Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Specifications (2)
0A6 Oc) ?Li l 7 . 112, i /7/ Structural Calculations for Full Lateral & Gravity Analysis of RECVDI Plan C 1186 L. SEP 23201 Summer Creek Townhomes CITY OFTIGAFD BUILDING DIVIE ON Tigard, OR Prepared for Pulte Group July 13,2010 JOB NUMBER: CEN -090 ** *Limitations * ** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and /or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 98 sheets total including this cover sheet. This Packet of Calculations is Null and Void if Signature above is not Original 0 Harper Houf Peterson Righellis Inc. Ell.NCEIIS - R(1 CANOGCAGC ANCHITCGTU•PVR'JCYORS 205 SE Spokane St. Suite 200 o Portland, OR 97202 a [P] 503.221.1131 0 [F] 503.221.1171 1104 Main St. Suite 100 o Vancouver, WA 98660 0 [P] 360.450.1 141 0 [F] 360.750.1141 1 133 NW WaII St. Suite 201 o Bend, OR 97701 0 [P] 541.318.1 161 e [F] 541.318.1 141 • Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit C Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, IW: 1 2006 IBC / 2007 OSSC Occupancy Category: II Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed, ASCE 7 -05 Ch. 20 Importance, IE: 1 ASCE 7 -05 Table 11.5-1 Ss: 0.942 USGS Spectral Response Map S 1: 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength, f' c: 3000 psi Foundations & Slab on Grade Concrete Unit Weight, yc: 145 pcf Steel Reinforcement Yield Strength, f 60,000 psi Wood Studs (Wall Studs): Hem -Fir #2 2x & 4x Wood Beams & Posts: DF -L #2 6x & Greater Wood Beams & Posts: DF -L# 1 Glulam Beams: 24F -V4 PSL Beams: Fb =2,900 psi, FV= 328psi, E=2.0 Million TS /LSL Beams: Fb =2325 psi, FV= 460psi, E =1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : 1500 psf Assumed 2. All manufactured trusses, joists, and flush beams u.n.o. shall be designed by others. Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 WoodWorks — Sizer version 2002 Bently RAM Advanse h _ Harper Project: Summer Creek Townhomes UNIT C LIP Motif Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS• PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE ARCHITECTS• SURVEYORS DESIGN CRITERIA 2007 Oregon Structural Specialty Code & ASCE 7 -05 Roof Dead Load RFR := 2.5 -psf Framing RPL := 1.5•psf Plywood RRF := 5- psf Roofing RME := .1.5•psf Mech & Elec RMS := 1 •psf Misc RCG := 2.5•psf Ceiling RIN := 1 •psf Insulation '15..psf Floor Dead Load FFR := 3 psf Framing FPL := 4•psf Sheathing FME := 1.5•psf Mech & Elec FMS := 1.5 -psf Misc FIN := .5 -psf Finish & Insulation FCLG := 2.5 -psf Ceiling FDL = 13•psf Wall Dead Load WOOD EX_Wal1 = 12•psf 1NT•_ Wallin := 10 psf Roof Live Load RLL := 25 Floor Live Load FLL := 40•psf Harper Project: Summer Creek Townhomes UNIT C P Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE A RCHITECTS•SURYEVORS Transverse Seismic Forces Site Class = D Design Catagory = D Building Occupancy Category: II Weight of Structure In Transverse Direction Roof Weight Roof Area := 748 • ft RFwr := RDL•Roof Area RFWT = 12566•1b Floor Weight Floor Area2nd := 605 • ft 2 FLRWT2nd := FDL•Floor Area2nd FLRVVT2nd = 7865-lb Floor Area3rd 60041 FLRWT3rd := FDL•Floor Area3rd FLRwT3rd = 7800•1b Wall Weight EX Wall Area := (2203)•ft 2 INT Wall Area := (906).ft WALL r := EX_Wall + INT Wall WALLurr = 35496•lb WTTOTAL = 637271b Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h := 32 Mean Height Of Roof I := 1 Component Importance Factor (11.5, ASCE 7 -05) ,,,:= 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C := .02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x := .75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period T := C T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F := 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F, := 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) r Harper Project: Summer Creek Townhomes UNIT C • 1 F' ■• Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE ARCHITECTS•SURVEVORS S MS Fa•Ss SMS = 1.058 (EQU 11.4 -1, ASCE 7 -05) Sd := 2 3MS Sd = 0.705 (EQU 11.4 -3, ASCE 7 -05) S := F Si SM1 = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2•,SM1 S 3 Shc = 0.389 (EQU 11.4 -4, ASCE 7 -05) Cst := Sds' le Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) R ...need not exceed... Cs := Shc•le Cs = 0.223 (Q 7-05) (EQU 12.8 -3, ASCE 7 -OS T ...and shall not be less then... C1 := if(0.044•Sd < 0.01,0.01,0.044•Sd C2 := if S1 <0.6,0.01, 0.5•S1 -let J (EQU 12.8 -5 &6, ASCE 7 -05) � R Cs := if(Ci > C2,C1,C2) Cs = 0.031 Cs := if (Cst < Csmin, Cs if (Cst < Cs Cst, Csmax)) Cs = 0.108 V := Cs•WTTOTAL V = 69141b (EQU 12.8 -1, ASCE 7-05) E := V•0.7 E = 48401b (Allowable Stress) C —L-:2D Harper Project: Summer Creek Townhomes UNIT C Righellis Inc. 4 Houf Peterson Client: Pulte Group Job # CEN -090 tANDSCA ENGINEER MST EPLANNE RVEYORS Designer: AMC Date: June 2010 Pg. # RS Transverse Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 100 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I := 1.00 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X := 1.00 Adjustment Factor - (Figure 6 -3, ASCE 7 -05) a2 := 2•.1.16•ft Zone A & B Horizontal Length Smaller of... gt (Fig 6 -2 note 10, ASCE 7 -05) a2 =3.2ft or ,= .4.11,-2-ft a2 = 25.6 ft but not less than... a2n := 3.2•ft a = 6 ft Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA 19.9•psf PnetzoneB 3.2•psf Pnetzonec 14.4.psf PnetioneD 3.3•psf Vertical PnetzoneE 8.8•psf PnetzoneF —12.psf Pnet := — 6.4•psf PnetzoneH —9.7•psf Basic Wind Force PA := PnetioneA'Iw•X PA = 19.9•psf Wall HWC PB := PnetzoneB'Iw PB = 3.2•psf Roof HWC PC := PnetzoneC•Iw Pc = 14.4•psf Wall Typical PD := PnetzoneD' I X PD = 3.3•psf Roof Typical PE := PnetzoneE'Iw'X PE = — 8.8.psf PF := PnetzoneF'Iw'X PF = — 12.psf PC, := PnetzoneG'Iw'X Pc, = — 6.4•psf PH := Pnetzonell'Iw'X PH = — 9.7•psf '( C _ L`-\ Harper Project: Summer Creek Townhomes UNIT C HP Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE ARCNITECTS•SURYEYORS Determine Wind Sail In Transverse Direction WSmil-ZoneA (55 + 59 + 29)•ft WSAILZoneB (6 + 0 + 23)•ft WSAILZoneC (429 + 355 + 339)41 2 WS�ZoneD := (0 + 0 + 4) ft WA WSAI-ZoneA•PA WA = 2846 Ib WB := WSAILZoneB•PB WB = 93 Ib WC := WSAILZoneC'PC WC = 16171 Ib WD WSAILZoneD•PD WD = 131b Wind_Force := WA + WB + WC + WD Wind_Force, := 10•psf•(WSAILZ + WSAILZoneB + WSAI-ZoneC + WSAILZoneD) Wind_Force = 19123 Ib Wind_Force = 12990 Ib WSAII-ZoneE 43•ft2 WSAII-ZoneF 41 ft 2 WSAILZoneG 334412 WSAILZoneH 32741 WE := WSAILZoneE'PE WE = –378 Ib WF WSAILZoneF'PF WF = –516 Ib WG := WSAILZoneG'PG WG = – 21381b WH := WSAILZoneH WH = – 31721b Upliftnet WF + WH + (WE + WG) + RDL IWSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneG)1'• Uplift = 13261b (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION C - 1_ Harper Project: Summer Creek Townhomes UNIT C HP:1 Houf Peterson Cl Pulte Group Job # CEN -090 Righellis Inc. ENO.NEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE ARCHITECTS •SURVEYORS Longitudinal Seismic Forces Site Class _ =: D Design Catagory = D Building Occupancy Category: II Weight of Structure In Longitudinal Direction Roof Weight • Roof Area = 838 ft X 1 := RDL•Roof Area RFw- = 12566•lb Floor Weight Floor_Area2 = 605 ft F= FDL•Floor Area2nd FLR = 7865.1b Floor_Area3 = 600 ft agaaa FDL•Floor Area3rd FLRw = 7800.1b Wall Weight :ir..Wll. Ikea: =. (2203)• ft INT Wall Area = 906 ft U J := EX Wall Area + 1NT Wa11 1NT_Wall_Area WALLS = 35496.1b WTTOTAL = 637271b Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h = 32 Mean Height Of Roof = 1 Component Importance Factor (11.5, ASCE 7 -05) K,:= 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C = 0.02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x = 0.75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period := C T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) St = 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S = 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F = 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F� = 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) 0„0 Harper Project: Summer Creek Townhomes UNIT C 0 Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. p ENGINEERS f PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE ARCHITECTS• SURVEYORS Ste F SMS = 1.058 (EQU 11.4 -1, ASCE 7 -05) 2 • SMS Sds = 0.705 (EQU 11.4 -3, ASCE 7 -05) 3 = F S1 SMl = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2 •SM1 = 3 Shc = 0.389 (EQU 11.4 -4, ASCE 7 -05) Cst Sds le Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) R ...need not exceed... Cs _ Shc•le Cs 0.223 (EQU 12.8 -3, ASCE 7 - 05) ivwJJ Xn — Ta R max = ...and shall not be less then... ,:= if(0.044•Sd < 0.01, 0.01, 0 . 044 •Sds•le) r 0.5 S1 1 (EQU 12.8 -5 &6, ASCE 7 -05) Cam:= ifl S1 <0.6,0.01, R ) Cam:= if(Ci > C2,C1,C2) Cs = 0.031 Cs = if (Cst < Cs < Csmax,Cst,Csmax)) Cs = 0.108 N V w := Cs- WTTOTAL V = 69141b (EQU 12.8 -1, ASCE 7 -05) E:= V•0.7 E = 48401b (Allowable Stress) Harper Project: Summer Creek Townhomes UNIT C HP Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE ARCHITECTS•SURVEYORS Longitudinal Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 110 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I = 1.0 _ Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X = 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... _ 2.3.16 ft Zone A & B Horizontal Length (Fig 6 -2 note 10, ASCE 7 -05) a2 =3.2ft _ or 4hn2ft a2 =25.6ft but not less than... v := 3.2•ft a = 6 ft Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA = 19.9•psf PnetzoneB = 3.2•psf PnetzoneC = 14.4.psf PnetzoneD = 3.3•psf Vertical PnetzoneE = —8.8.psf PnetzoneF = — 12•psf PnetzoneG = — 6.4 -psf PnetzoneH = —9.7•psf Basic Wind Force SA,:= PnetzoneA'Iw'X PA = 19.9•psf Wall HWC Pte:= PnetzoneB'Iw'X PH = 3.2•psf Roof HWC := PnetzoneC'Iw'X PC = 14.4•psf Wall Typical , := PnetzoneD'Iw PD = 3.3•psf Roof Typical := PnetzoneE'Iw•X PE = — 8.8•psf ,4,:= PnetZoneF.IW. PF = —12.psf P4:= PnetzoneG'Iw•X , PG = — 6.4•psf := PnetzoneH'Iw'X PH = — 9.7•psf Harper Project: Summer Creek Townhomes UNIT C HP '• Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE ARCMITECTS•SURVEVORS Determine Wind Sail In Longitudinal Direction N�it0A:= (58 + 59 + 21)11 Mw a dt,:_ (0 + 0 + 51)41 Mw M r7Ptr := (98 + 99 + 34)•ft Nalz := (0 + 0 + 114)11 = WSAILZoneA'PA WA = 2746 Ib := WSAILZoneB'PB WB = 163 lb Wes= WSAILZoneC'PC WC = 3326 Ib = WSAILZoneD•PD WD = 376 Ib Win Fo ce := WA + WB + WC + WD ind Forc = 10•psf•(WSAILZoneA + WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind Force = 66121b Wind_Force = 5340 Ib A W A S , az w = 151.11 WSNKSAA := 138.12 nazarc44:= 242. Na 216.1 M:= WSAILZoneE'PE WE = — 13291b Wj := WSAILZoneF•PF WF = — 16561b Mme:= WSAILZoneG'PG WG = — 15491b Ww.•= WSAILZoneH'PH WI{ = —2095 Ib U 1 ig := WF + WH + (WE + WG) + RDL•[WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneG) }.6.1.12 Uplift = 901 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION Harper Houf Peterson Righellis Pg #: Transverse Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf . X= 1.00 Iw= • 1.00 Wind Sail Wind Net Design Wind Pressure (psf) (ft2) Pressure (Ibs) Zone A = 19.9 143 2846 Wall High Wind Zone Horizontal Zone B = 3.2 29 93 Roof High Wind Zone Wind Forces . Zone C = 14.4 1123 16171 Wall Typ Zone Zone D = 3.3 4 13 Roof Typ Zone Zone E = -8.8 43 -378 Roof Windward High Wind Zone Vertical Zone F = A2.0 43 -516 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 334 -2138 Roof Windward Typ Wind Zone Zone H = -9.7 327 -3172 Roof Leeward Typ Wind Zone Total Wind Force =l 19123 Ibs I • Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft • Uplift due to Wind Forces= -6204 Ibs Resisting Dead Load= 7517 Ibs E =I 1313 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm (ft Zone A Zone B Zone C Zone D • Main Floor 55 6 429 0 Upper Floor 59 0 355. 0 • Main Floor Diaphragm Shear = 7291 Ibs Upper Floor Diaphragm Shear = 6286 lbs • Roof Diaphragm Shear = 5546 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm (Ibs) Diaphragm (lbs) Diaphragm (Ibs) Width (ft) Width ft Width ft) A 15.83 2321 6.58 1150 19.00 2773 B 19.00 2785 18.00 3143 0.00 0 C 14.92 2186 11.42 1994 19.00 2773 E= 49.75 7291 36 6286 38.00 5546 • Harper Houf Peterson Righellis Pg #: Transverse Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II • Site Class = D S1= 0.34 Ss= 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 • Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 • Period (T = 0.27 Equ. 12.8 -7; ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 S 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2; ASCE 7 -05 S 0.71 Equ. 11.4 -3, ASCE 7 -05 SD1= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6,•ASCE 7 -05 . Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 • Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 . Floor 2 Wt (Ib)= 7865 Floor 3 Wt (Ib)= 7800 Roof Wt (Ib) = 12566 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22063 Trib. Floor 3 Diaphragm Wt (Ib) = 21998 Trib. Roof Diaphragm Wt (Ib) = 19665 • Vertical Dist of Seismic Forces Cumulative % total of base shear Rho Check to Shearwalls (Ibs) I to shearwalls I Req'd? VOoor 2 (Ib) = 711 100.0% Yes • Vnoor3 (Ib) = 1595 85.3% Yes • Vroot (Ib) = 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft Ibs Ibs . Ibs • A 124 105 326 168 314 " 1185 B 273 259 0 369 : 775 0 C 129 169 371 174 506 1349 • Sum 526 533 697 711 1595 2534 Total Base Shear* = I 4840 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confimmtion of rho. Harper Houf Peterson Righellis Pg #: • Longitudinal Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf ' Exterior Wall Dead Load= 12 psf R = 1.00 Iw= 1.00 Wind Sail Wind Net Design Wind Pressure (psf) (ft ) Pressure (Ibs) • Zone A = 19.9 138 2746 Wall High Wind Zone Horizontal Zone B = 3.2 51 163 Roof High Wind Zone Wind Forces Zone C = 14.4 231 3326 Wall Typ Zone Zone D = 3.3 114 376 Roof Typ Zone Zone E = -8.8 151 -1329 Roof Windward High Wind Zone Vertical Zone F = -12.0 138 -1656 Roof Leeward High Wind Zone • Wind Forces Zone G = -6.4 242 -1549 Roof Windward Typ Wind Zone Zone H = -9.7 • 216 -2095 Roof Leeward Typ Wind Zone Total Wind Force =1 6612 Ibs I • Use to resist wind uplift: Roof & Half of Upper Floor Walls Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -6629 Ibs Resisting Dead Load= 10160 Ibs E =I 3531 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm (ft Zone A Zone B Zone C Zone D Main Floor 58 0 98 • 0 Upper Floor 59 0 99 0 ' Main Floor Diaphragm Shear = 2565 Ibs Upper Floor Diaphragm Shear = 2600 Ibs Roof Diaphragm Shear = 1447 Ibs • Wind Dist To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Diaphragm Diaphragm (lbs) (Ibs) (Ibs) Width (ft) Wid ft Width (ft) 1 8 1283 8 1300 - 8 723 2 8 1283 8 1300 8 723 16 2565 16 2600 16 1447 C — 1.__\ 2__ Harper Houf Peterson Righellis Pg #: Longitudinal Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D S1= 0.34 Ss= 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct= 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 SMg 1.06 Equ. 11.4 -1, ASCE 7 -05 Spin= 0.58 Equ. 11.4 -2, ASCE 7 -05 . SDS= 0.71 Equ. 11.4 -3, ASCE 7 -05 Sp,= 0:39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (Ib)= 7865 Floor 3 Wt (Ib)= 7800 • Roof Wt (Ib) = 12566 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22063 , Trib. Floor 3 Diaphragm Wt (Ib) = 21998 Trib. Roof Diaphragm Wt (Ib) = 19665 Vertical Dist of Seismic Forces Cumulative % total of base shear Rho Check to Shearwalls (Ibs) I to shearwalls I Req'd? VFloor2 (Ib) = 711 100.0% Yes Vfloor3 (Ib) = 1595 85.3% Yes Vroot (lb) = 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft Ibs . Ibs Ibs 1 275 270 360 323 718 1220 2 330 330 388 388 877 1315 Sum 605 600 748 711 1595 2534 Total Base Shear* = I 4840 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. Harper Houf Peterson Righellis Pg #: I . Shearwall Analysis B ased on the ASCE 7 -05 i Transvere Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klf) (plf) (ft-k) (ft -k) (k) 101 8 5.17 5.17 1.55 ox 8.00 2.32 18.00 1:15 27.00 2.77 1209 Double 1.40 VII 102 8 4.00 4.00 2.00 ox 8.00 2.79 8.00 3.14 1482 Double 1.40 VIII 103 8 3.83 7.33 2.09 ox 8.00 2.19 8.00 1.99 8.00 2.77 948 Double . 1.40 VI 104 8 3.50 7.33 2.29 ox 8.00 2.19 8.00 1.99 8.00 2.77 948 Double 1.40 VI 105 8 4.25 12.75 1.88 OK 8.00 2.32 18.00 1.15 27.00 2.77 490 Single 1.40 II _ 106 • 8 8.50 12.75 0.94 ox 8.00 2.32 18.00 1.15 27.00 2.77 490 Single 1.40 II 107. 8 . 1.25 1.25 6.40 " 8.00 2.19 18.00 1.15 27.00 2.77 4887 Double 1.40 NG 7,... R r 108 8 1.25 3.50 6.40 8.00 2.19 8.00 1.99 8.00 2.77 1987 Double 1.40 NG 109 8 1.25 3.50 6.40 8.00 2.19 8.00 1.99 8.00 2.77 1987 Double 1.40 NG . 110 8 1.00 3.50 _8.00 T;; b.. 8.00 2.19 8.00 1.99 8.00 2.77 1987 Double 1.40 NG 201 9 5.58 9.17 1.61 OK 9.00 1.15 18.00 2.77 428 , .Single L40 II 202 9 3.58 9.17 2.51 OK 9.00 1.15 18.00 2.77 428 Single 1.40 II 202A 9 3.50 3.50 2.57 OK 9.00 3.14 898 Double 1.40 VI 203 9 7.00 7.00 1.29 ox 9.00 1.99 18.00 2.77 681 Single 1.40 IV 301 8 6.00 10.00 1.33 ox 8.00 2.77 277 Single 1.40 I 302 8 4.00 10.00 2.00 OK 8.00 2.77 277 Single 1.40 I 303 8 4.96 9.92 1.61 ox 8.00 2.77 280 Single 1.40 I • 304 8 4.96 9.92 1.61 ox 8.00 2.77 280 Single 1.40 I Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L • 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • C- \ \'q Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 • fransvere Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho % Story # Panel Shear Panel M MR Uplift Panel Lgth. From_2nd Flr. From 3rd FIr. From Roof Load Strength Bays Sides • Factor Type T (ft) (ft) (ft) ht k • ht k ht k (kit) (plf) (plf) (ft-k) (ft -k) (k). 101 8 5.17 5.17 1.55 OK 8.00 0.17 18.00 0.31 27.00 1.19 323 419 0.31 • - 1.29 Single 1.00 III . 102 8 4.00 4.00 2.00. OK 8.00 0.37 8.00 0.78 0.00 • 286 372 0.24 1.00 Single , 1.00 III 103 8 3.83 7.33 2.09 OK 8.00 0.17 8.00 0.51 8.00 1.19 254 331 0.23 • • 0.96 Single 0.96 ' 11 104 8 3.50 7.33 2.29 OK 8.00 0.17 8.00 0.51 8.00 1.19 - 254 331 0.21 " 0.88 Single' 0.88 III 105 8 4.25 12.75 1.88 OK 8.00 0.17 18.00 0.31 27.00 1.19 131 170 ' 0.26 1.06 Single 1.00 1 106 8 8.50 12.75 0.94 OK 8.00 0.17 18.00 0.31 27.00 1.19 . 131 170 NA . 2.13 Single 1.00 I 107 8 125 1.25 6.40 ' 8.00 0.27 18:00 0.51 27.00 1.19 1572 2044. 0.08 0.31 Double .0.31 NG i 108 8 125 3.50 6.40 ;,`;:p' .8.00 027 8.00 0.51 8.00 1.19 561 730 0.08 031 Double 031 NG 109 8 125 330 6.40 %91.1::: 8.00 0.27 8.00 031 8.00 1.19 561 730 0.08 0.31 Double 031 NG 110 8 1.00 3.50 8.00 ?`;; >'S 8.00 0.27 8.00 _ 0.51 _ 8.00 _ 1.19 561 _ 730 0.06 0.25' _ Double 0.25 NG 201 .9 5.58 9.17 _1.61 OK. 9.00 0.31 18.00 1.19 164 213 .0.28 1.24 Single' 1.00 I . 202 9 3.58 9.17 2.51 OK 9.00 0.31 18.00 1.19 164 213 0.18 0.80 Single 0.80 II . 202A 9 3.50 3.50 2.57 OK 9.00 0.78 0.00 . 221 288. 0.18 0.78 ' Single 0.78 III 203 9 7.00 , 7.00 1.29 OK 9.00 0.51 18.00 1.19 242 314 0.36 1.56 Single 1.00 II - 301 . 8 6.00 10.00 1.33 oK 8:00 .1.19 119 154 ' 0.30 1.50 Single 1.00 I 302 8 •4.00 10.00 2.00 OK - 8.00 1.19 . • 119 154. 0.20 1.00 Single 1.00 I 303 8 4.96 9.92 1.61 OK - 8.00 . 1.19 • 119 155 0.25: 1.24 Single 1.00 I 304 8 4.96 9.92 1.61 OK 8.00 1.19. 119 155 0.25 1.24 Single 1.00 I • Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total transverse base shear? Yes • Does the 2nd floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total transverse base shear? Yes Total 1st Floor Wall Length = 1630 Total # 1st Floor Bays = 4.13 Are 2 bays minimum present along each wall line? No 1st Floor Rho = u • Total 2nd Floor Wall Length = 19.67 Total # 2nd Floor Bays = 4 Are 2 bays minimum present along each wall line? No 2nd Floor Rho = 13 . Total 3rd Floor Wall Length = 19.92 Total # 3rd Floor Bays = s Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho = 1.0 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load'Rho / Total L % Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2 Shear Factor = Adjustment For 1-1/1. > 2:1 Mo (Overturning Moment) = Wall Shear 6 Shear Application ht Mr (Resisting Moment) = Dead Load * L • 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • • • C v \5 Harper Houf Peterson Righellis Pg #: Shearwall Analysis . Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load ' Line Load Line Load Dead V Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klf) (plf) (ft -k) (ft-k) (k) 105. 8 12.75 12:75 0.63 OK 1 0.00 1.28 18.00 1.30 27.00 0.72 1.13 259 Single 1.40 I 55.75 92.01 0.04 106 8 12.75 12:75 0.63 OK 10.00 1.28 18.00 1.30 27.00 0.72 1.13 259 Single 1.40 1 55.75 _ 92.01 0.04 204 9 11.50 ` 11.50 0.78 • OK I 205 9.00 1.30 18.00 0.72 0.75 176 Single 1.40 I 24.71 49.73 -0.47 , 9 11.50 11.50 0.78 OK ' 9.00 1.30 18.00 0.72. 0.75 176 Single 1.40 I 24.71• 49.73 -0:47 t 305 8 10.00 10.00 0.80 OK 8.00 0.72 1 0.29 72 Single 1.40 I 5.78 14.40 -0.30 1 f 306 8 10.00 10.00 0.80 OK 8.00 0.72 0.29 72 Single 1.40 I 5.78 14.40 -0.30 1 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height ' Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear • Shear Application ht Mr (Resisting Moment) = Dead Load • L • 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • Harper Houf Peterson Righellis Pg #: S Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load' Dead V Rho'V % Story # Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht k ht k ht ' k (klf) (plf) (p1f) (ft -k) (ft-k) (k) 105 8 12.75 12.75 0.63 OK 10.00 0.32 18.00 0.72 27.00 1.22 1.19 177 177 NA 3.19 Single 1.00 1 49.09 96.89 -0.74 106 8 12.75 12.75 0.63 OK _ 10.00 039 18.00 0.88 27.00 1.32 1.19 _ 202 202 NA 3.19 Single 1.00 1 55.17 96.89 -0.24 1 204 ' 9 11.50 1 11.50 0.78 1 OK . 1 9.00 0.72 1 18.00 , 1.22 0.81 169 169 NA 2.56 Single 1.00 1 28.42 53.69 -0.34 I .205 9 11.50 11.50 0.78 OK 1 9.00 0.88 18.00 1.32 0.81 191 191 NA 2.56 Single 1.00 1 31.56 53.69 -0.06 I 305 ( 8 10.00'1 10.001 0.80 OK I 1 8.00 1.22 0.35 122 122 NA 2.50 Single ' 1.00 1 9.76" 17:40 I -0.07 I 306 I 8 10.00 10.00 0.80 OK l 8.00 1.32 0.35 132 132 NA - 2.50 Single 1.00 1 10.52 17.40 0.01 Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Total 1st Floor Wall Length = rs.so Total # 1st Floor Bays = 638 Are 2 bays minimum present along each wall line? Yes 1st Floor Rho = 1.0 Total 2nd Floor Wall Length = n.00 Total # 2nd Floor Bays = s Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho = 1.0 Total 3rd Floor Wall Length = so.00 Total # 3rd Floor Bays = s Are 2 bays minimum present along each wall line? Yes . 3rd Floor Rho = 1.0 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load *Rho / Total L % Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2'L/H Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear ' Shear Application ht Mr (Resisting Moment) = Dead Load' L * 0.5' (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) • • C - LO--- Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Transvere Shearwalls Panel Wall Shear Wall Type Good For V (plf) (p11) 101 1209 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 1276 102 1482 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 1667 103 948 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 104 948 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 105 490 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 106 490 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 •495 107 Simpson Strongwall 108 Simpson Strongwall 109 Simpson Strongwall 110 Simpson Strongwall 201 428 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 202 428 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 202A 898 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 203 681 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 833 301 277 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 302 277 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 303 280 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 304 280 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Longitudinal Shearwalls Panel Wall Shear Wall Type - Good For Uplift Simpson Holdown Good For V (p11) (pll1;) (lb) (lb) 105 259 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 44 Simpson None 0 106 259 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 44 Simpson None 0 204 176 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -345 Simpson None 0 205 191 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 -59 Simpson None 0 305 122 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 -72 Simpson None 0 306 132 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 8 Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design Toads. C —LA • Transverse Wind Uplift Design Unit Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left ® • floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls - Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k • 101 8 1.1667 5.21 5.21 2.321 1.15 2.773 6.244 1199 0.1 . 0.192 0.208 54.53 _ 2.36 2.44 11.28 11.27 201 L 201 R 4.97 5.11 16.25 16.38 102 8 1.1667 4.00 4.00 2.785 3.143 5.928 1482 0.092 0.192 51.09 _ 1.50 0.74 14.34 14.47 14.34 14.47 103 8 1.1667 3.83 7.33 2.186 1.994 2.773 6.953 948 0.1 0.24 0.078 31.98 1.65 1.03 9.30 9.41 203R (1/2) 3.83 9.30 13.24 104 8 1.1667 3.50 7.33 2.186 1.994 2.773 6.953 948 0.1 0.078 0.192. 29.20 0.89 1.28 9.56 9.48 9.56 9.48 105 8 `1.1667 4.58 13.08 2.321 1.15 2.773 6.244 477 0.1 0.192 0.078 19.10 1.93 1.41 4.39 4.47. 201L 201R 4.97 5.11 9.36, 9.58 106 8 1.1667 8.50 13.08 2.321 1.15 2.773 6.244 477 0.1 0.078 0.384 35.43 4.28 6.88 4.11 3.91 202L 202R 5.35 5.22 9.46 9.13 107 8 1.1667 1.25 4.75 2.186 1.994 2.773 6.953 1464 0.048 0.192 0.045 14.64 0.28 0.09 18.77 18.92 18.77 18.92 • 108 8 1.1667 1.25 • 4.75 2.186 1.994 2.773 6.953 1464 0.048 0.045 0.192 14.64 0.09 0.28 18.92 18.77 18.92 18.77 109 8 1.1667 1.25 4.75 2.186 1.994 2.773 6.953 1464 . 0.1 0.24 0.208 14.64 0.38 0.34 18.70 18.73 203R 7.65 18.70 26.38 110 8 1.1667 1.00 4.75 2.186 1.994 2.773 6.953 1464 0.1 0.208 0.192 11.71 . 0.26 0.24 19.81 19.83 304R 1.65 19.81 21.48 201 9 1.1667 5.875 9.75 1.15 2.773 1923 402 0.172 0.432 0.156. 23.22 5.51 3.88 3.39 3.56 301L 301R 1.58 1.55 4.97 5.11 202 9 1.1667 3.875 9.75 1.15 2.773 3.923 402 0.172 0.156 0.432 15.32 1.90 2.97 3.66 3.49 302L 302R 1.69 1.72 5.35 5.22 202A 9 1.1667 3.833 3.833 3.143 3.143 820 0.142 0.816 28.29 4.17 1.04 6.73 7.22 6.73 7.22 203 9 1.1667 7.083 7.083 1.994 2.773 4.767 673 0.172 0.468 0.192 46.14 7.63 5.67 5.87 6.03 ' 303L 303R 1.65 1.62 .7.52 7.65 301 8 5.958 9.916 2.773 2.773 280 0.24 0.384 0.432 13.33 6.55 6.83 1.58 1.55 1.58 1.55 302 8 3.958 • 9.916 2.773 2.773 280 0.24 0.432 0.384 8.85 3.59 3.40 1.69 1.72 1.69 1.72 303 • 8 4.958 9.916 2.773 2.773 280 0.24 0.384 0.432 11.09 .4.85. 5.09 1.65 1:62 1.65 1.62 304 8 4.958 9.916 2.773 2.773 280 0.24 0.432 0.384 11.09 5.09 4.85 1.62 ' 1.65 1.62 1.65 Spreadsheet Column Definitions & Formulas L = Shear Panel Length 11 = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line . V (Panel Shear) = Sum of Line Load / Total L Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift (Mo -Mr) / (L - 6 in) 1 r • G • Transverse Seismic Uplift Design Unit C Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Fir. FIr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ • floors . @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k © pif klf k k kft • kft kft k k k k k k 101 8 1.1667 5.21 5.21 0.168 0.314 1.185 1.667 320 0.1 0.192 0.208 15.08 2.36 2.44 2.75 2.74 201 L 201 R 0.65 0.85 3.40 3.59 102 8 1.1667 4.00 4.00 0.369 0.775 1.144 286 0.092 0.192 0 10.06 1.50 0.74 2.49 2.68 0 0 2.49 2.68 103 8 1.1667 3.83 7.33 0.174 0.506 1.349 2.029 277 0.1 0.24 0.078 9.62 1.65 1.03 2.44 2.61 0 203R (1/2) 1.01 2.44 3.62 104 8 1.1667 3.50 7.33 0.174 0.506 1.349 2.029 277 0.1 0.078 0.192 8.78 0.89 1.28 2.66 2.54 0 0 2.66 2.54 105 8 1.1667 4.58 13.08 0.168 0.314 1.185 1.667 127 0.1 0.192 0.078 5.28 1.93 1.41 0.87 0.98 201L 201R 0.65 0.85 1.52 1.84 106 8 1.1667 8.50 13.08 0.168 0.314 1.185 1.667 127 0.1 0.078 0.384 9.80 4.28 6.88 0.74 0.45 202L 202R 1.22 1.02 1.97 1.47 107 8 1.1667 1.25 4.75 0.174 0.506 1.349 2.029 427 0.048 0.192 0.045 4.84 0.28 0.09 6.12 6.34 0 0 6.12 6.34 108 8 1.1667 1.25 4.75 0.174 0.506 1.349 2.029 427 0.048 0.045 0.192 4.84 0.09 0.28 6.34 6.12 0 0 6.34 6.12 109 8 1.1667 1.25 4.75 0.174 0.506 1.349 2.029 427 0.1 0.24 0.208 4.84 0.38 0.34 6.00 6.05 0 203R 2.02 6.00 8.07 110 8 1.1667 1.00 4.75 0.174 0.506 1.349 2.029 427 . 0.1 0.208 0.192 .3.87 0.26 0.24 - 7:28 7.31 0 304R 0.21 7.28 7.52 201 9 1.1667 5.88 ' 9.75 0.314 1.185 '1.499 154 0.172 0.432 0.156, 8.96, 5.51 3.88 0.68 . 0.93 301L 301R -0.03 -0.08 0.65 0.85 202 9 1.1667 3.88 9.75 0.314 1.185 1.499 154 0.172 0.156 0.432 5.91 • 1.90 2.97 1.09 0.84 302L 302R - 0.14 0.18 1.22 1.02 202A 9 1.1667 3.83 3.83 0.775 0.775 202 0.142 0.816 0 6.98 4.17 1.04 0.84 1.57 0 - 0 " ' 0.84 1.57 203 9 1.1667 7.08 7.08 • 0.506 1.349 1.855 262 0.172 0.468 0.192 18.27 7.63 5.67 1.61 1.86 303L 303R '0.21 0.16 1.82 2.02 301 8 0 5.96 9.92 1.185 1.185 120 0.24 0.384 0.432 5.70 6.55 6.83 -0.03 -0.08 0 0 -0.03 -0.08 302 8 0 3.96 9.92 1.185 -1.185 120 0.24 0.432 ' 0.384 3:78 3.59 3.40 0.14 - 0.18 0 0 0.14 0.18 303 -8 0 4.96 9.92 1.349 1.349 136 0.24 0.384 0.432 5.40 4.85 5.09 0.21 .0.16 0 0 _ 0.21 0.16 304 8 0 4.96 9.92 1.349 1.349 136 0.24 0.432 0.384 5.40 5.09 4.85 0.16 0.21 0 0 0.16 0.21 • Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L Mo (Overturning Moment) = Wall Shear * Shear Application ht • Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) • • Uplift T = (Mo -Mr) / (L - 6 in) • 9) . TRANSVERSE UPLIFT CALCULATIONS - SUMMARY UNIT C Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right k Simpson k k Simpson k 101 Wind . 16.25 Holdown HD19 w DF 19.07 Wind 16.38 HD19 w DF 19.07 102 Wind 1434 Holdown HDU14 14.93 Wind . 14.47 1-ID1_114 14.93 103 Wind 9.30 Holdown HDU14 14.93 Wind 13.24 HDU14 14.93 104 Wind 9.56 Holdown HDU14 14.93 Wind 9.48 HDU14 14.93 105 Wind 936 Holdown HDU14 14.93 Wind 9.58 HDU14 14.93 106 Wind 9.46 Holdown HDU14 14.93 Wind 9.13 HDU14 14.93 107 Wind 18.77 Holdown None 0.00 Wind 18.92 None 0.00 108 Wind 18:92 Holdown None 0.00 Wind 18.77 None 0.00 109 Wind 18.70 Holdown None 0.00 Wind 26.38 None 0.00 110 Wind 19.81 Holdown None 0.00 Wind 21.48 None 0.00 201 Wind 4.97 Strap MST48x2 5.75 Wind 5:11 MST48x2 5.75 202 Wind 5.35 Strap MST48x2 5.75 Wind 5.22 MST48x2 5.75 202A Wind 6.73 Strap MST60x2 8.11_ Wind 7.22 MST60x2 '8.11 • 203 Wind 7.52 Strap MST60x2 8.11 Wind 7.65 MST60x2 8.11 301 Wind 1.58 Strap MST48 2.88 Wind 1.55 MST48 2.88 302 Wind 1.69 Strap MST48 2.88 . Wind .1.72 MST48 2.88 303 Wind 1.65 Strap MST48 2.88_ Wind 1:62 MST48 2.88 304 Wind 1.62 Strap MST48 2.88 Wind 1.65 MST48 2.88 n ri . 6) ,, ett ... -60e), •a , 1 1 , 1 , • ..........c...: Lt,..„..v,...,,..........„._.„ 1 .____ (:) .1 1 I 1 i . . 1 . ..„,ic. ...._..4..ii]...1 . 1 _1....., .1. • ) 7... - 11.1: n . • . ' c70.11- \l/ _ I , I 1 . . 1 1 1 I 1 . .',.' . . [ , 1,4, • 1,, 14 . l' i ! ) 1 I ,•••• 1 ) '3 • r. • ri (II a !F, . 1 IL . [ 1 1 1 1 4 1 1 1 ! . Io5 tot. 1 0 l rkri i J i i I109 110 1 ,0-4 105 UNIT C- t Jr P WOR L ' 5u) LAYau'r Q ao - aoa� 1 ? ,,, v V .if 1 fr g , t �t v) y'i 1 17 aoa q 'i fr . I I I n .. II 1 i ,_ - 1,. ■ ■ a,o3 — LAS L L our l 1) (z'� .1,noI,141 ci\% t000lo ct.E. — D .1-k Nicl C.) . () .. . • . . . . . . . . . . /1\ i 1 . 1 1 1 ......_... ......_..4_______ i I I --- -I--- ------ r ----f----- , 1 • . I 1 L 1 . 1 g . I . C !it i ••: - i 0., C.).) . 0 0 , 3 :"•• V 0 . • l - I) . i . ill 1)1 v • ..1 , ■ . .... - t! , :i.:1-2,44.;:..;Y:1 - .'. - -.:-•A ---- , 1 ,........--,-, -..k - -...,.L-...: -7•CR • \OE . BY: ... DATE: j‘4) ?JJJ JOB No.: ce _ l 0 GIG OF PROJECT: ('� RE: I l CIL Di liV L VV 1 VIN T 1 • V Ck 6 r ❑ ❑ lJ � J 0 L cJ ■ 9-2q 1 # W =1 �4 L.6P1 L ❑ LINE 'aup ER 0 J Lre B 3 l43 ct x F MIMI 11111111111111111111 1-___ o -s'9'' 1 2.0,s' : 15'4" I, e'--1 R Lua LINE? L \NEG u Z L\ - eo uFPe.W' _ k'r'riolsCers 3 t �k3 2 dl cec.+t l tae c'A o wolck' ca na ly e (c - ode �F 1 {i I I.- L 1. El 2 Ws '-a.(Lva. C 11S S FE as-C-4 T LL. z . - q,A6, \. >C \s,sN\ss►�l b I W — 3143(2,5' L" ) a �� � ❑ o LiNe = - 6-n-24 3vobs 2.2$ 3 2 - \ . L ? ,_ - L 1 3 cg,$ < x < 1S.S' cia - 1`1 (2 . (, x 27A, \ 9 LC QLS- 1- taph+racim wid- -h =1L Ft Mk? o d x __ 102 PLF a> "-I i.4 a ~ 0NO\0aea. '(/z aiCt > r r CaPa CI y _ 4 o t VO / - aSa. pL � a 6 r. x BY I \ WL/ DATE: S ✓✓�� 0 i ! \ JOB NO.: C: V Q 9 / 1 OF PROJECT RE: TJIbVR.\ BUT 10k) OC SHEAR. BASED ots S -r1P: kitrc_S ❑ ❑ DSt& ii SHC(� = Z. 0�3� k+ PS W 0 J_ Z F O W ~ f O A\so,\ 1_004S f El D Wd■■\ l0. (a55'! —. ►5" 0 (t.14>(0,0►Z > +C 4 10(0.aas� 25 1Z� = 0 -15 - d kl ps M._ O 0 ( = 0.0G 4- V-t 9 S.L. To+tk \ = ayL k Z a Wo \\ 10t Same as. to O 0 t. 1\ \ Oct a rrne.. \52" ff /k) 6. -lo.o,z.. �s (15)(0.0t5)0 61 >(a:o1s 5) 4- '?I` itYc,oa.) =a o)__ .ao o o Z C1b (0,oZ5 >V LL -� t -(kb o.oa s�C 2) _ 1. ,x\25 St 2 Tokr.AN _ 11. 1\ 3 o 0 Wat► 110 ■-z,. I (2 + *'I )(- (�S)C4,0ks ) \/ 04315) h (ral, ° a.0`5", NA_ 0 ( ►n(OOLS >CC) + '� x' - (1b")(O -) = 8 1. \ Sl- o Er Z 1 - 0A-a1 = 3 '65a W ❑ Z 0 H a WO TyP E AIlcwial�le .c iCk s+\YneaVS 'a.t\ S� 1Gr\cb Vneur A llow k ' 57-76 Zft.. v-- !EY, 101 SSW IS xl- 15t304* 0 :3 6 5 \ b'fi o• 0. - 4,°I Wt. SSW\Sx1 1860 k a, 310 510-* 0. a° tool SSw1s, \LestEr 0,.7)3 50 4 S tk coat) Li o SOU') c/ O a ( 42 auy)#k 0. k 4 Ors }. Shear ll°1bb tF 1) 11 v•Q.f... o c lob ,38�1 1* 7 \8 GO % NC-. cn :t tOb a3co8 A ) 1beo* .: • MG a 14 . \30(,„ t4- -> \BLS# -, 40(C - o 2 : it l a \ \ 53 < ■ O G.S 0- .. 0 b a z` Uhl \{ 32 U 2r St`) \ L Ei O IC-.J SL -= a.3a1 +1 ISO i -ax'4-3 =L -a94 ..',p a ►\ 0131- _sheokr 10° 1.81\ \L. < l %60 # -'. 0t._ VA k , -5 Y, L VI- VD #k - . 0Y._ t \0 0- S"}4Y -- 4 - 1OgS 0 • 0Y- a ) 00,ct W\' V._kA0,\S cke CY .s , , Y o 0. 10, \ jL {c oi \0C.'k `'. 1 \C) 3 , \(1C 'CC.C.5 \\ 5Y4ecr1/4/ \Icki. \)eS :. dK BY: AWL DATE `, , aok 0 JOB NO.: cie A \ r OF PROJECT: RE: D transfer r CCL Q ❑ ❑ J -oc& "V\ tea An Prat ‘'G = (lail)(2) = 36aa# Z _ IL F 1- w $ • 2 "Ds 0 1fayrn W iC�1 = Ft. ❑ 3eeaaY.. 1 0 w V _ - - j.to `" \ V = . 1.00S k setsm'L 0 Z c a w L04 ?LF �� inc - -a -- Z 3. baa . 0 Cr-TIc bladed of blaed clrctoi ra[ v , i' rya; iin e 2' o,c, _(5-05 .1.4 Z _7-a-0-4- pi_F e o oV.... f 2 0 u • cf o Z W ❑ Z O = • I- IL x; U. at ,O� ;xz A• x BY: Aye ll f L . DATE: l/i - 1 i \ JOB NO.: C r 0 / I 0 OF PROJECT: ' RE: oPTio0 2 ❑ ❑ w .. 13u t 1-� u g rim e 2.,,D - c t.002 LT_ W bc�\1 ooYl P cxn e 3v-r) Twoc, F- w O 2 F L ❑ 1 I_u,ath on AUNT ---:- 13! 0 MOO 1uS . er s -,r o ?e.6tf\9 = t22-0 Li O w U Z w a nt1gn wind. Press e = - ao sv.). 1-) s F Z Loud- cm bu11 up b\00(-- = pl..F- 0 Q L 1-.- I V 1 (. U T Z T 2 12-40.51O 1Z 2 O \' 1 �� rr�r.� - J Yrctp x = ,I G;SJ ill '1 o �5 o w ❑ Z 3 D _ = ( AI- \\ a F- a ,,7 ly $j 6 IN Vii" I'Z Ic. = (I,c)C3.S 1 S. - 661,A z t ,y = (0. = Q,615 tp,j4 ' C VI _ 15 A , 2= a9s,N-, 1-3.5 "---\ = : /� S Z O 6 � A A= a ..(*; tto '-' .,•.. -; C� 3,9,5,6 = tF. � l gy p I= 6.as t a�.s(0,5 -4s)+ -b.25 + aw,cCo, fi s, 'IL +o t �.c�� t 0 a 4- S.36 +- 0 4 S36 4-0 x _ _') q.115“N :%.--__/\ = tqi - 44 ctIti\U .10 r..-. 1 4.G9' p5L', Z - 4y•71 � 1N'� � � D CM�k.CLl..6l.�u�iC Sv = v _ . 5-G,# . � L e = F c i 'Fe = (55o p5 A1,0(1,0)0.011.0)0 .s�(1.c ( o)(1:1 > t} -b' =( a3 as yt ,00,0(,l,uXo.9.ii.zit.o)(,,o) LsL_ gotb ?L o1 . BY: 1 .(' DATE: 8 —. VI _\ V ( \ JOB NO.: Oct OF PROJECT: RooF a,-A'— 8 } Is 6 .. RE: Des of f■m I blOc: In, @ StoitS ❑ ❑ Q1Pri0N 1. it Z iA o w � i�•,� o 2 TR113 WWtH ON Irin ►e F.F II } I ❑ "Sv 1 r = q'- 9 `Iz" jov 9LAm 18' 5 o a Mx" 5�flrtioP1 �%kx. _ T o W 1S 3 Mill o Z W o DEsic ) wI ND P(essuce. cr a Z = - '.At psC o 'Des 9W es t �y,� f.F. R 1- 3 lb" Q es ?\ op e Q 5pc (� ` l tef kh . To? ?LAIES S Ile 2 WON u %lnd. 1006 O 19 F �. >r r `"T 1.-1") o 1' ❑ g , = 14°1°1,#* 'Rz.= ! y 9't # p'- o" ❑ o Mmox = Z = a :a5 ). ! t2 . ct 8 M _z k1L_ � s.25. b S 4 (3.5)025) I L = 0 0 1 #fiIN I--3S" SY = i _ l_ — `62 #i11.1Z A (3.5 S.2S) o d sz Fk (w) =(850 ,0(1.$)(1,1s )- 3.3ylopsk K („(12 I■ G o �y ( --7. ISO psL (t.() auo s 7 4 2, . ay_ z • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C - FRONT LOAD WoodWorks® Sizer 7.1 June 28, 2010 13:26:08 COMPANY I PROJECT • RESULTS by GROUP - NDS 2005 SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF Hof Trusses _> � = =96i = = = == = Not = designed by request �_>� __ � -_ � (2) 2x10 Lumber n -ply D.Fir -L No.2 2- 2x10 • 13) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 Typ Wall Lumber Stud Hem -Fir Stud 2x6 816.0 • SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR . = a- - _- �_���� = = �� ===a Not designed by request Mnf Jst (2) 2x8 Lumber n -ply D.Fir-L No.2 1- 2x0 By Others Not designed by request . By Others 2 Not designed by request 406 Lumber-soft D.Fir -L No.2 4x6 1.75x14 LSL LSL 1.55E 2325Fb 1.75014 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 6x6 Timber -soft Hem -Fir No.2 6x6 12) 204 Lumber n -ply Hem -Fir No.2 2- 204 13) 2x4 Lumber n -ply Hem -Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 416.0 SUGGESTED SECTIONS by GROUP for LEVEL 2 - FLOOR ==== -_ -_ 3.33.3_. _ __ _ __==- ___==__==_ °___° Mnf Trusses Not designed by request Deck Joist Lumber -soft D.Fir-L No.2 2x8 416.0 Mnf Jst Not designed by request • Landing Lumber -soft D.Fir-L No.2 2x6 416.0 (2) 2x8 Lumber n -ply D.Fir -L No.2 2- 208 4x8 Lumber -soft D.Fir -L No.2 408 • By Others Not designed by request 3.125x10.5 Glulam- Unbalan. West Species 24F -V4 DF 3.125x10.5 5.25x14 PSL 05L 2.0E 2900Fb 5.25014 406 Lumber -soft D.Fir -L No.2 4x6 12) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 404 Lumber Post Hem -Fir No.2 4x4 4x6 Lumber Post Hem -Fir No.2 • 4x6 6x6 Timber -soft Hem -Fir No.2 6x6 • 12) 2x4 Lumber n -ply Hem -Fir No.2 2 - 13) 2x4 Lumber n -ply Hem -Fir No.2 3- 2x4 • Typ Wall Lumber Stud Hem -Fir Stud 2x6 816.0 SUGGESTED SECTIONS by GROUP for LEVEL 1 - FLOOR Fnd =� == =a = =� = =�� = = _ Not designed by request� CRITICAL MEMBERS and DESIGN CRITERIA Group Member Criterion Analysis /Design Values Deck Joist ) -3f33 Bending 0.41 !Mt Jot Mnf Jst Not designed by request Landing j27 Bending 0.17 (2) 2x8 bl Bending 0.96 408 b19 Bending 0.05 . By Others By Others Not designed by request By Others 2 By Others Not designed by request . 3.125x10.5 b12 Deflection 0.83 (2) 2x10 b6 Bending 0.85 5.25014 PSL 618 Deflection 0.79 4x6 b21 Bending 0.88 1.75x14 LSL b23 Bending 0.71 Ftg Ftg Not designed by request • (2) 2x6 c10 Axial 0.88 • 4x4 042 Axial 0.04 • 4x6 c50 Axial 0.25 (3) 2x6 c16 Axial 0.07 6x6 c23 Axial 0.48 (2) 2x4 028 Axial 0.84 (3) 2x4 c12 Axial 0.41 Typ Wall w12 Axial 0.24 Fnd Fnd Not designed by request DESIGN NOTES: a=== °_ °_ "_____ °__ _ = = = == ______ =e = erify that the default deflection limits are appropriate te 1. Please v for your application. • 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result • is considered the final design and appears in the Materials List. _ 3. ROOF LIVE LOAD: treated as snow load with corresponding duration factor. Add an empty roof level to bypass this interpretation. 4. BEARING: the designer is responsible for ensuring that adequate bearing is provided. 5. GLULAM: bxd ■ actual breadth x actual depth. . 6. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. . 7. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 8. BUILT -UP BEAMS: it is a s umed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 9. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 10. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NOS Clause 15.3. • 1 C.--- C,-\\ WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C - FRONT LOAD WoodWorks® Sizer 7.1 June 28, 2010 13:16:53 Concept b mode: Beam View Floor 2: 8' 1050 -- •: ; : : 49' `�.!• ; " i . . 4 /' !Liza - . - ; - - - 0 .. 9 b1._. .. 4.5 L: -b.. y/ .: :' : .: . - - - - - - - -- --- -- 4u. -b.. yb ':f . - - - .. - y b .. :. . .. . b .. S . b .. su -b ...1 -; sr'b 30 • t5`J . - - ,4• b.. 33' -b • ..5L -0 25 / - • • .. i'1 • 00 _ - . tS-- -- ' . .: .. . .. . • - --' - - - --- - -- - : : -- - -'- . . - - - - :.- 2SJ .�.... .:.� . -. -- - _ L`9' u'" _ L 25 b' L0 bl .: - °. -:. LO" b" L4 • (9 L3 b [2 . -0 ! / L'I - b" . /0 - - _ i y . -b .. !L '` - b21- - - - _ -- - -- -- - - - -- -- - - - -- - - - -- -- -- - - - - - -- - -- - - - -- - -- -- • 00 b10 iL .� . bb �. '� I 1 b" I U' b "' - - 9 -0 • 84 .1 .. : -- - - - - - "- -- 25 - • ba 1 . b18 : . : : ; -. ' !. b .. • : b � .b 9111:1=11b20 $b20 -_ i = ; • 4-b I . b .. i u-0 .BB \BB BC CCC CCC CICCC C.0 CCCC C C CC CC\CC CD.DD.DD DDCIDDD CD DD DD D D DD C.D'DD DEE E E EIE EEfEEEIEEIE EEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0' 1 "1 :1:1 :10 212'2 :2 :22'. 212 2123(33 :3 :3 :414 •4A :4.4'.4(4"414$515 5:5 :5 515 6(68:6:6 6'.7(77.77 6" V N r Lc)PIO • • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C - REAR LOAD WoodWorks® Sizer 7.1 • June 28, 2010 13:26:28 . Concept de: Beam View Floor 2: 8' 105 49'x 104 i [ i . - - - - 425' -b • SJ. IU . :: l r i : 4/ -0' 'I ULb : , - _ - 40 -0 101 / _ 40 iV 9 - b18 ;; _ .. .. - - - .- 43 -0 ! i 411-0 yb 4U b.. V0 .. 3V.-13 V4 .: : . - r ..: _ . . - - : 3 `VG -- -- -'- 3 -b VG 30 -0- b& 33 00 .. . - :_._ : . [ - .._ - - - - -'- --- - --- -' 3L -b • 01 j 3 . 1 . b .. • 00 : .. G V • -b ' 04 . ._ " - . : . . : : - : : - - : -- :'''''....:::: - : - 7. - : - :- -- _ : - - - - - - : - -- - - - - - - - - - -.. L23-43 ' 03 .' : .[ : . .:. L/ -b - 0Z :". � 1 - .:.. • . :: . .? : : : --- s: . ::'--- ...,.- . . _ ---- -- - - -- — — -'- . . • --- Lb -b 2SI ' , . . -- L0 -b 25U- ... . i; b24 : :: • : L4 - fy GS -b 1 25 :. :. - :. _ - :- :. .- - --- - -- - - - .... -.. - G.L.-0 1 / . . - . 11 'JO Ib GU -0 1 J _ - -- - _ ... - -- : :-'- -11-0 1L : - - -: [ .. .. - - .. Ib b23 to b ' f . , .. ... 14. -b.. : 00_._ .: : _..: b10..:_ = Ic-b 01 .. 11 -b . 00 • ; . _ : -- -- . - - y-b 03 - _, 1311 ' • ' - 0 -0 1 . -0 . bG 0' - b bra 21 0-0 • 9U -..- 0 111 020_-_ ' ' __ 0 3- . . L' b" i-b .... U -0 8818.888 CCCCCCCI-CCCCCCCCCCCCCCCICCCD. DDDDDDDIDDDDDDDDDDDDDCD .EEEEEEEtEEEIEEIEEEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'67'8'91E1 '1 ;1 :1 E111 S1 ' 21222; 2 22( 2" 212E3133: 33 3 '3E3 :3E3E4!44AA 5:5 :5 515! 6E 68: 6 :6 :6E6'616E7O'77.7.7.7E77 -6" . ? \eo LO • ( — (I 3 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C - FRONT LOAD WoodWorks® Sizer 7.1 June 28, 2010 13:16:55 Co c2 Mode : Col 5imn View Floor 2 : 8 ' 105 0 . _ . .. . _ - - . .. 49'-6" • • IUS IU� 4/ b • L� • IVU .. 44 b 9 .. c1 c2. c38 _ • 43" 4L b s - b J4 . . 50 -O b 3t5 `J3. y L : . :- . - _ - ---- . : - --. - _ • 3(-a 3q q 51 30-0 'JO ti J 33 -a as 31' bb : . .. .. c51 .51.1-0 b a4 0 . 0.= - Lb a 64 - - - s `33 - ;? - _:- . -:. - - -- - -- -- - - -- -- - -- - - - - - -- - Lo b' 01 : - .:- = - _ L5 � L4 -a • (t5 ---- a ..--- _.._..- - -- - - • - -- -- -- -- - • . . LL -0 • /r .4 -0 ra C4. Wq . 16 . -0 Ir a c47. Dc19:- i ( 1 lb -0 lo . 14 a� ® 3 a • • oo • c18 • - c22 _ . i i a' 00 --- - -- -- -- .. . l U' b q5 y • b4} _ ; - - - - -- *- - - - - - --- -- -- b-b b3 5 . . c23 - c41 - ( -_q.. • bG . ■ b a o-a D[3,,„„el c42 c43 i b Q ; . u b • BB\8.B BCCC C C CC CICCC CC CCCCC CCC CCICCCD DD D D DD D }DDD CD DD DD D D DD C.DIDD DEE E E EEE:EFEE.EIEE ;E EEEEEEEfEEEEZ 0' 2' 4' 6' 8' 10'1Z 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56 58'60'62' 64' 66'68' 70' 72' 74' 76' 0'1' 2'3'4'5'6'7'8'91(1'1 :1 :1.1!!1(1 1(1 2(2 2:2 :2 2,243(33;3 :3 :313!4(4•4A :444(4'4(4(5(5 5 :5 :5 0:6 :6 :7;7 , 7.7(77'-6" C..— CA Li WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C - FRONT LOAD WoodWorks® Sizer 7.1 June 28, 2010 13:16:49 Concept Mode: Beam View Floor 3: 17' 1050 . - -- - :: - . ...:.; _ ." . 49'-6,: '104 .. ' ; : : . - - 425' -b 1 / : , . , , 40 : • va 9. . : b4 - - : - 46.-0 _ 41 b `J0 ... .. ... • .. - - - - -- - - .. - 40 V3 _..•: :.. . 3y.-b.. • 34 0V • 3S b 0 - - 31. -b' 03 b2 2 : la n • 64 -- :: -- - - -- -- -- -- -- - - - - _ -- ---- --- - - - :: .. L0 -0' 03 .. • L /' -b 02 - t . bZ4 - :- -- -- : : - - - - -• - --- 20-0 01 L5 -0 - • 00 - - 24 -0 (`J -- • -- :. : . . ".- .. .. .. LS' ',.. ._ --- - . ' - - -- -- -- • -- - .._' - LL -0 1/ L'i b 10 I`J'b J4. 16-0 • 13 '- _ .. . - 7 .. - - -- - - 11 - 0 • 1L---- -: - :.b16 - ..- - '_ -.- - - -.:.- - ---•• - - - -- - ---- - -- - - - lb -b r ..b14 .. . : .: _ -•• - I0 -0 O- ' . . . :.. : - :- - --- - - - 13-0 : . . . : . . : . . IG 0 bb I0-0 03 • y-0 0 b17 r - .. ; . - • � e .. • 01 - 3 • 01.1 , . .. : 4 -0 • -b L . 0 .. b J I U -b BBIB.BBC CCC C CC C ICCC CC CCCC C C CC CCICCCDDD D D DD DIDDD CD DD ODD D DD CD'DO DE,E Et E :EE'EIEEEIEEE EFEEEEEIEEEE'Z 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24'.26' 28' 30' 32' 34' 36' 38'40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 1:1:1 T11112(2222 i2$3(3 - 3:33<3 1 .3(3 - 31314(4 4A :4<4',4(4 '4f415(5 5: 5: 5< 5.5(5515!6(68:6:6<6 ,7,7 -6" • • • C— E : \ 5 - • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C - FRONT LOAD WoodWorks® Sizer 7.1 June 28, 2010 13:16:46 Concept Mode: Column View Floor 3: 17' 1050 • : - :: . - 49' -6„ I U4 4 4/ IUL - b.. • 40 -b ' 43 -0' - • 44' -b • IV9 c9 C1 O_ - 43 -b 001 y r " a �. - . 4 4U b yb • • .5 -b.. Jt} -b" :: • 3 -U' :[ . : : f bi5-- -- . - - --- -- - -- --- - • --- • 31 -b - c48 c49 03 . Ly. -.. 253 Gil . -0' ;i : . ' LI -b' Lb b b'I 13 :. . L4'-b r..:: LS -b /0 : : : :: : : : - .. -' -- - -- - - ----- - - --- LL -b' ! L (4 C 12 /3 c11 ; _• _ �! 0 /L : . .: .. -. -- -- I1 " c26 . , -- . : . :c27 -. _ .. 15 . -b . fU bb,...; _.- !1 b tlb.-- --- - : _ -- -- -- .. -_. I u b bb - y -b • b45._._- b3 c39 C40. - r ZS .. tlG e 5 bV 4 1 -b wt - - - U -b .8618.8 BCCCCCCC C tCCC CC CCCC C C CC CC \CC C D DDD D DD DFDDD'DD DDDD D D DD CD1DD DE,E E E EEEEFEEEIEE E E +EEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18'20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42'44' 46' 48' 50'52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72'74' 76' 0'1'2'3'4'5'6'7'8'91(1 1;1 :1 ?1(1 :11112(2 •2:2 :2 M1313 3:3;3 "31314(4 4414(4 5;5:5 6k:6 6(6 6 617(7'7.77 -6" • (— C(1 (0 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C - FRONT LOAD WoodWorks® Sizer 7.1 June 28, 2010 13:16:41 Concept Mode: Beam View Roof: 25' 1050 . ..... ._ .._ . 49'-6" 104 40 - 0 :103 _ : !' : 41 -b - 40 -0 . 101 y9 b5 4 44 3 -b 00 :: 30-b 04 ... . : i 30 -10 toy 7X3 .. : 0b 150 .i :` � .. .. 04 �� � : _. ' .. 41 b ' l._...: 24-0 • 1 0 -- .. -- - -- 44 0 - 41-0 :. : : . :- -- - 100 • .- 15 : 1 -0 1L : 100 1 1 -- . : : • : .. _ - . 00 : 0 bb f : 12 1 - 0 00 11.1 00 - : -- - _ - - - 0-0 04 b6. - ` . 045 0,5 ,: : . . i my) 4 -0 �._... — - 4 -C> 3 b ' , L.b.. 1 -b BB \B. BC CCCCCCCPCCC CC C CCCC CCC CCCC DODD D D DD DIDDD OD DD ODD D DD CD1DD DEE E EE EE'EFEEEEE!E EtEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2 '3'4'5'6'7'8'91(11 :1:1 :1£ 112(222:2 2!2(221213(33:33 4:4:4 5:5:5 6;6:6 C- — 64)--- WoodWorks®Sizer SOFTWARE FOR WOOD DESIGN UNIT C - FRONT LOAD WoodWorks® Sizer 7.1 June 28, 2010 13:16:44 Concept Mode: Column View Roof: 25' 1050 _ .. . 49'-6" 4t5 -b 1U3 r • IUL • ;i :- . - lUl! : - .: -- - - - - - • 1VVa _. _. :: . -- - 44 b.. • y9 c13 c14 4s -'o' J! 4t1-0 Jb :• .. . :: :. : :: .- - -- -- Sy b Si •-b 60 yf 34 b . • JU - - - - - - 3 - • t5J 3.5 .. • 00 3U -b _ . : 04 . Ly b' L23 b' b3 . L/' b 02 .: • .. ::. - • - - _ Lb -b b1 L5•_b tSU _ - 24 - b • : . (0 _ • i. -. .:. -- ............: .. .. . • : --- LL -h• • • / / - L1 -b F4 b 13 - : .. - -- - - .. - _ -. • - . -- -- - l l• -0 / L - - - - •• . (U_._•• . - - . .: . • ' _ . - _. ... .- . . .... . _... • bb - -- -- 1U. b• bb . J-b b4�_ 0-b b3 - : . `c16 - -- - c15 - • - - - - -.; .. -- -_ -.- - f ._ b .. • bL b b .. • bl - ir! - b b . .. bU . , 4 -b _ L . b .. o l U-b .B13113 BB1B.B BC. CCC C CC C ICCC CC C C CC CC1CC CD.DDD D DD DIDDD DD DD DDD D DD CD'DD DE E. Et EIEEEIEEEIEEIEE!EEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'9111 '1:1 :1 Ti 1!2(2 2:2"2 2i243E3 3 :3 :3 4A :4 :5 :5(5 5( 516( 68: 6 :6.6:6(66(67f1 :7 -6" • (-- (..."/AtI • COMPANY PROJECT i fl WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:20 j8 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Live Full UDL 53.3 plf Load2 Dead Full UDL 13.3 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : p 84 Dead 64 64 Live 213 213 Total 277 277 Bearing: Load Comb #2 #2 Length 0.50 *" 0.50* *Min. bearing length for joists is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 2x8" Spaced at 16" c/c; Self- weight of 2.58 plf included in Toads; Lateral support: top= full, bottom= at supports; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 32 Fv' = 180 fv /Fv' = 0.18 Bending( +) fb = 506 Fb' = 1242 fb /Fb' = 0.41 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.09 = <L/999 0.40 = L/240 0.23 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.15 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 277, V design = 235 lbs Bending( +): LC #2 = D +L, M = 554 lbs -ft Deflection: LC #2 = D +L EI= 76e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wipd I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. C- 6)11 COMPANY PROJECT f if WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:21 j27 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Live Full UDL 53.3 plf Load2 Dead Full UDL 17.3 plf MAXIMUM REACTIONS llbsl and BEARING LENGTHS lint 1 44 Dead 39 39 Live 107 107 Total 145 145 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for joists is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 2x6" Spaced at 16" c/c; Self- weight of 1.96 plf included in loads; Lateral support: top = full, bottom= at supports; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 20 Fv' = 180 fv /Fv' = 0.11 Bending( +) fb = 230 Fb' = 1345 fb /Fb' = 0.17 Live Defl'n 0.01 = <L/999 0.13 = L/360 0.07 Total Defl'n 0.01 = <L/999 0.20 = L/240 0.07 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.15 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 .1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 145, V design = 112 lbs Bending( +): LC #2 = D +L, M = 145 lbs -ft Deflection: LC #2 = D +L EI= 33e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. CA COMPANY PROJECT I I WoodWorks® SOF7WAREFOP WOOD DESIGN June 28, 2010 13:26 b11 Design Check Calculation Sheet Sizer 7.1 • LOADS ( Ibs, psf, or plf ) • Load Type Distribution Magnitude Location (ft] Units Start End Start End 1w56 Dead Partial UD 498.0 498.0 0.00 6.00 plf 21w56 Rf.Live Partial UD 450.0 450.0 0.00 6.00 plf 3_c46 Dead Point 938 5.00 lbs 4 c46 Rf.Live Point 1350 5.00 lbs MAXIMUM RE ( =TIANS llhcl and RFARIN(; 1 FN(THS in • - - tee►' -ice'_= : �. - ,; --�.- . - >_ . ¢ - ice- �.i� - �-_ °y. � ' -tom^- �..r:r ' - ..�''!a�7 «-- •c _ �.: 8.��- ..�.ar "^ - -- �" - _ d am Fig. ! ter =m.� - - ar 6i Dead 1673 2298 Live 1575 2475 Total 3248 4773 Bearing: Load Comb #2 #2 Length - 2.32 3.41 LSL, 1.55E, 2325Fb, 1- 3/4x14" Self- weight of 7.66 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv* = 207 Fv' = 356 fv * /Fv• = 0.58 Bending( +) fb = 1159 Fb' = 2674 fb /Fb' = 0.43 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.15 Total Defl'n 0.07 = L /980 0.30 = L/240 0.24 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 • Shear : LC #2 = D +L, V = 4773, V design* = 3386 lbs Bending( +): LC #2 = D +L, M = 5520 lbs -ft Deflection: LC #2 = D +L EI= 620e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. c.- (10 • COMPANY PROJECT ea WoodWorks® SOFIWAR( FOR WOOD DESIGN June 28, 2010 13:21 b1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 w33 Dead Partial UD 402.0 402.0 0.00 1.50 plf 2 w33 Rf.Live Partial UD 450.0 450.0 0.00 1.50 plf 3 c9 Dead Point 985 1.50 lbs 4 c9 Rf.Live Point 1470 1.50 lbs 5 j9 Dead Full UDL 47.7 plf 6 j9 Live Full UDL 160.0 plf Load? Live Full UDL 40.0 plf Load8 _Dead Full UDL _ 13.0 plf MAXIMUM RE • • 1 0' 31 Dead 1043 742 Live 1541 1204 Total 2585 1946 Bearing: Load Comb #2 #2 Length 1.38 1.04 Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads; Lateral support top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design • Shear fv = 135 Fv' = 207 fv /Fv' = 0.65 Bending( +) fb = 1196 Fb' = 1242 fb /Fb' = 0.96 Live Defl'n 0.01 = <L/999 0.10 = L/360 0.14 Total Defl'n 0.03 = <L/999 0.15 = L/240 0.19 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 • Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 2585, V design = 1961 lbs Bending( +): LC #2 = D +L, M = 2619 lbs -ft • Deflection: LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. c 61A k COMPANY PROJECT 161 WoodWorks® SOFIWAREFDA WOOD DA1GN June 28, 2010 13:18 b12 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 j8 Dead Partial UD 47.7 47.7 0.00 4.50 plf 2_j8 Live Partial UD 160.0 160.0 0.00 4.50 plf 3_j9 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4_j9 Live Partial UD 160.0 160.0 4.50 7.50 plf 5_j10 Dead Partial UD 47.7 47.7 7.50 16.00 plf 6 j10 Live Partial UD 160.0 160.0 7.50 16.00 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 1 0' 164 Dead 442 442 Live 1280 1280 Total 1722 1722 Bearing: Load Comb #2 #2 Length 0.85 0.85 Glulam- Unbal., West Species, 24F -V4 DF, 3- 118x10 -1/2" Self- weight of 7.55 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 70 Fv' = 265 fv /Fv' = 0.26 Bending( +) fb = 1440 Fb' = 2400 fb /Fb' = 0.60 Live Defl'n 0.43 = L/441 0.53 = L/360 0.82 Total Defl'n 0.66 = L/290 0.80 = L/240 0.83 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 1722, V design = 1534 lbs Bending( +): LC #2 = D +L, M = 6890 lbs -ft Deflection: LC #2 = D +L EI= 543e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). (,/-0,13 COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:17 b17 Design Check Calculation Sheet Sizer7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w49 Dead Partial UD 402.0 402.0 4.00 7.50 plf 2_w49 Snow Partial UD 450.0 450.0 4.00 7.50 plf 3 c15 Dead Point 938 4.00 lbs 4 c15 Snow Point 1350 4.00 lbs Load5 Dead Full UDL 13.0 plf Load6 Live Full UDL 40.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : --- `r ...�, �'- � � -oa.. -a � = -.s..• 'i ,e._ --- a --`� -" �,.�ii...-'_a• -- =tE_ , . = -- r+cr � =� -- �- - - ,-..ter '' :. - _ .a.s � Y' .+..-- ^�� -. -. �1r .- 'vs.."' r ^ •+*.er- -Z: ,„ . r --�. e�t - _ ++_ ''au`'_= "a- -ra. ® - -nom- - .., ti... -:`�' . - ti... -• .- . :tea _ �-''' . o. - ._^. -. T1 er j 0 ' 7' -6'1 Dead 843 1656 Live 997 1927 Total 1841 3584 Bearing: Load Comb #4 #4 Length 1.31 2.56 LSL, 1.55E, 2325Fb, 1- 3/4x14" Self- weight of 7.66 plf included in loads; Lateral support: top= full, bottom= at supports; . Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 162 Fv' = 356 fv /Fv' = 0.45 " Bending( +) fb = 1511 Fb' = 2674 fb /Fb' = 0.57 Live Defl'n 0.06 = <L/999 0.25 = L/360 0.22 Total Defl'n 0.12 = L/722 0.37 = L/240 0.33 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 4 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 4 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 4 Emin' 0.80 million - 1.00 - - - - 1.00 - - 4 . Shear : LC #4 = D +S, V = 3584, V design = 2643 lbs Bending( +): LC #4 = D +S, M = 7198 lbs -ft Deflection: LC #4 = D +S EI= 620e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. c- Ci Ur COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:51 b18 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 c16 Dead Point 938 5.00 lbs 2 c16 Rf.Live Point 1350 5.00 lbs 3 w37 Dead Partial UD 498.0 498.0 15.00 16.00 plf 4 w37 Rf.Live Partial UD 450.0 450.0 15.00 16.00 plf 5 w54 Dead Partial UD 498.0 498.0 14.50 15.00 plf 6_w 54 Rf.Live Partial UD 450.0 450.0 14.50 15.00 plf 7 w55 Dead Partial UD 96.0 96.0 6.00 7.00 plf 8 w 56 Dead Partial UD 498.0 498.0 0.00 6.00 plf 9 w 56 Rf.Live Partial UD 450.0 450.0 0.00 6.00 plf 10 c39 Dead Point 843 7.00 lbs 11 c39 Rf.Live Point 1147 7.00 lbs 12 c40 Dead Point 1656 14.50 lbs 13 Rf.Live Point 2077 14.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • • 10' • 161 Dead 3950 3630 Live 3994 3956 Total 7944 7586 Bearing: Load Comb #2 #2 Length 2.77 2.64 Glulam- Unbal., West Species, 16F -E3 DF, 5- 118x16 -112" Self- weight of 19.47 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 117 Fv' = 247 fv /Fv' = 0.47 Bending( +) fb = 1443 Fb' = 1831 fb /Fb' = 0.79 Live Defl'n 0.21 = L/935 0.53 = L/360 0.38 Total Defl'n 0.49 = L/391 0.80 = L/240 0.61 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 215 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 1600 1.15 1.00 1.00 1.000 0.995 1.00 1.00 1.00 1.00 - 2 Fcp' 560 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.79 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 7944, V design = 6613 lbs Bending( +): LC #2 = D +L, M = 27966 lbs -ft Deflection: LC #2 = D +L EI= 3070e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSVAITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). ((A COMPANY PROJECT di Wood Works® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:26 b18.1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w63 Dead Partial UD 402.0 402.0 0.00 1.00 plf 2_w63 Rf.Live Partial UD 450.0 450.0 0.00 1.00 plf 3_c9 Dead Point 985 1.00 lbs 4 c9 Rf.Live Point 1470 1.00 lbs 5 c10 Dead Point 985 7.00 lbs 6_c10 Rf.Live Point 1470 7.00 lbs 7_w64 Dead Partial UD 402.0 402.0 7.00 9.50 pif 8 Rf.Live Partial UD 450.0 450.0 7.00 9.50 plf 9_j25 Dead Full UDL 47.7 pif 10_j25 Live Full UDL 160.0 plf Loadll Dead Full UDL 13.0 plf Load12 Live Full UDL 40.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 1 0 96l Dead 1977 2047 Live 3226 3189 Total 5204 5236 Bearing: Load Comb #2 #2 Length 2.56 2.58 Glulam- Unbal., West Species, 24F -V4 DF, 3- 1/8x10 -1/2" Self- weight of 7.55 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 195 Fv' = 305 fv /Fv' = 0.64 Bending( +) fb = 2004 Fb' = 2760 fb /Fb' = 0.73 Live Defl'n 0.18 = L/627 0.32 = L/360 0.57 Total Defl'n 0.34 = L/335 0.47 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million .1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 5236, V design = 4256 lbs Bending( +): LC #2 = D +L, M = 9589 lbs -ft Deflection: LC #2 = D +L EI= 543e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). COMPANY PROJECT i WoodWorks® SOF7WARFFOR W000 DESIGN June 28, 2010 13:21 b19 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1_j24 Dead Full UDL 51.0 plf 2 j24 Live Full UDL 75.0 plf MAXIMUM REP ^T' ^"'° IIL •. •••••' oCwou,ii+ 1 ClIkir'rL n•.% • a � 10' 31 Dead 86 86 Live 112 112 Total 198 198 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x8" Self- weight of 6.03 plf included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fly = 7 Fv' = 180 fv /Fv' = 0.04 Bending( +) fb = 58 Fb' = 1170 fb /Fb' = 0.05 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 198, V design = 118 lbs Bending( +): LC #2 = D +L, M = 149 lbs -ft Deflection: LC #2 = D +L EI= 178e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:17 b23 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j14 Dead Partial UD 78.0 78.0 0.00 7.00 plf 2_j14 Live Partial UD 240.0 240.0 0.00 7.00 plf 3_j29 Dead Partial UD 78.0 78.0 7.00 10.50 plf 4_j29 Live Partial UD 240.0 240.0 7.00 10.50 plf 5_j31 Dead Partial UD 26.0 26.0 7.00 10.50 plf 6_j31 Live Partial UD 80.0 80.0 7.00 10.50 plf 7_b24 Dead Point 409 7.00 lbs 8 Live Point 1080 7.00 lbs • MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • �,.M.l� -'- :'.. G+: �L`�•- .m�7+ - 1 0' Dead 601 798 Live 1667 2213 Total 2268 3012 Bearing: Load Comb #2 #2 Length 1.62 2.15 LSL, 1.55E, 2325Fb, 1- 3/4x14" Self- weight of 7.66 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 154 Fv' = 310 fv /Fv' = 0.50 Bending( +) fb = 1658 Fb' = 2325 fb /Fb' = 0.71 Live Defl'n 0.18 = L/714 0.35 = L/360 0.50 Total Defl'n 0.27 = L/462 0.52 = L/240 0.52 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 3012, V design = 2515 lbs Bending( +): LC #2 = D +L, M = 7897 lbs -ft Deflection: LC #2 = D +L EI= 620e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. • 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. C. COMPANY PROJECT I WoodWorks° SOFTWARE FOR WOOD DESIGN June 28, 2010 13:17 b24 Design Check Calculation Sheet Sizer 7.1 • LOADS ( Ibs, psf, or plf )' Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Dead Full UDL 200.0 plf Load2 Live Full UDL 540.0 plf • MAXIMUM REACTIONS 1Ihc1 and RFARINGJ FN(THS tin] 0 44 Dead 409 409 Live 1080 1080 Total 1489 1489 Bearing: Load Comb #2 # Length 0.68 0.68 Lumber -soft, D.Fir -L, No.2, 4x6" Self- weight of 4.57 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design • Shear fv = 89 Fv' = 180 fv /Fv' = 0.50 Bending( +) fb = 1013 Fb' = 1170 fb /Fb' = 0.87 Live Defl'n 0.04 = <L/999 0.13 = L/360 0.30 Total Defl'n 0.06 = L/764 0.20 = L/240 0.31 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - • - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 1489, V design = 1148 lbs Bending( +): LC #2 = D +L, M = 1489 lbs -ft Deflection: LC #2 = D +L EI= 78e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. COMPANY PROJECT 1 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:22 c10 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c14 Dead Axial 938 (Eccentricity = 0.00 in) 2 c14 Rf.Live Axial 1350 (Eccentricity = 0.00 in) 3 b4 Dead Axial 47 (Eccentricity = 0.00 in) 4 Live Axial 120 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): D 0' 9' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 2 -Plys Self- weight of 3.41 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 151 Fc' = 172 fc /Fc' = 0.88 Axial Bearing fc = 151 Fc* = 1644 fc /Fc* = 0.09 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.104 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 2485 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. c- Cji2C COMPANY PROJECT 1 WoodWorks® SOFTWARE FOP WOOD DESIGN June 28, 2010 13:25 c12 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b23 Dead Axial 601 (Eccentricity = 0.00 in) 2 Live Axial 1667 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 9' Lumber n -ply, Hem -Fir, No.2, 2x4 ", 3 -Plys • Self- weight of 3.25 pif included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 146 Fc' = 356 fc /Fc' = 0.41 Axial Bearing fc = 146 Fc* = 1495 fc /Fc* = 0.10 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.238 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 2297 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT i WoodWorks® SOFIWAR( FOP WOOD DFSIGN June 28, 2010 13:23 c16 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_b6 Dead Axial 938 (Eccentricity = 0.00 in) 2 Rf.Live Axial 1350 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 17' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 3 -Plys Self- weight of 5.11 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 17.00= 17.00 [ft]; Ke x Ld: 1.00 x 17.00= 17.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 96 Fc' = 110 fc /Fc' = 0.87 Axial Bearing fc = 96 Fc* = 1644 fc /Fc* = 0.06 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.067 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 2375 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. e COMPANY PROJECT 1 Woo SOFIWARE FOR WOOD DESIGN June 28, 2010 13:25 c23 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b18 Dead Axial 3978 (Eccentricity = 0.00 in) 2 Rf.Live Axial 3994 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): • 0' 8' Timber -soft, Hem -Fir, No.2, 6x6" Self- weight of 6.25 pif included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 265 Fc' = 548 fc /Fc' = 0.48 Axial Bearing fc = 265 Fc* = 661 fc /Fc* = 0.40 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.15 1.00 1.00 0.829 1.000 - - 1.00 1.00 2 Fc* 575 1.15 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 8022 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. C ea . COMPANY PROJECT I i WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:23 c28 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 b24 Dead Axial 409 (Eccentricity = 0.00 in) 2 • Live Axial 1080 (Eccentricity = 0.00 in) • MAXIMUM REACTIONS (Ibs): 0' 9' Lumber n -ply, Hem -Fir, No.2, 2x4 ", 2 -Plys Self- weight of 2.17 pif included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 144 Fc' = 171 fc /Fc' = 0.84 Axial Bearing fc = 144 Fc* = 1495 fc /Fc* = 0.10 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.114 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 1509 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. c- 6,(k-v COMPANY PROJECT di WoodWorks® SOFfWARFFOR WOOD OES CN June 28, 2010 13:22 c42 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b19 Dead Axial 86 (Eccentricity = 0.00 in) 2 Live Axial 112 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): D 0' 8' Lumber Post, Hem -Fir, No.2, 4x4" Self- weight of 2.53 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 18 Fc' = 470 fc /Fc' = 0.04 Axial Bearing fc = 18 Fc* = 1495 fc /Fc* = 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.315 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 218 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. �- 6eac COMPANY PROJECT WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:22 c50 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1_c48 Dead Axial 599 (Eccentricity = 0.00 in) 2 Live Axial 1660 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 1 • 0' 8' Lumber Post, Hem -Fir, No.2, 4x6" Self- weight of 3.98 pif included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 119 Fc' = 468 fc /Fc' = 0.25 Axial Bearing fc = 119 Fc* = 1430 fc /Fc* = 0.08 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.327 1.100 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 2291 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. nalpci Q HoufPeterson COMMUNICATION RECORD Righellis Inc: To ❑ FROM MEMO TO FILE El _ - - FNGf Ni-I NS • PIANt:t R,1 LANDSCAPE AacNi rf:cra•sur.vEro NS PHONE NO.: PHONE CALL: ❑ MEETING: .M M W m 0 Ch _ m s 6 .......... i , s • • m t .\ 1 EN', ..) . : g) C - 0 Z cb S 0 0 T COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:36 b17 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w49 Dead Partial UD 402.0 402.0 4.00 7.50 plf 2_w49 Snow Partial UD 450.0 450.0 4.00 7.50 plf 3 c15 Dead Point 938 4.00 lbs 4 c15 Snow Point 1350 4.00 lbs Loads Dead Full UDL 13.0 plf Load6 Live Full UDL 40.0 plf wind Wind Point 2240 4.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : .;y. -;. .. f ir -.="4'wy.. _"' "'e... 't"' _ `-- �`' �". -- `.wa "`y. -- ,"-" �, .:� ' , ' . _. L. r �- r- ►wi:'`� - ++�.� . s ir I 0 7' -6'1 Dead 843 1656 Live 1645 2454 Total 2488 4110 Bearing: Load Comb #4 #4 Length 1.78 2.94 LSL, 1.55E, 2325Fb, 1- 3/4x14" Self- weight of 7.66 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 162 Fv' = 356 fv /Fv' = 0.45 Bending( +) fb = 1511 Fb' = 2674 fb /Fb' = 0.57 Live Defl'n 0.09 = <L/999 0.25 = L/360 0.34 Total Defl'n 0.15 = L /580 0.37 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 6 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 6 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 4 Emin' 0.80 million - 1.00 - - - - 1.00 - - 4 Shear : LC #6 = D +S, V = 3584, V design = 2643 lbs Bending( +): LC #6 = D +S, M = 7198 lbs -ft Deflection: LC #4 = D +.75(L +S +W) EI= 620e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. C - 611,2b COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:36 b17 LC2 • Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w49 Dead Partial UD 402.0 402.0 4.00 7.50 plf 2 Snow Partial UD 450.0 450.0 4.00 7.50 plf 3 c15 Dead Point 938 4.00 lbs 4 c15 Snow Point 1350 4.00 lbs Loads Dead Full UDL 13.0 plf Load6 Live Full UDL 40.0 plf wind Wind Point -2240 4.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : ■ ■ma in "" - ..+i •.�•�; ...�• r. • ',�"�..�/"...,.'s�. i. r ` �.c"` .•�+. a .�-: _ - mow. ._. _' +x+�'.' ,,.«t:' +u,:� ,,. -.� - ��`"`,•�.�� �`-'� }2 l 7-6'1 Dead 843 1656 Live 997 1927 Uplift 528 189 Total 1841 3584 Bearing: Load Comb #6 #6 Length 1.31 2.56 LSL, 1.55E, 2325Fb, 1- 3/4x14" Self- weight of 7.66 pif included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 162 Fv' = 356 fv /Fv' = 0.45 Bending( +) fb = 1511 Fb' = 2674 fb /Fb' = 0.57 Bending( -) fb = 469 Fb' = 1114 fb /Fb' = 0.42 Live Defl'n 0.06 = <L/999 0.25 = L/360 0.22 • Total Defl'n 0.12 = L/722 0.37 = L/240 0.33 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 6 Fb'+ 2325 1.15 .- 1.00 1.000 1.00 - 1.00 1.00 - - 6 Fb'- 2325 1.60 - 1.00 0.299 1.'00 - 1.00 1.00 - - 8 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 6 Emin' 0.80 million - 1.00 - - - - 1.00 - - 6 Shear : LC #6 = D +S, V = 3584, V design = 2643 lbs Bending( +): LC #6 = D +S, M = 7198 lbs -ft Bending( -): LC #8 = .6D +W, M = 2235 lbs -ft Deflection: LC #6 = D +S EI= 620e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: • 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. "- 621 COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:41 b18 Ic1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude . Location (ft] Units Start End Start End 1 c16 Dead Point 938 5.00 lbs 2 c16 Snow Point 1350 5.00 lbs 3 w37 Dead Partial UD 498.0 498.0 15.00 16.00 plf 4 Snow Partial UD 450.0 450.0 15.00 16.00 plf 5_w54 Dead Partial UD 498.0 498.0 14.50 15.00 plf 6_w54 Snow Partial UD 450.0 450.0 14.50 15.00 plf 7 Dead Partial UD 96.0 96.0 6.00 7.00 plf 8 w56 Dead Partial UD 498.0 498.0 0.00 6.00 plf 9 w56 Snow Partial UD 450.0 450.0 0.00 6.00 plf 10 c39 Dead Point 843 7.00 • lbs 11 c39 Snow Point 1147 7.00 lbs 12 c40 Dead Point 1656 14.50 lbs 13 c40 Snow Point 2077 14.50 lbs WIND1 Wind Point 8750 0.00 lbs WIND2 Wind Point -8750 7.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : I 0, • 161 Dead 3950 3630 Live 5866 3956 Uplift 1588 Total 9816 7586 Bearing: Load Comb #3 #2 Length 2.95 2 Glulam- Unbal., West Species, 24F -V4 DF, 5- 118x16 -1/2" Self- weight of 19.47 pif included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 117 Fv' = 305 fv /Fv' = 0.38 Bending( +) fb = 1443 Fb' = 2747 fb /Fb' = 0.53 Bending( -) fb = 1354 Fb' = 2743 fb /Fb' = 0.49 Live Defl'n -0.43 = L/446 0.53 = L/360 0.81 Total Defl'n -0.26 = L/737 0.80 = L/240 0.33 • ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes. Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.15 1.00 1.00 1.000 0.995 1.00 1.00 1.00 1.00 - 2 Fb'- 1850 1.60 1.00 1.00 0.927 1.000 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #2 = D +S, V = 7944, V design = 6613 lbs Bending( +): LC #2 = D +S, M = 27966 lbs -ft Bending( -): LC #4 = .6D +W, M = 26233 lbs -ft Deflection: LC #4 = .6D +W EI= 3453e06 lb -in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). ( 030 COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:41 b18 1c2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c16 Dead Point 938 5.00 lbs 2 c16 Snow Point 1350 5.00 lbs 3 w37 Dead Partial UD 498.0 498.0 15.00 16.00 plf 4 Snow Partial UD 450.0 450.0 15.00 16.00 plf 5 w54 Dead Partial UD 498.0 498.0 14.50 15.00 plf 6 w54 Snow Partial UD 450.0 450.0 14.50 15.00 plf 7 w 55 Dead Partial UD 96.0 96.0 6.00 7.00 plf 8 w56 Dead Partial UD 498.0 498.0 0.00 6.00 plf 9 w 56 Snow Partial UD 450.0 450.0 0.00 6.00 plf 10 c39 Dead Point 843 7.00 lbs 11 c39 Snow Point 1147 7.00 lbs 12 Dead Point 1656 14.50 lbs 13 Snow Point 2077 14.50 lbs WIND1 Wind Point -8750 0.00 lbs WIND2 Wind Point 8750 7.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : L 10' 161 Dead 3950 3630 Live 3994 • 5838 Uplift 1396 Total 7944 9468 Bearing: Load Comb #2 #3 Length 2.38 2.84 Glulam- Unbal., West Species, 24F -V4 DF, 5- 118x16 -1/2" Self- weight of 19.47 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 168 Fv' = 424 fv /Fv' = 0.40 Bending( +) fb = 2579 Fb' = 3822 fb /Fb' = 0.67 Live Defl'n 0.41 = L/467 0.53 = L/360 0.77 Total Defl'n 0.58 = L/331 0.80 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 2400 1.60 1.00 1.00 1.000 0.995 1.00 1.00 1.00 1.00 - 3 • Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 3 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D +.75(S +W), V = 10637, V design = 9461 lbs Bending( +): LC #3 = D +.75(S +W), M = 49976 lbs -ft Deflection: LC #3 = D +.75(S +W) EI= 3453e06 lb -in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). - 6,23 11, COMPANY PROJECT 1 WoodWorks SOFTWARE FOR WOOD DESIGN June 28, 2010 13:41 b18 Ic2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c16 Dead Point 938 5.00 lbs 2 c16 Snow Point 1350 5.00 lbs 3_w37 Dead Partial UD 498.0 498.0 15.00 16.00 plf 4 w37 Snow Partial UD 450.0 450.0 15.00 16.00 plf 5 _ w54 Dead Partial UD 498.0 498.0 14.50 15.00 pif 6_w54 Snow Partial UD 450.0 450.0 14.50 15.00 plf 7 Dead Partial UD 96.0 96.0 6.00 7.00 plf 8 Dead Partial UD 498.0 498.0 0.00 6.00 plf 10_c39 Dead Point 843 7.00 lbs 12 c40 •Dead Point 1656 14.50 lbs WIND1 Wind Point -8750 0.00 lbs WIND2 Wind Point 8750 7.00 . lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • 0 ' 161 Dead 3950 3630 Live 960 3670 Uplift 1396 Total 4910 7300 Bearing: Load Comb #2 #3 Length 1.47_ 2.19 Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x16 -1/2" Self- weight of 19.47 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 135 Fv' = 424 fv /Fv' = 0.32 Bending( +) fb = 2202 Fb' = 3822 fb /Fb' = 0.58 Live Defl'n 0.31 = L/614 0.53 = L/360 0.59 Total Defl'n 0.48 = L/398 0.80 = L/240 0.60 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Eve 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 2400 1.60 1.00 1.00 1.000 0.995 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 3 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D +.75(S +W), V = 8361, V design = 7630 lbs Bending( +): LC #4 = .6D +W, M = 42673 lbs -ft Deflection: LC #3 = D +.75(S +W) EI= 3453e06 lb -in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). (.1';L COMPANY PROJECT I WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:42 b18 Ic1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units • Start End Start End 1 c16 Dead Point 938 5.00 lbs 2 c16 Snow Point 1350 5.00 lbs 3_w37 Dead Partial UD 498.0 498.0 15.00 16.00 pif 4 w37 Snow Partial UD 450.0 450.0 15.00 16.00 plf 5 w 54 Dead Partial UD 498.0 498.0 14.50 15.00 plf 6 w 54 Snow Partial UD 450.0 450.0 14.50 15.00 plf 7 w55 Dead Partial UD 96.0 96.0 6.00 7.00 plf 8 w56 Dead Partial UD 498.0 498.0 0.00 6.00 plf 10 c39 Dead Point 843 7.00 lbs 12 Dead Point 1656 14.50 lbs WIND1 Wind Point 8750 0.00 lbs WIND2 Wind Point -8750 7.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 10' 161 Dead 3950 3630 Live 3591 1065 Uplift 1588 Total 7541 4695 Bearing: Load Comb #3 #2 Length _ 2.26 1.41 Glulam- Unbai., West Species, 24F -V4 DF, 5- 118x16 -1/2" Self- weight of 19.47 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value ,Design Value Analysis /Design • Shear fv = 74 Fv' = 305 fv /Fv' = 0.24 Bending( +) fb = 933 Fb' = 2747 fb /Fb' = 0.34 Bending( -) fb = 1354 Fb' = 2743 fb /Fb' = 0.49 Live Defl'n -0.43 = L/446 0.53 = L/360 0.81 Total Defl'n -0.26 = L/737 0.80 = L/240 0.33 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.15 1.00 1.00 1.000 0.995 1.00 1.00 1.00 1.00 - 2 Fb'- 1850 1.60 1.00 1.00 0.927 1.000 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #2 = D +S, V = 4910, V design = 4172 lbs Bending( +): LC #2 = D +S, M = 18077 lbs -ft Bending( -): LC #4 = .6D +W, M = 26233 lbs -ft Deflection: LC #4 = .6D +W EI= 3453e06 lb -in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). C- &2j COMPANY PROJECT 111 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:43 beam under 202a LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif) : Load Type Distribution Magnitude Location [ft] Units Start End Start End dead Dead Full Area 13.00 (1.33)* psf live Live Full Area 40.00 (1.33)* psf wall Dead Partial UD 90.0 90.0 0.00 3.83 plf Windl Wind Point 7380 0.00 lbs Wind2 Wind Point -7380 3.83 lbs *Tributary Width (ft) MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : =�� � �-- . ^. r_.�_. - . + .�M�C: ''",.�; :r : �- �-_ a►...,. =-!'� stir c 1 0' 16 Dead 565 302 Live 1646 427 Uplift 1538 Total 2211 729 Bearing: Load Comb #3 #2 Length 0.84 0.50* *Min. bearing length for beams is 1/2" for exterior supports • PSL, 2.0E, 2900Fb, 3- 1/2x14" Self- weight of 15.31 pif included in Toads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 160 Fv' = 464 fv /Fv' = 0.34 Bending( +) fb = 324 Fb' = 2433 fb /Fb' = 0.13 Bending( -) fb = 2163 Fb' = 2842 fb /Fb' = 0.76 Live Defl'n -0.46 = L /415 0.53 = L/360 0.87 Total Defl'n -0.42 = L/456 0.80 = L/240 0.53 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 290 1.60 - 1.00 - - - - 1.00 - 1.00 4 Fb'+ 2900 1.00 - 1.00 0.839 1.00 - 1.00 1.00 - - 2 Fb'- 2900 1.60 - 1.00 0.613 1.00 1.00 1.00 - - 4 Fcp' 750 - - 1.00 - - - - 1.00 - - - E' 2.0 million - 1.00 - - - - 1.00 - - 4 Emin' 1.04 million - 1.00 - - - - 1.00 - - 4 Shear : LC #4 = .6D +W, V = 5224, V design = 5224 lbs Bending( +): LC #2 = D +L, M = 3088 lbs -ft Bending( -): LC #4 = .6D +W, M = 20612 lbs -ft Deflection: LC #4 = .6D +W EI= 1601e06 lb -in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. C \/3LI COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:43 beam under 202a LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End dead Dead Full Area 13.00 (1.33)* psf live Live Full Area 40.00 (1.33)* psf wall Dead Partial UD 90.0 90.0 0.00 3.83 plf Windl Wind Point -7380 0.00 lbs Wind2 Wind Point 7380 3.83 lbs *Tributary Width (ft) MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : I0 164 Dead 565 302 Live 427 1696 Uplift 1380 Total 992 1950 Bearing: Load Comb #2 #4 Length 0.50* 0.74 *Min. bearing length for beams is 1/2" for exterior supports PSL, 2.0E, 2900Fb, 3- 1/2x14" Self- weight of 15.31 pif included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fir = 181 Fv' = 464 fv /Fv' = 0.39 Bending( +) fb = 2352 Fb' = 2842 fb /Fb' = 0.83 Live Defl'n 0.44 = L/435 0.53 = L/360 0.83 Total Defl'n 0.48 = L/398 0.80 = L/240 0.60 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 290 1.60 - 1.00 - - - - 1.00 - 1.00 4 Fb'+ 2900 1.60 - 1.00 0.613 1.00 - 1.00 1.00 - - 4 Fcp' ' 750 - - 1.00 - - - - 1.00 - - - E' 2.0 million - 1.00 - - - - 1.00 - - 4 Emin' 1.04 million - 1.00 - - - - 1.00 - - 4 Shear : LC #4 = .6D +W, V = 6000, V design = 5909 lbs Bending( +): LC #4 = .6D +W, M = 22412 lbs -ft Deflection: LC #4 = .6D +W EI= 1601e06 lb -in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. • (ci 3)5- COMPANY PROJECT di WoodWorks® SOFTYAREFOR WOOD DESIGN June 28, 2010 13:44 b18 REAR LC1 Design Check Calculation Sheet Sizer7.1 • LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w63 Dead Partial UD 402.0 402.0 0.00 1.00 plf 2 w63 Snow Partial UD 450.0 450.0 0.00 1.00 plf 3_c9 Dead Point 985 1.00 lbs 4 c9 Snow Point 1470 1.00 lbs 5 c10 Dead Point 985 7.00 lbs 6 c10 Snow Point 1470 7.00 lbs 7 Dead Partial UD 402.0 402.0 7.00 9.50 plf 8 w64 Snow Partial UD 450.0 450.0 7.00 9.50 plf 9 Dead Full UDL 47.7 plf 10 j25 Live Full UDL 160.0 plf Load11 Dead Full UDL 13.0 plf Load12 Live Full UDL 40.0 plf W1 Wind Point 6190 1.00 lbs W2 Wind Point -6190 7.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 1 0' 9'-61 • Dead 1977 2047 Live 5352 2391 Uplift 2667 Total 7329 4439 Bearing: Load Comb #4 #3 Length 3.61 _ 2.19 Glulam- Unbal., West Species, 24F -V4 DF, 3- 118x10 -1/2" Self- weight of 7.55 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design • Shear fv = 297 Fv' = 424 fv /Fv' = 0.70 Bending( +) fb = 1693 Fb' = 2760 fb /Fb' = 0.61 Bending( -) fb = 1580 Fb' = 2844 fb /Fb' = 0.56 Live Defl'n 0.14 = L/837 0.32 = L/360 0.43 Total Defl'n 0.29 = L/386 0.47 = L/240 0.62 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fb'- 1850 1.60 1.00 1.00 0.961 1.000 1.00 1.00 1.00 1.00 - 8 Fop' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 3 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 3 Shear : LC #4 = D +.75(L +S +W), V = 7329, V design = 6491 lbs Bending( +): LC #3 = D +.75(L +S), M = 8104 lbs -ft Bending( -): LC #8 = .6D +W, M = 7558 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 543e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). C- G3 (4, • COMPANY PROJECT /lit WoodWorks® SOEnWAREFOR WOOD DESIGN June 28, 2010 13:44 b18 REAR LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w63 Dead Partial UD 402.0 402.0 0.00 1.00 plf 2_w63 Snow Partial UD 450.0 450.0 0.00 1.00 plf 3_c9 Dead Point 985 1.00 lbs 4 c9 Snow Point 1470 1.00 lbs 5 c10 Dead Point 985 7.00 lbs 6 c10 Snow Point 1470 7.00 lbs 7 w64 Dead Partial UD 402.0 402.0 7.00 9.50 plf 8 Snow Partial UD 450.0 450.0 7.00 9.50 plf 9_j25 Dead Full UDL 47.7 plf 10_j25 Live Full UDL 160.0 plf Loadll Dead Full UDL 13.0 plf Load12 Live Full UDL 40.0 plf W1 Wind Point -6190 1.00 lbs W2 Wind Point 6190 7.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : o 1 0 W-6't Dead 1977 2047 Live 2420 5324 Uplift 2709 Total 4397 7371 Bearing: Load Comb #3 #4 Length 2.16 3.63 Glulam- Unbal., West Species, 24F -V4 DF, 3- 1/8x10 -1/2" Self- weight of 7.55 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 299 Fv' = 424 fv /Fv' = 0.70 Bending( +) fb = 3225 Fb' = 3840 fb /Fb' = 0.84 Live Defl'n 0.24 = L/468 0.32 = L/360 0.77 Total Defl'n 0.40 = L/283 0.47 = L/240 0.85 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 2400 1.60 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 4 • Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #4 = D +.75(L +S +W), V = 7371, V design = 6533 lbs Bending( +): LC #4 = D +.75(L +S +W), M = 15434 lbs -ft Deflection: LC #4 = D +.75(L +S +W) EI= 543e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). G3'+- • Harper Project: 1 GP Houf Peterson. Client: Job # _ ti F Righell is Inc. ENGINEERS • PLANNERS Designer: Date: Pg. # LANDSCAPE ARCH!TECTS•SUR:(EVORS lb Deck- fl-es t � W 10•— •8•ft•20•ft W = 1600•lb ft Seismic Forces Site Class =D Design Catagory =D W P ' : = W dl Ip := 1 .0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S : = 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S = 0.942 Max EQ, 5% damped, spectral responce acceleration.at short period . z := 9 Height of Component h.:= 32 Mean Height Of Roof F '= 1:123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1),2006 IBC) a F := 4.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) • S F S mi F v .S 1 2 • S ms S := Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections ap := 1.0 R := 2.5 (Table 13.5 -1, ASCE 7 -05) 4a •Sds• ( FP := pR -I 1 + 2 h I Wp EQU. 13.3-1 P ` Fpmax 1.6•S -l -W EQU. 13.3 -2 Fpmin:= •3- Sds•Ip•Wp EQU. 13.3 -3 F if(Fp > Fpmax,Fpmax,if(Fp < Fpmin, Fpmin,Fp)) F = 338.5171.1b Miniumum Vertical Force 0.2• S ds W d1 = 225.6781-lb Ge.35 Harper Project: HP "• Houf Peterson Client: Job # Righellis Inc. ENGINEERS • PLANNERS Designer: Date: Pg. # LANDSCAPE ARCNITECTS•SURVEYORS W dl := 10 lb 8 ft 20 ft Wdl = 1600-lb ft Seismic Forces Site Class =D Design Catagory =D Wp := Wdl - P i�� := 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F a • = 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F v := 1.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S : = F S =F.S 2 • S ms S • = Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a := 1.0 R := 2.5 (Table 13.5 -1, ASCE 7 -05) . 4a p • z FP := R •(1 + 2• h •Wp EQU. 13.3-1 F pmax := 1�.�6.Sds.Jp.Wp EQU. 13.3 -2 F pmin := • EQU. 13.3 -3 := if(F > Fpmax,Fpmax,if(Fp < Fpmin,Fpmin,Fp)) F = 338.5171.1b Miniumum Vertical Force 0.2 • S ds' W dl = 225.6781.1b C C 30\ HP Houf Peterson COMMUNICATION RECORD Righellis Inc. . To 0 FROM u MEMO TO FILE E Fosit•12.S • FLArna,lt: LAND,CAPE ARCHITE,crS•SuRVE•UHS •• .... PHONE NO PHONE CALL: 1:1 MEETING: D m "0 ID . 2 rn — 11 1:1 e. C> LO .r 11 3 G i.:1 1 0 ( .0 (...0 If ( .-.) CO C...P ......... QJ -a -.S. —CI CA * --Q -1 It 6 ' rl H rr, . ..... • LP ...C) r., I * ...., cf1 42k . C—A ...C.\ , er 6— C) • ---)..i I 1 a ".■ s... 's. ,.5. ■ le z N V r• r R _ .... ".., .... . ---------- • -,... gS • Q ) . . -9, BY: ikrfi (pfSe)(N bATE Y ,1/ 0 \ n . \ 0 C JOB No :ce._,... O c 0 .-. . PROJECT: • RE: D -.C.Y- D t () t--rlov■ e APPNC \I . 2x L 0 D w . _I (9 DEC/LING) - Z if LI. _ P 2 2 \\Au_ CR-Prc. k (iLa Cornmcs0 Li --I (t.3)((ag,41t)C4 () ;.-- 1.(0 W inail k , ---A 0 la I I 4 W 0 Er 0. n 0 0 LAPRc. it z L1 (2. boafa,) o i \a‘sT-5 1/ 0 5c 2 1 iC C-1( \pe-h)° 6 i\-a = -2‘.>4 . 1 CO,C7 _ T 0 id i 0 12 cf. t..0 Ar Tual x ._ GCi5 pt,F_ 1 1 1 I 1 _ i I Lir . L -Ea--)•••._ 7DE‘,,c--,Ni , ........_7_. e t 2 SIrNpt". S 4 - X 4 0 2__ 1 i cn 0 s- ...._ 4 a) - ' C.. T , ( (_Z \ A, al 0 ik) =._ .S 5 ?p+ < 401T .... ,., • , 0 t,.._ *- ! elfC.X■J k• h.5 loo c k -= 3o ( :: Q31 441r- tz" 0,c, ---7- 2(22O =_, 440 C— Cl-kk BY: h i lVti CDIalf\ DATE: ....'. ,: Do \ 0 JOB NO.: .... -(3 ,s io , PROJECT: • RE: T: o 0 • LbPlc:'J CA.›.-T-. .i,... : • O X . . <■... 2.00 A . L i j 0 . • k h 3 . = a) 0 Aq. 4.a."' , 0 - O „., • ,.....:- strar,/...■Ni. . o z 0 . . a.. • $t" T=C _- .6400 it a , 0. Z. 5 .1 r: • . < O - E U..._ . 511ry\011 . 4-11Du 4 2 To fe‘' kfOrN 2 r 4,2,5" I 0 • o . /I '----c o 2 0 U. ci U. Z w 0 g O 1 ,LoPti F- fl • WZ:- aapit (4( ZOO tr....14 . "..- E3000 4t:1)\;i .. • I 3 45 l•' 1 I . ! 1+1)04 • 3c ) . • • . , .,, 0 ,...) . .I • a> — 1 1 i , 12* Td -'•,, 1, -g :`-- • i •pZ *.,., i - E]c V i• • • .-4'4" , J._ ' • . • , . Harper ' Flouf Peterson COMMUNICATION RECORD ' I ' ' Righellis Inc.. To 0 FROM Ej • MEMO TO FILE 0 ENGINeeRs • PlAll'IERS LANDSCAPF. ARCHITECTS•SURVEY0110 PHONE NO.: PHONE CALL: 0 MEETING: 0 - - 71 . 71 . co rn g - —1 I m ft• Oa, X -1 q . 0 .. if cm al it P ..----- .. • . 3 d , • : ...c ,-E . - __--0 . . .0 0 , 0 • .---N . • .3> 0.2 Lki W . . 01 ,:. 3 d . I, —i CD • • 0 (.. . P., 1 . 1 C----"‘ ,----- co..' . - (5 I • . . Lr . r) • ril, I . .. . . - V c.-} , . C.) • . . • . --! -- ' • -11 . . ... . . . ... P 6 . . 1 . • (7 • C:cli . ,.— I . . . \- • Q --, COMMUNICATION RECORD HP Hou Peterson Righellis To 0 FROM 0 MEMO TO FILE 0 EplOINEE14$ • PLA,IER.: LAND ARCHITECTS•SUPVE:YORL PHONE NO.: PHONE CALL: E MEETING: 0 M "0 Ca t_ m 7. - • §Z) • • 3 .."....... li ". 0 ....„_.• -\........ _., , .. , . a N 7- li C". 0 ci . .. -c-- - -- (s. l' E i (el a I* .......0 1 ‘,.....-Ce c . (.1 "1 • ,.,.,......... ,,..,.. 1 • C,,..:) r ! • CO 1Z) Z CP. i" ''• i -N • t • • (""\ . '• 01 ot ' o . o • __.. _ 191 COMPANY PROJECT eit. Wood Works® SOFTWARE FOR WOOD DESIGN • June 8, 2009 16:27 Hand Rail • Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Point 2.50 200 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : "• • - •;;;; • , • '• '--- • ;'' • • ‘r • 5 Dead Live 100 100 Total 104 1104 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb _ 1.00 1.00 Mn. bearing length for beams is 1/2 for exterior supports Lumber-soft, Hem-Fir, No.2, 2x6" Self-weight of 1.7 Of included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NOS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Pv' = 0.13 Bending(+) fb = 405 Fb' = 1048 fb/Fb = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 • Total Defl'n 0.03 = <L/999 • 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 . - 1.00 1.00 1.00 1.00 - E' 1.3 million 1.00 1.00 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending(+): LC #2 = L, M = 255 lbs-ft Deflection: LC #2 = L RI = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. • 6 6 • ( C COMPANY PROJECT '. r i I WoodWorks® SOFTWARE FOR WOOD DESIGN . June 8, 2009 16:27 Hand Rail2 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Full UDL 50.0 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : r•k=::'.4.-,-:•;4. Z',4' 1 p:f,.; . :,-,;:, :::::;1;:..;:: .1: , : 1::, , :pf , : i .J7i ;- :::::=,' --,;;;!', - ,;.j.' " '..,, ' . • ,,,', ,. '. .;,;_ ;,=.:„;•4 , .::: T.:5;,:.::: ..;-,::.!'', ' ,7-. ...,- .2- ` 2. : .: :';'' '. r .: ': .". .:-:', L 7 ' 1- ' 7 ' -,-- -:::-•': -: '' - `7'' -' ::.. . ::- . ;..,:':',! -,,: .:%:-;-::.: :i': '-':_. z .1,t =ii .r, : f'' • r, i., 7 - ' '''-'4, ;. t , :,-. t ' : ,,i, . 1.= ' .,: ,:, .: ,', • : ', ,' ,, , , ; - .., ,,, , , „ I 10' 54 Dead Live 125 125 Total 129 129 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams is 1/7 for exterior supports Lumber-soft; Hem-Fir, No.2, 2x6" Self-weight of 1.7 plf induded in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 256 Fb' = 1048 fb/Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.11 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp 405 - 1.00 1.00 - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - 1.00 1.00 - 2 Shear : LC #2 = L, ,V = 129, V design = 106 lbs Bending(+): LC #2 = L, M = 162 lbs-ft Deflection: LC #2 = L El = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C - FRONT LOAD Woodworks® Sizer 7.1 June 22, 2010 14:24:15 Concept Mode: Reactions at Base of Structure View Floor 2: 8' • 1050• 1280 L : 1280 L i 49' - n„ u,50 442 D .: 442 D_. . 4' 4 b b 40 b 45 b I Vy - .. 44-17 43 b' : ... . Ve •: - . : 15411204 L 1470 L -- . r : _ : ' • ` 4L--0 41 -b' a 1047746 D):992 Di : . .' - 4u-b' 3y b' 3 3bf b.. tSy .. . ._ • .:. ;111. ___ . ._ t..- 34 b 33'b 23r - ..1L -0 Yb OL . 01660 L:_, . .._: " :. 553 L-- 1_111. :- .- ._.- - -- r-- °: ; - -� - -: - _ �n zs l 599 D .: 200 D LS D .. tSU curt a 24 -b i u 1080 L : • 640 L L.5-0 r l 409 D - . : - LL -b 208 D : . • L'1'-b " r4 t y' b 480 L -- _ k r n /2 1667 Li - -• - - -- 1111: .. � _ .. ..: _. . . ." r .. - - _ : Ib-b 15 b r u 300 0 14 _b b y 1100 L98 D L • ` - 13 0 • bb.._ -: :75 L _ .. b r 409 D 409 D : . lL b bb (s u = 24 D iu 5 � b F - �' - b3 }- - . - - -- : - - -- - -_ — - b . b.. 1 • : :..) : 994 113 L..._ .. . . L.; . : 4 -0 3978 D 8113 L ::38.88.0 : . - . 3 -b :633 D3386 D . .. .: I b u - b . BBI B. BBCCCCCCCC} CCCCCCCCCCCCCCCICCCDDDDDDDDfDDDGDDDDDDDDDCDI DDDEEEEEEE 'EtEEEIEE!EE +EEEEEE(EEEEZ V 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'9111 :1 22:2 21243(33 :3 :3 -313 :313!4(4 4A :4 414 :4 E44515 5:5 :5 5(5!6(6 6,6:6 c \ ((r(N I ‘ '' °C).- & ' • 007 ln Lo..■)0L5 k c_ "V \- ::._ WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C - REAR LOAD WoodWorks® Sizer 7.1 • June 22, 2010 14:22:33 Concept Mode: Reactions at Base of Structure View, Floor 2: 8' �4 1280 L 1280 L 40 0, • vets 442 D . 442 D _ 4 -o .. I VU . - • . - - - 44. -t V9 • 43 - b • V0 - = - -_.. _ ' - - .. - - 4G yb 26 u l .... _...__ ___ .. � - 3189 L - : 4u' b' .. .: 1977 D o: B . :::2047 D = .5& -b : as �r b V I . ao'o' V U f - ' . i - I ( - - - - - - - - - - - - : - - : - ! .34 -0 1 7 • 25`J 3S -b • t5tf---' : 111, -1111_ -`- - - -- - . - - - 3L-b 0 f SI - b . 259 - - ,H,: .. , . 4' 254 - i 1 71 1_ .-- - 7 - --- - -- -- -- -- - -- -- -- - - -- -- - - - - - - Lb -0 u ;2068 L : • 689 L _ Lb . 0 .. 01 731 D; : 244 D : : � G0 b • .. ... ...__.... -- - r- - ' -. L4 .. b . t 10 L :_ _ GS -b r is 640 L LG -b rr : 409D ' :208D :; - 2.1 b' rb N b.. rb - - I` -J-b " . - 480E . . - I/ -0 r G_ : 1 776 L . • .: : . 10 -b 1111 1111.. .. (U - 300 0 i4 5 oVu 1080 L98 a L _�.. br 409 D -409 D= - :• - 75 L - - bb- - u .24 D: - 1U -b b5. 17 - - V r; bG . _,_ .1131 160 L50 L2077 L : ... • .. 4.- 113L 113L 12:- - 113LD 38113L 3 7 11 . . . . ., � . ;6 DI D' 86D... :. ._ . 1711.. :. . BB1B.BBC.CCC C CC C1CCC CC CCCCC C CC CC\CC C D.DD D D DD DtDDD CD DD'DD D D DD CDtiDD DE.E E E EEEEFEEEiEBEEiEEEEEEtEEEEZ 0' 2' 4' 6' 8' 10' 12' 14'16'18'20'22'24'26' 28' 30' 32' 34' 36' 38'40'42'44'46'48' 50' 52' 54' 56' 58' 60' 62'64' 66' 68'70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 1:1:1 ?1(11 £1 2(2 222 :33 344(444:444(4 "4£4i5t5 5 :5 :5 :5(5'5£5!6(68;6 :6 ?6(6 - x6!717 7.7.7 -6" • Vkeoc \O�C, . C- ep2 . Plain Concrete Isolated Square Footing Design: F2 f := 2500-psi Concrete strength f .= 60000-psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity 'Yconc 150•pcf Concrete density "( 100•pcf Soil density g all := 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl:= 3978.1b Pd1:= Totaldl Total11:= 3994-lb Pll := Totalll Pt1 := Pdl + P11 Pg = 7972-lb Footing Dimensions t := 10• in Footing thickness Width := 30• in Footing width AA:= Width Footing Area net gall — tf' gnet = 1375•psf P Areqd gnet A red = A ft < A = 6.25 ft GOOD Widthreqd A Widthregd = 2.41. ft < Width = 2.50 ft GOOD Ultimate Loads Pd1 + tf'A' P := 1.4 -Pdl + 1.7•P11 P = 13.45-kips P qu := A qu = 2.15•ksf f--3 Beam Shear bcoi. : =`5.5• (4x4 post) d := tf — 2•in d) := 0.85 b := Width b = 30•in V„ :_ d) 4 f -b•d V = 13.6.kips 3 Vu _ 9u (b toll b V = 5.49-kips < V„ = 13.6 -kips GOOD 2 Two -Wav Shear bg := 5 :5-in Short side column width bL 5.5in Long side column width b := 2•(bg + d) + 2•(bL + d) b = 54•in (3 := 1.0 A V M := •:1:1•( 4 + 8 f p si•b•d V„ = 40.8•kips 3 3.0 V,,,,, := 0.2.66• f V„ = 27.13.kips A V y 44.= q,; rb — ( b c0 + d) V = 10.73 -kips < V = 27.13-kips GOOD Flexure 2 b —21),01) 1 M„ := gut •(2)•b M = 2.8 ft kips := 0.65 ' 2 S := b6 S = 0.185 -ft F := 5.4).4T•psi F = 162.5-psi M u f := S f = 105.14 -psi< F = 162.5 -psi GOOD 'Use a 2' -6" x 2' -6" x 10" plain concrete footing — PI N - a-so rrvI'z2 Cr) cno01 {b!e o li zna gig' : ( o 11 — (1.i1eXTily,,1tiost)roob -- i ' . in c'slu X z) 9. ) (1nM 'Id 00e _ (z)cZ9st o , 4 11 ) \0 d ,S1 "a-CO ; 00.1 MOO\ beb4.1 c `i1 Srcoi ?W)DS = ").k• 9 s I" (1 -� b c►OOS1 5 Nl Oo14 cc.p e i 9 olo o ) , ( -61ci as+ = <S1)`g1) 6 cam.. -t d mJ . °tog, moo = Cr() cis )( lAA = h zt/ 3 osl) " yob :-OO\ =116 hcc'2 _ �35 1 )` S1 a^alab) - iorn -1 ` • 0 $ l ► cn -A� i „Jva.� m ❑ • - *I o S1. x � � 00:'‘ = m 0 mom • 5- C1 021 + 1 g h.1 3 rr, • e/ doO.S1 gd 00S1 = d,ag )(Now, -1 cr1001 1C2,411 = '9'001 • O .)001 -- 3 ono) s osct p-t,)( Z) »3QJ :411 r>a • m M 001 n' X. X-99) m o v , i , 6 ,, c f 9 _ 2 2 _ LZ'l vitxpo osi) NIof, 0 Jool �'ta �3C� � = s e.1) c s`a �, na g, ❑ Worn �1► 00S ���� Zi� � �S 1. s -n m 0 m sCou po. lJ 'p! ❑ ❑ :J 3road �o O b 0 J ' ) oN aor 31VO V\ ua 7; . d • F. 1 ' 0 0 0 - . = Q, 9 7-g9cs ( _si b•ct'se "0 H 1 0 0 2 0 4t 4SY = Neg. b's z , • .. , • - - -LoW . ? ,? S < 0 . V GSV ( ( il)--L11?-+ y,I) tol -+ (6)c5 9zp ,I 'a) = : -1 z \-4. 0 3 ctil ) Y4 A- 0-)t...) i7 ' ci ) 1 0' ,ctk 5' 9cS" Ek I X0S1 '0) = -1 W 6 9)0IUM14-1?1\Q -pay@ z . . m N-\-soi---,s.8 -\-ck.,QA-st.‘.4.--; 50A-sto1_11 0 z n m 0 O , 1._._ it 1 1 ;_i_. T......i___: , 0 K 0 1 1 k..21 M 0 irA Dr?, 1 0 Z-4 vyk OM 3110111 I tiq 1 )( :).-1 x z 11 o , b 0 ral ifusui 7 ) vufl . :38 10310d AO 0 10C)' g ON 801- n 10'e ., %Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:53 AM Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit C\FDN\Front Load.etz\ • M33 =83.44 [Kip'ft] • M33 = -12.21 [Kip•ft] • e (_x ; ntt 4 Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:54 AM Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes\calcs \Unit C\FDN\Front Load 2.etz1 M33 =43.5 [Kip`ft] • M33= -40.04 [Kip'ftj X n �� BY. p DATE: 1 Q &O 0 JOB No.: Ca M .... ..6 90 OF PROJECT: RE: UNIT b C _Rear Load ❑ ❑ L i • Z I- W 20UV ' 1.000 0a o W 0 J X Q U 0 ct a . O Mor= S4,S3kFt Q Ma LO) 4- a. ( ,3 (4) - (u..1.) = '-I -s -34 f DL o 2 /= r /; VII DL h ` 1 o A cv. 03' x a i. $ 1, - O z .x = M f —_ 4' •34 t a (8 . >> _ q ' e = oo -1� Ft • W Ia., o a .X � a + (M _ _ a 1.. ,� LC12 N0,11:) ! 0 4 a a s� s (2)(m) a (my-4 l , 5 . � , o 6 4 v1i 1 r - Q _ .1 M _ e C, (r2. Norn -) o, aso tsc. ,. A" 5 [xa - W C:F n entt Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:57 AM Units system: English File name: O: HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit C\FDN\Rear Load 2.etz\ M33 =36.82 [Kip•ft] • M33= -50.22 [Kip'ft] I 8Y: I V DATE: IA Ca/0 JOB NO.: n ' 0N V OF PROJECT: RE: U n i+ C - 1n\-e,r i ar SUJ 51,09 t ❑ ❑ z �.ati e" D 2 E 1- a' 4-- 4 W � V 0 w W CheCY-- Overavr iS 0 MOT" 51, CPI k-C Mk= ' () + . +DL( )= ay.3L - �DL Mtn � ,2CeR) I. CZ-) DI... ® 4L.52. 4-9 Di- 0 (SMOT < R9 31, t nL DLL i3 ,M - i- k, ps 0 Ar-ea. ; g' x . a5' x a .5 • Z 1.31 z _ M 4-(h. 2.- ia.�s - n ct 0,3�b ct CIR 7 ak.L °J r mv.sx - - Li CR I a L 1 = Oaol 36 K.sv (.1.s = ay_ 3L 3L(8-'2e ) 3 (4 V.3 ' 2(o, $) 1>!' w r {ri jia 0 - Bentley . Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 1:17 PM Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit C \FDN \Interior.etz\ • M33 =6031 [Kip'ft] • M33=- 63SSE-12 [Kip`ft] — — M33=-18.91E-10 [Kip *ft] • M33= -21.22 [Kip'ft] X • - FA, 2 Bentley' Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 1:17 PM Units system: English . File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit C\FDN\Interior 2.etz\ M33 =55.84 [Kip`ft] • M33=66.17E=11 [Kip *ft} - - . M33= 21.46E -11 [Kip *ftJ M33= -25.6 [Kip*ft1 • • Pi 3 Y i ; (E. '01 < 'OA v wcj ( - 1 ‘e)(poot W NI b ot 0 (Z r x €)( '0)/ 0o0'0) oS '0 )0 •r 6c3.' 0 -:=5 as / -) , •Y , .\ (5) ha. % -A-4 2 -14 9 q j %P° 11-44- (:a 41 .-t.,0# - to h V4 V 1 0 C e- i fs h Qz-ixE-Xonos)Q, = co00 0,)Lc-bEio? .c to -z,No bv 0 v ' YO I birS C a cig / e i s 1g Pi; Eio, •- = c7) 2+ U • Tild-a - Ok al. ) a 47-4 (I) asn l'OCA)21%? ti8 '0Q - .s . QS01)tZ 1 1 j64-6 "9"Qict 7t -- co • 000 • -1;Ni 1 IS (-7,7c2 --- (70e 4-3-1 )As G (1 9 = • o. 'rit el-L1 --= c 0 V1 � g z rii - —rfl .. 0 • - - -- • - o 1 Vol< 'R qk] 0 ii .011.0 -LZ)( ir.LAvvo T) -6 bjc.00°C-K10/0#XAMIU-1:1)-t • - is ) _. 1 . 1rfs zo 0 m 0 4 4-1- - c'Etlo yob 0 :140 r 0 ' 0 g , TA \i" 141- 6111 V i g GR-11-tra4 :103roa d ( 1 AO oit.,(3-09:IoNeor Q) Q C \ni '3iva • BY: A ! DATE: aoo J08 NO.: cam-090 OF PROJECT: RE: .- ❑ ❑ i �� erg G C. l_47)(4)0 pcX7...) 73:100 e erA, .e.Amct w J � F 0 O (2) 4 (1.(06+ - 3. . fi DLC4> L ° / A C 1 - z 3 . (,„ ) - i t 41 u< attp. Li o • 1.cMo-r DI- rt o ❑ o = t116 (C0.2) - 5) O — 4;54 Ft Q s:a AO) e Oas4Ct t iol ` tsa� . (, , (\s,ab)(o, s4 BL V - L — ( 6 ` .3 o - = 4t8g3YS &t ,s !eb,P •.ca p" n. o bn • 1> =2 ACI 318 -05 Appendix D 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens • fc = 3000 psi fc = 3000 psi h'er = 3.50 inches h = 12.00 inches (into the Fc Stem = 8.00 inches Note: hef above is the the embedment into or cmax = 5.25 inches the foundation and does not consider stem wa Fnd Width = 36.00 inches C = 2.25 inches C mjn = 18.00 inches W 1.00 cast -in -place anchor yW 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor = 0.75 strength reduction factor 4' = 0.75 strength reduction fact Calculations Calculations AN = 68 in` AN = 1296 in` AN = 110.25 in` AN = 1296 in` Nb = 8,607 pounds Nb = 55,121 pounds Wed,N = 0.8286 Wed,N = 1.00 N = 4,399 pounds N = 55,121 pounds +Ntb = 3,299 pounds 4'N = 41,341 pounds Combined Capacity of Stem Wall and Foundation o = 44,640 0.754'N = 33,480 Concrete Side Face Blow Out Givens Ab = 2.15 in` fc = 3000 psi = 18.00 inches = 0.75 strength reduction factor Calculations Nsb = 231,191 pounds 4 Nsb = 173,393 pounds Concrete Pullout Strength Givens Abrs = 2.15 in` fc = 3000 psi = 0.76 strength reduction factor Calculations N = 51,552 pounds 4 N = 38,664 pounds Steel Yield Strength Givens f = 58,000 psi A = 0.606 in = 0.80 strength reduction factor Calculations N = 35,148 pounds 4N = 28,118 pounds < 33,480 Ductility Met Holdown Check Holdown: HDU14 Holdown Capacity= 14,930 pounds 1.6* Capacity= 23,888 pounds 23,888 < 28,118 Holdown Checks ACI 318 -05 Appendix D • 1.125" Diameter Bar Capacity at Standard Stem Wall Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc = 3000 psi fc.= 3000 psi h' = 17.00 inches hef = 12.00 inches (into the Foundation) Stem = 8.00 inches Note: hef above is the the embedment into only the the foundation and does not consider stem wall embedment Fnd Width = 36.00 inches cmin = 2.25 inches c = 18.00 inches Wc,N= 1.00 cast -in -place anchor yV 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor = 0.75 strength reduction factor 4 = 0.75 strength reduction factor Calculations Calculations ANc = 408 in` A = 1296 in` ANo = 2601 in` AN = 1296 in` Nb = 92,139 pounds Nb = 55,121 pounds Wed,N = 0.7265 V = 1.00 Ncb = 10,500 pounds Nth = 55,121 pounds +Ntb = 7,875 pounds (IN = 41,341 pounds Combined Capacity of Stem Wall and Foundation +Ntb = 49,216 0.754)N = 36,912 C -� \ Concrete Side Face Blow Out Givens A brg = 2.75 in` fc = 3000 psi cmin = 18.00 inches = 0.75 strength reduction factor Calculations Nsb = 261,589 pounds 4'Nsb = 196,192 pounds Concrete Pullout Strength Givens Ab = 2.75 in` fc = 3000 psi = 0.75 strength reduction factor • Calculations N = 66,000 pounds 4'• = 49,500 pounds Steel Yield Strength Givens f = 58,000 psi A = 0.763 in = 0.80 strength reduction factor Calculations N = 44,254 pounds (l)N = 35,403 pounds < 36,912 Ductility Met Holdown Check Holdown: HD19 Holdown Capacity= 16,380 pounds 1.6* Capacity= 26,208 pounds 26,208 < 35,403 Holdown Checks