Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Specifications (3)
Ytn .io- rIr-f I`7 11 11 Structural Calculations for Full Lateral & Gravity Analysis of Plan A 1460 RECENED Summer Creek Townhomes SEP 23 2010 Tigard, OR R CITY OF TIGARD BUILDING DIVISION Prepared for Pulte Group July 13, 2010 JOB NUMBER: CEN -090 ** *Limitations * ** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and /or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. • 117 sheets total including this cover sheet. This Packet of Calculations is Null and Void if Signature above is not Original litit Harper • Houf Peterson Righellis Inc. EntWACERSOPLAU4ER6 LARDSCAFE 5RC ITECT5.IIVR E,, R5 205 SE Spokane St. Suite 200 o Portland, OR 97202 0 [P] 503.221.1131 0 [F] 503.221.1171 1104 Main St. Suite 100 o Vancouver, WA 98660 e [P] 360.450.1 141 0 [F] 360.750.1 141 1133 NW Wall St. Suite 201 e Bend, OR 97701 0 [P] 541.318.1 161 0 [F] 541.318.1141 Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit A Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, Ir,,: 1 2006 IBC / 2007 OSSC Occupancy Category: II Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed, ASCE'7 -05 Ch. 20 Importance, IE: 1 ASCE 7 -05 Table 11.5-1 Ss: 0.942 USGS Spectral Response Map Si: 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength, Pc: 3000 psi Foundations & Slab on Grade Concrete Unit Weight, yc: 145 pcf Steel Reinforcement Yield Strength, f 60,000 psi Wood Studs (Wall Studs): Hem -Fir #2 2x & 4x Wood Beams & Posts: DF -L #2 6x & Greater Wood Beams & Posts: DF -L# 1 Glulam Beams: 24F -V4 PSL Beams: Fb =2,900 psi, FV= 328psi, E =2.0 Million TS /LSL Beams: Fb =2325 psi, FV= 460psi, E =1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : 1500 psf Assumed 2. All manufactured trusses, joists, and flush beams u.n.o. shall be designed by others. Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 WoodWorks - Sizer version 2002 Bently RAM Advanse Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP '• Houf Peterson. . _ Client: PULTE GROUP Job # CEN -090 % ' Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCHITEC r 9• SURVEYORS DESIGN CRITERIA 2007 Oregon Structural Specialty Code & ASCE 7 -05 Roof Dead Load RFR := 2.5.psf Framing RPL := 1.5•psf Plywood • RRF:= 5•psf Roofing RME := 1.5•psf Mech & Elec RMS := 1 •psf Misc RCG := 2.5.psf Ceiling RIN := 1 •psf Insulation RDL = 15 -psf Floor Dead Load FFR := 3 •psf Framing FPL := 4.psf Sheathing FME := 1.5•psf Mech & Elec FMS := 1.5•psf Misc FIN := .5.psf Finish & Insulation FCLG := 2.5.psf Ceiling FDL = 13.psf Wall Dead Load WOOD EX Wallin := 12•psf INT_Wal1 := 10 -psf Roof Live Load RLL := 25•psf Floor Live Load •FLL := 40•psf M- L1 Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE A RCRITECT5•8URVEYOR$ Transverse Seismic Forces Site Class = D Design Catagory = D Building Occupancy Category: II Weight of Structure In Transverse Direction Roof Weight Roof. Area := 843- ft2.1.12 RFgrl• := RDL•Roof Area RFw-r = 14162•1b Floor Weight Floor Area2nd := 647•ft2 FLRvyl := FDL•Floor Area2nd FLRgrf2nd = 8411-lb Floor Area3rd 652 -f1 FLRVJI.3 FDL•Floor Area3rd FLRWT3rd = 8476.1b Wall Weight EX Wall Area = (2203)•ft INT Wall Area:= (906)•ft WALLw-1- := EX_Wa1I + INT Wall INT_Wall_Area WALLw1- = 35496•1b WTTOTAL = 66545 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h := 32 Mean Height Of Roof le := 1 Component Importance Factor (11.5, ASCE 7 -05) 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C := .02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x :_ :75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period T := C (h T = 0.27 < 0.5 (EQU 12.8-7, ASCE 7-05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. , (Chapter 22, ASCE 7- 05)...or Ss := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F := 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F„ := 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7-05) M1 , .. Harper Project: SUMMERCREEK TOWNHOMES UNIT A P Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANOSCAP E ARC 41 TEC TS •SURVEYORS S MS Fa SMS = 1.058 (EQU 11.4 -1, ASCE 7 -05) 2 • SMS Sd := 3 Sds = 0.705 (EQU 11.4 -3, ASCE 7 -05) SMl := F S1 SMl = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2 •SM1 S := 3 Sd1 = 0.389 (EQU 11.4 -4, ASCE 7 -05) Cst := Sds Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) R ...need not exceed... Cs — Shc Ie Cs 0.223 (EQU 12.8 -3, ASCE 7 -05) max : •— ,I. R max = a ...and shall not be less then... Cl := if(0.044•Sd < 0.01, 0.01,0.044• Sds- Ie) 0.5•Sl•Iel (EQU 12.8 -5 &6, ASCE 7 -05) C2 := if S1 < 0.6, 0.01, R J Cs,,,;,, := if (CI > C2, CI ,C2) Cs = 0.031 Cs := if (Cst < Cs Cs if (Cst < Csmax , Cst, Csmax)) Cs = 0.108 V := Cs.WTTOTAL V = 72201b (EQU 12.8 -1, ASCE 7 -05) E := V•0.7 E = 5054 1b (Allowable Stress) /9 \:3 Harper Project: SUMMERCREEK TOWNHOMES UNIT A s Houf Peterson Client: PULTE GROUP Job # CE Righellis Inc. ENGII:EERS • PLANNERS _. Designer: AMC Date: Pg. # LANDSCAPE ARCM TECTS• SURAEYORS Transverse Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind "Speed: 100 mph (3 Sec Gust) Exposure: B Building Occupancy Category : II I := 1.00 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X := 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... a2 := 2- .1.20•ft Zone A & B Horizontal Length a2 — 4 ft (Fig 6 -2 note 10, ASCE 7 -05) or • ,= .4•hn2•ft a2 =25.6ft but not less than... Amin 3 2 ft a = 6 ft Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA 19.91psf PnetzoneB 3.2•psf PnetzoneC 14.4•psf PnetzoneD 3.3•psf Vertical PnetzoneE = — 8.8•psf PnetzoneF 12•psf PnetzoneG —6.4•psf PnetzoneH 9.7 -psf Basic Wind Force PA := PnetzoneA'Iw'X PA = 19.9•psf Wall HWC PB := PnetzoneB'Iw'X PH = 3.2•psf RoofHWC PC := PnetzoneC'Iw'X PC = 14.4•psf Wall Typical PD := PnetzoneD'Iw•X PD = 3.3•psf Roof Typical PE := PnetzoneE' Iw' X PE = — 8.8• PF := PnetzoneF'Iw'X PF = — 12• Pc, := PnetzoneG'Iw -X Pc, = — 6.4•psf PH := PnetzoneH'Iw'X PH = — 9.7•psf . T11 L� Harper Project: SUMMERCREEK TOWNHOMES UNIT A a ' Eiouf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • MANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCNiTECTS•SURVEVORS Determine Wind Sail In Transverse Direction WSAIL:ZoneA := ( 41.j4- 59 + 29)41 WSAILZoneB (19 + 0 + 23)-ft WSAILZonec': =' (391 + 307 + 272)•ft WSJ -ZoneD (0 + 0 + 5)•ft WA := WSAILZoneA'PA WA = 25671b WB WSAILZoneB'PB WB = 1341b WC WSAILZoneC'PC WC = 139681b WD := WSAILZoneD'PD WD = 161b Wind_Force := WA + WB + WC + WD Wind_Force := 10•psf•(WSAILZ + WSAILZoneB + WSAI-ZoneC + WSAILZoneD) Wind_Force = 166861b Wind_Force = 11460 Ib • WSJ -ZoneE := 94•ft2 WSAILZoneF := 108•ft WSAILZoneG = 320•ft WSAILZoneH 320 -ft2 WE := WSAILZoneE'PE WE = —8271b • WF WSAU- ZoneF'PF WF = — 12961b WG WSAILZoneG'PG WG = — 20481b WH := WSAILZoneH'PH WH = — 31041b UPliftnet WF + WH + (WE + WG) + RDL•[WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneGa. Upliftnet = 12121b (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION Harper Project: SUMMERCREEK TOWNHOMES UNIT A Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCHITECTS• SNR\EYORS Longitudinal Seismic Forces Site Class = D Design Catagory = D Building Occupancy Category: II Weight of Structure In Longitudinal Direction Roof Weight Roof Area = 944 ft RDL•Roof Area = 14162•1b Floor Weight Floor_Area2 = 647 ft n = FDL -Floor Area2nd FLRW1.2 = 8411• lb Floor_Area3 = 652 ft • attAlaa = FDL-Floor_Area3 FLRWT3rd = 8476-lb Wall Weight . NAIL A vi . (2203)- ft INT Wall Area = 906 ft J= EX_Wall + INT Wa11 INT_Wall_Area WALLw -r = 35496-lb WTTOTAL = 66545 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h = 32 Mean Height Of Roof I = 1 Component Importance Factor (11.5, ASCE 7 -05) ,&:= 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C = 0.02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x = 0.75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period T av _ t ( := C h x iw T a = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) n ) S1 = 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S = 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F = 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F, = 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) Harper Project: SUMMERCREEK TOWNHOMES UNIT A P ►. Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNEHS Designer: AMC Date: Pg. # LANDSCAPE ARCHITECTS•SURL'EYOR 141 F -S SMs = 1.058 (EQU 11.4 -1, ASCE 7 -05) 2 • SMg 5:= Sds = 0.705 (EQU 11.4 -3, ASCE 7 -05) 3 = F Si SMi = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2 •SM1 = Sdi = 0.389 (EQU 11.4 -4, ASCE 7 -05) 3 := S R le Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) ...need not exceed... s _ Shc'Ie Csmax = 0.223 (EQU 12.8 -3, ASCE 7 -05) T a -R ...and shall not be less then... Cam:= if(0.044•Sd < 0.01, 0 . 01 , 0 . 044 •Sds - Ie) r 0.5•S1•Ie (EQU 12.8 -5 &6, ASCE 7 -05) ifl S1 <0.6,0.01, J R ax,R,:= if (CI > C2,C1,C2) Csmin = 0.031 Cs := := if(Cst < Cs „,,Cs < Csmax,Cst,Csmax)) Cs = 0.108 V := Cs-WTTOTAL V = 72201b (EQU 12.8 -1, ASCE 7 -05) E V•0.7 E = 50541b (Allowable Stress) 1 Harper Project: SUMMERCREEK TOWNHOMES UNIT A e ' Houf Peterson Client: PULTE GROUP • Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCNITECTS• SURVEYORS Longitudinal Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 110 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I = 1.0 Importance Factor (Table 6 -1, ASCE 7-05) h = 32 Mean Roof Height X = 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... = 2•.1.20.ft Zone A & B Horizontal Length (Fig 6 -2 note 10, ASCE 7 -05) a2 = 4 ft or ,= .4•hn•2•ft a2 = 25.6 ft but not less than... := 3.2•ft 6ft a Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA = 19.9•psf PnetzoneB = 3.2•psf , PnetzoneC = 14.4•psf PnetzoneD = 3.3•psf Vertical PnetzoneE = — 8.8•psf PnetzoneF = — 12 •psf PnetzoneG = —6.4•psf PnetzoneH = — 9.7•psf Basic Wind Force ,:= PnetzoneA•Iw• PA = 19.9.psf Wall HWC = PnetzoneB'Iw•X Pg = 3.2•psf Roof HWC := PnetzoneC•Iw•X PC = 14.4.psf Wall Typical SD A := PnetzoneD' I a PD = 3.3• psf Roof Typical P&:= PnetzoneE Iw X PE = —8.8. psf Pte,:= PnetzoneF.Iw•X PF = — 12•psf Sc PnetzoneG•Iw-X PG = — 64 psf Pte:= PnetzoneH• Iw X PH = —93- psf Harper Project: SUMMERCREEK TOWNHOMES UNIT A Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE A RCNI1EC Determine Wind Sail In Longitudinal Direction := (48 +.. 59 + 40) M;:_ (10 + 0 + 44)•ft2 Ma : =..(91 + 137 + 67)•ft RxAn:= (43++0+ 113)41 Wes WSAILZoneA•PA WA = 29251b W = WSAII-ZoneB•PB WB = 173 Ib = WSAILZoneC'PC WC = 42481b = WSAILZoneD'PD WD = 515 lb NNin = WA + WB + WC + WD Wi dtL�= 10•psf•(WSAILZ + WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind Force = 7861 Ib Wind_Force = 65201b y SA A ,�ILA y = 148.ft N ti 7wirx,:= 120•ft2 MA icch:= 323.ft 2 N:= 252 ft Wes:= WSAILZoneE'PE WE = — 13021b W,,,V,,,, := WSAILZoneF'PF WF = —1440 Ib ^ W := WSAII- ZoneG' PG WG = —2067 Ib au WSAILZoneH-PH WH = — 24441b WF + WH + (WE + WG) + RDL f WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZonea•. 1 Uplift = 1243 Ib (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION g- L�. Harper Houf Peterson Righellis Pg #: Transverse Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X= 1.00 lw= 1.00 Wind Sail Wind Net Design Wind Pressure (psf) ( ) Pressure (Ibs) - Zone A = 19.9 129 2567 Wall High Wind Zone Horizontal Zone B = 3.2 42 134 Roof High Wind Zone Wind Forces Zone C = 14.4 970 13968 Wall Typ Zone Zone D = 3.3 5 . 17 Roof Typ Zone Zone E = -8.8 94 -827 Roof Windward High Wind Zone Vertical Zone F = -12.0 108 -1296 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 320 -2048 Roof Windward Typ Wind Zone Zone H = -9.7 320 -3104 Roof Leeward Typ Wind Zone Total Wind Force =l 16686 lbs I Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -7275 Ibs Resisting Dead Load= 8472 Ibs E =I 1197 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm (ft Zone A Zone B Zone C Zone D Main Floor 41 19 391 0 Upper Floor 59 0 307 0 • Main Floor Diaphragm Shear = 6507 Ibs Upper Floor Diaphragm Shear = 5595 lbs Roof Diaphragm Shear = 4584 lbs • Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF • Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Diaphragm Diaphragm (Ibs) (Ibs) (lbs) � Width (f) Width (ft ) Width ft 9 .. -- .— T—•�:� A 13.08 1737 18 2797 19 2323 Al 24.50 3254 0 0 0 0 B 11.42 1516 18 2797 18.5 2261 E= 49 6507 36 5595 37.5 4584 1 4 - L Harper Houf Peterson Righellis Pg #: Transverse Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = 11 Site Class = D S1 = 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 SMg • 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 Sips= 0.71 Equ. 11.4 -3, ASCE 7 -05 5D1= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 ' Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 . Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 • Floor 2 Wt (lb)= 8411 Floor 3 Wt (Ib)= 8476 Roof Wt (lb) = 14162 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (lb) = 22609 ' Trib. Floor 3 Diaphragm Wt (Ib) = 22674 Trib. Roof Diaphragm Wt (Ib) = 21261 Vertical Dist of Seismic Forces Cumulative % total of base shear Rho Check to Shearwalls (Ibs) I to shearwalls Req'd? Vfl 2 (Ib) = 720 100.0% Yes Vo 3 (Ib) = 1625 85.8% Yes Vroof (Ib) = 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft Ibs Ibs Ibs A 102 361 394 114 897 1266 Al 432 0 0 481 0 0 B 113 293 449 126 728 1443 Sum 647 654 843 720 1625 2709 Total Base Shear* = I 5054 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. • /4 — Lk\ Harper Houf Peterson Righellis Pg #: Longitudinal Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= 1I (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf A.= 1.00 Iw= 1.00 Wind Sail Wind Net Design Wind Pressure (psf) (ft ) Pressure (Ibs) Zone A = 19.9 147 . 2925 Wall High Wind Zone Horizontal Zone B = 3.2 54 173 Roof High Wind Zone Wind Forces Zone C = 14.4 295 4248 Wall Typ Zone Zone D = 3.3 156 515 Roof Typ Zone Zone E = -8.8 148 -1302 Roof Windward High Wind Zone Vertical Zone F = -12.0 120 -1440 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 323 -2067 Roof Windward Typ Wind Zone Zone H = -9.7 252 -2444 Roof Leeward Typ Wind Zone Total Wind Force =l 7861 Ibs I Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -7254 Ibs Resisting Dead Load = 8483 Ibs E =I 1229 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm (ft Zone A Zone B Zone C Zone D Main Floor 48 10 91 43 Upper Floor 59 0 137 0 • Main Floor Diaphragm Shear = 2440 Ibs Upper Floor Diaphragm Shear = 3147 Ibs Roof Diaphragm Shear = 2275 Ibs Wind Distribution To Shearwall Lines . MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Diaphragm Diaphragm (Ibs) (Ibs) (Ibs) Width (ft) Width (ft) Width (ft 1 10 1220 10 1573 10 1137 2 10 1220 10 1573 10 1137 E= 20 2440 20 3147 ' 20 2275 . A - L C2... Harper Houf Peterson Righellis Pg #: Longitudinal Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D S1 = 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct= 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 . Period (T = 0.27 Equ. 12.84, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 S 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 SDS= 0.71 Equ. 11.4 -3, ASCE 7 -05 SDI= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (Ib)= 8411 Floor 3 Wt (Ib)= 8476 Roof Wt (Ib) = 14162 Wall Wt (lb) = 35496 Trib. Floor 2 Diaphragm Wt (lb) = 22609 Trib. Floor 3 Diaphragm Wt (Ib) = 22674 - Trib. Roof Diaphragm Wt (Ib) = 21261 Vertical Dist of Seismic Forces Cumulative % total of base shear Rho Check to Shearwalls (Ibs) I to shearwalls I Req'd? Vfloor 2 (Ib) = 720 100.0% Yes Vfl 3 (Ib) = 1625 85.8% Yes V roof (Ib) = 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft Ibs Ibs Ibs 1 286 291 415 318 725 1334 2 361 361 428 402 900 1375 Sum 647 652 -843 720 1625 2709 Total Base Shear* = I 5054 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. / L\'3 Harper Houf Peterson Righellis Pg #: . Shearwall Analysis Based on the ASCE 7 -05 "Transvere Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd Fir. From Roof Load Sides Factor Type T (ft) (ft)' (ft) ht I k ht I k ht I k (kif) (plf) (ft-k) (ft -k) (k) • 101 Not Used 102 7 1.75 3.50 4.00 , ..4 * `'„ 8.00 1.74 18.00 2.80 27.00 2.32 1959 Double 1.40 NG 103 7 1.75 3.50 4.00 _; 8.00 1.74 8.00 2.80 8.00 2.32 1959 Double 1.40 NG 103a 7 4.00 4.00 1.75 ox 8.00 3.25. 814 Single 1.40 - IV 104 8 4.50 10.50 1.78 OK 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 111 105 8 3.00 10.50 2.67 ox 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 106 8 3.00 10.50 2.67 ox 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 109 8 4.58 17.08 1.75 OK 8.00 1.74 18.00 2.80 27.00, 2.32 401 Single 1.40 II 110 8 12.50 17.08 0.64 OK 8.00 1.74 8.00 2.80 8.00 2.32 401 Single 1.40 II 111 8 4.50 7.25 1.78 -ox 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 112 4.75 1.38 7.25 3.45 ox 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 113 4.75 1.38 7.25 3.45 ox 8.00 1.52 8.00. 2.80 8.00 2.26 907 Double 1.40 VI 201 9 3.92 10.79 2.30 ox 9.00 2.80 18.00 2.32 474 Single 1.40 11 201a 9 4.17 10.79 2.16 OK 9.00 2.80 18.00 2.32 474 Single 1.40 II 201b 9 2.71 10.79 3.32 OK 9.00 2.80 18.00. 2.32 474 Single 1.40 II 202A 9 2.96 11.96 3.04 OK ' 9.00 2.80 18.00 2.26 423 Single , 1.40 II 202B 9 3.00 11:96 3.00 ox 9.00 2.80 18.00 2.26 423 Single 1.40 II 203 9 3.00 11.96 3.00 ox 9.00 2.80 18.00 2.26 423 Single 1.40 II 204 9 3.00 11.96 3.00 ox 9.00 2.80 18.00 2.26 423 Single _ 1.40 II 301 8 3.92 - 13.96 2.04 OK 8.00 2.32 166 Single 1.40 I 302 8 5.79 13.96 1.38 ox 8.00 2.32 166 Single 1.40 I 303 8 4.25 13.96 1.88 ox 8.00 2.32 166 Single 1.40 I 304 8 2.96 5.96 2.70 ox 8.00 2.26 379 Single 1.40 II 305 8 3.00 5.96 2.67 ox 8.00 2.26 379 Single 1.40 II Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check • V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht . Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) /4 - i \LI: Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 fransvere Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho'V % Story 8 Panel Shear Panel M M Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht I k ht I k ht I k (klf) (plf) (plf) - - (ft-k) (ft-k) (k) 101 Not Used 102 7 1.75 3.50 4.00 8.00 0.11 18.00 0.90 27.00 1.27 651 846 0.10 0.50 Double 0.50 NG 103 7 1.75 330 4.00., 8.00 0.11 8.00 0.90 8.00 1.27 651 846 0.10 0.50 Double 0.50 NG 103a 7 4.00 4.00 1.75 oK 8.00 0.48 0.00 0.00 120 156 0.22 1.14 Single 1.00 I 104 8 4.50. 10.50 1.78 oK 8.00 0.13 8.00 0.73 8.00 1.44 219 284 0.25 1.13 Single 1.00 II 105 8 3.00 10.50 2.67 oK 8.00 0.13 8.00 0.73 8.00 1.44 219 284 0.17 0.75 Single 0.75 III 106 8 3.00 _ 10.50 2.67 oK 8.00 0.13 8.00 0.73 8.00. 1.44 219 _ 284 0.17 0.75 Single 0.75 _ II1 _ 109 8 4.58 17.08 1.75 OK 8.00 0.11 18.00 0.90 27.00 1.27 134 174 0.25 1.15 Single 1.00 .I 110 8 12.50 17.08 0.64 OK 8.00 0.11 8.00 0.90 8.00 1.27 134 174 NA 3.13 Single 1.00 I. 111 8 4.50 7.25 1.78 OK 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.25 1.13 Single 1.00 III 112 5 138 7.25 3.45 , OK 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.08 0.58 Double 0.58 VII 113 5 1.38 7.25 3.45 OK 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.08 0.58 Double 0.58 _ VII 201 9 3.92 10.79 2.30 OK 9.00 0.90 18.00 1.27 200 261 0.17 0.87 Single 0.87. , II 201a 9 4.17 10.79 2.16 OK 9.00 0.90 18.00 1.27 200 261 0.18 ' 0.93 Single • 0.93 II 201b 9 2.71 10.79 3.32 OK 9.00 0.90 18.00 1.27 200 261 0.12 0.60 Single 0.60 III 202A 9 2.96 11.96 3.04 OK 9.00 0.73 18.00 1.44 182 236 0.13 0.66 Single 0.66 III 202B 9 3.00 11.96 3.00 OK 9.00 0.73 18.00 1.44 182 236 , 0.13 0.67 Single 0.67 III 203 9 3.00 11.96 3.00 OK 9.00 0.73 18.00 1.44 181 236 0.13 0.67 Single 0.67 III 204 9 3.00 11.96 3.00 'OK 9.00 0.73 18.00 1.44 181 236 0.13 - 0.67 Single 0.67 III 301 8 3.92 13.96 2.04 OK 8.00 127 91 118 0.20 0.98 Single 0.98 I 302 8 5.79 13.96 1.38 oK 8.00 1.27 91 118 0.29 1.45 Single 1.00 I 303 8 4.25 13.96 1.88 OK 8.00 1.27. 91 118 0.21 1.06 Single 1.00 _ 1 304 8 2.96 5.96 2.70 OK 8.00 1.44 242 315 0.15 0.74 Single 0.74 III 305 8 3.00 5.96 2.67 OK 8.00 1.44 . 242 315 0.15 0.75 Single _ 0.75 III Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total transverse base shear? Yes Total 1st Floor Wall Length = 18.00 Total 8 1st Floor Bays = 4.71 Are 2 bays minimum present along each wall line? No 1st Floor Rho = 13 Total 2nd Floor Wall Length = r:.'/s Total 8 2nd Floor Bays = s Are 2 bays minimum present along each wall line? No 2nd Floor Rho = 13 • Total 3rd Floor Wall Length = 19.92 Total 8 3rd Floor Bays = 5 Are 2 bays minimum present along each wall line? No 3rd Floor Rho = 1.3 • Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load *Rho / Total L % Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2'L/H Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L • 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) /4- ..--- t \ c Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klf) (plf) (ft -k) (ft -k) (k) 107 8 15.50 15.50 0.52 OK 10.00 1.22 18.00 1.57 27.00 1.14 1.03 254 Single 1.40 I 71.21 123.49 -0.19 108 8 15.50 15.50 0.52 OK 1 0.00 1.22 18.00 1.57 27.00 1.14 1.03 . 254 Single 1.40 I 71.21 _123.49 -0.19 1 205 9 13.00 13.00 1 0.69 ox I 9.00 1.57 1 18.00 I 1.14 l 0.70 208 Single 1.40 I 34.62 59.15 -0.07 I 206 9 13.00 13.00 1 0.69 ox 9.00 1.57 18.00 1.14 1 0.70 208 Single 1.40 I 34.62 59.15 -0.07 1 306 8 10.00 10.00 0.80 OK 8.00 1.14 0.29 114 Single 1.40 I 9.10. 14.40 0.05 307 8 10.001 10.00 0.80 ox { I 8.00, 1.14 1 0.29 114 Single 1.40 I 9.10 _ 14.40 0.05 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overtuming Moment) = Wall Shear ' Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5' (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • / -- U\c, Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho• V % Story # Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr: From Roof Load Strength Bays Sides Factor Type T (ft) (ft) ( ht k ht k ht k (klf) (plf) (plf) (ft -k) (ft -k) (k) 107 8 15.50 15.50 0.52 OK 10.00 0.32 18.00 0.73 27.00 1.33 1.09' 153 153 NA 3.88 Single 1.00 1 52.25 130.70 -1.74 108 8 15.50 15.50 0.52 OK 10.00 0.40 18.00 0.90 27.00 138 1.09 _ 173 _ 173 NA 3.88 Single _ 1.00 I 57.35 _130.70_ -1.40 205 J 9 13.00 13.0010.69 oK I I 19.001 0.73 1 18.00 1.33 0.76 158 158 NA I 2.89 'Single 1.00 I 30.54 64.22 -0.64 I 206 1 9 13.00 13.00 0.69 oK t 9.00 I 0.90 1 18.00 1.38 0:76 175 175 NA 2.89 Single 1.00 I 32.85 64.22 -0.45 3307 06 8 8 10.00 10.00 10.00 10.00 0.80 0.80 ooK K I I I 1 8.00 8.00 I 1:33 1.38 0.35 0.35 133 138 133 138 NA I NA I 2.50 2.50 Single 1 I 1.00 .00 I I 10.6711.00 1 17.40 17.40 1 0.02 0.06 I Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Total 1st Floor Wall Length = 31.00 Total # 1st Floor Bays = 7.75 Are 2 bays minimum present along each wall line? Yes • 1st Floor Rho = 1.0 Total 2nd Floor Wall Length = 26.00 Total # 2nd Floor Bays = 6 • Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho = 1.0 • Total 3rd Floor Wall Length = 20.00 Total # 3rd Floor Bays = s Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho = 1.0 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load*Rho / Total L % Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2'1JH Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load' L • 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Transvere Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good For V (pH) (PIT) (Ib) (lb) 101 Not Used 102 Simpson Strongwall 103 Simpson Strongwall 103a 814 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 833 104 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 105 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 106 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 109 401 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 110 401 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 111 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 112 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 990 113 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 990 201 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 201a 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 201b 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 202A 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 202B 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 203 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 204 _ 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 301 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 302 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 303 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 , 304 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 305 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design Toads. Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Longitudinal Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good For V (plf) i (pIf) (Ib) (lb) 107 254 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -192 Simpson None 0 108 254 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 492 Simpson None 0 205 208 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -69 Simpson None 0 206 208 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -69 Simpson None 0 306 133 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 48 Simpson None 0 307 138 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 59 Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. /4 L\°\ Transverse Wind Uplift Design . Unit A Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking ® Stacking From From Uplift Uplift Flr. FIr. Roof Shear - including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 102 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.192 0.832 27.43 0.57 1.69 21.31 20.79 21.31 20.79 103 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.832 0.192 27.43 1.69 0.57 20.79 21.31 20.79 21.31 103A 8 1.1667 4.00 4.00 3.254 3.254 814 0.04 2.016 1.664 26.03 8.38 6.98 6.00 6.24 6.00 6.24 104 8 1.1667 4.50 10.50 1.516 2.8 2.26 6.576 .626 0.1 0.8 0.078 25.08 4.61 1.36 5.58 6.06 5.58 6.06 105 8 1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 0.048 0.252 0.156 16.72 0.97 0.68 6.45 6.52 6.45 6.52 106 8 1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 - 0.048 0.156 0.252 .16.72 0.68 0.97 6.52 6.45 6.52 6.45 109 8 1.1667 4.58 17.08 1.737 2.8 2.32 6.857 401 0.152 0.192 0.156 16.31 2.47 2.31 3.63 3.66 201L 201R 4.82 5.09 8.45 8.75 110 .8 1.1667 12.50 17.08 1.737 2.8 2.32 6.857 401 0.096 0.156 0.192 44.52 9.45 9.90 3.24 3.21 201 aL 201bR 4.95 4.88 8.18 8.09 111 8 1.1667 4.50 7.50 1.516 2.8 2.26 6.576 877 0.144 0.8 0.078 35.11 5.06 1.81 8.02 8.51 8.02 8.51 112 8 1.1667 1.50 7.50 1.516 2.8 2.26 6.576 877 0.048 0.252 0.234 11.70 0.43 0.41 11.44 11.46 11.44 11.46 113 8 1.1667 1.50 7.50 1.516 2.8 2.26 6.576_ 877 0.048 0.234 0.252 11.70 0.41 0.43 11.46 11.44 11.46 11.44 201 9 1.1667 3.92 10.8 2.8 2.32 5.12 474 0.225 0.432 0.156 17.71 3.42 2.34 3.99 4.16 301L 301R 0.83 0.93 4.82 5.09 201a 9 1.1667 4.17 10:8 2.8 2.32 5.12 474 0.225 0.156 0.156 18.84 2.61 2.61 4.14 4.14 302L 302R 0.80 0.80 4.95 4.95 201b 9 1.1667 2.71 10.8 2.8 2.32 5.12 , 474 0.225 0.156 .0.432 12.24 1.25 2.00 4.24 4.08 303L 303R 0.91 0.80 5.15 4.88 202A 9 1.1667 2.96 11.958333 2.8 2.26 5.06 423 0.173 0.432 0.052 11.92 2.04 0.91 3.62 3.84 304L 304R 2.60 2.75 6.21 6.59 202B 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.173 0.052 0.2 16 12.09 0.93 1.43 3.84 3.74 305L 305R 2.74 2.16 6.58 5.91 203 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.309 0.216 0.312 12.09 2.04 2.33 3.62 3.56 3.62 3.56 204 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.225 0.312 0.432 12.09 1.95 2.31 3.64 3.57 3.64 3.57 301 8 3.92 13.96 2.32 2.32 166 0.232 0.384 0.204 5.21 3.29 2.58 0.83 0.93 0.83 0.93 302 ' 8 5.79 13.96 2.32 2.32 166 • 0.232 0.204 0.204 7.70 5.07 5.07 0.80 0.80 0.80 0.80 303 8 4.25 13.96 2.32 2.32 166 0.232 0.204 0.384 5.65 2.96 3.73 0.91 0.80 0.91 0.80 304 8 2.96 5.96 2.26 2.26 379 0.232 0.384 0.136 8.98 2.15 1.42 2.60 2.75 2.60 2.75 305 8 _ 3 5.96 2.26 2.26 379 0.232 0.136 1.104 9.10 1.45 4.36 2.74 2.16 2.74 2.16 Spreadsheet Column Definitions & Formulas L = Shear Panel Length g: H = Shear Panel Height ` Wall Length = Sum of Shear Panels Lengths in Shear Line ....•-•°"' V (Panel Shear) = Sum of Line Load / Total L , Mo (Overturning Moment) = Wall Shear * Shear Application ht • Mr (Resisting Moment) = Dead Load * L 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) • Transverse Seismic Uplift Design Unit A Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @, • floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) '(ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 102 8 1.1667 1.75 3.50 0.114 0.9 1.27 2.284 653 0.152 0.192 0.832 10.40 0.57 1.69 7.91 7.11 0 0 7.91 7.11 103 8 1.1667 1.75 3.50 0.114 0.9 1.27 2.284 653 0.152 0.832 0.192 10.40. 1.69 0.57 7.11 7.91 0 0 7.11 7.91 103A 8 1.1667 4.00 4.00 0.481 0.481 120 . 0.04 2.016 1.664 3.85 8.38 6.98 -1.06 -0.69 0 0 -1.06 -0.69 104 8 1.1667 4.50 10.50 0.126 0.73 1.44 2.296 219 0.1 0.8 0.078 8.96 4.61 1.36 1.20 1.93 0 0 1.20 1.93 105 8 1.1667 3.00 10.50 0.126 0.73 1.44 2.296 219 _ 0.048 0.252 0.156 5.97 0.97 0.68 2.04 2.14 0 0 2.04 2.14 106 8 1.1667 3.00 10.50 0.126 0.73 1.44 2.296 219 0.048 0.156 0.252 5.97 0.68 0.97 2.14 2.04 0 0 . 2.14 2.04 109 8 1.1667 4.58 17.08 0.114 0.9 1.27 2.284 134. 0.152 0.192 0.156 5.58 2.47 .2.31 0.82 0.86 201L 201R 1.13 1.54 1.95 2.40 110 8 1.1667 12.50 17.08 0.114 0.9 1.27 2.284 134 0.096 0.156 0.192 15.23 9.45 9.90 • 0.56 0:53 201 aL 201 bR 1.32 1.32. 1.88 1.85 111 8 1.1667 4.50 7.50 0.126 0.73 1.44 2.296 306 0.144 0.8 0.078 12.54 5.06 1.81 2.00 2.73 0 0 2.00 2.73 112 8 1.1667 1.50 7.50 0.126 0.73 1.44 2.296 306 0.048 0.252 0.234 4.18 0.43 0.41 3.79 3.82 0 0 3.79 3.82 113 8 1.1667 1.50 7.50 0.126 0.73 1.44 2.296 306 0.048 0.234 0.252 4.18 0.41 0.43 3.82 • 3.79 0 0 3.82 3.79 201 9 1.1667 3.92 10.80 0.9 1.27 2.17 201 0.225 0.432 0.156 7.63 3.42 2.34 1.16 1.41 301L 301R -0.03 0.13 1.13 1.54 201a 9 1.1667 4.17 10.80 0.9 1.27 2.17 201 0.225 0.156 0.156 8.11 2.61 2.61 • 1.38 1.38 302L 302R -0.06 -0.06 1.32 1.32 201b 9 1.1667 2.71 10.80 0.9 ' 1.27 2.17 201 0.225 0.156 0.432 5.27 1.25 2.00 1:53 1.28 303L 303R 0.10 -0.06 1.63 1.22 202A 9 1.1667 2.96 11.96 0.73 1.44 2.17 181 0.173 0.432 0.052 5.25 2.04 0.91 " 1.15 1.50 304L 304R 1.28 1.50 2.43 3.00 202B 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.173 0.052 0.216 5.32 0.93 1.43 1.49 1.35 305L 305R 1.50 0.63 2.99 1.97 203 9 1.1667 3.00 11.96 '0.73 1.44 2.17 181 0.309 0.216 0.312 5.32 2.04 2.33 1.16 1.08 0 0 1.16 1.08 204 , 9 1.1667 3.00 1 11.96 1 0.73 1.44 2.17 . 181 0.225 0.312 0.432 5.32 1.95 2,31 1.19 1.08 0 0 1.19 1.08 • 301 8 0 3.92 13.96 1.27 1.27 91 0.232 0.384 0.204 2.85 3.29 2.58 -0.03 0.13 0 0 -0.03 0.13 302 8 0 5.79 13.96 1.27 1.27 91 0.232 0.204 0.204 4.21 5.07 5.07 -0.06 -0.06 0 0 -0.06 -0.06 303 8 0 4.25 13.96 1.27 1.27 91 0.232 0.204 0.384 1 3.09 2.96 3.73 0.10 -0.06 0 0 0.10 - 0.06 304 8 0 2.96 5.96 1.44 1.44 242 0.232 0.384 0.136 5.72 2.15 1.42 1.28 1.50 0 0 1.28 1.50 305 8 0 3.00 5.96 _ . 1.44 1.44 242 0.232 0.136 1.104 5.80 . 1.45 4.36. 1.50 0.63 0 0 1.50 0.63 Spreadsheet Column Definitions & Formulas �i L = Shear Panel Length H = Shear Panel Height J Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L 1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • TRANSVERSE UPLIFT CALCULATIONS - SUMMARY UNIT A Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right k Simpson k k Simpson k . 102 Wind 21.31 Holdown None 0.00 Wind 20.79 None 0.00 103 Wind 20.79 Holdown None 0.00 Wind 21.31 None 0.00 103A Wind 6.00 Holdown HDQ8 w 3HF 6.65 Wind 6.24 14DQ8 w 3HF 6.65 104 Wind 5.58 Holdown HDQ8 w 3HF 6.65 Wind 6.06 HDQ8 w 3HF 6.65 105 Wind 6.45 Holdown HDQ8 w 3HF 6.65 Wind 6.52 HDQ8 w 3HF 6.65 106 Wind 6.52 Holdown HDQ8 w 3HF 6.65 Wind 6.45 HDQ8 w 3HF 6.65 109 Wind 8.45 Holdown HDQ8 w DF 9.23 Wind 8.75 HDQ8 w DF 9.23 110 Wind 8.18 Holdown HDQ8 w DF 9.23 Wind 8.09 HDQ8 w DF 9.23 111 Wind 8.02 Holdown HDQ8 w DF 9.23 Wind 8.51 HDQ8 w DF '9.23 112 Wind 11.44 Holdown HDU14 14.93 Wind 11.46 HDU14 14.93 113 Wind 11.46 Holdown HDU14 14.93 Wind 11.44 HDU14 14.93 201 Wind 4.82 Strap MST48x2 5.75 Wind 5.09 MST48x2 5.75 201a Wind 4.95 Strap MST48x2 5.75 Wind 4.95 MST48x2 5.75 r 201b Wind 5.15 Strap MST48x2 5.75 Wind 4.88 MST48x2 5.75 202A Wind 6.21 Strap MST60x2 8.11 Wind 6.59 MST60x2 8.11 CUD 202B Wind 6.58 Strap MST60x2 8.11 Wind 5.91 MST60x2 8.11 _.) 203 Wind 3.62 Strap MST60 4.06 Wind 3.56 MST60 4.06 204 Wind 3.64 Strap MST60 4.06 Wind 3.57 MST60 4.06 1 301 Wind 0.83 Strap MST37 1.79 Wind 0.93 MST37 • 1.79 302 Wind 0.80 Strap MST37 1.79 Wind 0.80 MST37 1.79 303 Wind 0.91 Strap MST37 1.79 Wind 0.80 MST37 1.79 304 Wind 2.60 Strap MST48 2.88 Wind 2.75 MST48 2.88 305 Wind 2.74 Strap MST48 2.88 Wind 2.16 MST48 2.88 By A N\c, DATE: 6 ..... aolo JOB No C e24.4 ..,.,0 0 OF PROJECT: c RE: SSW - — 1 LocL 0 0 O - A-kqx\ Loads: u-k-y..- wInct wools J 0 ,7 Z W ‘ f WOO \ : • Ckx ia 1 ‘ 0 O w O 2 0 Ca?0,c..1 A-v) QP Sswa, \ sic _-,:: `-‘‘-‘00 vos ?asr" Ujak \ o J CC < U O W 66 . 1 --OC CI °. V 31 a 0 z - z_,A11 w 0 . ' = 3 4-act-stlwoul . ._ z • actual < Cupa.04k :. oy_! .-: < o _ Z D 2 casxic_T-t-td) 0 ssL.A.)alxb = 3ctL, 0 i*- 0 o • ;-._•. a C. ITV Ot t l6 : O • - re ci L._ z w 0 6 0 = o • 6 0 s. ,__, r ; : I': :;.; • 5 , . i. 0 .s,• .:,. ...- 0 F(I) IQ;' 'iZEbCJS • 10 Sw T1+1S Nc-1T1-1 4mwH1' ALWQ(ex Tbft S 0 SW TN IS LEr's+Yfh kV-N(7 .1414 NC t6ir J -4 T t SW 7N LEti& ANP1w+4 PcwIvc,1 Iffis L ove- (11) 101' ! O C e v i i . I � N P v,i • II= _ ' 1 J - . r 0 r- ❑ ' 0 r RI 1 c1'% c/` r 1 9 o ..... 0 .r .;.,_,z7...r.'`.. t?...,...,. -..y Y,z4. rc_3^..J" 3_ 151E ror •+ ... ,r,.. ( P ' , O / a .v_...: _..._:._ � �a..' Y. 1:: ��v' �. �. �e.. �. YiY..._ ��.. r1yk. � .s�r.l-:i: °�_.+Yi...._..4.:..:3 Y.. ...., ❑ I - 1 O b ((1 S w TN"t S Lt N C-crit IAN 1X to tt 1`C.e' Awnic -, - nf i 5 LINE- .1 1 c 9 M ? 2 C .. • ---1 IN . SN 1)+ts LeNc-)TH AC-, vis Lime c ----. . .D..05 ...-_) --_____I 1 g ,1: ,1 . _,--------- =--=-__ = , • ...:7 t .--- .., •,.:„ , , I 1 , . i 1 „ 1 / = • c ---- -- ri 1 01 ,„..,_, . • . , . IA [ P 0 :. 1 . 8 5v co io r . . • , : . ! , . 1 ; r . r■i• 9 I T 0 4 I . .,... L g i i 4 - ti 'a0b -- (1rN‘4, Le 1 Awn) C- TH 1 C. U k57 • c Q D 1 Sw 1S 1.. .NC -x"14 1p C h '� b l 1(vc 306 --i e. iil V — �— __ ~ � / 4 ati a I mo— �� l: 3 ® a Pw 11-> 5i,.....................................;A,,o 1 N (1\ 5 ,.„ }, 0 ,., c__, .,?-1 1 (I .) o -I t's- 11-1 R , 1 30 SW \5 L V r* PC LONJ C-1. 11415 U.M BY A n \c DATE: 6 - e u° JOB NO.: / f Ni —O Ot O OF PROJECT: RE: TJ i 0 \ m ATCNY Ge ( (A k -F o - of hovsc-, • ❑ ❑ \I k' w - �/ Lvne,8 r. le-5 7 -, wind l CVYlkols) 6.5*i 0 W dl q phr�g�nn w. COY) = acs Pk O X ❑ Cu = Ba°t p+.F 1 0 - J Ca pac,� of 4� s�a unIotc)cked diet phvr�yvi � + z = Otbo \, - a9� Z . %bcr._ dectiolArek \ a U \/ Z Nit_ Nui 1 ;n3 egpuu = (ass p.14)6 ,LI = 353 w ov, 2 2 0 U ¢ O li Z w ❑ Z O O = 1- a o • U t = ' y .fir s- 6) • N N ixa-= =a� (> • • /4- J BY 1 • n DATE: ..... 1.1 1 0 JOB NO.: G N `�( PROJECT: ROQP al-' — Vie'. RE: Des � �� o� f ) olGcX vnct @ Sio vi,.. S E W OpTioIQ 1. L : Z ie A O w or/sat1Y1 ~ 2 TRI t3 Wl..Dth 010 r-4 F. F la }; la 0 cr MUx stet 1�oeLtAA.x. 1 o W %S'- 3'' G U Z W O a E 51C -zt\1 lay IND Pcessuce ~ Des\ (-)jn P10 { j T OP 4lA 5 S _ I 1 �� _}e� 'co. ''. t L e_� :- -k r 8 a o z 1111 't\ L.N vivo. t X Q 1`A 1pLP D f o , >o - W - T — _ T — 3 —1 ,`" -) o ❑ R R1.=l‘.1cO isl Or-0" f u. z o o N1 rc\o9.X z $ z _ _1q C15.35 = 512 #ct ,v Ora' - 1 V .fib- M__Z ._Ck,x12 -L a 5 : 15 5 (3.5 {:5.25) 1 1.--.... -- = 6 .q t, 1- 3 -S..-1 S v _ U — l _ ( 62.# I1N 2 - Fb(‘Ac ) =(Bso a3Lltc,ps ( c4 r2_ i'.)c s o 4 . ; _!SO ?Si- (1.O = at-1op sL -> �7 .alp 0 N C — A 1 • o eboy\ 2 g L29 n sd Q001, i d'pct -.}t (1itk0'1)(o 1 C 4)<0 tX0 1 \0 1Xc 1X O$9) — " t S t • t - I 7 Sci _LON ---- cSOliciT)("TAiAtii = -7 C - KI - — c f 4N' S °ham = S = 1 44■ 0 +- c3 4 0 +''17.. S .1-( , 03 ,S t-,r, 4- , 1*g -F ., s O ) ' 4 6 4 5V9 = T = xx N! k..q,0 1,1-1...,,r -- b -, rb- ,tvtS •br a z'tv Z1 .1 S 1 n i 01 _ - `Z. I J ZI „tit 1 1 *N' se') 1 cst-1 h l = 1" i = o ° z ❑ �� m S''1 _ x . o � N o 0 0 1, 51 _ _ (3 El vv o 3 a )5 6 )V_?)k 1 ___ 1 r,,, 't '1 1 .1 ' O - S I d _ --)c1c\ 6', \ 1n()% UJ - ,oc)-1 2 3 s p`p_ = u saJd Nvfim u6∎av m z n m o ►Q - Q k k .a3 8k 0 J' '0 -k - J arYN o \ XNOW D r o r 00-; \ _ -I-t lea k)O ki∎Velrfi C;91 ❑ ri 3 0 P1 -I Morn Cr - D O.t OC),A3 Uoo\ \ o tal 11 Z q ❑ ❑ rn Z (O(1-dO :3a :103r0Nd 0 b0 N 1 1 ) ON 80r 01 -- L.\ c3 31VO Pl ' WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks40 Sizer 7.1 June 24. 2010 12:49:04 COMPANY I PROJECT RESULTS by GROUP - ND5 2005 . SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF - = ..... .. -- _... = = .. 9E --------- Not = designed by request (2) 2x8 - ` - � ____ .. _ - Mnf Trusses Lumber n -ply D.Fir-L No.2 1- 208 By Others Not designed by request (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 ' Typ Wall Lumber Stud Hem -Fir Stud 2x6 416.0 SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR - =_ .. _ Mnf Jot ®__ - = =- =a= - = =- = =_ Not designed by _ ___ ._-= ...• __ .. - Sloped Joist Lumber -soft D.Fir -L No.2 2x6 916.0 (2) 2x8 (1) Lumber n -ply D.Fir-L No.2 1- 20B (2) 2x8 Lumber n -ply D.Fir-L No.2 2- 208 By Others Not designed by request By Others 2 Not designed by request (2) 2x12 Lumber n -ply D.Fir -L No.2 2- 2x12 5.125x10.5 Glulam - Unbalan. West Species 24F -V4 DF 5.125x10.5 4X6 Lumber -soft D.Fir-L No.2 • 4x6 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 4x6 Lumber Post Hem -Fir No.2 406 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 (2) 2x4 Lumber n -ply Hem -Fir No.2 2- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 416.0 SUGGESTED SECTIONS by GROUP for LEVEL 2 - FLOOR Mnf Trusses - _ � ___ z= - = =- _ Not designed by request - - _ � ___ Mnf Jst Not designed by request Deck Jst Lumber-soft D.Fir -L No.2 208 416.0 (2) 2x8 Lumber n -ply D.Fir -L No.2 2- 2x8 3.125x9 Glulam - Unbalan. West Species 24F -V4 DF 3.125x9 408 Lumber-soft D.Fir-1. No.2 408 By Others Not designed by request • By Others 2 Not designed by request (2) 2x10 Lumber n -ply D.Fir-L No.2 1- 2x10 ' 5.125X12 GL Glulam- Unbalan. West Species 24F -V4 DF 5.125x12 By Others 3 Not designed by request 3.125014 LSL LSL 1.55E 2325Fb 3.5x14 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 4x4 Lumber Post Hem -Fir No.2 4x4 • 4x6 Lumber Post Hem -Fit No.2 4x6 (3) 2x6 Lumber n-ply Hem -Fir No.2 3- 2x6 6x6 Timber -soft Hem -Fir No.2 6x6 (2) 2x4 Lumber n -ply Hem -Fir No.2 2- 2x4 6x6 nol Timber -soft D.Fir -L Noll 6x6 (3) 2x4 Lumber n -ply Nem -Fir No.2 3- 2x4 • Typ Wall Lumber Stud Hem -Fir Stud 2x6 816.0 SUGGESTED SECTIONS by GROUP for LEVEL 1 - FLOOR Fnd Not designed by request '- =__ -_- =y CRITICAL MEMBERS and DESIGN CRITERIA Group Member Criterion Analysis /Design Values ...... Mnf 28t = �� Mnf Jot - Not designed by request �__�_ = ..= ..=i = = =�= • Deck Jat j65 Bending 0.41 Sloped Joist j30 Bending 0.10 Floor Jst4 unknown Unknown 0.00 (2) 2x8 (1) b35 Bending 0.47 • (2) 208 bB Bending 0.89 3.125x9 b3 Bending 0.06 408 b30 Bending 0.12 By Others By Others Not designed by request By Others 2 By Others Not designed by request (2) 2x12 b6 Bending 0.93 (2) 2x10 bl Shear 0.78 5.125X12 GL b10 Bending 0.76 By Others 3 By Others Not designed by request 5.125x10.5 b9 Deflection 0.95 4X6 b20 Bending 0.08 3.125x14 LSL b14 Deflection 0.73 (2) 2x6 c2 Axial 0.91 4x4 c55 Axial 0.07 4x6 c23 Axial 0.80 (3) 2x6 c29 Axial 0.75 6x6 c26 Axial 0.70 (2) 2x4 c39 Axial 0.62 6x6 nol 012 Axial 0.86 (3) 2x4 c31 Axial 0.89 Typ Wall w14 Axial 0.48 Fnd Fnd Not designed by request DESIGN NOTES: 1. Please = verify that the default deflection limits are appropriate for your application. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result is considered the final design and appears in the Materials List. 3. ROOF LIVE LOAD: treated as w load with corresponding esponding duration factor. Add an empty roof level to bypass this interpretation. 4. BEARING: the designer is responsible for ensuring that adequate bearing is provided. 5. GLULAM: bxd = actual breadth x actual depth. 6. Glulam Beams shall be laterally supported according to the provisions of ND5 Clause 3.3.3. 7. Sawn lumber bending members shall be laterally supported according to the provisions of ND5 Clause 4.4.1. 8. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that ' each ply is equally top- loaded. Where beams are side- loaded, special fastening details may be required. • ' 9. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. Por final member design contact your local SCL manufacturer. 10. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of ND5 Clause 15.3. • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:41:17 Concept Mode: Beam View Floor 2: 8' taNT�{^ b31 1 � ' 05 ■ . _ _ - a 49'-6" w4 . IU(r 4n-b 40 -13 1UVa _ _ 44 b ya 4 - b1 C) .. 4L' : ar .1.4111101.4111.6.11m"...... ... . 4U b' J4 -- -- ---- _ _ .. _ 325-4 :If -4.) y " 3b 35 b 34 -b q u a b2 33 "-b 00 - - - - - - - - - - . - - - - - - - - --- - 25 / . ; . . . 61 - tSb ` -- - : --- --- - . . 255 LJ.b t54 .. Lti' -b 253 .. L! -b : Lb , b istr ..: 410 �s n ry LL d 11 • - . . [ - -b - 433 IN-: ` • • : zu - rtr , w.-10 rb ItS -b rL - - - -•• _:..- - -- -432.- :_ - - -.. .. -- - -- -. -- -- :- - - - - ib b /0 . _ 14-4 130 • - - 419 : IL o bb br . bb y 1- - - : • 0 b b3} � _ b.. 0G? b4 • 614 - II ( b- - - - - : - - -- - 3U� b30�� b3 - . -� - . 4 b _.3 . b2 .s 8618. 8BCCCCCCCC1CCCCCCCCCCCCCCOCCCDODDDDDDDDDDDDCDDDDDDCDD15 DE .EEEE EEEFEEE(EE €EEEEEEEBEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38'40' 42' 44' 46'48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70'72'74' 76' 0'1'2'3'4'5'678'91(1 "1:1 :1 2:22 212:3(3 3:3:3 " 4:4 :44'4(4 5 :515 616 6:6: 6 7(77' - 6" 141— C1DN Woodworks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:41:19 Concept Mode: Column View Floor 2: 8' VU 1 LOAD 1050 ❑�$ - ❑c14 :. - - - - - -" -- - - 49' -6" 1 U4 465' -b IUS 4 ! U " WI : ' 40 1l/Lt - ;; - 44.-0 y9 _ ' 43 -0 6 c69 - c2 : , c70 c71: : . • : 4L -b yL 1 - • e3 _ . . . '- 30 - y " 1 ; Q : ; 30 -b - - 30' -0 60 . . . . " .. . : - - Ly -U 254 --:.; __- i s . -:-._ ❑- . .. - -- - .. .. ... _ _ _ _ - ..._- - L2Y -0 bS CI' 01 - LO -0 . t sU c25 c "s c L4 -0 fy L3 -b f0 -- : k ❑ 1:i .. °c72; - - - - - - - -- - - LL - : c 2 /0 : :- - . -_,. - -- -'- - - Q'c73 - - - -- - -• - -- - - -_- - -' - -- -- .. (4 " - . ❑. ,_ .. - - - -- -- _. _. ... 725 /L __... ' c3 :_.:. . .__. .._ -_ .10 -0 / 1 .. -c78 _ f 0. -b . f U ❑ : _ _ _ • - - : --- _ --- _ 14 -0 by .. - 1S-0 06_ .__: .c77 IL -b 0/ : - 1U 0 Ub - ..... • ) .- ; _c31 ,_., :: c76 : c79 0 0 _ U . C30 - ®c32 - 01 _ _ _ - --- -- -- - — - _ .- --'- - - - .. - 0 3 ❑. ❑ :, ti7 bU .Cbn; q � - -t, . - : c55 c : L . ] .. BB\B.6 BC CCC CCC CICCC CC CCCC C C CC CCOCC CD DD O DOD DtDDD CD DD DD DD DD CDIDD DE,E E E E:EEEI EEEEEIE EEEEEEEtEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 6 6' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 "1:1 :1 (1 '.1 11 12(2 2:2 :2 23213(33 :3:3 :441414 - 464(5(5 5:5:5 7:7:7 4 - (e)`-- WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 24, 2010 13:14:33 Concept Mode: Beam View Floor 2: 8' (ZW••.- t �)�1_`'� 1050 331 ��/ iT L) 104 ■ .. . 49 40 -b • 1 USA .. _ ... 41'40 • IUL • .. - - - - 40'43 - • 1U 'I 45 b - : . : - -- IUU , 44'46 y9 .. 0 - : :.- b34•:.. _- 43' 3' _ - &./... -- '.1 - - - - • - 4L -0 y yb . � .. 40 -0 y5 i i [ 3y b' • y3 3(-U yL 3b b y z 3b -b' , : : : y uy . ; : ; b2 33 -0. 00 01 . : !- 00 • . .. . . . 3U - - -- - --- 00 y � - b Ly-b • L27 b 03 Cf -b 0 _ - Lb b . 1 LSD' 0U `. - - - L4 -0 ry 3 10 : : - 1 o 33 3 . LU - I •- b • 14 -- -- :_ .. �- 4444 .. .. .. ... .. .. .. ... : .. - - ._._ -. Id• b . 11 -3 ! Z. b32 . . : . 10 (U--- •---- . - --- -_ --- --- - 4-- -- -- -' - - --- -. . 10 b. : _ .: tl0 l : : .; . . . .. I u0 .. • 3b. : 00 , 3 i y 0 • bL? b4 b14 .: • b . b .. • . • 4444- . _ _ . _ - 0 -b bU b30 . b35 . 4 -b = 328 ...1'-0 L' 3 Jl: 1 88488 BCCCCCCCCICCC CCCCCCCCCCCCi CC }DDDCD E EE EFEEEIEEIEEEEEEEEEEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70'72' 74' 76' 0' 1'2'3'4'5'678'91(1 '111 :1.1'1111(12(22:2:2 21253(333:3.3:3(3731 344(4 414 :4444(4 :5 :5.5:5(5 "5(5'.6(6 6;6:6 '7:7:7.717(7T-6" • • • . 4 - C.�1 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 24, 2010 13:14:35 Concept Mode: Column View Floor 2: 8' °W- Irw -c c58 c14 ► + �- �J 100 1 4/-0 40-0 1U ! / 40 I U V . .. ! 44 -0 9 43 -0 i) c82 c81 - • - - 4 -b . : 41 4V b 3y 0 Vi..... -.: -: 3/ -b yL - c3 .. - • - - _ - - 30 -0 y r : 0 VU J4 -b bV 33 -0 . 251 ' � _ ... _ :- ...... - - - - - - - -. - L -b 00 .. 20 .a.... _. - .. - - _ - - -- - - -- - - -- - - -- - - -- .. b 253 - - .. L! -b W -. c25 c12 . c26 24 -0 (d D 0 -0. O' 1 1 .. - .. _ _ L 1 -b rb ... -. ©c L, b r L! r4 _ a._ . 0 ti b 1 O i -. -. - c78 . c3 _ _ _..._: . -__ - _ _ - - _______ _ b b . -. _ .. - _ _ , (U 0 4 0 3-0 025 - .. : . : c77 . . -b no bo ^^ yob b4;-_ .- - C31 :: , -C76 ' - - ---'-- - c71 - -. -- - - - -- - _ 25-0 oz.? L-15 '� c30 ' 0c32 , t ) ) 0 0 073 07 C7U Cb 4 -0 c55 c5 O . a L' 0 I b ! U b BB\B.B BC CCC C CC CFCCC CC CCCC C C CC CC \CC CD DDD D DD DFODDDD DD °DD D D DD CD'DD DE.E E E EiEEEEEEIEEEE+ €EEEEBEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 65 68' 70' 72' 74' 76' U1'2'3'4'5'6'7'591(1 1;1:1 t111 t1 f2(2 22222(221 213133 :33 414:44!4(4 "4t4t5t5 5,515 E: 6:6 6" 4 - 6-)c WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:44 ' Concept Mode: Beam View Floor 3: 17' 1050 49'-6" • 40 -ta 11138 I UL / ' - : - - 4b-0 y9 :. 43 " -b V0 '' b35 - b6 .. - ' - - -. - , - 4Z -0 • ' Vii♦ - --- - -- - . - - -- - 4.1 -0.. `J b.. 3 V -b _.; 3( b V I 3b -b. Vt./ • - , - _ .. 34'-0 ua b7 3.5 -0 . 00 . t" -- - . " - - • -- -- - -- - _ - - - - -- '• -- -- --- -- - - - _ - - 3L -b 0( 31 - 00 -- - 7: : - :. " - . r _ : - - - - - ' - - : - - -- - , -- . - - 3U - b 00 L V -b 0I - _ ._ _ _ -- L5-0 rsu b9: L4 -b 4 Li -0 : b 1r .Z I -b l4 • " 10 - sn b ' . . . r 1 b20 I D" -b . _ . . ... . ru.. ou_... _b1ib17- IG-0 bb_ ' b4) _ _b34 b -b bay b.. bL b8 . .. b" b.. - BBIB.B BCCCCCCCC1CCCCCCCCCCCCCCCICCCDDDDDDDDICDD "CDDD'DDDDDDCD!DDDE EEE EEE'EFEEEEEiEEEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 166' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62'64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 '1:1:1 212 22:2 212S3(33:3:3 4:4:4 5:5:5 6:6:6 7ff 77:7 . 4 - 61., to WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:42 Concept Mode: Column View Floor 3: 17' 1050. - 49'-6" lUSJ 4/ -0 1UL - - - 40-0 .101 } t __ 40-0 • 100 _ : __ ; . : :- • : .. .. - . . 44 - 0 ' • 9.. 43 -b {5 : : : C 6 2 C61 • - c15 . . JO_ - ... : 3 J _b 4 _ - _ - - _ - 3t5 - O .. : JI -- ® — _ .. .. - 30-O J U . - - - - - - - -- 34-0 tSJ SS -b • 00 - :._. — -_ .. - - .. - __ : __ 3L -0 • 0! i St b.. 0b s . c18 - so - 6 03 . : . i : .: - - L / - - OL .. _. _: - - - - - - - - - C :t: .. - - .. -- -- . - -- ---- -' -- - Lb-0 • 01 : . : : : - . . . - 20 -0 uu . . _ c23 • r0 ' - - -- _ i --- - -- - - -- - . c5 - • /0 ' - - -- - - - - L00 • 0 - - I J 0 t1 , : 100 !4 - 11 b fL 100 /1 f- _ : - . .. - ---- - - 10-0 _ lU..: 14 -0 00 : - .. - . : : . _ --- - •-- : - - .. _ .. -. .1 -0 b/ -- - .. ' - : - : 1 1 -b h0 - - - 0 0 c63 ass ■ 11, c756520 : c1 c6c74 a -b • .5 - 3 L ._ b . . 0 - 0 BBI B. BBCCCCCCCCFCCCCC CCCDDDDDDDDIDDDCDDDDDDDODCDt DDDE .EEEEEEEFEEEIEBEEEEEEEEIEEEEZ V 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70 74' 76' 0'1'2'3'4'5'6'7'8'91(1 1 :1:1 :1E 112(2222.22E2 . 2 12(3(33':33 , 3!3(3'313(4(4 4;444(4(4 - 4(4'.5(5 5:5 :5 :6vt66:8 4717 77:7 • /4 *---- (7,,;'")r WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:38 Concept Mode: Beam View Roof: 25' 1050 . .. - 49 !U4 .. .. 40 -b i UL0 : - - 40 -0 I U'1 J .: : .. : , 40 - b' 1UU� :. - : - : - . _ : : -- .. - - 44-0 . ; ' : ' : ' y0 : - ' : b23 . ; -: ' b24 .. :: . 4Z - 0 J--- ...- /- .:� ' . . - - -- .. - - - - -- - - - - - - - -- - - - y0 - 4U-0 . : � :. ... ..... . . : . . .: _ � 4 ` : - E - .. - " - - : 30 3 __ _ 3 -0 yL.:. : .:. . • - .: . . . . . . .. - -- -.- - - - - -- - -- 30-0' 30 - b 00 34 -0 00 33-0 3L b 01 3 1 -b 00 :.. - : . -.'- ---- - - - -- - - 3U-0 0 0 - - Ly -0 03 . . Li -0 --- - - -- - - : _ 1 - . . - -- - -- - L4 -0' (y L3 -0 (25 - - - '1 . :.. -. ..._- ' -- - - - - -- -- - - LL-0 im b25,:.- 2u 0 - 1 y. -0 (4 .i - - -- --- -- -- - -- .. -- - ' .. _ 115-0 . lb b.. .. -- - 10'-0 .. 00 :: ',- : . ; -- - :. -- .. - - 13-0 • 00 1 - :._ : I 1 -0 b 04) , --- .b27L .- --=- ->-= ---- b28:: -; . - -_ .. -.._ -. .- - --=- - .. ... - - -- • - - -- - - • - - -- -b • 033 ,, L0 0 t" b_0 bti 4 -0 . . .. . :." L' b' 1 -b BBIB.B BCCCCCCCCf CCCCCCCCCCCCCCC'CCCDDDDDDDDODO OD DD DDDDDDCD!DDDE:E EE E:EE°EIEEEIEE EEEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10'12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44'46'48' 50' 52' 54' 50 58'60' 62' 64' 66'68' 70'72'74' 76' 0'12'3'4'5'6'7'8'910 '1:1:1/1.'.1 El 11 12122: 2; 2 2'. 2E2'2t2E3E33:3:3 4A:44:4E4 :4E4 5:5 :5 ;5(5'515E66 6Z:6.6!6(6'.667(7 - 7:77 , 7f7177'-6" 4 ....._ cite-) WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:40 Concept Mode: Column View Roof: 25' 105-0 _ :: 49 104 : i i . ` ': � 4 O 4! b IUG - 40 -0 I - _.. - - - - - - - -- -- 4b'-b 9 . 43 -b WS c42 c43 : . - c4 c45 - : 4L -b t - _.- i_. 4i '-b' 40 b b - . L 3a n _ 3 /- JI - -- --_..;_ -. -; - -- -- - - - -- -- .. -_ _ 3 34 -O' by - 3.5 -b Ot5 -. .. -;.- -- -_-. --,. _ - - - - - - - -- -- --- -- -- - --- - - - -- -- --- -- .5Z -0 0 . . _ JV 45 L rJ 43 -0 // 6 rO f4 _ -- - - -- -- - - - -- - - - -" -- • -- - - -. _ _ ...- : -- - " --- - 10 -b It Ib b -,_. , -_ 4 b . 13E Ili -0 nO -: - - - - y -O b` 3 ' c51 c50- c 5 2! 0 -n bL, 8: bU 4-b n BBIBB BC CC C C CC CtCCC CC CCCCC C CC CCICCCD ODD D DD DIDDD CD DD DD D D DD CD'DD DE E E E E EEEFEEE!EEE E!EEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38'40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'67'8'9111 1 ;1 :1 2( 222: 222E2203 (33 :3 :3 :4 414( 515' 5; 5: 5 5t5(5 :6 :6 717:7 -6" / — G9 COMPANY PROJECT i WoodWorks® SOt7WARE FOR WOOD DESIGN June 24, 2010 12:42 b1 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w61 Dead Partial UD 613.2 613.2 2.50 3.00 plf 2 Snow Partial UD 795.0 795.0 2.50 3.00 plf . 31c61 Dead Point 622 2.50 lbs 4_c61 Snow Point 1192 2.50 lbs 5_j28 Dead Full UDL 47.7 plf 6_j28 Live Full UDL 160.0 plf 7_j33 Dead Full UDL 120.2 plf 8 j33 Live _ Full UDL _ 370.0 plf MAXIMUM RE, ' f 0 31 Dead 391 1061 Live 795 1615 Total 1186 2676 Bearing: Load Comb #2 #3 Length 0.63 1.43 Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2 -Plys Self- weight of 6.59 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv* = 67 Fv' = 207 fv * /Fv' = 0.32 Bending( +) fb = 331 Fb' = 1138 fb /Fb' = 0.29 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.05 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 2676, V design* = 1237 lbs Bending( +): LC #3 = D +.75(L +S), M = 1178 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 158e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. X - CI 0 COMPANY PROJECT i 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:43 b3 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j45 Dead Full UDL 17.0 plf 2 j45 Live Full UDL 25.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • A 1 91 Dead 106 106 Live 112 112 Total 218 218 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Glulam- Unbal., West Species, 24F -V4 DF, 3- 1/8x9" Self- weight of 6.48 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 10 Fv' = 265 fv /Fv' = 0.04 Bending( +) fb = 140 Fb' = 2400 fb /Fb' = 0.06 Live Defl'n 0.01 = <L/999 0.30 = L/360 0.04 Total Defl'n 0.03 = <L/999 0.45 = L/240 0.06 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - 2 Shear : LC #2 = D +L, V = 218, V design = 182 lbs Bending( +): LC #2 = D +L, M = 491 lbs -ft Deflection: LC #2 = D +L EI= 342e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). • Gv) COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:40 b6 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 pif 4 w44 Snow • Partial UD 431.2 431.2 0.00 2.00 plf 5 c45 Dead Point 444 5.00 lbs 6 c45 Snow Point 647 5.00 lbs 7 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9_j25 Dead Full UDL 120.2 plf 10 j25 Live _ Full UDL 370.0 plf MAXIMUM REACTIONS (Ibsl and BEARING LENGTHS (inl : C 61 Dead 1436 1389 Live 1803 1803 Total 3239 3192 Bearing: Load Comb #3 • #3 Length 1.73 1.70 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys • Self- weight of 8.02 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Ervin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. G i COMPANY PROJECT i WoodWorks® SOFrNARE FOR WOOD DESIGN June 24, 2010 12:50 b8 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j14 Dead Full UDL 113.7 plf 2 114 Live Full UDL 350.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : A d 0 , 64 Dead 357 357 Live 1050 1050 Total 1407 1407 Bearing: Load Comb #2 #2 Length 0.75 _ 0.75 Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 77 Fv' = 180 fv /Fv' = 0.43 Bending( +) fb = 963 Fb' = 1080 fb /Fb' = 0.89 Live Defl'n 0.07 = <L/999 0.20 = L/360 0.33 Total Defl'n 0.10 = L/712 0.30 = L/240 0.34 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 1407, V design = 1123 lbs Bending( +): LC #2 = D +L, M = 2110 lbs -ft Deflection: LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 4- COMPANY PROJECT 1 WoodWorks' SOFTWARE FOR WOOD DESIGN June 24, 2010 12:40 b9 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1_j50 Dead Partial UD 113.7 113.7 0.00 1.50 plf 2_j50 Live Partial UD 350.0 350.0 0.00 1.50 plf 3_j14 Dead Partial UD 113.7 113.7 3.00 9.00 plf 4_j14 Live Partial UD 350.0 350.0 3.00 9.00 plf 5_j51 Dead Partial UD 113.7 113.7 1.50 3.00 plf 6_j51 Live Partial UD 350.0 350.0 1.50 3.00 plf 7_j24 Dead Partial UD 120.2 120.2 0.00 3.00 plf 8_j24 Live Partial UD 370.0 370.0 0.00 3.00 plf 9 j25 Dead Partial UD 120.2 120.2 3.00 9.00 plf 1 Live Partial UD 370.0 370.0 3.00 9.00 plf 11_j26 Dead Partial UD 120.2 120.2 9.00 12.00 plf 12_j26 Live Partial UD 370.0 370.0 9.00 12.00 plf 13_j52 Dead Partial UD 113.7 113.7 9.00 10.50 plf 14_j52 Live Partial UD 350.0 350.0 9.00 10.50 plf 15_j53 Dead Partial UD 113.7 113.7 10.50 12.00 plf 16 j53 Live Partial UD _ 350.0 350.0 _ 10.50 12.00 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : I O' 121 Dead 1478 1478 Live 4320 4320 Total 5798 5798 Bearing: - Load Comb #2 #2 Length 1.74 1.74 Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x10 -1/2" Self- weight of 12.39 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 138 Fv' = 265 fv /Fv' = 0.52 Bending( +) fb = 2217 Fb' = 2400 fb /Fb' = 0.92 Live Defl'n 0.38 = L/381 0.40 = L/360 0.94 Total Defl'n 0.57 = L/252 0.60 = L/240 0.95 ADDITIONAL DATA: FACTORS: FIE CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 5798, V design = 4953 lbs Bending( +): LC #2 = D +L, M = 17395 lbs -ft Deflection: LC #2 = D +L EI= 890e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). e Li COMPANY PROJECT i WoodWorks® SOFIWARE FOR WOOD DESIGN June 24, 2010 12:43 b10 Design Check Calculation Sheet Sizer 7.1 LOADS I tbs, psf, or pif ) Load Type Distribution Magnitude Location (ft) Pat - Start End Start End tern 1 w39 Dead Partial UD 311.0 311.0 0.00 4.50 No 2 Live Partial UD 680.0 680.0 0.00 4.50 No 3 c39 Dead Point 267 2.00 No 4 Live Point 822 2.00 No 5 132 Dead Partial UD 120.2 120.2 0.00 0.50 No 6 j32 Live Partial UD 370.0 370.0 0.00 0.50 No 7 Dead Partial UD 120.2 120.2 1.00 4.00 No 8_j33 Live Partial UD 370.0 370.0 1.00 4.00 No 9 j34 Dead Partial UD 120.2 120.2 4.00 4.50 No 10_j34 Live Partial UD 370.0 370.0 4.00 4.50 No 11 135 Dead Partial UD 120.2 120.2 4.50 7.50 No 12_j35 Live Partial UD 370.0 370.0 4.50 7.50 No 13_j36 Dead Partial UD 113.7 113.7 4.50 16.50 No 14_j36 Live Partial UD 350.0 350.0 4.50 16.50 No 15 j37 Dead Partial UD 100.7 100.7 3.00 4.50 No 16 Live Partial UD 310.0 310.0 3.00 4.50 No 17 Dead Partial UD 120.2 120.2 7.50 13.50 No 18 Live Partial UD 370.0 370.0 7.50 13.50 No 19 Dead Partial UD 120.2 120.2 13.50 16.50 No 20 Live Partial UD 370.0 370.0 13.50 16.50 No 21 j49 Dead Partial UD 120.2 120.2 0.50 1.00 No 22 j49 Live Partial UD 370.0 370.0 0.50 1.00 No 23 Dead Point 300 3.00 No 24 Live Point 922 3.00 No MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : W ), la 4'-16° 16-6'1 Dead 452 4067 1180 Live 847 11291 3436 Uplift 12 Total 1300 15358 4616 Bearing: Load Comb #2 02 #2 Length 0.50' 4.24 1.27 Cb 1.00 1.09 1.00 - Min. bearing length for beams is 12" for exterior supports Glulam- Unbal., West Species, 24F -V4 DF, 5- 118x12" • Self- weight of 14.16 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 265 fv /Fv' = 0.60 Bending( +) fb = 1074 Fb' = 2400 fb /Fb' = 0.45 Bending( -) fb = 1396 Fb' = 1844 fb /Fb' = 0.76 Live Defl'n 0.13 = <L/999 0.40 = L/360 0.32 Total Defl'n 0.19 = L/740 0.60 = L/240 0.32 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fb'- 1850 1.00 1.00 1.00 0.997 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC 02 = D +L, V = 8357, V design = 6496 lbs Bending( +): LC #2 = D +L, M = 11006 lbs -ft Bending( -): LC 02 = D +L, M = 14310 lbs -ft Deflection: LC 02 = D +L EI= 1328e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. Grades with equal bending capacity in the top and bottom edges of the beam cross- section are recommended for continuous beams. 4. GLULAM: bxd = actual breadth x actual depth. 5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 6. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). i q --- 6 „ t c - -- ---- COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:44 b13 Design Check Calculation Sheet • Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3_c40 Dead Point 217 5.50 lbs 4_c40 Live Point 668 5.50 lbs 5_c67 Dead Point 518 5.00 lbs 6_c67 Snow Point 778 5.00 lbs 7_c68 Dead Point 573 3.00 lbs 8 c68 Snow Point 942 3.00 lbs 9 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10 w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12_j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13_j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14_j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15_j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16_j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 18 b 15 Live Point 389 3.50 lbs 19 b 32 Dead Point 225 6.50 lbs 20 Live Point 693 6.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : -• ∎:- - q 6 -- - = - __,. ." .' . ---,f.".:="•"4.-' " -- m - .O. _ 3 7, _ .e.....,.z "'^ms... -15.6 • : ..►.r. --` 1 -0;-7 �= ° -+.. _:.� -.M..4l �-' as...,.< ,.= ,, ''''."7-='-'-:. .-fin ._:. -- ....t _ . - =' = . .� - - _� ,nom - - "' _ - - _ - v ►= l D' 81 Dead 2561 3033 Live 2699 3789 Total 5261 6822 Bearing: Load Comb #3 #3 Length 1.88 _ 2.44 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L /680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC #3 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. • d ,. �� COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:43 b14 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 w33 Dead Partial UD 317.7 317.7 9.00 12.00 plf 2 w33 Live Partial UD 350.0 350.0 9.00 12.00 plf 3 Dead Point 357 9.00 lbs 4 c19 Live Point 1050 9.00 lbs 5 c20 Dead Point 357 3.00 lbs 6 c20 Live Point 1050 3.00 lbs 7 w34 Dead Partial UD 317.7 317.7 0.00 3.00 plf 8 w34 Live Partial UD 350.0 350.0 0.00 3.00 plf 9 c64 Dead Point 165 10.50 lbs 10 c64 Snow Point 225 10.50 lbs 11 Dead Point 165 1.50 lbs 12 c65 Snow Point 225 1.50 lbs 13 Dead Full UDL 113.7 plf 14 Live Full UDL 350.0 plf 15 Dead Partial UD 17.0 17.0 0.00 0.50 plf 16_j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 17_j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 18 j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 19 Dead Partial UD 17.0 17.0 1.50 10.50 plf 20_j45 Live Partial UD 25.0 25.0 1.50 10.50 plf 21 j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 22 _Live Partial UD 25.0 25.0 10.50 12.00 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : +�.�c- ±c..� - `".- *. • :-`> - Vic..._ ,.....,. - -. --."----"""4. R 1 0' 121 Dead 2351 2351 Live 4350 4350 Total 6701 6701 Bearing: Load Comb #2 #2 Length 2.39_ 2.39 • LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 pif included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 163 Fv' = 310 fv /Fv' = 0.52 Bending( +) 'fb = 1769 Fb' = 2325 fb /Fb' = 0.76 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.43 = L/333 0.60 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 6701, V design = 5314 lbs Bending( +): LC #2 = D +L, M = 16851 lbs -ft Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. LIP 11 COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:41 b20 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j30 Dead Full UDL 21.7 plf 2 j30 Live Full UDL 60.0 plf MAXIMUM REA(TIANS final and RFARIN[. 1 FNrTHS 1in1 • i 3._64 Dead 46 46 Live 105 105 Total 151 151 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x6" Self- weight of 4.57 pif included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 9 Fv' = 180 fv /Fv' = 0.05 Bending( +) fb = 90 Fb' = 1170 fb /Fb' = 0.08 Live Defl'n 0.00 = <L/999 0.12 = L/360 0.02 Total Defl'n 0.00 = <L/999 0.18 = L/240 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 151, V design = 111 lbs Bending( +): LC #2 = D +L, M = 132 lbs -ft • Deflection: LC #2 = D +L EI= 78e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. to COMPANY PROJECT 1 WoodWo SOFEWARE FOR WOOD DESIGN June 24, 2010 12:50 b30 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1_j41 Dead Partial UD 68.0 68.0 2.00 4.00 plf 2_j41 Live Partial UD 100.0 100.0 2.00 4.00 plf 3_j42 Dead Partial UD 72.2 72.2 0.00 2.00 plf 4 j42 Live Partial UD _ 106.2 106.2 0.00 2.00 plf MAXIMUM REACTIONS llhcl and RFARING LFNGTHS lint • 0 ' 44 Dead 154 150 Live 209 203 Total 364 353 Bearing: Load Comb #2 #2 - Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x8" Self- weight of 6.03 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 15 Fv' = 180 fv /Fv' = 0.08 Bending( +) fb = 140 Fb' = 1170 fb /Fb' = 0.12 Live Defl'n 0.00 = <L/999 0.13 = L/360 0.03 Total Defl'n 0.01 = <L/999 0.20 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 364, V design = 253 lbs Bending( +): LC #2 = D +L, M = 359 lbs -ft Deflection: LC #2 = D +L EI= 178e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. /19- 6 F 9 . COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:42 b31 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 j65 Dead Partial UD 47.7 47.7 0.00 4.00 plf 2_j65 Live Partial UD 160.0 160.0 0.00 4.00 plf 3_j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4_j28 Live Partial UD 160.0 160.0 4.50 7.50 plf 5_j62 Dead Partial UD 47.7 47.7 7.50 11.00 pif 6_j62 Live Partial UD 160.0 160.0 7.50 11.00 plf 7_j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 8_j63 Live Partial UD 160.0 160.0 11.00 17.00 plf 9 j64 Dead Partial UD 47.7 47.7 17.00 20.00 plf 10_j64 Live Partial UD 160.0 160.0 17.00 20.00 plf 11_j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 12 j66 Live Partial UD 160.0 160.0 4.00 4.50 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : lo' 20 Dead 619 619 Live 1600 1600 Total 2219 2219 Bearing: Load Comb #2 # Length 0.67 • _ 0.67 Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x12" Self- weight of 14.16 pif included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 49 Fv' = 265 fv /Fv' = 0.18 Bending( +) fb = 1082 Fb' = 2400 fb /Fb' = 0.45 Live Defl'n 0.43 = L /553 0.67 = L/360 0.65 Total Defl'n 0.69 = L/350 1.00 = L/240 0.69 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 2219, V design = 1997 lbs Bending( +): LC #2 = D +L, M = 11095 lbs -ft Deflection: LC #2 = D +L EI= 1328e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4- G COMPANY PROJECT • i Wood\/Vorks® Jore 24, 201013:15 b34 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet sber 7.1 LOADS I PM Paf.le PO) . Load Typ. Distribution Magnitude Location (ft) Unite Start End Start End 1 7,62 Dead Partial UD 613.2 613.2 0.00 2.00 elf 2 Snow Partial UD 795.0 795.0 0.00 2.00 plf 3:w29 Dead UD 617.5 617.5 7.50 11.00 plf 2, 09 Snow Partial UD 001.2 801.2 7.50 11.00 plf 5 015 Dead Point 1436 11.00 Mos 6_015 Snow Point 1404 11.00 lbs t26 Dead Point 1309 17.00 160 9 Snow Point 2404 17.00 lbs 9 Dead Partial UD 617.5 617.5 17.00 18.00 plf :6 10 7,61 Snow Partial UD 001.2 901.2 17.00 19.00 plf • it 061 Dyad Po1nt 622 7.00 lb. 12 061 Snow Point 1192 7.00 lb. 1]_062 Dead Point 622 4.00 lbs 062 Snow Point 1192 4.00 10a 15763 Dead Partial UD 613.2 613.2 2.00 4.00 plf 16 .63 Snow Partial UD 795.0 795.0 2.00 4.00 plf 172/65 Dead Partial UD 617.5 617.5 10.00 20.00 plf 12_w65 Snow Partial UD 801.2 801.2 18.00 20.00 p1! 19 v71 Dead Partial UD 613.2 613.2 7.00 7.50 plf 20 Snow Partial UD 795.0 795.0 7.00 7.50 plf 21_264 Dead Partial VD 47.7 47.7 17.00 19.00 plf 22764 Live Partial U0 160.0 160.0 17.00 10.00 plf 23_129 wad Partial UD 47.7 47.7 4.50 7.50 plf 24_126 Live Partial UD 160.0 160.0 4.50 7.50 plf . 25_162 Deed 04:0141 00 47., 47.7 7.50 11.00 plf 26_162 Live Partial UD 160.0 160.0 7.50 11.00 plf 27_149 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29_249 Live Partial U0 370.0 370.0 0.00 2.00 plf 29_232 Dead Partial U0 120.2 120.2 3.50 4.00 ;If 30_132 Live Partial UD 370.0 370.0 3.50 4.00 plf 31_133 Dead Partial UD 120.2 120.2 4.50 7.50 plf 32)33 Live Part11 UD 370.0 370.0 4.50 7.50 plf 32_134 Dead Partial VD 120.2 120.2 7.50 9.00 p1! , • 34_13: Live Partial UD 370.0 370.0 7.50 3.00 plf 35_135 Dead Partial UD 120.2 120.2 9.00 11.00 plf 16_135 Live 04r611 00 370.0 370.0 0.00 11.00 plf 37_147 Dead Partial 00 120.2 120.2 11.0) 17.00 plf 39_347 Live Partial UD 370.0 370.0 11.0) 17.00 plf 39_167 Dead Partial V0 120.2 120.2 2.00 3.50 plf 40_367 Live Partial U0 370.0 370.0 2.0) 3.50 plf 41_149 [lead Partial UD 120.2 120.2 4.00 4.50 plf 42_149 Live Partial U0 370.0 370.0 4.00 4.50 plf 43_163 Dead Partial UD 47.7 47.7 11.0) 17.00 p1! 1_163 Live Partial UD 160.0 160.0 11.00 17.00 p1! 45_365 Dead Partial UD 47.7 47.7 10.00 20.00 plf 46_365 Live Partial U0 160.0 160.0 19.03 20.00 plf 47_166 Dead Partial UD 47.7 47.7 4.00 4.50 pif 46_166 Live Partial U0 160.0 160.0 4.0) 4.50 plf 49_169 Dead Partial U0 120.2 120.2 17.00 19.00 plf 50_169 Live Partial UD 370.0 370.0 17.00 19.00 plf 51_169 Dead Partial UD 120.2 120.2 19.0) 20.00 plf 52_169 Live Partial UD 370.0 370.0 19.00 20.00 plf 53 172 Dead Partial 47.7 47.7 2.00 4.00 plf 54_172 Live 2.2:1.1 00 UD 160.0 160.0 2.00 4.00 plf 55_173 Dead Partial 47.7 47.7 0.02 2.00 plf 00 56 1 Live Partial UD 160.0 160.0 _ 0.00 2.00 _ elf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : I � ' 0840 1 1405 3 Live 99 9979 Total 17361 17305 Bearing: Load Comb 83 03 Length 5.21 5.19 Glulam -BaI., West Species, 24F -V8 DF, 5- 1/8x22 -1/2" Sell-wea6 of 26.55 MI Included in Mob; lateral alppo t top. AL, bottom- M supports: Analysis vs. Allowable Stress (psi) and Deflection (in) ..,:I. p 6 2005: 00108,ion Analysis Value Dealcn Value Analysis /Des:on Shear 1v ■ 102 Fv' - 305 fv /FV' - 0.60 8endln9l•) fb - 23922 8b' - 2604 (b /FD' - 0.92 Live 000TH 0.40 - 1/595 0.67 - 1/360 0.60 Total Defl, 0.94 - L/2e5 1.00 - 1/240 0.94 ADDITIONAL DATA: FACTORS: F/E CD 04 Cc CL C/ Cfu Cr C(rt Notes Cn LC4 0v' 265 1.15 1.00 1.00 1.00 1.00 /.00 3 05•4 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 Fcp' 650 1.00 1.00 - - - - 1.00 - - E' 1.9 m1111en 1.00 1.00 - - - - 1.00 - E :dn• 0.85 million 1.00 1.00 - Shear : LC 93 - 04.75(1 -3). V 17361, V design ■ 13992 1bs -- e,Odln2)9): LC 43 - 04.75)1.45), 11 ■ 16109 lbs-ft Deflection: LC 93 - D4.75(141) E1- 9756006 10 -:72 Total Deflection - 1.50)0.ad Load Deflection) 0 Live Load Deflection. (D -dead 1,-11vs S ■ancv 0 ■vend I -1 sec C■::netreaion CIA ■concentrated) (A11 LC', art listed in the Analyses outpoc) . Load combinations: ICC -IBC DESIGN NOTES: 1 . Please verity 0 1 1 8 2 20 6 1 62 1 1 62 04 0 0 9 1 0 9 9 0 . 3 08 ) 09 08 that derma 6pp6mtbn. 2 G60am design values am for matalab conforming to AITC 197 -2001 and manufactured 61 accordance with ANSI/AITC A190.1 -1992 3. GLUTAM: bad a x00131 breadth 0 Wool depth. . 4. Ghdam Beam, shall be Moray wpporled x0,801609 to the provisions of NDS Cbtom 3.3.3. 5. GLULAM: beadm loop based on somber of Fop(teelen), Fep(oornp n). / q_, cs.,1;\ COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN • June 24, 2010 12:49 b35 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 j21 Dead Partial UD 120.2 120.2 0.50 1.50 plf 2_j21 Live Partial UD 370.0 370.0 0.50 1.50 plf 3_j59 Dead Partial UD 120.2 120.2 0.00 0.50 plf 4_j59 Live Partial UD 370.0 370.0 0.00 0.50 plf 5_j60 Dead Partial UD 120.2 120.2 1.50 3.00 plf • 6 160 _Live Partial UD _ 370.0 370.0 1.50 3.00 _ pif MAXIMUM RE! a .a....... . ..,., ••..,, , • 31 Dead 188 188 Live 555 555 Total 743 743 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 31 Fv' = 180 fv /Fv' = 0.17 Bending( +) fb = 254 Fb' = 1080 fb /Fb' = 0.24 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 743, V design = 444 lbs Bending( +): LC #2 = D +L, M = 557 lbs -ft Deflection:,LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D-dead L =live S =snow W =wind I= impact C= construction CLd =concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. • COMPANY PROJECT WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:51 c2 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1_bl Dead Axial 1056 (Eccentricity = 0.00 in) 2 Rf.Live Axial _ 2153 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 2 -Plys Self- weight of 3.41 pif included in Toads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 0.00= 0.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 196 Fc' = 980 fc /Fc' = 0.20 Axial Bearing fc = 196 Fc* = 1644 fc /Fc* = 0.12 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.596 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 3236 lbs Kf = 1.00 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. ,. - COMPANY PROJECT l WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:54 c12 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c24 Dead Axial 1478 (Eccentricity = 0.00 in) 2_c24 Live Axial 4320 (Eccentricity = 0.00 in) 3 b10 Dead Axial 4067 (Eccentricity = 0.00 in) 4 Live Axial 11291 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): • 0' 8' Timber -soft; D.Fir -L, No.1, 6x6" Self- weight of 7.19 plf included in Toads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 701 Fc' = 820 fc /Fc' = 0.86 Axial Bearing fc = 701 Fc* = 1000 fc/Fc* = 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC #, Fc' 1000 1.00 1.00 1.00 0.820 1.000 - - 1.00 1.00 2 Fc* 1000 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 21214 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) • Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. • 4- GaLl COMPANY PROJECT di WoodWorks® SOF7WAFE FOR WOOD DESIGN June 24, 2010 12:53 c23 Design Check Calculation Sheet Sizer 7.1 LOADS ( ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b9 Dead Axial 1478 (Eccentricity = 0.00 in) 2 Live Axial 4320 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 0' 9' Lumber Post, Hem -Fir, No.2, 4x6" Self- weight of 3.98 pif included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 303 Fc' = 379 fc /Fc' = 0.80 Axial Bearing fc = 303 Fc* = 1430 fc /Fc* = 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.265 1.100 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 5834 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 4 611 ;5- COMPANY PROJECT 111" oodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:54 c26 Design Check Calculation Sheet Sizer 7.1 LOADS ( ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c23 Dead Axial 1478 (Eccentricity = 0.00 in) 2_c23 Live Axial 4320 (Eccentricity = 0.00 in) 3_b10 Dead Axial 1180 (Eccentricity = 0.00 in) 4 Live Axial 3436 (Eccentricity = 0.00 in) MAXIMUM REACTIONS • "�- -,��+».*_ er"r -•�- �n - `�'.�.�' n' — ��' s �F` � ��s��= ,i'�"T��c��. -ter � �,,, 0' 8' Timber -soft, Hem -Fir, No.2, 6x6" Self- weight of 6.25 pif included in Toads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 346 Fc' = 492 fc /Fc' = 0.70. Axial Bearing fc = 346 Fc* = 575 fc /Fc* = 0.60 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.00 1.00 1.00 0.856 1.000 - - 1.00 1.00 2 Fc* 575 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 10465 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 41— 20(4) COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:52 c29 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b13 Dead Axial 3033 (Eccentricity = 0.00 in) 2 Rf.Live Axial 5052 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 1 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 3 -Pays Self- weight of 5.11 pif included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 328 Fc' = 439 fc /Fc' = 0.75 Axial Bearing fc = 328 Fc* = 1644 fc /Fc* = 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.267 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 8126 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. • • 4 ._ • COMPANY PROJECT II 1 1 WoodWorks® SOFTWARE FOR W000 DESIGN June 24, 2010 12:55 c31 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b13 Dead Axial 2561 (Eccentricity = 0.00 in) 2 Rf.Live Axial 3599 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x4 ", 3 -Plys Self- weight of 3.25 pif included in Toads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 393 Fc' = 443 fc /Fc' = 0.89 Axial Bearing fc = 393 Fc* = 1719 fc /Fc* = 0.23 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.258 1.150 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 6186 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) • (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT ill WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:54 c39 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 b21 Dead Axial 267 (Eccentricity = 0.00 in) 2 b21 Live • Axial 822 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 0' 9 ' • Lumber n -ply, Hem -Fir, No.2, 2x4 ", 2 -Plys Self- weight of 2.17 pif included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 106 Fc' = 171 fc /Fc' = 0.62 Axial Bearing fc = 106 Fc* = 1495 fc /Fc* = 0.07 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.114 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 1108 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. • COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:52 c55 • Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b30 Dead Axial 154 (Eccentricity = 0.00 in) 2 Live Axial 209 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 8' Lumber Post, Hem -Fir, No.2, 4x4" Self- weight of 2.53 pif included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 31 Fc' = 470 fc /Fc' = 0.07 Axial Bearing fc = 31 Fc* = 1495 fc /Fc* = 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.315 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 384 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. IL ) — 0 BY Pvi\k- DATE: 0 -a.o 1.0 JOB NO : c EN _ OF PROJECT: RE: 'Beams wi Lat-cati iZeactioy.Ns 0 0 . - eO•t 1 4C) -> tiuottlS 1:33 - i, 303 0 w O 2 , \'ec&vn V3 -, Watts aoaA aoab J 0 J cr < o O w bearn t' -. Wrk a. S ' an e) 1 w z w 0 z \to eoom L-1 - -5 wa, tt 5 a° I , a0 i A i: ao • c5 0 5 nc e_ wild CPCILti CSIN » Se iSrni c_ reacitioyNs w U z , 2 Or\V uJInd_ Lu(U be_ catcotooreci, 2 0 2 O - CC 0 U. Z w IT I 6 0 = 0 cn z • :-.: <1.) /—° ti) •—, :,; 5 411 "ii , < , COMPANY PROJECT i I WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 13:07 b6 LC1 Design Check Calculation Sheet Sizer 7.1 • LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 c44 Snow Point 647 2.00 lbs 3 w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 c45 Dead Point 444 5.00 lbs 6 c45 Snow Point 647 5.00 lbs 7 w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 6 w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9 j25 Dead Full UDL 120.2 plf 10 j25 Live Full UDL 370.0 plf WIND1 Wind Point 800 2.00 lbs WIND2 Wind Point -910 5.00 lbs 'MAXIMUM REACTIONS llbsl and BEARING LENGTHS (inl 10' 61 Dead 1436 1389 Live 2089 1803 Total 3525 3192 Bearing: Load Comb #4 #3 Length _ 1.88 _ 1.70 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in Toads; Lateral support top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NOS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.15 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 4 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 4 Shear : LC #3 = D +.75(L +S), V 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #4 = D +.75(L +S +W) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D-dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 13:07 b6 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 c44 Snow Point 647 2.00 lbs 3 w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 c45 Dead Point 444 5.00 lbs 6_c45 Snow Point 647 5.00 lbs 7_w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9 Dead Full UDL 120.2 plf 10 j25 Live Full UDL 370.0 plf WIND1 Wind Point -800 2.00 lbs WIND2 Wind Point 910 5.00 lbs MAXIMUM REAC 11QNS-U Isi and BEARING LENGTHS (inl : • • • 10' 61 Dead 1436 1389 Live 1803 2172 Total 3239 3561 Bearing: Load Comb #3 #4 Length 1.73 1.90 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D+.75(L+S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: • 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. ..._ COMPANY PROJECT 1 Wo odWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 13:09 b14 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS l lbs, psi, or pit ) : Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2 Live Partial UD 350.0 350.0 9.00 10.50 plf 3 Dead Point 357 9.00 lbs 4 Live Point 1050 9.00 lbs 5 c20 Dead Point 357 3.00 lbs 6 c20 Live Point 1050 3.00 lbs 7 w66 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8 w66 Live Partial UD 350.0 350.0 0.00 1.50 plf 9 Dead Point 165 10.50 lbs 10 c64 Snow Point 225 10.50 lbs 11 c65 Dead Point 165 1.50 lbs 12 c65 Snow Point 225 1.50 lbs 13 w67 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14_w67 Live Partial UD 350.0 350.0 1.50 3.00 plf 15_w69 Dead Partial UD 317.7 317.7 10.50 12.00 plf 16 w69 Live Partial UD 350.0 350.0 10.50 12.00 plf 17_j36 Dead Full UDL 113.7 plf 18 j36 Live Full UDL 350.0 plf 19_j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20_j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 21_j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22_j Live Partial UD 25.0 25.0 0.50 1.50 plf 23_j45 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24_j45 Live Partial UD 25.0 25.0 1.50 3.00 plf 25_j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26 j46 Live Partial UD 25.0 25.0 10.50 12.00 plf 27_j70 Dead Partial UD 17.0' 17.0 3.00 9.00 plf 28_j70 Live Partial UD 25.0 25.0 3.00 9.00 plf 29j71 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30_j71 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point 3560 3.00 lbs WIND2 Wind Point -3640 9.00 lbs wind3 Wind Point -3620 0.00 lbs winds Wind Point 3570 12.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : ___ �s!!ft�, ma '..., - r:: s,-. r? �..,RacID�-. -'"" °`s., --2rn^ -- _ s^ 'r.. : ' 121 Dead 2207 2207 Live 4350 4350 Uplift 499 479 Total 6557 6557 Bearing: Load Comb 62 62 Length 2.34_ 2.34 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; • Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 310 fv /Fv' = 0.51 Bending( +) fb = 1735 Fb' = 2325 fb /Fb' = 0.75 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.42 = L/393 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LCA Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emirs' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC 62 = D +L, V = 6557, V design = 5170 lbs , Bending( +): LC 92 = D +L, M = 16527 lbs -ft Deflection: LC 62 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live 5 =snow W =wind I= impact C= construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. /.-6-131-f COMPANY PROJECT 1 WoodWorks SOFIWARFFOR WOOD DESIGN June 24, 2010 13:09 b14 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2 w68 Live Partial UD 350.0 350.0 9.00 10.50 plf 3 Dead Point 357 9.00 lbs 4 Live Point 1050 9.00 lbs 5 c20 Dead Point 357 3.00 lbs 6 Live Point 1050 3.00 lbs 7 w66 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8 Live Partial UD 350.0 350.0 0.00 1.50 plf . 9 c64 Dead Point 165 10.50 lbs 10_c64 Snow Point 225 10.50 lbs 11 Dead Point 165 1.50 lbs 12 c65 Snow Point 225 1.50 lbs 13 w67 Dead Partial UD 221.7 221.7 1.50 3.00 plf 19 Live Partial UD 350.0 350.0 1.50 3.00 plf 15 w69 Dead Partial UD 317.7 317.7 10.50 12.00 plf 16w69 Live Partial UD 350.0 350.0 10.50 12.00 plf 17 j36 Dead Full UDL 113.7 plf 18 Live Full UDL 350.0 plf 19 j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20 j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 21_j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22_j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 23_j95 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24_j45 Live Partial UD 25.0 25.0 1.50 3.00 plf 25_j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26_j46 Live Partial UD 25.0 25.0 10.50 12.00 plf 27_j70 Dead Partial UD 17.0 17.0 3.00 9.00 plf 28_j70 Live Partial UD 25.0 25.0 3.00 9.00 plf 29_j71 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30 j71 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND) Wind Point -3560 3.00 lbs WIND2 Wind Point 3640 9.00 lbs wind3 Wind Point 3620 0.00 lbs winds Wind Point -3570 12.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : -+ti,►- '�+ � • s -.' '"fir - ..T pS�i= ..- -.. `� _ - � '- -- -• ;.- -� . " --tea ----1-11"•1---•"- � = '''- I 0' 121 Dead 2207 2207 Live 4826 4811 Total 7033 7018 Bearing: Load Comb #4 #4 Length 2.51 2.51 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 310 fv /Fv' = 0.51 Bending( +) fb = 1735 Fb' = 2325 fb /Fb' = 0.75 Live Defl'n 0.25 = L/573 0.90 = L/360 0.63 Total Defl'n 0.42 = L/393 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC 142 = D +L, V = 6557, V design = 5170 lbs Bending( +): LC 02 = D +L, M = 16527 lbs -ft Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL - BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer: 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 4- G3C COMPANY PROJECT I Wood ) SOFIWARE FOR WOOD DESIGN June 24, 201013:11 b13 LC1 • Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2_w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3_c40 Dead Point 217 5.50 lbs 4_c40 Live Point 668 5.50 lbs 5_c67 Dead Point 518 5.00 lbs 6_c67 • Snow Point 778 5.00 lbs 7_c68 Dead Point 573 3.00 lbs 8_c68 Snow Point 942 3.00 lbs 9 w59 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10_w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12_ j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13 j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14_j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15 j 39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16_j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17_b15 Dead Point 126 3.50 lbs 18_b15 Live Point 389 3.50 lbs 19 b32 Dead Point 225 6.50 lbs 20 Live Point 693 6.50 lbs W1 Wind Point 6590 0.00 lbs W2 Wind Point -6590 3.00 lbs W3 Wind Point 6590 5.00 lbs W4 Wind Point -6590 8.00 lbs MAXIMUM - - • . • - 1. : w �'1■76a�r `.' .7,.... . " �^3- I mo" -(► .' "_ ^.1* -: .�" � ..7 -a. - ......�.:1" ....__ � -i ;a , -, a. - a- .�..- o a f ' tiw ,mac. . � - ° .. _ 2 -.�.+s �. - �'..r:a- _ _ _ - z....- = ice.-.. - - ^�- ,.-..---- ---- It•d■ • a e1 Dead 2561 3033 Live 6406 3789 Uplift 3098 Total 8968 6822 Bearing: Load Comb #4 #3 Length 3.20 2.44 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' - 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = 1 /680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' B00 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC 03 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC 03 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. • 4 - (1,3‘:) • COMPANY PROJECT i WoodWorks® SOFIWARFFOR WOOD DESIGN June 24, 201013:11 b13 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, pst, or pif) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 Dead Point 217 5.50 lbs 4 Live Point 668 5.50 lbs 5 Dead Point 518 5.00 lbs 6 c67 Snow Point 778 5.00 lbs 7_c68 Dead Point 573 3.00 lbs 8 c68 Snow Point 942 3.00 lbs 9 w59 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10 w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12 Live Partial UD 310.0 310.0 6.50 8.00 plf 13 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14 Live Partial UD 250.0 250.0 3.50 6.50 plf 15 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 Dead Point 126 3.50 lbs 18 Live Point 389 3.50 lbs 19 Dead Point 225 6.50 lbs 20 b32 Live Point 693 6.50 lbs W1 Wind Point -6590 0.00 lbs W2 Wind Point 6590 3.00 lbs W3 Wind Point -6590 5.00 lbs W9 Wind Point 6590 8.00 lbs MAXIMUM R [ .... If1NS (Ihsl and BEARING LENGTHS (inl : r . , -....:.,:i_,....-4...:,.., e -- _- - c.- -- „ - -I. i - ``.wie - .fir T,s - .r_ w..r. '"a : r I-..- .r_ ...��...... � : .ice: - ,-.r. .rye...: '�� - .�--- .'e.,.r+ 11.1.. ••• -- -r -:. ... .t..._ .r •••••,....-• `r " . Apr- -- ,ems _ •.s.,.,. - .w..; ..., -..' " ,_ „o .. "r '!'. l a 81 Dead 2561 3033 Live 2699 7496 Uplift 3381 Total 5261 10529 Bearing: Load Comb #3 #4 Length 1.88 3.76 LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight of 15.31 p9 included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L /680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC 93 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC #3 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 4 - 61:;"3.-- COMPANY PROJECT 1 %Vood r k s June 24 : 20101319 634 LC1 SOFTWARFFOR WOOD DESIGN Design Check Calculation Sheet Sbv7.1 LOADS 11bs. PA or slf) ' Load Type Distribution Magnitude Location 1101 Unite End Start End 1_.62 Dead Partial UD '613.2 613.2 0.00 2.00 pif v62 Snow Partial VD 795.0 795.0 0.00 2.00 pif 3229 Dead Partial UD 617.5 617.5 7.50 11.00 pif 4,,29 4.42 Partial UD 901.2 801.2 7.50 11.00 pif 5 215 Dead Point 1436 11.00 lb. 9015 Snow Point 2404 11.00 lt. 7 716 Dead Point 1389 17.00 lbs 216 4ncv Point 2404 17.00 lba 9 Dowd Partial UD 611.5 611.5 17.00 19.00 pif 10 064 Snow Partial UD 801.2 801.2 17.00 18.00 pif 11 261 Dead Point 622 7.00 lba 12 Snow Point 1192 7.00 lbs 13 262 Dead Point 622 4.00 Its 14 4ncv Point 1192 4.00 lbs '5 'S v63 Dead Partial U0 613.2 613.2 2.00 4.00 pif 6_w63 Snow Partial U0 795.0 795.0 2.00 4.00 plf • 7_265 Dead Partial UD 61 617.5 19.0D 20.00 pif 8_265 Sncv Partial UD 901.2 601.2 19.00 20.00 pif 071 Dead Partial UD 613.2 613.2 7.00 7.50 pif 0271 Snow Partial UD 795.0 195.0 7 .00 7 .50 pif 1 161 Dead Partial UO 47.7 47.7 17.00 18.00 pif 2_164 Live Partial U0 160.0 160.0 17.00 19.00 plf 3,29 Dead Partial U0 47.7 47.7 4.50 7.50 pif 4 _129 Live Partial UD 160.0 160.0 4.51 7.50 plf 5_162 Dead Partial UD 47.7 41.7 7.50 11.00 pif 6_162 Live Partial UD 160.0 160.0 7.51 11.00 pif 27_148 Dead Partial UD 120.2 120.2 0.00 2.00 pif 29_140 Live Partial UD 370.0 370.0 0.00 2.00 plf 29_132 Dead Partial UD 120.2 120.2 3.50 4.00 pif 30_132 Live Partial UD 370.0 370.0 3.50 4.00 pif 31_133 Goad Partial VD 120.2 120.2 4.50 7.50 plf 32_133 Live Partial UD 370.0 370.0 4.50 1.50 plf 33_134 Dead Partial UO 120.2 120.2 7.50 9.00 pif 74_134 Live Par11a1 UD 370.0 370.0 7.50 9.00 pif 35 _135 5 Deed Partial UD 120.2 120.2 9.00 11.00 pif 36_135 Live Partial U0 310.0 310.0 2.00 11.00 plf 31_147 Dead Partial U0 120.2 120.2 11.00 17.00 pif 39_147 Lire Partial UD 370.0 370.0 11.00 17.00 plf 39_167 Dead Partial OD 120.2 120.2 2.00 3.50 plf 49167 Live Partial UD 370.0 370.0 2.00 3.50 plf 41_149 Dead Partial U0 120.2 120.2 4.00 4.50 plf 42_149 Live Partial U0 370.0 370.0 4.00 4.50 plf 43_163 Dead Partial U0 47.7 47.7 11.00 17.00 pif 44_163 Live Partial UD 160.0 160.0 11.00 17.00 plf 45_165 Dead Partial UD 47.7 47.7 19.00 20.00 pif 46_165 Live Partial UD 160.0 160.0 19.00 20.00 pif 4 166 Deal Partial UD 47.7 47.7 4.00 4.50 plf IB 166 Live Partial UD 160.0 160.0 4.00 4.50 plf 49 _169 Deed Partial U0 120.2 120.2 1 11.00 pif 50_160 0 Partial D 370.0 370.0 17.00 14.00 pif 51 00. D 169 Dead Partial VD 120.2 120.2 15.00 20.00 pif 52_169 Llve Partial UD 370.0 370.0 18.00 20.00 p11 53 112 Dead Partial UD 47.7 47.7 2.00 4.00 pif 51 112 Live Partial VD 160.0 160.0 2.00 4.00 pif 55_173 Dead Partial UO 47.7 47.7 0.00 2.00 plf 56_1/3 Live Partial VD 160.0 160.0 0.00 2.00 pif N1 Kind Point 5950 0.00 its Kind Point -550 4.00 lbs 543 Wind Point 50650 11.00 Its KI 1170 Point -5850 17.00 lbs 0 K5 Kind _ Point _ 5950 _ 20.00 1!e • MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : • 1 2 Dead 2150 12 Live 12150 19492 Total 19555 19199 Bearing: Load Comb 61 95 Length _ 5.87 Glulam -Bat., West Species, 24F -V8 DF, 5- 118x22 -1/2" SeD-walg16 0125.55 pD included in beds; Lateral .tippet lap. M. 60 52.54.1.2579579,: Analysis vs. Allowable Stress (psi) and Deflection (in) ,,..,,„, s opus: Cr150 :ion An.lv.1. Value Design Value Anelv.1./De.1,, Shear 1v 4 162 Fv' ■ 305 17/10. ■ 0.60 11end170f41 Ib 4 2392 Fb' 4 2604 114/5b' ■ 0.92 Live 0e11'n 0.40 ■ 00595 0.67 4 L/360 0.60 Total Defl'n 0.94 ■ L/255 1.00 4 L/240 - 0.64 ADDITIONAL DATA: • FAC1O0s: F/E CD CM CL N Cfu Cr C1rt Hot.. Cn LCI 91' 265 1.15 1.00 1.00 1.00 1.07 1.00 3 90'4 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 . - E' 1.9 0111107 1.00 1.00 - - - - 1.00 - - Enin' 0.55 011110, 1.00 1.00 - Shear : LC 13 . 00.7511 V - 17361, V dante7 4 13992 Ito 0.00179(41: LC 43 4 00.751140), H 96199 155-10 Deflection: LC 43 ■ 0'.1511 EI4 8756006 1b -172 Tct.1 Deflection - 1.501D,ad Load De11a0t1on1 4 Live Wad 0971020107. 1D4dead L■live S -snow W.wInd 1■10p42c onstruction CLd■conco7t:at0d1 0 1 1 03 . 4 : 0 e listed in the Malys14 ccipu:l Wad 02001740100.: I01 -102 DESIGN NOTES: 1. Please verify Dial the d&MMUg denim:g s 090s are appropriate for rut appl0100 9. 2. GOdm, design values en for materials cartooning to AITC 117 -2001 end rtmmllx (244 In eccardarce 005 ANSUAITC A190.1 -1992 3. GLULAM: bed. actual bea05, x actual depth. 4. Gluten Beans shall be latently supported e005N' 9 to 50 prvtsbo of NDS COI= 333. 5. GLULAM: bearing length based on smatter of Fop(Iensko). Fop( npn). 4 _ ,,24 COMPANY PROJECT 111 I 1 %Vood r k s ® 24, 211013:19 b34 LC2 SOFTWARE FOR WOOD DESICN Design Check Calculation Sheet S@er 7.1 LOADS ( lb.,par.m Fir ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 .162 Dead Partial UD 613.2 613.2 0.00 2.00 plf 2 '(62 Snow Partial UD 795.0 795.0 0.06 2.00 pit 3_(29 Dead Partial UD 611.5 617.5 7.50 11.00 plf v29 Snow Partial UD 801.2 801.2 7.50 11.00 plf 5 c15 Dead Point 1436 11.00 100 6_c15 Snow Point 2404 11.00 lbs 116 Dead Point 1399 17.00 10s 9 c16 Snow Point 2404 17.00 lba 9 Dead Partial UD 617.5 617.5 17.00 18.00 pit 10_w6 Snow Partial UD 901.2 601.2 17.00 19.00 pit 11 c61 1 Dead Point 622 7.00 lbs 12 c61 Snow Point 1192 7.00 lb 13 c62 Dead Paint 622 4.00 lbs 11 762 Snow Point 1192 4.00 lbs 15_w63 Dead Partial UD 613.2 613.2 2.00 4.00 of 16_w63 Snow Partial UD 795.0 195.0 2.00 4.00 plf 17_w65 Dyad Partial UD 617.5 611.5 17.00 20.00 pif 19 (65 Snow Partial UD 701.2 801.2 19.00 20.00 pit 19 Dead Partial UD 613.2 613.2 7.00 1.50 p11 20 Snow Partial UD 795.0 795.0 7.00 7.50 pit 21:364 Dead Partial UD 47.7 47.7 17.00 19.00 plf 22_364 Live Partial UD 160.0 160.0 11.00 19.00 plf 23_329 Dead Partial UD 47.7 47.7 4.50 7.50 pl1 24_329 Live Partial UD 160.0 160.0 4.50 7.50 pif 25_162 Dead Partial UD 47.7 47.7 7.50 11.00 p11 . 26_162 Live Partial UD 160.0 160.0 7.50 11.00 p10 2/_349 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29_148 Live Partial 110 370.0 370.0 0.00 2.00 pit 29_132 Lead Partial UD 120.2 120.2 3.50 4.00 plf 30_132 Llve Partial UD 370.0 370.0 3.50 4.00 plf 31_333 Dead Partial UD 120.2 120.2 4.50 7.50 plf 32_133 Live Partial U0 370.0 370.0 4.50 7.50 plf 33_134 Dead Partial UD 120.2 120.2 7.50 9.00 plf 34_134 Live Partial UD 370.0 370.0 7.50 9.00 pit 35_335 Dead Partial UD 1 :0.2 120.2 9.00 11.00 plf 36 _135 Live Partial 00 310.0 310.0 9.00 11.00 plf • 37 _147 Dead Partial UD 120.2 120.2 11.00 1 plf 39_347 Live Partial VD 370.0 370.0 11.00 17.00 plf 39_167 Dead Partial VD 120.2 120.2 2.00 3.50 plf 40_167 Live Partial VD 370.0 370.0 2.00 3.50 plf 41_349 Dead Partial UD 1:0.2 1 :0.2 4.00 4.50 plf 42_149 Live Partial UD 370.0 370.0 4.00 4.50 Of 43_363 Dead Partial VD 47.7 47.1 11.00 1 plf 44_363 Live Partial 00 160.0 160.0 11.00 1 plf 45_165 Dead Partial UD 47.7 1.7 19.00 20.00 p7 46_16 Live Partial UD 160.0 160.0 10.00 20.00 p21 47_166 Dead Partial UD 47.7 17.7 4.00 4.50 p11 48_366 Live Partial UD 160.0 160.0 4.00 4.50 plf 49_369 Dead Partial U0 3:0.2 120.2 17.00 10.00 pit 50_368 Lire Partial UD 370.0 170.0 17.00 18.00 plf 51_169 Dead Partial UD 120.2 120.2 19.00 20.00 p1 2 5 169 Live Partial UD 370.0 310.0 19.00 20.00 plf 53_172 Dead Partial UD 41.7 47.1 2.00 4.00 plf 54 172 Live Partial UD 160.0 160.0 2.00 4.00 plf 55_173 Dyad Partial UD 47.7 0.00 2.00 plf 56 173 Live Partial UD 160.0 160.0 0.00 2.00 plf M1 Hind Point -5950 0.00 lbs H2 Wind Point 5950 4.00 lb. 0 H3 Hind Point -5950 11.00 lb. HI Hind Pint 5950 17.00 1t, H5 HSnd Feint -5950 20.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 2 Dead 1 1405 ' 127 Live 9956 9978 Total 11361 17305 Bearing: Load Corb 93 13 Lanett: 5.21 5.19 • Glulam -Ban., West Species, 24F -V8 DF, 5- 1/8x22 -1/2" 5d6weil e/ 25.55 Rd included M beds; Lateral aRpoti top' full, bottom= at supports: Analysis vs. Allowable Stress (psi) and Deflection (In) u.blg Ness mm; Criterion Analysis Value Oenion Value Analysts /Lemon Shear 162 FY' ■ 305 f: /FV' . 0.60 Sanding)') fb . 2372 Fe' - 2604 15 /Fb' • 0.92 Live 0771'0 0.41 ■ L /591 0.67 - L/360 0.61 Total 0efl'n 0.94 - L /294 1.00 - L/240 0.94 ADDITIONAL DATA: FACTORS: F/E CO C4 Ct CL CV CIu Cr Clrt Hetes Cn LC! F7' 265 1.15 1.00 1.00 1.00 1.03 1.00 00'• 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 E 1.9 million 1.00 1.00 - - - - 1.00 - - 4 0010' 0.95 ,111100 1.00 1.00 - - - - 1.90 - - a Shear : LC 13 - D4.05(l10), V • 17361. V design - 13992 ibis 06071071 LC 63 - 01.05(U51. M - 76169 Its -ft Deflection: LC 94 - 01.7511010) Ei2 9756806 10 -1,2 Total Deflection a 1.0010ead load 1971actlon) 1 Live Load Deflection. 1D ■dead L■11ve S ■4nc( - wind 1■impact C1ctnatru0ticn CI..0007tntrated( (All LC'. are listed in the Analysis output( Load combinations: ICC -10C DESIGN NOTES: 1. Please verify that the default d.MCtlan errata am appro9rlale Rs yam application. 2. GMxn design values are far materials and 15109 to ARC 117.2101 and manufactured In accerdanee with ANSVNTC A190.1 -1992 3. GLULAM: toot a actual breadth x actual depth. 4. Querns Beams Mal be laterally supported according to the 78849, o,s of NOS Cbo., 3.3.1 5. GLULAM: bearing length based an male of Fcp(ten: im), Fcp(conp'n). • I e. (:)422 9 COMPANY PROJECT i Wood\/Vorks June 21, 2310 1320 671 LC2 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet sew 7.1 LOADS 11b; PM urpU) : Load Typo D1atrlbution Magnitude Location (ft) Unite Start End Start End 1 1462 Dead Partial UD 613.2 613.2 0.00 2.00 plf 2 Sno. Partial UD 795.0 795.0 0.00 2.00 plf ] '4429 Dead Partial UO 617.5 617.5 7.50 11.00 plf 4 Snow Partial UD 801.2 201.2 7.50 11.00 plf 5 Dead Point 1436 11.00 1ba 6_(15 Snow Point 2404 11.00 lba 7 Dead Point 1389 17.00 lba 0 Snow Point 2404 11.00 lba 9 Dead Partial UP 617.5 61 17.00 18.00 plf 10 064 Snow Partial U0 901.2 001.2 17.00 19.00 p10 11 c61 Dead Point 622 7.00 lbs 12 Snow Point 1192 7.00 lbs 15362 Dead Point 622 4.00 Its 14 Snow Point 1192 4.00 lbs 15 Dead Partial UD 613.2 613.2 2.00 4.00 plf 16063 Snow Partial UD 795.0 795.0 2.00 4.00 plf 17_w65 Dead Partial UD 617.5 617.5 19.00 20.00 plf 14 18 65 Snow Partial UD 201.2 801.2 18.00 20.00 plf 19 .71 Dead Partial U0 613.2 613.2 7.00 7.50 plf 20 1471 Snow Partial UD 795.0 795.0 7.00 7.50 p01 21 )64 Dead Partial UD 41.7 47.7 17.00 18.00 plf 22 Live Partial UD 160.0 160.0 17.00 18.00 plf 23J29 Dead Partial UD 47.7 47.7 4.50 7.50 plf 24_128 Live Partial U0 160.0 160.0 4.50 7.50 plf 25_162 Dead Partial UD 47.7 47.7 7.50 11.00 plf 26)62 Live Partial UD 160.0 160.0 7.50 11.00 plf 27 Dead Partial UD 120.2 120.2 0.00 2.00 plf 26_149 Live Partial UD 370.0 370.0 0.00 2.00 plf 29_)12 Dead Partial UD 120.2 120.2 3.50 4.00 plf 30_732 Live Partial UD 370.0 370.0 3.50 4.00 plf 31_733 Dead Partial UD 120.2 120.2 4.50 7.50 plf 32_)33 Live Partial U0 370.0 370.0 4.50 7.50 plf 33_j34 Dead Partial UD 120.2 120.2 7.50 8.00 p1! 34_334 Live Partial UD 370.0 370.0 7.5D 8.00 plf 35135 Dead Partial UD 120.2 120.2 9.00 11.00 plf 36,3 Live Partial UD 370.0 370.0 9.07 11.00 plf l7 747 Dead Partial UD 120.2 110.2 11.00 1 plf 38_147 Live Partial U0 370.0 370.0 11.02 17.00 plf 39_167 Dead Partial U0 120.2 120.2 2.07 3.50 p11 40_167 Live Partial UD 370.0 370.0 2.00 3.50 plf 41_149 Dead Partial UD 120.2 120.2 4.00 4.50 012 42_149 Live Partial UD 370.0 370.0 4.00 4.50 plf 43)63 Deed Partial UD 47.7 47.7 11.00 17.00 plf 44_)63 Live Partial UD 160.0 160.0 11.00 17.00 plf 45_165 Dead Partial U0 47.7 47.7 10.00 20.00 plf 46_165 Live Partial UD 160.0 160.0 19.00 20.00 plf 47_166 Dead Partial UD 47.7 47.7 4.00 4.50 plf 48 )66 Live Partial UD 160.0 160.0 4.00 4.50 plf 49_169 Lead Partial U0 120.2 120.2 17.00 16.00 plf 50_160 Live Partial 00 370.0 3 17.00 10.00 plf 51_)69 Dead Partial UD 120.2 120.2 19.00 20.00 plf 52) 69 Live Partial UD 370.0 370.0 18.00 20.00 plf 53 ,372 Dead Partial UD 47.7 47.7 2.00 4.00 plf 54_j72 Live Partial UD 160.0 160.0 2.00 4.00 p11 Dead Partial UD 41.7 47.7 0.00 2.00 plf 51 3 Live Partial UD 160.0 160.0 0.00 2.00 plf N3 Wind Point -5950 0.00 lb. N2 Mind Point 5850 4.00 lbs 03 Mind Point -5850 11.00 lbs ' 04 Mind Point 5850 17.00 lbs e5 Min! _ Point _ -5850 20.00 lb. MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (In) : • Dead 4405 1327 Live 995E 9375 Total 17361 17305 Bearing: C: Lend 2] 13 Length 5.21 5.19 Glulam -Bat., West Species, 24F -V8 DF, 5- 118x22 -1/2" SeU+aelpht of 28.55 p11 heeded In bads: Wend support lop. f6A, 6.0,90. at supports: Analysis vs. Allowable Stress (psi) and Deflection (in) using ADS 2406: . Criterion Analysis Value De.Oon Value A nalvels /Design Shear fv ■ 162 Fv' ■ 305 fv /F0' . 0.60 Ben0ing101 00 ■ 2392 40' ■ 2604 fin /F5' . 0.02 Live Defl'n 0.41 . L /591 0.67 . L/360 0.61 Total Defl', 0.84 ■ L/294 1.00 ■ L /240 0.64 ADDITIONAL DATA: • FACTORS: F/E CD CM Ct CL CV Cfv Cr Cfrt dotes Cn LC4 60' 265 1.15 1.00 1.00 1.00 1.00 1.00 3 80'0 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 Fop' 650 1.00 1.00 - - - - 1.00 - - E' 1.5 64111(n 1.00 1.00 - - - - 1.00 - - En1n' 0.35 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC 13 ■ 00.7511001, V ■ 17261, V design . 13902 lba Be:H1ng141: LC 43 ■ 00.7511.05), M ■ 06139 lbs -ft Deflection: LC 44 . ?..7511. 51. 9756606 !b -in2 Total Deflection ■ 1.50(0ead load Deflection) 0 Live Load Deflection. I Pdead L■live S■snc14 w.wInd I.Sapact C.construction CId.3oncentraoed) (A11 LC'a are listed in the Anal/a14 output) Load combinations: ICC -IBC DESIGN NOTES: 1. Reuss verify that (he delal4 defection 0mlls ere appr.plate far your apple:A n. 2. GM= dmlpn values me b materials Dams mine to AITC 117 -2001 end IwndacW.d In ettantenee with ANSUAITC A190.1 -1992 3. GLULAM: bed • actual breadths actual depth. 4. Gluten Seams shah be laterally supported e0mtd0q to De prmesforas of NDS Clause 33.3. 5. GLULAM: bearing length Oared on =Ma of Fcp(tensbn). Fcp(cmpn). /42 "'-. 6 1 q ° COMPANY PROJECT i WoodWorks® SOFIWARF FOR WOODDFSJGN June 24, 201013:23 b34 LC1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pit) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 3 w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5 c15 Dead Point 1436 11.00 lbs 7 Dead Point 1389 17.00 lbs 9 w64 Dead Partial UD 617.5 617.5 17.00 18.00 plf . 11 c61 Dead Point 622 7.00 lbs 13 c62 Dead Point 622 4.00 lbs 15 w63 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17_w65 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19 w71 Dead Partial UD 613.2 613.2 7.00 7.50 plf 21 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25 Dead Partial UD 47.7 47.7 7.50 11.00 plf 27 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31 Dead Partial UD 120.2 120.2 4.50 7.50 plf 33 Dead Partial UD 120.2 120.2 7.50 8.00 plf 35_j35 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39 j67 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41 j49 Dead Partial UD 120.2 120.2 4.00 4.50 plf 43_j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45_j65 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47_j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49 j68 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51_j,69 Dead Partial UD 120.2 120.2 18.00 20.00 plf 53 j72 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55_j73 Dead Partial UD 47.7 47.7 0.00 2.00 plf W1 Wind Point 5850 0.00 • lbs W2 Wind Point -5850 4.00 lbs W3 Wind Point 5850 11.00 lbs W4 Wind Point -5850 17.00 lbs W5 Wind Point 5850 20.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • Iv zo1� Dead 7189 6822 Live 156 302 Total 7238 7018 Bearing: Load Comb 02 02 Length 2.17 2.11 Glulam-Bal., West Species, 24F -V8 DF, 5- 1/8x22 -1/2" Self- weight of 26.55 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 74 Fv' = 238 fv /Fv' = 0.31 Bending( +) fb = 950 Fb' = 2038 fb /Fb' = 0.47 Live Defl'n negligible . Total Defl'n 0.41 = L /585 1.00 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 • Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC 01 = D only, V = 7189, V design = 5674 lbs . Bending( +): LC 01 = D only, M = 34217 lbs -ft Deflection: LC 01 = D only EI= 8756e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). /4 -0-114 COMPANY PROJECT 1 WoodWorks SOFTWARE FOIE WOOD DESIGN June 24, 2010 13:22 b34 LC2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location 1ft) Units Start End Start End 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 3 w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5 c15 Dead Point 1436 11.00 lbs 7 c16 Dead Point 1389 17.00 lbs 9 w64 Dead Partial UD 617.5 617.5 17.00 18.00 plf • 11 c61 Dead Point 622 7.00 lbs 13 Dead Point 622 4.00 lbs 15 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19 . Dead Partial UD 613.2 613.2 7.00 7.50 plf 21_j64 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23J28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25_j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 27 j48 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29 j32 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31_j33 Dead Partial UD 120.2 120.2 4.50 7.50 plf 33j34 Dead Partial UD 120.2 120.2 7.50 8.00 plf 35_j35 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39_j67 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41_j49 Dead Partial UD 120.2 120.2 4.00 4.50 plf 43 j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45_j65 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47_j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49 j68 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51_j69 Dead Partial UD 120.2 120.2 18.00 20.00 plf 53_j72 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55_j73 Dead Partial UD 47.7 47.7 0.00 2.00 plf . W1 Wind Point -5850 0.00 lbs W2 Wind Point 5850 4.00 lbs W3 Wind Point -5850 11.00 lbs W4 Wind Point 5850 17.00 lbs W5 Wind Point -5850 20.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : la 201 Dead 7189 6822 Live Total 7189 6822 Bearing: Load Comb #1 #1 Length 2.16_ 2.05 Glulam -Bat., West Species, 24F -V8 DF, 5- 1/8x22 -1/2" Self- weight of 26.55 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 74 Fv' = 238 fv /Fv' = 0.31 Bending( +) fb = 950 Fb' = 2038 fb /Fb' = 0.47 Live Defl'n negligible Total Defl'n 0.41 = L /585 1.00 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 Fcp' 650 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC 01 = D only, V = 7189, V design = 5674 lbs Bending( +): LC #1 = D only, M = 34217 lbs -ft Deflection: LC 01 = D only EI= 8756e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (A11 LC's are listed in the Analysis output) . Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 1 1 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). - Ct./ Harper Project: ' i Houf Peterson Client: Job # Righellis Inc. ENGINEERS • PLANNERS Designer: Date: Pg. # LANDSCAPE ARCHI rECTS•SURVEYORS Wdl := 10• lb •8•ft•20•ft Wdl = 1600.1b VCC _ l OeSi9Y; ft Seismic Forces Site Class =D Design Catagory =D Wp W d1 1P := 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S = 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F : = 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F • = 1.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S := F S m1 • F v .S 1 2•S S : = Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a := 1.0 Rp := 2.5 (Table 13.5 -1, ASCE 7 -05) 4a S ds' ( z l F P := p •I l 1 + 2 h I W EQU. 13.3 -1 J Fpmax 1.6.S EQU. 13.3 -2 F pmin := .3.S EQU. 13.3 - N F L = if(F > Fpmax,Fpmax,if(Fp < FpmimFpmimFp)) F = 338.5171.1b Miniumum Vertical Force 0.2•S W dl = 225.6781•Ib ds' . Harper Project: 't Houf Peterson Client: Job # RighellisInc. ENGINEERS .• PLANNERS Designer: Date: Pg. # LANDSCAPE ARCNIrECTS•SNRVEYORS W dl 10 lb -8-11-20-ft Wdl = 1600.1b ft Seismic Forces Site Class =D Design Catagory =D WP := Wd I ' 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F := 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F ,, := 1.722 VeI -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S : = F S till := F S 2 -S ms S • = Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a := 1.0 R 2.5 (Table 13.5 -1, ASCE 7 -05) 4a p • z F P :_ 1 + 2 h Wp EQU. 13.3 -1 Fpmax:= 1.6- Sd -W EQU. 13.3 -2 F pmin := .3 ' S ds' l p - Wp EQU. 13.3 -3 = if (F > F pmax , Fpmax, if(F < F pmin, Fpmin, F F = 338.5171 • lb Miniumum Vertical Force 0.2 • S ds• W dl = 225.6781.1b ( 1 H LI 0 Harper HP Houf Peterson COMMUNICATION RECORD Righellis Inc. To El FROM 0 MEMO TO FILE D UNI;INEE:Iti*PL.flt.Lit 1.■171,-,AI Ail.:110ECI .. ... ...... .. ...... ... .. ..-.. . . PHONE NO PHONE CALL: 0 MEETING: 0 ZI 13 co in Z. -< 2 rn E —,—, n et C) 7.1 1 3' . (is ...-1. I 1 c - ON) 11 (..) 1:1 ...1 ... - 0 * 0° ..." -0 0 . ..i) • ..., • dr) 43— (--‘ ---• et' : VI —C. Li) N . 5- f) • -4 ,... 03 C \ 4/ Z 0 i N 0 01 r rc •,.. 4--- r) ...., . ... . . . , r) BY: 11 . (LOW\ DATE: DJq' JOB NO.: • PRCiJ ECT: . . RE: De-c■en 1) H')T P'C_P'ONA C rPl 2L 0 0 . pactu46.1 _ z t2 0 2 NPitt.... CPCPACI (iLa C6rnrnc x `11 0 Li (1 .$3)((agiOrVii I) ,•=-., 1‘,.(,(, Itinai I _ 11 x u . O w • li 4 u z e e w o O ' - (16 , 6 VI: ii incti !XVII._ . 1thl ,k (z r\ 11 < . 1 l %■,) F.6 \\... TV u i , .)0\ sr5 = 7- 4- \ p.p • - u IC pC(Clin \ )€41)•Jee n . 0.0..; \s -..-_ 3 Icac. o . g ca z: ( k Ix:F. hi 12 1 u0 it _-.-_ tG.ci5 pL..; ! - 1 1 _ . n . • ---- . 0 • i - . . \) ------ V, ,95 ?t 1 i i I i i (2 -) SI m." So'3'!4- 0 6 ;-. Pi ... . :i • I (410(zy2".Diler =_-- 5 w /F-t 4 o1' . ': - 4 14 a i; • -. ., .• < c.nkco.Qt hi. to4 .-= rim?so-c\ 30544_ x 4 1 .2: 44C) 4# : • 014- ...,.‹....._ I r t7 L L • - D PI g • CM S A 0 . f70:1+1 '.' 00Fe *7 olcitee i L Ilk - 002 • it-ogee -- „sDE N 00Q8 - D -= IN 14 # 00 00 09 ::. 3 4 Qkicri . 0 2 o z , 1 o - z o J. 4 I ‘ 0 ye`,0 a 1. 1&;‘sa.), oi m c z b.nCik-1 1 rN o V -0 (7) › • 6 4 400he ' NI4I- ooh,9 = Dz_i, z ol# oahg =-- . m n o m x 7 0 0 F, / • K 0 • m -I 2 - -- 9 r a m b 0 7ToTTTc:)Wrj '-t • .3H :103rOad - 1 — - .• , ON 90r a.t.vo \IAA ,1 • •A9 ■, X Harper . 1 1"• Houf Peterson Righellis COMMUNICATION RECORD Righellis Inc.. To 0 FROM 0 MEMO TO FILE -- --•----- EHGINEEi'.S • PLAl1:lERd • LANCYCAPE ARCHITECT,•SURVE•GIj - " """' °"'- -"' - PHONE NO.: PHONE CALL: ❑ MEETING: 1 A 'CI ID m Q - g;;; 2 if 3 v 9.3 d . . i .0 g � a o 01 3 6 W. • 4 n o ...(3 cs T ,. t , . . = L .Z • narper C ' 1 i ' Houf Peterson COMMUNICATION RECORD Righellis Inc. To El FROM El MEMO TO FILE El E. • PLA LA .D,C , PE JRCIIITECTS•Sti , V:YOR. --- PHONE NO.: PHONE CALL: 0 MEETING: El M 17 co m 13 -c m .. .k -cl — V eN P cp - I " CI r 0 k.) ...........___ :g. 0 0 a) ..... f: _GN 1 --- V 1 r c-N > ch o 1 c C. c\ 1 1 . r t } :14 o o 10 z 0 cp — I s e ., - COMPANY PROJECT r 1. 00 WO r S . . SOFTWARE FOR WOOD DESIGN June 8, 2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: . Load Type Distribution Pat- Location [ft] Magnitude Unit • tern Start End Start End LIVE Live Point 2.50 200 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : '-'' ''-',. '' 1 :' " ' -' ''.s•-' • ,,..--,-.."•,..: ,1,•:,: : ' -..v': .:.'._ ->:-.,-:.* •,-.:-: "-- [ .„,....,,_ „ ._.c..,-,..„,...,,,4,: ;:.4 . -_-,.._.;:_.---.•„ -,..4_:.....4. :-......,...,.,:;:-.:..,:....,.. . ,--.. __-_ ;-. .. lo. 54 Dead Live 100 100 Total 104 104 Bearing: Load Comb #2 #2 Length. 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams is 1/2" for exterior supports Lumber-soft, Hem-Fir, No.2, 2x6" Self-weight of 1.7 pif induded in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 405 Fb' = 1048 fb/Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.14 ADDITIONAL DATA FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 z - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 '1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending(+): LC #2 = L, M = 255 lbs-ft Deflection: LC #2 = L El = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 4 e"" (0050 1 COMPANY PROJECT - 0 14 di Wood Works® ... SOFTWARE FOR WOOD DEVON June 8, 2009 16:27 Hand Ra112 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Full UDL 50.0 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : ,C":". .n,■ ^ ,-■•• •••-• '. . I■'•, ' ;,-.{t: ZI t.... ti .i; a!;' ,-,....-.., _.� :-... -. - :. ;-,,-, - ...,..-... .::. . . , r- -, : ;' '-: ,--1- ..." ';':..:'7.% '..' ' '... • ' -";'`.' .-,-; ....r. - -• - ' • - ......' ;. .,,..":....,.:.::--.. :. ::-;.....: ., : :e , : .: ...:-.. '7 ',7 .:, - . , IV 51 Dead Live 125 125 Total 129 129 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams is 1/2" for exterior supports Lumber-soft; Hem-Fir, No.2, 2x6" Self-weight of 1.7 plf included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb . 256 Pb' = 1048 fb/Fb' = 0.24 Dead Defl'n 0.00 . <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.11 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - 1.00 1.00 1.00 2 Fb 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 1.00 1.00 - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 129, V design . 106 lbs Bending(+): LC #2 = L, M =. 162 lbs-ft Deflection: LC #2 = L El = 27e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 4 ...._ Gsi WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 22, 2010 13:57:56 Concept Mode: Reactions Base of Structure View Floor 2: 8' !;°. 1050 - .. 49' " u •-.. -; -1600 L. -- = - -;. -: • - 600 L. 40 -b ui 619D ; : • 61913 40-0 • i VU : - : . . - - - - - • -- - -- - . • - 44' y9 .: . : ; . : 4.5-b' V0 ::;•:- .. : 4L'-0 y J . . 4'I -n y5 : 1193 L153 12404 17: .:2404 L ; ;_. :: _ 44.1.-0'. - y4 625 D1059 11 439 D 1394 D .50.-0' dy : : ' .': • : 315 L: . . 33-n• nb 358 D 3G - b - ... 3u'-b' .. . - _- G0 253 • _ _ - 100E 74(847 5611 L : 452 D5546D . . . • _ .: . . ' 625 L, 203 D .. I0.-0 . • ny .• .. 908E _ . - 1,1 -0 •10517 307/3 :‹W .. - - (G u J 46 D : (i -b 245 17 y u�b b4} 3 13 -- i 50 L u n `�:74 b i 59 87 L; . - 587 L- - . - = _ b -b' ,Ir P.) . -- . __ 209 LD.B D' • • 1963 D . -= - 1963 D -:_ _ - . -.:.. - - ' -- - .. '. -- -- =- - - - .: - - s - - - b 15413 .. - cb . --- L _ 112363 D. I -0 . - -t :78 DM D 106 0 : u .8B16.BBC C C CC C ICCC CC CCCCC C CC CCICCCDDDD D. DD I•IDDD:DD DDDD D D QD C.DtiDD DEE E E EEEEFEEEIEE E BEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22'24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46'48' 50' 52' 54' 56' 58'60' 62' 64'66'68' 70' 72' 74' 76' 0 :1:1 :1 (1:11112(2 2:22 4A :4 "4( 445( 5 - 5 :5:5 E: 6:6 -6" Voom' C-1 1... p OUT' _ -F x?...0 NIT_ w 4 ....... F. ( WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 22, 2010 13:57:37 Concept Mode: Reactions at Base of Structure View Floor 2: 8' 0 - 1050: =.� ■ r - ' - 40 b.. • 1us : 1600 L ; 1600 L 4/ -n 0 1 UL , 619 0 • : 6190; ; 40 -o iU'1 4b-b• • i UU _ 44 a • a9 y LS 4 �� 42 -a 41 -0 V0 13274 L - i j 3304 L i : • :.. 4 s - • a o 4 ..7153 D _.._ • ; - - - • 7072 D - : : • - - : - - - - an-o • Jr -a `JI . . : :.. __. . • 65-0 • b ue 315L . : J - J • : zsn :s 358 D JL -a • OD : • 2V n4 --- : - -- -_ : - -. _. _ - 20-b 0 J - _ 315E L/ -n bL 35801 --. - - Lb -n bl 100E �` L•�. a ra u 96 D - L4 -b Li -0 io- - 74(84 611 L _ . r56 L : : _ _ - . . . -- �u�b r 5 `4!(452 D;'5546 D r5 L� D 1 y -b 14 625 : . lb -a. ra L , : 5D" 1r o /L ----: • _ 203 D _ L la. b • / . 1 .. 5 D .. 10 -b 0 : 105 ... 908 L ._ : . . -. 13 nu L307 • or 46 D' _ IL b 11 -b r o ' - 245 L y -o ` t . 0 2 y .. 74 D - - - . - . �. , 599 2587 L . ; 587 L -. - v -e .'a . :_209LD 19630_.: • 19630 _: :__ - -. _ : • . : - J • 1540 ^/0U _ .•' • c -b __ _ . 725L : - i a - -1 • 78D7DD 6170'0 • B B BC..CCCCCCC(CCC CC CCCC C C CC CC.ICC CD.DDD D DDRHCDD DD DD DD D D DD CD \DD DEE E E E EE- EFEEEIEE E+EEEEEE( 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22'24' 26' 28' 30' 32' 34' 36' 38' 40'42' 44' 46'48' 50' 52' 54' 56' 58' 60' 62'64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 1:1 :1 ?111'1(12122.'22 21213133:3:3 , 3'3(3".32 314 14 :4 ?414T4i4!5t55: :5 ?5(5'51516166;6 :6 ?6t6Ei6!7(7 7.77 • • OoTu'i\ 1 Uu T k. H arper Houf Peterson Righellis Inc. C' "rent Date: 6/24/2010 1:41 PM 1 system: English File name: O:MIHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \F1.ftd\ Design Results Reinforced Concrete Footings GENERAL INFORMATION: Global status Warnings Design Code ACI 318 -05 Footing type Spread Column type Steel Geometry 12 in 1 4 4.25 ft t'S'W ;1* ,. 4.25 ft ft WI L, 4.25 ft Pagel Length 4.25 [ft] • Width 4.25 [ft] Thickness 1.00 [ft] Base depth 1.50 [ft] Base area 18.06 [ft2] Footing volume 18.06 [ft3] • Base plate length 5.50 [in] Base plate width 5.50 [in] Column length 5.50 [in] Column width 5.50 [in] • Column location relative to footing g.c. Centered Materials Concrete, fc 3.00 [Kip /in2] Steel, fy 60.00 [Kip /in2] Concrete type Normal Epoxy coated No Concrete elasticity modulus : 3122.02 [Kip /in2] Steel elasticity modulus : 29000.00 [Kip /in2] Unit weight 0.15 [Kip /ft3] Soil Modulus of subgrade reaction 200.00 [Kip /ft3] Unit weight (wet) 0.11 [Kip /ft3] Footing reinforcement Free cover : 3.00 [in] Maximum Rho /Rho balanced ratio : 0.75 Bottom reinforcement // to L (xx) . 6-#4 @ 9.00" Bottom reinforcement // to B (zz) . 6-#4 @ 9.00" (Zone 1) Load conditions to be included in design Service Toads: SC1 DL S1 DL S2 DL +LL S3 DL +0.75LL Design strength loads: DC1 1.4DL D1 1.4DL D2 1.2DL +1.6LL Loads Condition Axial Mxx Mzz Vx Vz [Kip] [Kip*ft] [Kip•ft] [Kip] [Kip] DL 5.55 0.00 0.00 0.00 0.00 LL 15.61 0.00 0.00 0.00 0.00 • RESULTS: Status Warnings • - Insufficient development length, Section 21.5.4.1 Soil.Foundation interaction Allowable stress 1.5E03 [Lb /ft2] Min. safety factor for sliding : 1.25 Min. safety factor for overturning • 1.25 Pa fi 4 Controlling condition S2 Condition qmean qmax Amax Area in compression Overturning FS [Lb /ft2] [Lb /ft2] [in] [ft2] ( %) FSx FSz slip S2 1.38E03 1.38E03 0.0826 18.06 100 1000.00 1000.00 1000.00 • Bending Factor 0.90 Min rebar ratio 0.00180 Development length Axis Pos. Id Ihd Dist1 Dist2 [in] [in] [in] [in] zz Bot. 20.11 7.04 19.75 19.75 xx Bot. 20.11 7.04 19.75 19.75 Axis Pos. Condition Mu 4 *Mn Asreq Asprov Asreq/Asprov Mu/(4)*Mn) [Kip * ft] [Kip "ft] [in2] [in2] zz Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 1 1 zz Bot. D2 13.38 45.76 1.10 1.20 0.918 0.292 I'- 'm I xx Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 I 1 xx Bot. D2 13.38 43.06 1.10 1.20 0.918 0.311 I =1 1 Shear Factor 0.75 Shear area (plane zz) 3.10 [ft2] Shear area (plane )ox) 2.92 [ft2] Plane Condition Vu Vc Vu/($*Vn) [Kip] [Kip] xy D2 8.99 46.09 0.260 t nii I yz D2 8.68 48.88 0.237 I 'A I Punching shear Perimeter of critical section (b... : 4.67 [ft] Punching shear area 3.31 [ft2] Column Condition Vu Vc Vu /(4)'Vn) [Kip] [Kip] column 1 D2 29.25 104.29 0.374 1 I Notes Page c .� J * Soil under the footing is considered elastic and homogeneous. A linear soil pressure variation is assumed. *The required flexural reinforcement considers at least the minimum reinforcement — I design bending moment is calculated at the critical sections located at the support faces * Only rectangular footings with uniform sections and rectangular columns are considered. * The nominal shear strength is calculated in critical sections located at a distance d from the support face * The punching shear strength is calculated in a perimetral section located at a distance d/2 from the support faces * Transverse reinforcement is not considered in footings * Values shown in red are not in compliance with a provision of the code *qprom = Mean compression pressure on soil. *gmax = Maximum compression pressure on soil. *Amax = maximum total settlement (considering an elastic soil modeled by the subgrade reaction modulus). * Mn = Nominal moment strength. * Mu /(4 *Mn) = Strength ratio. * Vn = Nominal shear or punchure force (for footings Vn =Vc). * Vu /(4)*Vn) = Shear or punching shear strength ratio. • • Page4 r^ Beam Shear bcol 5.5'in (4x4 post) d := tf – 2.in 4 := 0.85 b := Width b = 36•in V :_ 4)-- f psi•b•d V = 16.32 -kips 3(I) l V := q 2 col I V„ = 7.83.kips < V = 16.32-kips GOOD Two -Way Shear b := 5.5.in Short side column width bL:= 5.5-in Long side column width b := 2.(bg + d) + 2•(bL + d) b = 54.in R := 1.0 _ 4 + 8 f psi•b•d V = 48.96-kips C3 3•13 V := 40.2.66• f V = 32.56•kips .= qt [b N V - (b + (1) V = 15.88 -kips < Vantax = 32.56•kips GOOD Flexure 2 Mu 9u' [(b –2 J b co11 1 2) b M = 4.98.11-kips 0.65 2 b•d S = 0.222 -ft F := 5 -4:4- f F = 162.5 -psi M f := — f = 155.47 -psi< F = 162.5-psi GOOD lJse a 3' -0" x 3' -0" x 10" plain concrete footing Plain Concrete Isolated Square Footing Design: F2 fe-:= 2500 -psi Concrete strength f 60000-psi Reinforcing steel strength E := 29000-ksi Steel modulus of elasticity "Yconc 150 -pcf Concrete density 'Ysoi1 == . 100'0cf Soil density g :_ . 1500.psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 2659-lb Pd1:= Totaldl Tota111. = 7756 -lb P11 := Totalll Ptl Pdl + Pll Pti = 10415-lb Footing Dimensions tp := 1O in Footing thickness Width := 36•in Footing width A := Width Footing Area gnet gall — tf Yconc net = 1375•psf P Areqd gnet A = 7.575• t < A = 94ft GOOD Widthreqd Aregd Widthreqd = 2.75•ft < Width = 3.00ft GOOD Ultimate Loads X := Pd1 + tf'A'"Yconc P := 1.4-Pd] + 1.7•P11 P = 18.48-kips P qu:= A q = 2.05•ksf Plain Concrete Isolated Square Footing Design: F3 fu := 2500-psi Concrete strength f : = 60000 Reinforcing steel strength E : = 29000•ksi Steel modulus of elasticity "Yconc 150•pcf Concrete density Ysoil °.100'pcf Soil density gall := 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 2363-lb Pd1:= Totaldl Totalij := 4575-lb Pll := Totalll Ptl Pdl + Pll P = 6938-lb Footing Dimensions t := 10-in Footing thickness Width := 30• -in Footing width 4,:= Width . Footing Area net gall — tf' qnet = 1375•psf Ptl Areqd gnet A = 5.04641 < A = 6.2511 GOOD Widthreqd A Widthreqd = 2.25 .fl < Width = 2.50ft GOOD Ultimate Loads S44.:= Pdl + tf'A•'Yconc P„ := 1.4•Pdl + 1.7• Pll P = 12.18•kips P qu:= A q 1.95•ksf Beam Shear bcol := 5.5.in (4x4 post) d := tf — 2•in := 0.85 b := Width b = 30•in Af :_ 0 4 • f V = 13.6•kips 3 Vu qu (b 2 coil b V = 4.97-kips < V = 13.6•kips GOOD Two -Way Shear bg := 5.5•in Short side column width bL := 5.5-in Long side column width b := 2•(bg + d) + 2-(bL + d) b = 54.in (3 := 1.0 ^ V .= ( 4 + s f b d V = 40.8•kips 3 3.0 V := 2.66 f psi b d V = 27.13 -kips ,y444:= qu•[b — (bcoi + (1) V = 9.71 -kips < Vuinax = 27.13-kips GOOD Flexure 2 Mu qu (b - b col) (11 b M = 2.54-ft-kips I 2 2J A:= 0.65 1:= 13-d 2 S = 0.185•ft 6 F := 5 cp f psi F = 162.5 -psi M u ft := s f = 95.19-psi < F = 162.5 -psi GOOD .Jse a 2' -6" x 2' -6" x 10" plain concrete footing I d \ C ° Plain Concrete Isolated Square Footing Design: F4 f := 2500•psi Concrete strength f := 60000.psi Reinforcing steel strength Es 29000•ksi Steel modulus of elasticity 'Yconc:= 150•pcf Concrete density /soil :=. 100•pcf Soil density gall `= 1500 =psf Allowable soil bearing pressure COLUMN FOOTING Reaction Total di : =. 5001•1b • Pd1 := Totaldl Tota111:= 7639.113 P11 := Total!' P := Pdl + Pll P = 12640-lb Footing Dimensions t := 12-in Footing thickness • Width := 42-in Footing width A := Width Footing Area gnet gall — tf• /cons qnet = 1350.psf Pt' Areqd gnet Areqd = g 9.36341 < A = 12.25.ft GOOD Widthregd A req d Widthregd = 3.06•ft < Width = 3.50 ft GOOD Ultimate Loads •= Pd1 + tf•A' /conc P := 1.4•Pd1,+ 1.7•P11 P = 22.56.kips P q := — A q = 1.84•ksf "R Beam Shear bcoi := 5.5 -in (4x4 post) d := tf — 2. in := 0.85 b := Width b = 42-in V„ := 4).- f psi b d V„ = 23.8•kips 3 V qu (b toll b V„ = 9.8:kips < V = 23.8-kips GOOD 2 Two -Way Shear / bs, := 5.5•in Short side column width bL = 5.5•in Long side column width b,:= 2 -(bs + d) + 2•(bL + d) b = 62•in ( := 1.0 4 + 8 f psi•b•d V = 71.4•kips 3 3 Oc Vnmax :_ 4.2.66• f -d • Vnmax = 47.48 -kips ,y44A= qu•[b — (b, d) V„ = 19.49-kips < Vnmax = 47.48-kips GOOD Flexure 2 b — bcol1 r 1 l M qu 2 J •I 2J b M = 7.4541-kips A t:= 0.65 \ • 2 , := b-d 6 S = 0.405•ft 3 • F := 5 f psi F = 162.5•psi M a ft := s f = 127.79•psi< F = 162.5.psi GOOD 'Use a 3' -6" x 3' -6" x 12" plain concrete footing :7-\.2- Plain Concrete Isolated Round Footing Design: f5 f 3000•psi Concrete strength • f 60000 psi Reinforcing steel strength Es t= 29000•ksi Steel modulus of elasticity "Yconc 150•pcf Concrete density (soil 120 pcf Soil density q : 1500 psf • Allowable soil bearing pressure TYPICAL FOOTING Reaction Total& := 619•Ib Pd1:= Totaldl Totally : =• 1600•Ib P11 := Totalll Pt1 := Pdl + Pp P11 = 2219.1b Footing Dimensions tf := 12.in Footing thickness 'Dia := 18 in Footing diameter rr•Dia Footing Area 4 9net gall — tf• qnet = 1350•psf • P Areqd (het A = 1.64441 < A = 1.77 ft GOOD Diareqd := I Aregd 4 Diareqd = 1.45•ft < Dia = 1.50 ft GOOD J lr Ultimate Loads ,:= PdI + tf•A'•Yconc • P := 1.4 PdI + 1.7-Pp • P = 3.96•kips P 9u A q = 2.24•ksf ' Ie3 Beam Shear b , 3.5.in (4x4 post) d := tf — 2•in := 0.85 b := cos(45•deg)•Dia b = 12.73•in V,,:= 4).- f psi b d V„ = 7.901-kips 3 Vu:= cite( b 2 ccl V = 0.91-kips < V = 7.901•kips GOOD Two -Way Shear bs := 3.5.in Short side column width bL := 3.5-in Long side column width b := 2.(bg + d) + 2.(bL + d) b = 54-in 13 := 1.0 Vim:= 4 + 8 f psi b d V = 23.703-kips 3 3 13c V„,,, := x•2.66• f V = 15.76-kips V q [b — (bc01 + d) V = —0.31-kips < V = 15.76•kips GOOD Flexure 2 Mu ci I b — bcoll 11 b M = 0.18•ft•kips 2 ) 2) A,:= 0.65 2 1•— b d S = 0.123•ft 6 F := 5.4)• f F 178.01•psi M f := S u f = 9.9•psi < F = 178.01 -psi GOOD Use a 18" Dia. x 12" plain concrete footing Plain Concrete Isolated Square Footing Design: F fe := 2500-psi Concrete strength f := 60000-psi Reinforcing steel strength Es := 29000•ksi Steel modulus of elasticity '(cone 1501)cf Concrete density '(soil := 100 -pcf Soil density g = 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 7072-lb Pd1:= Totaldl Tota111:= 13304-lb P11 := TotaI11 P Pd1 + Pll P = 20376•Ib Footing Dimensions t := 15•in Footing thickness Width := 48-in Footing width A := Width Footing Area qnet gall – tf qnet = 1313•psf P Areqd gnet Areqd q 15.525-11 < A = 1641 GOOD Widthreqd A req d Widthreqd = 3.94•ft < Width = 4.00 ft GOOD Ultimate Loads := Pdl -+- tf•A•'1lconc P := 1.4 Pdl + 1.7•P11 P = 36.72 -kips P gu — q = 2.29•ksf \S" Beam Shear bcol := 5.5. in (4x4 post) d := tf – 2-in := 0.85 b := Width b = 48-in V := 4 • f psi•b•d V = 35.36 -kips 3 V qu (13 cotJ 1 b V = 16.26•kips < V = 35.36-kips GOOD 2 Two -Way Shear bs := 5.5-in Short side column width bL := 5.5-in Long side column width b 2•(bs + d) + 2•(bL + d) b = 74•in (3 := 1.0 _ 4 + — ). f psi b d V = 106.08-kips 3 3 - ac V := 2.66 f psi b d V IUU = 70.54-kips y q [b – kb + d) V = 31.26-kips < V ax = 70.54-kips GOOD Flexure 2 Mu = qu [(b — 2 l bcol) r 2 ) b M = 14.39-ft-kips A:= 0.65 2 := b d S = 0.782 -ft 6 F := 5. f F = 162.5•psi M u ft := s f = 127.75•psi< F = 162.5•psi GOOD 'Use a 4' -0" x 4' -0" x 15" plain concrete footing Plain Concrete Isolated Square Footing Design: F7 f := 2500 -psi Concrete strength f := 60000-psi Reinforcing steel strength ES 29000•ksi Steel modulus of elasticity 'Yconc 150:pcf Concrete density Ysoil 100-pcf Soil density q�ll := 1500-psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 1200•lb P := Totaldi Totalll := 3200-lb Pit := Totalll Pd := Pdl + Pll = 4400 -lb Footing Dimensions t := 10in Footing thickness Width 24 -in Footing width • A := Width Footing Area gnet := gall — tf'lconc net = 1375•psf Ptl Areqd gnet A = = 3.2 ft < A = 4•ft GOOD Widthregd A req d Wldthregd = 1.79 -ft < Width = 2.00 ft GOOD Ultimate Loads = Pd1 -i- t£•A "Iconc P := 1.4•Pdl + 1 . 7 - Pll P = 7.82 -kips P q :_ — q = 1.96•ksf A Beam Shear bcol 5.5.in (4x4 post) d:= tf -2•in := 0.85 b := Width b = 24-in V„ := 4 • f si•b•d V„ = 10.88-kips 3 VU qu r b 2 toll b V = 3.01 -kips < V = 10.88-kips GOOD Two -Way Shear bs := 5.5;in Short side column width bL := 5.5• in Long side column width b := 2•(bs + d) + 2•(bL+ d) b = p 1.0 = 4 + 8 f JJb.d V = 32.64-kips mom 3 3. pc := 2.66 f psi b d V = 21.71 -kips qu — (bc01 + d) V = 5.35-kips < V = 21.71-kips GOOD Flexure 2 [(b —' ( M q u •b M = 1.16 ft kips A:= 0.65 b•d 2 ,:= 6 S = 0.148. 1 F := 5•■13• f psi F 162.5-psi M u f := f = 54.45•psi < F = 162.5-psi GOOD .Jse a 2' -0" x 2' -0" x 10" plain concrete footing I BY Ak\c, DATE: ()-aolo JOB NO.: C ; , 'o c .l OF PROJECT: Cori ooii nc RE: y> f El El 1 . 1f.,4C�tfv %\11:10,_“- 35.11 v-c , eTy ►C", r n.� D.3L . 0 W ` , a .363 O I , ❑ , L ' J ` q cc u U Z W O x � a Z aa' 0 ,i, a z C ∎t. c\4- c)v e riumni5 2 o MOT = 35,1\ 41-11, } 'r1,, o = 58.5 1kC-'t o M2 ,.T Co. O N .3,S . ) (221I i) 4- a• 6ipZ(c1 a N.1,0,► 1 0 z = a (.,a 1i_cv- ❑ o \A2._ = Co.1 so)(1,51s,s en.7)Ci 1> h - - a;IL3 C1a.�s�t-a,3L3( ► ) I- a , aa3 K-F nom_ Miq = aea -sa.$) = a_a3Ft e_ t: C- l"} 325 + a 363(z) lrnax = Q 4_ 6 M _ a'4.,os I + �(aa,os ► �.k. -)")-) = o.4_as( _ L Tat_ C3.5)C27._. (3.S )(-L-2,•) 9. A _ 61\11 = 0 e 0.1.5,c 13L y, . 0 6 0 1 ±L. = -ia _-z- 5.5 :7_F,S, ° . OK- i,>, M ® S RI o . frq - q9 A ; Bentley- Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:43 AM Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes\calcs \Unit A \foundations \Front Load 2.etz\ M33 =51.9 [Kip'ft] M33= -12.19 Iwrft] X • MMments 1. c.. 1fi Benttey Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:35 AM Units system: English File name: O: HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\Front Load.etz\ OM a 'M33 =25.66 [Kip • M33= -30.27 [Kip'ft] • Y Mtmervi L(-'6 1 BY \\1\L DATE: V -am JOB NO.: c 0 OF P ROJECT: $ -c - COCA I Si 3Q. • RE: UN 1 T A — RtA 1,o(41J i:ibt, v.. � a�b�k- ❑ E v . 3 `tik 30.4 ■ v. J_ Z G J c L ❑ 1 , ti y J r"""� p J o w U z W O W aa' Z O U Cheri. 0ver+urrg„ng Z 7 Kyr . 30.41 fi 30.414 (a,11)23.Caa; -. 111...11D kF 2 O Mg, = (.0,1scAa-(i)Cii)(aa) 4- - 3,15(►) )- 1,153(ar) o = a aq.�L. t_Fb Li. • Z M 1i°Ib )1,5 :, o� F,S1 W Z I- a x = aaa,a� — 11(0 Ace) s.042F e= s.sLC-b 2,o •9.0c, c Iry .), = a0A0Lo, 4- Co (ao,C®O S /SO t.I a s V.sF Calaa') (2.2)0-12S 9-rni r\ = a0PiOL _ 4 ( I CA:Y.5_5.-0 i r ..--:a 4 (2,7)(,22' C� c2 ay_ - - 3 LCr3 -2G) 3(a�Caa- acc.s xa y a 4 - X 22 n a Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:38 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A\foundations\Rear Load.etz\ M33 =43.24 [Kip'ft] • • • M33= -45.06 [Kipit] Y X Mr\enks ) . \ `t Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:43 AM • Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\Rear Load 2.etz\ M33 =41.88 [Kip`ft] • M33= -46.37 [Kip`ft] A • MG - LC2. f4 - 4 • ;; d ia 54,1 - ■-s 0-1 C t 4 44 CC' ctai -Ao.: x hia Lci.c. ,;; 0 Cl/ben /0 —.SIX= 0) b• ri cisi- (co0b,) ill', '0 e _= V -- h11 ski ( "..9(.. vy jizxoociE)4' oj coo o s-v - TO 0 q31 0E =I p, cli 9 7 0 latc,. b \A ( 2) (t ) ( Cl'o/(9o0'01)2.:b9.."0 =7 0 ft 'To 1,1) tz 0 3 3 q' P/ Cl V ( b - P) "skiqtb . 0 = 'WO 3 c- 1•Ki -I-Wn • 4 NO = .1/41\W IN r 1j1 z • o o r o _ 1 : 1 lrtiot°,v = looww 9 3I E k 91.4 itZi Y• 1 X 0 r , D 0 ql) V007 103 rOdd 40 C71 N :0., 0 IOC - --\\V AG c> )Z3. ' - ,... . ; lilt nl* eS :: L' 0 —s 0)Qb'0 v4 -- -2-. v 0 ti, ,, ..)t.).0 _ (vr xars)ca '0/ ( rrY0017sQvg ) ;_. ,1 0 = SV • ' ) 1 0 g • 6 2 E .dtWW `i' •)•• 54 1 0 ": 1 - N h ''.ca •1 sca h 2 = ( — . I? (O ' 0 7 ' \N 0 P 0 . o ( N ) \}t o 0 ....-.. cz / L000 CMQ:57: \ ) 1 **Di 0, a $ $ kr\l 1 'AO: .• S S < .t.,.' t b.= 4..c.. ' 1 Tin k ;=-... a - 900#01)(_catair:)o1Q'O v(7:- (a : NO 1 a . ‘ 4 ;1W - N = %-/ ' 0 1;6 a - -- 1-it .---..--4 z;--k-i--A 9 -00.A,„: ( 7 /.€ 42 \ — S9C000 TO? CA = %/AN 0 0 • fi\ Cge \ 1.7„ eekiX,000 571/49 0 )7 ( O ‘ i I 0) = X) z rn Z - n 0 x .. o 'yo ,n v s 4 n q cfsv .1 \NO . 3 c Z I'l - h Cr Otl - c-- Ti k .k1( (7) -i - 1 - AS ° 11 - 1S — C—cl -4 MO - 3 m x , O • m 'k hAl ..43 c Ti - - — - 1117 1 61'1 -- g -- c- - C : 1* \ wn• - > m , 0 1- m 0 M 0 4(26 k = -I Z TI 1 tiql )( 1 x '" C i E t, I . F :103r08c1 JO ON 801 , 31Va :A9 BV: Ng.c.. DATE: D_01 0 JOB NO.: c OF PROJECT: Q _ ` ''l b x 1.25) RE: u 1f1; 1 1 1' ($ kJ ❑ ❑ J 0' U a� 1 L a►-4 o W l 1 U Z W 2 • a Z heck_ Overfvrnon Kor- = ac.03 1c.C o MR_ L = f C t 6 5 , � (a ' ) 4- 1 - 4 l ,a 1 f Mlk R _ ( b � C-t , s ) C 3 ) ( 4 4 S ,a al) +- I , L l a (2.) , 5 - ( 0 . 1.?_ ❑ Mg, 41,c11.0 = k.Li > 1,S 0\(-- Z Mor d� �03 0 6 M 4 6 f-a� , o3 , 1 , aq°,F� e X = !Q = S t-S,2 a-I,LL - a.-)-01 Ft 3 LCr3 -2e' — 3C - $ - Q a,-)-o0> Rff. 5hc../+ 1 —ID Use S to (e51s-F Ore (h,Yfiray A Me. L ( 3..21 4-(l,LL +3. (4 pt_ u'eSR.sl. 5 f `t 17L @ eo. end ) of 1uh i. a ' ' Mt — (s,2i- 3.ZXL) -(1,LL i - 3.2 i( Z � }4D L- s � o of 12 +- 4-D1.._ x x i : < MO_ \;) 4S,c + -A DC.. a 0 b L- 1, 3 :. 5-�ci. f in r S i e OIL x iF Soo\-\ny - LC los - M41_.= (s,2+3,2.1) 4- (1,+- 3,2Xs)+ 3n\_.. . 3a."3-'r 31)1__ M (&= (U,.tb *31)L 1,SM A \,5(C)&) 4. X2,1- +- 31)t..._ b1.:= Q.1151c; p5 °° ""+- 1°119 x a c' . x 15" lx. - a _ aso .x ^ M/Q 0,.vL, 1 - - , 1,�-�- FE a.as+- s.'z13.2i- 3.Z _ is -51 e_= t,2Z 6 1 - ipna , x - `IGs >> = a .qQ 1\)&) 3CAL.-2(1 4- oZ - b 0 f N 0 0 v -1 x 0 ❑ o z m z TI O o SC:/' L J I _ C a ,A s4.56 _ ,,s )L x °) Gul z �s� s� _ < �� 1 ' 1)z r �)C54 z.)z z g\ • t = ' 5 t - W0 9e _ C t � �� ±Gig' = o/v\ & D I 3 O m -I 0 m :103 road 30 Q 100 , • :' BOr owe-9 :31V0 'A9 ri a* Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:42 AM Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309) 10EN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \Interior 2.etz\ • M33 =23.55 [Kip•ft] • M33= -17.88 [Kip "ft] I X MOil\evyt Lcl • a'J ' Bentley- Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:42 AM Units system: English File name: O: HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\Interior.etz\ M33 =32.26 [Kip•ft] M33= -9.27 [Kip'ftj a Marren � - s LC ,� ACI 318- 05.Appendix D 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc = 3000 psi fc = 3000 psi h'ei = 3.50 inches her = :12:00 i inches (into the Fc Stem = 800, inches Note: hef above is the the embedment into or cmax = 5.25 inches the foundation and does not consider stem wE Fnd Width = 36.00 inches c m;n = 2.25 inches c m;n = 18.00 inches W 1.00 cast -in -place anchor W 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor = 0.75 strength reduction factor = 0.75 strength reduction fact Calculations Calculations AN = 68 in AN = 1296 in AN = 110.25 in` AN = 1296 in` Nb = 8,607 pounds Nb = 55,121 pounds Wed,N = 0.8286 WedN = 1.00 N = 4,399 pounds N = 55,121 pounds +N = 3,299 pounds 4N 41,341 pounds Combined Capacity of Stem Wall and Foundation (1)N = 44,640 0.750 = 33,480 • 074 C F. ' `=• c7' LAitA-Aw < ODD 62:0)0b•O=owb 13 (-412.-Eie 2 (1 C000 0 = o o C -" C t 4 LI) .)0 ti S) b ( Cl.11 0 3 "7 )0 "91 C3S (C.S/172.1 3 •• 6 (bOh' t)c000 0)0b 0 V VI l i C .41 bah • 0 := (7) (c)F.:X.900f)(3.'0/ (000 6GVO =1 0 174 \ baS ;- %IV 4 n o • m c % 7 /AV Ob' 0 """ uW0 z 0 m 0 n r Li • 0 ni 4 Ca tjk k W-W RI 0 KY) w • r 146 foarY(nok.G :103 road Ao olDorva) :0Nie, 010e —9 Biva Concrete Side Face Blow Out Givens Abrs = 2.15 in` fc = 3000 psi cmin = 18.00 inches = 0.75 strength reduction factor Calculations Nsb = 231,191 pounds 4Nsb = 173,393 pounds Concrete Pullout Strength Givens Abrs = 2.15 in` fc = 3000 psi (I) = 0.75 strength reduction factor Calculations N = 51,552 pounds SN = 38,664 pounds Steel Yield Strength Givens f = 58,000 psi A = 0.606 in = 0.80 strength reduction factor Calculations N = 35,148 pounds. RN = 28,118 pounds < 33,480 Ductility Met Holdown Check Holdown: HDU14 Holdown Capacity= 14,930 pounds 1.6* Capacity= 23,888 pounds 23,888 < 28,118 Holdown Checks N1 fit- asn •, . rn MOO1 {be9\° _ is 072\ ° 7c 9) o r1 m op‘ : (rn ns1)(11) a) W- �� ' eLlia)Qvi►- ix1osl)N10i7 &'id °lth _ cZi£ Zug ) 1 Th i - 'd 001 : (z)( s4 -14 11`om )bd l .S1 '; oo`1 - m Meta\ - A b(2)4.■ :1st Sfx101 ol.� Sm.,11 i ' ' aw1 •°S c grtn b OvtcTh N" \'E'_ .e. t°) 1 m ov 64 0 crQQs1 rncoo1 cr.hVe p, otv O dnd X.l) t i 1 o� 3004. J-18 amq _ i sc) f.I VI) moot = cm Os) )(Z'IQ) LArai s d = ( z1/ 'dosi)rro{, J1 z' =136 - Wee 3% is 1) nlb) - Il' -1 4C) ` o la tpu l -jo 1 Jka s j�aaa 2 Z o A . 3 1 '300°‘ M - mooss + I g h, I O M . eldooSt .3tId 00s1= dqS x'sOW, /'4 C'n0014 1 g - 111 = V 1 °0� ,0011 3-Nd pfic) = ( SC\ ptOcS1 1 \?1 Z J(2) a 11 Z � .M a - r^ 001 (N1 )( d 0S1 < z uaa15 6 �S� - 21 �� + �( � f410t7 r .Joo1s a nd gQ c s cr.' \ csva va 13 g ❑ m T W rn- id 00S _(3s621)1is' m �-�{'� u z r ❑ ❑ ;"-ut}Doj IIY} " .3a :t0aroad an " ON ear 31tl4 "AS