Loading...
Specifications (4) s w, f - / � ( ,1q Structural Calculations for Full Lateral & Gravity Analysis of Plan A 1460 Lot 50, Summer Creek Townhomes Tigard, OR Prepared for RECF . Pulte Group AUG 17 2010 CITY OF TIGARD July 13, 2010 BUILDING DIVISION JOB NUMBER: CEN -090 ** *Limitations * ** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and /or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 117 sheets total including this cover sheet. w GI, oalaizt* ( A,t to -On or( � PROT X09 ` �� o'NE v � � i, and �, 12,320 .02.-- g Lam .67 • A.. •ved Plans 1f �I0 - CO 1 d ! ,W Dateq`2(t tc IA1/4C3 k Y15, �4 (_0T .: N4 E � /Lam' ( 0 — �C I EXPIRES1 12 -31 -2011 I This Packet of Calculations is Null and Void if Signature above is not Original Harper 0! Houf Peterson Righellis Inc. 1 LANOSCA ✓L . LC'i. VLV.).5 205 SE Spokane St. Suite 200 • Portland, OR 97202 • [P] 503.221.1131 • [F] 503.221.1171 1 104 Main St. Suite 100 • Vancouver, WA 98660 • [P] 360.450.1 141 • [F] 360.750.1 141 1133 NW Wall St. Suite 201 • Bend, OR 97701 • [P] 541.318.1 161 • [F] 541.318.1141 OFFICE COPY Structural Calculations for Full Lateral & Gravity Analysis of Plan A 1460 Summer Creek Townhomes Tigard, OR Prepared for Pulte Group July 13, 2010 JOB NUMBER: CEN -090 ** *Limitations * ** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and /or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 117 sheets total including this cover sheet. This Packet of Calculations is Null and Void if Signature above is not Original Harper '• Houf Peterson • Righellis Inc. E.A1,CERnOPLANYER6 LANG9GANE A I.It[Gt9•OVR'IEVON5 205 SE Spokane St. Suite 200 a Portland, OR 97202 a [P] 503.221.1131 0 [F] 503.221.1171 1104 Main St. Suite 100 o Vancouver, WA 98660 0 [P] 360.450.1 141 e [F] 360.750.1 141 1133 NW Wall St. Suite 201 o Bend, OR 97701 e [P] 541.318.1 161 e [F] 541.318.1 141 Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit A Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, lw: 1 2006 IBC / 2007 OSSC Occupancy Category: II Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed, ASCE.7 -05 Ch. 20 Importance, le: 1 ASCE 7 -05 Table 11.5 -1 Ss: 0.942 USGS Spectral Response Map S1: 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength, f' c: 3000 psi Foundations & Slab on Grade Concrete Unit Weight, y 145 pcf Steel Reinforcement Yield Strength, f 60,000 psi Wood Studs (Wall Studs): Hem -Fir #2 2x & 4x Wood Beams & Posts: DF -L #2 6x & Greater Wood Beams & Posts: DF -L# 1 Glulam Beams: 24F -V4 PSL Beams: Fb =2,900 psi, FV= 328psi, E =2.0 Million TS /LSL Beams: Fb =2325 psi, FV= 460psi, E =1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : .1500 psf Assumed 2. All manufactured trusses, joists, and flush beams u.n.o. shall be designed by others. Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 WoodWorks - Sizer version 2002 Bently RAM Advanse Harper Project: SUMMERCREEK TOWNHOMES UNIT A N;P' Houf Peterson. Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # IAHOSCAPE ARCHI TEC fS• SURVEYORS DESIGN CRITERIA 2007 Oregon Structural Specialty Code & ASCE 7 -05 Roof Dead Load RFR := 2.5•psf Framing • RPL := 1.5•psf Plywood • RRF := 5 • psf Roofing RME := 1.5 -psf Mech & Elec RMS := 1.psf Misc RCG := 2.5•psf Ceiling RIN := 1 •psf Insulation RDL = 15•psf Floor Dead Load FFR := 3•psf Framing FPL := 4.psf Sheathing FME := 1.5•psf Mech & Elec FMS := 1.5•psf Misc FIN := .5•psf Finish & Insulation FCLG := 2.5•psf Ceiling FDL = 13•psf Wall Dead Load WOOD EX Wall := 12.psf INT_Wall := 10•psf Roof Live Load RLL := 25•psf Floor Live Load FLL := 40 -psf L\ • Harper Project: SUMMERCREEK TOWNHOMES UNIT A Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENOINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCNITECTS•S VRVEYORS Transverse Seismic Forces Site Class = D Design Catagory = D Building Occupancy Category: II Weight of Structure In Transverse Direction Roof Weight Roof Area := 843.11 RFwr := RDL•Roof Area RFw1- = 14162-lb Floor Weight Floor_Area2 := 647.11 FLRw := FDL•Floor Area2nd FLRWI.2nd = 8411• lb Floor Area3rd 652•$ FLRWT3rd FDL•Floor Area3rd FLRWT3rd = 8476-lb Wall Weight EX Wall Area := (2203)•ft INT Wall_Area:= (906)•11 WALLvq := EX_WaII + INT Wall WALLw -r = 35496•1b • WTTOTAL = 66545 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h„ := 32 Mean Height Of Roof I := 1 Component Importance Factor (11.5, ASCE 7 -05) I 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C := .02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x := .75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period T := C T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. . (Chapter 22, ASCE 7- 05)...or S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F := 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4-1, ASCE 7 -05) F, := 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) Harper Project: SUMMERCREEK TOWNHOMES UNIT A IIP Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANO9CAPE ARCHITECTO•SURVEYORS S MS Fa SMS = 1.058 (EQU 11.4 -1, ASCE 7 -05) 2 •SMS S := 3 Sd = 0.705 (EQU 11.4 -3, ASCE 7 -05) SM1 := F Si SM1 = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2 •SM1 Sdl := 3 Sdl = 0.389 (EQU 11.4 -4, ASCE 7 -05) Cst := Sds Cst = 0.108 (EQU 12.8 -2; ASCE 7 -05) R ...need not exceed... Sd1 (EQU 12.8 -3, ASCE 7 -05 Cs := Cs = 0 . 2 23 (E Q 7-05) T R ...and shall not be less then... C1 := if(0.044• < 0.01, 0.01 , 0.044•Sd 0.5 S1•Iel (EQU 12.8 -5 &6, ASCE 7 -05) C2 := iftSI < 0.6,0.01, J R Cs := if(Ci > C2 , C 1, C2) Cs = 0.031 Cs := if (Cst < Cs < Csmax,Cst,Csmax)) Cs = 0.108 V := Cs• WTTOTJ V = 72201b (EQU 12.8 -1, ASCE 7 -05) E := V•0.7 E = 50541b (Allowable Stress) /1 ‘:3 Harper Project: SUMMERCREEK TOWNHOMES UNIT A I3P Hotif Peterson Client: PULTE GROUP Job # CEN -090 • Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCMITECT$• SURVEYORS Transverse Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 100 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I := 1.00 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X := 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... a2 := 2•.1.20.ft Zone A & B Horizontal Length — 4 ft (Fig 6 -2 note 10, ASCE 7 -05) a2 or • S .4 -h 2•ft a2 = 25.6 ft but not less than... a := 3.2•ft a2min = 6 ft Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA 19.91psf PnetzoneB 3.2•psf PnetzoneC 14.4•psf PnetzoneD 3.3•psf Vertical PnetzoneE 8.8•psf PnetzoneF —12•psf PnetzoneG :_ —6.4•psf PnetzoneH 9.7•psf Basic Wind Force PA := PnetzoneA'Iw'X PA = 19.9 -psf Wall HWC PB := PnetzoneB'Iw'X PH = 3.2•psf Roof HWC PC := PnetzoneC'Iw'X Pc = 14.4 -psf Wall Typical PD := PnetzoneD'Iw'X PD = 3.3 -psf Roof Typical PE := PnetzoneE•Iw•X PE = — 8.8 -psf PF:= PnetzoneF-Iw•X PF = —12.psf PG := PnetzoneG'Iw -X Pc, = — 6.4•psf PH := PnetzoneH' I A PH = — 9.7• psf r. Harper Project: SUMMERCREEK TOWNHOMES UNIT A 111 Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. - ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE A RCN,ECt S•SURVENOR5 Determine Wind Sail In Transverse Direction WSAILZoneA (41 + 59 + 29).ft WSAILZoneB (19 + 0 + 23).ft 'WSAILZoneC (391 + 307 + 272)•ft 2 WSAII-ZoneD (0 + 0 + 5) -ft 2 WA := WSAILZoneA'PA WA = 2567 Ib WB WSJ- ZoneB'PB WB = 1341b WC WSAILZoneC'PC WC = 139681b WD = WSJ- ZoneD'PD WD = 161b Wind_Force := WA + WB + WC + WD Wind_Force := 10•psf- (WSAILZ + WSAILZoneB + WSAI-ZoneC + WSAILZoneD) Wind_Force = 166861b Wind_Force = 114601b WSAII,ZoneE 94•ft2 WSAH-ZoneF 108•ft2 WSAILZoneG := 320•ft2 WSAILZoneH 320•ft2 WE := WSAILZoneE'PE WE = —827 lb WF := WSAILZoneF'PF WF = — 12961b WG WSA [ LZoneG'PG WG = — 20481b WH := WSAILZoneH'PH WH = — 31041b Upliftnet WF + WH + (WE + WG) + RDL•[WSAII -ZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneGg. Upliftnet = 1212 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION Harper Project: SUMMERCREEK TOWNHOMES UNIT A P Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • MANNERS Designer: AMC Date: Pg. # I ANDSCAPE ARCNI l'ECTS• SURVE ',ORS Longitudinal Seismic Forces Site Class = D Design Catagory = D Building Occupancy Category: II Weight of Structure In Longitudinal Direction Roof Weight Roof Area = 944 ft Fwx,:= RDL•Roof Area RFW-1• = 14162•lb Floor Weight Floor_Area2 = 647 ft F= FDL -Floor Area2nd FLR = 8411•1b Floor_Area3 = 652 ft w= FDL•Floor Area3rd FLRWT3rd = 8476•Ib Wall Weight D.C. Y1'.a11. ArNg;= (2203).ft INT Wall Area = 906 ft EX_Wal1 + INT Wall WALLWr = 35496-lb WTTOTAL = 66545 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h = 32 Mean Height Of Roof I = 1 Component Importance Factor ' (11.5, ASCE 7 -05) ,:= 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C = 0.02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x = 0.75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period ,:= C -(h T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 = 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S = 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F = 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F" = 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) 4- \lo Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP ° Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCH; rECTS •SURVEYORD S.�:= F SMS = 1.058 (EQU 11.4 -1, ASCE 7 -05) n§Ase Sds = 0.705 (EQU 11.4 -3, ASCE 7 -05) 3 5 = F S1 SM1 = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2 • SM1 • = Shc = 0.389 (EQU 11.4 -4, ASCE 7 -05) 3 := S R Ie Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) ...need not exceed... C Shc Cs = 0.223 (EQU 12.8 -3, ASCE 7 -05) """ _ T a •R ...and shall not be less then... Cj:= if(0.044•Sd < 0.01, 0.01,0.044•Sd 0.5.S1.4l (EQU 12.8 -5 &6, ASCE 7 -05) , a,:= if(S1 <0.6,0.01, R J m if(Ci > C2,C1,C2) Csmin = 0.031 Cs= if (Cst < Cs < Csmax,Cst,Csmax)) Cs = 0.108 V := Cs•WTTOTAL V = 72201b (EQU 12.8 -1, ASCE 7 -05) E:= V•0.7 E = 5054 1b (Allowable Stress) Harper Project: SUMMERCREEK TOWNHOMES UNIT A Righellis Inc. 0 Houf Peterson Client: PULTE GROUP Job # CEN -090 ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCNITECT$• SUR`:EYORS Longitudinal Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 110 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I = 1.0 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X = 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... = 2•.1.20•ft Zone A & B Horizontal Length = 4 ft (Fig 6 -2 note 10, ASCE 7 -05) or = .4•hn2•ft a2 =25.6ft but not less than... 2 := 3.2•ft a2 =6ft Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnettoneA = 19.9•psf PnetzoneB = 3.1psf I PnetzoneC = 14.4•psf PnetzoneD = 3.3•psf Vertical PnetzoneE = —8.8•psf PnetzoneF = — 12•psf PnetzoneG = — 6.4•psf PnetzoneH = — 9.7•psf Basic Wind Force ,:= PnetzoneA'Iw• PA = 19.9•psf Wall HWC XD A := PnetZOneB' Ivy' X PB = 3.2•psf Roof HWC PnetzoneC'IN,•X Pc = 14.4.psf Wall Typical := PnetzoneD' I PD = 3.3•psf Roof Typical Pte•= PnetzoneE'h,•X PE = — 8.8•psf ,:= PnetzoneF'Iw'X PF = — 12•psf ,:= PnetzoneG'IwX PG = — 6.4•psf Pte:= PnetzoneH'Iw•X PH = — 9.7•psf /7' :6. • Harper Project: SUMMERCREEK TOWNHOMES UNIT A P Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE A RCNITECTS• SURVEYORS Determine Wind Sail In Longitudinal Direction Nom,:= ('48 +.59 + 40)48 W: ='(10 + 0 + 44)•ft W : = (91 + 137 + 67)41 VS g := (43 +0 +113)•ft WSAILZoneA'PA WA = 29251b WSAILZoneB WB = 173 lb ,:= WSAILZoneC'PC WG = 42481b Wes= WSAILZoneD'PD WD = 515 lb Wince:= WA + WB + WC + WD Wi d o c= 10•psf•(WSAILZ + WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind Force = 7861 lb Wind_Force = 6520 Ib N� n := 148 • ft WNNWazy v:= 120 -ft2 WS��:= 323•ft2 ya := 252 -ft Wes:= WSAILZoneE'PE WE = – 13021b W, ,:= WSAILZoneF'PF WF = – 14401b Wes= WSAILZoneG'PG WG = – 20671b Wes:= WSAILZoneH'PH WH = –2444 lb N T li 0 ,:= WF + WFI + (WE + WG) + RDL•[WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneG)]'.6 1.12 Uplift = 12431b (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION /9— L. Harper Houf Peterson Righellis Pg #: Transverse Wind Line Shear Distribution ASCE 7-05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = • 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf A. = 1.00 Iw= 1.00 Wind Sail Wind • Net Design Wind Pressure (psf) (.) Pressure (Ibs) Zone A = 19.9 129 2567 Wall High Wind Zone Horizontal Zone B = 3.2 42 134 Roof High Wind Zone Wind Forces Zone C = 14.4 970 13968 Wall Typ Zone Zone D = 3.3 5 17 • Roof Typ Zone Zone E = -8.8 94 -827 Roof Windward High Wind Zone Vertical Zone F = -12.0 108 -1296 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 320 -2048 Roof Windward Typ Wind Zone Zone H = -9.7 320 -3104 Roof Leeward Typ Wind Zone Total Wind Force =l 16686 Ibs I Use to resist wind uplift: Roof Only Total Exterior Wall Area = 2203 ft Uplift due to Wind Forces= -7275 Ibs Resisting Dead Load = 8472 Ibs • El 1197 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Dia hragm (ft Zone A Zone B Zone C Zone D ' Main Floor 41 19 391 0 Upper Floor _ 59 0 307 0 Main Floor Diaphragm Shear = 6507 Ibs Upper Floor Diaphragm Shear = 5595 Ibs Roof Diaphragm Shear = 4584 Ibs . Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Diaphrag Diaphragm' (Ibs) (Ibs) (Ibs) Width (ft) Width (ft) Width (ft) A 13.08 1737 18 2797 19 2323 Al 24.50 3254 0 0 0 0 B 11.42 1516 18 2797 18.5 2261 1= 49 6507 36 5595 37.5 4584 — • Harper Houf Peterson Righellis Pg #: Transverse Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D S1= 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct= 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, I-1(ft) = 32 • Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 Stag • 1.06 Equ. 11.4 -1, ASCE 7 -05 • S 0.58 Equ. 11.4 -2, ASCE 7 -05 Sos= 0.71 Equ. 11.4 -3, ASCE 7 -05 SDI 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = ' 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 ' Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 • Floor 2 Wt (Ib)= 8411 Floor 3 Wt (Ib)= 8476 Roof Wt (Ib) = 14162 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22609 Trib. Floor 3 Diaphragm Wt (Ib) = 22674 Trib. Roof Diaphragm Wt (Ib) = 21261 Vertical Dist of Seismic Forces Cumulative % total of base shear Rho Check to Shearwalls (Ibs) I to shearwalls Req'd? Vnoor2 (Ib) = 720 100.0% Yes Vnoor 3 (Ib) = 1625 85.8% Yes Vroot (Ib) = 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft Ibs Ibs Ibs , A 102 361 394 114 897 1266 Al 432 0 0 481 0 0 B 113 293 449 126 728 1443 Sum 647 654 843 720 1625 2709 Total Base Shear* = 1 5054 LB • *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. - L11 ,----- Harper Houf Peterson Righellis Pg #: Longitudinal Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) • Design Criteria: Basic Wind Speed = 100 mph • Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf = 1.00 Iw= 1.00 Wind Sail Wind Net Design Wind Pressure (psf) ( ) Pressure (Ibs) Zone A = 19.9 147 • 2925 Wall High Wind Zone • Horizontal Zone B = 3.2 54 173 Roof High Wind Zone Wind Forces Zone C = 14.4 295 4248 Wall Typ Zone Zone D = 3.3 156 515 Roof Typ Zone Zone E = -8.8 148 -1302 Roof Windward High Wind Zone Vertical Zone F = -12.0 120 -1440 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 323 -2067 Roof Windward Typ Wind Zone Zone H = -9.7 252 -2444 Roof Leeward Typ Wind Zone Total Wind Force =l 7861 Ibs Use to resist wind uplift: Roof Only Total Exterior Wall Area . 2203 ft Uplift due to Wind Forces= -7254 Ibs Resisting Dead Load= 8483 Ibs E =I 1229 Lbs...No Net Uplift Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Dia hragm (ft Zone A Zone B Zone C Zone D Main Floor 48 10 91 43 Upper Floor 59 0 137 0 Main Floor Diaphragm Shear = 2440 lbs Upper Floor Diaphragm Shear = 3147 Ibs Roof Diaphragm Shear = 2275 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm (Ibs) Diaphragm (Ibs) Diaphragm (Ibs) Width (ft) Width (ft) Width (ft) 1 10 1220 10 1573 10 113 2 10 1220 10 1573 10 1137 E= 20 2440 20 3147 ' 20 2275 A -- Lv2._ • Harper Houf Peterson Righellis Pg #: • Longitudinal Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D S1= 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7-05 SMg 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 S 0.71 Equ. 11.4 -3, ASCE 7 -05 Spy= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (Ib)= 8411 Floor 3 Wt (Ib)= 8476 Roof Wt (Ib) = 14162 • Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22609 Trib. Floor 3 Diaphragm Wt (Ib) = 22674 - Trib. Roof Diaphragm Wt (Ib) = 21261 Vertical Dist of Seismic Forces Cumulative % total of base shear Rho Check to Shearwalls (Ibs) I to shearwalls I Req'd? • Vfloor (lb) = 720 100.0% Yes Vfloor 3 (lb) = 1625 85.8% Yes Vroof (lb) = 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft Ibs Ibs Ibs 1 286 291 415 318 725 1334 2 361 361 428 - 402 900 . 1375 Sum 647 652 •843 720 1625 2709 Total Base Shear* = ( 5054 LB 'Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. 1 L v--6 Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Transvere Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel M MR Uplift Panel Lgth. From 2nd FIr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht I k ht I k ht I k, (klf) (p11) (ft -k) (ft -k) (k) • 101 Not Used 102 7 1.75 3.50 4.00 ';,` 8.00 1'.74 18.00 2.80 27.00 2.32 1959 Double 1.40 NG R 103 7 1.75 3.50 4.00 " 8.00 1.74 8.00 2.80 8.00 2.32 1959 Double 1.40 NG 103a 7 4.00 4.00 1.75 OK 8.00 3.25 814 Single 1.40 IV 104 8 4.50 10.50 1.78 ox 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 105 8 3.00 , 10.50 2.67 OK 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 106 8 3.00 10.50 2.67 OK 8.00 1.52 8.00 2.80 8.00 2.26. ' 626 Single 1.40 111 109 8 4.58 17.08 1.75 OK 8.00 1.74 18.00 2.80 27.00. 2.32 401 Single 1.40 II 110 8 12.50 17.08 0.64 OK 8.00 1.74 8.00 2.80 8.00 2.32 401 Single 1.40 1I 11I 8 4.50 7.25 1.78 oK 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 112 4.75 1.38 7.25 3.45 OK 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI . 113 4.75 1.38 7.25 3.45 OK 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 201 9 3.92 10.79 2.30 OK . 9.00 2.80 18.00 2.32 474 Single 1.40 . II 201a 9 4.17 10.79 2.16 ox 9.00 2.80 18.00 2.32 474 Single 1.40 II 201b 9 2.71 10.79 3'.32 OK 9.00 2.80 18.00. 2.32 474 Single 1.40 1I 202A 9 2.96 11.96 3.04 OK 9.00 2.80 18.00 2.26 423 Single 1.40 II 202B 9 3.00 11.96 3.00 OK 9.00 2.80 18.00 2.26 423 Single 1.40 II 203 9 3.00 11.96 3.00 ox 9.00 2.80 18.00 2.26 423 Single 1.40. 11 204 9 3.00 11.96 3.00 ox 9.00 2.80 18.00 2.26 423 Single 1.40 II 301 8 3.92 - 13.96 2.04 OK 8.00 2.32 166 Single 1.40 I 302 8 5.79 13.96 1.38 OK 8.00 2.32 166 Single 1.40 I 303 8 4.25 13.96 1.88 OK 8.00 2.32 166 Single 1.40 I 304 8 2.96 5.96 2.70 OK 8.00 2.26 379 Single 1.40 II 305 8 3.00 5.96 2.67 OK 8.00 2.26 379 Single 1.40 II Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check • V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht . • Mr (Resisting Moment) = Dead Load • L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • /1 - L ‘k4 Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 fransvere Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho•V % Story # Panel Shear Panel M M Uplift Panel Lgth. From 2nd FIr. From 3rd FIr. From Roof Load • Strength Bays Sides Factor Type T (ft) (ft) (ft) ht I k ht I k ht I k (klf) (plf) (plf) (ft-k) (ft-k) (k) 101 Not Used 102 7 1.75 3.50 4.00 8.00 0.11 18.00 0.90 27.00 1.27 651 846 0.10 0.50 Double 0.50 NG 103 7' 1.75 3:50 4.00 8.00 0.11 8.00 0.90 8.00 1.27 651 846 0.10 0.50 Double 0.50 NG 103a 7 4.00 4.00 1.75 OK 8.00 0.48 0.00 0.00 120 156 0.22 1.14 Single 1.00 I 104 8 '4.50 10.50 1.78 OK 8.00 0.13 8.00 0.73 8.00 1.44 219. . 284 0.25 1.13 Single 1.00 11 105 8 3.00 10.50 2.67 OK 8.00 0.13 8.00 0.73 8.00 1.44 219 284 0.17 0.75 Single 0.75 111 106 8 3.00 10.50 2.67 oK 8.00 0.13 8.00 0.73 8.00. 1.44 219 284 0.17 0.75 Single 0.75 III 109 8 4.58 17.08 1.75 OK 8.00 0.11 18.00 0.90 27:00 ' 1.27 134 174 0.25 1.15 Single 1.00 I 110 8 12.50 17.08 0.64 OK 8.00 0.11 8.00 0.90 8.00 1.27 134 174 NA 3.13 Single 1.00 I 111 8 4.50 7.25 1.78 OK 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.25 1.13 Single 1.00 III 112 5 1.38 7.25 3.45 OK 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.08 0.58 Double 0.58 VII 113 5 _ 1.38 7.25 3.45 OK 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.08 _ 0.58 Double 0.58 VII _ 201 9 3.92 10.79 2.30 OK 9.00 0.90 18.00 1.27 200 261 0.17 0.87 Single 0.87 II . 201a 9 4.17 10.79, 2.16 ox 9.00 0.90 18.00 1.27 200 261 0.18 0.93 Single . 0.93 11 201b 9 2.71 10.79 3.32 OK 9.00 0.90 18.00 1.27 200 261 0.12 0.60 Single 0.60 III 202A . 9 2.96 11.96 3.04 OK - 9.00 0.73 18.00 1.44 182 236 0.13 '0.66 Single 0.66 111 202B 9 3.00 11.96 3.00 OK 9.00 0.73 18.00 1.44 182 236 0.13 0.67 Single 0.67 III 203 9 3.00 11.96 3.00 OK 9.00 0.73 18.00 1.44 181 236 0.13 0.67 Single 0.67 III 204 - 9 3.00 11.96 3.00 oK ' 9.00 0.73 18.00 1.44 181 236 0.13 0.67 Single _ 0.67 III 301 8 3.92 13.96 2.04 OK 8.00 1.27 91 118 0.20 0.98 Single 0.98 I 302 8 5.79 13.96 1.38 OK 8.00 1.27 91 118 0.29 1.45 Single 1.00 I 303 8 4.25 13.96 1.88 OK 8.00 1.27 91 118 0.21 1.06 Single 1.00 1 304 8 2.96 5.96 2.70 OK 8.00 1.44 242 315 0.15 0.74 Single 0.74 III 305 8 3.00 5.96 2.67 OK 8.00 1.44 242 315 0.15 0.75 Single 0.75 III • Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total transverse base shear? Yes Total 1st Floor Wall Length = 18.00 Total # 1st Floor Bays = 4.77 Are 2 bays minimum present along each wall line? No I st Floor Rho = 1.3 Total 2nd Floor Wall Length = 22.75 Total # 2nd Floor Bays = s Are 2 bays minimum present along each wall line? No 2nd Floor Rho = 1.3 • Total 3rd Floor Wall Length = 19.92 Total # 3rd Floor Bays = s Are 2 bays minimum present along each wall line? No 3rd Floor Rho = 1.3 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load•Rho / Total L % Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) 8 Bays = 2• WH Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear • Shear Application ht Mr (Resisting Moment) = Dead Load * L • 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) /./4 4.-- \ is Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klf) (p10 (ft -k) (ft -k) (k) 107 8 15.50 15.50 0.52 OK 10.00 1.22 18.00 1.57 27.00 1.14 1.03 254 Single 1.40 I 71.21 123.49 -0.19 108 8 15.50 15.50 0.52 OK 10.00 1.22 18.00 1.57 27.00 1.14 1.03 254 Single 1.40 I 71.21 123.49 -0.19 I 205 9 13.00 13.00 0.69 OK 9.00 1.57 18.00 1.14 0.70 208 Single 1.40 I 34.62 59.15 -0.07 206 9 13.00 13.00 0.69 OK 9.00 1.57 18.00 1.14 0.70 208 Single 1.40 1 34.62 59.15 =0.07 l 306 8 10.00 10.00 0.80 ox 8.00 1.14 0.29 114 Single 1.40 1 9.10 14.40 0.05 307 8 10.00 10.00 0.80 ox _ 8.00 , 1.14 0.29 , 114 , Single , 1.40 1 9.10 1 14.40__ 0.05 Spreadsheet Column Definitions & Formulas L = Shear Panel Length • H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • /9- \.....i.b Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho' V % Story # Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd Fir: From Roof Load Strength . Bays Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (kit) (plf) (plt) (ft -k) (ft -k) (k) 107 8 15.50 15.50 0.521 oK 10.00 0.32 18.00 0.73 27.00 1.33 1.09 153 153 .NA 3.88 Single • 1.00 I 52.25 130.70 -1.74 108 8 15.50 15.50 0.52 OK 10.00 0.40 18.00 0.90 27.00 1.38 1.09 173 173 NA 3.88 Single 1.00 I 57.35 130.70 -1.40 I 205 1 1 13.00 13.001 0.69 1 OK f 9.00 1 0.73 18.00 1.33 0.76 158 I 158 NA I 2.89 I Single 1.00 I 30.54 64.22 I -0.64 I 206 9 13.00 13.001 0.69 OK I 9.00 0.90 18.00 1.38 0.76 175 175 NA 2.89 Single 1.00 I 32.85 64.22 ' -0.45 I 306 8 10.001 10.001 0.801 ox 8.00 1 1.33 0.35 133 133 I NA ' 2.50 Single 1 1.00 I 10.67 1 17.40 0.02 I 307 8 10.00 10.00 0.80 OK , 8.00 138 0.35 138 138 NA 2.50 Single 1.00 I 11.00 17.40 0.06 Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes • Does the 3rd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Total 1st Floor Wall Length = 31.00 Total # 1st Floor Bays = zrs Are 2 bays minimum present along each wall line? Yes • 1st Floor Rho = 1.0 Total 2nd Floor Wall Length = 26.00 Total 8 2nd Floor Bays = 6 Are 2 bays minimum present along each wall line? Yes • 2nd Floor Rho = la Total 3rd Floor Wall Length = zo.00 Total # 3rd Floor Bays = s Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho = 1.0 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load'Rho / Total L % Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2'L/H Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Transvere Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good For V (pif) (plf) (Ib) (lb) 101 Not Used 102 Simpson Strongwall 103 Simpson Strongwall 103a 814 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 833 104 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 105 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 106 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 109 401 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 110 401 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 111 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 112 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 990 113 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 990 201 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 201a 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 201b 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 202A 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 202B 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 203 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 204 - 423 - 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 301 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 302 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 303 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 , 304 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 305 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 - NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY Longitudinal Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good For V (pll) (ph) (Ib) (lb) 107 254 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -192 Simpson None 0 108 254 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -192 Simpson None 0 205 208 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -69 : Simpson None 0 206 208 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -69 Simpson None 0 306 133 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 48 Simpson None 0 307 138 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 59 Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. Transverse Wind Uplift Design . Unit A Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear ® Floor Shear @ Stacking @ Stacking From From Uplift Uplift FIr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left ® floors ® Left @ t House Side of Above Above Right above if Right House ® Left walls Right stack) (ft) (ft) (ft) (ft) k k k k pif klf k k kft kft kft k k k k k k 102 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.192 0.832 27.43 0.57 1.69 21.31 20.79 21.31 20.79 103 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.832 0.192 27.43 1.69 0.57 20.79 21.31 20.79 21.31 103A 8 1.1667 4.00 4.00 3.254 3.254 814 0.04 2.016 1.664 26.03. 8.38 6.98 6.00 6.24 - 6.00 6.24 104 8 1.1667 4.50 10.50 1.516 2.8 2.26 6.576 626 0.1 0.8 0.078 25.08 4.61 1.36 5.58 6.06 5.58 6.06 105 8 1.1667 3.00 10.50 1.516 2.8 2.26 6.576. 626 0.048 0.252 0.156 16.72 0.97 0.68 6.45 6.52 6.45 6.52 106 8 1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 - 0.048 0.156 0.252 16.72 0.68 0.97 6.52 6.45 6.52 6.45 109 8 1.1667 4.58 17.08 1.737 2.8 2.32 6.857 401 0.152 0.192 0.156 16.31 2.47. 2.31 3.63 3.66 201L 201R 4.82 5.09 8.45 8.75 110 .8 1.1667 12.50 17.08 1.737 2.8 2.32 6.857 401 0.096 0.156 0.192 44.52 9.45 9.90 3.24 3.21 201 aL 201 bR 4.95 4.88 8.18 8.09 111 8 1.1667 4.50 7.50 1.516 2.8 2.26 6.576 877 0.144 0.8 0.078 35.11 5.06 1.81 8.02 8.51 8.02 8.51 112 8 1.1667 1.50 7.50 1.516 2.8 2.26 6.576 877 0.048 0.252 0.234 11.70 0.43 0.41 11.44 11.46 11.44 11.46 113 8 1.1667 1.50 7.50 1.516 2.8 2.26 6.576 877 0.048 0.234_ 0.252 11.70 0.41 0.43 11.46 11.44 11.46 11.44 201 9 1.1667 3.92 10.8 2.8 2.32 5.12 474 0.225 0.432 0.156 17.71 3.42 2.34 3.99 4.16 301L 301R 0.83 0.93 4.82 5.09 201a 9 1.1667 4.17 10.8 2.8 2.32 5.12 474 0.225 0.156 0.156 18.84 2.61 2.61 4.14 4.14 302L 302R 0.80 0.80 4.95 4.95 201b 9 1.1667 2.71 10.8 2.8 2.32 5.12 , 474 0.225 0.156 .0.432 12.24 1.25 2.00 4.24 4.08 303L 303R 0.91 0.80 5.15 4.88 202A 9 1.1667 2.96 11.958333 2.8 2.26 5.06 423 0.173 0.432 0.052 11.92 2.04 0.91 3.62 3.84 304L 304R 2.60 2.75 6.21 6.59 202B 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.173 0.052 0.216 12.09 0.93 1.43 3.84 3.74 305L 305R 2.74 2.16 6.58 5.91 203 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.309 0.216 0.312 12.09 2.04 2.33 3.62 3.56 3.62 3.56 204 9 1.1667 3 11.958333 2.8 2.26 5.06_ 423 0.225 0.312 0.432 12.09 1.95 2.31 3.64 3.57 3.64 3.57 301 8 3.92 13.96 2.32 2.32 166 0.232 0.384 0.204 5.21 3.29 2.58 0.83 0.93 0.83 0.93 302 8 5.79 13.96 2.32 2.32 166 • 0.232 0.204 0.204 7.70 5.07 5.07 0.80 0.80 0.80 0.80 303 8 4.25 13.96 2.32 2.32 166 0.232 0.204 0.384 5.65 2.96 3.73 0.91 0.80 0.91 0.80 304 8 2.96 5.96 2.26 2.26 379 0.232 0.384 0.136 8.98 2.15 1.42 2.60 2.75 2.60 2.75 305 8 3 5.96_ 2.26 2.26 379 0.232 0.136 1.104 9.10 1.45 4.36 2.74 2 _ 2.74 _ 2.16 Spreadsheet Column Definitions & Formulas L = Shear Panel Length A, H = Shear Panel Height • Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L 1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L 0.5 * (.6 wind or .9 seismic) • Uplift T = (Mo-Mr) / (L - 6 in) • • Transverse Seismic Uplift Design Unit A Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @, floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 102 8 1.1667 1.75 3.50 0.114 0.9 1.27 2.284 653 0.152 0.192 0.832 10.40 0.57 1.69 7.91 7.11 0 0 7.91 7.11 103 8 1.1667 1.75 3.50 0.114 0.9 1.27 2.284 653 . 0.152 0.832 0.192 10.40 1.69 0.57 7.11 7.91 0 0 7.11 7.91 103A 8 1.1667 4.00 4.00 0.481 0.481 120 . 0.04 2.016 1.664 3.85 8.38 6.98 -1.06 -0.69 0 0 -1.06 -0.69 104 8 1.1667 4.50 10.50 0.126 0.73 1.44 2.296 219 0.1 0.8 0.078 8.96 4.61 1.36 1.20 1.93 0 0 1.20 1.93 105 8 1.1667 3.00 10.50 0.126 0.73 1.44 2.296 219 . 0.048 0.252 0.156 5.97 0.97 0.68 2.04 2.14 0 0 2.04 2.14 106 8 1.1667 3.00 10.50 0.126 0.73 1.44 2.296 219 0.048 0.156 0.252 5.97 0.68 0.97 2.14 2.04 0 0 . 2.14 2.04 109 8 1.1667 4.58 17.08 0.114 0.9 1.27 2.284 134 0.152 0.192 0.156 5.58 2.47 2.31 0.82 0.86 201L 201R 1.13 1.54 1.95 2.40 110 8 1.1667 12.50 17.08 0.114 0.9 1.27 2.284 134 0.096 0.156 • 0.192 15.23 9.45 9:90 0.56 0.53 201 aL 20I bR 1.32 1.32 1.88 1.85 111 8 1.1667 4.50 7.50 0.126 0.73 1.44 2.296 306 0.144 0.8 0.078 12.54 5.06 1.81 2.00 2.73 0 0 2.00 2.73 112 8 1.1667 1.50 7.50 0.126 0.73 1.44 2.296 306 0.048 0.252 0.234 4.18 0.43 0.41 3.79 3.82 0 0 3.79 3.82 113 8 1.1667 1.50 7.50 0.126 0.73 1.44 2.296 306 0:048 0.234 0.252 4.18 0.41 0.43 3.82 3.79 0 0 3.82 3.79 201 9 1.1667 3.92 10.80 0.9 1.27 2.17 201 0.225 0.432 0.156 7.63 3.42 2.34 1.16 1.41 301L 301R -0.03 0.13 1.13 1.54 201a 9 1.1667 4:17 10.80 0.9 1.27 2.17 201 0.225 0.156 0.156 8.11 2.61 2.61 • 1.38 1.38 302L 302R -0.06 _ -0.06 1.32 1.32 2016 9 1.1667 2.71 10.80 _ 0.9 ' 1.27 2.17 201 0.225 .0.156 0.432 5.27 1.25 2.00 1.53 1.28 303L 303R 0.10 -0.06 1:63 1.22 202A 9 1.1667 2.96 11.96 0.73 1.44 2.17 181 0.173 0.432 0.052 5.25 2.04 0.91 1.15 1.50 , 304L 304R 1.28 1.50 2.43 3.00 202B 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.173 0.052 0.216 5.32 0.93 1.43 1.49 1.35 305L 305R • 1.50 0.63 2.99 1.97 203 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.309 0.216 0.312 5.32 2.04 2.33 1.16 1.08 0 0 1.16 1.08 204 9 1.1667 3.00 11.96 0.73 1.44 2.17 . 181 0.225 0.312 0.432 5.32 1.95 2.31 1.19 1.08 0 0 1.19 1.08 • 301 8 0 3.92 13.96 1.27 1.27 91 0.232 0.384 0.204 2.85 3.29 2.58 -0.03 0.13 0 0 -0.03 0.13 302 8 0 5.79 13.96 1.27 1.27 91 0.232 0.204 0.204 4.21 5.07 5.07 -0.06 -0.06 0 0 -0.06 -0.06 303 8 0 4.25 13.96 1.27 1.27 91 0.232 0.204 0.384 3.09 2.96 3.73 0.10 -0.06 0 . 0 0.10 -0.06 304 8 0 2.96 5.96 1.44 1.44 242 0.232 0.384 0.136 5.72 2.15 1.42 1.28 1.50 0 0 1.28 1.50 305 8 0 3.00 5.96 . 1.44 1.44 242 0.232 0.136 1.104 . 5.80 1.45 4.36 1.50 0.63 0 0 1.50 0.63 Spreadsheet Column Definitions & Formulas _......- L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) • Uplift T = (Mo -Mr) / (L - 6 in) • • TRANSVERSE UPLIFT CALCULATIONS - SUMMARY UNIT A Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case @Right • k Simpson k k Simpson k . 102 Wind 21.31 Holdown None 0.00 Wind 20.79 None 0.00 103 Wind 20.79 Holdown None 0.00 Wind 21.31 None 0.00 103A Wind 6.00 Holdown HDQ8 w 3HF 6.65 Wind 6.24 HDQ8 w 3HF 6.65 104 Wind 5.58 Holdown HDQ8 w 3HF 6.65 Wind 6.06 HDQ8 w 3HF 6.65 105 Wind 6.45 Holdown HDQ8 w 3HF 6.65 Wind 6.52 HDQ8 w 3HF 6.65 106 Wind 6.52 Holdown HDQ8 w 3HF 6.65 Wind 6.45 HDQ8 w 3HF 6.65 109 Wind 8.45 Holdown HDQ8 w DF 9.23 Wind 8.75 HDQ8 w DF 9.23 110 Wind 8.18 Holdown HDQ8 w DF 9.23 Wind 8.09 HDQ8 w DF 9.23 111 Wind 8.02 Holdown HDQ8 w DF 9.23 Wind 8.51 HDQ8 w DF . 9.23 112 Wind 11.44 Holdown HDU14 14.93 Wind 11.46 HDU14 14.93 113 Wind 11.46 Holdown HDU14 14.93 Wind 11.44 HDU14 14.93 201 Wind 4.82 Strap MST48x2 5.75 Wind 5.09 MST48x2 5.75 201a Wind 4.95 Strap MST48x2 5.75 Wind 4.95 MST48x2 5.75 �C - 201b Wind 5:15 Strap MST48x2 5.75 Wind 4.88 MST48x2 5.75 ( 202A Wind 6.21 Strap MST60x2 8.11 Wind 6.59 MST60x2 8.11 202B Wind 6.58 Strap MST60x2 8.11 Wind 5.91 MST60x2 8.11 _, 203 Wind 3.62 Strap MST60 4.06 Wind 3.56 MST60 4.06 204 Wind 3.64 Strap MST60 4.06 Wind 3.57 MST60 4.06 1 301 Wind 0.83 Strap MST37 1.79 Wind 0.93 MST37 1.79 302 Wind 0.80 Strap MST37 1.79 Wind 0.80 MST37 1.79 303 Wind 0.91 Strap MST37 1.79 Wind 0.80 MST37 1.79 304 Wind 2.60 Strap MST48 2.88 Wind 2.75 MST48 2.88 305 Wind 2.74 Strap MST48 2.88 Wind 2.16 MST48 2.88 BV: p , A C DATE: 6 _ aoto JOB NO.: C e N ....0c, 0 OF P ROJECT: RE: SSW :x -)- — T.ecar Loa& ° ° AI. WA .Lads_ Uk \1i 3kfo us-40\s - j�.) ■rSide c0 LL z 9uAra` �v \�. uxkl1 o . ckAla ! �vc&� a t • $ 2 11 ❑ Cck ?ooc , .i.v op S \ x --)— _ 4\400 \\ s ver u icM\ O CE z \ L k1 a 1 � A = .3'- -I- -i- a3 3 a. = Ge.5 ob51 113 W D = 3 ' a4v-lwrx' a z actual < Ca. A cf, j =•00 U_ Z 0 2 CaADac + 0 SSW &IXE5 = 3g - Ii0 - ❑ C!C1vc ' CO e a.c,+ 1 . .' O' ,,, f :t • & o U. Z W ❑ Z 0 O U • c C vi 0 .°n:• : =a A x '— L` o 0 5V.1 TO is LE rtb 1.UNC -cniIS L1 t4 c ,._......_ _ , . ® x ... P JP ( ra Ei a ! I O V F y. \ j ... l. ...,..,, ...--.1 . I ... ' 1 ti i L 16,1 10 't`i J4R5 / I I IN {7 g i 5 9 0 c __ a ::-._ F n a 1 r Pr- V-') i 1 , Z. d P i , 0 ►� G G Q-) 10� ( 1 - 1 ° Sw li 1S LC NC-�TH q . -rl T N�wtrt` 0 ALU TbN S LtPta Z • J ` C Sw llitco LENC - ITlt Acv•IWFisALL Pr LUrv&t 1 LANE C) [it. _ __ 10 et s� ____ __ 1 _ I' r G - a 1 �' r- i?t. 1 - 3 —‘1 ,� ti L i , r ®I 0_Fj r 1 0 0 Ij .0-1 is 4 tIFI ,‘ i CI I OS m S w 11-1 LL m c-crit Poo w Itelz.e Atwjc-, Th-c s L I Nif i c ? o 3- • • Nri 5114.1. ..- ..4-tx)N.;1 ° P\`-k,i- (NS lo'e I 1 „..... ..., . • ::::, 0 r - • - 1 . , 1 cA . i i 1 . ! i . . . : . , . : 1 4 . J (-6 8 Ai Cu ...„, . : ! i • t ...4 , t . . 1 , , t fi g: S. • 't , . . 1 9: j _ 't* :;• (.( . J — .--''''-->><' (----------- or !I 0 6 .., • tg . iti • 1 - t'l -/----- ---,,..,,,. CO s,.. ,-,,,,,,,, 1-11'-)N" Sl-KL iNAS . i-- • 2 . D• ,�vp S 11-U. '—) Ncr +{ l 1-) rJ 3) S q-u, MS —1,O?.. j / j'r,'t If•-11 1- 9 M 0 l r r Q vi (4O . -'''---<---1-11,LIL ......._, ,i1 ° F , . T ) 14 \ ---.. _ ,, c.,) 0 v--- 90E Cr ( __, (s. ..... 2 BY ANkL, DATE: ' ? O, (3 JOB NO.: A ' _Q G 0 OF • PROJECT: RE: 1 C ;VP m kY G■r1S a}_ Rcan\- oP hovsc_. ❑ ❑ V Ltne.8 = O° wind. (unfroIs) C.51-4 _I • 0 LI Z Ott c phrcagrn wi c&*\ = auk * , W 0 E ❑ Cu = la°t pt..F . 0 J IC 0 O • o CO.Loci of un lotoc.lC.ed diet phvrk W — C1b0 r,4) = a� as� c, a — • wuc t _ dick* rextrn Z 6/12. ikiC a I in3 64 pain = (asS pAI ,4)"; - J 5 - 3 7 _ ; , p1.. 7 f 2 0 U E . ° e o z w ❑ . Z O O x 1- a O • U t N ~ i... ;ss: N p., N : <• �" O bA 'F. • g A., y: 4- L BY 13 DATE: ....... Vi ... ....k . 0 JOB NO . ( E. ki) ...s..oct .0 C PROJECT: C2s °CI f a 8 a le RE: Desie of n cc\ iloiock4..‘in @ stoir s 0 o • Ono 1. . LI z P 1001 o u, , APVAINI" KA F- w F.F. \Ci I- V14 0 2 TPA 1?) WI Ma: 0 N) 1*7 2 - 301 l T = 4 To? VLB,Tes Li a J Max 50 tt_oPu414.K.,:- - < Et 0 0 o z . D (.1. 5 1 C.-01 W I IV 0 Pressuce, EL 0_ z 0 1--- _ i% 'De \ op ED \o es 'co 5pc›. r\ c:i ' '' te rs...y,.-`r, TO9 4 LA1 ES B ile z wil-V\ u,m\d trylci c.c. . 1 91 pLp 7 2 61 T D g‘ = it-Pl gl..r. \ LI c k c l 0 0 g " 0" 2 0 W 0 IL Z 2 ' 0 6 0 . 5 V nr.CC = t ki- Pt L doels,' -- S .,, Li _ _51rtiti,\2 - k NPor 5 1- 410 t S f (3.5)02.5) L , 1 .-- --= 6,Y t 21 -Noe_ 1-3 s• 1 = VI 1 9 it = C61# il N2- A (3 .s,(.5 a.$) ISO ?sz, (0 = aqo .; 5 t".. -> wa. . . ov.._ = x •-,;' :,- M-_--\ /9-- L 29 BY AAA L DATE 6 ._ ' - L.... „ k \ JOB NO. C K - 0 / 1 0 PROJECT: RE: OPT I 0 A) 2 ❑ ❑ 3vi up ('M . 2.N0 1oott E boM oo -Pc corn. e 3vu Twos W 0 2 W ❑ TOD I.u' OU'r on - 31ANT - `3' -9 ct Q Mo 1u r )rc�,C op €r\ \f9 = \ 22- 0 ■ U O w U Z W 0 neskgn wkn_d ?cesS = - a;o.o.e) pS Z L OU. d Oil bv v‘i N O \C CV". = al..P S LF. O y Q V i- �I• 1- l (.U' V T - -- T Z 2 ' R =MP 5-(0 R. 2 O M m.Ax = (iJ . � Is Cu _ .`�'C{6 bi b t � k T.s" E 0.15. ti_ z V r c ox = �t�'S :� .,:, 1 ; ❑ 0 3 , i 0 ° _ - ,, 2. = I y � s) ; G. as i w4 , j for t% EL r Te _ e..;. = (1,S - Y3,5) 3 ,„4 1 .1Z. - ( _ ? r 11- 1 ' S _■!____\ A 3,s, :, - 5 :2C 10' o ti : A ..;,z.- :PA L " Q. 8 d 3,4,s,b = 0 1 J 4:•.. ti I = t : t 4 5taf. (.0,5 5 -e 2S . a`i is C,'a j fi5,`(.3 +0tk.(,?..)#0 z. - 4 Lt. y35 , I' ll S., = v _ O - _ 9145-4 L e = TN, c� c Mc k.cLc r CSSA: Cf s R X1.3 -5 _ ' Ft: = (650 ID X ,)( I - XI , O)(I. ( ( 1, 0 )( 1.151 Wc 4oItb � a \c- /q - Lao • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load Woodworks® Sizer 7.1 June 24, 2010 12:49:04 COMPANY 1 PROJECT RESULTS by GROUP - ND5 2005 SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF Mnf Trusses = _ �� ___ =.. = =n . Not designed by request = ".. =6 v ` = = �= (2) 2x8 Lumber n -ply D.Fir -L No.2 1- 2x8 • By Others Not designed by request (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 (3) 2x6 Lumber n -ply Hem -Fit No.2 3- 2x6 Typ Wall Lumber Stud Hem -Fir Stud 2x6 016.0 • SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR Mnf Jot .. .. u ..= = � s �� Not designed byre .. = request : = ` = = .. ' .. s Sloped Joist Lumber -soft D.Fir -L No.2 2x6 916.0 (2) 2x8 (1) Lumber n -ply D.Fir -L No.2 1- 2x8 (2) 2x8 Lumber n -ply D.Fir -L No.2 2- 2x8 By Others Not designed by request By Others 2 Not designed by request (2) 2x12 Lumber n -ply D.Fir-L No.2 2- 2x12 5.125x10.5 Glulam - Unbalan. West Species 24F -V4 DF 5.125x10.5 4X6 Lumber -soft D.Fir-L No.2 • 4x6 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 4x6 Lumber Post Hem -Fir No.2 4x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 (2) 2x4 Lumber n -ply Hem -Fir No.2 2- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 816.0 SUGGESTED SECTIONS by •GROUP for LEVEL 2 - FLOOR = Mnf Trusses . ..:vs .. Not designed by request _ _.... ..... Mnf Jst ss Not designed by request Deck Jot Lumber -soft D.Fir-L 00.2 2x8 916.0 (2) 2x8 Lumber n -ply D.Fir -L No.2 2- 2x8 3.125x9 Glulam - Unbalan. West Species 24F -V4 DF 3.125x9 4x8 Lumber -soft D.Fir -L No.2 4x8 By Others Not designed by request • • By Others 2 Not designed by request (2) 2x10 Lumber n -ply D.Fir -L No.2 1- 2x10 ' 5.125X12 GL Glulam - Unbalan. West Species 24F -V4 DF 5.125x12 By Others 3 Not designed by request 3.125x14 1.51. LSL 1.55E 232515 3.5x14 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 4x4 Lumber Post Hem -Fir No.2 4x4 • 4x6 Lumber Post Hem -Fir No.2 4x6 . (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 6x6 Timber -soft Hem -Fir No.2 6x6 (2) 2x4 Lumber n -ply Hem -Fir No.2 2- 2x4 6x6 nol Timber -soft D.Fir -L No:1 6x6 (3) 2x4 Lumber n -ply Hem -Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 916.0 SUGGESTED SECTIONS by GROUP for LEVEL 1 - FLOOR .SFnd = a . = ....=v = = = = = ® =v= Not designed by request CRITICAL MEMBERS and DESIGN CRITERIA Group Member Criterion Analysis /Design Values .......St .�.. Mnf Jot = Not designed by request a = ='9 =' � T ..= Deck Jot j65 Bending 0.41 Sloped Joist j30 Bending 0.10 Floor Jst4 unknown Unknown 0.00 (2) 2x8 (1) b35 Bending 0.47 (2) 208 b8 Bending 0.89 3.125x9 b3 Bending 0.06 4x8 b30 Bending 0.12 By Others By Others Not designed by request By Others 2 By Others Not designed by request (2) 2x12 b6 Bending 0.93 (2) 2x10 bl Shear 0.78 5.125 %12 GL b10 Bending 0.76 . By Others 3 By Others Not designed by request 5.125.10.5 b9 Deflection 0.95 4 %6 620 Bending 0.08 3.125x14 LSL b14 Deflection 0.73 (2) 2x6 c2 Axial 0.91 4x4 c55 Axial 0.07 4x6 c23 Axial 0.80 (3) 2x6 e29 Axial 0.75 606 *26 Axial 0.70 (2) 2x4 c39 Axial 0.62 6x6 nol c12 Axial 0.86 (3) 2x4 t31 Axial 0.89 Typ Wall w14 Axial 0.48 Fnd Fnd Not designed by request • DESIGN NOTES: • ..... 1 . y = = = = Please verify that the default deflection limits are appropriate _ • _ for your application. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result is considered the final design and appears in the Material, List. 3. ROOF LIVE LOAD: treated ao a snow load with corresponding esponding duration factor. Add an empty roof level to bypass thisinterpretation. 4. BEARING: the designer is responsible for ensuring that adequate bearing is provided. 5. GLULAM: bxd = actual breadth x actual depth. 6. Glulam Beams shall be laterally supported according to the provisions of NOS Clause 3.3.3. 7. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 8. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening detail, may be required. . 9. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 10. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform • to the provisions of ND5 Clause 15.3. WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load Woodworks® Sizer 7.1 June 24, 2010 12:41:17 Concept Mode: Beam View Floor 2: 8' tv �� 105 .. b31 � . .. : .. . .. ........... .. . --- - • -- 49' -6 1U4 425 b •IUS - --- -- . : . - ; b • .I UI - _ ._ --- 40 -0' 4 3 b VC • b1 _ _ ... . 4L•-0 41 n Vb.- :::. . .3V• -b V4 '' . '' 325 a 31 n • VL • . _ .. JO -0 • SO b • 25V - b2 33' 3L n 25 I rsn : u -b - CV 4 0 253 . - L / -b 01 L5� b10 r ; L L -n 1 / ; : : ' L. -b /a b33 - • -- L11-0 - • I . :. . - " s Ia a • ... .- --- -- -- 10 b • /L.._.: : :. • b32 - - - - .. -' _ --• _ :_ --- -__ .: -: -- - - - -- -- - - la -c-.) r 1 13-a r U - - a . :. _ _ ... .. . - "14 b b nn _. b19�15_ is n • 111 u -b • ao . . V a ts-a r . a .. aLS b4 • 614 • . ' • . . : . • , b 13- oil b30�� b3 i 3 -b ,,..) b2 = i .. . u :. .... . a b C b` 1 -n • BBtB.B 8C C C C CC C ICCC CC CCCCC CCC CC1CC CD DD D D DD DIDDD CD DDDD D D DD CD\DDDE.E EE EE EEtEEEIEEIE EEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'910 1 :1 :1 1112(22 :22 2!2(2 -1213(333:3 44 4'4'.414 5 :5 :5 5515 :6 170 :7 • 1..-- GIRN WoodWorks®Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:41:19 Concept Mode: Column View Floor 2: 8' VUIQ r LOAD 105 c58 ❑c14 - 49'-6" 1U4 ❑ : : .. _ 425 -0.. - - _ - - 40-0 I U 40 1 U' .. -.. .. - - 44 " -0 v9 . 4.1 -0 V6 c69 c2 c70 c71:"- 4L -0 J3 3( yL - - c3 30-0 JU - - -.. . -- - - - .. 34-0" 25J .5.5-b 0( ! 31 -0' 250' --- - '-- .. : - c4 ' i--,' i '- - .. ..- - -- ... 3U -b Zil -0 63 L /' -b 25L - -- -. ._..... ---- - - --- - :- _.. ..- - .. .. ._. - ... ---- Lb -0 61 40 ) f`J c25 c12 :. - - c26 - ` - .t' : Z.5-0 /! c2 crb' c73 , LU -b • / Z c3 _ . , b: � _ 1 / I c78 - _ I o -b ffl.) 14 -b 0J -0 - - [ - - -- - - - -" - - -- - - '13-0 025-- c77 - - - .; ._... - - -- .:._:_ -- - - - - -- - " -"- - ..- -.__ - - _. _ IL-b" b/ ...... - - 1 1 _ 00- � 00 -" y-0 b4 ) c31 . - -- -c76 - -- ---- -- -- c79 do -0 ■23 D tgr i.. er li aC30 I C32 0._0 0U5 � . E . -- 0 -b i. c55 c b.. I b � ❑ u 4 BB\B.6 BC CCC CCCCICCC CC CCCC C C CC CC \CC CD DDD D DD DODDD CD DD DD D D DD CD1DD DEE EE E:EEEI EEE €EiE EEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'9111 1 :1 :1 2: 2 22 (22I2f3t33,3,3 :44!4(4'42445155 :5 :5 5515 !6166:6 :6 , 7,7(77' -6" 4 — (€)6 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 24, 2010 13:14:33 Concept Mode: Beam View Floor 2: 8' l �� /t-�\ b1 G �J�J rT L) -- - I 04 I UJ 41'-0 IUL � - - - - -- - - tut - --• L_:...... .. - -- 43 -0 :. - .. - - _ - .. - - y� b34 :....' , - 4L - . y0' .. .. , .. - - -. ... -- - - - - 4U-0 yb , .. J`J b.. yl Jb -b b`J . ' b2 _ JJ -0 00 - -- - - -- - - ( ' -- - - -- -- ' --- -- -- -- -- ..IL -0 . .. ■ 0U' "' -:b10 • : - .44 -0 • : r/ b33 41.4 /b - - N. -- - - - - - -- -- - - LU-0 I b - - - I -0 /4... ....: .- -= -- ' - - = -- ■_ :- - - - --- I0-0 !J - : - .- - 11 -0 /L . - b32. 10-0 _ :- -- : -- -- - - - -- - _ - - -- -_. -- - . - - -- - -- - - Ib -0 ru 0y .s - . iJ • - O ' bt ' - - b19115 14 -U bb 1 5,1 - 1U -0 00 y -0 04) 3 :; 25 -b o.s 02 b4 : ; b14 • . our b30 b29 b39-� 4 b 3 L b. i b BB1B.8 BCCCCCCCCfCCCCCCCCCCCCCCCICCCDDDD6 01)D1DDDCDDD DDDDDDCDIDDDE.EEE EEE EiEEEIE 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'21(1 ' 1 :1 :11'.1(1 :111'2(2 222 (3 - 3:3:3 , 3(33 - 313::414 4;4:44(40'4:415(5 5;5:5 6(6 8:6 :6 :6:6470 77 :7 7 !70T -6" • 4 - C.nli WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 24, 2010 13:14:35 Concept Mode: Column View Floor 2: 8' Q O Z 1/) c58 c14 `v W 103 -- 4/ -b I UL - - - - - 40 -n y9 -b V0 'C82 C81' . - -: .: - :.: - - 41 -0 - E7 . ... . . V0 .. 4a 0 V4 � - 30 - b' U- L : : c3 _ _ : .. : . - - - - . . _ . - so-0 3r -n 1 Vt./ - - 34' b 04 -b t5`J . . 33 -0 JL b 01 3 1 -b Lfb -- - . .; ..:. C4 - _ - _ -- , .. .. . . .. ' . . -- . .. . .. 03 : : . - . 1/ - Lb b a : - - c25 - c12 - - __.... : c26 , f C72: . c2 L3 b LG b L1-n Lu -n C73 yn tS b r 3 - _ - r-b /L _c3 - - n b / 1 : C78 - - a b (U . • .. : - - -- --- -- - -- - -- -. .-- -- -- - . - -- - by .(�: i- • - ' - 3-0 bb.. . :c77 nn. Cil. 1 b4__ c31 . - - - -- -- -:- - - - - -- U' b b zs-n nG) r. b.. 'tiC30 0c32 n' -0 ID ! D � CbT�7U ' co-P - . ; -. _.. 4 -0 r•J _ -- -- - --- - - - -- - . - 3- • c55 - �6f�• ° o b .. . - I - 0 0 u n BB\B.B BCCC CC CC CFCCC CC CCCC C CCC CC'CC CD DD D D DD DFCDD OD DD DDD D DD CD!DD DEE E E E EEEFEEEEEE EiEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 1 :111'1.'111 :1(112(2 2:22 4:4:4 5:5:5•5!5(5:51516(6 6;6:6 • 4 - pis WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:44 Concept Mode: Beam View Floor 3: 17' 1050 . - .. 49' -6" 104 40 -0 .. 10.5 41'-b • IUL' 40 -0 i 00 .. -- 44 -0 a9------ .. . . 43'0 a ss • b35 b6: 4c a 1 _ ._ .. . 4'i -U 3y -b V4 .. > .. ; . - : ; 30'-0 y3_ ,._[ 3(-0 `J'i . ..). U . - - - .. 3 4'-0 tsa ; b7 : 3 . b . • 00:_.. •: __. _ ", , __ .. __ _ . _. - ____ - SL -0 0/ 31 - 60 _ :. - - -" _. - - -- - •0 -0 00 1 .. ... ? : . . ' . ... . . LV.-0.. 03 ; . . i L1 -0 b �I�. I LC -0 r 1 f b22 : _. ' - LI - . f b LU-0 1L. b2 - . :. . _ i0-0 1 t - -- -b20 - - -- - - - -- 10 -0 14' -0 bu - -- - : .b1fb17. 1c-0 01 Ub 1U-0 b43 b34 0 -b 0.5 - - ---- - -. - - (-U -. bL. b8; : b b.. UI _ 0-0 3 - ._ • Ii -ta BB\B.B BC CCC C CC CFCCC CC CCCC C C CC CC1CC CD DDD D DD D(DDD DD DDDD D D DD CD \DD DEE E E EEEEtEEEEEIE EEEEEEE(EEEEZ 0' 2' 4' 6' 8' 10' 12 14' 16 18' 20' 22' 24' 26' 28' 30' 32 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'67'8'9111 "1:1:1 22:2 4 A:4 - 5:5:5 , 515151515166 BB:6 '7:7:7 • . 4 --- (-- L WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 .June 24, 2010 12:58:42 Concept Mode: Column View Floor 3: 17' 1050 " , . .. . . . . .... _ _ .. .. .. .. 49' -6" I0.) i ; -`-- -- . - - -- - . - - - -- -- - 41 -b 1UL / : . lUl .. 45 b 1UVb :: - : - - 44, n, 9 43 "-b a :" c62 c61 c15 ", .. -.c16 - - 4L -0 3y"b �U . - - - --- -- - 34-0 tSy 33 -b . ub : . ; c18. _ 3U-b 01 i 'i [ i .i : Lb -b" 6U-. - -; :'' :....._- c39c24 -. c23: :` G4 -0 '/ : - : 21 -0 13 { : :. [- - - - - .. - 1 1 -0 r 1L lb -b 1 1 i C37 - - -- - . _ - 10 - b.. .. ... ::.... .. - .. .. ...... ._... _. 14 -b 130 --- -C35. : - - - . -_ • _ 'I2 -b bb lU. b. b4) ..- . • 67) - c66 . ; -- - -- - C63 - 13-b ne r Il n c756520 c1c6c74 bU1 .. : - 3 ... .. . L -b .. BBIB. BBCCCCCCCCI' CCCCCCCCCCCCCCCICCCDDDDDDDDiaDDDDDDDDDDDDCDIDDE: DEEEEiEE'EI-EEEIEBEEiEEEEEEIEEEEZ V 0' 2' 4' 6' 8' 10' 12' 14' 10 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70:72' 74' 76' 0'1'2'3'4'5'6'7'8'9111'1:1 '.1/1'111 X111'212 2:2:2 3131 414'4:44 414' 4741515 . 5:5:5 , 5!515 . 515!6166:6:6-6:6(6 fi 170 7E77 -6" • • 4 --- (07C-1..." WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:38 Concept Mode: Beam View Roof: 25' 1050 49'-6" IU4 . . . 40 -b • IU3 - - - - 41 -b' 11 UL7 .. _ - - - 40-0 • IUI f 40-0 . y : b23 - - • b24 _ qz 4 VS 31 b LSy - . 33 -0 of JI b. 00 - ---- =- -' SU'-b 00 - - . LV - b • 0L - ... ...... ---- - - _ _ _ _ -' -- .. .. L0-0 LS'1 - LO - b i5U -- _ ,-._ -� -•- - -- - -- - - -- -'-- -- -- -- - - -- - - --- ---.. - L4 -0 1L3 : . : .. _. - - -- - .. LL -b r r . zu - -�' b 10 - , /L --- - -- --- -- - - - - .. - -- _ __ (U .. 4-b .. . . i_bUbU b b4- : b ,: ' b2 if -b 0U) : �' " : .. 4 -b . .. .. . .. -- -- - -- .. -- - -- -- - - - -- - - - . - 3-0 • . - L -b ..f - - .. U-b BBIB.B BCCCC C CC CICCC CC CCCCC C CC CC}CC CD DDD D DD DiCDD DD DD-DDD D DD CD'DD DE:E E E E:EE'EFEEEIEEIE EzFEEEEEFEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'567'8'91(1 '1 :1 :1 :1(112(2'2:2:24'.2(2 33 ;3.3 :414(5(5 5:55 4 .._ 6:71(?) WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:40 Concept Mode: Column View Roof: 25' 1050 .. _ . 49' -6" I U4� 40._0 I US - - -. - - .. - _ 4/.-0. IUL� 40 -0 IUI - - - - - - - _. -- — - -- - • 40-0 I UU 44 -0' 9 43 V0 ' .- c42 c43 c44-c45 - .. - - - :---!- .- - - 42-0 -- - 3 —_ yb 4U -b 4 ., ....:. :.. .. .: . - _.- 30-0" 5i • 3 /' al. Viµ. - ti& 33 - t5t3 • -- _. _. • _ .- - -- - - -'- - -- _ -- -- -- - - SL - b 00 . : .. . 3U -b 0.3 .. L/ - /t3 - - - --- - --� - 046-- - -- - -- - - - - - - - -"" --- -- - - --- - .. - 22 -b /b • - - ---- - - - - -.' - -- c 47---' - .. -- - • - - - -- ..--- LU -b I0 b 12 - -- - -- - - ....----- - -- -- - -- - -- --.. .__ 1 .._.. b-t5 - -- - -- - - - - --- - -- 10-0. (U. -. 14 00 _ I L -U Of 010 --- - - - -- - - - __. ; I0-0 00 04) . . _ c51 c50_ 052_ -c53 - - - � u u bG : _ ` � ' ..10 1118 0U S b - L . b .. 1 b I U -b BB\BB BC CC C C CC CtCCC CC CCCCC CCC CC\CC CDDDD D DD MOD CD DD DOD DDD CDID D DE.E E E E`EEEtEEEEEIE EEEEEEE(EEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 1:1 :1'111(1 22:2 12t3(33:33 :44!4(4 - 4144515 "5:5:5 8;6:6 .6:6(6'.5:857(7'7.77 -6" 4 — (-19 COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:42 b1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w61 Dead Partial UD 613.2 613.2 2.50 3.00 plf 2 w61 Snow Partial UD 795.0 795.0 2.50 3.00 plf . 3 c61 Dead Point 622 •2.50 lbs 4 Snow Point 1192 2.50 lbs 5 j28 Dead Full UDL 47.7 plf 6_j28 Live Full UDL 160.0 plf 7_j33 Dead Full UDL 120.2 plf 8 j33 Live Full UDL 370.0 plf MAXIMUM RE Io I o' . 31 Dead 391 1061 Live 795 1615 Total 1186 2676 Bearing: Load Comb #2 #3 Length 0.63_ 1.43 • Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2 -Plys Self- weight of 6.59 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv* = 67 Fv' = 207 fv * /Fv' = 0.32 Bending( +) fb = 331 Fb' = 1138 fb /Fb' = 0.29 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.05 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 2676, V design* = 1237 lbs Bending( +): LC #3 = D +.75(L +S), M = 1178 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 158e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. / - ( 0 COMPANY PROJECT 1 WoodWorks® SOFFWAREFOR WOOD DESIGN June 24, 2010 12:43 b3 Design Check Calculation Sheet Sizer 7.1 • LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j45 Dead Full UDL 17.0 plf 2 j45 Live Full UDL 25.0 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 10' 91 Dead 106 106 Live 112 112 Total 218 218 Bearing: Load Comb #2 #2 Length 0.50* • 0.50* 'Min. bearing length for beams is 1/2" for exterior supports Glulam- Unbal., West Species, 24F -V4 DF, 3- 1/8x9" Self- weight of 6.48 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 10 Fv' = 265 fv /Fv' = 0.04 Bending( +) fb = 140 Fb' = 2400 fb /Fb' = 0.06 Live Defl'n 0.01 = <L/999 0.30 = L/360 0.04 Total Defl'n 0.03 = <L/999 0.45 = L/240 0.06 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 218, V design = 182 lbs Bending( +): LC #2 = D +L, M = 491 lbs -ft Deflection: LC #2 = D +L EI= 342e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). • G‘ COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:40 b6 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 c44 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 c45 Dead Point 444 5.00 lbs 6 c45 Snow Point 647 5.00 lbs 7 w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9 Dead Full UDL 120.2 plf 10 j25 Live Full UDL 370.0 plf MAXIMUM REACTIONS (Ibsl and BEARING LENGTHS (inl : C I0' 61 Dead 1436 1389 Live 1803 1803 Total 3239 3192 Bearing: Load Comb #3 #3 Length 1.73 1.70 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top- loaded. Where beams are side - loaded, special fastening details may be required. G i COMPANY PROJECT I W oodWorks® SOFTWARE FOP WOOD DES1CN June 24, 2010 12:50 b8 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1_j14 Dead Full UDL 113.7 plf 2 j14 Live Full UDL 350.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : A ' 61 Dead 357 357 Live 1050 1050 Total 1407 1407 Bearing: Load Comb #2 #2 Length 0.75 0.75 Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Pays Self- weight of 5.17 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 77 Fv' = 180 fv /Fv' = 0.43 Bending( +) fb = 963 Fb' = 1080 fb /Fb' = 0.89 Live Defl'n 0.07 = <L/999 0.20 = L/360 0.33 Total Defl'n 0.10 = L/712 0.30 = L/240 0.34 ADDITIONAL DATA: FACTORS: F/E CD. CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 1407, V design = 1123 lbs Bending( +): LC #2 = D +L, M = 2110 lbs -ft Deflection: LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 4- G3 COMPANY PROJECT i WoodWorks® SOFTWARE FOA WOOD DESIGN June 24, 2010 12:40 b9 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 j50 Dead Partial UD 113.7 113.7 0.00 1.50 plf 2 j50 Live Partial UD 350.0 350.0 0.00 1.50 plf 3_j14 Dead Partial UD 113.7 113.7 3.00 9.00 plf 4_j14 Live Partial UD 350.0 350.0 3.00 9.00 plf 5_j51 Dead Partial UD 113.7 113.7 1.50 3.00 plf 6_j51 Live Partial UD 350.0 350.0 1.50 3.00 plf 7_j24 Dead Partial UD 120.2 120.2 0.00 3.00 plf 8_j24 Live Partial UD 370.0 370.0 0.00 3.00 plf 9_j25 Dead Partial UD 120.2 120.2 3.00 9.00 plf 10_j25 Live Partial UD 370.0 370.0 3.00 9.00 plf 11_j26 Dead Partial UD 120.2 120.2 9.00 12.00 plf 12 j26 Live Partial UD 370.0 370.0 9.00 12.00 plf 13 j52 Dead Partial UD 113.7 113.7 9.00 10.50 plf 14 Live Partial UD 350.0 350.0 9.00 10.50 plf 15 Dead Partial UD 113.7 113.7 10.50 12.00 plf 16 Live _ Partial UD 350.0 350.0 10.50 12.00 plf • MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 121 Dead 1478 1478 Live 4320 4320 Total 5798 • 5798 Bearing: - Load Comb #2 #2 Length 1.74 1.74 Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x10 -1/2" Self- weight of 12.39 pif included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 138 Fv' = 265 fv /Fv' = 0.52 Bending( +) fb = 2217 Fb' = 2400 fb /Fb' = 0.92 Live Defl'n 0.38 = L /381 0.40 = L/360 0.94 Total Defl'n 0.57 = L/252 0.60 = L/240 0.95 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 5798, V design = 4953 lbs Bending( +): LC #2 = D +L, M = 17395 lbs -ft Deflection: LC #2 = D +L EI= 890e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L -live S =snow W =wind I =impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). c;:7!;c4 COMPANY PROJECT di WoodWorks® SOFTY/ARDOR WOOD DESIGN June 24, 2010 12:43 b10 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or p18 ) Load Type Distribution Magnitude Location [ft] Pat - Start End Start End tern 1 w39 Dead Partial UD 311.0 311.0 0.00 4.50 No 2 w39 Live Partial UD 680.0 680.0 0.00 4.50 No 3 c39 Dead Point 267 2.00 No 4 Live Point 822 2.00 No 5_132 Dead Partial UD 120.2 120.2 0.00 0.50 No 6_j32 Live Partial UD 370.0 370.0 0.00 0.50 No 7_j33 Dead Partial UD 120.2 120.2 1.00 4.00 No 8 j33 Live Partial UD 370.0 370.0 1.00 4.00 No 9 Dead Partial UD 120.2 120.2 4.00 4.50 No 1 Live Partial UD 370.0 370.0 4.00 4.50 No 11_j35 • Dead Partial UD 120.2 120.2 4.50 7.50 No 12_135 Live Partial UD 370.0 370.0 4.50 7.50 No 13_136 Dead Partial UD 113.7 113.7 4.50 16.50 No 14_136 Live Partial UD 350.0 350.0 4.50 16.50 No 15 j37 Dead Partial UD 100.7 100.7 3.00 4.50 No 16 j37 Live Partial UD 310.0 310.0 3.00 4.50 No 17 j47 Dead Partial UD 120.2 120.2 7.50 13.50 No 18 j47 Live Partial UD 370.0 370.0 7.50 13.50 No 19_j48 Dead Partial UD 120.2 120.2 13.50 16.50 No 20 148 Live Partial UD 370.0 370.0 13.50 16.50 No 21_j49 Dead Partial UD 120.2 120.2 0.50 1.00 No 22 j49 Live Partial UD 370.0 370.0 0.50 1.00 No 23 Dead Point 300 3.00 No 24 Live Point 922 3.00 No • MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : ). 10' 4'-6" 16.61 Dead 452 4067 1180 Live 847 11291 3436 Uplift 12 Total 1300 15358 4616 Bearing: Load Comb #2 #2 #2 Length 0.50• 4.24 1.27 Cb 1.00 1.09 1.00 'Min. bearing length for beams is 1/2" for exterior supports Glulam- Unbal., West Species, 24F -V4 DF, 5- 118x12" ' Self- weight of 14.16 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 265 fv /Fv' = 0.60 Bending( +) fb = 1074 Fb' = 2400 fb /Fb' = 0.45 Bending( -) fb = 1396 Fb' = 1844 fb /Fb' = 0.76 Live Defl'n 0.13 = <L/999 0.40 = L/360 0.32 Total Defl'n 0.19 = L/740 0.60 = L/240 0.32 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Far' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fb'- 1850 1.00 1.00 1.00 0.997 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 8357, V design = 6496 lbs Bending) +): LC #2 = D +L, M = 11006 lbs -ft Bending( -): LC #2 = D +L, M = 14310 lbs -ft Deflection: LC #2 = D +L EI= 1328e06 1b -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live S =snow W =wind I= impact C =construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. Grades with equal bending capacity in the top and bottom edges of the beam cross - section are recommended for continuous beams. 4. GLULAM: bxd = actual breadth x actual depth. 5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 6. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). ,q_ &ii sc-- COMPANY PROJECT dl WoodWorks° SOFTWARE FOR WOOD DESIGN June 24, 2010 12:44 b13 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 Dead Point 217 5.50 lbs 4 c40 Live Point 668 5.50 lbs 5 c67 Dead Point 518 5.00 lbs 6 c67 Snow Point 778 5.00 lbs 7 c68 Dead Point 573 3.00 lbs 8 Snow Point 942 3.00 lbs 9 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10w59 Snow Partial UD 735.0 735.0 5.00 8.00 pif 11_1 37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12_j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13_j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14_j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16_j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 18 - b15 Live Point 389 3.50 lbs 19 b 32 Dead Point 225 6.50 lbs 20 Live Point 693 6.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : . 'D= : ••••- a :-. . . ! ea r , ... "- - z, -•,._• -� ti p.!-..- ' ' ' "- . .� r' *"' W t... -:�',- 'may;, C "� '�'s ...�, m..._ '-...; �. - a�-- - ...r'd - :•.,,.L c -.�.C�' - .= _... ..w. �: - �.��° :.. „ +a,Jr' • � C " 11 1 4r � 5��� „ i- ... �'�' _y"'. _- -.-Rar' ' 0 IC I o' 81 Dead 2561 3033 Live 2699 3789 Total 5261 6822 Bearing: Load Comb #3 #3 Length 1.88 2.44 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 pif included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L/680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC #3 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. l ---- G 1‘, COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:43 b14 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w33 Dead Partial UD 317.7 317.7 9.00 12.00 plf 2_ w33 Live Partial UD 350.0 350.0 9.00 12.00 plf 3 c19 Dead Point 357 9.00 lbs 4 Live Point 1050 9.00 lbs 5 c20 Dead Point 357 3.00 lbs 6 c20 Live Point 1050 3.00 lbs 7 w34 Dead Partial UD 317.7 317.7 0.00 3.00 plf 8 w 34 Live Partial UD 350.0 350.0 0.00 3.00 plf 9 - c64 Dead Point 165 10.50 lbs 10 c64 Snow Point 225 10.50 lbs 11 Dead Point 165 1.50 lbs 12 c65 Snow Point 225 1.50 lbs 13 j36 Dead Full UDL 113.7 plf 14 j36 Live Full UDL 350.0 plf 15_j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 16_j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 17_j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 18 j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 19 Dead Partial UD 17.0 17.0 1.50 10.50 plf 20 j45 Live Partial UD 25.0 25.0 1.50 10.50 plf 21 Dead Partial UD 17.0 17.0 10.50 12.00 plf 22 Live Partial UD 25.0 25.0 _ 10.50 12.00 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : ie"-- ...s. .. ,. Q, C ,,.•a. - �. -- .•.z... =ma' -- -,.. a. 3.,44.7 " �"►' = _ - -- -3...- . .- `..r .�-.s7• - ° c fir- "+--� '� � *_ '^ - - �_ - -.-.aos - 'srr _.. Vic^ -' ' j� _ T .�+� Aya '`err °"c -' - ec 10' 12t . Dead 2351 2351 Live 4350 4350 Total 6701 6701 Bearing: Load Comb #2 #2 Length 2.39_ _ 2.39 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 163 Fv' = 310 fv /Fv' = 0.52 Bending( +) -fb = 1769 Ft,' = 2325 fb /Fb' = 0.76 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.43 = L/333 0.60 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Ervin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 6701, V design = 5314 lbs Bending( +): LC #2 = D +L, M = 16851 lbs -ft Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S -snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. / 9 .---- Lil '''4F.- COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:41 b20 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j30 Dead Full UDL 21.7 plf 2 j30 Live Full UDL 60.0 plf MAXIMUM REA(TIANS Mal and RFARIN(. 1 FN(TI4S /in► • • 1 Dead 46 46 Live 105 105 Total 151 151 • Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x6" Self- weight of 4.57 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 9 Fv' = 180 fv /Fv' = 0.05 Bending( +) fb = 90 Fb' = 1170 fb /Fb' = 0.08 Live Defl'n 0.00 = <L/999 0.12 = L/360 0.02 Total Defl'n 0.00 = <L/999 0.18 = L/240 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 151, V design = 111 lbs Bending( +): LC #2 = D +L, M = 132 lbs -ft • Deflection: LC #2 = D +L EI= 78e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 14- COMPANY PROJECT I WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:50 b30 Design Check Calculation Sheet Sizer 7.1 LOADS l Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1_j41 Dead Partial UD 68.0 68.0 2.00 4.00 plf 2_j41 Live Partial UD 100.0 100.0 2.00 4.00 plf 3_j42 Dead Partial UD 72.2 72.2 0.00 2.00 plf 4 j42 Live Partial UD 106.2 106.2 0.00 2.00 plf MAXIMUM REPCTIONS_(Ihcl and RFARINI; LENGTHS lint • • A 44 Dead 154 150 Live 209 203 Total 364 353 Bearing: Load Comb #2 #2 Length 0.50* 0.50* in. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x8" Self- weight of 6.03 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 15 Fv' = 180 fv /Fv' = 0.08 Bending( +) fb = 140 Fb' = 1170 fb /Fb' = 0.12 Live Defl'n 0.00 = <L/999 0.13 = L/360 0.03 Total Defl'n 0.01 = <L/999 0.20 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 364, V design = 253 lbs Bending( +): LC #2 = D +L, M = 359 lbs -ft Deflection: LC #2 = D +L EI= 178e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 1 ,4 COMPANY PROJECT I WoodWorks® SOFTWARE FOP WOOD DESIGN June 24, 2010 12:42 b31 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j65 Dead Partial UD 47.7 47.7 0.00 4.00 plf 2_j65 Live Partial UD 160.0 160.0 0.00 4.00 plf 3_j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4_j28 Live Partial UD 160.0 160.0 4.50 7.50 plf 5_j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 6_j62 Live Partial UD 160.0 160.0 7.50 11.00 plf 7j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 8_j63 Live Partial UD 160.0 160.0 11.00 17.00 plf 9_j64 Dead Partial UD 47.7 47.7 17.00 20.00 plf 10_j64 Live Partial UD 160.0 160.0 17.00 20.00 plf 11_j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 12 j66 Live Partial UD 160.0 160.0 4.00 4.50 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 10' 20 Dead 619 619 Live 1600 1600 Total 2219 2219 Bearing: Load Comb #2 # Length 0.67 • 0.67 Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x12" Self- weight of 14.16 plf included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 49 Fv' = 265 fv /Fv' = 0.18 Bending( +) fb = 1082 Fb' = 2400 fb /Fb' = 0.45 Live Defl'n 0.43 = L/553 0.67 = L/360 0.65 Total Defl'n 0.69 = L /350 1.00 = L/240 0.69 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 • Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 2219, V design = 1997 lbs Bending( +): LC #2 = D +L, M = 11095 lbs -ft Deflection: LC #2 = D +L EI= 1328e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4- G2o COMPANY PROJECT • 111 I I %Voo dVVork s ® June 24, 201013:15 6034 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet 560.37.1 LOADS IIb..P.f.o.PR) Load Ty, Distribution Magnitude Location Ift1 Unita Start End Start End 1_6 Dead - Partial UD 613.2 613.2 0.00 2.00 pif • 2_062 Snow Parti•l UD 795.0 795.0 0.00 2.00 plf 3 Dead Partial UD 617.5 617.5 7.50 11.00 pif 429 Snow Partial U0 801.2 801.2 7.50 11.00 pif 5 015 Dead Paint 1436 11.00 1493 6_015 Snow Point 2404 11.00 165 416 Dead Point 1389 17.00 lb. 9 Snow Paint 2404 17.00 165 9 Dead Partial UD 617.5 617.5 17.00 18.00 pif 10_464 Snow Partial U0 101.2 901.2 17.00 16.00 pif • 11_461 Dead Point 622 7.00 163 12 461 Snow Point 1192 7.00 10s 13_062 Dead Point 622 4.00 Dos 14 Snow Point 1192 4.00 lb. 15,63 Goad Partial U0 613.2 613.2 2.00 4.00 pif 16,63 Sncw Partial 00 795.0 7 95.0 2.00 4.00 pif 17 Dead Partial UD 617.5 617.5 19.00 20.00 plf 19 465 Snow Partial UD 801.2 801.2 16.00 20.00 pif 19 w71 Dead Partial UD 613.2 613.2 7.00 7.50 plf 20 Snow Partial UD 795.0 7 95.0 7.00 7.50 plf 21 764 Dead Partial UD 47.7 47.7 17.00 16.00 pif 22_164 Live Partial UD 160.0 160.0 17.00 18.00 pif 23 128 00ad Partlal UD 47.1 47.7 4.50 7.50 pif 4 128 Live Partial UD 160.0 160.0 4.50 7.50 pif . 25_162 Dead Partial UD 47.7 47.7 7.50 11.00 pif 26_162 Live Partial V0 160.0 160.0 7.50 11.00 pif 27 Dead Partial UD 120.2 120.2 0.00 2.00 plf 2 Live Partial UD 370.0 370.0 0.00 2.00 pif 29_132 Dead Partial UD 120.2 120.2 3.50 4.00 pif 30_132 1.17, Partial UD 370.0 370.0 3.50 4.00 pif 31_133 Dead Partial UD 120.2 120.2 4.50 7.50 pif 32_133 Live Partial UD 370.0 3 4.50 7.50 pif 33 - 134 Dead Partial UD 1:0.2 120.2 7.50 8.00 pif . 34_134 Live 2.011,1 VD 370.0 3 7.50 1.00 Of 35_135 Dead Partial UD 120.2 120.2 9.00 11.00 pif 36_335 Live Partial UD 370.0 3 8.00 11.00 pif 37_147 Dead Partial UD 120.2 120.2 11.00 17.00 pif 1 3947 Live Partial UD 370.0 370.0 11.00 17.00 pif 39=367 Dead Partial UD 120.2 120.2 2.00 3.50 pif 40_067 Live Par:1.1 UD 370.0 3 2.00 3.50 plf 41_349 Dead Partial UD 120.2 120.2 4.00 4.50 pif 42_549 Live Partial UD 370.0 370.0 4.00 4.50 pif 43_163 Dead Partial UD 47.7 47.7 11.00 17.00 pif 44_263 Live Partial 00 160.0 160.0 12.00 17.00 pif 45_565 Dead Partial UD 47.7 47.7 18.00 20.00 plf 46 365 Live Partial UD 160.0 160.0 19.00 20.00 pif _ 166 Dale Partial VD 47.7 47.7 4.00 4.50 pif 49_1,56 LSva Partial UD 160.0 150.0 4.00 4.50 pif 49_364 Daad Partial UD 120.2 120.2 17.00 19.00 pif 50_169 Live Partial UD 370.0 370.0 17.00 10.00 pif 51_069 Dead Partial VD 120.2 120.2 18.00 20.00 pif 52_560 Live Partial UD 370.0 370.0 19.00 20.00 plf 53172 Dead Partial UD 47.7 47.7 2.00 4.00 pif . 54_172 L1va Partial UD 160.0 160.0 2.00 4.00 pif 55_513 Dead Partial 110 47.1 47.7 0.00 2.00 plf 56 173 Live Parti•l UD 160.0 160.0 0.00 2.00 elf MAXIMUM REACTIONS (Ms) and BEARING LENGTHS (In) : • 1 Dead 945 Love 7366 7903 Total 17361 17305 a L '- Comb 83 1 Lena, 5.21 5.13 Glulam -Bar., West Species, 24F -V8 DF, 5- 118x22 -112 Sell-weight of 2955 4 61.3664310 ea load.; Lateral .upport lope full, Peewee at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) wbgrms2008, 0010,0ion Anal' /a0a Value Demon Value Analva1e /Desion Shear fv - 332 - 305 fv /F':' ■ 0.60 Sending t•I 10 - 2392 - 2604 ft/Pb' ■ 0.92 Live Oefl'n 0.40 - L/555 0..67 47 - L/360 0.60 Total Def1'n 0.34 - L/285 1.00 - L /240 0.90 ADDITIONAL DATA: FACTORS: EVE CD ']4 CL CV Cfu cr Cfr: Notes Cn U4 Fv' 265 1.15 1.00 1. 00 1.00 1.00 1.00 3 10 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 650 1.00 1.00 - - - - 1.00 - 1.0 million 1.00 1.00 - - - - 1.00 - - 631 Em1n' 0.05 million 1.00 1.00 - - - - 1.00 - - - Shear . LC 13 - D,.75(L -S1, v 17361, '4 design ■ 139E- 104 Bendin9( LC 13 - 00.7511.401, M - 56189 lba -ft Deflection: LC 13 ■ 04.7511.401 El. 9756,06 10 -102 Total 018111177 ■ 1.50l0aad Lead 1.025011441 • Live Load Deflection. (D -dead 1■110, 5■snow 0.vind I.impart C- construction CLd- concentrated) 1011 Lc', are 110100 in the Analysis output) • Load combinations: ICC -IBC DESIGN NOTES: 1. Please verily that Om default deflection Omits are appropriate for your epplr3000o 2. GMan4 design values are for materials conforming to AITC 117 -2001 and manuladured M accordance with ANSUAITC AI 90.1 -1992 3. GLULAM: Led 0 actual breadth s actual depth. . 4. Gellam Bea= shall be bawdy suppWad accenting to the provisions 54 NOS Claws 3.3.3. 5. GLULAM: 6earig 61.3910 based on .male, of Fep(tensbn), Fep(cornpn). 4-, &,---;), COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN • June 24, 2010 12:49 b35 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location (.ft] Units Start End Start End 1_j21 Dead Partial UD 120.2 120.2 0.50 1.50 plf 2_j21 Live Partial UD 370.0 370.0 0.50 1.50 plf 3 j59 Dead Partial UD 120.2 120.2 0.00 0.50 plf 4_j59 Live Partial UD 370.0 370.0 0.00 0.50 plf 5_j60 Dead Partial UD 120.2 120.2 1.50 3.00 plf 6 j60 Live Partial UD 370.0 370.0 1.50 3.00 plf MAXIMUM RE ? ,.,1..,..... 1.. • ....,..T..� , • 10' 3' Dead 188 188 Live 555 555 Total 743 743 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 31 Fv' = 180 fv /Fv' = 0.17 Bending( +) fb = 254 Fb' = 1080 fb /Fb' = 0.24 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 743, V design = 444 lbs Bending( +): LC #2 = D +L, M = 557 lbs -ft Deflection:,LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I =impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. • COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:51 c2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End l bl Dead Axial 1056 (Eccentricity = 0.00 in) 2 bl Rf.Live Axial 2153 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 1 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 2 -Plys Self- weight of 3.41 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 0.00= 0.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 196 Fc' = 980 fc /Fc' = 0.20 Axial Bearing fc = 196 Fc* = 1644 fc /Fc* = 0.12 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.596 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 3236 lbs Kf = 1.00 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT W oo dW orks ° '• SOFTWARE FOR WOOD DESIGN June 24, 2010 12:54 c12 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c24 Dead Axial 1478 (Eccentricity = 0.00 in) 2 c24 Live Axial 4320 (Eccentricity = 0.00 in) 3 Dead Axial 4067 (Eccentricity = 0.00 in) 4 Live Axial 11291 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): • 0' 8 Timber -soft, D.Fir -L, No.1, 6x6" Self- weight of 7.19 plf included in Toads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 701 Fc' = 820 fc /Fc' = 0.86 Axial Bearing fc = 701 Fc* = 1000 fc /Fc* = 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC #. Fc' 1000 1.00 1.00 1.00 0.820 1.000 - - 1.00 1.00 2 Fc* 1000 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 21214 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. • 4-- COMPANY PROJECT I I WoodWorks® SOFFWAREFOR W000 DESIGN June 24, 2010 12:53 c23 Design Check Calculation Sheet Sizer 7.1 LOADS (ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b9 Dead Axial 1478 (Eccentricity = 0.00 in) 2 Live Axial 4320 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 1 0' 9' Lumber Post, Hem -Fir, No.2, 4x6" Self- weight of 3.98 pif included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 303 Fc' = 379 fc /Fc' = 0.80 Axial Bearing fc = 303 Fc* = 1430 fc /Fc* = 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.265 1.100 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 5834 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (A11 LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 4 - C COMPANY PROJECT 1 i 11Nood SOFTWARE FOR WOOD DESIGN June 24, 2010 12:54 c26 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c23 Dead Axial 1478 (Eccentricity = 0.0) in) 2 c23 Live Axial 4320 (Eccentricity = 0.00 in) 3 b10 Dead Axial 1180 (Eccentricity = 0.00 in) 4 Live Axial 3436 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): ► &« yry'', �-� 3A, :.i. .1.14 ' • 0' 8' Timber -soft, Hem -Fir, No.2, 6x6" Self- weight of 6.25 pif included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 346 Fc' = 492 fc /Fc' = 0.70 Axial Bearing fc = 346 Fc* = 575 fc /Fc* = 0.60 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.00 1.00 1.00 0.856 1.000 - - 1.00 1.00 2 Fc* 575 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 1 Axial : LC #2 = D +L, P = 10465 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 62L COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:52 c29 Design Check Calculation Sheet Sizer7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End l b13 Dead Axial 3033 (Eccentricity = 0.00 in) 2 Rf.Live Axial 5052 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 3 -Plys Self- weight of 5.11 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 328 Fc' = 439 fc /Fc' = 0.75 Axial Bearing fc = 328 Fc* = 1644 _ fc /Fc* = 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.267 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 8126 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. • • 4 • COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:55 c31 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1_b13 Dead Axial 2561 (Eccentricity = 0.00 in) 2 Rf.Live Axial 3599 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): CI 1 0' 8 ' Lumber n -ply, Hem -Fir, No.2, 2x4 ", 3 -Plys Self- weight of 3.25 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 393 Fc' = 443 fc /Fc' = 0.89 Axial Bearing fc = 393 Fc* = 1719 fc /Fc* = 0.23 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.258 1.150 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 6186 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) • (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. it — (L;;AD COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESJGN June 24, 2010 12:54 c39 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b21 Dead Axial 267 (Eccentricity = 0.00 in) 2 Live Axial 822 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 1 0' 9' • Lumber n -ply, Hem -Fir, No.2, 2x4 ", 2 -Plys Self- weight of 2.17 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 106 Fc' = 171 fc /Fc' = 0.62 Axial Bearing fc = 106 Fc* = 1495 fc /Fc* = 0.07 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.114 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 1108 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. • COMPANY PROJECT i1 WoodWorks® SOEIWAAE EOP WOOD DESIGN June 24, 2010 12:52 c55 • Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 b30 Dead Axial 154 (Eccentricity = 0.00 in) 2 Live Axial 209 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 8' Lumber Post, Hem -Fir, No.2, 4x4" Self- weight of 2.53 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 31 Fc' = 470 fc /Fc' = 0.07 Axial Bearing fc = 31 Fc* = 1495 fc /Fc* = 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.315 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 384 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 0 141 BY DATE: ( ...._ aoko JOB NO : cu\si OF PROJECT: RE: Kearns W I Lai-cat diaos 0 0 w .. - • Z LL P.- =e_ckcenic;. Wakts 2p3 -i, 303 0 w 1_ w O 2 2 lj El tbealn t3 'Walls aoaPt 3cra, 0 J X u O w beo I q- --5 Wafts "ak0 1' acr--1 o z . 0 , .. z b eakm - ;1.-t --) wa 1,15 ao I , ao t 0 5 knce wed. Cem.k > Se L.Srni c. reach oy\ o Z 7 2 0 N.K3 ui ncK u.A . t. be. calcovAverA, 2 0 U n 2 O .. rt 0 U. Z W 0 6 0 = = , - o u., . CL) / 7 4 .,. a' 0 _tap • '- COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 13:07 b6 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c44 Dead Point 444 2.00 lbs 2 c44 Snow Point 647 2.00 lbs 3 w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4_w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5_c45 Dead Point 444 5.00 lbs 6_c45 Snow Point 647 5.00 lbs 7 w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9 Dead Full UDL 120.2 plf 10 j25 Live Full UDL 370.0 plf WIND1 Wind Point 800 2.00 lbs WIND2 Wind Point -910 5.00 lbs MAXIMUM REACTIONS final and BEARING LENGTHS (inl I0' 61 Dead 1436 1389 Live 2089 1803 Total 3525 3192 Bearing: Load Comb #4 #3 Length 1.88 1.70 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.15 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 4 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 4 Shear : LC #3 - D+.75(L+S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #4 = D +.75(L +S +W) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 3?___ COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 13:07 b6 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 c45 Dead Point 444 5.00 lbs 6_c45 Snow Point 647 5.00 lbs 7 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9 Dead Full UDL 120.2 plf 10 j25 Live Full UDL 370.0 plf WIND1 Wind Point -800 2.00 lbs WIND2 Wind Point 910 5.00 lbs MAXIMUM REACTIONS fibs) and BEARING LENGTHS (in) : i k I o ' . 61 Dead 1436 1389 Live 1803 2172 Total 3239 3561 Bearing: Load Comb #3 #4 Length 1.73 1.90 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in Toads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : . Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 4 ._ (5-3-5 COMPANY PROJECT I WoodWorks° SOFTWARE FOR WOOD DESIGN June 24, 201013:09 b14 LC1 • Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, pst, or pit) : Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2 Live Partial UD 350.0 350.0 9.00 10.50 plf 3 Dead Point 357 9.00 lbs 4 c19 Live Point 1050 9.00 lbs 5 c20 Dead Point 357 3.00 lbs 6 c20 Live Point 1050 3.00 lbs 7_w66 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8 w66 Live Partial UD 350.0 350.0 0.00 1.50 plf 9 Dead Point 165 10.50 lbs 10 c64 Snow Point 225 10.50 lbs 11 c65 Dead Point 165 1.50 lbs 12_c65 Snow Point 225 1.50 lbs 13_w67 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14_w67 Live Partial UD 350.0 350.0 1.50 3.00 plf 15 w69 Dead Partial UD 317.7 317.7 10.50 12.00 plf 16 Live Partial UD 350.0 350.0 10.50 12.00 plf 17_j36 Dead Full UDL 113.7 plf 18 j36 Live Full UDL 350.0 plf 19_j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20_j43 • Live Partial UD 25.0 25.0 0.00 0.50 plf 21 j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22 144 Live Partial UD 25.0 25.0 0.50 1.50 plf 23J45 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24_j45 Live Partial UD 25.0 25.0 1.50 3.00 plf 25j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26_j46 Live Partial UD 25.0 25.0 10.50 12.00 plf 27 j70 Dead Partial UD 17.0' 17.0 3.00 9.00 plf 28:170 Live Partial UD 25.0 25.0 3.00 9.00 plf 29 j71 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30_j71 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point 3560 3.00 lbs WIND2 Wind Point -3640 9.00 lbs wind3 Wind Point -3620 0.00 lbs winds Wind Point 3570 12.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : @� -� +6. =m. .. ---- - - fi r 'w m..- 7.--.„.,,,,,‘„,,,-12._____----T-_-, - _ 1 0' 121 Dead 2207 2207 Live 4350 4350 Uplift 499 4 Total 6557 6557 Bearing: Load Comb 02 • 02 Length _ 2.34 2.34 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NOS 2005: Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 310 fv /Fv' = 0.51 Bending( +) fb = 1735 Fb' = 2325 fb /Fb' = 0.75 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.42 = L/343 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC 02 = D +L, V = 6557, V design = 5170 lbs Bending( +): LC 02 = D +L, M = 16527 lbs -ft • Deflection: LC 02 = D +L EI= 1241e06 lb -in2 , Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. /42-691 COMPANY PROJECT di WoodWorks® SOFIWAREw9 WOOD DESIGN June 24, 201013:09 b14 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2_w68 Live Partial UD 350.0 350.0 9.00 10.50 plf 3 c19 Dead Point 357 9.00 lbs 4 c19 Live Point 1050 9.00 lbs 5 Dead Point 357 3.00 lbs 6 c20 Live Point 1050 3.00 lbs 7 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8_w66 Live Partial UD 350.0 350.0 0.00 1.50 plf . 9 c64 Dead Point 165 10.50 lbs 10_c64 Snow Point 225 10.50 lbs 11_c65 Dead Point 165 1.50 lbs 12_c65 Snow Point 225 1.50 lbs 13 w67 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14 Live Partial UD 350.0 350.0 1.50 3.00 plf 15 w69 Dead Partial UD 317.7 317.7 10.50 12.00 plf 16w69 Live Partial UD 350.0 350.0 10.50 12.00 plf 17 j36 Dead Full UDL 113.7 plf 18_j36 Live Full UDL 350.0 plf 19_j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 21_j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22_j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 23_j Dead Partial UD 17.0 17.0 1.50 3.00 plf 24_j45 Live Partial UD 25.0 25.0 1.50 3.00 plf 25 j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26 j46 Live Partial UD 25.0 25.0 10.50 12.00 plf 27_j70 Dead Partial UD 17.0 17.0 3.00 9.00 plf 28_j70 Live Partial UD 25.0 25.0 3.00 9.00 plf 29 j71 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30_j71 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point -3560 3.00 lbs WIND2 Wind Point 3640 9.00 lbs wind3 Wind Point 3620 0.00 lbs winds Wind Point -3570 12.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : • �y?v - 6.... -_,F= „^ C - , ' -Vii.. - '.Nepal. . ..%. - +m.� - - 7 1. e-, ,.•- I0' 121 Dead 2207 2207 Live 4826 4811 Total 7033 7018 Bearing: Load Comb #4 #4 Length 2.51 2.51 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design ' Shear fv = 158 Fv' = 310 fv /Fv' = 0.51 Bending(+) fb = 1735 Fb' = 2325 fb /Fb' = 0.75 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.42 = L/343 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv• 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC 02 = D +L, V = 6557, V design = 5170 lbs Bending( +): LC 02 = D +L, M = 16527 lbs -ft Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (17 =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL - BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer: 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 4- G3C COMPANY PROJECT i. WoodWorks® 1 SOFRWARE FOR WOOD DESIGN June 24, 2010 13:11 b13 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psi, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 c40 Dead Point 217 5.50 lbs 4 c40 Live Point 668 5.50 lbs 5 Dead Point 518 5.00 lbs 6 • Snow Point 778 5.00 lbs 7 c68 Dead Point 573 3.00 lbs 8 Snow Point 942 3.00 lbs 9 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10 w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 - j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12_j 37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13 j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14_j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15_j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16 j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 Dead Point 126 3.50 lbs 18 Live Point 389 3.50 lbs 19 b 32 Dead Point 225 6.50 lbs 20 Live Point 693 6.50 lbs Wi Wind Point 6590 0.00 lbs W2 Wind Point -6590 3.00 lbs W3 Wind Point 6590 5.00 lbs W4 Wind Point -6590 8.00 lbs MAXIMUM RFACTIf2NSilhstaud B.FARING LENGTHS finl _ -;-.'r e m . vg ...-- ..� : _ .r �-....._ .,........-#.- r -- ._- '''''.#..0r +� ar.4[' . " 'L"'.ar`•°�` T ,4r3... .- �-y. > " .rir :ite -. .._- - 44.6.. �•+ -a .�.-�es.tr I o' 81 Dead 2561 3033 Live 6406 3789 Uplift 3098 Total 8968 • 6822 Bearing: Load Comb #4 #3 Length 3.20 2.44 LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L /680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 • Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 • Shear : LC #3 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC 43 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC 93 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C =construction CLd =concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. • • - (.1 3 COMPANY PROJECT 1 Wood SOFIWARE FOR WOOD DESIGN June 24, 2010 13:11 b13 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 Dead Point 217 5.50 lbs 4 Live Point 668 5.50 lbs 5 Dead Point 518 5.00 lbs 6 Snow Point 778 5.00 lbs 7 Dead Point 573 3.00 lbs 8 Snow Point 942 3.00 lbs 9 w59 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10_w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12 Live Partial UD 310.0 310.0 6.50 8.00 plf 13 j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14 Live Partial UD 250.0 250.0 3.50 6.50 plf 15 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 Dead Point 126 3.50 lbs 18 Live Point 389 3.50 lbs 19 b32 Dead Point 225 6.50 lbs 20 b32 Live Point 693 6.50 lbs W1 Wind Point -6590 0.00 lbs W2 Wind Point 6590 3.00 lbs W3 Wind Point -6590 5.00 lbs W4 Wind Point 6590 8.00 lbs MAXIMUM REACTIQNS_4h - r . = • : , NGTHS lint : ..-•• > .., , nom' K _ �r-- G _ . .a,„� yYi►� J�.. f.. - ' 3 :� ' - • • " - . • �siV..' ^.x.- - = - .r- Wit^-. -1..-- ....A, `.- . �..- - -+� -m-" r_ .+_. - w...... � ,�• ...- I n 81 Dead 2561 3033 Live 2699 7496 Uplift 3381 Total 5261 10529 Bearing: Load Comb #3 #4 Length 1.88 3.76 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L /680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Ervin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC #3 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 4 631- COMPANY PROJECT 111 I I Wo Wo r k s ® June 21.2D1213:19 bW LC1 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet 5Dr 7.1 LOADS ( bbs. Pat.06 P0) Load Type Distribution Magnitude Location (ft) Unita Start End Start End 1_062 Dead Partial U0 613.2 613.2 0.00 2.00 plf 062 Snow Partial UD 795.0 795.0 0.00 2.00 plf 3_729 Dead Partial UD 617.5 617.5 1.50 11.00 Of 1 029 Snow Partial UD 001.2 901.2 7.50 11.00 plf 5 Dead Point 1436 11.00 lb. 6 Snow Point 2404 11.00 las 7 Dead Point 1399 17.00 lba 11_316 Sncv Point 2404 17.00 107 p1 964 Dead Partial UD 617.5 611.5 17.00 19.00 plf 17'0_064 Snow Partial UD 901.2 001.2 11.00 10.00 plf 11_061 Dead Point 622 7.00 las 12 Snow Point 1192 1.00 lb 13 Dead Point 622 4.00 lb0 14 Sncv Point 1192 4.00 100 15763 Dead Partial UD 613.2 613.2 2.00 4.00 pif 16763 Snow Partial VD 715.0 795.0 2.00 4.00 plf 17765 Dond Partial UD 611.5 617.5 19.00 20.00 plf 18 Snow Partial UD 901.2 601.2 10.00 20.00 plf 19 011 Dead Partial UD 613.2 613.2 1.00 7.50 plf :02,1 Snow Partial DD 795.0 795.0 7.00 7.50 plf 21_164 Dead Partial UO 11.7 47.7 17.00 18.00 plf 22_164 Live Partial 0 160.0 160.0 17.00 19.00 plf 23,29 De U Dead Partial UD 47.7 11.7 4.50 1.50 plf :1_129 Live Partial UD 160.0 160.0 4.50 1.50 plf 25_262 Dead Partial VD 47.7 47.7 7.55 11.00 plf 26 _162 Liva Partial UD 160.0 160.0 7.51 11.00 plf 27_348 Dead Partial UD 120.2 120.2 0.09 2.00 plf 29 3 Live Partial UD 370.0 370.0 0.00 2.00 plf 29_132 Daed Partial UD 120.2 120.2 3.50 4.00 plf 30_132 Live Partial UD 310.0 370.0 3.90 4.00 plf 31_133 Dead Partial UD 120.2 120.2 4.50 1.50 plf 32_133 Live Partial VD 370.0 370.0 4.50 1.50 plf 33_134 Dead Partial UD 120.2 120.2 7.50 0.00 plf 34 _134 Live Partial UD 310.0 370.0 7.50 0.00 plf 35_)35 Dead Partial UD 120.2 120.2 9.00 11.00 plf 36_135 Live Partial UO 310.0 370.0 8.00 11.00 plf 37_141 Dead Partial DD 120.2 120.2 11.00 17.00 p1 35_147 Live Partial OD 310.0 370.0 11.00 17.00 plf 3 367 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41_367 Live Partial UD 370.0 310.0 2.0C 3.50 plf 41_149 Dead Partial UD 120.2 120.2 4.00 4.50 plf 42_349 Live Partial VD 370.0 310.0 4.00 4.50 plf 44 547 _163 Dead Partial UD 47.7 47.7 11.00 17.00 plf 05 Live Partial VD 160.0 160.0 11.00 11.00 plf IS 165 Geed Partial UD 47.1 47.7 10.00 20.00 plf 46_165 Live Partial UD 160.0 160.0 10.00 20.00 plf 47_166 Dead Partial UD 47.7 47.1 4.00 4.50 plf 46_166 Live Partial VD 160.0 160.0 4.00 4.50 plf 49_168 Dead Partial UD 1:0.2 120.2 17.00 19.00 plf 50_168 Llvu Partial UD 370.0 310.0 17.00 18.00 plf 51_169 Dead Pe UD 120.2 120.2 11.00 20.00 plf 52 169 Liva Partial :60.1 p U0 370.0 370.0 19.00 20.00 10 531172 Dead Partial U0 47.7 41.7 2.00 4.00 plf 51_172 Livo Partial 110 160.0 160.0 2.00 4.00 plf 0.0 55_173 Dead Partial UD 11.7 47.1 0.00 2.00 plf 01_) Live Partial VD 160.0 360.0 0.00 2.00 plf %3 Hind Point 5050 0.00 lba 142 wind Point -5050 1.00 03 Wind Point 5950 11.00 160 lba WI Wind Polnc -5850 17.00 lba 75 Wind Point 5850 20.00 Iba MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : Dead 4105 lyn Live 12150 12112 Total 19555 19499 Bearing: Load Cart 04 95 Lenatn 5.81_ 5.95 Glulam -Bal., West Species, 24F -V8 DF, 5- 118x22.1/2" • Sedwvdpld d 25.55 fif included In bade; Lateral support tope 60.6aeorne at supports; Analysis vs. Allowable Stress (psi) and Deflection (In) ,0,699 pm 2005: Criterion AnalVata Value Dee176 Value A na12eie /000106 shear fv ■ 102 PV' ■ 305 fv /Fv. .60 9en0ingl.) fb - 2392 Fa ■ 2604 fb /Fb' . 0.92 Live Del1'n 0.40 • L/595 0.67 . L/360 0.60 Total Defl'n 0.84 . L/289 1.00 - L /240 0.84 ADDITIONAL DATA: FACTORS: F/E 00 CL c! Cfu Nat. Nat Cr: LCI cm 803' 265 1.15 1.01 1.00 1.00 1.00 1.00 3 Fa'. :400 1.15 1.03 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 Fop' 650 1.00 1.00 - - - - 1.00 - E' 1.0 billion 1.00 1.00 - Erin' 0.85 million 1.00 1.00 - Shea: : LC 03 ■ D0.7511 '/ ■ 17361. V deal0n - 13932 lb. Sending1 0.0 03 ■ 6..1511051, W - 96119 iba -ft Deflection: LC 03 - 90.7510.61 E1. 8756006 lb -in: Total Deflect0 a 1.501D0a10 vied Deflection, 0 Live Load Deflection. ID•dead L.1ive S W.0107 I■1rpact . vans :ruction Ltd ■3oncentratedl 1. 6 . 0 : , (All e listed In the Analysis output) Loa] caSinaticna: ICC -10C DESIGN NOTES: 1. Please verify Dui the dotard deflection Ord, ore appropriate far yo .pp0calbn. 2. GOGrn design v Les are tar mYedata wdmn'up to AMC 117 -2601 end rradffived in accordace vM ANS0AITC 4190.1 -1992 3. GLULAM: bad a mile breadth. actual depth. 4. G0trn Beano ,hall be latera9y supported a000rdlrq t0 caw 0.0691bu of NOS Massa 33.3. 5. GLUTAM: bearing length based 4n smatter of FOp5erobn). Fcp(ccenpn). 4-C1;v COMPANY PROJECT Wo od VVor k s ® J1ne24.201013 :191JNLC2 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet SRN 7.1 LOADS 1th, PA aPR) Loaf Typo Distribution 0.0015ude Location (ft] Units Start End Start End 1 4,62 Dead Partial UD 613.2 613.2 0.00 2.00 pif 3 263 Snow Partial UD 795.0 195.0 0.00 2.00 pif .29 Dead Partial VD 611.5 617.5 7.50 11.00 plf _.29 Snow Partial UD 801.2 801.2 7.50 11.00 plf c15 Dead Point 1436 11.00 lba c15 Snow Point 2404 11.00 104 _316 Dead Point 1399 17.00 lbs c16 3now Point 2404 1 lbs .164 Dead Partial UD 611.5 611.5 17.0C 19.00 pif 0_.164 Snow Partial 0D :01.2 901.2 11.00 19.00 pif 1 Dead Point 622 7.00 lba 2 Snow Point 1192 7.00 lba 3c62 Dead Point 622 4.00 lb. _ .62 Snow Point 1192 4.00 163 5 363 Dead Partial UD 613.2 613.2 2.00 4.00 pif 6_363 Partial UD 795.0 795.0 2.00 4.00 plf w65 Dead Partial U0 611.5 617.5 19.00 20.00 plf 9365 Snow Partial UD 901.2 801.2 19.00 20.00 plf 9 Dead Partial UD 613.2 613.2 1.00 7.50 pif 20311 Snow Partial UD 195.0 795.0 7.00 7.50 plf 21_264 D.ad Partial UD 47.1 41.1 17.00 19.00 pif 22_364 Live Partial UD 160.0 160.0 11.00 19.00 pif 23_128 Dead Partial UD 47.7 41.1 4.50 7.50 plf 24_129 Live Partial UD 160.0 160.0 4.50 7.50 pif 25_162 Dead Partial UD 41.7 41.1 7.50 11.00 plf 26_162 Live Partial UD 160.0 160.0 7.50 11.00 pif 7_149 Dead Partial UD 120.2 120.2 0.00 2.00 pif 29 )49 Live, Partial UD 370.0 370.0 0.00 2.00 pif 23 132 Dead Partial UD 120.2 120.2 3.59 4.00 pif 30 132 Live Partial UD 3 370.0 3.50 4.00 pif 31133 'had Partial 0O 120.2 120.2 4.51 7.50 pif 32_133 Live Partial U0 370.0 370.0 4.53 7.50 pif 33_134 00ad Partial UD 120.2 120.2 7.50 9.00 pit 34_134 Live Partial U0 370.0 370.0 7.50 9.00 pif 35 ,335 Dead Partial UD 1.0.2 120.2 9.0D 11.00 plf 36_135 Live Partial UD 310.0 370.0 9.00 11.00 pif 37_1 Dead Partial UD 120.2 120.2 11.00 17.00 plf 39_147 Live Partial UD 370.0 310.0 11.00 17.00 plf 39_167 Dead Partial UD 120.2 120.2 2.00 3.50 pif 40_167 Live Partial VD 370.0 370.0 2.00 3.50 plf 41_349 Dead Partial UD 120.2 120.2 4.00 4.50 plf 42_149 1.13e Partial 00 370.0 310.0 4.00 4.50 Of 43_363 Dead Partial UD 47.1 47.7 11.00 17.00 plf 44_163 Live Partial UD 160.0 160.0 11.00 1 pif 45_365 Dead Partial UD 47.7 47.7 19.00 20.00 plf 46_365 Live Partial UD 160.0 160.0 16.00 20.00 plf 41_366 Dead Partial 110 47.7 47.1 4.00 4.50 pif 49_266 Live Partial UD 160.0 160.0 4.00 4.50 pif 49 160 Dead Partial UD 120.2 120.2 17.00 15.00 plf 50 169 Live Partial VD 370.0 310.0 11.00 18.07 pit 51_369 Dead Partial UD 120.2 120.2 19.10 20.00 pif 52_169 Live Partial UD 370.0 310.0 19.00 20.00 pif 5] 112 Dead Partial VD 47.1 41.7 2.10 4.00 pif 54_17 Live Partial UD 160.0 160.0 2.00 4.00 pif 55 173 Dead Partial UD 47.7 41.7 0.00 2.00 plf 56_)13 Live Partial UD 160.0 160.0 0.00 2.00 pif 91 Wind Point -5950 0.00 154 02 Wind Point 5850 4.00 lba N3 Wind Point -5850 11.00 lba 144 Wind P01nt 5950 17.00 lbs 05 Wind Point -5950 20.00 lba MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : v V Dead � 5 12 L1v0 9956 9978 Total 17361 11305 • Bearing: Load Cora 13 O Lenoth 5 -21 5.19 Glulam -Bat., West Species, 24F -V8 DF, 5- 118x22 -1 /2" sm+el24 of 28.55 pY included In bode: Weal support: tape Oa, bottom. ■ cuppoOO Analysis vs. Allowable Stress (psi) and Deflection (in) using NOS ZOOS: Criterion Anal/l14 Value Damian Value Annlvala /D07ian Shear f': . 192 Fv' . 305 fv /FV' . 0.60 Sanding! fb ■ 2302 P0' ■ 2604 fb /F0' ■ 0.92 L170 Oefl'n 0.41 . L/591 0.67- . 1/360 0.61 Total Oefl'n 0.94 - L/294 1.00 . L /240 0.94 ADDITIONAL DATA: FACFO01: F/E CD ?1 Cc CL CJ Cfu Cr Ctrs Uctes Cn LC4 55' 265 1.15 1.00 1.00 1.00 1.00 1.00 3 4b'0 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 Fop' 650 1.00 1.00 - - - - 1.00 - E 1.9 million 1.00 1.00 - Emin' 0.55 million 1.00 1.00 - Shear : LC 83 . 0•.751.05), V . 17361, V design ■ 13962 Ibs Pendin41 LC 13 . 00.151. 01 ■ 96199 lba -ft Deflection: LC 94 . 0..351L040141 E!. 9756006 1b - ln2 Total Deflection . 1.50(6.41 Load Deflection) 0 Live Load 0.910:_03,. ID.d04d L.11ve Sean W.wind l.lcpa:t C■o1nutructl:n C1.1 0.0.1) I011 LC'. are paced in the Anat./min output) Load :100lnaticna: 1CC -10C DESIGN NOTES: 1. Pkaee modelled the defaW delledbn Ends are appopltb he your app0 tbs 2. Glean 3981600195090 ore for natabah ardomt'ng to AITC 117 -2001 and manufactured in eccadance met ANSUAITC A180.1 - 1892 3. GLU0AM: lad . actual breadth x actual depth. 4. GMEan Beams shill be Watley supported eccadSNJ to the pralsba of 7405 Cause 3.3.3. 5. G101AM: 098,499 length based on meter of Feppension). Fep(cter n). 67) 9 COMPANY PROJECT I Wo Jun 24, 2010 13 20 834 LC2 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Mier 7.1 LOADS ( tbs. ps0. or pif) Load Type Distribution Magnitude Location (ft) Unita Start End Start End 1_062 Dead Partial UD 613.2 613.2 0.00 2.00 pif 0 2 62 Snow Partial UD 795.0 195.0 0.00 2.00 plf 3_029 Dyad Partial U0 611.5 617.5 7.50 11.00 pif 029 Snow Partial U0 901.2 001.2 7.50 11.00 pif 5 Deed Point 1436 11.00 10, 6 015 Snow Point 2104 11.00 lb. c16 Dead Point 1389 17.00 lb* B 016 Snow Point 2404 17.00 lb. 9 064 Dead Partial UD 617.5 617.5 17.00 18.00 plf 10 061 Snow Partial UD 901.2 001.2 11.00 19.00 Of 11_061 Dead Point 622 7.00 iba 0 12_061 Snow 20100 1192 7.00 104 13 062 Dead Point 622 4.00 10, 14 Snow Point 1192 4.00 lb, 15 Dead Partial UD 613.2 613.2 2.00 4.00 pif 16 Snow Partial UD 795.0 795.0 2.00 4.00 pif 17 Gad Partial 110 611.5 617.5 18.00 20.00 pif 18_065 Snow Partial UD 801.2 801.2 18.00 20.00 pif 19_,11 Dead Partial U0 613.2 613.2 1.00 7.50 plf 20 071 Sot, Partial UD 795.0 195.0 1.00 1.50 pif 21 )64 Dead Partial UD 41.7 41.7 11.00 10.00 p01 22_164 Live Partial UD 160.0 160.0 17.00 10.00 plf 23_12! Dead partial u0 47.7 41.1 1.50 7.50 p11 24_128 Live Partial U0 160.0 160.0 4.50 7.50 p11 25_162 Dead Partial UD 47.7 7.50 11.00 p12 26_162 Live Partial U0 160.0 160.0 7.50 11.00 21f 27_140 Dead Partial UD 120.2 120.2 0.00 2.00 pif 28_145 Live Partial 00 370.0 310.0 0.00 2.00 plf 29_132 Dead Partial UD 120.2 120.2 3.50 4.00 plf 30_332 Live Partial UD 310.0 310.0 3.50 1.00 plf 31 33 pad Partial U0 120.2 1220.2 4.50 7.50 plf ;2 7 Live Partial 00 310.0 310.0 4.50 7.50 pif 33_134 Dead Partial U0 120.2 120.2 7.50 9.00 pif 34_134 Live Partial UD 310.0 310.0 1.50 9.00 pif 35)35 Dead Partial U0 120.2 120.2 0.00 11.00 pif 36 _135 Live Partial UD 310.0 370.0 0.00 11.00 plf 37_147 0.4d Partial UD 120.2 120.2 11.00 17.00 pif 39_147 Live Partial 00 310.0 310.0 11.00 11.00 plf 39,67 Dead Partial U0 120.2 1:0.2 2.00 3.50 pif 40_167 Live Partial U0 370.0 310.0 2.00 3.50 pif 41_149 Dead Partial U0 120.2 120.2 4.00 4.50 p11 42_349 Live Partial UD 370.0 370.0 4.00 4.50 pif 43_363 Dead Partial UD 47.7 11.7 11.00 17.00 pif 44_163 Live Partial UD 160.0 160.0 11.00 17.00 plf 45_165 Dead Partial UD 17.7 47.1 15.00 20.00 pif 16_3 Live Partial U0 160.0 160.0 19.00 20.00 pif 47_366 Dead Partial UD 41.7 47.7 4.00 4.50 pif 40166 Live Partial UD 160.0 160.0 4.00 4.50 pif 49_165 Dead Partial UD 120.2 120.2 17.00 10.00 plf 5 160 Live Partial U0 370.0 3 17.00 18.00 plf 51_169 Dead Partial U0 120.2 120.2 19.00 20.00 pif 52_169 Live Partial UD 310.0 370.0 10.00 20.00 pif 53_172 Dyad 2,20041 UD 47.7 47.7 2.00 4.00 p12 51 112 L1va Partial UD 160.0 160.0 2.00 4.00 plf 55 373 Decd Partial UD 17.7 0.00 2.00 pif 56 373 Live Partial UD 160.0 160.0 0.00 2.00 plf 41 Wind Point -5950 0.00 iba 1T2 Wind Point 5650 1.00 iba 43 Mind Point -5950 11.00 lb4 ' 4a Wind Point 5050 11.00 iba W5 _Wind Point -5050 20.00 iba MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : Coed - 5415 127 Live 9956 9975 Total 17361 17305 Bearing: Load Comb 13 13 Length _ 5.21 5.19 Glulam -Bat., West Species, 24F -V8 DF, 5- 118x22 -1/2" S.a.we'AN 4529.55 p9 included In toads; LAWN .uwport: lop- M, bottom• et support.: Analysis vs. Allowable Stress (psi) and Deflection (in) ..010 NOS 2000: . = :100:0on Analvale Value Denton Value A nal'vala /Dealen Linear tv. . 182 iv' - 305 f: /FV' - 0.60 - 9ond1ng1•1 2b ■ 2392 Flo' - 2604 fb /Fb' - 0.92 Live Defl'n 0.11 ■ 1/591 0.67 . 1/360 0.61 Total 00f1 'n 0.6, . L/254 1.00. L /240 0.04 ADDITIONAL DATA: FACTORS: F/E CD 04 Ct CL C: Clu Cr Cf:0 4 r LC4 F2' 265 1.15 1.00 1.00 1.00 0.00 1 00 20 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 3 Fop' 650 1.00 1.00 - - - - 1.00 - E' 1.8 million. 1.00 1.00 - - - - 1.00 Ecin' 0.95 million 1.00 1.00 - - - - 1.00 - 1 Shear : LC 43 ■ 04.05(L091. V . 17361. V dealgn . 1390: Iba 00nd0ng14): LC 03 ■ 14.75(4451. M - 86199 Ibo -ft Dofloction: LC 14 - 0..051L'5441 El. 9756006 lb -ln2 Total Deflection - 0.50(Uead Load Deflection) 4 Live Good Def1.001on. (0.dead L.live S.crow 0.0Ind 1- 0:pact C- :ynatructlon CLd- c5ncentratedl 0011 LC'. a e 0140.0 In the 0040 /404 output) Load combinations; ICC -IEC DESIGN NOTES: 1. Menu vasty Uut gm dafauR ddlxtwl 2p0, are approplhta for your appkalbn. 2. GDOan deagn 03500s are for mderhb conforming to AITC 111.2101 Graf mmwlxMof N =cordon. 1400 ANSVARC A190.1 -1992 3. GLULAM: Dad a Wulf breadth 0 actual depth. 4. Gbbrn Beans shit 60 td.n0y supported acardtg to Psi pm061'ao of NOS Clouse 3.3.3. 5. GLUTAM: bearing b, fh 0.o.d on,n,41or of Fcp(lenlml), Fcp(co.opb). COMPANY PROJECT el i WoodWorks® SOFTWARE FOR WOOD OESJGN June 24, 2010 13:23 b34 LC1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 3 w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5 c15 Dead Point 1436 11.00 lbs 7 Dead Point 1389 17.00 lbs 9 w64 Dead Partial UD 617.5 617.5 17.00 18.00 plf 11 c61 Dead Point 622 7.00 lbs 13 Dead Point 622 4.00 lbs 15 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17 w65 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19_w71 Dead Partial UD 613.2 613.2 7.00 7.50 plf 21 j64 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23 j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 27 j48 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29 j32 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31_j33 Dead Partial UD 120.2 120.2 4.50 7.50 plf 33_j34 Dead Partial UD 120.2 120.2 7.50 8.00 plf 35_j35 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39 j67 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41 Dead Partial UD 120.2 120.2 4.00 4.50 plf 43j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45_j65 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47_j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49j68 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51_j69 Dead Partial UD 120.2 120.2 18.00 20.00 plf 53_j72 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55 j73 Dead Partial UD 47.7 47.7 0.00 2.00 plf W1 Wind Point 5850 0.00 • lbs W2 Wind Point -5850 4.00 lbs W3 Wind Point 5850 11.00 lbs W4 Wind Point -5850 17.00 lbs W5 Wind Point 5850 20.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : .1 A la 201 Dead 7189 6822 Live 156 302 Total 7238 7018 Bearing: Load Comb #2 #2 Length 2.17 _ 2.11 Glulam -Bat., West Species, 24F -V8 DF, 5- 1/8x22 -1/2" Self- weight of 26.55 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 74 Fv' = 238 fv /Fv' = 0.31 Bending( +) fb = 950 Fb' = 2038 fb /Fb' = 0.47 Live Defl'n negligible Total Defl'n 0.41 = L/585 1.00 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 .Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC #1 = D only, V = 7189, V design = 5674 lbs . Bending( +): LC #1 = D only, M = 34217 lbs -ft Deflection: LC 01 = D only EI= 8756e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I =impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). • 4 -CiLi I COMPANY PROJECT 1 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 13:22 b34 LC2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 3 w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5_c15 Dead Point 1436 11.00 lbs 7_c16 Dead Point 1389 17.00 lbs 9 w64 Dead Partial UD 617.5 617.5 17.00 18.00 plf • 11 c61 Dead Point 622 7.00 lbs 13 Dead Point 622 4.00 lbs 15 w63 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17 w65 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19_w71 Dead Partial UD 613.2 613.2 7.00 7.50 plf 21_j64 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23_j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 27_j48 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29_j32 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31j33 Dead Partial UD 120.2 120.2 4.50 7.50 plf 33_j34 Dead Partial UD 120.2 120.2 7.50 8.00 plf 35_j35 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39_j Dead Partial UD 120.2 120.2 2.00 3.50 plf 41 j49 Dead Partial UD 120.2 120.2 4.00 4.50 plf 43 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45 j65 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47 j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51 Dead Partial UD 120.2 120.2 18.00 20.00 plf 53_j72 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55 j73 Dead Partial UD 47.7 47.7 0.00 2.00 plf . W1 Wind Point -5850 0.00 lbs W2 Wind Point 5850 4.00 lbs W3 Wind Point -5850 11.00 lbs W4 Wind Point 5850 17.00 lbs W5 Wind Point -5850 20.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : A 201 A. Dead 7189 6822 Live Total 7189 6822 Bearing: Load Comb 01 01 Length 2.16 2.05 Glulam -Bat., West Species, 24F -V8 DF, 5- 1/8x22 -1/2" Self- weight of 26.55 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 74 Fv• = 238 fv /Fv' = 0.31 Bending( +) fb = 950 Fb' = 2038 fb /Fb' = 0.47 Live Defl'n negligible Total Defl'n 0.41 = L /585 1.00 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 FCp' 650 -. 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC #1 = D only, V = 7189, V design = 5674 lbs Bending( +): LC #1 = D only, M = 34217 lbs -ft Deflection: LC 01 = D only EI= 8756e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4 - Gt 2-- Harper Project: Houf Peterson. �. Client: Job # Righellis Inc. ENGINEERS • >IANNERS Designer: Date: Pg. # LANDSCAPE ARCM rECTS•SUR✓EYORS Wdl 10- lb -841-20-ft W = 1600-lb l J� �'[� - 'S i 9 � ft 2 Seismic Forces Site Class =D Design Catagory =D Wp W dl 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S = 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F := 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F v := 1.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S := F Sml Fv' 2•S S := Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a := 1.0 Rp := 2.5 (Table 13.5 -1, ASCE 7 -05) 4a • z FP := p • + 2 RP h l W EQU. 13.3 -1 ` J Fpmax 1.6•S EQU. 13.3 -2 Fpmin:= .3•Sds -Ip -Wp EQU. 13.3 -3 F if(F > Fpmax,Fpmax,if(Fp < Fpmin,FpmimFp)) F = 338.5171.1b Miniumum Vertical Force 0.2.S W dl = 225.6781 -lb • GM 5 Harper Project: P Houf Peterson Client: Job # RighellisInc. ENGINEERS .• PLANNERS Designer: Date: Pg. # LANDSCAPE ARCHITEC(S•DHRVEYORS W 10- — -8-ft-20-ft Wdl = 1600-lb ft Seismic Forces Site Class =D Design Catagory =D W := Wd I •– 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S • = 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S • = 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F :_ .1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F v := 1.722 VeI -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S • = F S := F S1 2-S Sds := Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a := 1.0 R := 2.5 (Table 13.5 -1, ASCE 7 -05) 4a • z Fp:= p • �•(1 +2 h•Wp EQU. 13.3 -1 Fpmax 1.6•S EQU. 13.3 -2 F pmin := • EQU. 13.3 -3 F = if(F > F pmax , Fpmax, if(F < F pmin , Fpmin, F F = 338.5171 -lb Miniumum Vertical Force 0.2• S W = 225.6781-lb (1 1-1 0 HP tiarper • Houf Peterson . COMMUNICATION RECORD Righellis Inc. To 0 FROM p MEMO TO RILE 0 1:14.:INEEf■S • FL Allt.,FIN 1.,1C,,,,,V. AllCrliTVC1,1.51.0“, ------• PHONE NO PHONE CALL: D MEETING: 0 : ° C.'• M "0 co m M . 2 :-..•-: . rn . . 11 • C Q li . cp ..--1 • it C . 1 . • ...1 — U.) S • ■C 6 .--- ,.... 4 ..z It 3. . . -o do p 0-- ... . • _ .._ .._ ... . _..... .-.._ .. .... . _ ... ..... . . ._ .. _.„.._ _ .. . ... . 1 ... . 11 _ I vsl —1 co . ..1) __C■ * —Id it • . Cli , . 4 *Z:s 1 . . . . . —., . CA —.C. N t....A . 1 . . ....0 Li) • -.4..1 • .0 N . N 0 0 0 c , 1. z • \ 0 rs r r . . ',. ‘---- 0 . • . . . . . _ • • 0 BY: Ac r 6t: (.55,10JA DATE: DUI JOB NO.:, - - — - - - - 'PROJECT: RE: I l e n 1 ) 1 () T' Pc?- r j O \ C \ h [ t. 0 0 Decti,461. 0- E 1- w O x NRIL CR-Pc. try (iL Cry') 2 w 0 2 J (1.3 i ) Z R,a.‘ca. tqrai t 0 , , < 0 = w 0 . LAPAc. l'ne • ---t" z '.1.(01: 2 amr5 = r1\ 7 V---- 0 . U 1 ( pil.C. ift5 \De Al ee n nn i \ = - & I IOC. • - Di rN (2 . . El 6 1 • . I . p. j W /t Tia'i • 1 I ■ ! .1 j_ _L ------ I . . - LOa-1.c.g.... 7.".'*. . ) \) -r- V, 15 pLe. 1 i . So5 '! )'. 41'12_ ift‘ 0 6 : • ,.., . 0) , e t 7 11 • Al —7-1 T ';. ....• Z, ta ° r 0 t .M ';'; • s■ , MI < C-Ifav t' 1 k.ocA & . , S■mpsa-c\ 305114- x41-72 e_ tz" 0,c, = o . iq-61.LIG --€,hL) - 6/. ,_ 1 ,, im,L r= 'D� - An 4 - (A e-f 1 ' (D / / • }7c a '.' Ooh) cigkee 1 1 11S'e i $ =--- D =.L �`dLL= n,� # �Oo f IN f-# QQOQ = ._ 0 („Ot7 # me = W Z m Z -I . O 3 ,Dzi -r- 0 11 3 l t 3 1 E V � (�1 O ; 7 ,a Q 3 �Cih voSdua� � Z n a (vts'� o Z itOOhe— "10.00)19 = _zs = m ti‘#� O s . m 0 ❑ 3 m 0-00Z --> 3 ° m °I 9 r m tJ s« ;173 road . _. _ - : •ON eor 31VO d B' .fiot1ud ' A9 Harper 6 �� "' HOUfPeterSOn COMMUNICATION RECORD Righellis Inc. Top FROM 0 MEMO TO FILE ---- - - - - -- ------------------------:---- ENGINEER:: • PLAII:IERV - - - - - -- LANC,,APE ARCt VETC.R.i PHONE NO.: ---- ° °--- °-•- -�- °- -- °--- °-- -- PHONE CALL: O MEETING: 0 . -v w m 71 --s C 7 p —) m C )C •II o . f to I I I I - p fr v Sv w 0 O 0 01 1 `2 3 V. 1 6 9 n o 1 • T 1 -_ O m Z • • Harper ' ■ , HoUfPeterson COMMUNICATION RECORD Righellis Inc. To ❑ FROM ❑ MEMO TO FILE ❑ Eo GINEERS • PLAlI;:ERJ LA::D,',PE JRCNITE CIS* SU:'VEYOR:: PHONE NO PHONE CALL: ❑ MEETING: ❑ . 11 - m in z Q .. m 1 g: --., _c. 0 —,,,..,,, cf, ., N Fla 1 MOM l GI ,.4 r- c i c 1 r L � O `/ Z O p U -1 , e v` I COMPANY PROJECT ea Wood Works® SOINWARE FOR WOOD DESIGN June 8, 2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Point 2.50 200 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : :' -,...,, ..;,..- ,e '.,4., ,,"•••:, 44, !,:. rit.e. te..r.,. -..,--,^., .■,..,,r It.,:,. -•-• : ..;.:;..,. ,,,,,-; 2,..:, :,,,,i, • ,-. , ,..=..,-.1.4..., , -.,-:-...,.., :, ?3.....,,,,-,:":‘,,s;. ...--Z. , ;.:'.. -, .., . . " , --.'.." - , , , ." ' ' ' . . 7: -' $:' Y -- .. 'e -..= '-: .'-' ! ...' ::::, ' j V. " : . fc:: .7 ;"' .. . ; ... ' •,: '-',:',:; - ".' l' .' - ... • ;.$ •,...: " '...:, -,-.- s '.' . r i..... : ' A t , I O. 54 Dead Live 100 100 Total 104 104 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 "Min. bearing length for beams is 1/2" for exterior supports Lumber-soft, Hem-Fir, No.2, 2x6" Self-weight of 1.7 pff included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 405 Pb' = 1048 fb/Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 '1.00 1.00 1.00 1.00 - 2 Fcp' 405 1.00 1.00 - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design . 103 lbs Bending(-i.): LC #2 . L, M = 255 lbs-ft Deflection: LC #2 = L El = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. ( COMPANY PROJECT 0■■/.% 1 I . ' WoodWorks SOFTWARE FOR WOOD DESIGN June 8, 2009 16:27 Hand Ra112 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location (ft] Magnitude Unit tern Start End Start End LIVE Live Full UDL 50.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : ,.., ._ .-;-,-,.-..:<,=.::,-;.r.,!,1:::,,,:-1,:,'--:4:;--..t..q:-::.:-::.- ..7.:'''''' n • ''' - e i ', ;:'' .-. . r. ':,..:%.! '... s . .'.. .' - . ■ ': :;- :; .. , ..'. : . , : 1. ' .- ...".' . - .^,-': . '. . - .■ -...: - • ■ ' . 1 " --. -*--'.. p ".' 7 1M-'''' ...t '''''` - ' - ' 7 7 - 17.4'.. -7. 7' 7 •7 .- ' •--'-'-' 7. -,T%- - - - :• 1 ' & 7 -- -{-f ' ':'-:?..-- C - .. , •: . :i: ,. 2 . - .72:•`;: . :: : ,:::,!' ',;.,^ ! -;;--:-...-:-..,:-=,.. --'• :,=;',:: '.•;'': :;:',: V t •,■' !, -- '":',: - - 7 "' , ?..:-,';' • :;' • ;: : A !: - ; 7 : z•- ',- -,-;;'• .-','- :..,' ' x • '' - 1 , ' ■ : '' 2 . ' ;: ' - 21 ' 4.' .•; . ”4- i ,‘ C ,.."......' ,r :. v ..1: ."-:;±;■:: .: : .5.1 -..':' ' ..] ■7'..' . • :.. ' '- ''' ' ... , :, . . : ...:1 . -. .-', ..!:' .. • . , . : • I O. 51 Dead Live 125 125 Total 129 129 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams is 1/2 for exterior supports Lumber-soft; Hem-Fir, No.2, 2x6" Self-weight of 1.7 pif Included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 256 Fb' = 1048 fb/Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.11 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 1.00 1.00 - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 129, V design = 106 lbs Bending(+): LC #2 = L, M = 162 lbs-ft Deflection: LC #2 = L El = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 22, 2010 13:57:56 Concept Mode: Reactions Base of Structure View Floor 2: 8' f IF 050 ; 49'-6" u - - . - . 1600 L-'" _ :..:. ,. : . C 6 L - 4 o: IuL/ 6191 i' : ..619D : 4p-0 101 I VU • : ; ... . - - - - - -- - - ---- - : .--- . . 44'-0 • &9 : •'. :: • . : 4.5.-0 .. ytt :ii .. ;.':' : : . . -. . . . -- - _ - . • -- 44.-0 / : y0 • 1193 L15312404 L: :.. 2404 L : : _ - • sy -b 4 625 D105911439 D 1394 D �0 -' yJ - J r -0 Jb b NI b : : ' 315 L . - : : Ss - n .. OLy �._ - - -. _ _ _ _ - . -- . ..5L - CI u/ -' 358 D; . s I -b JO - b . o3 315Li : L • a i 100 L : 358 D: r Lb -b uu 96 D:- . _ C . L4 . /V : �: �. Ls-0 • --- :., _ 25 D - . .. .-; - -- - - - - - - -!- - ; -- . : . . : . . i / 74(847 5611 L • 756 L - - - - -- - --- - --- 4u - b • 4!(452D-5546D -- L� - _ w b' i4 625 = • Ii •.- 2031 5Dn - --- - _ I b r 1 5 D. 1 - ...V -- - - ._ - 245 L bl 599 :. ' �. 87 L 87 L- - - - _ 209LD 8D1963 D. -- 19631 154 D : / as u . . E - b.. -: •• . ,,_ _ D> D - -- . : - 112363 106D: 0 -0 1_ .' . . 1 -b ' .BBIB.BBCCCCC CCC ICCC CC CCCC C CCC CC \CC CD DDD D DD DODDD CD DD -DD D D DD CD { DDDEE EE E EbEFEEBEEIE EEEEEEE(EEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'67'8'91(1'1;1 :14.' 111111'.2(2 22:2 0221243(33 :33 - 32E4 {4 4A :4.4.4(4'4(455(5 :5 :5 , 5'5(55(5!6(6 - 6:6 :676:6{6;6(67(7 77.7 -6" 7OOT1 L 11,1 our /Y..- p 1 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 22, 2010 13:57:37 Concept Mode: Reactions at Base of Structure View Floor 2: 8' 10.5 : 1600L; : : : ; : 1600L.: : 4/ -b uib 619D :: 6190 4n n 11)1 -b a9 -b 4 4 4L _b. -- , - - - ........ - - ................. __ 4U b VO U0 13274 L_ ' 3304 L .___. .. - ..1 a -b y4 7153 D • - ; 7072 D -:- • .:. .. _ - „se -b u �a 315E _ n SS °b . . .. . . i •. .. 3580:__ ' : - - ... _ 3i n 00 Ju -b L *4 - . - -- -- - -. . : - •t-- - . -. _ _ - - - - _ - --- .. L t3 -b .. b u i .. 100E t 358 D _ . ro - o bu 9 D \ . L4 -b . .. \\ • io 74(84 611 L i-V5 to n /0 .. M.452 D 5546 0 g D : , : - i : • • : i W - b • 14.. . . 625 '- -. : . ' . i. .i _. .---. ._. lb 5 . ii " • 203D 5 • -- _ . . 13-o by -908 L -... -- - . .1J -a 00 .- . :105 L 307 D ; ' -- - - -- - -; . .- - -- z-b • b( 46 D ' :: . b \ e e ' 245 L - ?. 1U b 3 D 50 L ' ../. b b oz, ~ .�: : : 740 - rb i - - -_ . 599 $ b b � D 2 L ; ' ; r A. 587 L- b -b 4 - b -..� 2 09 D 8' _ 1963 D.. u _ ' _ 1963 D _ 4 -b i -iuu . 22190 cb.. D LL; 725 L _ - - .. 1 - °1 .� V_y 78D7DJ 617D'D: D u-b BB \B.B BC.C CCCCJCCC CC CCCC C CCC CCICC CD DD D D DD D(CDD D DDDD D D DD CDD D DE,E E E E:EEEFEEEEEIE EEEEEEE(EEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16'18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40'42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'34'5'6'7'8'91(1 - 1 :1 :1 !111 :1(142(2'22:2 03(33:13 5:5:55:5(5 - 515!616 6,6:66!6(6 Ei647(7 -6" • Doi -I ia_Pc j ft y Harper Houf Peterson Righellis Inc. 1 Ci •rent Date: 6 /24/2010 1:41 PM 1 system: English Fur name: O:\FIHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A\foundations \F1.ftd\ Design Results Reinforced Concrete Footings GENERAL INFORMATION: Global status Warnings Design Code ACI 318 -05 Footing type Spread Column type Steel Geometry , i s 1 1 1 7 .1- m .. YF; T12 in I 4 4.25 ft ..I ■ l i l i 425 ft ft z " 4.25 ft I Pagel iq — 3 Length • 4.25 [ft] Width • 4.25 [ft] Thickness • 1.00 [ft] Base depth • 1.50 [ft] Base area • 18.06 [ft2] Footing volume • 18.06 [ft3] • Base plate length • 5.50 [in] Base plate width • 5.50 [in] Column length • 5.50 [in] Column width • 5.50 [in] Column location relative to footing g.c. • Centered Materials Concrete, Pc • 3.00 [Kip /in2] Steel, fy 60.00 [Kip /in2] Concrete type • Normal Epoxy coated No Concrete elasticity modulus . 3122.02 [Kip /in2] Steel elasticity modulus : 29000.00 [Kip /in2] Unit weight 0.15 [Kip /ft3] Soil Modulus of subgrade reaction 200.00 [Kip /ft3] Unit weight (wet) 0.11 [Kip /ft3] Footing reinforcement Free cover : 3.00 [in] Maximum Rho /Rho balanced ratio : 0.75 Bottom reinforcement // to L ()o) : 6-#4 @ 9.00" Bottom reinforcement // to B (zz) . 644 @ 9.00" (Zone 1) Load conditions to be included in design Service loads: SC1 DL S1 DL S2 DL +LL S3 DL +0.75LL Design strength Toads: DC1 1.4DL 01 1.4DL D2 1.2DL +1.6LL Loads Condition Axial Mxx Mzz Vx Vz [Kip] [Kip *ft] [Kip *ft] [Kip] [Kip] DL 5.55 0.00 0.00 0.00 0.00 LL 15.61 0.00 0.00 0.00 0.00 RESULTS: Status Warnings • - Insufficient development length, Section 21.5.4.1 • Soil.Foundation interaction Allowable stress 1.5E03 [Lb /ft2] Min. safety factor for sliding : 1.25 Min. safety factor for overturning • 1.25 Paget F Controlling condition S2 Condition qmean qmax Amax Area in compression Overturning FS [Lb/ft2] [Lb /ft2] [in] [ft2] ( %) FSx FSz slip S2 1.38E03 1.38E03 0.0826 18.06 100 1000.00 1000.00 1000.00 Bending Factor 0.90 Min rebar ratio 0.00180 Development length Axis Pos. Id Ihd Disti Dist2 . [in] [in] [in] [in] zz Bot. 20.11 7.04 19.75 19.75 xx Bot. 20.11 7.04 19.75 19.75 Axis Pos. Condition Mu 4)"Mn Asreq Asprov Asreq/Asprov Mu/(4)*Mn) [Kip'ft] [Kip'ft] [in2] [in2) zz Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 I I zz Bot. D2 13.38 45.76 1.10 1.20 0.918 0.292 F +1 1 xx Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 xx Bot. D2 13.38 43.06 1.10 1.20 0.918 0.311 I 1 1 Shear Factor 0.75 Shear area (plane zz) 3.10 [ft2] Shear area (plane xx) 2.92 [ft21 Plane Condition Vu Vc Vu /(4)'Vn) [Kip] [Kip] xy . D2 8.99 46.09 0.260 l'1 yz D2 8.68 48.88 0.237 I' - =1 Punching shear Perimeter of critical section (b... : 4.67 [ft] Punching shear area 3.31 [ft2] Column Condition Vu Vc Vu /(4)'Vn) [Kip] [Kip] column 1 D2 29.25 104.29 0.374 I ' Notes Page3 14 - ?S--.... " Soil under the footing is considered elastic and homogeneous. A linear soil pressure variation is assumed. " The required flexural reinforcement considers at least the minimum reinforcement I design bending moment is calculated at the critical sections located at the support faces * Only rectangular footings with uniform sections and rectangular columns are considered. * The nominal shear strength is calculated in critical sections located at a distance d from the support face * The punching shear strength is calculated in a perimetral section located at a distance d/2 from the support faces * Transverse reinforcement is not considered in footings Values shown in red are not in compliance with a provision of the code *gprom = Mean compression pressure on soil. *gmax = Maximum compression pressure on soil. *Amax = maximum total settlement (considering an elastic soil modeled by the subgrade reaction modulus). * Mn = Nominal moment strength. * Mu /(4 *Mn) = Strength ratio. * Vn = Nominal shear or punchure force (for footings Vn =Vc). * Vu /(cti*Vn) = Shear or punching shear strength ratio. • • Page4 Beam Shear bud := 5.5•in (4x4 post) d := tf – 2•in 41 := 0.85 b := Width b = 36•in V :_ 4 4 • f V = 16.32.kips 3 V 9u' (b 2 cot •b V = 7.83-kips < V = 16.32•kips GOOD Two -Way Shear bg 5.5.in Short side column width bL, := 5.5-in Long side column width b := 2.(bg + d) + 2.(bL + d) b = 54.in (3 := 1.0 Vim- 3 3 �c = . 4 + 8 . f psi•b•d V = 48.96 kips V nu , ax := d)•2.66• f psi•b•d V nmax = 32.56•kips ,y, 9u•[b — ( bcui + d) V = 15.88-kips < V = 32.56.kips GOOD Flexure r 2 Mu 4u ' I b — bc otl (11 b Mu = 4.98•ft•kips 2 J 2 J A 0.65 2 b•d S = 0.222•ft 3 F := 5.4 f psi F = 162.5 -psi • M f :_ — f = 155.47•psi< F = 162.5-psi GOOD S .Jse a 3' -0" x 3' -0" x 10" plain concrete footing Plain Concrete Isolated Square Footing Design: F2 f `2500•psi Concrete strength f := 60000-psi Reinforcing steel strength E 29000•ksi Steel modulus of elasticity - Mom 150.pcf Concrete density 'Yso , := 1OO.pcf Soil density gaff := 1500.psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 2659.1b Pd1:= Totaldl Totalll := 7756.1b Pll := Totalll Pll := Pd + Pll P = 10415-lb Footing Dimensions tf := 10•in Footing thickness Width := 36-in Footing width A := Width Footing Area clnet gall — tf•"Yconc net = 1375•psf Pll Areqd := clnet Areqd = 7.57541 < A = 941 GOOD Widthreqd A req d Widthregd = 2.75•ft < Width = 3.00ft GOOD Ultimate Loads ,rva Pd1 + tf•A•"Yconc P := 1.4•Pd1 + 1.7•P11 P = 18.48-kips P qu A q = 2.05•ksf Plain Concrete Isolated Square Footing Design: F3 f := 25 Concrete strength f := 60000.psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity "Yconc 150•pcf Concrete density Ysoil 100.pcf Soil density gall 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl := 236341) Pd1:= Totaldi TotaI11:= 4575-lb Pll := Totalll P Pdl + Pll Pty = 6938•1b Footing Dimensions t := 10•in Footing thickness Width := 30-in Footing width • A := Width Footing Area net gall — tf Yconc net = 1375•psf P Areqd 5.046 ft < A = 6.25-11 GOOD %et Areqd Widthreqd A req d Widthregd = 2.25•ft < Width = 2.50 ft GOOD Ultimate Loads , h ' = Pd1 + tf A•'1'conc P„ := 1.4•Pdl + 1.7•P11 P = 12.18-kips P gu := A q = 1.95•ksf Beam Shear bad := 5.5•in (4x4 post) d:= tf -2.in := 0.85 b := Width b = 30•in V :_ 4 f psi b d V = 13.6-kips 3 Vu _ Qu (b 2 toll V = 4.97-kips < V = 13.6-kips GOOD Two -Way Shear / bs := 5.5• in Short side column width bL := 5.5.M Long side column width b := 2-(bs + d) + 2-(bL + d) b = 54.in � := 1.0 V + 8 • f psi•b•d V = 40.8.kips 3 3•13 Vnn,ax :_ x•2.66• f psi•b•d V ranax = 27.13-kips = q,; [b — 0, + d) V = 9.71 -kips < V n i nax = 27.13.kips GOOD Flexure 2 u ' I Mu Q b — bcotl (_12). b M 2.54 ft kips • 2 A 0.65 2 •— bd S= 0.185.1 6 F := 5 f psi F = 162.5•psi M u f := f = 95.19•psi < F = 162.5.psi GOOD .Jse a 2' -6" x 2' -6" x 10" plain concrete footing Plain Concrete Isolated Square Footing Design: F4 f := 2500-psi Concrete strength f := 60000-psi Reinforcing steel strength E 29000•ksi Steel modulus of elasticity "(cum 150•pcf Concrete density 'Ysoil 100•pcf Soil density qall 1500.psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi : =. 5001-lb Pd1 Totaldi Tota111 := 7639-lb P1l := Totall Pt1 := Pd1 + P11 Pti = 12640-lb Footing Dimensions t 12 -in Footing thickness • Width := 42 -in Footing width ,:= Width Footing Area clnet gall – tf•1'conc qnet = 1350•psf P Areqd -- (het A red = A ft < A = 12.25 ft GOOD Widthreqd := A req d Widthreqd = 3.06-ft < Width = 3.50 ft GOOD Ultimate Loads = Pd1 + tf•A•'Yconc P := 1.4•Pdl + 1.7•P11 P = 22.56-kips P qu := — q = 1.84-ksf A • Beam Shear bcol 5.5-in (4x4 post) d:= tf -2•in := 0.85 b := Width b = 42-in V := 43. - f psi•b•d V = 23.8-kips 3 Vu := q1 (b 2 col ) b V = 9.8•kips < V = 23.8•kips GOOD Two -Way Shear b := S:S.in Short side column width bL : =. S 5 in Long side column width b := 2•(bs + d) + 2•(bL + d) b = 62•in (3c := 1.0 Vim-= op 4 + 8 f psi b d V = 71.4-kips (3 3'13c V,,,, := (13.2.66- Xpsi•b•d V = 47.48-kips X4 = au•[b — (bcol + d) V = 19.49-kips < V = 47.48-kips GOOD Flexure 2 I Mu 9u' b — 2 J bcoll r 1 b M = 7.45-ft-kips l2 A t:= 0.65 b 2 x^:= 6 S = 0.405 -ft F := 5 •ck• f psi F = 162.5 -psi M u ft := f = 127.79 -psi< F = 162.5-psi GOOD 'Use a 3' -6" x 3' -6" x 12" plain concrete footing Plain Concrete Isolated Round Footing Design: f5 f 3000.psi Concrete strength f := 60000-psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity -y := 150.pcf Concrete density 'Yooil := 120•pcf Soil density g := 1500-psf Allowable soil bearing pressure TYPICAL FOOTING Reaction Totald) := 6194b Pd1:= Totaldl Total11:= 1600-lb Pll := Total!' Ptl Pdl + Pp P11 = 2219-lb Footing Dimensions t := 12• in Footing thickness Dia := 18-in Footing diameter ir-Dia 2 Footing Area Nvv= 4 gnet gall – tf Yconc net = 1350•psf Pd Areqd gnet A q 1.64441 < A = 1.7741 GOOD J Aregd' Diareqd Diareqd = 1.45.ft < Dia = 1.50 ft GOOD 1T Ultimate Loads 2, Pdl + tf'A'Iconc P := 1.4 Pdl + 1.7•P11 P = 3.96.kips P qu — q = 2.24•ksf A /q \ Beam Shear bud 3.5•in (4x4 post) d := tf -2•in := 0.85 b := cos(45•deg)•Dia b = 12.73•in V, :_ 4 • f psi -b•d V = 7.901•kips 3 Vu qu C / l tol b V = 0.91 •kips < VV, = 7.901 •kips GOOD Two -Way Shear bs := 3.5' in Short side column width bL := 3.5 -in Long side column width • b := 2-(bs + d) + 2•(bL + d) b = 54 -in �3 := 1.0 V 4 + 8 l f psi b d V = 23.703 -kips 3 3.3 V := (1)-2.66- f V = 15.76-kips V q [b – O + d) V = – 0.31•kips < V = 15.76-kips GOOD Flexure 1 2 Mu au. I b – 2 J ].(_). boll 1 M= 0.18•ft•kips A,:= 0.65 2 1 := b d S = 0.123•ft 6 F := 5 4• f F = 178.01 •psi M f :_ — u f = 9.9•psi < F = 178.01 -psi GOOD Use a 18" Dia. x 12" plain concrete footing Plain Concrete Isolated Square Footing Design: F6 fc := 2500.psi Concrete strength f = 60000•psi Reinforcing steel strength E := 29000.ksi Steel modulus of elasticity Yconc 150•pcf Concrete density 'isoil 100.pcf Soil density g : 1500.psf Allowable soil bearing pressure COLUMN FOOTING Reaction . Totai dl := 7072•lb Pd1:= Totaldl Total1:= 133044 Pll := Totalli P := Pdl + Pll P = 20376.1b Footing Dimensions t := 15-in Footing thickness Width := 48•in Footing width • A,:= Width Footing Area clnet gall — tf •1'conc net = 1313•psf Ptl Areqd clnet A red= q 15.525•ft < A = 1641 GOOD Widthreqd A reg d Widthreqd = 3.94.ft < Width = 4.00 ft GOOD Ultimate Loads .,:= Pdl + tf•A•'1'conc P := 1.4•Pdl + 1.7•P11 P = 36.72•kips P q := A q = 229•ksf Beam Shear bcot := 5.5•in (4x4 post) d := tf — 2-in := 0.85 b := Width b = 48•in V„ := 4 • f V = 35.36-kips 3 V qu (b toll b V = 16.26-kips < V = 35.36-kips GOOD 2 Two -Way Shear bs := . 5.5•in Short side column width bL := 5.5-in Long side column width b o := 2-(bs + d) + 2-(bL + d) b = 74-in 3 : =1.0 V co. (- + — )- f V = 106.08-kips 3 3 Pc Vnmax := 2 . 6 6 - 1 V nmax = 70.54-kips = qu [b2 — (b + d) V = 31.26-kips < V = 70.54-kips GOOD Flexure 2 MU = qu (b — bcot ( b 2 M = 14.39-kips I / I l2 / I 1,:= 0.65 b 2 ,S := 6 S = 0.782. 1 F := 5•(1)• f F = 162.5-psi M u f := s f = 127.75•psi< F = 162.5-psi GOOD !Use a 4' -0" x 4' -0" x 15" plain concrete footing Plain Concrete Isolated Square Footing Design: F7 f := 2500•,psi Concrete strength f := 60000-psi Reinforcing steel strength ,E := 29000•ksi Steel modulus of elasticity 7conc 150•pcf Concrete density '(soil 100 -pcf Soil density gall := 1500 -psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 1200-lb Pd1 Totaldi Total11 := 3200.1b Pll := Totalll Pt1:= Pdl + P11 P = 4400 -lb Footing Dimensions t := 10 in Footing thickness Width := 24• in Footing width A:= Width Footing Area net gall — tf''Yconc net = 1375•psf Ptl Areqd net A red = A ft < A = 441 GOOD Widthreqd Areqd Width = 1.79•ft. < Width = 2.00 ft GOOD Ultimate Loads Pdl + tf'A''Yconc P := 1.4•Pd1 + 1.7•P11 P„ = 7.82 -kips P q := A q = 1.96 -ksf Beam Shear bcol := 5.5.in (4x4 post) d:= tf -2 -in 4:1: =0.85 b := Width b = 24-in V:= 4 - f psi•b•d V„ = 10.88•kips 3 Vu qu ( 2 col) b V = 3.01 -kips < V = 10.88•kips GOOD Two -Way Shear b := 5 :5•in Short side column width bL := 5.5•in Long side column width b := 2•(bg + d) + 2•(bL + d) b = Rc := 1.0 Vim:= 4 + 8 - f psi -b -d V, = 32.64-kips 3 343 c/ := 2.66 f psi b d V = 21.71 -kips qu•[b — ( bcol + d) V = 5.35-kips < V = 21.71-kips GOOD Flexure b —'bcol 2 (1 l Mu qu' 2 12J b M = 1.16•ft• kips 0.65 2 := b d S = 0.148. 1 6 F := 5.4• f•psi F = 162.5•psi M f := u f = 54.45-psi < F = 162.5•psi GOOD lJse a 2' -0" x 2' -0" x 10" plain concrete footing 1013 .;_, ro .�o n =b' X004 .S, =g °C — i Ss oW c. 7 - €7. e - = Tr :, 0 0 "14 - 1c.1 j'--4 oreh1 `0 = W9 — y v►,t„ -,<-L-9( s-) -4 SIe�'0 v c.a. :1kSa'�r)) + I so °t - w 9 -� = x -b CZms: c 4-.577A; ci i t :1 = a 4d c`ew b i s'as -tl = b/w = Vox (') C..." 4cSt - L1) c., er r"e, -4 L' ms 00) = - - 3 \A Z ❑ Ve ,Da ` e 4 QSZ' 1 0AI 9 ' t -+ Q i X Cs' (cis' 1 ko s 1 i 0) w o a ds is•gs 0- L.' \I-, t \∎4. 1vScc. lo1 O v\ 3 3 ,v■;wc\i.p - )•aQ(3 D I tet t -6 Z 20 = m l I r PI 0 p r ti i 3 O al m kj. ' 1 IYS.• z m AV O:1% ..,3 - ❑ ❑ Pool -Nom - ki + tU( .3a ,s`eI x „1-,q )( 1 ke-e Q 7U400j, T aUiC ALO :173r0ad dO Q b®-- 1)1r3 9Of 0 ' G - -v. ).\1\i‘d 'AH nd. Bend ' Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:43 AM Units system: English File name: O:*IHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\Front Load 2.etz\ M33 =51.9 [Kip'ftl M33= -12.19 [Kip'ft] • Moments L na • Benttey 7 Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:35 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs\Unit A \foundations\Front Load.etz\ UN IT Pt -V 'M33 =25.66 [Kip•ft] • M33= -30.27 [Kip•ft] Y M men L(2 . -VD 1 BY \\I\C DATE: (o-a0k0 JOB NO CE' kj ct 0 OF PROJECT: 5 c\ COO H fN� Si RE: UN 1 T F\ - R -P12 (.)tAr a1b7v_ irlb'b k ❑ ❑ / , 3 tck 30.41 tc.q J Z " j ^ r 1 1 .. .153' 4,1531 - o D , w f O l 1 ___ �__,z� '° 0 z w O cc a r- aa' -1. z O U Check- 0ved -Fury r9 Z D K r = 30 , 4 1 fi 30 414 (a, - 1ba)(aa) 11 L.1 b r_F 2 0 Mr, = (. )(1 0(00) +- '11530 I- "1-,153(a I) z WI = q , t,� )1,s . o�. r -, , w El Z F- a x = 000,0E - 1“.,05 s.042c e= s� .s�c� ao .`iob ° 1ma = ao ,90 t0 ((ao,c10(5,50 (.1 °15 s Ca'Caa> t0C -2aj-z 9-,m; r\ = ao,coc� _ (_o(94G,a0c.�Cs , , -,a -S_ (z. .Z.2. C2C.i.2:) o °A-mi n< o o �m®.x = 4 Q _ 4 (ao ,G{(,) - 3 k (t3 - ?.,,c,) 3( X00 - a(s .sc)) ,. q a .c t dYNO■x ' t . - ab 1 -.-.0 c. tS0O ps F O}.. s o 1x0 =1 x gi -i-2- n A • Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:38 AM • Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) 10EN - Plans \CEN -090 Summer Creek Townhomes\calcs \Unit A \foundations\Rear Load.etz\ M33 =43.24 [Kip ftl • M33= -45.06 [Kip ft] M3rv?\ks t \ Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:43 AM • Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A\foundations\Rear Load 2.etz\ • M33 =41.88 [Kip * ft] • • • • M33= -46.37 [Kip *ft] • • Mme.r - trCeL _sZ3 .. _ ._ • z , .. _ •, . g• CIQ ° ' . • ' . ' — ' i''i r;,.. ,st 'E' E. tuaivri ! ott4 a -710 ... - x - tuiv l i < h iv i 1 '0 = c '0/ (CO0b,) bra) 'o r , = 1 --v till a Q . 1.- - ‘Cf i ')'0 n 7,‘ a s 44 'nil cz./ 7$9(9 , o,)(ititi o)ob 0 - YY , - - ,:0 - • (lizxorxmos c000 -Flo "PI 11--E.. *0 ---= gv )'o „el a :Pi # ,(J) z 0 z • 0 q6 ger:re „ o tic,-.49(000I0,)(_v.c...,00b,o.uv,z z , -(4.0c,oti.o=.-_-. - 0 ( Cams) G ' o/ (900 , j 0 al. 4 0 . 4 cf) PN.•)■1" • 0 z Z - 910 - P) S`sVato .0 III0 F) 6 c 1 N 1 f . z 1 4-cca lir V 4‘ki = u` O • m • _ . 0 o > a r- 0 r E e - y 4-i,un = vwv4 9 31 2 11 t )_./.. I IZI Y• 1 X „0--it 0 F • b 8 C)uk 003 vorn . ..YQ8 / : :103rOdd AO C1 0 C)s. IN ; : ON 80,- 0 10 C -.' , .,>. BY: JOB NO.: OF PROJECT: RE 0 0 S x L x lb, i------ I Z ... LI. O L F. w O m . r 1=1 . V..\■mo = 0 N4P1 '). _5 \ p_9\. ._..k. C - 't 0 _J _ .\.)_cm.A-- lb _..5-_.!B-1 • -V- --V-Ct - — - - - 8 w , rt a_ k A z PAM" = , QCVA - P$ --s) — ./•-‘--- VA 0 • • Qoi k C --) - 40.0 4 at, w z 0.c\Q_\5..3,Lc)_-"At2.) . 2 O - a:: AsSt. tobsLb 0,c. A o.LN, .17- x'35ct, 40 Y2" , cr • a u_ z ii0.6Y.3000 1-45,3 \N- 0 6 • all 0 •1'..o_j, (_1..t=t S e 4. 0.C.... As = • a:: ( \ ,01-4 / co, 8 .-._ 'b,L4,2,__%!-) k_ # S€ � M ... 0 .qo ctifro-t 0, 006) ( - D. t•xl-_1 I2. )S3 ,., Qv_ Tr S @ 10" o,c. a _,- (\ .29_00.o,,a00 0 a-Lb I 0 = . �M. y. --z 0,ck 0 (1 aci)(.(po 6 _! :_-_ 8 4 ,bsk. • z.' 0 *--. .- 5 A " - 6 .-<':, t\eqp‘lt. irxseiNen, Z — 5 o . '..o • r 1 >4.' a ,r.. ( 0,1t.. •ita -7 - 0 Mn fr 0 , C10(04/1 1 X‘0 , 1 0 (7Xi) ( 15 - ° - ' 1 4;) = ! . c.v..._ -_ --H ,, 2.2.' 171 - 1K -6 )E -z-L'1 =- 1 S'St _ (Z•_4g1 z s S'e��) cos \e =`\ci. „SI K '3e x 6un - C d - S 11 ' t _;: - ~16 4 L'l 5 ( s'1 --.-)° -- k a. 4 c Q' `) fi - ="W - 10.2, 4 -€,' = --A - ac►S GuLtooj p-i-s ° o 2-L1 = x 7 f -f `1 b'Sfi 7 LO'� e) S' 1 b W> mxxz 4,s g acn - 1Qfi4 VV.11'1) -tQ2jZ"S -it'c)a s 0 0 -. z0' i e - -lo 661kAAr4) 4 isa) C4 9 2511 ,q ;cofame ■.1,!1. }Nnh S 4. 3 c<loE e)e- G'nw _ \ - aZ ce 2 -- Ac) -- Ac) N:-- :PT " 0 t e.1 - .b = "`r un - 43 cyE' =a 3bbt -� = 9°�'I4 z's s = b� = x = o �0 ' _" S 1 < l�' 1 � 1 1 01 i7 "' � W o 0 3 3 °I b ' 1 b ` ("yr' t 4 ctre'cv 4 07 ° - = ow a � �1�o t x. z 23 o • m z 0 1 9 n 0 a 0 -1 0 3 m 0 K o coo I .^ �1 kq.per ,1 t'S m ��L'0* IG . m ❑ ❑ ca 52'1 n Au, - d i■v,n : I ,lc_ x I d :103 road JO � -) ''oN eor 0 1 Ot Galva Tkl\l :As Z � yy 11..��.yI 74 W M C • < 0.1 CD n O T -I S 0 Z ❑ m 0 0 3 �� _ <<14 I - Ye —°�) (c. )2. ❑ ��,, ;� 1 001 u„� _ �1�v5 �i �0 9,19' (sc-1 I) _)( .o 0 C\)_1- D Z x 73 rn �7N -3SG\ S L° L r- 7( VW, 0 m 0 0 Q\'l =a Z - --- _ �� { _ `DAAI = X o 3 0 • 40 (Aq )E G ig ' c )4 ) 3 0 m -i 0 r m a)Z -1x-) Li ❑ ( , -12 . rc\ -1, - 1Upt, = xX) w' - ko :38 :103roa Jo C))00. N +) 0 N 8 or ®} we - 9 :31VO \\\N AG d Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:42 AM Units system: English File name: O: HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes\calcs \Unit A \foundations \Interior 2.etz\ • • M33 =23.55 [Kip•ft] • • • M33= -17.88 [Kip' ft] • Y Momeni- LC( B entl e y , Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:42 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \Interior.etz\ • M33= 32.26[Kip'ft] • M33= -9.27 [Kip *ft] A X Me L C 14-f30 ACI 318 -05 Appendix D 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc = 3000 psi fc = 3000 psi h' = 3.50 inches h = 12.00 inches (into the Fc Stem = 8.00 inches Note: hef above is the the embedment into or c = 5.25 inches the foundation and does not consider stem wE Fnd Width = 36.00 inches cmin = 2.25 inches c min = 18.00 inches Wc,N= 1.00 cast -in -place anchor Wc,N= 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor = 0.75 strength reduction factor = 0.75 strength reduction fact Calculations Calculations ANc = 68 in` A = 1296 in` ANo = 110.25 in` ANa = 1296 in` Nb = 8,607 pounds Nb = 55,121 pounds Wed,N — 0.8286 Wed,N - 1.00 N = 4,399 pounds Nob = 55,121 pounds ON = 3,299 pounds 4 Nt, = 41,341 pounds Combined Capacity of Stem Wall and Foundation oN = 44,640 0.754N = 33,480 fr-0 <' 0 ° 0 'AO 1/4-AltA) lab0 a t * - ( ( 172 -'°)c) 0 NiVb -D o z o z (1s)( '0/ (900`01)tbS: 0 o z c " c l / L -)° ti.5 1 ko# ( C ul 0 "Ao caS°1 -t‘ (C.2.,17e'1 E t.-. 7> 0(900 Xb 0)% I 0 \N ,e) ( -41 bah ° 0 • (9E-Xoposya'0/ (pooioli loGS' = z.r loaS sior ■ IV 0 14- c`) v \ - )1 1. WO1C"`TV • -0 . z 0 c: /10 - l a ) OV° U W0 m 0 r 54 ) 2. i g E 0 rr, k-"1/4AA - F re 0 0 G ( A !kin — 1.\-Oof 1 YrYlinkk kJ' :38 :103f08c1 AO 0 0-r)e) oN eor owe -9 3iva Concrete Side Face Blow Out • Givens Abrs = 2.15 in` ft = 3000 psi c = 18.00 inches = 0.75 strength reduction factor Calculations N = 231,191 pounds 4)N = 173,393 pounds Concrete Pullout Strength Givens Abrs = 2.15 in` fc = 3000 psi = 0.75 strength reduction factor Calculations N = 51,552 pounds 4)N = 38,664 pounds Steel Yield Strength Givens f = 58,000 psi A = 0.606 in = 0.80 strength reduction factor Calculations N = 35,148 pounds. 4)N = 28,118 pounds < 33,480 Ductility Holdown Check Holdown: ; HDU14 Holdown Capacity= 14,930 pounds 1.6* Capacity= 23,888 pounds 23,888 < 28,118 Holdown Checks BY: DATE: JOB NO OF PROJECT: RE: S Ve't'c\ Wa►1 ' Coo ❑ ❑ Si (J�eS U� BVi k br o �>r ° aSct(tt ?SF- 300 Pt.,c • wool 2 ❑ 8 ct(z \evels'k 50 _ a Gib pt.F S oor 4011 Ct50pc0( (Ntz)_ 333 PLP 5�em cc 6 o z ( z)( lso pc. 0( w — 100 w PLC w 2 r■._ a LL o (8c0(Z 1eve1s boo P..F Moor 0 To-‘a■ lead, toow aL l . 2 Y \O\% Sbp= VSOO psF = tsvaptp • w -w= & o li Z ❑ o rear Fv crr CC- \ kdtrrcp 0 = a DL: asCtLl- 30o p4.-F utt - ( tevevs)(1, e / s f p t . ( = koor- 4o►N (150pc-F X'in_ C ? 1 ) = 333 S 0112)( tso w� = mow P �-�1 (t C ?sc = Sub c F LL , Ctit >CZs) = 4- PLF ',343 +- 100vJ t a31% toow isoo`u x a w t ur o- e uvvs �' C = SOON\ ct s minim ,C lour t ct4 T L vIcb et 100 vJ W = 1. �� U5-e 1s'‘ b... ° asClz, >(Z) = boo pL- wu t1 (8)(2 X t3C2 _ t to (.F Slow F�C 40u.)(isopc.'Itz)01m. _ 3339t.G 51-frr N►lXmo W) -100 u. LL o CFA C..G. JC4o)Cz,> = 1220 PL\= ,YEcwr Tt_ at,a9 } Eoow LA.) use a4 tN 42L1