Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Specifications (4)
Z u Structural Calculations for Full Lateral & Gravity Analysis of Plan A 1460 Lot 50, Summer Creek Townhomes Tigard, OR RECER/C Prepared for Pulte Group AUG 17 2010 CITY OF T IGARD July 13, 2010 BUILDIN(;. DIVISION JOB NUMBER: CEN -090 ** *Limitations * ** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and /or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 117 sheets total including this cover sheet. LOT- ofxamt* (( (- ) ca -On Uv ( I PRO / ‘09..F.,) c 46 �v� o w e 9 City of Tigard ��- �—� °. A • • •ved Plans � I z5 - .i' Date� -� fP OREGON , Lat V J E i'‘ ( • ' T - 2 C ' CU cz * ( EXPIRESc 12 -31 -2011 l This Packet of Calculations is Null and Void if Signature above is not Original Harper Houf Peterson Righellis Inc. ' L NOJCM1NI .NCW,C'3 VLY 0., 205 SE Spokane St. Suite 200 • Portland, OR 97202 ♦ [P] 503.221.1131 ♦ [F] 503.221.1171 1 104 Main St. Suite 100 ♦ Vancouver, WA 98660 ♦ [P] 360.450.1 141 ♦ [F] 360.750.1 141 1 133 NW WaII St. Suite 201 ♦ Bend, OR 97701 ♦ [P] 541.318.1 161 ♦ [F] 541.318.1141 OFFICE COPY Structural Calculations for Full Lateral & Gravity Analysis of Plan A 1460 Summer Creek Townhomes Tigard, OR Prepared for Pulte Group July 13, 2010 JOB NUMBER: CEN -090 ** *Limitations * ** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and /or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 117 sheets total including this cover sheet. This Packet of Calculations is Null and Void if Signature above is not Original • Harper Houf .Peterson Righcllis Inc. ENLiIA LANNER6 LANOy CAPLA RCI TE C16. 64RVI;v, Fts 205 SE Spokane St. Suite 200 o Portland, OR 97202 0 [P] 503.221.1131 0 [F] 503.221.1171 1104 Main St. Suite 100 ♦ Vancouver, WA 98660 e [P] 360.450.1 141 e [F] 360.750.1 141 1133 NW Wall St. Suite 201 e Bend, OR 97701 0 [P] 541.318.1161 e [F] 541.318.1 141 Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit A Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, lW: 1 2006 IBC / 2007 OSSC Occupancy Category: 11 Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed, ASCE 7 -05 Ch. 20 Importance, IE: 1 ASCE 7 -05 Table 11.5-1 Ss: 0.942 USGS Spectral Response Map S1: 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength, f'c: 3000 psi Foundations & Slab on Grade Concrete Unit Weight, yc: 145 pcf Steel Reinforcement Yield Strength, f 60,000 psi Wood Studs (Wall Studs): Hem -Fir #2 2x & 4x Wood Beams & Posts: DF -L #2 6x & Greater Wood Beams & Posts: DF -L# 1 Glulam Beams: 24F -V4 PSL Beams: Fb =2,900 psi, FV= 328psi, E =2.0 Million TS /LSL Beams: Fb =2325 psi, FV= 460psi, E =1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : 1500 psf Assumed 2. All manufactured trusses, joists, and flush beams u.n.o. shall be designed by others. Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 WoodWorks — Sizer version 2002 Bently RAM Advanse Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP Houf Peterson. Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCNITECLS•SLIRVEYORS DESIGN CRITERIA 2007 Oregon Structural Specialty Code & ASCE 7 -05 Roof Dead Load RFR:= 2.5.psf Framing RPL := 1.5•psf Plywood • RRF:= 5•psf Roofing RME := 1.5•psf Mech & Elec RMS := 1.psf Misc RCG := 2.5•psf Ceiling RIN := 1.psf Insulation RDL = 15.psf Floor Dead Load FFR := 3•psf Framing FPL := 4•psf Sheathing FME := 1.5•psf Mech & Elec FMS := 1.5•psf Misc FIN := .5•psf Finish & Insulation FCLG := 2.5.psf Ceiling FDL = 13•psf Wall Dead Load WOOD EX Wall := 12•psf INT_Wall, := 10.psf Roof Live Load RLL := 25•psf Floor Live Load FLL := 40•psf - L1 Harper Project: SUMMERCREEK TOWNHOMES UNIT A 1' Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARC NITECTS• SURVEYORS Transverse Seismic Forces Site Class = D Design Catagory =D Building Occupancy II Weight of Structure In Transverse Direction Roof Weight Roof Area := 843- ft 2 .1.12 RFgrr := RDL•Roof Area RFW-i- = 14162•Ib Floor Weight Floor Area2nd := 647•ft FLRWT2nd := FDL•Floor Area2nd FLRWr2nd = 8411.1b Floor_Area3 652.ft 2 FLRWT3rd FDL.Floor_Area3rd FLRWT3rd = 8476•Ib Wall Weight EX Will Area := (2203)41 INT Wall_Area:= (906).ft WALLVVI- := EX_Wall + INT Wall WALLS = 35496-lb WTTOTAL = 66545 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h := 32 Mean Height Of Roof l := 1 Component Importance Factor (11.5, ASCE 7 -05) A:= 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C := .02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x := .75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period T := Ct• (hnlx T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) St := 0.339 / Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F := 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F, := 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP h Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCNITEC r5•5jRVEYORS S MS Fa SMS = 1.058 (EQU 11.4 -1, ASCE 7 -05) 2- SMS S := 3 Sd = 0.705 (EQU 11.4 -3, ASCE 7 -05) SM1 := Fv S1 SM1 = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2 •SMI Sd1 := 3 Shc = 0.389 (EQU 11.44, ASCE 7 -05) Cst := Sds Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) R ...need not exceed... Cs — Shc Ie Cs 0.223 (EQU 12.8 -3, ASCE 7 -05) max : •— .I. R max = a ...and shall not be less then... C1 := if(0.044• Sd I < 0.01, 0.01,0.044•Sd ( 0.5•S1•1 (EQU 12.8 -5 &6, ASCE 7 -05) C2:= if l S 1 <0.6,0.01, l R J Csmin := if (CI > C2 , CI , C2) Csmin = 0.031 Cs := if (Cst < Cs < Cs Cs = 0.108 V := Cs•WTTOTAL V = 72201b (EQU 12.8 -1, ASCE 7 -05) E := V•0.7 E = 5054 1b (Allowable Stress) / e-- C3 • Harper Project: SUMMERCREEK TOWNHOMES UNIT A I3P Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCMITEC TS•SURVEYORS Transverse Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 100 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I := 1.00 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X := 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... a2 := 2•.1.20•ft Zone A & B Horizontal Length — 4 ft (Fig 6 -2 note 10, ASCE 7 -05) a2 or • / 9a,:= .4•hn.2•ft a2 =25.6ft but not less than... a2 := 3 2 ft a2 = 6 ft Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA 19.9•psf PnetZoneB 3.1psf Pnetzonec 14.4•psf PnetzoneD 3.3•psf Vertical PnetzoneE 8.8•psf PnetzoneF 12•psf PnetzoneG 6.4•psf PnetzoneH 9.7•psf Basic Wind Force PA := PnetzoneA'Iw.X PA = 19.9•psf Wall HWC PB := PnetzoneB Ivy' X Pg = 3.2•psf Roof HWC PC := PnetzoneC'Iw'X Pc = 14.4.psf Wall Typical PD := PnetzoneD'IW X PD = 3.3•psf Roof Typical PE := PnetzoneE'IW X PE = — 8.8•psf PF := PnetzoneF'Iw•X PF = — 12•psf PC, := PnetzoneG'Iw'X PC, = — 6.4.psf PH := PnetzoneH'Iw'X PH = — 9.7•psf Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCNITECTS•SURVE■ ORS Determine Wind Sail In Transverse Direction WSAILZoneA (41 + 59 + 29)•ft WSAILZoneB (19 + 0 + 23) 41 WSAILZoneC (39.1 + 307 + 272)41 WS�ZoneD (0 + 0 + 5)41 WA := WSAILZoneA•PA WA = 2567 Ib WB WSAILZoneB•PB WB = 1341b WC := WSAILZoneC•PC WC = 13968 lb WD := WSAI- ZoneD'PD WD = 16 Ib Wind_Force := WA + WB + WC + WD Wind_Force := 10•psf•(WSAILZ + WSAILZoneB + WSAILz + WSA Wind_Force = 16686 Ib Wind_Force = 11460 Ib WSAI-1-ZoneE 94•ft2 WSAILZoneF 108•ft WSAILZoneG 320•ft2 WSAILZoneH 320. WE := WSAILZoneE•PE WE = —8271b • WF := WSAILZoneF.PF WF = — 12961b WG := WSAILZoneG•PG WG = — 20481b WH WSAILZoneH•PH WH = — 31041b Upliftnet WF + WH + (WE + WG) + RDL•[WSAILZoneF + WSAILZonen + (WSAILZoneE + WSAILZoneG) }.6.1.12 Upliftnet = 1212 Ib (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION UC— Harper Project: SUMMERCREEK TOWNHOMES UNIT A P Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCNITECTS•SURVEYORS Longitudinal Seismic Forces Site Class = D Design Catagory = D Building Ocoupancy.Category: I1 Weight of Structure In Longitudinal Direction Roof Weight Roof Area = 944 ft AL4(;r RDL•Roof Area RFw-1- = 14162-lb Floor Weight Floor_Area2 = 647 ft XbaR zv = FDL• Floor Area2nd FLRW - r2nd = 8411-lb Floor_Area3 = 652 ft I 1 ,d,;= FDL•Floor Area3rd FLRwT3rd = 8476-lb Wall Weight kX..WA1LArea.:= (2203) INT Wall Area = 906 ft , = EX_Wal1 + INT_Wall WALLwi- = 35496.1b WTTOTAL = 66545 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h = 32 Mean Height Of Roof Ie = 1 Component Importance Factor ' (11.5, ASCE 7 -05) ,&,:= 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C = 0.02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x = 0.75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period A ,:= C T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 = 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S = 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F = 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F„ = 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) 4-12.0 Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP D . Horaf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCRI TECT, •SURVE YORD N F SMS = 1.058 (EQU 11.4 -1, ASCE 7 -05) 2 •SMS Sd = 0.705 (EQU 11.4 -3, ASCE 7 -05) 3 5= F S1 SM1 = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2 •SM1 . = 3 Sd1 = 0.389 (EQU 11.4 -4, ASCE 7 -05) Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) ...need not exceed... ( Sdlie Cs = 0.223 (EQU 12.8 -3, ASCE 7 -05) n7vvXn' T •R a ...and shall not be less then... := if(0.044•Sd < 0.01, 0.01,0.044• 0.5.S11e1 (EQU 12.8 -5 &6, ASCE 7-05) ,:= if(S1 <0.6,0.01, J R 9 ,:= if(Ci > C2,C1,C2) Cs = 0.031 Cs := := if(Cst < Cs Cs if (Cst < Csmax , Cst, Csmax)) Cs = 0.108 ,X,:= Cs•WTTOTAL V = 72201b (EQU 12.8 -1, ASCE 7 -05) E V•0.7 E = 5054 lb (Allowable Stress) — Le)r. 0 Harper Project: SUMMERCREEK TOWNHOMES UNIT A Houf Peterson 1' Righellis Inc. Client: PULTE GROUP Job # CEN -090 ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE AR CN TECTS• SURVEYORS Longitudinal Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 110 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I = 1.0 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X = 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... = 2•.1.20.ft Zone A & B Horizontal Length = 4 ft (Fig 6 -2 note 10, ASCE 7 -05) or but not less than... ,= .4-11,-2-ft a2 = 25.6 ft Spam,' 3 .2 • ft a nin = Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA = 19.9•psf PnetzoneB = 3.2•psf PnetzoneC = 14.4.psf PnetzoneD = 3.3•psf Vertical PnetzoneE = —8.8•psf PnetzoneF = — 12•psf PnetzoneG = —6.4.psf PnetzoneH = — 9.7•psf Basic Wind Force P PnetzoneA'Iw• PA = 19.9•psf Wall HWC ,:= PnetZOneB'IW.X PB = 3.2•psf Roof HWC ,= PnetzoneC'IvvX PC = 14.4•psf Wall Typical := PnetzoneD' I N ,• X PD = 3.3• psf Roof Typical Pte:= PnetzoneE'IN,•X PE = — 8.8 -psf &,„,:= PnetzoneF'Iw'X PF = — 12.psf ,:= PnetzoneG'IWX Pc, = — 6.4•psf ,:= PnetzoneH'IW -X PH = — 9.7•psf Harper Project: SUMMERCREEK TOWNHOMES UNIT A P Houf Peterson Cl PULTE GROUP Job # CEN -090 Righellis Inc. - � u ENGINEERS. PLANNERS - Designer: AMC Date: Pg. # LANDSCAPE A RCNIrECTS• SURVEVORO Determine Wind Sail In Longitudinal Direction MN:= (48 +:59 + 40).ft ,5 (10 + 0 + 44)•ft2 W, : (91 + 137 + 67)41 , := (43 + 0 + 113)41 • = WSAILZoneA•PA WA = 2925 Ib • = WSJ- ZoneB•PB WB = 173 lb • = WSJ ZoneC'PC WC = 42481b WSAIL,ZoneD'PD WD = 515 Ib WinN := WA + WB + WC + WD Wi d o c = 10. psf•(WSAILZoneA + WSAILZoneB + WSAILZonec + WSAILZoneD) Wind Force = 7861 Ib Wind_Force = 65201b �- 148.ft2 �:= 120•ft WSA 323•ft M , := 252 -ft Wes:= WSAILZoneE•PE WE = – 13021b W,� = WSAILZoneF'PF WF = – 14401b Wes= WSAILZoneG'PG WG = –2067 Ib „);\,„ WSAII- ZoneH'PH WH = – 24441b U li := WF + WH + (WE + WG) + RDL•[WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneG) }. 6.1 . 12 Uplift = 1243 Ib (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION /9 — L. Harper Houf Peterson Righellis Pg #: • Transverse Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = • 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf A. = 1.00 Iw= 1.00 • Wind Sail Wind Net Design Wind Pressure (psf) (ft2) Pressure (Ibs) Zone A = 19.9 129 2567 Wall High Wind Zone Horizontal Zone B = 3.2 42 134 Roof High Wind Zone Wind Forces Zone C = 14.4 970 13968 Wall Typ Zone Zone D = 3.3 5 17 • Roof Typ Zone Zone E = -8.8 94 -827 Roof Windward High Wind Zone Vertical Zone F = -12.0 108 -1296 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 320 -2048 Roof Windward Typ Wind Zone Zone H = -9.7 320 -3104 Roof Leeward Typ Wind Zone Total Wind Force =l 16686 Ibs I Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -7275 lbs Resisting Dead Load= 8472 lbs El 1197 Lbs...No Net Uplift 1 Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Dia hragm (ft Zone A Zone B Zone C Zone D Main Floor 41 19 391 0 Upper Floor 59 0 307 0 Main Floor Diaphragm Shear = 6507 lbs Upper Floor Diaphragm Shear = 5595 lbs Roof Diaphragm Shear = 4584 lbs . • Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary . Line Shear Wall Line Diaphragm Diaphrag Diaphragm Width (ft) (Ibs) Width (ft) (lbs) Width (ft) (Ibs) I A 13.08 1737 18 2797 19 2323 Al 24.50 3254 0 0 0 0 B 11.42 1516 18 2797 18.5 2261 E= 49 6507 36 5595 37.5 4584 Harper Houf Peterson Righellis Pg #: Transverse Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D S1= 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 • Period (T,,) = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 SMg 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 SDS= 0.71 Equ. 11.4 -3, ASCE 7 -05 SDI= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = ' 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 ' Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (Ib)= 8411 Floor 3 Wt (Ib)= 8476 Roof Wt (Ib) = 14162 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22609 Trib. Floor 3 Diaphragm Wt (Ib) = 22674 Trib. Roof Diaphragm Wt (Ib) = 21261 Vertical Dist of Seismic Forces Cumulative % total of base shear Rho Check to Shearwalls (lbs) I to shearwalls Req'd? V oor 2 (lb) = 720 100.0% Yes UFloor3 1625 85.8% Yes Vroof (Ib) = 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft Ibs lbs lbs A 102 361 394 114 897 1266 Al 432 0 0 481 0 0 B 113 .293 449 126 728 1443 Sum 647 654 • 843 720 1625 2709 • Total Base Shear* = I 5054 LB *Base shear assumes rho equal to I.O. See shearwall analysis spreadsheet for confirmation of rho. / — L \ .------ Harper Houf Peterson Righellis Pg #: Longitudinal Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) • Design Criteria: Basic Wind Speed = 100 mph • Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf A.= 1.00 Iw= 1.00 Wind Sail Wind Net Design Wind Pressure (psf) (ft ) Pressure (Ibs) Zone A = 19.9 147 . 2925 Wall High Wind Zone Horizontal Zone B = 3.2 54 173 Roof High Wind Zone Wind Forces Zone C = 14.4 295 4248 Wall Typ Zone Zone D = 3.3 156 515 Roof Typ Zone Zone E = -8.8 148 -1302 Roof Windward High Wind Zone Vertical Zone F = -12.0 120 -1440 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 323 -2067 Roof Windward Typ Wind Zone Zone H = -9.7 252 -2444 Roof Leeward Typ Wind Zone Total Wind Force =l 7861 Ibs I Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -7254 Ibs Resisting Dead Load= 8483 Ibs E =I 1229 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm (ft Zone A Zone B Zone C Zone D Main Floor 48 10 91 43 Upper Floor 59 0 _ 137 0 Main Floor Diaphragm Shear = 2440 Ibs . Upper Floor Diaphragm Shear = 3147 Ibs • Roof Diaphragm Shear = 2275 Ibs Wind Distribution To Shearwall Lines . MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm (Ibs) Diaphragm (Ibs) Diaphragm (Ibs) Width (ft)_ Width Jft) Width (ftL 1 10 1220 10 1573 10 1137 2 10 1220 10 1573 10 1137 E= 20 2440 20 3147 ' 20 2275 . A -1,,C1... • Harper Houf Peterson Righellis Pg #: • Longitudinal Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D S1= 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 . Ct = 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 . Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 SMg 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 Sos= 0.71 Equ. 11.4 -3, ASCE 7 -05 SDI= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (Ib)= 8411 Floor 3 Wt (lb)= 8476 Roof Wt (Ib) = 14162 • Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22609 Trib. Floor 3 Diaphragm Wt (Ib) = 22674 - Trib. Roof Diaphragm Wt (Ib) = 21261 Vertical Dist of Seismic Forces I Cumulative % total of base shear I Rho Check to Shearwalls (Ibs) to shearwalls Req'd? • Vnoor2 (Ib) = 720 100.0% Yes Vfloor 3 (Ib) = 1625 85.8% Yes Vroof (Ib) = 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft Ibs Ibs Ibs 1 286 291 415 318 725 1334 2 361 361 428 402 900 . 1375 Sum 647 652 •843 720 1625 2709 Total Base Shear' = I 5054 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. 4 L\'3 Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 'Transvere Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Fir. From 3rd Flr. From Roof Load • Sides Factor Type T (ft) (ft) (ft) ht 1 k ht I "k ht I k (klf) (plf) (ft-k) (ft -k) (k) • 101 Not Used 102 7 1.75 3.50 4.00. w: ` 8.00 1.74 18.00 2.80 27.00 2.32 1959 Double 1.40 NG 103 7 1.75 3.50 4.00 `,!. r 8.00 1.74 8.00 2.80 8.00 2.32 1959 Double 1.40 NG • 103a 7 4.00 4.00 1.75 OK 8.00 3.25 814 Single 1.40 IV 104 8 4.50 10.50 1.78 OK 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 I1I 105 8 3.00. 10.50 2.67 ox 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 106 8 3.00 10.50 2.67 ox 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 109 8 4.58 17.08 1.75 OK 8.00 1.74 18.00 2.80 27.00. 2.32 401 Single 1.40 11 • 110 8 12.50 17.08 0.64 OK 8.00 ' 1.74 8.00 2.80 8.00 2.32 401 Single 1.40 II 111 8 4.50 7.25 1.78 .0x 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 112 4.75 1.38 7.25 3.45 ox 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI . 113 4.75 1.38 7.25 3.45 OK 8.00 • 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI . 201 9 3.92 10.79 2.30 OK . 9.00 2.80 18.00 2.32 474 Single 1.40 II 201a 9 4.17 10.79 2.16 OK 9.00 2.80 18.00 2.32 474 Single 1.40 I1 201b 9 2.71 10.79 3'.32 OK 9.00 2.80 18.00. 2.32 474 Single 1.40 II . 202A 9 2.96 11.96 3.04 OK 9.00 2.80 18.00 2.26 423 Single 1.40 II 202B 9 3.00 11.96 3.00 OK 9.00 2.80 18.00 2.26 423 Single 1.40 II 203 9 3.00 11.96 3.00 OK 9.00 2.80 18.00 2.26 423 Single 1.40 II 204 9 3.00 11.96 3.00 ox 9.00 2.80 18.00 2.26 423 Single 1.40 II 301 8 3.92 - 13.96 2.04 OK 8.00 2.32 166 Single 1.40 I 302 8 5.79 13.96 1.38 OK 8.00 2.32 166 Single 1.40 I 303 8 4.25 13.96 1.88 OK 8.00 2.32 166 Single 1.40 I 304 8 2.96 5.96 2.70 OK 8.00 2.26 379 Single 1.40 II 305 8 3.00 5.96 2.67 OK 8.00 2.26 379 Single 1.40 II Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height • Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check • V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht . Mr (Resisting Moment) = Dead Load * L • 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) / - L, kk4 Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 fransvere Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho•V % Story # Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht I k ht I k ht I k (klf) (pif) (plf) (fl-k) (ft -k) (k) 101 Not Used 102 7 1.75 3.50 4.00 t 8.00 0.11 18.00 0.90 27.00 1.27 651 846 0.10 0.50 Double 0.50 NG 103 7 ' 1.75 330 4.00 . W 8.00 0.11 8.00 0.90 8.00 1.27 651 846 0.10 0.50 Double 0.50 NG 103a 7 4.00 4.00 1.75 OK 8.00 0.48 0.00 0.00 120 156 0.22 1.14 Single 1.00 1 • 104 8 4.50 10.50 1.78 OK 8.00 0.13 8.00 0.73 8.00 1.44 219 284 0.25 1.13 Single 1.00 II 105 8 3.00 10.50 2.67 OK 8.00 0.13 8.00 0.73 8.00 1.44 219 284 0.17 0.75 Single 0.75 III 106 8 3.00 10.50 2.67 OK 8.00 ' 0.13 8.00 0.73 8.00. 1.44 219 284 0.17 0.75 Single 0.75 111 109 8 4.58 17.08 1.75 OK 8.00 0.11 18.00 0.90 27.00 ' 1.27 134 174 0.25 1.15 Single 1.00 I 110 8 12.50 17.08 0.64 OK 8.00 0.11 8.00 0.90 8.00 1.27 134 174 NA 3.13 Single 1.00 1 111 8 4.50 7.25 1.78 OK 8.00 0.13 8.00 0.73 8.00 1.44 316 - 411 0.25 1.13 Single 1.00 III 112 5 1.38 7.25 3.45 OK 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.08 0.58 Double 0.58 VII 113 5 1.38 7.25 3.45 OK 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.08 0.58 Double, 0.58 VII _ 201 9 3.92 10.79 2.30 OK 9.00 0.90 18.00 1.27 200 261 0.17 0.87 Single 0.87 II . 201a 9 4.17 10.79 2.16 OK 9.00 0.90 18.00 1.27 200 261 " 0.18 0.93 Single' 0.93 II 201b 9 2.71 10.79 3.32 OK 9.00 0.90 18.00 1.27 200 261 0.12 0.60 Single 0.60 III 202A 9 2.96 11.96 3.04 OK 9.00 0.73 18.00 1.44 182 236 0.13 0.66 Single 0.66 III' 202B 9 3.00 11.96 3.00 OK 9.00 0.73 18.00 1.44 182 236 0.13 0.67 Single 0.67 III 203 9 3.00 11.96 3.00 OK 9.00 0.73 18.00 1.44 181 236 0.13 0.67 Single 0.67 III 204 ' 9 3.00 11.96 3.00 bK 9.00 0.73 18.00 1.44 181 236 0.13 0.67 Single 0.67 III • 301 8 3.92 13.96 2.04 cos 8.00 1.27 91 118 0.20 0.98 Single 0.98 1 302 8 5.79 13.96 1.38 OK 8.00 1.27 91 118 0.29 1.45 Single 1.00 . I 303 8 4.25 13.96 1.88 OK 8.00 1.27 91 118 0.21 1.06 Single 1.00 1 304 8 2.96 5.96 2.70 OK . 8.00 1.44 242 315 0.15 0.74 Single 0.74 III 305 8 3.00 5.96 2.67 OK 8.00 1.44 242 315 0.15 0.75 Single 0.75 III Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total transverse base shear? Yes Total 1st Floor Wall Length = 15.00 Total # 1st Floor Bays = •.n Are 2 bays minimum present along each wall line? No 1st Floor Rho = 1.3 Total 2nd Floor Wall Length = 22.75 Total # 2nd Floor Bays = 5 Are 2 bays minimum present along each wall line? No 2nd Floor Rho = u • Total 3rd Floor Wall Length = 19.92 Total # 3rd Floor Bays = s Are 2 bays minimum present along each wall line? No 3rd Floor Rho = 1.3 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Pane( Shear) = Sum of Line Load•Rho / Total L % Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2 "L/H Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht • Mr (Resisting Moment) = Dead Load • L • 0.5' (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) /4- ---- \ ...., \ ic" Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klf) (pif) (ft -k) (ft-k) (k) 107 8 15.50 15.50 0.52 OK 10.00 1.22 18.00 1.57 27.00 1.14 1.03 254 Single 1.40 1 71.21 123.49 -0.19 108 8 15.50 15.50 0.52 OK 1 0.00 1.22 18.00 1.57 27.00 1.14 1.03 254 Single 1.40 I 71.21 123.49 -0.19 I 2206 05 9 9 13.00 13.00 13.00 13.00 0.69 0.69 oK oK 9.00 I 1 9.00 1.57 118.00 1.14 1 0.70 208 Single 1.40 I 34.62 59.15 -0.07 1.57 18.00 1.14 0.70 208 Single 1.40 I 34.62 59.15 -0.07 I 306 307 8 8 10.00 10.00 10.00 10.00 1 0.80 0.80 oK oK I 8.00 1.14 0.29I 114 Single 1.40 I 9.10 14.40 0.05 I 8.00 1.14 0.29 114 Single 1.40 1 9.10 14.40 0.05 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear • Shear Application ht Mr (Resisting Moment) = Dead Load • L • 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • / --- ...x\c) Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Sbearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho' V % Story # Panel Shear Panel M Ma Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht k ht ` k ht k (klf) (plf) (plf) (ft-k) (ft -k) (k) 107 8 15.50 15.50 0.521 OK 10.00 0.32 18.00 0.73 27.00 1.33 1.09 153 153 NA 3.88 Single 1.00 1 52.25 130.70 -1.74 108 8 15.50 15.50 0.52 OK 10.00 0.40 18.00 0.90 27.00 1.38 1.09 173 173 NA 3.88 Single 1.00 1 57.35 130.70 -1.40 I 205 206 1 9 1 13.00 13.00 1 0.69 OK 1 9 00 1 0.90 1 18.00 1 38 0.76 175 1 175 1 NA 2.89 Single 1.00 1 32.85 1 64.22 1 -0.45 I 306 1 8 1 10.001 10.0010.801 OK 1 8 1.33 035 133 1 133 1 NA 1 2.50 Single 1.00 1 10.671 17.40 0.02 I 307 8 10.00 10.00 0.80 OK 8.00 1.38 0.35 138 138 NA 2.50 Single 1.00 1 11.00 17.40 0.06 Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes - Does the 3rd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes • Total 1st Floor Wall Length = 31.00 Total # 1st Floor Bays = 7.75 Are 2 bays minimum present along each wall line? Yes • 1st Floor Rho = 1.0 Total 2nd Floor Wall Length = 26.00 Total # 2nd Floor Bays = 6 Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho = 1.0 Total 3rd Floor Wall Length = 20.00 Total # 3rd Floor Bays = s Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho = 1.0 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load•Rho / Total L Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2•L/H Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear' Shear Application ht Mr (Resisting Moment) = Dead Load' L 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) /9 ..---. \ 6,.....\\7).-- Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Transvere Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good For V (pH) (PI) (lb) (lb) 101 Not Used 102 Simpson Strongwall 103 Simpson Strongwall 103a 814 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 833 104 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 105 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 106 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 109 401 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 110 401 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 111 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 112 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 990 113 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 990 201 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 201a 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 201b 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 202A 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 202B 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 203 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 204 423 _1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 301 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 302 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 303 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 , 304 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 305 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 _ 495 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Longitudinal Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good For V (Pit) (PIO (Ib) (ib) stammursumommar 107 254 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -192 Simpson None 0 108 254 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -192 Simpson None 0 205 208 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -69 Simpson None 0 206 208 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -69 Simpson None 0 306 133 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 48 Simpson None 0 307 138 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 59 Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. /4 L \.9 Transverse Wind Uplift Design . • Unit A Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ Floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 102 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.192 0.832 27.43 0.57 1.69 21.31 20.79 21.31 20.79 103 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.832 0.192 27.43 1.69 0.57 20.79 21.31 20.79 21.31 103A 8 1.1667 4.00 4.00 3.254 3.254 814 0.04 2.016 1.664 26.03 8.38 6.98 6.00 6.24 6.00 6.24 104 8 1.1667 4.50 10.50 1.516 2.8 2.26 6.576 626 0.1 0.8 0.078 25.08 4.61 1.36 5.58 6.06 5.58 6.06 105 8 1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 0.048 0.252 0.156 16.72 0.97 0.68 6.45 6.52 6.45 6.52 106 8 1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 - 0.048 0.156 0.252 16.72 0.68 0.97 6.52 6.45 6.52 6.45 109 8 1.1667 4.58 17.08 1.737 2.8 2.32 6.857 401 0.152 0.192 0.156 16.31 2.47 2.31 3.63 3.66 201L 201R 4.82 5.09 8.45 8.75 110 8 1.1667 12.50 17.08 1.737 2.8 2.32 6.857 401 0.096 0.156 0.192 44.52 9.45 9.90 3.24 3.21 201 aL 201 bR 4.95 4.88 8.18 8.09 111 8 1.1667 4.50 7.50 1.516 2.8 2.26 6.576 877 0.144 0.8 0.078 35.11 5.06 1.81 8.02 8.51 8.02 8.51 112 8 1.1667 1.50 7.50 1.516 2.8 2.26 6.576 877 0.048 0.252 0.234 11.70 0.43 0.41 11.44 11.46 11.44 11.46 113 8 1.1667 1.50 7.50 1.516 2.8 2.26 6.576 877 0.048 0.234 0.252 11.70 0.41 0.43 11.46 11.44 11.46 11.44 201 9 1.1667 3.92 10.8 2.8 2.32 5.12 474 0.225 0.432 0.156 17.71 3.42 2.34 3.99 4.16 301L 301R 0.83 0.93 4.82 5.09 201a 9 1.1667 4.17 10.8 2.8 2.32 5.12 474 0.225 0.156 0.156 18.84 2.61 2.61 4.14 4.14 302L 302R 0.80 0.80 4.95 4.95 201b 9 1.1667 2.71 10.8 2.8 2.32 5.12 • 474 0.225 0.156 0.432 12.24 1.25 2.00 4.24 4.08 303L 303R 0.91 0.80 5.15 4.88 202A 9 1.1667 2.96 11.958333 2.8 2.26 5.06 423 0.173 0.432 0.052 11.92 2.04 0.91 3.62 3.84 304L 304R 2.60 2.75 6.21 6.59 202B 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.173 0.052 0.216 12.09 0.93 1.43 3.84 3.74 305L 305R 2.74 2.16 6.58 5.91 203 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.309 0.216 0.312 12.09 2.04 2.33 3.62 3.56 3.62 3.56 204_ 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.225 0.312 0.432 12.09 1.95 2.31 3.64 3.57 3.64 3.57 301 8 3.92 13.96 2.32 2.32 166 0.232 0.384 0.204 5.21 3.29 2.58 0.83 0.93 0.83 0.93 302 8 5.79 13.96 2.32 2.32 166 • 0.232 0.204 0.204 7.70 5.07 5.07 0.80 0.80 0.80 0.80 303 8 4.25 13.96 2.32 2.32 166 0.232 0.204 0.384 5.65 2.96 3.73 0.91 0.80 0.91 0.80 304 8 2.96 5.96 2.26 2.26 379 0.232 0.384 0.136 8.98 2.15 1.42 2.60 2.75 2.60 2.75 305_ 8 3 5.96 2.26 2.26 379 0.232 0.136 1.104 9.10 1.45 4.36 2.74 2.16 2.74 2.16 Spreadsheet Column Definitions & Formulas L= Shear Panel Length A 11 = Shear Panel Height • Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) • • Transverse Seismic Uplift Design Unit A • Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Fir. Fir. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @. floors @ Left ® t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 102 8 1.1667 1.75 3.50 0.114 0.9 1.27 2.284 653 0.152 0.192 0.832 10.40 0.57 1.69 7.91 7.11 0 0 7.91 7.11 103 8 1.1667 1.75 3.50 0.114 0.9 1.27 2.284 653 0.152 0.832 0.192 10.40 1.69 0.57 7.11 7.91 0 0 7.11 7.91 103A 8 1.1667 4.00 4.00 0.481 0.481 120 . 0.04 2.016 1.664 3.85 8.38 6.98 -1.06 -0.69 0 0 -1.06 -0.69 104 8 1.1667 4.50 10.50 0.126 0.73 1.44 2.296 219 0.1 0.8 0.078 8.96 4.61 1.36 1.20 1.93 0 0 1.20 1.93 105 8 1.1667 3.00 10.50 0.126 0.73 1.44 2.296 219 _ 0.048 0.252 0.156 5.97 0.97 0.68 2.04 2.14 0 0 2.04 2.14 106 8 1.1667 3.00 10.50 0.126 0.73 1.44 2.296 219 0.048 0.156 0.252 5.97 0.68 0.97 2.14 2.04 0 0 . 2.14 2.04 109 8 1.1667 4.58 17.08 0.114 0.9 1.27 2.284 134 0.152 0.192 0.156 5.58 2.47 2.31 0.82 0.86 201L 201R 1.13 1.54 1.95 2.40 110 8 1.1667 12.50 17.08 0.114 0.9 1.27 2.284 134 0.096 0.156 0.192 15.23 9.45 9.90 0.56 0.53 201aL 201bR 1.32 1.32 1.88 1.85 111 8 1.1667 4.50 7.50 0.126 0.73 1.44 2.296 306 0.144 0.8 0.078 12.54 5.06 1.81 2.00 2.73 0 0 2.00 2.73 112 8 1.1667 1.50 7.50 0.126 0.73 1.44 2.296 306 0.048 0.252 0.234 4.18 0.43 0.41 3.79 3.82 0 0 3.79 3.82 113 8 1.1667 1.50 7.50 0.126 0.73 1.44 2.296 306 0.048 0.234 0.252 4.18 0.41 0.43 3.82 3.79 0 0 3.82 3.79 201 9 1.1667 3.92 10.80 0.9 1.27 2.17 201 0.225 0.432 0.156 7.63 3.42 2.34 1.16 1.41 301L 301R -0.03 0.13 1.13 1.54 201a 9 1.1667 4.17 10.80 0.9 1.27 2.17 201 0.225 0.156 0.156 8.11 2.61 2.61 • 1.38 1.38 302L 302R -0.06 -0.06 1.32 1.32 201b 9 1.1667 2.71 10.80 0.9 . 1.27 2.17 201 0.225 0.156 0.432 5.27 1.25 2.00 1.53 1.28 303L 303R 0.10 -0.06 1.63 1.22 202A 9 1.1667 2.96 11.96 0.73 1.44 2.17 181 0.173 0.432 0.052 5.25 2.04 0.91 1.15 1.50 304L 304R 1.28 1.50 2.43 3.00 202B 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.173 0.052 0.216 5.32 0.93 1.43 1.49 1.35 305L 305R • 1.50 0.63 2.99 1.97 203 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.309 0.216 0.312 • 5.32 2.04 2.33 1.16 1.08 0 0 1.16 1.08 204 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.225 0.312 0.432 5.32 1.95 2.31 1.19 1.08 0 0 1.19 1.08 301 8 0 3.92 13.96 1.27 1.27 91 0.232 0.384 0.204 2.85 3.29 2.58 -0.03 0.13 0 0 . -0.03 0.13 302 8 0 5.79 13.96 1.27 1.27 91 0.232 0.204 0.204 4.21 5.07 5.07 -0.06 -0.06 0 0 -0.06 -0.06 303 8 0 4.25 13.96 1.27 1.27 91 0.232 0.204 0.384 3.09 2.96 3.73 0.10 -0.06 0 . 0 0.10 - 0.06 304 8 0 2.96 5.96. 1.44 1.44 242 0.232 0.384 0.136 5.72 2.15 1.42 1.28 . 1.50 0 0 1.28 1.50 305 8 0 3.00 5.96 . 1.44 1.44 242 0.232 0.136 1.104 . 5.80 1.45 4.36 1.50 0.63 0 0 1.50 0.63 • Spreadsheet Column Definitions & Formulas ------ L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • TRANSVERSE UPLIFT CALCULATIONS - SUMMARY UNIT A Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right • k Simpson k k Simpson k . 102 Wind 21.31 Holdown None 0.00 Wind 20.79 None 0.00 103 Wind 20.79 Holdown None 0.00 Wind 21.31 None 0.00 103A Wind 6.00 Holdown HDQ8 w 3HF 6.65 Wind 6.24 HDQ8 w 3HF 6.65 104 Wind 5.58 Holdown HDQ8 w 3HF 6.65 Wind 6.06 HDQ8 w 3HF 6.65 105 Wind 6.45 Holdown HDQ8 w 3HF 6.65 Wind 6.52 HDQ8 w 3HF 6.65 i 106 Wind 6.52 Holdown HDQ8 w 3HF 6.65 Wind 6.45 HDQ8 w 3HF 6.65 109 Wind 8.45 Holdown HDQ8 w DF 9.23 Wind 8.75 HDQ8 w DF 9.23 110 Wind 8.18 Holdown HDQ8 w DF 9.23 Wind 8.09 HDQ8 w DF 9.23 111 Wind 8.02 Holdown HDQ8 w DF 9.23 Wind ' 8.51 HDQ8 w DF . 9.23 112 Wind 11.44 Holdown HDU14 14.93 Wind 11.46 HDU14 14.93 113 Wind 11.46 Holdown HDUI4 14.93 Wind 11.44 HDU14 14.93 201 Wind 4.82 Strap MST48x2 5.75 Wind 5.09 MST48x2 5.75 /// 201a Wind 4.95 Strap MST48x2 5.75 Wind 4.95 MST48x2 5.75 �C 201b Wind 5.15 Strap MST48x2 5.75 Wind 4.88 MST48x2 5.75 `�� 202A Wind 6.21 Strap MST60x2 8.11 Wind 6.59 MST60x2 8.11 202B Wind 6.58 Strap MST60x2 8.11 Wind 5.91 MST60x2 8.11 __) 203 Wind 3.62 Strap MST60 4.06 Wind 3.56 MST60 4.06 204 Wind 3.64 Strap MST60 4.06 Wind 3.57 MST60 4.06 1 301 Wind 0.83 Strap MST37 1.79 Wind 0.93 MST37 1.79 302 Wind 0.80 Strap MST37 1.79 Wind 0.80 MST37 1.79 303 Wind 0.91 Strap MST37 1.79 Wind 0.80 MST37 1.79 304 Wind 2.60 Strap MST48 2.88 Wind 2.75 MST48 2.88 305 Wind 2.74 Strap MST48 2.88 Wind 2.16 MST48 2.88 BY , (\ DATE: ao lo JOB NO C e.,] v -o 0 OF P ROJECT: RE: 3JU1/4) aVti X — Teo,r Loa& ❑ .. Ax;a\ Loads_ Uk\li Q w}oG U'-'�\\ s --y) \- \ 0 W gora w\�t uxk\\ :. c.N� -A,c 1 1oa_c1 c� f f ❑ Capon ► AV) o P SSwa \ . x`1- _ `\y OO vos yes( Lkx,k i 1 O J 0 z ki ,1 Lva� = 1 �-. 31- fi a'lcc+ - - a3 a.3 = Gs 5� t iz ns W = 3 4 as lu,►atl actuuI <apacgki -•0 U_ Z 0 m Cu9aC v SSW alxa = 3alo0 it-- o 0. C. A. cC.0eaCi :O o I , . cco U. Z W ❑ Z 0 O = 1- 0 U L S.r 8 o .°n:• a 141 L G - -- • � . .. • , .. ,,.. .. a„ T o . . . . . . ... 51/0 TN IS LE Tit ilk w J(Tht La W C G _ ,,, , 7 ! ,- if ' , ._...._.....„............,.............,..., ...„.,„.,............,,,.„,„._,.„..,.,.., ,..,., I � UP (15J>)RI E25 O N i s V `; L 1 IQ{ - 62,EkaD,S� W i 0 I r 3 t. 0 1 r Pr— 1 93- -. ,,, 4 , Z f ' . -gam '1 .+ q d 0 3 0 .r i,c • ... 2...2, 143 1 LA 0 LA 10to 1 Sw l--\C LENc -►Tk 0 AU.Py - C A TbN S LING' Z J • ✓ -4 T 1 CP 3> S J 7kc a. LENC -�Tt 00.NwH -�1Q.� PPwuch IR /5 LL'SC O 8 lo'} �; - - - - _ L _ _ —1 L CP 0 ) ❑ 1 ❑ Cr 0 lig ( 1 V r ...-1 0 4 .--- m Y v . ,.-. L' -�v'.. i- . F z.: ' �`ii:�'r �'II .,. r,,,, .a.... _ ,,,, ,,,-,... W — ...-.. ,1 I .1 0 I0 to S VJ TN-1S k ..'1Tl't /10. 4 w ttrYt.e' 1 ukt , -F-41s L frJ€ • c F y 41, 0 • 'a06 n+ Ators.)C—, THIC. Ljvt &tJts LE N Tti A LONC-1 t. NC c 3) G3 I> 1 SW 'nt ‘s L ...•c- ei°i4 Pw) Ili As Lu'JC 3o _ _ _ =pr ,_,,-. ,.- 11 -201 q r________ LI- 1- J o (--_,) i'..., r 9-/_, 1). tqw q —3( R., r ) „, c 5 ➢ 0 . C t1I�111' ,--H ,,, 0 t (N 0 SW 1\ \ 5 C t P Cl n' Pc LO n1(-1 - I'1 -1(S UM?: BY: ANKLi DATE: - aOl o JOB NO.: A ' G O OF PROJECT: RE: ` ( J g O n ( z g y ■ t o o f s (AV f - \- o' house ❑ ❑ • Z VLvne -8 = O.5 "H co wwIs) 6.5'34 E at gPhragm c,�i ckfr = aU Pt, i_ W O 2 ❑ Cu = lay pl•P 1‘ &.sue o o CO. �c. of LIn 10 to(-Iced d ic phvr ern . = Cito i,46 = as'a cA-f WOOL. disph gn1 U z ( h12. Iva; i;n3 eg paci = Ca55 ?LAI,0 3S - - oV-- E 2 O U f . ¢ O Li. Z w ❑ 0 Z . o r F- a O U N Y C N a y ayl :x,= :=2 x 4- Lb BY: 131. , DATE: JOB NO.: , , PROJECT: • Roof a - 8'le' RE: Des . 4 r∎rn }f\ @ Sto ❑ 0 OpT10 Z' IL P IPM 0 w / 1VINIVfA O 2 - Rr3 WIDTH.. °JO 4LP-T lb' 5 1 ►:.. F. \CO" X314, • o - 501 1 Q r = 9' ' - 91 ; T . giii T 54 0 • . a . NVAx St v�OVLNIA.f� -%= ✓ o W De 51c -,i\J k.) i \YO P(essuce m - ao,, a` 5 psF Z o f. F. R' - rib" De\ojf1 9\o,:tes o p o.r. X1.1''• kk.; •. ^J -k ii : TopTLA1ES B o Z uji -ktom tmrd t ood oi 191p 2 o 1' i ❑ R \ =wr gz.= ‘k4 q0 s Q - o n re • Z Z ( INVN -X _ $ Z _ .1 p ig _ 57+2,1 ft ❑ O - r O ' +;(3.5)(7.23) I , S y s V i - i 1 #t., — C .62-#111 , 4 1- A e (3,s .6aS §L o . - F\,' 4 :F - - ISO ?st (t.(0 = auO i sL 7 �2:�. ov�. x 0 .•:, . 4-- L29 • OcL 1 -. b/ ;78 (\C c 7 Si <Q't)X. °'IXztlxb v, .0 y,5) t1 90').X. '). ? s' 'e5 - �Q )_ t a i ,� t Sti ttN; .t. • r t. 1 0 4- C6 4 0 4 c )t i S 4( S4.: 1 03 ..S.-' kr + 51 4 (?t, 4 S\e', = 7 1 i 0 rs"0= �`s`b'c. p '; . - 8 (%�� = " j _ 0O C ,`fy d• 1 et a ,.S.t 041 Crre _ ka:sJS� — '() 1 -' 7 '7. 111 Z, t- A ,bNl 5C: :. tc-f _ t ) = 'I sti 1 I Z1 . . Z m tI o; S°1 x� o 0 . o n t ,S "1 _ C - jr Q 0 VV O 0)511' � 1 3 J.1 = , C cyl �1� ) 0 c3:c� {, UJ 00 z Sd qQ'Q`e_ = = sSSaJd pUi(Y1 \ SaU o m z n m O ‘t0 -R1 = a G ��.aa0 �PO-ES Jary )(NOW OW r Nb_iq,j ! -L-N1ca Uo Ytir -''ri) q'.al E r 3 0 m -I b oa d, QN'Z ? J''.') an jtin� a a Z Cv 01 1dQ :3a :103rodd 0 b 0 — N . . ..ON 90r 0_1 -- Z- \ - y7 31V0 \.AW VV • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:49:04 COMPANY 1 PROJECT RESULTS by GROUP - NDS 2005 SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF = = 14n f = Trusee 0 =i = = = = = .. _____ = = = = Not = designed by request (2) 2x8 Lumber n -ply D.Fir-L No.2 1- 2x8 • By Others Not designed by request . (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 Typ Wall Lumber Stud Hem -Fir Stud 2x6 916.0 • SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR .... = = === == ..== w � � =J = = = = ..II9 = =.. = == Not designed by request Mnf Jst Sloped Joist Lumber -soft D.Fir -L No.2 2x6 916.0 (2) 2x8 (1) Lumber n -ply D.Fir-L No.2 1- 2x8 (2) 2x8 Lumber n -ply D.Fir-L No.2 2- 2x8 By Others Not designed by request By Others 2 Not designed by request (2) 2x12 Lumber n -ply D.Fir-L No.2 2- 2x12 5.125x10.5 Glulam - Unbalan. West Species 24F -V4 DF 5.125x10.5 4 %6 Lumber -soft D.Fir-L No.2 - 4x6 (21 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 4x6 Lumber Post Hem -Fir No.2 4x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 (2) 204 Lumber n -ply Hem -Fir No.2 2- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 916.0 SUGGESTED SECTIONS by.GROUP for LEVEL 2 - FLOOR = = = .. _____ Mnf Trusses ��___� .. . Not designed by request � _ .. �`� _ Mnf Jst Not designed by request Deck Jst Lumber -soft D.Fir-L No.2 2x6 816.0 (2) 2x8 Lumber n -ply D.Fir -L No.2 2- 2x8 3.125x9 Glulam - Unbalan. West Species 24F -V4 of 3.125x9 4x8 Lumber -soft D.Fir -L No.2 408 By Others Not designed by request • By Others 2 Not designed by request (2) 2x10 Lumber n -ply D.Fir-L No.2 1- 2x10 ' 5.125X12 GL Glulam- Unbalan. West Species 24F -V4 DF 5.125x12 By Others 3 Not designed by request 3.125x14 LSL LSL 1.55E 2325Fb 3.5x14 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 4x4 Lumber Post Hem -Fir No.2 4x4 . 4x6 Lumber Post Hem -Fir No.2 4x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 6x6 Timber-soft Hem -Fir No.2 6x6 (2) 2x4 Lumber n -ply Hem -Fir No.2 2- 2x4 6x6 nol Timber -soft D.Fir -L No:1 6x6 (3) 2x4 Lumber n -ply Hem -Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 916.0 SUGGESTED SECTIONS by GROUP for LEVEL 1 - FLOOR .............= ..= =Q =...= = =a = =m == = = Not designed by request 0 = .. � ..i = == CRITICAL MEMBERS and DESIGN CRITERIA Group Member Criterion Analysis /Design Values ' • = Maf Jst � __= Mnf Jot Not designed by requeat�� = � _ = = = = = s = � = Deck Jst j65 Bending 0.41 Sloped Joist j30 Bending 0.10 Floor Jst4 unknown Unknown 0.00 (2) 2x8 (1) b35 Bending 0.47 (2) 2,0 b8 Bending 0.89 3.125x9 b3 Bending 0.06 408 b30 Bending 0.12 By Others By Others Not designed by request By Others 2 By Others Not designed by request (2) 2x12 b6 Bending 0.93 (2) 2x10 bl Shear 0.78 5.125 %12 GL b10 Bending 0.76 By Others 3 By Others Not designed by request 5.125x10.5 b9 Deflection 0.95 4 %6 b20 Bending 0.00 3.125x14 LSL 614 Deflection 0.73 (21 2x6 c2 Axial 0.91 4x4 c55 Axial 0.07 4x6 t23 Axial 0.80 (31 2x6 c29 Axial 0.75 606 c26 Axial 0.70 (2) 2x4 c39 Axial 0.62 6x6 nol c12 Axial 0.86 (3) 2x4 e31 Axial 0.89 Typ Wall w14 Axial 0.48 End Fnd Not designed by request • .n ...... _______ ___________ "- ° ° ° '____ ___ _' DESIGN NOTES: • = = = = = = = 1. Please verify that the default deflects deflection limits are appropriate for your application. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result is considered the final design and appears in the Materials List. 3. ROOF LIVE LOAD: treated as a snow load with corresponding duration factor. Add an empty roof level to bypass this interpretation. 4. BEARING: the designer is responsible for ensuring that adequate bearing is provided. 5. GLUI.AM: bxd = actual breadth x actual depth. 6. Glulam Beams shall be laterally supported according to the provisions of 905 Clause 3.3.3. 7. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 8. BUILT -UP BEAMS: it is a s umed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side- loaded, special fastening details may be required. 9. SCL -BEANS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 10. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of 005 Clause 15.3. / ( ; L''''-- C e." \ \ WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:41:17 Concept Mode : Beam View Floor 2 : 8 ' `' u�D b31 lv 105 .�. �'' .. 4rs : b . SUS . . : . : - - - - - • . - 4/ -b I UL _ . . 40' IVy :: - - -- - - -- - -- - - 43 -b y cs b1 4L' -O / yn • - .. : _ _ yb 4U b . :.. __.... _ - `J4 . - . . . . - . - - 315 - 3 f-b VU - -- - -- - ' .. - • 3 0 • :Sa b2 ' . 63 00 - - -- 44 44 - -- - -- ° -- -- -- --> i - - - - - -- - -- . - -- -- -- • JL n - - - '- 44_ - - _- _ _. b5 _. - - - - - . -- 31f-b . 04 -- -- - --- --- '�---- ---- -- -- -. - - - .. - - - -- L -0 t5L - "--�--... _... _:........-- 4444' -'-- - '--' - -� - - - -• :. � : :. � .. --- .. - Lb �b - L5 -b isu- b10 ; z4 -b / / j • : . . . : : [ : - . - LU 333 L u rb ; . 1y b /L .. . 4 -332- _. -- :_... 4444 -- -__ -- - - - -...- -- -- - • In n 10 -t3 (u ia-b 315 -- - b19� -- :: - - - Iu b b ' - : - • bb ( ■ - .- -- _ ..._ no n4 1 13: O ES b 0G3 b4 314 • - _ b _b nu' b30_- b3 _ -II: - - s -0 • a b2 b C b I -b BBIB.B BC CC C C CC C ICCC CC CCCC C C CC CC1CC CDDD D D DD DICDD CD DD DD D D DD CD(DD DE.E E E E•EE'EtEEEIEEBE BEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16 18' 20' 22'24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44'46'48' 50' 52' 54'56' 58' 60' 62' 64' 66' 68' 70' 72'74' 76' 0'1'2'3'4'5'6'7'8'91(1 1:1 :1 111(1 22:2 44:4414(4 41455 (5 5:5:5 5: 6:6616(6 51657(7'7.7:7.7 7(77' -6" 141— Cf-DN WoodWorks®Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:41:19 Concept Mode: Column View Floor 2: 8' V+() (^0 T LOND 1050 ❑c58 ❑c14..., �. 1 .. . 49 -6 IU4 40 -0 1U b 44' b WU 23 - C C : c70 C71 -- :. - 4Z -0 yU - . . '- isy JJ -0 JL 0 00 - . ; c4 - - - SU' -0 0I Lb -0 t") : .c25 c12 c26 :.. -.,; ._ L4 -b (a c 73 ..,. ly . a .. (4 ._. ... 10 - b . l G.._ . -- . _.... _... .. lb -0 . / 1 - c78 - _ .. - - .. . • .. 13 -0 (U 14' -b (U . -` - _ - -- - .. - . ::: . ' -"-- 13-0 b23 ' - c 77 -- - -- _ _.... - - - - -- .:. _- - -- -- - - _ .. IL -b b4) - -- ..c31 ;_.. : C76 - c79 -- 2345 0L. . ;"Cb1 r I�.0 �c3O ©c32 b'-b -- —,. - - - --- --- - 44"44 -- — - - - -- --- --- - - - 3-a C55 C L._b.. _ i b B6\B.6 BC CC C CCCC ICCC CC CCCCC C CC CC\CC CD DDD D DD DFDDD CD DD DD D D DD CD!D D DE .E EE E EEEFEEE:EEIE EEEEEEElEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'910 '1 :1 :1 E1 :1111212 22222E2 21213t33:3:3 4A :4 5:5:55: 515' 515 6(6 6:6:6 77 :7 4- C3 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 24, 2010 13:14:33 Concept Mode: Beam View Floor 2: 8' `(2.11X� f�� �`� 1050 .. b31 1� Fes- 49' -6:, 104 - - 40 -b IUS 4 /' IUG! .. - 40 -0 .. I U 1 __ : 40 -0 ..: _ -- - -- - -- - - : _ .- - ---- 44 - -0 .. yb .. ::- - - --- -- - - -- - - - 4U -0 yb , 3`J - b 3/ -b VG • .: 3b -b y l 50 -0 `1U .54 0V ' b2 . .. 55-4 25D ! Ly .� 254: :::.:..... .... . :.:. • • - - .. - - "- -- ._ . __ . -- - . L25 - -b 03 : : : : - L /._b 25 20.x 00 : b10 _..._ 24-0 1/ b33 L1 - 0 10 - �_ :: GU-b 10 . 1V b u. i !L- -- - °- b32 -._:. ' ro -b bts- - : -b1015 12 -0 bb li■M 10-0 n�5 r b4 b14 • e._b.. ou' b30 b331 i ill b B BBCCCCCCCCFCCCCCCCCCCCCCCCICCCDDDDDDDDICDDCDDDDDDDDDCD IDDDEEEE E:EEEFEEEIEEIEEEEEEEElEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 1:1 :1 111022; 2; 2 , 2!2E2 . 21M(33:33 , 3I3E373t3!414 4A;4 4151 55: 5: 5 5: 5( 5 5( 5! 6( 6fi: 6: 6 6(6S7f7'7,7:7 -6" 4- GL-1 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 24, 2010 13:14:35 Concept Mode: Column View Floor 2: 8' Q O� 1 ,h- , c58 c14 r W o�7 1050 .....0 p : 4a _ b., fU 4 /. IVUb - -- - - 44 b WS ' -c82 r • .. c81::. 4 44 -b 41 -b 4U -0 b.. 30 -b 3--- S -n -- - - -- _.._ - ---- JL - c3 -. .. . - - - - - .30 -0 34 b 019 33 -n SL b t3/ 31 - b 00 .. .. ... : C4 . :: : .. - ' : - -- - .. - -- - -- -- . - .. - - - - -- 03 ; : LU b . 04 . . , J y 23J L25 -n Lb -b 01 .. L5 - -. c25 c12 c26: L4 b (J ZS -0 (u - - -' H E3 ❑ 0 c72 ' L' -b rb C73 J n 25' b IS _ . - /-O /L -- ' C78 . -.i -.. r1 : ' - . , .. .. n-u 0 n (U .._ - --- - -- -- -- -- - - _.. _ _ - - - nJ - - =- -- - - --- - '. 4 -b 00 _.. -- gun. -c77 -- -- " -: .- .. - _ ... ._.- L b n5 ^^ J b 6L, C_30 : ©c32, n_n - ..) --- - - -- - - -- ' - -- - - 3-n c55 c5 6 _ �` 1 n.. u -n BB1B.B BCCCCCCCCICCC CCCCCCCCCCCC'CCCDDDDDDDDICDDCD DD'DDDDDDCDIDDDE.EEE EiEEEFEEEiEE:EEEEEEEEEEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 1:1 :1 t12( 2' 2: 2: 22.' 2E 2212f3( 33: 3: 3 3: 3 i3 "32W44"4A:4•4'.4(4'4i4'.5(5 5;5:5 6:6:6 777 4 ......_ (....,.-1c WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:44 Concept Mode: Beam View Floor 3: 17' 1050 49'-6 U4 40 -b 1U.5� - --- - - - -- -- - ---- ----- 4/ -b IUL _ - 40-0 1Ul 40-0 VV I ---- . - - - - - - - _ - - .. ... - . _ ... - -- 44 --0 y9 43'-b t3 - b35 : - -- ;- b6.. : :. - -_ ...- -- .; - - - - • --' 4L -b r1♦: 41 -0 yU .54 -0 t3y b7 3S -ID O Of 6 1 -b Ob SlI - b 135 - Ly_O 04 :... -. LIS -0 Z3Z Lb -b bU -- - - -. -- - b9. : - - - -- - - - -- : - - - --- - -- --- - L4 -b L / y S' -b ft, wow- .'-----[- -- -' - -"- - - - -- —. .. ...... LL r r b22 . L 1 -0 i -b21 ._ --- -- --- - -- - - - - -- - - .... - - - - - - -- - - - - - -. 'Ib-0 r I -b20 13 -b (U -- _ _ -- -- - 14-0 -- bt3_ _:.b11b17- - -- -.._ _ ... _ _ _: _ - - - . _- - - - - - - - --- - .. - - .1L. -b 00 I 1U-0 ba / -0 . oz? b8 bi O bu 6 - BB\B.B BCCCCC CCC}CCCCC CCCCCCCC CC1CCCDDDD DDDDICDD CD DD DD DDDD CD'DDDE.E E E E EE EtEEE EEEEEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16 18' 20' 22'24'26' 28' 30' 32'34' 36' 38'40'42' 44' 46'48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'..c1(1 1:1 ' : 1 .1:111'111 2122: 2; 22" 2(2212S3(33:3:3 4A:4•4.4(4'4i4',53 5:5:5 515515:6(66:6 :6 • 4 — (,.1 (e2 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:42 Concept Mode: Column View Floor 3: 17' '14� : 40 -0 .. I03 - _ - - ' - - - 4/ -b I UL WI' 4D-b NU - - -- - .. - - --- - 44 . -0 . y9 43'-0 y ts c62 c61 c15 c16 4G -0 4 - - 30 - 0 y3 _._., :. - _. 3 / -b VZ y 1. -- -- -' ® _ - 3D -0 yU i -- 34-0 ly t - 33 -b. 00 :___:__ _.__ _. _.- p -_. _ ____ ___ __ _ _ ___ __ __ _ ._.. __._ .__ _ - 3L -0 250 ". -;- -- c18- :::- - --: -- - -- .: - .31) -b LSD Ly -b 0 1 . . - - LD -0 uU - - c39 c24 = c23 L4 -0 (0 o. in (( Lb n b a • 11c60 et., -b /D P - I -0 . 13 ' - _ :: - 1 7 - _ - - .. l0 -0 / 1 ' c37 . - - - .. - -: '- -- '- --- - - - _ .. ID -0 fU. . - �. -- - -. __ -. _ :. .-- --- ------ ..._ --- - .. ..... ._. .. 14 -0 bb ( _ c35.:_ - - -.._:. - - - - - -- .. _ -.. .. .... (L-b bb --`- '- ---. .. -- -- -- - - ---- --- - -- --- --- IU -0 0D .� y-0 • b43- , • 6 7) _c66 - = - -= - -- - -c63 -- - - -- - - ... - ---- -- - --- =- - =-- - - - _ n -b 0 0 4 3 , ■ u n c756520 c1c6c74 UI -. 11 x• -- 0 - 0U 4 -0 ,...1 .. _ ... -- - - - - - - - -- ---- - - - -- - 3 43 -- - -. - - - - -- --- - - - -- - -- -.- -- - - . -- .... - -- I -b U -b BBI BBBCCCCCCCCI CCCCCCCCCCCCCCCICCCDDDDDDDDI ODDODDDDDDDDDCD! DDDEEEEEEEEEEE(EEEEEEEEEEIEEEEZ V 0' 2 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70:72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 '1 :1 :1 1;1(11 i i x(22.`2:2 2 :3 4:4 :44!4(4 - 414 5 :5:5.5!5(5 7:77 7E77-6" 4 --- ("7,1:"..jr WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:38 Concept Mode: Beam View Roof: 25' 1050 .. . _ . 49 -6" 104 48 b IUS 4/ -b' IUI �.. 40-0 10U :: - _ _ . _ ... - 44 - -0.. yO ,... : b23 b24 - . 42 - o VS- .5/ -0 Ob 33.-0 00- -- -__. = _._ - _.-- - - - -'- - --- --- -- .. -- - SL-0 250 C9'-0 04 - - • - ' - - - - - - - - _ -; -- - - - - - - - . -- - - - - - - - - - L b 285 41 -b " 01 20 -0 25U - -...- .. ..- - - - - - .- - - -- -- -- (y -- -- - L4 -b .. - - ZS -0 (Lf - -:.. -- - - - - - - - 42-0 . : . - 2 . im b25.. _ :. CU 0 ra m b milowiimmil (4 : ; i.., . - -- --. .. 0-0 / -0 /L -- - -- -`.- --•-- -•'-- --- - -- - -- - - _ 0 -0 .. _ • - `J - - - .. - 0 00.- - -- -'-- ---- y_ : - - - 5 -0 - - -- ` - -- -. - - - _ 4-0 0r . _ . _: . : .- : " - - -- I'-b 00 :' .: ..-= ------ - .:. .:......... ____ -.._.- -- - --- - -.. :. • - U -0 043 b27.- b28-- ": 25-n 0U ' . _ : : lit - - C. • . . : - -- - - . .. 4-00 J_ 3-0 . - L' -0 .. --- - _ -- - - --- - - 1 -b U 0 BBIB.B BCCCCCCCCICCCCCCCCCCCCCCC !CCCDDDDDDDDICDDDD DD DDDDDDCDIDDDE EEE E.EEEEEEEEEEEEEEEEfEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22'24' 26' 28' 30' 32' 34' 36' 38' 40'42' 44' 46'48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72'74' 76' 0'1'2'3'4'5'678'6111 1 :1:1 s2t2 22;2 212t3t33 3: 3 3' 3E3"3t3f4t4'4A:4.4!4!4'4t4t5t5 5 :5:5 8: 6: 6 66:Gt6:6E647t7'7:7.7 -6" 4 _ _ ( ) • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:40 Concept Mode: Column View Roof: 25' 1050 . S IU � � .. _ � � - .- -- 421 b I0 0 4/. IUib - --- --- - - --- - 40-0 100 - - - 44' 9 43 -b `.i21 • • c42 c43: ; ...c44::c45 -.. . 4L-0 yf s_ �_..,.---- __ .. ___.: -- — - - -- -- -- 4.1.x. 0 yG .. .. - - - - :. 30'-0 I- Sb b rsy : 33 -0' 00 , .; __. __ _ __ _ _ ._ _ _.. ___ _ .____._... .._ _ __. .5L -0 210. _. __-- - -- - - - - 01.2-b 05 . . - - - - Z -0 253 - - .. - L/ - 25L -- .. _ --- :-. .. - - -' '- -- -- -- -- --- - --- ::-- :- - .-- -- L0 -0 01 - L0 -0 r1V.... L4 /3 l_b 14 - -. _.. _ _ -- - - __. -: ... --- ._ :._ _:_ . . -- -.... -. - --- --. _. . -. .-- - 121-0 1L 10 I5 y .. ..- _ : _... :. -. - -. .. -. _ - -- -- - - - IL -b 0/ 11-0 00 - -- -= --- - .. -- '-- - _ . ._ .. - ---- --- — - 1U -0 0 3 c51 c50- c52 c53 - 25-0 03 I b BB\BB BC CCCC CC CtCCC CC CCCCCCCC CC1CC CDDDD D DD DMCDD CD DD DOD DDD CDIDD DE.E E E E.EEEtEEEIEEiE E+EEEEEEEEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 01 '2'3'4'5'6'7'8'S1 t 1 1 ;1:1 1: 11 1' 1(1 12! 22: 2: 2 2. '2E2 ?3i3 4:1:44'.4!4 5.5:5 "6:6'6-6:6(6'62 7.77 -6" 4 — G9 COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:42 b1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w61 Dead Partial UD 613.2 613.2 2.50 3.00 plf 2 Snow Partial UD 795.0 795.0 2.50 3.00 plf . 3 c61 Dead Point 622 2.50 lbs 4 c61 Snow Point 1192 2.50 lbs 5_j28 Dead Full UDL 47.7 plf 6_j28 Live Full UDL 160.0 plf 7_j33 Dead Full UDL 120.2 plf 8 133 Live Full UDL 370.0 plf MAXIMUM RE 10' . 31 Dead 391 1061 Live 795 1615 Total 1186 2676 Bearing: Load Comb #2 #3 Length _ 0.63 1.43 Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2 -Plys Self- weight of 6.59 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv* = 67 Fv' = 207 fv * /Fv' = 0.32 Bending( +) fb = 331 Fb' = 1138 fb /Fb' = 0.29 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.15 = L/240 _ 0.05 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 2676, V design* = 1237 lbs Bending( +): LC #3 = D +.75(L +S), M = 1178 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 158e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd =concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. AQ - Ll 0 COMPANY PROJECT ea WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:43 b3 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j45 Dead Full UDL 17.0 plf 2 j45 Live Full UDL 25.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 1 91 Dead 106 106 Live 112 112 Total 218 218 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Glulam- Unbal., West Species, 24F -V4 DF, 3- 1/8x9" Self- weight of 6.48 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 10 Fv' = 265 fv /Fv' = 0.04 Bending( +) fb = 140 Fb' = 2400 fb /Fb' = 0.06 Live Defl'n 0.01 = <L/999 0.30 = L/360 0.04 Total Defl'n 0.03 = <L/999 0.45 = L/240 0.06 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 218, V design = 182 lbs Bending( +): LC #2 = D +L, M = 491 lbs -ft Deflection: LC #2 = D+L EI= 342e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). / 14 G COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:40 b6 Design Check Calculation Sheet Sizer 7.1 LOADS ( psf, or p[f ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 c44 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 w44 Snow • Partial UD 431.2 431.2 0.00 2.00 plf 5_c45 Dead Point 444 5.00 lbs 6_c45 Snow Point 647 5.00 lbs 7_w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9_j25 Dead Full UDL 120.2 plf 10 j25 Live Full UDL 370.0 plf MAXIMUM REACTIONS fibs) and BEARING LENGTHS linl : I 0' 61 Dead 1436 1389 Live 1803 1803 Total 3239 3192 Bearing: Load Comb #3 • #3 Length 1.73 1.70 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys • Self- weight of 8.02 plf included in loads; Lateral support top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:50 b8 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j14 Dead Full UDL 113.7 plf 2 j14 Live Full UDL 350.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 10 6 4 Dead 357 357 Live 1050 1050 Total 1407 1407 Bearing: • Load Comb #2 #2 Length 0.75 _ 0.75 • Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 77 Fv' = 180 fv /Fv' = 0.43 Bending( +) fb = 963 Fb' = 1080 fb /Fb' = 0.89 Live Defl'n 0.07 = <L/999 0.20 = L/360 0.33 Total Defl'n 0.10 = L/712 0.30 = L/240 0.34 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 1407, V design = 1123 lbs Bending(+): LC #2 = D +L, M = 2110 lbs -ft Deflection: LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) • Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 4 - 3 COMPANY PROJECT di Wood SOFTWARE FOR WOOD DESIGN June 24, 2010 12:40 b9 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) • Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 j50 • Dead Partial UD 113.7 113.7 0.00 1.50 plf 2 j50 Live Partial UD 350.0 350.0 0.00 1.50 plf 3_j14 Dead Partial UD 113.7 113.7 3.00 9.00 plf 4_j14 Live Partial UD 350.0 350.0 3.00 9.00 plf 5_j51 Dead Partial UD 113.7 113.7 1.50 3.00 plf 6_j51 Live Partial UD 350.0 350.0 1.50 3.00 plf 7_j24 Dead Partial UD 120.2 120.2 0.00 3.00 plf 8_j24 Live Partial UD 370.0 370.0 0.00 3.00 plf 9_j25 Dead Partial UD 120.2 120.2 3.00 9.00 plf 10_j25 Live Partial UD 370.0 370.0 3.00 9.00 plf 11_j26 Dead Partial UD 120.2 120.2 9.00 12.00 plf 12j26 Live Partial UD 370.0 370.0 9.00 12.00 plf 13 j52 Dead Partial UD 113.7 113.7 9.00 10.50 plf 14 j52 Live Partial UD 350.0 350.0 9.00 10.50 plf 15_j53 Dead Partial UD 113.7 113.7 10.50 12.00 plf 16 j53 _Live Partial UD 350.0 350.0 10.50 12.00 plf • MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 1 0' 121 Dead 1478 1478 Live 4320 4320 Total 5798 5798 Bearing: Load Comb #2 #2 Length 1.74 1.74 • Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x10 -1/2" Self- weight of 12.39 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 138 Fv' = 265 fv /Fv' = 0.52 Bending( +) fb = 2217 Fb' = 2400 fb /Fb' = 0.92 Live Defl'n 0.38 = L/381 0.40 = L/360 0.94 Total Defl'n 0.57 = L/252 0.60 = L/240 0.95 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC 82 = D +L, V = 5798, V design = 4953 lbs Bending( +): LC #2 D +L, M = 17395 lbs -ft Deflection: LC #2 D +L EI= 890e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of F.cp(tension), Fcp(comp'n). 4 El COMPANY PROJECT 1 WoodWorks SOFTWARE FOR WOOD Of June 24, 2010 12:43 b10 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psi, or plf ) Load Type Distribution Magnitude Location [ftl Pat - Start End Start End tern 1 w39 Dead Partial UD 311.0 311.0 0.00 4.50 No 2 w39 Live Partial UD 680.0 680.0 0.00 4.50 No 3_c39 Dead Point 267 2.00 No 4_c39 Live Point 822 2.00 No 5_j32 Dead Partial UD 120.2 120.2 0.00 0.50 No 6_j32 Live Partial UD 370.0 370.0 0.00 0.50 No 7_j33 Dead Partial UD 120.2 120.2 1.00 4.00 No 8_j Live Partial UD 370.0 370.0 1.00 4.00 No 9 j34 Dead Partial UD 120.2 120.2 4.00 4.50 No 10_j34 Live Partial UD 370.0 370.0 4.00 4.50 No 11 j35 • Dead Partial UD 120.2 120.2 4.50 7.50 No 12 j35 Live Partial UD 370.0 370.0 4.50 7.50 No 13 Dead Partial UD 113.7 113.7 4.50 16.50 No 14_j36 Live Partial UD 350.0 350.0 4.50 16.50 No 15j37 Dead Partial UD 100.7 100.7 3.00 4.50 No 16 j37 Live Partial UD 310.0 310.0 3.00 4.50 No 17 Dead Partial UD 120.2 120.2 7.50 13.50 No 18 Live Partial UD 370.0 370.0 7.50 13.50 No 19 j48 Dead Partial UD 120.2 120.2 13.50 16.50 No 20 j48 Live Partial UD 370.0 370.0 13.50 16.50 No 21_j49 Dead Partial UD 120.2 120.2 0.50 1.00 No 22 j49 Live Partial UD 370.0 370.0 0.50 1.00 No 23 Dead Point 300 3.00 No 24 Live Point 922 3.00 No . MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : • la 4'-6" 16-61 Dead 452 4067 1180 Live 847 11291 3436 Uplift 12 Total 1300 15358 4616 Bearing: Load Comb 92 82 A2 Length 0.50' 4.24 1.27 Cb 1.00 _ 1.09_ 1.00 'Min. bearing length for beams is 1/2" for exterior supports Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x12" ' Self- weight of 14.16 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 265 fv /Fv' = 0.60 Bending( +) fb = 1074 Fb' = 2400 fb /Fb' = 0.45 Bending( -) fb = 1396 Fb' = 1844 fb /Fb' = 0.76 Live Defl'n 0.13 = <L/999 0.40 = L/360 0.32 Total Defl'n 0.19 = L/740 0.60 = L/240 0.32 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fb'- 1850 1.00 1.00 1.00 0.997 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC 82 = D +L, V = 8357, V design = 6496 lbs Bending( +): LC fl2 = D +L, M = 11006 lbs -ft Bending( -): LC 82 = D +L, M = 14310 lbs -ft Deflection: LC 82 = D +L EI= 1328e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI/AITC A190.1 -1992 3. Grades with equal bending capacity in the top and bottom edges of the beam cross - section are recommended for continuous beams. 4. GLULAM: bxd = actual breadth x actual depth. 5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 6. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4_ G fi c COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:44 b13 Design Check Calculation Sheet • Sizer 7.1 LOADS 1 lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 Dead Point 217 5.50 lbs 4 Live Point 668 5.50 lbs 5 c67 Dead Point 518 5.00 lbs 6_c67 Snow Point 778 5.00 lbs 7 c68 Dead Point 573 3.00 lbs 8 c68 Snow Point 942 3.00 lbs 9 w59 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12_ j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13_j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15 j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16_ j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 18 Live Point 389 3.50 lbs 19 Dead Point 225 6.50 lbs 20 Live Point 693 6.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : ' ='ter" ti; --7 .,. - - -' ," .�,ar.� o,.`._, = , -�- ' =. -" > .3e.- ,..-„�n.,_ , ,..ss � .► a i.�m.�.,r,„,,, - '3,' ..s.. - ' ^�= �-� �r �c+3 '� _°...'_ r -- .may.• •s...._ - =s _ • '�` - 7�T a. �__< � ' -- - ".-....s a '. - c:T --z_- _ � .,�.. r- 4 10' 81 Dead 2561 3033 Live 2699 3789 Total 5261 6822 Bearing: Load Comb #3 #3 Length _ 1.88 2.44 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L/680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC #3 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC 03 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 4 ...... � 1 (a, COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:43 b14 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or p11) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w33 Dead Partial UD 317.7 317.7 9.00 12.00 plf 2 w33 Live Partial UD 350.0 350.0 9.00 12.00 plf 3 c19 Dead Point 357 9.00 lbs 4 c19 Live Point 1050 9.00 lbs 5 c20 Dead Point 357 3.00 lbs 6 c20 Live Point 1050 3.00 lbs 7 w34 Dead Partial UD 317.7 317.7 0.00 3.00 plf 8 w 34 Live Partial UD 350.0 350.0 0.00 3.00 plf 9 - c64 Dead Point 165 10.50 lbs . 10 c64 Snow Point 225 10.50 lbs 11 Dead Point 165 1.50 lbs 12 Snow Point 225 1.50 lbs 13 Dead Full UDL 113.7 plf 14 Live Full UDL 350.0 plf 15_j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 16_j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 17 j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 18 j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 19 Dead Partial UD 17.0 17.0 1.50 10.50 plf 2(045 Live Partial UD 25.0 25.0 1.50 10.50 plf 21 j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 22 _Live Partial UD 25.0 25.0 10.50 12.00 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : --� _' • -ate .� . _ .. -2 .�c 7 ,: ; .. j _ _ , ---. , r 1 1 1 �� - -mfr ,,,�� T.a,.r- ..'` ad- �� �v �r ...r � _�F- .''''''' , - 1 -1� � -.r. - -: s ,, . += �‘ IO' 12 Dead 2351 2351 Live 4350 4350 Total 6701 6701 Bearing: Load Comb #2 #2 Length 2.39_ 2.39 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 163 Fv' = 310 fv /Fv' = 0.52 Bending( +) fb = 1769 Fb' = 2325 fb /Fb' = 0.76 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.43 = L/333 0.60 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Eb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 6701, V design = 5314 lbs Bending( +): LC #2 = D +L, M = 16851 lbs -ft Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. /4 9 - - - - - 6 1 . n ' ' . COMPANY PROJECT WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:41 b20 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1_j30 Dead Full UDL 21.7 plf 2 130 Live Full UDL 60.0 plf MAXIMUM REA(TIANS Ilhcl and RFORINCI 1 FN(TTHS tint • 1 Dead 46 46 Live 105 105 Total 151 151 Bearing: • Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x6" Self- weight of 4.57 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 9 Fv' = 180 fv /Fv' = 0.05 Bending( +) fb = 90 Fb' = 1170 fb /Fb' = 0.08 Live Defl'n 0.00 = <L/999 0.12 = L/360 0.02 Total Defl'n 0.00 = <L/999 0.18 = L/240 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 151, V design = 111 lbs Bending( +): LC #2 = D +L, M = 132 lbs -ft • Deflection: LC #2 = D +L EI= 78e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. /4- bi COMPANY PROJECT f fl WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:50 b30 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j41 Dead Partial UD 68.0 68.0 2.00 4.00 plf 2_j41 Live Partial UD 100.0 100.0 2.00 4.00 plf 3_j42 Dead Partial UD 72.2 72.2 0.00 2.00 plf 4 j42 Live Partial UD 106.2 106.2 0.00 2.00 plf MAXIMUM REACTIONS llhcl and RFARING 1 FN(THS lint A 44 0. Dead 154 150 Live 209 203 Total 364 353 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x8" Self- weight of 6.03 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 15 Fv' = 180 fv /Fv' = 0.08 Bending( +) fb = 140 Fb' = 1170 fb /Fb' = 0.12 Live Defl'n 0.00 = <L/999 0.13 = L/360 0.03 Total Defl'n 0.01 = <L/999 0.20 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 364, V design = 253 lbs Bending( +): LC #2 = D +L, M = 359 lbs -ft Deflection: LC #2 = D +L EI= 178e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. (LA COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:42 b31 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1_j65 Dead Partial UD 47.7 47.7 0.00 4.00 plf 2_j65 Live Partial UD 160.0 160.0 0.00 4.00 plf 3_j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4_j28 Live Partial UD 160.0 160.0 4.50 7.50 plf 5_j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 6_j62 Live Partial UD 160.0 160.0 7.50 11.00 plf 7j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 8_j63 Live Partial UD 160.0 160.0 11.00 17.00 plf 9_j64 Dead Partial UD 47.7 47.7 17.00 20.00 plf 10_j64 Live Partial UD 160.0 160.0 17.00 20.00 plf 11_j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 12 j66 Live Partial UD 160.0 160.0 4.00 4.50 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 1 1 0' 20+ Dead 619 619 Live 1600 1600 Total 2219 2219 Bearing: Load Comb #2 #2 Length 0.67 • 0.67 Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x12" Self- weight of 14.16 pif included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 49 Fv' = 265 fv /Fv' = 0.18 Bending( +) fb = 1082 Fb' = 2400 fb /Fb' = 0.45 Live Defl'n 0.43 = L/553 0.67 = L/360 0.65 Total Defl'n 0.69 = L /350 1.00 = L/240 0.69 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 2219, V design = 1997 lbs Bending( +): LC #2 = D +L, M = 11095 lbs -ft Deflection: LC #2 = D +L EI= 1328e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4- COMPANY PROJECT 1 Wo od \Alor k s® Jong 24.201017:15 bad SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Sher 7.1 LOADS (Iba, Psf. o pre) : Load Type 00.021butlon Magnitude Location /ft) Unita Start End Start End • 1_062 Dead Partial UD 613.2 613.2 0.00 2.00 plf 2762 Snow Partial UD 795.0 795.0 0.00 2.00 pif 3_029 Dead Partial UD 617.5 617.5 7.50 11.00 pif 029 Snow Partial UD 001.2 001.2 7.50 11.00 pif 5 Dead Point 1436 11.00 lba 6_015 Snow Point 2401 11.00 ice 016 Dead Point 1 17.00 lb. 9 016 Snow Point 2104 17.00 lbe 9 Dead Partial UD 617.5 617.5 17.00 19.00 pif 1'6_764 Snow Partial UD 901.2 901.2 17.00 18.00 pif 11_761 Dead Point 622 7.00 lba 1 c61 Snow Point 1192 7.00 lba 13_062 Dead Point 622 4.00 lba 14_o62 Snow Point 1192 4.00 iba 15763 Dead Partial UD 613.2 613.2 2.00 4.00 pif 16_763 Snow Partial VD 795.0 795.0 2.03 4.00 pif 17 Dead Partial UD 617.5 617.5 19.0) 20.00 plf 19 065 Sncw Partial U0 601.2 001.2 11.0) 20.00 pi! 19 071 Da.d Partial U0 613.2 613.2 7.07 7.50 pif 20 Sn00 Partial VD 795.0 7 95.0 7.00 7.50 pif 21_)64 Daad Partial UD 47.7 47.7 17.00 19.00 pif 22_764 LSva Partial U0 160.0 160.0 17.00 19.00 pif 23729 Daad Partial UO 47.7 47.7 4.50 7.50 pif 14_129 Live Partial UD 160.0 160.0 4.50 7.50 pif . 25_762 Dead Partial (10 47. 47.7 7.50 11.00 pif 26_762 Live Partial UD 160.0 160.0 7.50 11.00 pif 27_147 Dead Partial UD 120.2 120.2 0.00 2.00 plf 2e_247 Live Partial U0 370.0 370.0 0.00 2.00 pif 2 Dead Partial UD 120.2 120.2 3.50 4.00 p1! 30_732 Live Partial U0 370.0 370.0 3.50 4.00 pif 31_733 Dead Partial U0 120.2 120.2 4.50 7.50 pif 32_133 LSva Partial UD 300.0 370.0 4.50 7.50 plf 33_)34 Daad Partial U0 120.2 120.2 7.50 8.00 plf . • 34_134 L0va Partial U0 370.0 370.0 7.50 9.00 pif 35_335 Dead Partial U0 120.2 120.: 9.00 11.00 pif 36_735 L1'1a Partial UD 370.0 370.0 9.00 11.00 pif 37747 Dead Partial UD 120.2 120.2 11.01 17.00 pif 39 34 Live Partial UD 370.0 370.0 11.00 11.00 pif 39 Dead Partial UD 120.2 110.2 2.00 3.50 plf 40 267 Live Partial UD 370.0 370.0 2.00 3.50 pif 41_749 Dead Partial UD 120.2 120.2 4.10 1.50 plf 42_749 Live Partial UD 370.0 370.0 4.00 4.50 pif 43_763 Dead Partial VD 17.7 47.7 11.00 17.00 plf 44_363 Llva Partial U0 160.0 160.0 11.00 17.00 pif 45_965 Dead Partial U0 47.7 47.7 10.00 20.00 pi! 46_165 LSva Partial U0 160.0 160.0 19.00 20.00 plf 47 )66 Dead Partial UD 47.7 47.7 4.00 4.50 pit 9 )66 Live Partial UD 160.0 160.0 4.00 4.50 pif 49_766 Dead Partial UD 120.2 120.2 11.00 19.00 pif 50_168 Liv4 Partial UD 370.0 370.0 17.00 19.00 pif 51_769 Dead Partial UD 120.2 120.2 10.00 20.00 pif 52_169 Live Partial UD 370.0 370.0 19.00 20.00 pif 53_272 Dead Partial UD 2.00 4.00 pif 54_17: Live Partial UD 160.0 160.0 2.00 4.00 pif 55_3 Dead Partial UD 47.7 47.7 0.00 2.00 pif 56 173 Live Partial UD 160.0 160.0 0.00 2.00 elf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (In) : 3§ 11 -1 : y Dead 4432 Live 9956 9079 Total 17361 17305 Searing: Load Comb 93 13 Lena, 5 -1 5.19 Glulam -Bat., West Species, 24F -V8 DF, 5- 1/8x22 -1/2" Sdf-walg76 of 2E550 Included N loads: Lateral . top. 0.0. bottom. al •ippolts: Analysis vs. Allowable Stress (psi) and Deflection (in) u,irg19os2w5: Criterion 'l1 - Anal01 Value Caalen Value - Ana1vnla /00.170 Shear Iv . 192 305 fv /Pr' ■ 0.60 6endingl fb . 2392 Fb' . 2604 fb /Fb' . 0.92 Live Defl'n 0.40. L/595 0.67. L/360 0.60 Total Defi'n 0.94. L/295 1.00. L/240 0.94 ADDITIONAL DATA: FACTORS: F/E CO 04 Ct CL CV Cfu Cr Cfrt Not. Cn LC4 70' 265 1.15 1.00 1.00 1.00 1.00 1.00 3 7001 2400 1.15 1.00 1.00 1.000 0.941 1.00 1.00 1.00 1.00 - 3 rap 650 1.00 1.00 - - - - 1.00 - - E' 1.5 1111an 1.00 1.00 - - - - 1.00 - - 3 0 Emir)' 0.95 million 1.00 1.00 - - - - 1.00 - - 3 Shear ( LC 13 - 01.7512.5), V . 17361, •J design - 13992 lba 9901891'1: LC 13 . 06.75)140), M . 06199 lba -ft Deflection: LC 13 . 0..7511,S) EI. 9756506 lb -ln2 Total Deflection . 1.9010cad Load Dafla0t12n) • Live Load Deflection. (D.de. L-llva S.ancw )7-wind 11 C■conatructlon CLd■ctncentratedl (All L2 'a a e listed in the Analya00 la output) • Load combination.: 170 -ISC DESIGN NOTES: 1. PM_maa verify did the defad deflection Crofts aro appropriate for you: eppEcortbt 2. GM.vn des*, 019401 am for n02951070810,9 to AITC 117.2001 and mam/acMad In accordance twit h ANSI/AITC A150.1.1992 3. GLULAM: tad • .cnml breadth ft actual dep9h. . 4. Chian, Seams than be Morey supported according to the proof:ions of NOS Clause 3.3.3. 5. GLULAM: bearing length based on somas of Fcp(terdon), Fcp(ca,pn). i Cl 6. COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN • June 24, 2010 12:49 b35 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 j21 Dead Partial UD 120.2 120.2 0.50 1.50 plf 2_j21 Live Partial UD 370.0 370.0 0.50 1.50 plf 3_j59 Dead Partial UD 120.2 120.2 0.00 0.50 plf 4_j59 Live Partial UD 370.0 370.0 0.00 0.50 plf 5_j60 Dead Partial UD 120.2 120.2 1.50 3.00 plf 6 j60 Live Partial UD _ 370.0 370.0 1.50 3.00 plf MAXIMUM RED „T.�...,, ..� . �..,.,�..., , 0 31 Dead 188 188 Live 555 555 Total 743 743 Bearing: Load Comb #2 #2 Length 0.50* 0.50* 'Min. bearing length for beams is 1/2" for exterior supports Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 31 Fv' = 180 fv /Fv' = 0.17 Bending( +) fb = 254 Fb' = 1080 fb /Fb' = 0.24 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv• 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 743, V design = 444 lbs Bending( +): LC #2 = D +L, M = 557 lbs -ft Deflection:,LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. • COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:51 c2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End l bl Dead Axial 1056 (Eccentricity = 0.00 in) 2 Rf.Live Axial 2153 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): • • 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 2 -Plys Self- weight of 3.41 pif included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 0.00= 0.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 196 Fc' = 980 fc /Fc' = 0.20 Axial Bearing fc = 196 Fc* = 1644 _ fc /Fc* = 0.12 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.596 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 3236 lbs Kf = 1.00 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. Gc), COMPANY PROJECT 1e WoodWorks® SOf7WAN£FOR WOOD DESIGN June 24, 2010 12:54 c12 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c24 Dead Axial 1478 (Eccentricity = 0.00 in) 2 c24 Live Axial 4320 (Eccentricity = 0.00 in) 3 b10 Dead Axial 4067 (Eccentricity = 0.00 in) 4 Live Axial 11291 (Eccentricity = 0.00 in) • MAXIMUM REACTIONS (Ibs): ,XG� ,",e'- �, -,�1°� - _ . L •�'.: r S ,-. - , li p.. • 0' 8, Timber -soft; D.Fir -L, No.1, 6x6" Self- weight of 7.19 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 701 Fc' = 820 fc /Fc' = 0.86 Axial Bearing fc = 701 Fc* = 1000 fc /Fc* = 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC #. Fc' 1000 1.00 1.00 1.00 0.820 1.000 - - 1.00 1.00 2 Fc* 1000 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 21214 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 4- C COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DE3tGN June 24, 2010 12:53 c23 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b9 Dead Axial 1478 (Eccentricity = 0.00 in) 2 Live Axial 4320 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 1 0' 9' Lumber Post, Hem -Fir, No.2, 4x6" Self- weight of 3.98 pif included in Toads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 303 Fc' = 379 fc /Fc' = 0.80 Axial Bearing fc = 303 Fc* = 1430 fc /Fc* = 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.265 1.100 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 5834 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT i:ll WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:54 c26 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c23 Dead Axial 1478 (Eccentricity = 0.00 in) 2 c23 Live Axial 4320 (Eccentricity = 0.00 in) 3 b10 Dead Axial 1180 (Eccentricity = 0.00 in) 4 Live Axial 3436 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): r 4, 1. ^ • 0' 8' Timber -soft, Hem -Fir, No.2, 6x6" Self- weight of 6.25 pif included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : • Criterion Analysis Value Design Value Analysis /Design Axial fc = 346 Fc' = 492 fc /Fc'. = 0.70 Axial Bearing fc = 346 Fc* = 575 fc /Fc* = 0.60 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.00 1.00 1.00 0.856 1.000 - - 1.00 1.00 2 Fc* 575 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 10465 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2G. COMPANY PROJECT 1 WoodWorks SOFTWARE FOR WOOD DESIGN June 24, 2010 12:52 c29 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 b13 Dead Axial 3033 (Eccentricity = 0.00 in) 2 Rf.Live Axial 5052 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): D 0 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 3 -Pays Self- weight of 5.11 plf included in Toads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 328 Fc' = 439 fc /Fc' = 0.75 Axial Bearing fc = 328 Fc* = 1644 fc /Fc* = 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.267 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 8126 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. • • • COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:55 c31 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b13 Dead Axial 2561 (Eccentricity = 0.00 in) 2 Rf.Live_ Axial 3599 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 1 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x4 ", 3 -Plys Self- weight of 3.25 plf included in Toads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 393 Fc' = 443 fc /Fc' = 0.89 Axial Bearing fc = 393 Fc* = 1719 fc /Fc* = 0.23 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.258 1.150 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 6186 lbs Kf = 0.60 • (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:54 c39 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b21 'Dead Axial 267 (Eccentricity = 0.00 in) 2 Live Axial 822 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 9' • Lumber n -ply, Hem -Fir, No.2, 2x4 ", 2 -Plys Self- weight of 2.17 plf included in Toads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 106 Fc' = 171 fc /Fc' = 0.62 Axial Bearing _ fc = 106 Fc* = 1495 fc /Fc* = 0.07 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.114 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 1108 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. • COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:52 c55 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b30 Dead Axial 154 (Eccentricity = 0.00 in) 2 Live Axial 209 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): • 1 0' 8' Lumber Post, Hem -Fir, No.2, 4x4" Self- weight of 2.53 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 31 Fc' = 470 fc /Fc' = 0.07 Axial Bearing fc = 31 Fc* = 1495 fc /Fc* = 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.315 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 384 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 0 Co BY ANAL DATE: ( _ aO 1 O JOB NO.: C E -Q c /Q OF PROJECT: RE: 'Beams of LcAi -crat Reac ;ors ❑ ❑ D W o.m b - tivakk s 2 ? 303 O f L i j ❑ .Wa.1Vs aoaa ao & O J o Oearn t' - LA10.as "ato dO kl U Z w � a b eakm Li -' wo t.5 aol ,act aokg 0 5 knce cA nd ceckc,ki aN reachoYeS, Z OrNV uivo - utU he CalcutcAveci. 0 U f r lL Z ❑ Z O O = O U a. • �xa x . COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 13:07 b6 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 c44 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 51c45 Dead Point 444 5.00 lbs 6 c45 Snow Point 647 5.00 lbs 7 w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9 Dead Full UDL 120.2 plf 10 j25 Live Full UDL 370.0 plf WIND1 Wind Point 800 2.00 lbs WIND2 Wind Point -910 5.00 lbs 'MAXIMUM REACTIONS 1Ibs1 and BEARING LENGTHS 1in1 0' 61 Dead 1436 1389 Live 2089 1803 Total 3525 3192 Bearing: Load Comb #4 #3 Length 1.88_ 1.70 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.15 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 4 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 4 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #4 = D +.75(L +S +W) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I =impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 63;2_ COMPANY PROJECT rill WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 13:07 b6 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 Snow Point 647 2.00 lbs 3 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 c45 Dead Point 444 5.00 lbs 6 c45 Snow Point 647 5.00 lbs 7w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 _ w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9 j25 Dead Full UDL 120.2 pif 10_j25 Live Full UDL 370.0 plf WIND1 Wind Point -800 2.00 lbs WIND2 Wind Point 910 5.00 lbs MAXIMUM REACTIONS (Ibs1 and BEARING LENGTHS 1in1 I 61 Dead 1436 1389 Live 1803 2172 Total 3239 3561 Bearing: Load Comb #3 #4 Length 1.73 _ 1.90 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. COMPANY PROJECT i i WoodWorks® SOPIWARE FOR WOOD DESIGN June 24, 2010 13:09 b14 LC1 • Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, pst, or p11) : Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2 Live Partial UD 350.0 350.0 9.00 10.50 plf 3_c19 Dead Point 357 9.00 lbs 4 c19 Live Point 1050 9.00 lbs 5 Dead Point 357 3.00 lbs 6 Live Point 1050 3.00 lbs 7 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8 w66 Live Partial UD 350.0 350.0 0.00 1.50 plf 9 Dead Point 165 10.50 lbs 10_c64 Snow Point 225 10.50 lbs 11 c65 Dead Point 165 1.50 lbs 12 Snow Point 225 1.50 lbs 13_w67 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14 w67 Live Partial UD 350.0 350.0 1.50 3.00 plf 15 w69 Dead Partial UD 317.7 317.7 10.50 12.00 plf 16_w69 Live Partial UD 350.0 350.0 10.50 12.00 plf 17 36 Dead Full UDL 113.7 plf 18_j36 Live Full UDL 350.0 plf 19_j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20_j43 • Live Partial UD 25.0 25.0 0.00 0.50 plf 21 j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22_j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 23_j45 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24_j45 Live Partial UD 25.0 25.0 1.50 3.00 plf 25j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26_j46 Live Partial UD 25.0 25.0 10.50 12.00 plf 27_j70 Dead Partial UD 17.0' 17.0 3.00 9.00 plf 28 170 Live Partial UD 25.0 25.0 3.00 9.00 plf 29 j71 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30 j71 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point 3560 3.00 lbs WIND2 Wind Point -3640 9.00 lbs wind3 Wind Point -3620 0.00 lbs winds Wind Point 3570 12.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : _ - s ... ^ - ' . - ..•� .-. ..=.. n 1,S = ,' , .,�. - mss - -- - ' � .,:' _ -.�} v,v -,- ,----- _ .�r-.Y. �_ = ct. _ �}M.' _---- ,��r.z_,_ -- - - '-- ..,.r_ - - tea+ ---------44-:-,_ �- -'�-., te a - - - ,--- --` - .. ,. ---- .. �'...._� --,- l 0' 121 Dead 2207 2207 Live 4350 4350 Uplift 499 479 Total 6557 6557 Bearing: Load Comb 02 02 Length 2.34 2.34 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 310 fv /Fv' = 0.51 Bending( +) fb = 1735 Fb' = 2325 fb /Fb' = 0.75 Live Defl'n 0.25 = L/573 0.40 = L /360 0.63 Total Defl'n 0.42 = L/343 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LCh Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC 02 = D +L, V = 6557, V design = 5170 lbs . Bending( +): LC 02 = D +L, M = 16527 lbs -ft • Deflection: LC 02 = D +L EI= 1241e06 lb -in2 , Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live S =snow W =wind I =impact C =construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. i''---- 6 91 COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 201013:09 b14 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2_w68 Live Partial UD 350.0 350.0 9.00 10.50 plf 3 c19 Dead Point 357 9.00 lbs 4 Live Point 1050 9.00 lbs 5 c20 Dead Point 357 3.00 lbs 6 c20 Live Point 1050 3.00 lbs 7 w66 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8_w66 Live Partial UD 350.0 350.0 0.00 1.50 plf . 9 c64 Dead Point 165 10.50 lbs 10_c64 Snow Point 225 10.50 lbs 11 c65 Dead Point 165 1.50 lbs 12_c65 Snow Point 225 1.50 lbs 13 w67 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14 w67 Live Partial UD 350.0 350.0 1.50 3.00 plf 15_w69 Dead Partial UD 317.7 317.7 10.50 12.00 plf 16_w69 Live Partial UD 350.0 350.0 10.50 12.00 plf 17_j36 Dead Full UDL 113.7 plf 18 j36 Live Full UDL 350.0 plf 19j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20_j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 21 j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22 j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 23_j45 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24_j45 Live Partial UD 25.0 25.0 1.50 3.00 plf 25j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26_j46 Live Partial UD 25.0 25.0 10.50 12.00 plf 27_j70 Dead Partial UD 17.0 17.0 3.00 9.00 plf 28 j70 Live Partial UD 25.0 25.0 3.00 9.00 plf 29_j71 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30 j71 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point -3560 3.00 lbs WIND2 Wind Point 3640 9.00 lbs wind3 Wind Point 3620 0.00 lbs winds Wind Point -3570 12.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : is z�4-... --,e =`�s �- ...'- -- ---- . -.- �-, .-- :a =ate. 7 - a -:�,- a _..--.. ..a - v,. -._ -� -ia L. .. 1,.',.,,,,�^ ..�. _ ' "+r r^:r _mss. .....:_2 II�0' 121 Dead 2207 2207 Live 4826 4811 Total 7033 7018 Bearing: Load Comb #4 #4 Length 2.51 2.51 LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports: Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 310 fv /Fv' = 0.51 Bending( *) fb = 1735 Fb' = 2325 fb /Fb' = 0.75 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.42 = L/343 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = Di-L, V = 6557, V design = 5170 lbs • Bending( +): LC #2 = D +L, M = 16527 lbs -ft Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 4 - c1 COMPANY PROJECT I . WoodWorks® ! SOFtWARtFOR woos DESIGN June 24, 201013:11 b13 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS 1 Ibs, pst, or p10) : Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 c40 Dead Point 217 5.50 lbs 4 c40 Live Point 668 5.50 lbs 5 c67 Dead Point 518 5.00 lbs 6_c67 • Snow Point 778 5.00 lbs 7 c68 Dead Point 573 3.00 lbs 8 c68 Snow Point 942 3.00 lbs 9 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10_w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12_j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13_j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14_j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16_j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17_b15 Dead Point 126 3.50 lbs 18 b15 Live Point 389 3.50 lbs 19 b32 Dead Point 225 6.50 lbs 20 b32 Live Point 693 6.50 lbs W1 Wind Point 6590 0.00 lbs W2 Wind Point -6590 3.00 lbs W3 Wind Point 6590 5.00 lbs W4 Wind Point -6590 8.00 lbs MAXIMUM REACTIONS (Ina) and BEARING I ENGTHS (inl ..._.'•- `4e�3r " .�rw"_' -'' .--- .- .,, --'. s ...r-r _ �sr 1 �� --c.a y . - e�. '�,*.e a x"°'� sa-� -�-�.r ..- tee . ` +x:. ` ."'"" ""44. =u..: ' ... S`- , ee aw.__ .3q=. 'ft. �=° ya. rd►� �:. -��7.y ,�z� "'...'t.......e-.r.r�'��'`' ='gi • I a 81 Dead 2561 3033 Live 6406 3789 Uplift 3098 Total 8968 • 6822 Bearing: Load Comb 84 03 Length 3.20 2.44 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NOS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L /680 0.40 - L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC 83 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC 83 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC 43 = D +.75(L +S) EI= 1241e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C =construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. • . 4 - (0 3(4) COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 201013:11 b13 LC2 Design Check Calculation Sheet _ Sizer 7.1 LOADS ( Ibs, pst, or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 c40 Dead Point 217 5.50 lbs 4_c40 Live Point 668 5.50 lbs 5 c67 Dead Point 518 5.00 lbs 6 c67 Snow Point 778 5.00 lbs 7 c68 Dead Point 573 3.00 lbs 8 c68 Snow Point 942 3.00 lbs 9 w59 Dead Partial UD 593.7 593.7 5.00 8.00 plf lb _w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12 j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13_j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14 j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15_139 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16_j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 18 b15 Live Point 389 3.50 lbs 19 b32 Dead Point 225 6.50 lbs 20 b32 Live Point 693 6.50 lbs W1 Wind Point -6590 0.00 lbs W2 Wind Point 6590 3.00 lbs W3 Wind Point -6590 5.00 lbs W4 Wind Point 6590 8.00 lbs MAXIMUM REACTIONS (Ibsl and BEARING; I FNGTHS (inl : - •.b;:.0,- .R..^. -- ». -r•Z -s. - .:..�. '"`. '":"-- _ -- -t. _.:._-- -yes . - =� -F'►. *l.. -'"- - �".�- 7. ice- ar- t - ��•- - • �a...+. - �.!I ±- -r.-- -- '-r..kow .......L."- '7 .x-.. _ 7 .r� - '�"- �._ ---7-.........-,_ _ '�'±. 7. --.m 1 0' 81 Dead 2561 3033 Live 2699 7496 Uplift 3381 Total 5261 10529 Bearing: Load Comb #3 #4 Length 1.88 3.76 LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NOS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L/680 0.40 = L /240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Rain' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC #3 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 4 - (..,-1.;-3- COMPANY PROJECT ii 1 %Vo odVVo r k s ® June 24, 201013:19 936 LC1 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet 512er 7.1 LOADS itn., mt. ofpn) : Load Type Distribution Magnitude Location [ft] Unita Start End Start End 1_1.62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 2062 Snow Partial UD 7 95.0 795.0 0.00 2.00 plf 30 Dead Partial UD 617.5 617.5 7.50 11.00 ply 4 029 Snov Partial UD 701.2 801.2 7.50 11.00 plf 5 Dead Point 1436 11.00 lba 6 Snow Point 2404 31.00 lb. 7 Dead Point 1399 17.00 lba 8 016 Snow Point 2404 17.00 lb* 9 Dead Partial UD 617.5 617.5 17.00 19.00 ply 13_061 Snow Partial UD 801.2 801.2 17.00 18.00 plf 11_061 Dead Point 622 7.00 lba 12 061 Snow Point 1192 7.00 lbe 13_062 Dead Point 622 4.00 lb. 14 062 Snow Point 1192 4.00 lbs 10 Dead Partial UD 613.2 613.2 2.00 4.00 plf 16063 Snow Partial U0 715.0 795.0 2.00 4.00 plf 17 _ 0765 Dead Partial U0 617.5 617.5 19.00 20.00 plf 13 065 Snow Partial UD 901.2 601.2 18.00 20.00 plf 13 Dead Partial UD 613.2 613.2 7.00 7.50 plf 20 Snow Partial UD 795.0 795.0 7.0C 7.50 plf 22 164 Dead Partial 47.7 47.7 17.0C 18.00 plf 22 00 164 Live Partial UD 160.0 160.0 11. 19.00 plf 23 )29 Dead Partial U0 47.7 47.7 4.50 50 7.50 plf 24_129 Live Partial UD 160.0 160.0 4.50 7.50 plf 25) 62 Deac Partial UD 47.7 47.7 7.50 11.00 plf 26_162 Live Partial U0 160.0 .160.0 7.50 11.00 plf 2 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29_348 Live Partial UD 370.0 370.0 0.00 2.00 elf 29)32 Dead Partial VD 120.2 120.2 3.50 4.00 plf 30_132 Live Partial VD 370.0 370.0 3.50 4.00 plf 31_733 Dead Partial UD 120.2 120.2 4.50 7.50 plf 32 133 Live Partial 170.0 370.0 4.50 7.50 plf 00 3l 134 Dyad Partial U0 120.2 120.2 7.50 9.00 plf 34)34 Live Partial UD 370.0 370.0 7.50 9.00 Plf 35_335 Dead Partial UD 120.2 320.2 9.00 11.00 plf 36_135 Live Partial UD 370.0 170.0 0.00 11.00 plf 37_147 Dead Partial UD 120.2 120.2 11.00 17.00 plf 31)17 Live Partial UD 370.0 370.0 11.00 17.00 plf 39_167 Dead Partial VD 120.2 120.2 2.00 3.50 plf 40_167 Live Partial UD 370.0 370.0 2.00 3.50 plf 4 349 Dead Partial UD 120.2 120.2 4.00 4.50 plf 42_149 Live Partial UD 370.0 370.0 4.00 4.50 plf 43_163 Dead Partial UD 47.7 47.7 11.00 17.00 plf 44_163 Live Partial UD 160.0 160.0 11.00 17.00 plf 45 165 Dead Partial UD 17.7 19.00 20.00 pif 46_165 Live Partial UD 160.0 160.0 19.00 20.00 plf 41_366 Daad Partial UD 47.7 47.7 4.00 4.50 pif 40_166 Live Partial UD 160.0 160.0 4.00 4.50 plf 49_168 Dead Partial U0 120.2 120.2 17.00 18.00 plf 51_168 Live Partial UD 370.0 370.0 17.00 10.00 plf 51_369 Dead Partial UD 120.2 120.2 10.00 20.00 plf 52_169 Live Partial UD 370.0 370.0 11.00 20.00 pif 53_172 Dead Partial 00 47.7 47.7 2.00 4.00 plf 51_772 Live Partial VD 160.0 160.0 2.00 4.00 plf 55_173 Dead Partial UD 47.7 47.7 0.00 2.00 plf 56 173 Live Partial UD 160.0 160.0 0.00 2.00 plf Ml Mind Point 5050 0.00 1 102 Mind Point -5150 4.00 l5. be 93 Mind Point 5850 11.00 Its MI Mind Point -5950 17.00 lb. 05 Mind Point 5650 20.00 lb. MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : a Dead 155 ' 121 Live 12150 19479 Total 19555 19199 Bearing: Load Loeb 11 75 , Lendth 5.87_ � 5.75 Glulam -Bal., West Species, 24F -V8 DF, 5- 118x22 -1/2" siswtlp9,0 01 26.55 p0 Included In bada: Lat4t6 suppod: tap. hd. botlam• al suppm1q Analysis vs. Allowable Stress (psi) and Deflection (in) 0.10,984952305: erlen Analysts Value Devien Value n / /Deai.n shear [v ■ 102 9 ■ 305 A fv /00' 00 - 0.60 Sending,/ Sb - 2392 !b' ■ 2604 R /Fb• - 0.92 Live Defl'n 0.40 ■ L /595 0.67 - L /360 0.60 Total Den, 0.91 - L/265 1.00 ■ L/240 0.94 ADDITIONAL DATA: FACTORS: F/E CD 07 CL CI Cfu Cr Cfrt M>tea Cn LC4 04' 265 1.15 1.00 1..00 1.00 1.00 1.00 3 00'0 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 Fop' 650 1.00 1.00 - E 1.0 million 1.00 1.00 - Emir,' 0.95 million 1.00 1.00 - Shear : LC 13 . D•.75(L•S), V - 11361, V evion ■ 13982 lba 9- ndin0( LC 13 ■ D- .75(L00), w 861'.9 lba-ft 030160tlon: LC 13 ■ D-.7511•51 EI. 1776.06 1b -102 Total Deflection - 1.5010..7 Load Deflection: • Live Load Deflection. (D■dead 1■110, S-anow ■01,3 I.impact C■conatructlon CU■concentrated, (A11 LC'a are listed in the Analysis cutput) Load coobinaticn0: ICC -10C DESIGN NOTES: 1. Phase verily tlut the defaW deflection ants are appropriate for your .ppeca3m 2 Albs design YAMS are ter materials conl9meng to AITC 117- 2001 and manufactured In accordance well ANSL'AITC A190.1 -1992 3. GLULAM: bed • actual bnndlh a actual depth • 4. Gahm Beams shall be leanly supported according to the provisions of NOS Mono 3 3. 5 . G1UlAht bearing length based an wailer of Fep(tanbn), Fcp(compn). 4 - C-1°;27 COMPANY PROJECT III %Voo dVVo rks® June 24, 2010 13:19 b34 LC2 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Stier 7.1 LOADS ( Ws,pat, ofpe) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1_062 Dead 0.0:1.1 UD 613.2 613.2 0.00 2.00 plf 062 Snow Partial UD 795.0 795.0 0.00 2.00 pif 3_029 Dead Partial UD 617.5 617.5 7. 50 11.00 plf 029 Snow Partial UD 901.2 801.2 7. 11.00 plf 5_015 Dead Paint 1436 11.00 lba 6_015 Snow Point 2404 11.00 lba 716 Dyad Point 1399 17.00 lba 5 c16 Snow Point 2404 17.00 lbs 9 Dead Partial UD 617.5 617.5 17.00 19.00 plf lU 061 Snow Partial ID 8 ..01.2 601.2 17.00 18.00 pif 1 1 561 Dead Point 622 7.00 lbs 12 c61 Snow Point 1392 7.10 lbs 13 c62 Dead Point 622 4.00 lbs 14 762 Snow Point 1192 4.00 lbs 15 Dead Partial VD 613.2 613.2 2.00 4.00 plf 16 Snow Partial UD 795.0 795.0 2.00 4.00 pit 12065 Dead Partial U0 617.5 617.5 19.00 20.00 pif 18_v65 Partial UD 601.2 801.2 18.00 20.00 pif 1 071 Dead Partial UD 613.2 613.2 7.00 7.50 pif 20:w71 Snow Partial UD 795.0 795.0 7.00 7.50 p12 21_164 Dead Partial UD 47.7 47.7 17.00 19.00 pif 22_364 Live Partial UD 160.0 160.0 17.00 18.00 pif 23_329 Dead Partial UD 47.7 47.7 4.50 7.50 pif 24 329 Live Partial UD 160.0 160.0 4.50 7.50 plf 25 362 Dead Partial UD 47.7 47.7 7.50 11.00 plf 26_162 Live Partial UD 160.0 160.0 7.50 11.00 plf 27_349 Deed Partial UD 120.2 120.2 0.00 2.00 plf 29_349 Live Partial UD 370.0 370.0 0.00 2.00 plf 29_132 Dead Partial UD 120.2 120.2 3.50 4.00 pif 3 132 Live Partial UD 370.0 370.0 3.50 4.00 pif 31_333 Dead Partial 110 120.2 120.2 4.50 7.50 pif 32_133 Live Partial ID 370.0 370.0 4.50 7.50 pif 33_134 Dead Partial ID 120.2 120.2 7.50 6.00 pif 34_134 Live 0.0:1.1 UD 370.0 370.0 7.50 9.00 012 35_335 Cead Partial ID 120.2 120.2 9.00 11.00 pif 36_135 Live Partial UD 370.0 370.0 6.00 21.00 pif 37_317 Dead Partial UD 120.2 120.2 11.00 17.00 pif 39_347 Live Partial UD 3 370.0 11.00 17.00 pif 39_367 Dead Partial UD 120.2 120.2 2.00 3.50 pif 40 167 Live Partial ID 370.0 370.0 2.00 3.50 pif 41 149 Dead Partial UD 120.2 120.2 4.00 4.50 plf 42_349 Live Partial UD 370.0 370.0 4.00 4.50 plf 43_1 Dead Partial UD 47.7 47.7 11.00 17.00 pif 44_363 Live Partial UD 160.0 160.0 11.00 17.00 pi! 45_365 Dead Partial UD 17.7 47.7 19.00 20.00 pif 46_165 Live Partial UD 160.0 160.0 19.00 20.00 plf 47_366 Dead Partial UD 47.7 47.7 4.00 1.50 plf 48_166 Live Partial UD 160.0 160.0 4.00 4.50 pif 49_367 Dead Partial UD 120.2 120.2 17.00 18.00 pif 50_16a Live Partial UD 370.0 370.0 17.00 18.00 pif 51_369 Dead Partial UD 120.2 120.2 19.00 20.00 plf 52_369 Live Partial ID 370.0 370.0 12.00 20.00 pif 53_372 00.3 0a00141 VO 47.7 47.7 2.00 4.00 plf 54_372 Live Partial UD 160.0 160.0 2.00 4.00 pif 55_173 Dead Partial VD 47.7 47.7 0.00 2.00 Of 56 173 Live Partial UD 160.0 160.0 0.00 2.00 pif 01 Mind Point -5850 0.00 lba N2 Mind Point 5650 4.00 1b4 03 N1nd Point -5850 11.00 lbs Nind Po1nt 5850 17.00 lba N5 Mind Point -5850 20.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : Dead 5405 13 Live 9956 5978 Total 17361 17305 Searing: • Load Conb 43 43 Lenatn 5.21 5.19 Glulam -Bal., West Species, 24F -V8 DF, 5- 1/8x22.1/2" Sea-weight of 29.55 pif included In beds: Lateral supput: top. nA. Cagan. at mopeds; Analysis vs. Allowable Stress (psi) and Deflection (in) using NOS 2800 t Criterion Ana Pala Value Design Value Analvala4Daalan . Shear 122 Fv' ■ 305 fv /FV' . 0.60 0811 20 fb . 2392 6b' . 2604 fb /1b' . 0.92 1106 Live 0811'n 0.41. 1/591 0.67 - L /360 0.61 Total Defl'n 0.84. 1/281 1.00 - L/240 0.94 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CJ Cfu Cr CLrt Notes Cn 174 Ev' 265 1.15 1.00 1.00 1.00 1.00 1.00 3 Fla, 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 - E' 1.9 01111on 1.00 1.00 - 0010' 0.95 .111110 1.00 1.00 - Shea[ 0 83 . 20.75(1.1), V 17361. V design . 13922 lbs 060211g(r): LC 13 . 2..7511 M ■ 9 96169 lbs -ft Deflection: LC 44 . 00.751105+01 E1. 9756006 lb -in2 Total 0eflecrlon . 1.5012440 Wad 00110001anl 0 Live Wad Deflection. (D.dead !■live S■sno0 1 .01,0 1.10p.10 C■c9natructicr. CLe.7on0entrated1 (All LC'a are listed in the Analysis output) Wad 7c_hina[icna: ICC -12C DESIGN NOTES: 1. Please verify That ins default deflection Oats are appropriate for your application. 2. Cullen design vale are for materials conforming to AITC 117 -2001 and manufactured b accordance edn ANSVAITC A1901 -1992 3. GLULAM: Ord a actual breadth x actual depth. 4. Gedarn Reams shag be latenapy crawled according to Om pradsbna of NOS Clause 3.3.3. 5. GLULAM: bearing lerplh based an un.0er o1 Fop(tensiun), Fcp(eamp n). • COMPANY PROJECT I Wo vise 24, 2010 1320 1234 LC2 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Sbad 7.1 LOADS I Ma. PM,arpli : oad Type Distribution Magnitude Location 1lt1 Unit. Start End Start End _ "62 ' Dead Partial UD 613.2 613.2 0.00 2.00 plf 062 Snow Partial UD 795.0 795.0 0.00 2.00 plf :029 Dead Partial UD 617.5 617.5 7.50 11.00 plf _029 Snow Partial UD 901.2 801.2 7.50 11.00 plf _015 Dead Point 1436 11.00 161 _015 Snow Point 2404 11.00 101 _016 Dead Point 1299 17.00 104 _c16 Snow Point 2104 17.00 lb4 061 Dead Partial VD 617.5 617.5 17.00 19.00 plf 43_064 Snow Partial VD 901.2 001.2 11.00 19.00 plf 1 c61 Dead Point 622 1.00 lbs 2 Snow Point 1192 7.00 101 3_062 Dead Point 622 1.00 161 4 Snow 001nt 1192 1.00 101 5 063 Dead Partial U0 613.2 613.2 2.00 4.00 plf 6 Snow Partial U0 795.0 795.0 2.00 4.00 plf 7 Dead Partial UD 617.5 611.5 19.00 20.00 plf 0 065 Snow Partial UD 901.2 901.2 19.00 20.00 plf 9 wl1 Dead Partial UD 613.2 613.2 7.00 7.50 plf 0 Snow Partial UD 195.0 795.0 7.00 7.50 p1! 1_361 0.22 Partial UD 17,1 47.7 1 16.00 plf 2 344 Live Partial UD 160.0 160.0 17.00 18.00 plf 3_129 Dead Partial UD I7.7 17.7 4.50 7.50 plf 1)29 Live Partial UD 160.0 160.0 4.50 7.50 plf 5 362 Dead Partial UD 41.7 11.7 7.50 11.00 plf 6_162 Live Partial UD 160.0 160.0 7.50 11.00 plf 318 Dead Partial UD 120.2 120.2 0.00 2.00 plf 26_149 Live Partial U0 30.0 370.0 0.00 2.00 plf 29_332 Dead Partial UD 120.2 120.2 3.50 4.00 plf 30_332 Live Partlel UD 370.0 310.0 3.50 4.00 plf 3 331_333 Dead Partial UD 120.2 120.2 4.50 7.50 p1! 32_133 Live Partial UD 310.0 370.0 4.50 7.50 plf 33_134 Dead Partial UD 120.2 120.2 7.50 9.00 p11 34_j34 Live Partial UD 370.0 310.0 7.50 6.00 plf 35_335 Dead Part1a1 U0 120.2 120.2 9.00 11.00 plf 36 _135 Live Partial UD 310.0 310.0 9.00 11.00 plf 37_147 Dead Partial UD 120.2 120.2 11.00 11.00 plf 39_347 Live Partial UD 30.0 310.0 11.00 17.00 p1! 39_367 Dead Partial UD 120.2 110.2 2.00 3.50 plf 40_167 Live Partial U0 370.0 310.0 2.00 3.50 plf 41_149 Dead Partial U0 120.2 120.2 4.00 1.50 plf 42_149 Live Partial 1/0 370.0 370.0 4.00 4.50 plf 43_163 Dead Partial UD 47.7 41.7 11.00 17.00 plf 44_163 Live Partial UD 160.0 160.0 11.00 17.00 plf 45_165 Dead Partial UD 47.7 47.7 16.00 20.00 p3! 46_165 Live Partial UD 160.0 160.0 19.00 20.00 plf 47_196 09.2 Partlel up 47.7 47.1 4.00 1.50 plf 49_166 Live Partial UD 160.0 160.0 4.00 4.50 plf 49_169 load Partial UD 120.2 120.2 17.00 19.00 plf 50_168 Live Partial UD 370.0 370.0 17.00 19.00 plf 51_1.99 Bead Partial UD 120.2 120.2 19.00 20.00 plf 52_169 Llvo Partial U0 310.0 370.0 18.00 20.00 plf 53_1 Dead Partial UD 17.7 47.7 2.00 4.00 p1! 54_172 Live Partial UD 160.0 160.0 2.00 4.00 plf 55)7] Dead Partial UD 47.7 41.1 0.00 2.00 plf Sit 313 Live Partial UD 160.0 160.0 0.00 2.00 plf M1 01nd Point -5850 0.00 100 nlnd Point 5650 4.00 100 M3 Hind Point -5850 11.00 Ilea 9100 Point 5850 11.00 101 M5 Uind Point -5850 20.00 Iba MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 1 � 1 Coed Las 1321 LIve Tote 9956 991! Tr 17]61 17305 l, Load Lamb IJ I] L9n9 th _ 5.21 5.19 Glulam -Bat., West Species, 24F -V8 DF, 5- 118x22 -112" Sea-weight of 2955 p0 Included In b4,: Lateral s4pp t lop- Bd, bottom at stppvla; Analysis vs. Allowable Stress (psi) and Deflection (In) Malrg Nos 2IMs: - cr1[er1on Analval. Value Donlon Value A na2vala /Deafen r, !0 . 100 F - 305 fv /17' - 0.60 e9ndfng(41 Co ■ 2392 FD' - 2604 [b /Fla' . 0.92 Live De11'n 0.41. L /591 0.67. L/360 0.61 Total Defl'n 0.91 ■ 1/261 1.00. L/240 0.84 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV C!u Cr Girt dotes Cn LC4 00' 265 1.15 1.00 1.00 1.00 1.00 1.00 0'o'9 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 - E' 1.9 million 1.00 1.00 - EcIn' 0.95 2921109 1.00 1.00 - - - - 1.00 - - 4 .Shear : LC 43 - 07.1511795), V ■ 17361, '/ es19n - 13962 Iba Oendin9(9): LC 03 . 0'.75(1761. M ■ 86189 100 -ft Deflection: LC 14 - D..75) L46440 E1. 9756906 lb -in: Total Deflection . 1.50(0ead Load Deflection) 7 Live Locd Deflection. (0 -deed L.live Swaney 0 -wind I.1rpact C■con :tructlon Cid.concentro:ell (A11 LC'a are listed in the Analya12 ovtputl Load combinations( ICC -IBC DESIGN NOTES: 1. PAtaaa verify that IM 4fw3 dell Ybn LIMN em eppropr'Se IN mut app3calbn. 2. (Adam design values eA for materials oanforrrdrlg to ANC 117 -2001 and ms90acttrsd In eccardlrc6 with ANSUAITC A190. 1 -1992 3. GLULAM 100 - 000193016092,0 actual depth 4. 048x5 dogma ahsi 121 Idera'ly portal ec6OOSg to the provision, of 000 Clause 3.3.3. 5. GWLAM: bearing length basal on 9799579 of FopQonslm), Fep(canpn). /41 6 / q ° COMPANY PROJECT 1 WoodWorks® SOFFWAREFOR WOOD DESIGN June 24, 2010 13:23 b34 LC1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 3_w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5 c15 Dead Point 1436 11.00 lbs 7 c16 Dead Point 1389 17.00 lbs 9 w64 Dead Partial UD 617.5 617.5 17.00 18.00 plf 1 Dead Point 622 7.00 lbs 13_c62 Dead Point 622 4.00 lbs 15 w63 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19 w 71 Dead Partial UD 613.2 613.2 7.00 7.50 plf 21 - j64 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23 j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25_j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 27_j48 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29_j32 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31_j33 Dead Partial UD 120.2 120.2 4.50 7.50 pif 33 j34 Dead Partial UD 120.2 120.2 7.50 8.00 plf 35 j35 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39_j67 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41 j49 Dead Partial UD 120.2 120.2 4.00 4.50 pif 43_j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45_j65 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47_j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49j68 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51_169 Dead Partial UD 120.2 120.2 18.00 20.00 plf 53_j72 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55_j Dead Partial UD 47.7 47.7 0.00 2.00 plf W1 Wind Point 5850 0.00 • lbs W2 Wind Point -5850 4.00 lbs W3 Wind Point 5850 11.00 lbs W4 Wind Point -5850 17.00 lbs W5 Wind Point 5850 20.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • la 201 Dead 7189 6822 Live 156 302 Total 7238 7018 Bearing: Load Comb #2 02 Length 2.17 2.11 Glulam-Bal., West Species, 24F -V8 DF, 5- 1/8x22 -1/2" Self- weight of 26.55 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 74 Fv' = 238 fv /Fv' = 0.31 Bending( +) fb = 950 Fb' = 2038 fb /Fb' = 0.47 Live Defl'n negligible . Total Defl'n 0.41 = L/585 1.00 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC 01 = D only, V = 7189, V design = 5674 lbs . Bending( +): LC 01 = D only, M = 34217 lbs -ft Deflection: LC #1 = D only EI= 8756e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming l0 AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(lension), Fcp(comp'n). 4 -Gig 1 COMPANY PROJECT 1 WoodWork SOFIWAREFOR WOOD DESIGN June 24, 2010 13:22 b34 LC2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs. psi', or plt) : Load Type Distribution Magnitude Location [ft) Units _ Start End Start End 1w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 3_w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5 c15 Dead Point 1436 11.00 lbs 7 c16 Dead Point 1389 17.00 lbs 9 w64 Dead Partial UD 617.5 617.5 17.00 18.00• plf • 11 c61 Dead Point 622 7.00 lbs 13 c62 Dead Point 622 4.00 lbs 15 w63 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17_w65 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19_w71 . Dead Partial UD 613.2 613.2 7.00 7.50 plf 21 j64 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23_j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25_j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 27 j48 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29_j32 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31j33 Dead Partial UD 120.2 120.2 4.50 7.50 plf 33_j34 Dead Partial UD 120.2 120.2 7.50 8.00 plf 35_j35 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39_j67 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41_j Dead Partial UD 120.2 120.2 4.00 4.50 plf 43_j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45J65 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47_j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49 j68 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51 169 Dead Partial UD 120.2 120.2 18.00 20.00 plf 53_j72 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55j 73 Dead Partial UD 47.7 47.7 0.00 2.00 plf . W1 Wind Point -5850 0.00 lbs W2 Wind Point 5850 4.00 lbs W3 Wind Point -5850 11.00 lbs W4 Wind Point 5850 17.00 lbs W5 Wind Point -5850 20.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : A 201 0. Dead 7189 6822 Live Total 7189 6822 Bearing: - Load Comb #1 • #1 Length 2.16 2.05 Glulam -Bal., West Species, 24F -V8 DF, 5- 1/8x22 -1/2" Self- weight of 26.55 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis /Design Shear fv = 74 Fv' = 238 £v /Fv' = 0.31 Bending( +) fb = 950 Fb' = 2038 fb /Fb' = 0.47 Live Def1'n negligible Total Defl'n 0.41 = L /585 1.00 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 Ervin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC #1 = D only, V = 7189, V design = 5674 lbs Bending( +): LC #1 = D only, M = 34217 lbs -ft Deflection: LC #1 = D only EI= 8756e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4 -( 2. Harper Project: Houf Peterson. Client: Job # Righellis Inc. ENGINEERS • PLANNERS Designer: Date: Pg. # LANDSCAPE ARCM rECTS•SURVEYORs Wdl 10• lb 8.11.20•ft W = 1600-lb pea- oeSi9' l\ ft Seismic Forces Site Class =D Design Catagory =b Wp W dl I 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S .= 0.942 Max EQ, 5% damped, spectral responce acceleration at short period • z := 9 Height of Component h := 32 Mean Height Of Roof F : = 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F = 1.722 VeI -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S := F SmI Fv S 2-S ms : = I `' s Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections (Table 13.5 -1, ASCE 7 - 05) ap : _ 1.0 R : = 2.5 . 4a P • r z FP := R . 1 + 2 • h -W P EQU. 13.3 -1 ` J Fpmax l.6•S EQU. 13.3 -2 F pmin := .3•S EQU. 13.3 -3 F if(F > Fpmax,Fpmax,if(Fp < Fpmin,Fpmin,Fp)) F = 338.5171•lb Miniumum Vertical Force 0.2 • S ds• W dl = 225.6781•lb Harper Project: 1P4 Houf Peterson Client: Job # .x... Righellis Inc. ENGINEERS • PLANNERS Designer: Date: Pg. # LANDSCAPE ARCNITECT9•SURVEYOR9 Wdl 10• lb -8-11-20- ft W = 1600•lb ft Seismic Forces Site Class =D Design Catagory =D Wp := Wdl 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F '1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F v := 1.722 VeI -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) Sms := F Smi := F S1 2•S ms S :_ • Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a := 1.0 R := 2.5 (Table 13.5 -1, ASCE 7 -05) 4a •Sds F := p • •(1 + 2. z) hJ Wp EQU. 13.3 -1 Fpmax 1.6•S W EQU. 13.3 -2 F pmin := • 3•S ds •I p •W p EQU. 13.3 - • F = if(F > F pmax , Fpmax, if(F < F pmin , Fpmin, F F = 338.5171.1b Miniumum Vertical Force 0 Sds•Wdl = 225.6781•lb /4 Cr Li 1-1 0 Harper • H P HoufPeterson COMMUNICATION RECORD Righellis Inc. To ❑ FROM ❑ MEMO TO FILE ❑ L.I?usr nr r. ni_Cnire: .;o� .. .. e,.. .. PHONE NO • PHONE CALL: Q MEETING: ❑ A "0 W RI A . O L n u 3 Q --t i 1 �� I/ c c 0 5 .S? 67,� Ii (- V ,1- kit D 1 -in / s ue ` /r" Nt -‘11 1 . .....0 N. N. N. i t f) • .7,11 0 m U z r o re r ti 0 BV: ( DATE: JOB NO.: ! . . -- - - - - illi*IN 'PROJECT: RE: De-c;14- 11 ()T= i-1 , ?_ P, t C f '1 N 1 "'SC 7 r 21a. � W f i NR‘L CR-PAC. - (tL C6rnrncrn 1' ❑ iz p w 1' U Z w °x ° ° . v a a • Z Z C APR �Ty ;., • . _(1b .6(.1s l ina; am-,__.,,_,.1 ( boards __ - _- a . %N U 1b �� o 50\sr3 0 u ■ F spac +n5 be. -f-t,.J ee r 'tti.a. ,; tis ::-.. 3`s 1e. - o L Z Capps. = (1 puF . • w o Z ,- a l0 , C. T u ,G. __ e e Loa). - . 00.1 C-,c•J ._.._ _ 1 i \) _ l., .ct5 pc s O 6 US'e. (z, S1rrIp n Snr, ' a x °' c 4" 1 - = (` 1 ( )(Z 2_; � k �'j c �`CF 4o - C T f eiroA) t' loa & = 30 # (• _ g31 4 4ii : S\ ern? scsn 3D5 X41 Z e_ iv' o, C , = (2 #:) w 4 4 ## = . 0 k iq—GLIG • • !,. ...14.,.._. ,.1,),L • l lu rn. I — ‘_.;•? 5 lg 4 I (D 4 ED ci- ). 170a-ii '.• 001-1e . 7 c`aee i■G°2. 1 1 - tt - &)2ee= N1# goV8 - •= 7 0 :=1- i< k /■1!-# 000 • . 9 7 - A COZ . (■1 *tooe -w Qbcri I 0 2 0 m z m 0 - m 0 E.-- f; -. a.), 0 1 ..1. (ICI h \,1 0 sdkutg ---d30 ,2 z rNi.... *too.ht. rA# 00)19 › 6 z z m 0 0 0■4:. 09-hq =-- • m 0 > 1 7 0 1 T., . <‘ cl ‘C) CY-1 q 2' al 9 r7i 0 0 - • 7751) 4S Od_ `' :3m :103 ro hi d . - _ - ON 80f :31V0 Uraq I :AEI X - I e2 . Harper HoufPeterson COMMUNICATION RECORD Righellis Inc. To E FROM p MEMO TO FILE ENGINEERS • PLAIINERS -- -_- LA_C,,APE ARCNITECT_•SURVEvC,kS PHONE NO.: PHONE CALL: ❑ MEETING: O XI 'D m m C 7 -I m ft CP ni ri �n '[ 1' I o . f d 8 § G = 0 0 o _ . v V , w al _ • l � 6 $ ,,,,, in C� Fri, 1 c9 1 ._ a 1 . a Z - 0 • <\ • narper • ' ' i• HoufPetersori COMMUNICATION RECORD Righellis Inc. To ❑ FROM ❑ MEMO TO FILE ❑ Ek GINEENS • PLAN::ERS LANDSE JA PHONE NO.: PHONE CALL: ❑ MEETING: ❑ . M - 0 m • m 1 g . • 3 3 . O - g - �� CP V P \ o C II C 1 1 • r • Z ri • • . I COMPANY PROJECT lit WoodWorks® SOFTWARE FOil WOOD DESIGN June 8, 2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Point 2.50 200 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : ----:,- ...... -. •-•-.-,- 4---o•-• .m•-t• : --.--,:, • • e -•-' . -,-•: - i ;',,,-,".--. •0- 7 ":.;• • ..:.... ••-..D •-•: - - - '• lo' 5 Dead Live 100 100 Total 104 104 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams is 1/2" for exterior supports Lumber-soft, Hem-Fir, No.2, 2x6" Self-weight of 1.7 pif Included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 405 Fb' = 1048 fb/Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 . <L/999 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 ' - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 '1.00 1.00 1.00 1.00 - 2 Fcp 405 - 1.00 1.00 - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending(+): LC #2 = L, M = 255 lbs-ft Deflection: LC #2 = L El = 27e06 lb-1n2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. (e150 • ( COMPANY PROJECT I ' tit WoodWorks SOFTWARE FOR WOOD DESIGN June 8, 2009 16:27 Hand Ra112 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End ,LIVE Live Full UDL 50.0 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : -=-7--- - -=,- , r.----r- , r ' : "---.. _ -- '''''",-. : ' - ' "'''' .4'.p: -, -7",7* % ' -' - : '-'• -' - ,:'l ,:" 7, : ' . 'r: ',..-. 74 -- - :: -' , '' ,..(' . ; s z., , 7: ,,':',:: .;-..: ': .., : -: 1.. 7:;:: 2!:.;•.%; 0 .': i • ..7...j.r:. - :::-. ''::;,:' . :. ;" 1 .-: '..:... . .- 10' 54 Dead Live 125 125 Total 129 129 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams is 1/2" for exterior supports Lumber-soft; Hem-Fir, No.2, 1)(6" Self-weight of 1.7 pif induded in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 256 Pb' = 1048 fb/Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.11 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci cn LC# Fv. 150 1.00 1.00 1.00 - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 129, V design = 106 lbs Bending(+): LC #2 = L. M = 162 lbs-ft Deflection: LC #2 = L El = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks@ Sizer 7.1 June 22, 2010 13:57:56 Concept Mode: Reactions � / Base of Structure View Floor 2: 8' 105 .. .- . _. \ :.. 49'-6° i U4 .. 40 -b 1Us :.1600 L - ' . 600 L _ _ 4r -o cs . . • sir 619 D "i: 619 D: vbb 44 "b y9 _ 4d b.. yf_ .. : . ... . ... b • ,. • ', : 1193 L153 2404 L:i,2404 L •; :; . as -b.. y4 625 D105911439 D 1394 D • "' as a yL - • - • - - - - • . . . - -- 30'-10. y'I.- - -- --- .: ...,.. __ [ -- -- _ ib•-b.. b bb ; • 315 L, : • • : 3310 nu 358 D' s' ..1z -0 • b tSb ..... . . .. . .. • .. . -_ --......_ - - - - - --- - _ _ _ _ , b' • .r.).3 : . 315 L :: ��, b . b i 100 L 358 D ... Lb - ry 96 D ; 6_ L..5* -0 D - (t3 : :__ .. ___. LL b f f 74(847 5611 L • _ 756 L. L .. . i n 41452 D- -5546 D 25 - 0 _ i u -o is :625 L, 5D u -o • fL -__ : - - - 203Di. b -b - . ... : i 5D to • iso : - IL-b • - ( 46 D' i u -b � 245 L .105L307, y -b 04j. 3 D 50 L - _ :i _ _ is -b x:74 . ; bu) ' �, 87 L .. 87 L . - : . . . _ - - - -- - 0-0 .. : . .) 20 9 599 LD 8 D: • 1963 D . 1963 D _ µ : '' : -- s -n • 154D . . • -fau � ' • L b.. '--- � 11 2363 D I -b. " ` 78 Di D 106 D U • .BBIB.B$C.CCC CCC CICCC CC CCCC C C CC CCICCCD.DDD D DD DtDDD:DD DDDD D D DD C.DODD DEE E E E E 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38'40' 42' 44' 46'48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'9111•1:1 :1 '1 ?1111111 02222 3(3 4A :4 :55:5(55(5!6(66;6: 6 , 6!6(6.6i6' -707.7.7 -6" " F()(Y e r k 0 (n • L P UT' 4 _. F-1 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 22, 2010 13:57:37 Concept Mode: Reactions at Base of Structure View Floor 2: 8' sus d •1600 L 1600 L 4r -b 1U4/ 619D : • _ 0' :619.., 40 -0 'Hil : tuu 45 b • 44 b " 9 4,1-0 yr --- : - - --- - - - - -.— 4 - I - . . V0 13274 L 3304 L • . = - 4 sa b �s 7153 D -: : • 7072 D sn q u a 315 L : nn - :,::: :: : - - 3580: • nr .: .;. 3sv b t55 - .. : -. Ly'-b us 315 L: L / -b .. - - : . ' : 3 58 D 0 i ; 100E : "\ �5 e • ry 96 D Ls -b . . -._. io 74(84 611 L r56 L �u� r o 4E452 ID' 5546 D + IF 5 lip I y b r 4 625 : I a n.. rs L , 5q _ .. 4/ -0 /1 203 D - - - - 10--0 � � 105L - !96 - 8 L i� bU. • 307 D W. 46 0 . - -- - - - _ • b b. 245 L y -4 s I ~ -• 7 4 0 • bu . 599 L �2587 L , : g 587 L : µ . b . .. a 209 LD8 D- 1963 D : 1963 D : • - • 1540 /uu 725L cb 2219 D .., _ �- - _ .. - - . . 1-b I :78D7D0: :6170'0 u n BB tB.B BCCCC CCCCICCC CC CCCC C C CC CC'CC CD.DD D D DD DIDDD DD DD DD D D DD CD\DD DE E E E E EE'EFEEEIEEIE E'EEEEE€IEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'678'91(1 :1:1.1:111' 1112(222;2 3 :3i 314( 4 4 :4 :4 :615!6(6 6;6 :6 7:77 • • \... 01(:)T I I\j(‘ L i OuT . /4..— F.2..... : " + 'VA tt H arper Houf Peterson Righellis Inc. Cp.. rent Date: 6/24/2010 1:41 PM I system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes\calcs\Unit A \foundations\F1.ftd\ Design Results Reinforced Concrete Footings GENERAL INFORMATION: Global status Warnings Design Code ACI 318 -05 Footing type Spread Column type Steel Geometry d< y ` ° y� .412 in �+ 4.25 ft ' I • r 44 4.25 ft imliztatwm L, 4.25 ft i Pagel Length 4.25 [ft] • Width 4.25 [ft] Thickness 1.00 [ft] Base depth 1.50 [ft] Base area 18.06 [ft2] Footing volume 18.06 [ft3] • Base plate length 5.50 [in] Base plate width 5.50 [in] Column length 5.50 [in] Column width 5.50 [in] Column location relative to footing g.c. Centered • Materials Concrete, f'c 3.00 [Kip /in2] Steel, fy 60.00 [Kip /in2] Concrete type Normal Epoxy coated No Concrete elasticity modulus : 3122.02 [Kip /in2] Steel elasticity modulus : 29000.00 [Kip/iin2] Unit weight 0.15 [Kip /ft3] Soil Modulus of subgrade reaction 200.00 [Kip /ft3] Unit weight (wet) 0.11 [Kip /ft3] Footing reinforcement Free cover : 3.00 [in] Maximum Rho /Rho balanced ratio : 0.75 Bottom reinforcement // to L (xx) : 6-#4 @ 9.00" Bottom reinforcement // to B (zz) : 644 @ 9.00" (Zone 1) Load conditions to be included in design Service loads: • SC1 DL S1 DL S2 DL +LL S3 DL +0.75LL Design strength loads: DC1 1.4DL • D1 1.4DL D2 1.2DL +1.6LL Loads • Condition Axial Mxx Mzz Vx Vz [Kip] [Kip "ft] [Kip'ft] [Kip] [Kip] DL 5.55 0.00 0.00 0.00 0.00 LL 15.61 0.00 0.00 0.00 0.00 RESULTS: Status Warnings - Insufficient development length, Section 21.5.4.1 • Soil.Foundation interaction Allowable stress 1.5E03 [Lb /ft2] Min. safety factor for sliding 1.25 Min. safety factor for overturning 1.25 Paget Controlling condition S2 Condition qmean qmax Amax Area in compression Overturning FS [Lb /ft21 [Lb/ft2] [in] [ft2] ( %) FSx FSz slip S2 1.38E03 1.38E03 0.0826 18.06 100 1000.00 1000.00 1000.00 Bending Factor 0.90 Min rebar ratio 0.00180 Development length Axis Pos. Id Ihd Dist1 Dist2 . [in] [in] [in] [in] zz Bot. 20.11 7.04 19.75 19.75 xx Bot. 20.11 7.04 19.75 19.75 Axis Pos. Condition Mu 4 *Mn Asreq Asprov Asreq/Asprov Mu /(i*Mn) [Kip * ft] [Kip * ft] [in2] [in2] zz Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 1 1 zz Bot. D2 13.38 45.76 1.10 1.20 0.918 0.292 Y 'I xx Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 I 1 xx Bot. D2 13.38 43.06 1.10 1.20 0.918 0.311 f :1 1 Shear Factor 0.75 Shear area (plane zz) 3.10 [ft2] Shear area (plane )o) 2.92 [ft2] Plane Condition Vu Vc Vu /(+ Vn) [Kip] [Kip] xy . D2 8.99 46.09 0.260 II yz D2 8.68 48.88 0.237 1:.;i 1 Punchincishear Perimeter of critical section (b... : 4.67 [ft] Punching shear area 3.31 [ft2] Column Condition Vu Vc Vu /(4 *Vn) [Kip] [Kip] column 1 D2 29.25 104.29 0.374 1 - 1 Notes Page3 *Soil under the footing is considered elastic and homogeneous. A linear soil pressure variation is assumed. * The required flexural reinforcement considers at least the minimum reinforcement design bending moment is calculated at the critical sections located at the support faces * Only rectangular footings with uniform sections and rectangular columns are considered. * The nominal shear strength is calculated in critical sections located at a distance d from the support face * The punching shear strength is calculated in a perimetral section located at a distance d/2 from the support faces *Transverse reinforcement is not considered in footings * Values shown in red are not in compliance with a provision of the code *gprom = Mean compression pressure on soil. *gmax = Maximum compression pressure on soil. *Amax = maximum total settlement (considering an elastic soil modeled by the subgrade reaction modulus). * Mn = Nominal moment strength. * Mu /(4 *Mn) = Strength ratio. * Vn = Nominal shear or punchure force (for footings Vn =Vc). * Vu /(4*Vn) = Shear or punching shear strength ratio. Page4 Beam Shear bcoi 5.5-in (4x4 post) d := tf — 2.in := 0.85 b := Width b = 36-in V:= 4 • f -b•d V = 16.32 -kips 3 V u qu b col b V = 7.83-kips < V = 16.32-kips GOOD 2 Two -Wav Shear bs := 5.5-in Short side column width bL:= 5.5-in Long side column width b := 2-(bs + d) + 2•(bL + d) b = 54 -in pc := 1.0 V := + 8 1 V = 48.96-kips 3 3 •1 3 c := 2.66 f psi b d V� = 32.56-kips Vim= q — (b + d) V = 15.88-kips < V = 32.56-kips GOOD Flexure 2 M qu rb — bcotl 11 b M = 4.98-11-kips I\ 2 J 2) i,:= 0.65 2 := b•d S = 0.22241 6 F := 5 f psi F = 162.5 -psi M ° ft := s f = 155.47 -psi< F = 162.5 -psi GOOD lJse a 3' -0" x 3' -0" x 10" plain concrete footing Plain Concrete Isolated Square Footing Design: F2 f := '2500-psi Concrete strength f 60000-psi Reinforcing steel strength Es 29000•ksi Steel modulus of elasticity 'Ycono •150.pcf Concrete density • /soil := .100pcf Soil density g := .1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Total = 2659.ib Pdl:= Total& Total11 := '7756 Pll := Total!' P := Pdl + Pll P = 10415-lb Footing Dimensions t f := 10. in Footing thickness Width := 36.in Footing width A:= Width Footing Area qnet gall — tf''Yconc qnet = 1375•psf P Areqd gnet Areqd = 7.57541 < A = 9.ft GOOD Widthregd := Aregd Widthregd = 2.75•ft < Width = 3.00 ft GOOD Ultimate Loads = Pdl + tf•A•"'Iconc P := 1.4•Pd1 + 1.7•Pll P = 18.48- kips P qu A q = 2.05•ksf Plain Concrete Isolated Square Footing Design: F3 f := 250 Concrete strength f := 6 Reinforcing steel strength Es := 29000•ksi Steel modulus of elasticity 'Yconc 150.pcf Concrete density 'Ysoil := 100•pcf Soil density all 1500. Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 2363-lb Pdl := Totaldl Total11 475.1b P11 := Totalll Pg := Pdl + Pll Pg = 6938.1b Footing Dimensions t := 10•in Footing thickness Width := 30• in Footing width Width . Footing Area gnet gall — tf''Yconc g net = 1375•psf Ptl Areqd gnet A = = 5.046 ft < A = 6.25 ft GOOD Widthreqd A req d Widthreqd = 2.25.ft < Width = 2.50ft GOOD Ultimate Loads = Pdl + tf'A'"Yconc P := 1.4•1 + 1.7•P11 P = 12.18•kips P gu :_ — q = 1.95•ksf A Beam Shear bcol := 5.5.in (4x4 post) d := tf — 2-in := 0.85 b := Width b = 30-in V :_ 4 • f V, = 13.6•kips 3 Vu qu rb 2 colt V = 4.97-kips < V = 13.6-kips GOOD Two -Way Shear bs := 5.5-in Short side column width bL : 5.5•in Long side column width b,:= 2.(bg + d) + 2•(bL + d) b = 54•in Rc := 1.0 x V .= + 8 1 f -d V = 40.8•kips (- 3 3•0, Vnmax := 0.2.66• f psi•b -d Vnmax = 27.13•kips ,�;= qu'[b Vy — O + d) V u = 9.71 .kips < Vnmax = 27.13-kips GOOD Flexure 2 Mu qu r b — 2 J bcol (11 2 J b M = 2.54•ft•kips I A:= 0.65 b 2 MSS:= 6 S = 0.185 -ft F := 5 -� f psi F = 162.5-psi M f := S u f = 95.19 -psi < F = 162.5 -psi GOOD Pee a 2' -6" x 2' -6" x 10" plain concrete footing Plain Concrete Isolated Square Footing Design: F4 f := 2500-psi Concrete strength f := 60000.psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity Yconc = 150 pcf Concrete density • Ysoit 100•pcf Soil density gall 1500.psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl 5001.1b Pd1:= Totaldl Total!' := 7639•lb Pll := Totalll Pd Pd1 + P11 P = 12640-lb Footing Dimensions tf := 12•in Footing thickness Width := 42•in Footing width A := Width Footing Area gnet gall — tf•lconc net = 1350•psf P Areqd gnet A red = A ft < A = 12.25 ft GOOD Widthreqd A reg d Widthregd = 3.06•ft < Width = 3.50 ft GOOD Ultimate Loads Pd1 + tf•A' P := 1.4•Pdl + 1.7•Pll P„ = 22.56-kips P qu := — q = 1.84• ksf A I I Beam Shear b := 5•5.in (4x4 post) d:= tf -2.in := 0.85 b := Width b = 42•in V„ := 4. • f V„ = 23.8-kips 3 (13 — bcol Vu qu 2 •b V = 9.8•kips < V = 23.8 -kips GOOD Two -Way Shear bs := 5.5-in Short side column width Long side column width b := 2-(bs + d) + 2•(bL + d) b = 62-in (3 := 1.0 V 4 + 8 f•psi c •b•d V„ = 71.4-kips C 3•0 cJ V := x•2.66• f V = 47.48•kips qu — ( bcol + d) Vu = 19.49-kips < V = 47.48•kips GOOD Flexure r 2 Mu q,; I b — 2 J bcolJ (2) 1 b M = 7.45•ft•kips •:= 0.65 ' 2 •— b d S = 0.405•ft 6 F := 5.0 spsi F = 162.5• psi M n f := S f = 127.79•psi< F = 162.5-psi GOOD 'Use a 3'4" x 3' -6" x 12" plain concrete footing Plain Concrete Isolated Round Footing Design: f5 f 1000-psi Concrete strength f := 60000-psi Reinforcing steel strength Es := 29000•ksi Steel modulus of elasticity '(cone 150•pcf Concrete density (soil 120•pcf Soil density gall := 1500•psf Allowable soil bearing pressure TYPICAL FOOTING Reaction Totaldl:= 619-lb Pd1:= Totaldl Total11 := 1600.lb Pp := Tota111 Pt1:= Pd1 + Pll Pd = 2219- lb Footing Dimensions t := 12• in Footing thickness Dia := 18•in Footing diameter rr Dia Footing Area gnet gall — tf• net = 1350.psf Ptl Areqd gnet A = 1.644•ft < A = 1.7741 GOOD I Aregd•4 Diareqd J Dia = 1.45.ft < Dia = 1.50 ft GOOD 71 Ultimate Loads ,w Pdl + tf•A''Yconc P := 1.4•Pd1 + 1.7•P11 P = 3.96•kips P q :_ — q = 2.24•ksf A \'3 Beam Shear boa' 3.5•in (4x4 post) d := tf — 2-in := 0.85 b := cos(45•deg)•Dia b = 12.73•in V,,:= 4 •f psi•b•d V„ = 7.901•kips 3 Vu qu •r b colt b V = 0.91 -kips < V = 7.901 -kips GOOD • • Two -Way Shear bs := 3.5.in Short side column width bL := 3.5• in Long side column width b := 2-(bs + d) + 2 -(bL + d) b = 54•in (3 := 1.0 V O•( + 8 1 f si•b•d V„ = 23.703 -kips 3 3 p := 2.66• f V,,,,,„ = 15.76•kips V q [b — O + d) V„ = — 0.31•kips < V,,,,, = 15.76•kips GOOD Flexure 2 M qu C b — 2 J l bcoll r 2J 11 b M = 0.1841-kips A,:= 0.65 2 "x":= b-d S = 0.123. 1 6 F =5•(:1)• f F 178.01•psi M f := s u f = 9.9-psi < F = 178.01 -psi GOOD Use a 18" Dia. x 12" plain concrete footing • Plain Concrete Isolated Square Footing Design: FG f := 2500-psi Concrete strength f :_ 60000.psi Reinforcing steel strength E := 29000,ksi Steel modulus of elasticity 'Yconc 150•pcf Concrete density 'Ysoil 100•pcf Soil density q ii := 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction 'Total := 7072.1b Pd) := Totaldl Totaljl := 13304-lb P11 := Totalll Pt1:= Pdl + Pll P = 20376-lb Footing Dimensions t := 15•in Footing thickness Width 48• in Footing width • A := Width Footing Area gnet = gall — tf Yconc net = 1313•psf P Areqd = gnet A q 15.525•ft < A = 16•ft GOOD red Widthreqd Areqd Widthreqd = 3.94. ft < Width = 4.00ft GOOD Ultimate Loads = Pd1 + tf'A''Yconc := 1.4 Pdl + 1.7•P11 P = 36.72.kips P qu — q = 2.29•ksf ' \c" A Beam Shear bcoi := 5.5•in (4x4 post) d := tg – 2-in := 0.85 b := Width b = 48-in • V := 4 • f psi•b•d V = 35.36•kips 3 V := q ( 2 c01) •b V = 16.26-kips < V = 35.36•kips GOOD Two -Way Shear bs : 5.5-in Short side column width bL:= 5.5-in Long side column width b := 2-(bs + d) + 2•(bL + d) b = 74•in • ac := 1.0 V (1)•r + — ) • f psi•b•d V = 106.08 -kips 3 3•3 Vruuax := x•2.66 f psi b d V luu = 70.54-kips q , ; [b 2 - (b + d) v 31.26-kips < Vmuax = 70.54-kips GO,OD Flexure 2 2 J M qu rb — 2 bcol) 11 b M = 1439•ft•kips I ` A:= 0.65 b 2 S := 6 S = 0.78241 F := 5 (1:1• f F = 162.5•psi M ft := s u f = 127.75•psi< F = 162.5-psi GOOD 'Use a 4' -0" x 4' -0" x 15" plain concrete footing I Plain Concrete Isolated Square Footing Design: F7 f := 2500-psi Concrete strength f := 60000-psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity '(coin 150'pcf Concrete density '(soil 100•pcf Soil density gall := 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl:= 1200-lb Pd1:= Totaldi Totalll := 3200-lb P11 := Totalll P := Pdl + P11 Pd = 4400• lb Footing Dimensions t := 10:in Footing thickness Width := 24-in Footing width A,:= Width Footing Area gnet gall — tf•"lconc gnet = 1375•psf Ptl Areqd lnet A red= q 3.2 ft < A = 4•ft GOOD Widthreqd A req d Widthreqd = 1.79-ft < Width = 2.00 ft GOOD Ultimate Loads PdI + tf•A•'Yconc P := 1.4 Pdl + 1.7•P11 P = 7.82-kips P qu A q = 1.96•ksf Beam Shear bcoi := 5.5•in (4x4 post) d:= tf -2•in := 0.85 b := Width b = 24-in V :_ 4 f psi b d V = 10.88• kips 3 V = chi{ b 2 colt b V = 3.01•kips < V = 10.88•kips GOOD Two -Way Shear b := 5.5•in Short side column width bL := 5.5 in Long side column width b := 2•(bs + d) + 2•(bL + d) b = 54 -in : = V 4 + 8 f psi•b•d V = 32.64-kips 3 343c V := (0-2.66• f psi•b -d V„ = 21.71-kips ,Vµ;= 9u•[b - ( bcoi + (1) V = 5.35 -kips < V,„,„ = 21.71-kips GOOD Flexure 2 — 'bcoi (1 mu 9u b M = 1.16 ft kips A:= 0.65 bd 2 := S= 0.148.1 6 F := 5•(1)- f F = 162.5-psi M f := s u f = 54.45-psi < F = 162.5-psi GOOD lJse a 2' -0" x 2' -0" x 10" plain concrete footing 4-pt• 613 - • • ° ; c a - C c_m -1V7 0 1 -& 12 tut - 7 -)( s' ) ( _ - 1t -Ica �S •0 Vk r)°) if I so ° t•e - VI, 4 _ C 2cmc. c + Szc' t� 4-i t-C 1 = a 4 J 2.‘e,' b = b/ W = ( Veke -o c )ccic_ie c.ere t. clOCZZ S's, _ -81 '\ Z ❑ o e 4($V% )c.-1Q' Q X)(_-s' 4")Qs 0) = a 1i i s•Qs Ok' \ t kJ \ \-k \ \'Sct. 1O1n 3 3 U;u )c)i..). a NQ - - , L o = m r � 11 r O ri 1 3 O �tSa°1S�' a I� e rQ, Z 1.31 `J' 11-f o m aj�0�;11 C A3\ • ❑ ❑ pool -{ uo - -i- un :3a I e(AA 4001 TaU iCipOD :103r0Lhd JO \ b0- ► U D' : oN eor Olae 31tlO ).\1\1V ^e Bentley- Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:43 AM Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\Front Load 2.etz\ • M33 =51.9 [Kip *ft) • M33=-12.19 [Kip'ft] • • Moments 1. C.\f 7 nay Bentte j Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:35 AM Units system: English File name: O: HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\Front Load.etz\ 'M33 =25.66 [KipIt] • M33= -30.27 [Kip•ft] Y Mmen L(2- V 31 BY A\\K/ DATE: _- AO k ' { JOB NO.: c-- 01/4,3 _ 0 9 . 0 OF PROJECT: , .VC‘ 'COCA I Si RE: UN 1 T A - RePl _ l,oc iril,ts k ❑ ❑ 30.41 , 4 30.41 Or J_ Z o ` �. II 153C 4.153�- 0 J ct u W 0 w a aa; -t Z 0 U Check. 0 v er- Fur Z D M = 3o, 41 t 30.414 (a,"�b0(ab) = 11L.1$ kF E 0 M = (0,iso (g.)(1)CI +- - 3,Is3(,) 4- �,1s3Ca %) 0 A � = asgAL ts t Z M A tic lb `IV r S_ i 1' . 01(.- ,s W z F- x = aaq,ac� - 111o,t� s.042 c t✓ e= s-.5(.4 ao .406 (31 (YW•4t = a0,CtOto 4_ Co Ca0 / s,s (0) : (.195 r_sF a Ca')Ca> C 2,Y1- 2..) -2- 9 n = ao,coe _4(O,aOc.'Cs ,s4.) ,:a4.5-- C2..)(.. C C2,2V -- 3 t_ 03-2. ,) 3(a)(aa- aCs.s 3 0 c l- tywoc r t. ab 1 1 F< t WO ps F -' , 0 1 ►il FV : Wo 0 ' F-22 .,., Bentley. Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:38 AM • Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309)\CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \toundations\Rear Load.etz\ • M33 =43.24 [Kip *ft] • • M33= -45.06 [Kip'ft] • 1 Mc5re\ks .. 42F6 BentLe Harper Houf Peterson Righellis Inc. • Current Date: 6/22/2010 10:43 AM Units system: English File name: O: HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A\foundations\Rear Load 2.etz\ M33 =41.88 [Kip`ft] • • M33= -46.37 [Kip•ft] • 6 Mome,Nk - L�2 • iz • • cm 0 • • . 2: Ea „ • - , r ( 7, (7, ( 44044oR otD4 - AO ""all < h ‘;.1 S L'1)13")1 sm ObSerO 7 9cCr" 6 ) b W - c (F 111 '0 r .= - 19 • = Skf '0 n 1,• -Lie 1 -S9L000'o9)(ititl'ojobv vvy • r4 - • - .( 11- :=7 sv 101 6 1:i - Co - '*?\4. q31 9 o • cv 10i ° O. • o , ( 07QOOCY Cfd)i) = - (-) sr s 'To 1,7.1: 0 1%. el)j_ • • 0 3 q s'svo100 -twn • • - 4,u()= 0 m m 0 • • - -) 1q1. ---- - 411 . 41Nrc i a5 . )6• 14U0" = vowvi 0 9 31 E 11 7.)ki xi • CAJ 003 N9 J'Qa 103 Mad Cl a C>. N °or ' : :As BY JOB No OF PROJECT: RE Vaynk Ioadk PcoVq\B Li • z 1 t o L I Va O 2 2 IV\ cc . 0 . Jr i- c -.- 53 •t4 0 z 0 W i fr ci. k A Z MAUI\ = QA1 A F; .'b) --- --) 17 < Qiu k C -› - 40.0 4 0 t. 0 Z D 2 ON\n_-:0.0‘0.3,6U*C47.) 2 n l'‘w\ n ts e teP O.C. ..) s A:: . ■ 1 x , i- e U." c, • 0 ,C3 5 0 6 • 45 0 o z 0 Mr. = °AO CatiAn ( 14 3/L ) 1:rt3 (-t . tt s e_vgi o,c.. A. l Lio to . p,0 . a ... (N ,coo) / Co, tryz0002.. ..:...-- tts_C(-Zti-) 0 Mr\ =.- 0 AO CVSY-On(b0,006. (A5 - -- ----citi-, > - irk) tiF s• @ to" oic... , O(\ .29_0(1,2o / Cab :--• 0 - i-t..5 t N.) a) 1 - 1 ‘ 7, i PI 75 1 t\ec6coA4f... Ti 1 ' g i:> - Tr - A - 4 e ri.." 0 ,C. • As= 0.71 u\I Glt., a ,.. (0,fts:IcArx),6)/o,i5cacrai)C biz) -..— CtIN\n-z (;) 05.- 0 ,461.1 4 'FItcs BY j\N\ DATE: D 1 0 JOB NO.: CL:.; ` -0'10 OF PROJECT: e ' , ( ) ( 1. Z5 I RE: U 1 y� \i 1 `y ` A � 1 5 ❑ ❑ z aL.o Li 0 W 5.a v ►�, • i,b6 O F L ❑ 1 ._ J; 1• L. L i- l o :I O w a� 4------il 1, a a'-4 o Z W = a Z 1ec1L Cvedur\nwyn9 O o N = ar...o3 I.. Mrz c 61o,tsoli s)(3X4) i- .2,(a . )4- l,LL(() - 4 t .a L 2 Mer (blot s Ct /5 (... 5 4- I,U,(2)= s(. kz ❑ Mg. _ 4 l,°i b = � dol > 1.5 o' 2 i Z Itor ' a6 o a X - Vc. _ 4t -Ql, -a�,o3 : \°\E e.= � et S 1.5,2 4-1,LL q■MG.x = r (3% 1a _a 0 _ a,Q r-SC :- oY.._ 3 >_cr3 2e' J 3C U 15- a(a,')o1 >) Iv sh0(4 terin Icon ► to us a b lv (ests+ Ove r fl my Mor ac--c)- i o (> MQL = (5. a r- 3 4- CI1L +3:AO fi 41)1_ u5e $k 51- 4s,9( . -1-(-101.- @ eo.�0\ " 'r. o f 5 to t Mfg- = ( i-3. Z J( (0) 4- ( I. (0� 3-- 3 .2 q D L.. y a " a� o ao -- 64. tz #-4Dl_ gxa - I.SMo < Ma_ \cs(a6. 37 s- 4S,ctU 4- DL '' b1 .- - 1, 3 � . 54 fccAin9 i 3 0 \L i - , To o 11 n.c3 _ .fort \c Mal._ C5 +2,21() I- (1,1L+- 3.2Ys)+30‘__ • a.� '- 301_ M= (.I- G. - 3DL 1,SMoc 1,5 (v...03) G - ;-z, - )- 4- 3 9L 17\--= Q.115 ao V - Icmg x .;C. x 15" 1 >-' a - asor_ . M i Q 4 (, . – a'► ,5tcD : ___1, - )- - )- F E _ ( ,as -1- s.Z +3 -3 .2{- 1,c,L, ,z 1551 e,= 122 6 4 - 1,incxx = L4Gs,5 ►> = a m90 NM-) 30),(L-2.(1 1 -Va r = zx: q • ro < • c . A 0 -I x 0 z ❑ m Z -'1 O 3 1 ,s1 x� ) <(S31' 1)Z - c )) ►' - z-)E o ) N -isd S� �? = ' N +0 o n 0 EG)g' /W — 3 m -I m <a�Z - 1x0. ❑ ❑ :.173r0 Id 3O 1f \7� : .Ni 6or 1 �O �' :31Va \N\c/ -na Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:42 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \Interior 2.etz\ • M33 =23.55 [Kip ft] M33=- 17.88[Kip`ft] Y l �� LC %Bent Leg Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:42 AM Units system: English File name: O: HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \Interior.etz\ M33 =32.26 [KipIt] • M33= -9.27 [Kip *ft] A X Me L(Z tg,f30 ACI 318 -05 Appendix D 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc = 3000 psi fc = 3000 psi h' = 3.50 inches hef =; ; 12.00 ;inches (into the Fe Stem = 8i00 ' ` inches Note: hef above is the the embedment into or cmax = 5.25 inches the foundation and does not consider stem wE Fnd Width = 36.00 inches e = 2.25 inches Cmin = 18.00 inches Wc,N= 1.00 cast -in -place anchor Wc,N= 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor = 0.75 strength reduction factor 4' = 0.75 strength reduction fact' Calculations Calculations ANc = 68 in` AN = 1296 in` AN° = 110.25 in` AN = 1296 in` Nb = 8,607 pounds • Nb = 55,121 pounds Wed,N = 0.8286 Wed.N - 1.00 N = 4,399 pounds Nob = 55,121 pounds 4)Ncb = 3,299 pounds 4)N = 41,341 pounds Combined Capacity of Stem Wall and Foundation olcb = 44,640 0.754)N = 33,480 12-3 ; • • -2i 0 7; o Po cT o AO 1 kA) < tab z Z 0 1 0/ (9 0 ": 0 3 • 5 -Po -) - b4 (I) Crul 0 - 71c$ (cs..17else-IE 3 (Z/ bOh'0 - 7 0)010 = N1 bah ± (c)E.:)(900i)ea'0/ (000'017 Vas' o = --1 3 - -r.N\ bg_S'0 ‘1 21 g 514- (k) VtAI 0-97.W - 13 731 O • M )v-ts\-)01=,'0='''WO m 0 • r • 0 m -I 31 rn 0 0 e !kin jr0/°er k 'kg \ ,1 :103 rOeld dO 0 0 r\/ )) ON EMT oige -9 Concrete Side Face Blow Out Givens Abrs = 2.15 in` ft = 3000 psi c = 18.00 inches = 0.75 strength reduction factor Calculations Nsb = 231,191 pounds 4)N = 173,393 pounds Concrete Pullout Strength Givens Abrs = 2.15 in' fc = 3000 psi = 0.75 strength reduction factor Calculations N 51,552 pounds 4)N = 38,664 pounds Steel Yield Strength Givens f = 58,000 psi A = 0.606 in = 0.80 strength reduction factor Calculations N = 35,148 pounds. 4)N = 28,118 pounds < 33,480 Ductility Met Holdown Check Holdown: HDU14 Holdown Capacity= 14,930 pounds 1.6* Capacity= 23,888 pounds 23,888 < 28,118 Holdown Checks BY: DATE: JOB NO OF PROJECT: RE: S -e m Wall ' Cool ❑ ❑ € Sid.es c Bu i k1.ir0 • z F 0 2 ° asG t C l2 ?sF); 300 9 L uo.> > ❑ cLU IeveisYV2, s0> = a Of) ■ts Sloor 0 - 4o►N CLSO?cAl;j nu) 333 pt.F 5i-ern 0 W ( >( tsO`x.�)(u ) - too Pu Z 4 W = fw 1 LL o ($c )(2 levels ')x.40 >s > LAO p"..F loor Z O TO-kal toad. = 1 t +- tOOu) . M O O < S b'p =1 s - oO psF = t 0 p ..P • VJ o IV)I + IC0 Ow O E O • 0 Z ❑ o e rear c) . bk.) 1d nop O r a Dt_o aaCtt 3cx pLF Walk 6 teveVs)( psF a34 Pi.r ..P koor 40►N Ctso F X.'11z (bk.) = 333 S ( = MOW P (La I+ Fsc = 3 0' pt--P • fea F LL: (9>l2.>C. ) = 1-2b L..F Clt >C2s> _ 4 PLC A +" Tl a � Io UvJ a3 i Io0W 4 I.SOO) x a w i t,L '-°- a,1 ‘N @ e uvo-s 61; L Saome as fit ,Stoc.x` toc t w = 1.00 tS"' ‘ Par ic\, c Ix.. o ;.,s(11)(2..)= (00 pa- wall B)(2 = 110 pL,F s 10or 4U,NCisopcOkliZK _ 33 51 I ►zX Lac, w !00 w LL C0•2 > (.40)C2,) = \25b0 ?Lc_ Moor Tl.. a(.,a°► + m u.) W = Lb T1- us-e a4 IN 4 ?H