Loading...
Specifications .Ti fi 7 � 017k O/ 79 O/ 'o Structural Calculations for Full Lateral & Gravity Analyse pgpEIVED Plan B 1332 SEP 2 3 2010 CITY OF TIGARD BUILDING DIVISION Summer Creek Townhomes Tigard, OR Prepared for Pulte Group July 13, 2010 - JOB NUMBER: CEN -090 ** *Limitations * ** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and /or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 96 sheets total including this cover sheet. This Packet of Calculations is Null and Void if Signature above is not Original Harper HP • H.ouf Peterson Righellis Inc. I•E[Ra • PLANN.M1O LANOGCAGE ARCNITECTS•aVRVCYORS 205 SE Spokane St. Suite 200 o Portland, OR 97202 • [P] 503.221.1131 0 [F] 503.221.1171 1 104 Main St. Suite 100 o Vancouver, WA 98660 0 [P] 360.450.1 141 0 [F] 360.750.1 141 1 133 NW Wall St. Suite 201 o Bend, OR 97701 0 [P] 541.318.1 161 0 [F] 541.318.1 141 Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit B Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, IW: 1 2006 IBC / 2007 OSSC Occupancy Category: II Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed, ASCE 7 -05 Ch. 20 Importance, IE: 1 ASCE 7 -05 Table 11.5-1 Ss: 0.942 USGS Spectral Response Map S1: 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength, f'c: 3000 psi Foundations & Slab on Grade Concrete Unit Weight, yc: 145 pcf Steel Reinforcement Yield Strength, f 60,000 psi Wood Studs (Wall Studs): Hem -Fir #2 2x & 4x Wood Beams & Posts: DF -L #2 6x & Greater Wood Beams & Posts: DF -L# 1 Glulam Beams: 24F -V4 PSL Beams: Fb =2,900 psi, FV= 328psi, E =2.0 Million TS /LSL Beams: Fb =2325 psi, FV= 460psi; E =1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : 1500 psf Assumed 2. All manufactured trusses, joists, and flush beams.u.n.o. shall be designed by others. Structural Analysis Software Used: Mathcad 1 1 Microsoft Excel 2000 WoodWorks - Sizer version 2002 Bently RAM Advanse Harper Project: Summer Creek Townhomes UNIT B HP Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE ARCHITECTS•SURVEYGRS DESIGN CRITERIA 2007 Oregon Structural Specialty Code & ASCE 7 -05 Roof Dead Load RFR := 2.5•psf Framing RPL := 1.5.psf Plywood RRF := 5.psf Roofing RME := 1.5.psf Mech & Elec RMS := 1.psf Misc RCG := 2.5.psf Ceiling RIN := 1 •psf Insulation RDL = 15•psf Floor Dead Load FFR := 3 •psf Framing FPL := 4•psf Sheathing FME := 1.5.psf Mech & Elec FMS := 1.5•psf Misc FIN := .5•psf Finish & Insulation FCLG := 2.5.psf Ceiling FDL = 13•psf Wall Dead Load WOOD EX_Wall := 12•psf 1NT_Wall := 10•psf Roof Live Load RLL := 25.psf Floor Live Load FLL := 40•psf Harper Project: Summer Creek Townhomes UNIT B HP Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE ARCNITECTS•SGRVEYOR6 Transverse Seismic Forces Site Class = D Design Catagory = D Building Occupancy Category: II Weight of Structure In Transverse Direction Roof Weight Roof Area := 748•f RFw1• := RDL•Roof Area RFI r1• = 12566.1b Floor Weight Floor_Area2 := 605•ft FLRWT2nd := FDL•Floor Area2 FLRwT nd = 7865.1b Floor Area3rd 60041 FLRWT3rd FDL.Floor_Area3rd FLRWT3rd = 7800.1b Wall Weight EX Wall Area := (2203)•ft INT Wall_Area:= (906)•ft 2 WALLw1• := EX_Wall + INT Wall WALLWr = 35496-lb WTTOTAL = 637271b Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h := 32 Mean Height Of Roof I := 1 Component Importance Factor (11.5, ASCE 7 -05) &:= 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C :_ .02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x := .75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period T := C T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F := 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F, := 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) Harper Project: Summer Creek Townhomes UNIT B ' e HF :- Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS '.• PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE ARCNITECT9•9URVEYORS S MS Fa'Ss SMS = 1.058 (EQU 11.4 -1, ASCE 7 -05) Sds •= 2•SMS Sds = 0.705 (EQU 11.4 -3, ASCE 7 -05) 3 SM1 Fv'S1 SM1 = 0.584 (EQU 11.4 -2, ASCE 7 -05) Sd1 3 2 ' M1 Sdl = 0.389 (EQU 11.4 -4, ASCE 7 -05) Cst := Sds Ie Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) R ...need not exceed... Cs Shc'Ie 0.223 (Q max := T R Cs max = . (EQU 12.8 -3, ASCE 7 -05 ) a ...and shall not be less then... C1 := if(0.044•Sd < 0.01,0.01,0.044•Sd r 0.5•S1•1 '\ (EQU 12.8 -5 &6, ASCE 7 -05) C2 := if l S1 <0.6,0.01, J R Cs := if (C 1 > C2 , CI , C2) Cs = 0.031 Cs := if (Cst < Cs Cs if(Cst < Csmax , Cst, Cs Cs = 0.108 := Cs,.WTTOTAL V = 691416 (EQU 12.8 -1, ASCE 7 -05) E := V•0.7 E = 4840 1b (Allowable Stress) 6 C6 . Harper Project: Summer Creek Townhomes UNIT B 4 Houf Peterson Righellis Inc. Client: Pulte Group Job # CEN -090 ENGINEERS • PLANNERS - Designer: AMC Date: June 2010 Pg. # LANOSCAPE ARCM, TCCTS• SURVEYORS Transverse Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 100 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I := 1.00 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X := 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) a2 := 2..1.16.ft Zone A & B Horizontal Length Smaller of... (Fig 6 -2 note 10, ASCE 7 -05) a2 = 3.2 ft 4 h 2 ft or '`j a2 = 25.6 ft a2, := 3.2-ft but not less than... a2 = 6 ft Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal . PnetzoneA 19.9•psf PnetzoneB 3.2.psf PnetZoneC 14.4•psf PnetzoneD 3.3•psf Vertical PnetzoneE —8.81psf PnetzoneF 121psf PnetzoneG —6.4.psf PnetzoneH —9.7•psf Basic Wind Force PA := PnetzoneA'Iw•X PA = 19.9•psf Wall HWC PB := PnetzoneB • INV X PH = 3.2•psf RoofHWC PC := PnetioneC'Iw•X Pc = 14.4.psf Wall Typical PD := PnetzoneD'IWX PD = 3.3•psf Roof Typical PE := PnetzoneE' Ivv•X PE = — 8.8•psf PF := PnetzoneF'IH,•X PF = — 12•psf Pc, := PnetzoneG' Iw' X Pc, = — 6.4• psf PH := PnetzoneH'IN,•X PH = — 9.7.psf 134./1A Harper Project: Summer Creek Townhomes UNIT B HP Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE ARCHITECTS •SURVEYORS Determine Wind Sail In Transverse Direction WSAILZoneA (55 + 59 + 29)41 WSJ -ZoneB (6 + 0 + 23)41 WSAILZoneC (429 + 355 + 339)41 WSAII-ZoneD (0 + 0 + 4)41 WA WSAILZoneA'PA WA = 2846 lb WB := WSAII- ZoneB'PB WB = 931b WC WSAILZoneC'PC WC = 161711b WD WSAILZoneD'PD WD = 131b Wind_Force := WA + WB + WC + WD Wind_Force := 10•psf•(WSAILZ + WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind_Force = 191231b Wind Force = 129901b WSAILZoneE 43.112 WSAII-ZoneF 43.111 WSA 33411 WSA 327.11 WE WSAILZoneE'PE WE = —3781b WF := WSAILZoneF.PF WF = — 5161b WG := WSAILZoneG'PG WG = — 21381b WH WSAILZoneH'PH WH = — 31721b Upliftnet WF + WH + (WE + WG) + RDL IWSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneG) .6.1.12 Upliftnet = 13261b (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION L5 • Harper Project: Summer Creek Townhomes UNIT B P. :• Houf Peterson Client: Pulte Group • Job # CEN -090 Righellis Inc. ENGINEERS ♦ ALANNERS Designer: AMC Date: June 2010 •Pg. # LANDSCAPE ARCHITECTS• SURVEYORS Longitudinal Seismic Forces Site Class = D Design Catagory = -D Building Occupancy Category: II Weight of Structure In Longitudinal Direction Roof Weight Roof Area = 838 ft ANa RDL•Roof Area RF' r1' = 12566•1b Floor Weight Floor_Area2 = 605 ft = FDL•F1oor Area2 • FLRW = 7865-lb Floor_Area3 = 600 ft LlaRc• = FDL•Floor Area3rd FLRw - r3rd = 7800-lb Wall Weight EX..W.all:. eA.: (2203)•11 INT Wall Area = 906 ft • • N ajac,-A:= EX Wall + INT Wall WALLWT = 35496•1b WTTOTAL = 637271b Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h = 32 Mean Height Of Roof le = 1 Component Importance Factor (11.5, ASCE 7 -05) R 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C = 0.02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x = 0.75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period := C T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) St = 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S = 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F = 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F„ = 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) • 1 w Y Harper Project: Summer Creek Townhomes UNIT B Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS, PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE ARCNITECTS•SURVEYORS := F SMS = 1.058 (EQU 11.4-1, ASCE 7 -05) 2 ' SMS := 3 Sd = 0.705 (EQU 11.4 -3, ASCE 7 -05) = F S1 SMl = 0.584 (EQU 11.4 -2, ASCE 7.05) 2 SM1 := 3 Shc = 0.389 (EQU 11.4 -4, ASCE 7 -05) Cst := Sds le Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) R ...need not exceed... Shc Cs = 0.223 (EQU 12.8 -3, ASCE 7 -05) T a •R ...and shall not be less then... Ej:= if (0.044.Sd s •I e < 0.01,0.01,0.044.Sd 0.5•Sl•Iel (EQU 12.8 -5 &6, ASCE 7 -05) := if S1 <0.6,0.01, J R 944m := if (CI > C2,Ci,C2) Csmin = 0.031 = if (Cst < Cs Cs if (Cst < Cs max , Cst, Cs Cs = 0.108 :_ Cs.WTTOTAL V = 69141b (EQU 12.8 -1; ASCE 7 -05) E := V•0.7 E = 48401b (Allowable Stress) I Harper Project: Summer Creek Townhomes UNIT B Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. • PLANNERS IAHOSC G T E OTS�SORVEVOR6 Designer: AMC Date: June2010 Pg.# Longitudinal Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 110, mph` (3 Sec Gust) . Exposure: B Building Occupancy _Category: lI I = 1.0 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X = 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) -.1-1 Zone A & B Horizontal Len Smaller of... a2 = 3.2 ft (Fig 6 -2 note 10, ASCE 7 -05) or n _ .4-11,-2- ft a2 = 25.6 ft but not less than... := 3.2•ft a2 = 6 ft Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA = 19.9•psf PnetzoneB ° 3.2•psf PnetzoneC = 14.4•psf PnetzoneD = 3.3•psf • Vertical PnetzoneE = —8.8•psf PnetzoneF = — 12•psf PnetzoneG = — 6.4•psf PnetzoneH = — 9.7•psf Basic Wind Force PnetzoneA'IW. PA = 19.9•psf Wall HWC = PnetzoneB'IWX PH = 3.2.psf RoofHWC ,= PnetzoneC'Irv'X PC = 14.4.psf Wall Typical PU := PnetzoneD'Iw PD = 3.3•psf Roof Typical := PnetzoneE'IN PE = — 8.8•psf PnetzoneF Iw*X PF = — 12• Pte:= PnetzoneG'Ivv•X PG = — 6.4•psf Pte:= PnetzoneH PH = — 9.7.psf �' Harper Project: Summer Creek Townhomes UNIT B '1' Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE ARCHITECTS•SURVEYORS Determine Wind Sail In Longitudinal Direction i naz s := (58 + 59 + 21)41 Ma:_ (0 + 0 + 51)41 a I c (98 + 99 + 34)41 Mag :_ (0 + 0 + 114)•1 = WSAILZoneA'PA WA = 27461b A ,:= WSAILZoneB'PB WB = 163 Ib ,,)„:= WSAILZoneC"PC WC = 33261b a WSAILZoneD'PD WD = 376 Ib i orce := WA + WB + WC + WD 10•psf•(WSAILZ + WSAILZoneB + WSAJL ones + WSAI-ZoneD) Wind Force = 66121b Wind_Force = 53401b 151- ft Nna 138•ft y�:= 242•ft2 NNa,49,yi*:= 216•ft2 WSAILZoneE'PE WE = - 13291b Wes:= WSAILZoneF•PF WF = - 16561b Wes:= WSAILZoneG'PG WG = - 15491b Wes:= WSAILZoneH'PH WI/ = -2095 lb NA WF + WH + (WE + WG) + RDL•[WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZone4'. Upliftnet = 901 Ib (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION Le\ Harper Houf Peterson Righellis • Pg #: Transverse Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) • Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X = 1.00 lw= 1.00 • Wind Sail Wind Net Design Wind Pressure (psf) ( ) Pressure (Ibs) Zone A = 19.9 143 2846 Wall High Wind Zone Horizontal Zone B = 3.2 29 93 Roof High Wind Zone Wind Forces Zone C = 14.4 1123 16171 Wall Typ Zone . Zone D = 3.3 4 13 Roof Typ Zone Zone E = -8.8 43 -378 Roof Windward High Wind Zone . Vertical Zone F = -12.0 43 -516 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 334 -2138 Roof Windward Typ Wind Zone Zone H = -9.7 327 -3172 Roof Leeward Typ Wind Zone Total Wind Force =l 19123 Ibs 1 Use to resist wind .uplift: Roof Only Total -Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -6204 Ibs Resisting Dead Load= 7517 Ibs E =I 1313 Lbs...No Net Uplift I • • • Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Dia hragm (ft Zone A Zone B Zone C Zone D Main Floor 55 6 429 0 Upper Floor 59 0 355 0 • Main Floor Diaphragm.Shear = 7291 Ibs . Upper Floor Diaphragm Shear = 6286 Ibs Roof Diaphragm Shear = 5546 Ibs . Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR. ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Ibs Diaphragm Ibs Diaphragm ( ) Width (ft ) ( Width (ft ) ) (Ibs) A 15.83 2275 20.50 3143 21.33 2773 B 19.50 2802 0.00 0 0.00 0 C 15.42 2215 20.50 3143 21.33 2773 E= 50.75 7291 41 6286 42.67 5546 1 -L\o. N Harper Houf Peterson Righellis Pg #: Transverse Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II • • , Site Class = D S1= 0.34 , Ss= 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 . Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = • 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, SCE 7 -05 k = 1.00 . 12.8.3, ASCE 7 -05 S 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2; ASCE 7 -05 . Sips= 0:71 ' Equ. 11.4 -3, ASCE 7 -05 SDI= ' 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8-2, ASCE 7 -05 Csmin = • 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 . • Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 ' Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 . Floor 3 Diaphragm Height (ft) = 18 ' Roof Diaphragm Height (ft) = 32 Floor 2 Wt (Ib)= 7865 Floor 3 Wt (Ib)= 7800 Roof Wt (Ib) = 12566 Wall Wt (Ib) = 35496 . • Trib. Floor 2 Diaphragm Wt (Ib) = 22063 - Trib. Floor 3 Diaphragm Wt (Ib) = 21998 Trib. Roof Diaphragm Wt (Ib) = 19665 - Vertical Dist of Seismic Forces Cumulative % total of base shear Rho Check . to Shearwalls (Ibs) I to shearwalls I Req'd? • Vfloo, 2 (Ib) = 711 100.0% Yes Vfloor 3 (Ib) = 1595 85.3% Yes Vroor (lb) = 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area ,Floor 2 Line Floor 3 Line Roof Line _ Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft Ibs Ibs Ibs ' A 126 299 371 '148 795 1257 B 282 0 0 331 0 0 . C 197 301 377 231 , 800 '' 1277. Sum 605 600 • 748 711 •. 1595 2534. Total Base Shear* = I 4840 LB I *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. cg '-' LA • • Harper Houf Peterson Righellis Pg #: Longitudinal Wind Line Shear Distribution ASCE 7-05, section 6.4 (Method 1 - simplified) Design Criteria: • Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X_ 1.00 Iw= 1.00 Wind Sail Wind Net Design Wind Pressure (psf) ( ) Pressure (Ibs) Zone A = 19.9 138 2746 Wall High Wind Zone Horizontal Zone B = 3.2 51 163 Roof High Wind Zone Wind Forces Zone C = 14.4 231 3326 Wall Typ Zone Zone D = 3.3 114 376 Roof Typ Zone Zone E _ -8.8 151 -1329 Roof Windward High Wind Zone Vertical Zone F = -12.0 138 -1656 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 242 -1549 Roof Windward Typ Wind Zone Zone H = -9.7 216 . -2095 Roof Leeward Typ Wind Zone Total Wind Force =l 6612 Ibs Use to resist wind uplift: Roof & Half of Upper Floor Walls Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -6629 Ibs Resisting Dead Load= 10160 Ibs • E =I 3531 Lbs...No Net Uplift Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Dia hragm (ft Zone A Zone B Zone C Zone D Main Floor 58 0 98 0 Upper Floor 59 0 99 0 • Main Floor Diaphragm Shear = 2565 Ibs Upper Floor Diaphragm Shear = 2600 Ibs Roof Diaphragm Shear = 1447 Ibs Wind Distribution To Shearwall Lines • MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm (Ibs) Diaphragm (lbs) Diaphragm (Ibs) Width (ft) Width (ft) Width (ft) 1 8 1283 8 1300 8 723 2 8 1283 8 1300 8 723 E= 16 2565 16 2600 16 1447 • La_ • Harper Houf Peterson Righellis Pg #: Longitudinal Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D S1 = 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 • Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 SMS 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 S 0.71 Equ. 11.4 -3, ASCE 7 -05 S01= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8:5 & 6, ASCE 7 -05 Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm • Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (Ib)= 7865 Floor 3 Wt (Ib)= 7800 Roof Wt (Ib) = 12566 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22063 Trib. Floor 3 Diaphragm Wt (Ib) = 21998 • Trib. Roof Diaphragm Wt (Ib) = 19665 Vertical Dist of Seismic Forces Cumulative % total of base shear Rho Check to Shearwalls (lbs) I to shearwalls I Req:d? Vfl 2 (Ib) = 711 100.0% Yes Vfloor 3 (Ib) = 1595 85.3% Yes Vrooi (lb) = 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft Ibs Ibs lbs 1 275 270 360 323 718 1220 2 330 330 388 388 877 1315 Sum 605 600 748 711 1595 2534 • • • Total Base Shear* = 4840 LB 1 *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 • Transvere Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel M M Uplift Panel Lgth. From 2nd Flr: From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klf) (plf) (ft-k) (ft -k) (k) 101 8 5.25 5.25 1.52 ox 8.00 2.28' 18.00 •3.14 27.00 2.77 1560 Double 1.40 VIII . 102 8 3.88. 3:88 2.06 OK 8.00 2.80 8.00 0.00 .. _ . . 723 Single 1.40 . IV 103 8 4.58 8.58 1.75 OK 8.00 2.22 8.00 3:14 8.00•. 2.77 947 Double • 1.40 VI . 104 8 4.00 8.58 2.00 ox 8.00 2.22 8.00 3.14 8.00 2.77 947 Double 1.40 VI 107 8 4.58 13.08 135 oK 8.00 • 128 18.00 3.14 27.00 2.77 626 Single , 1.40 III • 108 8 8.50 1108 0.94 ox 8.00 2.28 18.00 3.14 27.00 2.77 626 Single 1.40 III - . 109 8 . 3.88 3.88. 2.06 ox 8.00 2.80 723 . Single 1.40 • .IV . 110 8 1.25 • 4.50 6.40 ; 8.00 2.22 8.00. 3.14 8:00 2.77 1807 Double 1.40 NG 111 8 2.00 4.50 4.00 P 8.00 2.22 8.00 3.14 8.00 2:77 1807 Double 1.40 • NG 112 8 1.25 _ 4.50 6.40.E 8.00 2.22 • 8.00 _ 3.14 8.00 _. 2.77 _ ' _ 1807 Double 1.40 NG . 201 9 6.79 9.79 • • 1.33 ox • .. 9.00 3.14. 18.00 2.77 • 604 • Single 1.40 III . 202 9 3.00 9.79 3.00 oK 9.00 3.14 18.00 2.77 604 Single 1.40 • III • • 203 9 5.00 . 5.00 _ 1.80 _ OK _ , 9.00. •3.14 18.00 2 :77 1183 -. Double- 1.40 :VII - 204 Not Used . 205 Not Used . . 206 • Not Used , • • 301 8 6.88 10:08 1.16 OK 8.00 2.77 275 Single - 1.40 • I 302 8 3.21 10.08 2.49 OK 8.00 .2.77 275 Single 1.40 I • 303 8 5.00 10.00 1.60 OK 8.00 2.77 277 Single - 1.40 I . 304 8 2.50 10.00 3.20 OK 8.00 2.77 277 Single 1.40 I 305 8 _ 2.50 10.00 3.20 OK _ 8.00 2.77 _ _ 277 ' Single • 1.40 I Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line • H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • • • • • 8 -LV Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Fransvere Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load :Line Load Dead V Rho *V ' % Story • # Panel Shear Panel M , M0, Uplift Panel • Lgth. From 2nd Flr. From 3rd FIr. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klf) (pif) (plf) (ft-k) (ft-k) (k) 101 ' 8 5.25 5.25 1.52 OK 8.00 0.15 18.00 0.80 27.00 1:26 419 545 0.30 1.31 Single 1.00 IV 102 8 3.88 . 3:88 2.06 OK 8.00 0.33 8.00 0.00 0.00 85 111' 0.22 0.97 Single 0.97 I 103 8 4.58 8.58 , 1.75 OK 8.00 0.23 8.00 0.80 8.00 1.28 269 350 0.26 -1.15 Single 1.00 II 104 8 4.00 8.58 2.00 OK 8.00 0.23 8.00 0.80 8.00 1.28 269 350 0.23 1.00 Single 1.00 11 107. 8 4.58 13.08 1.75 OK' • 8.00 0.15 18.00 0.80 27.00 1.26 168 219. 0.26 • 1.15 Single 1.00 I • 108 8 8.50 13.08 0.94 o,c •8.00 0.15 18.00 0.80 27.00 1.26. 168 219 NA : 2.13 Single .1.00 I 109 8 3.88 3:88 2.06 OK 8.00 0.33 0.00 85 111 0.22 0.97 Single 0.97. I 110 8 1.25 4:50 6.40 0:'1;- 8.00' 0.23 8.00 0.80 8.00 ..1.28 513 667 0.07 031 Double 0.31 NG 111 8 4:50 4.00 - .: «J 8.00 0.23 8.00 0.80 8.00 1.28 513 , 667 0.11 0.50 , Double 0.50 NG , 112 _ 8 _ 125 4:50 .6.40 il, " -f. 8.00 023 8.00 0.80 8.00 128 513 667 0.07 031 Double _ 0.31 _ NG • 201 9 6.79 - 9.79. • 1.33 . ' OK 9.00 0.28. 18.00 .:'I.26 157 205,. 0.46 1.51 Single 1.00. I -- . 202. 9 . 3.00 . 9.79 3.00 'oK • . 9.00 0.28 18.00 • 1.26 157 205' 0.20 0.67 Single 0.67 1I 203 9 . 5.00 5.00 1.80 OK' 9.00 0.55 18.00 1.28 366 _ 476 0.34 _ . 1.11 ' Single 1.00 IV ' 204 - • Not Used , . . . 205 " . .... Not Used - . 206 _ . , ' Not Used . 301 8 .6.88 10.08 1.16. OK 8.00 1.26 =125 162 0.34 - 1.72 Single ' 1.00 I. 302 8 3.21 10.08 2.49 OK • • 8.00. 1.26 125 162 . 0.16 0.80 . Single 0.80 I 303 8 5.00 10.00 1.60 OK .. . 8.00 1.28 128 166 0.25 1.25 Single 1.00 1 304 8 2.50 10.00 3.20 OK 8.00 1.28 128 166 0.12 0.63 Single 0.63 B , , 305 8 2.50 10.00 3.20 OK r 8.00 1.28 128 166 - 0.12 0.63 Single 0.63 ' , II Rho Calculation . Does the 1st floor shearwalls resist more than 35% of the total transverse base shear? Yes • Does the 2nd floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total transverse base shear? Yes Total 1st Floor Wall Length = 17.71 • Total # 1st Floor Bays = 4.43 • . Are 2 bays minimum present along each wall line? No 1st Floor Rho = 1.3 Total 2nd Floor Wall Length = 14.79 - Total # 2nd Floor Bays = 3 ' Are 2 bays minimum present along each wall line? No 2nd Floor Rho = 13 Total 3rd Floor Wall Length = 20.08 . Total # 3rd Floor Bays = 5 Are 2 bays minimum present along each wall line? Yes " 3rd Floor Rho = 1.3 • Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load *Rho / Total L % Story Strength = L / Total Story L (Required for walls with H/L > I.0, for use in Rho check) # Bays = 2 *UH Shear Factor = Adjustment For H/L> 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) • Uplift T = (Mo-Mr) / (L - 6 in) Harper Houf Peterson Righellis P #: • Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L• Line Load Line Load . Line Load Dead V Panel Shear Panel Mo MR Uplift Panel Lgth: From 2nd Fir. From 3rd Fir. From Roof • Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k , (klf) (plf) (ft -k) (ft -k) (k) 105 8 12.75 12.75 0.63 ox 10.00 • 1.28 18.00 1.30 27.00 0.72 1.13 259 Single 1.40 I - 55.75 92.01 0.04 106 8 12.75 12.75 0.63 ox 10.00 1.28 .18.00_ 1.30 _ 27.00 0.72 1.13 259 • Single 1.40. " 55.75 92101 0.04 207 9 11.50.._11.50 0.78 ox 9.00 '1.30 18.00 0:72 0.75 176 Single 1.40 I 24.71 49.73 -0.47 I 208 9 11.50 '11.50 1 0.78 OK I . 9.00 1.30 18.00 . -0.72. 0.75. 176 . I Single 1.40 ' ' 1. 24.71 49.73 =0.47 I 306 8 10.00 1 10.00 0.80 ox 1 8.00 0.72 0.29 72 Single 1.40 1 5.78 14.40 .. -0.30 I 307 8 10.00 10.00 0.80 OK _ 8.00 0.72 0.29 72 Single 1.40 I 538 14.40 -0.30 Spreadsheet Column Definitions & Formulas L = Shear Panel Length • H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load • L • 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) • • • • g Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho *V % Story # Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd FIr. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (kif) (plf) (plf) (ft-k) (ft -k) (k) 105 8 12.75 12.75 0.63 OK 10.00 0.32 18.00 0.72 27.00 1.22 1.19 177 177 NA 3.19 Single 1.00 I 49.09 96.89 -0.74 106 8 12.75 12.75 0.63 OK 10.00_ 0.39 18.00 0.88 27.00 1.32 1.19 202 202 NA 3.19 Single 1.00 I 55.17 96.89 -0.24 I 207 I 9 1 11.50 11.501 0.78 OK ` 9.00 1 0.72 1 18.00 1.22 0.81 169 I 169 I NA 2.56 I Single 1 1.00 .. I 28.42 53.69 -0.34 I 208 9 11.50 11.50 0.78 OK ` 9.00 0.88 18.00 1.32 0.81 191 191 NA 2.56 I Single f 1.00 I 31.56 53.69 -0.06 306 8 10.00 10.00 0.80 OK 8.00 1.22 0.35 -0.07 I 307 8 10.001 10.00 0.80 OK I I 1 8.00 I 1.22 0.35 122 122 122 122 NA NA 2.50 2.50 Single Single I 1.00 1.00 I I 9.76 9.76 1 17.40 1 -0.07 Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Total 1st Floor Wall Length = 25.50 Total # 1st Floor Bays = 6.38 Are 2 bays minimum present along each wall line? Yes I st Floor Rho = 1.0 Total 2nd Floor Wall Length = 23.00 Total # 2nd Floor Bays = 5 Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho = 1.0 Total 3rd Floor Wall Length = 20.00 Total # 3rd Floor Bays = s Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho = 1.o Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load *Rho / Total L Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2 *L/H Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear • Shear Application ht Mr (Resisting,Moment) = Dead Load * L 0.5 ' (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • 4 8 ..-- 1.001\A Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Transvere Shearwalls Panel Wall Shear Wall Type Good For V (plf) (PR) wt 101 1560 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 1667 102 723 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 833 103 947 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 104 947 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 107 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 108 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 109 723 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 833 110 Simpson Strongwall 111 Simpson Strongwall 112 Simpson Strongwall 201 604 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 202 604 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 203 1183 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 1276 204 Not Used 205 Not Used 206 Not Used 301 275 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 302 275 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 303 277 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 304 277 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 339 305 277, 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 339 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design Toads. Adkb Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Longitudinal Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good For V (ptf) (p (ib) (lb) 105 259 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 44 Simpson None 0 106 259 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 44 Simpson None 0 207 176 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -345 Simpson None 0 208 191 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 :59 Simpson None 0 I 306 122 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 -72 Simpson None 0 307 122 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 -72 Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. 8 -Lik9 Transverse Wind Uplift Design • Unit B Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left _ Right Left Side of @ Right Wall Wall @ Left • floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 101 8 1.1667 5.25 5.25 2.28 3.14 2.77 8.19 1560 0.1 0.8 0.208 72.42 5.58 2.47 14.54 14.93 14.54 14.93. 102 8 1.1667 3.88 3.88 2.8 2.8 722 0.092 2.432 22.40 10.13 0.69 4.83 6.50 4.83 6.50 103 8 1.1667 4.58 8.58 2.22 3.14 2.77 8.13 948 0.1 0.078 0.078 38.40 1.41 1.41 9.20 9.20 203 R -12.12 -2.91 9.20 104 8 1.1667 4 8.58 2.22 3.14 2.77 8.13 948 0.234 0.117 1.632 33.54 2.34 8.40 9.18 8.14 9.18 8.14 107 8 1.1667 4.58 13.08 2.28 3.14 2.77 8.19 626 0.1 0.192 0.078 25.36 1.93 1.41 5.93 6.01 201L 201R 6.71 6.71 12.65 12.72 108 8 1.1667 8.5 13.08 2.28 3.14 2.77 8.19 626 0.1 0.078 0.384 47.06 4.28 6.88 5.56 5.37 202L 202R 6.77 7.24 12.33 12.60 110 8 1.1667 1.25 4.5 2.22 3.14 2.77 8.13 1807 0.1 0.384 0.078 18.07 0.56 0:18 23.00 23.30 203L 12.13 35.13 23.30 111 8 1.1667 2 4.5 ' 2.22 3.14 2.77 8.13 1807 0.1 0.078 0.208 28.91 0.36 0.62 18.87 18.76 203R -12.12 6.75 18.76 112 8 1.1667 1.25 • 4.5 2.22 3.14_ 2.77_ 8.13 1807 0.1 0.208 1.424_ 18.07_ 0.34 1.86_ 23.17 21.99 23.17 21.99 201 9 1.1667 6.79 9.79 3.14 2.77 5.91 604 0.172 0.848 0.156 39:13 9.72 5.02 4.90 5.32 301L 301R 1.45 1.40 6.35 6.71 202 9 1.1667 3 9.79 3.14 2.77 5.91 604 0.172 0.848 0.156 17.29 3.32 1.24 5.10 5.51 3021 • 302r 1.67 1.72 6.77 7.24 203 9 1.1667 5 5 3.14 2.77 5.91 1182 0.172 0.848 0.385 56.42 6.39 4.08 10.52 10.80 303E 303R 1.61 1.32 12.13 12.12 301 8 6.88 10.09 2.77 2.77 275 0.252 0:384 0.468 15.11 •• 8.61 9.18 1.45 1.40 1.45 1.40 302 8 3.21 10.09 2.77 2.77 275 0.252 0.468 0.384 7.05 2.80 2.53 1.67 1.72 1.67 1.72 303 8 5 10 2.77 2.77 277 0.252 . 0.384 0.858 11.08 5.07 7.44 . 1.61 1.32 1.61 1.32 304 8 2.5 10 2.77 2.77 277 0.112 0.192 5.54 0.83 0.35 2.02 2.13 2.02 2.13 305 8 2.5 .10_ 2.77 2.77 277 '0.112_ 0.384 5.54 0.35 1,31 2.13 1.90 2.13 1.90 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line t V (Panel Shear) = Sum of Line Load / Total L `1 Mo (Overturning Moment) = Wall Shear * Shear Application ht • Mr (Resisting Moment) = Dead Load * L 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) . • Transverse Seismic Uplift Design Unit B Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead 'Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift FIr. Fir. Roof Shear • including Load Load Momen @ Left (a) Right Left Right Left Side of @ Right Wall Wall @ Left @ floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf kif k k kft kft kft k k k k k k 101 8 1.1667 5.25 5.25 0.148 0.795 1.257 2.2 419. 0.1 0.8 0.208 19.99 5.58 2.47 3.15 3.74 3.15 .3.74 102 8 1.1667 3.88 3.88 0.331 0.331 85 0.092 2.432 0 2.65 10.13 0.69 -1.91 0.60 -1.91 0.60 103 8 1.1667 4.58 . 8.58 , 0.231 0.8 1.277 2.308 269 0.1 0.078 0.078 11.15 1.41 1.41 2.42 2.42 203 R -2.99 -0.56 2.42 104 8 1.1667 4.00 8.58 0.231 0.8 1.277. 2.308 269 0.234 0.117 1.632 9.74 2.34 8.40 2.18 0.62 2.18 0.62 107 8 1.1667 4.58 13.08 0.148 0.795 1.257 2.2 168 0.1 0.192 0.078 7.00 1.93 1.41 1.29 1.41 201L 201 (part) 1.17 0.34 2.46 1.75 108 8 1.1667. 8.50 13.08 0.148 0.795 1.257 2.2 168 0.1 0.078 0.384 12.99 4.28 • 6.88 1.14 0.85 202L 202R 0.33 1.35 1.47 2.20 110 8 1.1667 1.25 4.50 0.231 0.8 1.277 2.308 513 0.1 0.384 0.078 5.80 0.56 0.18 6.88 7.32 203L 3.00 • 9.87 7.32 111. 8 1.1667 2.00 4 :50 0.231 0.8 1.277 2.308 513 0.1 0.078 0.208 9.28 0.36 0.62 - 5.89 5.74 203R, 304L , -2.99 2.91 5.74 112 8 1.1667 .1:25 4.50 0.231 0.8 1.277 2:308 513 0.1 0.208 1:424 5.80 0.34 . 1.86': - . 7.13 5.36 7:13 5.36 • 201 9 1.1667. 6.79 9.79 . 0.795 1.257 2.052 - 210. 0.172 ' ' 0.848 0.156 13.83 • 9.72 5.02 0.75 - • 1.37. 301L 301R -0.13 -0.20 0.62 1.17 202 9 1.1667 3.00 9.79 0.795 1.257 2.052 - 210 0.172 0.848 0.156 . 6.11 3.32 1.24 1.04. 1.66 3021 • 302r 0.11 -0.32 1.15 1.35 203 . 9 1.1667 5.00 . 5.00_ . 0.8 1.2 ?7 .2.077 415 0.172 0.848 0.385 20.18 6.39 - 4.08 _ .2:89 3.30 303L 303R 0.11 -0.32 3.00 2.99 301 8 6.88 10.09 1.257 1.257 • 125 0.252 0.384 0.468 6.86 8.61 9.18 . -0.13 -0.20 ' • -0.13 -0.20 302 8 3.21 10.09 - • 1.257 1.257 125 0252 0.468 0.384 3.20 2:80 2.53 0.21 0.29 • 0.21 0.29 303 8 5.00 10.00 1.277 1.277 128 0.252 0.384 0.858 5.11 5.07 7.44 0.11 -0.32 0.11 -0.32 304 8 2.50 10.00 1.277 1.277 128 ' 0.112 0.192 • 0 2.55 0.83 0.35 0.72' 0.90 0.72 0.90 305 8 2.50 10.00 • 1.277 1.277 128 0.112 0_ 0.384 2.55 0.35_ 1.31 0.90 0.55 0.90 0.55 Spreadsheet Column Definitions & Formulas L = Shear Panel Length (°' H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • • • TRANSVERSE UPLIFT CALCULATIONS - SUMMARY UNIT b Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right • k . Simpson k s k Simpson k 101 Wind . 14.54 Holdown HD12.w DF 15.51 Wind .14.93 HD12 w DF 15.51 • 102 Wind 4.83 Holdown HDQ8 w 3HF . 6.65 Wind 6.50. HDQ8 w 3HF 6.65 103 Seismic -0.56 Holdown HDQ8 w DF 9.23 Wind 9.20 HDQ8 w DF • 9.23 104 Wind 9.18 Holdown HDQ8 w DF 9.23 Wind 8.14 HDQ8 w DF 9.23 107 Wind 12.65 Holdown HD12 w DF 15.51 Wind 12.72 HD12 w DF 15.51 108 Wind 12.33 Holdown HDU14 14.93 Wind 12.60 HDU14 14.93 110 Wind 35.13 Holdown None 0.00 Wind 23.30 None 0.00 111 Wind 6.75 Holdown None 0.00 Wind 18.76 None 0.00 112_Wind _ 23.17 Holdown _None 0.00 Wind 21.99 None 0.00 201 Wind 6.35 Strap MST60x2 8.11 Wind . 6.71 MST60x2 8.11 202 Wind 6.77 Strap MST60x2 8.11 Wind 7.24 MST60x2 8.11 • 203 Wind 12.13 _Strap CMST12x2 18.43 Wind 12.12 CMST12x2 18.43 301 Wind 1.45 Strap MST48 2.88 Wind 1.40 MST48 2.88 302 Wind 1.67 Strap . MST48 2.88 Wind 1.72 MST48 2.88 303 Wind 1.61 Strap MST48 2.88 Wind 1.32 MST48 2.88 304 Wind 2.02 Strap MST48 2.88 Wind 2.13 MST48 2.88 305 Wind • 2.13 _Strap MST48 _ 2.88 Wind _ .. 1.90 MST48 2.88 1I BY n n / DATE: L j ^ '+o —No' c r n , I09 ,/' OF PROJECT: RE: D\SIV-1 SUM) 1.) of SHERiZ 13R 0 sr►FTN ,ss J_ Z - F O w o Ax;oA Lam: WP,L.■.. 110: ❑ (12,$) C1R.sN.O.0%5) K21)(0.01 N+ (CtR,S 42- >(0,o4( = 1•TO kips DI- Li (I.25' X(_1 0,C740) 441cl.s•(o.ots )(;Iz) ::- 1.34 t< SL o J a T _ - rota 3,0 4 v-ii)S Ix o W \NALL 11\ : ec a (∎1,0(0,0ls ')C0.5rtl4- (n-Noolzl(o i- (1).$)(0,0\s)( (alaxo.o Z - ( k ( oZ.DI v.,ps oi. 0 il C1q.5)(.0.02s `s(0.5) i- Ctq.s�(o•aZS.)C lz) = a.e$1 kips SL 0 z ("Iz1o.o = o.44 1tips LL 2 TOt`a\ :..... S l _ 2 0 " WaII 112 . o Ct9. ° IZ 1- (2- �( "lz)(o )( ,� = a.a,s , ..;, - v. & o (\ .5>(0 C' °12. ? a .4 1_. S st_ a o ("1 = 0.4 LI. 1<1 ps LL 5 GFYNe.S (Le1 5kicc,es5 W ALL Ty 9 . PsllUwah \e s\AtOkr Dc i G-F K. sn eP` f Irs sr-4.- t;tk = k l lk %NO SSw 1S ICt 15 14 0 .35 531. _o_,: $3 111 ssw 2 4 x - 4. s 3 0# 6.31 1 v tscA.. *4- ___ - b ►t2 Ssw IS x OW # :o _35" S3 I i.1 0 0.3_t1t3 t17 * 1,tp _ \• v.9.... VvA Disk Shear o 110 65 t_ - 4- < 1 3o # . 1\ 1 Sias? 4 c s-,►ao y a '� - 1 l'2_ 1-517 •*. . < \ S 1tF . x = :› i : 111 = SSi t x')-- wcx.t\ GROW sh -e af Dif c ¢ t S c s5 e l 5 nisi V 110 l too 0 C,-- 5- 4 " • D‘a 7 1t• 3 u1 `I-44Qik 0, ;4 1 Q5. .,. 0, s-S-,' w� runS°'Io 1t2. V a. ON(/ stlo.c. O._ as 1 . .ta' .1.4- t ?;3° . 8 '''--X3 o 0 ® I:1 »1 '• ■3 et " • 1 ° C 11(112_ 111 113 110 t‘ 8- t.fa,4 (fv_omitup,‘-;) u \VA- LOO g- Swi 10 xr El 0 VJ \ ----- --, - ---„..^ 1 nor il I I I 1 I i(j ,f ' lt kr .,..... t....." ).‘ , t V i 1 1 ., 1 1,1 1 ' t 1 ' .._ _ i N.) 0 ---- 1 1Q3 10 ii I 0 /0 ,..., ./3 (.. 1 LoPti) w vl e - Loot-2 s \,, L is \ , - 1 0 u-r° • 1 1 i ■ i 1 i . • . 1 1 ! a0, • -7,::37.=. .,.77..,a-F.-.; i l -.,., .3.- ',•1 H i., . I . . V' 1 I - 1 .,,. i:k f i 6 . i • r;..1 . . . 1 . ;•; . ..r. 0 . 11 . . P.: ...., ----- 14 I ........Ois _ . : 1 1 - it • :1110_, i I -.---R.!V•-- I • - Ng -- 1 . . • . . . • . • © 1 4§EM 4 • O aoS • 1 N uSED 1 0. . • U M I I - 1 - ca-p06--_, Po :-- 5w •Liae • • 30\ . ?AI A � \ • y «. , . z _ —, ` . % / \ a 2 • \ \ \ \ • \ \ . . . i 2 \ m • \ / ` <3 Q / / . .•§ Q \ § . j . ,'.1., \. ° / ,, . \ . . p , 9 \ 1..'•1 .�\ _.j__ • [ F6 — -F ƒ— . . 1 : 6 - linj - ms _ �.. 2 C .:.j \ | / \ - - -- , . m L i �/ § C \ ( . ( M :$ !] \ . k C) . » i . <77y \0$ \ . 4 ,� ��a �� ,�� �& � � � @ B- . UN IT b- 3 (LP L E V E L <1; ) LA '/o BY p M ! DATE: w , Vi _` 1 , JOB NO.: A & IV ' V PROJECT: 9-09.v a:*'- 8 }Js`. RE: Des icy., of r ;. rn 1 bloc vno, @ Sfio If 5 ❑ ❑ • - OPTION) 1 0 W /7J' . 0 2 TRt13 t, LDW oto F. tq'- - + 4 14" ❑ - Sot tit T = 01 c 9 Vz." i M To? Vans 15 o a K00( s�fitttW1 tE J-%= o W %5 JO U W 0 De. 5IC -,ti w1Un Pressure z = - aD:Oro psi ° f. F. q' - 3 t ." � Tom,, i p V Des\ r\ P4O,kes CQ j \ c\ \ tef9th To,? AI ES B tie 7 o --- C- r— -- _ T T ❑ % = M t°\#* .gzs- �4 9I # p '� 3 -O cc zD z lAr`no.x = � — :1 - 512:t #ct ❑ D $ - 8 F a V rrax ■ 1 VI 14 }. .fib- M x1Z 5.15. (3.5)02.5) \ -k 6q r- : Acut `- -35: Sv =. 1 _ VI.°I 1. - (b2a*1i►.12- en L. 5 Fk, (40 = (850?SiXt.LX )(1. 3 c 6812 r=Jc1 A., o u F) ISOFSL(i. ( 0X = aUp;;L >�7- .01L 0 NC-N 1(j 0- 8 -L2-? X BY. A i, ,t DATE: 5 .— \ 2 — ,` a JOB No C Ki ' 0 c 0 C PROJECT: RE: OPT 1o10 2 ❑ ❑ Z Ui \"E U fo-r, . 2.D "C Loot W L ❑ "Tv Op it,J?ckth on ZOINT = 13`79" Li 0 MOO( t��e Mo o r s o� - ,r oVe.r \V .5 = \2 - O ' ' 0 w W z a C)-e -\ UJ kr1d pc esS e. --= - a.o .a?) p F Loud an bvi � � v blo C� _ .� p L- Z 0 Q I 1- I V 1 t! o z T 1' 2 rz= , tcP sCo R. f 0 6 F:5 :77 T .s" ❑ = 3 D ■ (iy�� -Is _ 6.as,p,,4 A i . vA" 1Z I.5,. 4 1V4 — 7 et� !Nit 3.5 /4-1, , = 5.1S tea O ti A y= Q„Z�e� :t,a h'-'54..... d 3,"•,S,6. = 0%tJ 0.1''' .1 = 6.2,5 t-aLi ,5 (0,515) 4- .2s"+ ay ,c Co, t` S)'fi 5,3 (0 +0 t ,(, 4.0 ,16 ,364- 0 y•135 ,N3 .b _NFL- = t 1 9 } s t: L =t 4.: \N Sv = V _ a ? � e = Vb C., C N\aeLC� c.�4c� Cr 1 1 i h F = 650 p At,00,00(1.0X1 (l.o)(t.oY.►;l ki fi = (a3as Xi, 06•0)(k, 6,o.°k`l►.z _11.6)(1,o) „L._ a k- 8— L21 - WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit 8 - Front Load WoodWorkste Sizer 7.1 June 28, 2010 10:52:50 • 1 COMPANY 1 PROJECT • RESULTS by GROUP - NDS 2005 SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF iiiC63 Mnf Trusses 9iE � c . Not designed by request v m� =m . v� (2) 2x0 Lumber n -ply D.Fir-L No.2 1- 2x8 • By Others Not designed by request • ' (2) 2x10 Lumber n -ply D.Fir -L No.2 2- 2x10 (2) 2x6 Lumber n -ply Hem-Fir No.2 2- 2x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 (2) 2X4 Lumber n -ply Hem -Fir No.2 2- 2x4 (3) 2x4, Lumber n -ply Hem -Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 016.0 Typ Wall 2x4 Lumber Stud Hem -Fir Stud 2x4 016.0 SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR . m Mnf Jet ass =- i6 R Not designed by request m . landing Lumber -soft D.Fir-L - No.2 2x6 016.0 4x6 Lumber-soft D.Fir -L No.2 4x6 • ' (2) 2x8 Lumber n -ply D.Fir -L No.2 1- 2x8 1.75x14 LSL LSL 1.55E 2325Fb 1.75x14 By Others Not 'designed by request By Others 2 Not designed by request (2) 2x10 Lumber n -ply D.Fir-L No.2 2- 2x10 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 (2) 2x4 Lumber n -ply Hem -Fir No.2 3- 2x4 (3) 2x4 Lumber n -ply Hem -Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 016.0 Typ Wall 2x4 Lumber Stud Hem -Fir Stud 2x4 016.0 SUGGESTED SECTIONS by GROUP for LEVEL 2 - FLOOR es Mnf Trusses �® - au � Not designed by request deck joists Lumber -soft D.Fir-L No.2 2x8 016.0 Mnf Jot Not designed by request 3.125x14 LSL 1.51. 1.55E 2325Fb 3.5x14 4x0 Lumber -soft D.Fir -L No.2 - 4x8 3.125x10.5 Glulam- Unbalan. West Species 24F -V4 DF 3.125x10.5 5.125x16.5 GL Glulam- Balanced West Species 20F -V7 DF 5.125x16.5 12) 2x10 Lumber n -ply D.Fir-L No.2 2- 2x10 4x12 Lumber-soft D.Fir -L No.2 4x12 3.125x141) 1.51. 1.55E 2325Fb 3.5x14 (2) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 . (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 6x6 Timber-soft Hem -Fir No.2 6x6 • (2) 2x4 Lumber n -ply Hem -Fir No.2 3- 2x4 (3) 2x4 Lumber n -ply Hem -Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 016.0 SUGGESTED SECTIONS by GROUP for LEVEL 1 - FLOOR ea Fnd a Not designed by request CRITICAL MEMBERS and DESIGN CRITERIA • Group Member Criterion Analysis /Design Values ' deck joints �j42 v ..c�6 a Bending a.�=�. 0.41 a ®ass Mnf Jet Mnf Jst Not designed by request landing (46 Bending 0.17 By Others 3 By Others Not designed by request 4x6 b25 Bending 0.87 (2) 2x8 b7 Bending 0.21 1.75x14 LSL b14 Bending 0.57 3.125x14 LSL b21 Shear 0.41 4x8 b20 Bending 0.04 By Others By Others Not designed by request By Others 2 By Others Not designed by request 3.125x10.5 b24 Deflection 0.83 5.125x16.5 GL b26 Bending 0.21 (2) 2x10 b15 Bending 0.93 4x12 b22 Shear 0.16 . 3.125x141) b23 Deflection 0.09 Ftg Ftg Not designed by request (2) 2x6 c2 Axial 0.34 (3) 2x6 *64 Axial 0.59 6x6 c36 Axial 0.77 (2) 2x4 c25 Axial 0.35 (3) 2x4 c44 Axial 0.84 Typ Wall *15 Axial 0.28 . Fnd Fnd Not designed by request Typ Wall 2x4 *40 Axial 0.33 . DESIGNNOTES �... ..e.�s.n. ..e. = ..�a ��=- .a ....=�.�n. 1. Ple se verify that the default deflection limits are sppropriatc� for your application. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result is considered the final design and appears in the Materials List. 3. ROOF LIVE LOAD: treated as az a snow load with corresponding duration factor. Add an empty roof level to bypass this interpretation. . 4. BEARING: the designer is responsible for ensuring that adequate bearing is provided. 5. GLULAM: bxd = actual breadth x actual depth. 6. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 7. Sawn lumber bending members shall be laterally supported according to the provisions of N05 Clause 4.4.1. B. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side- loaded, • • special fastening details may be required. . 9. SCL-BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 10. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. g- 6, 1 . WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Rear Load WoodWorks® Sizer 7.1 June 28, 2010 10:56:39 Conceptb24Dde: Beam View Floor 2: 8' ■ i 1050 _ , ... _ _ . 443' -6° • 1 U4 40 -b ••wU3 4 /. -b • . _. I 0----,;- - ityi t uue •b25 44 4.3.-b- • y23 - • — : 4i. -0.. : : . 4 : 41 4 .: .: :.; --- "; : -;.. .:.- .';- -- —; ... :_.. - - - - • - - -- ' - --- - - - ... • 30 . x .. VL • y.i S0 b • t3y 33 -0 • OZ b tab -- —_.- -: - . ...._ 3V • 00 : . , _ , - .. .. ... ... Ly.�.. 'i - is .: .:;. • 233 - - - - - -- L/ . -0 - L4 -0 !y is LS' -b 23 : :. . 1 22'-0 / / - _ - - 2'1 -0 • /0 ., 20 • 10 . ; ' _ - : — - - 1 . -b (4..._ - .. 10 -b . . /L .. 10 by - : - 00 • 0/ 10 -bb /b 01 - -: - ; - _1 - b 2 6 _ .. o -b.. . 1 _b20 b22 - - - -- b23 _ 4 - 0 b g - . U-0 BBIBBBCCCC C CC CiCCC CC CCCC C CCC CCICCCD.DDD D DDDtDDDDD DD DD D D DD CD'DD DE:E E E E EEEEEEIEEIE E+EEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'9111 :1 :1 11 11 1 1 42(22 :2:2 , X1(221243(33 :3 :3 4A:4 415(55 :5 :5515(5' 51516(66:6 :6-6:61661617(7 :77 • • • • le— C-\2 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load Woodworks® Sizer 7.1 June 28, 2010 10:04:32 Concept b24Dde : Beam View Floor 2 : 8 ' ■ • 1050 . . _ .. .. .. . . .. 4V-6" 'WS 4/ -0' I UL 40-0' 1 O b1 44 b. • 9 43 -b i: ■ ■ V? .. .. . • ... • 41' y0 J b • '. i .: .. ; 3y 0 V4 :: .: - - -' - - :. - V.5 ' ' : af i 30-b VU - - 34 t$ 33 -b b( :: : i ! - - .5.1.-0 250 3U -0 OS - -- L!'-0- 23L LO - b • tSU • - - . L4 b /y t - . - . . L3 -b Its : . : " -- - - - - - - - - ' - - - - - .. _ - - ---- -- - LL -b' • 14 ;; : • . .: : .. 115-0 10'43 by . .. 13 • 00 - _ y -O • b4). , _ -.. b21 . , . . . - :.:.. 25 -b 04 , .. 0 . 0 .. t3 I bU; b2U 2 4 b -b23 s -b • L t7 b • 1 U 4 BB \B.B BC. CC CCCCCKCCC CCCCCCC C CC CC1CC CD DDD D DD DIDDD`DD DD DDD D DD DDDDD DEE E E E EE EFEEEIEEE E+EEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(11;1:1 (1 '11112(2 2: 2:22'2(2 :3 :3 4(4 A:44!464'4242515 5;5:5 6,6:6 . 6......c,..)-• • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN • Unit B - Front Load WoodWorks® Sizer 7.1 June 28, 2010 10:04:34 Cor60ept Mode: Ccc591mn View Floor 2: 8' 1050. _ _ . . . . . .. ... ... .. . . 49' -6 1 U4 425 103 ._ ....:.- .s .. 4!•-b • 10 4 b c4 c5$ :. � 101./ = c57 = = • Cl c2 a 11,, m .:. ...'_ a = . 43'-0 2r : ; 4L.-10 .. 4 -t VO - - - - - - .. - .. .. - - - - --- -- __ --- - -- - - - - : --- ---- -- - - 40 . - b . J4 ,- .- - -- - - .. -- - • 325-0 3 3 ( .:. : : .. - i - • - - - - - _ _; - - ,50 ,50 . . : :■ . _ - 25/ : -- 31.-0 - 255 C48 L•-b.. L25 - b • 233 • 15 CI L -b 1y CI or c49 i L3 to : i . : . - -- --- - LL'-b 1 L I c50 L.1.� io c54 , i : - iy • b b.. / 4 .. c53 _ _ - ` I l • 125• -b .. /3 . •• . : : : . f - - _ .. -. - - -- - , .. -- - r1 : _ rU 11 __ i._7 14 -b' t7`J C7 :C56 - .. - - 13 -0 • b _ -. .'t • s . ; t5 -b • 0I� ; :C40 ; 4 - -.: c36 -- __..._..:. - 4b C39 4 1 4 ? „ , - ; ; ; , , ; , , , ; , , , - - , ; - , i b BB1B.B BC.CC C CCCC iCCC CC CCCC C C CC CC1CC CD DDD D DD DIDDDDD DD DD D DD CD'DD DE E E E EEEEIEEEItEIEEEEEEEE8E:EEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1'1A:1.11(171 (1 (2(.2 2:22 '4:4A4:444'.4(4(5(5 5a :5.5!5(5 6168:6 :6 ?6(6 6(617(7 7.7.7 .7.7(77 -6” • • • 4-8 — 6r\LI\ WoodWorks ®- Sizer SOFTWARE FOR WOOD DESIGN • Unit B - Front Load WoodWorks® Sizer 7.1 June 28, 2010 10:04:29 Concept Mode: Beam View Floor 3: 17' 105 49 1 04 ; .: ;: : `: 40. -b' 1US 4! -b 'IUL lUl _ .. . „_-_ 4b-b 43'-0 • ! 4'1 - yb ., : ii - 4U' b `95 .. .. .. Sy _b.. y4' .. • •: . _ _ . -. - -- . • . • -- - 315 -0 y,,1_, 3 /-b' -1 Sb -b' yU - : 34. -0.. LS`J • .. 33' -b' b/ .. _ 3 . 1 . b .. 155 : . : : ' : .. . Ly -b 64 .. .., b12:,.... ... .. . .. • 7 . .., .__ , . : 7 ; .; ._ _. .. ._. . . - . 20'45 45Z :' .. :r' b8 - - r5-0 b • b25 1 4, _- : ; - t5U L4 -b /y 1 LS b /! 11 -b • f3 :: ' b13 : : .. ; _. • :. .. - : : - -- - _ -- !L - - - b11- •Ib. -b. • fU . a _.:_. _ .. : ... _ ..... .: :: .... .. .... . ..- --- 14_0. by : ... - .. 'i 3 - b . • 00 1U -b bb y -0 b3� - : - - .. 0Z., . .. 1 .. ; . bli I-b .BB1B.B BC CCC C CCCFCCC CC CCCC C C CC CCICCCD.DDD D DD DKbD CD DD DDD D DD CD\DD DE:E E E•EEEEEEEIEEIEEEEEEEEIEEEEZ 0' 2• 4' 6' 8' 10' 12' 14' 16'18' 20' 22'24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 1 :1 :1 ?1 (1 :1!1'.2(2 22:2 4;4 :4.4' .4(4"4(4!5(55:5 :5.5:5(5.5(5!6(6 E:6 :6 7(7 7.7:7 -6" • • • / 61 c • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN • Unit B - Front Load WoodWorks® Sizer 7.1 June 28, 2010 10:04:27 Concept Mode: Column View Floor 3: 17' • 1050 49'-6 IUS • 4/ -0 4UG i" 101 4b b 1 OU c14 : c15.-: ": s.: 4-4 -0 • 9 ors . . - ' : _ 4.1 -b . yJ - - --- - ::1. <- "- -- -- _ .. . . . , .. -- ... .. 4.1. -0. `Jb. : :s:- .. - - - - - - . - - .. _ - - - • 40 -0 a b .... . S y . -b ys .'' 3/ b - . • _ : .. 307-0.. y 1 • 3b -b yU - -. " ". E - - -- - -- - : -- - 34 . x . ti, - 33 -b 0 1 I 1 - . 5.1.0 250 - _ :. '-•. :-t -- -- - - -- -- - - - • 3U-0 00 ; - • [ ' - L5 04 :: 06 . -c25 : .r -. c16 _ 20-0 1 ` L • - - • • . ■ : . , G/•-b • 01 .[ .C61_ . [ - 40.-0. 00 " - - . - .-'- - - "---- -'- - --�. . . . - -- -- - - -- - : _ 1 -- - - — • - - ' - -- --- - -- ---- - L4-0 ra • II LS -b (0 - - - - C17 LL •-b • It) c23 - (1 - - - - - - -- - - _ Lv-b (4 C22 _. - c67 10 0 / 5 .:. ; I - • • 11'-0 • • 12 C24.. C26 . .. . . , 1 b -b J "I : : :: ... - '- 10 . x .. by -: : :- C ': i .: • - 'IS-0. 0 .. _.. . • • 00 10-0 OD - - y -0 • 033 - - - - - - - /-b.. • bL 0 b • 01) ;•. • . `c45 ;=�C44 .: 4. . • 9..0) _.• -_c21- :c24r19:A8 - • ' - . . 5 -0. L'b.. • 613\B,E3 BCCCC CCC CtCCCCC CCCCC. CCC CC1CC CD.DDD D DD D}DDD:CD DD DD D D DD CD1DD DEE E EEEE EtEEEIEEiE EEEEEEEEEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74'76' U1'2'3'4'5'678'9111 :1 (1 :111 2(2 22:2 •4:4:4 - 5:5:5 , 5!5(5:51516(6 6',6:6-6!6(6 • • s-c • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks® Sizer 7.1 June 28, 2010 10:04:23 Concept Mode: Beam View Roof: 25' 1050 ;" IU4 tIU ; :. S • 4l5' b 'IUL - . .. _ - 4l -b • 4b a tuub b15 44.0.. g 9 ' its. ' - 4d -b' 4C a : • 4 ! -b 4V b V4 . _ ; sa" b 30 -0 yJ Jr-0 VL VI I Sb b OtS _ .. S.i -b 23 - - - .. .. _ - JL -b : . 00 , 0* , : b16 . 254 La -u 06 -. -- .- - L b _ __ .:._ - ._ • _.__. .:_: _ - .. .. .. .. .. - L1' b t5L 0I Lb b t5U La -a f y - ... - . L4 -b L6 b 11 .. .[ .. - - b LL fa :b27 Ll a iy e 3 725 b ! f a 1L :.. 1'i - -- - lU 10 -0 10 -0 14 b bb .: .:.__.. al bb . .. I 1 b bJ 10 -0 a 04) ao V aL b �.. bU? . b�.. ■ r. b18 4 -b ._ _._- 3-b U-0 BB1 B.B BCCCCCCC C. CICCCCCCCCCCCCCCCICCCDDDD DDDE .EEEEEEEEEEIEEIEEEEEEEEfEEEEZ V 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62'64' 66' 68' 70'72' 74' 76' 0'1' 2'3'4'5'67'8'91(1'1:1 :1 11102222 222243( 33: 3:3 4243 5( 55 , "5 :5 267(77:7 :7 • • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN • Unit B - Front Load WoodWorks® Sizer 7.1 June 28, 2010 10:04:25 Concept Mode: :Column View Roof: 25' • 1050 . , 4 9' -6" iU4 i : : . . : : 40-0 - :. :. t U3 -b • - 1U1 4 3 U I V ;c27 . -- . - - c2$ -. -. - - - • ®me. _. . 43 b' 4L b "" ,3 -b b yb .. 3y 4 _ r :. .50.-0- • y1 .53 -0 34 -0 oy 33 b 00' - - - - - - C29 - .. - . . 3L - b • 0/ Ei : - ' .. .. .. 3.1.-0. 60 : : : . - U-b • 03 . .. /- uL ... ..:.. . c30 :.,. . - -....- - -- Z c66 c65 f U • : 14b •b4 }b3 - - _ - 1 . -17 .. bG3 • - 0'-0 nu' c34 : : c : • . 4 b ,...1 ■ 3 b • • 4-0 • U b BBfB. BBCCCCCCCCtCCC cc CCCC \CCCDDDD DDDDDDDDCD! DD.DEEEE'EEEE 'EFEEEEEIEEIEEEEEE!EEEEZ 0' 2' 4' 6' 8' 10' 1 14' 16' 18'20' 22'24'26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60'62' 64' 66' 68' 70' 72'74' 76' 0'1'2'3'4'5'6'7'8' 9111'1 :1 :1 221243(33:3:3 :3 "3131414"4A :44'.4(4'4141515 5:5:5.515(5'515!6(66:6:6 • • go_cir-\eit, COMPANY PROJECT WoodWorks® . SOFTWARE FOR WOOD DESIGN June 28, 2010 10:34 bt Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w27 Dead Partial UD 539.7 539.7 0.00 2.50 plf 2 w27 Rf.Live Partial UD 493.7 493.7 0.00 2.50 plf 31c14 Dead Point 1074 2.50 lbs 4 c14 Rf.Live Point 1601 2.50 lbs 5 j43 Dead Full UDL 47.7 plf 6 j43 Live Full UDL 160.0 plf MAXIMUM RE • • • ?4 I �� 1 0' 31 Dead 1048 • 1539 Live 1227 2089 Total 2275 3627 Bearing: Load Comb #2 #2 Length 1.21 1.93 Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2 -Plys Self- weight of 6.59 plf included in loads; Lateral support top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv* = 127 Fv' = 207 fv * /Fv' = 0.62 Bending( +) fb = 581 Fb' = 1138 fb /Fb' = 0.51 Live Defl'n 0.01 = <L/999 0.10 = L/360 0.06 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.09 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 3627, V design* = 2356 lbs Bending( +): LC #2 = D +L, M = 2073 lbs -ft Deflection: LC #2 = D +L EI= 158e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. • 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 8_69 COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:45 b7 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Dead Full UDL 13.0 plf Load2 Live Full UDL 40.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • A Ip' 64 Dead 54 54 Live 120 120 Total 174 174 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 10 Fv' = 180 fv /Fv' = 0.05 Bending( +) fb = 120 Fb' = 1080 fb /Fb' = 0.11 Live Defl'n 0.01 = <L/999 0.20 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.30 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 174, V design = 139 lbs Bending( +): LC #2 = D +L, M = 262 lbs-ft Deflection: LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. COMPANY PROJECT I Woo.dWorks SOFTWARE FOR WOOD DESIGN June 28, 2010 10:33 b8 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c30 Dead Point 59 3.50 lbs 2 c30 Snow Point 75 3.50 lbs 3w47 Dead Partial UD 96.0 96.0 0.00 3.50 plf 4 _ j13 Dead Partial UD 78.0 78.0 0.00 5.50 plf 5_j13 Live Partial UD 240.0 240.0 0.00 5.50 plf 6j14 Dead Partial UD 104.0 104.0 5.50 6.00 plf 7 j14 Live Partial UD 320.0 320.0 5.50 6.00 plf 8 b12 Dead Point 171 5.50 lbs 9 Live Point 469 5.50 lbs • MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • • 61 Dead 531 556 Live 761 1189 Total 1292 1744 Bearing: Load Comb #2 #2 Length 0.69 0.93 Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2 -Plys Self- weight of 6.59 plf included in loads; • Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv* = 67 Fv' = 180 fv * /Fv' = 0.37 Bending( +) fb = 556 Fb' = 990 fb /Fb' = 0.56 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.13 Total Defl'n 0.05 = <L/999 0.30 = L/240 0.16 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 1744, V design* = 1232 lbs Bending( +): LC #2 = D +L, M = 1984 lbs -ft Deflection: LC #2 = D +L EI= 158e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I =impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC • DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. g ( • COMPANY PROJECT di WoodWorks® SOFIYARE FOR woos DESIGN June 28, 2010 10:33 b9 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w51 Dead Partial UD 96.0 96.0 2.00 3.00 plf 2_c32 Dead Point 59 2.00 lbs 3 c32 Rf.Live Point 75 2.00 lbs Load4 Dead Full UDL 13.0 plf Load5 Live Full UDL 40.0 plf . MAXIMUM RE r.rIAwle /14...\ ......11 OCAC11kIr 1 Cur /:..\ . I S O 34 Dead 63 146 Live 85 110 Total 148 256 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 pif included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : . Criterion Analysis Value Design Value Analysis /Design Shear fv = 12 Fv' = 207 fv /Fv' = 0.06 Bending( +) fb = 82 Fb' = 1242 fb /Fb' = 0.07 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 256, V design = 169 lbs Bending( +): LC #2 = D +L, M = 179 lbs -ft Deflection: LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. - Cli a" COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:33 b10 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c33 Dead Point 59 1.00 lbs • 2_c33 Snow Point 75 1.00 lbs 3_w52 Dead Partial UD 96.0 96.0 0.00 1.00 plf Load4 Dead Full UDL 13.0 pif Load5 Live Full UDL 40.0 plf MAXIMUM REPr.TInsle /II..,%.,...a I2G Aorsrr► I CIAir•TUe r • 10' 3 4 Dead 146 63 Live • 82 64 Total 229 127 Bearing: Load Comb #3 #3 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 pif included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 10 Fv' = 207 fv /Fv' = 0.05 Bending( +) fb = 72 Fb' = 1242 fb /Fb' = 0.06 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L+S), V = 229, V design = 148 lbs Bending( +): LC #3 = D +.75(L +S), M = 157 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. g rij COMPANY PROJECT i WoodWorks® SOFTWARE F02 WOOD DESIGN June 28, 2010 10:36 b14 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j33 Dead Partial UD 78.0 78.0 0.00 1.50 plf 2_j33 Live Partial UD 240.0 240.0 0.00 1.50 plf 3_j13 Dead Partial UD 78.0 78.0 3.00 8.50 plf 4_j13 Live Partial UD 240.0 240.0 3.00 8.50 plf 5_j34 Dead Partial UD 78.0 78.0 1.50 3.00 plf 6_j34 Live Partial UD 240.0 240.0 1.50 3.00 plf 7_j46 Dead Partial UD 28.9 28.9 5.00 8.50 plf 8_j46 Live Partial UD 80.0 80.0 5.00 8.50 plf 9 b25 Dead Point 409 5.00 lbs 10 b25 Live Point 1080 5.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : •_:_.- .. * q'.. _ - • 1V 8' -6'1 Dead 553 685 Live 1522 1878 Total 2076 2563 Bearing: Load Comb #2 #2 Length 1.48 1.83 LSL, 1.55E, 2325Fb, 1- 314x14" Self- weight of 7.66 pif included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 126 Fv' = 310 fv /Fv' = 0.41 Bending( +) fb = 1324 Fb' = 2325 fb /Fb' = 0.57 Live Defl'n 0.09 = <L/999 0.28 = L/360 0.31 Total Defl'n 0.14 = L /750 0.42 = L/240 0.32 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 2563, V design = 2064 lbs Bending( +): LC #2 = D +L, M = 6308 lbs -ft Deflection: LC #2 = D +L EI= 620e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. s- (A1,4 COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:48 b15 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j5 Dead Full UDL 335.7 pif 2 j5 Rf.Live Full UDL 493.7 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 6 Dead 1027 1027 Live 1481 1481 Total 2508 2508 Bearing: Load Comb #2 #2 Length 1.34 1.34 . Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2 -Pays Self- weight of 6.59 pif included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 101 Fv' = 207 fv /Fv' = 0.49 Bending( +) • fb = 1055 Fb' = 1138 fb /Fb' = 0.93 Live Defl'n 0.05 = <L/999 0.20 = L/360 0.23 • Total Defl'n 0.09 = L/776 0.30 = L/240 0.31 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00' - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 2508, V design = 1864 lbs Bending( +): LC #2 = D +L, M = 3762 lbs -ft Deflection: LC #2 = D +L EI= 158e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 8_616- COMPANY PROJECT I W oodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:46 b20 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j47 Dead Partial UD 42.5 42.5 0.00 2.50 plf 2 j47 Live Partial UD 62.5 62.5 0.00 2.50 plf MAXIMUM REP -" '° Ht. -%.. »a MCAOUiits 1 MILle . 3 Dead 71 53 Live 91 65 Total 162 118 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports • Lumber -soft, D.Fir -L, No.2, 4x8" Self- weight of 6.03 pif included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 6 Fv' = 180 fv /Fv' = 0.03 Bending( +) fb = 46 Fb' = 1170 fb /Fb' = 0.04 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 162, V design = 99 lbs Bending( +): LC #2 = D +L, M = 118 lbs -ft Deflection: LC #2 = D +L EI= 178e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 69, 1 `o COMPANY PROJECT 11 1 WoodWorks SOFIWAREFORWOODOESIGN June 28, 2010 10:34 b21 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs. psr, or plf ) Load Type Distribution Magnitude Location (ft] Pat- . Start End Start End tern 1 w63 Dead Partial UD 308.0 308.0 6.00 10.00 No 2_w63 Live Partial UD 320.0 320.0 6.00 10.00 No 3 Dead Partial UD 308.0 308.0 2.00 6.00 No 4 w62 Live Partial UD 320.0 320.0 2.00 6.00 No 5w32 Dead Partial UD 369.0 369.0 0.00 2.00 No 6 w32 Snow Partial UD 357.5 357.5 0.00 2.00 No 7 Dead Point 1940 1.50 No 8 c44 Snow Point 2853 1.50 No 9 j20 Dead Partial UD 104.0 104.0 6.50 10.00 No 10 j20 Live Partial UD 320.0 320.0 6.50 10.00 No 1021 Dead Partial UD 104.0 104.0 6.00 6.50 No 12 j21 Live Partial UD 320.0 320.0 6.00 6.50 No 13_j22 Dead Partial UD 104.0 104.0 2.00 2.50 No 14 j22 Live Partial UD 320.0 320.0 2.00 2.50 No 15_j23 Dead Partial UD 104.0 104.0 2.50 6.00 No 16 j23 Live Partial UD 320.0 320.0 2.50 6.00 No 17_j48 Dead Partial UD 71.5 71.5 0.00 1.50 No 18 j48 Live Partial UD 220.0 220.0 0.00 1.50 No 19 b23 Dead Point 658 0.00 No 20 b23 Snow Point 195 0.00 No MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (In) : `'-=-- 'd'i„. -..... ` .,:s . ... �.°'. .- ,' - .. =3a-.' ; mar -.: t ec-- - -� '■ °J's' s� -+ . • +^ s�- 1Y tr., ' ��^ -� fi r.: :...,. +..rea °_" 0' 101 Dead 5581 1311 Live 5266 2508 Total 10847 3819 Bearing: Load Comb 80 83 82 Length 0.00 3.50 1.23 Cb 0.00 1.11 _ 1.00 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self -weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv+ = 139 Fv' = 356 fv /Fv' = 0.39 Bending( +) fb = 717 Fb' = 2325 fb /Fb' = 0.31 Bending( -) fb = 600 Fb' = 2632 fb /Fb' = 0.23 Deflection: Interior Live 0.05 = <L/999 0.27 = L/360 0.17 Total 0.07 = <L/999 0.40 = L/240 0.17 Cantil. Live -0.03 = L/698 0.13 = L /180 0.26 Total -0.03 = L /788 0.20 = L /120 0.15 The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC8 Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 4 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fb'- 2325 1.15 - 1.00 0.984 1.00 - 1.00 1.00 - - 4 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Ervin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC 84 = D +S, V = 7237, V design. = 4536 lbs Bending( +): LC 82 = D +L, M = 6833 lbs -ft Bending( -): LC 84 = D +S, M = 5720 lbs -ft Deflection: LC 02 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C =construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC • DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. i 4. The critical deflection value has been determined using maximum back -span deflection. Cantilever deflections do not govem design. 0 6 ) .---- 61 VP1----- COMPANY PROJECT 1 WoodWorks® • SOFFWARF FOR WOOD DESIGN June 28, 2010 10:35 b22 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w69 Dead Partial UD 369.0 369.0 1.00 2.50 plf 2 Snow Partial UD 357.5 357.5 1.00 2.50 plf 3 Dead Partial UD 71.5 71.5 1.00 2.50 plf 4 Live Partial UD 220.0 220.0 1.00 2.50 plf 5 j47 Dead Full UDL 42.5 plf 6_j47 Live Full UDL 62.5 plf 7_b23 Dead Point 700 1.00 lbs 8 Snow Point 195 1.00 lbs • • MAXIMUM RE' __.__.... -• - -- - _ - -._ . __.,_ - -_ .. _ 1 0 2.-61 Dead 683 807 Live 341 5 Total 1024 1379 Bearing: Load Comb #3 #3 _ Length 0.50* 0.63 *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x12" Self- weight of 9.35 pif included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 30 Fv' = 207 fv /Fv' = 0.14 Bending( +) fb = 159 Fb' = 1138 fb /Fb' = 0.14 Live Defl'n 0.00 = <L/999 0.08 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.13 = L/240 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 3 Fcp' 625 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 1024, V design = 778 lbs Bending( +): LC #3 = D +.75(L +S), M = 978 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 664e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. s, ( \it COMPANY PROJECT 11 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:35 b23 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End . 1_w33 Dead Partial UD 204.0 204..0 0.00 1.50 plf 2_c18 Dead Point 143 1.50 lbs 3_c18 Rf.Live Point 110 1.50 lbs 4 c19 Dead Point 59 4.50 lbs 51c19 Rf.Live Point 85 4.50 lbs 6_w34 Dead Partial UD 108.0 108.0 4.50 6.50 pif 7_c20 Dead Point 59 6.50 lbs 8_c20 Rf.Live Point 85 6.50 lbs 9 c21 Dead Point 143 9.50 lbs 10 c21 Rf.Live Point 110 9.50 lbs 11 _Dead Partial UD 204.0 204.0 9.50 11.00 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : ibis ..w - -.c. .--- - ,„,,, --.._ -. V • 11 Dead. 700 700 Live 195 195 Total 895 895 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 pif included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 20 Fv' = 356 fv /Fv' = 0.05 Bending( +) fb = 213 Fb' = 2674 fb /Fb' = 0.08 Live Defl'n 0.01 = <L/999 0.37 = L/360 0.03 Total Defl'n 0.05 = <L/999 0.55 = L/240 0.09 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 895, V design = 639 lbs Bending( +): LC #2 = D +L, M = 2028 lbs -ft Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. g -Ciii,c‘t COMPANY PROJECT 1 WoodWorks® SOFIWAREFOR WOOD DEAGN June 28, 2010 10:47 b24 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 2_j42 Live Partial UD 160.0 160.0 0.00 4.50 plf 3_j43 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4_j43 Live Partial UD 160.0 160.0 4.50 7.50 plf 5_j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 6_j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 7_j45 Dead Partial UD 47.7 47.7 13.00 16.00 plf 8 j45 _Live Partial UD 160.0 160.0 13.00 16.00 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 1 0' 16 Dead 442 442 Live 1280 1280 Total 1722 1722 Bearing: Load Comb #2 #2 Length 0.85 0.85 Glulam- Unbal., West Species, 24F -V4 DF, 3- 118x10 -1/2" Self- weight of 7.55 plf included in Toads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 70 Fv' = 265 fv /Fv' = 0.26 Bending(+) fb = 1440 Fb' = 2400 fb /Fb' = 0.60 Live Defl'n 0.43 = L/441 0.53 = L/360 0.82 Total Defl'n 0.66 = L/290 0.80 = L/240 0.83 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 1722, V design = 1534 lbs Bending( +): LC #2 = D +L, M = 6890 lbs -ft Deflection: LC #2 = D +L EI= 543e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 8- 6 '' 4 COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR W000 DESIGN June 28, 2010 10:33 b25 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End Loads Dead Full UDL 200.0 plf Load2 Live Full UDL 540.0 _ plf MAXIMUM REAC:TI(1NS 1Ihc1 and RFARING I FN(;THS /in1 1 0' 4 Dead 409 409 Live 1080 1080 Total 1489 1489 Bearing: Load Comb #2 #2 Length 0.68 0.68 Lumber -soft, D.Fir -L, No.2, 4x6" Self- weight of 4.57 plf included in Toads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 89 Fv' = 180 fv /Fv' = 0.50 Bending( +) fb = 1013 Fb' = 1170 fb /Fb' = 0.87 Live Defl'n 0.04 = <L/999 0.13 = L/360 0.30 Total Defl'n 0.06 = L/764 0.20 = L/240 0.31 ADDITIONAL DATA: FACTORS: F/E CD CM. Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - • - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 1489, V design = 1148 lbs Bending( +): LC #2 = D +L, M = 1489 lbs -ft Deflection: LC #2 = D +L EI= 78e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. • 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. , g COMPANY PROJECT III WoodWorks® SOFIWAREFOR WOOD DESIGN June 28, 2010 10:57 b25 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 2 Rf.Live Partial UD 493.7 493.7 13.00 14.50 plf 3 Dead . Partial UD 535.5 535.5 0.00 4.50 plf 4 Rf.Live Partial UD 487.5 487.5 0.00 4.50 plf 5 Dead Point 1074 7.00 lbs 6 Rf.Live Point 1601 7.00 lbs 7 Dead Point 1074 13.00 lbs 8 Rf.Live Point 1601 13.00 lbs 9 Dead Partial UD 539.7 539.7 14.50 16.00 plf 10 w73 Rf.Live Partial UD 493.7 493.7 14.50 16.00 plf 11 Dead Partial UD 443.7 443.7 5.50 7.00 plf 12 Rf.Live Partial UD 493.7 493.7 5.50 7.00 plf 13 Dead Partial UD 539.7 539.7 4.50 5.50 plf 14 w75 Rf.Live _ Partial UD 493.7 493.7 4.50 5.50 plf 15_j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 16 j42 Live Partial UD 160.0 160.0 0.00 4.50 plf 17 Dead Partial UD 47.7 47.7 4.50 5.50 plf 18 Live Partial UD 160.0 160.0 4.50 5.50 plf 19 Dead Partial UD 47.7 47.7 7.50 13.00 plf 20_j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 21 j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 22 145 Live Partial UD 160.0 160.0 5.50 7.50 plf 23_j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 24 j46 Live Partial UD 160.0 160.0 13.00 14.50 plf 25 j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 26 Live Partial UD 160.0 160.0 _ 14.50 16.00 plf • MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • I a 161 a Dead 4328 4101 Live 5296 5376 Total 9624 9477 Bearing: Load Comb #2 02 Length 2.89 2.84 Gluiam -Bat., West Species, 24F -V8 DF, 5- 118x15" Self- weight of 17.7 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 305 fv /Fv' = 0.52 Bending( +) fb = 2301 Fb' = 2760 fb /Fb' = 0.83 Live Defl'n 0.36 = L /528 0.53 = L/360 0.68 Total Defl'n 0.77 = L/249 0.80 = L/240 0.96 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00. 2 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC 02 = D +L, V = 9624, V design = 8063 lbs Bending( +): LC #2 = D +L, M = 36854 lbs -ft Deflection: LC 02 = D +L EI= 2594e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (A11 LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Gluiam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Gluiam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). (eAg....„e;c, COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:36 b26 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 2_w37 Snow Partial UD 487.5 487.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4 w38 Snow Partial UD 487.5 487.5 11.00 14.00 plf 5_w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf 6 w39 Snow Partial UD 487.5 487.5 14.00 15.50 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 15-6 Dead 583 2397 Live 393 2044 Total 976 4441 Bearing: Load Comb #2 #2 Length 0.50* 1.33 *Min. bearing length for beams is 1/2" for exterior supports • Glulam -Bal., West Species, 20F -V7 DF, 5- 1/8x16 -1/2" Self- weight of 19.47 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 54 Fv' = 305 fv /Fv' = 0.18 Bending( +) fb = 488 Fb' = 2297 fb /Fb' = 0.21 Live Defl'n 0.05 = <L/999 0.52 = L/360 0.09 Total Defl'n 0.14 = <L/999 0.77 = L/240 0.18 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2000 1.15 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - 2 Shear : LC #2 = D +S, V = 4441, V design = 3070 lbs Bending( +): LC #2 = D +S, M = 9454 lbs -ft Deflection: LC #2 = D +S EI= 3070e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). • COMPANY PROJECT 1 1 WoodWorks SOFTWARE FOR WOOD DESIGN June 28, 2010 10:50 c2 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End l bl Dead Axial 1539 (Eccentricity = 0.00 in) 2 Rf.Live Axial 2089 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): • 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 2 -Plys Self- weight of 3.41 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 0.00= 0.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 221 Fc' = 980 fc /Fc' = 0.23 Axial Bearing fc = 221 Fc* = 1644 fc /Fc* = 0.13 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.596 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 3655 lbs Kf =1.00 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. 610‘, COMPANY PROJECT ill WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:52 c25 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b12 Dead Axial 514 (Eccentricity = 0.00 in) 2 Live Axial 1408 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 9' Lumber n -ply, Hem -Fir, No.2, 2x4 ", 2 -Plys Self- weight of 2.17 plf included in Toads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 0.00= 0.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 185 Fc' = 380 fc /Fc' = 0.49 Axial Bearing fc = 185 Fc* = 1495 fc /Fc* = 0.12 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.254 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 1942 lbs Kf = 1.00 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. B, COMPANY PROJECT . II Wo odWorks SOFTWARE FOR WOOD DESIGN June 28, 2010 10:51 c36 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b21 Dead Axial 5634 (Eccentricity = 0.00 in) • 2 Rf.Live Axial 7021 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 'xx'a:v,ir'� z7 ° GA" aXr*- M , "� ^" 'ss L 2 'gy ..Y•T' L "�5 -y., i , • • 0' Timber -soft, Hem -Fir, No.2, 6x6" Self- weight of 6.25 pif included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 420 Fc' = 548 fc /Fc' = 0.77 Axial Bearing fc = 420 Fc* = 661 fc /Fc* = 0.64 • ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.15 1.00 1.00 0.829 1.000 - - 1.00 1.00 2 Fc* 575 1.15 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 12705 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:52 c44 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1_c35 Dead Axial 1940 (Eccentricity = 0.00 in) 2 c35 Rf.Live Axial 2853 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 1 0' 9' Lumber n -ply, Hem -Fir, No.2, 2x4 ", 3 -Plys Self- weight of 3.25 plf•included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 306 Fc' = 363 fc /Fc' = 0.84 Axial Bearing fc = 306 Fc* = 1719 fc /Fc* = 0.18 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.211 1.150 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 4823 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. jek5._ COMPANY PROJECT 1 WoodWorks® SOFJWARE FOR WOOD DESIGN June 28, 2010 10:51 c64 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c45 Dead Axial 1940 (Eccentricity = 0.00 in) 2 Rf.Live Axial 2853 (Eccentricity = 0.00 in) 3_b22 Dead Axial 807 (Eccentricity = 0.00 in) 4 Rf.Live Axial 763 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 3 -Plys Self- weight of 5.11 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 259 Fc' = 439 fc /Fc' = 0.59 Axial Bearing fc = 259 Fc* = 1644 fc /Fc* = 0.16 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.267 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 6404 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. & ' 11 ill p 1 HP HP Houf Peterson (\, To 0 FROM fl COMMUNICATION RECORD Righellis Inc. MEMO TO FILE 0 EtIGINtii ' LAND ARCiiiTECTS•SURVeVOKS PHONE NO.: PHONE CALL: E MEETING: 11 • X 11 CO PI SI 75 2 % cp I ....... ...._ ....... („_, ; (--) rt, 3 9) r E .. cr, g . F,..... ..) 4 ......, ' V E ; 5's • ,........ v .5) ....-- 1- 0 li 0 g) (.>) m c... A , r 92 - 5 T i....; (...... g g 01 . 0 A -... .... z 0 (Th #4 ...... al. z 6 ...0 0 . , 0 -n COMPANY PROJECT fl WoodWorks® SOFRWAREFOR WOOD DESIGN June 28, 2010 10:19 b25 LC1 Design Check Calculation Sheet Sizer7.1 LOADS (lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf • 2 Snow Partial UD 493.7 493.7 13.00 14.50 plf 3 Dead Partial UD 535.5 535.5 0.00 4.50 plf 4 w28 Snow Partial UD 487.5 487.5 0.00 4.50 plf 5 c14 Dead Point 1074 7.00 lbs 6 Snow Point 1601 7.00 lbs 7 c15 Dead Point 1074 13.00 lbs 8 c15 Snow Point 1601 13.00 lbs • 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 10 w73 Snow Partial UD 493.7 493.7 14.50 16.00 plf 11 Dead Partial UD 443.7 443.7 5.50 7.00 plf 12 Snow Partial UD 493.7 493.7 5.50 7.00 plf 13 w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 14 w75 Snow Partial UD 493.7 493.7 4.50 5.50 plf 15 Dead Partial UD 47.7 47.7 0.00 4.50 plf 16 Live ' Partial UD 160.0 160.0 0.00 4.50 plf 17 Dead Partial UD 47.7 47.7 4.50 5.50 plf 18 Live Partial UD 160.0 160.0 4.50 5.50 plf 19 j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 20_j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 21_j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 22_j Live Partial UD 160.0 160.0 5.50 7.50 plf 23 j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 24_j46 Live Partial UD 160.0 160.0 13.00 14.50 plf 25J47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 26_j47 Live Partial UD 160.0 160.0 14.50 16.00 plf 203A Wind Point 7960 0.00 lbs 203A.1 Wind Point -7960 7.00 lbs 2038.1 Wind Point 7960 13.00 lbs . 2038.2 Wind Point -7960 16.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : al Ir 161 Dead 4328 4101 Live 7703 4096 Uplift 2458 Total 12031 8197 Bearing: Load Comb #4 #6 Length 3.61 2.46 Glulam -Bal., West Species, 24F -V8 DF, 5- 1/8x15" Self- weight of 17.7 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 136 Fv' = 305 fv /Fv' = 0.45 Bending( +) fb = 1986 Fb' = 2760 fb /Fb' = 0.72 Live Defl'n 0.27 = L/704 0.53 = L/360 0.51 Total Defl'n 0.68 = L/283 0.80 = L/240 0.85 . ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 6 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 6 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 3 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 3 Shear : LC #6 = D +S, V = 8344, V design = 6983 lbs Bending( +): LC #6 = D +S, M = 31814 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 2594e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (A11 LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. • 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 6 - 6i u . COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:24 b25 LC1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 3 w28. Dead Partial UD 535.5 535.5 0.00 4.50 plf 5_c14 Dead Point 1074 7.00 lbs 7 c15 Dead Point 1074 13.00 lbs 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 11 w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 13 w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 15_j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 17_j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 19_j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 21_j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 23_j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 25_j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf • .203A Wind Point 7960 0.00 lbs 203A.1 Wind Point -7960 7.00 lbs 203B.1 Wind Point 7960 13.00 lbs 2038.2 Wind Point -7960 16.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • loo' 161 Dead 4328 .4101 Live 3300 Uplift 2458 Total 7572 4101 Bearing: Load Comb #2 #1 Length 2.27 1.23 Glulam -Bal., West Species, 24F -V8 DF, 5- 118x15" Self- weight of 17.7 pif included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 70 Fv' = 238 fv /Fv' = 0.29 Bending( +) fb = 978 Fb' = 2160 fb /Fb' = 0.45 Live Defl'n -0.30 = L/632 0.53 = L/360 0.57 Total Defl'n -0.03 = <L/999 0.80 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# • Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - 1.00 - - 2 Shear : LC #1 = D only, V = 4328, V design = 3577 lbs Bending( +): LC #1 = D only, M = 15667 lbs -ft Deflection: LC #2 = .6D +W EI= 2594e06 lb -in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I =impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). • COMPANY PROJECT i WoodWork SOFTWARE FOR WOOD DESIGN June 28, 201010:20 b25 LC2 • Design Check Calculation Sheet Sizer 7.1 LOADS (lbs, psf, or p1f ) Load Type Distribution Magnitude Location (ft) Units Start End Start End '1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 2 w72 Snow Partial UD 493.7 493.7 13.00 14.50 plf 3 Dead Partial UD 535.5 535.5 0.00 4.50 plf 4_w28 Snow Partial UD 487.5 487.5 0.00 4.50 plf 5 c14 Dead Point 1074 7.00 lbs 6 Snow Point 1601 7.00 lbs 7 c15 Dead Point 1074 13.00 lbs 8 Snow Point 1601 13.00 lbs 9 Dead Partial UD 539.7 539.7 14.50 16.00 plf 10 w73 Snow Partial UD 493.7 493.7 14.50 16.00 plf w 1174 Dead Partial UD 443.7 443.7 5.50 7.00 plf 12 Snow Partial UD 493.7 493.7 5.50 7.00 plf 13 Dead Partial UD 539.7 539.7 4.50 5.50 plf 14 w75 Snow Partial UD 493.7 493:7 4.50 5.50 plf 15_j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf • 16 j42 Live Partial UD 160.0 160.0 0.00 4.50 plf 17_j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 18_j43 Live Partial UD 160.0 160.0 4.50 5.50 plf 19_j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 20 j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 21 j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 22_j45 Live Partial UD 160.0 160.0 5.50 7.50 plf 23 j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 24_j46 Live Partial UD 160.0 160.0 13.00 14.50 plf 25_j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 26 j47 Live Partial UD 160.0 160.0 14.50 16.00 plf 203A Wind Point -7960 0.00 lbs ' 203A.1 Wind Point 7960 7.00 lbs 2038.1 Wind Point -7960 13.00 lbs 203B.2 Wind Point 7960 16.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : • • I D' 161 • Dead 4328 4101 Live 4016 7763 Uplift 2321 Total 8344 11864 Bearing: Load Comb #6 # Length _ 2.50 _ 3.56 Glulam-Bal., West Species, 24F -V8 DF, 5- 1/8x15" Self- weight of 17.7 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 136 Fv' = 305 fv /Fv' = 0.45 Bending( +) fb = 2949 Fb' = 3840 fb /Fb' = 0.77 Live Defl'n 0.42 = L/454 0.53 = L/360 0.79 Total Defl'n 0.69 = L/277 0.80 = L/240 0.87 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 6 Fb'+ 2400 1.60 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #6 = D +S, V = 8344, V design = 6983 lbs Bending( +): LC #4 = D +.75(L +S +W), M = 47228 lbs -ft Deflection: LC 04 = D +.75(L +S +W) EI= 2594e06 lb -in2 • Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC . DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). • • 6 6,01 31.4._ COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:23 b25 LC2 NO LL Design Check Calculation Sheet Sizer7.1 LOADS ( Ibs, psf, or pif) : Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 3 w 28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 5 - c14 Dead Point 1074 7.00 lbs 7 c15 Dead Point 1074 13.00 lbs 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 11 w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 13 w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 15 j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 17_j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 19_j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 21_j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 23_j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 25_j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 203A Wind Point -7960 0.00 lbs ' 203A.1 Wind Point 7960 7.00 lbs 203B.1 Wind Point -7960 13.00 lbs 203B.2 Wind Point 7960 16.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : [ . 10' 161 Dead 4328 • 4101 Live 3391 Uplift 2321 Total 4328 7435 Bearing: Load Comb #1 #2 Length _ 1.30 2.23 Glulam -Bal., West Species, 24F -V8 DF, 5- 118x15" Self- weight of 17.7 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 70 Fv' = 238 fv /Fv' = 0.29 Bending( +) fb = 1905 Fb' = 3840 fb /Fb' = 0.50 Live Defl'n 0.10 = <L/999 0.53 = L/360 0.18 Total Defl'n 0.37 = L /525 0.80 = L/240 0.46 ADDITIONAL DATA: FACTORS: FIE CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 1.60 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - • E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #1 = D only, V = 4328, V design = 3577 lbs Bending( +): LC #2 = .6D +W, M = 30517 lbs -ft Deflection: LC #2 = .6D +W EI= 2594e06 lb -in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC • DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). S..---. 64 ; S COMPANY PROJECT i fl WoodWorks® SOFIWAREFOR WOOD DESIGN June 28, 2010 10:25 b26 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w37 Dead . Partial UD 535.5 535.5 10.50 11.00 plf 2_w37 Snow Partial UD 487.5 487.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4 Snow Partial UD 487.5 487.5 11.00 14.00 plf 5_w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf 6 w39 Snow Partial UD 487.5 487.5 14.00 15.50 plf W1.1 Wind Point 13500 10.50 lbs W1.2 Wind Point - 13499 15.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 1 0' 15' -61 Dead 583 2397 Live 4182 8392 Total 4704 10789 Bearing: Load Comb #4 #3 Length 1.41 3.24 Glulam -Bal., West Species, 20F -V7 DF, 5- 118x16 -112" Self- weight of 19.47 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : • Criterion Analysis Value Design Value Analysis /Design Shear fv = 181 Fv' = 424 fv /Fv' = 0.43 Bending( +) fb = 2526 Fb' = 3195 fb /Fb' = 0.79 Live Defl'n 0.47 = L/395 0.52 = L/360 0.91 Total Defl'n 0.56 = L/331 0.77 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 2000 1.60 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #4 = .6D +W, V = 10643, V design = 10194 lbs Bending( +): LC #4 = .6D +W, M = 48956 lbs -ft Deflection: LC #4 = .6D +W EI= 3070e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:27 b26 LC1 no II Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 5 Dead Partial UD 535.5 535.5 14.00 15.50 plf W1.1 Wind Point 13500 10.50 lbs W1.2 Wind Point -13499 15.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : A 15' -64 Dead 583 2397 Live 4182 8247 Total 4704 10583 Bearing: Load Comb #2 #2 Length 1.41 3.18 Glulam -Bal., West Species, 20F -V7 DF, 5- 1/8x16 -1/2" Self - weight of 19.47 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 181 Fv' = 424 fv /Fv' = 0.43 Bending( +) fb = 2526 Fb' = 3195 fb /Fb' = 0.79 Live Defl'n 0.47 = L/395 0.52 = L/360 0.91 Total Defl'n 0.56 = L/331 0.77 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2000 1.60 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = .6D +W, V = 10643, V design = 10194 lbs Bending( +): LC' #2 = .6D +W, M = 48956 lbs -ft Deflection: LC #2 = .6D +W EI= 3070e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). COMPANY PROJECT 1 WoodWorks® SOFTYARFfOR WOOD DESIGN June 28, 2010 10:26 b26 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 Dead Partial UD 535.5 535.5 10.50 11.00 plf 2 w37 Snow Partial UD 487.5 487.5 10.50 11.00 plf 3 w 38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4 Snow Partial UD 487.5 487.5 11.00 14.00 plf 5 - w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf 6 w 39 Snow Partial UD 487.5 487.5 14.00 15.50 plf W1.1 Wind Point -13499 10.50 lbs W1.2 Wind Point 13500 15.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 15 Dead 583 2397 Live 393 2044 Uplift 3945 7647 Total 976 4441 Bearing: Load Comb #2 #2 Length 0.50* 1.33 *Min. bearing length for beams is 1/2" for exterior supports Glulam -Bal., West Species, 20F -V7 DF, 5- 1/8x16 -1/2" Self- weight of 19.47 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 136 Fv' = 424 fv /Fv' = 0.32 Bending( +) fb = 488 Fb' = 2297 fb /Fb' = 0.21 Bending( -) fb = 2193 Fb' = 2940 fb /Fb' = 0.75 Live Defl'n. -0.51 = L/362 0.52 = L/360 0.99 Total Defl'n -0.42 = L/441 0.77 = L/240 0.54 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 2000 1.15 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fb'- 2000 1.60 1.00 1.00 0.919 1.000 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #4 = .6D +W, V = 7647, V design = 7647 lbs Bending( +): LC #2 = D +S, M = 9454 lbs -ft Bending( -): LC #4 = .6D +W, M = 42496 lbs -ft Deflection: LC #4 = .6D +W EI= 3070e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NOS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). COMPANY PROJECT 111 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 201010:30 b26 LC2 no II • Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 5_w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf W1.1 Wind Point -13499 10.50 lbs W1.2 Wind Point 13500 15.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : A ' 15'-6 Dead 583 2397 Live Uplift 3945 7647 Total 583 2397 Bearing: Load Comb #1 #1 • Length 0.50* 0.72 'Min. bearing length for beams is 1/2" for exterior supports Glulam-Bal., West Species, 20F -V7 DF, 5- 1/8x16 -1/2" Self- weight of 19.47 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 136 Fv' = 424 fv /Fv' = 0.32 Bending( +) fb = 267 Fb' = 1797 fb /Fb' = 0.15 Bending( -) fb = 2193 Fb' = 2940 fb /Fb' = 0.75 Live Defl'n -0.51 = L/362 0.52 = L/360 0.99 Total Defl'n -0.42 = L/441 0.77 = L/240 0.54 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2000 0.90 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 1 Fb'- 2000 1.60 1.00 1.00 0.919 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = .6D +w, V = 7647, V design = 7647 lbs Bending( +): LC #1 = D only, M = 5167 lbs -ft Bending( -): LC #2 = .6D +W, M = 42496 lbs -ft Deflection: LC #2 = .6D +W EI= 3070e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 8-622)9-- Harper Project: Hout Peterson Client: Job # Righellis Inc. ENGINEERS • PLANNERS Designer: Date: Pg. # LANDSCAPE ARCNfrECrS•SURVEYORS Qecx- best ciy\ W dl := 10• lb 8•ft•20•ft W = 1600-lb ft Seismic Forces SiteClass =D Design Catagory =D W := W 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S 1 -= 0.339 Max:EQ, 5% damped, spectral responce acceleration of 1 sec. Ss := '0,942 Max EQ, 5% damped, spectral responce acceleration at short period z: 9 Height of Component h := .32 Mean Height Of Roof Fa :_ '1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F 1.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S ins := F S Smi := F S • 2•S S ds := Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements &Body Of Connections a := 1:0 R . : = 2 . 5 (Table 13.5 -1, ASCE T-05) .4a p• S ds• I p z F P • R •(1 + 2•hl•Wp EQU. 13.3 -1 JJ Fpmax := 1.6•S EQU. 13.3 -2 F pmin • EQU. 13.3 -3 F := if(F > F pmax , Fpmax, if (F < F pmim Fpmim F F = 338.5171 -lb Miniumum Vertical Force 0.2 = 225.6781•lb ‘ (<12N9L ter• Harper Project: itkt D Houf Peterson Client: Job # Righellis Inc. ENGINEERS .• PLANNERS Designer: Date: Pg. # LANDSCAPE ARCRIrECrS•SuRVEYORS Wdl 10- lb •8•ft•20•ft W = 1600-lb ft Seismic Forces Site Class =D Design Catagory =D Wp Wal 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) • Si = 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S 0.942 Max EQ, 5% damped, spectral responce acceleration at short period := .9 Height of Component h : =. 32 Mean Height Of Roof F := 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F := 1.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S : F S : = F - S 2 -S S : = Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a := 1.0 Rp := 2.5 (Table 13.5 -1, ASCE 7 -05) .4a p• S ds' l p / zl F :_ R •11+ 2 h l•W EQU. 13.3 -1 p ` Fpmax 1.6•S EQU. 13.3 -2 • F pmin := .3•S EQU. 13.3 -3 F := if(F > F pmax , Fpmax, if (Fp < F pmin , F pmin , Fp)) F = 338.5171 -lb Miniumum Vertical Force 0.2- S ds' W dl = 225.6781-lb g - 61 g9 HP 1141 p ci. HP Houf Peterson , COMMUNFICATION RECORD • Righellis Inc. To n FROM 0 MEMO TO FILE 0 ,1.46,1ULON • r,..“:(:1.-1, LA:,1.1,•E ir111,..7,.•.',11 . .. ....... .. ...... ..... •••• • • • PHONE No PHONE CALL: 0 MEETING: 0 XI - 0 CO m U. 75 2 m . 9. ,.. 7:1 F.,...,, vs . .., 03 l II ,--. c)...) T o) ci) — s ..;..0 (A * - 0 f.A ...-) ft 3 6-: , ,... it- y 11 40" . . - ..... / 1 .. . .. —I a) ...C) ....-. . . , r— .....0 II C) C.) -N. N.. . I 0 1 -10 0 4. . z r P \ V il rc (.... Q.— 0 (19 ^I . .... 4 ..+0 0 0 BY : ♦t. Ah . • C�x\ DATE: IA9 40 0 JOB NO.:, CeN V 'PROJECT: RE: '` `11 0 H w o F NR IL • CPt-P l-'- / �lbd C IN L ❑ • W a ( ►.333)(iaa /rya; 1 I a.(36 #Inv; . U Z • s �. W = -" , u a e e . 3 W • . ' =C16.a, 6b sti na;1x( 12. IN,1. * (z oarcL boar6) U r 110 % -F Z YAsr5 0 O 1/ U ' ► S2ac+ be.k n `fl.o \S ='`' I 6o,c: , P Z Cape c: j = (0 1 pi... • W ❑ o . F O a l J /A C r u Q• \= `i .ci 5 pl.,.� • 1 • I I --_ I e e o .qspL i 1i pi - US -e__ (1) S \ ri I) n) '3 .' ! 4 - X 4 5 ' 12_ i Q Z ' 1 �, a �.,., • `i g .!.745) ; =- 4I (Z )' Z 2 -' I -.) -- 6 40,S C • =4 _ t f C CIreAv, b0. c k _ 3o # ('h = a31 *tIr* • S\ pS(PC1 305 44- x 4 'l z" E 12" O(. . — (2(220 i*: 44o i#- -- . vte • 48- 614-1 - h, • , 'Direq 1;4 • 0 o cr) = c7) 6 St, c) 0 ),c) 1702. ool-le aKitee ,ispe - * 92 ee: -7 Ni4 00Q? o= cx)09 ‹ 002 (tioV) #00e x 0 :D•c;U cikicil 2 0 z o z • „5-et 1(h ■.1 duA - • 44ocihe N144, 00)19 (7) z 0 .007119 m 0 o )4fooe 0 g . 0" CYYZ 0 T.. -3. Qt60-1 0 2" al 0 0 7 L -)dkjtj-53-4-6.720-ci( s3e1 :103 road ON uor 0 I ) Q L 3 v a • SI\ 41.11C1 :AB - I Harper •::: ' '• HoufPeterson COMMUNICATION RECORD • Righellis Inc. To ❑ FROM O MEMO TO FILE ENGINCEP : • PLAII!IERS LANCL: {PE ARCt11TECT,i•SVRVEY„Ii, "- " "-- '--' •- --' PHONE NO.: PHONE CALL: O MEETING: 0 A3 - 0 W --ti C 70 H Q 9 in , n O (,1 0 �t l J ri L s' o0 0, § - K. C8 di ....i 3 i 6 V. it i b „) n -c= -I T CI I 0 m • z 0 0 . narper COMMUNICATION RECORD Houf Peterson Righellis Inc. To 0 FROM 0 MEMO TO FILE E E • PLAr2.1ER., l A . .DS,IPE AR u'HITECTS • SU PHONE NO.: PHONE CALL: 0 MEETING: 0 M 13 CO r. XI 2 wo . .• o r.I .. S M 13 --1 mintio Li 1 i T E N ,--0 i .... C.....0 --/P- r ; r i --.4 • 7° 0 CP 0 C. c1 0 r i , • -.le i.:7,"4 g` 1) z 0 0 e CO a S ' 0 1!1 • ( COMPANY PROJECT 1 WoodWorks® • SOFTWARE FOR WOOD DESIGN June 8, 2009 16:27 Hand Ra112 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End ,LIVE Live Full UDL 50.0 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : ..•.,, .,- . . a N'.^ .: - ;-. ?•-, ir-7.j -r • u: o ' f hz k ' c :. f1.a -2A • . . ', a m,-±: ;�z :;. -., > L .. - , - -.n . - u:::: x . � tit l '� [ c7 f e {f 1, 11Y -1 ' '{• 1 i- - Y f � � 7 .2,-':.:,...,:;-,,,,,-;;;;,,,t F 10' 54 Dead Live 125 125 Total 129 129 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 'Min. bearing length for beams is 1/2" for exterior supports Lumber -soft; Hem -Fir, No.2, 2x6" Self- weight of 1.7 pif Included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv /Fv' = 0.13 Bending( +) fb = 256 Fb' = 1048 fb /Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.11 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1:00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.4'7 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 129, V design = 106 lbs Bending( +): LC #2 = L, M = 162 lbs -ft Deflection: LC #2 = L EI = 27e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction Lc= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. c c C COMPANY PROJECT h, WOO WO r S ' SOFIWARE FOR WOOD DESIGN June 8, 2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Point 2.50 200 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : - t=;:fr-q-: ? :F , :' , .-', , •7;f:',.: .7- - -.- .. . ,4:„.r „,,r; .., n7, ;:: g,?..1. .:44Ci: ' .:01 , ....f.;.:- . :c.;=:- ...-:. .r4.! - '1 - ^, .:, , -- ' P';' - ' ,., ' r: 3: : . 7 " `, ' ,:' i" .• ", r, . 1,. .... ' ' : 7: • , .. - -.:-.. .,,- ,21.-te-: 12 ,, :6 %,:' ,-;-- -- , .- . :-::'• --'--- '':,--:,;':, ','-: ,-" 7 ,. v;-,,,.-).,-:,,, -!7:;, ;64-,,- -,-,, : --;.--',..1-- ::::::;.'"': ;11; 7; - ' m 1 : F:.-N: 1 - **'; :-.''' *:: - 2 .;': - :,;:'' **, ;'''', IC '..-‘-• '. ,- :'.: - :r -. :.: ' :":- ---.-- --.-- ' 's 1 0' 5 Dead Live 100 100 Total 104 104 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 "Min. bearing length for beams is 1/2" for exterior supports Lumber-soft, Hem-Fir, No.2, 2x6" Self-weight of 1.7 plf induded in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 405 Fb' = 1048 fb/Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 ' - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending(+): LC #2 = L, M = 255 lbs-ft Deflection: LC #2 = L El = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks® Sizer 7.1 June 22,1010 14:13:51 Concept Mode: Reactions at Base of Structure View Roof: 25' • • 1050 1280 L .. .. -. . .. .1280 L - . . - - -. . . ... ..... . . 49' -6° 1U4 Y-- -_ 442D ! ,. : :4420 4t5'b tUL 4b - 7U1 - . - ' . • NV • - 44-45. . y9 43 -b" . . YO 12272089 L -1601 L! 4'1 ao' 10481539 0 ::1074 D 4v b' y3- - Jr-b; yI i ; ;- 3b'-b • ti& - SS -b 64 59 D - . -a / 231- 1.- "------r -- , - : . Lb -0 rs 1 :: 1408 L 1232 L "F L .�.. 6U 556 0 : L4 -b 5 140 .. /a _' =1080 U .. _ _: ' 640 L - Lc -b i n - .409 D . 792 L Lu - a rb :. ..- - . aan '99 DD . . /3 I4 - ? . :: - 1 L; , . - I L i • 99 D _., : /I 5530,... ian /U 980 1 -b by 225 - 75 L .. . '1.5 ' b .. • 06 : o 73 74 n .. _. I I .�. I - bb .2192 L ; . 1 u -b b0 1311 D '. y -b b4 - t5 -b os r b.. . .. • : :.• . ,, n G '2 :. �. b • bu? L:_ 55 L. .. „ _ . . . 4 -b 109 58 21 L • - ..- -- - .43 450 :. F5581 D i - 1 -b 2 1 D u-b BBIBBBCCCC CCC} CCCCCCCCCCCCCCCiCCCD. DDDDDDDkDDDBDDDDDDDDDCD! DDDE. EE- EEEE }EEEIEEEE+EEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'678' 111 1 ;1: 1'1'111T1 11 212 212; 222(221213(33 :33 41474/415155 :5 :5 :53 5151 6166: 6 :6'6'.6(6S1617(77:7.7 3(.1L,L �'3■ D • FOO T" ‘1.) C- L ioQr -F Q.oNi r Lo • • g ....._ , p \ WoodWorks® Sizer SOFTWARE FOR WOOD DESIG • Unit B - Rear Load WoodWorks® Sizer 7.1 June 22, 2010 14:14:21 . Concept Mode: Reactions at Base of Structure View Floor 3: 17' • • . 1050 - - - - - - 1280 L _ _ . .1280 L - - - - - -- -. - -: - -- • - -r: -. -- -- -- -- -- . . - - - - - -- 49 - •I u4 442D_ _ : _ . : :442D Iu3 413 b • 4 J -tl 'I UL / _ 40 -0 40 44'0 9- 43 b aJ. i52961_, 376 L; . 4' b at- 4328 D 4101 D 4u b • .. . 3i5-o • : : y3. ' .._..:. 35 b' yV 34 -0 • ri■ 33-0 • • 3L -t) 0r . . - J1'b 00 - I. ` - -- - - - - - - - 3U -b 00 75: _ - ... . • - � Ly. -n.. 154 , . _ bi 59 D . - .G25 / 0- t5L 765 1 1 1036 L' - 15 b Muir _.:: 483 D = L4 -0 • r � 277 D LS -b. . 3.. 640 L 1 -._ 99 D70 L 99 D b r1D .: - - 4 P y D 1 '� - : 75 L : v 24 00 'i . - - 2186 L . : 1298 D _ .. 84 L - . . . .. .. 4 b r 94 Di 1306L!}D."4 62L. ..: i � . b .. --. 73 D17fE2515 1)5 D - i 5647 D : - : • . .- : , :- ' u - b .BBIB.BBCCC C C CCCICCCCC CCCC C C CC CCICC CD.DD D D DD DDDD DD DDDD D D DD CDDD DEEE E. E'EEEFEEEIEEiE EEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'9'111 '1:1 :1 T11112(2222 5:5 :5 - 6:6:6 , 6'6(6 621717 7.7 :7 OOT ki L Pc Nt OUT . Rem l ortD • • B ..., Plain Concrete Isolated Square Footing Design: F1 f := 2500 -psi Concrete strength f := 60000-psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity 'Yconc 150•pcf Concrete density "(soil 100•pcf Soil density q j := 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Total& := 5647• lb Pd1:= Totaldl Totalll := 7062.1b Pll := Totalll Pu := Pdl + Pll Pu = 12709 -lb Footing Dimensions t := 12-in Footing thickness Width := 42,in Footing width Width Footing Area clnet gall – tf''Yconc qnet = 1350•psf Pu Areqd gnet Amid = 9.41441 < A = 12.2541 GOOD Widthreqd Ar Widthreqd = 3.07-ft < Width = 3.50ft GOOD Ultimate Loads ,ka Pdl + tf'A'"Yconc P := 1.4•1 + 1.7-P11 P = 22.48-kips P ch :_ — q = 1.84•ksf A -#•"6 Beam Shear bcol` 5.5 in (4x4 post) d:= tg -2.in := 0.85 b := Width b = 42•in V := 4 • f psi•b•d V, = 23.8-kips 3 • Vu qu ( bcol) -13 c V = 9.77 kips < V = 23.8 kips GOOD Two -Way Shear • Short side column width b'L := 5.5•in Long side column width b := 2•(bg + d) + 2•(bL + d) b = 62•in := 1.0 _ c 4 + 8 f psi b d V = 71.4-kips C 3 3 I 3 c/ Vnmax := 4.2.66• f V = 47.48-kips 4,1 qu•[b ,, — (bc01 + d) V = 19.42-kips < V = 47.48-kips GOOD Flexure \ 2 Mu qu I b 2 J bcoll 2J 11 b M = 7.43•ft•kips • A:= 0.65 2 , := b•d 6 S = 0.405. 1 F := 5.0 f psi F = 162.5-psi M f :_ — f = 127.36•psi< F = 162.5-psi GOOD Ilse a 3' - x 3' -6" x 12" plain concrete footing J Plain Concrete Isolated Square Footing Design: F2 := 2500-psi Concrete strength f := 60000•psi Reinforcing steel strength E := 29000•lcsi Steel modulus of elasticity Iconc := 15013cf Concrete density Nat := 100-pcf Soil density q := 1500-psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldt := 4101-lb := Totaldi Totalll := 5376-lb Pll := Totalll Pi := Pcll + P11 = 9477-lb Footing Dimensions t := 10-in Footing thickness Width := 36-in Footing width 4:= Width Footing Area net gall – tf*Iconc net = 1375-psf Ptl A := — (het A = 6.89241 < A = 941 GOOD Width := Ar Width = 2.63-ft < Width = 3.00 ft GOOD Ultimate Loads Pd1 trA'Iconc 1 := + 1.7-P11 1 = 16.46-kips Pu ch, := — q = 1.83-ksf A Beam Shear bcol 55 in (4x4 post) d:= tf -2•in := 0.85 b := Width b = 36-in V :_ 4) 4 • f psi•b•d V = 16.32-kips 3 V„ •— qU rb — 2 colt b V = 6.97-kips < V = 16.32-kips GOOD • Two -Way Shear bs: >5:5 in Short side column width bL.:= 5.5•in Long side column width b := 2•(bg + d) + 2•(bL + d) b = 54•in �3 := 1.0 Vim= 0•r + 8 /• f V = 48.96•kips l 3 3•(3 Vnmax := 4.2.66• f psi•b•d Vnmax = 32.56-kips �V= q,; [b2 — (b + d) V„ = 14.14-kips < V nmax = 32.56•kips GOOD Flexure 2 mu := gu t( b — b (11 b M = 4.43•R•kips 2 J l 0.65 2 b d S = 0.22241 6 F := 5.4 f psi F = 162.5-psi M f := s u • f = 138.42•psi< F = I62.5-psi GOOD 'Use a 3' -0" x 3' -0" x 10" plain concrete footing 6-qa Plain Concrete Isolated Square Footing Design: F2 f := 2500-psi Concrete strength f := 60000.psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity leonc 150•pcf Concrete density 7soil 100•pcf Soil density gall := 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl:= 25154b Pdl:= Totaldl Totalll := 36064b Pil := Totalil Pt1:= Pd1 +P11 PU= 6121•lb Footing Dimensions • t := 10• in Footing thickness Width := 30-in Footing width := Width 2 Footing Area gnet gall — tf' Yconc gnet = 1375•psf Pt1 Areqd gnet A red = A ft < A = 6.2541 GOOD Widthreqd A req d Widthreqd = 2.11 -ft < Width = 2.50 ft GOOD Ultimate Loads ,Pwd1.:= Pd1 + tf•A'"Yconc P,:= 1.4 Pdl + 1.7•P11 P„ = 10.74-kips P qu — A qu = 1.72 -ksf g' Beam Shear bcol t 5.5 in (4x4 post) d := tf — 2-in := 0.85 b := Width b = 30-in V :_ 4 f psi b d V = 13.6•kips 3 VU 9u C b —2 colt V = 4.39-kips < V = 13.6•kips GOOD Two -Way Shear b g = 5:5 iii Short side column width bL = 5:5 iii Long side column width b := 2•(bs + d) + 2•(bL + d) b = 54.in 13 := 1.0 N V .= + 8 l f V = 40.8-kips (3 343c1 Vnmax := 0.2.66• f Vumax = 27.13-kips = 9u'[b — ( bc01 + d) V = 8.57-kips < Vnmax = 27.13-kips GOOD Flexure r 2 Mu := 9u I b — bco1) ( lb M = 2.2441-kips \ 2 2 A t:= 0.65 b•d 2 ee S = 0.185.11 F := 5.4 f F = 162.5-psi • M f := — f = 83.98 -psi < F = 162.5-psi GOOD lJse a 2' -6" x 2' -6" x 10" plain concrete footing 1c).) 6:-.A J 5 mn b m• ,. N �. g o 0 0 C m' - c ,Xs' ”C (- z- -cei)kg --xp '• s isi Si) 1- " `-Lvd h r `h _ X'ten -‘,„ S �a (11 2.'h 1'11 `-- into .t - _sl'ebe— w s o ❑ ZI . o titutl Er — ® •.y 5 toil "" eT ! Sd. °101 0 r. O c9\ P } c .1 ))t� . k, -4 ( (5'lX'x$o w 3 So efir. =, (.k- 1)\gS'S{cs)1)1 . e (')sh' e.(5'J)1( $ )( OS\ 4 0)- 73w L'b : OD S t 4 i + {fV. Tq. 4 ebb 1v1 - 1° W 0 • ° z n m O D X v V . 154: 0 1 i_ sa_i_. ‘ ,1_ 15 . 0; ,_+ st 01-- El g m o 1 A '1 1 ; '‘.__1______12 ,�st '( �'G) 1 1Q1 a a b VA , b +oak;bk � 1 �3S -� iSc�.'L � fib � 9 9L ? -} 1V n '38 103 road 71SOE't -A Sa'b n� 1 , 1 �o Oha 0 )ON eor 0 `�� S_.- alva — i ienl Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:48 AM Units system: English File name: O: HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit B \FDN \Front Load.etz\ M33 =81.13 [K Ip'ft] M33= -23.24 [Kp'ft] Y x Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:49 AM Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit B1FDN\Front Load 2.etz\ • • • V33=48.59 NWT] • • • • i :i • • M33= -54.65 [Kip'ft] • • • - d 1f - MO 4" 1 6 --s9ccrx'olx_ss4.:0)0ti'o:---u\No : ' : CZ1 (S IC XY0 c , ' K S4Ve/ - Y= \a -0 rr.-! ,q4._.. -- -=-sv - - Y o ;7.1 firkt- Y -1,1_ --- co ` a : ''• ' 5 rii r z hi;')- -- t: , ,17 - .. - ' .;--, %9L,Wa s alk 1 0 72 0 i (a-114_ 0 k / L 01)Q67: ' . 1 A:PU 1 :I'M - Dio „01 - Ac).• I. S < f:11 19 -= cVe.'1) -iSICOVAC. i'ra I- - S1)(960/61)(CICV Ii° : 0 -- 1(10 • %Rik &-st - (- licrqi Lcoda 'A) : `I . . ( ezi4,-. -;syxt000loc) - 6;\ ty9)016-0 = vA 0 -o _1 . . . , . N‘z .:::Qt‘ Ltooroal,"_eA°i'0)--:‘---v g 0 Z Ti L ' 5) - r• -- ' P .78 iiTit A 13S2,x -LH` c lVO =5 1 -ew D'0 in - SA - Q) -C i C T S V =10 o z , z 11 ticrot - ‹__ - D -k A.kic\ -I> = \I"Nt\AI z i in - ill h WV; A'No : . z 0 (-) - 4e • ill --. --or .(4a■ 1 g 0 M -1 - q 0 2 a b El - - — rxikxkla)3 '001 AuPia J31 3 0O ..# N) ...., BY OPTE: JOB NO.: PROJECT: RE: ()NIT ... , C -Rear Load ❑ ❑ 6--'4,:5-VA j ii Z 0 W <-1\4 f 2000 100° w ❑ o d I Ir . O u O Z I a a 0 Mor = 54,53 k.ct Ma, ..DL(A) +- a. (4,34) t°.D (IL 33) = (t -s.34 t°I DL N.,. g DI_ t- (I1M.) +a (J )= 3to.LL1- 10L.. 2 O I.S(SgS Si) .Q gl.. LC, tot DL OL .G .12.t..4 -,ps o ❑ o Va., — 1- a gn\a•x ( M la L(12. INo :n 4. s� -iZ1 lz.Y(14�) a c tt,)Z < ► , s : , o 1L- 6 4vn un Q _ k ■1 _ . { _ L (i2, �)(o.`� = 0 ‘ as t _ s � (( te,) 2(1% 1 - •, CD - a) 4 :-. 0 zxa x B -V.,3 01„ Bentteyi Harper Houf Peterson RigheHis Inc. Current Date: 6/22/2010 10:57 AM Units system: English File name: O ;\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit C\FDNRear Load 2.etz\ M33 =36.82 [Kip'ft] M33= -50.22 [Kip`ft] Y d x 8— X 14 ACI 318 -05 Appendix D 1.125" Diameter Bar Capacity at Standard Stem Wall Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc = 3000 psi fc = 3000 psi h' = 17.00 inches h = , ;y:1200' ' inches (into the Foundation) ::.._.. _. to Stem = _z = ;8:00 „inches Note: hef above is the the embedment into only the the foundation and does not consider stem wall embedment Fnd Width = 36.00 inches C min = 2.25 inches c mjn = 18.00 inches W 1.00 cast -in -place anchor V 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor = 0.75 strength reduction factor 4) = 0.75 strength reduction factor Calculations Calculations AN = 408 in` AN = 1296 in` ANc = 2601 in` A = 1296 in` • Nb = 92,139 pounds Nb = 55,121 pounds Wed,N = 0.7265 Wed,N = 1.00 Nth = 10,500 pounds Nth = 55,121 pounds 4)N = 7,875 pounds 4)N = 41,341 pounds Combined Capacity of Stem Wall and Foundation o = 49,216 0.754)N = 36,912 8, J 1 Concrete Side Face Blow Out Givens Abrg = 2.75 in` fc = 3000 psi cmin = 18.00 inches = 0.75 strength reduction factor Calculations Nsb = 261,589 pounds 4Nsb = 196,192 pounds Concrete Pullout Strength Givens Abrg = 2.75 in` fc = 3000 psi = 0.75 strength reduction factor Calculations N = 66,000 pounds 4 N = 49,500 pounds Steel Yield Strength Givens f = 58,000 psi A = 0.763 in = 0.80 strength reduction factor Calculations N = 44,254 pounds 4 Ns = 35,403 pounds < 36,912 Ductility Met Holdown Check Holdown: HD19 Holdown Capacity= 16,380 pounds 1.6* Capacity= 26,208 pounds 26,208 < 35,403 Holdown Checks S.:0° ACI 318 -05 Appendix D 1.0" Diameter Bar Capacity at Portal Frame • Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc = 3000 psi fc = 3000 psi h' = 3.50 inches h = l inches (into the Fc Stem = ji inches Note: hef above is the the embedment into or cmax = 5.25 inches the foundation and does not consider item • Fnd Width = 36.00 inches • C min = 2.25 inches c = 18.00 inches W 1.00 cast -in -place anchor W 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor = 0.75 strength reduction factor 4) = 0.75 strength reduction fact Calculations Calculations AN = 68 in` AN = 1296 in AN = 110.25 in` A No = 1296 . in` Nb = 8,607 pounds Nb = 55,121 pounds Wed,N — 0.8286 Wed,N = 1.00 N = 4,399 pounds Nth = 55,121 pounds 4)N = 3,299 pounds 4)N = 41,341 pounds Combined Capacity of Stem Wall and Foundation (K = 44,640 0.754)N = 33,480 • ic7a Concrete Side Face Blow Out Givens A brg = 2.15 in` fc = 3000 psi cmin = 18.00 inches = 0.75 strength reduction factor Calculations Nsb = 231,191 pounds 4Nsb = 173,393 pounds Concrete Pullout Strength Givens Ab = 2.15 in` fc = 3000 psi = 0.75 strength reduction factor Calculations N = 51,552 pounds 4 N = 38,664 pounds Steel Yield Strength Givens f = 58,000 psi A = 0.606 in = 0.80 strength reduction factor Calculations N = 35,148 pounds DNS = 28,118 pounds < 33,480 Ductility Met Holdown Check Holdown: HDU14 Holdown Capacity= 14,930 pounds 1.6* Capacity= 23,888 pounds 23,888 < 28,118 Holdown Checks t BY: Ik s ' I DATE: -- ^' 0 JOB NO. C C (J N• yP' 4 V OF PROJECT: RE: S tem Wall ' Vochwj 0 0 s ; �4s UP�7.i 1crw�S 0 2 tot.° asFt( 1246F)= 300 1 WWI . E ❑ S C21e.vets \3 50 = a 0b ?Lc Soor J 4 O' / cr �SOpc��C'I # ���Z�= 333�F Stem O W ( ISO pct)( w ). - 100 w PLr I r`, U Z O z a L.L. o S �( `2 levels)C40 _ w�, z � F � A �, S� b40 P�.F � IoC�C' O a z 6619.1 load. = 1y-81 i- too aLf- l . moo( vop tsOO psF = ls0opu • W t .8 I . + LOb w S V500w „,_ _ o 0 0 , U. Z ❑ o e rear it C- -(mt. vk lav i kom O = F- a DLO a$Cit '3oo pcF usrAlt 6112.teve►s)(q esf X Ptr S ooc 4o► N (1 SO pc F X'/ 17_ Cb j e .) = .as L.F S 1-e. 0I I2) (t5O (0, ') — too w P ''Yl • Oar + ?cc = 306p..c- coo LL: C96(2..IC4-0 = 1-20 p Lc Cit >(zs) _ - so 1 o v E 4 ,.' 'IL o a343 t I oOvJ .wt o , - a 3�1% r loow tsv©(u a a + � w .r . e u�ni�% 6 C. Saone cks p mtrv5 loci' locid.s TL. 1I4 et \OOui W 1.00 !, V-e. 1ST Po,civwctt■ bt^ , as Ci2,)(2) = COo pa: we l (b)(2Xc34 _Li ao .c,F S tool - 40i a(fsopMCliz)C = 333pk.F 5i CiIaYt5() u)) _ 100• LL ° . CZI (.4o)Ci> = 12560 KA:: dlour rt... : a6act i- ioow w= L- 23 1 ►.) us-e_ c! In) gg Vrt