Loading...
Specifications (4) YV 1 Sr2'►v - >x 17L ► `7 :3 11 111 Structural Calculations for Full Lateral & Gravity Analysis of Plan A 1460 RECEIVED Summer Creek Townhomes SEP 232010 Tigard, OR CITY OF TIGARD BUILDING DIVISION Prepared for Pulte Group July 13, 2010 JOB NUMBER: CEN -090 ** *Limitations * ** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and /or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. • 117 sheets total including this cover sheet. This Packet of Calculations is Null and Void if Signature above is not Original 0 Harper Houf Peterson Righellis Inc. l..,$CAPL A ITtCT3tQVRVC QR5 205 SE Spokane St. Suite 200 o Portland, OR 97202 0 [P] 503.221.1131 0 [F] 503.221.1171 1104 Main St. Suite 100 o Vancouver, WA 98660 0 [P] 360.450.1 141 e [F] 360.750.1 141 1133 NW Wall St. Suite 201 o Bend, OR 97701 0 [P] 541.318.1 161 0 [F] 541.318.1 141 Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit A Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, IW: 1 2006 IBC / 2007 OSSC Occupancy Category: II Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed, ASCE 7-05 Ch. 20 Importance, IE: 1 ASCE 7 -05 Table 11.5-1 Ss: 0.942 USGS Spectral Response Map Si: 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength, f'c: 3000 psi Foundations & Slab on Grade Concrete Unit Weight, yc: 145 pcf Steel Reinforcement Yield Strength, f 60,000 psi Wood Studs (Wall Studs): Hem -Fir #2 2x & 4x Wood Beams & Posts: DF -L #2 6x & Greater Wood Beams & Posts: DF -L# 1 Glulam Beams: 24F -V4 PSL Beams: Fb =2,900 psi, FV= 328psi, E =2.0 Million TS /LSL Beams: Fb =2325 psi, FV= 460psi, E =1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : .1500 psf Assumed 2. All manufactured trusses, joists, and flush beams u.n.o. shall be designed by others. Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 Wood Works — Sizer version 2002 Bently RAM Advanse Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP' Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS ,• PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCHI TEC re. SURVEYORS DESIGN CRITERIA 2007 Oregon Structural Specialty Code & ASCE 7-05 Roof Dead Load RFR:= 2.5.psf Framing RPL := 1.5•psf Plywood RRF := 5•psf Roofing RME := 1.5•psf Mech & Elec RMS := 1 •psf Misc RCG := 2.5•psf Ceiling RIN := 1 •psf Insulation RDL = 15•psf Floor Dead Load FFR := 3.psf Framing FPL := 4•psf Sheathing FME := 1.5.psf Mech & Elec FMS := 1.5•psf Misc FIN := .5•psf Finish & Insulation FCLG := 2.5•psf Ceiling FDL = 1'3.psf Wall Dead Load WOOD EX Wall, := 12-psf INT_Wall := 10•psf Roof Live Load RLL := 25.psf Floor Live Load FLL := 40•psf #— L1 Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP! Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENOISCER5 • PLANNER8 -- Designer: AMC Date: Pg. # LAND5CAPE ARCHITECTS• SURVEYORS Transverse Seismic Forces Site Class = D Design Catagory =D Building Occupancy lI Weight of Structure In Transverse Direction Roof Weight Roof. Area := 843- ft RFW-I• := RDL•Roof Area RFwT = 14162-lb Floor Weight Floor_Area2 := 647•ft FLRw := FDL•Floor Area2nd FLRWT2nd = 8411.1b Floor_Area3rd 652•ft 2 FLRWT3rd FDL•Floor Area3rd FLRWT3rd = 8476-lb Wall Weight EX Wall Area := (2203)•ft INT Wall_Area:= (906)•ft WALLwT := EX_Wa11 + INT Wall WALLWT = 35496•1b WTTOTAL = 665451b Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h := 32 Mean Height Of Roof Ie := 1 Component Importance Factor (11.5, ASCE 7 -05) A, := 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C := .02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x := .75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period T := C T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. . (Chapter 22, ASCE 7- 05)...or S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F := 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F.„ := 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) L'2_ . Harper Project: SUMMERCREEK TOWNHOMES UNIT A P Houf Peterson Client: PULTE GROUP Job # CEN -090 `' Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARC4ITECTS•SURVEVOR8 S MS Fa'Ss SMS = 1.058 (EQU 11.4 -1, ASCE 7 -05) 2- SMS S := 3 Sd = 0.705 (EQU 11.4 -3, ASCE 7 -05) SM1 := F S1 SM1 = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2 •SMl S := 3 Sdl = 0.389 (EQU 11.4 -4, ASCE 7 -05) Cst := Sds Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) R ...need not exceed... Sdrie (EQU 12.8 -3, ASCE 7 -05 ) Cs :_ Cs = 0.223 (Q T ...and shall not be less then... C1 := if(0.044•Sd <0.01,0.01,0.044•Sd 0.5•S1•Iel (EQU 12.8 -5 &6, ASCE 7 -05) C2 := if Si <0.6,0.01, J R Csmin := if(CI > C2, CI , C2) Csmin = 0.031 Cs := if (Cst < Cs Cs if (Cst < Csmax , Cst, Csmax)) Cs = 0.108 V := Cs• WTTOTAL V = 72201b (EQU 12.8 -1, ASCE 7 -05) E := V•0.7 E = 50541b (Allowable Stress) 4 ‘:3 • h . Harper Project: SUMMERCREEK TOWNHOMES UNIT A :• Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. -�- ENG■NEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE A RCN.TECTS•SURVEYORS Transverse Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 100 mph (3 Sec Gust) Exposure: B Building Occupancy. Category: II I := 1.00 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X := 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... a2 := 2•.1.20.ft Zone A & B Horizontal Length a2 — 4 ft (Fig 6 -2 note 10, ASCE 7 -05) or 2v:= .4•hn•2.ft a2 — 25.6 ft but not less than... a2 := 3 2 ft a2 = 6 ft Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal • PnetzoneA 19.9•psf PnetzoneB 3.2•psf Pnetzonec := 14.4.psf PnetzoneD 3.31psf Vertical PnetzoneE 8.8•psf PnetzoneF 12•psf PnetzoneG 6.4•psf PnetzoneH —9.7 -psf Basic Wind Force PA := PnetzoneA'Iw•X PA = 19.9.psf Wall HWC PB := PnetzoneB'Iw.X PB = 3.2•psf Roof HWC PC := PnetrconeC'Iw'X PC = 14.4•psf Wall Typical PD := PnetzoneD'Iw PD = 3.3.psf Roof Typical PE := PnetzoneE'Iw'X PE = — 8.8•psf PF := PnetzoneF'Iw -X PF = — 12• Pc, := PnetzoneG'Iw'X Pc, = — 6.4•psf PH := PnetzoneH' I X PH = — 9.7• psf • 4- L. Harper Project: SUMMERCREEK TOWNHOMES UNIT A HY Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. - -- ENGINEERS • PLANNERS - --- Designer: AMC Date: Pg. # LANDSCAPE ARCkfTECTS•SURVEVORS Determine Wind Sail In Transverse Direction WSAILZoneA (41 + 59 + 29).ft WSALIZoneB (1 + 0 + 23)41 2 WSAILZonec':= (39.1 + 307 + 272)•ft 2 WSAILZoneD (0 + 0 + 5)•ft WA := WSAILZoneA•PA WA = 25671b WB WSAILZoneB•PB WB = 1341b WC WSAILZoneC WC = 139681b WD WSJ- ZoneD'PD WD = 161b Wind_Force := WA + WB + WC + WD Wind_Force := 10•psf- (WSAILZ + WSAILZoneB + WSAILZonec + WSAILZoneD) Wind_Force = 16686 lb Wind Force = 11460 Ib WSAft-ZoneE := 94•ft2 WS ZoneF := 108412 WSAILZoneG = 320•ft WSAILZoneH 320 -ft2 WE := WSAILZoneE-PE WE = —8271b WF := WSAILZoneF'PF WF = — 12961b WG := WSAILZoneG•PG WG = — 20481b WH WSAILZoneH'PH WH = — 31041b Upliftnet WF + WH + (WE + WG) + RDL•[WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneG)]'. Uplift = 12121b (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION U . Harper Project: SUMMERCREEK TOWNHOMES UNIT A .HP Houf Peterson Cl PULTE GROUP Job # CEN -090 Righellis Inc. ti ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCNITECTS•SURVEYORS Longitudinal Seismic Forces Site Class ='D Design Catagory = D Building Occupancy Category: II Weight of Structure In Longitudinal Direction Roof Weight Roof Area = 944 ft AU-iv= RDL•Roof Area RFC = 14162-lb Floor Weight Floor_Area2 = 647 ft = FDL•Floor Area2nd FLRw = 8411-lb Floor_Area3 = 652 ft • Ra i= FDL•Floor Area3rd FLRWT3rd = 8476.16 Wall Weight ..W.4l1.A?'Cl = (2203)•ft INT Wall Area = 906 ft 264142a,:= EX_Wall + INT Wall WALLw -r = 35496•1b WTTOTAL = 6654516 Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h = 32 Mean Height Of Roof I = 1 Component Importance Factor (11.5, ASCE 7 -05) ,&,:= 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C = 0.02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x = 0.75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period := C T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) Si = 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S = 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F = 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F, = 1.722 Vel -based site coefficient @ 1 s -period (Table 11.4 -2, ASCE 7 -05) 130 Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. -_ ENGINEERS • PLANNERS - Designer: AMC Date: Pg. # LANDSCAPE ARCRITECTS•SDRVE YOBS N := Fa S SMs = 1.058 (EQU 11.4 -1, ASCE 7 -05) 2 •SMS Sd = 0.705 (EQU 11.4 -3, ASCE 7 -05) 3 S �:= F S1 SMI = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2 •SM1 5 :.= 3 Sd1 = 0.389 (EQU 11.4 -4, ASCE 7 -05) st := S R Ie Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) ...need not exceed... Sd1 le Cs 0.223 (EQU 12.8 -3, ASCE 7 -05) �_ Ta•R max = ...and shall not be less then... Cj:= if(0.044•Sd < 0.01,0.01,0.044•Sd 0.5•S1 le) (EQU 12.8 -5 &6, ASCE 7 -05) if(S1 <0.6,0.01, J R if(Ci > C2,C1,C2) Cs = 0.031 a:= if (Cst < Cs Cs if (Cst < Cs , Cst, Cs Cs = 0.108 AL:= Cs•WTTOTAL V = 72201b (EQU 12.8 -1, ASCE 7 -05) E:= V•0.7 E = 50541b (Allowable Stress) Harper Project: SUMMERCREEK TOWNHOMES UNIT A II ' Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. CNOINEERS • PLANNERS Designer: AMC Date: Pg. # L ANDEC APE ARCNITEC TS•SUR Longitudinal Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 110 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I = 1.0 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X = 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... = 2•.1.20•ft Zone A & B Horizontal Length = 4 ft (Fig 6 -2 note 10, ASCE 7 -05) or ,= .4•h 2•ft a2 = 25.6 ft but not less than... •— 3.2.ft 6ft a = Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA = 19.9•psf PnetzoneB = 3.2.psf PnetzoneC = 14.4•psf PnetzoneD = 3.3•psf Vertical PnetzoneE = —8.8•psf PnetzoneF = — 12•psf PnetzoneG = —6.4•psf PnetzoneH = — 9.71psf Basic Wind Force P PnetzoneA•Iw•X PA = 19.9•psf Wall HWC XJA A := PnetzoneB•IW.X Pg = 3.2•psf Roof HWC = PnetzoneC•Iv,•X PC = 14.4•psf Wall Typical &:= PnetzoneD' k X PD = 3.3.psf Roof Typical Pte:= PnetzoneE'Iw'X PE = —8.8.psf Pte,:= PnetzoneF•Iw•X PF = — 12•psf Pte:= PnetzoneG•Iw•X PG = — 6.4•psf ,:= PnetzoneH•IwX PH = — 9.7•psf Harper Project: SUMMERCREEK TOWNHOMES UNIT A t. Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINERS P LANNER5 Designer: AMC Date: Pg. # L nN08CA P E •REc.rEc •SNRVEYORS Determine Wind Sail In Longitudinal Direction ;:_ (48 + 59 + 40)•ft a§6,14 �PR,:= (10 + 0 + 44) •ft 2 N�'�� Mai (91 + 137 + 67)•ft AVS1 := (43 + 0 + 113)•ft Wes= WSAILZoneA•PA WA = 2925 Ib Z, WSJ- ZoneB'PB WB = 1731b := WSJ- ZoneC•PC WC = 4248 Ib = WSAILZoneD'PD WD = 515 Ib ind Fo ce := WA + Wg + WC + WD F�= 10•psf•(WSAILZ + WSAILZoneB + WSAILZonec + WSAILZoneD) Wind Force = 7861 Ib Wind_Force = 6520 Ib ll = 148•ft aNki 120 • ft A ,W SAIL:= 32341 ft := 252•ft Wes:= WSAILZoneE•PE WE = – 13021b „W� = WSAILZoneF'PF WF = – 14401b WSAILZoneG•PG WG = –2067 lb AL WSAILZoneH WH = – 24441b „Upl := WF + WH + (WE + WG) + RDL•[WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneG)]•. Uplift = 1243 Ib (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION /9— L Harper Houf Peterson Righellis Pg #: Transverse Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7-05) Mean. Roof Height, H (ft) = 32 Roof Pitch = • 6 /12 . Building Category II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X= 1.00 Iw= 1.00 Wind Sail Wind Net Design Wind Pressure (psf) ( ) Pressure (Ibs) Zone A = 19.9 129 2567 Wall High Wind Zone Horizontal Zone B = 3.2 42 134 Roof High Wind Zone Wind Forces Zone C = 14.4 970 13968 Wall Typ Zone Zone D = 3.3 5 17 Roof Typ Zone Zone E = -8.8 94 -827 Roof Windward High Wind Zone Vertical Zone F = -12.0 108 -1296 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 320 -2048 Roof Windward Typ Wind Zone Zone H = -9.7 320 -3104 Roof Leeward Typ Wind Zone Total Wind Force =l 16686 Ibs Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -7275 Ibs Resisting Dead Load = 8472 Ibs E =I 1197 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm (ft Zone A Zone B Zone C Zone D U e N } Main Floor 41 19 391 0 Upper Floor 59 0 307 0 Main Floor Diaphragm Shear = 6507 lbs Upper Floor Diaphragm Shear = 5595 Ibs Roof Diaphragm Shear = 4584 lbs . Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Diaphragm Diaphragm (lbs) (lbs) (lbs) Width (1) Width (ftj Width qtt A 13.08 1737 18 2797 19 2323 Al 24.50 3254 0 0 0 0 B 11.42 1516 18 2797 18.5 2261 E= 49 6507 36 5595 37.5 4584 1/-- L I 0 Harper Houf Peterson Righellis Pg #: Transverse Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D S1 = 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct= 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 • Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 SMg • 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 S 0.71 Equ. 11.4 -3, ASCE 7 -05 Spy= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 ' Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 . Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (lb)= 8411 Floor 3 Wt (lb)= 8476 Roof Wt (Ib) = 14162 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22609 Trib. Floor 3 Diaphragm Wt (Ib) = 22674 Trib. Roof Diaphragm Wt (Ib) = 21261 Vertical Dist of Seismic Forces Cumulative % total of base shear Rho Check to Shearwalls (Ibs) I to shearwalls Req'd? V fl0° , z (Ib) = 720 100.0% Yes Vfloor s (Ib) = 1625 85.8% Yes VfOO, (Ib) = 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft lbs Ibs Ibs A 102 361 394 114 897 1266 Al 432 0 0 481 0 0 B 113 293 449 126 728 1443 Sum 647 654 843 720 1625 2709 Total Base Shear* = ( 5054 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. r9 — L\. ,----- Harper Houf Peterson Righellis Pg #: Longitudinal Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf A. = 1.00 1w= 1.00 Wind Sail Wind Net Design Wind Pressure (psf) (ft ) Pressure (Ibs) t+aiM� +n�st.�bnffsr.T/w._. .. . +.. i+�.s Au:.�nayn•+t.+Fwvti�i Zone A = 19.9 147 . 2925 Wall High Wind Zone Horizontal Zone B = 3.2 54 173 Roof High Wind Zone Wind Forces Zone C = 14.4 295 4248 Wall Typ Zone Zone D = 3.3 156 515 Roof Typ Zone Zone E _ -8.8 148 -1302 Roof Windward High Wind Zone Vertical Zone F = -12.0 120 -1440 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 323 -2067 Roof Windward Typ Wind Zone Zone H = -9.7 252 -2444 Roof Leeward Typ Wind Zone Total Wind Force 7861 Ibs I Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -7254 Ibs Resisting Dead Load = 8483 Ibs E =I 1229 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm (ft Zone A Zone B Zone C Zone D Main Floor 48 10 91 43 Upper Floor 59 0 137 0 Main Floor Diaphragm Shear = 2440 Ibs . Upper Floor Diaphragm Shear = 3147 lbs Roof Diaphragm Shear = 2275 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm (lam) Diaphragm (Ibs) Diaphragm (Ibs) Width ft Width ft Width ft 1 10 1220 10 1573 10 1137 2 10 1220 10 1573 10 1137 E= 20 2440 20 3147 - 20 2275 A - Lc2.. Harper Houf Peterson Righellis Pg #: • Longitudinal Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = 11 Site Class = D Si = 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 . Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 • SMg 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 SDS= 0.71 Equ. 11.4 -3, ASCE 7 -05 SDI= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (lb)= 8411 Floor 3 Wt (lb)= 8476 Roof Wt (Ib) = 14162 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22609 Trib. Floor 3 Diaphragm Wt (lb) = 22674 Trib. Roof Diaphragm Wt (Ib) = 21261 Vertical Dist of Seismic Forces I Cumulative % total of base shear I Rho Check to Shearwalls (Ibs) to shearwalls Req'd? Vfloor 2 (Ib) = 720 100.0% Yes Vry 3 (Ib) = 1625 85.8% Yes V, (Ib) = 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft Ibs Ibs Ibs 1 286 291 415 318 725 1334 2 361 361 428 402 900 1375 Sum 647 652 843 720 1625 2709 Total Base Shear* = I 5054 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. • /9--- L \'3 Harper Houf Peterson Righellis Pg #: . Shearwall Analysis Based on the ASCE 7 -05 'Transvere Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel ' Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. ; From Roof Load Sides Factor Type T (ft) (ft) (ft) ht I k ht I k ht J k (kit) (plt) (ft -k) (ft -k) (k) • 101 Not Used 102 7 1.75 3.50 4.00 .W - 8.00 1.74 18.00 2.80 27.00 2.32 1959 Double 1.40 NG 103 7 1.75 3.50 4.00 " ',-., 8.00 1.74 8.00 2.80 8.00 2.32 1959 Double 1.40 NG 103a 7 4.00 4.00 1.75 OK 8.00 3.25. 814 Single 1.40 IV 104 8 4.50 10.50 1.78 ox 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 105 8 3.00 10.50 2.67 OK 8.00 , 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 106 8 3.00 10.50 2.67 OK 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 109 8 4.58 17.08 1.75 co( 8.00 1.74 18.00 2.80 27.00 2.32 401 Single 1.40 II 110 8 12.50 17.08 0.64 OK 8.00 1.74 8.00 2.80 8.00 2.32 401 Single , 1.40 11 111 8 4.50 7.25 1.78 • OK 8.00 1.52 8.00 2.80 8.00 . 2.26 907 Double 1.40 VI 112 4.75 1.38 7.25 3.45 ox . 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 113 4.75 1.38 7.25 3.45 ox 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 201 9 3.92 10.79 2.30 OK 9.00 2.80 18.00 2.32 474 Single 1.40 II 201a 9 ' 4.17 10.79 2.16 OK 9.00 2.80 18.00 2.32 474 Single 1.40 II 201b 9 2.71 10.79 3.32 ox 9.00 2.80 18.00. 2.32 474 Single , 1.40 II 202A 9 2.96 11.96 3.04 OK • 9.00 2.80 18.00 2.26 423 Single 1.40 II 202B 9 3.00 11.96 3.00 OK 9.00 2.80 18.00 2.26 423 Single 1.40 II 203 9 3.00 11.96 3.00 ox 9.00 2.80 18.00 2.26 423 Single 1.40 II 204 9 3.00 11.96 3.00 1 ox 9.00 2.80 18.00 2.26 423 Single 1.40 II 301 8 3.92 - 13.96 2.04 OK 8.00 2.32 , 166 Single 1.40 I 302 8 5.79 13.96 1.38 ox 8.00 2.32 166 Single 1.40 I 303 8 4.25 13.96 1.88 OK 8.00 2.32 166 Single 1.40 1 304 8 2.96 5.96 2.70 OK 8.00 2.26 379 Single 1.40 II 305 8 3.00 5.96 2.67 ox 8.00 2.26 379 Single 1.40 II Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear • Shear Application ht Mr (Resisting Moment) = Dead Load ■ L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) /4 - L \LI: Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 fransvere Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load ' Line Load Dead V Rho % Story # Panel Shear Panel M Ma Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht I k ht I k ht I k (kIf) (plf) (plf) (ft -k) (ft-k) (k) 101 Not_Used 102 7 1.75 3.50 4.00 %T ,. 8.00 0.11 18.00 0.90 27.00 1.27 651 846 0.10 0.50 Double 0.50 NG 103 7 1.75 330 4.00 ". 'C;' 8.00 0.11 8.00 0.90 8.00 1.27 651 846 0.10 0.50 Double 0.50 NG 103a 7 4.00 4.00 1.75 OK 8.00 0.48 0.00 0.00 120 156 0.22 1.14 Single 1.00 I 104 8 4.50 10.50 1.78 OK 8.00 0.13 8.00 0.73 8.00 1.44 - 219 284 0.25 1.13 Single 1.00 II 105 8 3.00 10.50 2.67 OK 8.00 0.13 8.00 0.73 8.00 1.44 219 ' 284 0.17 0.75 ' Single 0.75 III 106 8 3.00 10.50 2.67 ox 8.00 0.13 8.00 0.73 8.00. 1.44 _ 219 284 0.17 0.75 Single 0.75 III 109 8 '4.58 17.08 1.75 OK 8.00 0.11 . 18.00 0.90 27.00 1.27 134 174 0.25 1.15 Single 1.00 - . I , 110 8 12.50 17.08 0.64 OK 8.00 0.11 8.00 0.90 8.00 1.27 134 174 NA 3.13 Single 1.00 I 111 8 4.50 7.25 1.78 OK 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.25 1.13 Single 1.00 III 112 5 1.38 7.25 3.45 OK 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.08 0.58 Double 0.58 VII 113 5 1.38 7.25 3.45 OK 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.08 0.58 _ Double 0.58 VII _ 201 9 3.92 10.79 2.30 OK 9.00 0.90 18.00 1.27 200 261 0.17 0.87 Single 0.87. 11 201a 9 4.17 10.79 2.16 OK 9.00 0.90 18.00 1.27 200 261 0.18 ' 0.93 Single 0.93 II 201b 9 2.71 10.79 3.32 OK 9.00 0.90 18.00 1.27 200 261 0.12 0.60 Single 0.60 III 202A 9 2.96 11.96 3.04 OK 9.00 0.73 18.00 1.44 182' 236 0.13 0.66 Single 0.66 III 202B 9 3.00 11.96 3.00 ox 9.00 0.73 18.00 1.44 182 236 0.13 0.67 Single 0.67 111 203 9 3.00 11.96 3.00 OK 9.00 0.73 18.00 1.44 181 236 0.13 0.67 Single 0.67 III 204 9 3.00 11.96 3.00 ox _ 9.00 0.73 18.00 1.44 181 _ 236 _ 0.13 0.67 Single 0.67 f III • 301 8 3.92 13.96 2.04 OK 8.00 ' 1.27 91 118 0.20 0.98 Single 0.98 I 302 8 5.79 13.96 1.38 ox 8.00 1.27 91 118 0.29 1.45 Single 1.00 I 303 8 4.25 13.96 1.88 OK 8.00 1.27 91 118 0.21 1.06 Single 1.00 1 - 304 8 2.96 5.96 2.70 OK 8.00 1.44 242 315 0.15 . 0.74 Single 0.74 III 305 8 3.00 5.96 2.67 OK 8.00 1.44 242 315 _ 0.15 _ 0.75 Single 0.75 _ Ill Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total transverse base shear? Yes Total 1st Floor Wall Length = taco • Total # 1st Floor Bays = +.77 Are 2 bays minimum present along each wall line? No 1st Floor Rho = 1.3 Total 2nd Floor Wall Length = 22.75 Total # 2nd Floor Bays = s Are 2 bays minimum present along each wall line? No 2nd Floor Rho = 1.3 • Total 3rd Floor Wall Length = 19.92 Total # 3rd Floor Bays = s Are 2 bays minimum present along each wall line? No 3rd Floor Rho = 1.3 • Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height . Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L °/ Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2'L/H Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load *1. 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) ' W 4 Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (kif) (plf) (fl-k) (ft-k) (k) 107 8 15.50 15.50 0.52 OK 10.00 1.22 18.00 1.57 27.00 1.14 1.03 254 Single 1.40 1 71.21 123.49 -0.19 108 8 15.50 15.50 0.52 ox 10.00 1.22 18.00 1.57 27.00 1.14 1.03 , 254 Single 1.40 I 71.21 123.49 -0.19 1 205 9 13.00 13.00 0.69 OK 9.00 1.57 . 18.00 1.14 0.70 208 I Single 1.40 I 34.62 59.15 -0.07 I 206 9 13.00 13.00 0.69 OK 9.00 1.57 18.00 1.14 0.70 208 1 Single 1.40 I 34.62 59.15 -0.07 306 8 10.00 10.00 0.80 ox I I 8.00 1.14 0.29 114 Single 1.40 1 9.10 14.401 0.05 I 307 8 10.00 10.00 0.80 ox 8.00 1.14 0.29 114 Single 1.40 I 9.10 14.40 0.05 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line WL Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) /9 *-- UtO Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho•V % Story # Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (k1f) (plf) (plf) (ft-k) (ft -k) (k) 107 8 15.50 15.50 0.521 oK 10.00 0.32 18.00 0.73 27.00 1.33 1.09 153 153 NA 3.88 Single 1.00 I 52.25 130.70 -1.74 - 108 8 15.50 15.50 0.52 OK 10.00 0.40 18.00 0.90 27.00 1.38 1.09 173 . 173 NA 3.88 Single 1.00 I 57.35 130.70 -1.40 I 205 206 1 9 1 13 00 1 13.00 0.69 OK I } 9.00 1 0.90 1 18.001 1.38 0:76 175 ( 175 1 NA 1 2.89 Single 1.00 �'I 32.85 1 64.22 -0.45 l I 307 8 1 10.001 10.00 0.801 OK 1 I 1 J 1 88..0000 1.38 0.35 _ 138 1 1 3 3 8 3 NNAA 1 22..5500 I Single 1 1 . . 0 0 0 0 1 1 11.00 f 1 1 7 7 . . 4 4 0 0 I 00..0062 I Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes ' Does the 3rd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes • Total 1st Floor Wall Length = 31.00 Total # 1st Floor Bays = 7.75 Are 2 bays minimum present along each wall line? Yes • 1st Floor Rho = 1.0 Total 2nd Floor Wall Length = 26.00 Total # 2nd Floor Bays = s Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho = 1.0 Total 3rd Floor Wall Length = 20.00 Total # 3rd Floor Bays = s Are .2 bays minimum present along each wall line? Yes 3rd Floor Rho = 1.0 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height • Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load•Rho / Total L % Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2•L/H Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear • Shear Application ht Mr (Resisting Moment) = Dead Load • L • 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • • ,9 ---- 11.......14Ck- Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Transvere Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good For V (pH) APB) (lb) (lb) 101 Not Used 102 Simpson Strongwall 103 Simpson Strongwall 103a 814 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 833 104 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 105 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 106 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 109 401 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 110 401 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 111 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 112 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 990 113 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 990 201 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 201a 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 201b 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 202A 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 202B 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 203 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 204 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 301 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 302 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 303 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 , 304 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 305 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. 4 - �, Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Longitudinal Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good For V (pH) (PM (lb) (lb) 107 254 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -192 Simpson None 0 108 254 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 , -192 Simpson None 0 205 208 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -69 Simpson None 0 206 208 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -69 Simpson None 0 306 133 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 48 Simpson None 0 307 138 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 59 Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. /4-- 1,,,X9 Transverse Wind Uplift Design . • Unit A Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. Flr. Roof Shear - including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ • floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right • stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 102 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.192 0.832 27.43 0.57 1.69 21.31 20.79 21.31 20.79 103 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.832 0.192 27.43 1.69 0.57 20.79 21.31 20.79 21.31 103A 8 1.1667 4.00 4.00 3.254 3.254 814 0.04 2.016 1.664 26.03 8.38 6.98 6.00 6.24 6.00 6.24 104 8 1.1667 4.50 10.50 1.516 2.8 2.26 6.576 626 0.1 0.8 0.078 25.08 4.61 1.36 5.58 6.06 5.58 6.06 105 8 1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 0.048 0.252 0.156 16.72 0.97 0.68 6.45 6.52 6.45 6.52 106 8 1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 - 0.048 0.156 0.252 16.72 0.68 0.97 6.52 6.45 6.52 6.45 109 8 1.1667 4.58 17.08 1.737 2.8 2.32 6.857 401 0.152 0.192 0.156 16.31 2.47 2.31 3.63 3.66 201L 201R 4.82 5.09 8.45 8.75 110 8 1.1667 12.50 17.08 1.737 2.8 2.32 6.857 401 0.096 0.156 0.192 44.52 9.45 9.90 3.24 3.21 201 aL 201 bR 4.95 4.88 8.18 8.09 111 8 1.1667 4.50 7.50 1.516 2.8 2.26 6.576 877 0.144 0.8 0.078 35.11 5.06 1.81 8.02 8.51 8.02 8.51 112 8 1.1667 1.50 7.50 1.516 2.8 2.26 6.576 877 0.048 0.252 0.234 11.70 0.43 0.41 11.44 11.46 11.44 11.46 113 8 1.1667 1.50 7.50 1.516 2.8 2.26 6.576 877 0.048 0.234 0.252 11.70 0.41 0.43 11.46 11.44 11.46 11.44 201 9 1.1667 3.92 10.8 2.8 2.32 5.12 474 0.225 0.432 0.156 17.71 3.42 2.34 3.99 4.16 301L 301R 0.83 0.93 4.82 5.09 201a 9 1.1667 4.17 10:8 2.8 2.32 5.12 474 0.225 0.156 0.156 18.84 2.61. 2.61 4.14 4.14 302L 302R 0.80 0.80 4.95 4.95 201b 9 1.1667 2.71 10.8 2.8 2.32 5.12 , 474 0.225 0.156 .0.432 12.24 1.25 2.00 4.24 4.08 303L 303R 0.91 0.80 5.15 4.88 202A 9 1.1667 2.96 11.958333 2.8 2.26 5.06 423 0.173 0.432 0.052 11.92 2.04 0.91 3.62 3.84 304L 304R 2.60 2.75 6.21 6.59 202B 9 1.1667 3 11.958333 2.8 2:26 5.06 423 0.173 0.052 0.216 12.09 0.93 1.43 3.84 3.74 305L 305R 2.74 2.16 6.58 5.91 203 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.309 0.216 0.312 12.09 2.04 2.33 3.62 3.56 3.62 3.56 204 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.225 0.312 0.432 12.09 1.95 2.31 3.64 3.57 3.64 3.57 301 8 3.92 13.96 2.32 2.32 166 0.232 0.384 0.204 5.21 3.29 2.58 0.83 0.93 0.83 0.93 302 ' 8 5.79 13.96 2.32 2.32 166 • 0.232 0.204 0.204 7.70 5.07 5.07 0.80 0.80 0.80 0.80 303 8 4.25 13.96 2.32 2.32 166 0.232 0.204 0.384 5.65 2.96 3.73 0.91 0.80 0.91 0.80 304 8 2.96 5.96 2.26 2.26 379 0.232 0.384 0.136 8.98 2.15 1.42 2.60 2.75 2.60 2.75 305 8 _ 3 5.96 2.26 2.26 379 0.232 0.136 1.104_ 9.10 1.45 4.36 2.74 2.16 2.74 2.16 Spreadsheet Column Definitions & Formulas L = Shear Panel Length 0 11 = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L Mo (Overturning Moment) = Wall Shear " Shear Application ht Mr (Resisting Moment) =Dead Load * L 0.5 " (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) Transverse Seismic Uplift Design Unit A Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. FIr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left ®. Floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) '(ft) (ft) k k k k plf kif k k kft kft kft k k k k k k 102 8 1.1667 1.75 3.50 0.114 • 0.9 1.27 2.284 653 0.152 0.192 0.832 10.40 0.57 1.69 7.91 7.11 0 0 7.91 7.11 103 8 1.1667 1.75 3.50 0.114 0.9 1.27 2.284 653 0.152 0.832 0.192 10.40 1.69 0.57 7.11 7.91 0 0 7.11 7.91 103A 8 1.1667 4.00 4.00 0.481 0.481 120 . 0.04 2.016 1.664 3.85 8.38 6.98 -1.06 -0.69 _ 0 0 -1.06 -0.69 104 8 1.1667 4.50 10.50 0.126 0.73 1.44 2.296 2 0.1 0.8 0.078 8.96 4.61 1.36 1.20 1.93 0 0 1.20 1.93 105 8 1.1667 3.00 10.50 0.126 0.73 1.44 2.296 219 . 0.048 0.252 0.156 5.97 0.97 0.68 2.04 2.14 0 0 2.04 2.14 106 8 1.1667 3.00 10.50 0.126 0.73 1.44 2.296 219 0.048 0.156 0.252 5.97 0.68 0.97 2.14 2.04 0 0 . 2.14 2.04 109 8 1.1667 4.58 17.08 0.114 0.9 1.27 2.284 134. 0.152 0.192 0.156 5.58 2.47 2.31 0,82 0.86 201L 201R 1.13 1.54 1.95 2.40 110 8 1.1667 12.50 17.08 0.114 0.9 1:27 2.284 - 134 0.096 0.156 0.192 15.23 9.45 9 :90 0.56 0 :53 201aL 201bR 1.32 1.32 1.88 1.85 111 8 1.1667 4.50 7.50 0.126 0.73 1:44 2.296 306 0.144 0.8 0.078 12.54 5.06 1.81 2.00 2.73 0 0 2.00 2.73 112 8 1.1667 1.50 7.50 0.126 0.73 1.44 2.296 306 0.048 0.252 0.234 4.18 0.43 0.41 3.79 3.82 0 0 3.79 3.82 • 113 8 1.1667 1.50 7.50 0.126 0.73 1.44 2.296 306 0.048 0.234 0.252 4.18 0.41 0.43 3.82 • 3.79 0 0 3.82 3.79 201 9 1.1667 3.92 10.80 - 0.9 1.27 2.17 201 0.225 0.432 0.156 • 7.63 3.42 2.34 1.16 1.41 301L 301R -0.03 0.13 1.13 1.54 201a 9 1.1667 4.17 10.80 0.9 1.27 2.17 201 0.225 0.156 0.156 8.11 2.61 2.61 • 1.38 1.38 302L 302R -0.06 - 0.06 1.32 1.32 201b 9 1.1667 2.71 10.80 0.9 ' 1.27 2.17 201 0.225 .0.156 0.432 5.27 1.25 2.00 1:53 1.28 303L 303R . 0.10 -0.06 1.63 1.22 202A 9 1.1667 2.96 11.96 0.73 1.44 2.17 181 0.173 0.432, 0.052 5.25 2.04 0.91 - ' 1.15 • 1.50 304L 304R 1.28 1.50 2.43 3.00 202B 9 1.1667 3.00 11.96 0.73. 1.44 2.17 181 0.173 0.052 0.216 5.32 0.93 1.43 1.49 1.35 305L 305R ' 1.50 0.63 2.99 1.97 203 9 1.1667 3.00 11.96 '0.73 1.44 2.17 ' 181 0.309 0.216 0.312 5.32 2.04 2.33 1.16 1.08 0 0 1.16 1.08 204 , 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 '0.225 ' 0.312 0.432 5.32 1.95 2.31 1.19 1.08 0 0 1.19 1.08 301 8 0 3.92 13.96 1.27 1.27 91 0.232 0.384 0.204 2.85 3.29 2.58 -0.03 0.13 0 0 -0.03 0.13 302 8 0 5.79 13.96 1.27 1.27 91 0.232 0.204 0.204 4.21 5.07 5.07 ' -0.06 -0.06 . 0 0 . -0.06 -0.06 303 8 0 4.25 13.96 1.27 1.27 91 0.232 - 0.204 0.384 3.09 2.96 3.73 0.10 -0.06 0 • 0 0.10 - 0.06 304 8 0 2.96 5.96 1.44 1.44 242 0.232 0.384 0.136 5.72 2.15 1.42 1.28 1.50 0 0 1.28 1.50 305 8 0 3.00 5.96 . 1.44 1.44 242 0.232 0.136 1.104 5.80 - 1.45 4.36 1.50 0.63 0 0 1.50 0.63 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L 1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) • Uplift T = (Mo -Mr) / (L - 6 in) • TRANSVERSE UPLIFT CALCULATIONS - SUMMARY UNIT A Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right k Simpson k k Simpson k . 102 Wind 21.31 Holdown None 0.00 Wind 20.79 None 0.00 103 Wind 20.79 Holdown None 0.00 Wind 21.31 None 0.00 103A Wind 6.00 Holdown HDQ8 w 3HF 6.65 Wind 6.24 HDQ8 w 3HF 6.65 104 Wind 5.58 Holdown HDQ8 w 3HF 6.65 Wind 6.06 HDQ8 w 3HF 6.65 105 Wind 6.45 Holdown HDQ8 w 3HF 6.65 Wind 6.52 HDQ8 w 3HF 6.65 i 106 Wind 6.52 Holdown HDQ8 w 3HF 6.65 Wind 6.45 HDQ8 w 3HF 6.65 109 Wind 8.45 Holdown HDQ8 w DF 9.23 Wind 8.75 HDQ8 w DF 9.23 110 Wind 8.18 Holdown HDQ8 w DF 9.23 Wind 8.09 HDQ8 w DF 9.23 111 Wind 8.02 Holdown HDQ8 w DF _ 9.23 Wind 8.51 HDQ8 w DF '9.23 112 Wind 11.44 Holdown HDU14 14.93 Wind 11.46 HDUI4 14.93 113 Wind 11.46 Holdown HDUI4 14.93 Wind 11.44 HDU14 14.93 201 Wind 4.82 Strap MST48x2 5.75 Wind 5.09 MST48x2 5.75 201a Wind 4.95 Strap MST48x2 5.75 Wind 4.95 MST48x2 5.75 201b Wind 5.15 Strap MST48x2 5.75 Wind 4.88 MST48x2 5.75 202A Wind 6.21 Strap MST60x2 8.11 Wind 6.59 MST60x2 8.11 nib 202B Wind 6.58 Strap MST60x2 8.11 Wind 5.91 MST60x2 8.11 _,) 203 Wind 3.62 Strap MST60 4.06 Wind 3.56 MST60 4.06 204 Wind 3.64 Strap MST60 _ 4.06 Wind 3.57 MST60 4.06 301 Wind 0.83 Strap MST37 1.79 Wind 0:93 MST37 1.79 302 Wind 0.80 Strap MST37 1.79 Wind 0.80 MST37 1.79 303 Wind 0.91 Strap MST37 1.79 Wind 0.80 MST37 1.79 304 Wind 2.60 Strap MST48 2.88 Wind 2.75 MST48 2.88 305 Wind 2.74 Strap MST48 2.88 Wind 2.16 MST48 2.88 x O • 13 = 0 z ❑ m Z '1 o ` 0 3 n ;10 CIPirdY9 -> onioD MOM/It-Veil 0 0 • 0 • 0 \ ! `r " J UA s \\ L p ^^ c` ) • 0 p- C \ Do(" •; SWon') CeU \rn -- p.1\O 1f ,� ' \01, 5LA\ -\ — , 30 00 \( 0C- fl : vt9i , o on/ • m J MM \/ ❑ ❑ • :103 CON d 40 b0=. ' pit :'ON eor 1 cf� — 1 :31V4 -- 3\N :A9 G t cr 0 c c- Z. 10e) Sv T►kv. l.tNC -►TH Amwt+�' ALuNcrk MA S LINT 0 TN IS LENtrT46 t.J EtS-114 1(NozYa� - .10 0kV 1 r J Y -4 a 0 SW 7At1.S LEIQC -DTI+ 0.,NUJi e P Love' ?: (s LONE ED- . G , , L -> �j it • U • I J ! I ' • o r 0 i 7 o 0 r,i r G off: f7 -I 0 c rl ). : 10E5 m Sw TN'ls LLfu&, mNt% wkrelt,e- NIA*, rats LfnJE ■ c F T a C ---1 IN ) Sw 11-1-ts Le N C..) TH A WrOc-, llt-I S LIN( 1 D.05 „ 0 .______.... 1 .$1.) A 0 ' 51 N 1 ,., , „cl' 10 - T1 1 0 8 52) I 0 r 1 6 r - .4.7:4",' "a0b ...... onomm.•■• 5w --c\r,v, Lei-c-N At.oNG, mic. LINA:17 - Vvn S ft , -)NmNd -3-u *)r S \I. MS ...t I—Li ( lo••• 0k M ,y a Q fr ( 4 � 1 C d cnx �® . [ -, . ,Tri --J ; p .., -,_. ..,,- ....„. ,.- -,,, L_ =-. ...:..' ..—. =. q 7., ..„- \,/,--------, _ 94- ,, ,. -......_„_____---- ., ,.. o 9 E 1 3Nn is . ry (— +Lt. -) cv 1 St R M S cc) Cr. 2 cJ BY DATE: - . O JOB NO.: G A ' ___ G O OF PROJECT: RE: 1);o ►m t'fccr \ fi e( a\- fccrn)-- UP- hovsc., ❑ ❑ vLtre.8 _ (0 d5 ' 4 1 } Wind (cvrkaIs) 6.5 4 Li z o w ott c onrag m (ij cU'1 = aU Ct W O m ❑ Cu = laol p...F 1 • Li Ca pac.1 fli or ur lotodced dia phvr ern 1130( IA) = as a 4,:k.f !. `31bc dick e Q U Z G /la Ira; onn 64 paci = (a55 pi -F-Vt4 )= 35i -> oV- 7 f f 0 U E • rr O li Z w ❑ . Z 0 O = I- 0_ 0 6 •• N I" -1-. ti Y ' N a N E -.` 5 0 bD a • a M 4- Lb DATE: �. � Joe No.: C i - O k , Br 1 ^ 1 PROJECT: R °oV aV - 61V. RE: Des . iCyN o n rn 1 bloc. rn r @ Stoll' S ❑ ❑ OpTioN 1. w J • li Z i*lall- 0 W j71t11 ~ 2 TR►a WIDTH: ON 1.*.-- F.. A ; k 2 - - 501 M T = C I 9 Ili" ¶o9 VLPr'S�S ►a 5" 0 Max 5 . 0 N-0(4.14 tAX -%= ' MI cr .Q o W 15'-3'' G o Z W O a E- s i c -11\.) imp Pcessuce z = - 0, at) QsC o r- R I - ne i Q De' n 91o,}es 3 c0 5pc.`n c ' k - k-h TOP 4u S Es 5' -Ile o z LUvW\ 1V (O(1 191iLF f o F l l Z w (\ t (} LX :: $ Z _ _I Cf5.a5 s 57121 # ct ❑ Z o 5 r �` / ty = 1 4-oi F# \ S =. M 5.12:tttEk,x \ 7-„. I e - '5' — GA r aifi4o. `- -3 1 Sv. _ V _ F1919* _ $Z #Ilr+Z F� (;-\C') = (BSD?SCXLAI.S Y‘.1s) 3 3 L Ict7p5. <- ) / 1. a. - f � o . • \r. 1 , F _ (SO ?s:. ( -co �). = at-10 cps L 7 �7 . okL x 0 I v C- - T11 o e 6 cY 2 g---L29 BY: .i \\ V DATE 6 _ \ . 4 2_' , 3 JOB NO.. / ' . - Q c PROJECT: RE: OP71 0 J 2 0 itl-. up. CIII\ . 2Np F LOO c∎ li o W Dca\l ooh PCIa e 3w Vwo� 1- W o 2 L ❑ - Tr; 0 1 A.» t h or\ zoiNT = 13 0 Moo( \o( S\--c ( o ?2tl ; ‘ r = 122- al ‘ O w V o Qe191-1 w1r\o Pees , an e = -ao.ck ps F Z Loci GI, or Nov 11 'o \0 c1-. _ aelip p . 0 V 1- 1• 1- I 1. u.) U Z T T yy2 R O ❑ v Fl, _ • T f 1,0mm= p u. z° vY `npx = �lflsfa . w ! 1 ❑ Z g ' ‘ 1 o fI F o d = (1-iXI aS) 6ac15 l t , J 6 1 r u 1 Ic..,, -.: (1,$)(3,S) = .S.'6G ,o. f \ / \ L , y _ (0. - )- 3 .s = a . ta8 ,0 1.5 Vz -4111 Le 15" A .,2 = 4::. V.z.: It.P. - 3.S'--\ A3,Sry s S.'"I its° o A , D...(, - 4Z ,0- CC's' a ° I = G t 3L f.S(o,5 /s) +- (.2_6 + a ,- 4( 0, b N. s,3(.04- o t a,c, 4 0 0 _' 'r S, 4- 4- 5 - ,3a� 0 r w -+t-4.13s b ="-- - ma c. ` tiCtki (. 11-Y1 4s J _ 14-G9-1,5 � T .4 4.115 \. W. 1 . F . \, ::-' (e 50 p6, ct,o 0-- ..-_-, `3ck-L. psi- .b = (,a3aC �'1 t, ta1,{ k 0. - Y1.Z.1.0)Cs.0> L;1... 4O\ ¶I iq - 1,30 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks4D Sizer 7.1 June 24, 2010 12:49:04 COMPANY 1 PROJECT RESULTS by GROUP - NDS 2005 . SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF = = -== ==- __-- _-___= L'c :..IIL � =6L= Mnf Trusses Not designed by request (2) 2x8 Lumber n -ply D.Fir -L No.2 1- 2x8 By Others Not designed by request (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 Typ Wall Lumber Stud Hem -Fir Stud 2x6 016.0 SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR == == c == === � = _==== = ' = = __ _�_____ Mnf Jst Not designed by request Sloped Joist Lumber -soft D.Fir -L No.2 2x6 616.0 (2) 2x8 (1) Lumber n -ply D.Fir-L No.2 1- 2x8 (2) 2x8 Lumber n -ply D:Fir-L No.2 2- 2x8 By Others Not designed by request By Others 2 Not designed by request (2) 2x12 Lumber n -ply D.Fir-L No.2 2- 2x12 5.125x10.5 Glulam - Unbalan. West Species 24F -V4 OF 5.125x10.5 4 %6 Lumber -soft D.Fir -L No.2 - 4x6 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 4x6 Lumber Post Hem -Fir No.2 4x6 (3) 2x6 Lumber n -ply Hem-Fir No.2 3- 2x6 (21 2x4 Lumber n -ply Hem -Fir No.2 2- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2X6 016.0 SUGGESTED SEC0ION5 by GROUP for LEVEL 2 - FLOOR =================....-========================================= _ _____- Not designed by request Mnf Jst =- _______� -__ Mnf Trusses Not designed by request Deck Jst Lumber -soft D.Fir-L No.2 2x8 016.0 (2) 2x8 Lumber n -ply D.Fir -L No.2 2- 2x8 3.125x9 Glulam- Unbalan. West Species 24F -V4 DF 3.125x9 4x8 Lumber-soft D.Fir-L No.2 4x8 By Others Not designed by request By Others 2 Not designed by request (2) 2x10 Lumber n -ply D.Fir-1. No.2 1- 2x10 5.125%12 GL Glulam - Unbalan. West Species 24F -V4 OF 5.125x12 By Others 3 Not designed by request 3.125x14 LSL LSL 1.55E . 2325Fb 3.5x14 (2) 2x6 Lumber n-ply Hem -Fir No.2 2- 2x6 4x4 Lumber Post Hem -Fir No.2 4x4 . 4x6 Lumber Post Hem -Fir No.2 4x6 (31 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 6x6 Timber -soft Hem -Fir No.2 6x6 (2) 2x4 Lumber n -ply Hem -Fir No.2 2- 2x4 6x6 nol Timber -soft D.Fir -L Noll 6x6 (3) 2x4 Lumber n -ply Hem -Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 016.0 SUGGESTED SECTIONS by GROUP for LEVEL 1 - FLOOR == Fnda==-= __ ... -= a = = == == = ______�_______ Not designed by request CRITICAL MEMBERS and DESIGN CRITERIA Group Member Criterion Analysis /Design Values • = =___ _= Mnf Jst =- = == __�_____________ Mnf Jst Not designed by request Deck Jst j65 Bending 0.41 Sloped Joist j30 Bending 0.10 • Floor Jst4 unknown Unknown 0.00 (2) 2x8 (1) b35 Bending 0.47 (2) 2x8 b8 Bending 0.89 3.125x9 b3 Bending 0.06 4x8 b30 Bending 0.12 By Others By Others Not designed by request By Others 2 By Others Not designed by request (2) 2x12 b6 Bending 0.93 (2) 2x10 bl Shear 0.78 5.125 %12 GL b10 Bending 0.76 By Others 3 By Others Not designed by request 5.125x10.5 b9 Deflection 0.95 416 b20 Bending 0.08 3.125x14 LSL 614 Deflection 0.73 (2) 2x6 c2 Axial 0.91 4x4 c55 Axial 0.07 4x6 c23 Axial 0.80 (3) 2x6 c29 Axial 0.75 . 6x6 c26 Axial 0.70 (2) 2x4 c39 Axial 0.62 6x6 nol c12 Axial 0.86 (3) 2x4 c31 Axial 0.89 Typ Wall w14 Axial 0.48 Fnd Fnd Not designed by request • DESIGN NOTES m: = == =s= === _==== :z = = =__ = = ====== 1. Please verify that the default deflection limits a a appropriate for your application. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result is considered the final design and appears in the Materials List. 3. ROOF LIVE LOAD: treated as snow load with corresponding duration factor. Add an empty roof level to bypass this interpretation. 4. BEARING: the designer is responsible for ensuring that adequate bearing is provided. 5. GLULAM: bxd = actual breadth x actual depth. 6. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 7. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 8. BUILT -UP BEAMS: it is a s umed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that ' each ply is equally top- loaded. Where beams are side - loaded, special fastening details may be required. • ` 9. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 10. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. • -- CE\ WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:41:17 Concept Mode: Beam View Floor 2: 8' b31 ll�v a � `'� .. 44 -0 0 s . : • b1 - : µL =0 4 "I -b yn 41.1 yb ---- -•- - --_ --- - > - --- ---- -- . - - y 4 30 -0' : y( -- - - 60 b ...14 -0 • y u a b2 ` s3 01 3L 0 : . _ _ _ 05 ... .`. 04 _ • . • 61/-0 L`J-b L0'-b . . L! b LC "b uu b10 :. _ - _ - / y - - . (0 / . .. ®- -'- . . 0- _,. - - -- -:- '- - - - - L b33 , : /b ; 0 l rL b32- : - . i0 -0 (U-' 14-0 .. _ • b y u .....b19)15 _ ,_ iu n of . • 0b ._ .. _. 04 • 05 y _ UG? i 6 1:. : • b : ■ n -b. • 00' b30i. . b2 —b3 . 0 .._. - . L b" BB\8.B BCCCCCCC C ECCC CC CCCC C CCC CCICC CD DD D D DD DFDDD DD DD DD D D DD CD\DD DE.E E E E EE 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66 68' 70' 72' 74' 76' 0'1'2'34'5'6'7'8'91(1 1; ' . 1 , 1 1 (1' 1:1'1(2 ;2:2 22(2 2£2:3(3 3;3:3 4A:44!4(4 4(5(5 5;5'.5 6 :6.66.'6(6:656717 7.77 7(77-6" • 141— C1N Woodworks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:41:19 Concept Mode: Column View Floor 2: 8' t(1,`r LOP t c58 c14J �J 105 G}-' --- -: - - 49-6' I U4 : - l UL 1 : 4b-0 WI, 40 -0 44 43 y9 4 3 - 70 - : ; - c69 C2': •c70 : c71: - ...: .; .. - ... 4L -0 EEO : El : . ❑ . .... ❑ . �- V0 37 b `J3 3 f -0 72 - C3 - .. Sb b V1 VU 07 33 -b 025 - "i :;__,. -- .- r .. ...: _'-- - _ . -.. -- - - ----- - - -- - -32 43 -5 1 b 250 : .. C4 • ..50 -b 00 - .. V43 OS - L1 -b OL _._ -: - :__ - ---- _ - -- - - .. ._. - Lb-0 0'I 20 -b av c25 c12 : . c26 .:.. : .. L4 -b f0 ❑ ❑ -- -- .-- --- LL b f r c72 LI _ /b c ac73 Lu -b ro 17 -b I L . .: - C3 1b -0 r i • -c78 - - -- 1 -o 07 .. [ - - - --- --- - _ -- - -- - ' - 0 00_._: _ c77 - - - .: - . - .- .. _ IL- c31 0 -b a 3 c 76 c 79: / ._ b .. k-.)L , �C 30 0c32. b . 0 .. 0U 4 43 c55c3'� ®{ � b .. BB\B.B BC CC C C CC CICCC CC CCCC C C CC CC\CC CD DDD D DD MOOD DD DD DD OD DD CD'DD DE.E EE EEE EFEEEEEE EEEEEEEtEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66 68' 70' 72' 74' 76' 0'173'4'5'6'7'8'91(1 1 ;1 :1 X1'1 i1'1 1 22:2 313Wt4 4:4:44.'4t4 4E4,3t5 5:5:5 6;6:6 77:7 4 - C WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 24, 2010 13:14:33 Concept Mode: Beam View Floor 2: 8' ( , t) . 1050 .. .. 331 ' w �T L� 49.6„ 4 103 _ 4410 -b 1 UL VU� -- : -- - - - - - - - -- - - 4 4 b 0 . : b34 :... .. 4L -b' `3b _ ..... .. . .. . - - .. .. . -. - - - - - 41 - 4U b ab y3 3b -b - 0 b yu - 34 -o b& b2 33 -b Of i 31 b -- - 60 .: 3V b -- -- - Lb b t51 LOS : bU_ ; :1310". , .. : L4 -b LS -b r r 333 L1-b 12 - - - - _ .... I ! b b32 lb 10 b (U 0 :; 1 -b e° - 31015 iL -e bb _ . _ . _ 00 - - . 343 II1 1v b a-b t5 b J -b nos !" b4 b14 A ' � b 0it� b30 "� b35-----11 „• a b29 0 b 3-b . b .. ili . ' . mit- • - - - - - . . .. . BB\B.B BC CCC CCC CtCCC CC CCCCC CCC CCSCC CD DD D DD DODDD CD DD DOD DDD CDVDD DE.E EE E`.EEEIEEE4EEiE EEEEEEUEEEEZ Cr 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' U1'2'3'4'567'8%91(1 1 :1 :1.1!1(1 :1(142(2 2;22.2.2 (2'2(243(33:3 :3.3(3!3 :.3(3!4(4'4:4:4.4'.4(4 5 :5:5.5!5(5'5( 546(66:6: 6.6(.6(6 :61647(7 7,7 :7.7.7(77-6” 4 - C.--)ii WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 24, 2010 13:14:35 Concept Mode: Column View Floor 2: 8' Q kQ Iiw1) + L�JJ7 V c58 c14 10 40 10 , . - .. 49'-6" 49 1 . „ 40 : :: _ :• . . - 4/ -b • 7UL .. -.; - - • - - - - - - 4b-b 1 43 -b I tit: - :. .. .. 44 -b 9 - 2s -C 82 - - -- 'c81 -- -- _ .. • _ 4L -0 :. .. . „ 41 _.. . _ . . ... -. �'-. .. - -` .... -. '.- - - - -- -- - - - - -- b yb - is ! - ... 3J b J4 325 -0 a s / 3 - ., SL b 250 : . 1 • . - - - - __ .' . - _ ... L0 --0 153 - .. L! - Lb b r,-.1 c25 c12 c26: , �s n . .. ©c72 - ra .- - b It/ F78 . ::: .:: , : _ : i , . _ . 1U � .. 73 b bri_. :. :C77 .: - - -- -. - -- -- -- =-- -' -- - —. .- . . 00 bo y -0 ,,1) - _ -C31 -c76 -c71 25 -u uL 5 3'$ c30 ' ®c32 u b.. IDU�.. o ❑__. 1133 CO/ : : COQ 4 c55 : c56F`°.�. o s _b L b -- Q .. I -b 88\ B. 8BCCCCCCCCtCCCCCCCCCCCCCCCICCCDDDDDDDDl DDDDDDD DDDODDCD1 DDDEEEEEEEE €EEEEE1EEEEEEEEtEEEEZ V 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'9111'1 ;1 :1 :111 1111 . 22 :2 :3 :3 313” 3/ 34( 4' 4; 4: 4 616 :6:6655(616t617(7 6" 4- (.._',-) WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:44 Concept Mode: Beam View Floor 3: 17' 1050 49 " -6" 104 , - 40.-0.. I U3 4 /'-b IUI - - - ` - --- ---- --- _ 4b - iUU :[ ... - - -- - - -- - - -. 44 - 0 .. - --. ---- :.. 43 -0 0 b35 : b6; 4L-0 3( -b ' JU 34. -0 tia . b7 ' 1 33' b tab 3U -0 03 tsu b9° L4 0 - -, / / b22 __ ■ Li 4 0 ;o -o ! i - b20' . - I o' -0 fU . 14-0 13-0 00., _ _b18b17 __ -._ Ic-b 03 oz. b8 BB\B.B BCCCCCCCCICCCCC CCCCCCCCCCICCCDDDDDDDD1DDD CD DD DDDDDDCDIDDDEEEE E EE'E}EEEEEEEEEEEEE(EEEEZ 0' 2' 4' 6' 8' 10' 1 14' 16' 18' 20' 22'24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 1 ;1:1 222 (2'2}2(.3(33;3:3 - 313(4(4 4:4:4 5:5:5 5.'5(5515!6166'6:6 7,77 , 7 .70/7-6" • 4 ..- (_'.1(9 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:42 Concept Mode: Column View Floor 3: 17' 1050... : - -: - - - . - .. .. .. _ .. 49' -6" f V4 . . 40. -0.. • IUL _ _ - ' 40 tr • 9 - . 4...1-b 0 c62 - c61 c15 ,. 4Z -0 25b C18 . c .. .. ; • . : SU b 04 .. - :. L25 -b' 0,5 : : L/ -0" 04 - - " --- - ..: -• "- :` -- - -- -.'-- _... - - -: - - - .. -- - - Lb -b c39 c24 c23 / / : L'I _b - I y - 0 (4 - : : : ... 1,1 - - --- - - - --- -- -- - - _ - 10-0 ... . - ... _. .. _ lb -b /1 c37i - • ..- - - ib - b 14-0 CSy . . . - _ . . - -- - -. - - . b0 1 - , c35. ._ 1 - - - -. _,. .:. - - -- - - -- - • .. - lL-b -�. _. b 3 - n C66 C63 . 0 -n • n� �� . n c756520 c1 c6C74 n' n • �u, - -' - s G'-b .BB\B.B BCCCC C CC CECCC CC CCCCC C CC CC1CC CD DDD D DD MOOD DO DD DD D D DD CD'DD. DEE E E EiE E'EFEEEIEEIE BEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70:72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 1 :1 :1 1112(2'2.`2;2 (2'212(3(33 :3:3 3t3W4'4: 44: 4( 4" 424E5i 55: 5: 5 5 :5t5T5t5!6(6 :6 77:77.7(77' -6" 4 — (.,#,-; • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:38 Concept Mode: Beam View Roof: 25' 105 _ . . . 49 -6 I U4 . .. _ .. 425 -b • I US - - 4/ -b.. IUL' - • - - - - - - - -- 40 -0 I U 1 .. ' : s 40 -b WU 44 _ • . • : : : yo - b23 . - _ .: b24 42 - o 1 - -- —.•- : - - - -- - -- -- - - - - - --- • _ • 41 -b Jb -' • JJ -b Vi : _ _:_. Jf b 23J J3 - • 230 Ly - 0 . , 233 � � � L 1 -b 232 ° ----- _ ..- _.. _ • . - -- - - - -- - • - • - -- Lb -0 0 I - L 5 -n 00 -- --':' '-',- - - -- -` : -- - '- -- -- - _ - - 24 - (y 23 -b (0 - -i .: - • . - -- 22 -0 im -b25.. [v b 1a .. J -b • : : • (U - - -- ------ - - -- - -- -. .. - -- ..- - - 4-b oy _ _ - 3 -b L b' bb - - -- -- -- ---- - ._. - - .. - -- - - - - - - - - .. .. ..._. -- U b27, - - -- --- _. --- -- - -- - - -- - - - --- - - 03 b28 b4 : ; � n 02, . . L00 i i _ b ._ b .. bl • b • bU) " 4. • iiiii*' -' : ; • ' . _ • • . ' 4 -4 • • 2 b • BB\BB BCCCCCCCCt CCCCCCCCCCCCCCC'CCCDDDDDDDDIDDD CD DD DDDD DDCD(DDDEE E E E'EE EFEEE'EE EHEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 01234567891 (1 1 :1 :1 10222: 222E22( 2033; 3: 3 3' .3i3 5:5:5 • • • ie- / 0. - - ( (?) • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:40 Concept Mode: Column View Roof: 25' 104 40 - 0 ' I0.5 -- -:--- -;- -- - ... - - -- - -- - - -- - - - - 4/ 0 I UL/ : 40 -0 IU1 - IOU - 44 -0 4 4 y 9 - 3 -b y25 c42 c43 : : - -c44 : c45 - - - - 42 -0 1 -_._ 4U -0 0 .1 -0 VG _ '- .. _ .. .. 30-0 1. SO b UU J -0 Oy - 33 -b 025 - - ... :_ - --: - - - - - - - - -- _ - -- '- --- -- SL -0 01 31-0 Ob JU b 00 LJ -0 253 - L - LO -0 0 _ L0 -b - -- - 1 i : . . c46: LL b 1b D u-b L L 0 C47 1:-.1-0 14 0 126-0 /2 _ .. --- -- - -.. _- ---- - --- -- ---- - - -- -. ._ _ _ _ 10-0 10-0 (0 -- - --- -- • - i .. ._. 14 b by _ -- - --- 13 -0. bb 12 -0 01 I I -0 bb .... - - - - - - -- - - ._ . -. .. - .. .- - -- -. .- _ .. IU b 02 .M.Dila -10 L218 ... c51050_ c52 c53 1 b 5 00 4 U I V -b 6618.6 8C CC C C CC C FCCC CC CCCCC C CC CC\CC CDDDD D DD DtODD CD DD DD D D DD CDIDD DEE E E E EE EFEEEEEiE EEEEEFEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38'40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66 68' 70 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 1 ;1:1 2 :22 212' :33 4:4:44!4(4'47415(5 5:5:5 676 0:6:6 '.6(6:62 7:7:7 -6" / _(,ICI COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:42 b1 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 w61 Dead Partial UD 613.2 613.2 2.50 3.00 plf 2 Snow Partial UD 795.0 795.0 2.50 3.00 plf . 3 c61 Dead Point 622 2.50 lbs 4 c61 Snow Point 1192 2.50 lbs 5_j28 Dead Full UDL 47.7 plf 6_j28 Live Full UDL 160.0 plf 7_j33 Dead Full UDL 120.2 plf 8 j33 Live Full UDL 370.0 _ plf MAXIMUM RE • 31 Dead 391 1061 Live 795 1615 Total 1186 2676 Bearing: Load Comb #2 #3 Length 0.63_ 1.43 Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2 -Plys Self- weight of 6.59 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis /Design Shear fv* 67 Fv' = 207 fv * /Fv' = 0.32 Bending( +) fb = 331 Fb' = 1138 fb /Fb' = 0.29 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.05 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb`+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 2676, V design* = 1237 lbs Bending( +): LC #3 = D +.75(L +S), M = 1178 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 158e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 4 - (1 0 COMPANY PROJECT M WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:43 b3 Design Check Calculation Sheet Sizer 7.1 • LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1j45 Dead Full UDL 17.0 plf 2 145 Live Full UDL 25.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : Ip' 91 Dead 106 106 Live 112 112 Total 218 218 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Glulam- Unbal., West Species, 24F -V4 DF, 3- 1/8x9" Self- weight of 6.48 plf included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 10 Fv' = 265 fv /Fv' = 0.04 Bending( +) fb = 140 Fb' = 2400 fb /Fb' = 0.06 Live Defl'n 0.01 = <L/999 0.30 = L/360 0.04 Total Defl'n 0.03 = <L/999 0.45 = L/240 0.06 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 218, V design = 182 lbs Bending( +): LC #2 = D +L, M = 491 lbs -ft Deflection: LC #2 = D +L EI= 342e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 61‘1 COMPANY PROJECT i 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:40 b6 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 c44 Snow Point 647 2.00 lbs 3 w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 w44 Snow . Partial UD 431.2 431.2 0.00 2.00 plf 5 c45 Dead Point 444 5.00 lbs 6 c45 Snow Point 647 5.00 lbs 7 w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8_w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9 Dead Full UDL 120.2 plf 10 j25 _Live Full UDL 370.0 plf MAXIMUM REACTIONS (Ibsl and BEARING LENGTHS (inl Dead 1436 1389 Live 1803 1803 Total 3239 3192 Bearing: Load Comb #3 • #3 Length 1.73_ 1.70 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys • Self- weight of 8.02 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (A11 LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. i)) COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:50 b8 Design Check Calculation Sheet Sizer 7.1 LOADS ( ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j14 Dead Full UDL 113.7 plf 2 j14 Live Full UDL 350.0 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : A I o 6 + Dead 357 357 Live 1050 1050 Total 1407 1407 Bearing: Load Comb #2 #2 Length _ 0.75 0.75 Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 77 Fv' = 180 fv /Fv' = 0.43 Bending( +) fb = 963 Fb' = 1080 fb /Fb' = 0.89 Live Defl'n 0.07 = <L/999 0.20 = L/360 0.33 Total Defl'n 0.10 = L/712 0.30 = L/240 0.34 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 1407, V design = 1123 lbs Bending( +): LC #2 = D +L, M = 2110 lbs -ft Deflection: LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 4- G3 COMPANY PROJECT WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12 :40 b9 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1_j50 Dead Partial UD 113.7 113.7 0.00 1.5D plf 2_j50 Live Partial UD 350.0 350.0 0.00 1.50 pif 3_j14 Dead Partial UD 113.7 113.7 3.00 9.00 pif 4_j14 Live Partial UD 350.0 350.0 3.00 9.00 plf 5_j51 Dead Partial UD 113.7 113.7 1.50 3.00 plf 6_j51 Live Partial UD 350.0 350.0 1.50 3.00 pif 7_j24 Dead Partial UD 120.2 120.2 0.00 3.00 plf 8_j24 Live Partial UD 370.0 370.0 0.00 3.00 plf 9_j25 Dead Partial UD 120.2 120.2 3.00 9.00 pif 10_j25 Live Partial UD 370.0 370.0 3.00 9.00 pif 11j26 Dead Partial UD 120.2 120.2 9.00 12.00 plf 12_j26 Live Partial UD 370.0 370.0 9.00 12.00 plf 13_j52 Dead Partial UD 113.7 113.7 9.00 10.50 plf 14_j52 Live Partial UD 350.0 350.0 9.00 10.50 plf 15_j53 Dead Partial UD 113.7 113.7 10.50 12.00 plf 16 j53 Live Partial UD 350.0 350.0 10.50 12.00 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : lo' - -- Dead 1478 1478 Live 4320 4320 Total 5798 5798 Bearing: - Load Comb #2 #2 Length 1.74_ 1.74 Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x10 -1/2" Self- weight of 12.39 plf included in loads; Lateral support top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 138 Fv' = 265 fv /Fv' = 0.52 Bending( +) fb = 2217 Fb' = 2400 fb /Fb' = 0.92 Live Defl'n 0.38 = L /381 0.40 = L/360 0.94 Total Defl'n 0.57 = L/252 0.60 = L/240 0.95 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 5798, V design = 4953 lbs Bending( +): LC #2 = D +L, M = 17395 lbs -ft Deflection: LC #2 = D +L EI= 890e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4_ c;:1 COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:43 b10 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Pat - Start End Start End tern 1 w39 Dead Partial UD 311.0 311.0 0.00 4.50 No 2_w39 Live Partial UD 680.0 680.0 0.00 4.50 No 3 c39 Dead Point 267 2.00 No 4 Live Point 822 2.00 No 5_j32 Dead Partial UD 120.2 120.2 0.00 0.50 No 6 332 Live Partial UD 370.0 370.0 0.00 0.50 No 7 Dead Partial UD 120.2 120.2 1.00 4.00 No (033 Live Partial UD 370.0 370.0 1.00 4.00 No 9 334 Dead Partial UD 120.2 120.2 9.00 4.50 No 10_334 Live Partial UD 370.0 370.0 4.00 4.50 No 11_j35 Dead Partial UD 120.2 120.2 4.50 7.50 No 12 j35 Live Partial UD 370.0 370.0 4.50 7.50 No 13_336 Dead Partial UD 113.7 113.7 4.50 16.50 No 14 j36 Live Partial UD 350.0 350.0 4.50 16.50 No 15_337 Dead Partial UD 100.7 100.7 3.00 4.50 No 16 337 Live Partial UD 310.0 310.0 3.00 4.50 No 17 347 Dead Partial UD 120.2 120.2 7.50 13.50 No 18_347 Live Partial UD 370.0 370.0 7.50 13.50 No 19_j48 Dead Partial UD 120.2 120.2 13.50 16.50 No 20_j48 Live Partial UD 370.0 370.0 13.50 16.50 No 21_349 Dead Partial UD 120.2 120.2 0.50 1.00 No 22 j49 Live Partial UD 370.0 370.0 0.50 1.00 No 23 b32 Dead Point 300 3.00 No 24 Live Point 922 3.00 No MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : i L X 3 ,1 • lo• 4'46" 16-61 Dead 452 4067 1180 Live 847 11291 3436 Uplift 12 Total 1300 15358 4616 Bearing: Load Comb #2 #2 #2 Length 0.50+ 4.24 1.27 Cb 1.00 1.09 1.00 'Min. bearing length for beams is 1/2" for exterior supports Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x12" • Self- weight of 14.16 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 265 fv /Fv' = 0.60 Bending(*) fb = 1074 Fb' = 2400 fb /Fb' = 0.45 Bending( -) fb = 1396 Fb' = 1844 fb /Fb' = 0.76 Live Defl'n 0.13 = <L/999 0.40 = L/360 0.32 Total Defl'n 0.19 = L/740 0.60 = L/240 0.32 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fb'- 1850 1.00 1.00 1.00 0.997 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 8357, V design = 6496 lbs Bending( +): LC #2 = D +L, M = 11006 lbs-ft Bending( -): LC #2 = 0 +1,, M = 14310 lbs -ft Deflection: LC #2 = D +L EI= 1328e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. Grades with equal bending capacity in the top and bottom edges of the beam cross- section are recommended for continuous beams. 4. GLULAM: bxd = actual breadth x actual depth. 5. Glulam Beams shalt be laterally supported according to the provisions of NDS Clause 3.3.3. 6. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). i q GliC COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:44 b13 Design Check Calculation Sheet • Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 ^ w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 Dead Point 217 5.50 lbs 4 Live Point 668 5.50 lbs 5 Dead Point 518 5.00 lbs 6 Snow Point 778 5.00 lbs 7 Dead Point 573 3.00 lbs 81c68 Snow Point 942 3.00 lbs 9 w59 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10_w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12_j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13_j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14_j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15_j Dead Partial UD 22.7 22.7 0.00 3.50 plf 16_j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 181115 Live Point 389 3.50 lbs 19_b32 Dead Point 225 6.50 lbs 20 b32 Live Point 693 6.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : _-_�� r,+,r...- "`'5qt -.c. `ma ....�. 's:y� -� = - •:'..,. ��`- "°'c_ . 10' 81 Dead 2561 3033 Live 2699 3789 Total 5261 6822 Bearing: Load Comb #3 #3 Length 1.88 2.44 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in Toads; Lateral support top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L/680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC #3 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. • 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. - Cn II COMPANY PROJECT I WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:43 b14 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft' Units Start End Start End 1 w33 Dead Partial UD 317.7 317.7 9.00 12.00 plf 2 Live Partial UD 350.0 350.0 9.00 12.00 plf 3 c19 Dead Point 357 9.00 lbs 4_c19 Live Point 1050 9.00 lbs 5_c20 Dead Point 357 3.00 lbs 6_c20 Live Point 1050 3.00 lbs 7_w34 Dead Partial UD 317.7 317.7 0.00 3.00 plf 8_w34 Live Partial UD 350.0 350.0 0.00 3.00 plf 9 c64 Dead Point 165 10.50 lbs 10 c64 Snow Point 225 10.50 lbs 11 c65 Dead Point 165 1.50 lbs 12 c65 Snow Point 225 1.50 lbs 13_j36 Dead Full UDL 113.7 plf 14 j36 Live Full UDL 350.0 plf 15 j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 16 Live Partial UD 25.0 25.0 0.00 0.50 plf 17 Dead Partial UD 17.0 17.0 0.50 1.50 plf 18 j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 19_j45 Dead Partial UD 17.0 17.0 1.50 10.50 plf 20 j45 Live Partial UD 25.0 25.0 1.50 10.50 plf 2046 Dead Partial UD 17.0 17.0 10.50 12.00 plf 22 j46 Live _ Partial UD 25.0 25.0 10.50 12.00 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : . . .. _ . -- r_- - r... � � - - �+_t- "".^. .= � ..--.- -,.._- '� _-- --- - y...a.,., .a�� �"*' -- - are- �•.��� ._: '~�'�T: _ ��� ' _ - � 7 . - .r �.._'•,� 6 ' �_y.�° -" _ ,rte° . "". - ,�_'`s Wit _ °fi IA • 1 0' 124 Dead 2351 2351 Live 4350 4350 Total 6701 6701 Bearing: Load Comb #2 #2 Length 2.39_ _ 2.39 • LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight of 15.31 plf included in Toads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 163 Fv' = 310 fv /Fv' = 0.52 Bending( +) -fb = 1769 Fb' = 2325 fb /Fb' = 0.76 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.43 = L/333 0.60 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 6701, V design = 5314 lbs Bending( +): LC #2 = D +L, M = 16851 lbs -ft Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. /$9. ...-- 1 ' Rt.- COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:41 b20 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ftj Units Start End Start End 1_j30 Dead Full UDL 21.7 plf 2 Live Full UDL 60.0 plf MAXIMUM REA(=TIf 1111c1 and RFORIMC4 1 FN(T41C /in) • IV 3 6 'l Dead 46 46 Live 105 105 Total 151 151 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x6" Self- weight of 4.57 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 9 Fv' = 180 fv /Fv' = 0.05 Bending( +) fb = 90 Fb' = 1170 fb /Fb' = 0.08 Live Defl'n 0.00 = <L/999 0.12 = L/360 0.02 Total Defl'n 0.00 = <L/999 0.18 = L/240 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 151, V design = 111 lbs Bending( +): LC #2 = D +L, M = 132 lbs -ft • Deflection: LC #2 = D +L EI= 78e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. • COMPANY PROJECT f fl WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:50 b30 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j41 Dead Partial UD 68.0 68.0 2.00 4.00 plf 2_j41 Live Partial UD 100.0 100.0 2.00 4.00 plf 3_j42 Dead Partial UD 72.2 72.2 0.00 2.00 plf 4 j42 Live Partial UD 106.2 106.2 0.00 2.00 plf MAXIMUM REACTIONS final and BEARING I FN(THS /inl • • 10' 4 A Dead 154 150 Live 209 203 Total 364 353 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x8" Self- weight of 6.03 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 15 Fv' = 180 fv /Fv' = 0.08 Bending( +) fb = 140 Fb' = 1170 fb /Fb' = 0.12 Live Defl'n 0.00 = <L/999 0.13 = L/360 0.03 Total Defl'n 0.01 = <L/999 0.20 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 364, V design = 253 lbs Bending( +): LC #2 = D +L, M = 359 lbs -ft Deflection: LC #2 = D +L EI= 178e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. • 19 • COMPANY PROJECT 111 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:42 b31 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1_j65 Dead Partial UD 47.7 47.7 0.00 4.00 plf 2_j65 Live Partial UD 160.0 160.0 0.00 4.00 plf 3_j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4_j28 Live Partial UD 160.0 160.0 4.50 7.50 plf 5_j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 6_j62 Live Partial UD 160.0 160.0 7.50 11.00 plf 7_j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 8_j63 Live Partial UD 160.0 160.0 11.00 17.00 plf 9_j64 Dead Partial UD 47.7 47.7 17.00 20.00 pif 10_j64 Live Partial UD 160.0 160.0 17.00 20.00 plf 11_j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 12 j66 Live Partial UD 160.0 160.0 4.00 4.50 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : lo' 20+ Dead 619 619 Live 1600 1600 Total 2219 2219 Bearing: Load Comb #2 # Length 0.67 0.67 Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x12" Self- weight of 14.16 pif included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 49 Fv' = 265 fv /Fv' = 0.18 Bending( +) fb = 1082 Fb' = 2400 fb /Fb' = 0.45 Live Defl'n 0.43 = L /553 0.67 = L/360 0.65 Total Defl'n 0.69 = L /350 1.00 = L/240 0.69 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 • Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 2219, V design = 1997 lbs Bending( +): LC #2 = D +L, M = 11095 lbs -ft Deflection: LC #2 = D +L EI= 1328e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4 _ c (40 COMPANY PROJECT ' 111 I I %Vo od VVor k s® June 24. 201017:15 D34 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Sb47.1 LOADS iIhs.psf.ur Of : Load Type Distribution Magnitude Location (ft] Units Start End start Snd . _0.62 Dead Partial UD 613.2 613.2 0.00 2.00 pif • 062 Snow Partial UD 195.0 195.0 0.00 2.00 plf w29 Dead Partial UD 611.5 611.5 1.50 11.00 pif _v29 Snow Partial UD 801.2 601.2 1.50 11.00 plf _015 Dead Point 1436 11.00 lb. c15 5010 Point 1404 11.00 158 c16 Dead Point 1289 11.00 lb. _016 Snow Point 2404 11.00 lbs w64 Dead Partial UD 611.5 611.5 17.00 18.00 pif 0 0.64 Snow Partial VD 801.2 801.2 11.00 18.00 pif 1:61 Dead Point 622 7.00 lbs ' 2:61 Snow Point 1192 7.00 lb. c62 Dead Point 622 4.00 lb. 4 Snow Point 1192 4.00 lb. .5 Dead Partial VD 613.2 613.2 2.00 4.00 plf 6_w63 Snc0 Partial VD 795.0 195.0 2.00 4.00 pit v65 Dead Partial UD 617.5 617.5 18.00 20.00 pif 9 Snow Partial U0 801.2 801.2 18.00 20.00 pif 9 vll Dead Partial UD 613.2 613.2 1.00 1.50 pif 0 Sn_v Partial U0 795.0 795.0 7.00 7.50 plf -1_164 Dead Part1.1 UD 41.1 47.7 17.00 19.00 plf 2_164 L104 Partial UD 160.0 160.0 1 18.00 pif 23_129 Dead Partial U0 47.1 47.7 4.50 7.50 pit 4 129 Live Partial 110 160.0 160.0 4.50 7.50 pif . 25 362 Dead Partial UD 41.1 47.7 7.50 11.00 plf 26_162 Live Partial VD 160.0 160.0 7.50 11.00 plf 27_148 Dead Partial VD 120.2 120.2 0.00 2.00 plf 28_049 Live Partial UD 370.0 310.0 0.00 2.00 pit 20_132 Dead 74(rtial UD 120.2 120.2 3.50 4.00 pif 30_132 Live Partial U0 370.0 310.0 3.50 4.00 pif 31_333 Dead Partial VD 120.2 120.2 4.50 7.50 pif 32_333 Live Partial 00 370.0 370.0 4.50 7.50 pif 33_134 Dead Partial VD 1:0.2 120.2 7.50 9.00 pif . 34_334 Live Partial UD 370.0 370.0 1.50 3.00 pif 35_135 Dead Partial UD 120.2 120.2 9.00 11.00 plf 36_335 LSV4 24:10.0 UD 370.0 370.0 9.00 11.00 pif 37_347 De.3 Partial 00 120.2 120.2 11.00 17.00 pif 30_147 Live Partial UD 370.0 370.0 11.00 17.00 pif 39_167 Dead Partial UD 120.2 120.2 2.00 3.50 plf 4 167 Live P.rtial UD 310.0 370.0 2.00 3.50 pif 41_149 Dead Partial UD 120.2 120.2 4.00 4.50 pif 42_349 Live Partial UD 370.0 370.0 4.00 4.50 plf 43_363 Dead Partial UD 41.7 47.7 11.00 17.00 pif 44_163 Live Partial U0 160.0 160.0 11.00 17.00 pif 45_165 Dead Partial U0 41. 47. 10.00 20.00 pif 46_165 Live Partial UD 160.0 160.0 10.00 20.00 p11 7_166 Dead Partial UD 47.7 47.1 4.10 4.50 p/1 48_266 Live Partial VD 160.0 160.0 4.00 4.50 pif 49_360 Dead Partial UD 120.2 120.2 17.00 19.00 pif 50_360 Live Partial UD 370.0 310.0 17.00 16.00 plf 51_169 Dead Partial U0 120.2 120.2 19.00 20.00 pif 52_360 Live Partial UD 370.0 310.0 19.30 20.00 pif 53_372 Dead Partial U0 41.1 47.7 2.00 4.00 pif 54_102 Live Partial UD 160.0 160.0 2.00 4.00 pif 5 313 Dead Partial UD 41.1 47.7 0.00 2.00 plf 56 173 Live Partial UD - 160.0 160.0 0.00 2.00 _ oif MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (In) : Dead 9405 1327 Live 9956 9979 Total 17361 17305 Eearinc: Lead orb 83 13 Length 5.21 5.19 • Glulam -Bat., West Species, 24F -V8 DF, 5- 118x22 -1/2" Sel/-waly! of 2555 pit b.JUdad in bada: Lateral support top. 0A. *dome Analysis vs. Allowable Stress (psi) and Deflection (in) 0singtm52005: Criterion Anal'tsie Value _Design Value Ana10. /DeS17n Shear 1v ■ 192 Fv' - 305 1v /FV' ■ 0.60 Bending(*) fb - 2392 Fb' - 2604 ft/7W ■ 0.92 Live Oefl'n 0.40 - L /595 0.61 . 1/360 0.60 Total Den 0.94 - 1/ 225 1.00 - 1/240 0.84 ADDITIONAL DATA: FACTORS: F/0 CD CM C[ CL C/ Cfu Cr C1rt I LC. 6/' 265 1.15 1.00 1.00 1.00 1.00 1.00 3 F6'4 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 Fop' 650 1.00 1.00 - - E• 1.9 m1111an 1.00 1.00 - - - - 1.00 - - Em1n' 0.35 million 1.00 1.00 - Shear : LC 83 - 04.75(1-71. V - 11361. V design ■ 139E2 1b3 Bording(01: LC 13 - D1.7510,51. 0 - 86139 0bn -ft Deflection: LC 13 - 0•.1510,51 EI- 005606 10 -1n2 Total Deflection. - 1.50(Dead Load Deflection) 4 Live Load Deflect:rm. (D-dead L-11ve 5-.ncv 14-wind I-1npact C■ccn.tructi00 CLd- ccnc.:6:46,d1 (A11 LC'e • e Bator In the Analysis output) . Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limb are appropriate fa your .W113140. 2. Ghtlam design values are for materials conforming to AITC 117 -2001 and manufactured 05.ccadanue with ANSVAITC A190.1 -1992 3. GLULAM: 440 4 actual breadth x actual depth. . 4. G6dem Bans anal be latera*y supported eccadlrg to the provisions of NM Chum 3.33. 5. GLULAM: bearing length based on smaller of Fep(lensian). Fep(cornp'n). /4 ...... " C l i r C) . t. Ci COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN • June 24, 2010 12:49 b35 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 j21 Dead Partial UD 120.2 120.2 0.50 1.50 plf 2 j21 Live Partial UD 370.0 370.0 0.50 1.50 plf 3_j59 Dead Partial UD 120.2 120.2 0.00 0.50 plf 4_j59 Live Partial UD 370.0 370.0 0.00 0.50 plf 5_j60 Dead Partial UD 120.2 120.2 1.50 3.00 plf 6 j60 Live _ Partial UD 370.0 370.0 _ 1.50 3.00 _ plf MAXIMUM REF fl 1 %SIf ,.. . • ••..W11•01 •• I0 3i Dead 188 188 Live 555 555 Total 743 743 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads; Lateral support: top= full, bottom = at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 31 Fv' = 180 fv /Fv' = 0.17 Bending( +) fb = 254 Fb' = 1080 fb /Fb' = 0.24 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 743, V design = 444 lbs Bending( +): LC #2 = D +L, M = 557 lbs -ft Deflection:,LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. COMPANY PROJECT IS WoodWorks® SOFTWARE FOR WOOD DESFGN June 24, 2010 12:51 c2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_bl Dead Axial 1056 (Eccentricity = 0.00 in) 2 Rf.Live Axial 2153 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): D 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 2 -Plys Self- weight of 3.41 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 0.00= 0.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 196 Fc' = 980 fc /Fc' = 0.20 Axial Bearing fc = 196 Fc* = 1644 fc /Fc* = 0.12 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.596 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 3236 lbs Kf = 1.00 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT : l W oodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:54 c12 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c24 Dead Axial 1478 (Eccentricity = 0.00 in) 2 Live Axial 4320 (Eccentricity = 0.00 in) 3 Dead Axial 4067 (Eccentricity = 0.00 in) 4 Live Axial 11291 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): Fi"sa' v _ L.^�.- 1\r'•s%.' .� ''wc5 {f- r'ysYiS� �� •v.- .s�:h' . ...siu?'�' '- "�._,.� rsr� ._tx: �!.3.2t�� • 0' 8' Timber-soft D.Fir -L, No.1, 6x6" Self- weight of 7.19 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 701 Fc' = 820 fc /Fc' = 0.86 Axial Bearing fc = 701 Fc* = 1000 fc /Fc* = 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC # Fc' 1000 1.00 1.00 1.00 0.820 1.000 - - 1.00 1.00 2 Fc* 1000 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 21214 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 4- ()VI COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DE.OGN June 24, 2010 12:53 c23 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b9 Dead Axial 1478 (Eccentricity = 0.00 in) 2 Live Axial 4320 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): C _ 1 0' 9' Lumber Post, Hem -Fir, No.2, 4x6" Self- weight of 3.98 pif included in Toads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 303 Fc' = 379 fc /Fc' = 0.80 Axial Bearing fc = 303 Fc* = 1430 fc /Fc* = 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.265 1.100 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 5834 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. (:1 COMPANY PROJECT I WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:54 c26 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c23 Dead Axial 1478 (Eccentricity = 0.00 in) 2 c23 Live Axial 4320 (Eccentricity = 0.00 in) 3 b10 Dead Axial 1180 (Eccentricity = 0.00 in) 4 Live Axial 3436 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): - 0' 8' Timber -soft, Hem -Fir, No.2, 6x6" Self- weight of 6.25 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft); Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 346 Fc' = 492 fc /Fc' = 0.70 Axial Bearing fc = 346 Fc* = 575 fc /Fc* = 0.60 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.00 1.00 1.00 0.856 1.000 - - 1.00 1.00 2 Fc* 575 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 10465 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2+L COMPANY PROJECT I WoodWorks SOFTWARE FOR WOOD DESIGN June 24, 2010 12:52 c29 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b13 Dead Axial 3033 (Eccentricity = 0.00 in) 2 Rf.Live Axial 5052 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): d 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 3 -Plys Self- weight of 5.11 pif included in Toads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 328 Fc' = 439 fc /Fc' = 0.75 Axial Bearing fc = 328 Fc* = 1644 fc /Fc* = 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.267 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 8126 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. • 4 r COMPANY PROJECT i WoodWorks® SOF WARE FOR WOOD DESIGN June 24, 2010 12:55 c31 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b13 Dead Axial 2561 (Eccentricity = 0.00 in) 2 Rf.Live Axial 3599 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 1 0' 8 ' Lumber n -ply, Hem -Fir, No.2, 2x4 ", 3 -Plys Self- weight of 3.25 plf included in Toads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 393 Fc' = 443 fc /Fc' = 0.89 Axial Bearing fc = 393 Fc* = 1719 fc /Fc* = 0.23 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.258 1.150 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 6186 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) • (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT 111 --,‘; Wood Works® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:54 c39 Design Check Calculation Sheet Sizer 7.1 LOADS psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b21 Dead Axial 267 (Eccentricity = 0.00 in) 2 b21 Live Axial 822 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 0' 9' Lumber n-ply, Hem-Fir, No.2, 2x4", 2-Plys Self-weight of 2.17 plf included in loads; Pinned base; Loadface = depth(d); Built-up fastener: nails; Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design' Axial fc = 106 Fc' = 171 fc/Fc' = 0.62 Axial Bearing fc = 106 Fc* = 1495 fc/Fc* = 0.07 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.114 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 1108 lbs Kf = 0.60 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. 4,6121 COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:52 c55 • Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b30 Dead Axial 154 (Eccentricity = 0.00 in) 2 Live Axial 209 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 8 ' Lumber Post, Hem -Fir, No.2, 4x4" Self- weight of 2.53 plf included in Toads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft); Ke x Ld: 1.00 x 8.00= 8.00 [ft); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 31 Fc' = 470 fc /Fc' = 0.07 Axial Bearing fc = 31 Fc* = 1495 fc /Fc* = 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.315 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 384 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 0 1441 DATE: ( — — aO \ O JOB NO.: C E -Q o OF PROJECT: RE: '6CMr$ W 1 Lai-cat eck ar5 ❑ ❑ w J Z am b -> Walk s 2 03 303 O f ❑ beU, Vn , 3 - 1Wc&t S ao a' aoa Q cc 0 ►Jeotrn l 4 - 5 Wokas a.U"� ' a° `'I O w U Z W � a b earn lt5 as t , ac ao e c 0 S nc u d Ceckal S > SreLSmtc_ reatk CY\S Z Or■V u)irdk wttt he ealcL)Icrvec1 0 O li Z ❑ z D • O a> ,r a 0 an a • ( 7e' ()) COMPANY PROJECT I WoodWorks® SOF7WAXE FOR WOOD DESIGN June 24, 2010 13:07 b6 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 c44 Snow Point 647 2.00 lbs 3 w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 c45 Dead Point 444 5.00 lbs 6_c45 Snow Point 647 5.00 lbs 7 w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf • 6 w45 Snow Partial UD 431.2 431.2 5.00 6.00 pif 9_j25 Dead Full UDL 120.2 plf 10 j25 Live Full UDL 370.0 plf WIND1 Wind Point 800 2.00 lbs WIND2 Wind Point -910 5.00 lbs MAXIMUM REACTIONS (Ibsl and BEARING LENGTHS (inl : i o 61 Dead 1436 1389 Live 2089 1803 Total 3525 3192 Bearing: Load Comb #4 #3 Length 1.88 1.70 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in loads; Lateral support top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.15 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 4 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 4 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #4 = D +.75(L +S +W) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 14 632_ COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 13:07 b6 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c44 Dead Point 444 2.00 lbs 2_c44 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 _ c45 Dead Point 444 5.00 lbs 6c45 Snow Point 647 5.00 lbs 7 _ w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8_w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9 j25 Dead Full UDL 120.2 plf 10 j25 Live Full UDL 370.0 plf WIND1 Wind Point -800 2.00 lbs WIND2 Wind Point 910 5.00 lbs MAXIMUM REACTIONS (Ibs► and BEARING L ENGTHS (inl : • 10, 61 Dead 1436 1389 Live 1803 2172 Total 3239 3561 Bearing: Load Comb #3 #4 Length 1.73 1.90 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #3 = D+.75(L+S) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: • 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. ..._ COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 201013:09 b14 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plt) : Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2 Live Partial UD 350.0 350.0 9.00 10.50 plf 3 Dead Point 357 9.00 lbs 4 c19 Live Point 1050 9.00 lbs 5 c20 Dead Point 357 3.00 lbs 6 c20 Live Point 1050 3.00 lbs 7 w66 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8 w66 Live Partial UD 350.0 350.0 0.00 1.50 plf 9 c64 Dead Point 165 10.50 lbs 10_c64 Snow Point 225 10.50 lbs 11 c65 Dead Point 165 1.50 lbs 12 c65 Snow Poiot 225 1.50 lbs 13 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14 w67 Live Partial UD 350.0 350.0 1.50 3.00 plf 15 Dead Partial UD 317.7 317.7 10.50 12.00 plf 16 Live Partial UD 350.0 350.0 10.50 12.00 plf 17 Dead Full UDL 113.7 plf 18 Live Full UDL 350.0 plf 19 j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20_j43 • Live Partial UD 25.0 25.0 0.00 0.50 plf 21_j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22 j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 23_j45 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24j45 Live Partial UD 25.0 25.0 1.50 3.00 plf 25_j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26_j46 Live Partial UD 25.0 25.0 10.50 12.00 plf 27 j70 Dead Partial UD 17.0 17.0 3.00 9.00 plf 28 Live Partial UD 25.0 25.0 3.00 9.00 plf 29_j71 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30 j71 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point 3560 3.00 lbs WIND2 Wind Point -3640 9.00 lbs wind3 Wind Point -3620 0.00 lbs winds Wind Point 3570 12.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : -- - - w "sa.�:. •e+. s; - �-+ -- fir= � -'7"-- - '-' s .- -:.a. ..,... -.- se _ - wa . - T -'"'� "-" yam' '�'^�fi -� 4 f. ' ' ' .�°? 1�. .„_,.. sc i.� .. _+s-."�m..i+".�+i_ = : �S+- ."ewe. =- oi ._-' "i--- 'Y� `'- "s�" .„ '.„` ' - 'i=o n m"'L" - ' - ' . .;..1..r ,, e - a• -- ,,., ..... - . .: - - - y = "'fie - ... - 1 0' 121 Dead 2207 2207 Live 4350 4350 Uplift 499 479 Total 6557 6557 Bearing: Load Comb #2 • 62 Length 2.34 2.34 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self -weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 310 fv /Fv' = 0.51 Bending( +) fb = 1735 Fb' = 2325 fb /Fb' = 0.75 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.42 = L/343 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC 82 = D +L, V = 6557, V design = 5170 lbs . Bending( +): LC 82 = D +L, M = 16527 lbs -ft • Deflection: LC tt2 = D+L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live S =snow W =wind I= impact C= construction CLd =concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC • DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 1 6 3L#f COMPANY PROJECT 1 WoodWorks SOFTWARE FOR WOOD DESIGN June 24, 2010 13:09 b14 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pN ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2 w68 Live Partial UD 350.0 350.0 9.00 10.50 plf 3 c19 Dead Point 357 9.00 lbs 4 Live Point 1050 9.00 lbs 5 Dead Point 357 3.00 lbs 6 Live Point 1050 3.00 lbs 7 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8 Live Partial UD 350.0 350.0 0.00 1.50 plf . 9 c64 Dead Point 165 10.50 lbs 10_c64 Snow Point 225 10.50 lbs 11 c65 Dead Point 165 1.50 lbs 12 c65 Snow Point 225 1.50 lbs 13_w67 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14_w67 Live Partial UD 350.0 350.0 1.50 3.00 plf 15 w69 Dead Partial UD 317.7 317.7 10.50 12.00 plf 16 Live Partial UD 350.0 350.0 10.50 12.00 plf 17_ 136 Dead Full UDL 113.7 plf 18_136 Live Full UDL 350.0 plf 19_143 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20_j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 21_j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22_144 Live Partial UD 25.0 25.0 0.50 1.50 plf 23j45 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24 j45 Live Partial UD 25.0 25.0 1.50 3.00 plf 25_ j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26_j46 Live Partial UD 25.0 25.0 10.50 12.00 plf 27 170 Dead Partial UD 17.0 17.0 3.00 9.00 plf 28 j70 Live Partial UD 25.0 25.0 3.00 9.00 plf 29_ 171 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30 j71 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point -3560 3.00 lbs WIND2 Wind Point 3640 9.00 lbs wind3 Wind Point 3620 0.00 lbs winds Wind Point -3570 12.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : s +gy .-1'r". -. ;, ;� "'r �.+w. 44 �r.:� Vi.:- -- "- ; N ^ � _ • Dead 2207 2207 Live 4826 4811 Total 7033 7018 Bearing: Load Comb #4 #4 Length 2.51 2.51 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 158 Fv' = 310 fv /Fv' = 0.51 Bending( +) fb = 1735 Fb' = 2325 fb /Fb' = 0.75 Live Defl'n 0.25 = L/573 0.40 = L /360 0.63 Total Defl'n 0.42 = L/343 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 6557, V design = 5170 lbs Bending( +): LC 92 = D +L, M = 16527 lbs -ft Deflection: LC 82 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer.' 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 4 - G 3C COMPANY PROJECT i WoodWorks® ) SOF7WARZFOR woos DESIGN June 24, 2010 13:11 b13 LC1 • Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psi, or pit) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2_w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3_c40 Dead Point 217 5.50 lbs 4_c40 Live Point 668 5.50 lbs 5 c67 Dead Point 518 5.00 lbs 6 • Snow Point 778 5.00 lbs 7_c68 Dead Point 573 3.00 lbs 8_c68 Snow Point 942 3.00 lbs 9 w59 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10_w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12 j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13_j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14_j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15_j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16_j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17_b15 Dead Point 126 3.50 lbs 18 b15. Live Point 389 3.50 lbs 19 Dead Point 225 6.50 lbs 20 Live Point 693 6.50 lbs W1 Wind Point 6590 0.00 lbs W2 Wind Point -6590 3.00 lbs W3 Wind Point 6590 5.00 lbs W4 Wind Point -6590 8.00 lbs MAXIMUM _ llhs) and RFARING I FNGTHS lint -.xF. r, ..sor: -' s "q,. _ . oo „ ' - =•av ' T 1 - ,ti • `= - - '�'m - -. ,. tea_ 4 o " '.ov ... ;r ".' _�.."�a...ae _mac... �r �r .,J_ .. _ .r"� � � ..- ," . ,.p• ' _�°_ V r+ �- -d►t +� --.74 72,,z " � - � +tea '-j'G � - n• ,-.11._ " .���a'. _ � � _ .7.." .rte � -.• 1 0 • 8 t Dead 2561 3033 Live 6406 3789 Uplift 3098 Total 8968 • 6822 Bearing: Load Comb #4 #3 Length 3.20 2.44 LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight 0115.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv/F1.0 = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' - 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L /680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC #3 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live S =snow W =wind I= impact C =construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. • 4 - (13G COMPANY PROJECT f fl WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 13:11 b13 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS l lbs. psi, or Of ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 Dead Point 217 5.50 lbs 4 c40 Live Point 668 5.50 lbs 5 Dead Point 518 5.00 lbs 6 c67 Snow Point 778 5.00 lbs 7 Dead Point 573 3.00 lbs 8_c68 Snow Point 942 3.00 lbs 9 w59 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10_w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12 Live Partial UD 310.0 310.0 6.50 8.00 plf 13_j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14 j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16 j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 18 Live Point 389 3.50 lbs 19 b 32 Dead Point 225 6.50 lbs 20 - b32 Live Point 693 6.50 lbs W1 Wind Point -6590 0.00 lbs W2 Wind Point 6590 3.00 lbs W3 Wind Point -6590 5.00 lbs W4 Wind Point 6590 8.00 lbs MAXIMUM REACTIONS llhsl and BEARING I FNGTHS lin) : .., . ^^� :� :•^ ..' ter-= "� - 1", a :� ''^ -.- �- -+... ....- -. ,e3.,.,- - '--- ;.. -_: h`.- , = -,-.-- ar- •,. �- - �.., . . --'• -- ,,.- -. _ -^ �.a ..." a = arm _ . .. = i .F= =+�.- te ''^: • 'y , - '•._ r ...: r .» - mo o `a ,., .._ --- ' , , r Ta ..._'-- '•os:r -,., - - ;,, ► q .. " ft..0.R„ "` ++e:.!! �-7-..z.-•---...- •� - - -.. .ales� � `i�s _ .�t� , ems s. ,.;.nom -, � - _ ...et- - a..- r:. ' `'.., r. -mss+. -. - � - ' � + ,r .► _ �v...a' � - •. r tra+�- . * lf I a 81 Dead 2561 3033 Live 2699 7496 Uplift 3381 Total 5261 10529 Bearing: - Load Comb #3 84 Length 1.88 3.76 LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 FV' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L /680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC #3 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 4 -C.-,)--;1- COMPANY PROJECT 1 %VoodVVorks® June 24. 201013:19 034 LC1 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Meer 7.1 LOADS ( 1m,ps4,or p93 Load Type Distribution Magnitude Location (16) Units Start Eno End w62 Dead Partial UD 613.2 613.2 5 0.00 2.00 p1 _w62 Snow Partial UD 795.0 795.0 0.00 2.00 plf _w29 Dead Partial UD 611.5 611.5 7.50 11.00 plf w29 Snow Partial UD 901.2 901.2 7.50 11.00 elf :015 Dead Point 1426 11.00 lb. _015 Snow Point 2404 11.00 lb. 016 Dead Point 1369 1 lba :016 Snow Point 2404 1 ibs w64 Dead Partial VD 617.5 617.5 1 19.00 plf 1 i w64 Snow Partial UD 901.2 801.2 1 18.00 16 2 161 Dead Point 622 7 .00 100 2 061 Snow Point 1192 7.00 lb. 3 062 Dead Point 622 4.00 ibs 062 Snow Point 1192 4.00 lb. 5 5 w63 Dead Partial 00 613.2 613.2 2.00 4.00 plf 6 Snow Partial UD 795.0 795.0 2.00 4.00 plf 7 Dead Partial UD 617.5 611.5 18.00 20.00 plf 9565 Snow Partial UD 901.2 801.2 10.00 20.00 plf 9 w71 Dead Partial UD 613.2 613.2 7.00 7.50 plf 5 011 Snow Partial UO 795.0 795.0 7 .00 7.50 plf 1_364 Dead Partial UD 49.7 47.7 11.00 10.00 plf 2_364 Lira Partial UD 160.0 160.0 11,00 19.00 plf 23 _229 Doad UD 47.7 47.7 4.50 9.50 plf 06251.1 24_129 Live Partial UD 160.0 160.0 4.50 7.50 plf 25 162 Dead Partial UD 47.7 47.7 7,50 11.00 plf 26 62 Live Partial UD 160.0 160.0 7.50 11.00 plf 27_349 Dead Partial UD 120.2 120.2 0.00 2.00 elf 29_148 Live Partial UD 370.0 370.0 0.00 2.00 plf 29_332 Dead Partial UD 120.2 120.2 3.50 4.00 plf 30_332 Live Partial U0 370.0 310.0 3.50 4.00 plf 31_333 Dead Partial VD 120.2 120.2 4.50 7.50 plf 32_333 Live Partial UD 370.0 370.0 4.50 7.50 plf 33_334 Dead Partial 0 2 :0.2 120.2 7.50 5.00 plf 31 U 334 Liva Partial UD 370.0 370.0 7.50 9.00 plf 35_335 Dead Partial ID 120.2 120.2 1.00 11.00 plf 36_135 Live Partial U0 370.0 370.0 1.00 11.00 plf 37_347 Dead Partial U0 120.2 120.2 11.00 17.00 plf 38_147 Live Partial UD 370.0 370.0 11.00 27.00 plf 39_367 Dead Partial UD 120.2 120.2 2.00 3.50 plf 40_369 Live Partial UD 370.0 370.0 2.00 3.50 p11 41_249 Dead Partial UD 120.2 120.2 4.00 4.50 plf 1 319 Live Partial UD 310.0 370.0 4.00 1.50 plf 43_263 Dead Partial UD 47.7 47.7 11.00 17.00 plf 44_363 Live Partial UD 160.0 160.0 11.00 17.00 plf 45_365 Dead Partial VD 47.7 47.7 11.00 20.00 plf 46_365 Live Partial UD 160.0 160.0 11.00 20.00 elf 7_366 Dead Partial U0 47.7 47.7 4.00 1.50 Of 49 066 Llvo Partial UD 160.0 160.0 4.00 1.50 p1! 49:268 6 Dead Partial UD 120.2 120.2 17.00 19.00 pl1 50_369 Live Partial UD 370.0 370.0 17.00 10.00 plf 51_369 Dead P06151 00 120.2 220.2 11.00 20.00 p1! 52_369 Live Partial UD 370.0 370.0 19.00 20.00 plf 53_372 Dead Partial U0 47.7 47.7 2.00 4.00 plf 54_272 Live Partial UD 160.0 160.0 2.00 4.00 plf 55_273 Dead Partial VD 49.7 47.7 0.00 2.00 plf 56_2 Liva Partial ID 160.0 160.0 0.00 2.00 elf M1 1r.3 Point 5° -50 .00 Ibs 6 4 W2 6101 Point -5950 4.00 104 143 Hind Point 5950 11.00 l0s H4 Wind Point -5950 17.00 ibs H 3 5 Hind _ Point 5950 20.00 _ lba - MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : a . Deed r 0405 1 32 7 Live 12150 12172 Total 19555 19499 Soaring: Load C: b 44 44 Length 5.97 5.55 Glulam -Bas., West Species, 24F -V8 DF, 5- 1/8x22 -1/2 540-w4109 o1 26.55 MI Included In lads: Lateral support Op. AA bottom• al streak: Analysis vs. Allowable Stress (psi) and Deflection (In) us0,9 N093 2659: Criterion Analv41. Value Deawn Value Anelyafa/De413, Shear fv ■ 192 FY' - 305 fv /FY' - 0.60 00031,g1/1 f0 . 2392 1 - 2604 Lb /9L' - 0.92 Live Def1'n 0.40 ■ L/595 0.67 - L /360 0.60 Total 0411'0 0.94 ■ 4/265 1.00 - L /240 0.64 ADDITIONAL DATA: • FACTORS: F/E CD C1 Ct CL C/ Cfu Cr Cn LC4 2+' 265 1.15 1.00 1.00 1!00 1.00 1.00 3 E6'- 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 . Ecp• 650 1.00 1.00 - - - - 1.00 - - E' 1.0 million 1.00 1.00 - - - - 1.00 - - 3 6,010' 0.95 0111110 1.00 1.00 - - - - 1.00 - - 3 Shear : LC 43 - 0 V 17361, V design - 13982 104 6.0.0102(+1: LC 03 ■ D *SI, H 56199 103 -40 Deflection: LC 03 ■ 0..7511.5) EIs 8756.06 lb -1n2 Total Deflection . 1.50(04.1 Load Defier :foal • Live Load Deflection. (0.dea0 1-11vs 5.anew 6-wind I ■12p.c C- construction CLd■con -ont -4[421 1 C ' 0 . 2 6 a o 1lstad in the Anal - join output) Load c00olnatlona: ICC -15C DESIGN NOTES: 1. Please verify that 014 Maul d.aelen ROO am appropble Mt your 6p 500300. 2. GM= design va51es ere for materials omfon9 to 41TC 117 -2001 and manu)a0Med In acmrdmee vAh ANSUAITC A190.1 -1992 3. GLULAM: Ind . aetod breadth a actual depth. 4. Gkd w an Bears shall be laterally ec0 g ng to provisions of N Chine 3.3.3. • 5. GLULAM: bearing NIRO based m.ma3er 01 F09990 900). Fopwmp 4 -6,3 COMPANY PROJECT 1 Woodworks Jvr 24. 20101319 b34LC2 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Sim 7.1 LOADS I en. pu,arpf) Load Type Distribution Magnitude Location Eft) Unita Start End End 1_ Dead Partial UD 613.2 613.2 5 0.00 2.00 pif 2_862 Snow Partial UD 795.0 795.0 0.01 2.00 plf 3_829 Dead Partial UD 617.5 617.5 7.51 11.00 plf 4 829 Snow Partial UD 801.2 801.2 7.50 11.00 plf 5 Dead Point 1136 11.01 lbs 6015 Snow Point 2404 11.01 10s _ c16 Dead Point 1399 17.01 10a 8 c16 Snow Point 2404 17.00 lbs 9 Dead Partial UD 617.5 617.5 17.01 19.00 pif 10864 Snow Partial UD 901.2 801.2 17.00 19.00 plf 11 _ c61 Dead Point 622 7.01 lea 12 c61 Snow Point 119. 7.00 188 13 Dead Point 622 4.0C 108 11 ,62 - Point 1192 1.00 lbs 15_863 Dead Partial UD 613.2 613.2 2.0C 4.00 plf 16863 Snow Partial UD 795.0 795.0 2.0C 4.00 pif 17865 Dead Partial UD 617.5 617.5 10.0C 20.00 plf 18 865 Snow Partial UD 601.2 901.2 19.00 20.00 pif 19 Dead Partial UD 613.2 613.2 7.00 7.50 plf 20 Snow Partial UD 7 95.0 795.0 7.00 7.50 plf 21_364 Dead Partial U0 47.1 47.7 17.00 19.00 pit 22 Live Partial UD 160.0 160.0 17.00 19.00 plf 23_1:8 Dead Partial UD 47.7 17.7 4.50 7.50 pif 14_128 Live Partial 00 160.0 160.0 4.50 7.50 p1f 25_162 Daad Part1.1 UD 47.7 47.7 7.50 11.00 plf 26_262 Live Partial UD 160.0 160.0 7.50 11.00 p11 2 7_146 Dead Partial UD 120.2 120.2 0.00 2.00 pif 29_)48 Live Partial UD 370.0 370.0 0.00 2.00 pif 29 )32 Lead Partial 10 120.2 120.2 3.50 4.00 pif 30_132 Live Partial UD 370.0 370.0 3.50 4.00 pif 31 )33 Oead Partial UD 120.2 120.2 4.50 7.50 plf 32 )33 Live Partial 110 370.0 370.0 4.50 7.50 pif 33_134 Dead Partial UD 120.2 120.2 7.50 9.00 plf 34_)34 Live Partial UD 370.0 370.0 7.50 9.00 plf 35_035 Partial UD 120.2 120.2 9.00 11.00 plf 36)30 Live Partial UD 370.0 370.0 9.00 11.00 plf • 37 )47 Dead Partial UD 120.2 120.2 11.00 1 pif 39)47 Live 0000181 UD 370.0 370.0 11.00 17.00 pif 39_16e Dead Partial UD 1 :0.2 120.2 2.00 3.50 plf 40)67 Live Partial UD 370.0 370.0 2.40 3.50 plf 41 )49 Dead 08:504l UD 120.2 120.2 4.00 4.50 pif 42_149 Partial U0 370.0 370.0 4.00 4.50 pif 45)63 Dead Partial UD 47.7 47.7 11.00 17.00 p1l 44_163 Live Partial UD 160.0 160.0 11.00 17.00 plf 45_16S Dead Partial UD 47.7 19.00 20.00 pif 46_)6 Live Partial UD 160.0 160.0 19.00 20.00 pif 47_166 Dead Partial UD 47.7 47.7 4.00 4.50 plf 40 )86 Live Partial UD 160.0 160.0 4.00 4.50 plf 49_165 Dead Partial UD 1 :0.2 120.2 17.00 15.00 p11 50 365 1.009 Partlai UD 370.0 3 17.00 19.00 pif 51 )69 peed Partial UD 120.2 120.2 19.00 20.00 pif 52_369 Live Partial UD 370.0 370.0 19.00 20.00 plf 53_17 Daad 21:01.1 00 17.7 41.7 2.50 4.00 pit 54_172 Live Partial UD 160.0 160.0 2.0D 4.00 p'- -f 55_173 Dead Partial UD 47.7 47.7 0.00 2.00 pif 56_)73 Live Partial UD 160.0 160.0 0.00 2.00 pif 1 wind Point -5950 0.00 1b3 02 wind Point 5850 4.00 lbs 143 wind Point -5850 11.00 103 w4 wind Point 5950 17.00 110 w5 wind Point -5950 20.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 0.,d 45' 1327 Live 9956 9979 Total 17361 17305 • Bearing: Load Comb 93 13 Lenech 5.21 5.19 Glulam -Bal., West Species, 24F -V8 DF, 5- 1/8x22 -112" Salf+wiyd of 28.55 MI Masted In MAW Lateral support tope M. bottom. el supports; Analysis vs. Allowable Stress (psi) and Deflection (in) umq Imo mob; Criterion Analysis Value Oea10n Value Analveis /D..ion Shear 192 Fv' - 305 fv /FV' - 0.60 Banding(v) (b - 2372 Fb• - 2604 f0 /0b' - 0.92 Live Dell'n 0.41 - L /531 0.67 - L/360 0.61 Total Defl'n 0.94 - 0/284 1.00 - L /240 0.94 ADDITIONAL DATA: FACTORS: 0/E CO 04 Ct CL CV Cfu Cr Clrt Notes Cn LCI 05 • 265 1.15 1.00 1.00 1.00 1.00 1.00 Fb'4 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 Fcp' 650 1.00 1.00 - - - - 1.00 - - E' 1.9 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear LC 03 0..75110), V - 17361, V design - 13912 1ba Pend1ng(4): LC 93 . 04..75(1 M - 66159 10s -ft Deflection: LC 44 - 01. Er- 9756.06 10 -152 Total Deflect000 - 1.50(0..2 Load Defi.cticn) 4 Llve Load Deflection. ID■dead L ■live S ■1008 3.8ind 1-impact C. court :ucticn CLd- cncenr r,1 .7l (All LC'e are listed In the Analysis output) Load combinations: 100 -0 DESIGN NOTES: 1. Please verity that the defa181 defloclbn baits ere appropriate for your oppGWbn. 2. Gluten design t-ahxs ere for materials conforming to ARC 117.2001 and memdadued in eceadanee with ANSUAITC A190.1 -1992 3. GLUTAM. Ittd a aoluaf breadth 9811309 depth. 4. Gluten Beams shall be Merely supported .¢orceng to the provisions of NOS Clause 3.3.3 5 GLULAM: bearing length based on siosner ot Pepge sicn), Fep(cempn). 9 COMPANY PROJECT i WoodVVorks June 24, 2010 1120 411 LC2 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Sand 7.1 LOADS (roa.rert. pm 7 Load Type Diatrlbutlon Magnitude Location (ft) Unit. Start End Start End 1_862 Dead Partial UD 613.2 613.2 0.00 2.00 plf 2 2062 Snow Partial UD 795.0 795.0 0.00 2.00 pif 3_829 Dead Partial U0 617.5 617.5 7.50 11.00 pif 4 Snow Partial UD 101.2 201.2 7.50 11.00 pif 5 Dead Point 1436 11.00 lb* 6 Snow Point 2404 11.00 lb. 7 Dead Point 1389 17.00 lba 0 c15 Snow Point 2404 17.00 lba 9 Dead Partial UD 617.5 617.5 17.00 18.00 pif 1171_864 Snow Partial UD 901.2 001.2 17.00 19.00 pif 11 61 Dead Point 622 7.00 lbs 12 761 Snow Point 1192 7.00 lbs 13_ .62 W s Dead Point 622 1.00 10 14 Snow Point 1192 4.00 lbs 15 Wad Partial UD 613.2 613.2 2.00 4.00 pif 16863 Snow Partial UD 795.0 795.0 2.00 4.00 pif 8 1765 Dead Partial OD 617.5 617.5 19.00 20.00 pif 10865 Snow Partial UD 901.2 901.2 19.00 20.00 pif 19 Dead Partial U0 613.2 613.2 7.00 7.50 plf 20 Snow Partial UD 795.0 795.0 7.00 7.50 pit 21 364 Wad Partial UD 47.7 47.7 17.00 10.00 pif 22_164 Live Partial UD 160.0 160.0 17.00 10.00 plf 23_329 Wad Partial UPI 47.7 47.7 4.50 7.50 pif 24_328 Live Partial U0 160.0 160.0 4.50 7.50 pif 25_362 Dead Partial U0 47.7 7.50 11.00 pif 20162 Live Partial UD 160.0 160.0 7.50 11.00 pif 2740 Wad Partial UD 120.2 120.2 0.00 2.00 pif 29_149 Live Partial UD 370.0 370.0 0.00 2.00 pif 09 732 Gad Partial UD 120.2 120.2 3.50 4.00 pif 30_332 Live Partial UD 370.0 370.0 3.50 4.00 pif 31_733 Gad Partial UD 120.2 120.2 4.50 7.50 pif 32_033 Live Partial UD 3 370.0 4.50 7.50 plf 33_734 Gad Partial U0 120.2 120.2 7.50 8.00 pif 34_134 Live Partial UD 3 370.0 7.50 0.00 plf 35 _135 Gad Partial UO 120.2 120.2 9.00 11.00 plf 36_335 Live Partial UD 370.0 370.0 9.00 11.00 pif 37 747 Dyad Partial UD 120.2 120.2 11.00 17.00 plf 38_717 Live Partial UD 370.0 370.0 11.00 17.00 plf 39_167 Gad Partial UD 120.2 120.2 2.00 3.50 pif 4 767 L1vu Partial UD 370.0 370.0 2.00 3.50 pif 41_149 Wad Partial UD 120.2 120.2 4.00 4.50 p11 ' 4249 Lave 21:7111 U0 370.0 370.0 4.00 4.50 plf 43_363 God Partial UD 47.7 47.7 11.00 17.00 pif 44_163 Live Partial UD 160.0 160.0 11.00 17.00 pif 45_165 Wad Partial UD 47.7 47.7 18.00 20.00 p11 46 _165 L1va Partial UD 160.0 160.0 19.00 20.00 pif 47_166 Gad Partial UD 47.7 47.7 4.00 4.50 plf 48_166 Live Partial UD 160.0 160.0 4.00 4.50 plf 49_369 Gad Partial UD 120.2 120.2 17.00 18.00 pif 50 ,369 Live Partial UD 370.0 370.0 17.02 19.00 pif 51 169 Deal Partial UD 120.2 120.2 10.0] 20.00 pif 52 369 Live Partial UD 3 370.0 18.02 20.00 pif 53_372 Wad Partial UD 47.7 47.7 2.00 4.00 plf 54_372 =170 Partial UD 160.0 160.0 2.00 4.00 plf 55_173 Gad Partial UD 47.7 17.7 0.00 2.00 pif 56 3 Live Partial UD 160.0 160.0 0.00 2.00 pif N1 6174 Point -5950 0.00 lba 02 Hind Point 5650 1.00 lba 23 Nln1 Point -5850 11.00 lb. 04 Hind Point 5850 17.00 l5n 05 Mind Point -5850 20.00 lba MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (In) : • 4 Coed 405 1327 Love 9956 9978 Total 17361 17305 Load Comb 43 13 Length 5.21 5.19 Glulam -Bat„ West Species, 24F -V8 DF, 5- 118x22 -1/2" Sad-woIgil of 2.55 pll Included In loads; Wed aoppat tap` MA, b000401 et supports Analysis vs. Allowable Stress (psi) and Deflection (in) ush4 0032909: • Criterion Analysis Value Design Value Analysis /0.a1On Shear fv ■ 182 Fv' - 305 fv /FV' • 0.60 Bending(*) fb ■ 2392 171' ■ 2601 fb /FD' - 0.92 Live Dell'n 0.41 " L/591 0.67 " L/360 0.61 Total Wfl'n _ 0.94 " L /291 _ 1.00 " 1/240 0.94 , ADDITIONAL DATA: FACTORS: F/E CO CM 05 CL CV Cfu Cr Clrt Mote. , n Lr4 17' 265 1.15 1.00 1.00 1.00 1.00 1 00 3 00'+ 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 3 Fop' 650 1.00 1.00 - - E• 1.0 01111cn 1.00 1.00 - - - - 1.00 - Ecin' 0.05 n1111on 1.00 1.00 - - - - 1.00 - 4 shear 1 LC 43 - 01.7511.450, V 17361, V 462155 ■ 13962 lba Eanding14): LC 43 .7511,001, M ■ 86199 01a -ft Deflection: LC 04 . D,.7511'S.N1 50. 9756006 16 -152 Total Deflection . 1.5010074 Load Deflection, 0 Live Load Deflection. Iddea4 1. 11ve S.snew 0.81nd t ■lspac 5.0011tructlon CLd.c059070rstadl 1411 LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Pose verify OW the d9611A deflection Ands are eppapdde fa your application. 2. Claim design vales are for materWS w,6004 q to AITC 117 -2011100 rrmMaOaad In mcmdar0e with ANSVAITC A190.1 -1992 3. GLULAM: Isrd • SODA breadth 2 ac51d depth. 4. GM= Beams shall be latent/ auppated 2200944910 the provisions of 500 Clam 3.3.3. 1 GLULAM: bearing length based on smaller of FR:Oen:kn), Fcp(canon). /41 ''' q a COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD OESIGN June 24, 2010 13:23 b34 LC1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 3 w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5 c15 Dead Point 1436 11.00 lbs 7 Dead Point 1389 17.00 lbs 9 w64 Dead Partial UD 617.5 617.5 17.00 18.00 plf 11 c61 Dead Point 622 7.00 lbs 13 Dead Point 622 4.00 lbs 15 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17 w65 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19 Dead Partial UD 613.2 613.2 7.00 7.50 plf 21 j64 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25_j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 27 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29_j32 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31 j33 Dead Partial UD 120.2 120.2 4.50 7.50 plf 33 Dead Partial UD 120.2 120.2 7.50 8.00 plf 35 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39 Dead Partial UD 120.2 120.2 2.00 3.50 plf 4049 Dead Partial UD 120.2 120.2 4.00 4.50 plf 43_j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45 j65 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51_j69 Dead Partial UD 120.2 120.2 18.00 20.00 plf 53_j72 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55_j73 Dead Partial UD 47.7 47.7 0.00 2.00 plf W1 Wind Point 5850 0.00 • lbs W2 Wind Point -5850 4.00 lbs W3 Wind Point 5850 11.00 lbs W4 Wind Point -5850 17.00 lbs W5 Wind Point 5850 20.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : I 0. 201 Dead 7189 6822 Live 156 302 Total 7238 7018 Bearing: Load Comb 02 02 Length 2.17 2.11 Glulam -Bat., West Species, 24F -V8 DF, 5- 118x22 -1/2" Self- weight of 26.55 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 74 Fv' = 238 fv /Fv' = 0.31 Bending( +) fb = 950 Fb' = 2038 fb /Fb' = 0.47 Live Defl'n negligible Total Defl'n 0.41 = L /585 1.00 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 Emir)' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC 01 = D only, V = 7189, V design = 5674 lbs Bending( +): LC 61 = D only, M = 34217 lbs -ft Deflection: LC 01 = D only EI= 8756e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4-G) I COMPANY PROJECT el 1 WoodWorks° SOFlWAREFOR WOOD DESIGN June 24, 2010 13:22 b34 LC2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 3_w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5_c15 Dead Point 1436 11.00 lbs 7 c16 Dead Point 1389 17.00 lbs 9 w64 Dead Partial UD 617.5 617.5 17.00 18.00 plf . 11 c61 Dead Point 622 7.00 lbs 13 c62 Dead Point 622 4.00 lbs 15 w63 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17_w65 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19_w71 . Dead Partial UD 613.2 613.2 7.00 7.50 plf 21_j64 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23 j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25 j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 27_j48 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29_j32 Dead Partial UD 120.2 120.2 3.50 4.00 pif 31 j33 Dead Partial UD 120.2 120.2 4.50 7.50 plf 33_j34 Dead Partial UD 120.2 120.2 7.50 8.00 plf 35 j35 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39 j67 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41 j49 Dead Partial UD 120.2 120.2 4.00 4.50 plf 43_j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45J65 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47 j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49 j68 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51 j69 Dead Partial UD 120.2 120.2 18.00 20.00 plf 53_j72 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55_j73 Dead Partial UD 47.7 47.7 0.00 2.00 pif . W1 Wind Point -5850 0.00 lbs W2 Wind Point 5850 4.00 lbs W3 Wind Point -5850 11.00 lbs W4 Wind Point 5850 17.00 lbs W5 Wind Point -5850 20.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • A 2 01 Dead 7189 6822 Live Total 7189 6822 Bearing: Load Comb #1 #1 Length __ 2.16 2.05 Glulam -Bal., West Species, 24F -V8 DF, 5- 1/8x22 -1/2" Self- weight of 26.55 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 74 Fv' = 238 fv /Fv' = 0.31 Bending( +) fb = 950 Fb' = 2038 fb/Fb' = 0.47 Live Defl'n negligible Total Defl'n 0.41 = L/585 1.00 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC #1 = D only, V = 7189, V design = 5674 lbs Bending( +): LC #1 = D only, M = 34217 lbs -ft Deflection: LC 01 = D only EI= 8756e06 lb -in2 Total Deflection = 1.50)Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLUTAM: bxd = actual breadth x actual depth. 1 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4 - (1 2-- Harper Project: • Houf Peterson Client: Job # Righellis Inc. -- ENGINEERS • PLANNERS _ - -_ -__ Designer: Date: Pg. # LANDSCAPE ARCH. rECTS•SURVEYORS W := 10• Ib 8•ft•20•ft W = 1600.1b Deck_ O-Sigle ft 2 Seismic Forces Site. Class =D Design Catagory =D Wp •.= W dI I 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 - 05) S := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F := 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F := 1.722 Vel -based site coefficient @ 1 s -period (Table 1613.5.3(2), 2006 IBC) S : = F Sml := Fv'S1 2•S • Sd := 3 Max EQ, 5% damped, spectral responce acceleration at short period Exterior Elements & Body Of Connections a := 1.0 R := 2.5 (Table 13.5 -1, ASCE 7 -05) • 4a p •Sds' F P := R 1 + 2.1-W p EQU. 13.3 -1 F pmax := l.6.Sds•Ip•Wp EQU. 13.3 -2 Fpmin :_ • W p EQU. 13.3 -3 = if(F > Fpmax,Fpmax,if(Fp < Fpmin,Fpmin,Fp)) F = 338.5171•lb Miniumum Vertical Force 0.2 • S ds• W dl = 225.6781•lb Clq Harper Project: Houf Peterson Client: Job # �F Righellis Inc. ENGINEERS. PLANNERS Designer: Date: Pg. # LANDSCAPE ARCRITEC(SOSURVEYCRS Wdl 10• lb 8•ft•20 -ft Wdl = 1600-lb ft Seismic Forces Site Class =D Design Catagory =D Wp := Wd - P i ' � = 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S := 0.942. Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F :_ •1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F v := 1.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S := F Smi = F v -S 1 2-S ms Sds := Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a := 1.0 R := 2.5 (Table 13.5 -1, ASCE 7 -05) 4a p • z F P := R 1 + 2 h Wp EQU. 13.3 -1 Fpmax 1.6•S EQU. 13.3 -2 F pmin • EQU. 13.3 -3 F if(F > Fpmax,Fpmax,if(Fp < Fpmin,Fpmin,Fp)) F = 338.5171 -Ib Miniumum Vertical Force 0.2• S ds' W dl = 225.6781-lb ( 1 L I LI 0 Harper HP Houf Peterson . COMMUNICATION RECORD Righellis Inc. To 0 FROM 0 MEMO TO FILE 0 F. 0 , L,,,kii, LANDS,A,'F. Ai<C)itYECISvSUHVE:Y0,:S •.--- PHONE NO. PHONE CALL: Cl MEETING fl M "0 CD PI Z. 75 2 .rn . . . C.) .. . [I 3 • . c ft. -11 , e . ....._. , -0 ....p ...._ 0 ) • s .;.0 3 . 6's . si n . -0 3 at k 11 ..../ . ._ . ....... .. _ . ... . . . .. . .. ... • - • ---4-- •• - -,,----- -- --. oi-- • --- - ..9 . . ...p . . . 4 .Z.:1 . 1 . . . . _.(.3 . er • 01 —C. . .. CI \ . • • N– 1 . I I . 'N . • ... ,.. 0 0 co c N, 1 . . z • r N c 0. c- -,.. (c- 0 • --, . 1 , • 0 ° )h 9 --bi • O'; - 4 ahh 'yo 11Z1 - a z 1‘ 17 " "tli \-K Ic.e . -7- - V%) I ool Cak . 1 (vai‘t_,) : ..-. , -.,, -..! 1.--- - 0 J • . ,, '2 ■ —.S. 3 j/4 SQS I --) T ----' ? 1 I - Z i,V 'P c.:Ci S U 0(36i\-"S (\ II Z. i a 7.) -D,s(\ i iE4 2 ;' P . o h ; I i i . : . _______ii_____ . ! i c• — 6.5t—r.A9 - 1 " ria, a • . . -,----- f - H • I 1 • , S tol) • 9 0 -.- 1G) u - , a = s\ :0\j. LA cA.)f(14- Q CA) 1 3 :6S )1 o . 0 _—A g .-,c.! It = m c cis\o . Fi -1 „ft ' — _ ....___ K1,1 •)kidkiD z 0 . 2 -0 . , z , 0 ■ M 0 „ 1 . OC > • 13 • t 9tfrAlaa 11/11 . P t -"c-'- Qi 15° W 4 VVel)c . . 1) r. r cv,ouludc.0 ?nu .•._.0 DucisciD -- Ib r iN i ? 2 P ICI 0 0 'PT • AU,. ‘ d.r3 Nr4 . `ri - 0, r d i I CI kiv) G, :38 :1031 :31va \M•ji...9 .. :A s - - - - -- " ON 80f . A :.; o 001-l'e clgee S 2 4.°)C2ee NI4 00VB .= -1_ /) Doog < ‘J;) 002 („017) #ooe 3c;u) (oziol 2 0 Z P (-) UoVt;LA,e3.1, -. )&1S , 4_)% 01 3 I nCi \J 6kulg f '2 6 00 Ile N 00h. 9 1,12 '0 73 0 0 MI ‘=-' • 0 0 if A* 00Z g 0 i"; . Q 1 6 0'1 23 In 0 0 — 777 - 0 :1031 - - , ON eor , DIVO UrA. fiC it.Pd A 9 • Harper 21 112* HoufPete COMMUNICATION RECORD Righellis Inc. To ❑ FROM 0 MEMO To FILE E .tl G l w E E R . P L A U N E R S LAr:C7::4PE 4RCr11TECT3“SVRVEYG1i.? ------ .......... --- ... ..__.- ----- °---- -- ° ----- PHONE NO.: PHONE CALL: O MEETING: El M m -� C 7p —1 m 13 " II . i VI n O I: 3 sv d L -C c ° O O 3 01 i 3 d 6 W. 4 n o 1 • S "...‘" • --k c:: 9 m T • , . _ - ! . — — - - I 1 . L 0 „ , z • 9 • Harper Houf Peterson COMMUNICATION RECORD Righellis Inc. To 0 FROM El MEMO TO FILE 0 EI LA kRCHITECTS•SLOVUYOR.: PHONE NO.: PHONE CALL: 0 MEETING: fJ . "0 P? 13 r< e 71 .g3 am, R ...... . .. .r1 . N. '`,.. N aiiins .."" ..".. - . c ".' !°1 "" . . "../.,,, .....11 - i Aiss .'s. r ca 0 V GLis r ---- r. > 0 .__ ,.--, 0 1 c . • -,S) rt C N I I . 1 1 I . • . r , . . :::.... . -0 z 0 . cP, - 1 e la- COMPANY PROJECT rel:. woo wor s SOFTWARE FOR WOOD DESIGN June 8, 2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Point 2.50 200 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : ..,-,?-... ' ':,-:,,-;:.- A-', ,,-,,,,, 4::- TI . ' . ‘f . -:: , : ,.. • - . --- ,Y:''''.! , '. - -•'-' - 1 ,%.=.) i ',.=,::-.,,,,, ,-?,-;:'-'-: : 'e: 77"'" l i:'''''':' - ... .':-!'.- 71 ': 7 '"- al .;,.;_,...__: ;., :....i , -._:, -a, • ..,..i. - -:••• --....,:.,.:.::„-: ,...,..,..41 ---:-, ;.:...-- ...-.;- • :‘,..--;--- :6.4- . - - - :.. 4.....,--'.- -.1.._:.-. -:. .-.... v , --,.- N -4-, ..-z- •• ...... -- - - . I 0' 0 Dead Live 100 100 Total 104 104 Bearing: Load Comb #2 #2 Length. 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams is 1/2" for exterior supports Lumber-soft, Hem-Fir, No.2, 2x6" Self-weight of 1.7 Of induded in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 405 Pb' = 1048 fb/Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cu LC# Fv 150 1.00 1.00 1.00 - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 '1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending(+): LC #2 = L, M = 255 lbs-ft Deflection: LC #2 = L El = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. • . i COMPANY PROJECT i' ' .‘, ' ill ' WoodWorks 0 SOWWARE FON WOOD COSIGN June 8, 2009 16:27 Hand Ra112 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Full UDL 50.0 Alf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : ,-,. t: ,-:-.,.. , ,,f.-.1 , . : -....-..itt. ? -:.--...- : ,: . :-.. : 4I, , , : : : :.- . •,- . , ,,, ,, ..: : . -...,,, ,,. - • --, ,s, .:, -Y,...- : • .7: ..,: • -:-..-4. 4=,-e ,!,.....;;;;.:,---...,-.-.::..-:., , ;,i,-,...',,.....,...1%...:4;:. ,2;,-,-.:,..•,:„-: :, --A 7 -.,.• - = .' ..,..f■ti - .... , F . - . ' , -i :.....-, • ",:,' ,:',..L ',.., ‘.1. I ' 74.t:"::.'! - ,:::::-,.. ', '...il-,' ',...;:s.,:` - ; 7 ".V. : .. -,;, .t ,' ,-: ..!, -.' - ': ."" . ..,= -,:. -; . - 10' 54 Dead Live 125 125 Total 129 129 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams is 1/2" for exterior supports Lumber-soft; Hem-Fir, No.2, 2x6" Self-weight of 1.7 plf included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 256 Pt' = 1048 fb/Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.11 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Ca LC# Fv' 150 1.00 1.00 1.00 - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 1.00 1.00 - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 129, V design = 106 lbs Bending(+): LC #2 = L, M = 162 lbs-ft Deflection: LC #2 = L El = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 4 .......6si WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 22, 2010 13:57:56 Concept Mode: Reactions� / Base of Structure View Floor 2: 8' 1050- - :,--. - - 49'-6" u,5W 1600 1_ ; 600 1_ : . v 7.: b : u'l 619 D 619 0 • I 4b -b UI 4b" b y9- -- -- '. . --- -- --- . .. _ .. .._. _ 43' b yC -: . . _ . . . . 41_ O W - . s • • 41 -b U0 : • 1193 L15312404 L: :_2404 1_ _.: °- - • - -- -.- • -- ._._:. s -b ~14 • • .: ' - ` ' 625 D1059 11439 D - 1394 D : o.. � •: _ : :- -: : 3r b t:5& 315 L : is -a 0r 358 • D; .51 -0 23b . - - _ : , ou -b 255 . , L -b - - - - - - ----- 1_23• 03 , : : : 315 L; - - - - u•-b 251_.... - : - . - - -- -- - - L0 -0 b l 2s 100 L 358 D: - .. b •�. u D 96 Z4 -b r y � . • I r . -- _. - 74(847 5611 L -- ._ 756 L L i b 4(452 D `5546 D 25 12 D i J _b: r4 6 25 --- - - - _ _ 'I :-b it 2030 5D. io b 11 . . , 5D : , • • _ . , I0._b.. � y . ' : L - 908 L . - 13 _b .307 D \ •■ -b r 46 D' • : - c1 1-0 • 245 L , 50 1_ o y b b oa3 3D 2 b .. i ):74 II . J b � 599 . � 87 L-, ' .- 87 L : .. _b bud 209 LD D -' • 1963 D .--;- --= 1963 D -:_ i - -- - - :. : -- : - -- - - • - -- - • _ . ._. - 4--b : 154 D • S ` :. -r2s U • ' '"1-'1 -: � 78 D . .. - 11 , _ - 2363 : - :. 1 -b 1060: u -b BBIB.BBCCCC C CC C 'CDC CC CCCC C C CC CCICCCD.DDD D DD DIDDDCD DD DDDD DD CDiDD DEE Et EEEEIEEEEEIE E+EEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 '1 :1 :11'1(111112(2 222 4A :44',4(4'4E445( 5 :6 oi67(7 :7 VoOThN L1 _ VWNiT L - • 4 ....._ F( WoodWorks® Sizer ' SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 22, 2010 13:57:37 Concept Mode: Reactions at Base of Structure View Floor 2: 8' c � . 4 48 - e „ 1v3 : 1600 1 1600 L ..": : : ' ' ; : : i :: 1 : i : ' . 4/ -o (U1� ':: 619D : " :- : 619 D - 40 -0 IVU : - . .. 44-0 y9 :: : 43 -0 V0 : _ :. - : , ._ ., 417 -0 - . V0 : . 13274 1_ . 3304 L , . - = :: 3& -0 4 _ . 7153 D - -1 ; . 7072 D ' . _ - - - - 30 -o yG' 30 -b 2 ua 315 L : 33 -n 60 358 D, a s s 0 sb " 3U -b 03 .. _ 315L a -0 0z. ` - 358 D -• - - - _ _ .. ... -- -- Lb-0 0 I : 100 L \ z0 -b Ott -96D- - .. - . 1... - - r - -- _. - - .- - - 14 -0 /V 13-0 105 - ' : :i- :. - - - - - - LL - / / : 74(84 611 L ' r 56 L Lt / 0 - 4!(452 D - `5546 D 4 or s .1 D Ly b r -- - - : - - • :_ 113 -0 r3 . :625 � 5 D' v -o / L _ ..: ' 203 D - - - • - t b - -b . . - - .. . - - I0 fU ., - .. _. -.. - _. .. : 14 -0 bb • 105 • 17 908 L . 1,3-0 -n .. 307 D ; c" 46 D `- 1 1 -0 e" tau ' -245 L - y - 0 3D - 501... _ u -b • r b .. b. �� 74 : W) 599 _ 0 b .. i r L; - - 587 L ova 209 LD 8 D_�1963 D 1963 D : „ 3 -- b 154D .: -/uu cb -_.• . . - PLL ._ . . 725L219D... ... _ - - .. 1 -b '"1 78 D DD: : 617D'D. ' u_o BBtB B BC.CCCCCCCtCCC CC CCCC C CCCCCICC CD.DDD D DDD}DDD CD DD DD D D DD CD!DD DEE E E E EE E+EEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'73'4'5'678'91(1 1:1:1 02 22:2 414:4 :414 5(5 5:5:5 77:7 r DoTt our 1_, ‘R L.opi,D ,___ F : } ‘. •V Harper Houf Peterson Righellis Inc. " CJ.rrent Date: 6/24/2010 1:41 PM 1 system: English Flee name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \F1.ftd\ Design Results Reinforced Concrete Footings GENERAL INFORMATION: Global status Warnings Design Code ACI 318 -05 Footing type Spread Column type Steel Geometry b. ! 41 .fir 1 in 4.2,5 ft ■ 64 ft 4.25 ft t K � g igiUMEM L.. 4.25 ft Pagel Length 4.25 [ft] Width 4.25 [ft] Thickness 1.00 [ft] Base depth 1.50 [ft] Base area 18.06 [ft2] Footing volume 18.06 [ft3] Base plate length 5.50 [in] Base plate width 5.50 [in] Column length 5.50 [in] Column width 5.50 [in] Column location relative to footing g.c. Centered Materials Concrete, Pc 3.00 [Kip /in2] Steel, fy 60.00 [Kip /in2] Concrete type Normal Epoxy coated No Concrete elasticity modulus : 3122.02 [Kip /in2] Steel elasticity modulus : 29000.00 [Kip /in2] Unit weight 0.15 [Kip /ft3] Soil Modulus of subgrade reaction 200.00 [Kip /ft3] Unit weight (wet) 0.11 [Kip /ft3] Footing reinforcement Free cover : 3.00 [in] Maximum Rho /Rho balanced ratio 0.75 Bottom reinforcement // to L ()x) : 644 @ 9.00" Bottom reinforcement // to B (zz) : 644 @ 9.00" (Zone 1) Load conditions to be included In design Service loads: • SC1 DL S1 DL S2 DL +LL S3 DL +0.75LL Design strength loads: DC1 1.4DL D1 1.4DL D2 1.2DL +1.6LL Loads Condition Axial Mxx Mzz Vx Vz [Kip] [Kip *ft] [Kip *ft] [Kip] [Kip] DL 5.55 0.00 0.00 0.00 0.00 LL 15.61 0.00 0.00 0.00 0.00 • RESULTS: • Status Warnings - Insufficient development length, Section 21.5.4.1 Soil.Foundation interaction Allowable stress 1.5E03 [Lb /ft2] Min. safety factor for sliding 1.25 Min. safety factor for overturning 1.25 Paget Controlling condition S2 Condition qmean qmax Amax Area in compression Overturning FS [Lb /ft2] [Lb /ft2] [in] [ft2] ( %) FSx FSz slip S2 1.38E03 1.38E03 0.0826 18.06 100 1000.00 1000A0 1000.00 Bending Factor 4) 0.90 Min rebar ratio 0.00180 Development length Axis Pos. Id lhd Dist1 Dist2 . [in] [in] [in] [in] zz Bot. 20.11 7.04 19.75 19.75 xx Bot. 20.11 7.04 19.75 19.75 Axis Pos. Condition Mu deMn Asreq Asprov Asreq/Asprov Mu/(4eMn) [Kip'ft] [Kip'ft] [in2] [in2] zz Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 1 1 zz Bot. D2 13.38 45.76 1.10 1.20 0.918 0.292 1 I xx Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 1 I xx Bot. D2 13.38 43.06 1.10 1.20 0.918 0.311 1=' `i I Shear Factor 4) 0.75 Shear area (plane zz) - 3.10 [ft2] Shear area (plane )x) - 2.92 [ft2] Plane Condition Vu Vc Vu/(4)'Vn) [Kip] [Kip] xy D2 8.99 46.09 0.260 lt,1 - I yz D2 8.68 48.88 0.237 Iii Punching shear Perimeter of critical section (b - -- : 4.67 [ft] Punching shear area 3.31 [ft2] Column Condition Vu Vc Vu/(4)*Vn) [Kip] [Kip] column 1 D2 29.25 104.29 0.374 I=°"►- I • Notes Page ft - I.C.--- * Soil under the footing is considered elastic and homogeneous. A linear soil pressure variation is assumed. *The required flexural reinforcement considers at least the minimum reinforcement design bending moment is calculated at the critical sections located at the support faces * Only rectangular footings with uniform sections and rectangular columns are considered. * The nominal shear strength is calculated in critical sections located at a distance d from the support face * The punching shear strength is calculated in a perimetral section located at a distance d/2 from the support faces * Transverse reinforcement is not considered in footings * Values shown in red are not in compliance with a provision of the code *gprom = Mean compression pressure on soil. *qmax = Maximum compression pressure on soil. . *Amax = maximum total settlement (considering an elastic soil modeled by the subgrade reaction modulus). * Mn = Nominal moment strength. * Mu /(1)*Mn) = Strength ratio. * Vn = Nominal shear or punchure force (for footings Vn =Vc). ' Vu /(4)*Vn) = Shear or punching shear strength ratio. Page4 .. - iq- , Beam Shear bcol 5.5 -in (4x4 post) d := tf — 2 -in := 0.85 b := Width b = 36 -in V :_ 4 • f� si•b -d V = 16.32 -kips 3 — V„ := quI ( b 2 bcol •b V„ = 7.83 -kips < V = 16.32 -kips , GOOD Two -Way Shear b 5.5 -in Short side column width bL := 5.5 -in Long side column width b := 2 -(bs + d) + 2•(bL + d) b = 54 -in R := 1.0 �V -= 4 + 8 f psi b d V, = 48.96 -kips (3 3•R V := x -2.66• f -d V = 32.56 -kips := q [b — (bc01 + (1) V„ = 15.88 -kips < V = 32.56 -kips GOOD Flexure 2 Mu qu I b — 2 J bcoll 1 2J 1 6 M = 4.98 -ft -kips ,:= 0.65 2 1:= b d S = 0.222 -ft 6 F := 5 -c• - si F = 162.5 -psi M f := u f = 155.47 -psi< F = 162.5 -psi GOOD Pee a 3' -0" x 3' -0" x 10" plain concrete footing V-?2 Plain Concrete Isolated Square Footing Design: F2 f := 25007psi Concrete strength f : 60000 -psi Reinforcing steel strength E := 29000;ksi Steel modulus of elasticity Yconc 150•pcf Concrete density "Isoi1:= 1001pcf Soil density gall := . 1500.psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 2659-lb Pd1:= Totaldi Total11 := 7756-lb Pll := Totalll Ptl Pd1 + P11 Ptl = 10415-lb Footing Dimensions tf:= 10 -in Footing thickness Width := 36•in Footing width A,:= Width Footing Area net gall — triconc gnet = 1375•psf Pt1 Areqd — 7.575•ft < A = 9-11 GOOD clnet Areqd = Widthreqd Aregd Width = 2.75-ft < Width = 3.00 ft GOOD Ultimate Loads = Pd1 + tf A''Yconc P, := 1.4•Pdl + 1.7•P11 P = 18.48•kips P qu A q = 2.05•ksf Plain Concrete Isolated Square Footing Design: F3 fc := 2500 -psi Concrete strength f := 60000-psi Reinforcing steel strength E t= 29000•ksi Steel modulus of elasticity 'Yconc 150 -pcf Concrete density 'Ysoil 100,pcf Soil density g := 1500, psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 2363.1b Pdl:= Totaldi Total11:= 4575 -lb Pil := Totalll Pt! "dl + Pll P = 6938-lb Footing Dimensions t := 10• in Footing thickness Width : =. 30 -in Footing width Width . Footing Area net gall — tflconc g net = 1375.psf P Areqd gnet A red = A ft < A = 6.25-11 GOOD Widthreqd A req d Widthregd = 2.25-ft < Width = 2.50 ft GOOD Ultimate Loads Pdl + tf A''1'conc P 1.4Pd1+ 1.7•P11 P 12A8-kips P qu — qu = 1.95-ksf A Beam Shear [ 'col 5.5'in (4x4 post) d .= tf — 2•in := 0.85 b := Width b = 30•in V :_ 4) 4 • f V„ = 13.6-kips 3 Vu •= q I b 2 colt b V = 4.97-kips < V = 13.6-kips GOOD Two -Way Shear bs := 5.5-in Short side column width bL := 5.5-in Long side column width b := 2•(bg + d) + 2•(bL + d) b = 54-in j3 := 1.0 Vim.= + 8 • psi•b•d V = 40.8•kips (3 3. 3c/ fc• V := 2.66 f psi b d V = 27.13-kips ,vVJL, qu•[b — (b,01 + d) V = 9.71 -kips < V = 27.13-kips GOOD Flexure z Mu == qu' I b - broil 1 ) b M = 2.5441-kips 2 J 2 J A := 0.65 2 1 := b d S = 0.185 -ft 6 F := 5 f c psi F = 162.5-psi M u f := f = 95.19-psi < F = 162.5-psi GOOD (Use a 2' -6" x 2' -6" x 10" plain concrete footing ( /9-, Plain Concrete Isolated Square Footing Design: F4 f : 2500-psi Concrete strength f := 60000.psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity 'Yconc := 150•pcf Concrete density / := 100 -pcf Soil density gall := 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 5001-lb Pdl:= Totaldi Totalll := 7639•lb P11 := Totalll Pti := Pdl + Pp P = 12640• lb Footing Dimensions t := 12-in Footing thickness Width := 42-in Footing width ,A,:= Width Footing Area clnet gall — tf Yconc net = 1350•psf Pt' Areqd goet A red = A ft < A = 12.25 ft GOOD Widthreqd Aregd Widthreqd = 3.06•ft < Width = 3.50 ft GOOD Ultimate Loads := Pdl + tf'A'"'Iconc P := 1.4.1 1.7 -P11 P = 22.56•kips P qu A q = 1.84 -ksf Beam Shear bcol := ' 5.5•in (4x4 post) d:= tf -2•in := 0.85 b := Width b = 42-in V :_ 4 f psi•b•d V = 23.8•kips 3 Vu qu'I b 2 co11 b V = 9.8•kips < V = 23.8•kips GOOD Two -Way Shear b5 := 5.5•in Short side column width bL 5.5:•in Long side column width b := 2•(bg + d) + 2-(bL + d) b = 62-in (3 := 1.0 Vim.= 4•r4 + 8 / f psi•b•d V = 71.4-kips 3 3 • G3 Vnmax := 0).2.66• f psi•b•d Vnmax = 47.48-kips = qu [b2 — kb + d) V = 19.49•kips < Vnmax,= 47.48-kips GOOD Flexure 2 Mu qu [( — bcoll 1 2 J (2) _b M = 7.45•ft•kips A t:= 0.65 2 -- d S = 0.405 -ft 6 F := 5 •14)• f F = 162.5 -psi • M u f := f = 127.79 -psi< F = 162.5 -psi GOOD lJse a 3' -6" x 3' -6" x 12" plain concrete footing Plain Concrete Isolated Round Footing Design: f5 f 3000-psi Concrete strength f • 60000psi Reinforcing steel strength Es := 29000•ksi Steel modulus of elasticity "Yconc 150•pcf Concrete density 'Ysoil 120•pcf Soil density gall := 1500 Allowable soil bearing pressure TYPICAL FOOTING Reaction Totaldl:= 619•lb Pdl:= Totaldl Totally := 1600-lb Pll := Totalll P := Pdl + Pp Pd = 2219-lb Footing Dimensions t := 12• in Footing thickness Dia :_ '18-in Footing diameter rr Dia Footing Area 4 gnet gall — tf'"Yconc gnet = 1350• Pd Areqd — 1.644 ft < A = 1.7741 GOOD gnet Areqd = Aiegd 4 Dia regd := Diareqd = 1.45.ft < Dia = 1.50 ft GOOD iT Ultimate Loads , := 1 dl + tf•A•"Yconc P := 1.4 Pdl + 1.7•P11 P = 3.96•kips P qu :_ — q = 2.24•ksf A Beam Shear bc01:= 3.5-in (4x4 post) d := tf — 2•in := 0.85 b := cos(45•deg)•Dia b = 12.73•in V := $ 4 ) . - V = 7.901-kips 3 Vu •= qu C b 2 t oll b V = 0.91 -kips < V = 7.901 .kips GOOD Two -Way Shear bs := 3.5-in Short side column width bL := 3.5-in Long side column width b := 2.(bs + d) + 2.(bL + d) b = 54•in 13 := 1.0 V = 4 + 8 Jfi.b.d V = 23.703-kips C3 3.13c V := 4).2.66- f V mml ax = 15.76-kips V q [b — (b„1 + (1) V = —0.31 .kips < V mmm = 15.76 -kips GOOD Flexure 2 Mu gu t b — 2 / i I bcoll r 2 /I 11 b M = 0.18-ft-kips A t:= 0.65 2 .— bd S= 0.123 -ft 6 F 5.4)• f F 178.01•psi M ft := s n f = 9.9-psi < F = 178.01-psi GOOD I Use a 18" Dia. x 12" plain concrete footing Plain Concrete Isolated Square Footing Design: F , f 2500.psi Concrete strength f := 60000 -psi Reinforcing steel strength Es := 29000•ksi Steel modulus of elasticity Icon 150•pcf Concrete density "( 100•pcf Soil density cl := 1500•'psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl:= 7072 ;lb Pd1:= Total& Total11 := 13304-lb P11 := Totalll Pt1 Pd1 + Pll Pd = 20376•lb Footing Dimensions t := 15-in Footing thickness Width 48-in Footing width A,:= Width Footing Area 9net gall — tf''/cone net = 1313•psf Pu Areqd gnet Areqd g 15.525 ft < A = 16 ft GOOD Widthreqd Aregd Width = 3.94-ft < Width = 4.00 ft GOOD Ultimate Loads := Pd1 + tf'A•"Yconc P„ := 1.4 Pdl + 1.7•P11 P = 36.72•kips P qu A q = 2.29•ksf Beam Shear bcol f= 5:5•in (4x4 post) d := tf — 2-in (I) := 0.85 b := Width b = 48 -in V, := - f V = 35.36-kips 3 Vu qu (13 — 2 co11 b V = 16.26-kips < V = 35.36-kips GOOD Two -Way Shear / bs := 5.5-in Short side column width bL := 5.5• in Long side column width b := 2-(bs + d) + 2•(bL + d) b = 74•in (3 := 1.0 Vim:= -(4 + 8 )• f psi•b•d V,= 106.08-kips 3 3•(3 := 4.2.66• f V = 70.54-kips ,= qu'[b H y�; — k13, d) V = 31.26-kips < V = 70.54-kips GOOD Flexure 2 Mu — qu rb — 2 bcoll J 11 b M = 14.39- ft•kips I 2 A:= 0.65 b d 2 1:= S = 0.782•ft 6 F := 5•4:1)• f psi F = 162.5 -psi M n f := f = 127.75 -psi< F = 162.5-psi GOOD llse a 4' -0" x 4' -0" x 15" plain concrete footing -1(0 Plain Concrete Isolated Square Footing Design: F7 f 2500-psi Concrete strength f 60000 -psi Reinforcing steel strength Es := 29000•ksi Steel modulus of elasticity 'cone 150 -pcf Concrete density ''soil 100•pcf Soil density gall := 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 1200-lb P := Totaldi Totalll := 3200-lb P11 := Totalll Pu := Pd1 + P11 P = 4400-lb Footing Dimensions tf := 10 in Footing thickness • Width := 24-in Footing width A := Width Footing Area net gall — tf' net = 1375•psf Pt' Areqd gnet A red = A ft < A = 4•ft GOOD Widthreqd Areqd Widthreqd = 1.79•ft < Width = 2.00 ft GOOD Ultimate Loads := Pd1 + tf'A'Iconc P := 1.4•Pdl + 1.7 Pll P = 7.82•kips P qu := A q = 1.96•ksf Beam Shear bco1 == 5.5• in (4x4 post) d := tf — 2-in := 0.85 b := Width b = 24 -in V :_ 4 f psi b d V = 10.88-kips 3 Vu •= qu b — 2 colt b V = 3.01 -kips < V = 10.88-kips GOOD Two -Way Shear bs := 5.5 -in Short side column width bL:= 5.5 -in Long side column width b, := 2•(bs + d) + 2•(bL+ d) b =•54 -in (3 : =1.0 V 4 + 8 f psi b d V = 32.64-kips 3 3:13c . Vumax := x•2.66• f psi•b•d V = 21.71 -kips ,:= q, [b — (b„1 + d) V = 5.35 -kips < V = 21.71 -kips GOOD Flexure 2 b — bcol ( Mu qu 2 •I 2) M = 1.16-ft-kips 1,:= 0.65 b 2 51:= d S = 0.148 -ft 6 F := 5.4 f psi F = 162.5 -psi M f := s u f = 54.45 -psi < F = 162.5 -psi GOOD 'Use a 2' -0" x 2' -0" x 10" plain concrete footing .4--P?;4 1013 ,,. ,. :;.0, 0..: .„: ` F x] gib' 'AO e ; 'S'A::-- WC = c.. ''''' TR ,:, , 0 - 1-24.94 1 S j S1 g 1 °o = W9 — = ut w� '1(3 ....S 4 -) (7 s' 2-) _ -1 z - --` s/e -v '0 = ( I sci r * " I so °'e.� W 9 T °w 'b (1)rc.92' C + _SZ.; { R'itk'1 =a 4i%V.'to 'tS•9S-tle = b/W = V( c') - 'e1)Vrr.'1° 4 ci00- 2XS'9cS'iX _ "''► m ❑ A d\ 1 s' gS -. O-L'\t -I L ' \ - • 11'S . _. ..Lov 0 V` m u; J c\p a NQ 1 - a\VD D te L Z 1 -a x, = m 1� Hi z 0 1 ii1 - ' n r p r , ❑ m + 3 3 O H 11 - ' 11-A11•Sq... Li a A ik 01 1 : 1i MI, C pool kuQ &i - d -pun 38 1 S`:1 x „1- -iq x ,eL° t;(7Ut 400J, Tau tc,p J :loaroad do Q b • tl f 'ON 901 0 1 a - '3iva J\J'J :A9 4t) ap Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:43 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans\CEN -090 Summer Creek Townhomes\calcs \Unit A \foundations\Front Load 2.etz\ M33 =51.9 [Kip'ft] M33= -12.19 [Kirft] • N1O mel *S 1. fi ., 1 ar7 lent Ley ' Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:35 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\Front Load.etz\ UM IT R--C 'M33 =25.66 [Kip'ft] • M33= -30.27 [Kip'ft] Y e ' M,o menk LCD -.= 3 BY i\ \\I\/ DATE: ( , aoko JOB NO.: CEM_odt 0 OF PROJECT: 5A -C oo ,1 r. s1 yL_ RE: UN 17 A RrP Lot alet1k- ? -Ibb k 3 30.41 kci k J_ Z ^ 1- w 9.153%..' 1.15 o cc U �� w = lU Ix d z aa - 't 0 R U Check- Overkvrn►no z m M r - 30 I k 3o,4-1 4 (a, - 1b$�(aa) = 1 t L. 1$ +cF E 0 K = (0,1so C A1)(11)(aa) +- 1 4.1,153(a1) z F CL x x = aaq, — 11(0,1b 5.4112c e- c.sLc-E ao.go6 %VV. )e .:--- ao.ao (0 4 . Co (ao,goLs,s (0) If: t. qs sF CaYCaa') tz:) 2.-z.°) 9-rnir. = _ 4 , .....-a4.5- o 0 ° A-miN <0 O �- - 4 Q _ 4(a,q( S ) 3 L (r3-24.) 3(a Ya9,- a(s.s - 0) 1, t = c l - 0..x k: as 1 1�-- F- c, t5c o psi s , 01. 1xa - a 0 'F-2-2- • Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:38 AM • Units system: English File name: O: HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A\foundations Rear Load.etz\ M33 =43.24 [Kip'ft] • M33= -45.06 [Kip'ft] Y Moments L. Bentley, Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:43 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\Rear Load 2.etz\ M33 =41.88 [Kirft] M33= -46.37 [Kip *tt[ A Mcs - LC /4- 4 BY AN:\ DATE ...... a010 JOB No G ks 4. 0 °to OF PROJECT: RE P Ref)r Lock coobf13 % - u, - 0' x L x 12" Frel , . I: O L 1- w O m Anoo = 01)4 R 4:5.201- t-C , X < 0 LCIrj° • On' A - -10.“k z Ur\ ■-t- 15IG 0 OM, `tu _ m , s . , _ . t eJ xa Tr k Ci it tv e a.' oc A 0 3q3 7. U az: 0. 0 - - - --0.40cusa 0 co AY11:- al C 100 :6 0006 -° 4 /Z.) ft 0 u. z w - -7- al0.4010 KFt 0 6 C 0 Lf e a" 01c. Ps-b--T o. Q111■NI • a= a_ct OA/In-: 0,q0C0A °r y ` - 2-) --= 31.a1- -ro 4 s e au ac, A 0„(,,, ty tx) a = 0.‘ I 4 (6c00) /0, ibCs ocinez.4 )6 0,(03 • .__-_ k..ck,X1, 3 4 > A • ; . OV-- e itYp i boilzmi ,-, ;-■ A y t i3 • , _ . . - • 1“-f. f:ii q . , . , 144-2T2-0S By DATE: JOB No OF PROJECT RE Vranl- Wad, cook‘n o 0 3 1 I. ti L 0 x Li z P w w o M x El ■ V \MO0 = 0 N ° C R 51.°1 , _ _ . 6 O w UN k C. ", 'Ei 3 .t4 4 It4 _ o z 0 . . ce a_ k A — a.). QIN% k C --> - 40 .04 0 t, 2 2A(\ 41 Ct o C \ 0 5S (ak 2 O a _-.. AsSt. i o O.C. ff. z D 6 a ..--: \ (01.6000 ) fit) .61.3 006)C ::".„ \‘...4,53 \ N 6 ab a 1.- a -=W VSk, - 3. 44 It'3, (,-. tt s e q' 0, 4.. k. unto „4 • A0 . I 1 a : \ o(xi) / (o,61,scxxi*N‘.42:)._-_- b,Lqa. ti-) it s vg.!% . omr, -. 0A0CITSM50. 5 - - ci 4. ) Try) sr s e lo" o,c. , •(\.2,000..opoo Y4-2,) 0 k N o - 0 JA rN :7- 0 ,c■ 0 4.) •-■ ,... 5 mu • =4 . • t\e(v\-ki rcNismetr& 4-1 C D f, ■ g 0 .59 • 1 = g i:Z Tr ki ik 4 e 1 0 LC, • As= 0. t NCI- 1> az: (0,q.60,cxx0/0 -7. • Zmn,r_ 0(o911)5)(40,0o6)(15- O I (04 C2. 3 s . -` BY Ngc.... DATE: c aol 0 JOB - cc , ` A at ° OF PROJECT: t o l 5 1 x 3 1 >c 1.25 I RE: Ur \k 1 Q 1 — In* 5 jJ ❑ ❑ z ae.o3krk. E W 5.g, 4`' . 1,66 J 0 Cc Li o W ar i► i a a'-4 U Z W O a Z ChecL Ovecturnon9 0 r- 'Apr- = C.o3 1 b-. MR-L:= ( &Th )+. 5 (a )4- h LL(() - 4 ( .a I M ca. _ ( b)(o.tsv)C..t- sC . b)( 4 ) .1 - S i- I- Lt, (2)= s(,,• t2 U ❑ M<Z _ 41,c1b .. 1 1 > 1,S .'. O- u_ z V� d1�.03 E a X = M� _ 4t�tl.- ct,-o3 : 1 , a°►°tF� e= � ►oi Ft v'nc c = rCl kla_aC = afO -- o� 3 L(3 -7_e..) — 3e 3 c o - a(ar)-01)) Fci-r sh0(4 Ce rise torici use S f o Ce Sl sf Ove ( -him 1 n3 5` Mor - ,0 Q use S fk s M9.1_ - .1.. a t- 3.2 2 .R I + 3.2)-L) fi 4 D L 1- o : (1- 5 2 4-(-1 DL @ e0._ �cA a' Mtn — (s, i 3.a'((0) (I. (L3-3.2)(Z)'r L4T)L of Sta o ` `` :_ bO. 12 +- 4-DL a 1 (2(a.LOS e "..:- 4S, +-i4 DL x b t_ - - l. - )- 3 5 +6 fookn g S i 3e OIL iF- To011ny - ..f,Ct \o - Mizt_ (5,2k3,2)C►> 4 C1,1A+ - 3.2XC +31)\ . 3,c)."4- )- 301_ Me.,= (.1 -C,D(0 fi31,)_ 1, SMo(Mg_ 1,5 (2,,c)3) S ;2,"1 '3 IX_ bL= Q.115 - 00 L('+- lung x ac x � Is" L . a .aso� x m/ (4(,. x301. — a y ?, a'r.ST. 1, FE - ( I ' e_ = 22 2� .as�- s .� :3.2�-1,�l, +3 X5. 5 1. 3Ct LL-Z( 1 4 a•-- Z a= N O HIV : • -u I0 zo m Z m 0 O CA _ << 1' 1)e -n)C c. )s , p i �fi 001As �i - A A fib' ( fi = )c\c"k to 0 fil'1 =a �g = = ' 9 7---K vd D 6 r:k s t-cr: c__ _ 1 ,51 x g ),°) Cna1 Z 99 m �7N _ s, � ( �1� b Xro m O \ n _ - E.�� a � r 0 — ^ V' r G ' ( .o,' )E -E Gig' �V�1 ` - , 3 CS1 leb'r = „S∎ x R �stX 3 °) IA m o m L )Z_1x0 ) 2 a o :103 road Q100-...... � Jo �.L 1 0� . f "-►�) ON eor owe- 9 31V0 \N 'AEI Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:42 AM Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309)\CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \Interior 2.etz\ M33 =23.55 (Kip'ft] M33= -17.88 [wp`ft] )\hThedIA LC I Y 4 - Z°► Bentley% Harper Houf Peterson Righellis Inc. • Current Date: 6/22/2010 10:42 AM Units system: English File name: O: HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \Interior.etz\ - M33 =32.26 [Kip *ft] • M33= -9.27 [Kip'ft] 6 M�men�S LC-&. rg -F?0 ACI 318- 05.Appendix D 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc = 3000 psi fc = 3000 psi h' = 3.50 inches h = 12:00 ; inches (into the Fc Stem = ;:: J8T00:,, . inches Note: hef above is the the embedment into or cmex = 5.25 inches the foundation and does not consider stem wz Fnd Width = 36.00 inches c = 2.25 inches c min = 18.00 inches W 1.00 cast -in -place anchor Wc,N= 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor = 0.75 strength reduction factor = 0.75 strength reduction fact Calculations Calculations ANC = 68 in` AN = 1296 in` A = 110.25 in` AN = 1296 in` Nb = 8,607 pounds Nb = 55,121 pounds Wed,N = 0.8286 Wed,N = 1.00 N = 4,399 pounds N = 55,121 pounds 4N = 3,299 pounds +N = 41,341 pounds Combined Capacity of Stem Wall and Foundation 1'■0 = 44,640 0.754 N = 33,480 C F. > CD • • ";.. 0-, P 0 "AO L4V4 catb 1) (0°D IA: 0)0 b' 0 = uWCO o 2 • E rnc_k_R-o Z - n 9C.MOSA ( 0 .. 0 z sPoci A )4- -)0 " (I) C\-1.1 0 0 9d1 c3S (C-2.,17S1 ( 11 X °)Ob'e 1:\A ( bah' 0 • (c)a)(pooAly (000'017 11350 6 7 \ baS '0 "zsv %1 Z1 4 4 k \ n-A . L . • O <7 CT Ceh- - 71 O • m z 0 (71/0 --11 C*10 .= UW0 m 0 • r 3 g 0 61 4j' Cn jI E • iN5 0 urfOof r3d :.1.03 Mad AO oloo—rwa) oNeor 01a 9 Concrete Side Face Blow Out Givens Abrs = 2.15 in` fc = 3000 psi cmin = 18.00 inches 4 = 0.75 strength reduction factor Calculations Nsb = 231,191 pounds 4)Nsb = 173,393 pounds Concrete Pullout Strength Givens Abrs = 2.15 in' fc = 3000 psi = 0.75 strength reduction factor Calculations N = 51,552 pounds SN = 38,664 pounds Steel Yield Strength Givens f, = 58,000 psi A = 0.606 in = 0.80 strength reduction factor Calculations N = 35,148 pounds DNS = 28,118 pounds < 33,480 Ductility Met Holdown Check Holdown: HDU14 Holdown Capacity= 14,930 pounds 1.6* Capacity= 23,888 pounds 23,888 < 28,118 Holdown Checks -VerD A BY DATE: JOB No yr PROJECT: RE: S1, e m Wail Cocrilf■3 ❑ o t S i cues dP Bu to nojs w i- J FZ O Iii 0 IL ° asc t (t21nF); 300 P tc vx00 l 2 ❑ S 'i(Z levets�l3 sq� = a MD pu ,S' toor 0 4 65opcF X1 i 1 tz')= 333 pt.F 51-em o Z C ISO F�( � — 1001A) PLC: 4 — _ , : w = 1- u..---; Cr a Z LL o OtiPE (2 Ievels)C4O t (01I0 P■F ___3toor 0 a Z Td}19.1 load = 19-b ( i- tOOW 0.1,F! . 2 WV\-% Gbp e VS plc' = IS c.F • W 0 11 /5 1 + 1tow mow w_ , - c o = L;ocit, cie, x LS.' 1 o f E 0 IL Z ❑ w e rear i , rcm . c hQ i kd‘r\op O = DI--; a5 b0:. 30o p4...F u.x.o 1 • 01/2. tevets)(1, 9sF " a34 Pmr ,P koor 401,06sopcc X (NO = 33'S u S 0112)(tso t0t?W P (15i1'+?sc = 306 -F •OW F LL : (012:1.4-6 = 1-2.v P Lc ig 4 ,. TLe a343t100 vJ Au a3u3 t 100w 1WO") = W ,_ t a1 ∎N e vrNi A- x .::: Same cis h m mv5 , gloor toc&4 S TL \3VA - tOOLJ w 1, 00 r, o --e. t s 1\ @ Pa.(k vJc l 1 L. ° as(1Z"(2) - (oo pi-1 wail ( (2 xt3 Li 1to . f.... Sloor- 401N1(150ix. k = 333ip■.c 5}err} (11?.)( A5 W) = loo u> LL o (4o'( = 12930 ? - ,tour rt_ : 21t,a9 fi toot() W = LTD - Y . 1- 2.3 , N -' L lu .24 t n,