Loading...
Specifications (3) structural Calculations for Full Lateral & Gravity Analysis of RECEIVED Plan A 1460 SEP 2 3 2010 CITY OF TIGARD Summer Creek Townhomes BUILDING DIVISI01 Tigard, OR Prepared for Pulte Group July 13, 2010 JOB NUMBER: CEN -090 ** *Limitations * ** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and /or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 117 sheets total including this cover sheet. This Packet of Calculations is Null and Void if Signature above is not Oriciinal Harper • Houf Peterson Righellis Inc. EnGI C NO • NEnS "NDSCACE AHCnITECT•!.II'J R',EYONS 205 SE Spokane St. Suite 200 • Portland, OR 97202 ♦ [P] 503.221.1131 • [F] 503.221.1171 1104 Main St. Suite 100 • Vancouver, WA 98660 0 [P] 360.450.1 141 0 [F] 360.750.1 141 1133 NW Wall St. Suite 201 o Bend, OR 97701 • [P] 541.318.1 161 0 [F] 541.318.1 141 Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit A Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, lW: 1 2006 IBC / 2007 OSSC Occupancy Category: II Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed, ASCE.7 -05 Ch. 20 Importance, IE: 1 ASCE 7 -05 Table 11.5-1 Ss: 0.942 USGS Spectral Response Map S1: 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength, f'c: 3000 psi Foundations & Slab on Grade Concrete Unit Weight, ye: 145 pcf Steel Reinforcement Yield Strength, f 60,000 psi Wood Studs (Wall Studs): Hem -Fir #2 2x & 4x Wood Beams & Posts: DF -L #2 6x & Greater Wood Beams & Posts: DF -L# 1 Glulam Beams: 24F -V4 PSL Beams: Fb =2,900 psi, FV= 328psi, E =2.0 Million TS /LSL Beams: Fb =2325 psi, FV= 460psi, E =1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : .1500 psf Assumed 2. All manufactured trusses, joists, and flush beams u.n.o. shall be designed by others. Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 WoodWorks - Sizer version 2002 Bently RAM Advanse { Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS - Designer: AMC Date: Pg. # LANDSCAPE ARCNItECtS•SURVEYORS DESIGN CRITERIA 2007 Oregon Structural Specialty Code & ASCE 7 -05 Roof Dead Load RFR:= 2.5•psf Framing RPL := 1.5•psf Plywood RRF := 5 •psf Roofing RME := 1.5•psf Mech & Elec RMS := 1.psf Misc RCG := 2.5•psf Ceiling RIN := 1.psf Insulation RDL = 15•psf Floor Dead Load FFR := 3.psf Framing FPL := 4•psf Sheathing FME := 1.5•psf Mech & Elec FMS := 1.5•psf Misc FIN := .5•psf Finish & Insulation FCLG := 2.5•psf Ceiling FDL = 13•psf Wall Dead Load WOOD EX Wa1l := 12•psf INT_Wa11 := 10•psf Roof Live Load RLL := 25.psf Floor Live Load ' FLL := 40.psf �- L 1 Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LAND6CAPE ARCHITECrS.S URVEYOR6 Transverse Seismic Forces Site Class = D Design Catagory = D Building Occupancy_Category: II Weight of Structure In Transverse Direction Roof Weight Roof, Area :_ 843 •ft RFwT := RDL•Roof Area RFw-1- = 14162•1b Floor Weight Floor Area2nd := 647. ft FLRwT2nd := FDL•Floor Area2nd FLRvy - 1 - 2nd = 8411-lb Floor_Area3 := 652•ft FLRwT3rd FDL•Floor Area3rd FLRWT3rd = 8476.Ib Wall Weight EX Wall Area := (2203).ft INT Wall_Area: (906).ft WALLvyT := EX_WaIl EX_Wall_Area + INT Wal1 1NT_Wall_Area WALLw-r = 35496.1b • WTTOTAL = 665451b Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h := 32 Mean Height Of Roof I := 1 Component Importance Factor (11.5, ASCE 7 -05) &:= 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C := .02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x := .75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period T := C T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. , (Chapter 22, ASCE 7- 05)...or S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F := 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F, := 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) Harper Project: SUMMERCREEK TOWNHOMES UNIT A H Houf Peterson Client: PULTE GROUP Job # CEN -090 * Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCIIITEC iG• SURVEYORS S MS Fa SMS = 1.058 (EQU 11.4 -1, ASCE 7 -05) 2 •SMS Sd := 3 Sds = 0.705 (EQU 11.4 -3, ASCE 7 -05) S := Fv S1 SM1 = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2 •SM1 Sdl := 3 Shc = 0.389 (EQU 11.4 -4, ASCE 7 -05) Cst := Sds Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) R ...need not exceed... Sd1 l e (EQU 12.8 -3, ASCE 7 -05 Cs := Cs = 0.223 (Q 7-05) T ...and shall not be less then... C1 := if (0.044• Sd I < 0.01,0.01,0.044-S 0.5•S1•Ie1 (EQU 12.8 -5 &6, ASCE 7 -05) C2 := if�S1 <0.6,0.01, R J Cs := if (CI > C2 , C 1, C2) Cs = 0.031 Cs := if (Cst < Cs Cs if (Cst < Cs , Cst, Cs Cs = 0.108 V := Cs.WTTOTAL V = 72201b (EQU 12.8 -1, ASCE 7 -05) E := V•0.7 E = 50541b (Allowable Stress) /9 \:3 Harper Project: SUMMERCREEK TOWNHOMES UNIT A P Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • ?CANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCHITECTS• SURVEYORS Transverse Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 100 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I := 1.00 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X := 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... a2 := 2•.1.20.ft Zone A & B Horizontal Length a2 — 4 ft (Fig 6 -2 note 10, ASCE 7 -05) or 4 9k= .4•hn 2•ft a2 = 25.6 ft but not Tess than... a 3'2'$ a = 6 ft Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA 19.9•psf PnetzoneB := 3.2.psf Pnetzonec : 14.4•psf PnetzoneD 3.31psf Vertical PnetzoneE 8.8•psf PnetzoneF := —12 •1 3 sf PnetzoneG 6.4•psf PnetzoneH 9.7•psf Basic Wind Force PA := PnetzoneA'Iw.X PA = 19.9•psf Wall HWC PB := PnetzoneB'Iw•X PH = 3.2•psf Roof HWC Pc := Pnetzonec Iw X PG = 14.4•psf Wall Typical PD := PnetzoneD'Iw X PD = 3.3•psf Roof Typical PE := PnetzoneE" Ivy' X PE = — 8.8'psf PF := PnetzoneF' 'Iv A PF = — 12•psf Pc, := PnetzoneG'Iw•X PG = — 6.4•psf PH := PnetzoneH I X PH = —9.7• psf L Harper Project: SUMMERCREEK TOWNHOMES UNIT A Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINCERS • PLANNERS - Designer: AMC Date: Pg. # LANDSCAPE ARCM ECTS•SURVEYORS Determine Wind Sail In Transverse Direction WSAILZoneA (41 `+ 59 + 29)-ft WSAIILZoneB := + 0 ± 23).ft 2 WSAIL•ZoneC' = (39.1 + 307 + 272)41 W'S�- ZbneD := (0 + 0 + 5)4ft WA WSJ ZoneA'PA WA = 25671b WB WSAILZoneB'PB WB = 1341b WC := WSAILZoneC'PC WC = 13968 lb WD WSAILZoneD'PD WD = 161b Wind_Force := WA + WB + WC + WD Wind_Force := 10•psf•(WSAILZ + WSAILZoneB + WSAILZoneC + WSAJLZoneD) Wind_Force = 16686 Ib Wind Force = 11460 lb WSAII- ZoneE.:= 94•ft2 WSAILZoneF := 10841 WS�ZoneG 320•ft2 WSAILZoneH 320•ft WE := WSAILZoneE'PE WE = —827 lb WF := WSAILZoneF'PF WF = — 12961b WG WSAILZoneG'PG WG = — 20481b WH := WSAILZoneHTH WH = — 3104lb Upliftnet WF + WH + (WE + WG) + RDL•[WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneG) }•6.1.12 Uplift = 12121b (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION Harper Project: SUMMERCREEK TOWNHOMES UNIT A �H -P'� Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCHITECTS•SNRVEYORS Longitudinal Seismic Forces Site Class = D Design Catagory = D Building Occupancy Category: Il Weight of Structure In Longitudinal Direction Roof Weight Roof Area = 944 ft jgxxv:= RDL -Roof Area RFgrI- = 14162-lb Floor Weight Floor_Area2 = 647 ft F es:= FDL•Floor Area2nd FLRw = 8411-lb Floor_Area3 = 652 ft • = FDL•Floor Area3rd FLRWT3rd = 8476-lb Wall Weight (2203) -ft INT Wall Area = 906 ft A Utjaw= EX Wall EX_Wall Area + INT WaII WALLw-r = 35496.1b WTTOTAL = 66545 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h = 32 Mean Height Of Roof I = 1 Component Importance Factor ' (11.5, ASCE 7 -05) 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C = 0.02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x = 0.75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period C T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 = 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S = 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F = 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F, = 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) 4- \Jo Harper Project: SUMMERCREEK TOWNHOMES UNIT A P„. Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGIREERS • PLANNERS - -- Designer: AMC Date: Pg. # LANDSCAPE ARCHI TECTS•SURVEYORS Aut F SMs = 1.058 (EQU 11.4 -1, ASCE 7 -05) 2 • SMg := Sd = 0.705 (EQU 11.4 -3, ASCE 7 -05) 3 S A := F Si SMi = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2 •SM1 AdJA Sd1 = 0.389 (EQU 11.4 -4, ASCE 7 -05) 3 := Sd Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) ...need not exceed... s Shc Cs = 0.223 (EQU 12.8 -3, ASCE 7 -05) T a -R ...and shall not be less then... ,:= if (0.044• Sd • I < 0.01,0.01 , 0.044• Sds• le) r 0.5 S1 Ie1 (EQU 12.8 -5 &6, ASCE 7 -05) ,:= ifl S1 <0.6,0.01, R J / cs al i a ,,:= if (CI > C2, CI, C2) Cs = 0.031 N Cs := if(Cst < Cs if(Cst < Cs Cst, Cs Cs = 0.108 V := Cs-WTTOTAL V = 72201b (EQU 12.8 -1, ASCE 7 -05) E := V•0.7 E = 5054 Ib (Allowable Stress) Yvvv Harper Project: SUMMERCREEK TOWNHOMES UNIT A p Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. -- - ENGINEERS • PLANNERS - -- Designer: AMC Date: Pg. # L ANDS: APE ARCHITECTS• SUR',EYORS Longitudinal Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 110 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I = 1.0 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X = 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of,.. = 2-.1 -20 -ft Zone A & B Horizontal Length a2 — 4 ft (Fig 6 -2 note 10, ASCE 7 -05) or .4•h,; 2•ft a2 = 25.6 ft but not less than. -. , := 3.2•ft 6ft a2min = Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA = 19.9•psf PnetzoneB = 3.2•psf PnetzoneC = 14.4-psf PnetzoneD = 33•psf Vertical PnetzoneE = —8.8•psf PnetzoneF = — 12•psf PnetzoneG = —6.4•psf PnetzoneH = —9.7•psf Basic Wind Force := PnetzoneA'Iw' PA = 19.9•psf Wall HWC ,P := PnetioneB'Iw X PB = 3.2-psf Roof HWC PnetzoneC'Iw'X Pc = 14.4•psf Wall Typical PnetzoneD' Iw' X PD = 3.3 • psf Roof Typical PnetzoneE'Iw'X PE = — 8.8•psf Pte:= PnetzoneF'Iw'X PF = —12-psf Pte:= PnetzoneG'Iw'X Pc, = —6.4.psf ,:= PnetzoneH' Iw'X PH = — 9.7 -psf • Harper Project: SUMMERCREEK TOWNHOMES UNIT A P Houf Peterson Cl PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCMITECTS•SUR`ICVOR$ Determine Wind Sail In Longitudinal Direction Nava r 4: (48 +.59 + 40)•ft NON Iry := (10 + 0 + 44)41 :_ (91 + 137 + 67)41 S 1L :_ (43 + 0 + 113) -ft W WSAILZoneA'PA WA = 2925 lb = WSJ ZoneB'PB WB = 173 Ib = WSAILZoneC'PC WC = 42481b Wes; = W SAILZoneD' PD WD = 515 lb Wi d o ce := WA + WB + WC + WD Mal orc := 10•psf•(WSAILZ + WSAI-ZoneB + WSAI-ZoneC + WSAILZoneD) Wind Force = 7861 Ib Wind Force = 65201b y S v E = 148.ft NaM Acv:= 120-112 WnNV§4.1.14,irAA:= 323 -ft2 V ,4„ := 252.ft WSAILZoneETE WE = - 13021b ,W,& := WSAILZoneF'PF WF = — 14401b Wes:= WSAILZoneG'PG WG = -2067 lb Wes.= WSAILZoneH'PH WH = - 24441b WF + WH + (WE + WG) + RDL•[WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneG)] Upliftnet = 12431b (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION '9 - L9 Harper Houf Peterson Righellis Pg #: Transverse Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X = 1.00 Iw= 1.00 Wind Sail (ft Wind Net Design Wind Pressure (psf) Pressure (Ibs) Zone A = 19.9 129 2567 Wall High Wind Zone Horizontal Zone B = 3.2 42 134 Roof High Wind Zone Wind Forces Zone C = 14.4 970 13968 Wall Typ Zone Zone D = 3.3 5 17 Roof Typ Zone Zone E = -8.8 94 -827 Roof Windward High Wind Zone Vertical Zone F = -12.0 108 -1296 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 320 -2048 Roof Windward Typ Wind Zone Zone H = -9.7 320 . -3104 Roof Leeward Typ Wind Zone Total Wind Force =l 16686 lbs 1 Use to resist wind uplift: Roof Only Total Exterior Wall Area 2203 ft Uplift due to Wind Forces= -7275 Ibs Resisting Dead Load = 8472 Ibs E =l 1197 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm (ft Zone A Zone B Zone C Zone D Main Floor 41 19 391 0 Upper Floor 59 - 0 307 _ 0 Main Floor Diaphragm Shear = 6507 lbs Upper Floor Diaphragm Shear = 5595 Ibs Roof Diaphragm Shear = 4584 Ibs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Diaphragm Diaphragm (lbs) (Ibs) (lbs) Wid (ft) Widt ft r, Width if9 . A 13.08 1737 18 2797 19 2323 Al 24.50 3254 0 0 0 0 B 11.42 1516 18 2797 18.5 2261 E= 49 6507 36 5595 37.5 4584 1 4 - .LIo . Harper Houf Peterson Righellis Pg #: Transverse Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = 11 Site Class = D S1 = 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct= 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 S • 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 Sps= 0.71 Equ. 11.4 -3, ASCE 7 -05 Sal= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 ' Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 • Floor 2 Wt (Ib)= 8411 Floor 3 Wt (Ib)= 8476 Roof Wt (Ib) = 14162 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22609 ' Trib. Floor 3 Diaphragm Wt (Ib) = 22674 Trib. Roof Diaphragm Wt (Ib) = 21261 Vertical Dist of Seismic Forces Cumulative % total of base shear Rho Check to Shearwalls (Ibs) I to shearwalls Req'd? V floor2 (Ib) = 720 100.0% Yes VFl�, s (Ib) = 1625 85.8% Yes V, (Ib) = 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft Ibs Ibs Ibs A 102 361 394 114 897• 1266 Al 432 0 0 481 0 0 B 113 293 449 126 728 1443 Sum 647 654 • 843 720 1625 2709 Total Base Shear' = I 5054 LB r *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. / — Ll ,---- Harper Houf Peterson Righellis Pg #: Longitudinal Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf A. = 1.00 Iw= 1.00 Wind Sail Wind Net Design Wind Pressure (psf) () Pressure (Ibs) Zone A = .�.. 19.9 147 . 2925 Wall High Wind Zone Horizontal Zone B = 3.2 54 173 Roof High Wind Zone Wind Forces Zone C = 14.4 295 4248 Wall Typ Zone Zone D = 3.3 156 515 Roof Typ Zone Zone E = -8.8 148 -1302 Roof Windward High Wind Zone Vertical Zone F = -12.0 120 -1440 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 323 -2067 Roof Windward Typ Wind Zone Zone H = -9.7 252 -2444 Roof Leeward Typ Wind Zone Total Wind Force =l 7861 Ibs I Use to resist wind uplift: Roof Only Total Exterior Wall Area 2203 ft Uplift due to Wind Forces= -7254 Ibs Resisting Dead Load = 8483 lbs E =I 1229 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm (ft Zone A Zone B Zone C Zone D Main Floor 48 10 91 43 Upper Floor 59 0 137 0 Main Floor Diaphragm Shear = 2440 lbs Upper Floor Diaphragm Shear = 3147 lbs Roof Diaphragm Shear = 2275 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Diaphragm Diaphragm (lbs) (Ibs) (lbs) Width (ft Wi dth (ft ) Width (f9 ter- 1 10 1220 10 1573 10 1137 2 10 1220 10 1573 10 1137 E= 20 2440 20 3147 ' 20 2275 A - Lc2,....• Harper Houf Peterson Righellis Pg #: Longitudinal Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = 11 Site Class = D S1 = 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 . Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 SMg 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 SDS= 0.71 Equ. 11.4 -3, ASCE 7 -05 Sol= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (Ib)= 8411 Floor 3 Wt (Ib)= 8476 Roof Wt (Ib) = 14162 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22609 Trib. Floor 3 Diaphragm Wt (Ib) = 22674 Trib. Roof Diaphragm Wt (Ib) = 21261 Vertical Dist of Seismic Forces Cumulative % total of base shear Rho Check to Shearwalls (Ibs) I to shearwalls I Req'd? • Vnoor 2 (Ib) = 720 100.0% Yes Vnoor 3 (lb) = 1625 85.8% Yes Vrce (Ib) = 2709 53.6% Yes . Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft Ibs Ibs Ibs 1 286 291 415 318 725 1334 2 361 361 428 • 402 900 - 1375 Sum 647 652 •843 720 1625 2709 Total Base Shear* = 1 5054 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. ,-- LV Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Transvere Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel • Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht I k ht I k ht I k. (klf) (plf) (ft -k) (ft -k) (k) 101 Not Used • 102 • 7 1.75 3.50 4.00 '`f 8.00 1.74 18.00 2.80 27.00 2.32 1959 Double 1.40 NG f`'' 103 7 1.75 3.50 4.00 8.00 1.74 8.00 2.80 8.00 2.32 1959 Double 1.40 NG 103a 7 4.00 4.00 1.75 OK 8.00 3.25 814 Single 1.40 IV 104 8 4.50 10.50 1.78 OK 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 105 8 3.00 10.50 2.67 OK 8.00 . 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 106 8 3.00 10.50 2.67 OK 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 109 8 4.58 17.08 1.75 OK 8.00 1.74 18.00 2.80 27.00. 2.32 401 Single 1.40 II 110 8 12.50 17.08 0.64 OK 8.00 1.74 8.00 2.80 8.00 2.32 401 Single 1.40 II 111 8 4.50 7.25 1.78 OK 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 112 4.75 1.38 7.25 3.45 OK 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 113 4.75 1.38 7.25 3.45 ox 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 201 9 3.92 10.79 2.30 ox • 9.00 2.80 18.00 2.32 474 Single 1.40 II 201a 9 4.17. 10.79 2.16 OK 9.00 2.80 18.00 2.32 474 Single 1.40 II 201b 9 2.71 10.79 3.32 ox 9.00 2.80 18.00. 2.32 474 Single 1.40 II . 202A 9 2.96 11.96 3.04 OK 9.00 2.80 18.00 2.26 423 Single 1.40 II 202B 9 3.00 11.96 3.00 OK 9.00 2.80 18.00 2.26 423 Single 1.40 11 203 9 3.00 11.96 3.00 ox 9.00 2.80 18.00 2.26 423 . Single 1.40 .II 204 9 3.00 11.96 3.00 ox 9.00 2.80 18.00 2.26 423 Single 1.40 II 301 8 3.92 • 13.96 2.04 OK _ 8.00 2.32 166 Single 1.40 I 302 8 5.79 13.96 1.38 ox 8.00 2.32 166 Single 1.40 1 303 8 4.25 13.96 1.88 OK 8.00 2.32 166' Single 1.40 I 304 8 2.96 5.96 2.70 ox 8.00 2.26 379 Single 1.40 II 305 8 3.00 5.96 2.67 ox 8.00 2.26 379 _ Single 1.40 II Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line ' H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear • Shear Application ht . Mr (Resisting Moment) = Dead Load * L * 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) /7 - L. '4. Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 fransvere Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho•V % Story # - Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht I k ht I k ht I k (klf) (plf) (plt) (ft -k) (ft-k) (k) 101 Not Used 102 7 1.75 3.50 4.00 ...6'.. 0.11 18.00 0.90 27.00 1.27 651 846 0.10 0.50 Double . 0.50 NG ._.6 f _ry 103 7 1.75 150 4.00 '� 8.00 0.11 8.00 0.90 8.00 1.27 651 846 0.10 0.50 Double 0.50 NG 103a 7 4.00 4.00 1.75 OK 8.00 0.48 0.00 0.00 120 156' 0.22 1.14 Single 1.00 I 104 8 4.50 10.50 1.78 OK 8.00 0.13 8.00 0.73 8.00 1.44 219 284 , 0.25 1.13 Single 1.00 II , 105 8 3.00 10.50 2.67 OK 8.00 0.13 8.00 0.73 8.00 1.44 ' 219 284 0.17 0.75 Single 0.75 III • 106 8 3.00 10.50 2.67 OK 8.00 0.13 8.00 0.73 8.00 1.44. 2l9 _ 284 0.17 0.75 Single 0.75 III 109 8 4.58 17.08 1.75 OK 8.00 0.11 18.00 0.90 27.00 1.27 . 134 174 0.25 1.15 Single 1.00 . I 110 8 12.50 17.08 0.64 OK 8.00 0.11 8.00 0.90 8.00 1.27 134 174 NA 3.13 Single 1.00 I. 111 8 4.50 7.25 - 1.78 OK 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.25 1.13 Single 1.00 III 112 5 1.38 7.25 3.45 . oK 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.08 0.58 Double 0.58 VII - . 113 5 1.38 7.25 3.45 _ OK 8.00 0.13 8.00 0.73 8.00 1.44 316. 411 0.08 0.58 Double _ 0.58 VII 201 9 3.92 10.79 2.30 OK . 9.00 0.90 18.00 1.27. 200 261 0.17 . 0.87 Single 0.87. II , 201a 9 4.17 10.79 2.16 OK 9.00 0.90 18.00 1.27 200 261 0.18 0.93 Single 0.93 II 201b 9 2.71 10.79 3.32 OK 9.00 0.90 18.00 1.27 200 261 0.12 0.60 Single 0.60 III 202A 9 2.96 11.96 3104 OK 9.00 0.73 18.00 1.44 182 236 0.13 0.66 Single 0.66 III 202B 9 3.00 11.96 3.00 • OK 9.00 0.73 18.00 1.44 182 236 0.13 0.67 Single 0.67 III 203 9 3.00 11.96 3.00 OK 9.00 0.73 18.00 1.44 181 236 0.13 0.67 Single 0.67 III 204 ' 9 3.00 11.96 3.00 oK 9.00 0.73 18.00 1.44 181 236 0.13 0.67 - Single _ 0.67 - III • 301 8 3.92 13.96 2.04 OK 8.00 1.27 91 - 118 0.20 0.98 Single- - 0.98 I 302 8 5.79 13.96 1.38 OK _ ,. 8.00 1.27 91 118 0.29 1.45 Single 1.00 . I 303 8 4.25 13.96 1.88 OK 8.00 1.27 91 118 0.21 1.06 Single 1.00 I 304 8 2.96 5.96 2.70 OK 8.00 1.44 -• 242 315 0.15 0.74 Single 0.74 III 305 8 - 3.00 5.96 2.67 oK 8.00 1.44 242 .315 _ 0.15 _ 0.75 Single 0.75 111 • Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total transverse base shear? Yes Total 1st Floor Wall Length = 18.00 Total # 1st Floor Bays = 4.77 Are 2 bays minimum present along each wall line? No 1st Floor Rho = 1.3 Total 2nd Floor Wall Length = 22.75 Total # 2nd Floor Bays = s Are 2 bays minimum present along each wall line? No 2nd Floor Rho = 1.3 • Total 3rd Floor Wall Length = 19.92 Total # 3rd Floor Bays = s Are 2 bays minimum present along each wall line? No 3rd Floor Rho = 1.3 • Spreadsheet Column Definitions & Formulas • L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Pane( Shear) = Sum of Line Load'Rho / Total L % Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2•LM Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load • L • 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) /4- ....- t Vc Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (kif) (plf) (ft -k) (ft -k) (k) 107 8 15.50 15.50 0.52 OK '10.00 1.22 18.00 1.57 27.00 1.14 1.03 254 Single 1.40 I 71.21 123.49 -0.19 108 8 15.50 15.50 0.52 OK 10.00 1.22 18.00 1.57 27.00 1.14 1.03 254 Single 1.40 1 71.21 123.49 -0.19 1 205 9 13.00 13.00 0.69 ox 1 _ 9.00 1.57 18.00 1.14 1 0.70 208 I Single 1.40 I 34.62 59.15 -0.07 I 206 9 13.00 13.00 0.69 ox 9.00 1.57 18.00 1.14 0.70 208 Single 1.40 1 34.62 59.15 -0.07 I 306 1 8 10.001 10.00 0.80 ox 1 8.00 1.14 1 0.29 114 1 Single 1.40 I 9.10 1 14.40 0.05 I 307 8 10.00 10.00 0.80 ox 8.00 1.14 0.29 114 Single 1.40 I 9.10 14.40 0.05 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) / ' U,:, Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 ' Longitudinal Shearwalls Line Load Controlled By: Seismic • Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho•V % Story # - Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd FIr. From 3rd Flr: From Roof Load Strength Bays. Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klf) (pH) (plt) (ft -k) (ft -k) (k) 107 8 15.50 15.50 0.521 oic 10.00 0.32 18.00 0.73 27.00 1.33 1.09 153 153 NA 3.88 Single 1.00 I 52.25 130.70 -1.74 108 8 15.50 15.50 OK 10.00 0.40 18.00 0.90 27.00 1.38 1.09 173 173 NA 3.88 Single 1.00 I 57.35 130.70 -1.40 I 205 I 9 1 13.00 13.001 0.69 OK I 1 9.00 I 0.73 18.00 1.33 0.76 158 158 I NA 1 2.89 Single 1.00 I 30.54 1 64.22 I -0.64 I 206 9 13.00 13.00 0.69 OK 9.00 0.90 '18.00 1.38 0.76 175 175 NA 2.89 Single 1.00 • I 32.85 64.22 -0.45 306 8 10.00 10.00 I .307 8 10.00 10.00 OK I I I ' I 8.00 1.38 0.35 138 1' 138 NA 1 2.50 ' Single 1 1.00 1 1 17.401 0.06 Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Total 1st Floor Wall Length = 31.00 Total # 1st Floor Bays = 7.75 Are 2 bays minimum present along each wall line? Yes 1st Floor Rho = 1.0 Total 2nd Floor Wall Length = 26.00 Total # 2nd Floor Bays = 6 Are 2 bays minimum present along each wall line? Yes • 2nd Floor Rho = 1.0 Total 3rd Floor Wall Length = moo Total # 3rd Floor Bays = s Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho = 1.0 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load•Rho / Total L % Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2'L/H Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear • Shear Application ht Mr (Resisting Moment) = Dead Load • L 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) • Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Transvere Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good For V (PH) (PR) (lb) (lb) r s 101 Not Used 102 Simpson Strongwall 103 Simpson Strongwall 103a 814 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 833 104 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 105 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 106 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 109 401 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 110 401 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 111 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails (n, 4/12 990 112 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 990 113 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 990 201 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 201a 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 201b 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 202A 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 202B 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 203 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 204 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 301 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 302 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 303 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 , 304 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 305 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. — Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Longitudinal Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good For V (p10 (p (Ib) (lb) 107 254 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -192 Simpson None 0 108 254 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -192 Simpson None 0 205 208 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -69 Simpson None 0 206 208 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -69 Simpson None 0 306 " Pl'd w/ (a� 6/12 242 48 Simpson None 0 307 138 133 1/21/2 APA " APA Rated Rated Pyw lyw'd w/ 8d 8d Nails Nails @ 6/12 242 59 Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design Toads. /4 L\C\ Transverse Wind Uplift Design . Unit A Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. • Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall ® Left @ .- Floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ ' walls Right stack) (ft) (ft) (ft) (ft) k k k k plf kif k k kft kft kft k k k k k k 102 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.192 0.832 27.43 0.57 1.69 21.31 20.79 21.31 20.79 103 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.832 0.192 27.43 1.69 0.57 20.79 21.31 20.79 21.31 103A 8 1.1667 4.00 4.00 3.254 3.254 814 0.04 2.016 1.664 26.03 8.38 6.98 6.00 6.24 _ 6.00 6.24 104 8 1.1667 4.50 10.50 1.516 2.8 2.26 6.576 626 0.1 0.8 0.078 25.08 4.61 1.36 5.58 6.06 5.58 6.06 105 8 1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 0.048 0.252 0.156 16.72 0.97 0.68 6.45 6.52 6.45 6.52 106 8 1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 . 0.048 0.156 0.252 16.72 0.68 0.97 6.52 6.45 6.52 6.45 109 8 1.1667 4.58 17.08 1.737 2.8 2.32 6.857 401 0.152 0.192 0.156 16.31 2.47 2.31 3.63 3.66 201L 201R 4.82 5.09 8.45 8.75 110 .8 1.1667 12.50 17.08 1.737 2.8 2.32 ' 6.857 401 0.096 0.156 .0.192 44.52 9.45 9.90 3.24 3.21 201 aL 201bR 4.95 4.88 8.18 8.09 111 8 1.1667 4.50 7.50 1.516 2.8 2.26 6.576 877 0.144 0.8 0.078 35.11 5.06 1.81 8.02 8.51 8.02 8.51 112 8 1.1667 1.50 7.50 1.516 2.8 2.26 6.576 877 .0.048 0.252 0.234 11.70 0.43 0.41 11.44 11.46 11.44 11.46 113 8 1.1667 1.50 7.50 1.516_ 2.8 2.26 6.576 877 0.048 0.234 0.252 11.70 0.41 0.43 11.46 11.44 11.46 11.44 201 9 1.1667 3.92 10.8 2.8 2.32 5.12 474 0.225 0.432 0.156 17.71 3.42 2.34 3.99 4.16 301L 301R 0.83 0.93 4.82 5.09 201a 9 1.1667 4.17 10.8 2.8 2.32 5.12 474 0.225 0.156 0.156 18.84 2.61 2.61 4.14 4.14 302L 302R 0.80 0.80 4.95 4.95 201b 9 1.1667 2.71 10.8 2.8 2.32 5.12 . 474 0.225 0.156 0.432 12.24 1.25 2.00 4.24 4.08 303L 303R 0.91 0.80 5.15 4.88 202A 9 1.1667 2.96 11.958333 2.8 2.26 5.06 423 0.173 0.432 0.052 11.92 2.04 0.91 3.62 3.84 304L 304R 2.60 2.75 6.21 6.59 202B 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.173 0.052 0.216 12.09 0.93 1.43 3.84 3.74 305L 305R 2.74 2.16 6.58 5.91 203 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.309 0.216 0.312 12.09 2.04 2.33 3.62 3.56 3.62 3.56 204_ 9 1.1667 3 11.958333 2.8 2.26 5.06_ 423, 0.225 0.312 0.432 12.09 1.95 2.31 3.64 3.57 3.64 3.57 301 8 3.92 13.96 2.32 2.32 166 0.232 0.384 0.204 5.21 3.29 2.58 0.83 0.93 0.83 0.93 302 8 5.79 13.96 2.32 2.32 166 0.232 0.204 0.204 7.70 5.07 5.07 0.80 0.80 0.80 0.80 303 8 4.25 13.96 2.32 2.32 166 0.232 0.204 0.384 5.65 2.96 3.73 0.91 0.80 0.91 0.80 304 8 2.96 5.96 2.26 2.26 379 0.232 0.384 0.136 8.98 2.15 1.42 2.60 2.75 2.60 2.75 305 8 3 5.96 2.26 2.26 379 0.232 0.136 1.104_ 9.10 .1.45 4.36 2.74 2.16 2.74 2.16 Spreadsheet Column Definitions & Formulas L = Shear Panel Length 4 _ H = Shear Panel Height l Wall Length = Sum of Shear Panels Lengths in Shear Line • V (Panel Shear) = Sum of Line Load / Total L Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • Transverse Seismic Uplift Design Unit A • Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @. floors @ Left ® t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 102 8 1.1667 1.75 3.50 0.114 0.9 1.27 2.284 653 0.152 0.192 0.832 10.40 0.57 1.69 7.91 7.11 0 0 7.91 7.11 103 8 1.1667 1.75 3.50 0.114 0.9 1.27 2.284 653 0.152 0.832 0.192 10.40 1.69 0.57 7.11 7.91 0 0 7.11 7.91 103A 8 1.1667. 4.00 4:00 0.481 0.481 120 0.04 .2.016 1.664 3.85 8.38 6.98 -1.06 -0.69 0 0 -1.06 -0.69 104 8 1.1667 4.50 10.50 0.126 0.73 ..1.44 2.296 219 0.1 0.8 0.078 . 8.96 4.61 1.36 1.20 1.93 0 0 1.20 1.93 105 8 1.1667 3.00 10.50 0.126 0.73 1.44 2.296 219 . 0.048 0.252 0.156 5.97 0.97 0.68 2.04 2.14 0 0 2.04 2.14 106 8 1.1667 3.00 10.50 0.126 0.73 1.44 2.296 219 0.048 0.156 0.252 5.97 0.68 0.97 2.14 2.04 0 0 . 2.14 2.04 109 8 1.1667 4.58 17.08 0.114 0.9 1.27 2.284 134. 0.152 0.192 0.156 5.58 2.47 2.31 0.82 0.86 201L 201R 1.13 1.54 1.95 2.40 110 8 1.1667 12.50 17.08 0.114 0.9 L27 2.284 "134 0.096 0.156 0.192 15.23 9.45 9.90 ' 0.56 0:53 201 aL 201 bR 1.32 1.32 1.88 1.85 111 8 1.1667 4.50 7.50 0.126 0.73 1.44 2.296 306 0.144 0.8 0.078 12.54 5.06 1.81 2.00 2.73 0 0 2.00 2.73 112 8 1.1667 1.50 7.50 0.126 0.73 1.44 2.296 306 0.048 0.252 0.234 4.18 0.43 0.41 3.79 3.82 0 0 3.79 3.82 113 8 1.1667 1.50 7.50 0.126 0.73 1.44 2.296 306 0.048 0.234 0.252 4.18 0.41 0.43 3.82 3.79 0 0 3.82 3.79 • 201 9 1.1667 3.92 10.80 - 0.9 1.27 2.17 201 0.225 0.432 0.156 . 7163 3.42 2.34 1.16 1.41 301L 301R -0.03 - 0.13 1.13 1.54 201a 9 1.1667 4.17 10.80. 0.9 1.27 2.17 201 0.225 • 0:156 0.156 8.11 2.61 2.61 1.38 1.38 302L 302R -0.06 -0.06 1.32 1.32 201b 9 1.1667 2.71 10.80 0.9 ' 1.27 2.17 201 - 0.225 0.156 0.432 • 5.27 1.25 2.00 1.53 1.28 303L 303R 0.10 -0.06 1.63 1.22 202A 9 1.1667 2.96 11.96 0.73 1.44 2.17 181 " 0.173 0.432 0.052 5.25 2.04 0.91 • " 1.15 1.50 304L 304R 1.28 1.50 2.43 3.00 202B 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.173 0.052 0.216. " 5:32 0.93 1.43 1.49 " 1.35 305L 305R • 1.50 0.63 2.99 1.97 203 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.309 0.216 0.312 5.32 2.04 2.33 1.16 1.08 0 0 1.16 1.08 204 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.225 0.312 0.432 5.32 1.95 2.31 1.19 1.08 0 0. 1.19 1.08 - 301 8 0 3.92 13.96 1.27 1.27 91 . 0.232 0.384 0.204 2.85 3.29 2.58 -0.03 0.13 0 0 . -0.03 0.13 302 8 0 5.79 13.96 1.27 1.27 91 0.232 0.204 0.204 4.21 5.07 5.07 -0.06 -0.06 0 0 -0.06 -0.06 303 8 0 4.25 13.96 1.27 1.27 91 0.232 0.204 0.384 3.09 2.96 3.73 0.10 -0.06 0 . 0 0.10 - 0.06 304 8 0 2.96 5.96 1.44 1.44 242 0.232 0.384 0.136 5.72 2.15 1.42 1.28 1.50 0 0 1.28 1.50 305 8 0 3.00 5.96 . 1.44 1.44 242 0.232 0. 1.104 .5.80 . 1.45 4.36 1.50 0.63 0 0 1.50 0.63 • Spreadsheet Column Definitions & Formulas _„i L = Shear Panel Length �{ 11 = Shear Panel Height (� Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L 1 Mo (Overturning Moment) = Wall Shear * Shear Application ht ` Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • TRANSVERSE UPLIFT CALCULATIONS - SUMMARY UNIT A Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right • k Simpson k k Simpson k . 102 Wind 21.31 Holdown None 0.00 Wind 20.79 None 0.00 103 Wind 20.79 Holdown None 0.00 Wind 21.31 None 0.00 103A Wind 6.00 Holdown HDQS w 3HF 6.65 Wind 6.24 HDQ8 w 3HF 6.65 104 Wind 5.58 Holdown HDQ8 w 3HF 6.65 Wind 6.06 HDQ8 w 3HF 6.65 105 Wind 6.45 Holdown HDQ8 w 3HF 6.65 Wind 6.52 HDQ8 w 3HF 6.65 1 106 Wind 6.52 Holdown HDQ8 w 3HF 6.65 Wind 6.45 HDQ8 w 3HF 6.65 109 Wind 8.45 Holdown HDQ8 w DF 9.23 Wind 8.75 HDQ8 w DF 9.23 110 Wind 8.18 Holdown HDQ8 w DF 9.23 Wind 8:09 HDQ8 w DF 9.23 111 Wind 8.02 Holdown HDQ8 w DF 9.23 Wind 8.51 HDQ8 w DF '9.23 112 Wind 11.44 Holdown HDU14 14.93 Wind 11.46 HDU14 14.93 113 Wind 1.1.46 Holdown HDU14 14.93 Wind 11.44 HDU14 14.93 201 Wind 4.82 Strap MST48x2 5.75 Wind 5.09 MST48x2 5.75 201a Wind 4.95 Strap MST48x2 5.75 Wind 4.95 MST48x2 5.75 201b Wind 5.15 Strap MST48x2 5.75 Wind 4.88 MST48x2 5.75 202A Wind 6.21 Strap MST60x2 8.11 Wind 6.59 MST60x2 8.11 202B Wind 6.58 Strap MST60x2 8.11 Wind • 5.91 MST60x2 8.11 _--) 203 Wind 3.62 Strap MST60 4.06 Wind 3.56 MST60 4.06 204 Wind 3.64_Strap MST60 _ 4.06 Wind .3.57 MST60 _ 4.06 ` 301 Wind 0.83 Strap MST37 1.79 Wind 0.93 MST37 1.79 302 Wind 0.80 Strap MST37 1.79 Wind 0.80 MST37 1.79 303 Wind 0.91 Strap MST37 1.79 Wind 0.80 MST37 1.79 304 Wind 2.60 Strap MST48 2.88 Wind 2.75 MST48 2.88 305 Wind 2.74 Strap MST48 2.88 Wind 2.16 MST48 2.88 • C C;e)1 ■73 * 1: 1 • 7=.■ c 2 F. 5' 5' 0 0 3 - I 1 0 9 o m z o .. 0 7A 0 = ( 2N CnSS CL..- 1, 1)196 3 3 ( 4 00 •: C loni Worn/It-Veil = -a ci I y tse-) = --L\DNe 4 -L - L = y • 1 13 % -)1 9 AlOrn YOC\ SCV\ H.. = .\ ‘eci do frikry\odil) 0 rn 0 0A- eloo\ nY: G ,k(.3ry) Ceulrn z F - D\p±sw smor 1,01c\r‘ vo±Yv 0 r , voai — k)4:1,e. cnsg 103 rOH d Ob0- N c) do :'ON BOr • 3- 2 0 3Nil S ►-kil v)i vrrid 9 -= mkNb H1 -')N11 %1kU. r 1S- 0 1 .2:E.I.,m-4 ',, -:........,....z.. .....a......' ck CZ5 1 - 1 0 AC 0 d ❑ �, ❑ _______________L . . 0 tr -4 - - -��_ . .„,, 1 ! , i !. . _ ____...____ \ ___. __Ii 0 ti: e .3 N 11 41.Nu.`-lNCf`\, 44.1 a"1 Si NI MQ • 0 \,,.(--( D D T -4 T SW 7N1 LEti( -ITlt kt■PIWk'� Pc L.UNC -► 11t6 LOVE e 4 ' 10 9 r O r ❑ i‘ 1 ❑ (f' cf 1 0 No ll 1 (-k' ._� ° o 10E3 co S w 114 LC; ti t,i1 + /1/4 !i 4) We-11-x' Nun*" Th-t s 1( i c Q a SI— • C . . . E• • ---1 t55 • - 12 ) , • Sw - is LENC-)TH Ift LIA1C • -- . . . , ir., ...._._______ -I 0 ---...„,_,.._,, ....-- . w ill 1,„ la ii . I ,:il i 1 • l9 ÷:-.,, 1 1 g ..': s; • .--- ,..„._. .,............mossa .-------- F N. z • c----- . '. 0 .,.; , , , • i 1 11 , 1 ! I 1 1 . ,..!'," ,/ N • , 11 1 ! r (---_, It , • ..„,,, su . . . 1 , r : • li gl• . , .• i 5vJ -1\f,ke, Le C-cri-F A ton.) G-1 TH i c LA N vi- - . v 4 fl S I 1 . 1--- No Lard s }� M 4.102. ; , T ..- - li-z." ' 1-1, EDI \i IP ur 4 c6 a fr 6) RI ,�i7 L `n El fin C C : - ,i }: !lam Lr--= (� I-1 ti! ' r ii 90E cr co 2 BY AN :\c„, DATE: ' aO\ O JOB NO.: Ce Ni 1 Q OE O OF • P ROJECT: (� RE: 1 0\ t c ■r\ e .0\- .0\- \ /� ccr0 o VNovs w ❑ VL,ne-8 = l0 wind. (amigo Is) 6.51.4 0 Z 9U q Phrugm tai d 1Y1 = aU Pk. N W o O 1 f o a 6, ,s14 0 o C� �c I of un lotc�c t ed Oita phvr PT = C1tI0 1.46 = avacAwf Z 2. WoGt. olr'aph U Z G/12_ Naa 1 ;r13 &I pot =a5 353 •> w . • ()V— D 2 2 0 U El F . ¢ O u. Z w ❑ . Z O O = F d 0 U o v) N ~ a� • c o ,:t. �a = a x 4 -L'acb BV: DATE: JOB No.: ( e. Iv ......orst 0 C PROJECT: Roof al.'- 8 'le'. RE: Des icy, aF 1" i bloc.v:.1 @ Si a If s W ❑ OpTw Z- leTZ4L1 J L ,_ Z 0 W ' 7111 2 TR I z WIDTH: oN l �! F. \a'- - k 3 k" L 0 - 5C)1JT = 9' -9`lz" !, 1o? 4LPT 1bl -5'i 0 . Q . Ka c" 51111` -Ot vaAJC -. --= ' o MIIII W 15'' 3" U Z w O a e 51 c�NJ to 1 vn Pcessur� z 30, o`Q p5C o /`, (� { .� " `i A'S f.F. a - 3 3 i < 5\op C \O s 'co 5pc. L'� 4Q.. � }tYy T04YlES 5''lie z LU;-k' 1 t f 1 Oc t°CipLP o f U T. T R‘ = it-t Rt=1y `) iit Q'- O F ct Z w N1Moo<= $ - 18105.41 x-21 #`t - ❑ z o r d (.5;ts.25) I . _ 6.Y r-ti * N2. 1 35 .. cn = h4, 't - (BSOpsc (1.00.5)(1.1s)= 36q(aps4 ((0 12 • r.Jci Y a r I \.' (50 ?st(a = a-OF s L 7 di!7- O\ 0 N(-_-\ 1(\--) o e lci o-n 2 /9--L-2,9 A AAL \ z_, C �, Q BY: /► DATE' 6-- ! \ JOB NO.. r' � c ,. V PROJECT: RE: OPTi0Ai 2 ❑ ❑ 2)Ji\t up. (I'm e. 2,Qo - cLOORt LT_ Oc�\1 oo { �cxn e 3yg..sD Two?. 0 w F- W D f W L ❑ T(c 1010 - ktr`8 o r\ U N T = 13 , - q" O w EC i 7Je c, u0 ncS pr es°.1 e = -ao.ob p F Z Lou d- as\ bU1 \ , b\0 c1L = als p . 0 V 1- ti 1- 1/ 1. U T Z (4(05-(e, R z ❑ v • 1S" • o t LL z • 0 3 - / r i O a �,t = (I`I)(I _ Las 1tut 1 i `,A" 12 r Ic--,s,t, r. (1,SY/S = S;66 ■Nic / \ h 1.5" L �, = ( = a .(„13 ,N4 A 1 y 2 IT yS,t.,b t--- 3.5'' A I,s, :, = 5.1c % r ..1 q. \ ∎ N fib= Mt._. = t( ) _ 140:i T . 4 , 4. Vr eta ; .14 Si = U - e - T,, C, C MC .CLC, Cs,Cc Ci °Fb = (850 psi ,)( ( , L�(t,o�(i, oil ,0)(1. �1(►.o C+•o- „,-,) H-, - Fl o ' =ca a_ 1,0)0 o.1,1,Z 1.0 >(,,o) LSL_ 0 \c-- 4- L • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorkS® Sizer 7.1 June 24, 2010 12:49:04 COMPANY i PROJECT RESULTS by GROUP - NDS 2005 . SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF ==..= � =- = = =i69 =Y -= L = = = = = = =asn - -�= Mnf Trusses Not designed by request (2) 208 Lumber n -ply D.Fir-L No.2 1- 2x8 • By Others Not designed by request (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 Typ Wall Lumber Stud Hem -Fir Stud 2x6 916.0 SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR = = = = = Mot Jot y = .. Y = Not designed by request � � ' _ __ Sloped Joist Lumber -soft D.Fir -L No.2 2x6 916.0 (2) 208 (1) Lumber n -ply D.Fir -L No.2 1- 208 (2) 2x8 Lumber n -ply D.Fir -L No.2 2- 208 By Others Not designed by request By Others 2 Not designed by request (2) 2x12 Lumber n -ply D.Fir-L No.2 2- 2x12 5.125x10.5 Glulam - Unbalan. West Species 24F -V4 DF 5.125010.5 4X6 Lumber -soft D.Fir -L No.2 • 406 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 4x6 Lumber Post Hem -Fir No.2 4x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 (2) 2x4 Lumber n -ply Hem -Fir 00.2 2- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 916.0 . SUGGESTED SECTIONS by GROUP for LEVEL 2 - FLOOR .. Mnf Trusses = � a � - v. � = Not designed by request - = = =� = m = = =� =_ • Mnf Jst Not designed by request Deck Jot Lumber -soft D.Fir-L No.2 208 916.0 (2) 2x8 Lumber n -ply D.Fir -L 00.2 2- 2x8 3.125x9 Glulam - Unbalan. West Species 24F -V4 DF 3.125x9 408 Lumber -soft D.Fir-L No.2 408 By Others Not designed by request By Others 2 Not designed by request (2) 2x10 Lumber n -ply D.Fir -L No.2 1- 2x10 ' 5.125X12 GL Glulam - Unbalan. West Species 24F -V4 DF 5.125x12 By Others 3 Not designed by request 3.125014 LSL LSL 1.55E . 2325Th 3.5x14 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 4x4 Lumber Post Hem -Fir No.2 4x4 406 Lumber Post Hem -Fir No.2 4x6 • (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 6x6 Timber-soft Hem -Fir No.2 6x6 (2) 2x4 Lumber n -ply Hem -Fir No.2 2- 2x4 6x6 nol Timber-soft D.Fir-L No:1 6x6 (3) 2x4 Lumber n -ply Hem -Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 916.0 SUGGESTED SECTIONS by GROUP for LEVEL 1 - FLOOR =Tlid�� = ...._ :__�_ .._____= .. L - =�= Not designed by request • CRITICAL MEMBERS and DESIGN CRITERIA Group Member Criterion Analysis /Design Values . • = =_ ........................................... = = = = =Ay =- _ = = = ..=s= Mnf Jot Mnf Jot Not designed by request Deck Jot j65 Bending 0.41 Sloped Joist j30 Bending 0.10 Floor Jst4 unknown Unknown 0.00 (2) 2x8 (1) b35 Bending 0.47 (2) 2x8 b8 Bending 0.89 3.125x9 b3 Bending 0.06 4x8 b30 Bending 0.12 By Others By Others Not designed by request By Others 2 By Others Not designed by request (2) 2x12 b6 Bending 0.93 (2) 2x10 bl Shear 0.78 5.125 %12 GL b10 Bending 0.76 • By Others 3 By Others Not designed by request 5.125x10.5 b9 Deflection 0.95 4X6 b20 Bending 0.08 3.125014 LSL b14 Deflection 0.73 (2) 2x6 c2 Axial 0.91 404 c55 Axial 0.07 4x6 023 Axial 0.80 (3) 2x6 029 Axial 0.75 . 6x6 c26 Axial 0.70 . (2) 2x4 c39 Axial 0.62 6x6 nol c12 Axial 0.86 (3) 2x4 031 Axial 0.89 Typ Wall w14 Axial 0.48 . Fnd Fnd Not designed by request DESIG = :ne ..= =:= ESIGN NOTES 1. Please verify that the default deflection limits are appropriate for your application. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result is considered the final design and appears in the Materials List. 3. ROOF LIVE LOAD: treated as a snow load with corresponding esponding duration factor. Add an empty roof level to bypass this interpretation. 4. BEARING: the designer is responsible for ensuring that adequate bearing is provided. 5. GLULAM: bxd = actual breadth x actual depth. 6. Glulam Beam0 shall be laterally supported according to the provisions of NDS Clause 3.3.3. 7. Sawn lumber bending members shall be laterally supported according to the provisions of ND5 Clause 4.4.1. 8. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that ' each ply is equally top - loaded. Where beams are side- loaded, special fastening details may be required. . 9. SCL -BEANS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 10. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of ND5 Clause 15.3. WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:41:17 Concept Mode: Beam View Floor 2: 8 ' �^ b31 1r '04�... ■. - �- - .. .. 40 b iUS-----; _ - _ 4/ -b W6 : : Wit 44 -0 4U a ,._ _ . _. . - - =- -- __... - - - --. _i -.. as b Sr -n y 3 5 b q ua b2 .. J4 -b ,3-b zsr U 00 : -n 06 - L/ -b r� b10 . : ` /0 X11!1 .. __.. ._ .:■. - -- -- -- ' - - _ t5 -a L4 -b L3 b . LL b 11 -- - Zu b L b ro _ - ly b I o r6 : . ' rL b32 , : ._ . ._. t. = ro n - - _ - - -- - I0-a J i MI t. . . .. . bb -- - 619' 14 b I., -0 b -- .-. ._. - ._ _ .._ a * . - - I I -b b !U b --- y o 21-0 04) _ 3s - ... _ _ r._n.. a4 it b4 . :. b14 . IN ' b -b 0U b30i'� !- b3 4 -b a b 2 =u . _ _. 3-b C b' I b' .B111B.B BCCCCC CC C 1CCC CC CCCC C C CC CCICC CDDD D D DD DFCDD CO DDDD D D DD CD'DD DE.E E E EEEEIEEEIEEIE E:EEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42'44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'34'5'6'7'8'91(1 - 1 :1:1 !1 t1.111 S2 {2 22:242(2 21243 €33:33 4:44!4t4'4E4S5(5 5 :5 :5 6:6 :6 7' -6" 141— Cr17-N WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:41:19 Concept Mode: Column View Floor 2 : 8 ' VUO 1 Lo^_D 1050 O c58 c14 � ... 49'-6 IUS 4 / b • yG ._ : - .. - - - - C 6 9• c2 : 'c70 : c71 .- 4L-b y5 .. 3r -b 00 - .: - - --: - .. - - c4 . -- - - - - - - ..- - - - --- - 31f-b • tS5 O .: :. Ly _b tS4 -' -._- -- _ .- --- . -.. - --- ._ - -. .. --- - -- -- - -- --- - .. _ - -- L0 -i3. 233 - L / -b • - -`--: - - - - --:- - - -- - _ _... .. .- Lb -O 01 - Lb -0' Ali- ' c25 c12 c26 • _ L4 -b c72 c2 r b c73 !L -c3 --- , .. -- -- lb. -b 06- _c77 _ ' - ! IL b ...... ' - - 11-0 b f Ub IU_b. 631 _, 7 - -_ :_ - _. 0-b 0�3 c76 c79 b .. bG C30 • 0c32 - i • - . • b - - - - — - - -- . ..:. ' ... . -- -- - -- -- -- -- -- - b -b bU3 t . . 0 .. Col - . : .. - . : . - . . : - : • - - 4 -b 1 - c55 : c' b .. .BB18B BC CC C C CCC FCCC CC CCCC C CCC CC \CC CD DD D D DD DFDDD CD DD'DD D D DDCDIDD DE.E E E E.EEEFEEEiEEiE EEEEEEEtEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66 68' 70' 72' 74' 76' 0'1'2'3'4'5'67'8'9111 1:1 :1 1112t2 2: 2: 22! 2E2212t3t 33: 3: 3 3'. 3E3 3< 3f4144: 4: 4w.' 4t4' 414E5t55: 5: 5 , 5 :5(5751546E66:6:6v.'6E6B:617( 77.7.7 .7E77' -6 4 - (_e)-3 WoodWorks®Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 24, 2010 13:14:33 Concept Mode: Beam View Floor 2: 8' g 1 )Pr b31 G r1 F-- LO • • 49'-6„ 1 04 . 421 b.. • 1US i 4!' n IU b .. 4 y9 :: : 43' -0 6 - • : - b34 : . .. 4L-n' .. . . : . . -- - :71".. . . . . . ... .... . . . . . . .. 4'I '-b' _ . . - - 4U .. • y5 30 b • yU _ .. - - - - 34 -n • 6& b2 33 _b • ! -:: - - - - - -- J I b bf - Ob 3 - 0 130 .. . ; .. L rr b33 L1 n LU -b JO : . (4 - - ' - -- : _1 _ : ! - " --- W b I O b lL. -- .. • .. .. -- - - - -- .. Ir o 11 - . . . _ -_ 10-0 10 -n : : : bts. b19)1 I nr 00 - . • li n ru'b a a 0-b 1 . -O .. bL 1 . b4 `' b 14 : ■ . o u' C3 . 0 4.1.1 7 11 4 1 : - - b35 • ; - . • • a "n 4-4 3'-n ilii b ..mo U BB\B.B BC CCC C CC CtCCC CC CCCC C CCC CCCCCDDDD D DD DtODD CD DD'DD D D DD COO D DEE E E E EEEPEEEIEEiE E'EEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'9,111 - 1 :1 :1 ?1(111(112(222:2 '4:4:441414:4 4!5155 :5:5 616 :6 :51617(77.7,7 • • • 4 — GL1 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 24, 2010 13:14:35 Concept Mode: Column View Floor 2: 8' Q k 1 - iw , 105 c58 c14 �JVJ7 4 104 . o ; 4 �' b.. "tUJ� '' - -- -`-- - - 4r - 0 . .. • lUU - :: - - : - - -- - —.. - - - --- 44 4 b J9 c82 c81.. . _ -_.. 4 yzs yr - wu-0 yb- : ' . b Jy b V4 - JO -b 3 / -b' yL ' c 3 . .. - Jb - b l __ - -- - -- - -. _ J -b SO JU J4 -b by . . . i..1 -b • SL b 0 l :_ :....-- C4 -- _ - -- -- -- . - - - -- ' _ - i - - - _ - - _ - - - _ ... _ . . • L b F-0" Lb b tsu . .: c25 c12 c26 • rrs D O � c72 -- z i - n !b - - _._.. . -- 0- - - - - - -- - _- - - . . --- - -- LU-b r b C 73 I - b 1250 I1 b . 10-b' ID b rU : ' - . . .. _c77 .. -_ .....-' - -- .. _. -!_. .. ... .. -- - - _ .. .... -. iC b W - .. - .: - .. - _ 00 : ...._ _ - .. .. _ .. ._._ 1 I' b 1Ub �)_ - C31 -c76 .. c71 � � .. bL5 c30 ®c32 . r b btJ) a - 533 'COI CN `� - - - . - 4 . b .. • c55 c56. ; 1 I 88t8.88CCCCCCCC}CCC CCCCCCCCCCCC\ CCCDDDDDDDDtODDCD 'DDDDDDCDSODDE.EEE E EE EtEEE{E 0' 2' 4' 6' 8' 10' 12 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62 64' 66' 68' 70' 72' 74' 76' 0' 1'2'3'4'5'6'7'8'91(1'1 :1'1.'1 t1 T1 €1 1 2(2222 , 222 . 212( 3( 33: 33< 3:3(3 5:5 :5 :5(515( 556(66 :6:6 4 — ( s IS WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:44 Concept Mode: Beam View Floor 3: 17' 1050 49'-6 104 -: - 40 -b I UL - 40 -0 101 4n 4) 10( V U - - - - - - - - -- - - - _ - -- . -0 .. 9- 43 -b V0 ' : : b35 _ b6 - .. :. - .. .. : .. - - " 4Z -0 4U -0 3y b V4 . 30 -0 V..3_ -.... it b V1 3b -b Vt./ 3 0V : b7 - 33 -0 of 3 1 b 230 -. ' 3U '-b 137 Ly'-0 234: L23 b 00 - - `- - b - - - - - ._ .. -- - -- --.-- - - - - - - -- - - -.. L4 -0 (V L3 -0 10 IS -0 • (4 . ..___. :c.. _.. -. . . _ ._ 10-0 1L- - - - b21 .._.- -- _ -- _ - -- - -- -- - - -- - - - -- -- 0 -0 / 1 -b20 1 !u 14' 0 bb- -- _b1tb17- ` -- - -- -- -- _:. _ --- _ ::....' - -- -- - - - - _ 'IL'-0 a! IU -b - 0,5 f -a 3 bG : b8: b._a.. bU J - b .. • BBt6.B BC CCCC CC C FCCC CC CCCC C C CC CCICCCDDDD D DD DIDDD CD DD DD D D DD CDiDD DEE E E EE EEEEEEE EEEEEEEEfEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(11;1:1 11 :112222:2 221253(33:3 :3 3F3!4(4 4A:4C40'44; 53 5:5:5 , 5!5( 5515 :6(66.'6:6 :7 6" 4- CIL WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:42 Concept Mode: Column View Floor 3: 17' 105 ... _ _ ::: :. 49' -6" iU3 - --_ --`. ---- _ - .. 4/-0 I ULb - - - - - - . - 40 -0 IUIb --- : . : 43 -b IVU • .. - : - - - - - .' - - - -- 44-0 • 9 43 -0 y ts - c62 c61 c15 , c16 -- 4L -0 V0. . . ... _ - - - - - - -- - --- - --- ------ -- 40 4 : .: [ ' -. - .: - - `i ... - Sts -0 3 : --- [: : ... 3/ -b • m ® : 35 D by 33 -0 23/ 31-0 150 : ._ ... c18- • : " ' _ _ - _ - -- - 3U - -b 00 : .: [ L`J -b 03 L/ - 0 1 . - L0 tsu c39 c24 c23 • L4 b ' • (y LS -0 /0 - -. - - ; a . -. 1m _1 .. � (c59 ... ... _- .. - .42 -0 1 / L " I -0 /4 -- -` - -- .. - - -- - 11c60- - - - - -- LU -b (b • ' III - - - - I y -- 0 11 Its -b /L ---.' - ._.- ..• .. .... -- -' - ' . 10-0. /'I c3710 - - --- - - .: - 10 __.. 14 -0 by 10-0 06 - -- - . _ _. . _. _-__� ._. . 10 . . c66 -c63 . r1 c75652 c1c6c74 n'b bU ) _ _ - -- _ _.. .. .._ _ .... - - -- .. .. - .5-0 -0 - - L -b BBI B. BBCCCCCCCCFCCCCCCCCCCCCCCCICCCDDDDDDDDtDDDDDDDDDDDDDCD' DDDEEEEEEE °EFEEEIEEIEEEEEEEEEEEEEZ y 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70:72' 74' 76' 0'1'2'3'4'5'6'7'8'9111 1:1 :1 ;1l 12122:2:22'' -212 "2/243(33;3:3 , 3'313'31 344(4'4;4: 4 6166:6 :6 :7 4Z ..-- (......d...tX WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:38 Concept Mode: Beam View Roof: 25' 105 .. .. . .. . .. . ... - .. 49 -6 104 40 -b I U..5 . . ' 4/ -0.. IULZ•f. - - _ - 40-0 I U I / 40'-b" b yo . - b23 ' - b24 µc- / ININO41111 s 4 "1 b 3 : 3 f ' -b .. VG :. : - • .. :. ... _ - -- - - - - --- - -- : 310 -0' U -. _ - - - : - 34' 0y 33 "-b —_ -- - 3L -b 3U'-0 2 23 . -0 . 23L L0 -0 0'i G5 -0 fy : L3-0 1/ 0 . 1025 . : Lu -0 (4 _ .. „ : ----.. _. ---- "- - - -- - "- - 10 -0 13 - __ . - _ _ _ .. - '1 ( -0 l i . - : ' E " .: - - .. .- _ - - -- -- ---- - 110 14 -0 by _ l3 " -0 1023 IL b I b _ V-0 3 - - "- -- - 1027:: 1028 i-3.43 bL, . LSO . - i -b U 0 BBIB.B BCCCCC CC CtCCC CC CCCCC C CC CC1CC CD DDD DOD DODDD CD DD=DD D D DD CD'DD DEE E E E E E EFEEE!EEIE EIEEEEEEEEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66 68' 70' 72'74' 76' 0'1'2'3'4'5'6'7'8'91(1 "1:1 :1 "1112(2'2;2:2 3:32 4A :4414(44142(5 5:5:5 51516(6 6;6:6 316'7Ei 777 -6" / • — - (E to.) WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:40 Concept Mode: Column View Roof: 25' I V4 1U5 t_.. _.. 415 b IUI - -- - - - - - - - -- -- -- -- 45 itiO 9 45' b V0 c42 C43 : c44 c45 4G -b as .imEammiA l' .. U-0 _ 5r -U - - sb b bV 55 -b. 3U -b t54 L0 - b rt5 - - -- - -- - - - =- - -- - -- -- - -- --- --._.. - - - .._ .. - - --- LL b c47[ - - --- -- ---- - -_. . -. - _ _- - - --.. .--- - -' LU-0 ID ' -a Ili __. Oy - - - - - - .. 13.-0. _ __ .. _ • ._ _____ _. _ bb._....: - - -- 04) : c51c50 c52 -- -c53, u a 1 BBIB.B BC CCC C CC CFCCC CC CCCCC CCC CCICCCD DDD D DD DIODD CD DD'DD D D DD CD'DD D EE E E E EEEFEEEEEfE EEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42 44' 46' 48' 50' 52' 54' 56 58' 60' 62' 64' 66 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 1 :1 :1'1:1(1111 02 2 :2:22'.2E2 21243( 333: 3 3'. 3: 3'313;414'4:1:4.4'.4t4 53:5 6:6:6 77:7 g — 61.(‘D COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:42 b1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w61 Dead Partial UD 613.2 613.2 2.50 3.00 plf 2 w 61 Snow Partial UD 795.0 795.0 2.50 3.00 plf . 3 - c61 Dead Point 622 2.50 lbs 41c61 Snow Point 1192 2.50 lbs 5_j28 Dead Full UDL 47.7 plf 6_j28 Live Full UDL 160.0 plf 7_j33 Dead Full UDL 120.2 plf 8 j33 Live Full UDL 370.0 plf • MAXIMUM RE. 31 Dead 391 1061 Live 795 1615 Total 1186 2676 Bearing: Load Comb #2 #3 Length 0.63 1.43 Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2 -Plys Self- weight of 6.59 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv* = 67 Fv' = 207 fv * /Fv' = 0.32 Bending( +) fb = 331 Fb' = 1138 fb /Fb' = 0.29 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.05 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC 03 = D +.75(L +S), V = 2676, V design* = 1237 lbs Bending( +): LC #3 = D +.75(L +S), M = 1178 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 158e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 4_ _ 6 0 COMPANY PROJECT 1 WoodWorks® SOFfWARE FOR W000 DESIGN June 24, 2010 12:43 b3 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j45 Dead Full UDL 17.0 plf 2 j45 Live Full UDL 25.0 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : A IO• 91 Dead 106 106 Live 112 112 Total 218 218 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Glulam- Unbal., West Species, 24F -V4 DF, 3- 1/8x9" Self- weight of 6.48 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : • Criterion Analysis Value Design Value Analysis /Design Shear fv = 10 Fv' = 265 fv /Fv' = 0.04 Bending( +) fb = 140 Fb' = 2400 fb /Fb' = 0.06 Live Defl'n 0.01 = <L/999 0.30 = L/360 0.04 Total Defl'n 0.03 = <L/999 0.45 = L/240 0.06 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 218, V design = 182 lbs Bending( +): LC #2 = D +L, M = 491 lbs -ft Deflection: LC #2 = D +L EI= 342e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 6,1 COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:40 b6 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 Snow Point 647 2.00 lbs 3 w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 w44 Snow • Partial UD 431.2 431.2 0.00 2.00 plf 5 Dead Point 444 5.00 lbs 6c45 Snow Point 647 5.00 lbs 7 _ w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8_w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9_j25 Dead Full UDL 120.2 plf 10 j25 Live Full UDL 370.0 plf MAXIMUM REACTIONS llbsl and BEARING LENGTHS (inl • 61 Dead 1436 1389 Live 1803 1803 Total 3239 3192 Bearing: Load Comb #3 #3 • Length 1.73 1.70 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn Lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:50 b8 Design Check Calculation Sheet Sizer 7.1 LOADS ( tbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j14 Dead Full UDL 113.7 plf 2 j14 Live Full UDL 350.0 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : • i 6 1 Dead 357 357 Live 1050 1050 Total 1407 1407 Bearing: Load Comb #2 #2 Length 0.75 0.75 Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Desi•n Shear fv = 77 Fv' = 180 fv /Fv' = 0.43 Bending( +) fb = 963 •Fb' = 1080 fb /Fb' = 0.89 Live Defl'n 0.07 = <L/999 0.20 = L/360 0.33 Total Defl'n 0.10 = L/712 0.30 = L/240 0.34 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 1407, V design = 1123 lbs Bending(+): LC #2 = D +L, M = 2110 lbs -ft Deflection: LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. COMPANY PROJECT WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:40 b9 Design Check Calculation Sheet Sizer 7.1 • LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j50 Dead Partial UD 113.7 113.7 0.00 1.50 plf 2_j50 Live Partial UD 350.0 350.0 0.00 1.50 plf 3_j14 Dead Partial UD 113.7 113.7 3.00 9.00 plf 4_j14 Live Partial UD 350.0 350.0 3.00 9.00 plf 5_j51 Dead Partial UD 113.7 113.7 1.50 3.00 plf 6_j51 Live Partial UD 350.0 350.0 1.50 3.00 plf 7_j24 Dead Partial UD 120.2 120.2 0.00 3.00 plf 8_j24 Live Partial UD 370.0 370.0 0.00 3.00 plf 9_j25 Dead Partial UD 120.2 120.2 3.00 9.00 plf 10_j25 Live Partial UD 370.0 370.0 3.00 9.00 plf 11j26 Dead Partial UD 120.2 120.2 9.00 12.00 plf 12_j26 Live Partial UD 370.0 370.0 9.00 12.00 plf 13_j Dead Partial UD 113.7 113.7 9.00 10.50 plf 14_j52 Live Partial UD 350.0 350.0 9.00 10.50 plf 15_j53 Dead Partial UD 113.7 113.7 10.50 12.00 plf 16 j53 Live Partial UD _ 350.0 350.0 10.50 12.00 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 0' 12 1 Dead 1478 1478 Live 4320 4320 Total 5798 5798 Bearing: Load Comb #2 #2 Length 1.74 1.74 Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x10 -1/2" Self- weight of 12.39 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 138 Fv' = 265 fv /Fv' = 0.52 Bending( +) fb = 2217 Fb' = 2400 fb /Fb' = 0.92 Live Defl'n 0.38 = L/381 0.40 = L/360 0.94 Total Defl'n 0.57 = L/252 0.60 = L/240 0.95 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 5798, V design = 4953 lbs Bending( +): LC #2 = D +L, M = 17395 lbs -ft Deflection: LC #2 = D +L EI= 890e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). COMPANY PROJECT 1 WoodWorks® SOFTWARE fOR WOOD DESIGN June 24, 2010 12:43 b10 Design Check Calculation Sheet Sizer 7.1 LOADS ( ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Pat - Start End Start End tern 1 w39 Dead Partial UD 311.0 311.0 0.00 4.50 No 2 Live Partial UD 680.0 680.0 0.00 4.50 No 3 c39 Dead Point 267 2.00 No 4 Live Point 822 2.00 No 5 j32 Dead Partial UD 120.2 120.2 0.00 0.50 No 6_j32 Live Partial UD 370.0 370.0 0.00 0.50 No 7 j33 Dead Partial UD 120.2 120.2 1.00 4.00 No 8 Live Partial UD 370.0 370.0 1.00 4.00 No 9 Dead Partial UD 120.2 120.2 4.00 4.50 No 10_j34 Live Partial UD 370.0 370.0 4.00 4.50 No 11 j35 • Dead Partial UD 120.2 120.2 4.50 7.50 No 12 Live Partial UD 370.0 370.0 4.50 7.50 No 13 j36 Dead Partial UD 113.7 113.7 4.50 16.50 No 14 j36 Live Partial UD 350.0 350.0 4.50 16.50 No 15 j37 Dead Partial UD 100.7 100.7 3.00 4.50 No 16_j37 Live Partial UD 310.0 310.0 3.00 4.50 No 17_j47 Dead Partial UD 120.2 120.2 7.50 13.50 No 18_j47 Live Partial UD 370.0 370.0 7.50 13.50 No 19j48 Dead Partial UD 120.2 120.2 13.50 16.50 No 20_j48 Live Partial UD 370.0 370.0 13.50 16.50 No 21 j49 Dead Partial UD 120.2 120.2 0.50 1.00 No 22 Live Partial UD 370.0 370.0 0.50 1.00 No 23 Dead Point 300 3.00 No 24 Live Point 922 3.00 No MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 10' 4'-6" 16-6i Dead 452 4067 1180 Live 847 11291 3436 Uplift 12 Total 1300 15358 4616 Bearing: Load Comb #2 #2 #2 Length 0.50• 4.24 1.27 Cb 1.00 1.09_ 1.00 'Min. bearing length for beams is 1/2" for exterior supports Glulam- Unbal., West Species, 24F -V4 DF, 5- 118x12" • Self- weight of 14.16 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 265 fv /Fv' = 0.60 Bending( +) fb = 1074 Fb' = 2400 fb /Fb' = 0.45 Bending( -) fb = 1396 Fb' = 1844 fb /Fb' = 0.76 Live Defl'n 0.13 = <L/999 0.40 = L/360 0.32 • Total Defl'n 0.19 = L/740 0.60 = L/240 0.32 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fb'- 1850 1.00 1.00 1.00 0.997 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 8357, V design = 6496 lbs Bending( +): LC #2 = D +L, M = 11006 lbs -ft Bending( -): LC #2 = D +L, M = 14310 lbs -ft Deflection: LC #2 = D +L EI= 1328e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. Grades with equal bending capacity in the top and bottom edges of the beam cross - section are recommended for continuous beams. 4. GLULAM: bxd = actual breadth x actual depth. 5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 6. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). /q "- Cl 1 C COMPANY PROJECT III WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:44 b13 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 w 58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 - c40 Dead Point 217 5.50 lbs 4 c40 Live Point 668 5.50 lbs 5 c67 Dead Point 518 5.00 lbs 6_c67 Snow Point 778 5.00 lbs 7_c68 Dead Point 573 3.00 lbs 8 c68 Snow Point 942 3.00 lbs 9 w59 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10 w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11_j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12_j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13_j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14_j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15_j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16_j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 18 Live Point 389 3.50 lbs 19 Dead Point 225 6.50 lbs 20 Live Point 693 6.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : .e'✓<- . ,� .. - - -' i iZ wr..:.:: - _ sc` .mss.- .s.d�' r - . -- 410-- ..-_- -- •.--.. - ; - = .�.c.. - ::o - -- -.-- •r.__ -- -fi e. �...c "•' 4 , ��„ ` '_ -~ _ - ..0 3 y ' " . � ... a..._.. • . 3.'`. +.--• sr - -- r ° -�""`� :. . _ - � . . - .:-. .. .--- -,,- .. ,.,�.- '�m..s, -,mss - ,.. �;:��- -,-- " .. -..,_ __- �- `•--•- -----r!!-._ ..: _ _ .. - i i ►� 1 0' 81 Dead 2561 3033 Live 2699 3789 Total 5261 6822 Bearing: Load Comb #3 #3 Length 1.88_ 2.44 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criteribn Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L/680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC #3 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. • 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 14 - G1(2 COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:43 b14 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or p1? ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1_w33 Dead Partial UD 317.7 317.7 9.00 12.00 plf 2 w33 Live Partial UD 350.0 350.0 9.00 12.00 plf 3 c19 Dead Point 357 9.00 lbs 4 c19 Live Point 1050 9.00 lbs 5 c20 Dead Point 357 3.00 lbs 6 c20 Live Point 1050 3.00 lbs 7 Dead Partial UD 317.7 317.7 0.00 3.00 plf 8 w34 Live Partial UD 350.0 350.0 0.00 3.00 plf 9 c64 Dead Point 165 10.50 lbs 10 c64 Snow Point 225 10.50 lbs 11 Dead Point 165 1.50 lbs 12 c65 Snow Point 225 1.50 lbs 13 Dead Full UDL 113.7 plf 14 j36 Live Full UDL 350.0 plf 15_j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 16_j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 17_j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 18 j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 19_j45 Dead Partial UD 17.0 17.0 1.50 10.50 plf 20_j45 Live Partial UD 25.0 25.0 1.50 10.50 plf 21_j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 22 j46 Live _ Partial UD 25.0 25.0 _ 10.50 12.00 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : - •� =_ "..; x.0 - .-..'� _- �-. „ - ',..., :.„r - -Erg 'le. .-:...- +�s3r orac . ^ .. .y+, r - &-- y m .}r. e 0o 5 ; ---.._ �� - ∎,-- �- - -_, -.sue _ - 1 0' 12 Dead 2351 2351 Live 4350 4350 Total 6701 6701 Bearing: Load Comb #2 #2 Length 2.39 2.39 LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 163 Fv' = 310 fv /Fv' = 0.52 Bending( +) •fb = 1769 Fb' = 2325 fb /Fb' = 0.76 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.43 = L/333 0.60 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 6701, V design = 5314 lbs Bending( +): LC #2 = D +L, M = 16851 lbs -ft Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 611 COMPANY PROJECT I I WoodWorks® SOFTWARE FOR W000 DESIGN June 24, 2010 12:41 b20 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j30 Dead Full UDL 21.7 plf 2 j30 Live Full UDL 60.0 plf MAXIMUM REA('_TIANC /1hcl and RFARIN(± I FNGT41C /inl • • 1v 3'_6'4 Dead 46 46 Live 105 105 Total 151 151 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x6" Self- weight of 4.57 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 9 Fv' = 180 fv /Fv' = 0.05 Bending( +) fb = 90 Fb' = 1170 fb /Fb' = 0.08 Live Defl'n 0.00 = <L/999 0.12 = L/360 0.02 Total Defl'n 0.00 = <L/999 0.18 = L/240 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 151, V design = 111 lbs Bending( +): LC #2 = D +L, M = 132 lbs -ft Deflection: LC #2 = D +L EI= 78e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 14- LA.4r COMPANY PROJECT i WoodWorks® SOFFWAR(FOR WOOD DES$GN June 24, 2010 12:50 b30 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j41 Dead Partial UD 68.0 68.0 2.00 4.00 plf 2_j41 Live Partial UD 100.0 100.0 2.00 4.00 plf 3_j42 Dead Partial UD 72.2 72.2 0.00 2.00 plf 4 j42 Live Partial UD 106.2 106.2 0.00 2.00 plf MAXIMUM REACTIONS IIhc1 and RFARING LFN(;THS lint : A 1 44 Dead 154 150 Live 209 203 Total 364 353 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x8" Self- weight of 6.03 plf included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 15 Fv' = 180 fv /Fv' = 0.08 Bending( +) fb = 140 Fb' = 1170 fb /Fb' = 0.12 Live Defl'n 0.00 = <L/999 0.13 = L/360 0.03 Total Defl'n 0.01 = <L/999 0.20 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 364, V design = 253 lbs Bending( +): LC #2 = D +L, M = 359 lbs -ft Deflection: LC #2 = D +L EI= 178e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. /4- 19 COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:42 b31 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j65 Dead Partial UD 47.7 47.7 0.00 4.00 plf 2_j65 Live Partial UD 160.0 160.0 0.00 4.00 plf 3_j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4_j28 Live Partial UD 160.0 160.0 4.50 7.50 plf 5_j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 6_j Live Partial UD 160.0 160.0 7.50 11.00 plf 7_j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 8_j63 Live Partial UD 160.0 160.0 11.00 17.00 plf 9_j64 Dead Partial UD 47.7 47.7 17.00 20.00 plf 10_j64 Live Partial UD 160.0 160.0 17.00 20.00 plf 11_j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 12 j66 Live Partial UD 160.0 160.0 4.00 4.50 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 10 20+ Dead 619 619 Live 1600 1600 Total 2219 2219 Bearing: Load Comb #2 # Length 0.67 0.67 Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x12" Self- weight of 14.16 plf included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 49 Fv' = 265 fv /Fv' = 0.18 Bending( +) fb = 1082 Fb' = 2400 fb /Fb' = 0.45 Live Defl'n 0.43 = L /553 0.67 = L/360 0.65 Total Defl'n 0.69 = L /350 1.00 = L/240 0.69 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 2219, V design = 1997 lbs Bending( +): LC #2 = D +L, M = 11095 lbs -ft Deflection: LC #2 = D +L EI= 1328e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). GriD COMPANY PROJECT f fl Wood\/Vorks 2(201D,T,5 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Sine 7.1 LOADS I tbFPa,oe Pit ) : _ Wad Type Distribution Magnitude Location M I Units • Start End End • _w62 Dead Partial UD 613.2 613.2 5 0.00 2.00 pif 062 Snow Partial UO 795.0 795.0 0.00 2.00 pif _v29 Dead Partial UD 617.5 617.5 7.50 11.00 pif _029 Snow Partial UD 601.2 801.2 7.50 11.00 pif .15 Dead Point 1436 11.00 lbs _15 Snow 2404 11.00 lb. _:: 274:0 16 Dead Point 1389 17.00 lb. _0 Snow Point 2404 17.00 lbs 064 Dead Partial VD 617.5 617.5 17.00 19.00 pif 5 064 Snow Partial UD 801.2 801.2 17.00 18.00 pit 1 761 Dead Point 622 7.00 lb. 2 Snow Point 1192 7.00 lb. 4 c62 dad Point 622 4.00 b3 1 1 0-62 - Point 1192 /.bs 15 Deed Part1a1 20 613.2 613.2 2.50 l 4.00 Of 16 Snow Partial UD 790.0 795.0 2.00 4.00 pif 17 Gad Partial VD 617.5 617.5 19.00 20.00 pif 10 Snow Partial UD 01.2 801.2 16.00 20.00 pif 19 Dead 0 6 Partial ID 613.2 613.2 7.00 7.50 pif 20 Snow Partial UD 795.0 795.0 7.00 7.50 pif 21_364 Dead Partial UD 47.7 41.7 17.00 19.00 pif 22_364 Live Partial UD 160.0 160.0 17.00 18.00 plf 23_128 Dead Partial UD 47.1 47.1 4.90 7.50 pif 4_729 Live Partial ID 160.0 160.0 4.50 7.50 pif . 25 762 Dared Partial UD 47.1 47.7 7.50 11.00 pif 26 762 Live Partial UD 160.0 160.0 7.50 11.00 pif 27_742 Dead Partial UD 120.2 320.2 0.00 2.00 pif 27_749 Live Partial VD 370.0 370.0 0.00 2.00 pif 27_212 Dead Partial UD 320.2 120.2 3.90 4.00 Of 30_332 Live Partial UO 370.0 370.0 3.90 4.00 pif 31_133 Oead Partial UD 125.2 110.2 4.50 1.50 pif 32_733 Live Partial UD 370.0 370.0 4.50 1.50 plf 33_734 Dead Partial UD 120.2 120.2 7.50 6.00 plf . 34_334 Live Partial UD 310.0 370.0 7.50 3.00 Of 35_559. Dead Partial UD 120.2 120.2 9.00 11.00 pif 26_335 Live Partial UD 370.0 370.0 8.00 11.00 pif 37_347 Dead Partial U0 120.2 120.2 11.00 17.00 pif 39_347 Live Partial UD 370.0 370.0 31.00 17.00 pif 39_367 Dead Part1a1 UD 120. 120.2 2.00 3.50 plf 40 367 Live Partial UD 310.0 0 370.0 2.00 3.50 plf 41 349 Dead Partial UD 120.2 120.2 4.00 4.50 pif 42_140 Live Partial UD 310.0 370.0 4.00 4.50 plf 43_763 Dead Partial UD 41.7 47.7 11.00 17.00 plf 44_163 Live Partial U0 160.0 160.0 11.00 17.00 plf 45_165 Dead Partial UD 41.7 41.7 18.00 20.00 plf 16 0. 9 3 Partial UD 160.0 160.0 19.00 20.00 Of 47_366 d Partial UD 47.1 4.00 4.50 Of 9_ Dead 766 Live Partial V0 160.0 160.0 4.00 4.50 plf 49_169 Dead Fa:tia1 UD 320.2 1 :0.2 17.00 18.00 pif 90_360 Live Partial U0 370.0 370.0 17.00 19.00 plf 51_769 Dead Partial UD 120.2 120.2 18.00 20.00 pif 52 169 Live Partial UD 370.0 310.0 19.00 20.00 pif 53_772 Dead Partial UD 47.7 47.7 2.00 4.00 plf 54 372 Live Partial UD 160.0 160.0 2.00 4.00 pif 55 373 Dead Partial UD 47.7 47.7 0.00 2.00 pif 56 173 Live Partial UD 160.0 160.0 0.00 2.00 off MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : • • I * '. D.ad - x +405 '1021 LS':a 9366 3373 Total 17361 17305 64.000;. Load Co -b 43 13 LenOth 5.21 5.19 Glulam -Bala, West Species, 24F -V8 DF, 5- 118x22 -1/2" • SetSwakpd of 28.55 pll Maned in bads; Lama support tap. AG. bobs.. m .upped: Analysis vs. Allowable Stress (psi) and Deflection (in) using NOS 2005: Crlter1tn Analyst. value 0e.ion Valua Analysis /D..1ln shea [v - 182 305 :WE, ■ 0.60 Bendinghl f74 - 2392 ' . 2604 fb /96Fb' ■ 0.92 Live Deal, 0.40 - L /595 0.6.67 - L/360 0.60 Total Defl'n _ 0.94 - 5/505 1.00 - 0/240 0.94 ADDITIONAL DATA: FACTORS: F/E CD 01 CL Cl Cf. Cr Cf:t Nctea Cn LC. Fv' 265 1.15 1.00 1.00 1.00 1.00 1.00 3 Fb'♦ 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 Fop' 650 1.00 1.00 - - - - 1.00 - - 1.9 million 1.00 1.00 - - 001n' 0.95 million 1.00 1.00 - - - - 1.00 - - 3 Shear : LC 43 - 0 -S), 1 . 17361, '/ d.algn ■ 13952 lb. 2erd1n31■1: LC 73 - D1.751L 0 ■ 96179 104 -ft D.flection: LC 03 - 0•.75;1751 EI. 9156906 lb -in2 Total Deflection - 1.50)Dead Wad Deflection) 0 LS' :a Load Deflection. 0D■dead 0.1106 1■ancw 0.0ind I-irpact 100860 :act10n CW■concontr.t.d1 I211 LC'9 are listed in the An.3y.ta output) . Load 00rbinat100t: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflation ants .neppoptbte for your application. 2 Gluten design va2xs an Re materials soMarNtq to AITC 117 -2008 and manufactured at accordant& with ANSVAITC A190. 1.1992 3. GLULAM: dd a actual breadth a astute depth. 4. Gbdam Beams shall be diaa3y supported acardi g to the provisions of NOS Chun 3.3.3. 5. GLULAM: bearing length based on smear of Fep banske ), Fcp(compn). / - 1 COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:49 b35 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 j21 Dead Partial UD 120.2 120.2 0.50 1.50 plf 2 Live Partial UD 370.0 370.0 0.50 1.50 plf 3_j59 Dead Partial UD 120.2 120.2 0.00 0.50 plf 4_j59 Live Partial UD 370.0 370.0 0.00 0.50 plf 5_j60 Dead Partial UD 120.2 120.2 1.50 3.00 plf 6 j60 Live Partial UD 370.0 370.0 1.50 3.00 plf MAXIMUM RED - - - - - - - - - - - - - - - - - 3 a Dead 188 188 Live 555 555 Total 743 743 Bearing: Load Comb #2 # Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 31 Fv' = 180 fv /Fv' = 0.17 Bending( +) fb = 254 Fb' = 1080 fb /Fb' = 0.24 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 743, V design = 444 lbs Bending( +): LC #2 = D +L, M = 557 lbs -ft Deflection:,LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. - 6.1?.(a. COMPANY PROJECT I WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:51 c2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End l bl Dead Axial 1056 (Eccentricity = 0.00 in) 2 Rf.Live Axial 2153 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): • • 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 2 -Plys Self- weight of 3.41 plf included in Toads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 0.00= 0.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 196 Fc' = 980 fc /Fc' = 0.20 Axial Bearing fc = 196 Fc* = 1644 _ fc /Fc* = 0.12 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.596 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 3236 lbs Kf = 1.00 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. fi.--- �� COMPANY PROJECT W oodWorks ® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:54 c12 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c24 Dead Axial 1478 (Eccentricity = 0.00 in) 2 c24 Live Axial 4320 (Eccentricity = 0.00 in) 3 b10 Dead Axial 4067 (Eccentricity = 0.00 in) 4 Live Axial 11291 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): • � �� � �� - , � , � i x� �x a +' �EJ".�.;.� � '� '�s .,�+c. ^`- xc. - 7' ^ -yx„ _, ��,..r• t Y ; "'.°_� M � +w �.s "� - -$t�� ���" �t�•r' . �`r >� i �� •'�,:r"�' - '.�..,�� 0' 8' Timber -soft, D.Fir -L, No.1, 6x6" Self- weight of 7.19 plf included in Toads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 701 Fc' = 820 fc /Fc' = 0.86 Axial Bearing fc = 701 Fc* = 1000 fc /Fc* = 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC #. Fc' 1000 1.00 1.00 1.00 0.820 1.000 - - 1.00 1.00 2 Fc* 1000 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 21214 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (A11 LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 4- Gasci COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:53 c23 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b9 Dead Axial 1478 (Eccentricity = 0.00 in) 2 Live Axial 4320 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): D 1 0' 9' Lumber Post, Hem -Fir, No.2, 4x6" Self- weight of 3.98 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 303 Fc' = 379 fc /Fc' = 0.80 Axial Bearing fc = 303 Fc* = 1430 fc /Fc* = 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.265 1.100 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 5834 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES 1. Please verify that the default deflection limits are appropriate for your application. 4 COMPANY PROJECT 1=. WoodWorks® SOFlWARF FOR WOOD DESIGN June 24, 2010 12:54 c26 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c23 Dead Axial 1478 (Eccentricity = 0.00 in) 2_c23 Live Axial 4320 (Eccentricity = 0.00 in) 3 b10 Dead Axial 1180 (Eccentricity = 0.00 in) 4 _Live Axial 3436 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): • 0' 8' Timber -soft, Hem -Fir, No.2, 6x6" Self- weight of 6.25 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) usingNDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 346 Fc' = 492 fc /Fc' = 0.70 Axial Bearing fc = 346 Fc* = 575 fc /Fc* = 0.60 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.00 1.00 1.00 0.856 1.000 - - 1.00 1.00 2 Fc* 575 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 10465 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 212 COMPANY PROJECT 1 WoodWorks SOFTWARE FOR WOOD DESIGN June 24, 2010 12:52 c29 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b13 Dead Axial 3033 (Eccentricity = 0.00 in) 2 Rf.Live Axial 5052 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): • C 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 3 -Plys Self- weight of 5.11 pif included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 328 Fc' = 439 fc /Fc' = 0.75 Axial Bearing fc = 328 Fc* = 1644 fc /Fc* = 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.267 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 8126 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. • • COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:55 c31 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b13 Dead Axial 2561 (Eccentricity = 0.00 in) 2 Rf.Live Axial 3599 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 1 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x4 ", 3 -Plys Self- weight of 3.25 pif included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 393 Fc' = 443 fc /Fc' = 0.89 Axial Bearing , fc = 393 Fc* = 1719 fc /Fc* = 0.23 , ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.258 1.150 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 6186 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. /42 (7) COMPANY PROJECT 1 WoodWorks® SOFFWARF FOR W000 DESIGN June 24, 2010 12:54 c39 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location Eft) Units Start End Start End 1 b21 Dead Axial 267 (Eccentricity = 0.00 in) 2 Live Axial 822 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 1 0' 9 , • Lumber n -ply, Hem -Fir, No.2, 2x4 ", 2 -Plys Self- weight of 2.17 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 106 Fc' = 171 fc /Fc' = 0.62 Axial Bearing fc = 106 Fc* = 1495 fc /Fc* = 0.07 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.114 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 1108 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. 4C 2 COMPANY PROJECT 1 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:52 c55 • Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b30 Dead Axial 154 (Eccentricity = 0.00 in) 2 Live Axial 209 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 8 ' Lumber Post, Hem -Fir, No.2, 4x4" Self- weight of 2.53 plf included in Toads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 31 Fc' = 470 fc /Fc' = 0.07 Axial Bearing fc = 31 Fc* = 1495 _ fc /Fc* = 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.315 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 384 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. C61' 0 BY A I\1 DATE: 0 -aok0 Joe No.: C EN _6 ctO OF PROJECT: RE: Beal tul LAI-cral ReadicaS 0 0 w J 0 . L i . Z P \ Cea 'CO ( 0 — > livakks ,c33 i", 303 0 W F- W o 2 El \DeCAVI1 V3 --, Walls aoaf4 auk Li 0 _J ce u 0 w befArn t 4- ---> Woaks - ato - 6 i• awl w z w . . -, wo‘ its ao I , ad l A 1: ao ti I:5 0 5kr\ce wila cecu,k >> Se 6rnic_ reacifiovN 0 Z D 2 OrAk tAyoNK u)ak be_ catctitakk-ea, 2 0 U o • " cr ci u. z w 0 6 0 = c , o 6 : , .) ."-. 5 Pi = ....1 8 8 .to .it.: • x g :=,--,: . • ‘,' A• z i.i . . COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 13:07 b6 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2_c44 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 c45 Dead Point 444 5.00 lbs 6 c45 Snow Point 647 5.00 lbs 7 w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf • 8_w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9 j25 Dead Full UDL 120.2 plf 10_j25 Live Full UDL 370.0 plf WIND1 Wind Point 800 2.00 lbs WIND2 Wind Point -910 5.00 lbs 'MAXIMUM REACTIONS fibs) and BEARING LENGTHS (inl : • C 1 0' 61 Dead 1436 1389 Live 2089 1803 Total 3525 3192 Bearing: Load Comb #4 #3 Length _ 1.88 1.70 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in Toads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.15 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 4 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 4 Shear : LC 83 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #4 = D +.75(L +S +W) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. • 61 32__ COMPANY PROJECT 1 WoodWorks SOFTWARE FOR W000 DESIGN June 24, 2010 13:07 b6 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1_c44 Dead Point 444 2.00 lbs 2_c44 Snow Point 647 2.00 lbs 3 w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 Dead Point 444 5.00 lbs 6 c45 Snow Point 647 5.00 lbs 7 w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9_j25 Dead Full UDL 120.2 plf 10 j25 Live Full UDL 370.0 plf WIND1 Wind Point -800 2.00 lbs WIND2 wind Point 910 5.00 lbs MAXIMUM REACTIONS Ilbsl and BEARING LENGTHS lint I0' 61 Dead 1436 1389 Live 1803 2172 Total 3239 3561 Bearing: Load Comb #3 #4 Length 1.73 1.90 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. ..... COMPANY PROJECT WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 13:09 b14 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2 w 68 Live Partial UD 350.0 350.0 9.00 10.50 plf 3_c19 Dead Point 357 9.00 lbs 4_c19 Live Point 1050 9.00 lbs 5_c20 Dead Point 357 3.00 lbs 6_c20 Live Point 1050 3.00 lbs 7w66 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8 w 66 Live Partial UD 350.0 350.0 0.00 1.50 plf 9 c64 Dead Point 165 10.50 lbs 10_c64 Snow Point 225 10.50 lbs 11 c65 Dead Point 165 1.50 lbs 12 c65 Snow Point: 225 1.50 lbs 13 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14 w 67 Live Partial UD 350.0 350.0 1.50 3.00 plf 15 w69 Dead Partial UD 317.7 317.7 10.50 12.00 plf 16w69 Live Partial UD 350.0 350.0 10.50 12.00 plf 17 j36 Dead Full UDL 113.7 plf 18 - j36 Live Full UDL 350.0 plf 19_j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20_j43 • Live Partial UD 25.0 25.0 0.00 0.50 plf 21 j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22_j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 23_j45 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24 j45 Live Partial UD 25.0 25.0 1.50 3.00 plf 25 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26 j46 Live Partial UD 25.0 25.0 10.50 12.00 plf • 27_j70 Dead Partial UD 17.0 17.0 3.00 9.00 plf 28 j70 Live Partial UD 25.0 25.0 3.00 9.00 plf 29 j71 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30_j71 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point 3560 3.00 lbs WIND2 Wind Point -3640 9.00 lbs wind3 Wind Point -3620 0.00 lbs wind5 Wind Point 3570 12.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : . ----7.- _-,.. - - - --- --�- .suet_ F _ --- - s- -. .g.� y..yr ; ?7s+i- s� - - awe• - Vii•-.. �� ;+a�-._'7 ,,r,- ,,. - .a.a -:t=^ . I a 121 Dead 2207 2207 Live 4350 4350 Uplift 499 479 Total 6557 6557 Bearing: Load Comb #2 #2 Length 2.34 2 LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 310 fv /Fv' = 0.51 Bending( +) fb = 1735 Fb' = 2325 fb /Fb' = 0.75 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.42 = L/343 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 6557, V design = 5170 lbs Bending( +): LC #2 = D +L, M = 16527 lbs -ft • Deflection: LC #2 = D +L EI= 1241e06 lb -in2 . Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 62-631-f COMPANY PROJECT ri i. WoodWorks® SOFIWAR(FOR WOOD DESIGN June 24, 2010 13:09 b14 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2_w66 Live Partial UD 350.0 350.0 9.00 10.50 plf 3 c19 Dead Point 357 9.00 lbs 4 Live Point 1050 9.00 lbs 5 Dead Point 357 3.00 lbs 6 Live Point 1050 3.00 lbs 7 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8 Live Partial UD 350.0 350.0 0.00 1.50 plf . 9 Dead Point 165 10.50 lbs 10 c64 Snow Point 225 10.50 lbs 11 c65 Dead Point 165 1.50 lbs 12 c65 Snow Point 225 1.50 lbs 13 w67 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14 w67 Live Partial UD 350.0 350.0 1.50 3.00 plf 15 w69 Dead Partial UD 317.7 317.7 10.50 12.00 plf • 16_w69 Live Partial UD 350.0 350.0 10.50 12.00 plf 17_136 Dead Full UDL 113.7 plf 18_j36 Live Full UDL 350.0 plf 19_j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20_j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 21_j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf • 22_j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 23_j45 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24_j45 Live Partial UD 25.0 25.0 1.50 3.00 plf 25_j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26_j46 Live Partial UD 25.0 25.0 10.50 12.00 plf 27_j70 Dead Partial UD 17.0 17.0 3.00 9.00 plf 28_j70 Live Partial UD 25.0 25.0 3.00 9.00 plf 29j71 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30 j71 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point -3560 3.00 lbs WIND2 Wind Point 3640 9.00 lbs wind3 Wind Point 3620 0.00 lbs winds Wind Point -3570 12.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : tiaaate" :+r... - -.� qtr ".M "�'.. ��� � a .,'L. r -ls. ....tv • ' VS. � - ++.rv8►'/ ,- .r • la 121 Dead 2207 2207 Live 4826 4811 Total 7033 7018 Bearing: Load Comb #4 #4 Length 2.51 2.51 LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 310 fv /Fv' = 0.51 Bending( +) fb = 1735 Fb' = 2325 fb /Fb' = 0.75 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.42 = L/343 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 6557, V design = 5170 lbs • Bending( +): LC #2 = D +L, M = 16527 lbs -ft Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd =concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer: 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. COMPANY PROJECT 1 WoodWorks I SOflWARE FOR WOOD DESIGN June 24, 201013:11 b13 LC1 • Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or p11) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2_w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 c40 Dead Point 217 5.50 lbs 4 c40 Live Point 668 5.50 lbs 5_c67 Dead Point 518 5.00 lbs 6_c67 Snow Point 778 5.00 lbs 7 c68 Dead Point 573 3.00 lbs 8 c68 Snow Point 942 3.00 lbs 9 w59 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10 w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12_j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13 j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14_j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15_j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16_j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 18 b15. Live Point 389 3.50 lbs 19 b32 Dead Point 225 6.50 lbs 20 b32 Live Point 693 6.50 lbs W1 Wind Point 6590 0.00 lbs W2 Wind Point -6590 3.00 lbs W3 Wind Point 6590 5.00 lbs W4 Wind Point -6590 8.00 lbs MAXIMUM RFACTIONS (Ibs1 and BEARING LENGTHS (in) _r!'± 1s-r ` w-- ��. -- 'q.' 4t - �= - .� =--1- - s...--..- / � - nR... tea.... z_ • 'ION .s. `w�• ..... .. _„ r z ' - � .,w.s7 ---.-.1,- " - " ,�'a"C._ .,t . ..a.... X11 , � - , 3 - ,v im , -^ ' "4 � - -= x ..��.as ,..,a T_ - i ...!,."'„..:.••••••••••••-,...„........: , "= -. ...,!°'K- � ..: 1 Cr 81 Dead 2561 3033 Live 6406 3789 Uplift 3098 Total 8968 6822 Bearing: Load Comb #4 #3 Length 3.20 2.44 LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight 0815.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L /680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D +.75(L +5), V = 6822, V design = 5122 lbs Bending( +): LC #3 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C =construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. • COMPANY PROJECT i. WoodWorks® SOFIWARFFOR WOOD DESIGN June 24, 2010 13:11 b13 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pi() Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 Dead Point 217 5.50 lbs 4 Live Point 668 5.50 lbs 5 c67 Dead Point 518 5.00 lbs 6_c67 Snow Point 778 5.00 lbs 7 c68 Dead Point 573 3.00 lbs 8 Snow Point 942 3.00 lbs 9 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10 w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 1037 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12 j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14 Live Partial UD 250.0 250.0 3.50 6.50 plf 15 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16_j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 18 Live Point 389 3.50 lbs 19 Dead Point 225 6.50 lbs 20 b32 Live Point 693 6.50 lbs W1 Wind Point -6590 0.00 lbs W2 Wind Point 6590 3.00 lbs W3 Wind Point -6590 5.00 lbs W4 Wind Point 6590 8.00 lbs MAXIMUM REAC and BFAQ1Nr I FNGTHS (inl : .,cs ms s--,: _ .. r.. ._w. -- ._ '+i ... ti ..„.... ..4..; r}.,r•- �iel� .` _ r...►_.. �., ._11.,._..- -,426..:2.' -.-. -w- ..-.. -,---. 'y,..,. __ - ;, - s_".� -- la e Dead 2561 3033 Live 2699 7496 Uplift 3381 Total 5261 10529 Bearing: Load Comb #3 #4 Length 1.88 3.76 LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L /680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC #3 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output( Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 4 - 6-.)-;-1--- COMPANY PROJECT 1 WoodVVo r k s hvie 24, 2010 1319 036 LC1 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet W., 7.1 LOADS In..Pd,arpf) : Load - Typo 0latrlbutlon 9.4,16ude Location 1011 Unita Start End Start End 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 pif 2_062 Snow Partial UD 795.0 795.0 0.00 2.00 plf 3 029 Dead Partial UD 617.5 617.5 7.50 11.00 plf 1 v29 Snow Partial UD 901.2 901.2 7.50 11.00 plf 5e15 Dead Point 1436 11.00 lba 6_015 Sncw Point 2404 11.00 lb. 016 Dead Point 1389 17.00 lb. 0 016 Snow Point 2404 17.00 100 9 964 Dead Partial UD 611.5 617.5 17.00 19.00 plf 30 w64 Snow Partial UD 901.2 901.2 17.00 18.00 plf 11 - cal Dead Point 622 7.00 lba :2 061 Snow Point 1192 7.00 lba 23 062 Dead Point 622 4.00 lba :4 560: Point 1192 4.02 lba 15 Dead Partial UD 613.2 613.2 2.08 4.00 plf 16 Srmw Partial UD 795.0 795.0 2.0) 4.00 plf 17 Dead Partial UD 617.5 617.5 19.0) 20.00 plf 19 Snow Partial UD 901.2 601.2 18.0) 20.00 plf 19 Dead Partial UD 613.2 613.2 7.0) 7.50 plf 20 snow Partial UD 795.0 795.0 7 .01 7.50 plf 21 964 Dead Partial UD 47.7 47.7 17.09 16.00 pif 22 164 Live Partial UD 160.0 160.0 17.00 19.00 p10 23_129 Dead Partial UD 47.1 47.7 4.50 7.50 plf 24 _128 Live Partial VD 160.0 160.0 4.50 7.50 plf 25_162 Dead Partial VD 47.7 47.7 7.50 11.00 plf 26 _162 Live Partial UD 160.0 160.0 7.50 11.00 pal 27_349 Dead Partial UD 120.2 120.2 0.00 2.00 plf 19_040 Live Partial VD 310.0 370.0 0.00 2.00 plf 29132 Dead 24:10.0 UD 120.2 120.2 3.50 4.00 plf 30 ) 32 Live Partial UD 370.0 370.0 3.50 4.00 plf 11_333 Dead Partial UD 120.2 120.2 4.50 7.50 plf 32_133 Livs Partial UD 370.0 370.0 4.50 7.50 plf 33_334 60ad Partial u0 120.2 120.2 7.50 9.00 plf 34_134 Lila Partial UD 370.0 370.0 7.50 6.00 plf 35_115 Dead Partial UD 120.2 120.2 9.00 11.00 plf 36_135 Live Partial UD 310.0 370.0 0.00 11.00 plf 37_147 Dead Pertlal UD 120.2 120.2 11.00 17.00 plf 36_147 Live Partial UD 370.0 370.0 11.00 11.00 plf 39_167 Dead Partial UD 120.2 120.2 2.00 3.50 plf 4 061 Live Partial U0 370.0 310.0 2.00 3.50 210 41_349 Dead Partial UD 120.2 120.2 4.00 4.50 710 42_149 Llva Part1a1 U0 370.0 370.0 4.00 4.50 plf 43_163 Dead Partial UD 47.7 47.7 11.00 17.00 pif 44 _163 Live Partial UD 160.0 160.0 11.00 11.00 plf 45_165 Dead Partial DD 41.7 17.7 19.00 20.00 p11 46_165 Live Partial VD 160.0 160.0 17.00 20.00 plf 47_066 Dead Partial UD 47.1 47.7 4.00 4.50 pif 19 366 Live Partial UD 160.0 160.0 4.00 4.50 p17 49969 Dead Partial UD 120.2 120.2 17.00 19.00 plf 50 )69 Live Partial UD 370.0 370.0 17.00 10.00 pif 51_1 69 Dead Partial UD 120.2 120.2 19.00 20.00 pif 52_169 Live Partial UD 370.0 370.0 19.0C 20.00 plo 53 1, Dead Partial UD 47.7 47.7 2.01 4.00 plf 54 )72 Live Partial UD 160.0 160.0 2.0C 4.00 plf 55_1 Dead Partial U0 47.7 47.1 0.0C 2.00 plf 56_173 Live Partial UD 160.0 160.0 0.00 2.00 plf 141 Hind Point 5950 0.00 Iba N2 wind Point -5950 4.00 lba 03 Kind Point 5950 11.00 lba 144 Mind Point -5950 17.00 Iba MS Mind Point 5950 20.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : Deed 1,401 1372 7:0e 19555 12172 7:01.1 19555 19199 gearing: Lon( Co D 91 45 Length 5.91 5.35 Glulam -Bat., West Species, 24F -V8 DF, 5. 118x22 -1/2" Self-magi* o12955 p0 included In bads: Lateral support taps 92* bottom. at supports: Analysis vs. Allowable Stress (psi) and Deflection (In) ...mg Nos mule: Criterion Analysis Value Denial, Value Analysis /D..1,1 Shear 1v . 192 Fv' . 305 f7 /F0 ■ 0.60 9.730,g(11 fb . 2392 FD' ■ 2604 I0 /Fb' - 0.92 Live Defl'n 0.40 . 1.0595 0.67 . L /360 0.60 Total Defl'n 0.84 ■ L/295 1.00 . L/240 0.94 ADDITIONAL DATA: FACTORS: F/E CO C Ct CL CJ Cfu Cr C1rt Note. Cn LC4 90' 265 1.15 1.00 1.00 1.00 1.00 1.00 3 60'1 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 E 1.8 .1111on 1.00 1.00 - - - - 1.00 - - 3 102,' 0.85 .1111:, 1.00 1.00 - - - - 1.00 - - 3 Shear : LC 13 ■ 01.7541.151, V - 17361, V des19, . 13962 lba 9970104( LC 13 ■ 09.7511.951. M ■ 96199 006-15 Deflection: LC 13 . 01.75(1.15) EI. 8756006 10-in2 Total 001.0667, . 1.50>0ea0 Load D0010ctl001 0 Live Load Deflection. ID■d9ad 1.21v. S■anow 14.wind l■iopa:t C - :onatru :tlon cld.co,70,s:atadl (All L are listed in the Analysis cut0at1 Load combination.: I00 -I01 DESIGN NOTES: 1. Please verify pad the 092469 aM0bn ands as appropriate for your application. 2 Gldarn design values are for materials conforming to AITC 117 -2001 mad namIIxDaad in eecoranes 961h ANSVAITC A150.1 -1992 3. GLULAM lad a echo/ breadth it actual depth. • 4. Wan Beam shall be Wendy supported according to the provisions of 605 Clause 3.3.3. 5. GLULAM tearing length based on sm6er of Fep(9eruion), Fep(rnng n). 4 - ,-_, 3 -401 COMPANY PROJECT i Wood \AIorks ® Aar 21, 2010 1119 b341.C2 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet SAN 7.1 LOADS IIbs. pad,or P88) : • Load Type Distribution Magnitude Location I1t1 Units Start End Start End 1_w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 2 Snow Partial UD 795.0 795.0 0.00 2.00 plf 3_ ✓29 Dead Partial UD 617.5 617.5 7.50 11.00 pif 029 Snow Partial UD 801.2 801.2 7.50 11.00 plf 5 Dead Point 1436 11.00 lba 6 015 Snow Point 2404 11.00 lbs 7_016 Dead Point 1399 17.00 lbs 8_016 Snow Point 2404 17.00 16. 9 764 Dead Partial UD 617.5 617.5 17.00 18.00 pif 1 Sncw Partial UD 901.2 801.2 17.00 19.00 pif 11_061 Dyad Point 622 7.00 lb. 12 061 Snow 90106 1192 7.00 lbs 13 Dyad Point 622 4.00 lbs 11 062 Snow Point 1192 4.00 lbs 15 063 (Wad Partial UD 613.2 613.2 2.00 4.00 p11 16 Snow Partial UD 795.0 795.0 2.00 4.00 plf 17 Dead Partial VD 61 611.5 11.00 20.00 plf 19765 Snow Partial UP 601.2 801.2 18.00 20.00 plf 19 Dead Partial UD 613.2 613.2 7.00 7.50 pif 20 Snow Partial 00 795.0 795.0 7.00 7.50 pif 21_264 Dead Partial U0 47.7 47.7 17.00 19.00 pif 22_164 Live Partial UD 160.0 160.0 17.00 19.00 plf 23_329 Dead Partial U0 17.7 47.7 4.50 7.50 p11 24_329 LSVa Partial 00 160.0 160.0 4.50 7.50 p11 25_362 Dead Partial UD 47.7 47.7 7.50 11.00 pif 26_762 Live Partial UC 160.0 160.0 7.50 11.00 p11 27_149 Dead Partial UD 120.2 120.2 0.00 2.00 plf 26_748 Live Partial UD 370.0 370.0 0.00 2.00 plf 29_732 Dyad Partial UD 120.2 120.2 3.50 4.00 plf 30_1.12 Live Partial UD 370.0 370.0 3.50 4.00 pif 31_133 Dead Partial UO 120.2 120.2 1.50 7.50 pif 32_133 Live Partial UD 370.0 370.0 4.50 7.50 pif 33_134 Dead Partial UD 120.2 120.2 7.50 9.00 pif 34_334 Live Partial ID 370.0 370.0 .50 9.00 pif 3 735 Dead Partial 00 2:0.2 120.2 9.00 11.00 pif 36_135 Live Partial 00 370.0 370.0 9.00 11.00 pif 37_747 Dead Partial U0 :20.2 120.2 11.00 17.00 pif 39_747 Live Partial UD 370.0 370.0 11.00 17.00 pif 39_767 Dead Partial U0 120.2 120.2 2.00 3.50 pif 40_167 Live Partial U0 370.0 370.0 2.00 3.50 p11 41_349 Dead Partial UD 1:0.2 120.2 4.00 4.50 pif 12 Live Partial UD 370.0 370.0 4.00 4.50 plf 43_163 Dead Partial UD 47.7 47.7 11.00 17.00 plf 44_163 Live Partial UD 160.0 160.0 11.00 17.00 pif I 165 Dead Partial 00 17.7 47.7 19.00 20.00 plf 46_165 Live Partial 0D 160.0 160.0 18.00 20.00 plf 47 766 Dead Partial U0 17.7 47.7 4.00 1.50 plf 48_106 Live Partial UD 160.0 160.0 4.00 1.50 plf 49_769 Dyad Partial UD 120.2 120.2 17.00 19.00 pif 50 168 L1va Partial UD 370.0 370.0 17.00 19.00 pif 53 369 Dead Partial UD 120.2 120.2 19.00 20.00 pif 52_369 Live Partial U0 370.0 370.0 17.00 20.00 pif 53 372 Dead Partial 00 4 47.7 2.00 4.00 plf 54 772 Live Partial UD 160.0 160.0 2.00 4.00 pif 55_773 Dead Partial UD 47.7 47.7 0.00 2.00 p11 56_773 L1va Partial UD 160.0 160.0 0.00 2.00 pif 61 Wind Point -5950 0.00 lb. 142 Wind Point 5850 4.00 lbs 03 Wind Point -5950 11.00 168 W4 01nd Po1nt 5950 17.00 lbs M5 Wind Point -5950 20.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : • Dead M1i os 7327 Live 9956 9978 Total 17361 17305 Bearing: 1] Load Cora 43 0.19 Length 5.:1 Glulam -BaI., West Species, 24F -V8 DF, 5- 1/8x22 -112" Se0.welMS of 28.00 pd Included In beds: Lamral support law fud, bodoms e1 mopeds: Analysis vs. Allowable Stress (psi) and Deflection (In) using N052005: Criterion Analysis Value Deal0n Value Ana3v.1. /D..10n shear 183 305 1v /PV' . 0.60 0.72179].] Lb . 23 P0' ■ 2604 fb /Fb' . 0.92 Live Oe11'n 0.41 ■ L /591 0.67 - 1./360 0.61 Total Oe11'n 0.94 . L/294 1.00 ■ L/240 0.94 ADDITIONAL DATA: FACTORS; F/6 C0 C CL CV Cfu Cr clrt Notes Cn LC. Fv' 265 1.15 1.00 1.00 1.00 1.00 1.00 3 80'+ 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - E0p' 650 1.00 1.00 - - - - 1.00 - - - E' I.9 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.95 million 1.00 1.00 - - - - 1.00 - - 4 Shear r Lc 83 . D..751L.S), V - 17361, V design . 13862 lbs Es1 /8 LC 03 . 0 n 96109 lbs-ft Deflection: LC 84 . 11.75(1.6 +WI E/. 97568106 lb -1n2 Total Deflection . 1.501Cead Wad Deflection) • Live Load Deflection. IO.de.d L.11'+e 0 ■0n0V W.2In2 1.1rpact C■cons0000610r. 01.0.cen7900:.1edl (A11 LC's are listed In the Anai/als output) Load 0ambinatltns: ICC -09C DESIGN NOTES: 1 . Mama verify that IM default d0001 Ton traits are appropriate for yc r opp c.Oon. 2. Gluten design seam are for mMVfals ro fo n ing to ARC 117.2001 and manufactured in accordance with ANSVARC A193.1 -1992 3. GLULAM: Dag a actual breadth 0 actual dep01. 4. Gpdarn Beams shad be Mealy supputed according to the provisions of NM Claude 3.3.3. 5. GLULAM: bembp length based on =ado of Fcp0ertoion), Fcp(mns n). / CP7 COMPANY PROJECT I Wood VVor ks® June 24, 2010 1320 1134 LC2 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Myer 7.1 LOADS i 1Ns Pd, qf) Load Type Distribution Magnitude Location Eft] Units Start End Start End 1 w62 Dead Partial U0 613.2 613.2 0.00 2.00 plf 2 062 Snow Partial UO 795.0 795.0 0.00 2.00 plf ] w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 4 Snow Partial UD 801.2 801.2 7.50 11.00 plf 5 Dead Point 1436 11.00 lba 5015 Snow Point 2404 11.00 lba 7 Dead Point 1 17.00 064 d .16 Snow Point 2404 17.00 00. 9 Dead Partial U0 617.5 617.5 17.00 18.00 pit 15_064 Snow Partial UD 901.2 601.2 17.00 16.00 plf 11 c61 Dead Point 622 7.00 lbs 12 c61 Snow Point 1192 7.00 lbs 13 762 Dead Point 622 4.10 lbs 14 Snow Point 1192 1.10 lbs 15 Goad Partial UD 613.2 613.2 2.00 4.00 plf 16:w63 Snow Partial UD 795.0 795.0 2.00 4.00 plf 17 v65 Dead Partial U0 617.5 617.5 10.00 20.00 plf 15065 Sntw partlsl UD 801.2 901.2 10.00 20.00 plf 19_101 Dead Partial UD 613.2 613.2 0.00 7.50 pit 20 w71 Snow Partial DD 795.0 795.0 7.00 7.50 Of 21 ]64 Dead Partial U0 47.7 47.7 11.00 18.00 plf 22_164 1.1v. Part /a1 U0 160.0 160.0 17.00 18.00 plf 23_129 Dead Partial UD 47.7 47.7 4.50 7.50 p11 14_125 Live Partial UD 160.0 160.0 4.50 7.50 pit 25_162 Goad Partial U0 47.7 47.7 7.50 11.00 plf 26 _162 Live Partial UD 160.0 160.0 7.50 11.00 plf 2l )48 Dead Partial U0 120.2 120.2 0.00 2.00 plf 28_140 Live Partial UD 370.0 370.0 0.00 2.00 plf 29_132 Dead Partial UD 120.2 120.2 3.50 4.00 plf 30_132 Live Partial UD 370.0 370.0 3.50 4.00 plf 31_133 Dead Partial 110 120.2 120.2 4.50 7.50 plf 32_133 Live Partial U0 370.0 370.0 4.53 7.50 plf 33_134 Dead Partial UD 120.2 120.2 7.51 8.00 plf 34_134 Live Partial OD 370.0 310.0 7.51 8.00 plf 35J35 Dead Partial UD 120.2 120.2 9.00 11.00 plf 36 _135 L1va Partial UD 370.0 370.0 8.00 11.00 plf 147 Dead Partial U0 120.2 120.2 11.00 17.00 plf 39_ Live Partial UD 370.0 370.0 11.00 17.00 plf 39_167 Daad Partial UD 120.2 120.2 2.00 3.50 plf 4 167 Live Partial UO 370.0 370.0 2.00 3.50 plf 41_149 Dead Partial UD 120.2 120.2 4.00 4.50 plf 42_149 Live Partial UD 370.0 370.0 4.00 4.50 Of 43_163 Dead Partial CD 47.7 47.7 11.00 17.00 plf 44_163 Live Partial UD 160.0 160.0 11.00 17.00 plf 45_165 Dead Partial UD 47.1 47.7 18.00 20.00 plf 46_165 Live Partial UD 160.0 160.0 19.00 20.00 plf 47_166 Dead Partial UD 47.7 41.7 4.00 4.50 pit 46_196 Live Partial VO 160.0 160.0 4.00 1.50 plf 49_169 Dead Partial UD 120.2 120.2 17.00 19.00 plf 50_160 Live Partial UD 370.0 3 17.00 18.00 plf 51_169 Dead Partial UD 120.2 120.2 15.00 20.00 plf 52_169 Live Partial UD 310.0 370.0 16.00 20.00 plf 53_172 Dead Partial VD 41.7 47.7 2.00 4.00 plf 54_172 Live Partial UD 160.0 160.0 2.00 4.00 p10 53173 Dead Part1a1 UD 47.7 47.7 0.00 2.00 plf 56_173 Live Partial UD 160.0 160.0 0.00 2.00 plf N1 Wind Point -5850 0.00 lba Mind Point 5850 4.0C lbs v0 Mind Point -5950 11.0C lbs M4 Mind Point 5050 17.00 lbe 65 _Nino Paint -5950 20.00 lba • MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (In) : • Dead s - $7 Live 9956 9979 Total 17261 ]05 gearing: Lend Comb 23 Length , 5.21 5.19 Glulam -Bal., West Species, 24F -V8 DF, 5- 118x22 -1/2" Self-weight S.16.6910940(26.50 p0 included In Inds: UMW 6uppdt lops sue, helium at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) Criterion Analysis Value Design Value Analysis /Da.i70 Shear 00 - 102 80' - 305 !v /Fo' - 0.60 Bending(*) fb - 2392 fb' - 2604 !b /Fb' - 0.92 Live Defl'n 0.41 - L /591 0.6 - L /360 0.61 Total Defl'n 0.94 - L/294 1.00 - L /240 0.94 ADDITIONAL DATA: FACTORS: 0/1 CD CM Cc CL C! Cfu cr Cfrt notes Cn LCI Dv' 265 1.15 1.00 1.00 1.00 1.00 1.00 1 00', 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 Cop' 650 1.00 1.00 - - E' 1.6 million 1.00 1.00 - nein' 0.95 million 1.00 1.00 - Shear • LC 13 - D,.7511.401, V - 17301, V design - 13902 160 Sending:4): IL 13 - 04.051,61, M - 86189 lbe -!t Deflection: LC f4 • 0o. 1I- 9756006 lb -in2 Total Deflection - 1.50(0aad Load Deflection) 4 Live Load Deflection. 113-1.ad 1-11ve 5-anew -wind I-145•16 C-c0nntruction 014.cen0entrat9]) :011 LC'o are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Phase verity PM Um default dentOkn emits are appropriate for your •pp6caSN 2. Gldam design vales an for maleda1. conforming MA1TC 117 -2001 and m.mRxLVed In macadam with ANSVAITC 4190.1 -1992 3. GLULAM. bad • actual breadth 4 actual depth. 4. Cistern beams WS be Iatma9r supported according to Ue goASbns of 905 Clause 3.3.3. 5. GLULAM: beam g length based m .rmlbr of Fcp(enslml, Fop(con9pn). COMPANY PROJECT fl WoodWorks SOfIWAR6FORWOODOESIGN June 24, 2010 13:23 b34 LC1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psi, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 3 w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5_c15 Dead Point 1436 11.00 lbs 7_c16 Dead Point 1389 17.00 lbs 9 w64 Dead Partial UD 617.5 617.5 17.00 18.00 plf 11 c61 Dead Point 622 7.00 lbs 13 c62 Dead Point 622 4.00 lbs 15 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19 w71 Dead Partial UD 613.2 613.2 7.00 7.50 plf 21 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23 j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25_j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 27_j48 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29 j32 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31 Dead Partial UD 120.2 120.2 4.50 7.50 plf 33_j34 Dead Partial UD 120.2 120.2 7.50 8.00 plf 35 j35 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39_j67 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41 j49 Dead Partial UD 120.2 120.2 4.00 4.50 plf 43 j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45_j65 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47_j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49_j68 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51j Dead Partial UD 120.2 120.2 18.00 20.00 plf 53 _ j72 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55_j73 Dead Partial UD 47.7 47.7 0.00 2.00 plf W1 Wind Point 5850 0.00 • lbs W2 Wind Point -5850 4.00 lbs W3 Wind Point 5850 11.00 lbs W4 Wind Point -5850 17.00 lbs W5 Wind Point 5850 20.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : k 1a 201 Dead 7189 6822 Live 156 302 Total 7238 7018 Bearing: Load Comb 82 62 Length 2.17 2.11 Glulam -Bal., West Species, 24F -V8 DF, 5- 1/8x22 -1/2" Self- weight of 26.55 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 74 Fv' = 238 fv /Fv' = 0.31 Bending( +) fb = 950 Fb' = 2038 fb /Fb' = 0.47 Live Defl'n negligible . Total Defl'n 0.41 = L /585 1.00 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LCH Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1. Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC 41 = D only, V = 7189, V design = 5674 lbs . Bending( +): LC 61 = D only, M = 34217 lbs -ft Deflection: LC 61 = D only ET= 8756e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 14 -C-)l-f COMPANY PROJECT 1 I WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 13:22 b34 LC2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, pst, or p18) : Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 3w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5_c15 Dead Point 1436 11.00 lbs 7 c16 Dead Point 1369 17.00 lbs 9w64 Dead Partial UD 617.5 617.5 17.00 18.00 plf • 11 c61 Dead Point 622 7.00 lbs 13 Dead Point 622 4.00 lbs 15 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17 w65 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19 w71 Dead Partial UD 613.2 613.2 7.00 7.50 plf 21_j64 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23 j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25 Dead Partial UD 47.7 47.7 7.50 11.00 plf 27_348 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29j32 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31_j33 Dead Partial UD 120.2 120.2 4.50 7.50 plf 33 334 Dead Partial UD 120.2 120.2 7.50 8.00 plf 35 335 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39 367 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41_j49 Dead Partial UD 120.2 120.2 4.00 4.50 plf 43_363 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45_365 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47_j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49 368 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51_369 Dead Partial UD 120.2 120.2 18.00 20.00 plf 53_j72 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55_373 Dead Partial UD 47.7 47.7 0.00 2.00 plf . W1 Wind Point -5850 0.00 lbs W2 Wind Point 5850 4.00 lbs W3 Wind Point -5850 11.00 lbs W4 Wind Point 5850 17.00 lbs W5 Wind Point -5850 20.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : A 201 Dead 7189 6822 Live Total 7189 6822 Bearing: Load Comb 81 61 Length 2.16 2.05 Glulam -Bal., West Species, 24F -V8 DF, 5- 118x22 -1/2" Self- weight of 26.55 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 74 Fv' = 238 fv /Fv' = 0.31 Bending( +) fb = 950 Fb' = 2038 fb /Fb' = 0.47 Live Defl'n negligible Total Defl'n 0.41 = L /585 1.00 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC fit = D only, V = 7189, V design = 5674 lbs Bending( +): LC 81 = D only, M = 34217 lbs -ft Deflection: LC 81 = D only EI= 8756e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I =impact C= construction CLd= concentrated) (A11 LC's are listed in the Analysis output) . Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSUAITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4 - C1'4 2_ Harper Project: ' a Houf Peterson Client: Job # " Righellis Inc. ENGINEERS • PLANNERS Designer: Date: Pg. # LANDSCAPE ARCRirECTS•SURVEYORS Wdl := 10. lb 8•ft•20•ft W = 1600-lb eck `� —Si9�, ft 2 Seismic Forces Site Class =D Design Catagory =D W p W dl 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z'= 9 Height of Component h := 32 Mean Height Of Roof F := 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F := 1.722 Vel -based site coefficient @ 1 s -period (Table 1613.5.3(2), 2006 IBC) Sm := F Sm := Fv'S 2•S S := Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a := 1.0 R := 2.5 (Table 13.5 -1, ASCE 7 - 05) 4a • r z ll F := p I 1 + 2 h W RP EQU. 13.3 - 1 Fp := 1.6•Sd EQU. 13.3 - F pmin : = • EQU. 13.3 - 3 if(F > Fpmax,Fpmax,if(Fp < Fpmin,Fpmin,Fp)) F = 338.5171•lb Miniumum Vertical Force 0.2• S ds' W dl = 225.6781-lb :.., Harper Project: • Houf Peterson Client: Job # Righellis Inc. ENGINEERS .• PLANNERS Designer: Date: Pg. # LANOSCAPE ARCNITECTS•SIIRVEYORS Wdl 10• lb 8•ft•20 -ft Wdl = 1600-lb ft Seismic Forces Site Class =D Design Catagory =D WP : Wd I '— 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. Ss • = 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F := '1.123 Acc -based site coefficient @ .3 s -period (Table 1613.5.3(1), 2006 IBC) F := 1.722 Vel -based site coefficient @ 1 s -period (Table 1613.5.3(2), 2006 IBC) S Fa S Smi := F S1 2 • S ms S := 3 Max EQ, 5% damped, spectral responce acceleration at short period Exterior Elements & Body Of Connections ap • •= 1.0 2.5 (Table 13.5 -1, ASCE 7 -05) • 4a p •Sds' z FP : RP 1 + 2• h • Wp EQU. 13.3 -1 Fpmax 1.6•Sd EQU. 13.3 -2 F pmin • EQU. 13.3 - F es := if(F > F pmax , Fpmax, if(F < Fpmin, Fpmin, F F = 338.5171.lb Miniumum Vertical Force 0.2•Sds•Wd1= 225.6781•lb Cl H 0 Harper H P Houf Peterson COMMUNICATION RECORD Righellis Inc. To ❑ FROM ❑ MEMO To FILE ❑ ENt:INCED, • FLnIIALNJ L•Iaosr r. nKCni--•a • -• -- ul+� PHONE NO.: PHONE CALL: ❑ MEETING: ❑ z 'U m P1 21 . i O L_ m 11 a tp —4 I 1 i ll • 'l UJ IS :6— � so z ti S5 0 ?is 11 (— V 11. N > li m 4# 1 Cil v l N N. T v oro L. O co O r n r rr N. t 0 BY ikfi (531 .. jf i \ DATE: JOB No.:0 PROJECT: . . RE: De_c,\4- 1)■ (;Pirl:c;?_( Cr;'9Nc\i . AL 0 0 E. g 0 b ePri:›C.. Vry (IL, C6Mirrx) • l i j 0 ce < 0 = • . W 0 IX a. n a a . LAPIAC. ilm■ • -1_ " ( 2bo.ra, ) ------- -F). o i anl--5 = r /'\ pLP . . 0 1 COIC . i C spac ft-15 \be 111.3 ee n n.o, V-, ,_ 3 o • P .,; cacpck (4) I lx.. o g p k ut i p, to. Tua. \ • ----------.,-- . . . LEsa-ic.v... ogs\c--,Ni , . i ( ! 1 i 4 0 , - -O( S CD5 X 4 02— 0 ci co 0 tu 1 ••• 1 r e v2 • . C T l' ` 1 _ wip.t ‘ 4o,cs z 1:f:1 a 1 evco,Qt• )-.u too & • ----- 30'1 # C = a'61 4tirt- S\or\pscs-c\ 3D5'14- x41-2 e- 12." 0,c, ---.-- 440 iq-61C-Ka BY, DAT pV11) atji‘i E: \Off JOB NO., - - • . . . • ' PROJ ECT: RE: - Deek(r.„, IDOS Confy bola._ . . 0 0 . .. _J ( .1.... : • 0 E `1 0 J ( =. aoOlk( 4.?,•" l• 0 , m < .0 . • .—_ 8 i*‘/NI• . u z w 0 z 1-7 :C - 6 -Ow ai-too 0 0 E - u__ 511(y\c 1-1Du4 I ,). To " , cf , 5:_ tfy 2 O ' : X 0 4. Z w 0 6 O r LoPt C.n,c•- o, :' I- Q_ M... acoit (4(.0" ) . -zoo tr > -:-. BOW 4t-tki d 1 T-= C 240)6 e.. 9;4 00 -', I+Do4 4 3 0 ti G I ... ., " . ti A 7' -'*. z.. g64 2:; • . Rli" L ---T- /q- (.1c4-3-. Harper COMMUNICATION RECORD ':: I Hoof Peterson Righellis S 0 Inc. To p FROM MEMO TO FILE 0 EFIGINEEpS • * i+LAIWER LANC,CAPI-: ARCHITECTS•SURVC,;ii: ---- PHONE NO • PHONE CALL: 0 MEETING: 0 M - 0 co m M 75 2 m 0 :-1 eTh F_, 4..../ 11 cf.. 0 11 3) - (r ..c. ....c --0 0 0 . Q , ...., ..r. ( 8 (4 1 d . di ...._.../ ....,, 1 6 W. -. A., ,., r !!, It i ..,!, . 1 ..... (3"- . r) -i m I c s 1 , , . . _ - 1 , c, . z P i . 1 • • narper 4 � �' Houf PeterSOn COMMUNICATION RECORD Righellis Inc. To 0 FROM ❑ MEMO TO FILE 0 EOGINEEiC.■ • PLA!!':ERS LA:DSC1PE in'CHITECTS•SU?VEYUR '-" — PHONE NO.: PHONE CALL: fl MEETING: ❑ . 77 -o w PI A Q.. k , m g . • 3 R7' .., O -0,,,,, 1 N mins '...‘i 1_ I Pi ut 0 A C i . • 1 I r 1 0 0 r . COMPANY PROJECT Ill Wood Works® , . SOWWARE FOR WOOD DESIGN June 8, 2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Point 2.50 200 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : ..: .; - :. ...: - ,.::::.::,:.., .--',..- ,-,-..- 1-..,„- - ..,..i.:„..,t.; :. ....,,: ::-..--.‘ :. .. , ,..,: ..,:: icr 51 Dead Live 100 100 Total 104 104 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams is 1/2" for exterior supports Lumber-soft, Hem-Fir, No.2, 2x6" Self-weight of 1.7 plf included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) ft = 405 Pb' = 1048 fb/Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 ' - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 '1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending(+): LC #2 = L, M = 255 lbs-ft Deflection: LC #2 = L El = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 1 COMPANY PROJECT eft 00 or s SOFYWARE FOR WOOD DEVON June 8, 2009 16:27 Hand Ra112 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location (ft] Magnitude Unit tern Start End Start End LIVE Live Full UDL 50.0 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : .-- kr 54 Dead Live 125 125 Total 129 129 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams is 1/2* for exterior supports Lumber-soft, Hem-Fir, No.2, 2x6" Self-weight of 1.7 plf included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NOS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 256 Pb' . 1048 fb/Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.11 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 1.00 1.00 - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 129, V design = 106 lbs Bending(+): LC #2 = L, M = 162 lbs-ft Deflection: LC #2 = L El = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. g........65.1 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 22, 2010 13:57:56 Concept Mode: Reactions Base of Structure View Floor 2: 8' te 1056 49' 6" u 1600 L . - : : 600 L. ! . . : • . 4r Q .. -1U1 619 D 619 D 4o--o " IUVO - - : - - " ,.. - - - -- - - - - -. - -- .. - - -- 44. -b a9- 4..5 y o " .. - ... .:. .. _ _ -. - - 42 3f •: .; ' if [ • •: : " . ". _. .. .- 41 . -b ab 1193 L15312404 L. L • . sa -0 4 : ' 625 01059 11439 D 1394 D - b°•-o• st -b . :: . Ii : 315L: .: • ss b b tits • :.: 358 D: • aL b 0.5 `.; 315 L' . - . . u' b' 0 i • 100 L - \ ' .: 358 D .. - gi b n �� • I'y 96 D- [s -b ors *. �L b I/ - _ 74(847 . - 5611 L 756 L. 4 - . : " in -- : :': L - • r o • 4!(452 D - 5546 D . . . 25L � D i : : .: n 1 u -b .. 14 625 .: -_. _ _ IU - b 5 /2 2030 '� n • ey 908 E - -- -- - : - .. - - . .. 14,51:00 b - -- -105 - 307 9 - L+\ . - - . - -- . i • 46 D iu b • 041... ' +245 L---.... r50 L - b '" 3 D` .: 1 O:74I d nu 599 r 87 L 8 7 L- : --- . - . 0-0 .. ...5 2 09 LD D • 1963 D: ; 1963 D -- • . • , :.. s•-b 1540 -ias c b .. ... _ 112363 D I -b • • —1 7812613 8 D, D 106 0: u -b .BB1B.B BCC CC CC CICCC CC CCCC C CCC CCICCCD DDD D DD DIDDD:CD DDDD 0 D DD C.D'DD DEE E E E EE'EFEEEEEIE EEEEEEELEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0 (1 - 1',1:1 , 1f111:1112(2 22:2 4A:4 5 :5 :5∎5.' 545 5(5;6(6 :6 6'.6(6 :61657(7'77.7 7' -6" \ oOTJ E LIs • . — Vec NIT W . • . . 4,Ff . WoodWorks® Sizer • SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 22, 2010 13:57:37 Concept Mode: Reactions at Base of Structure View Floor 2: 8' � � - -- - - . • . .. . - _ - - - - - _ _ -- 4t$ 9 ft ; 600L : VVV -1600 4 / -0 • tui� 619D 6190 . v5 - b iVU 44 -a a9. 43 -a • &/ - :i .: : . ' ,. - -- _. 41 -a . ao 132741_ 3304 L . • :. : __ 4 sa 0 4 7153 D- -; - - - - - 7072 D.. . - - 3u-n l. .. : - -- `-- :- -' . : - - - - " -- -- - - - .3-0 . • u u� : 315 L s n un.. 358 D; JG a C53 1 - n : - --- ---_ . -_ .- - - -- - - • - - - - - - - .__- -- . . - u3 315E Lb -0 • L/ - a ' oz 358 D� .. _ .. to - �3 1 100 L ` L5-b • '5U- 96 D- _ - . L4 - [,.3-0 11 74(84 611 L ' r 56 L �u -AD . ! 0 4!(452 D 5546 D � S L � D t Y -a (3 14 _ 625 L, : 5D - _ - . . I( • !L 203 D-.' --- - - -. - - - . . 10.-0 ! 1 5 D - 1� -a (U- --- .. - • _ -- _ 14 - �� 1°5L. 908 L -.. _. .. 'IL 307 D ' a( 4 6D ∎1 -a e' pa_ -245 L ' 3D _ . 50 L ,/_.. - na as 1 3 74 D e �.. °J 599 L ei♦ 2587 L - 587 L a • aU ) .: _209 LD8 D 11963 D -; : .;-: • .. - 1963 D- = -.- - -- -- .. _- • •• - - - - - - 4 -0 :; 1541 : . -iu u : ca.. • a • r„� ALL :.... 725 L219 D.... . .: - . ' ■ -a • --1 78 D7 DD : 617 D D V -a BBtB.BBC.CCC C CCC}CCC CC CCCC C CCCCCI CD DD D D DDit►DDD CD DD DD D D DD CD'DD DE E E E E EEEIEEEIEEIE E+EEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 1 :1 :1 313(4(4 :4 414'515'5:5 :5 E:6:6-6?6t6T6t6S7(77 :7 :7 -6" • • ¼ OOT 1 t'J C1 I.Ptt OUT 4..._ Fi_ : n lBenti' Harper Houf Peterson Righellis Inc. C'w►ent Date: 6/24/2010 1:41 PM I system: English File name: O:UiHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \F1.ftd\ Design Results Reinforced Concrete Footings GENERAL INFORMATION: Global status Warnings Design Code ACI 318 -05 Footing type Spread Column type Steel Geometry 12 in r TTT • I 4 4.25 ft ' I • • 't. 'a` <% 4.25 ft 4.25ft Pagel Length 4.25 [ft] Width 4.25 [ft] Thickness 1.00 [ft] Base depth 1.50 [ft] Base area 18.06 [ft2] ' Footing volume 18.06 [ft3] Base plate length 5.50 [in] Base plate width 5.50 [in] Column length 5.50 [in] Column width 5.50 [in] Column location relative to footing g.c. Centered Materials Concrete, fc 3.00 [Kip /in2] Steel, fy 60.00 [Kip /in2] Concrete type Normal Epoxy coated No Concrete elasticity modulus : 3122.02 [Kip /in2] Steel elasticity modulus : 29000.00 [Kip /in2] . Unit weight 0.15 [Kip /ft3] Soil Modulus of subgrade reaction 200.00 [Kip /ft3] Unit weight (wet) 0.11 [Kip /ft3] Footing reinforcement Free cover : 3.00 [in] Maximum Rho /Rho balanced ratio : 0.75 Bottom reinforcement // to L (xx) . 6-#4 @ 9.00" Bottom reinforcement // to B (zz) . 6-#4 @ 9.00" (Zone 1) Load conditions to be included in design Service loads: SC1 DL S1 DL S2 DL +LL S3 DL +0.75LL Design strength loads: DC1 1.4DL D1 1.4DL D2 1.2DL +1.6LL Loads Condition Axial Mxx Mzz Vx Vz [Kip] [Kip *ft] [Kip *ft] [Kip] [Kip] DL 5.55 0.00 0.00 0.00 0.00 LL 15.61 0.00 0.00 0.00 0.00 RESULTS: Status Warnings - Insufficient development length, Section 21.5.4.1 Soil.Foundation interaction Allowable stress 1.5E03 [Lb /ft2] Min. safety factor for sliding : 1.25 Min. safety factor for overturning 1.25 Page2 FLt Controlling condition S2 Condition qmean qmax Amax Area in compression Overturning FS [Lb /ft2] [Lb /ft2] [in] [ft2] ( %) FSx FSz slip S2 1.38E03 1.38E03 0.0826 18.06 100 1000.00 1000.00 1000.00 Bending Factor 0.90 Min rebar ratio 0.00180 Development length Axis Pos. Id Ihd Dist1 Dist2 . [in] [in] [in] [in] • zz Bot. 20.11 7.04 19.75 19.75 xx Bot. 20.11 7.04 19.75 19.75 Axis Pos. Condition Mu 4)*Mn Asreq Asprov Asreq/Asprov Mu/(4)*Mn) [Kip *ft] [Kip *ft] [in2] [in2] zz Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 I I zz Bot. D2 13.38 45.76 1.10 1.20 0.918 0.292 la} I xx Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 I I xx Bot. D2 13.38 43.06 1.10 1.20 0.918 0.311 I `I I Shear Factor 0.75 Shear area (plane zz) 3.10 [ft2] Shear area (plane )o) 2.92 [ft2] Plane Condition Vu Vc Vu /(4)*Vn) [Kip] [Kip] xy D2 8.99 46.09 0.260 kli ' I yz D2 8.68 48.88 0.237 IM I Punching shear Perimeter of critical section (b... : 4.67 [ft] Punching shear area 3.31 [ft2] Column Condition Vu Vc Vu /(4)*Vn) [Kip] [Kip] column 1 D2 29.25 104.29 0.374 I` ' I Notes Page y _- * Soil under the footing is considered elastic and homogeneous. A linear soil pressure variation is assumed. * The required flexural reinforcement considers at least the minimum reinforcement * I design bending moment is calculated at the critical sections located at the support faces * Only rectangular footings with uniform sections and rectangular columns are considered. *The nominal shear strength is calculated in critical sections located at a distance d from the support face * The punching shear strength is calculated in a perimetral section located at a distance d/2 from the support faces * Transverse reinforcement is not considered in footings * Values shown in red are not in compliance with a provision of the code *gprom = Mean compression pressure on soil. *gmax = Maximum compression pressure on soil. *Amax = maximum total settlement (considering an elastic soil modeled by the subgrade reaction modulus). * Mn = Nominal moment strength. * Mu /(4 *Mn) = Strength ratio. * Vn = Nominal shear or punchure force (for footings Vn =Vc). * Vu /(4)*Vn) = Shear or punching shear strength ratio. Page4 /1 4 G Beam Shear bcoi := 5.5•in (4x4 post) d:= tf -2•in := 0.85 b := Width b = 36•in V :_ 4 • f psi•b•d V = 16.32-kips 3 Vu := Qu 2 col) b V„ = 7.83-kips < V = 16.32-kips GOOD Two -Way Shear bs := 5.5•in Short side column width bL := 5.5-in Long side column width b := 2•(bg + d) + 2•(bL + d) b = 54 -in R : =1.0 _ ( 4 + f 8 •b•d V = 48.96 kips 3 3•p Vnmax := 0.2.66• f. psi -b•d Vnm,, = 32.56-kips ,V,,,,,4„:= 9u•[b2 – (bco1 + d)2] V = 15.88-kips < Vnmax = 32.56-kips GOOD Flexure 2 Mu 9u' I b – bcol r 11 b M = 4.9841-kips 2 J l A,:= 0.65 2 1:--- b-d S = 0.22241 6 F := 5.0• f F = 162.5 -psi M f := — f = 155.47•psi< F = 162.5 -psi GOOD S lJse a 3' -0" x 3' -0" x 10" plain concrete footing Plain Concrete Isolated Square Footing Design: F2 f := 2500 Concrete strength fy : 60000-psi Reinforcing steel strength E 29000•ksi Steel modulus of elasticity "Yconc 150.pcf Concrete density Ysoil := .100rpcf Soil density gall .1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Total 2659-lb Pd1:= Total& Total11:= 7756 -lb P11 := Totalll P := Pdl + Pll P t l = 10415-lb Footing Dimensions tf 10•in Footing thickness Width := 36• in Footing width A := Width 2 Footing Area net cla1l — tf' gnet = 1375•psf Pt' Areqd g4et Aregd = 7.575•ft 2 < A = 9•ft GOOD Widthreqd := IAregd Width = 2.754ft < Width = 3.00 ft GOOD Ultimate Loads ,:= 1 'dl + tf'A"lconc 1 := 1.4 Pdl + 1.7•P11 P„ = 18.48-kips P qu A qu = 2.05•ksf Plain Concrete Isolated Square Footing Design: F3 f := 2500•psi Concrete strength f, := 60000-psi Reinforcing steel strength E : 29000-ksi Steel modulus of elasticity "(cone 150•pcf Concrete density '(soil 100 pcf Soil density gall 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 236341! Pdl:= Totaldi Totallj 4575-lb PH := Total]] Pg := Pdl + Pll Ptl = 6938-lb Footing Dimensions t := 10-in Footing thickness Width := 30.in Footing width A := Width . Footing Area net gall — tf' Yconc gnet = 1375-psf Pt' Are 5.04641 < A = 6.25• t GOOD 9net = Amid Widthreqd A reg d Widthreqd = 2.25•ft < Width = 2.50 ft GOOD Ultimate Loads Pte:= Pdl + tf'A''Yconc P := 1.4•Pdl + 1.7•P11 P = 12.18-kips P qu := A q = 1.95•ksf • Beam Shear heel 5.5•in (4x4 post) d := tg — 2•in := 0.85 b := Width b = 30-in V„ :_ (0 4 • f V = 13.6-kips 3 Vu •= qu (b — been b V = 4.97•kips < V = 13.6-kips GOOD Two -Way Shear bs := 5.5• in Short side column width bL := 5.5-in Long side column width b := 2.(bg + d) + 2 -(bL + d) b = 54•in Pc := 1.0 V 4 + c V = 40.8•kips (3 3.0 c j -if..b.d V := x•2.66• f )si•b -d V, max = 27.13-kips Ito qu•[b — (b, d) V = 9.71.kips < Vi .= 27.13-kips GOOD Flexure 2 Mu := qu rb bc ot l ( 2 /I 1 1 b M = 2.54•ft•kips I 2 J A:= 0.65 2 b d := S = 0.185•ft 6 F := 5 f psi F = 162.5.psi M f := s f = 95.19•psi < F = 162.5.psi GOOD 'Use a 2' -6" x 2' -6" x 10" plain concrete footing I /9 ° Plain Concrete Isolated Square Footing Design: F4 fe := 2500-psi Concrete strength f := 60006-psi Reinforcing steel strength E 29000•k0i Steel modulus of elasticity '(colic; 1 Concrete density `(soil 100 -pcf Soil density gall : 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl:= 5001-lb Pdl:= Totaldi Total11 := 7639-lb Pll := Totalll Ptl := Pdl + Pll Ptl = 12640 -lb Footing Dimensions tg.:= 12-in Footing thickness Width := 42•in Footing width A,:= Width Footing Area • clnet gall — tf'Yconc net = 1350•psf P Areqd = gnet A g 9.363-11 < A = 12.25. ft GOOD red Width A req d Widthreqd = 3.06. ft < Width = 3.50 ft GOOD Ultimate Loads = Pdi + tf'A' P := 1.4•Pd1 + 1.7•P11 P = 22.56-kips P qu := — q = 1.84•ksf A • "R Beam Shear bcol 5.5•in (4x4 post) d := tf — 2-in := 0.85 b := Width b = 42-in V, := 4 • ' f V = 23.8-kips 3 Vu •= qu ( 2 col) b V„ = 9.8•kips < V = 23.8-kips GOOD Two -Wav Shear bs 5.5•in Short side column width bL 5.5:•in Long side column width b := 2-(bs + d) + 2•(bL + d) b = 62-in := 1.0 V + 8 • •b•d V = 71.4-kips ( 3•0 fc•psi V„ := 2.66 f psi b d V = 47.48•kips ,,V�yy,:= qu [b — kbc01 + d) V = 19.49-kips < V = 47.48-kips GOOD Flexure b — 2 Mu qu 2 b coil 2/ b M = 7.45-11-kips := 0.65 \ b 2 S:= 6d S= 0.405.1 F := 5.41• f F 162.5-psi M f := — f = 127.79•psi< F = 162.5-psi GOOD lJse a 3' -6" x 3' -6" x 12" plain concrete footing I 14,7\1 Plain Concrete Isolated Round Footing Design: f5 f := 3000-psi Concrete strength f := 60000-psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity "( 150•pcf Concrete density (oil 120•pcf Soil density an := 1500•psf Allowable soil bearing pressure TYPICAL FOOTING Reaction Totaldl 619-lb Pd1:= Totaldl Totalll := 1600-lb Pll := Totalll P := Pdl + Pll Pd = 2219-lb Footing Dimensions t := 12• in Footing thickness Dia := 18-in Footing diameter rr Dia Footing Area 4 gnet := gall — tf"Yconc gnet = 1350•psf Pd Areqd gnet A red = A 1.644 ft < A = 1.77 ft GOOD Diareqd Are gd 4 Dia reqd = 1.45-ft < Dia = 1.50 ft GOOD Ultimate Loads = Pdl + tf A' Yconc P„ := 1.4 Pdl + 1.7-Pll P„ = 3.96•kips P qu — A q = 2.24•ksf \e3 Beam Shear bcoi 3.5• (4x4 post) d := tf — 2 -in := 0.85 b := cos(45•deg)•Dia b = 12.73 -in V„ :_ f psi b d V = 7.901 -kips 3 Vu qu (b 2 bcol) b V = 0.91-kips < V = 7.901-kips GOOD Two -Way Shear bs := 3.5•in Short side column width bL := 3.5 -in Long side column width b, := 2•(bs + d) + 2•(bL+ d) b = 54 -in R := 1.0 Vim.= 4 + . 8 f b d V = 23.703 -kips (3 3. 0c V� := 2.66 f psi b d V = 15.76.kips ,V,,,,,y�•= qu [b — ( b co l + d) V = —0.31 .kips < V = 15.76 -kips GOOD Flexure 2 Mu qu r b — bcoll ] (} ' 1 M = 018 -ft -kips I \ 2 J ,,:= 0.65 2 ,:= b d S = 0.123 -ft 6 F := 5 f psi F = 178.01-psi M f := S a f = 9.9 -psi < F = 178.01 -psi GOOD Use a 18" Dia. x 12" plain concrete footing 4 Plain Concrete Isolated Square Footing Design: F� f := 2500• psi Concrete strength f : 60000-psi Reinforcing steel strength Es := 29000-ksi Steel modulus of elasticity Yconc := .150-pcf Concrete density 'Ysoi := 100-pcf Soil density clalj := 1500 -psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 7072-lb Pdl := Total dl Total11:= 13304-lb Pll := Totalll P Pdl + P11 PU = 20376-lb Footing Dimensions t := 15-in Footing thickness Width := 48-in Footing width • A := Width Footing Area net gall — tf•"llconc net = 1313•psf P Areqd ( het Areqd q 15.525 ft < A = 16 ft GOOD Widthreqd A req d Widthreqd = 3.94•ft < Width = 4.00 fl GOOD Ultimate Loads M,A:= Pd1 + tf•A•Iconc P := 1.4•Pd1 + 1.7•Pll P = 36.72-kips P qu := A qu = 2.29•ksf F \S- Beam Shear b := 5.5• in (4x4 post) d := t• — 2-in (13:= 0.85 b := Width b = 48-in V„ := cb 3 4 • f -b•d V„ = 35.36-kips Vu •= qu b 2 colt b V„ = 16.26-kips < V = 35.36-kips GOOD • Two -Wav Shear bg : ='5.5 -in Short side column width bL := 5.5-in Long side column width b := 2•(bs + d) + 2•(bL + d) b = 74-in � := 1.0 _ cb•( + 8 /• f V = 106.08-kips 3 3 ' Pc V,,,,, :_ 2.66 f V,,,,, = 70.54-kips = qu [b — (b, d) V = 31.26-kips < V = 70.54-kips GOOD Flexure 2 b — b r 1 M • qu 2 1 M = 1439•ft•kips A 0.65 2 1 := b •d S = 0.782.11 6 F := 5.41 f psi F = 162.5-psi M u f := s f = 127.75•psi< F = 162.5-psi GOOD Klee a 4' -0" x 4' -0" x 15" plain concrete footing /-T f Plain Concrete Isolated Square Footing Design: F7 f := 2500 -psi Concrete strength f := 60000 :psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity iconc .150-pcf Concrete density 'Ysoil 100!pcf Soil density ga11:= 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi 1200 -lb Pd1:= Totaldl • Totalll := 3200 -lb P11:= Total11 PtI Pd1 + Pll Pd = 4400 - Footing Dimensions t := 10iit Footing thickness • Width :- •24 -in Footing width A := Width Footing Area clnet ga11 — tf'"Yconc net = 1375-psf Pd Aregd gnet Areqd = g 3.2 ft 2 < A = 4 ft 2 GOOD Widthreqd Aregd Widthreqd = 1.79•ft < Width = 2.00 ft GOOD Ultimate Loads ,wdl` := Pd1 + tf'A''Yconc P := 1.4 Pd1 + 1.7•P11 P = 7.82 -kips P qu — A qu = 1.96 -ksf - - F \.-)r Beam Shear b 5.5•in (4x4 post) d := tf -2•in �:= 0.85 b := Width b = 24.in V:= 4 - f -b•d V„ = 10.88•kips 3 Vu qu b 2 toll b V = 3.01 -kips < V = 10.88-kips GOOD Two -Way Shear bg := 5.5-in Short side column width 13L := 5.5.in Long side column width b := 2 -(bg + d) + 2.(bL + d) b = •54•in a := 1.0 0'( + 8 l• f V = 32.64•kips 3 3•(3 Vnmax := 0.2.66• f -d Vumax = 21.71 -kips qu'[b — (b,01 + d) V = 5.35•kips < Vnmax = 21.71 -kips GOOD Flexure b — bcol )21 (2)-6 1 Mu qu' 2 M = 1.16 -ft -kips A:= 0.65 2 := b •d S = 0.148•ft 6 F := 5.4- f F = 162.5 -psi M u f := f = 54.45 -psi < F = 162.5 -psi GOOD 11se a 2' -0" x 2' -0" x 10" plain concrete footing -pt4 613' &I x °E =ro" if.S1 C7 5 �€7 GtIAI = VV -1,54 _ 'i 29 �� Ohl °0 = �) -o _ u�vu- -&-r- c--E-9(s. -- tz-cit - P'a --4 s ( /e - v '( � so' t � r)o) + � so° e - W 9 T5:= _ X i3 _ (7)S1C: e + Sze C 4-i t :1 = a R-J.Ne' b - 1 s'9s-Lle = t W ' J 2,'ve - 2 0 (_ t , e 4 (Z' ) 1 Q' t - c l I ) c �. s' s 1 kO O) 7. - "Z w ,� o 1 s' gS = Off,' \1A k,_' \\4 \ \'S 7.. 101\ 3 vv �` 3 oi\rI} 1 aN( a\) D i' test z 13 3:1 o m n xi 1 r o ■ 3 I 3 O k j+ ki -.' ltfi 11*.S , (±1 o P001 .k UQ&i - d + tu(" 3a 1 S ,'1 x „c) ig X 1L°L° �) `' ``I(�� t� 14001 f aUI / pa road .. Q 100- N y „a..., Q ge — .ivo ')N V — Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:43 AM Units system: English File name: O: HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\Front Load 2.etz\ M33 =51.9 [Kip•ft] M33= -12.19 [Kip'ft] 'r • Mcrne.A*5 L C. \ fi,F20 na• Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:35 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\Front Load.etz\ UNIT Pk -�� -- 1 M33 =25.66 [Kip'ft] • • M33= -30.27 [Kip'ft] e • • Mmerk Lc — I BV: 1_ '....., DATE: _' a k 7 L JOB NO.: C E M Ct 0 OF PROJECT: 3 : 'COCA r c Si RE: UN 1 T P\ - RP12 Lo(). alt,tmc_- 2103 k ❑ ❑ 3 30.4\ c J. J Z ti F o w r4.153k.' , 4.153 O O cr a 1 U z w 0 x a a a1 i Z 0 U Check- Ovetiurri rf D 2 Mor — 30 i' 30,4 -14 (alt: :0( - 11L 1b k• F 0 U M11?, = Co ,►so -- Ca )(i)(►iba) +- - 4 ,1s3C +- 1-,1s3(a`) 0 = aaq.gL ts1✓ w Z a0.9.06 6 1-m.4, = ao ,90 (o , �. C (ao,gos,s(0) (.115 V-SF 9-,m; n _ ao, °oL — 42_( 04NjC ,s� . _.a s- g 6 • ° A - iym N < 0 : 0 �-mC■x 4 Q _ 4 zo ,G( ) 3 L Cr3-24.) 3C•aYaaa a(s.s0) q 3 0 t dY1r\x t. ab t F 1SC U psi; s• 0‘c 1 x a -- = .y A izi -\----'2--2-- Fr IP Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:38 AM Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes\calcs\Unit A \foundations Rear Load.etz\ M33 =43.24 [Kip'ft] • M33= -45.06 [Kip'ft] • 1 Mrerks - 1.x. 1 /4-va3 enttey_ Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:43 AM • Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \Rear Load 2.etz\ M33= 41.881K1p ft1 M33= -46.37 IwP MaMeNk ! LC2 _ 70. • u7z, ;.; co CD — ( 4444oci dpi -- 710 " < h L i c) o 0 ( cf`l-XPOOE-)Ca 1 0/ CCOObi) t) G ) r . = - h 1'0 z: ski „ S, vul ( - ,.9L . 00 01 0 , )(itt t f 0 ) 0 b . 0 V INO) Obk 1^11- 0i&W . 0 (1 0 7 --LNA f-EM si/ 'TO „V t 41 Q) Y\ -0 LI • 0 q31 OE"re 9 z ( 7:499(00 0 0,)( 0)0b '0 'V; V\fie) o z ("41100t). 0 El (+a) (. '0/ (000 0 = V lex ..ro0b2:0=st 'To 11.1 0 liAci) C131, 0 z i'S.c3SliO/ICIScsd 2 (7) lb -p) " sski to *0 - c-iNi -run 2 -LccalArc-: s 4 U( -Vkill4 O • rn z 0 0 _ › ✓ o CI 411 -tovq,v p,u = )001/41Aw 0 2 O F x c4uqo03 voo :10310dd 10 N:1) ON 80f 0 IOC - c) )73. - 6 1 F.-- = ( , 1. 14.91) , 0 — .0. =sv • )' 0 :LI a ia_kt. N..q. ;!• 64 0 E 0> CD c 10 '.- i-N tv.(a< )-J sc 2 •-= c 0_ - sl X.Pco 9 010 ' 0 :.: `kw(?) P 0 ' = N A Can.k 0 . ... : cZA0(9(50E)C L000 O)( 1) :-1 - A b`fi I - ,SV - - ",'0 „ot a s AS kr\A I - ,id, .— V3< t.'t b - (9_.cr.... 0 c.=.-. -- il 2z -p.)4ci - - 1),(530 o booc_Q-Co sale 0 '-- \- 0 HI ziloro - (cool \ ) : \ 0 1 e: • 'a-P CAUPIA = % V • .- - yo x a s 4 .1 .2 1 ( 67. 11 ..'' °1°a° = '� (./ 'Wt„, x 0 N'\ -- ..::: (...V7)(..0005X5310)/ (SOO O ‘ n • o) v -7-- 2 m o m C o 3 6 0 ' 0 0 q7Sq C T 5 V = 0 3 ( = ' \NO C IP hOlAi - Ti "3 k N(1 -.J scrbS-- 4j 4'U(\ a — - k '.\ = \PAM Z 13 73 O • m _ 2 - A h 0 il b' q.e. c 0 -k!vc\ rn 0 g x If It 13 4-- \c) k \■-)0 — ' \AI 0 g, • 0 ,erat = . ▪ 0 d m z i = -FL 1 tiQA )(1 CI El %.)VID3 V001 NUICUJ :38 :103 road Jo or eor 31va :As BY i\N\c_ DATE: V � O l 0 JOB NO.: C . V ^ 0 OF PROJECT: b i)( / X (. ZS I RE: Uy� 1 \,k (:\ - , \ {/� . ( s J ❑ ❑ z aL.a6t_ct Cf. W s. \ �y WI. f 2 I 1 ❑ i �� `. 4 L �� J u d O w a 1 1 - 1 a`--4 0 Z W O a Z Check Over+vrinIYA9 Mo'r = C:..o3 kc - o Ma..,= (&o ,1so) U,s�( 'Y 4 )i-'.g,Ca.`�4- I,AL(4). 4( 1:110 m MK ik, _ (6)(0 C.t )( 4-) 3 r-5 ,a,(C.) +-1 LL (2) = 5(o. v2 U 0 M9.. �� t 10 �' ��i 7 145 � O z Mor d( , 03 o a X ` M t a _ 4 Rl. -a�,o3 : \r "\Fe e-= a �-o' Ft 1 - vno.x = e tC3. _ lEva..a0 a,o. --s c -- 01, 3 L(9, 2e.' — 3C" Yi c o -Q(Q '")-oi>> Fa,f S "G i t e, tcudrn< US-e, S {-0 (es's Ove ( An ir�3 I 0 !V i Mor - a t-, ,0� - -- o d x ; MR = (,, i 3.2/2) ¥(1,LL +3.Z?.0 fi L[ DL u` e ek si. y .� ' / oP 510,12 a Mf = (2 1 -3. z �((�) 4-- C l . W. t- 3 .i)Cz> } � D L o =- 6..0,12+ -4-DL : x a I,5M0 < M . 1.5(x6,037 G 4-S,c tufL Pm `' x bL - i, 3 ! . 5+6 foo- - i 3e 01L i-- Joo\ J C 10 . .V\'2i.= (S,2fi3,2 44(,112i- 3.2)(5 +3)- - 31.'4- i- 3D1._ M _ - , . t 17 l 1, 5MocMrL I.5 (26,.U3) L ;"2:1-1- 3PL. LC-- icing x aF� x 15" DL- a -asor_ 5.as -,s.2ti- .20,c7� +3.2-) IS ` — �7_-: 1[2Z "mix 1 4(s.5 i ) + (MO KM--) 3CAL-2C 1,22))) 14 -Var o s 5' b ,z': 0 8 0 1 1 0 z ❑ m z m P 3 c(ti.I - °)cc.)2. ❑ �� p j ��h }��4 3 -,k0 ,A � � Qb' p _ �5s�,-) �� 1 = x.owt i- 3 ' j _ 'a ° 1�' — m ,� Z f,I - 'Q'1se — Ls -4-� 5- ) '' 94' w ' . D _ m 'W m m -I m a)Z-°fix-) ❑ ❑ ( °.) e. C-\ "ICI ) t) = "\k}—}^ v :3a :173 road Jo Q N 7-3 :'ON BOr 010e— 9 '31YO / \\\\ '49 Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:42 AM Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \Interior 2.etz\ M33 =23.55 [Kip* t] • • M33= -17.88 [Kip *ft] Y I X • May\efli- LC 4 1 .Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:42 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \Interior.etz\ . • - M33 =32.26 [KiP*ft] • M33= -9.27 [Kip'ftl n Z ' M e LCZ tg,f.30 ACI 318 -05 Appendix D 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc = 3000 psi fc = 3000 psi h' = 3.50 inches h = 12.00 inches (into the Fc Stem = 8.00, inches Note: hef above is the the embedment into or cmax = 5.25 inches the foundation and does not consider stem wi Fnd Width = 36.00 inches c = 2.25 inches c = 18.00 inches Wc,N= 1.00 cast -in -place anchor Wc,N= 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor = 0.75 strength reduction factor = 0.75 strength reduction fact Calculations Calculations AN = 68 in` AN = 1296 in` AN = 110.25 in` AN = 1296 in` Nb = 8,607 pounds Nb = 55,121 pounds Wed,N = 0.8286 kV N = 1.00 N = 4,399 pounds N = 55,121 pounds 4N = 3,299 pounds 4 )N, = 41,341 pounds Combined Capacity of Stem Wall and Foundation (I)N = 44,640 0.754N = 33,480 • 123 aq 0 t • b g. • 0 0 '1O v"w'w < (gbdOe ( Zi tia ' -21) ( '0 = u w�j o 0 ( ) 1 9( 0 '0 j (000 0 = 0 o Sa a q 1.1 c 1 j r)-# . ( C -11 0 Mot), — Z 0 000'o1xbQs' o)ob 0 = `^ W ;P� (00o 017 6(35'0 = b o Z N� ba.S'0 =s� „21 4 t4. (` al Z 101C'-1"IP 13 xi o ( • m n � ✓ 0 11 51 )4 I S x ►g ❑ • 0 m 4j '`elc3' Z • 173 road ao O D o r ' ` JT) :'oN eor 4d ! oe ` ��t/// � 31V0 V A9 Concrete Side Face Blow Out Givens Ab = 2.15 in fc = 3000 psi cmin = 18.00 inches = 0.75 strength reduction factor Calculations Nsb = 231,191 pounds 4)Nsb = 173,393 pounds Concrete Pullout Strength Givens Abrs = 2.15 in` fc = 3000 psi = 0.75 strength reduction factor Calculations N = 51,552 pounds 4)N = 38,664 pounds Steel Yield Strength Givens f, = 58,000 psi A = 0.606 in = 0.80 strength reduction factor • Calculations N = 35,148 pounds, 4)Ns = 28,118 pounds < 33,480 `Ductility Holdown Check Holdown: HDU14 Holdown Capacity= 14,930 pounds 1.6* Capacity= 23,888 pounds 23,888 < 28,118 .Holdown Checks -?-3-2D ry -as n r~ % . tk�3' 1 = C� ()l O01-4 b1°91e �r7o1s�` _rya o1bZ1 : <Z)C °47 }(.. S 11 (r, opt (n c si)(t1 1 8) A = S 4 1)rlgb eic ° 11 h = ( ' i zX ) 11 17 .,d 001 _ce)c21)s'e ° 0 - la i s '; 00 m M001 A l'jlre...1 :11 Spot X015 ? W'O -- +.1' 1 M ? x 64 0 c IO0s1 rn()o %pre a. fin Coot 4 C C. b o "11 5 a x n O • os -t - <sZ)Ls e crz-t = - KTKb) 4a). °►cam ra01 ((I) °S1)(1112) d cz.se = `w ig) zi/ 3xlpSl)"P Jac) tfee : � �5�'' s1)`slanal7Y'b) worn 00i• = -i►-) o -lQ 0 o ° cfU`pi ! c jo � �� \pa), Z ❑ Z 11'S1 'x 0 t = rn (Y, Moos M COI + 12 III ° rn • ndoos aosl = dq w, s X 3 414 CnOO1 + 12,-k-11 = IMO) \Dol 0 - )0011- 3-\ d op = ctsc\ OtOcSi j) �a = m :rid en 001 (: X %) ° UJI S' 6 � . . L2110 y ZI1) 0 059 iv1QV F 0 -- � ca = 6s c \slan / ` l ��3 g ❑ m t\`�rn ji 00S _3s67,l) 1JS' 01Q o o z � sCouipmg .CD sa9!S a o &A-ko0, j worn :103 road an "oN eor 31V° Ug