.00 plf 22_764 Live Partial UD 160.0 160.0 17.70 18.00 pif 23 126 Dead Partial UD 41.1 41.7 4.50 7.50 pif 1_129 Live Partial UD 160.0 160.0 4.50 7.50 pif . 25 162 Dead Part11 00 47.7 47.7 7.50 11.00 pif 26 162 Live Partial UD 160.0 160.0 7.50 11.00 pif 27_348 Dead Partial 00 120.2 120.2 0.00 2.00 pif 28_149 Live Part1•1 UD 370.0 370.0 0.00 2.00 p1f 29_132 Dead Partial UD 120.2 120.2 3.50 4.00 plf 30_132 Live Partial UD 370.0 310.0 3.50 4.00 pif 31_333 Dead Partial UD 120.2 120.2 4.50 7.50 plf 32_733 Live Partial 10 370.0 370.0 4.50 7.50 pif 33 _734 Dead Partial 00 120.2 120.2 7.50 8.00 pif . 34_134 Live 2•rti•1 00 310.0 310.0 1.50 9.00 plf • 35_735 Dead Partial ID 320.2 120.2 9.00 11.00 plf 36_735 Live Partial UD 310.0 370.0 B.00 11.00 pif 37_747 Dead Partial UD 120.2 120.2 11.00 17.00 pif 39_147 Live Partial UD 370.0 370.0 11.00 17.00 pif 39_167 Dead Partial UD 1 :0.2 120.2 2.00 3.50 plf 4 367 Live Part131 UD 370.0 370.0 2.00 3.50 plf 41_349 Dead Par:11 UD 120.2 120.2 4.00 1.50 pif 42 143 Live Partial UD 310.0 370.0 4.00 4.50 plf 43363 Dead Partial UD 41.7 47.1 11.00 17.00 pif 44_363 Live Partial 00 160.0 160.0 11.00 17.00 pif 45 _160 Dead Partial UD 41.1 47.7 18.00 20.00 pif 46_165 Live Partial U0 160.0 160.0 19.00 20.00 pif 166 Dead Partial 47.1 49.7 4.00 4.50 plf 45_166 Live 90 Partial UD 160.0 160.0 4.00 4.50 pif 49_168 Dead Partial U0 120.2 1:0.2 17.00 18.00 plf 50 169 Live Partial UD 370.0 370.0 17.00 19.00 pif 51_169 Dead Partial UD 120.2 120.2 18.00 20.00 p1f 52 169 Live Partial UD 370.0 370.0 19.00 20.00 Of 53172 Dead Partial UD 47.1 2.00 4.00 pif 5t 172 Live Partial UD 160.0 160.0 2.00 4.00 plf 55_113 Dead Partial OD 47.7 41.7 0.00 2.00 pif 6 5173 Live Partial . 160.0 160.0 0.00 2.00 _ olf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : Dead 5 5 Live 9956 9979 Total 17361 17305 Bearing: Load Comb 42 03 Lenoth 5.21 5.19 Glulam -Bat., West Species. 24F -V8 DF, 5- 1183122 -1/2" Shcryt of 26.55 20 Included N Cod. Lateral support tope M. bottom. al suppvl; Analysis vs. Allowable Stress (psi) and Deflection (in) using NOS 25U5: 1 Criterion Analysis value Deelon Value Analvala /Desion Shear C9 . 132 305 fv /F0' ■ 0.60 4.031:41.1 f0 - 2392 FD' - 2604 fin /F0' ■ 0.92 Live Defl'n 0.40 - 1 /595 0.67 - L/360 0.60 Total Defl'n 0.94 - 1.9290 1.00 - 1/240 0.94 ADDITIONAL DATA: FACTORS: F/E CD 04 Ct CL cv Cfu Cr Cfrt Notes Din LC. 2v' :65 1.15 1.00 1.00 1.00 1.00 1.00 3 5b'0 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 Fop' 650 1.00 1.00 - - - - 1.00 - - E' 1.9 million 1.00 1.00 - - 1913' 0.95 minion 1.00 1.00 - - - - 1.00 - - Shear : LC /3 - 0 -21, 0 17361, 9 daaf0n - 139 lbs Bondi:31.1: LC 03 ■ 0..7511.11, 9 . 9 6189 lbs-ft Deflection: LC 83 ■ 0..751L4S1 EI. 37564106 11 -202 Total Deflection . 1.50(0esd Load 05219+ :ion, + Live Load Deflection. 10■dead 1.-live 5 -snow W.wind I.impact C-ccna001+01on CLd■conc,ntratedl (A11 LC'a are listed in the Analysts output) . Load combinations: ICC -190 DESIGN NOTES: 1. Please verity that the default deflection 6005 ara appropriate for your appRoden 2. Chinni design values are fur materials c.nfamhg to A1TC 117 -2001 and manufactured In accordant. 0011 ANSUAITC A190.1 -1992 3. GLULAM: tad +actual Meatl0, 4 actual depth. . 4. Ghdarn Beams slag Pa latertTF 60ppvled atcord2,5 to the provisions 05 NDS Oaw 31.3. 5. GLUTAR bearing length based an smaller of FcpEe nsbn), Fep(ranp'n). /4 (2 ;\ . COMPANY PROJECT (11 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:49 b35 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j21 Dead Partial UD 120.2 120.2 0.50 1.50 plf 2_j21 Live Partial UD 370.0 370.0 0.50 1.50 plf 3_j59 Dead Partial UD 120.2 120.2 0.00 0.50 plf 4_j59 Live Partial UD 370.0 370.0 0.00 0.50 plf 5_j60 Dead Partial UD 120.2 120.2 1.50 3.00 plf 6 j60 Live Partial UD 370.0 370.0 1.50 3.00 plf MAXIMUM REF ^ .P.,....a ... -II r..,.,•••..,, . • • • • 0 3 1 Dead 188 188 Live 555 555 Total 743 743 Bearing: Load Comb #2 # Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads; Lateral support top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 31 Fv' = 180 fv /Fv' = 0.17 Bending( +) fb = 254 Fb' = 1080 fb /Fb' = 0.24 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 743, V design = 444 Ibs Bending( +): LC #2 = D +L, M = 557 lbs -ft Deflection:,LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. • 4 -- 61?:a COMPANY PROJECT 1 WoodWorks® SDEIWARE FOR WOOD DESIGN June 24, 2010 12:51 c2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 bl Dead Axial 1056 (Eccentricity = 0.00 in) 2 bi Rf.Live Axial 2153 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 2 -Pays Self- weight of 3.41 pif included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 0.00= 0.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 196 Fc' = 980 fc /Fc' = 0.20 Axial Bearing fc = 196 Fc* = 1644 fc /Fc* = 0.12 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.596 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 3236 lbs Kf = 1.00 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESJGN June 24, 2010 12:54 c12 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1_c24 Dead Axial 1478 (Eccentricity = 0.00 in) 2 c24 Live Axial 4320 (Eccentricity = 0.00 in) 3 Dead Axial 4067 (Eccentricity = 0.00 in) 4 Live Axial _ 11291 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): r • {,E. ��`yc = a - "iC.k �. r 'w.,�„_, -- ,ter -�, P..fi'o�" ' 4, • 0' 8' Timber -soft; D.Fir -L, No.1, 6x6" Self- weight of 7.19 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 701 Fc' = 820 fc /Fc' = 0.86 Axial Bearing fc = 701 Fc* = 1000 fc /Fc* = 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC #. Fc' 1000 1.00 1.00 1.00 0.820 1.000 - - 1.00 1.00 2 Fc* 1000 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 21214 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 4 - CH COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:53 c23 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b9 Dead Axial 1478 (Eccentricity = 0.00 in) 2 Live Axial 4320 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 9' Lumber Post, Hem -Fir, No.2, 4x6" Self- weight of 3.98 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 303 Fc' = 379 fc /Fc' = 0.80 Axial Bearing fc = 303 Fc* = 1430 fc /Fc* = 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.265 1.100 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 5834 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 4 - COMPANY PROJECT '1 11 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:54 c26 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 c23 Dead Axial 1478 (Eccentricity = 0.00 in) 2 c23 Live Axial 4320 (Eccentricity = 0.00 in) 3 b10 Dead Axial 1180 (Eccentricity = 0.00 in) 4 Live Axial 3436 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): -•r - ,� - -.,. T • 0' 8' Timber -soft, Hem -Fir, No.2, 6x6" Self- weight of 6.25 plf included in Toads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) usingNDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 346 Fc' = 492 fc /Fc' = 0.70 Axial Bearing _ fc = 346 Fc* = 575 fc /Fc* = 0.60 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.00 1.00 1.00 0.856 1.000 - - 1.00 1.00 2 Fc* 575 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 • Axial : LC #2 = D +L, P = 10465 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 4- 2(4) COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:52 c29 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b13 Dead Axial 3033 (Eccentricity = 0.00 in) 2 Rf.Live Axial 5052 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 3 -Pays Self- weight of 5.11 pif included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 328 Fc' = 439 fc /Fc' = 0.75 Axial Bearing fc = 328 Fc* = 1644 fc /Fc* = 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.267 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 8126 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. • - Ci7 COMPANY PROJECT i WoodWorks® SOFIWARF FOR W000 DESIGN June 24, 2010 12:55 c31 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b13 Dead Axial 2561 (Eccentricity = 0.01 in) 2 Rf.Live Axial 3599 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 1 0' 8 ' Lumber n -ply, Hem -Fir, No.2, 2x4 ", 3 -Plys Self- weight of 3.25 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 393 Fc' = 443 fc /Fc' = 0.89 Axial Bearing fc = 393 Fc* = 1719 fc /Fc* = 0.23 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.258 1.150 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 6186 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) • (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. i —C-12D COMPANY PROJECT di WoodWorks® SOFT WARF FOQ WOOD DESIGN June 24, 2010 12:54 c39 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b21 Dead Axial 267 (Eccentricity = 0.00 in) 2 Live Axial 822 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 9' • Lumber n -ply, Hem -Fir, No.2, 2x4 ", 2 -Plys Self- weight of 2.17 plf included in Toads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 106 Fc' = 171 fc /Fc' = 0.62 Axial Bearing fc = 106 Fc* = 1495 fc /Fc* = 0.07 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.114 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 1108 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. (-12,1 COMPANY PROJECT WoodWorks® soFTWARE FOP woos oamN June 24, 2010 12:52 c55 • Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b30 Dead Axial 154 (Eccentricity = 0.00 in) 2 _Live Axial 209 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 8 ' Lumber Post, Hem -Fir, No.2, 4x4" Self- weight of 2.53 pif included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using Nos 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 31 Fc' = 470 fc /Fc' = 0.07 Axial Bearing fc = 31 Fc* = 1495 fc /Fc* = 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.315 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 384 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. fr q Cn 0 BY ANAL DATE: -ao k0 JOB NO.; / E • , -© 9_ 0 OF PROJECT: RE: 'BecAm5 W' `. kral Reath( 'O w ❑ ❑ J Z W 1 e 4 f/en b -> tJ% A S ,Q3 303 O f ❑ beci yr 4 Walls aoattl 3oa 0 !^_ _ U Z w O � a 1 0 ea '3 1 -1 qua 415 a01 ,ao t 7' ao o g O 5 tnc e (J di cak ,ti GIN S >> se isms c. rea iti r. y-S Z OrAk wtrdk u U ?e C.a tcotc.Aveck O U O li Z ❑ Z O O = d �., 4 N o • (1°)) mss: COMPANY PROJECT I WoodWorks® SOFTWARE' FOR WOOD DESIGN June 24, 2010 13:07 b6 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 c44 Snow Point 647 2.00 lbs 3 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 Dead Point 444 5.00 lbs 6 c45 Snow Point 647 5.00 lbs 7 w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9_j25 Dead Full UDL 120.2 plf 10_j25 Live Full UDL 370.0 plf WIND1 Wind Point 800 2.00 lbs WIND2 Wind Point -910 5.00 lbs MAXIMUM REACTIONS (Ibsl and BEARING LENGTHS linl • ID' 61 Dead 1436 1389 Live 2089 1803 Total 3525 3192 Bearing: Load Comb #4 #3 Length 1.88 1.70 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in loads; Lateral support top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.15 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 4 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 4 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC 03 = D+.75(L +S), M = 4247 lbs -ft Deflection: LC 04 = D +.75(L +S +W) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. • 1 4 - 6332_ COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 13:07 b6 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 c45 Dead Point 444 5.00 lbs 6_c45 Snow Point 647 5.00 lbs 7 w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9 Dead Full UDL 120.2 plf 10 j25 Live Full UDL 370.0 plf WIND1 Wind Point -800 2.00 lbs WIND2 Wind Point 910 5.00 lbs MAXIMUM REACTIONS fibs) and BEARING LENGTHS (inl : • • • • 1 0' 6t Dead 1436 1389 Live 1803 2172 Total 3239 3561 Bearing: Load Comb #3 #4 Length 1.73 1.90 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D+.75(L+S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. (.5-33 COMPANY PROJECT 1 WoodWorks SOFTWARE FOR WOOD DESIGN June 24, 2010 13:09 b14 LC1 • Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2_w68 Live Partial UD 350.0 350.0 9.00 10.50 plf 3_c19 Dead Point 357 9.00 lbs 4_c19 Live Point 1050 9.00 lbs 5_c20 Dead Point 357 3.00 lbs 6 c20 Live Point 1050 3.00 lbs 7 w66 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8_w66 Live Partial UD 350.0 350.0 0.00 1.50 plf 9 c64 Dead Point 165 10.50 lbs 10_c64 Snow Point 225 10.50 lbs 11 c65 Dead Point 165 1.50 lbs 12_c65 Snow Point 225 1.50 lbs 13 w67 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14 Live Partial UD 350.0 350.0 1.50 3.00 plf 15 Dead Partial UD 317.7 317.7 10.50 12.00 plf 16 w69 Live Partial UD 350.0 350.0 10.50 12.00 plf 17_136 Dead Full UDL 113.7 plf 18_136 Live Full UDL 350.0 plf 19 j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20 ' Live Partial UD 25.0 25.0 0.00 0.50 plf 21 144 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22 144 Live Partial UD 25.0 25.0 0.50 1.50 plf 23_345 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24_j45 Live Partial UD 25.0 25.0 1.50 3.00 plf 25_346 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26_346 Live Partial UD 25.0 25.0 10.50 12.00 plf 27_370 Dead Partial UD 17.0 17.0 3.00 9.00 plf 28_j70 Live Partial UD 25.0 25.0 3.00 9.00 plf 29_j71 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30_j71 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point 3560 3.00 lbs WIND2 Wind Point -3640 9.00 lbs wind3 Wind Point -3620 0.00 lbs winds Wind Point 3570 12.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : "".rau - _ tea --,.. --%. - =ay -- -. sue - -L 90-7. + TVs _- r � r...,, .K. . ��.. +i'-ti nt..F: 4r► •f ^�+ la_ �,/4a_ '`� ..1r .w . -_. `Y.++- ` `:r4" tens..• - .ma - --"'. . +rp,�•S�a! _ t --- 4�'L ' p 121 Dead 2207 2207 Live 4350 4350 Uplift 499 479 Total 6557 6557 Bearing: Load Comb #2 • # Length 2.34 2 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; • Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : _ Criterion Analysis Value Design Value Analysis/Design Shear fv = 158 Fv' = 310 fv /Fv' = 0.51 Bending( +) fb = 1735 Fb' = 2325 fb /Fb' = 0.75 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 _Total Defl'n 0.42 = L/343 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 6557, V design = 5170 lbs . Bending( +): LC #2 = D +L, M = 16527 lbs -ft Deflection: LC #2 = D +L EI= 1241e06 lb -in2 - . Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. / /9 - GI 3101 COMPANY PROJECT i WoodWorks® SOFIWARFFOR woos DESIGN June 24, 2010 13:09 b14 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2 Live Partial UD 350.0 350.0 9.00 10.50 plf 3 Dead Point 357 9.00 lbs 4 c19 Live Point 1050 9.00 lbs 5_c20 Dead Point 357 3.00 lbs 6_c20 Live Point 1050 3.00 lbs 7 w66 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8 w66 Live Partial UD 350.0 350.0 0.00 1.50 plf 9 c64 Dead Point 165 10.50 lbs 115 c64 Snow Point 225 10.50 lbs 11 Dead Point 165 1.50 lbs 12 c65 Snow Point 225 1.50 lbs 13_w67 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14 w67 Live Partial UD 350.0 350.0 1.50 3.00 plf 15 Dead Partial UD 317.7 317.7 10.50 12.00 plf 16 Live Partial UD 350.0 350.0 10.50 12.00 plf 17 Dead Full UDL 113.7 plf 18 j36 Live Full UDL 350.0 plf 19 j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20_j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 21 j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22 j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 23_j45 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24_j45 Live Partial UD 25.0 25.0 1.50 3.00 plf 25 j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26_j46 Live Partial UD 25.0 25.0 10.50 12.00 plf 27_j70 Dead Partial UD 17.0 17.0 3.00 9.00 plf 28_j70 Live Partial UD 25.0 25.0 3.00 9.00 plf 29_j71 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30 j71 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point -3560 3.00 lbs WIND2 Wind Point 3640 9.00 lbs wind3 Wind Point 3620 0.00 lbs winds Wind Point -3570 12.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : ... -• ,;� ---- - -- - 7,s... .p,4 mss„ - .., -„ r. _a.�-��s..i ,.r'�- �W..r. -a e �... r - `a� ,4714 Z . . • I a 121 Dead 2207 2207 Live 4826 4811 Total 7033 7018 Bearing: Load Comb #4 #4 Length 2.51 2.51 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 310 fv /Fv' = 0.51 Bending( +) fb = 1735 Fb' = 2325 fb /Fb' = 0.75 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.42 = L/343 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 6557, V design = 5170 lbs Bending( +): LC #2 = D +L, M = 16527 lbs -ft Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer.' 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. COMPANY PROJECT i WoodWorks® I SOFTWARE FOR WOOD DESIGN June 24, 2010 13:11 b13 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs. Psf, or p11) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 c40 Dead Point 217 5.50 lbs 4 c40 Live Point 668 5.50 lbs 5 c67 Dead Point 518 5.00 lbs 6 c67 • Snow Point 778 5.00 lbs 7 c68 Dead Point 573 3.00 lbs 8 c68 Snow Point 942 3.00 lbs 9 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10_w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12_j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13 j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14_j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15_j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16 j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 18 b15. Live Point 389 3.50 lbs 19 b32 Dead Point 225 6.50 lbs 20 b32 Live Point 693 6.50 lbs W1 Wind Point 6590 0.00 lbs W2 Wind Point -6590 3.00 lbs W3 Wind Point 6590 5.00 lbs W4 Wind Point -6590 8.00 lbs MAXIMUM • • CTIONS 1Ibsl and BFARING LENGTHS 1inl '^ = s..abf .... . �.��r.�y;..s'_-c- _ ±- .. - . .', -ms +� � : o ,., � p .,...3 ►'� - 7, rJ . °. ...r --... * ... ��„7 fir.. ^ -. .ue+ ...� -'-- -___.. �1r +. "�s� '�.. -..... • - I e1 Dead 2561 3033 Live 6406 3789 Uplift 3098 Total 8968 • 6822 Bearing: Load Comb #4 #3 Length 3.20 2.44 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L /680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 • Shear : LC 03 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC #3 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (A11 LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. • • . 4- (513(42 COMPANY PROJECT i. WoodWorks® SOFTWARE FOR W000 DESIGN June 24, 201013:11 b13 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w58 Dead ' Partial UD 519.0 519.0 0.00 3.00 plf 2 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 Dead Point 217 5.50 lbs 4 Live Point 668 5.50 lbs 5 Dead Point 518 5.00 lbs 6 c67 Snow Point 778 5.00 lbs 7 Dead Point 573 3.00 lbs 8 Snow Point 942 3.00 lbs 9 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10_w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 337 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12 j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14 Live Partial UD 250.0 250.0 3.50 6.50 plf 15 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 18 b15 Live Point 389 3.50 lbs 19 Dead Point 225 6.50 lbs 20 Live Point 693 6.50 lbs W1 Wind Point -6590 0.00 lbs W2 Wind Point 6590 3.00 lbs W3 Wind Point -6590 5.00 lbs W4 Wind Point 6590 8.00 lbs MAXIMUM REACTIONS fibs) and BEARING LENGTHS (inl ; sa m." ?S'"''' .�'. ^ - "'j -� ..e - r_. -.�- • - . - " ��1.�- < •�I 1 0' si Dead 2561 3033 Live 2699 7496 Uplift 3381 Total 5261 10529 Bearing: Load Comb #3 #4 Length 1.88 _ 3.76 LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L /680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC 03 = D+.75(L+S), V = 6822, V design = 5122 lbs Bending( +): LC #3 = D+.75(L+S), M = 12340 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. COMPANY PROJECT I i Wood Works® June 24.20101119 034 LC1 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Star 7.1 LOADS (40a, PA Pe) Load Type Distribution Magnitude Location (ft) Unite Start End Start End 1 v62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 2 Snow Partial UD 795.0 795.0 0.00 2.00 plf ] v29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 4029 Snow Partial UD 801.2 901.2 7.50 11.00 plf 5 c15 Deed Point 1436 11.00 15. 6 Snow Point 2104 11.00 lbs 7 Deed Point 1389 17.00 lba 8_c16 Snow Point 2404 17.00 lbe 9 w64 Dead Partial UD 617.5 617.5 17.00 19.00 plf 30 061 Snow Partial UD 901.2 801.2 17.00 18.00 p11 11 061 Dead Point 622 7.00 lbs 12c61 Snow Point 1192 7.00 lbs 13 c62 Lead Point 622 4.00 lbs 14 c62 Snow Point 1192 4.00 lbs 15 Lead Partial UD 613.2 613.2 2.00 4.00 plf 16 Snow Partial U0 7 95.0 795.0 2.00 4.00 511 11 065 Dead Partial U0 617.5 617.5 19.00 20.00 plf 18 065 Snow Partial UD 901.2 601.2 19.00 20.00 plf 19 Dead Partial UD 613.2 613.2 7.00 7.50 plf 20_071 Snow Partial U0 195.0 795.0 7.00 7.50 plf 21_166 Deed Partial UD 47.7 47.7 17.00 18.00 plf 22_364 Live Partial UD 160.0 160.0 17.00 19.00 plf 23_129 Dead Partial VD 47.7 47.7 1.50 7.50 plf 21,29 Live Partial UD 160.0 160.0 4.50 7.50 plf 25_162 Dead Partial VD 47.7 47.7 7.50 11.00 plf 26 _162 Live Partial UD 160.0 .160.0 7.50 11.00 plf 27 - 149 Dead Partial VD 120.2 120.2 0.00 2.00 plf 28_148 Llv8 Partial U0 370.0 370.0 0.00 2.00 plf 29_132 Dyad Partial UD 120.2 120.2 3.50 4.00 plf 30_132 Live Partial UD 370.0 370.0 3.50 4.00 plf 31_113 Dyad Partial UD 120.2 120.2 4.50 7.50 plf 32_133 Live Partial UD 370.0 370.0 4.50 7.50 plf 33_134 Dead Partial U0 1 :0.2 120.2 7.50 9.00 plf 34_134 Live Partial UD 370.0 370.0 7.50 9.00 plf 35_135 Deed Partial UD 120.2 120.2 9.00 :1.00 plf 36_135 Live Partial UD 370.0 370.0 8.00 11.00 plf 37_147 wad 24r1.1a1 UD 120.2 120.2 11.00 17.00 p10 37_147 Live Partial UD 370.0 370.0 11.00 17.00 511 39_167 Dyad Partial UD 120.2 120.2 2.00 3.50 plf 4 167 Live Partial VD 370.0 370.0 2.00 3.50 plf 41 _149 Dead Partial VD 120.2 120.2 1.00 4.50 plf 42_149 Live Partial UD 370.0 370.0 4.00 4.50 plf 43_163 Dead Partial UD 47.7 47.7 11.00 17.00 plf 44_163 Live Partial U0 160.0 160.0 11.00 17.00 plf 45_165 Dyad Partial V0 47.7 47.7 19.00 20.00 511 46_165 Live Partial UD 160.0 160.0 19.00 20.00 plf 47_366 1.ad Partial UD 47.7 47.7 4.00 4.50 plf 48_166 Live Partial UD 160.0 160.0 4.00 4.50 plf 49_169 Dead Partial 1.10 120.2 120.2 17.00 19.00 plf 50_168 Llve Partial UD 370.0 370.0 17.00 18.00 plf 51_169 Dead Partial 00 120.2 120.2 15.00 20.00 plf 52_169 Live Partial UD 370.0 370.0 19.00 20.00 plf 53_1 Dead Partial UD 47.7 47.1 2.00 4.00 pif 54_172 Live Partial UD 160.0 160.0 2.00 1.00 plf 55_173 Dead Partial UD 47.7 47.7 0.00 2.00 plf 56_3 Live Partial UD 160.0 180.0 0.00 2.00 plf M1 Kind Point 5950 0.00 lb. M2 Wind Point -5850 4.00 lb. 03 Mind Point 5950 11.00 len NSnd Point -5850 17.00 lb. M5 Mind Point 5950 20.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : a ' Dead 155 22 Love 12150 1949172 Total 19555 19499 BearinC: Load Comb 81 46 Length 5.97 5.95 Glulam -Bat., West Species, 24F -V8 DF, 5- 118x22 -1/2" Sal9.l60O41 P5Included In kerb; lelaral support top. NIL bream= 54.pp275 Analysis vs. Allowable Stress (psi) and Deflection (In) ..ir ram 2956 Criterion Analysis Value 08200, Value Analvele /cea1on Shear iv - 182 Fv' - 305 fv /FV' - 0.60 8800109:,( 1b • 2392 Fb' • 2604 fb /Fb' • 0.92 Live Def1', 0.40 L/595 0.67 • 0/360 0.60 Total Defl, 0.61 - 1/295 1.00 • L/240 0.94 ADDITIONAL DATA: FACTORS: F/E CD GM Ct CL 07 Cfu Cr Cfrt Notes Cn LC4 8i' 265 1.15 1.00 1.00 1.00 1.00 1.00 3 Fb`0 2400 1.15 1.00 1.00 3.000 0.944 1.00 1.00 1.00 1.00 - 3 E 1.9 million 1.00 1.00 - - - - 1.00 - - 3 1.000' 0.65 .1311,0 1.00 1.00 - - - - 1.00 - - 3 Shear : LC 13 - D..75(L451, V - 17361, V design - 13992 ltn 2endin9141: LC 43 - 04.75(1451, M 96199 1bn -ft Deflection: LC 83 - 00.7511001 El. 8756006 1b -in2 Total Deflection - 1.50(D4ad Load Deflection/ 0 Live Loa] 00115:01,,. (D ■dead L -l1'.. S.an0w m.wind 2■impact C■co,atructlon CLC- con08nt :atedl (A11 LC.s are 11ated in the Anai(s10 1,00,:, Load 000.1010100.: ICC -I00 DESIGN NOTES: 1. ,Sass welts lMt the default de5phn eras ere approphts for your apptleatbn. G6den design values are far notaries confOO 3g O ARC 117 - 2001 and manufactured In memdauce web ANSOAITC 4190.1 -1992 3. GLULAM: Ord . actual breadth A actual depth. 4. Gluten Beane shall be Mashy .u)port.49cord8g tole provteces oS NDS Clause 3.3.3. • 5. GLULAM: teeing length based on emeie of FCp(lenabn), F.p(oomp•n). 4 - .13(-0 COMPANY PROJECT 1 WoodVVo r ks 24.20101319 b34LC2 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Son 7.1 • LOADS 1 lb., psi.op0) • Load type Distribution Magnitude Location fill Units Start End End 1_862 Dead Partial OD 613.2 613.2 5 0.00 2.00 plt 862 Snow Partial UD 795.0 795.0 0.00 2.00 pif 3 829 Dead Partial UD 617.5 617.5 7.50 11.00 pif 4829 Snow Partial UD 801.2 001.2 7.50 11.00 pif 5 c15 Dead Paint 1436 11.00 lb. 9_c15 S-aw Point 2404 11.00 lbs c16 Dead Point 1399 11.00 lbs 8 c16 Snow Paint 2404 17.00 lbs 9864 0ea7 20.1 00 617.5 617.5 17.00 19.00 plf 10 864 Snow Part1ial .0 UD 901.2 001.2 17.00 19.00 plf 13 c61 Dead Point 622 7.00 lbs 12 c61 Snow Point 1192 7.00 lbs 13 Dead Point 622 4.00 lbs 11 c62 Snow Point 1192 4.00 lbs 15 863 Dead Partial UD 613.2 613.2 2.00 4.00 pif 16863 Snow Partial UD 795.0 795.0 2.00 4.00 pif 17_865 Dead Partial UD 617.5 617.5 18.00 20.00 plf 8 1965 Snow Partial UD 901.2 901.2 19.00 20.00 p11 198 Dead Partial UD 613.2 613.2 7.00 7 .50 plf 20871 Snow Partial UD 795.0 795.0 7.00 7.50 plf 21_364 Dead Partial UD 47.7 47.7 17.00 19.00 pl1 22_364 Live Partial UD 160.0 160.0 17.00 19.00 pif 23_120 Dead Partial UD 47.7 47.7 4.50 7.50 plf 24_329 Liva Partial D0 160.0 160.0 4.50 7.50 pif If 25_162 Dead Partial UD 47.7 7.50 11.00 plf 28362 Live Partial UD 160.0 160.0 7.50 11.00 p11 27_34D Dead Partial UD 120.2 120.2 0.00 2.00 pif 2 118 Live Partial UD 370.0 370.0 0.00 2.00 pif 29_132 Dead Partial 00 120.2 120.2 3.50 4.00 Of 30_332 Live Partial so 370.0 370.0 3.50 4.00 p1f 31 133 Dead Partial UO 120.2 120.2 4.50 7.50 pit 32 133 Live Partial UD 370.0 370.0 4.50 7.50 plf 33_131 Dead Partial UD 220.2 120.2 7.50 9.00 p1 34_134 Live Partial UD 370.0 370.0 7.50 9.00 p17 35_335 Dead Partial UD 320.2 120.2 9.00 11.00 plf 36_335 Live Partial UD 370.0 370.0 9.00 11.00 pif 37_347 Dead Partial UD 120.2 120.2 11.00 1 plf 39_147 Live Partial UD 3 370.0 11.00 17.00 plf 39_367 Dead Partial UD 320.2 120.2 2.00 3.50 pif 40_267 Live Partial UD 370.0 370.0 2.00 3.50 plf 41_749 Dead Partial UD 120.2 120.2 4.00 4.50 plf 42_149 Live Partial UD 370.0 370.0 4.00 4.50 pif 43_163 Dead Partial UD 47.7 47.7 11.00 17.00 plf 44_163 Live Partial UD 160.0 160.0 11.00 1 p11 45 )65 Mad partial UD 47.1 47.7 19.00 20.00 pit 48165 Liva Partial UD 160.0 160.0 19.00 20.00 Of 47_366 Dead Partial D 47.7 47.7 4.00 4.50 plf 40 0 166 Live Partial UD 160.0 160.0 4.00 4.50 plf 49_169 Dead Partial UD 120.2 120.2 17.00 19.00 plf 50 _363 Live Partial UD 370.0 370.0 17.00 19.00 p31 51_169 Dead Partial UD 120.2 120.2 19.00 20.00 plf 52_169 Live Partial U0 370.0 370.0 19.00 20.00 plf 53_172 Dead Partial UD 47.7 47.7 2.00 4.00 pit 54_1 Live Partial UD 160.0 160.0 2.00 4.00 pit 5 113 Dead Partial UD 47.7 47.7 0.00 2.00 Of 56_373 Live Partial UD 160.0 160.0 0.00 2.00 plf M1 Wind Point -5950 0.00 lba Wind Point 5850 4.00 10s 0 M3 Mind Point -5850 11.00 102 MI Mind Point 5950 17.00 lbs MS Mind Point -5950 20.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : Dead LOS 12 Live 9956 9978 Total 17361 17305 • Bearing+ LCad Curb 03 13 Lenoth 5.21 5.19 Glulam -BaI., West Species, 24F -V8 DF, 5- 118x22 -112" 5201 -rrtly 4 .128.55 pt/ Included In Nada; LAWN support laps AA, bottom= at suppo00 Analysis vs. Allowable Stress (psi) and Deflection (in) „20289 Nos 2906: Criterion Analysis Value Denton Value 'Anal0als /Maio: Shear 132 305 fv /FV' . 0.60 bendingl -1 fb . 23 1b' . 2604 fb /Fb' . 0.92 Live Defi'n 0.41 . L /511 0.67. - L /360 0.61 Total Da(0'n 0.94 . L/294 1.00 . 1/240 0.64 ADDITIONAL DATA: FACTORS: F/2 CD C1 Ct CL CJ Cfu Cr Cfrt Cn LC4 60' 265 1.15 1.00 1.00 1.00 1.00 3..20 3 0S'1 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 E 1.9 million 1.00 1.00 - - - - 1.00 - - 4 6:176' 0.95 :111100 1.00 1.00 - - - - 1.:0 - - i Shear : LC 03 . D..751L400, V • 17361. V design . 13942 lba Pending/4.1: LC 93 • 0•.751151, M 96369 lbs -1t Deflection: LC i4 . 0 EI. 9756.06 lb -in2 Total 0eflect1on . 1.001Dead Wad Deflactlonl 4 Live Load Deflection. 1D•dead r.■live S■4na8 M.eind 1■impact C•canat.ucticn CL0■concentratedl (All LC'aare listed In the Analysis output) load combinations( 100 -I20 DESIGN NOTES: I. P14444 verify that the delau2 de9KUm Ands are appapfate for yma 6ppOra0On. 2. G11am design +Rues are f o r p 20 94 06 . 0 0 9 9 1 ARC 117 -2001 end nlenu(adured in eccadarwe 001 ANSOAITC A190.1 -1992 3. GLUTAM: NA 0 ad+1 breadth x actual depth. 4. G40 97 Beams slat be talaoly supported .10erdem lo the pmllsbns of NOS Claus. 3.3.3. 5. GLULAM: beaA,g 179* hoed an vua0er of Fo Rlenabn). Fcp(calnp n). a9 COMPANY PROJECT f fl Wo Joa 24, 20/01320 b34 LC2 SORWAREFOR WOOD DESIGN Design Check Calculation Sheet Miter 7.( LOADS IIb.. pa,ea POI Load Typo Dlotrlbutlon Magnitude Location I(tl Un1tu Start End Start End 1 162 Dead Partial UD 613.2 613.2 0.00 2.00 pif 2 062 Snow Partial UD 795.0 795.0 0.00 2.00 pif 3_x29 Dead Partial UD 617.5 617.5 7.50 11.00 pif v29 Snow Partial UD 901.2 501.2 7.50 11.00 pif 5 c15 Dyed Point 1436 11.00 lbs 6 Snow Point 2404 11.00 lbo 7 Dead Point 1399 17.00 lbs 9016 Snow Point 2404 17.00 lba 9 o64 Dead Partial UD 617.5 617.5 17.00 19.00 pif 10 064 Snow Partial U0 901.2 801.2 17.00 19.00 pif 11 Dead Point 622 7.00 lb. . 12 Snow Point 1192 7.00 lbs 15,62 Dead Point 622 4.00 I1a 14 Snow Point 1192 1.00 lb. 15 peal Partial UD 613.2 613.2 2.00 1.00 pif 16 Snow Partial U0 795.0 195.0 2.00 4.00 pif 17 Dyad Partial UD 617.5 617.5 19.00 20.00 pif 19165 Snow Partial UD 001.2 901.2 19.00 20.00 pif 19 w71 Dead Partial U0 613.2 613.2 7.00 7.50 pif 20 w71 Snow Partial UD 795.0 795.0 7.00 7.50 pif 21 164 Dyad Partial UD 47.7 47.7 17.00 18.00 plf 22_164 L1v. Partial UD 160.0 160.0 17.00 16.00 pif 23 129 Dead Partial UD 47.7 47.7 1.50 7.50 pif 24_129 Live Partial U0 160.0 160.0 4.50 7.50 plf 25_162 Dead Partial UD 17.7 47.7 7.50 11.00 pif 26_362 Live Partial UD 160.0 160.0 7.50 11.00 pif 27_148 Dead Partial UD 120.2 120.2 0.00 2.00 pif 29_149 Live Partial UD 370.0 370.0 0.00 2.00 pif 29_332 Dead Partial UD 120.2 120.2 3.50 1.00 plf 30_332 Llve Partial U0 370.0 370.0 3.50 4.00 plf 31 333 Dead 74:51.1 U0 120.2 120.2 4.50 7.50 pif 32_133 Live Partial UD 370.0 370.0 4.50 7.50 pif 33_334 Deed Partial OD 120.2 120.2 7.5C e.00 pif 34_131 L1v. Partial UD 370.0 370.0 7.52 9.00 pif 35 _135 Dead Partial UD 120.2 120.2 9.00 11.00 pif 36 Live Partial UO 370.0 370.0 9.00 11.00 pif 37_147 Dead 24.0141 UD 120.2 120.2 11.00 17.00 pif 35_147 Live Part1a1 UD 310.0 370.0 11.00 17.00 pif 3 167 Ileac Partial UD 120.2 120.2 2.00 3.50 pif 40_367 Live Partial U0 370.0 370.0 2.00 3.50 plf 41_249 Demo Partial UD 120.2 120.2 4.00 4.50 pif 42,349 Live Partial VD 270.0 370.0 4.00 4.50 pif 43_163 Dead Partial UD 47.7 47.7 11.00 17.00 plf 44_163 Live Partial UD 160.0 160.0 11.00 17.00 pif 45_365 Dead Partial UD 47.7 47.7 18.00 20.00 pif 46_165 Live Partial UD 160.0 160.0 19.00 20.00 pif 47_166 Dead Partial U0 47.7 47.7 4.00 4.50 plf 45_166 Live Partial UD 160.0 160.0 4.00 4.50 pif 43_169 Dead Partial UD 120.2 120.2 17.00 19.00 pif 50 168 Live Partial UD 370.0 3 17.00 19.00 pif 51_369 Dead Partial U0 :20.2 120.2 19.00 20.00 pif 52_369 Live Partial UD 370.0 370.0 15.00 20.00 pif 51_372 Dead Partial UD 47.7 47.7 2.00 4.00 pif . 54 Lion Partial VD 160.0 160.0 2.00 4.00 pif 55 Dead Partial UO 47.7 47.7 0.00 2.00 pif 56_173 Live Partial 00 160.0 160.0 0.00 2.00 pif Wind Point -5850 0.00 lbs Sind Point 5850 4.00 lbs 93 Mind Point -5950 11.00 Iba 84 Mind Point 5950 17.00 lb. N5 Wind Paint -5550 20.00 lba MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (In) : • • L I D O Dead 4405 127 Love 73 9979 Total 17 361 17305 BLo Wad Comb 11 f] Length 5.21 5.19 Glulam -Bat., West Species, 24F -V8 DF, 5- 1/8x22 -1/2" Se0 -velphl of 26.55 pif Included In lostla Lateral emcee tope 612. boM03 at soma.: Analysis vs. Allowable Stress (psi) and Deflection (in) 4a1ng9052809: . Criterion Analvois Value Deslan Value Anal'vaia /Dealgn Shear fv . 182 Fv' . 305 fv /Fv' . 0.60 Bonding(*) Ib . 2392 ED' . 2604 fb /1b' . 0.92 Live 09f1'n 0.41 ■ L/591 0.6 - 1/360 0.61 Total Defl'n 0.94 ■ L /281 1.00. 1/240 0.94 ADDITIONAL DATA: FACTORS: F/E CO C Ct CL CV Cfu Cr Cf:5 Notes , LCI 00' 265 1.15 1.00 1.00 1.00 1.00 3 00 3 05'4 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 3 Fcp' 650 1.00 1.00 - - - - 1.03 E 1.9 041lfor. 1.00 1.00 - - - - 1.00 - 4 Ealn' 0.95 million 1.00 1.00 - - - - 1.90 - 4 Snaar : LC 43 • 04.15(140), v 17361, V design ■ 13982 lba Byrdon9)0): Lc 43 ■ 0..75(1.45), M ■ 86199 lba -ft 0,210:t(on: LC 14 . 0..75(L•S,14) EI. 9756906 11 -1,2 Total Deflection . 1.50(De40 Wad Deflection) 4 Live Load >11,0tlon. IPdead L.11ve 5.ancv 49.vind I■iepact C.cnnatru.tlen CW.con.entra:e]1 (A11 IC's are Hated In the Analysis output) Load combinations: ICC -1SC DESIGN NOTES: 9. Mow vedfy the the defame d, Igor MOM me appropriate far your application. 2. GM= design value an (or relmahl conforming to AITC 117 -2001 and mmMamoq In accordance with AN5P1ITC A190.1 -1992 3. GLULAM bad • fatal breadth it ;ideal depth. 4. Glum aeam6 MN be laterally supported.000n0rg to 1W 9099leta of NOS Clause 3.3.3. 5. GLULAM: bearing length Weed on smaller of Fop(Irnslon), Fcp(canpn). /S -6/ COMPANY PROJECT it WoodWorks® SOFfwAREFOR WOOD DESIGN June 24, 2010 13:23 b34 LC1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, Psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 3 w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5 c15 Dead Point 1436 11.00 lbs 7 c16 Dead Point 1389 17.00 lbs 9 w64 Dead Partial UD 617.5 617.5 17.00 18.00 plf 11 c61 Dead Point 622 7.00 lbs 13 c62 Dead Point 622 4.00 lbs 15 w63 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17 w 65 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19 w71 Dead Partial UD 613.2 613.2 7.00 7.50 plf 21j64 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23 j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25_ j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 27_j48 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29j32 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31 j33 Dead Partial UD 120.2 120.2 4.50 7.50 plf 33 j34 Dead Partial UD 120.2 120.2 7.50 8.00 plf 35_j35 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39j67 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41_j49 Dead Partial UD 120.2 120.2 4.00 4.50 plf 43_j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45_j65 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47_j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49j68 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51_j Dead Partial UD 120.2 120.2 18.00 20.00 plf 53_j72 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55 j73 Dead Partial UD 47.7 47.7 0.00 2.00 plf W1 Wind Point 5850 0.00 • lbs W2 Wind Point -5850 4.00 lbs W3 Wind Point 5850 11.00 lbs W4 Wind Point -5850 17.00 lbs W5 Wind Point 5850 20.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : AR t A la _ 201 Dead 7189 6822 Live 156 302 Total 7238 7018 Bearing: Load Comb 92 62 Length 2.17 2.11 Glulam -Bal., West Species, 24F -V8 DF, 5- 1/8x22 -1/2" Self- weight of 26.55 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 74 Fv' = 238 fv /Fv' = 0.31 Bending( +) fb = 950 Fb' = 2038 fb /Fb' = 0.47 Live Defl'n negligible . Total Defl'n 0.41 = L /585 1.00 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC8 Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC 81 = D only, V = 7189, V design = 5674 lbs . Bending( +): LC 81 = D only, M = 34217 lbs -ft Deflection: LC 61 = D only EI= 8756e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI/AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). . 4 -C-1 L-f 1 COMPANY PROJECT ill WoodWorks® SOFIWAREFORW0000r57GN June 24, 2010 13:22 b34 LC2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 3 w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5 c15 Dead Point 1436 11.00 lbs 7 c16 Dead Point 1389 17.00 lbs 9 w64 Dead Partial UD 617.5 617.5 17.00 18.00 plf • 11 c61 Dead Point 622 7.00 lbs 13 Dead Point 622 4.00 lbs 15 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17 w65 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19 w71 . Dead Partial UD 613.2 613.2 7.00 7.50 plf 21_j64 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23_j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25 j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 27 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29_j32 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31_j Dead Partial UD 120.2 120.2 4.50 7.50 plf 33_j34 Dead Partial UD 120.2 120.2 7.50 8.00 plf 35_j Dead Partial UD 120.2 120.2 8.00 11.00 plf 39_j67 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41j49 Dead Partial UD 120.2 120.2 4.00 4.50 plf 43_j63 Dead Partial UD 47.7 47.7 .11.00 17.00 plf 45j65 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47 j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49 Dead Partial UD 120.2 120.2 17.00 18.00 plf 5069 Dead Partial UD 120.2 120.2 18.00 20.00 plf 53_j72 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55 j73 Dead Partial UD 47.7 47.7 0.00 2.00 plf . W1 Wind Point -5850 0.00 lbs W2 Wind Point 5850 4.00 lbs W3 Wind Point -5850 11.00 lbs W4 Wind Point 5850 17.00 lbs WS Wind Point -5850 20.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : la 201 Dead 7189 6822 Live Total 7189 6822 Bearing: Load Comb #1 #1 Length 2.16 2.05 Glulam -Bal., West Species, 24F -V8 DF, 5- 1/8x22 -1/2" Self- weight of 26.55 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 74 Fv' = 238 fv /Fv' = 0.31 Bending( +) fb = 950 Fb' = 2038 fb /Fb' = 0.47 Live Defl'n negligible Total Defl'n 0.41 = L /585 1.00 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 Fcp' 650 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 Ervin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC #1 = D only, V = 7189, V design = 5674 lbs Bending( +): LC #1 = D only, M = 34217 lbs -ft Deflection: LC #1 = D only EI= 8756e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) . Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI/AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). - (11C1 Harper Project: • z P, B Houf Peterson Client: Job # Righellis Inc. ENGINEERS • PLANNERS Designer: Date: Pg. # LANDSCAPE ARCH. rECTS•sURJEYORs Wdl := 10• lb •8•ft•20•ft W = 1600-lb Dec'' OeSi9v, ft Seismic Forces Site Class =D Design Catagory =D W := Wdl 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F : = 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F = 1.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S : = F S := F S 2S S : = Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a := 1.0 R := 2.5 (Table 13.5 -1, ASCE 7 -05) 4a •Sds• F P := p Rp ` •r1 + 2 h I Wp EQU. 13.3 -1 J Fpmax 1:6•Sd EQU. 13.3 -2 F pmin 3 ' S ds' l p' W p EQU. 13.3 - F if(F > Fpmax,Fpmax,if(Fp < FpmimFpmin,Fp)) F = 338.5171•Ib Miniumum Vertical Force 0.2•S = 225.6781•lb Clq Harper Project: Houf Peterson Client: Job # Righellis Inc. ENGINEERS • PLANNERS Designer: Date: Pg. # LANDSCAPE ARCNITECTS•SURVEYDRS Wdl 10• lb --8-ft-20-ft W = 1600-lb ft Seismic Forces Site Class =D Design Catagory =D W p .= W dl IP := 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F ='1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F 1.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) Sms := F S ml F v -S 1 2-S ms S ds := Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a := 1.0 R 2.5 (Table 13.5 -1, ASCE 7 -05) 4a •Sds' z F P • RP ` p r l + 2. hl W EQU. 13.3 -1 JJ Fp := 1.6•S -l W EQU. 13.3 -2 F pmin := • S ds -l p - Wp EQU. 13.3 -3 if(F > Fpmax,Fpmax,if(Fp < Fpmin, Fpmin , Fp)) F = 338.5171 -lb Miniumum Vertical Force 0.2•S ds• W dl = 225.6781-Ib H LI 0 limper HP Houf Peterson COMMUNICATION RECORD Righellis Inc. To 0 FROM El MEMO TO FILE n Un14 • PLAelf1.711, L•trIUSCAPE A.CtliTeCtS.SUI,,,YO,S PHONE NO.' PHONE CALL: E MEETING: 0 . M M CO Pl 2 Ps ... — 11 ( -1 LO 0 C> 1? .3 C Q i I 4.." ,../ I 1 C i ( 03 1 1 f ,........... 7.) 03 (0 C.) _(J .0 S ..... 6 ... 6-A il (4-- .6./ -I) o .... . ...1.? 1---, m ci 1:.• 4 ....._. er :9 01 ....0 ■ I s.. f t o 0 S 's 1 0 z 0 r ‘ 0 r c. "3. - • , -1 (3 BY: lAT:: Cp DATE: rk il(4) . JOB NO.:, - - -- - - - - 'PROJECT: • RE: De.c., 01 ()T---- ;.q•_Po\k, C A \ -iv „,, Li 6 ill . nectagel u: z (1 ( ei•rniricsy‘') `i 0 3 (1 .$53)(tag*inal I) IT-% 1 W irail . .3 cc a u O w I u u z • a Lu o x x a. A e . • LAPAC. 0--/ -1•1” / 2 boara < . 1 i ,,i k P. ) I 0 z 7S(Asr5 . v-- 0 o = -34 1C101c. g ) CoAxxct hi .::: ( -pL:F. o g 12 if uti fAcrua \ ,— tGci5 PL:F' • 1 I : dy,....11/ 7_ • 11 " . \) "----- k cts PLr- ; i 1 I i , 7 Slry)por, S CI) 1=1 .. ______ ,..... 4 .... _ ,. ,........,< / . , 1 ..- , 0 = t=f c.„ T wipt < 4(V. 4 0: a ;';, • 1 FT,j Crow --- 3o°‘#(` g314tir- S\on‘ pscs-c\ 305q4- x4'12_" = 4O 4 # --• olL . . 4-61C/G DATE BY: RliScbti Cr3WIN DATE: • JOB NO.: /-N - - - . . . PROJECT: RE: E1:1 w - J (9 - Z LL - LoPlv.. C.A.C.- . 0 L tii a . 6 0 z . 0 =a00 0 17 SIP.) 1 o _ • z USe_ 511M?bOrN 1-11Du4 D 2 To fe5‘'S.. kfncQicq") 2 r1,3,s" o o 0 . E 0 II- Z W 0 6 O 1 1-0C4.1 ,_ ... N1,, aooit (40" . 2. o0 tir ) S000 4t-ik/ • d I T- C r_-_- 8606 Itki -.=- saISG4t- 1 3.S" P.'400 ,', }1-D04 q o . i r • 3(„ O 6 . 'IS Ok<2 I. Alg 7=4 :: • 4 1 - 0) "- I> iq' C . Harper COMMUNICATION RECORD . 1 I"' Houf Peterson Righellis Inc., TO0 FROM El MEMO TO FILE 0 S H O I N C E P 77 • - ( 7 E — A - ii:Ciii:1 ''' -------. LANCSCAPE ARCHITECT.,•SURVC,Coli.: PHONE NO.: PHONE CALL: 0 MEETING: 111 _._.... .......... _ .... M 13 CO m :5 71 - g M ft4 CP,.. X 1 1 0 (---) 1-7 .._, it til 0 I 1 p r — 3 cu s/..3 _C. -C d . -- CI' 15 :: If "it ....- .--N 0.) . ‘ .....--/ ;,-, 1, 9-3 1C- F7 • 0 r' • • • It 4 ...S.N41‘ . r) ---i RI 1 • c9 ,.. 0 ,:. z P • ... 1 1.11111111.iiii■ • • narper Houf Peterson COMMUNICATION RECORD Righellis Inc. To 0 FROM 1=1 MEMO TO FILE 0 EOCINEEit.■ • PlA:NERS 1., ARCHITECTS SUP VEYUR:: -- . - PHONE NO • PHONE CALL: El MEETING: El 2:1 CO , RI 31) In I ..3 3 ---, --cd.„ ..... .., .., ka. i ....):: ..................... r' E 3. -■ 0 0 T. r r c-N vs I c . (..f l.....; 1 i . r L -.. 0 . -0 z P 0 a . t :3 ' COMPANY PROJECT '? il- Wood Works® MWMMWFORWOODM3MN June 8, 2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Point 2.50 200 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : -,:. -.!::.,,: ;Ti,:nytT:- ,..::''-.',',, - ''.:-'-'::', '..‘""-,,,.('="; . 1 0' 5 Dead Live 100 100 Total 104 104 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams is 112" for exterior supports Lumber-soft, Hem-Fir, No.2, 2x6" Self-weight of 1.7 plf included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (In) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) Do = 405 Fb' = 1048 fb/Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 -, - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 '1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - 1.00 1.00 - - El 1.3 million 1.00 1.00 - - - 1.00 1.00 - 2 Emin 0.47 million 1.00 1.00 - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending(+): LC #2 = L, M = 255 lbs-ft Deflection: LC #2 = L El = 27e06 lb-in2 Total Deflection . 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. ( COMPANY PROJECT eit WoodWorks® SOFTWARE FOR WOOD DESIGN June 8, 2009 16:27 Hand Rai12 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Full UDL 50.0 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : '"- tA-t. ::', 1 -- - - 7' -- s ., ‘::q , :' , :' ,- .: - ...:' - : 4 ',7".71::',...7".. -- - . ''''... ..'•: . 1 : -=- 7 .i...i...,--;:. - -al - - ,, i.:! - F-f - ---, , = , - : - , ...7•"--17.--/z 1 ' - " - --!:' --.:,:---....,',' ...- '---=',--!-- 3 - -- :-.:i'n'rt ' -7. '-:-.._ :,;-- .-:::- ' .': .---. :• -..,: t ,- .:.::•":•:•:,- '''...1 i 'S ' ' • 1 ... .5 •../...'•• :::', ..7. ,:',..: ':- , :- - :7-' ' '-.. ,' 7: ;:',..:''' : ' :.:: '. '. - • -._,' : . ": . • : , '.- " ': , - :' -.. ; • ' l I O. 54 Dead Live 125 125 Total 129 129 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams is 1/2" for exterior supports Lumber-soft; Hem-Fir, No.2, 2x6" Self-weight of 1.7 plf included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 256 Pb' . 1048 fb/Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Deflin 0.03 = <L/999 0.25 = L/240 0.11 ADDITIONAL DATA: FACTORS: F/E Cl) CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 1.00 1.00 - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 129, V design = 106 lbs Bending(+): LC #2 = L, M = 162 lbs-ft Deflection: LC #2 = L El = 27e06 lb -in2 Total Deflection . 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 22, 2010 13:57:56 Concept Mode: Reactions Base of Structure View Floor 2: 8' tie 1050 1 49'-6' 111,5 • 1600L=_ --- _ "600 40 r' -b • uib 619 D 619 D 4b b .. a9 43 b • ytf 4L y/ 4l -b • yo • • . ' : 1193 L153 2404 Lc 2404 L : _ • 3y • 4 625 D105911439 D : 1394 D ob. -b.. yZ : :- : : . - i - -- ` -�- --- - - - -: - : -- - - . S0.-0 • n a : 3151-. 3s - e • ti 358 D .5Z - b is r ..) • t70 - - :: -- - -- ..._--- . • _- _ .. -- -- -- -- - -- -- -- - - - - -- SU-b • tS5 LJ -b tS4 ' is 315 L : . • ai 100L� 358 D .. • Lb b • zsu . 96 D . - Z4 _n . • (0- .' :' 1 I 1 II P ' I - : - . .: i n 7 4(847 5611 L : _ 756E • - - w n.. 4(452 D 5546 D 25 1-3 D I J -b r4 • 625 iu b i� ..... ._ _.:. 203 ; - • • • 5D : ' i n to to•-b•• b . • • 908L 307D 'L� : -- 46 D _ : iu b < b4 245 1-. 50 • L v u , . .. • - D- � -. _.- . -- - -- - -- - - -, - --- - - --- �._ i ):74 1 bu? 209 LD DI •1963D L 87 L = =. 4 ... • 8D •1963D -. 1963D •_ --; : : -. s-a • 154 D .: its u ; : c -b -: -. urn' DL- ;.. - 112363 D.' - - . 1 b —t ' :: :._ :: • 78 [SD . ; 106D: v -n .BB1B.B•B CCCC CC CICCC CC CCCC C C CC CC \CCCD.DDD D DD DIDDD:DD DD DDD D DD CD'DD DEE E E EEEEI•EEEEE1E BEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'9111 :1 :1 '111'111!2122:2;24!2-62 "21213133 :3:3 4;4 :44',414 - 5 :5:5 5'5(5515'.6(6 :6.6'616:661717 7.7.7 V001 t•I (--) L1OUT • -Fe.° NIT t.-( cleD - • 4,p.1 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 22, 2010 13:57:37 Concept Mode: Reactions at Base of Structure View Floor 2: 8' 1 0 4 50 = . . . . .. . ..: ii : : . . - _ - - - - - . 49, -6„ Ius 1600 L" • 1600 L.- 4 / -b Iu� 619 D 619 D 4b o • 4to AB' IOU- - 44 - b 9 /c' • • ' . .. . 43 -b \.. 4L -b' .. yo • ' • 13274 L` - 3304 L ,.1 40 4 . _ .7153 D ..: - • 7072 D .50 b 93- ir -b a I ..5D -b ay 315 L ss " -b 00 ; 358 D 3 -b • L bb JU -b • tS5 .. _ _ Ly -00. • ns , . ` 315 L; zt - 5 zSL 358 D - Lb -b aI 100E` � 40 . -0 • tsu 96 D , . - :: 14 -b ry z.5-0 i v 74(84 611 L . . 156 L . . - . ZU e . • r b : 4(452 D D 5 L? D w -b r4__ ; 625 . . ; lb -b.. /3 5DL : - it b /1 203 D 5 p : _ - i o -0 of � 105 L 908 L i� bn. • • o r 46 D . 307 V _ • r 0 nb. -245 L ••':- u' 50L.. b • 3 . • 74D / "n.. • %3 „ ) 15 599 : - - 2587 L - - ( "587 L b -b n 209 LD 8 D_ 1963 D - _ 1963 D _ : . . ; -. - _ • . 4 -0 • 154 D :: : --u u ■ _ c b .. ._ _ •. DL L:._.. 725 - . ._ I b - - I 78 D7 DD: : 617D'D. u �' 88188 BC..CCCCCCCFCCC CC CC CC C CCC CC \CC CD.DD D D DDDFDDD OD D D OD . D D DD ODD D DE E E E E EE'EFEEEIEEIE EEEEEEE(EEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1'1;1:1 (111 f1 02 22:2 '4',4:41 W515 5: 5: 5 , 5!515'S<5!6(66:66 , 6:6(661647(7 7,7.7 , 77(77' -6" \e'.. 0 OT I IV C. ) LPi T ,4,_F-2 : 104 1. i H arper • Houf Peterson Righellis Inc. Cw vent Date: 6/24/2010 1:41 PM l system: English Foie name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\F1.ftd\ Design Results Reinforced Concrete Footings GENERAL INFORMATION: Global status Warnings Design Code ACI 318 -05 Footing type Spread Column type Steel Geometry ■ T 1 i t i t 3 r r. 12 I * 4.2,5 ft ~ I ■ '' P i7 -9 ft , , ,.., . lit t, „..,.0,„it o ' ' 0 4.25 ft 4.25 ft Pagel iq --. F3 Length 4.25 [ft] Width 4.25 [ft] Thickness 1.00 [ft] Base depth 1.50 [ft] Base area 18.06 [ft2] ' Footing volume 18.06 [ft3] • Base plate length 5.50 [in] Base plate width 5.50 [in] Column length 5.50 [in] Column width 5.50 [in] Column location relative to footing g.c. Centered Materials Concrete, Pc 3.00 [Kip /in2] Steel, fy 60.00 [Kip /in2] Concrete type Normal Epoxy coated No Concrete elasticity modulus : 3122.02 [Kip /in2] Steel elasticity modulus : 29000.00 [Kip /in2] Unit weight 0.15 [Kip /ft3] Soil Modulus of subgrade reaction 200.00 [Kip /ft3] Unit weight (wet) 0.11 [Kip /ft3] Footing reinforcement Free cover : 3.00 [in] Maximum Rho /Rho balanced ratio 0.75 Bottom reinforcement // to L (xx) : 6-#4 @ 9.00" Bottom reinforcement // to B (zz) . 644 @ 9.00" (Zone 1) Load conditions to be included in design Service loads: SC1 DL S1 DL S2 DL +LL S3 DL +0.75LL Design strength loads: DC1 1.4DL D1 1.4DL D2 1.2DL +1.6LL Loads • Condition Axial Mxx Mzz Vx Vz [Kip] [Kip *ft] [Kip *ft] [Kip] [Kip] DL 5.55 0.00 0.00 0.00 0.00 LL 15.61 0.00 0.00 0.00 0.00 RESULTS: Status Warnings - Insufficient development length, Section 21.5.4.1 Soil.Foundation interaction Allowable stress 1.5E03 [Lb /ft2] Min. safety factor for sliding 1.25 Min. safety factor for overturning 1.25 Paget � // -- F ,( I Controlling condition S2 Condition qmean qmax &nax Area in compression Overtuminq FS [Lb /ft2] [Lb /ft2] [in] [ft2] ( %) FSx FSz slip S2 1.38E03 1.38E03 0.0826 18.06 100 1000.00 1000.00 1000.00 Bending Factor 0.90 Min rebar ratio 0.00180 Development length Axis Pos. Id Ihd Dist1 Dist2 . [in] [in] [in] [in] • zz Bot. 20.11 7.04 19.75 19.75 xx Bot. 20.11 7.04 19.75 19.75 Axis Pos. Condition Mu 4) * Mn Asreq Asprov Asreq/Asprov Mu/(4)*Mn) [Kip * ft] [Kip * ft] [in2] [in2] zz Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 1 1 zz Bot. D2 13.38 45.76 1.10 1.20 0.918 0.292 I 4 1 1 xx Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 I I xx Bot. D2 13.38 43.06 1.10 1.20 0.918 0.311 f - 1 Shear Factor 0.75 Shear area (plane zz) 3.10 [ft2] Shear area (plane xx) 2.92 [ft2] Plane Condition Vu Vc Vu /(4*Vn) [Kip] [Kip] xy D2 8.99 46.09 0.260 ' I yz D2 8.68 48.88 0.237 IA i • Punching shear Perimeter of critical section (b... : 4.67 [ft] Punching shear area 3.31 [ft2] Column Condition Vu Vc Vu /(4)*Vn) [Kip] [Kip] column 1 D2 29.25 104.29 0.374 1 I Notes Page3 c * Soil under the footing is considered elastic and homogeneous. A linear soil pressure variation is assumed. * The required flexural reinforcement considers at least the minimum reinforcement * " - 4 design bending moment is calculated at the critical sections located at the support faces * Only rectangular footings with uniform sections and rectangular columns are considered. * The nominal shear strength is calculated in critical sections located at a distance d from the support face * The punching shear strength is calculated in a perimetral section located at a distance d/2 from the support faces * Transverse reinforcement is not considered in footings * Values shown in red are not in compliance with a provision of the code *gprom = Mean compression pressure on soil. *qmax = Maximum compression pressure on soil. *Amax = maximum total settlement (considering an elastic soil modeled by the subgrade reaction modulus). * Mn = Nominal moment strength. * Mu /(4 *Mn) = Strength ratio. * Vn = Nominal shear or punchure force (for footings Vn =Vc). * Vu /((1)*Vn) = Shear or punching shear strength ratio. Page4 Beam Shear bcol := 5.5•in (4x4 post) d := tf — 2.in 4) := 0.85 b := Width b = 36•in V :_ 4 f psi•b•d V = 16.32-kips 3 Vu 4u (13 toll b V = 7.83•kips < Ni = 16.32-kips GOOD 2 Two -Way Shear / bs := 5•5.in Short side column width bL := 5.5-in Long side column width b := 2.(bg + d) + 20L + d) b = 54•in f3 := 1.0 , .= 0 4 + 8 —.). V = 48.96-kips (3 3•(3 Vnmax := 40.2.66• f psi•b•d Vnmax = 32.56-kips ,V, 9u•[b2 — (bcol + d)2] V = 15.88•kips < V nm ax = 32.56•kips GOOD Flexure 2 b - bcol (1l Mu 9u ' I f b 2 2 M = 4.98•ft•kips A:= 0.65 2 ,:= b d S = 0.222•ft 6 F := 5••:13. f psi F = 162.5-psi M f := S ° f = 155.47•psi< F = 162.5.psi GOOD 11se a 3' -0" x 3' -0" x 10" plain concrete footing Plain Concrete Isolated Square Footing Design: F2 fc := 2500 -psi Concrete strength f := 60000-psi Reinforcing steel strength E := 290b0ksi Steel modulus of elasticity 'lconc 159-pcf Concrete density 'yso :_ ,1007pcf Soil density gall .1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 2659-lb Pd1:= Totaldi Totalll := 7756 -lb Pll := Totalll Pll := Pd1 + Pll P g = 10415 -lb Footing Dimensions tf := 10•in Footing thickness Width := 36-in Footing width A,:= Width Footing Area gnet gall — tf net = 1375•psf Pll Areqd gnet Aregd = 7.575•ft < A = 9•ft GOOD Widthreqd A reg d Widthregd = 2.75-ft < Width = 3.00 ft GOOD Ultimate Loads ,:= Pdl + tf P := 1.4 -Pdl + 1.7 -Pll P = 18.48 -kips P qu A q = 2.05 -ksf Plain Concrete Isolated Square Footing Design: F3 fc := 2500•psi Concrete strength f 60000 psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity "(cum 150•pcf Concrete density 1soi1 100.pcf Soil density q := 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 23634b Pd1:= Totaldi Totalll :_ .4575.1b P11 := Totalll Pg := Pdl + P11 Pd = 6938•lb Footing Dimensions t := 1 0•in Footing thickness Width := 30-in Footing width ,:= Width . Footing Area net gall — tf'"Yconc 9net = 1375•psf Pt' Areqd gnet A q 5.046 ft < A = 6.2541 GOOD Widthreqd A req d Widthreqd = 2.25•ft < Width = 2.50 ft GOOD Ultimate Loads SA := Pdl + tf•A''Yconc P := 1.4•Pd1 + 1.7•P11 P„ = 12.18•kips P q := A q = 1.95•ksf Beam Shear bcot 5.5 in (4x4 post) d := tf — 2•in := 0.85 b := Width b = 30•in V, := f V = 13.6-kips 3 r b — bcot V„ := quI 2 •b v = 4.97-kips < V„ = 13.6•kips GOOD Two -Way Shear bs := 5.5•in Short side column width bL := 5.5-in Long side column width b,:= 2•(bg + d) + 2 -(bL + d) b = 54-in ac := 1.0 µVS.= 4 + 8 f si•b•d V„ = 40.8-kips 3 3 • 3 c J V,unax := 2.66 f psi b d Vnmax = 27.13-kips I44:= qu [b 2 — �b + d) V = 9.71 •kips < V n i nax = 27.13-kips GOOD Flexure 2 I M qu (b - bcotl 1 b M = 2.54•ft•kips I \ 2 / 2 J A:= 0.65 2 1 := b d S = 0.185•ft 6 F := 5 -44)- f -psi F = 162.5•psi M a f := s f = 95.19-psi < F = 162.5•psi GOOD lJse a 2' -6" x 2' -6" x 10" plain concrete footing Plain Concrete Isolated Square Footing Design: F4 f := 2500 -psi Concrete strength f := 60000-psi Reinforcing steel strength E := 29000 -ksi Steel modulus of elasticity "(cone := 150•pcf Concrete density /soil 100•pcf Soil density gall := 1500 -psf Allowable soil bearing pressure COLUMN FOOTING Reaction T'otaldi := 5001 -lb Pdl:= Totaldl Totalll := 7639 -lb Pll := Totalll Ptl := Pdl + P11 P = 12640-lb Footing Dimensions tf := 12 -in Footing thickness Width := 42 -in Footing width A := Width Footing Area ( lnet gall — tf' gnet = 1350•psf P11 Areqd gnet Amid = 9.36341 < A = 1225 ft GOOD Widthregd A req d Widthregd = 3.06 -ft < Width = 3.50 ft GOOD Ultimate Loads := 1 d1 + tf'A'"conc P := 1.4• Pdl + 1.7 -P11 P = 22.56 -kips P qu :_ — q = 1.84 -ksf A Beam Shear bcoi := 5.5 -in (4x4 post) d:= tf -2•in := 0.85 b := Width b = 42 -in V :_ 4 • f psi•b•d V„ = 23.8 -kips 3 Vu := qu•I b 2 colt V = 9.8•kips < V = 23.8 -kips GOOD Two -Way Shear bs := 5.5 -in Short side column width bL 5.5.-in Long side column width b := 2-(bs + d) + 2•(bL + d) b = 62 -in := 1.0 4 + 8 l. f si•b•d V„ = 71.4 -kips 3 3 Oc V := 4).2.66 f psi b d V = 47.48-kips := q — �bcol + d) V = 19.49 -kips < V „ = 47.48 -kips GOOD Flexure b -6 2 ( Mu qu colt (2 J 1 b M = 7.45 - ft-kips I 2 J I 0.65 2 b•d S = 0.40541 6 F := 5 -.- f -psi F = 162.5 -psi M u f := s f = 127.79 -psi< F = 162.5 -psi GOOD 'Use a 3' -6” x 3' -6" x 12" plain concrete footing /4:P1 Plain Concrete Isolated Round Footing Design: f5 f := 3000•psi Concrete strength f := 60000-psi Reinforcing steel strength E 29000•ksi Steel modulus of elasticity 'Yconc .150•pgf Concrete density -Ysoil := 1201pcf Soil density g 1500•psf Allowable soil bearing pressure TYPICAL FOOTING Reaction Totald� := 61.9-lb Pdl := Totaldi Totallj := 1600-lb Pll := Totalll P := Pdl + P11 = 2219.1b Footing Dimensions t := 12-in Footing thickness Dia := 18-in Footing diameter ir• Dia 4 Footing Area clnet gall – tf•"Yconc net = 1350•psf Ptl Aregd := Chet A red = A < A = 1.77•ft GOOD V A1egd 4 Dia Diareqd = 1.45•ft < Dia = 1.50 ft GOOD It Ultimate Loads = Pdl + tf ^ Icons P := 1.4 Pd1 + 1.7 -P11 P„ = 3.96 -kips P qu — A q = 2.24•ksf • Beam Shear bcoi 3.5• (4x4 post) d := tf — 2-in := 0.85 b := cos(45•deg)•Dia b = 12.73•in V := — - f V = 7.901 -kips 3 r b — bcol V„ := q I 2 • b V = 0.91 -kips < V = 7.901 -kips GOOD Two -Way Shear b5 3.5-in Short side column width bL := 3.5• in Long side column width b := 2•(bg + d) + 2•(bL + d) b = 54•in (3 := 1.0 VU:= 4 + . 8 f psi b d V = 23.703 -kips C3 3-Pc Vnmax := x•2.66• f psi b d Vnma = 15.76-kips V q, [b — (bcoi + d) V„ = —0.31-kips < Vnnax = 15.76 -kips GOOD Flexure 2 MU — qu r b — 2 J ] ()' boll 1 M = 0.18 -ft-kips I \ A:= 0.65 2 /:= b d S = 0.121 ft 6 F 5•i• f F 178.01 -psi M f := f = 9.9 -psi < F = 178.01 -psi GOOD Use a 18" Dia. x 12" plain concrete footing 4 Plain Concrete Isolated Square Footing Design: FG f := 2500 -psi Concrete strength fy := 60000-psi Reinforcing steel strength Es := 29000•ksi Steel modulus of elasticity '(cone := 150- pcf Concrete density 'Ysoi1 := 100 -pcf Soil density gall := 1500 -psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 7071 lb Pdl := Totaldi Totalll := 13304 -lb Pll := Totalll Ptl Pdl + P11 Pd = 20376-lb Footing Dimensions t := 15-in Footing thickness Width := 48 -in Footing width ,:= Width Footing Area gnet gall — tf qnet = 1313 -psf Pd Areqd := %et A red= g 15.52541. < A = 164'1 GOOD Widthreqd Aregd Width = 3.9441 < Width = 4.00 ft GOOD Ultimate Loads ApA Pdl + tf'A'"Yconc P := 1.4•Pdl + 1.7•P11 P = 36.72-kips P qu A q = 2.29•ksf \S- Beam Shear bc01: 5.5•in (4x4 post) d:= tf — 2-in := 0.85 b := Width b = 48-in V„ := 4 f psi b d V„ = 35.36 -kips 3 V qn (b colt b V„ = 16.26 -kips < V = 35.36 -kips GOOD 2 Two -Way Shear bs := 5.5 -in Short side column width bl := 5.5.in Long side column width b := 2•(bs + d) + 2•(bL + d) b = 74 -in P := 1.0 Vim.= � 4 + 8 f psi b d V, = 106.08 -kips 3 3• V, := x•2.66• f -d V = 70.54-kips Vim= q [b — (b + d) V„ = 31.26 -kips < V,, = 70.54 -kips GOOD Flexure 2 r b — b l l M := qu I co .( 1 J 2 • b 2 M = 14.3941-kips A t:= 0.65 := 2 b d S = 0.782 -ft 6 F := 5 -0:1- f F = 162.5 -psi M u ft := s f = 127.75•psi< F = 162.5-psi GOOD ;Use a 4' -0" x 4' -O" x 15" plain concrete footing Plain Concrete Isolated Square Footing Design: F7 f := 2500-psi Concrete strength f := 60000-psi Reinforcing steel strength E := 29000 -ksi Steel modulus of elasticity 1'conc := 150' pcf Concrete density Ysoil:= 100.pcf Soil density gull := 1500-psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl:= 1200 -lb Pdl:= Totaldi Totalll := 3200 -lb P11 := Totalll P := Pdl + P11 Pg = 4400 -lb Footing Dimensions tf := 10 -in Footing thickness Width := 24 -in Footing width A:= Width Footing Area net gall — tf'Iconc lnet = 1375 -psf Ptl Areqd gnet Areqd = q 3.2 ft < A = 4 -ft GOOD Widthreqd Areqd Widthreqd = 1.79 -ft < Width = 2.00 ft GOOD Ultimate Loads ,:= Pdl tf'A''Yconc P := 1.4•Pd1 + 1.7 -Pll P = 7.82 -kips P qu A q = 1.96•ksf T\e— Beam Shear bco] := 5.5-in (4x4 post) d:= tf -2•in := 0.85 b := Width b = 24 -in V„ :_ 4 • f V = 10.88 -kips 3 Vu qu b - 2 col V = 3.01 -kips < V = 10.88-kips GOOD Two -Way Shear bs := 5.5-in Short side column width bL :_. 5.5 -in Long side column width b := 2 -(bg + d) + 2-(bL + d) b = •54•in pc := 1 . 0 V 4 + 8 f -d V = 32.64 -kips 3 3•Ii V, := 2.66 f psi b d V = 21.71-kips = q, [b — (b„,1 + d) V = 5.35 -kips < V = 2L71 -kips GOOD Flexure 2 b — bcol1 ( Mu := qu 2 J •I 2 I M = 1.16-ft-kips A:= 0.65 /J 2 5:= b d S = 0.148 -ft 6 F := 5.4• f F = 162.5 -psi M ft := s u f = 54.45 -psi < F = 162.5 -psi GOOD lJse a 2' -0" x 2' -0" x 10" plain concrete footing /4- 1013 &// b 5x0 � ro isls °W 0 ; ' S' .� ^ 0 0 o g °� �.�� �w x z - 144 - Ici $s1 qbl °O = w9 — = v%ua-o 43- - 9(S -' -) Qv-7(v --) _ 1 z 4 , - ta --4 sle -v '0 = c__Lt ' I SQ't)l * I so°'ue W 9 b = x 02cic... e + Sze,' Li R-i tk_71 = a RAc2e — ‘ts•gS-tle _ bIW = 0 (Ye . e 4< -$Z' b)� 9' t 4 Q I X,ZZ) C S' � 'cS'1 Ko Is 0) 7--.1 w a i\ SqS = 0 v` 3 3 v■; J K).}. i a NO 1_) e D ' iet O t Z 2, = m --�' q z n i F o 1 1 El m 3 ■ 3 0 S`e 1 x „1-1q)< pool fusuA - d +90 0 :36 l ,� l . Tau to ` u -93road .o Q bO` y 9V oN eor 0 10\e -• () v. )\1\i\c1 as n iw Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:43 AM Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A\foundations\Front Load 2.etz\ • M33=51.9 [Kip'ft] M33=-12.19 [Kip'ft] • MomertE s L c.. n al• Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:35 AM Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\Front Load.etz\ VAl 1T R -C%- 'M33 =25.66 [Kip ft] M33= -30.27 [Kip'ftj I x Mmen L( - BY \ M___ DATE: ( _ D.010 JOB NO.: C E i { 9 0 OF PROJECT: 5 c\ -Cookor. sty_ RE: UN 17 A - 1R LocAt 1:10) k ❑ ❑ ' 3 'sik 30.4\ 16k _J Z ^ • L `�.1S3k: ' 1.AS3►- 0 J cc Q W U 2 W a aa l — 4 Z 0 U Check- O v e (�u f ril n9 Z D Mc, - 30 , 41 fi 30.41 4 (a/1) (ab) = 111 . I?) kF E f O M IL = (o,tsoCa)(1)(11)(aa) 4- '3,152k) 4- 1,153(a I) f O : M2 /M0 = IA )1,5 ;. O- 1-7,' W Z ao .40b q .)e .-= ao,go t0 4 , C (ao ,goLL5 ,S0 r ( .►qs sF- Castaa') (2.YC2..72.TYL- 9Thi n = a0P10(a _ _ _ _,aoc,) 5 ,s_� C . _,a 4 0 ~ 3 L03 -2 e) 3( aa- acs.s6) o ° I -mw.x _ l,a`�1 Y-5F < l500 s . 01c... x y 0 -F-22- erii Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:38 AM Units system: English File name: O: HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations Rear Load.etz\ M33 =43.24 [Kip'ft] • M33= -45.06 [Kip'ft] A X • M3r\enks tL \ Benfley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:43 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \Rear Load 2.etz\ M33 =41.88 [Kip ft] M33= -46.37 [wp Mmetvk - LC . BY A \L DA-E: -a010 JOB NO Ce ) OF PROJECT: RE: / Rear L oo oo b n) 0 o a 1 -0 x L x 12," ETC - o b O m Moo.% = . UNA-A - >4 "..84 -at ❑ . _ - = .Uri,\ -151 C_ 0 J • U O w a Mfmn— On 0 A 7-3 p.1511 -f Z Uri ∎+ f i G - 0 e)M - o. 0 10A (4- q12) a �— ' $0 2 2 O . Tr.k Ci it '4 e a". 0,c, As =U, 3x31 .i' Xa' . a= 0.393(b_0 l0 F 5 C3000)(2,+) ❑ = o O -: a tA"..:-.0,c10(o. W -- Kit ❑ o i \ //�� I- a ' Yv, CI> # -� a a„ ac, /TS = 0. . q9-1111,31- p,.q):1 io,000) /o1ce)G300d)( ) . -. 0.-4 gO _ ti' .0Mn -r: 0,a0(0,44-1)(60,0006 o yqo - /Z) = 3i.a TRA 4 S 2 12 O,C , /}s - 0„ (o 14.4 l N "2.. _ a = O. (A 4 (4400) l0, epC3oonc-LNO 0, (.3q « ` 0/A r. 0. q (0,0q-)(4.0, 0001)6 o 5- i) o 6 o � 4U..5� k.XI,'' s53. > / "inno.x.: ol� L° tap ' b°t1 4 o ' .. . 447-25- ' i � BY: JOB NO.: OF PROJECT: RE: VranN kat& Pa - - . 0 El W - g '' C X L )( IV _I 0 1 I 6: Z 1 I 1 _ 0 W F W El I = OrN\ kR --)_._5\ ,.91. .-- . cr 6 O w . Ur ¥ C -. b3 .9 4 ILW 0 z w 0 z iv 1 rtmr\ = 0 . ,Vrvt UNA- i -54.6S k-E-• F- a Qi\i \- C --> - 40.04 at 0 z 0 2 2i% = 0. A 5.3 . x O . a_-: AsI6 labSLID o 0 (3 5 ) rr d u_ z w a ;(o,to\LI,c000co \ ii0.6)(3000)CQ:) a3\N) E 6 0 45 0 O z 01Art = 0.c10 CQ32e) 60,9007)(15 - 1 at 3 1 zs ) . = Vb.000 _G. (1. vf s e at 0L. A . ----- O z. ( \ o. co, oai) /(.15 2_ b,..,L=2 4.,.‘ ._• s vg% . 0 mr‘ -. 0,cloctr.,o - D .L,424 2 ;) -_--- 1 k_,-.071- tsk.i I . ' - Irv) sr 5 e io" 0,C. a ,-. ( \ .20(loobods) hati)(3090Y4:n 0 t - i-L5 t N = . 0 : 0 , LI ;?..°11(00,(X.x.A vs - ° : :___ 8 A . 465 r. -A,3 9 .-. 0 t. ,.. — 5 t " E.0. tNeclAkif.... rcxsoNey* . Tr ik en" 0,c. 9 As= 0. t NI ..- pi, Ei = L' F. a ..... ( 0, /43 .7 a. "Ve ''' o,%'+ 5‘.:,(1,3t Cci.C2,_ !, ok(.._ -Ic_ --V ��� ���� = �(zz1)z -1�z�E 2„Z'\ - 1 S,S4 _ (1. _-,17- 4Z:s_47. s-+ s'e'e) . '44 -_,-E.:1 cl5' 1 <.•Q — o A. °73' c+i = new _)c- s1 x- -. 3e)( bun -Lj) o Cd -A S I I T 2. °)ci , -t -L'Vt ( Q' `)Z) S'1 --&I a VVS't - Z G , 4 9 Q' `)1) = -6 W 7a2, A - E,' = - o1 4 J7 = FAvk-koof -! 710 C i5 Gu ooj Pi-s 2 k.,'1 — =-1Q ' !. ▪ x --76 fi -i c) 1 0'S-t 7 (. Q' 9 L) S ' 1 n = W> o s a �ls�o 'nail Z1 =- : ~ti.8 � — 1Ct) -- tcZAz E { 1 ;'') f (`)X2 Ir.' -- '1W - r 2 1 4,s }1 g ac-,n 1 Q '�l -f' (`jKz E k 11'94 <Z �Z's -t t') -1V\1 0 • 0 +g 1 0 661 w o o ar o 1- ;s a.) q c 9\ act - MI roil \-kifilir Wn1A S in't-+ z.'s -E 117,6 b = x 2 p �p m 'O ' S 1 < VIII —7. 1 %6W ° 3 •' 1 +) ("ivy( 4 c:e)t•$ 4 (X5XS = aW . a1 �o ( 't z x p • m z n m p i.---,e 1 4 �. eta • o r 1 I 1 3 3 b m -I GM 2 {� ' ■ 21 ',\ L 1 0 WI ❑ ❑ MS kw— Id J uC1 :3H 152.1x ic`'x u73 road AO 060- ' V v N — 'oN eof 0 t GC 1 '31VO U \ i 'A9 x PO zxc ::cr71 ' 0 E ; b • F cn 2 0 0 M Z 'n O x 3 ,root vva t:).4 y >‘S fib' 1 = n L /' °) I) In = "AKA A t o 1 Z D a ,k s{S ..r „S, x )‘ Gv.l z �7N --Y-'6 SS 1. , , .K -.O to m O 11 m A -��. °A D o r rn . g E { Gig' �vJ� 3 K O m -/ 6...- leb. = c „S1 X ' js'X '13 °} )4 z o L)L — 1)0 ) q iti m L_". *4 ncl) t = x `ova :38 :103r0ad AO Q uo N ?..) ) , ON aor 01 O - 9 31V0 ' -3 I Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:42 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \Interior 2.etz\ M33 =23.55 (Kip'ft] M33= -17.88 [Kip`ft] • • Moyi\e) LC( Y Z—► n o .Bentley., Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:42 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\Interior.etz\ _ - .M33 =32.26 [Kip'ft] M33= -9.27 [Kip*ft] A i x Mefs LCZ ,f30 ACI 318 -05 Appendix D 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens Pc = 3000 psi fc = 3000 psi h' = 3.50 inches hef = ` ;12:00 inches (into the Fc Stem = 8.00 inches Note: hef above is the the embedment into or cmaz = 5.25 inches the foundation and does not consider stem wz Fnd Width = 36.00 inches c m;n = 2.25 inches c mjn = 18.00 inches 1Vc,N= 1.00 cast -in -place anchor Wc,N= 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor = 0.75 strength reduction factor = 0.75 strength reduction fact' Calculations Calculations ANC = 68 in` AN = 1296 in` ANo = 110.25 in` AN = 1296 in` Nb = 8,607 pounds Nb = 55,121 pounds Wed,N = 0.8286 Ved,N = 1.00 N = 4,399 pounds Ncb = 55,121 pounds 4 Ncb = 3,299 pounds 4N = 41,341 pounds Combined Capacity of Stem Wall and Foundation 4■c1, = 44,640 0.754N = 33,480 BY' DATE: 6- Rot° JOB No.: c etlu ...._ 0 so OF PROJECT: RE: -I • ( MINfN FN zr... _ ° VI eiDe) \ C-F t. 1- w O 2 1 1 I 0 0 > 3 *. 0 -I a . . X 0 o z id.rb. (.1) -t: 4 .e 12P .Pt sir. b,s ■ 0- a = C).5?f 140 /o, e. (3 000 to) --- 0 MA= 0 , q0(0 , S.b. C 1)000i0000 2 -°,q0c1k) 2 - 7 " ; 3igaLza33) _— 4- 1.sf, t_p6- :. O. 2 0 U 15 61 bafs . • 0 a = 0 .3q la, tit:300s)(31. ) u. z . 0 6 - 0 = V AA A 1- 0_ - --• - aoqt >- -#. oy._ = . i O d . . 0 ,.. O . 4 — = - - 0. ELI • Po ,1 4-1=--1 Concrete Side Face Blow Out Givens Abrg = 2.15 in` fc = 3000 psi cmin = 18.00 inches = 0.75 strength reduction factor Calculations Nsb = 231,191 pounds 4>N = 173,393 pounds Concrete Pullout Strength Givens Abrg = 2.15 in` fc = 3000 psi ( = 0.75 strength reduction factor Calculations N 51,552 pounds �N = 38,664 pounds Steel Yield Strength Givens f, = 58,000 psi A = 0.606 in = 0.80 strength reduction factor Calculations N = 35,148 pounds 4)Ns = 28,118 pounds < 33,480 Ductility Met Holdown Check Holdown: HDU14 Holdown Capacity= 14,930 pounds 1.6* Capacity= 23,888 pounds 23,888 < 28,118 Holdown Checks -VerD BY DATE. JOB No ■r PROJECT: ": S Ve rc1 Wah ' coc m 0 - . S i des vF B i Ic1►r> 0 2 ' L o ascc(t2 ? $F � - 300 PLC •u-1001 ❑ S cit,(Z \eve %s>(13 s�� 7:- a at) pLF ,S -toor 0 a 40►N, 650pc..001.0 eltz.)_ 33.5 pe.P 5k-em 0 a (€ lsO pc.0(w — 100 u Pic- - _ '. W = I u... -I z Z LA. o 03c k)(2 levels ')(40 e -sc = buo c".F _31o0r a z That load. = Vi-ca t i- tOOu.) at f., . 2 ` ooc sbp = ksoo p *F = Is • w 1 'I{ 5 I+ i Co w iSoow - - w = 1 .;OCe. C x, IS" o & o . IL Z ❑ o e rear n�, � N('cr v b.) i kd'r O = F E l - D L o asCttl= 30o pc.Ftk (912.tevets)(1 psF a34 p .r .P kooc 40I N (t 5o pc F Vim ) Y'/ 12,) = 33'' L S 0112')(t50W'— mow (la 1 psF' = 306 p-C ftioF LL: (9Ia..1.46� = 1--2u 9 Lc Ctlib>C2s) = a Pu - 0 0- ::° TLb "3(.1-3t100v...) a = • aau3 r toc w s. ■sUd“) 1. z. a e u v,Js e) Ii C. Same cts f mtt'tv5 ..9ioar tocas TL, \ \- \00vJ w = 1.00 `. QS-e ls` ‘ e Paciv DL 0 a.5C17.)(2) (O0 p0F watt (5)(2 Xt3( ;) = 4tL 3t,F Stool - 4UiN(isopcF`)C itz)( 333pLic 51-e,rri ( uJ - 1o0 vJ LL ° (5 = ■2o ?Ls: ,stcx3r VL : a La9 IOO W = 1, 231 us-e a4 1N