Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Specifications (3)
0/160T.aoJa - /7 f /77 /? / i Structural Calculations for Full Lateral & Gravity Analysis of RECEIVED Plan A 1460 SEP 2 3 2010 CITY OF TIGARD Summer Creek Townhomes BUILDINGDIVISI01 Tigard, OR Prepared for Pulte Group July 13, 2010 JOB NUMBER: CEN -090 ** *Limitations * ** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and /or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 117 sheets total including this cover sheet. This Packet of Calculations is Null and Void if Signature above is not Original 0 Harper • Houf Peterson Righellis Inc. • RS t Aft DSCAOE RftCft �tl C79•OUR 205 SE Spokane St. Suite 200 a Portland, OR 97202 • [P] 503.221.1131 a [F] 503.221.1171 1104 Main St. Suite 100 e Vancouver, WA 98660 0 [P] 360.450.1 141 0 [F] 360.750.1 141 1133 NW Wall St. Suite 201 o Bend, OR 97701 • [P] 541.318.1 161 • [F] 541.318.1 141 Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit A Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, IW: 1 2006 IBC / 2007 OSSC Occupancy Category: II Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed, ASCE 7 -05 Ch. 20 Importance, IE: 1 ASCE 7 -05 Table 11.5-1 Ss: 0.942 USGS Spectral Response Map Si: 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength, f' c: 3000 psi Foundations & Slab on Grade Concrete Unit Weight, yc: 145 pcf Steel Reinforcement Yield Strength, f 60,000 psi Wood Studs (Wall Studs): Hem -Fir #2 2x & 4x Wood Beams & Posts: DF -L #2 6x & Greater Wood Beams & Posts: DF -L #1 Glulam Beams: 24F -V4 PSL Beams: Fb =2,900 psi, FV= 328psi, E =2.0 Million TS /LSL Beams: Fb =2325 psi, FV= 460psi, E =1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : 1500 psf Assumed 2. All manufactured trusses, joists, and flush beams u.n.o. shall be designed by others. Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 WoodWorks - Sizer version 2002 Bently RAM Advanse Harper Project: SUMMERCREEK TOWNHOMES UNIT A ` IMP ' Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # I.ANOSCAPE ARCH( TEC T3• SUR VEYORS DESIGN CRITERIA 2007 Oregon Structural Specialty Code & ASCE 7 -05 Roof Dead Load RFR := 2.5•psf Framing RPL := 1.5•psf Plywood RRF := 5.psf Roofing RME := 1.5 -psf Mech & Elec RMS := 1- psf Misc RCG := 2.5•psf Ceiling RIN := 1 •psf Insulation RDL = 15•psf Floor Dead Load FFR := 3 •psf Framing FPL := 4.psf Sheathing FME := 1.5•psf Mech & Elec FMS := 1.5•psf Misc FIN := .5 -psf Finish & Insulation FCLG := 2.5.psf Ceiling FDL = 13 -psf Wall Dead Load WOOD EX Wal1 : = 12•psf INT Wall := 10•psf Roof Live Load RLL := 25 -psf Floor Live Load FLL := 40•psf #— L1 Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP„ E Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • ?CANNERS Designer: AMC Date: Pg. # 1.4N06C APE ARCHITECTS• SURVEYORS Transverse Seismic Forces Site Class = D Design Category = D Building Occupancy Category: 11 Weight of Structure In Transverse Direction Roof Weight Roof Area := 843•ft 2 .1.12 RFwT := RDL•Roof Area RFw-r = 14162•lb Floor Weight Floor Area2nd := 647 -ft FLRWT2nd := FDL•Floor Area2nd FLRWT2nd = 8411-lb Floor Area3rd := 652 -ft FLRVy1 FDL•Floor Area3rd FLRw = 8476-lb Wall Weight EX Wall Area := (2203)•ft INT Wall_Area: (906)•ft WALLw•1• := EX_Wa11 + 1NTWa11 1NTWallArea WALLWT = 35496.1b WTTOTAL = 66545 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h := 32 Mean Height Of Roof I := 1 Component Importance Factor (11.5, ASCE 7 -05) 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C := .02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x := .75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period T := C T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. • (Chapter 22, ASCE 7- 05)...or Ss := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F := 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F := 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) Harper Project: SUMMERCREEK TOWNHOMES UNIT A • P I. Houf Peterson Client: PULTE GROUP Job # CEN -090 TM " Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARC NITEC 10 • 500000088 S MS Fa SMS = 1.058 (EQU 11.4 -1, ASCE 7 -05) 2 •SMS Sd := 3 Sds = 0.705 (EQU 11.4 -3, ASCE 7 -05) SMl := F S1 SMl = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2 •SM1 Sdl := 3 Sd1 = 0.389 (EQU 11.4 -4, ASCE 7 -05) Cst := Sds'Ie Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) R ...need not exceed... Cs Shc'Ie Cs = 0.223 (EQU 12.8 -3, ASCE 7 -05) max �_ .I, R max a ...and shall not be less then... C1 := if 0.044• Sd l <0.01,0.01 , 0.044• Sds-Ie) C2 := if l S1 <0.6,0.01, r 0.5•S1•Ie1 (EQU 12.8 -5 &6, ASCE 7 -05) R J Csmin := if (CI > C2,CI ,C2) Csmm = 0.031 Cs := if (Cst < Cs < Cs Cs = 0.108 V := Cs' WTTOTAL V = 72201b (EQU 12.8 -1, ASCE 7 -05) E := V•0.7 E = 5054 1b (Allowable Stress) /9 \: Harper Project: SUMMERCREEK TOWNHOMES UNIT A CI : Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS •PLANNERS Designer: AMC Date: Pg. # LANOSCAPE A RCMITECT$•SURVEYORS Transverse Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 100 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I := 1.00 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X := 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... a2 := 2..1.20.ft Zone A & B Horizontal Length = ft (Fig 6 -2 note 10, ASCE 7 -05) or ,= .4•hn 2•ft a2 = 25.6 ft but not less than... Amin 3 2' ft a = 6 ft Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA; = 19.9•psf PnetzoneB 32•psf Pnetzonec 14.4.psf PnetzoneD 3.3 •psf Vertical PiletzoneE :_ —8.81psf PnetzoneF - 1 PnetzoneG :_ —6.4•psf PnetzoneH —9.7•psf Basic Wind Force PA := PnetzoneA•Iw•X PA = 19.9•psf Wall HWC PB := PnetzoneB•Iw•X PH = 3.2•psf Roof HWC PC := PnetzoneC•Iw•X PC = 14.4•psf Wall Typical PD := PnetzoneD•lw-X PD = 3.3• Roof Typical PE := PnetzoneE•Iw•X PE = — 8.8.psf PF := PnetzoneF•Iw•X PF = —12.psf PG := PnetzoneG Iw' X Pc, = —6.4• psf PH := PnetzoneH' Iw X PH = —9.7• psf LH Harper Project: SUMMERCREEK TOWNHOMES UNIT A . t• Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINCERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCN1TEC TS•SURVEV ORS Determine Wind Sail In Transverse Direction WSAILZoneA (41 + 59 + 29)•ft WSAIZoneB := (19_+ 0 ± 23)-ft 2 L WSAILZoneC = =' (39.1 + 307 + 272)41 WSAILZoneD := (0 + 0 + 5 WA WSAILZoneA•PA WA = 25671b WB WSAILZoneB•PB WB = 1341b WC WSALLZoneC'PC WC = 139681b WD WSAILZoneD'PD WD = 161b Wind_Force := WA + WB + WC + WD Wind_Force := 10•psf•(WSAILZ + WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind_Force = 16686 Ib Wind_Force = 114601b WSAILZoneE' := 94•ft2 WSAILZoneF 10841 WSAILZoneG 320412 WSAILZoneH 320•ft WE WSAILZoneE'PE WE = —8271b • WF := WSAILZoneF'PF WF = — 12961b WG := WSAILZoneG•PG WG = — 20481b WH := WSAILZoneH'PH WH = — 31041b Upliftnet := WF + WH + (WE + WG) + RDL•[WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneG)]'•6.1.12 Upliftnet = 12121b (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCNITECTS•SURVEYORS Longitudinal Seismic Forces Site Class = D Design Catagoiy =D Building Occupancy, Category:: II Weight of Structure In Longitudinal Direction Roof Weight Roof Area = 944 ft F := RDL•Roof Area RFIy-1• = 14162.1b Floor Weight Floor_Area2 = 647 ft F ja , = FDL•Floor Area2nd FLRw - r2nd = 8411-lb Floor_Area3 = 652 ft • , ,;= FDL•Floor Area3rd FLRW - r3rd = 8476-lb Wall Weight (2203). ft INT Wall Area = 906 ft Ma EX Wa11 EX_Wall Area + INT WalL, 1NT_Wall_Area WALLW -i- = 35496-lb WTTOTAL = 66545 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h = 32 Mean Height Of Roof Ie = 1 Component Importance Factor ' (11.5, ASCE 7 -05) 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C = 0.02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x = 0.75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period T := Ct• T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 = 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S = 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F = 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F, = 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) 4- 1...10 te a „'. f , Harper Project: SUMMERCREEK TOWNHOMES UNIT A Houf Peterson. Client: PULTE GROUP Job # CEN -090 Righell is Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCNi TECTS•SURL'EYORS A := F SMs = 1.058 (EQU 11.4 -1, ASCE 7 -05) 2 • SMg Sd = 0.705 (EQU 11.4 -3, ASCE 7 -05) 3 = F Sr SMI = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2• SM1 = Shc = 0.389 (EQU 11.4 -4, ASCE 7 -05) 3 l := S R Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) ...need not exceed... 9,51,4,1= Shc'le Cs = 0.223 (EQU 12.8 -3, ASCE 7 -05) TaR ...and shall not be less then... if(0.044•Sd < 0.01,0.01,0.044•Sd 0.5•S1•4l (EQU 12.8 -5 &6, ASCE 7 -05) if(S1 < 0.6,0.01, R J ga if (CI > C2,C1,C2) Cs = 0.031 Cs := if(Cst < Cs Cs if(Cst < Csmax , Cst, Cs Cs = 0.108 Cs•WTTOTAL V = 72201b (EQU 12.8 -1, ASCE 7 -05) E V•0.7 E = 5054 Ib (Allowable Stress) / L`)r Harper Project: SUMMERCREEK TOWNHOMES UNIT A Righellis Inc. Houf Peterson Client: PULTE GROUP Job # CEN -090 ENGINEERS • PLANNERS Designer: AMC Date: Pg. # L ANOS:APE ARCM TEC TS• SURVEYORS Longitudinal Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 110 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I = 1.0 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X = 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... i 2..1-20•ft Zone A & B Horizontal Length = 4 ft (Fig 6 -2 note 10, ASCE 7 -05) or ,= .4•hn 2•ft a2 = 25.6 ft but not less than... ,tuiw 3.2 • ft a = 6 ft Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA = 19.91psf PnetzoneB = 3.21psf PnetzoneC = 14.4•psf PnetzoneD = 3.3•psf Vertical PnetzoneE = — 8.8•psf PnetzoneF = — 12.psf PnetzoneG = —6.4.psf PnetzoneH = —9.7•psf Basic Wind Force PnetzoneA'Iw. PA = 19.9.psf Wall HWC ,:= PnetzoneB'Iw'X Pg = 3.2•psf Roof HWC = PnetzoneC'IwX PC = 14.4•psf Wall Typical PnetzoneD'IwX PD = 3.3.psf Roof Typical ,:= PnetzoneE'Iw.X PE = — 8.8•psf ,:= PnetzoneF' Iw' X PF = — 12. psf ,:= PnetzoneG'Iw' X PG = —6.4.psf Pte:= PnetzoneH'IwX PH = — 9.7.psf Harper Project: SUMMERCREEK TOWNHOMES UNIT A Y P Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE A RC.'.ITEC Determine Wind Sail In Longitudinal Direction Rea,:= (48 +59 + 40)• 1 :_ (10 +0 +44)41 A TA m := (91 + 137 + 67)•ft , PAA:= (43 + 0 + 113)•ft ,„= WSAII-ZoneA'PA WA = 29251b V:= WSAILZoneB'PB WB = 1731b ,:= WSAIL oneC'PC WC = 42481b = WSAILZoneD'PD WD = 515 lb Winv '= WA + WB + We + WD Wi d once •= 10•psf•(WSAILZ + WSAILZoneB + WSA1LZoneC + WSAILZoneD) Wind Force = 7861 Ib Wind Force = 6520 Ib = 148•ft2 W:= 120•ft2 Mf gor �In:= 323 •ft := 252: ft Wes:= WSAILZoneETE WE = — 13021b WSAII-ZoneF'PF WF = — 14401b Wes= WSAILZoneG'PG WG = — 20671b auv:= WSAILZoneH'PH WH = — 24441b U Ii := WF + WH + (WE + WG) + RDL•[WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneG) }• 6.1 . 12 Upliftnet = 1243 Ib (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION g l..°I. Harper Houf Peterson Righellis Pg #: Transverse Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean. Roof Height, H (ft) = 32 Roof Pitch = • 6 /12 . Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X = 1.00 Iw= 1.00 Wind Sail (ft Wind Net Design Wind Pressure (psf) Pressure (lbs) Zone A = 19.9 129 2567 Wall High Wind Zone Horizontal Zone B = 3.2 42 134 Roof High Wind Zone Wind Forces Zone C = 14.4 970 13968 Wall Typ Zone Zone D = 3.3 5 17 Roof Typ Zone Zone E = -8.8 94 -827 Roof Windward High Wind Zone Vertical Zone F = -12.0 108 -1296 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 320 -2048 Roof Windward Typ Wind Zone Zone H = -9.7 320 -3104 Roof Leeward Typ Wind Zone Total Wind Force =l 16686 lbs I Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -7275 ibs Resisting Dead Load= 8472 Ibs E=l 1197 Lbs...No Net Uplift 1 Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm (ft Zone A Zone B Zone C Zone D Main Floor 41 19 .. <a 391 0 Upper Floor , 59 , 0 307 0 Main Floor Diaphragm Shear = 6507 lbs Upper Floor Diaphragm Shear = 5595 Ibs Roof Diaphragm Shear = 4584 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR. ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Diaphragm Diaphragm (lbs) (Ibs) (Ibs) Width ft Width ft Width (ft) A 13.08 • 1737 18 2797 19 2323 Al 24.50 3254 0 0 0 0 B 11.42 1516 18 2797 18.5 2261 E= 49 6507 36 5595 37.5 4584 Harper Houf Peterson Righellis Pg #: Transverse Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D S1 = 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct= 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 Sims • 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 SDS= 0.71 Equ. 11.4 -3, ASCE 7 -05 SDI= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 ' Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 • Floor 2 Wt (Ib)= 8411 Floor 3 Wt (Ib)= 8476 ' Roof Wt (Ib) = 14162 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22609 ' Trib. Floor 3 Diaphragm Wt (Ib) = 22674 Trib. Roof Diaphragm Wt (Ib) = 21261 Vertical Dist of Seismic Forces Cumulative % total of base shear Rho Check to Shearwalls (Ibs) I to shearwalls Req'd? VFl (Ib) = 720 100.0% Yes Vn, 3 (Ib) = 1625 85.8% Yes Vroof (Ib) = 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft Ibs Ibs Ibs , A 102 361 394 114 897 1266 Al 432 0 0 481 0 0 B 113 293 449 126 728 1443 Sum 647 654 843 720 1625 2709 Total Base Shear* = I 5054 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. /4 — Lk, \ ,----- Harper Houf Peterson Righellis Pg #: Longitudinal Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph • Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf k= 1.00 lw= 1.00 Wind Sail Wind Net Design Wind Pressure (psf) () Pressure (lbs) Zone A = 19.9 147 • 2925 Wall High Wind Zone Horizontal Zone B = 3.2 54 173 Roof High Wind Zone Wind Forces Zone C = 14.4 295 4248 Wall Typ Zone Zone D = 3.3 156 515 Roof Typ Zone Zone E _ -8.8 148 -1302 Roof Windward High Wind Zone Vertical Zone F = -12.0 120 -1440 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 323 -2067 Roof Windward Typ Wind Zone Zone H = -9.7 252 -2444 Roof Leeward Typ Wind Zone • Total Wind Force =l 7861 Ibs I Use to resist wind uplift: Roof Only Total Exterior Wall Area 2203 ft Uplift due to Wind Forces= -7254 Ibs Resisting Dead Load = 8483 Ibs E =I 1229 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm (ft Zone A Zone B Zone C Zone D Main Floor 48 10 91 43 Upper Upper Floor 59 0 137 0 Main Floor Diaphragm Shear = 2440 lbs Upper Floor Diaphragm Shear = 3147 Ibs Roof Diaphragm Shear = 2275 Ibs Wind Distribution To Shearwall Lines . MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm (Ibs) Diaphragm (Ibs) Diaphragm (Ibs) Width (ft) Wi dth (ft ) Width (ft) 1 10 1220 10 1573 10 1137 2 10 1220 10 1573 10 1137 E= 20 2440 20 3147 ' 20 2275 . A-- L.p......., Harper Houf Peterson Righellis Pg #: • Longitudinal Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D S1 = 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 . Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 SMg 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 SDS= 0.71 Equ. 11.4 -3, ASCE 7 -05 S 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (Ib)= 8411 Floor 3 Wt (Ib)= 8476 Roof Wt (Ib) = 14162 • Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22609 Trib. Floor 3 Diaphragm Wt (Ib) = 22674 - Trib. Roof Diaphragm Wt (Ib) = 21261 Vertical Dist of Seismic Forces Cumulative % total of base shear Rho Check to Shearwalls (Ibs) I to shearwalls Req'd? Vnoor 2 (Ib) = 720 100.0% Yes VOoor 3 (Ib) = 1625 85.8% Yes Vroof (lb) = 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq_ft sq ft Ibs Ibs Ibs 1 286 291 415 318 725 1334 2 361 361 428 402 900 1375 Sum 647 652 • -843 720 1625 2709 • Total Base Shear* = ( 5054 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. /4z--- L.\e•-• Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Transvere Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel 1 Shear Panel M MR Uplift Panel Lgth. From 2nd Fir. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht I k ht I k ht I k. (kit) (plf) (ft-k) (ft-k) (k) • 101 Not Used 102 7 1.75 3.50 4.00 8.00 1.74. 18.00 2.80 27.00 2.32 1959 Double 1.40 NG 0 trig 103 7 1.75 3.50 4:00 - >;; 8.00 1.74 8.00 2.80 8.00 2.32 1959 Double 1.40 NG 103a 7 4.00 4.00 1.75 OK 8.00 3.25 814 Single 1.40 IV 104 8 4.50 10.50 1.78 ox 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 105 8 3.00. 10.50 2.67 OK 8.00_ . 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 106 8 3.00 10.50 2.67 ox 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 109 8 4.58 17.08 1.75 OK 8.00 1.74 18.00 2.80 27.00 2.32 401 Single 1.40 II 110 8 12.50 _ 17.08 0.64 OK 8.00 1.74 8.00 2.80 8.00 2.32 401 Single 1.40 II 111 8 4.50 7.25 1.78 OK 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 112 4.75 1.38 7.25 3.45 ox 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 113 4.75 1.38 7.25 3.45 OK 8.00 1.52 8.00 ,2.80 8.00 2.26 907 Double 1.40 VI 201 9 3.92 _ 10.79 2.30 OK 9.00 2.80 18.00 2.32 474 Single 1.40 II 201a 9 4.17 10.79 2.16 OK 9.00 2.80 18.00 2.32 474 Single 1.40 II • 201b 9 2.71 10.79 3.32 OK 9.00 2.80 18.00. 2.32 474 Single 1.40 II 202A 9 2.96 11.96 3.04 OK 9.00 2.80 18.00 2.26 423 Single 1.40 II 202B 9 3.00 11.96 3.00 OK 9.00. 2.80 18.00 2.26 423 Single 1.40 II 203 9 3.00 11.96 3.00 OK 9.00 2.80 18.00 2.26 423 Single 1.40 II 204 9 3.00 11.96 3.00 ox 9.00 2.80 18.00 2.26 423 Single 1.40 II 301 8 3.92 • 13.96 2.04 OK 8.00 2.32 166 Single 1.40 I 302 8 5.79 13.96 1.38 ox 8.00 2.32 166 Single 1.40 I. 303 8 4.25 13.96 1.88 ox 8.00 2.32 166 Single 1.40 I 304 8 2.96 5.96 2.70 ox 8.00 2.26 379 Single 1.40 II 305 8 3.00 5.96 2.67 ox 8.00 2.26 379 Single 1.40 II Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L • 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) A - L, \k.4% Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 fransvere Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho "V % Story # Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load • Strength Bays Sides Factor Type T (ft) (ft) (ft) ht I k ht I k ht I k (kit) (plt) (p11) (ft -k) (ft-k) (k) -_ 101 Not Used _ 102 7 1.75 3.50 4.001 8.00 0.11 18.00 0.90 27.00 1.27 651 846 0.10 0.50 Double 0.50 NG - 103 7 1.75 3.50 4.00 ;:i' • ':;:a 8.00 0.11 8.00 0.90 8.00 1.27 651 846 0.10 0.50 Double 0.50 NG _ 103a 7 4.00 4.00 1.75 ou 8.00 0.48 0.00 0.00 120 156' 0.22 1.14 Single 1.00 1 - 104 8 4.50. 10.50 1.78 oic 8.00 0.13 8.00 0.73 8.00 1.44 219' 284 0.25 1.13. Single 1.00 II 105 8 3.00 10.50 2.67 OK 8.00 0.13 8.00 0.73 8.00 1.44 219 284 0.17 0.75 Single 0.75 III 106 8 3.00 10.50 2.67 ox 8.00 0.13 8.00 0.73 8.00 1.44 219 284 0.17 0.75 _ Single 0.75 111 • ' - 109 8 4.58 17.08 1.75 OK 8.00 0.11 18.00 0.90 27.00 1.27 134 174 0.25 1.15 Single 1.00 • 1 , 110 8 12.50` 17.08 0.64 OK 8.00 0.11 8.00 .0.90 8.00 1.27 134 174 NA 3.13 Single 1.00 1. _ 111 8 4.50 7.25 1.78 OK 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.25 1.13• Single 1.00 111 112 5 1.38 7.25 3.45 . oK 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.08 0.58 Double 0.58 VII . 113 5 1.38 7.25 3.45 OK 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.08 _ ' 0.58 Double 0.58 ` VII _ 201 9 3.92 10.79 2.30 OK . 9.00 0.90 18.00 1.27 200 261 0.17 . 0.87 Single 0.87. II 201a 9 4.17 10.79 2.16 OK 9.00 0.90 18.00 1.27 200 261 0.18 0.93 Single 0.93 11 201b 9 2.71 10.79 3.32 OK 9.00 0.90 18.00 1.27 200 261 0.12 0.60 Single 0.60 III 202A 9 2.96 .11.96 3.04 OK 9.00 0.73 18.00 1.44 _ 182 236 0.13 0.66 Single 0.66 III 202B 9 3.00 11.96 3.00 - oK 9.00 0.73 18.00 1.44 182 236 0.13 0.67 Single 0.67 'III 203 9 3.00 11.96 3.00 OK 9.00 0.73 18.00 1.44 181 236 0.13 0.67 Single 0.67 III 204 - 9 3.00 11.96 3.00 bK 9.00 0.73 18.00 1.44 181 236 _ 0.13 0.67 . Single 0.67 III ' 301 8 3.92 13.96 2.04 OK 8.00 1.27 91 118 0.20 0.98 Single' 0.98 I 302 8 5.79 13.96 1.38 OK 8.00 1.27 ; 91 118 0.29 1.45 Single 1.00 I 303 8 4.25 13.96 1.88 OK 8.00 1.27 91 118 0.21 1.06 Single 1.00 1 304 8 2.96 5.96 2.70 OK . . 8.00 1.44 - 242 315 0.15 0.74 , Single 0.74 III 305 8 3.00 5:96 2.67 oK • 8.00 1.44 242 315 0.15 0.75 Single .0.75 _ Ill Rho Calculation • Does the 1st floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total transverse base shear? Yes Total 1st Floor Wall Length = 18.00 Total # 1st Floor Bays = 4.77 Are 2 bays minimum present along each wall line? No 1st Floor Rho = 1.3 Total 2nd Floor Wall Length = 22.75 Total # 2nd Floor Bays = s Are 2 bays minimum present along each wall line? No 2nd Floor Rho = 13 Total 3rd Floor Wall Length = 19.92 • Total # 3rd Floor Bays = s Are 2 bays minimum present along each wall line? No 3rd Floor Rho = 1.3 Spreadsheet Column Definitions & Formulas • L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load "Rho / Total L % Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2 "IJH Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear " Shear Application ht Mr (Resisting Moment) = Dead Load "12 " 0.5 " (.6 wind or .9 seismic) • Uplift T = (Mo -Mr) / (L - 6 in) J \; Harper Houf Peterson Righellis Pg #: • Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klf) (plf) (ft -k) (ft-k) (k) 107 8 15.50 15.50 0.52 OK 10.00 1.22 18.00 1.57 27.00 1.14 1.03 254 Single 1.40 I 71.21 123.49 -0.19 108 8 15.50 0.52 OK 10.00 1.22 18.00 1.57 27.00 1.14 1.03 254 Single 1.40 I 71.21 123.49 -0.19 1 205 9 13.00 13.00 0.69 OK 9.00 1.57 18.001 1.14 0.70 I 208 Single 1.40 I 34.62 J 59.15 -0.07 I 206 9 13.00 13.00 0.69 OK 9.00 1.57 18.00 1.14 0.70 208. Single 1.40 1 34:62159.15 -0.07 1 306 8 10.00 10.00 0.80 ox 8.001 1.14 0.29 114 Single 1.40 I 9.10 14.40 0.05 I 307 8 10.00 10.00 0.80 ox 8.00 1.14 0.29 114 Single 1.40 1 9.10 14.40 0.05 Spreadsheet Column Definitions & Formulas • L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) • / ---- L.\„), Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load • Line Load Line Load Dead •V Rho•V % Story # Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr: From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klf) (plf) (plf) (ft -k) (ft -k) (k) 107 8 15.50 15.50 0.521 OK 10.00 0.32 ' 18.00 0.73 27.00 1.33 1.09 153 153 NA 3.88 Single 1.00 I 52.25 130.70 -1.74 108 8 _ 15.50 15.50 _ 0.52 I oK 10.00 0.40 18.00 0.90 27.00 1.38 1.09 173 173 NA 3.88 Single 1.00 , I 57.35 130.70 -1.40 I 205 9 13.00 13.00 0.69 . oK 9.00 0.73 18.00 1.33 0.76 158 158 NA 2.89 Single 1'.00 I 30.54 64.22 -0.64 206 I 9 13.00 13.00 0.69 OK I 9.00 0.90 18.00 1.38 0.76 175 175 NA I 2.89 Single I 1.00 • I 32.85 1 64.221 I -0.45 I 306 8 110.00I 1 0.80 oK f I I : I ' 8.00 1.33 0.35 133 133 NA I 2.50 Single 1.00 I 10.671 17.401 0.02 307 8 10.00 0.80 oK 1 8.00 1.38 0.35 138 138 NA 2.50 Single 1.00 I 11.00 17.40 0.06 Rho Calculation • Does the 1st floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Total 1st Floor Wall Length = 31.00 Total # 1st Floor Bays = 7.75 Are 2 bays minimum present along each wall line? Yes • 1st Floor Rho = 1.0 Total 2nd Floor Wall Length = 26.00 Total # 2nd Floor Bays = • 6 Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho = 1.0 Total 3rd Floor Wall Length = 20.00 Total # 3rd Floor Bays = 5 Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho = 1.0 Spreadsheet Column Definitions & Formulas . L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load•Rho / Total L % Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2 *IJH Shear Factor = Adjustment For H/L > 2:1 Mo (Overtuming Moment) = Wall Shear • Shear Application ht Mr (Resisting Moment) = Dead Load • L • (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) 6 ■- 0:;\*- Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Transvere Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good For V (per (p (lb) (lb) 101 Not Used 102 Simpson Strongwall 103 _ Simpson Strongwall 103a 814 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 833 104 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 105 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 106 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 109 401 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 110 401 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 111 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 112 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 990 113 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 990 201 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 201a 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 201b 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 202A 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 202B 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 203 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 204 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 301 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 302 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 303 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 304 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 305 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. / V-Vb Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY Longitudinal Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good For V (plf) (per (Ib) (lb) 107 254 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -192 Simpson None 0 108 254 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -192 Simpson None 0 205 208 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -69 Simpson None 0 206 208 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -69 Simpson None 0 306 133 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 48 Simpson None 0 307 138 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 59 Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. /4 \k,„A9 Transverse Wind Uplift Design . Unit A Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. • FIr. Roof Shear including Load Load Momen @ Left ® Right Left Right Left Side of ® Right Wall Wall @ Left @ Floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ ' walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 102 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.192 0.832 27.43 0.57 1.69 21.31 20.79 21.31 20.79 103 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.832 0.192 27.43 1.69 0.57 20.79 21.31 20.79 21.31 103A 8 1.1667 4.00 4.00 3.254 3.254 814 0.04 2.016 1.664 26.03 8.38 6.98 6.00 6.24 6.00 6.24 104 8 1.1667 4.50 10.50 1.516 2.8 2.26 6.576 626 0.1 0.8 0.078 25.08 4.61 1.36 5.58 6.06 5.58 6.06 105 8 1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 0.048 0.252 0.156 16.72 0.97 0.68 6.45 6.52 6.45 6.52 ` 106 8 1.1 667 3.00 10.50 1.516 2.8 2.26 6.576 626 - 0.048 0.156 0.252 16.72 0.68 0.97 6.52 6.45 6.52 6.45 109 8 1.1667 4.58 17.08 1.737 2.8 2.32 6.857 401 0.152 0.192 0.156 16.31 2.47 2.31 3.63 3.66 201L 201R 4.82 5.09 8.45 8.75 110 8 1.1667 12.50 17.08 1.737 2.8 2.32 6.857 401 0.096 0.156 0.192 44.52 9.45 9.90 3.24 3.21 201 aL 201 bR 4.95 4.88 8.18 8.09 111 8 1.1667 4.50 7.50 1.516 2.8 2.26 6.576 877 0.144 0.8 0.078 35.11 5.06 1.81 8.02 8.51 8.02 8.51 112 8 1.1667 1.50 7.50 1.516 2.8 2.26 6.576 877 0.048 0.252 0.234 11.70 0.43 0.41 11.44 11.46 11.44 11.46 113 8 1.1667 1.50 7.50 1.516 2.8 2.26_ 6.576 877 0.048 0.234 0.252 11.70 0.41 0.43 11.46 11.44 11.46 11.44 201 9 1.1667 3.92 10.8 2.8 2.32 5.12 474 0.225 0.432 0.156 17.71 3.42 2.34 3.99 4.16 301L 301R 0.83 0.93 4.82 5.09 201a 9 1.1667 4.17 10.8 2.8 2.32 5.12 474 0.225 0.156 0.156 18.84 2.61 2.61 4.14 4.14 302L 302R 0.80 0.80 4.95 4.95 201b 9 1.1667 2.71 10.8 2.8 2.32 5.12 , 474 0.225 0.156 .0.432 12.24 1.25 2.00 4.24 4.08 303L 303R 0.91 0.80 5.15 4.88 202A 9 1.1667 2.96 11.958333 2.8 2.26 5.06 423 0.173 0.432 0.052 11.92 2.04 0.91 3.62 3.84 304L 304R 2.60 2.75 6.21 6.59 202B 9 1.1667 3 11.958333 2.8 226 5.06 423 0.173 0.052 0.216 12.09 0.93 1.43 3.84 3.74 305L 305R 2.74 2.16 6.58 5.91 203 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.309 0.216 0.312 12.09 2.04 2.33 3.62 3.56 3.62 3.56 204 9 1.1667_ 3 11.958333_ 2.8 2.26 5.06 423 0.225 0.312 0.432 12.09 1.95 2.31 3.64 3.57 3.64 3.57 301 8 3.92 13.96 2.32 2.32 166 0.232 0.384 0.204 5.21 3.29 2.58 0.83 0.93 0.83 0.93 302 8 5.79 13.96 2.32 2.32 166 • 0.232 0.204 0.204 7.70 5.07 5.07 0.80 0.80 0.80 0.80 303 8 4.25 13.96 2.32 2.32 166 0.232 0.204 0.384 5.65 2.96 3.73 0.91 0.80 0.91 0.80 304 8 2.96 5.96 2.26 2.26 379 0.232 0.384 0.136 8.98 2.15 1.42 2.60 2.75 2.60 2.75 305 8_ 3 5.96 2.26 2.26 379 0.232_ 0.136 1.104 9.10 .1.45 4.36 2.74 2.16 2.74 2.16 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height ` Wall Length = Sum of Shear Panels Lengths in Shear Line �°° V (Panel Shear) = Sum of Line Load / Total L Mc (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) • Transverse Seismic Uplift Design Unit A Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @. floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k pif kif k k kft kft kft k k k k k k 102 8 1.1667 1.75 3.50 0.114 0.9 1.27 2.284 653 0.152 0.192 0.832 10.40 0.57 1.69 7.91 7.11 0 0 7.91 7.11 103 8 1.1667 1.75 3.50 0.114 0.9 1.27 2.284 653 . 0.152 _0.832 0.192 10.40 1.69 0.57 7.11 7.91 0 0 7.11 7.91 103A 8 1.1667 4.00 4:00 0.481 0.481 120 . 0.04 - 2.016 1.664 3.85 8.38 6.98 . -1.06 -0.69 . 0 0 -1.06 -0.69 104 8 1.1667 4.50 10:50 0.126 0.73 .. 1.44 2.296 219 0.1 0.8 0.078 . 8.96 . 4:61 1.36 1.20 1.93 0 0 1.20 1.93 105 8 1.1667 3.00 10.50 0.126 0.73 1.44 2.296 219 . 0.048 0.252 0.156 5.97 0.97 0.68 2.04 2.14 0 0 2.04 2.14 106 8 1.1667 3.00 10.50 0.126 0.73 1.44 2.296 219 0.048 0.156 0.252 5.97 0.68 0.97. 2.14 2.04 0 . 0 2.14 2.04 109 8 . 1.1667 4.58 17.08 0.114 0.9 1.27 2.284 134 .. 0.152. 0.192 0.156 5.58 2.47 2.31 0.82 0.86 201L 201R 1.13 1.54 1.95 2.40 110 8 1.1667 12.50 17.08 0.114 0.9 1.27 2.284 - 134 0.096 0.156 0.192 15.23 9.45 9:90 ' 0.56 0:53 201aL 201bR 1.32 1.32 1.88 1.85 111 8 1.1667 4.50 7.50 0.126 0.73 1.44 2.296 306 0.144 0:8 0.078 12.54 5.06 1.81 2.00 2.73 0 0 2.00 2.73 112 8 1.1667 1.50 7.50 0.126 0.73 1.44 2.296 306 0.048 0.252 0.234 4.18 0.43 0:41 3.79 3.82 0 0 3.79 3.82 113 8 1.1667 1.50 7.50 0.126 0.73 " 1.44 2.296 306 0.048 0.234 0.252 4.18 0.41 0.43 3.82 3.79 0 0 3.82 3.79 201 9 1.1667 3.92 10.80 - 0.9 1.27 2.17 201 0.225 0.432 0.156 - 7.63 3.42 2.34 1.16 1.41 301L 301R -0.03 0.13 1.13 1.54 201a 9 1.1667 4.17 10.80 0.9 1.27 2.17 201 0.225 0.156 • 0.156 8.11 2.61 2.61 • 1.38 1.38 302L 302R -0.06 -0.06 1.32 1.32 201b 9 1:1667 2.71 10.80 0.9 - 1.27 2.17 201• . 0.225 0.156 0.432 5.27 1.25 2.00 1:53 1.28 303L 303R 0.10 -0.06 1.63 1.22 202A 9 ' 1.1667 2.96 11.96 0.73 1.44 2.17 181. 0.173 0.432 0.052 5.25 ' 2.04 0.91 1.15 1.50 , 304L 304R 1.28 1.50 , 2.43 3.00 202B 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 " 0.173 0.052 0.216 : • 5.32 0:93 1.43. 1.49 ' 1.35 305L 305R ' 1.50 0.63 2.99 1.97 203 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.309 0.216 0.312 ` 5.32 2.04 2.33 1.16 1.08 0 0 1.16 1.08 204 9 1.1667 3.00 ' 11.96 0.73 1.44 2.17 . 181 - 0.225 0.312 0.432 5.32 1.95 2.31 119 1.08 0 0 1.19 1.08 301 8 0 3.92 13.96 1.27 _ 1.27 91 0.232 0.384 0.204 2.85 3.29 2.58 -0.03 0.13 0 0 -0.03 0.13 _ 302 8 0 5.79 13.96 1.27 1.27 91 0.232 0.204 0.204 4.21 5.07 5.07 -0.06 -0.06 0 0 -0.06 -0.06 303 8 0 4.25 13.96 1.27 1.27 91 0.232 0.204 0.384 3.09 2.96 3.73 0.10 -0.06 0 . 0 0.10 - 0.06 304 8 0 2.96 5.96 1.44 1.44 242 . 0.232 0.384 0.136 5.72 2.15 1.42 1.28 1.50 0 0 1.28 1.50 305 8 0 3.00 5.96 . 1.44 1.44 242 0.232 0.136 1.104 5.80 . 1.45 4.36. 1.50 0.63 0 0 1.50 0.63 Spreadsheet Column Definitions & Formulas _ - L = Shear Panel Length �{ H = Shear Panel Height ( v ` Wall Length = Sum of Shear Panels Lengths in Shear Line - • V (Panel Shear) = Sum of Line Load / Total L Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) - TRANSVERSE UPLIFT CALCULATIONS - SUMMARY UNIT A Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right k Simpson k k Simpson k . 102 Wind 21.31 Holdown None 0.00 Wind 20.79 None 0.00 103 Wind 20.79 Holdown None 0.00 Wind 21.31 None 0.00 _103A Wind 6.00 Holdown HDQ8 w 3HF 6.65 Wind 6.24 HDQ8 w 3HF 6.65 104 Wind 5.58 Holdown HDQ8 w 3HF 6.65 Wind 6.06 HDQ8 w 3HF 6.65 105 Wind 6.45 Holdown HDQ8 w 3HF 6.65 Wind 6.52 HDQ8 w 3HF 6.65 I 106 Wind 6.52 Holdown HDQ8 w 3HF 6.65 Wind 6.45 HDQ8 w 3HF 6.65 109 Wind 8.45 Holdown HDQ8 w DF 9.23 Wind 8.75 HDQ8 w DF 9.23 110 Wind 8.18 Holdown HDQ8 w DF 9.23 Wind 8.09 HDQ8 w DF 9.23 111 Wind 8.02 Holdown HDQ8 w DF 9.23 Wind 8.51 HDQ8 w DF '9.23 112 Wind 11.44 Holdown HDUI4 14.93 Wind 11.46 HDU14 14.93 113 Wind 11.46 Holdown HDU14 14.93 Wind 11.44 HDU14 14.93 201 Wind 4.82 Strap MST48x2 5.75 Wind 5.09 MST48x2 5.75 201a Wind 4.95 Strap MST48x2 5.75 Wind 4.95 MST48x2 5.75 201b Wind 5.15 Strap MST48x2 5.75 Wind 4.88 MST48x2 5.75 202A Wind 6.21 Strap MST60x2 8.11 Wind 6.59 MST60x2 8.11 202B Wind 6.58 Strap MST60x2 8.11 Wind • 5.91 MST60x2 8.11 ___) 203 Wind 3.62 Strap MST60 4.06 Wind 3.56 MST60 4.06 204,Wind 3.64 Strap MST60 4.06_ Wind 3.57 MST60 4.06 ` 301 Wind 0.83 Strap MST37 1.79 Wind 0.93 MST37 1.79 302 Wind 0.80 Strap MST37 1.79 Wind 0.80 MST37 1.79 303 Wind 0.91 Strap MST37 1.79 Wind 0.80 MST37 1.79 304 Wind 2.60 Strap MST48 2.88 Wind 2.75 MST48 2.88 305 Wind 2.74 Strap MST48 2.88 Wind 2.16 MST48 2.88 DATE: 6 _ ac... 1 0 JOB NO.: c tew ,43 0 OF PROJECT: RE: SSW A")r — Teo,r Loot& 0 0 Loads: u-Viki-y Wkort cpcOs -.5‘)‘- msiokc_ oc' -J • 0 w f Uk...■ : - (- --\ ,( i a\ ‘0a-cl -'':' 0 0 W F- W O 2 l i i 0 Ca?o,ci Ai./ QP 1/4-‘‘-loo vr.)s v e,,r• tikx.m.‘ a , . - 0 O . kkulk . LociA. .= n-'31-.1-- 3,7 -t-- a - u85 0 z . . ' = 3 4actAtiwati O actua l < Capaci-i :• MI . 0 _ z D 2 O Ca?ac.74-1 0 c. ssuJal xe) = 3ctLO is- 0 :o UIC 2 u_ • z La 0 6 o i Ki = ■-; 4 N"4 !.-',• . 5 P : ' 1 ) g o !,.., •••:• a• i = , -:,,,, • . /4 — 1::.>(--) o C .... - . ', . ...,.., . • .1). . 4, . . .. 51/0 TN %S LE ►Ttt I Lt.,�NC -, T•15 L1 N C ... 0 P • ct, �' 1 u' Ci511r fSE ✓ .. O I l { 'L i D 3 V I 9 g �— - 0 \ . Z d • o i (.43 1 0 , o a) Sw l-k \5 i.t NC. . „, r4 q - T 1■11wt -i- 76 ALUN.JC.. TE4-15 LING O Z • 0 SW "NLS LENC -iTI+ 0.NyU tel:: PrLWJ&i t - T -3 :14:5:( C -4 o � �� C :, L 4 ., 0 - r1 � r o r o n 0 O) - �; ;; (ft r c - o 1'.;-_ 0 ai,�:,s':I �� .`L`_'i. � * ;5 rr .. �C��..,..,.. " "�-+•s: �".� rl�'�'_" '". .,..'y.e.. � .`!' ❑ I 0 ES cal S w TH'I s lle N C.-in kN If Ul tit - sa_ . Nom," - -c s L I N f I c F o CI C E •" IN .1■55 1) ) . &NJ 1)+1.S LE N C1TH Pt 1 -0&)Cn 'MIS I. INC D. . — ..01 . V) 0 0 pi I ..,,.. j . Si .,--"'--,--"'...-- 1111. .. ....■.. ... ".'7.1 • I'll .0 ..... F.: I I 1 I ' 1 1 g Id r! i I 1 1 J , 0 5.; .__? r 1 • ° u ail 1 3, . , . , ! ... 0 , \ ,..•, g , i 1 5\k) 1\ o LE r•JCINTI-1 A wt‘i GA '11 LI N C Q D 1 Sw 1-t rc L i\lc -o 1Pw -rtes unrc 306. .� ! �� : ,a k� W 0V ,, I o ►max �.. .�. =, ` `�� , ,__, l'i r e 0 I P y-:, 5%. 5,.........3, SH C ...:, ® S>' c ,...) (%,,,,\ 5 c °„ o - 1 y 30 SA) 1)- \5 L t Nc r►+ Pc U,N C- -n -115 L,WL-: BY ANKL, DATE: - . O JOB NO.: c I J m _ Q O OF P ROJECT: /� • RE: `0, 1 y tr e( a4 \ 101 i 1 VP VNQV Ste/ ❑ ❑ L�fl�,g ‘e - Wind fCU7lkdls) 6.54 LL • Z c1i phragm W i kill = at Pc. O F ❑ Cu = '3aOt pt.F 1 p J CV( �c i of LinI�tcxiced diet phatern II, 614 O 2. ' occ... drat f o,r a U Z G /tZ Nc 1 eiq pu+ = (a55p1 -F.)6 ,4 = 353 w oiL D F f O U F . ¢ O IL Z w ❑ Z O O = H 4. O • 6 o N 1-1 ;a o z x a a x 4- 13b BY ,M � DATE: ...... V1 ........ 0 JOB NO.: c E. N � PROJECT: • Roov &4'- 8 } Is'_ RE: Des ;op of r'rn 1 blax ;r @ Sto 1r S i ° - op-now 1. - W � J Z I.a•. 0 W f 7X!11 1 3 1\ W O TRt 4 WIDTH.: ON ►�! F.F. 1c1 - V I4 • o - 0.1 1 ‘. 1 T = 9'- 9' /z" t► • To? PLPrns 18 5 4 cr o W %S MP o Z cr D 51 C-,1\ W 1 wo P(essuce z = - W., at p , o ` f F. R - 3 1t a D€S \ajc� 9 es GD 5pc Y'\ S\ =' te.r ' . Too vLAIes 5'- Ile Z Lorr'\ wv(Nit_ tC3 d• OC t -P D 2 ❑ R, e l a gl - \ %.1 9°1 IA d" 0" f t Z o N�mvx = $ I 2 #ct V rnX= 1VI'tTt i -1. S — (3.5 )(32.5) I __ S = V — It ` it 9)1 ',NI- A C•5 ,.S ,25) — F� (;An = ( ) a3 ytopsZ , c (AV/. NJC1 o o :: T -!�) = ISO ?st (t - (0 = auo . sL 7 d 7 • • a,t- :ta 0 1 NC-, (i o eu 2 /9--- L29 . BY: A AA ( DATE 6 \ - , 3 JOB NO. C (�: � ! ` o ! , V U , � C N lam PROJECT: RE: OPT 1 o 0 2 o E up ( Uilt 'rn 24...)D tooter W c� b\1oo+r1 � e 3ya..w 1wog. 1- W o 2 L ❑ -TOO 1,A0 IOU In on JtNT = \3'. -9" li O Mo ■x 1 o �Je r �1-c ( o ve.r, ‘ r\.9 : v2..'-o!‘ O w U Z n? ,_,kcr\ w kr\.6t pres <Jc c. = -a0.0?) ps F Z LoU d` cn, bv11 op No v cA-. _ als pk.F 0 a 1i T. (/ z T T m 0 Mr00x= +O2 a L - _ Agic,,,Kb AVk, E e) b 7:--- T.s " o • Z • • \imaX = i_GS6 jj W `p tZ I t - 3, 5, 1 , = Ct,SYliC? ' x :66 ,x,4 1 ' / \ -t "2_ r ( = a , eb u,14 WW1 1.s. 1'Z 1.5" 3.5 a„ - 3,,s,6 0 1� 2 ix : r, l = 6.a5 it d ,5(0,51x) +- b. - z; + a4 ,s' (9, 711 )1- s,3t,-k- 4 t ,tab + 0 r 1 y. I33 ‘N3 .b = . = 144 # C (1 - 45 . ) 140 C T 4 4.1 vN1 'Fb = (550 p sA I .L (t,o o t S ) { tics) - - a` p - Flo' - - - ta lac psi. X(. t,OCk,U 0. t.0)(1.0) Ls►_ go1cb r. /q — L3o • • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Uni1 A - Front Load WoodWor1s09 Sizer 7.1 June 24, 2010 12:49:04 COMPANY 1 PROJECT RESULTS by GROUP - NDS 2005 . SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF -= Mnf Trusses = Not d signed by request (2) 2x8 Lumber n -ply D.Fir-L No.2 1- 2x8 By Others Not designed by request (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 Typ Wall Lumber Stud Hem -Fir Stud 2x6 916.0 SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR Mnf Jat Not designed by request Sloped Joist Lumber -soft D.Fir-L No.2 2x6 916.0 (2) 2x0 (1) Lumber n -ply D.Fir -L No.2 1- 2x8 (21 2x8 Lumber n -ply D.Fir-L No.2 2- 2x8 By Others Not designed by request By Others 2 Not designed by request (2) 2x12 Lumber n -ply D.Fir -L No.2 2- 2x12 5.125x10.5 Glulam- Unbalan. West Species 24F -V4 DF 5.125x10.5 4X6 Lumber -soft D.Fir-L No.2 • 4x6 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 406 Lumber Post Hem -Fir No.2 4x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 (21 2x4 Lumber n -ply Hem -Fir No.2 2- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 916.0 . SUGGESTED SECTIONS by GROUP for LEVEL 2 - FLOOR • 6 Mnf Trusses == �� =yy �= Not designed by request Mnf Jst Not designed by request Deck Jst Lumber -soft D.Fir -L No.2 2x8 916.0 (21 2x8 Lumber n -ply D.Fir -L No.2 2- 2x8 3.125x9 Glulam- Unbalan. West Species 24F -V4 DF 3.125x9 408 Lumber -soft D.Fir -L No.2 4x8 By Others Not designed by request • By Others 2 Not designed by request (2) 2x10 Lumber n -ply D.Fir-L No.2 1- 2x10 ' 5.125X12 GL Glulam- Unbalan. West Species 24F -V4 08 5.125x12 By Others 3 Not designed by request 3.125x14 LSL LSL 1.55E . 2325Fb 3.5x14 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 4x4 Lumber Post Hem -Fir No.2 4x4 4x6 Lumber Post Hem -Fir No.2 4x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 6x6 Timber -soft Hem -Fir No.2 6x6 (2) 2x4 Lumber n -ply Hem -Fir No.2 2- 2x4 6x6 nol Timber -soft D.Fir -L No:1 6x6 (3) 2x4 Lumber n -ply Hem -Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 916.0 SUGGESTED SECTIONS by GROUP for LEVEL 1 - FLOOR = = Fod �______= a = == Not designed by request = _- �_ - -• CRITICAL MEMBERS and DESIGN CRITERIA Group Member Criterion Analysis /Design Values = _� = Mnf Jst Mnf Jot = Not designed by request = • Deck Jst j65 Bending 0.41 Sloped Joist j30 Bending 0.10 Floor Jst4 unknown Unknown 0.00 (2) 2x8 (1) 535 Bending 0.47 (2) 2x8 b8 Bending 0.89 3.125x9 b3 Bending 0.06 4x8 b30 Bending 0.12 By Others By Others Not designed by request By Others 2 By Others Not designed by request (2) 2x12 b6 Bending 0.93 (2) 2x10 bl Shear 0.78 5.125012 GL 610 Bending 0.76 . By Others 3 By Others Not designed by request 5.125x10.5 59 Deflection 0.95 4 %6 b20 Bending 0.08 3.125x14 LSL b14 Deflection 0.73 (2) 2x6 c2 Axial 0.91 4x4 c55 Axial 0.07 4x6 c23 Axial 0.80 (3) 2x6 c29 Axial 0.75 6x6 c26 Axial 0.70 . (21 2x4 c39 Axial 0.62 6x6 nol c12 Axial 0.86 (3) 2x4 c31 Axial 0.89 Typ Wall w14 Axial 0.48 Fnd Fnd Not designed by request DESIGN NOTES: -�� ==== � W===== � ____ � :=== L____= ¢ = 1. Please verify that the default deflection limits are a === a appropriate for your application. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result is considered the final design and appears in the Materials List. 3. ROOF LIVE LOAD: treated as w load with corresponding esponding duration factor. Add an empty roof level to bypass this interpretation. 4. BEARING: the designer 1s responsible for ensuring that adequate bearing is provided. 5. GLULAM: bxd = actual breadth x actual depth. 6. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 7. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 8. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, . special fastening details may be required. . 9. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 10. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. ,4 -- C� WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:41:17 Concept Mode: Beam View Floor 2: 8'�� ,��� 631 w 14 0' 40 b 1U3 : . ' - 4/ -b tY _ '1U'I _..; .; 40'-O' tuy9 . _ : 4 4 b :+cs 61 .. 4 �'-0 .. : .: f .. .. .. --- yb 4U _b S! D `J3 '' 3b - b' 3 / -b Jb b 35 b 34 -0 t!• b2 33'-0 JL n rsn : 14 31' b 31./ -0 Lt3 -b t53 L f -- b ' is ' Ln 'b t5i i L5-0 . ' au =b10 .:. to y . ® w . L4 b LL -0 rt it _ -n __ b ty' n t 0 f L - ....:... i. 632 10 -0 ru _ . .... - -- -- _ .. - btS - -- b19 G - nb t �. t • 00 - 0 b _ t� 1 0 .. 0L. _ b4 .: b14 , • ■ b -b bt bu' b30",�. b3 -1111 a b2 I I. - : r .. - -- b' L' n" t -0 6B18.6 BCCCCCCC C ICCC CC CCCC C C CC CC\CC CD DD D D DD DtCDD CD DDDD DD DD CD(DD DE,E E E E EEEtE EEIEE E EEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46'48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 1 :1 :1 022 2:M2E222263:3:3 :4.4'414 A t4.5(5 5:5'.5 777 141— C-r17D WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:41:19 Concept Mode: Column View Floor 2: 8' VV)N r LOP D 105 c58 �c14 49'-6° I U4 � • . 4t5 -b IUS " 4 b WI) U . " ... - - - - - 44"-b.. y9 - .. 43 -b V0 c69 c2-. c7O . c71 . . 4Z -0 yb - - - - 4U -b yo 3y -b V...1 . 3 ( -b yL CS - - - - - 3b " -0 VU --- _...... - _ ... - ---- - - 34 _ 0 .. t5y .. .. : 3S -b t3/ _ 3I -b 730 ::' . - _ '- • -''-' c . : - - - - - -_ ---- 3U-b 255 ' :. - _ Ly - b ' t54 L 0 -b 2}3 Z - b - ZD 43 °°- C25 C . ` C 26: L 4 -b CO 0 ❑ - 0 ... --- - - _. - - - - - - L b ! ! : C2 . 2 I - b i b E1'c73 ... . , L -b !b - - IV f4-- -- .d 1 t5 -b - -- ` -- --._. .. _.._ . I n� f U 14 " -b b25- l .c77 17.: IL -b 033 c31 .. .: • : c76 c79 _ . b n .. ow G5 t.I14. - Ir. c3O : 0c32 • c55� � b "' 13MBB BC CCC C CC CICCC CC CCCC C CCC CC1CC CD DD D D DD DiDDD CD DD'DD D D DD CDC D DE .E E E c:EEEFEEEIEE!E EEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48 50' 52 54' 56' 58' 60' 62' 64' 666' 68' 70' 72' 74' 76' 0'1'2'3'4'5'67'8'91(1 1:1 :1 12(2' 222 , 2!2f2 2121313'133 4A :441414 5:515 616:66.'6t6-6;6'.7G 7:7.7.7.70 6" 4 - (_€)16 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 24, 2010 13:14:33 Concept Mode : Beam View Floor 2 : 8 ' 19•PX� 1 i)(L b31 CE°- W�i L� 105 49' -6" i V4 40 -b IUI 40-0 .. - 44'-0 y9 - - -- 46 -b a cs b34 . . - G -b `317 .. ... . .. - - _ _ b Sy . b .. 4 .:. . .; -. -. -:- . -...., _ .: . , . :: .. -- - --- - - - 3tS -b yJ of - b .. VG : : . - :- . _ 3b - b .. Vi 30 -b yu 34 -0 tsy ' b2 - .5.5-o • - - -- 04 -- :: ..- -- .. -- -- - -:- - -- - -- Lb-0 bu b10: G L 1 ' i _b33 Gl -o LU -b Ia' -b f4 :, " b32 _ . . _ ' - - - -= b . . f u 10 b :: :_ �: bb. .. : - b1911 : _ _ - -- -- -- -- - - - -- - - -... - 1 - bb . 16=1 175 -- . - - - I l U' - b 6 b bL. ' b4 It . ; b14 �u' b30 —35 w b 1 —•- -- --- -- b29 .: • s� L b 1L �:. i b BB\8.8 BC Cc C CC C ICCC CC CCCC C C CC CC }CC CD DDD D DD DlDDD CD DD DD D D DD CDIDD DE.E E E EEEEtEEE!EEIE EEEEEEEEEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'67'8'91(1 1 11 :1 ?111 :1 12 (222:2 :3 :3 343 - .31314( 4414:4.4 ?4(4'414 ?5(55:515.5 :5 ?616 -61617(77 :7 :7 -5' 4 -- C 9 - WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load Woodworks® Sizer 7.1 June 24, 2010 13:14:35 Concept Mode: Column View Floor 2: 8' Q(� w� c58 C14 ll�rvvl i w 105 - .. • p" ■_ ■ 40_ :, 4 -b 'I UL - : : ' • . : - . . .. - - - 40 -0 1UU " 43 b : y rs •C82 C81: .. 4 ab • yS . ' 3y b 30 -b Sl b' Sb -b C4 : tab . 31./-0 - 31./-0 DD . . ... . G -b • ■_i__ a' Lb b . °U.- : • : c25 '- c12 c26,- , - : ,. .. L3 -0" fu (6 ■ { {. - ! ! c72 c • r " • c2 it) ' C73 �y b • (4 • • 11 : • 0"-b - . / C3 . I O ib b . I : -c78 lU � .. • b� .. I1 ' - is b • bi5_ -. -: c77 . fL-b bb : -... . 1 LT-0 b - .C31 -- 7r. ' • -=c76 : .. - ..c.-71. c71- • - - - - -- .. -- - -"- 0 � .. • OL ; { i L,. c3O . ' I,1 c32. ; _ b �.. .3 c55 : c56 °� o b.. : ib I u b .8B18.B BCCCC CCC CICCC CC CCCC C C CC CC\CC CD DDD D DD DIDDD DD DD -DD D D DD CD'D D DEE E E E EE EFEEEIEE E EtEEEEEEWEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 :1 t 111N 2(2 '22:2 4A;4 5;5'.5 4 - Cic WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:44 Concept Mode: Beam View Floor 3: 17' 105 49' -6' 10,5 4 / '-b 1UL 40 -0 W I Lin -b tr I VV y9 43 -b W5 : b35 ' b6 : 41 -b 41 -b.. as _ 4U -0 3 ' 3_ Sr U' VL ' JU'-b &1 JU .5 44 - ti. a b7 3S -0 2515::- ' � - - SL a 0 ( J I - 25b 3u -0 25U' b9' L4 - _ . /! b22; L . 1 -0 r0 w-t) " '.b -.: _.._.. !L- Ib U r i , b20 1 a _b _ . rU 14 "b Ott - - -- ___ - -. - . . . 01 11 -0 a a - b } .5 - bL. b8; ; ' - .. UI b-b bus 4 40 .:. 1 b BBNBB BCCCCCCCCICCCCCCCCCCCCCCC1CCCDDDDDDDD1DDDCDDD DDDDDDCD'DDDEEEEE EEEFEEEEEIEEEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 1 "6' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'678'91(1 1:1 :1 1.'1(11:112(2 22:2 3:3:3 3l3f4(4 4:4:4.4!4(4 5:5 :5 515 (6 0 :6 :6 (6'6(657(7 7,7:7 6' • 4 - (mac WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:42 Concept Mode: Column View Floor 3: 17' 1050 .. :. 49' -6" 11)4 :; .� 40 -0 1U6 41-0 1 UL 0 _ _ - - - 40 -0 IUIl -- -- -- .._. .<.. - . _ - - - - 43-0 NU0 . 44 -0 . 9 - _- - -" -" 43-0 V0 c62 c61 ": c15 -.- '.c16 - - - - ' 4L -0 U4 - _ ... -- 30 -0 V.5 . 0 61'- : VI ® 60 0 34 0 0V 3 6 b 025' --f - - --' - - - -- - - - - -� ----- --- ---- -'- - .)L-0 • 25/ : : - .. 31-0 250 . -- - - - - C18 . _: : - :. - -- - - - - 3U'-0 04--.-•; - _;. _._.:. _. :__.... --- - - - .. - - ------ : ... -- "- 223 -0 06 . - .. L / -0" 25L- .__...... ._ _. -- -._._ _ _.. - -- " - - -- - .. _ - .... .. . - Lb 0 i - L5' -b' n . " c39 c24 c23 ca n / / C59 LI -0" /4 -- - -- -- ( 1 • - - -"- --- - - --- - 2U -0 1 0 - _ i -0 (4 ' (`- ----- . . "-- -- I0 -0.. / 3 : : - - - - - I/ -0 10 -0 - - -"- -- -- .__.._-- `- --- -_ 14-0 _ .. . - .._. .. - -- -- - - --- 3-0 00bb I U0 . • n-c66 . -- - c63� . ' - .. ; -- - -- - - -- - _ _ _ _ 25 -b uz ' .1 11 c756520 c1 c6c74 0U1 .. .. - j . - - - -- - "- - -- -- - "- 3 -0 -0 L'-0 1 b BB1B.B BCCC CC CC MCC CC CCCCC CCC CC\CCCD DDD D DO DtDDD DD DD DD D DOD CD'DD DE.E E E EE EEFEEEIEEE EEEEEEEIEEEEZ 0' 2 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70:72' 74' 76' U1'2'3'4'5'6'7'8'9111 1:1:1 111 ;10 2(2"2:22 :3;3 313:4(4 4:4 :4.4!4(4 - 414(5(5 5:5:5 7(7 7.7:7.7.7(77'-6" WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:38 Concept Mode: Beam View Roof: 25' 1056 _ _.. _:. 49 1 U4 425 -b b y9 " 43. -b. SO b23 b24 - 4L-n yS --- --- -- -'- --- . i -- -- S - -b.. yU -- - - - - - - - .54 -0 25J 31 -b.. 25b :. , - - -' - - - ,.515-0 0 ..- , . : : : : Ly -b tf4 _ . -_:. .. i :: - .. : - - - - _ _. - -- .. 253 U -o Li L ..._ -- - - - - - .. : _.. L0 -b - -- - - - - - -- - - - 24 -b (23 - -- - - - 42-0 (( .b L1-b (4 I0 0 :- - - - -' - - -- _ --- In b.. (U.. : : i i i __.. _ .__ .. .. 4 - -b i 1 0 n( _. , t . b . bb- .._": . i : - --- - -- - -- -.._ .1U -b. 04 - -: --- : b27 ! b28 . .. o u - n .. 1 b ''1 : U -b BB1B.B BC CCC C CCCICCC CC CCCC C C CC CC1CC CDDDD D DD DIDDD DD DD DD D D DD CD'DD DEE E E EEE EtEEEEEE EtEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'9111 '1:1:1 t 1'11102 222 - 3:3:3 , 3'.3E3'3t3W4 - 4A:44 !414'414f5t5 5 :5 :5 6:6:6 4 __ 6.71?, WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:40 Concept Mode: Column View Roof: 25' 104 4 C -0 4 b 1U1b 40-0 9 46 -b a c - c42 c43' : : c44 - c45 : . , 42 -b 1 01. - s - - : 41 -b V0 4U-0 a5 3`J' b J4 _ - - : - - 30'-0 a t - 3 . -b. LSa - 66 -b 00 -- .. . .;.. __ - - - -- _ - - -- - --- - - ---- -- -- -- -- -.. 3L - -0 61 -t3 3 V -b 250 " .. LU• - 0 04 ---. ___ -- -- -- - - - - --- --- --- -- - - ' -- -- --. - -- ... - 10-0 256 i _ - - _ 252 - ' ': :1 - -:-- ?' -:-:: - ... ---- -- _ - _ .. - - - _ - - .. _. ..- LO'-0 0U'-- ' ,_ (V L..5-0 10 (4 _ _ 10 b 13 : .. ._ - - i - - - 10 -0 r{ ibta 14 b ha _ ._ 00 . - . --._. -.. • • -_ 25 -b o�� c5 c52 c53 ! . .. 1 BBIB.B BCCCC C CC CtCCC CC CCCCC CCC CCICCCD DDD DDD DIDDDCD DD DOD D DD CDIDD DEE E E E EEEI EEEIEE1E EsEEEEFEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'9111 1;1'.1 £11212 2:2:22'.2E2 212E3t 33: 33 "32Wt4'4A:4 5:5:5 6;616 "7:7,7 7.7E77-6" / — (-19 COMPANY PROJECT di WoodWorks® SOFTWARE' FOR WOOD DESIGN June 24, 2010 12:42 b1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w61 Dead Partial UD 613.2 613.2 2.50 3.00 plf 2 w 61 Snow Partial UD 795.0 795.0 2.50 3.00 plf . 3 - c61 Dead Point 622 2.50 lbs 4 c61 Snow Point 1192 2.50 lbs 5 j28 Dead Full UDL 47.7 plf 6_j28 Live Full UDL 160.0 plf 7_j33 Dead Full UDL 120.2 plf 8 j33 Live Full UDL 370.0 _ plf MAXIMUM RE, • I o' . 31 Dead 391 1061 Live 795 1615 Total 1186 2676 Bearing: Load Comb #2 #3 Length 0.63 1.43 Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2 -Plys Self- weight of 6.59 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv* = 67 Fv' = 207 fv * /Fv' = 0.32 Bending( +) fb = 331 Fb' = 1138 fb /Fb' = 0.29 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.05 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 2676, V design* = 1237 lbs Bending( +): LC #3 = D +.75(L +S), M = 1178 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 158e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. • • AQ - 6 0 COMPANY PROJECT i t WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:43 b3 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j45 Dead Full UDL 17.0 plf 2 j45 Live Full UDL 25.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 10' g l Dead 106 106 Live 112 112 Total 218 218 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Glulam- Unbal., West Species, 24F -V4 DF, 3- 1/8x9" Self- weight of 6.48 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 10 Fv' = 265 fv /Fv' = 0.04 Bending( +) fb = 140 Fb' = 2400 fb /Fb' = 0.06 Live Defl'n 0.01 = <L/999 0.30 = L/360 0.04 Total Defl'n 0.03 = <L/999 0.45 = L/240 0.06 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 218, V design = 182 lbs Bending( +): LC #2 = D +L, M = 491 lbs -ft Deflection: LC #2 = D +L EI= 342e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 'U COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:40 b6 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 c44 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 51c45 Dead Point 444 5.00 lbs 6_c45 Snow Point 647 5.00 lbs 7 w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8_w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9_j25 Dead Full UDL 120.2 plf 10 j25 Live _ Full UDL 370.0 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS 4 61 Dead 1436 1389 Live 1803 1803 Total 3239 3192 Bearing: Load Comb #3 #3 Length 1.73 1.70 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. i COMPANY PROJECT f fl WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:50 b8 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j14 Dead Full UDL 113.7 plf 2 114 Live Full UDL 350.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : A s Dead 357 357 Live 1050 1050 Total 1407 1407 Bearing: Load Comb #2 #2 Length 0.75 0.75 Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 77 Fv' = 180 fv /Fv' = 0.43 Bending( +) fb = 963 Fb' = 1080 fb /Fb' = 0.89 Live Defl'n 0.07 = <L/999 0.20 = L/360 0.33 Total Defl'n 0.10 = L/712 0.30 = L/240 0.34 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 1407, V design = 1123 lbs Bending( +): LC #2 = D +L, M = 2110 lbs-ft Deflection: LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. COMPANY PROJECT 01111°1111 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:40 b9 Design Check Calculation Sheet Slier 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j50 Dead Partial UD 113.7 113.7 0.00 1.50 plf 2_j50 Live Partial UD 350.0 350.0 0.00 1.50 plf 3_j14 Dead Partial UD 113.7 113.7 3.00 9.00 plf 4_j14 Live Partial UD 350.0 350.0 3.00 9.00 plf 5_j51 Dead Partial UD 113.7 113.7 1.50 3.00 plf 6_j51 Live Partial UD 350.0 350.0 1.50 3.00 plf 7_j24 Dead Partial UD 120.2 120.2 0.00 3.00 plf 8_j24 Live Partial UD 370.0 370.0 0.00 3.00 plf 9_j25 Dead Partial UD 120.2 120.2 3.00 9.00 plf 10_j25 Live Partial UD 370.0 370.0 3.00 9.00 plf 11_j26 Dead Partial UD 120.2 120.2 9.00 12.00 plf 12_j26 Live Partial UD 370.0 370.0 9.00 12.00 plf 13_j52 Dead Partial UD 113.7 113.7 9.00 10.50 plf 14_j Live Partial UD 350.0 350.0 9.00 10.50 plf 15_j53 Dead Partial UD 113.7 113.7 10.50 12.00 plf 16 j53 Live Partial UD _ 350.0 350.0 10.50 12.00 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : l 0' 121 Dead 1478 1478 Live 4320 4320 Total 5798 5798 Bearing: Load Comb #2 #2 Length _ 1.74_ 1.74 Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x10 -1/2" Self- weight of 12.39 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 138 Fv' = 265 fv /Fv' = 0.52 Bending( +) fb = 2217 Fb' = 2400 fb /Fb' = 0.92 Live Defl'n 0.38 = L/381 0.40 = L/360 0.94 Total Defl'n 0.57 = L/252 0.60 = L/240 0.95 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 5798, V design = 4953 lbs Bending( +): LC #2 = D +L, M = 17395 lbs - ft Deflection: LC #2 = D +L EI= 890e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). eoq COMPANY PROJECT 1 WoodWorks® SOFlWAREFOR WOOD DESIGN June 24, 2010 12:43 b10 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ftt Pat - Start End Start End tern 1 w39 Dead Partial UD . 311.0 311.0 0.00 4.50 No 2 Live Partial UD 680.0 680.0 0.00 4.50 No 3 c39 Dead Point 267 2.00 No 4 Live Point 822 2.00 No 5 j32 Dead Partial UD 120.2 120.2 0.00 0.50 No 6 Live Partial UD 370.0 370.0 0.00 0.50 No 7_j33 Dead Partial UD 120.2 120.2 1.00 4.00 No 8j33 Live Partial UD 370.0 370.0 1.00 4.00 No 9 j34 Dead Partial UD 120.2 120.2 4.00 4.50 No 1"6_j34 Live Partial UD 370.0 370.0 4.00 4.50 No 11 j35 • Dead Partial UD 120.2 120.2 4.50 7.50 No 12 j35 Live Partial UD 370.0 370.0 4.50 7.50 No 13 j36 Dead Partial UD 113.7 113.7 4.50 16.50 No 14_j36 Live Partial UD 350.0 350.0 4.50 16.50 No 15 j37 Dead Partial UD 100.7 100.7 3.00 4.50 No 16 Live Partial UD 310.0 310.0 3.00 4.50 No 17 Dead Partial UD 120.2 120.2 7.50 13.50 No 18 Live Partial UD 370.0 370.0 7.50 13.50 No 19_j48 Dead Partial UD 120.2 120.2 13.50 16.50 No 20_j48 Live Partial UD 370.0 370.0 13.50 16.50 No 21j49 Dead Partial UD 120.2 120.2 0.50 1.00 No 22 j49 Live Partial UD 370.0 370.0 0.50 1.00 No 23_b32 Dead Point 300 3.00 No 24 Live Point 922 3.00 No MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 10' 4'-6" 16-6 Dead 452 4067 1180 Live 847 11291 3436 Uplift 12 Total 1300 15358 4616 Bearing: Load Comb #2 #2 #2 Length 0.50` 4.24 1.27 Cb 1.00 1.09 _ 1.00 'Min. bearing length for beams is 12" for exterior supports Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x12" Self- weight of 14.16 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 265 fv /Fv' = 0.60 Bending( +) fb = 1074 Fla' = 2400 fb /Fb' = 0.45 Bending( -) fb = 1396 Fb' = 1844 fb /Fb' = 0.76 Live Defl'n 0.13 = <L/999 0.40 = L/360 - 0.32 Total Defl'n 0.19 = L/740 0.60 = L/240 0.32 ADDITIONAL DATA: FACTORS: F/E CD Q7 Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fb'- 1850 1.00 1.00 1.00 0.997 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Ervin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 8357, V design = 6496 lbs Bending( +): LC #2 = D +L, M = 11006 lbs -ft Bending( -): LC #2 = D +L, M = 14310 lbs -ft Deflection: LC #2 = D +L EI= 1328e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. Grades with equal bending capacity in the top and bottom edges of the beam cross- section are recommended for continuous beams. 4. GLULAM: bxd = actual breadth x actual depth. 5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 6. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). iq ,- (:72 ;;;:' COMPANY PROJECT f fl WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:44 b13 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w5B Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 c40 Dead Point 217 5.50 lbs 4 c40 Live Point 668 5.50 lbs 5 c67 Dead Point 518 5.00 lbs 6_c67 Snow Point 778 5.00 lbs 7 Dead Point 573 3.00 lbs 8 Snow Point 942 3.00 lbs 9 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10 w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11_j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12_j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13_j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14_j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15_j39 Dead Partial UD 22.7 22.7 0.00 3.50 pif 16_j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 18 b15 Live Point 389 3.50 lbs 19 b32 Dead Point 225 6.50 lbs 20 Live Point 693 6.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : i.r. .ms s ---,.. , - - ..�a... . .,- yam `"",Z �. ia. .s..t a;.:. 2 - - - .t .-�_ _ •s..... _ " - _+ice � - _r ,a ;.►. _`'s"'"M„ �+_...; `yam.,._ ►M • O' 81 Dead 2561 3033 Live 2699 3789 Total 5261 6822 Bearing: Load Comb #3 #3 Length 1.88, 2.44 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L/680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC #3 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. • 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. ) 4 ...... G 1 C? COMPANY PROJECT 1 WoodWorks® sof7WARE FOR WOOD DESIGN June 24, 2010 12:43 b14 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w33 Dead Partial UD 317.7 317.7 9.00 12.00 plf 2 Live Partial UD 350.0 350.0 9.00 12.00 plf 3 c19 Dead Point 357 9.00 lbs 4 c19 Live Point 1050 9.00 lbs 5 c20 Dead Point 357 3.00 lbs 6 c20 Live Point 1050 3.00 lbs 7 w34 Dead Partial UD 317.7 317.7 0.00 3.00 plf 8_w34 Live Partial UD 350.0 350.0 0.00 3.00 plf 9 c64 Dead Point 165 10.50 lbs 10_c64 Snow Point 225 10.50 lbs 11 c65 Dead Point 165 1.50 lbs 12 Snow Point 225 1.50 lbs 13 j36 Dead Full UDL 113.7 plf 14_j36 Live Full UDL 350.0 plf 15_j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 16_j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 17j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 18 j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 19_j45 Dead Partial UD 17.0 17.0 1.50 10.50 plf 20_j45 Live Partial UD 25.0 25.0 1.50 10.50 plf 21_j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 22 j46 _Live Partial UD _ 25.0 25.0 _ 10.50 12.00 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : e�.. ;�- : �" - � °�r `�. ;�= ` t e -°-- ekr a." -- r_- --�3 'a.'^" ,._ try"` = .s - -� �-_� s 2 w-+ar -..� - r - .r - .-- " , "".4,17,,,,:" . " - . =_ ,;*.sue.- .:.::: - � " . 7•"�.,,, - , .�. �.. ' ' 7 - s - +r'-.. 1 0' 12t Dead 2351 2351 Live 4350 4350 Total 6701 6701 Bearing: Load Comb #2 #2 Length 2.39 _ 2.39 • LSL, 1.55E, 2325Fb, 3- 1/2x14" Self weight of 15.31 plf included in loads; Lateral support top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 163 Fv' = 310 fv /Fv' = 0.52 Bending( +) -fb = 1769 Fb' = 2325 fb /Fb' = 0.76 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.43 = L/333 0.60 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 6701, V design = 5314 lbs Bending( +): LC #2 = D +L, M = 16851 lbs -ft Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. ":7 ..---- L F40- COMPANY PROJECT 1 WoodWorks® SOFT WAR£FOR WOOD DESSGN June 24, 2010 12:41 b20 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j30 Dead Full UDL 21.7 plf 2 j30 _Live Full UDL 60.0 plf MAXIMUM READ =TIANS /lhcl and RFARINn 1 FN(T1aq lint • 1 Dead 46 46 Live 105 105 Total 151 151 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x6" Self- weight of 4.57 plf included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 9 Fv' = 180 fv /Fv' = 0.05 Bending( +) fb = 90 Fb' = 1170 fb /Fb' = 0.08 Live Defl'n 0.00 = <L/999 0.12 = L/360 0.02 Total Defl'n 0.00 = <L/999 0.18 = L/240 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 151, V design = 111 lbs Bending( +): LC #2 = D +L, M = 132 lbs -ft Deflection: LC #2 = D +L EI= 78e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 1- COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:50 b30 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1_j41 Dead Partial UD 68.0 68.0 2.00 4.00 plf 2_j41 Live Partial UD 100.0 100.0 2.00 4.00 plf 3_j42 Dead Partial UD 72.2 72.2 0.00 2.00 plf 4 j42 Live Partial UD _ 106.2 106.2 0.00 2.00 plf MAXIMUM REACTIONS tIbsl and RFARING LENGTHS lint 7. A 0. 4 A Dead 154 150 Live 209 203 Total 364 353 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x8" Self- weight of 6.03 pif included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 15 Fv' = 180 fv /Fv' = 0.08 Bending( +) fb = 140 Fb' = 1170 fb /Fb' = 0.12 Live Defl'n 0.00 = <L/999 0.13 = L/360 0.03 Total Defl'n 0.01 = <L/999 0.20 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 364, V design = 253 lbs Bending( +): LC #2 = D +L, M = 359 lbs -ft Deflection: LC #2 = D +L EI= 178e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. • (111 . COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:42 b31 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j65 Dead Partial UD 47.7 47.7 0.00 4.00 plf 2_j65 Live Partial UD 160.0 160.0 0.00 4.00 plf 3_j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4_j28 Live Partial UD 160.0 160.0 4.50 7.50 plf 5_j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 6_j62 Live Partial UD 160.0 160.0 7.50 11.00 plf 7_j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 8_j63 Live Partial UD 160.0 160.0 11.00 17.00 plf 9_j64 Dead Partial UD 47.7 47.7 17.00 20.00 plf 10_j64 Live Partial UD 160.0 160.0 17.00 20.00 plf 11_j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 12 166 Live Partial UD 160.0 160.0 4.00 4.50 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : l0' 204 Dead 619 619 Live 1600 1600 Total 2219 22 Bearing: Load Comb #2 # Length 0.67 0.67 Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x12" Self- weight of 14.16 plf included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 49 Fv' = 265 fv /Fv' = 0.18 Bending( +) fb = 1082 Fb' = 2400 fb /Fb' = 0.45 Live Defl'n 0.43 = L /553 0.67 = L/360 0.65 Total Defl'n 0.69 = L/350 1.00 = L/240 0.69 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LCI Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 2219, V design = 1997 lbs Bending( +): LC #2 = D +L, M = 11095 lbs -ft Deflection: LC #2 = D +L EI= 1328e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4 - cg COMPANY PROTECT ' i Wood\'Vorks June 2..20, °1315 W SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet 5Ner 7.1 LOADS ( m..P•9,D9 Load Type Distribution Magnitude Location Iftl Unita Start End Start End • _062 Dead Partial UD 613.2 613.2 0.00 2.00 plf • 6 Snow Partial UD 795.0 195.0 0.00 2.00 plf :029 Dead Partial UD 617.5 612.5 1.50 11.00 plf v 5:7w Pac :1a1 UD 801.2 601.2 7.50 11.00 plf c1 5 Dead Po1nt 1436 11.00 lb. _015 Snow Point 2404 11.00 lbs .16 Dead Point 1389 17.00 lbs _c16 Snow Point 2404 11.00 lb. 064 Dead Partial UD 611.5 617.0 11.00 18.00 plf 0_w64 Snow Partial UD 601.2 901.2 11.00 18.00 plf 1 .61 Dead Point 622 1.00 lbs ' 2_961 Snow Point 1192 1.00 lbs J_c62 Dead Point 622 4.00 lbs 14 Snow 2o1n5 1192 4.00 10s 15 Dead Partial UD 613.2 613.2 2.00 1.00 plf 16 Snow Partial UD 195.0 795.0 2.00 1.00 plf 11 Dead Partial UD 611.5 611.5 19.00 20.00 plf 16 Snow Partial UD 901.2 901.2 18.00 20.00 plf 19 Dead Partial UD 613.2 613.2 1.10 7.50 plf 20:071 Snow Partial V0 195.0 195.0 1.00 7.50 plf 21_164 Dead Partial UD 11.1 41.7 1 19.00 91f 22_164 Live Partial UD 160.0 160.0 11.00 18.00 plf 23_129 Dead Partial UD 41.7 47.1 4.50 1.50 plf 24_129 Live Partial UD 160.0 160.0 4.50 1.50 plf . 25 162 Deed Partial 00 41.7 47.7 7.00 11.00 plf 20 Live Partial UD 160.0 160.0 7.50 11.00 plf 21_146 Dead Partial UD 120.2 120.2 0.20 2.00 Of 29 )43 Live Partial UD 370.0 370.0 0.00 2.00 plf 29 Dead Partial UD 120.2 120.2 3.50 4.00 elf 30 )32 Live Partial UD 370.0 370.0 3.50 4.00 Of 31_333 Dead Partial UD 120.2 120.2 4.50 1.50 91f 32_133 Live Partial U0 310.0 310.0 4.50 7.50 plf 33_134 Dead Partial UD 1:0.: 120.2 7.50 3.00 plf . 3 334_134 Lava Partial UD 370.0 370.0 7.50 9.00 plf 35 - 135 Dead Partial UD 120.2 1:0.2 8.00 11.00 plf 36_135 Live Partial UD 370.0 370.0 8.00 11.00 plf 37_141 Dead Partial UD 120.2 120.2 11.00 17.00 plf 38_14/ Lave Partial UD 370.0 370.0 11.00 17.00 plf 39_367 Ceatl 9.90151 UD 120.2 120.2 2.00 3.50 plf 40_367 Live Partial UD 370.0 370.0 2.00 3.50 plf 41_149 Dead Partial UD 120.2 120.2 4.00 4.50 plf 42_149 Lava Partial UD 370.0 370.0 4.00 4.50 plf 43_363 Dead Partial UD 47.7 41.7 11.00 11.00 plf 44_163 Live Partial U0 160.0 160.0 11.00 17.00 pit 45_365 Deed Partial UD 47.1 41.1 10.00 20.00 plf 46_160 Live Partial UD 160.0 160.0 18.00 20.00 plf 166 Dead Partial UD 41.7 47.1 1.00 4.50 plf 49166 Live Partial UD 160.0 160.0 4.00 1.50 plf 49_168 Dead Partial UD 120.2 120.2 17.00 19.00 plf 50_160 Live Partial UD 370.0 370.0 17.00 10.00 pif 51_1499 Dead Partial 00 120.2 120.2 16.00 20.00 p1f 52_369 Live 9.20141 UD 310.0 370.0 19.00 20.00 pif 5 172 Dead Partial UD 47.7 47.7 2.00 4.00 Of 54_17: LS':e Partial UD 160.0 160.0 2.00 4.00 plf 55_173 Dead Partial UD 47.1 47.7 0.00 2.00 pit 56 773 Live Partial U0 160.0 160.0 0.00 2.00 elf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 1 4 Dead - 5405 13 Live 99.6 9979 Total 11361 17305 66.0174: Load Comb 93 13 Lendth 5.21 _ 5.19 Glulam -Bat., West Species, 24F -V8 DF, 5- 1/8x22 -1/2" Self-weight et 20.55 plf Included in IoW; Lateral support bp fue, breamo d supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NOS 20051 Crites -n Analysla Value 0.s10n Value Analyeln /Ce61on !v ■ 102 305 Iv /FV' - 0.60 Bendin41.1 fb - 2392 Flo - 2604 fb /Fb' - 0.92 L1'.6 Defl'n 0.40 ■ L /595 0.67 - L/360 0.60 Total 0e21'n 0.94 - L/295 1.00 - 1/240 0.94 ADDITIONAL DATA: FACTORS: F/E CD C CL CJ Cf: Cr Cfrt Notes Cn LCI 4v' :65 1.15 1.00 1.00 1.00 1.00 1.00 3 8'b'6 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 E. - 1.9 million 1.00 1.00 - - - - 1.00 - - 3 5:0:' 0.95 01111:: 1.00 1.00 - - - - 1.00 - - 3 Shear : 1. 63 - 06.751L -S), y - 17361, '/ design - 13982 1bs 9end1 :g1 LC 13 - 00.1511, M - 86139 lbs -ft Deflection: LC 13 - 00.15(1,651 00- 9756.06 16 -in2 Total Deflection - 1.50(06.9 Wad Deflection, 0 Live Load Deflection. . 20-dead L■11ve 5 ■ancw 11701 :. I- 1rpact 0- construction Cld■c:ncentratedl 1211 LC's are listed in the Analysis 7009201 • Load 27900:ati :ns: ICC -IBC DESIGN NOTES: 1. Please verify that the default d•Decibn fm IN are appropriate for your app4ca0m. 2. GM= design values are for m#etfab eonf40rdng to AITC 117 -2701 and manufactured In accordance with ANSVAITC AI30.1 -1992 1 GLULAM: tad 4 ecluN breadth 4 actual depth. 4. G4olarn Beams shall be tatera2y supported amcciO lg to the provisions 69 NOS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fep(taubn), Fcp(compn). 4-, c.irs;), COMPANY PROJECT 11 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:49 b35 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j21 Dead Partial UD 120.2 120.2 0.50 1.50 plf 2_j21 Live Partial UD 370.0 370.0 0.50 1.50 plf 3_j59 Dead Partial UD 120.2 120.2 0.00 0.50 plf 4_j59 Live Partial UD 370.0 370.0 0.00 0.50 plf 5_j60 Dead Partial UD 120.2 120.2 1.50 3.00 plf 6 j60 Live _ Partial UD 370.0 370.0 1.50 3.00 plf MAXIMUM ..,..., ... % ..,,..,...,, • l••••••• /V. I. • • I0 3 1 Dead 188 188 Live 555 555 Total 743 743 Bearing: Load Comb #2 # Length 0.50 *_ 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value ,Design Value Analysis /Design Shear fv = 31 Fv' = 180 fv /Fv' = 0.17 Bending( +) fb = 254 Fb' = 1080 fb /Fb' = 0.24 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 743, V design = 444 lbs Bending( +): LC #2 = D +L, M = 557 lbs -ft Deflection:,LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I =impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. • 4 _ ,61Q-`a COMPANY PROJECT 1 WoodWorks® SOFf WARE FOR WOOD DESIGN June 24, 2010 12:51 c2 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End l bl Dead Axial 1056 (Eccentricity = 0.00 in) 2 Rf.Live Axial 2153 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 2 -Pays Self- weight of 3.41 pif included in Toads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 0.00= 0.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 196 Fc' = 980 fc /Fc' = 0.20 Axial Bearing fc = 196 Fc* = 1644 fc /Fc* = 0.12 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.596 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 3236 lbs Kf = 1.00 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. co.,,st63 COMPANY PROJECT 1 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:54 c12 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c24 Dead Axial 1478 (Eccentricity = 0.00 in) 2_c24 Live Axial 4320 (Eccentricity = 0.00 in) 3 Dead Axial 4067 (Eccentricity = 0.00 in) 4 Live Axial 11291 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): �'4,� s .T4, r. ^- 74 - ti z _' 41 Atr e.^_ • 0' 8' Timber -soft; D.Fir -L, No.1, 6x6" Self- weight of 7.19 pif included in Toads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 701 Fc' = 820 fc /Fc' = 0.86 Axial Bearing fc = 701 Fc* = 1000 fc /Fc* = 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC #. Fc' 1000 1.00 1.00 1.00 0.820 1.000 - - 1.00 1.00 2 Fc* 1000 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 21214 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT di WoodWorks® SOFFWARF FOR WOOD D6SGN June 24, 2010 12:53 c23 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_b9 Dead Axial 1478 (Eccentricity = 0.00 in) 2 b9 Live Axial 4320 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): D 1 0' 9' Lumber Post, Hem -Fir, No.2, 4x6" Self- weight of 3.98 plf included in Toads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 303 Fc' = 379 fc /Fc' = 0.80 Axial Bearing fc = 303 Fc* = 1430 fc /Fc* = 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.265 1.100 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 5834 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES!' 1. Please verify that the default deflection limits are appropriate for your application. 4 ( COMPANY PROJECT d1 Wood Works® SOFFWARFFOR WOOD DESIGN June 24, 2010 12:54 c26 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c23 Dead Axial 1478 (Eccentricity = 0.00 in) 2 c23 Live Axial 4320 (Eccentricity = 0.00 in) 3 b10 Dead Axial 1180 (Eccentricity = 0.00 in) 4 Live Axial 3436 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): �"- , ..•t�, - �,�.�'.'"��x�a.:F �fi °• �� � '1S`�.r, T.-�"�'v - �¢r--��q„ _�"''v b�ys ,��� F' • 0' 8' Timber -soft, Hem -Fir, No.2, 6x6" Self- weight of 6.25 pif included in Toads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 346 Fc' = 492 fc /Fc'. = 0.70 Axial Bearing fc = 346 Fc* = 575 fc /Fc* = 0.60 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.00 1.00 1.00 0.856 1.000 - - 1.00 1.00 2 Fc* 575 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 10465 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. ( 2(4) COMPANY PROJECT 1 WoodWorks SOFTWARE FOR WOOD DESIGN June 24, 2010 12:52 c29 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b13 Dead Axial 3033 (Eccentricity = 0.00 in) 2 Rf.Live Axial 5052 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 3 -Plys Self- weight of 5.11 pif included in Toads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 328 Fc' = 439 fc /Fc' = 0.75 Axial Bearing fc = 328 Fc* = 1644 fc /Fc* = 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.267 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 8126 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. 62:43" COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:55 c31 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b13 Dead Axial 2561 (Eccentricity = 0.00 in) 2 Rf.Live Axial 3599 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): D 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x4", 3 -Pays Self- weight of 3.25 pif included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 393 Fc' = 443 fc /Fc' = 0.89 Axial Bearing fc = 393 Fc* = 1719 fc /Fc* = 0.23 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.258 1.150 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 6186 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) • (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. ?,1/4 COMPANY PROJECT di WoodWorks® SOFlWARE FOR WOOD DESIGN June 24, 2010 12:54 c39 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b21 Dead Axial 267 (Eccentricity = 0.00 in) 2 Live Axial 822 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 0' 9' Lumber n -ply, Hem -Fir, No.2, 2x4 ", 2 -Plys Self- weight of 2.17 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 106 Fc' = 171 fc /Fc' = 0.62 , Axial Bearing fc = 106 Fc* = 1495 fc /Fc* = 0.07 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.114 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 1108 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. / (419 COMPANY PROJECT I WoodWorks® SOFTWARE FOP WOOD DESIGN June 24, 2010 12:52 c55 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units _ Start End Start End 1 b30 Dead Axial 154 (Eccentricity = 0.00 in) 2 Live Axial 209 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 1 0' 8' Lumber Post, Hem -Fir, No.2, 4x4" Self- weight of 2.53 pif included in Toads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 31 Fc' = 470 fc /Fc' = 0.07 Axial Bearing fc = 31 Fc* = 1495 fc /Fc* = 0.02 , ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.315 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 384 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 0 1.41 — BY \, DATE: ( _ — &O JOB NO.: c E - cto OF PROJECT: RE: ' C.a 1 S w I Lc&kr4 l ileac-Hans ❑ ❑ J Z . ci W barn L. -> tivatt s �a3 - ii sos 0 0 f L❑ bec&.•v t 3 -, Wails ao afl aoa g O W 10eo rn t 4 Wafts - 3‘.0 - 6 aO -1 U z W 0 x z a. b ea�m Z 3 W --) wat1s • AO , d0tA I . do■ g O U 5true wrNd ceckckist >> seismic, richems Z 2 Or\lk win& w(�1 he_ catcoto , 0 U El f rr O u. z W ❑ Z 0 o = 1- d o 0 0 — a) a7 ?, . 3 O x i q - t \ COMPANY PROJECT IV WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 13:07 b6 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c44 Dead Point 444 2.00 lbs 2__c44 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 Dead Point 444 5.00 lbs 6 Snow Point 647 5.00 lbs 7 w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 6 w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9 Dead Full UDL 120.2 pif 10_j25 Live Full UDL 370.0 plf WIND1 Wind Point 800 2.00 lbs WIND2 Wind Point -910 5.00 lbs MAXIMUM REACTIONS /lbsl and BEARING LENGTHS (inl : 1 o' 6$ Dead 1436 1389 Live 2089 1803 Total 3525 3192 Bearing: Load Comb #4 #3 Length 1.88 1.70 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in loads; Lateral support top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.15 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 4 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 4 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #4 = D +.75(L +S +W) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. /4"-- 32___ COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 13:07 b6 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c44 Dead Point 444 2.00 lbs 2_c44 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4_w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5_c45 Dead Point 444 5.00 lbs 6_c45 Snow Point 647 5.00 lbs 7_w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9__j25 Dead Full UDL 120.2 plf 10_j25 Live Full UDL 370.0 plf WIND1 Wind Point -800 2.00 lbs WIND2 Wind Point 910 5.00 lbs MAXIMUM REACTIONS (Ibsl and BEARING LENGTHS (in1 I o' 61 Dead 1436 1389 Live 1803 2172 Total 3239 3561 Bearing: Load Comb #3 #4 Length 1.73 1.90 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D+.75(L+S), M = 4247 lbs -ft Deflection: LC #3 = D +,75(L +S) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. ..._ G-33 • COMPANY PROJECT I. WoodWorks® SOFIWARE FOR WOOD DESIGN June 24, 2010 13:09 b14 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or p10) : Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2 Live Partial UD 350.0 350.0 9.00 10.50 plf 3_c19 Dead Point 357 9.00 lbs 4 c19 Live Point 1050 9.00 lbs 5 c20 Dead Point 357 3.00 lbs 6_c20 Live Point 1050 3.00 lbs 7 w66 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8 - w66 Live Partial UD 350.0 350.0 0.00 1.50 plf 9 Dead Point 165 10.50 lbs 10 c64 Snow Point 225 10.50 lbs 11 c65 Dead Point 165 1.50 lbs 12 c65 Snow Point 225 1.50 lbs 13_w67 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14 w67 Live Partial UD 350.0 350.0 1.50 3.00 plf 15 w69 Dead Partial UD 317.7 317.7 10.50 12.00 plf 16 w69 Live Partial UD 350.0 350.0 10.50 12.00 plf 17 j36 Dead Full UDL 113.7 plf 18_j36 Live Full UDL 350.0 plf 19_j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20_j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 21 j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22_j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 23_j45 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24_j45 Live Partial UD 25.0 25.0 1.50 3.00 plf 25J46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26_j46 Live Partial UD 25.0 25.0 10.50 12.00 plf 27_j70 Dead Partial UD 17.0' 17.0 3.00 9.00 plf 28_j70 Live Partial UD 25.0 25.0 3.00 9.00 plf 29_j71 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30 j71 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point 3560 3.00 lbs WIND2 Wind Point -3640 9.00 lbs wind3 Wind Point -3620 0.00 lbs winds Wind Point 3570 12.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : • ..... _r.. .-- - :+... -+. '" --Am...: ." - a r ._ _ , �r '"'r"Gi`'aa ..c env �.- .�,s.. --,.. ., _ .+s,..= .,,:.a��' .a :e - - _ - .,.� . ¢ .! n, I a 1221 Dead 2207 2207 Live 4350 4350 Uplift 499 479 Total 6557 6557 Bearing: Load Comb #2 02 Length 2.34 2.34 LSL, 1.55E, 2325Fb, 3- 112x14" Self - weight of 15.31 plf included in loads; • Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 310 fv /Fv' = 0.51 Bending( +) fb = 1735 Fb' = 2325 fb /Fb' = 0.75 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.42 = L/343 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LCO Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 6557, V design = 5170 lbs . Bending( +): LC #2 = D +L, M = 16527 lbs -ft • Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default defledion limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. i -0311 COMPANY PROJECT 1 WoodWo SOFIWARE FOR WOOD DESIGN June 24, 2010 13:09 b14 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2_w68 Live Partial UD 350.0 350.0 9.00 10.50 plf 3_c19 Dead Point 357 9.00 lbs 4_c19 Live Point 1050 9.00 lbs 5_c20 Dead Point 357 3.00 lbs 6 c20 Live Point 1050 3.00 lbs 7 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8 Live Partial UD 350.0 350.0 0.00 1.50 plf 9 c64 Dead Point 165 10.50 lbs 10 c64 Snow Point 225 10.50 lbs 11 c65 Dead Point 165 1.50 lbs 12_c65 Snow Point 225 1.50 lbs 13_w67 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14_w67 Live Partial UD 350.0 350.0 1.50 3.00 plf 15_w69 Dead Partial UD 317.7 317.7 10.50 12.00 plf 16_w69 Live Partial UD 350.0 350.0 10.50 12.00 plf 17_j36 Dead Full UDL 113.7 plf 18_j36 Live Full UDL 350.0 plf 19_j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20_j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 21_j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22_j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 23_j45 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24_j45 Live Partial UD 25.0 25.0 1.50 3.00 plf 25_j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26_j46 Live Partial UD 25.0 25.0 10.50 12.00 plf 27 - j70 Dead Partial UD 17.0 17.0 3.00 9.00 plf 28_j70 Live Partial UD 25.0 25.0 3.00 9.00 plf 29_j71 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30_j71 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point -3560 3.00 lbs WIND2 Wind Point 3640 9.00 lbs wind3 Wind Point 3620 0.00 lbs winds Wind Point -3570 12.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • I a 121 Dead 2207 2207 Live 4826 4811 Total 7033 7018 Bearing: • Load Comb #4 #4 Length 2.51 2.51 LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 310 fv /Fv' = 0.51 Bending( +) fb = 1735 Fb' = 2325 fb /Fb' = 0.75 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.42 = L/343 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 6557, V design = 5170 lbs • Bending( +): LC #2 = D +L, M = 16527 lbs -ft Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer.' 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 4---G.0 COMPANY PROJECT I WoodWorks 1 SOFIWARE FOR WOOD DESIGN June 24, 201013:11 b13 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or p18) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2_w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3_c40 Dead Point 217 5.50 lbs 4 c40 Live Point 668 5.50 lbs 5 c67 Dead Point 518 5.00 lbs 6_c67 • Snow Point 778 5.00 lbs 7_c68 Dead Point 573 3.00 lbs 8�c68 Snow Point 942 3.00 lbs 9 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10 w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11_j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12_j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13_j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14 138 Live Partial UD 250.0 250.0 3.50 6.50 plf 15_j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16_j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 18 b15. Live Point 389 3.50 lbs 19 b32 Dead Point 225 6.50 lbs 20_b32 Live Point 693 6.50 lbs W1 Wind Point 6590 0.00 lbs W2 Wind Point -6590 3.00 lbs W3 Wind Point 6590 5.00 lbs W4 Wind Point -6590 8.00 lbs MAXIMUM CTIONS llhsl and BEARING LENGTHS (in) .:,,. -tea... =�r_, ,tse- 7 .1...-,-- „ _, _ .. _ � .�. --... __..._.t-, -; --+a- -a te...-- a`.ie . te - . ±- x .- .a ., ..: - " . . F. sue....: - ..rte �.. �. ,..m ~ 0 � s�' • ......." . .r . ' . r .,. " 4 r -+5... * r' "►--_ ''1� ,. ..- ? ' a- �. 7.**1 -,'i., s a -.4. � r.a ;. Y . ,. _ 1 0' 81 Dead 2561 3033 Live 6406 3789 Uplift 3098 Total 8968 . 6822 Bearing: Load Comb #4 03 Length 3.20 2.44 LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L /360 0.24 Total Defl'n 0.14 = L /680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D +.75(L +S), V = 6322, V design = 5122 lbs Bending( +): LC #3 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind 1 =impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. • . 4 - ("1 3(47 COMPANY PROJECT 1 WoodWorks SOFTWARE FOR WOOD DESIGN June 24, 201013:11 b13 LC2 Design Check Calculation Sheet Sizer7.1 LOADS 1 Ibs, psf. or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 Snow Partial 00 505.0 505.0 0.00 3.00 plf 3 c40 Dead Point 217 5.50 lbs 4 c40 Live Point 668 5.50 lbs 5 Dead Point 518 5.00 lbs 6 Snow Point 778 5.00 lbs 7 Dead Point 573 3.00 lbs 8 Snow Point 942 3.00 lbs 9 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10 w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11_j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12_j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13_j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14_j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15_j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16_j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 18=b15 Live Point 389 3.50 lbs 19 b32 Dead Point 225 6.50 lbs 20 b32 Live Point 693 6.50 lbs W1 Wind Point -6590 0.00 lbs W2 Wind Point 6590 3.00 lbs W3 Wind Point -6590 5.00 lbs W4 Wind Point 6590 8.00 lbs MAXIMUM R _ • , . ... = :: , 1 ..� -i► ".7." =ti ,..c' � 1.. �~ vi sr .i.c.._- -? ,-� - -„'y .-- ^`wa.#r ... - ;.r. � - - - -- 1.10i � -±.4. - ..rte - si.,. - . -..., - .a . - Vi . =. "'"' �:. . , mss , �.w.C�. - '� I a 81 Dead 256 3033 Live 2699 7496 Uplift 3381 Total 5261 10529 Bearing: Load Comb #3 # Length 1.88 3.76 LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv• = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L /680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC #3 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 4 .- - (A 3 - COMPANY PROJECT I %Vood V\/o r k s ® tune 24, 2010 13113 1734 LC1 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet 51rer7.1 LOADS 1 1bs,Pe, ar Pa ) Load Tlpe 004521butlon Magnitude Location (ft) Unita Start End Start End _062 Deed Partial U0 613.2 913.2 0.00 2.00 plf _562 Snow Partial UD 795.0 795.0 0.00 2.00 plf _029 Dead Partial UD 617.5 617.5 7.50 11.00 plf 029 Snow Partial UD 901.2 901.2 7.50 11.00 plf :o15 Dead Point 1126 11.00 lbs _015 Snow Point 2404 11.00 lb. _916 Dead Point 1399 17.05 lb. 016 Snow Point 2401 17.00 lb. 1464 Dead Partial VD 617.5 617.5 17.00 19.00 510 31464 Snow Partial UD 901.2 601.2 17.00 10.90 plf 1 -061 Daad Point 622 7.00 lbs. 2 Snow Point 1192 7.00 lb. 3 Dead Point 622 1.00 lba 4 Snow Point 1192 1.00 102 5 563 Dead Partial UD 613.2 613.2 2.00 4.00 plf 6563 Snow Partial UD 735.0 795.0 2.00 4.00 plf 5 765 Deal Partial UD 617.5 61 19.00 20.00 :10 9 Snow Partial UD 901.2 601.2 19.00 20.00 plf 9571 Dead Partial UD 613.2 613.2 7.00 7.50 plf 0571 Snow Partial UD 795.0 795.0 7.00 7.50 plf 1 164 Deal Partial UD 47.7 47.7 17.00 18.00 plf 2 164 Live Partial UD 160.0 160.0 17.00 19.00 plf 3 Dead Partial DD 47.7 47.7 4.50 7.50 plf 429 Live Partial UD 160.0 160.0 4.50 7.50 plf 5_ Dead Partial UD 47.7 17.7 7.50 11.00 plf 6362 Live Partial 410 160.0 .160.0 7.50 11.00 p12 7_149 Dead Partial UD 120.2 120.2 0.00 2.00 plf X 9 49 Live Partial U0 3 370.0 0.00 2.00 plf 9 132 Dead Partial UD 120.2 120.2 3.50 4.00 plf 0_122 live Partial UD 370.0 370.0 3.51 4.00 plf 1_133 Dead Partial UD 120.2 120.2 4.5C 7.50 plf 2_133 Live Partial UD 370.0 370.0 4.50 7.50 plf 3_134 Dead Partial UD 120.2 120.2 7.50 9.00 plf 4_134 Live Partial UD 370.0 370.0 7.50 9.00 plf 5_335 Deed Partial UD 120.2 120.2 9.00 11.00 plf 6_125 Live Partial U0 370.0 370.0 9.00 11.00 plf 7_147 Dead 2.75141 UD 120.2 120.2 11.00 17.00 plf 9_147 Live Partial UD 370.0 370.0 11.00 10.00 plf 9_167 Dead Partial UD 120.2 120.2 2.00 3.50 p12 0_367 Li Partial LID 370.0 370.0 2.00 3.50 plf 1_349 Dead Partial UD 120.2 120.2 4.00 4.50 plf 2_149 Live Partial UD 370.0 3 1.00 4.50 plf 3_163 Dead Partial VD 47.7 47.7 11.00 17.00 plf 4_163 LSVa Partial UD 160.0 160.0 11.00 11.00 plf 5_365 Dyad Partial VD 47.7 47.7 19.00 20.00 plf 6_165 Live Partial UD 160.0 160.0 19.00 20.00 plf 7_166 Dead Partial UD 47.7 47.7 4.00 4.50 plf 9_166 Liva Partial UD 160.0 160.0 4.00 4.50 plf 9_169 Dyed 26:05.0 UD :20.2 120.2 17.00 18.00 plf 50_368 L1va Partial UD 370.0 370.0 17.00 18.00 plf 51_169 Dead Partial UD 120.2 120.2 19.00 20.00 plf 52_169 L1vo Partial UD 370.0 370.0 19.00 20.00 plf 53_172 Dead Partial UD 477 11.7 2.00 4.00 plf 54_172 Live Partial UD 160.0 160.0 2.00 1.00 plf 55_173 Dead Partial UO 47.7 47.7 0.00 2.00 plf 56_1 01:9 Partial UD 160.0 160.0 0.00 2.00 plf N1 Mind Point 5950 0.00 lbs 02 Mind Point -5650 4.00 lbs N2 Mind Point 5950 11.00 lbs M4 Mind Point -5850 17.00 lbs M- Mind Point 5950 20.00 1b, MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : • Lead - 155 '1 2372 Tote 12150 12492 Total 19555 19199 E Lead n 0 0 Load Comb 61 65 Lanath 5.97 5.65 Glulam -BaI., West Species, 24F -V8 DF, 5- 118x22 -1/2" se.'.alto of 25.55 Of Included In b49: Leartl 6uppvt tape Mk bake, el auppM6: Analysis vs. Allowable Stress (psi) and Deflection (In) ,Mg Ems 2009 7 Criterion Analysis Value Neaion Value 4 Analva6. /Daman 1 Sbaa: lv ■ 162 Fv' ■ 205 fv /FV' ■ 0.60 Bendingl +l eb - 2392 Fb' ■ 2604 fb /EL' - 0.92 Live Defl'n 0.40 - L /595 0.67 ■ L /360 0.60 Total Defl'n 0.64 - L/295 1.00 - L /240 0.94 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL C/ Cfu Cr Cf[t Not.. Cn LC4 • 01' 265 1.15 1.00 1.00 1.00 1.00 1.00 3 00'4 2400 1.15 1.00 1.00 1.000 0.914 1.00 1.00 1.00 1.00 - 3 . Fop' 650 1.00 1.00 - - - - 1.00 - E 1.9 million 1.00 1.00 - Em1n' 0.65 pillion 1.00 1.00 - Shaer : LC 43 ■ 0 V 17361, V design - 13902 lbs 9.740:51+7: LC 43 - 00.7511451, M ■ 96199 104 -e5 Deflection: LC 43 - 0•.1511,451 EI- 9756006 10 -172 Total Deflection ■ 1.50(0ead Lead Deflection) • Live Load Deflection. (0-dead 1.-11ve S.avow w.wind I- impact U :one :ruction CLd-conoent :atad1 1 0 2 1 0 0 ' . . : . listed in the Anal sie output) Load coebinaciona: ICC-IEC DESIGN NOTES: 1. Phase verify that the defend d.Dalbn lints are eppropig. fe your app6wOm. 2. Gkt r design values ere for nederield r1MemYq to AITC 117 -2001 end inanufactund In .o2edancevANANSUAITC A190.1 -1592 3. GLUM.: Ord a abd breadth it actual depth. 4. GhWn Bans Mad be Mealy suppoN4 according to the provisions of NM Cram 3 3 3. • 5. GLULAM: bearing length based on tanager of Fcppenaim). Fcp(canpn). 4 - ._ COMPANY PROJECT • Woodworks ha/024,2010 13:19 b34LC2 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet 04.. 7.1 LOADS Ills. Pelt ea P G Load Type Distribution Magnitude Location Ift) Unite Start End start End 1_762 Dead Partial UD 613.2 613.2 0.00 2.00 plf 762 Snow Partial U0 195.0 195.0 0.00 2.00 plf 3 729 Dead Partial UD 617.5 617.5 1.50 11.00 plf 4 729 Srew Partial UD 901.2 801.2 7.50 11.00 plf 5 Dead Paint 1436 11.00 161 6 04 . Point 2404 11.00 lbs Dead 116 ad Point 1399 11.00 lbs 9 216 Snow Point 2404 17.00 Its 9 Dead Partial UD 617.5 617.5 11.00 19.00 plf 10 761 Snow Partial UD 901.2 801.2 17.00 19.00 plf 11:261 Dead Point 622 7.00 lbs 12 261 Snow Point 1192 7.00 lb. 13 262 Dead Point 622 4.00 lba 14_262 Snow Point 1192 4.00 lba 15_063 Dyad Partial UD 613.2 613.2 2.00 4.00 plf 16 763 Snow Partial UD 795.0 755.0 2.00 4.00 plf 11 965 Dyad Partial 00 617.5 617.5 11.00 20.00 plf 10_965 Snow Partial U0 901.2 801.2 18.00 20.00 plf 19 Dyad Partial UD 613.2 613.2 7.00 7.50 plf 20 Ill Snow Partial UD 795.0 195.0 7.00 7.50 plf 21_164 Dead Partial UD 47.7 47.7 17.00 19.00 plf 22_164 Live Partial UD 160.0 160.0 11.00 18.00 plf 23_720 Dead Partial UD 41.7 47.7 4.50 7.50 plf 21_729 Live Partial UD 160.0 160.0 4.50 7.50 plf 25_062 Dead Partial UD 47.1 47.7 7.50 11.00 plf 26_162 Live Partial UD 160.0 160.0 7.50 11.00 pl.! 2 Dead Partial UD 120.2 120.2 0.03 2.00 plf 28 Live Partial UD 370.0 370.0 0.03 2.00 plf 29_132 Dead Partial UD 120.2 120.2 3.52 4.00 plf 30_122 Live Partial UD 370.0 370.0 3.50 4.00 plf 3 733 Dead Partial UD 120.2 120.2 4.5D 7.50 plf 32_733 Live Partial UD 370.0 310.0 4.52 7.50 plf 33_134 Dead Partial UD 220.2 120.2 7.50 9.00 plf 34_034 Live Partial UD 370.0 370.0 7.50 9.00 plf 35_035 Dead Partial UD 120.2 120.2 9.00 11.00 plf 36_135 Live Partial UD 370.0 370.0 9.00 11.00 plf • 37 _741 Dead Partial UD 120.2 120.2 11.00 11.00 plf 39_041 Lie. Partial UD 310.0 370.0 11.00 11.00 plf 39_76, Dead Partial UD 1:0.2 120.2 2.00 3.50 plf 4 767 Live Partial UD 370.0 370.0 2.00 3.50 plf 49149 Dead Partial UD 120.2 1:0.2 4.00 4.50 plf 42 _719 Live 0011141 00 370.0 370.0 4.00 4.50 p0! 43_763 Doad Partial DD 47.7 47.7 11.00 11.00 plf 4_563 Live Partial UD 160.0 160.0 11.00 11.00 plf 45_165 bad Partial UD 47.7 47.7 19.00 20.00 plf 46_165 Live Partial UD 160.0 160.0 19.00 20.00 plf 4 Dead Partial U0 47.1 47.7 4.00 1.60 ' ,if 48_166 Live Partial UD 160.0 160.0 4.00 4.50 plf 49_769 Dead Partial ID 120.2 120.2 17.00 19.00 plf 50_769 Live Partial ID 370.0 370.0 17.00 19.00 p1 51_160 Dead Partial UD 120.2 120.2 19.00 20.00 plf 52_169 Live Partial UD 370.0 310.0 19.00 20.00 plf 53_772 Dead Partial UD 2.00 4.00 plf 54_772 Live Partial UD 160.0 160.0 2.00 4.00 plf 55_173 Dead Partial UD 47.7 47.7 0.00 2.00 pif 56_j73 Live Partial UD 160.0 160.0 0.00 2.00 plf 01 Wind Point -5950 0.00 10. N2 Wind Point 5050 4.00 l6 N3 Mind Point -5950 11.00 lb, , Mind Point 5950 17.00 1b3 95 Wind 4 Point -5950 20.00 163 MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : ' `J7U 1 t1 v -+V Dead '1405 4 '"32 Live 9956 3978 Total 17361 17305 Bearing: Lead Cobb 93 43 Lenetb 5.21 5.19 • Glulam -Bat., West Species, 24F -V8 DF, 5- 118x22 -1/2" Setl -weight al 06.00 plf ac6mld In loads: Lateral solemn: tap' h8, lelmm. al su0Jere. Analysis vs. Allowable Stress (psi) and Deflection (in) using Nos 2906: Criterion Analysis Value Design Value Malvela/Des10n Shear 192 FS' . 305 fv /Fv' ■ 0.60 Bending,/ fb . 2301 Fb' . 2604 fb /Fb' . 0.92 Live Defl'n 0.41 . L /591 0.67. L/360 0.61 Total Defl'n 0.91 . L/204 1.00 - L/240 0.94 ADDITIONAL DATA: FACTORS: F/E CD 04 CC CL CV Cfu Cr Cfrt notes Cn LC 97' 265 1.15 1.00 1.00 1.00 1.00 1.00 3 00'6 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 :.00 1.00 - 3 E' 1.9 million 0.00 1.00 - - - - :.00 - - 4 6010' 0.95 01111,0 1.00 1.10 - - - - :.00 - - 4 Shear C P3 • 06.7511.01, V ■ 11361, V dealgr. . 13902 166 Bending( LC 63 . 0..7511.5). M ■ 96189 lbs-ft Dell,ct11:: Lc .4 . 0..7510,.0691 0I. 9756006 1b -102 Total 6.!1800100 ■ 1.50)Dead Load Deflection) 6 Live Load Deflection. 10.dead 1.1170 S.an:w .wind 2.1.cpact C■c0natructic0 CL1■22ncentrited) (A11 LC'a are listed in the Analysis output) lead 2o0binaticna: 100 -IEC DESIGN NOTES: 1. Please verity that the default deflection PoNLL are approprtele for your application. 2. Gkdam design values are for Materials D.nfOmdrg to ARC 117 -2001 end manufactured In accordance MN) ANSVAIFC 5190.1 -1392 3. GLULAM: lad 9 actual breadth 0 actual depth. 0. Gkden Beam, shell be late114y somat94.0Mdbg to the provisions of NDS Clause 3.3.3. 5. GIOLAM: barfly length bald On wager of Fep(lenbn). Fcp(mopn). • / 079 COMPANY PROJECT II I I %V o od \Alor k s® June 24, 2010 1920 EJ6 LC2 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet S¢ar 7.1 LOADS I Ib.,pe,o.pt) Lgad type Distribution Magnitude Location 1101 Un1ta Start End Start End 1 Dead Partial UD 613.2 613.2 0.00 2.00 plf 2 .62 Snow Partial UD 795.0 795.0 0.00 2.00 pif 3 Dead Partial U0 617.5 617.5 7.50 11.00 pif v29 Snow Partial U0 801.2 801.2 7.50 11.00 pif 5 Dead Point 1436 11.00 165 6 Snov Point 2404 11.00 lb. 7 Dead Point 1389 11.00 lba 6716 Snow Point 2404 17.00 lb0 9 Dead Partial U0 617.5 617.5 17.00 18.00 plf 14_,r64 Snow Part1•l UD 001.2 801.2 17.00 19.00 pif 11 c61 Dead Point 622 7.00 lbs 12 061 1now Point 1192 7.00 lbe 13_762 Dead Point 622 4.00 lbs 14 762 Snow Point 1192 4.00 lbs 15 Dead Partial UD 613.2 613.2 2.00 4.00 pif 16063 Snow Partial U0 795.0 795.0 2.00 4.00 pif 17 Dead Partial U0 617.5 617.5 19.00 20.00 pif 18 1o65 Sn7,, Partial UD 801.2 901.2 19.00 20.00 plf 19 0)1 Dead Partial UD 613.2 613.2 7.00 7.50 pif 20 N1 Snow Partial 10 795.0 195.0 7.00 7.50 pif 21164 Dead Partial UD 41.7 47.1 17.00 18.00 pif 22_164 Live Partial UD 160.0 160.0 17.00 18.00 pif 23129 Dead Partial UD 47.7 47.1 4.50 7.50 pif 2 4328 Live Partial Up 160.0 160.0 4.50 1.50 pit 2 5 ]62 Dead Partial UD 47.1 47.1 1.50 11.00 p1f 26_162 Live Partial U0 160.0 160.0 7.50 11.00 plf 21 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29_149 Live Partial UD 310.0 370.0 0.00 2.00 pif 29]32 Dead Partial VD 120.2 120.2 3.50 4.00 pif 20_132 Live Partial U0 370.0 370.0 3.50 4.00 pif 31_133 peal Partial UD 120.2 120.2 4.50 7.50 pif 32_1 Live Partial UD 370.0 310.0 4.50 7.50 pif 33_134 pond Partial UD 120.2 120.2 7.50 8.00 plf 34_114 Live Partial UD 370.0 370.0 1.50 6.00 plf 35_335 Dead Partial U0 120.2 120.2 9.00 11.00 pif 36)35 Li?. Partial UD 370.0 370.0 9.00 11.00 pif 37_141 Dead Partial U0 120.2 120.2 11.00 17.00 pif 38_147 Live Partial UD 370.0 370.0 11.00 17.00 pif 39_167 Dead Partial 110 120.2 120.2 2.00 3.50 pif 40_167 Live Partial UD 370.0 310.0 2.00 3.50 pif 41 149 Dead Partial U0 120.2 120.2 4.0C 4.50 p15 4249 Live Partial VO 310.0 310.0 4.05 4.50 pit 43 ]6] Dead Partial Up 47.7 11.7 11.00 1 pif 44 163 Live Partial UD 160.0 160.0 11.00 17.00 Of 45 165 2000 Partial UD 47.7 47.1 10.00 20.00 pif 46 165 Live Partial U0 160.0 160.0 19.00 20.00 plf 47 Dead Partial UD 47.7 41.7 4.00 4.50 pif 066 Live Partial U0 160.0 160.0 4.00 4.50 pif 49_166 Dead Partial UD 120.2 120.2 17.00 19.00 plf 50]69 Live Partial U0 370.0 3 17.00 19.00 pif 51 169 Dead Partial UD :20.2 120.2 19.00 20.00 pif 5269 Live Partial UD 310.0 370.0 19.00 20.00 pif 51_172 Dead Partial UD 47.7 47.7 2.00 4.00 plf 54_172 Live Partial UD 160.0 160.0 2.00 4.00 pif 55_173 Dead Partial UD 41.7 41.7 0.00 2.00 pif 56_1 Live Partial UD 160.0 160.0 0.00 2.00 plf 0: Mind Point -5950 0.00 lbs M2 Wind Point 5850 4.00 lbs N3 Mini Point -5950 11.00 lbs ' 04 Mind Point 5850 17.00 its 145 Mind Point -5850 20.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : • Dead Lf5 -12,. LiLis'. 9956 991979 Total 1 11305 Bearing: Land Cobb 43 13 Length 5.21 5.19 Glulam -Bat., West Species, 24F -V8 DF, 5- 118x22 -112" Sel6wdphl d 23.55 pH Included In beds; Wend support tops 004, beano. at 6up04096; Analysis vs. Allowable Stress (psi) and Deflection (in) ,a.inp Nos 2005: . Criterion Anal' /n1. Valve De.10n Value Analysis /Design Sheer v . 182 Fv' ■ 305 tv /FV' . 0.60 040411;(') 70 . 2 2392 Flo . 2604 fb /Fb' . 0.92 Live D071'n 0.41 . L /591 0.6 1/360 0.61 Total Defl'n 0.94 . L/284 1.00 ■ L/240 0.94 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Clrt s LC4 F7' 265 1.15 1.00 1.00 1.00 1.00 1.00 3 Fb'. 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 Fcp' 650 1.00 1.00 - E' 1.5 billion 1.00 1.00 - - Emin' 0.85 million 1.00 1.00 - Shaer : LC 13 . 0+. V ■ 17361, V design . 13982 1ba Band1n91 LC 43 . 04. M . 96199 lba -1r 00510c010n: LC 64 . 04. EI. 9756606 17 -102 Total Deflection . 1.51)Dead Load 007107elonl 4 Live Load Deflection. 10.dead Ir11ve S.an00 M.wind I.1cpact C.ccnatruttion CLd.con_6nerat0d) 1111 LC'e are listed in the 0741 /213 011pu11 Load co0bina017na: ICC -IBC DESIGN NOTES: 1. Please verify Mat the default deflection Emits Ora appropriate for your applkatbn. 2. Ghdam design vales am for ma0eWs conforming to AITC 997 -2101 and menufad0.ed In accordance wet ANSUAITC A190.1 -1992 3. GLULAM: (011. aced) breadth ..clad depth. 4. Gahm Benin slurp be Men*y supported according b the provision of NOS Clause 3.3.3. 5. GLULAM: Dearing Ingth Lased on un0er of Fcp(temabn), Fop(compn). COMPANY PROJECT 1 WoodWorks SOFIWAREFOR WOOD DESIGN June 24, 2010 13:23 b34 LC1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf, or pif ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 3 w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5 Dead Point 1436 11.00 lbs 7 1.c1 6 Dead Point 1389 17.00 lbs 9 w64 Dead Partial UD 617.5 617.5 17.00 18.00 plf 11 c61 Dead Point 622 7.00 lbs 13 c62 Dead Point 622 4.00 lbs 15 w63 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17 w65 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19 w 71 Dead Partial UD 613.2 613.2 7.00 7.50 plf 21 j64 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23_j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25 162 Dead Partial UD 47.7 47.7 7.50 11.00 plf 27_j48 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29j32 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31_j33 Dead Partial UD 120.2 120.2 4.50 7.50 plf 33 j34 Dead Partial UD 120.2 120.2 7.50 8.00 plf 35 j35 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39_j67 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41 j49 Dead Partial UD 120.2 120.2 4.00 4.50 plf 43 163 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45_165 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47_166 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49 j68 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51_j,69 Dead Partial UD 120.2 120.2 18.00 20.00 plf 53_j72 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55 j73 Dead Partial UD 47.7 47.7 0.00 2.00 plf W1 Wind Point 5850 0.00 • lbs W2 Wind Point -5850 4.00 lbs W3 Wind Point 5850 11.00 lbs W4 Wind Point -5850 17.00 lbs W5 Wind Point 5850 20.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : A la 201 Dead 7189 6822 Live 156 302 Total 7238 7018 Bearing: Load Comb #2 #2 Length 2.17 2.11 Glulam -Bat., West Species, 24F -V8 DF, 5- 118x22 -1/2" Self- weight of 26.55 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 74 Fv' = 238 fv /Fv' = 0.31 Bending( +) fb = 950 Fb' = 2038 fb /Fb' = 0.47 Live Defl'n negligible . Total Defl'n 0.41 = L /585 1.00 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 .Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC 91 = D only, V = 7189, V design = 5674 lbs . Bending( +): LC #1 = D only, M = 34217 lbs -ft Deflection: LC 01 = D only EI= 8756e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W=wind I= impact C= construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). . 4'G-/ L i 1 COMPANY PROJECT i WoodWorks® SOFtwARE FOR W000 DESIGN June 24, 2010 13:22 b34 LC2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or Of ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 3 w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5_c15 Dead Point 1436 11.00 lbs 7 c16 Dead Point 1389 17.00 lbs 9 w64 Dead Partial UD 617.5 617.5 17.00 18.00 plf • 11 c61 Dead Point 622 7.00 lbs 13 Dead Point 622 4.00 lbs 15 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17 w65 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19_w71 Dead Partial UD 613.2 613.2 7.00 7.50 plf 21 j64 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23_j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25 j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 27_j48 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29_j32 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31 j33 Dead Partial UD 120.2 120.2 4.50 7.50 plf 33_j34 Dead Partial UD 120.2 120.2 7.50 8.00 plf 35_j35 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39_j67 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41 j49 Dead Partial UD 120.2 120.2 4.00 4.50 plf 43 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45 j65 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47_j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49j68 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51 j69 Dead Partial UD 120.2 120.2 18.00 20.00 plf 53 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55_j73 Dead Partial UD 47.7 47.7 0.00 2.00 plf . W1 Wind Point -5850 0.00 lbs W2 Wind Point 5850 4.00 lbs W3 Wind Point -5850 11.00 lbs W4 Wind Point 5850 17.00 lbs W5 Wind Point -5850 20.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : la _ 201 Dead 7189 6822 Live Total 7189 6822 Bearing: Load Comb 91 91 Length 2.16 2.05 Glulam -Bal., West Species, 24F -V8 DF, 5- 1/8x22 -1/2" Self- weight of 26.55 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 74 Fv' = 238 fv /Fv' = 0.31 Bending( +) fb = 950 Fb' = 2038 fb /Fb' = 0.47 Live Defl'n negligible Total Defl'n 0.41 = L /585 1.00 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC4 • Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 Ervin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC 61 = D only, V = 7189, V design = 5674 lbs Bending( +): LC 01 = D only, M = 34217 lbs -ft Deflection: LC 01 = D only EI= 8756e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) . Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSUAITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 1 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4 - Giq 2-- Harper Project: • ' ' s Houf Peterson Cl Job # Righellis Inc. ENGINEERS • PLANNERS Designer: Date: Pg. # LANDSCAPE ARCHirECTS• SURVEYORS Wdl := 10• lb •8•ft•20•ft Wdl = 1600-lb De Pik 'SigY\ ft Seismic Forces Site Class =D Design Catagory =D Wp •.= W dl I := 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S • = 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F := 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F 1.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S • = F S S F S 2•Sm S : = Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a := 1.0 R := 2.5 (Table 13.5 -1, ASCE 7 -05) 4a • z FP := p •( + 2 RP hl Wp EQU. 13.3 -1 l ff Fpmax := 1.6•S EQU. 13.3 -2 Fpmin := . W p EQU. 13.3 -3 F if(F > Fpmax,Fpmax,if(Fp < Fpmin,Fpmin,Fp)) F = 338.5171•lb Miniumum Vertical Force 0.2• S ds • W di = 225.6781 • lb C1C r Harper Project: 'P Houf Peterson Client: Job # Righellis Inc. ENGINEERS .• PLANNERS Designer: Date: Pg. # LANDSCAPE ARCNITEC TS/. SURVEYORS W := 10. b •8•ft•20•ft W = 1600.lb ft Seismic Forces Site Class =D Design Catagory =D WP : Wdl 1 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 - 05) S := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F := '1.123 Acc -based site coefficient @ .3 s - period (Table 1613.5.3(1), 2006 IBC) F := 1.722 Vel -based site coefficient @ 1 s -period (Table 1613.5.3(2), 2006 IBC) S • .= F a • S s S := F .S 2 • S ms Sd :_ Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a := 1.0 R (Table 13.5 -1, ASCE 7 -05) 4a • zl F P := P = p •r1 + 2 hJ Wp EQU. 13.3 -1 - P F pmax := 1.6•S W EQU. 13.3 -2 F pmin := • EQU. 13.3 - = if(F > Fpmax,Fpmax,if(Fp < Fpmin,Fpmin,Fp)) F = 338.5171.1b Miniumum Vertical Force 0.2•S = 225.6781•Ib H H 0 tiarper HP Houf Peterson COMMUNICATION RECORD Righellis Inc. To 0 FROM E] MEMO TO FILE 0 ENC.INCEP, • , I..,f1h1.,RJ L,JCSOAYr Aht,t1.TEt r.,e501,4,..,$ PHONE NO • PHONE CALL: 0 MEETING: El 73 "0 CO m 73 . -< 2 m --.9 .5 i) L O 11 o li ea —I 11 -i ....... -0 , (0 . .0 ......... (,).) 4" S) 4 * SI 3 n -0 3 d) ... ...„, It 6 -.1 II 0- ....., . . . ... . ....0 r, m '''Z. • cji 1 . .. A Crl —C. -■*-- 4.11 ..."1 ....00 CfN\ N I ---)....i •C 1 N N N f t c.) 8 • 5. s 's 1 z e ^. o ol r N. 4 0 ^$ N..1 . _ 0 BY: s (9(9 DATE: PT\ JoB No.: 0 . __ _ _ _ _ • ' PRCiJ Eel% , - RE: D e- C Yn 1 () 1 :1'. t r“"?-1 7: '0A C APNc \ i ix(' 0 0 . - _J 0 - Z LL 0 E Pt‘L C \-PF c try (1 ( G ,d C6rivnal m o --J (1.$53)((agiOrNal I) = it:, ..(30 It inai I . c = . . u< 0 . 0 Z 9 a w o • LAPAC. II—, :1_1" z boards) 1 o z ..)thsr5 = `1-■ pLp __ / f _ 0 0 C p iac i nc3 \oekuj n fvy, ‘‘c. . ..‘-i 4 i CO,C . _ ID X L. o g . 12 k u0 P‘trual ,- v,,cis pi.;F ! 11 • 1 J LEva-lc:(4.. 7-)E\.c-,Nii I 1! — • I i i I 0 i ‘) , e... (22) SI ry-, \*.)01') S 0 '3 4'( 2_ i o 6 , cA ,........ 1■1 - a ) ,, Q t 2 " . T 11 S ... ... , . 6 - . eltia\J I )7U) tOCA & = 30° ** ( \\r■i\pscs-r\ 3o5(14- x41-2_'' e._ tz" 0, 440 iq-61LIG 1 F ..z - )Esrg g • a 8 A . s.• CD CD • 1 "; = V " I it til 2- ). • oot-i'e ' ee 1 1 . its.E I k < 44 002 - N1-# 0009 .:-.-. ,c>v) it me - w • . - e -.3`UD Qbal . 0 2 0 .., z M " x 0 1152:1 K .1. 4------ kx)r,okaA. - 1&;Isai, 01 b voo,dwit --- z f (-NIS *Oahe ' 1 00)19 › a z , 13 ni o z c 11 014 C ---.-- • m 0 o m 0 g ° 4 #' 00Z g 0 9 d O r :103 Ma d . . : — - - ON or ,31VCI VAIZ3 fiCAA 'A 8 - 1 Harper ' I a' RH�oauhfPeteTTr��son COMMUNICATION RECORD Righellis Inc.- To ❑ FROM 0 MEMO TO FILE 0 ---- °---- ---°— E PL Ann E RS L F --°•---- XGIXEERR • CT. ERN I:L �a:�VE �RCMITEL'T.:�SVR VEYyIi .i — °""" ""-- - ° - PHONE NO.: PHONE CALL: 0 MEETING: 0 XI M ID —g C 7d l m Q y O m 1I 1 Li � r 0 I ►1 - 37 L s d 0§ ° o 0 0 cii ........./ ?...., . W i 6 4 ¢n n o 4 1 C� T 0 m z O • fr Harper ' ' '' HoufPeterson COMMUNICATION RECORD Righellis Inc. To E FROM p MEMO TO FILE ❑ E1 • PLAr:':ERS 1.A..01'.C,PF. AP.CMITECTS +SU: 'VEYUR_ PHONE NO.: PHONE CALL: ill MEETING: ❑ M - m m §6 3 R.--- .., N, „..,, \ V Q m kJ '''''J ...._.-t --. J.,_____ :I:3N f.-;\ r-- V -C. p X C 1 1 r 1 I 4-10 z 0 0 U 'e COMPANY PROJECT ill Wood Works SOFTWARE FOR WOOD DESIGN June 8, 2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Point 2.50 200 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : la 5 Dead Live 100 100 Total 104 104 Bearing: Load Comb #2 #2 Length 0.50* 0.50* (no 1.00 1.00 *Min. bearing length for beams Is 1/2° for exterior supports Lumber-soft, Hem-Fir, No.2, 2x6" Self-weight of 1.7 plf included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv. = 0.13 Bending(+) Do = 405 Fb' = 1048 fb/Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 '1.00 1.00 1.00 1.00 - 2 Fop' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending(+): LC #2 = L, M = 255 lbs-ft Deflection: LC #2 = L RI = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. ( COMPANY PROJECT . : i_./0 OD ill WoodWorks SOFTWARE FON WOOD DESIGN June 8, 2009 16:27 Hand Ra112 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Full UDL 50.0 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 5- --.--i-,-, -.-, .-:- .- .; -..-, - ---.Af-- -",- .,.,--,-:-"-- 4 - 'A -!' -.- -,-- --- •-:1-"•7 - - `-'7 . * -,-: ' :"" ':( ' ........_: ...1.:. ;.4:.;: ':--'..,': ',,.• '-. 10' 54 Dead Live 125 125 Total 129 129 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams is 1/2 for exterior supports Lumber-soft; Hem-Fir, No.2, 2x6" Self-weight of 1.7 plf included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv = 150 fv/Fv' = 0.13 Bending(+) fb = 256 Pb' = 1048 fb/Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.11 ADDITIONAL DATA: FACTORS: F/E Cl) CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 1.00 1.00 - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 129, V design = 106 lbs Bending(+): LC #2 = L, M = 162 lbs-ft Deflection: LC #2 = L El = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 4 ..... Gs' WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 22, 2010 13:57:56 Concept Mode: Reactions Base of Structure View Floor 2: 8' 1 1 49' -6" 04 0 : : : - - . . - . - - -- .. -.. 1u3 1600 L,. 600 L - 46 4t. b a. U4/ 619D : '619D 40- b . IVVpt. - . - - -- - - -- 44'-0 y9 - 43 V0 ' 1193 L153 12404 L::_2404 L • = 4sa o . 4 625 D105911439 D •- - D - - - 30 yL i : : : - -- ---- - - - - 30-0 93 3b-0 ua 315L. : . . : . ss-0 u r 358 D 3'I -b -- 3U -- b tSp .4V -b 223 -0 �3 E bL - -_ _. -- ... - - b 1 ' 100 L - 358 315 D: - : - - / 1 , / , 74(847 ... 5611 L -- .. 756 L _ L ' -0 I 4(452 D 5546 D lid D 19 -b (4 625 i - - = --- --- - - ' - - - - : - - - 7u- i t 203D ; 5DL = - - = 1 b b b r I • - - . - - 5 D : . - -- -- 10'-0 (U by .. 908 L .. : - . . :. - i3 b 4 5 D L307 ' .10 c V‘ ._. : _ _ 46 ' • . °4 245 L_ '5° L n b u' 599 . 1, 87 L • ; - 1 - 87 . - 4 n .. a 2 09 LD 8 D. 1963 D 1963 D s-0 154 D r u U 2363 D b.. - 1 ' 78 Di D . . 106 D: : u -b BB \B.B BC CC CICCC CC CCCC C C CC CCICCCD DDD D DD DIDDD DD DD D D DD CDIDDDEE E E E EE'EFEEBEEIE E(EEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 1;1:1 (22.'2:2 331344(44;4 :4 414(5(55:5:5 5'5(5515((6(66;6:6 77:7 "F(307 k tq el L1O OT _ -Fe.0 NIT LL / p ( WoodWorks® Sizer ' SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 22, 2010 13:57:37 Concept Mode: Reactions at Base of Structure View Floor 2: 8' 1050-: -. �f "1 . . . . _. . • : - _ 49, 10.3g 600 L : 1600 L .; 4! -n uin . 619D ;: : 619 D' 40-00. f y9 .: / 0f4 • 43-b yt3 \ -_ _ 42 -n ! . . 41 -n an 4 U -n ao 13274 L .. . 3304 L... . . .. - -- --- - - -- .. --- - =- -- 3y -o 4 7153 Dr": -'- ,, . _ . ' .. 7072 D - : - - - 38 -0 ..5., : = s r o VI ... . •_ ua 315L . . . . , • 33-0 0n - . :358 D: 3 i -o • 00 LW -0 „SU 03 .: . - : . . . : - . 315E - - - Lr -n tsL 358 D i_S I 100 L ` --. Lb -b Lo•-to • • ou '96 D L4 -b (5 - L3 -b r ! 74(84 611 L • - 56 L L3 -n io 4!1452 D 5546 D � rgil p � y. � . r . - 625 5L . Its -b r3 : 5 DL I/ -to • !L _..:. '203 D _ - In r1 5 D In n (U - 14-0 to 105 -908 L i, - u 307 D o! 46D' N II -n r to 245 L � a � ,a 3 50 L - is -n y 3D 74D r . o .. 04 1m s bu 599 L`�:2587 L, : - ? -= - � i 6 - � - ti s _209 LD 011963 D:. .. D _ . _ 3-n 154 D . . -its . u LL , . 725 . : i; L. -n.. D L219 9_ .. 1 1 -n 1 v 78 D7 DJ : 617 D D u -o B81813 BC.CCC C CCC}CCC CC CCCC C CCCCCICC CD DD D 0 DD DICDD DD DD :DD D DDD CD1DD DE.E E E EIEE'EIEEEIEEIE BEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'678'91(1 1;1:1 1:1(111102222 212 (2 4;4:4414(4:414156 5:5:5 E:6 :6 :61617(7:7.7 -6” • DOT1\ Lpi 1Our LI ,rliz., L04D • lg....F-2.w_ miBentiey a Harper Houf Peterson Righellis Inc. ' L C Date: 6/24/2010 1:41 PM I system: English Fne name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations Wild \ Design Results Reinforced Concrete Footings GENERAL INFORMATION: Global status Warnings Design Code ACI 318 -05 Footing type Spread Column type Steel Geometry i i I , ■ i i , 1 rft : 14 yzi, 1 in I * 4.2,5 ft ~ I ■ i V,N T f4 c :i.i.1,41vv,„ ft [;:4V " � i a=a �, .�"', 4.25 ft 4.25 ft L, - i .. Pagel 3 Length 4.25 [ft] Width 4.25 [ft] Thickness 1.00 [ft] Base depth 1.50 [ft] Base area 18.06 [ft2] ' Footing volume 18.06 [ft3] • Base plate length 5.50 [in] Base plate width 5.50 [in] Column length 5.50 [in] Column width 5.50 [in] • Column location relative to footing g.c. Centered Materials Concrete, fb 3.00 [Kip /in2] Steel, fy 60.00 [Kip /in2] Concrete type Normal Epoxy coated No Concrete elasticity modulus : 3122.02 [Kip /in2] Steel elasticity modulus : 29000.00 [Kip /in2] . Unit weight 0.15 [Kip /ft3] Soil Modulus of subgrade reaction 200.00 [Kip /ft3] Unit weight (wet) 0.11 [Kip /ft3] Footing reinforcement Free cover : 3.00 [in] Maximum Rho /Rho balanced ratio : 0.75 Bottom reinforcement // to L (xx) . 6-#4 © 9.00" Bottom reinforcement // to B (zz) : 6-#4 © 9.00" (Zone 1) Load conditions to be included in design Service loads: SC1 DL S1 DL S2 DL +LL S3 DL +0.75LL Design strength loads: DC1 1.4DL D1 1.4DL D2 1.2DL +1.6LL Loads Condition Axial Mxx Mzz Vx Vz [Kip] [Kip *ft] [Kip•ft] [Kip] [Kip] DL 5.55 0.00 0.00 0.00 0.00 LL 15.61 0.00 0.00 0.00 0.00 RESULTS: Status Warnings - Insufficient development length, Section 21.5.4.1 Soil.Foundation interaction Allowable stress 1.5E03 [Lb /ft2] Min. safety factor for sliding 1.25 Min. safety factor for overturning 1.25 Paget il --- Li Controlling condition S2 Condition qmean qmax Amax Area in compression Overturning FS [Lb /ft2] [Lb /ft2] [in] [ft2] ( %) FSx FSz slip S2 1.38E03 1.38E03 0.0826 18.06 100 1000.00 1000. 1000.00 Bending Factor 0.90 Min rebar ratio 0.00180 Development length Axis Pos. Id Ihd Dist1 Dist2 [in] [in] [in] [in] zz Bot. 20.11 7.04 19.75 19.75 xx Bot. 20.11 7.04 19.75 19.75 Axis Pos. Condition Mu 4) * Mn Asreq Asprov Asreq/Asprov Mu/(4)*Mn) [Kip *ft] [Kip *ft] [in2] (in2] zz Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 1 i zz Bot. D2 13.38 45.76 1.10 1.20 0.918 0.292 IP' tI I xx Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 I i xx Bot. D2 13.38 43.06 1.10 1.20 0.918 0.311 I' , v-1 I Shear Factor 0.75 Shear area (plane zz) 3.10 [ft2] Shear area (plane )ox) 2.92 [ft2] Plane Condition Vu Vc Vu /(4)*Vn) [Kip] [Kip] xy D2 8.99 46.09 0.260 P I yz D2 8.68 48.88 0.237 IA I Punching shear Perimeter of critical section (b... : 4.67 [ft] Punching shear area 3.31 [ft2] Column Condition Vu Vc Vu /(4)*Vn) [Kip] [Kip] column 1 D2 29.25 104.29 0.374 IF -d"i I Notes Page * Soil under the footing is considered elastic and homogeneous. A linear soil pressure variation is assumed. *The required flexural reinforcement considers at least the minimum reinforcement I design bending moment is calculated at the critical sections located at the support faces * Only rectangular footings with uniform sections and rectangular columns are considered. * The nominal shear strength is calculated in critical sections located at a distance d from the support face * The punching shear strength is calculated in a perimetral section located at a distance d/2 from the support faces * Transverse reinforcement is not considered in footings * Values shown in red are not in compliance with a provision of the code *gprom = Mean compression pressure on soil. *gmax = Maximum compression pressure on soil. *Amax = maximum total settlement (considering an elastic soil modeled by the subgrade reaction modulus). * Mn = Nominal moment strength. * Mu /(4 *Mn) = Strength ratio. * Vn = Nominal shear or punchure force (for footings Vn=Vc). * Vu /(4)*Vn) = Shear or punching shear strength ratio. Page4 Beam Shear bcoi 5.5•in (4x4 post) d := tf – 2-in := 0.85 b := Width b = 36•in V„ :_ 4, 4 • f V„ = 16.32•kips 3 V„ -- qu (b 2 colt V = 7.83 -kips < V = 16.32•kips GOOD Two -Way Shear b5 := 5.5.in Short side column width bL := 5.5 -in Long side column width b := 2 -(bg + d) + 2.(bL + d) b = 54•in P := 1.0 ^ = 4 + 8 V f psi b d V„ = 48.96 -kips 3 343c V„,„ :_ -2.66• f V,,, = 32.56 -kips ,y,444:= qu•[b – (bcoi + d)2] V„ = 15.88 -kips < V = 32.56 -kips GOOD Flexure 2 Mu qu rb — bcot r 11 b M = 4.98•ft -kips I \ 2 J l 1,:= 0.65 2 b d S = 0.222 -ft F := 5.4- f psi F = 162.5 -psi M f :_ —° f = 155.47 -psi< F = 162.5 -psi GOOD lJse a 3' -0" x 3' -0" x 10" plain concrete footing 17E7 Plain Concrete Isolated Square Footing Design: F2 f := 2504psi Concrete strength f := 60000-psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity "Yconc 150•pcf Concrete density 'Yso := .100 ?pcf Soil density gall 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Total 2659•Ib Pd1 := Totaldi Totalll := 7756-lb Pll := Totalll Ptl := Pdl + Pp Pd = 10415-lb Footing Dimensions tf := 10.in Footing thickness Width := 36• in Footing width A := Width Footing Area clnet gall — tf' gnet = 1375•psf P Areqd gnet Amid = 7.575•ft < A = 9.ft GOOD Widthreqd A reg d Widthreqd = 2.75-ft < Width = 3.00 ft GOOD Ultimate Loads Pdl + t f' A ' " Yconc P„ := 1.4•Pd1 + 1.7•Pll P = 18.48-kips P qu A q = 2.05•ksf Plain Concrete Isolated Square Footing Design: F3 f := 2500 -psi Concrete strength f := 60000 Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity 'Yconc :_. 1501pcf Concrete density 'Ysoil 100 -pcf Soil density qa := 1500 -psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl := 23631b Pd1:= Totaldt Totalt1 := 4575 -lb P11 := Total!' Pd := Pdl + P11 Pd = 6938 -lb Footing Dimensions t 10 -in Footing thickness Width := 30 -in Footing width Width . Footing Area clnet gall — tf'1'conc net = 1375•psf P Areqd gnet A q 5.046 ft < A = 6.25 ft GOOD Widthreqd A reg d Widthreqd = 2.25-ft < Width = 2.50 ft GOOD Ultimate Loads = Pd1 + tf'A'"Yconc P := 1.4•Pdl ± 1.7 -P11 P = 12.18 -kips P qu — q = 1.95•ksf A 1 Beam Shear bud := 5.5•in (4x4 post) d := tf — 2-in := 0.85 b := Width b = 30•in V :_ 4 f V = 13.6-kips 3 V := q 2 ( —bcol •b V = 4.97-kips < V = 13.6-kips GOOD Two -Way Shear bg := 5.5•in Short side column width bL := 5.5-in Long side column width b := 2•(bg + d) + 2•(bL + d) b = 54•in ac := 1.0 _ 4). 4 + 8 - f -b•d V = 40.8•kips C 3 3'13c l V := 2.66• f psi•b•d V umax = 27.13-kips qu'[b — kbc01 + d) V = 9.71 -kips < Vn = 27.13-kips GOOD Flexure 2 M qu (b — 2 J 2 J bcol 11 b M = 2.5441-kips I A := 0.65 2 ,X" := b d 6 S = 0.185 -ft F := 5 -if•• f F = 162.5-psi M f := a f = 95.19-psi < F = 162.5-psi GOOD 'Use a 2' -6" x 7 -6" x 10" plain concrete footing I Plain Concrete Isolated Square Footing Design: F4 f :_ 2500 -psi Concrete strength f := 60000-psi Reinforcing steel strength E 29000•ksi Steel modulus of elasticity • `Yconc := 150•pcf Concrete density "' Iooil 100;pcf Soil density gall 1500.psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 5001•ib Pdl := Totaldi Totalll := 7639-lb P11 := Totalll P := Pdl + Pll Pti = 12640-lb Footing Dimensions t := 12-in Footing thickness Width := 42•in Footing width , := Width Footing Area cinet gall — tf Tconc net = 1350•psf P Areqd gnet A = q 9.363-11 < A = 12.25•ft GOOD Width Aregd Widthreqd = 3.06-ft < Width = 3.50 ft GOOD Ultimate Loads , P ,:= Pd1 + tf A'1'conc P := 1.4•Pd1 + 1.7.P11 P = 22.56-kips P qu — q = 1.84•ksf A Beam Shear bcol := • 5.5•in (4x4 post) d:= tf -2.in := 0.85 b := Width b = 42-in V := 4 ' f V„ = 23.8•kips 3 Vu qu'I 2 colt b V = 9.8•kips < V = 23.8•kips GOOD Two -Way Shear bs := 5.5 -in Short side column width bL := 5.5: in Long side column width b := 2•(bs + d) + 2.(bL + d) b = 62•in (3 1.0 M V, .= + 8 • f V = 71.4-kips (3 3•0 V„, := ( 1 ) . 2 . 6 6 . V = 47.48-kips := q [b — (b + d) V = 19.49-kips < = = 47.48 -kips GOOD Flexure — 2 bcol12 11 Mu qu[(b J •I — 2 I•b Mu = 7.45 ft kips 0.65 2 .— b d S = 0.405•ft 6 F := 5- - f F = 162.5 -psi M a f := s f = 127.79 -psi< F = 162.5.psi GOOD Use a 3' -6" x 3'-6" x 12" plain concrete footing /4-7\1 Plain Concrete Isolated Round Footing Design: f5 f := 3000 -psi Concrete strength f := '60000 -psi Reinforcing steel strength E := 29000• ksi Steel modulus of elasticity Icon, 150•pcf Concrete density 'Ysoil = 120•pcf Soil density gait := 1500•psf Allowable soil bearing pressure TYPICAL FOOTING Reaction Totaldl := 619-lb Pd1:= Totald1 Totahj := 1600.1b P11 := Total]] Pt1:= Pd1 + P P = 2219-lb Footing Dimensions tf.:= 12 -in Footing thickness Dia : = 18•in Footing diameter Tr Dial Footing Area 4 gnet gall – tf'Yconc net = 1350•psf P Areqd gnet Areqd = 1.64441 < A = 1.77 -ft GOOD Diareqd A .4 Dia reqd = 1.45-ft < Dia = 1.50 ft GOOD It Ultimate Loads = Pd1 + tf' A''Yconc P := 1.4•Pd1 + 1.7•P11 P = 3.96 -kips P qu := — q = 2.24•ksf A \e3 Beam Shear bco1:= 3.5.in (4x4 post) d := tf — 2•in := 0.85 b := cos(45•deg)•Dia b = 12.73.in V :_ 4 • f psi•b•d V = 7.901•kips 3 r b — bcol V := q, I 2 •b V = 0.91 -kips < V = 7.901•kips GOOD Two -Way Shear bs 3.5.in Short side column width bL := 3.5. in Long side column width b := 2.(bs + d) + 2.(bL + d) b = 54 -in 13 := 1.0 1 4 + 8 f psi b d V = 23.703•kips go-(- 3 3 - pc V := 4.2.66• f -d V = 15.76-kips ,�;y�;= qu•[b — (bcoi + (1) V = —0.31 .kips < V = 15.76-kips GOOD Flexure 2 Mu qu' I b — 2 J I \ bco1) r 2 1) b M = 0.18 ft kips A:= 0.65 2 := bd S= 0.123 -ft 6 F := 5 f psi F = 178.01-psi M f := s f = 9.9 -psi < F = 178.01-psi GOOD Use a 18" Dia. x 12" plain concrete footing • Plain Concrete Isolated Square Footing Design: FG f 2500-psi Concrete strength f .= 60006-psi Reinforcing steel strength Y E 29000•csi Steel modulus of elasticity 150•pcf Concrete density 100-pa Soil density gall 1500-psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 70 lb Pdi := Totaldi Totall:= 13304-lb Pll := Tot.* Pd := 1 + PH Pd = 20376•lb Footing Dimensions t := 15•in Footing thickness Width := 48•in Footing width 4:= Width Footing Area (het := qali trIconc q net = 1313-psf Ptl A := — A = 15.52541 < A = 16.ft GOOD %et Width := JA Width = 3.94.ft < Width = 4.00 ft GOOD Ultimate Loads A tg,:= P + trA P:= 1.7•11 P = 36.72-kips Pu q := — q = 2.29•ksf A \c" Beam Shear b 5.5• in (4x4 post) d := tf -2•in := 0.85 b := Width b = 48-in V := ck 4 f psi•b•d V„ = 35.36-kips 3 Vu qu'( 2 col) b V = 16.26-kips < V = 35.36•kips GOOD Two -Way Shear bs := 5.5•in Short side column width bL := 5.5-in Long side column width b := 2•(bg + d) + 2.(bL + d) b = 74-in (3 := 1.0 Vim-= (1).(— + 8 f psi b d V = 106.08-kips 3 3 •Qc := 2.66 f psi b d V = 70.54-kips = q,; [b 2 — ( bcol + (1) Vu = 31.26 -kips < V = 70.54 -kips GOOD Flexure [03 - bcol 2 r M := q 2 •12J b M = 14.39•ft•kips A:= 0.65 2 := b d S = 0.782 -ft 6 F := 5••,f1 F = 162.5 -psi M u f := f = 127.75.psi< F = 162.5 -psi GOOD •S 'Use a 4' x 4' - x 15" plain concrete footing Plain Concrete Isolated Square Footing Design: F7 f := 2500-psi Concrete strength fy := 60000-psi Reinforcing steel strength E : =29000•ksi Steel modulus of elasticity 'Yconc 150.pcf Concrete density 'Ysoil 100-pcf Soil density gall := 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 1200-lb Pdl := Totaldi Tota111:= 3200-lb P11:= Totalll P Pd1 + P11 P11 = 4400-lb Footing Dimensions tf := 10-in Footing thickness • Width := 24-in Footing width A := Width Footing Area clnet gall — tf'"Yconc net = 1375-psf P Areqd gnet Areqd = q 3.2 ft < A = 4.ft 2 GOOD Widthreqd A req d Widthreqd = 1.79•ft < Width = 2.00 ft GOOD Ultimate Loads := Pd1 + tf'A'lconc P := 1.4•Pdl + 1.7•Pll P = 7.82-kips Pu qu := — q = 1.96•ksf A Beam Shear bc0i := 5.5 -in (4x4 post) d := tf — 2 -in (1) := 0.85 b := Width b = 24 -in V, :_ 4 f psi b d V„ = 10.88 -kips 3 Vu qu C b 2 col) b V = 3.01-kips < V = 10.88 -kips GOOD Two -Way Shear b := 5.5 -in Short side column width bL := 5.5 -in Long side column width b := 2•(bs + d) + 2•(bL+ d) b = •54 -in 13 := 1.0 V c 4 + 8 f psi•b -d V = 32.64 -kips 3 30 Vnmax := (0-2.66• f si•b•d Vnmax = 21.71 -kips = q,; [b2 — (b, d) V = 5.35-kips < V = 21.71 -kips GOOD Flexure 2 b - bcol Mu qu ( M = L16 -ft -kips 0,„:= 0.65 2 51:= b d S = 0.148 -ft 3 6 F := 5-.j f F = 162.5 -psi M ft := s u f = 54.45 -psi < F = 162.5 -psi GOOD lJse a 2' -0" x 2' -0" x 10" plain concrete footing 4 -"-t?:0 613' &/, b ":1.xp O P W I © •■ 0 - o ° o '5'A - g`c � ,- y � •" 0 -�t`Z -�)( S (7 9(S' "1-c9. - Ica - '`AS - 1e - v - o ( SO' `) Jr so ° t�e - ‘715-4. _ 14 ,CM-A (2)4.92,' e + _SZci L 1 its' =a 4dve. - : (s•gs-ele ! 10 /W =Vow cI )coc..'e4< - , Llo Z -2.xs• cS- I)Lostio) = -41 W Z L `e ,CiC. ` e 4 ( b)" Q ' t -+ (i 1 Xzz) (,s' iS'� s s i o ) -,-a w E, off.'\t - ' t.'\ \-r 1 t'S4. lca1r� 0 v� 3 3 u J)c{.) 1 D ,jj _, 1' 1l. et Z 1 = m z n k - 1" \ \ .'1 4- M 52:°1 -----i*---157:1"-±rt 0 0 0 xi r 1 m 3 3 p r 'i_ .' 11 \‘'S, 0 , o a ifkCkk:1 Mk POI • pool f ug.Ai - N + !U( :3 ‘p C T! k/1 14000 - FaU lCi "u✓, / :loaroad do Q bO— Y ) : oN eor 010 -r c) :31va )\1\J\QI "e A Bentley 7 Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:43 AM Units system: English File name: O:\I-IHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \Front Load 2.etz\ M33 =51.9 [Kip`ft] M33 =12.19 [Kipit) X MMme*s LC 1 � arr. lenttey Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:35 AM Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\Front Load.etz\ UMITR V-- A133 =25.66 [Kip'ft] • M33= -30.27 [Kip'ft] Y M mei'k LC2 -�- BV: p W ......, DATE: f AO t { JOB NO.: c m..09.0 OF P ROJECT: 5 d T QO 1 i `3 St 3L RE: UN I T A— R -P1 2 Lo( ill,te k ❑ ❑ V T 3 0 .4 � 1 '�� 3 J _ Z ` J I'. 9.153 : 6 ' 1ATIL 2 W f ❑ r 1 l _I V . 1. - -I � '_'I. Li I IX u 0 f o z 0 w x . a -, . aa' Z 0 U Check- O v eriurr�I rro Z 2 M0T — 30 , 41 fi 30.4-14 (a, _ m.. lb t_F E 2 0 MK = Co,150 (a(1)(I ► - )Caa. +- - 3,1530) )- 1,153(ai) zD M2- /M 1,0tb '1,5' :, OIL T,i W ❑ Z x= 000,0(.. - wo,1ts s.t-oF1✓ e= s.sLc -c ao •qob c i .), = Q0 A0 t0 ( (ao,61o(-5,s (0) . t . i is s V_sF 9 -yyNir. = a0, _ 4(w)fcto(4.NA( 1st.) ig , ,..a C27(,22 0...02:1 -Y-- 3 k (r3-2c.) 3(�ar�Caa- a(s.sc)�) i' 0^' . 1. t . : . ° 1 - FMO.x _ t , ab 1 Y.� F e-.15 ; , cP c. j y j , x 0 , F2.2. n d. Bentley. Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:38 AM • Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\Rear Load.etz\ • M33 =43.24 [Kip`ft) M33= -45.06 [Kip ft) 1 • • MaMeAS Bent Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:43 AM • Units system: English File name: O:+1HPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\Rear Load 2.etz\ • M33 =41.88 IKiP • • M33= -46.37 [Kip ft] • Mcsre,cvk LC BY A NNL DATE: V _ D. 0 1 / JOB NO Ce J ` ° p OF PROJECT: RE: Rear Loack, - oobn 5 o a_ x L X t2" rc, Z 0 f MmO.k = Ong+ A -> 4�v � at O O a Ntm►n= OnA- A.7- 40.3 )-v-f O 0■n= o. qoA (d -Q(z). a- Asj /,b �c t h ._ e o,C, As =U, 3(4-3t& xal . a= 0.3c13 t o,000) l o, e c3000 ❑ ---- O 4Ocuo • C Min ---- ,6c ©, 9O(Q3 -)((:,0,o0o ')C1 :- at /Z) = aLvicio rst ❑ o iT\ . ( _ @ a" o,c. ks= o.41 �N - A.�. p, � itop,oQ&) f0,tC3oo9X24 C.,ga01N - o,yQo 0M o,ao(o, 4- 1)C4o,000 l2') =3i.a Tft S e 12`' oic, As= 0,(.1t4 ti'- a. = o, (014 (440c6) /o, ac3��c- 1..9.. At) 9, q ,6 1 4)(0)000_ )05 a .) 0,.(03-1 QQ lb) _ 0,L33' o Ic£{,x1,33) 53 Po-1 > nrax ,' OtL '' bottcni • - �' c ao:` gxa 41A a ;v o _ (>)7.3. • • —). ,.- Irkowes- = etk...,„, 0 --s9cpootolksv20)0b --= vw 0 .: ‘,0 _., = (..26xarsyeroiucx)10s., ..,‘,4) q4c...70 .s • 2-l. 91 -" ..• ;;• (IQ 0 E r 4VeaVgX.U■ "a t\wra.‘ ••;- — .1:1 - 10 •.• I-Nlv.(3< 1 -sq h 2 =-- c - sl Vtio 9 0 ‘0'0 :: ` WO ,,-, p . NACIn 0 -_-: c"?..-tx000rA_Gio)/ L000 croLVZ \ ) :--- v - 1 - • - Di° ,) 0 ._.$ 4 vlit 1 -7 10Y Sq ( zirmi - ocrillsav)/ QC00 9 :NO "D'O xi a 4 \-01- . - 1.th 4 9 • ( 9-2) cn , \ - s \ XI:rola/1 ovo) 01 = ...), \No -D , x 0 f`'`CV 005 X9'o77 (9oorblv),0).0)..=- No 2 0 in (,s,r) Z 7 1 p 73 - 0 74 0 -V 4+ 13S -L.N1 cwr 0 = 5 I d q7 cl =- • 0 3 - \N� Z 1p - h0 . 0A - 1 - <-- - D kA\ F) _i -i 51' t-1S - 4-cl -oun - 6 -....%€.:C. - C- - k '.v() - O • m t'l h ti" 2 - "D A ■Alp _ . . • z 0 m 0 0 4 II/ - I q • - - 1 .11 -- ca' IS -- c-- q! -k \vc - - > 13 , 0 [ g 0 PI -I n 0 1=1 r : 4( . 7 L - 1 1 - ,‘,PA.003 vtioi kuct/A : :103r0Scl 40 , ON or :31va :As t.-) N Obw e = e <► S's9, = x.ouR . {.-k•'1" cIS''<:e — n —�ac--k fi = - 1 _ - t e \a „Si X -,36' x owl --il °o Ccc --- )k S11T ;.'1q -- )Ct 4 L'Z, (0'`1 z 'W ° W 5: --- ka,-+c(g'`)fi — � W 7Q2,-E t' e2_-_- ix 4JT = 6v \\oof -j! ; , --x ?Cis G U i-ioo j- pfs °: 2 k. ' I - -- - -- 7- 1Q . ' = - 7Qt- , 4 c )VS11 LSo'le) zxg hvra ""`O a - 161-y+ 10'..Sfi _ = c " - 1._ 0 `'i s e ----"- -1° V4 'g' 0 e '() ) ago r , sa) c 1+0 ) • 0 91'14z'S -1 +7-6 _—bl x = o Z m ZO'le _ 1 0V _ ° o ' 1\ 0 0 S < 1°1'1 _ 1 "- W o 3 3 1 b' H = (11't -t c 4 0 XCZxs'lXo5,-oXg) - . z 13 13 = m zz n -it,------t---;e4 m 0 r 1 ---------1 T 1 1 o m 0 3 0 m ❑ ❑ MS kuk — d kNn :38 52 1 K i c e , x i g :133 road Ao V v N 'oN eor 0 tO t 1 '31v° ).\NI\c( :As o x • U4 0 s • 0 11 -1 I0 0 z Z m Z 'TI O AO _ Qtr i )e — °�)(� )� ❑ sL / I 3 _ _ ' o a y-,1 1 ,S1 )L �°1 Gv1 Z t7 N , y, O I' o 0 m 1 „S\ x R jSpx � °) �� z o o r m -4 - 1°) = "\*-- :38 :103 road AO Q �o I , ON eor 0 10e ' 31V0 \ :I.9 a Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:42 AM Units system: English File name: O:UiHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \Interior 2.etz\ M33 =23.55 [Kip'ft] • M33= -17.88 [Kip *ftl Y 4---F Moyi\eN- LC n o. .Hannay. Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:42 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A\foundations\1nterior.etz\ _ - M33 =32.26 [Kip ft] M33= -9.27 [Kip'ft] A Me LCZ ,� ,f30 ACI 318 -05 Appendix D 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc = 3000 psi fc = 3000 psi h' = 3.50 inches = - 12.00 ' inches (into the Fc Stem = ' _: ;,8.00,:, inches Note: hef above is the the embedment into or cmax = 5.25 inches the foundation and does not consider stem wi Fnd Width = 36.00 inches c = 2.25 inches c mjn = 18.00 inches Wc,N= 1.00 cast -in -place anchor Wc,N= 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor = 0.75 strength reduction factor 4) = 0.75 strength reduction fact' Calculations Calculations ANC = 68 in AN = 1296 in` ANo = 110.25 in A = 1296 in` Nb = 8,607 pounds Nb = 55,121 pounds Wed,N = 0.8286 Wed.N = 1.00 N = 4,399 pounds N = 55,121 pounds 4)N = 3,299 pounds 4N = 41,341 pounds Combined Capacity of Stem Wall and Foundation = 44,640 0.754)N = 33,480 0-0 • 6 E PI: Ell p.• C 1/4s4iW < Clb z -r, ()(:v30s)(3 (900 0 V .. 0 SiVC 4 c % A •a ..1 )0 1J e;S ci.v9S C 0*" 7 A lINI ( 0 = (s)E.)000s)(3•0/ (000'ol) 635'0 =,,NO 6 /7 bas'o =sv ck) `rut j Z :OCYTWO1C-VV-r-\0.. -D O • r z 0 > • 0 • 0 m 41 Y‘w • eTe' X�\ El ao3 road 0 0 r) , orsi eor o)oe -9 :3. Concrete Side Face Blow Out Givens Abrg = 2.15 in` fc = 3000 psi c m;n = 18.00 inches = 0.75 strength reduction factor Calculations Nsb = 231,191 pounds 4)Nsb = 173,393 pounds Concrete Pullout Strength Givens Abrg = 2.15 in` fc = 3000 psi = 0.75 strength reduction factor Calculations N = 51,552 pounds 4)N = 38,664 pounds Steel Yield Strength Givens f = 58,000 psi A = 0.606 in = 0.80 strength reduction factor Calculations N = 35,148 pounds, 4Ns = 28,118 pounds < 33,480 Ductility Met Holdown Check Holdown: HDU14 Holdown Capacity= 14,930 pounds 1.6* Capacity= 23,888 pounds 23,888 < 28,118 Holdown Checks -7‘3"'D BY: DATE: JOB No yr PROJECT: RE: \ Wot11 ' coo ny ❑ ❑ W � 5i des vF Bui Warns J ~WZ rr 1- W 0 f Dt. aSC t. C ►2 4SF); 300 1)L. u-r.A\ 1 ❑ $ cl;(. \evels>(1s 0� = a. 05 pt� &toor 0 4o ►N (t50 pc �x'l z v)(�11.i _ 333 puP 51 -em • Li '(1 s0 xc.�)( �) — to0 to PLC O Z w = gg�, 6 2. r { ' b Fw• z a 1-1.. o (VP tejels`)(4- o,.st Lilo P� - tcor' z 0 a z TT{,al l c,iad. = t-3/4 t t- tooLo 1 . 2 ' N'O % S'op = ts00 p*,.. = IS • W O 1 1 I + !COLD S rsooW ,./_ , - (A) = 100(0 ( ric IS. 2 & 0 . w z ❑ z e rear i �4 c- i kd s O = F- a DL; asco.) =. - 3on p4.. wrap 6912.1.evet5)(1, / esf at Pt.r ooc- 4010 (I So pc. F X. 'hi. (k.) = 33'', S P \-e..i1 ( w = (00t4,) CtB�C1'�Fsr ')= 30(0 ptC 'roO LL: 61)(2.)(!i{.) 1 p LP O • U S .,, - IL d "I'34 3 t- 100 vv .° a3u3 +- toUw IsUD� o � xa : w_ t,L1 •,1 ‘N) e ur;\ P- : 0.4 e uvnil`s 6'; C. x = soorne cis h mtrru5 , Stocx` toc&4 T L $ \ C1 i- \ 0O W W 1.00 ? , Q t SI Pac VJc).t D.. ° 5(.\* (2)= (,o0 per- wail (b)C2 X (3;(.z, = 4 t (0 71.F Sloor 400.36 socx.4')C'1tz)(elm) = 33310LF 5V-err (112.YA5t) u.))7:100 . u.) LL ° (6�.2(.40)(2.) = 1290 P.v= s TL: a6a9 - I - 100w (.J = t ,"15'Y1 23 I N.) u s-e a4 ► A,