Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Specifications (4)
2 � , yi I 3q,1 , 1 q Structural Calculations for Full Lateral & Gravity Analysis of Plan A 1460 Lot 50, Summer Creek Townhomes Tigard, OR Prepared for R ECE IV Pulte Group AUG 17 2010 CITY OF T IGARD July 13, 2010 BUILDING DIVISION JOB NUMBER: CEN -090 ** *Limitations * ** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and/or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. /'' 117 sheets total including this cover sheet. ( T- Q y ou c T V R4t Wt fa -- CO rAi 0.0 PROf `09 � �'` i 23 o f 9 City of Tigard LOt �-� l A..• ved Plans �Ic -- .i� DateQ� -� OREGON 014C3--AD- `�z Y15;03 `'` W-t— N J E N'( (A4-(-- C — cO ( EXPIRES 12 -31 -2011 1 This Packet of Calculations is Null and Void if Signature above is not Original Harper littk Houf Peterson Righellis Inc. USCA :34503V13346 205 SE Spokane St. Suite 200 • Portland, OR 97202 ♦ [P] 503.221.1131 ♦ [F] 503.221.1171 1104 Main St. Suite 100 ♦ Vancouver, WA 98660 ♦ [P] 360.450.1 141 • [F] 360.750.1141 1133 NW Wall St. Suite 201 ♦ Bend, OR 97701 ♦ [P] 541.318.1 161 • [F] 541.318.1 141 OFFICE COPY Structural Calculations for Full Lateral & Gravity Analysis of Plan A 1460 Summer Creek Townhomes Tigard, OR Prepared for Pulte Group July 13, 2010 JOB NUMBER: CEN -090 ** *Limitations * ** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and /or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. • 117 sheets total including this cover sheet. This Packet of Calculations is Null and Void if Signature above is not Original Harper '• Houf Peterson Righellis Inc. • o ' 'IANNER6 IANESCAPL ARC C::T S • OU- R'JCYORS 205 SE Spokane St. Suite 200 a Portland, OR 97202 a [P] 503.221.1131 0 [F] 503.221.1171 1104 Main St. Suite 100 • Vancouver, WA 98660 • [P] 360.450.1 141 e [F] 360.750.1 141 1133 NW Wall St. Suite 201 o Bend, OR 97701 0 [P] 541 .318.1161 e [F] 541.318.1 141 Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit A Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, IW: 1 2006 IBC / 2007 OSSC Occupancy Category: II Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed, ASCE.7 -05 Ch. 20 Importance, IE: 1 ASCE 7 -05 Table 11.5 -1 Ss: 0.942 USGS Spectral Response Map Si: 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength, Pc: 3000 psi Foundations & Slab on Grade Concrete Unit Weight, yc: 145 pcf Steel Reinforcement Yield Strength, f 60,000 psi Wood Studs (Wall Studs): Hem -Fir #2 2x & 4x Wood Beams & Posts: DF -L #2 6x & Greater Wood Beams & Posts: DF -L #1 Glulam Beams: 24F -V4 PSL Beams: Fb =2,900 psi, FV= 328psi, E =2.0 Million TS /LSL Beams: Fb =2325 psi, FV= 460psi, E =1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : 1500 psf Assumed 2. All manufactured trusses, joists, and flush beams u.n.o. shall be designed by others. Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 WoodWorks — Sizer version 2002 Bently RAM Advanse . Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP Houf Peterson. Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCHITECrS•SURL•EYoRS DESIGN CRITERIA 2007 Oregon Structural Specialty Code & ASCE 7 -05 Roof Dead Load RFR := 2.5.psf Framing RPL := 1.5•psf Plywood RRF := 5.psf Roofing RME := 1.5•psf Mech & Elec RMS := 1 •psf Misc RCG := 2.5•psf Ceiling RIN := 1 •psf Insulation RDL = 15•psf Floor Dead Load FFR := 3.psf Framing FPL := 4.psf Sheathing FME := 1.5•psf Mech & Elec FMS := 1.5•psf Misc FIN := .5.psf Finish & Insulation FCLG := 2.5.psf Ceiling FDL = 13-psf Wall Dead Load WOOD EX Wall := 12.psf 1NT_Wal1w := 10•psf Roof Live Load RLL:= 25.psf Floor Live Load FLL := 40.psf #— L1 Harper Project: SUMMERCREEK TOWNHOMES UNIT A Y �• Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # L AND6C APE ARCHITECTS• SUP JEYOR6 Transverse Seismic Forces Site Class = D Design Catagory = D Building Occupancy Category.: II Weight of Structure In Transverse Direction Roof Weight Roof Area := 843.ft 1.12 RF r := RDL•Roof Area RFArI- = 14162•lb Floor Weight Floor Area2nd := 647•ft FLRwI := FDL•Floor Area2nd FLR 2nd = 8411.1b Floor_Area3 652•ft FLRwT3rd := FDL•Floor Area3rd FLRVIT3rd = 8476.1b Wall Weight EX Wall Area := '(2203)•ft INT. Wall Area := (906)•ft WALLyr := EX_Wal1 .EX_Wall_Area + INT Wa1l WALLW -j- = 35496•Ib WTTOTAL = 66545 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h := 32 Mean Height Of Roof I := 1 Component Importance Factor (11.5, ASCE 7 -05) A,:= 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C := .02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x := .75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period T := C T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. , (Chapter 22, ASCE 7- 05)...or S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F := 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F, := 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) Harper Project: SUMMERCREEK TOWNHOMES UNIT A • HP t. Houf Peterson Client: PULTE GROUP Job # CEN -090 , Righellis Inc. ENGINEERS • oLANNERS - Designer: AMC Date: Pg. # LANDSCAPE ARCYITECLS•SURVEYGRS S MS Fa SMS = 1.058 (EQU 11.4 -1, ASCE 7 -05) Sds := 2'3MS Sd = 0.705 (EQU 11.4 -3, ASCE 7 -05) S := F,, Sr SMr = 0.584 (EQU 11.4 -2, ASCE 7 -05) Sdl 2 3 Sdi = 0.389 (EQU 11.4 -4, ASCE 7 -05) Cst := Sds'k Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) R ...need not exceed... Shc le (EQU Csmax := Csmax = 0.223 (E Q 12.8 -3, ASCE 7-05) T ...and shall not be less then... C1 := if(0.044•Sd < 0.01,0.01,0.044•Sd r 0.5•S1•Iel (EQU 12.8 -5 &6, ASCE 7 -05) C2 := if S1 < 0.6,0.01, J R Csmm := if(C1 > C2,C1,C2) Csmin = 0.031 Cs := if (Cst < Cs m ,Cs m m,if(Cst < Csmax,Cst,Csmax)) Cs = 0.108 V := Cs. WTTOTAL V = 72201b (EQU 12.8 -1, ASCE 7 -05) E := V•0.7 E = 50541b (Allowable Stress) /1" \-(3 :. +. Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • ?CANNERS Designer: AMC Date: _ Pg. # LANDSCAPE ARCMITECTS• SURVEYORS Transverse Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 100 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I := 1.00 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X := 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... a2 := 2..1.20.ft Zone A & B Horizontal Length a2 — 4 ft (Fig 6 -2 note 10, ASCE 7 -05) or 2 = .4.hn2•ft a2=25.6ft but not less than... a2 := 3.2.ft a = 6 ft Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA 19.9•psf PnetzoneB 3.21psf PnetzoneC 14.4.psf PnetzoneD 3.3•psf Vertical PnetzoneE —8.8.psf PnetioneF 12•psf PnetzoneG —6.4.psf PnetzoneH •= — 9.7•psf Basic Wind Force PA := PnetzoneA' Ivy' X PA = 19.9.psf Wall HWC PB := PnetzoneB'Iw'X PB = 3.2•psf Roof HWC PC := PnetzoneC'Iw'X PC = 14.4'psf Wall Typical PD := PnetzoneD'Iw X PD = 3.3• Roof Typical PE := PnetzoneE' Iw' X PE = — 8.8 -psf PF := PnetzoneF'Iw -X PF = — 12•psf PG := PnetzoneG' Ivy' X PG = — 6.4.psf PH := PnetzoneH'Iw'X PH = — 9.7•psf Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP: Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS AMC Date: Pg. # LANDSCAPE ARCNITECTS•SURVE■ORS Determine Wind Sail In Transverse Direction WSAJL (41 + 5 + 29) •ft • W SAILZoneB := (19 + 0 + 23) • ft 'WSAILZonec = (39.1 + 307 + 272)•ft WSAILZoneD (0 + 0 + 5),ft2 WA WSAII- ZoneA•PA WA = 2567 Ib WB := WSAILZoneB•PB WB = 134 lb WC := WSAILZoneC•PC WC = 139681b WD WSA WD = 16 Ib Wind_Force := WA + WB + WC + WD Wind_Force := 10•psf•(WSAILZ + WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind_Force = 16686 lb Wind_Force = 11460 lb • WSAILZoneE • ;ft 94 WSAII-ZoneF 108•ft2 WSAILZoneG 320•ft WSAILZoneH 320• WE := WSAILZoneE•PE WE = — 827 lb • WF WSAILZoneF•PF WF = — 12961b WG := WSAILZoneG•PG WG = —2048 lb WH WSAILZoneH•PH WH = — 3104Ib Upliftnet WF + WH + (WE + WG) + RDL•[WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneGfl•• Uplift = 12121b (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION U . Harper Project: SUMMERCREEK TOWNHOMES UNIT A P::• Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. g Designer: AMC Date: Pg. # ENGINEERS ♦PLANNERS p" g' LANDSCAPE ARGNIfE CTS•SURVE YORS Longitudinal Seismic Forces Site'Class = D Design Catagory = D Building Occupancy Category: II Weight.of Structure In Longitudinal Direction Roof Weight Roof Area = 944 ft RDL•Roof Area RFW-r = 14162-lb Floor Weight Floor_Area2 = 647 ft ,j,= FDL•Floor Area2nd FLRVVT2 = 8411.1b Floor_Area3 = 652 ft • = FDL.Floor_Area3 FLRWT3rd = 8476•1b Wall Weight E.c WA1:: !fig: _ (2203): ft INT Wall Area = 906 ft 201.144a,:= := EX Wall EX_Wall_Area + INT Wall WALLw-r = 35496.1b WTTOTAL = 66545 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h = 32 Mean Height Of Roof = 1 Component Importance Factor (11.5, ASCE 7 -05) A,:= 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C = 0.02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x = 0.75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period := C T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 = 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S = 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F = 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F" = 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) 4- Lo r . Harper Project: SUMMERCREEK TOWNHOMES UNIT A ' Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCHITECTS• SURVEYORS 5:= F SMs = 1.058 (EQU 11.4 -1, ASCE 7 -05) 2 - SMS Sd = 0.705 (EQU 11.4 -3, ASCE 7 -05) 3 ,§414,:= F S1 SMI = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2 - SM1 • = Shc = 0.389 (EQU 11.4 -4, ASCE 7 -05) 3 st := SdR Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) ...need not exceed... _ Shc Ie Cs = 0.223 (EQU 12.8 -3, ASCE 7 -05) Ta•R ...and shall not be less then... Cam:= if(0.044- Sd < 0.01, 0.01,0.044• — if( 0.5 SI Iel (EQU 12.8 -5 &6, ASCE 7 -05) S1 <0.6,0.01, l R J tii�:= if (CI > C2,CI,C2) Cs = 0.031 n Cs ::= if (Cst < Cs Cs if (Cst < Cs , Cst, Cs Cs = 0.108 X,:= Cs•WTTOTAL V = 72201b (EQU 12.8 -1, ASCE 7 -05). E:= V•0.7 E = 50541b (Allowable Stress) - Harper Project: SUMMERCREEK TOWNHOMES UNIT A ' Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCN.TECTS• SUP%EYORS Longitudinal Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 110 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I = 1.0 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X = 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... = 2..1.20.ft Zone A & B Horizontal Length = 4 ft (Fig 6 -2 note 10, ASCE 7 -05) or „9,4 .4•h 2•ft a2 = 25.6 ft but not less than... aj 3.2•ft a2, = 6 ft Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA = 19.9 -psf PnetZOneB = 3.2•psf • PnetzoneC = 14.4•psf PnetZOneD = 3.3•psf Vertical PnetzoneE _ — 8.8•psf PnetzoneF = —12.psf PnetzoneG = —6.4.psf PnetzoneH = — 9.7 -psf Basic Wind Force PnetzoneA'Iw'X PA = 19.9•psf Wall HWC := PnetzoneB'Iw.X PB = 3.2•psf Roof HWC PnetzoneC'IWX PC = 14.4 -psf Wall Typical — PnetzoneD'IW - X PD = 3.3•psf Roof Typical Pte:= PnetzoneE'IWX PE = — 8.8•psf := PnetzOneF' Iw' X PF = —12.psf te:= PnetzOneG'IW'X PG = —6.4.psf ,:= PnetzoneH'IW -X PH = — 9.7•psf Harper Project: SUMMERCREEK TOWNHOMES UNIT A P : Houf Peterson Cl PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE AR CNITECTS• SURVEYORS Determine Wind Sail In Longitudinal Direction V §41 := (48 + :59 + 40)41 N�n�RL: (10 + 0 +.44)•ft 2 ,°.(91+.137 +67)•$ W u : =,(43 +.0 +`113)412 X4 WSAILZoneA'PA WA = 2925 Ib ,W, = WSAILZoneB'PB WB = 173 lb W� := WSAILZoneC'PC WC = 4248 Ib Wes= WSAILZoneD'PD WD = 515 Ib Wind Fo ce := WA + WB + WC + WD Wit d orce 10•psf- (WSAILZ + WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind Force = 7861 lb Wind_Force = 6520 Ib := 148•ft := 120 -ft WW `nrov� := 323 • $ • N az;; t, := 252 -ft2 yk,:= WSAILZoneE-PE WE = – 13021b A WE`= WSAILZoneF'PF WF = – 14401b V := WSAILZoneG'PG WG = –2067 Ib Wes= WSAII- ZoneH'PH WH = –2444 lb WF + WH + (WE + WG) + RDL•[WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneG) }. 6.1 . 12 Upliftnet = 12431b (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION /9 — L9, Harper Houf Peterson Righellis Pg #: Transverse Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = • 6 /12 Building Category= 11 (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X= 1.00 Iw= 1.00 Wind Sail Wind Net Design Wind Pressure (psf) (ft2) Pressure (Ibs) Zone A = 19.9 129 2567 Wall High Wind Zone Horizontal Zone B = 3.2 42 134 Roof High Wind Zone Wind Forces Zone C = 14.4 970 13968 Wall Typ Zone Zone D = 3.3 5 17 Roof Typ Zone Zone E = -8.8 94 -827 Roof Windward High Wind Zone Vertical Zone F = -12.0 108 -1296 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 320 -2048 Roof Windward Typ Wind Zone Zone H = -9.7 320 -3104 Roof Leeward Typ Wind Zone Total Wind Force =l 16686 lbs I Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -7275 lbs Resisting Dead Load= 8472 lbs E =l 1197 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm (ft Zone A Zone B Zone C Zone D Main Floor 41 19 391 0 Upper Floor , 59 0 307 0 Main Floor Diaphragm Shear = 6507 Ibs Upper Floor Diaphragm Shear = 5595 lbs Roof Diaphragm Shear = 4584 Ibs • Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Diaphragm Diaphragm . Width ft (lbs) Wid ft (lbs) Width ft (lbs) A 13.08 1737 18 2797 19 2323 Al 24.50 3254 0 0 0 0 B 11.42 1516 18 2797 18.5 2261 E= 49 6507 36 5595 37.5 4584 "9-- L 0 Harper Houf Peterson Righellis Pg #: Transverse Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = 11 Site Class = D 51 = 0.34 . Ss = 0.94 • Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 S • 1.06 Equ. 11.4 -1, ASCE 7 -05 • S 0.58 Equ. 11.4 -2, ASCE 7 -05 S 0.71 Equ. 11.4 -3, ASCE 7 -05 SD1= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = • 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 . Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 • Floor 2 Wt (Ib)= 8411 Floor 3 Wt (Ib)= 8476 Roof Wt (Ib) = 14162 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22609 ' Trib. Floor 3 Diaphragm Wt (Ib) = 22674 Trib. Roof Diaphragm Wt (Ib) = 21261 Vertical Dist of Seismic Forces Cumulative % total of base shear Rho Check to Shearwalls (Ibs) I to shearwalls Req'd? Vfl (Ib) = 720 100.0% Yes Vnoor 3 (Ib) = 1625 85.8% Yes Vroof (Ib) = 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft Ibs Ibs Ibs A 102 361 394 • 114 897 1266 Al 432 0 0 481 0 0 B 113 ,.293 449 126 728 1443 Sum 647 654 843 720 1625 2709. • Total Base Shear* = I 5054 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. / — L11 Harper Houf Peterson Righellis Pg #: Longitudinal Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) • Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X= 1.00 Iw= 1.00 Wind Sail Wind Net Design Wind Pressure (psf) ( ) Pressure (Ibs) Zone A = 19.9 147 - 2925 Wall High Wind Zone Horizontal Zone B = 3.2 54 173 Roof High Wind Zone Wind Forces Zone C = 14.4 295 4248 Wall Typ Zone Zone D = 3.3 156 515 Roof Typ Zone Zone E = -8.8 148 -1302 Roof Windward High Wind Zone Vertical Zone F = -12.0 120 -1440 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 323 -2067 Roof Windward Typ Wind Zone Zone H = -9.7 252 -2444_ Roof Leeward Typ Wind Zone Total Wind Force =l 7861 Ibs I Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -7254 Ibs Resisting Dead Load= 8483 Ibs E =I 1229 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm (ft Zone A Zone B Zone C Zone D Main Floor 48 10 91 43 Upper Floor _ 59 - 0 137 0 Main Floor Diaphragm Shear = 2440 Ibs . Upper Floor Diaphragm Shear = 3147 Ibs Roof Diaphragm Shear = 2275 Ibs Wind Distribution To Shearwall Lines . MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm (Ibs) Diaphragm (Ibs) Diaphragm (Ibs) Width ft Width ft Width (ft) 1 10 1220 10 1573 10 1137 2 10 1220 10 1573 10 1137 E= 20 2440 20 3147 ' 20 2275 . A - Lr2... Harper Houf Peterson Righellis Pg #: Longitudinal Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D S1= 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 S 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 S 0.71 Equ. 11.4 -3, ASCE 7 -05 SDI= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (lb)= 8411 Floor 3 Wt (Ib)= 8476 Roof Wt (lb) = 14162 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22609 Trib. Floor 3 Diaphragm Wt (Ib) = 22674 - Trib. Roof Diaphragm Wt (Ib) = 21261 . Vertical Dist of Seismic Forces Cumulative % total of base shear Rho Check to Shearwalls (Ibs) I to shearwalls I Req'd? • Veoor 2 (Ib) = 720 100.0% Yes Vnoor3 (Ib) = 1625 85.8% Yes V roof (lb) = 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft Ibs Ibs • Ibs 1 286 291 415 • 318 725 1334 2 361 361 428 ,402 900 1375 Sum 647 652 -843 720 1625 2709 Total Base Shear* = 1 5054 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. L v--6 Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 "Transvere Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht I k ht I - k ht I k, (k1f) (plf) (ft -k) (ft -k) (k) 101 Not Used • 102 7 1.75 3.50 4.00 ' ;` 8.00 1.74 18.00 2.80 27.00 2.32 1959 Double 1.40 NG 103 7 1.75 3.50 4.00 ; ".._ 8.00 1.74 8.00 2.80 8.00 2.32 1959 Double 1.40 NG 103a 7 4.00 4.00 1.75 OK 8.00 3.25 814 Single 1.40 IV 104 8 4.50 10.50 1.78 OK 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 105 8 3.00 10.50 2.67 OK 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 106 8 3.00 10.50 2.67 ox 8.00 1.52 8.00 2.80 8.00 2.26 • 626 Single 1.40 111 109 8 4.58 17.08 1.75 OK 8.00 1.74 18.00 2.80 27.00 2.32 401 Single 1.40 II 110 8 12.50 17.08 0.64 OK 8.00 1.74 8.00 2.80 8.00 2.32 401 Single. 1.40 I1 ' 111 8 4.50 7.25 1.78 •ox 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 112 4.75 1.38 7.25 3.45 OK 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI • 113 4.75 1.38 7.25 3.45 OK 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI -. 201 9 3.92 10.79 2.30 ox ' 9.00 2.80 18.00 2.32 474 Single 1.40 II , 201a 9 4.17 10.79 2.16 OK .9.00 2.80 18.00 2.32 ' 474 Single 1.40 II 201b 9 2.71 10.79 3''32 OK 9.00 2.80 18.00, 2.32 474 Single 1.40 II _ 202A 9 2.96 11.96 3.04 ox 9.00 2.80 18.00 2.26 423 Single 1.40 II 202B 9 3.00 11.96 3.00 _ OK 9.00 2.80 18.00 2.26 423. Single 1.40 II 203 9 3.00 11.96 3.00 ox 9:00 2.80 18.00 2.26 423 Single 1.40 lI • 204 9 3.00 11.96 3.00 ox 9.00 2.80 18.00 2.26 423 Single 1.40 11 301 8 3.92 - 13.96 2.04 OK 8.00 2.32 166 Single 1.40 1 302 8 5.79 13.96 1.38 ox 8.00 2.32 166 Single 1.40 I 303 8 4.25 13.96 1.88 OK 8.00 2.32 166 Single 1.40 I 304 8 2.96 5.96 2.70 OK 8.00 2.26 . 379 Single 1.40 II 305 8 3.00 5.96 2.67 ox 8.00 2.26 379 Single _ 1.40 _ I1 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear' Shear Application ht . • Mr (Resisting Moment) = Dead Load • L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • • • il - L \Lis Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 fransvere Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho *V % Story If Panel Shear Panel M M Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht I k ht I k ht I k (kit) (plf) (pll) (fl -k) (ft-k) (k) 101 Not Used 102 7 1.75 3.50 4.00 ^ ..,.:' rar sr.l . :', _ • 8.00 0.11 18.00 0.90 27.00 1.27 651 846 0.10 0.50 Double 0.50 NG 103 7 • 1.75 3:50 4.00 ,; i{ _ 8.00 0.11 8.00 0.90 8.00 1.27 651 846 0.10 0.50 Double 0.50 NG 103a 7 4.00 4.00 1.75 OK 8.00 0.48 0.00 ' 0.00 120 156 0.22 1.14 Single. 1.00 1 104 8 4.50 10.50 1.78 OK 8.00 0.13 8.00 0.73 8.00 1.44'_ 219 . 284' 0.25 1.13, Single 1.00 II 105 8 3.00 10.50 2.67 OK 8.00 0.13 8.00 0.73 8.00 1.44 219 284 0.17 0.75 ' Single 0.75 III 106 _ 8 3.00 10.50 2.67 OK 8.00 0.13 8.00 0.73 8.00. 1.44 J 219 284 0.17 0.75 Single _ 0.75 _ III . 109 8 4.58 17.08 1.75 OK 8.00 0.11 18.00 0.90 27:00 ' 1.27 •134 174 0.25 1.15 Single 1.00 I 110 8 12.50 17.08 0.64 oK 8.00 0.11 8.00 0.90 8.00 1.27 134 174 NA 3.13 Single 1.00 1 111 8 4.50 7.25 1.78 OK 8.00 0.13 8.00 0.73 8.00. 1.44 316'- 411 0.25 1.13 Single 1.00 III 112 5 1.38 7.25 3.45 OK 8.00 0.13 8.00 0.73 8.00 1.44 316 411 ' 0.08 0.58 Double 0.58 VU . 113 5 _ 1.38 7.25 3.45 . OK 8.00. 0.13 8.00 0.73 8.00 1.44 316 _ 411 0.08 0.58 Double 0.58 _ ' VII 201 9 3.92 10.79 2.30 OK 9.00 0.90 18.00 1.27 200 261 0.17 . 0.87 Single ' 0.87 II . • 201a 9 4.17 10.79, 2.16 OK 9.00 0.90 18.00 1.27 200' 261 - 0.18 0.93 Single 0.93 II 201b 9 2.71 10.79 3.32 OK 9.00 0.90 18.00 1.27 200 261 0.12 0.60 Single 0.60 III 202A 9 2.96 11.96 3.04 OK 9.00 0.73 18.00 1.44 182 236 0.13 - 0.66 Single 0.66 III' 202B 9 3.00 _11.96 3.00 .0K • 9.00 0.73 18.00 1.44 182 236 0.13 0.67 Single 0.67 III 203 9 3.00 11.96 3.00 OK 9.00 0.73 18.00 1.44 181 236 0.13 0.67 Single 0.67 III 204 ' 9 3.00 11.96 3.00 'oK 9.00 0.73 18.00 1.44 181 236 0.13 0.67 Single 0.67 III 301 8 3.92 13.96 2.04 OK 8.00 1.27 91 118 0.20 0.98 Single 0.98 I 302 8 5.79 13.96 1.38 OK 8.00 1.27 91 118 0.29 1.45 Single 1.00 . I ' 303 8 4.25 13.96 1.88 OK 8.00 1.27 91 118 0.21 1.06 Single 1.00 I - 304 8 2.96 5.96 2.70 OK 8.00 1.44 -242 315 0.15 0.74 Single 0.74 III 305 8 3.00 5.96 2.67 OK 8.00 1.44 242 _ 315 0.15 _ 0.75 Single _ 0.75 III Rho Calculation Does the 1st floor slearwalls resist more than 35% of the total transverse base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total transverse base shear? • Yes Does the 3rd floor shearwalls resist more than 35% of the total transverse base shear? Yes Total 1st Floor Wall Length = 18-00 Total # 1st Floor Bays = 4.77 Are 2 bays minimum present along each wall line? No 1st Floor Rho = 1.3 Total 2nd Floor Wall Length = 22.75 Total # 2nd Floor Bays = 5 Are 2 bays minimum present along each wall line? No 2nd Floor Rho = 1.3 • Total 3rd Floor Wall Length = 19.92 Total # 3rd Floor Bays = s Are 2 bays minimum present along each wall line? No 3rd Floor Rho = 1.3 - Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load "Rho / Total L % Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) 8 Bays = 2 *L/H Shear Factor = Adjustment For l-I/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht • Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • /4- ...-- t \irc Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klf) (pH) (ft -k) (ft-k) (k) 107 8 15.50 15.50 0.52 OK 10.00 1.22 18.00 1.57 27.00 1.14 1.03 254 Single 1.40 I 71.21 123.49 -0.19 108 8 15.50 15.50 0.52 OK 10.00 1.22 18.00 1.57 27.00 1.14 1.03 254 Single 1.40 I 71.21 123.49 -0.19 1 205 9 13.00 13.00 0.69 ox . 9.00 1.57 ' 18.00 L14 l 0.70 208 Single 1.40 I 34.62 59.15 -0.07 I 206 9 13.00 13.00 0.69 OK 9.00 1.57 18.00 1.14 r 0.70 208 Single 1.40 I 34.62 59.15 -0.07 1 306 8 10.00 10.00 0.80 ox 8.00 1.14 0.29 114 Single 1.40 I 9.10 14.40 0.05 307 8 10.00 10.00 0.80 ox 8.00 1.14 0.29 114 Single 1.40 I 9.10 14.40 0.05 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 m) /9 "-- ,..x\c„ Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho "V % Story # Panel Shear Panel M MR Uplift Panel Lgth. From 2nd FIr. From 3rd Flr: From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht k ht k ht ' k (klf) (Of) (plf) (ft -k) (ft -k) (k) 107 8 15.50 15.50 0.521 OK 10.00 0.32 18.00 0.73 27.00 1.33 1.09 153 .153 NA 3.88 Single 1.00 1 52.25 130.70 -1.74 108 8 15.50 15.50 0.52 OK 10.00 0.40 18.00 0.90 27.00 1.38 1.09 173 173 NA 3.88 Single 1.00 I 57.35 130.70 -1.40 I 205 I 9 1 13.00 13.00 10.69 OK 9.001 0.73 118.00 1.33 0.76 158 158 I NA I 2.89 'Single 1.00 I 30.54 64.221 -0.64 I 206 9 13.00 13.00 0.69 OK 9.00 0.90 18.00 1.38. 0.76 175 175 I NA 2.89 Single 1.00 I 32.85 64.22 -0.45 306 307 8 8 10:00 10.00 1 10.00 10.00 1 1 ooK K I 8.00 1.33 0.35 133 133 NA 2.50 Single I 1.00 I 10.67I 17.40 0.02 I J 8.00 1.38 0.35 138 138 NA 2.50 Single 1.00 1 11.00 17.40 .0.06 Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Total 1st Floor Wall Length = 31.00 Total # 1st Floor Bays = 7.75 Are 2 bays minimum present along each wall line? Yes 1st Floor Rho = 1.0 Total 2nd Floor Wall Length = 26.00 Total # 2nd Floor Bays = 6 Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho = i.o Total 3rd Floor Wall Length = 20.00 Total # 3rd Floor Bays = s Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho = 1.0 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load "Rho / Total L % Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2"IJH Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear" Shear Application ht Mr (Resisting Moment) = Dead Load *1.. " 0.5 " (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Transvere Shearwalls Panel Wall Shear Wall Type Good Fo Uplift Simpson Holdown Good For V (pH) Wp nb) (lb) 101 Not Used 102 Simpson Strongwall 103 Simpson Strongwall 103a 814 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 833 104 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 105 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 106 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 109 401 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 110 401 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 111 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 112 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 990 113 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 990 201 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 201a 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 201b 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 202A 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 202B 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 203 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 204 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 301 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 302 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 303 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 , 304 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 305 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design Toads. / k o Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Longitudinal Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdowo Good For V (p 0 (plfl (lb) (lb) 107 254 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -192 Simpson None 0 108 254 ,1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -192 Simpson None 0 205 208 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -69 Simpson None 0 I 206 208 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 =69 Simpson None 0 306 133 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 48 Simpson None 0 307 138 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 59 Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design Toads. /4-- L \\ Transverse Wind Uplift Design . Unit A Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift FIr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ -' floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 102 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.192 0.832 27.43 0.57 1.69 21.31 20.79 21.31 20.79 103 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.832 0.192 27.43 1.69 0.57 20.79 21.31 20.79 21.31 103A 8 1.1667 4.00 4.00 3.254 3.254 814 0.04 2.016 1.664 26.03 . 8.38 6.98 6.00 6.24 6.00 6.24 104 8 1.1667 4.50 10.50 1.516 2.8 2.26 6.576 626 0.1 0.8 0.078 25.08 4.61 1.36 5.58 6.06 5.58 6.06 105 8 1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 0.048 0.252 0.156 16.72 0.97 0.68 6.45 6.52 6.45 6.52 106 8 1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 • 0.048 0.156 0.252 16.72 0.68 0.97 6.52 6.45 6.52 6.45 109 8 1.1667 4.58 17.08 1.737 2.8 2.32 6.857 401 0.152 0.192 0.156 16.31 2.47. 2.31 3.63 3.66 201L 201R 4.82 5.09 8.45 8.75 110 .8 1.1667 12.50 17.08 1.737 2.8 2.32 6.857 401 0.096 0.156 0.192 44.52 9.45 9.90 3.24 3.21 201 aL 201 bR 4.95 4.88 8.18 8.09 111 8 1.1667 4.50 7.50 1.516 2.8 2.26 6.576 877 0.144 0.8 0.078 35.11 5.06 1.81 8.02 8.51 8.02 8.5 112 8 1.1667 1.50 7.50 1.516 2.8 2.26 6.576 877 0.048 0.252 0.234 11.70 0.43 0.41 11.44 11.46 11.44 11.46 113 8 1.1667 1.50 7.50 1.516 2.8 2.26 6.576 877 0.048 0.234 0.252 11.70 0.41 0.43 11.46 11.44 11.46 11.44 201 9 1.1667 3.92 10.8 2.8 2.32 5.12 474 0.225 0.432 0.156 17.71 3.42 2.34 3.99 4.16 301L 301R 0.83 0.93 4.82 5.09 201a 9 1.1667 4.17 10.8 2.8 2.32 5.12 474 0.225 0.156 0.156 18.84 2.61 2.61 4.14 4.14 302L 302R 0.80 0.80 4.95 4.95 201b 9 1.1667 2.71 10.8 2.8 2.32 5.12 , 474 0.225 0.156 0.432 12.24 1.25 2.00 4.24 4.08 303L 303R 0.91 0.80 5.15 4.88 202A 9 1.1667 2.96 11.958333 2.8 2.26 5.06 423 0.173 0.432 0.052 11.92 2.04 0.91 3.62 3.84 304L 304R 2.60 2.75 6.21 6.59 202B 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.173 0.052 0.216 12.09 0.93 1.43 3.84 3.74 305L 305R 2.74 2.16 6.58 5.91 203 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.309 0.216 0.312 12.09 2.04 2.33 3.62 3.56 3.62 3.56 204 9 1.1667_ 3 11.958333 2.8 2.26 5.06 423 0.225 0.312 0.432 12.09_ 1.95 2.31 3.64 1.57 3.64 3.57 301 8 3.92 13.96 2.32 2.32 166 0.232 0.384 0.204 5.21 . 3.29 2.58 0.83 0.93 0.83 0.93 302 8 5.79 13.96 2.32 2.32 166 • 0.232 0.204 0.204 7.70 5.07 5.07 0.80 0.80 0.80 0.80 303 8 4.25 13.96 2.32 2.32 166 0.232 _ 0.204 0.384 5.65 2.96 3.73 0.91 0.80 0.91 0.80 304 8 2.96 5.96 2.26 2.26 379 0.232 0.384 0.136 8.98 2.15 1.42 2.60 2.75 2.60 2.75 305_ 8 3 5.96 2.26 2.26 379 0.232 0.136 1.104 9.10 1.45 4.36 2.74 2.16 2.74 2.16 Spreadsheet Column Definitions & Formulas L = Shear Panel Length 3 H = Shear Panel Height • Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) Transverse Seismic Uplift Design UnitA Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift FIr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @. floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 102 8 1.1667 1.75 3.50 0.114 • 0.9 1.27 2.284 653 0.152 0.192 0.832 10.40 0.57 1.69 7.91 7.11 0 0 7.91 7.11 103 8 1.1667 1.75 3.50 0.114 0.9 1.27 2.284 653 0.152 0.832 0.192 10.40 1.69 0.57 7.11 7.91 .0 0 7.11 7.91 103A 8 1.1667 4.00 4.00 0.481 0.481 120 . 0.04 2.016 1.664 3.85 8.38 6.98 -1.06 -0.69 0 0 -1.06 -0.69 104 8 1.1667 4.50 10.50 0.126 0.73 1.44 2.296 219 0.1 0.8 0.078 8.96 4.61 1.36 1.20 1.93 0 0 1.20 1.93 105 8 1.1667 3.00 10.50 0.126 0.73 1.44 2.296 219 0.048 0.252 0.156 5.97 0.97 0.68 2.04 2.14 0 0 2.04 2.14 106 8 1.1667 3.00 10.50 0.126 0.73 1.44 2.296 219 0.048. 0.156 0.252 5.97 0.68 0.97 2.14 2.04 0 0 2.14 2.04 109 8 1.1667 4.58 17.08 0.114 0.9 1.27 2.284 134 0.152 0.192 0.156 5.58 2.47 2.31 0.82 0.86 201L 201R 1.13 1.54 1.95 2.40 110 8 1.1667 12.50 17.08 0.114 0.9 1.27 2.284 134 0.096 0.156 . 0.192 15.23 9.45 9.90 " 0.56 0:53 201 aL 201 bR 1.32 1.32 1.88 1.85 111 8 1.1667 4.50 7.50 0.126 0.73 1.44 2.296 306 0.144 0.8 0.078 12.54 5.06 1.81 2.00 2.73 0 0 2.00 2.73 112 8 1.1667 1.50 7.50 0.126 0.73 1.44 2.296 306 0.048 0.252 0.234 4.18 0.43 0.41 3.79 3.82 0 0 3.79 3.82 113 8 1.1667 1.50 7.50 0.126 0.73 1.44 2.296 306 0.048 0.234 0.252 4.18 0.41 0.43 3.82 3.79 0 0 3.82 3.79 201 9 1.1667 3.92 10.80 0.9 1.27 2.17 201 0.225 0.432 0.156 , 7.63 3.42 2.34 1.16 1.41 301L 301R -0.03 0.13 1.13 1.54 201a 91.1667 4.17 10.80 0.9 1.27 2.17 201 0.225 0.156 0.156 8.11 2.61 2.61 • 1.38 1.38 302L 302R -0.06 -0.06 1.32 1.32 201b 9 1.1667 2.71 10.80 0.9 ' 1.27 2.17 201 0.225 .0.156 0.432 5.27 1.25 2.00 1.53 1.28 303L 303R 0.10 -0.06 1.63 1.22 202A 9 1.1667 2.96 11.96 0.73 1.44 2.17 181 0.173 0.432 0.052 5.25 2.04 0.91 1.15 1.50 , 304L 304R 1.28 1.50 2.43 3.00 202B 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.173 0.052 0.216 5.32, 0.93 1.43 1.49 1.35 305L • 305R 1.50 0.63 2.99 1.97 203 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.309 0.216 0.312 5.32 2.04 2.33 1.16 1.08 0 0 1.16 1.08 204 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.225 0.312 0.432 5.32 1.95 2.31 1.19 1.08 0 0 1.19 1.08 - 301 8 0 3.92 13.96 1.27 1.27 91 0.232 0.384 0.204 2.85 3.29 2.58 -0.03 0.13 0 0 . -0.03 0.13 302 8 • 0 5.79 13.96 1.27 _ 1.27 91 0.232 0.204 0.204 4.21 5.07 5.07 -0.06 -0.06 0 0 -0.06 - 0.06 303 8 0 4.25 13.96 1.27 1.27 91 0.232 0.204 0.384 3.09 2.96 3.73 0.10 -0.06 0 . 0 0.10 -0.06 304 8 0 2.96 5.96 1.44 1.44 242 0.232 0.384 0.136 5.72 2.15 1.42 1.28 1.50 0 0 1.28 1.50 305 8 0 3.00 5.96 . 1.44 1.44 242 0.232 0.136 1.104 - 5.80 1.45 4.36 1.50 0.63 0 0 1.50 0.63 Spreadsheet Column Definitions & Formulas _ L = Shear Panel Length �j H = Shear Panel Height 1 Wall Length = Sum of Shear Panels Lengths in Shear Line , V (Panel Shear) = Sum of Line Load / Total L l Mo (Overturning Moment) = Wall Shear * Shear Application ht ` Mr (Resisting Moment) = Dead Load * L 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • TRANSVERSE UPLIFT CALCULATIONS - SUMMARY UNIT A Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right • k Simpson k k Simpson k . 102 Wind 21.31 Holdown None 0.00 Wind 20.79 None 0.00 103 Wind 20.79 Holdown None 0.00 Wind 21.31 None 0.00 103A Wind 6.00 Holdown HDQ8 w 3HF 6.65 Wind 6.24 HDQ8 w 3HF 6.65 104 Wind 5.58 Holdown HDQ8 w 3HF 6.65 Wind 6.06 HDQ8 w 3HF 6.65 105 Wind 6.45 Holdown HDQ8 w3HF 6.65 Wind 6.52 HDQ8 w 3HF 6.65 106 Wind 6.52 Holdown HDQ8 w 3HF 6.65 Wind 6.45 HDQ8 w 3HF 6.65 109 Wind 8.45 Holdown HDQ8 w DF 9.23 Wind 8.75 HDQ8 w DF 9.23 • 110 Wind 8.18 Holdown HDQ8 w DF 9.23 Wind 8.09 HDQ8 w DF 9.23 111 Wind 8.02 Holdown HDQ8 w DF 9.23 Wind . 8.51 HDQ8 w DF • 9.23 112 Wind 11.44 Holdown HDU14 14.93 Wind .11.46 HDUI4 14.93 113 Wind 11.46 Holdown HDU14 14.93 Wind 11.44 HDU14 14.93 201 Wind 4.82 Strap MST48x2 5.75 Wind 5.09 MST48x2 5.75 201a Wind 4.95 Strap MST48x2 5.75 Wind 4.95 MST48x2 5.75 , .[ 201b Wind 5.15 Strap MST48x2 5.75 Wind 4.88 MST48x2 5.75 202A Wind 6.21 Strap MST60x2 8.11 Wind 6.59 MST60x2 8.11 202B Wind 6.58 Strap MST60x2 8.11 Wind 5.91 MST60x2 8.11 _, 203 Wind 3.62 Strap MST60 4.06 Wind 3.56 MST60 4.06 204 Wind 3.64 Strap MST60 4.06 Wind 3.57 MST60 4.06 1 301 Wind 0.83 Strap MST37 1.79 Wind 0.93 MST37 1.79 302 Wind 0.80 Strap MST37 1.79 Wind 0.80 MST37 1.79 303 Wind 0.91 Strap MST37 1.79 Wind 0.80 MST37 1.79 304 Wind 2.60 Strap MST48 2.88 Wind 2:75 MST48 2.88 305 Wind 2.74 Strap MST48 2.88 Wind 2.16 MST48 2.88 • BY DATE: 6 _ acjto JOB NO : c e...... 1..4 ..,„o 0 OF PROJECT: al"' I- RE: — 1 Loa& 0 0 w - A-kick\ Loads: uk\ki-y2_, ki,-)100- u _I ( - Z kA)‘■Ot V \ \ :. ,-_x ja 1 ‘ ook_d- L 0 w O 2 t i j III c cx?ac , .k. O P $sways4.-1- ,. ‘-‘‘-‘00 vos Li 0 _.1 X U O Ld Loo '• _ .= _1'4-'31- -I- .9n- -I- a - Ge.5)- ■■0 h_, 0 z w 0 . = 3 ttact-tr-twati F: Z O aCtUa I < apaCi4 ;. 00 < U Z D 2 Cckcpa 0 ssu_)a, 1 xEs = 3ct Lc it-- 0 u_ z u, C] 6 0 = 1- D. = — o 6 • .-: . 0 , O — C's o .sLoi!tt,. /4 LY'3 G .. • .® 1 5W TN IS I J(iTtf A,whit-, -nit LA NC ,,,,, 0 tf%-t, 1 -- . •k 7 --- -.--7.--T---1==,.:1- : .. . , . .. psi . • t' \ ,IL_ 1 1 _ '; 0. ® I 0 c — 0 .-:-._ F , • -- a r 9 . ofN, . . . . z . ....... d G (cTs3) :., 10b SW 1ik\ LG NC -�TFt -r1 ANiwc�.� Z 0 J T 1 SW -- Rt LENC -,Trt c.ti IUJRS`1R•� Pc LON&I Mb LOVE" 0'� -- - - - - at a \ N I I 'T1, " ®c ❑ U c rc1 i U r 1 G x , 1 0 m 1 II F ?i _ I , I0b crl 6 J 1 Lc• ti C-i•nt lint IX to lttYt.O' Alm( -, - -t s Li i\ic 1 • c F O c • I 1 . SW THIS LeNC - 1.1 ALI C► 1}tIS Lima . ao5 -0-- __.._._.....__ --_ .�._.. _ E�Y......si@..t�. _ .. t :.. __.. ..�__ = -_ ..- �...__ �" �'�?4�;?`.'� {.1.,: "._,titi;.r.,,� a — - _ g 3 I L 8 ,yp.) 6 --- Wed ; , . . i g . . I 1 1 V , 0 -4 iii . i i l'.i;2 sT.m 77_.`" �._'"'._ z! x ° r ••;- -r 2 Irv- :Fr. '� .1) ao(„ SW VN∎ s Let : Ar.cy\J c.--N - R m. S LI N ks: • c E. Q ` S v 3 - n-t'efa � kw C-� — li iK l.0 N C� 7\05 UNC 1 306 �� � {; w € j am' o - - Ji ki _ ....7.71 -,,,>< vj p' r_________ Li -I 9 �, t is ...: (,\ 5 A ■ 0 `1 � G ' SA) 1 I S L . N C1 n+ PC u, N (.n. -n-it 5 Lw�-"° BY AN:\c„ DATE: aO\ JOB NO.: OF • PROJECT: RE: 1. 00\ m t fc r\s e ( a\ roan\- oP hovsc ❑ ❑ \ I �- V Lvne,B = �OnS'4- -} Wold. (corfro ►s) 6.5 4 _I • 0 0 W dt gphra gm lei d'fYl = a•U Pt O t ❑ Co = - 6a 0 1 pt..g 1 Li O cr Li . O w dot pat.' o unlot °cited di'a phya ern w =Oo 1I4 > = as 9■.* Woc.k. Eta f* fIckbrn U Z 6 112, Mt; 1 ;n ec pa 0 +t = (aSSpk-f) 1,4 = 35- - - - 0 I 2 2 O U f . ¢ O u. Z w ❑ Z . O O = I- a O • 6 N ~ 0. y <h 0, . 4 O rx -_ 4- L DATE: BY p JOB NO.: Nii, C PROJECT: Roof aV - 6 W. RE: Des, c, of fl PolOc..rnc @ 51 s w ❑ r OpTIow 1. • I*701 z o w - ',wow. • 2 T9.113 Wand: o ti r-4-4b-'---"wA .. la'- VI4' I ❑ S0 = °I 9 I'M To' 9 LP -;mss l8' -5`' 0 • - a lax 5101�O ��.K -“ _ x O w cs'-'" MP o z W o s 1 C-o.) W t kto Pressure f R - 3'16' U O e s CY\ P la., es c o po: Y\ S J '' ie.�•- }� 'r 104 4LAI 5 Ile z (L) \(\ tmv\C ;OC C ok t9 pLP D f U ❑ g‘= ltA°t°vt* . gz=' 4 c # 0=0" 2 l • Z ❑ a N1 rr�n x _ Da?: _ .1 ° l 4 3(15.35 "5 ' }2 # ct 0 5 T So M _ _ 5 � ? zh . x \7 , {` 5 S (3.552.5 ) = 6gtzfi /402' l- -35-1 S y. V _. tc. l # �.. VZ #I)NZ A e (1.s` .s ,7,$) - F (‘-\}')_(8so„,..(i.G/1.5' 3,3 12 Nita 6 o e iv.;,4: _ !so ?sL (0 = a 5 7 .opt.. O N(_--\ Iwo 0c)U 2 A L2,9 BY: xJ\ L DATE: V . a ._ 1 - ' t JOB NO.. C 3 (": l A /V} 1` � C N 0q 0 PROJECT: RE: OP T 10 i 2. ❑ ❑ 131j i1t up. (erne 2IQD - C LOOtt.. \pc OQ(\ PCo e 3 Tw09Z , w O 2 1 ❑ - 1 -, 610 t._ l df \ on tNT - 13 Li 0 Max loupe r Sk cq�r,‘f`5 l2.' cc O w O Z . .e-Sk i r, W 1 :(16 pres e = -ao.Q.` PS P Z Lou ol k ∎.) . \ tT Nolo c_V,... = 3,11p p1... . 0 k I- L 1- l.- 1 o Z T T m 0 o MM0.,x = (.V- a? _ 0, # V� E \, r fA. 0.• o -: V rcrna x = la S . -* ; w i 0 3 , 1 Ic- -s,c,t, = (1,SliS ....: :::.'6G lot / \ / .., `y! r .1 r , 1-. , ( = a . eb ,,,,, j1.5" A ►, a = a 4 .S , Nb 1--3.S''----\ A - 4 r. 5,1s ‘taa 0 ti - Q.. . .'Z %O- a " o a : _ d . , , I,s,6 = 0 ,tj l = 6.a5 t a4.S(0,5 - 1s) +- (...Zs ÷ a4 ,s Co, b ) r s,'3(4,+ o t R.(,17).+ 0 4- S. i C-) i° S,3 4 Z = '1- 4. rls , N3 .Yb _ . L = t # r (1.2 :1L'3S) =. l psC .,Td= v ,- 5 , - - 4- 0 b - v1�Cc,CnnC `L�'ti lsu�ii�T A s n + � •�T ' - L 'Ft; = (85o p 5Z-i 1 ,00,o/1.o t,o)(t. 1.o)(t ++ fi b ' =(a ac ,-.)0,� t,0)(k, (0.0,i1,Z�(t.o)(,,o> Ls, 4ol ,c 0y-- 4 — Lao • • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load Woodworks® Sizer 7.1 June 24, 2010 12:49:04 COMPANY 1 PROJECT RESULTS by GROUP - NOS 2005 SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF = = Mnf Truose. --- _____ = = Not designed by request =_________- (2) 200 Lumber n -ply D.Fir -L No.2 1- 2.8 By Others Not designed by request . (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 (3) 2.6 Lumber n -ply Hem -Fir No.2 3- 2x6 Typ Wall Lumber Stud Hem -Fir Stud 2x6 016.0 • SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR =.. - � v 0 = === =i== L== = = =- � =- =II= Mnf Jot Not designed by request Sloped Joist Lumber -soft D.Fir-L Nc.2 2x6 016.0 (2) 2.8 (1) Lumber n -ply D.Fir -L No.2 1- 2.8 (21 2.8 Lumber n -ply D.Fir-L No.2 2- 2x8 By Others Not designed by request By Other. 2 Not designed by request (2) 2.12 Lumber n -ply D.Fir -L No.2 2- 2.12 5.125.10.5 Glulam - Unbalan. West Species 24F -V4 DF 5.125x10.5 4 %6 Lumber -soft D.Fir-L No.2 • 4.6 • (2) 2.6 Lumber n -ply Nem -Fir No.2 2- 2x6 4.6 Lumber Post Hem -Fir No.2 4x6 (3) 2.6 Lumber n -ply Hem -Fir Nc.2 3- 2.6 (2) 2.4 Lumber n -ply Hem -Fir No.2 2- 2.4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 016.0 • . SUGGESTED SECTIONS by . GROUP for LEVEL 2 - FLOOR = = Mnf Tru0303 � == = =____= Not designed by request - ____= = = = =T == =_ MnE Jot Not designed by request Deck Jot Lumber - soft D.Fir - L No.2 2.8 016.0 (2) 2.8 Lumber n -ply D.Fir -L No.2 2- 2.8 • 3.125.9 Glulam - Unbalan. West Species 24F -V4 DF 3.125.9 4.8 Lumber -.oft D.Fir-L No.2 4.8 By Others Not designed by request • By Others 2 Not designed by request (2) 2.10 Lumber n -ply D.Fir -L No.2 1- 2.10 5.125%12 GL Glulam - Unbalan. West Species 24F -V4 DF 5.125x12 By Others 3 Not designed by request 3.125x14 LSL L5L 1.55E 2325Fb 3.5.14 (2) 2.6 Lumber n -ply Hem -Fir No.2 2- 2x6 4x4 Lumber Poat Hem -Fir No.2 4x4 4x6 Lumber Post Hem -Fir No.2 4.6 . (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2.6 6x6 Timber -soft Hem -Fir No.2 6x6 (2) 2x4 Lumber n -ply Hem -Fir No.2 2- 204 6.6 nol Timber -soft D.Fir -L Noll 6.6 (3) 2x4 Lumber n -ply Hem -Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 016.0 SUGGESTED SECTIONS by GROUP for LEVEL 1 - FLOOR Fnd Not designed by request CRITICAL MEMBERS and DESIGN CRITERIA Group Member Criterion Analysis /Design Values ' = = Mnf Jst == ===== = = = Mnf Jot == Not designed by request Deck Jst j65 Bending 0.41 Sloped Joist j30 Bending 0.10 Floor Jot4 unknown Unknown 0.00 (2) 2.8 (1) b35 Bending 0.47 (2) 2.8 b8 Bending 0.89 3.125.9 b3 Bending 0.06 4.8 b30 Bending 0.12 By Others By Others Not designed by request By Others 2 By Others Not designed by request (2) 2.12 b6 Bending 0.93 (2) 2.10 bl Shear 0.78 5.125012 GL b10 Bending 0.76 By Others 3 By Others Not designed by request 5.125.10.5 b9 Deflection 0.95 4X6 b20 Bending 0.08 3.125.14 LSL b14 Deflection 0.73 (2) 2x6 c2 Axial 0.91 4x4 c55 Axial 0.07 4x6 c23 Axial 0.80 (3) 2.6 c29 Axial 0.75 • 6.6 c26 Axial 0.70 (2) 2x4 c39 Axial 0.62 6x6 nol c12 Axial 0.86 (3) 2x4 c31 Axial 0.89 Typ Wall w14 Axial 0.48 Fnd Fnd Not designed by request • DESIGN NOTES: • = =____ 1. Please verify that the default deflection limits are appropriate for your application. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result is considered the final design and appears in the Materials List. 3. ROOF LIVE LOAD: treated as a snow load with corresponding duration factor. Add an empty roof level to bypass this interpretation. 4. BEARING: the designer is responsible for ensuring that adequate bearing is provided. 5. GLULAM: bxd = actual breadth x actual depth. • 6. Glulam Beams shall be laterally supported according to the provisions of NOS Clause 3.3.3. • 7. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 8. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that ' each ply is equally top - loaded. Where beams are side- loaded, • special fastening details may be required. ' 9. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member • design contact your local SCL manufacturer. 10. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of ND5 Clause 15.3. WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:41:17 Concept Mode: Beam View Floor 2 : 8 'tr^ (1/4) T U�� 631 V 1 1050 iU4 0 : - . : . lUL� - _ .. - 40 101 V .. .. 44 -b :. 42 -0 y J 41 -b yb : _ 4U b ; ' 3 b V.5- _:[ Jb _ yi 3b b .. ... .. _ 34 _ VU b2 ' 33 -b 00 JL b t5J _ 00 ; .. : - : - _ 3 tS � � - '-- JV Ly'-b 25.5 - L / - b . Gtl +b 01 L5 au =610 G4 b L3' b . b 33 ,r _ LI b 1- LU " -b to : ' � iJ b - ---- - __:.... ... ;. 115-6 J L .--- .: 632 . .. ....... . - - =- • - - - -- -- -- - --.,. -- - -- - - -- .- ... - ... .. - i b b �..... .__1_ . _:. .. _ -._ : .. _ b19�15>;� . 14 -b' 13-6 ,00 . . . : r .. - - bb ... 04 3 _� .- - _ ... _ - -- -- -- - - ., --- -- -b i" 02, . 7' b4 614 : • ■ - - -- - - -- - - -' - ___ ----- bi - .. 3- bu' b30�' :' b3 - ; -f 4 b '-. b2 - ` _ /F: : ■ J b L b t -b BBIB.B8CCCCC000(CCCCC CCCCCCCCCC' CCCDDDDDDDDFDDD0DDDDDDDDDCDiDDDE EE E E EbEtEEEIEE1EE+EEEEEBEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'678'9111 1:1:1 11 (1 '1 11 12(.2 222 (3(33;3 :3(3!3(3 "313i414 44:4■4',414'414 555515(5T5(5(6666166 " 1..-- GII-N Woodworks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:41:19 Concept Mode: Column View Floor 2: 8' VUN r LOPD 105 c58 c14 N 49 ' -6 " 14J4 [ ; [ ... 425 - lUib 40 -43 IVU -. - - -- -- 44-0 V9 - • V0 • c69 c2 : 'c70 ; c71: -- - ; 42 a VO yb 3y' -0 VG - c3 .. - _ ----- ..50 -0 VI : O .50 -0 by .. 33 -b 00 - : -- - - :7- - : -- .: -- — -- - - - -- - - - - - -- -- --- - SL -b 255 ' O : : 1 V -b 04 ... .. . .. - .. .. -,- - - _. - -'- -- -- - .. 221 -a 63 L/ - .. - __. . -_. ... -- -- -- - -- — - '- -- -- - -- ._ '-' - - Lb -b 6t) c25 c12 _ . c26 24 -n --- -------------- -- -- - -- - - -- - - - ------ - - - - . c3 -- - - - t b' -b.. !l Q c78 '- .: - -'. '- - - : .. _ - -- -b - - -- - lo' /U : 14 ---- - - : .. ;. _ -b bt1- c77 : iL -n' II -13 bn- -- .. -- - -- --' -- -- -- IU. -b.. bb V -a 04 , C31 - c76 -=- - -- C79 2143 a3 �°y��� /. n .. 02, - "`C:34 �iC3O ®c32 b._b.. -n c55 b.. 1 b .,., u -a • BB\B.B BC CC C CCC CICCC CC CCCCC CCC CC\CC CD.DDD D DD DFDDD CD DD DD D DDDCD ?DD DE.E Et 'E:EEEEEEEIEEE EEEEEEtEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0' 1' 2' 3' 4' 5' 6' 7' 8' 91t1' 1: 1: 1 1' 1t1T 1i1t2( 22: 2: 2 22E 2 22f3t 33: 3: 3 3' 3E3' 31 3W444A: 4 4t4 4t 45t55 :5 :6 E6'.7(77.7,7 -6' 4 - Ce)`.3 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 24, 2010 13:14:33 Concept Mode: Beam View Floor 2: 8' "(41X� 1 ��/�-` b3 '� l� F- ��J �'i L� 1050.. _ .■ .... - 49' -6„ . .. : . 1U3 ,_ 4 /•'b i ULt7. 40 . -0 .. 1U1 / 4b'-25 TUUb- : - ._ - - 44 " _ -b.. y9 : 4 yt3 : _.. : b34.:... _ - 4'' B -- - 4 4U -15 y5 .. • 3y . -b V4 ; - - - - .. - - L - - 3t5-b y3 . : :: • : : 3J.40 y1 30 -b' yu - : : :: : : . - . 34 - O tsy b2 33 -b 00 -: -:-.. _.- -- .5Z -0 01 3U -b 250 ; 4V'-b' Lb b Lb -0 tsu b10 : : L4 b r / b33 L.i. - it, . Lu-b rb : ,,-,, f4 - - --- ■ _ ._ -... its -b' rL . - -... _�. b32 - _ -- -= i - .. _ . ! i io_b q>i � 13 b bt5b1015 _ _. IL -b b! 1U -b bb b0 - V -tr ba r b.. oz b4 1 ' : • b14 ■. ..� . . • — ..---- - eu; - - - b30 b35 . _. _ 4 40 b29 : _ 3' b L . b .. I b BB\B.B BCCCCCCCCECCCCCCCCCCCCCCC ICCCDDDDDDDDIDDDCDDD ODDODDCD+DDDE,E EE EE EIEEEIEEiEEEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22'24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46'48' 50' 52' 54' 56' 58' 60' 62'64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'678'91(1 '1:1 :1 i1 2( 2' 2: 2: 2 22E222.3(33 :3 :3 :4.4!4(4'4:4 (5(5'5:5 :55:5(5 5(516(6 E:6 :6 :6(6'6(647(77,7 :7 • 4 — C..e.)Li WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 24, 2010 13:14:35 Concept Mode: Column View Floor 2: 8 ' c58 c14 Q Ptc I i�f� • t + �. �JVJ7 1050...... .. 4 1 U4 425 -b : - .. • 1Ul - • .. :_. _ _ - - - - -- --- - --- --- - -- IVU : -- - • .. 45 b 44 _ 43 -b • y - c82 c81 : - 4z 41.-b 4U b . yb--- - ' :: . : :: . .. . . . - -- - --- • Sy b 325 -a 31 -b' yl 3b a JU ❑ ... 3b' b 34 -b 25y ' - 33-b 3L b 250 C4 • 3U b 255 ; • . . - L t54. : _ • • _.: 03 : . • .. . Lb 21 • :. .: Zr -b Lb b 01 -b fy c25 c12 ;. c26:= ` �s n (25 _ D D . : - 0 c72 :: - - / / - . c2 1.n. ! b , ❑:c73 zu -a I ` tl _ _ - /3 - .:•• - _ - 125" b i f' -O ,i :-c78❑ -- -: (U 14 -b bb _ ... _C77 ' • i3 a IL-b rot 00 _ • = -- - - _.c.. - -- -- - - -- -- b5 y • b4} C31 c76' c71 25 b at, c30 0c32: a . a .. 5 0U5- - - 0 : . ❑ . , Cb /'C /U H• : Cb'S . . ' . • .. , • : : _ 4 • 56� ° 2n c55 c D .. -. . a ._ : _ .. . ( - v-b • BB1B.8•CCCC000CI6CC CC CCCCCCCCCCiCCCDDDOOODDtODDDDDDDDDDDDCD !DDDEEEE E EE:EtEEEIEE!EEiEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 - 1:1:1 , 1 .'1(1 "1( 142(2 22:2 4;4:4.4',4(4'4145(5 5:5:5 E:6:6 777 -6" • • 4 ...._ 6,,s• WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load Woodworks® Sizer 7.1 June 24, 2010 12:58:44 ' Concept Mode: Beam View Floor 3: 17' 1050 : -: , . : . .. .. 49' -6 1 U4 I : : : - 40 - 0 1 USA _ - 4/ -b IUL( .. - - 40 -0 i VU . O.. ya : b35 b6 4�"� yb - 40 b.. VI " . : , : : . . ' : SO -0 10 ..34 -0 0 b7 SS b' • - - SU'-b 00 Ly - b 01 - L0 -0 00 b9: L4 - .3 1b _. .. . LU-b (b 1 -O (4 1 tS b" (S _ 11 -b (L- - ----------- - - - -- - - - - -- - - - -- -- - - -- - - - - - - - - - - -- - - - - --- - ---- - - -- - --------- - --- -- -- - -- - - - - - --- - - - ------- - --- -- 1 0-0 11 (U 14 b - - - -- --- - 00 . _ . iL.-b -- - - I 1 -b bv0 -0 04 b8; b b.. UI - 0-b . L . -b .. BBIB.B BCCCCCCCCICCCCCCCCCCCCCCC1CCCDDDDDDDDtDDDCD DD DDDDDDCD'DDDEE E E E EEE}EEEEE!EEEEEEEE(EEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 '1:1:1 (1 T1 E 1 '.22 22 :222(2 22(3(3'3;3 :333(3 - 3!3!4(4'4 A :4.4',4(4'4(4;5(5 "5:5 :5 515!6(6 8;6 :6 , 6.'6(6 :6t6m7'7,7,7 -6" * //4/ — 61 (#12 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:42 Concept Mode: Column View Floor 3: 17' 1050 49' -6" 1 V4 - .. .. 40--0.. IU3 : _ _ 4/ -b • 102 40 -0 iUU - .. _ - - - - - --- - -- - -- -- 44 . _ 0 - . J9 : c16 - _ .. . 4.5-0 - as - : c62 c61 " .c15 ,. .. J4 .: ;- - -. ... _ .. _ - 30 - yL - c17:- r - - - - . - - - 30' -0 : ` : ; .. • `JU .. _ -- - 34 0 • • 60 . . ---- c181 : : : . -. --- ---- .. .51./-ti 04 - ... - - - 26•-•0 - ' 03 L / ..._: .. -- . . . - .. - --- L0-0 0U-. -. .� c39 c24 - .. -: • - -- : - • -c23 - - • -:- - - - -; - - - - - • - - - --- - - • -- - -- -- - • - - - 24 -0 • Ft3 _■ {7 : -- - '- --- - — _ -- - - _ LLB •• /1 c37 L • - • -- 10-0.. �. - -- ..-- -- • --- - ---- ... i4 -b. 0J : .: : - : . . .. 13'-0 06 : c35. :_- . . - - • -- - -. -: - -- .. _. - 1L-b' 1 r -tr • b4j . ... . . . . . ..... .. . . . - 67 c66 - c63 11 c75520 c1 •c6c74 b -b bU� - - - - 3 -0 b.. • • 3 - I 0 • . . . V-0 BBIB, BBCCCCCCCCICCCCCCCCCCCCCCCICCCDDDDDDDDIDDD D DDD DDD: DDDCD! DDDEE.EE 'EEE'EFEEEIEEIEE €tE EEEEE EEEZ V 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70:72' 74' 76' 0'1'2'3'4'5'6'7'8' 9111' 1; 1: 1 1! 1t1; 11 12( 22; 2; 2 2! 2( 2' 21 2( 3( 33' 3: 3 3'. 3E3 3t3E4t4• 4: 4: 44: 4! 44( 4! 5( 55 :5:5.5!5(5 170 -6" • • / t ) --- ---- (1_,`"iTir WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:38 Concept Mode: Beam View Roof: 25' 1056 _ ... ._ . . _ . - -- . 49,6„ 1 U4 421 b 4US _ ' -- 4 /-b' : I0 I 1 4b b' tVUt7 _. - - - - - - -"-- 44.0.. yo u - : b23 : .. ..--b24 --- -- -= .: _ 14Z V4 : :- . .: .: - : - _. - -. - 30 -0 V3- St -0 V 30 -0" ;, g - ' " ; - 34 -0 tSy 33. -0 00 _..__. _; :-:. 3L _ 0f S1 -10 00 : ". , ; : Ly "- -'_ -- - --- . -- - _ - - -- _ " -- Lo 2SS L! - b .. : : ;; : . : 0 L0-0 tSU-. _ .: ..J. - - : - - :' - r - -•_- -- : - - -- - : -- - -- - - --- -- - 24-0 - 22-0 ' i . 1/0-0 b22 5 . 2 0 n :. ; ; , 11 10-0 (U .. --- -- 14-0 0y 13'-0 025 -- " - - • - '" - -_: .:_. ' - -- -. 12-0 01 1 04 : b27 : •-• . _ • . • - - - ' 25 -b 3 b28 ._.. . . L' -0' V -0 BB\B.B BCCCC C CC CICCC CC CCCC C C CC CC1CC CD DD D D DD DIDDR CD DD DD D D DD CDIDD DE.E E E EEEEEEEIEEE EEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 68' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'9,1(1 "1:1 :1 11102 222 2(2 :3 4A :4.4!414 :41415{5 5:5:5 /47 ..-- ( l i e :) • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:40 Concept Mode: Column View Roof: 25' 105 ... . -- - -- - _ - - -- - - : - ... -- -- - - -- - - 104 4t5 ' -O • 1 US. 41 -0 IUL� 1U 1 - - - • 40-0 ... :. __._. _ 40 9 ' 43' V0 C42 C43.: .... C44::C45 : : : : • - _ _ - -- - --- 4L'-0 V0 4U -0 VD 3`.3" b' VZ .. - - i . - r - • .- - -- 30-0 210: - - = -- --'.- -- - - -- -. -- - - - -: - : - - -= - -- - _- - -- : - - - --- -- - -- -- ...- ---- , :- 3U -0 • - - --'- -- -- --- - LtS-0 .. - LI - - -.. 0. f y - . ' . . . - . L3'-0 C46 JO IV -0 . . :._ - - - 10 b 10 ' 14. -0. 0y - - .. .- - - - --- 13.-0.. btS • _.. -- -- _.__:..- • ....1 - :.- -- - - - --- - -- - IL -b 04 - - - -- c51c50_ C52 - - - - -- - 053:- :_ . . - u 0U 3 I b • B B1BB BC CC C C CC CFCCC CC CCCCC CCC CC \CCCDDDD D DD D}CDD CD DDDD D D DD CD'DD DEE E E EIEEEFEEEIEE E E+EEEEEEtEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38'4g 42' 44' 46' 48' 50' 52' 54' 56' 58'60' 62' 64' 66' 68'70' 72' 74' 76' 0'1'2'3'4'5'678'21(1 1:1:1 :11142(22;2:2 212(3(33 :3:3 - 313 :4.4!4(4 "4/415(5 5 ;53 ;5(5'5151616 $:6 :6 :616(7(7 :77 -6" 14 — (...1.C1 COMPANY PROJECT i WoodWorks® SOFFIYARE FOR WOOD DESIGN June 24, 2010 12:42 b1 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 w61 Dead Partial UD 613.2 613.2 2.50 3.00 plf 2 Snow Partial UD 795.0 795.0 2.50 3.00 plf • 31c61 Dead Point 622 2.50 lbs 4 c61 Snow Point 1192 2.50 lbs 5_j28 Dead Full UDL 47.7 plf 6_j28 Live Full UDL 160.0 plf 7_j33 Dead Full UDL 120.2 plf 8 133 Live Full UDL 370.0 plf MAXIMUM RE Lg.' Io' 34 Dead 391 1061 Live 795 1615 Total 1186 2676 Bearing: Load Comb #2 #3 Length 0.63, 1.43 • Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2 -Plys Self - weight of 6.59 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv* = 67 Fv' = 207 fv * /Fv' = 0.32 Bending( +) fb = 331 Fb' = 1138 fb /Fb' = 0.29 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.15 = L/240 _ 0.05 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 2676, V design* = 1237 lbs Bending( +): LC #3 = D +.75(L +S), M = 1178 lbs -ft Deflection: LC #3 = D+.75(L+S) EI= 158e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 4 - Li 0 COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:43 b3 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j45 Dead Full UDL 17.0 plf 2 j45 Live Full UDL 25.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : I0 91 Dead 106 106 Live 112 112 Total 218 218 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Glulam - Unbal., West Species, 24F -V4 DF, 3- 1/8x9" Self- weight of 6.48 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 10 Fv' = 265 fv /Fv' = 0.04 Bending( +) fb = 140 Fb' = 2400 fb /Fb' = 0.06 Live Defl'n 0.01 = <L/999 0.30 = L/360 0.04 Total Defl'n 0.03 = <L/999 0.45 = L/240 0.06 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 218, V design = 182 lbs Bending( +): LC #2 = D +L, M = 491 lbs -ft Deflection: LC #2 = D +L EI= 342e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). it4 COMPANY PROJECT i WoodWorks® SOFEWARE FOR WOOD DESIGN June 24, 2010 12:40 b6 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c44 Dead Point 444 2.00 lbs 2 c44 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4_w44 Snow • Partial UD 431.2 431.2 0.00 2.00 plf 5 c45 Dead Point 444 5.00 lbs 6 Snow Point 647 5.00 lbs 7 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9_j25 Dead Full UDL 120.2 plf 10 j25 Live Full UDL 370.0 _ plf MAXIMUM REACTIONS (Ibsl and BEARING LENGTHS (inl : E b 1 0' 61 Dead 1436 1389 Live 1803 1803 Total 3239 3192 Bearing: Load Comb #3 • #3 Length 1.73 1.70 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys • Self- weight of 8.02 plf included in loads; Lateral support top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Ervin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. COMPANY PROJECT di WoodWorks® SOFIWAREFOR W000 DESIGN June 24, 2010 12:50 b8 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1_j14 Dead Full UDL 113.7 plf 2 j14 Live Full UDL 350.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : Ip' 64 Dead 357 357 Live 1050 1050 Total 1407 1407 Bearing: Load Comb #2 #2 Length 0.75 0.75 Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 77 Fv' = 180 fv /Fv' = 0.43 Bending( +) fb = 963 Fb' = 1080 fb /Fb' = 0.89 Live Defl'n 0.07 = <L/999 0.20 = L/360 0.33 Total Defl'n 0.10 = L/712 0.30 = L/240 0.34 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 1407, V design = 1123 Ibs Bending( +): LC #2 = D +L, M = 2110 lbs -ft Deflection: LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. COMPANY PROJECT 1 Wood SOFTWARE FOR WOOD DESIGN June 24, 2010 12:40 b9 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) • Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 j50 Dead Partial UD 113.7 113.7 0.00 1.50 plf 2 j50 Live Partial UD 350.0 350.0 0.00 1.50 plf 3_j14 Dead Partial UD 113.7 113.7 3.00 9.00 plf 4j14 Live Partial UD 350.0 350.0 3.00 9.00 plf 5 j51 Dead Partial UD 113.7 113.7 1.50 3.00 plf 6_j51 Live Partial UD 350.0 350.0 1.50 3.00 plf 7_j24 Dead Partial UD 120.2 120.2 0.00 3.00 plf 8_j24 Live Partial UD 370.0 370.0 0.00 3.00 plf 9 j25 Dead Partial UD 120.2 120.2 3.00 9.00 plf 10_j25 Live Partial UD 370.0 370.0 3.00 9.00 plf 11_j26 Dead Partial UD 120.2 120.2 9.00 12.00 plf 12 j26 Live Partial UD 370.0 370.0 9.00 12.00 plf 13 Dead Partial UD 113.7 113.7 9.00 10.50 plf 14 j52 Live Partial UD 350.0 350.0 9.00 10.50 plf 15_j53 Dead Partial UD 113.7 113.7 10.50 12.00 plf 16 j53 _Live Partial UD 350.0 350.0 10.50 12.00 plf • MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : I O' 12 1 Dead 1478 1478 Live 4320 4320 Total 5798 • 5798 Bearing: Load Comb #2 #2 Length 1.74 1.74 • Glulam- Unbal., West Species, 24F -V4 DF, 5- 118x10 -1/2" Self- weight of 12.39 plf included in loads; Lateral support top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 138 Fv' = 265 fv /Fv' = 0.52 Bending( +) fb = 2217 Fb' = 2400 fb /Fb' = 0.92 Live Defl'n 0.38 = L /381 0.40 = L/360 0.94 Total Defl'n 0.57 = L/252 0.60 = L/240 0.95 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 5798, V design = 4953 lbs Bending( +): LC #2 = D +L, M = 17395 lbs -ft Deflection: LC #2 = D +L EI= 890e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4- C{1 COMPANY PROJECT i WoodWorks SOFTWARE FOR WOOD 0f ICN June 24, 2010 12:43 b10 Design Check Calculation Sheet Sim-7.1 LOADS (Ibs, psf, or p,f ) Load Type Distribution Magnitude Location (ft] Pat - Start End Start End tern 1 w39 Dead Partial UD 311.0 311.0 0.00 4.50 No 2 w 39 Live Partial UD 680.0 680.0 0.00 4.50 No 3_ c39 Dead Point 267 2.00 No 4 Live Point 822 2.00 No 5 j32 Dead Partial UD 120.2 120.2 0.00 0.50 No 6 Live Partial UD 370.0 370.0 0.00 0.50 No 7 j33 Dead Partial UD 120.2 120.2 1.00 4.00 No 8 j33 Live Partial UD 370.0 370.0 1.00 4.00 No 9 Dead Partial UD 120.2 120.2 4.00 4.50 No 10 j34 Live Partial UD 370.0 370.0 4.00 4.50 No 11 j35 , Dead Partial UD 120.2 120.2 4.50 7.50 No 12 j35 Live Partial UD 370.0 370.0 4.50 7.50 No 13 Dead Partial UD 113.7 113.7 4.50 16.50 No 14 j36 Live Partial UD 350.0 350.0 4.50 16.50 No 15 j37 Dead Partial UD 100.7 100.7 3.00 4.50 No 16 j37 Live Partial UD 310.0 310.0 3.00 4.50 No 17 Dead Partial UD 120.2 120.2 7.50 13.50 No 18 j47 Live Partial UD 370.0 370.0 7.50 13.50 No 19 j48 Dead Partial UD 120.2 120.2 13.50 16.50 No 20 j48 Live Partial UD 370.0 370.0 13.50 16.50 No 21_j49 Dead Partial UD 120.2 120.2 0.50 1.00 No 22_j49 Live Partial UD 370.0 370.0 0.50 1.00 No 23 b32 Dead Point 300 3.00 No 24 Live Point 922 3.00 No • MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : W • ID' 4'-6" 16' -6') Dead 452 4067 1180 Live 847 11291 3436 Uplift 12 Total 1300 15358 4616 Bearing: Load Comb #2 #2 #2 Length 0.50• 4.29 1.27 Cb 1.00 _ 1.09 1.00 *Min. bearing length for beams is 1/2" for exterior supports Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x12" • Self- weight of 14.16 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 265 fv /Fv' = 0.60 Bending( +) fb = 1074 Fb' = 2400 fb /Fb' = 0.45 Bending( -) fb = 1396 Fb' = 1844 fb /Fb' = 0.76 Live Defl'n 0.13 = <L/999 0.40 = L/360 0.32 Total Defl'n 0.19 = L/740 0.60 = L/240 0.32 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LCD Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fb'- 1850 1.00 1.00 1.00 0.997 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 8357, V design = 6496 lbs Bending( +): LC #2 = D +L, M = 11006 lbs -ft Bending( -): LC #2 = D +L, M = 14310 lbs -ft Deflection: LC #2 = D +L EI= 1328e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. Grades with equal bending capacity in the top and bottom edges of the beam cross- section are recommended for continuous beams. 4. GLULAM: bxd = actual breadth x actual depth. 5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 6. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). C ll . 4 __ , t , ,1 , . COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:44 b13 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 Snow Partial UD 505.0 505.0 0.00 3.00 plf 31c40 Dead Point 217 5.50 lbs 4 c40 Live Point 668 5.50 lbs 5 c67 Dead Point 518 5.00 lbs 6_c67 Snow Point 778 5.00 lbs 7 c68 Dead Point 573 3.00 lbs 8 c68 Snow Point 942 3.00 lbs 9 w59 Dead Partial UD 593.7 593.7 5.00 8.00 plf l0 w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12_j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13_j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14_j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15_j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16_j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 18 Live Point 389 3.50 lbs 19 Dead Point 225 6.50 lbs 20 Live Point 693 6.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : �a..+rwe ., -^-*- _ -t` r`y__ "." "I p. �•�ir"e'`- w i `- _ -'1.- '° ""-.r;.c: 2 RE 10' 8 Dead 2561 3033 Live 2699 3789 Total 5261 6822 Bearing: Load Comb #3 #3 Length 1.88 2.44 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear. fv = 157 Fv• = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L /680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC #3 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (Ail LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. /4 ."-- 62 1 ("(e;, COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESICE. June 24, 2010 12:43 b14 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w33 Dead Partial UD 317.7 317.7 9.00 12.00 plf 2_w33 Live Partial UD 350.0 350.0 9.00 12.00 plf 3_c19 Dead Point 357 9.00 lbs 4_c19 Live Point 1050 9.00 lbs 5_c20 Dead Point 357 3.00 lbs 6_c20 Live Point 1050 3.00 lbs 7_w34 Dead Partial UD 317.7 317.7 0.00 3.00 plf 8_w34 Live Partial UD 350.0 350.0 0.00 3.00 plf 9 c64 Dead Point 165 10.50 lbs 10 c64 Snow Point 225 10.50 lbs 11 Dead Point 165 1.50 lbs 12 Snow Point 225 1.50 lbs 13_j36 Dead Full UDL 113.7 plf 14_j36 Live Full UDL 350.0 plf 15_j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 16 j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 17 Dead Partial UD 17.0 17.0 0.50 1.50 plf 18 j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 19 Dead Partial UD 17.0 17.0 1.50 10.50 plf 20_j45 Live Partial UD 25.0 25.0 1.50 10.50 plf 21 j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 22 _Live Partial UD 25.0 25.0 10.50 12.00 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : Wit' ...... -7 y am - .� �.�`.....*r-' _.. F. -,.,:� x4 - -. i a.. -".... :- - ., "° .. . - " + f-- lee. _.... w..-, s r ; ±s..: • .,� - ate. :--_ - ;'��. a ... c• ' . + 7r -:nom r.►"a` - ..-= ': s ir ..n4-."'�}r4•c . .. "- ..�a,r -•� a„T;.- - - = �+- Z,.. , -� '- -e .r."�..7 :=___ =.. "�"' L] 1 0' 121 . Dead 2351 2351 Live 4350 4350 Total 6701 6701 Bearing: Load Comb #2 #2 _Length 2.39 2.39 • LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 163 Fv' = 310 fv /Fv' = 0.52 Bending( +) .fb = 1769 Fb' = 2325 fb /Fb' = 0.76 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.43 = L/333 0.60 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 6701, V design = 5314 lbs Bending( +): LC #2 = D +L, M = 16851 lbs -ft Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. / 9 --- LI ''4"- COMPANY PROJECT I WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:41 b20 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 j30 Dead Full UDL 21.7 plf 2 j30 Live _ Full UDL 60.0 plf MAXIMUM REA(_TIANS IMO and RFARINn 1 F4461TI4 (inl • • a a 10' 3' -6'1 Dead 46 46 Live 105 105 Total 151 151 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x6" Self- weight of 4.57 pif included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 9 Fv' = 180 fv /Fv' = 0.05 Bending( +) fb = 90 Fb' = 1170 fb /Fb' = 0.08 Live Defl'n 0.00 = <L/999 0.12 = L/360 0.02 Total Defl'n 0.00 = <L/999 0.18 = L/240 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 151, V design = 111 Ibs Bending( +): LC #2 = D +L, M = 132 lbs -ft • Deflection: LC #2 = D +L EI= 78e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. /4- x.71 COMPANY PROJECT l WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:50 b30 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j41 Dead Partial UD 68.0 68.0 2.00 4.00 plf 2_j41 Live Partial UD 100.0 100.0 2.00 4.00 plf 3_j42 Dead Partial UD 72.2 72.2 0.00 2.00 plf 4 j42 Live Partial UD 106.2 106.2 0.00 2.00 plf MAXIMUM REACTIONS final and RFARIN(; I FNGTHS lint 1 4i Dead 154 150 Live 209 203 Total 364 353 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x8" Self- weight of 6.03 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 15 Fv' = 180 fv /Fv' = 0.08 Bending( +) fb = 140 Fb' = 1170 fb /Fb' = 0.12 Live Defl'n 0.00 = <L/999 0.13 = L/360 0.03 Total Defl'n 0.01 = <L/999 0.20 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 364, V design = 253 lbs Bending( +): LC #2 = D +L, M = 359 lbs -ft Deflection: LC #2 = D +L EI= 178e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:42 b31 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j65 Dead Partial UD 47.7 47.7 0.00 4.00 pif 2_j65 Live Partial UD 160.0 160.0 0.00 4.00 pif 3_j28 Dead Partial UD 47.7 47.7 4.50 7.50 pif 4_j28 Live Partial UD 160.0 160.0 4.50 7.50 pif 5_j62 Dead Partial UD 47.7 47.7 7.50 11.00 pif 6_j62 Live Partial UD 160.0 160.0 7.50 11.00 pif 7_j63 Dead Partial UD 47.7 47.7 11.00 17.00 pif 8j63 Live Partial UD 160.0 160.0 11.00 17.00 pif 9_j64 Dead Partial UD 47.7 47.7 17.00 20.00 pif 10_j64 Live Partial UD 160.0 160.0 17.00 20.00 pif 11_j66 Dead Partial UD 47.7 47.7 4.00 4.50 pif 12 j66 Live Partial UD 160.0 160.0 _ 4.00 4.50 pif MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : • 10. 20 Dead 619 619 Live 1600 1600 Total 2219 2219 Bearing: Load Comb #2 # Length 0.67 0.67 Giulam- Unbal., West Species, 24F -V4 DF, 5- 118x12" Self- weight of 14.16 pif included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 49 Fv' = 265 fv /Fv' = 0.18 Bending( +) fb = 1082 Fb' = 2400 fb /Fb' = 0.45 Live Defl'n 0.43 = L/553 0.67 = L/360 0.65 Total Defl'n 0.69 = L /350 1.00 = L/240 0.69 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 • Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 2219, V design = 1997 lbs Bending( +): LC #2 = D +L, M = 11095 lbs -ft Deflection: LC #2 = D +L EI= 1328e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Giulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Giulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4- C2 COMPAMY PROJECT f fl WoodWorks Ara 24. 2010 1315 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Sher 7.1 LOADS 1 C Pet ofMI) Load Type Distribution Magnitude Location Iftl Unit. Start End Start End • l_6662 Dead Partial UD 613.2 613.2 0.0D 2.00 plf 2_062 Snow Part1•1 UD 795.0 795.0 0.00 2.00 plf 3_429 Dead Partial UD 617.5 617.5 7.50 11.00 plf 4_629 Snow Partial UD 901.2 901.2 7.5D 11.00 plf 5 c15 Dead Point 1436 11.00 1b0 6_c15 Snow Point 2404 11.00 lb. 016 Dead Point 1389 17.00 lb. 9 Snow Point 2404 17.00 lbs 9 Dead Partial UD 617.5 611.5 17.00 19.00 plf 10 664 Snow Partial UD 901.2 801.2 17.00 18.00 plf 1l : _c61 Dead Point 622 1.00 lb 12 061 Snow Point 1192 7.00 lb, • 13 Dead point 622 4.00 1 6 6 14 Snow Point 1192 4.00 1b. 15x63 Dead Partial UD 613.2 613.2 2.00 4.00 plf 16_x63 Snow Partial UO 795.0 7 95.0 2.00 4.00 pal 17 Dead Partial UD 617.5 617.5 19.00 20.00 plf 10 Snow Partial U0 601.2 801.2 18.00 20.00 plf 19 Dead Partial UD 613.2 613.2 7.00 7.50 plf 20 Snow Partial UD 195.0 7 95.0 7.00 7.50 plf 21_064 Dead Partial UO 47.7 47.7 17.00 19.00 plf 22_164 Live Partial UD 160.0 160.0 17.00 18.00 plf 23_129 Dead Partial UO 47.7 41.7 4.50 7.50 plf 24_125 Liva Partial UD 160.0 160.0 4.50 7.50 plf . 25_162 Dyad Partial UD 47.1 47.7 7.50 11.00 Of 26_162 Live Partial UD 160.0 160.0 7.50 11.00 plf 27_146 Dead Partial UD 120.2 120.2 0.00 2.00 plf 25_149 Live Partial UD 370.0 310.0 0.00 2.00 plf 29_132 Dead Partial UD 120.2 120.2 3.50 4.00 plf 30_032 Live Partial UD 310.0 310.0 3.50 4.00 plf 31_133 Dead Partial UD 120.2 120.2 4.50 7.50 plf 32_133 Live Partial UD 310.0 310.0 4.50 7.50 plf ]3 ]Si Dead Partial UD 120.2 120.2 7.50 8.00 plf . 31 Jai Live Partial UD 310.0 3 7.50 2.00 plf 35_135 Dead Partial UD 120.2 120.2 8.00 11.00 plf 16_335 Li,: Partial UD 310.0 370.0 8.00 11.00 plf 37_147 Dead Partial 110 120.2 120.2 11.00 17.00 plf 39_147 Live Partial U0 3,0.0 370.0 11.00 17.00 plf 19_367 Dead Partial 00 120.2 120.2 2.00 3.50 plf 40 )67 Live Partial VD 3 370.0 2.00 3.50 plf 41_149 Dead Partial UD 1.0.2 120.2 4.00 4.50 plf 42_149 Live Partial UD 370.0 370.0 4.00 4.50 plf 4 163 Daad Partial UD 47.7 47.7 11.00 17.00 plf 44_163 Live Partial U0 160.0 160.0 11.00 17.00 plf 45_365 Dead partial U0 47.7 47.7 18.00 20.00 plf 46_165 Live Partial UD 160.0 160.0 19.00 20.00 plf 47_166 Dead Partial UD 47.7 17.7 4.00 4.50 Of 9_166 Live Partial UD 160.0 160.0 4.00 4.50 pal 49_369 Dead Partial UD 120.2 120.2 17.00 18.00 plf 50 )69 Live Partial UD 370.0 370.0 17.00 17.00 plf 51 169 Dyad Partial UD 120.2 120.2 16.00 20.00 plf 5 Live Partial UD 370.0 370.0 19.00 20.00 plf 53 172 Dead Partial U0 47.7 17.7 2.00 4.00 elf • 54_372 Liva Partial UD 160.0 160.0 2.00 4.00 plf 55 )73 Dead Partial UD 47.7 47.7 0.00 2.00 plf 56 173 Live _ Partial 60 160.0 160.0 0.00 2.00 oaf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : Dead tag; 5 Live 3 7305 005, 7 Total 1)]61 17305 Load Comb 23 19 Lan', 5.21 5.19 Glulam -Bal., West Species, 24F -V8 DF, 5- 1/8x22 -1/2" SNI- welpll a 28.55 pll Fc.ged In ae5a: Iabrel support tope 58. Macaw .1 mopeds: Analysis vs. Allowable Stress (psi) and Deflection (in) mime NOS 2005: Criterion nelveia Value eaten Value Analv.1, /0..1,: • Shear fv - 192 - 305 fv /FV' - - anding1,1 fb - 2392 Fla' ■ 2604 fb /Fb' - 0.92 Live Daf1' 0.40 ■ L /595 0.6 - L /360 0.60 Total Oefl', 0.94 - L/295 1.00 - L/240 0.94 ADDITIONAL DATA: FACTORS: F/E CD 07 Ct CL CV Cfu Cr Cfrt Note. 0 , LC4 Fv• 265 1.15 1.00 1.00 1.00 1.00 1 00 3 F 2400 1.15 1.00 1.00 1.000 0.044 3 00 1.00 1.00 1.00 3 Flo, 4 650 1.00 1.00 - E 1.9 million 1.00 1.00 - - - - 1.00 - 3 Ervin' 0.95 million 1.00 1.00 - - - - 1.00 - 3 Shear : LC 43 - 00 7 5(L -S). V ■ 17361, 'J dealg0 - 13962 loo ndi:01 LC 43 ■ D4.751U51. N ■ 06179 Iba -ft Deflection: LC 13 ■ D0.751L451 EP. 97564106 10 -102 Total Deflection - 2.501Dead Load Deflection, • Live Load Deflection. (D■dead L-11ve S -6ncw W.vt0d 1■irp.ct ■conatruction CLd- 070760tratadl (All LC'a a v ,lewd in the Analyala output, • Load combinations: I0C -I00 DESIGN NOTES: 1. Pease verity that the default Mlkctbn emits are teammate for your apperatbn. 2. Ghdam deslprl values are Re rlmta6fa0 corderming to AITC 117-2001 end manuladual In accordance with ANSOAITC A190.1 -1992 3. GLULAM. bade equal breadth a actual depth. . 4. Glulam Beams RIM be Latently suppedad eccarding to Oa p60NSion. of 005 Clause 3.3 3. 5. GLULAM: b8mbp length based en smaller of Fcp(teabn), Fcp(cornpn). 4. ..... 67.--lt COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN • June 24, 2010 12:49 b35 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1_j21 Dead Partial UD 120.2 120.2 0.50 1.50 plf 2_j21 Live Partial UD 370.0 370.0 0.50 1.50 plf 3_j59 Dead Partial UD 120.2 120.2 0.00 0.50 plf 4_j59 Live Partial UD 370.0 370.0 0.00 0.50 plf 5_j60 Dead Partial UD 120.2 120.2 1.50 3.00 plf 6 j60 Live Partial UD 370.0 370.0 1.50 3.00 _ plf MAXIMUM R - - - - • • 1 0' 31 Dead 188 188 Live 555 555 Total 743 743 Bearing: Load Comb #2 #2 Length 0.50* 0.50* `Min. bearing length for beams is 1/2" for exterior supports Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 31 Fv' = 180 fv /Fv' = 0.17 Bending( +) fb = 254 Fb' = 1080 fb /Fb' = 0.24 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 743, V design = 444 lbs Bending( +): LC #2 = D +L, M = 557 lbs -ft Deflection:,LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 4 -(f COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:51 c2 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_bl Dead Axial 1056 (Eccentricity = 0.00 in) 2 Rf.Live Axial 2153 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): • 1 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 2 -Plys Self- weight of 3.41 pif included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 0.00= 0.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 196 Fc' = 980 fc /Fc' = 0.20 Axial Bearing fc = 196 Fc* = 1644 fc /Fc* = 0.12 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.596 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 3236 lbs Kf = 1.00 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT 1= W oodWorks ® SORWARF FOR WOOD DESIGN June 24, 2010 12:54 c12 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c24 Dead Axial 1478 (Eccentricity = 0.00 in) 2 c24 Live Axial 4320 (Eccentricity = 0.00 in) 3_b10 Dead Axial 4067 (Eccentricity = 0.00 in) 4 Live Axial 11291 (Eccentricity = 0.00 in) • MAXIMUM REACTIONS (Ibs): "V‘ -. .,- 14 0' 8' Timber -soft, D.Fir -L, No.1, 6x6" Self- weight of 7.19 pif included in Toads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 701 Fc' = 820 fc /Fc' = 0.86 Axial Bearing fc = 701 Fc* = 1000 fc /Fc* = 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC #. Fc' 1000 1.00 1.00 1.00 0.820 1.000 - - 1.00 1.00 2 Fc* 1000 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 21214 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 4 -C2\c4 COMPANY PROJECT WoodWorks® SOFTWARE FOR W000 DESIGN June 24, 2010 12:53 c23 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b9 Dead Axial 1478 (Eccentricity = 0.00 in) 2 Live Axial 4320 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): D 1 0' 9' Lumber Post, Hem -Fir, No.2, 4x6" Self- weight of 3.98 plf included in Toads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NUS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 303 Fc' = 379 fc /Fc' = 0.80 Axial Bearing fc = 303 Fc* = 1430 fc /Fc* = 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.265 1.100 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 5834 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES 1. Please verify that the default deflection limits are appropriate for your application. (.,n(R<- COMPANY PROJECT WoodWorks® SOFTWARFFOR WOOD DESIGN June 24, 2010 12:54 c26 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start'. End 1 c23 Dead Axial 1478 (Eccentricity = 0.00 in) 2 Live Axial 4320 (Eccentricity = 0.00 in) 3_b10 Dead Axial 1180 (Eccentricity = 0.00 in) 4 Live Axial 3436 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): ► ,� ter: • „_ - --.�- �, .-�� • 0' 8' Timber -soft, Hem -Fir, No.2, 6x6" Self- weight of 6.25 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 346 Fc' = 492 fc /Fc'. = 0.70 Axial Bearing fc = 346 Fc* = 575 fc /Fc* = 0.60 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.00 1.00 1.00 0.856 1.000 - - 1.00 1.00 2 Fc* 575 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 • Axial : LC #2 = D +L, P = 10465 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 4 2 2.-- COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:52 c29 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1_b13 Dead Axial 3033 (Eccentricity = 0.00 in) 2 Rf.Live Axial 5052 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): • 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 3 -Plys Self- weight of 5.11 plf included in Toads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 328 Fc' = 439 fc /Fc' = 0.75 Axial Bearing fc = 328 Fc* = 1644 fc /Fc* = 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.267 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 8126 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. 4 ...._ COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR W000 OESiGN June 24, 2010 12:55 c31 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b13 Dead Axial 2561 (Eccentricity = 0.00 in) 2 Rf.Live Axial 3599 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 1 0' 8 ' Lumber n -ply, Hem -Fir, No.2, 2x4 ", 3 -Plys Self- weight of 3.25 pif included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 393 Fc' = 443 fc /Fc' = 0.89 Axial Bearing fc = 393 Fc* = 1719 fc /Fc* = 0.23 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.258 1.150 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 6186 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. p„.„ -0 COMPANY PROJECT di WoodWorks® SOFTWARE FOP WOOD DESSGN June 24, 2010 12:54 c39 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b21 Dead Axial 267 (Eccentricity = 0.00 in) 2 Live Axial 822 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 9' Lumber n -ply, Hem -Fir, No.2, 2x4 ", 2 -Plys Self- weight of 2.17 pif included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 106 Fc' = 171 fc /Fc' = 0.62 Axial Bearing fc = 106 Fc* = 1495 fc /Fc* = 0.07 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.114 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 1108 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT i WoodWorks® SCRIMPS FOR WOOD DESIGN June 24, 2010 12:52 c55 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_b30 Dead Axial 154 (Eccentricity = 0.00 in) 2 Live Axial 209 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 1 0' 8 ' Lumber Post, Hem -Fir, No.2, 4x4" Self- weight of 2.53 pif included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 31 Fc' = 470 fc /Fc' = 0.07 Axial Bearing fc = 31 Fc* = 1495 fc /Fc* = 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.315 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 384 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 0 BY A Ni( , DATE: 0 _ aO 10 JOB NO.: C E • ' ..... OF PROJECT: RE: 'Beams W I Lo krM,i Read-ions ❑ ❑ w 0 J Z L W \eain to - > t jc s 2�c33 4 303 O 2 ❑ +'3 -, t.uh.s asap aoa 0 J rt W l t 4- Wa S a0 ? awl 0 Z w 0 x z a \o ea Z .3 ti -5 wcAt1.5 ap 1 , a0 A ': ao%g 0 0 5 knce (Aky Ceadl GINS > seIsmic� read Z 2 Orr\V u�ircl_ �l t.� c alcciC, 1. 0 0 CI E ¢ O 4. Z w ❑ Z 0 O 2 i- Cl- a= a o a x / t 2 (') \ COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 13:07 b6 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1_c44 Dead Point 444 2.00 lbs 2 c44 Snow Point 647 2.00 lbs 3 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 _ c45 Dead Point 444 5.00 lbs 6_c45 Snow Point 647 5.00 lbs 7_w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9 j25 Dead Full UDL 120.2 plf 10 j25 Live Full UDL 370.0 plf WIND1 Wind Point 800 2.00 lbs WIND2 Wind Point -910 5.00 lbs 'MAXIMUM REACTIONS fibs) and BEARING LENGTHS lint • I c r 6i Dead 1436 1389 Live 2089 1803 Total 3525 3192 Bearing: Load Comb #4 #3 Length 1.88 1.70 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in loads; Lateral support top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.15 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 4 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 4 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #4 = D +.75(L +S +W) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 632.__ COMPANY PROJECT 1 WoodWorks® SOFtWARE FOR WOOD DESIGN June 24, 2010 13:07 b6 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 c44 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4_w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5_c45 Dead Point 444 5.00 lbs 6_c45 Snow Point 647 5.00 lbs 7 w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 Snow Partial UD 431.2 431.2 5.00 6.00 plf 91j25 Dead Full UDL 120.2 plf 10_j25 Live Full UDL 370.0 plf WIND1 Wind Point -800 2.00 lbs WIND2 Wind Point 910 5.00 lbs MAXIMUM REACTIONS Ilbsl and BEARING LENGTHS lint • 0' 61 Dead 1436 1389 Live 1803 2172 Total 3239 • 3561 Bearing: Load Comb #3 #4 Length 1.73 1.90 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 pif included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 0433 COMPANY PROJECT 1 WoodWorks SOFTWARE FOR WOOD DESIGN June 24, 2010 13:09 b14 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or ptf) : Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2 Live Partial UD 350.0 350.0 9.00 10.50 plf 3 Dead Point 357 9.00 lbs 4 Live Point 1050 9.00 lbs 5 Dead Point 357 3.00 lbs 6 c20 Live Point 1050 3.00 lbs 7 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8 w66 Live Partial UD 350.0 350.0 0.00 1.50 plf 9 c64 Dead Point 165 10.50 lbs 10_c64 Snow Point 225 10.50 lbs 11 c65 Dead Point 165 1.50 lbs 12 Snow Point 225 1.50 lbs 13 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14 Live Partial UD 350.0 350.0 1.50 3.00 plf 15 Dead Partial UD 317.7 317.7 10.50 12.00 plf 16 w69 Live Partial UD 350.0 350.0 10.50 12.00 plf 17_j36 Dead Full UDL 113.7 plf 18_j36 Live Full UDL 350.0 plf 19_j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20j43 • Live Partial UD 25.0 25.0 0.00 0.50 plf 21 j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22 j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 23_j45 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24 j45 Live Partial UD 25.0 25.0 1.50 3.00 plf 25_j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26 j46 Live Partial UD 25.0 25.0 10.50 12.00 plf 27_j70 Dead Partial UD 17.0 17.0 3.00 9.00 plf 28 j70 Live Partial UD 25.0 25.0 3.00 9.00 plf 29 j71 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30_j71 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point 3560 3.00 lbs WIND2 Wind Point -3640 9.00 lbs wind3 Wind Point -3620 0.00 lbs winds Wind Point 3570 12.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : -.-' .3r,.;," .J'.. =:„ .+cs _ .�' - ti me-6. .__..-'firwe...,,"` ' � _ r., -_. - - ti. __;e ZX II Cr 121 Dead 2207 2207 Live 4350 4350 Uplift 499 479 Total 6557 6557 Bearing: Load Comb 92 92 Length 2.34_ 2.34 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; • Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 310 fvFv' = 0.51 Bending( +) fb = 1735 Fb' = 2325 fb /Fb' = 0.75 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.42 = L/343 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LCH Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC 92 = D +L, V = 6557, V design = 5170 lbs . Bending( +): LC 92 = D +L, M = 16527 lbs -ft • Deflection: LC 92 = D +L EI= 1241e06 lb-in2 , Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I =impact C =construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 6 2-- 6 311 COMPANY PROJECT . . WoodWorks SOF1WAR(FOR WOOD DESIGN June 24, 201013:09 b14 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs, psf, or pif ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2 w68 Live Partial UD 350.0 350.0 9.00 10.50 plf 3 c19 Dead Point 357 9.00 lbs 4 c19 Live Point 1050 9.00 lbs 5 c20 Dead Point 357 3.00 lbs 6 c20 Live Point 1050 3.00 lbs 7 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8 w66 Live Partial UD 350.0 350.0 0.00 1.50 plf . 9 Dead Point 165 10.50 lbs 10_c64 Snow Point 225 10.50 lbs 11 c65 Dead Point 165 1.50 lbs 12 c65 Snow Point 225 1.50 lbs 13_w67 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14 w67 Live Partial UD 350.0 350.0 1.50 3.00 plf 15 w69 Dead Partial UD 317.7 317.7 10.50 12.00 plf • 16 w69 Live Partial UD 350.0 350.0 10.50 12.00 plf 17 j36 Dead Full UDL 113.7 plf 18_j36 Live Full UDL 350.0 plf 19 j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20_j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 21_j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 23_j45 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24_j45 Live Partial UD 25.0 25.0 1.50 3.00 plf 25 j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26_j46 Live Partial UD 25.0 25.0 10.50 12.00 plf 27j70 Dead Partial UD 17.0 17.0 3.00 9.00 plf 28 j70 Live Partial UD 25.0 25.0 3.00 9.00 plf 29_j71 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30 171 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point -3560 3.00 lbs WIND2 Wind Point 3640 9.00 lbs wind3 Wind Point 3620 0.00 lbs winds Wind Point -3570 12.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : . a ..,. ► :.�'_ P' a13 r -r. - � .. yr„�l ii *" �... 4e Y..3'w-.... - 4f7• _ :". T. - `= -- " ..�...F ra..� -'� - :t�-'�`,a.. ti • p +c. .r �.�e.-.%� ' �►. y' .: _ ' s ue -- :a_ , c �,�.., , tr"' , ;w..►- «�. _ a ` .� -.- . - °.�_ - - r• .tea -ft.... �.�rs. -. : rsK_...� „�.- -.� ice°' _ -;,mac - -- - r-...� --r te _.gin... -.- r -z- .- - k,d?1.* --- 'ss -.-:- --"--...ofr= Ll • la 121 Dead 2207 2207 Live 4826 4811 Total 7033 7018 Bearing: Load Comb 84 64 Length 2.51 2.51 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 pif included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NOS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 310 fv /Fv' = 0.51 Bending(+) fb = 1735 Fb' = 2325 fb /Fb' = 0.75 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.42 = L/343 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC8 Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC 92 = D +L, V = 6557, V design = 5170 lbs • Bending( +): LC 82 = D +L, M = 16527 lbs -ft Deflection: LC 82 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer: 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 4- 3C. COMPANY PROJECT I WoodWorks® 1 SOFIWAREFOR WOOD DESIGN June 24, 201013:11 b13 LC1 Design Check Calculation Sheet Sizer7.1 LOADS ( lbs, psi, or pif ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 c40 Dead Point 217 5.50 lbs 4 c40 Live Point 668 5.50 lbs 5 c67 Dead Point 518 5.00 lbs 6 c67 • Snow Point 778 5.00 lbs 7 c68 Dead Point 573 3.00 lbs 8 c68 Snow Point 942 3.00 lbs 9w59 Dead Partial UD 593.7 593.7 5.00 8.00 plf lb w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 _ j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12_j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13_j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14_j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15_j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16 j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 18 b15 Live Point 389 3.50 lbs 19 b32 Dead Point 225 6.50 lbs 20 b32 Live Point 693 6.50 lbs W1 Wind Point 6590 0.00 lbs W2 Wind Point -6590 3.00 lbs W3 Wind Point 6590 5.00 lbs W4 Wind Point -6590 8.00 lbs MAXIMUM ACTIONS fibs) and BFARIN(; I ENGTHS tin) •:?: ."..• --..- --"". ' m°7."-. --- ...I.'. -..,:"..---a.,-...--.--....r.er -;.....-- • -.......-i--, ---"----- - - I.- ______.,...._ - +'- .i�±a..i}s^ _ �= it r - x..'�'asir .c. ��'-�K3,, 'Lets is. .' �a...J .: '.. sir. -.a. r...�= - -S'i`p �r .- iiz- r' r.,,. I a 81 Dead 2561 3033 Live 6406 3789 Uplift 3098 Total 8968 • 6822 Bearing: Load Comb 84 03 Length 3.20_ 2.44 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight 0115.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L /680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LCO Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 • Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC 03 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC 03 = D+.75(L+S), M = 12340 lbs -ft Deflection: LC 03 = D+.75(L+S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live S =snow W =wind I= impact C =construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. • . 4 - (1-(‘) COMPANY PROJECT f fl WoodWorks® SOFIWAR(FOR WOOD DESIGN June 24, 2010 13:11 b13 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs, psi, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 Dead Point 217 5.50 lbs 4 c40 Live Point 668 5.50 lbs 5 c67 Dead Point 518 5.00 lbs 6 Snow Point 778 5.00 lbs 7 Dead Point 573 3.00 lbs 8 Snow Point 942 3.00 lbs 9 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10 w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12 Live Partial UD 310.0 310.0 6.50 8.00 plf 13 j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14_j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15 j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16_j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 18 Live Point 389 3.50 lbs 19 Dead Point 225 6.50 lbs 20 b32 Live Point 693 6.50 lbs W1 Wind Point -6590 0.00 lbs W2 Wind Point 6590 3.00 lbs W3 Wind Point -6590 5.00 lbs W4 Wind Point 6590 8.00 lbs MAXIMUM REACTIONS (lbs) and BEARS LENGTHS (inl : ..-•,rte: -....sor " " ^- � �i- �>� -: •s:��� =�`,. - Z, ---'"2 .7. ''�° -� +---. ' ..,,.�" -.`" ±co.:. _ sir r +ortr ' - = az."' "rte, I Cr 81 Dead 2561 3033 Live 2699 7496 Uplift 3381 Total 5261 10529 Bearing: Load Comb #3 #4 Length 1.88 3.76 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L /680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D +.75(L +5), V = 6822, V design = 5122 lbs Bending( +): LC #3 = D+.75(L +5), M = 12340 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 4 -6-7,-;73-- COMPANY PROJECT I Woo dVVo r k s ® June 24, 201013:19 AU LC1 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Sim 7.1 LOADS (cmruf.apll) : Load typo Distribution Magnitude Location Ift1 Unita Start End Start End w62 Dead Partial U0 613.2 613.2 0.00 2.00 plf w62 Snow Partl01 U0 795.0 795.0 0.00 2.00 plf 3 J w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 4 Snow Partial UD 901.2 901.2 7.50 11.00 plf 5 415 Dead Point 1436 11.00 lba 6_415 Snow Point 2404 11.00 lba 416 Dead Point 1399 17.00 !ba B 416 Snow Point 2404 11.00 lba 9 w64 Dead Partial U0 617.5 617.5 17.00 19.00 plf 13_864 Snow Partial UD 901.2 901.2 17.00 16.00 plf 11 461 Dead Point 622 7.00 lbo 12 Snow Point 1192 7.00 lba 13 Dead Point 622 4.00 lb. 11 462 Snow Point 1192 4.00 lba 15 963 Dead Partial UD 611.2 613.2 2.00 4.00 plf 16 w62 Snow Partial UD 7 95.0 795.0 2.00 4.00 plf 17 Dead Partial UD 617.5 617.5 19.00 20.00 plf 18_465 465 Snow Partial UD 901.2 901.2 16.00 20.00 pit 19471 Deal Partial UD 613.2 613.2 7.00 7.50 plf 20:071 Snow Partial UD 795.0 795.0 7.07 7.50 plf 21_164 Dead Partial UD 17.03 16.00 plf 22_064 LSV0 Partial UD 160.0 160.0 17.09 19.00 pit 23_329 Dead Partial UD 47.7 47.7 4.50 7.50 plf 24_129 Live Partial UD 160.0 160.0 4.50 7.50 pit 25_162 Dead Partial VD 47.7 47.7 7.50 11.00 plf 26_162 Live Partial VD 160.0 .160.0 7.50 11.00 plf 27_349 Dead Partial UD 120.2 120.2 0.00 2.00 plf 26 149 Live Partial UD 370.0 370.0 0.00 2.00 plf 29_332 Dead Partial UD 120.2 120.2 3.50 4.00 plf 30_332 Live Partial UD 370.0 370.0 3.50 4.00 plf 31_333 Dead Partial UD 120.2 120.2 1.50 7.50 plf 32_133 Live Partial UD 370.0 370.0 4.50 7.50 pit 33_334 Deed Partial UD 120.2 120.2 7.50 9.00 plf 31_334 Live Partial UD 370.0 370.0 7.50 6.00 plf 35 _135 Dead Partial 1.10 120.2 120.2 9.00 11.00 plf 36_315 Live Partla1 U0 370.0 370.0 9.00 11.00 plf 37_347 Dead Partial VD 120.2 120.2 11.00 17.00 plf 39_317 Live Partial VD 370.0 370.0 11.00 17.00 pit 39_367 dad Partial UD 120.2 120.2 2.00 3.50 plf 40_367 Live Partial U0 370.0 370.0 2.00 3.50 pit 41_319 Dead Partial UD 120.2 120.2 4.00 4.50 plc 12_149 Live Partial UD 370.0 370.0 1.00 4.50 plf 43_163 Dead Partial UD 47.7 47.7 11.00 17.00 plf 44_163 Live Partial UD 060.0 160.0 11.00 17.00 plf 45_365 (Mad Partial UD 47.7 47.7 16.00 20.00 plf 46365 live Partial UD 160.0 160.0 19.00 20.00 plf 47_166 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49_366 LSva Partial UD 160.0 160.0 4.00 4.50 plf 49_369 Dead Partial U0 120.2 120.2 17.00 19.00 plf 90_168 Liva Partial UD 370.0 370.0 17.00 10.00 plf 51_169 Dead Partial UD 120.2 120.2 16.0C 20.00 pIf 52_169 Live Partial UD 170.0 370.0 19.00 20.00 plf 52_172 Dead Partial VD 47.7 47.7 2.00 4.00 plf 55372 Live Partial UD 160.0 160.0 2.0C 4.00 plf 55 373 Dead Partial UD 47.7 47.7 0.00 2.00 plf 56_17] H1 Live Partial UD 160.0 160.0 0 . 2.00 plf Mina Point 5950 0.00 00 lba 0152 02 01nd Point -5950 4.00 lb. N3 14ind Point 5950 11.00 lba H 0 I 1nd Point -5950 17.00 lba NS Mind Point 5950 20.00 Ibs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : Dead 155 v h Live 12150 192 n 99 Total 19555 191499 Bearing: C : Load come 11 11 • Length 5.97 5.85 Glulam -Bat., West Species, 24F -V8 DF, 5- 118x22 -1/2" • Sal6walm41129.55 p0 Mauled led In MAO Lateral support lops fore, bottom. 29 supports: Analysis vs. Allowable Stress (psi) and Deflection (in) using NOS 2095: Criterion AnalValo Value Donlan Value A nalvale /Dea14n Shear !v - 162 Fv' ■ 305 01/04' - 0.60 0<nd1ng1+l fb . 2392 1b' 2 2604 fb /Fla' - 0.92 Live Dofl'n 0.40 ■ L/595 0.67 - L/360 0.60 Total Def3'n 0.64 2 L/205 1.00 ■ L /210 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL C✓ Cfu Cr C(rt Noteo Cn LC6 0V' 265 1.15 1.00 3.00 1.00 1.00 1.00 3 65'♦ 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.10 1.00 - 3 . Fcp' 650 1.00 1.00 - - - - 1.00 - E' 1.9 million 1.00 1.00 - Emil' 0.95 million 1.00 1.00 - - - - 1.40 - - 2 Shear : Lc 43 - 04.7511.05), 'J ■ 17361, V design - 13962 100 00nd1ngl7): LC 63 ■ 44.751L14). 0 ■ 96199 lba-ft 0ef1e4610n: LC 63 ■ 20.7511,061 E1. 9756006 lb -172 Total Deflection ■ 1.5010oad 2.741 D371044lonl • Live Load De(1ectlon. I0•doad L■llve S4anov 0-wind I■iapac[ ■/4na. ruction CLJ.00ncentratodl 1 0 1 1 1 . 4 ' 4 44 0 lfate0 in the Anai4sis output) Load 4gm64526144a: ICC -S1C DESIGN NOTES: 1. Phase verity that the default della06lan 6nfts are appropriate for you npplratbn. 2. G9dan design mhos are for materials canksohm to A1TC 117 -2001 and manufactured N accordance w10 ANSUAITC A/90.1 -1992 3. MOLAR: hal a actual breadth x ached depth. • A G9fam Beano doll be lateraP/,uppadad accord10g la the provisions 01 NCO Clause 3.3.1 5. MOLAR: bearing length based on arlv4er of Fop(te0sbn), Fo/p(canpn). 4- ( 0 , • COMPANY PROJECT i Wood V'Wo r ks® !we 24,201013:19 D34 LC2 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Situ 7.1 • LOADS 1 tbs. psi. or PN) : Load Type Distribution Magnitude Location (1t) Units Start End Start End 1_762 Dead Partial UD 613.2 613.2 0.00 2.00 pif 2_062 Snow Partial UD 795.0 195.0 0.00 2.00 plf _029 Dead Partial UD 617.5 617.5 7.50 11.00 pif _029 Snow Partial UD 801.2 801.2 7.50 11.00 plf _715 Dead Point 1436 11.00 lbs _715 Snow Point 2404 11.00 lbs _c16 Dead Point 1399 17.00 lbs c16 Snow Point 2404 17.00 lbs 4164 Dead Partial UD 617.5 617.5 17.00 19.00 p01 0 764 Snow Partial 110 101.2 801.2 17.00 19.00 pif 1 Dead Point 622 7.00 10s 2c61 Snow Point 1192 7.00 164 3c62 Dead Point 622 4.00 lbs _ 762 Snow Point 1192 4.00 lbs 5_763 Daaa Partial U0 613.2 613.2 2.00 4.00 pif 6_763 Snow Partial UD 795.0 795.0 2.00 4.00 p11 4165 Dead Partial UD 617.5 617.5 19.00 20.00 plf 9:065 Parelol UD 901.2 001.2 19.00 20.00 pif 9 071 Dead Partial 110 613.2 613.2 7.00 7.50 pif 20 Snow Partial DD 795.0 795.0 7.00 7.50 pif 21 564 Dead Partial UD 47.7 47.7 17.00 19.00 pif 23161 Live Partial UD 160.0 160.0 17.00 19.00 plf 23_129 Dead Partial UD 47.7 47.7 4.50 7.50 of 14-122 Live Partial UD 160.0 160.0 1.50 7.50 plf 25_)62 Dead Partial UD 47.7 17.7 7.50 11.00 pif 26_162 Live Partial UD 160.0 160.0 7.50 11.00 pif 27_148 Dead Partial UD 120.2 120.2 0.00 2.00 plf 23_149 Live Partial UD 370.0 370.0 0.00 2.00 p11 27_132 Dead Partial UD 120.2 120.2 3.50 4.00 plf 30_532 Live Partial UD 370.0 370.0 3.50 4.00 plf 31_133 Dead Partial UD 120.2 120.2 4.50 7.50 p11 32_133 Live Partial 0D 370.0 370.0 4.50 7.50 p11 33_134 Dead Partial U0 110.2 120.2 7.50 9.00 p11 34_)31 Live Partial VD 300.0 370.0 7.5) 9.00 pif 35_135 Dead Partial U0 120.2 120.2 9.0) 11.00 pif 36)35 Live Partial UD 370.0 370.0 9.00 11.00 pif 37_147 had Partial UD 120.2 120.2 11.00 17.00 pif 33_147 L170 Partial U0 370.0 370.0 11.0D 17.00 p)1 39_167 Dead Partial U0 1:0.2 120.2 2.0J 3.50 p31 40_067 Live Partial U0 370.0 370.0 2.0) 3.50 plf 41_149 Dead Partial UD 120.2 120.2 4.00 4.50 pif 42_149 Live Partial DD 370.0 370.0 4.0) 4.50 plf 43_163 Dead Partial VD 47.7 47.7 11.0) 17.00 p11 44_163 Live Partial UD 160.0 160.0 11.0) 17.00 plf 45_165 Dead Partial ID 47.7 47.7 19.0) 20.00 pif 46_165 Live 24051a1 00 160.0 160.0 19.03 20.00 pif 47_166 Dead Partial 00 47.7 47.7 4.00 4.50 of 49_166 Live Partial DD 160.0 160.0 4.03 4.50 plf 49 163 Dead Partial ID 120.2 120.2 17.03 13.00 plf 50 363 Live 94411.1 U0 370.0 370.0 17.03 18.07 plf 51_163 Doad 9,111.1 UD 120.2 120.2 19.00 20.00 911 52_160 Live Partial UD 370.0 370.0 19.00 20.00 plf 53172 Dead Partial UD 47.7 47.7 2.03 4.00 pif d 072 Live Partial UD 160.0 160.0 2.03 4.00 plf 55_173 Dead Partial VD 47.7 47.7 0.03 2.00 pif 56_)73 L17. Partial UD 160.0 160.0 0.02 2.00 0l[ HI Hind Point -5350 0.00 3ba w2 Mind Point 5850 1.00 lbs r53 Mind Point -5850 11.00 lb. 94 Hind Point 5950 17.0) lbs H5 Mind Paint _ -5350 20.0D _ lbs MAXIMUM REACTIONS (Ms) and BEARING LENGTHS (in) : Dead �4, 05 � * Live 9956 9518 Total 17361 17305 • Bearing: Load Comb 13 63 Lenoth 5.21 5.19 Glulam -Bat., West Species, 24F -V8 DF, 5- 1/8x22 -1 /2" S416weigld of 25.55 plf Included In loam: Waal supped, lope hA, bottom. a supports: Analysis vs. Allowable Stress (psi) and Deflection (in) usblg NOS 2005: Criterion Analysis Value Design Value An/Deefen . 07 /77' Shear f: 192 Fv' ■ 305 fv /FV - 0.60 179 D,11 fb ■ 2392 Fb' - 2604 fb /Fb' . 0.92 Live 0911'7 0.41 . L/591 0.61. - L /360 0.61 Total Defl'n 0.34 . 1/284 1.00. L /240 0.94 ADDITIONAL DATA: FACTORS: F/E CD CM CI CL CV Cfu C: C1rt Hoto4 Cn 104 77' 265 1.15 1.00 1.00 1.00 1.00 1.00 3 70.4 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 Fop' 650 1.00 1.00 - - - - 1.00 - - E' 1.9 91111on 1.00 1.00 - Enin' 0.55 71111on 1.00 1.00 - - - - 1.00 - - 4 Shear : LC 93 . 04.75(1,96). V - 17361, V design - 13982 lb, 997017314): LC 13 - 04.751,5), H ■ 76169 lbs -ft Deflection: LC 44 - 07.75)L+910) E 3756,06 10 -172 Total Deflection . 1.5010947 Load 0.!1.7tlo.) 0 Live Load Deflection. ID■d0ad ■117e Sasnov .81nd 1- impact C0 05.47:7:51or. CL con :entrace3) 1211 LC',are listed in the An31yels output) Load :ocbinaticna: ICC -IBC DESIGN NOTES: 1. Please verity that Um default deflection Smits are approprbte for you appS000on. 2. Ghdam design value me for ma7Wab tadomning to AITC 117 -2001 and m701116 11e3 at a 14922714 MD ANSVAITC A190.1 -1992 3. GLULAhi bed = actual breadth 3 actual depth. 4. OLBam Beams s4a2 be laterany supported ...Ong to the prrMsi4A of 0105 Clause 3.3.3. 5. GIOIA/A beefing krp4D based on smatter of Foppenvon), Fop(canPn). //1. Cr) 9 COMPANY PROJECT i 4 1 Vo od \AIor k s® Jar 24.20101770 634 LC2 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Sieer 7.1 LOADS ( nn, Psf,atpif) load Type Distribution Magnitude Location (ft) Un1ta Start End Start End Lye,: Dead Partial UD 613.2 613.2 0.00 2.00 plf 22462 Snow Partial UD 795.0 795.0 0.00 2.00 plf 9.29 Dead Partial U0 617.5 617.5 7.50 11.00 pl! 129 Snow Partial UD 901.2 801.2 7.50 11.00 plf 5 c15 Deed Point 1436 11.00 lb. 6 Snow Point 2404 11.00 lba > 016 Dead Point 1369 17.00 lbs. 9016 Snow Point 2404 17.00 lba 9 064 Dead Partial UD 61 617.5 17.00 18.00 pl! 10 064 Snow Partial UD 901.2 801.2 17.10 19.00 pl! 11 Dead Point 622 7.00 lb. 12_c61 Snow Point 1192 7.00 lbs 13_062 Dead Point 622 4.00 lba 1 c62 Snow Point 1192 4.00 102 15 v63 Doan Partial U0 613.2 613.2 2.00 4.00 pl( 16 .63 Snow Partial D0 795.0 795.0 2.00 4.00 plf 17 Dead Partial V0 617.5 617.5 19.00 20.00 plf 19 Snow Partial UD 901.2 901.2 18.00 20.00 plf 19 Dead Partial UD 613.2 613.2 7.00 7.50 plf 20 Snow Partial UD 795.0 795.0 7.00 7.50 plf 21 364 Gad Partial 00 47.7 47.7 17.00 18.00 plf 22_164 Live Partial UD 160.0 160.0 17.00 18.00 pl! 23_129 Dead Partial UD 47.7 47.7 4.50 7.50 plf 24_125 Live Partial U0 160.0 160.0 4.50 7.50 p1! 25_162 Dead Partial UD 47.7 47.7 7.50 11.00 plf 26 _162 Live Partial UD 160.0 160.0 7.50 11.00 plf 27 j49 Dead Partial UD 120.2 120.2 0.00 2.00 pl! 29_149 Live Partial UD 370.0 370.0 0.00 2.00 plf 29_132 Dead Partial UD 120.2 120.2 3.50 4.00 pl! 30_332 Live Partial U0 370.0 370.0 3.50 4.00 p]! 31_133 Dead Partial VD 120.2 120.2 4.50 7.50 pl! 32_133 Live Partial UD 370.0 370.0 4.50 7.50 plf 33_134 Dead Partial UD 120.2 120.2 7.50 6.00 plf 34_134 Live Partial UD 370.0 270.0 7.50 6.00 pl! 35,35 Dead Partial UD 120.2 120.2 9.00 13.00 pit J6 535 Live Partial U0 370.0 370.0 9.00 11.00 plf 37_147 Dead Partial UO 120.2 120.2 11.00 17.00 plf 39_347 Live Partial UD 370.0 370.0 11.00 17.00 pl! 39_367 Dowd Part141 UD 120.2 120.2 2.00 3.50 plc 4 167 Live Partial D0 370.0 370.0 2.00 3.50 pl[ 41_149 Dead Parti41 U0 120.2 120.2 4.10 4.50 plf 42_349 1.1'.0 Partial U0 370.0 370.0 4.00 4.50 plf 43_163 Dead Partial UD 47.7 47.7 11.00 17.00 pl! 44_363 Live Partial V0 160.0 160.0 11.00 17.00 pl! 45_165 Dead Partial UD 47.7 47.7 19.00 20.00 plf 46_165 Live Partial U0 160.0 160.0 19.00 20.00 plf 47_366 De.d Partial UD 47.7 47.7 4.00 4.50 plf 48_366 Live Partial VD 160.0 160.0 4.00 4.50 plf 49_160 Dead Partial UD 120.2 120.2 17.00 18.00 plf 50_169 Live Partial UD 370.0 3 17.00 19.00 plf 91_169 Dead Partial UD 120.2 120.2 19.00 20.00 plf 52_369 Live Partial UD 370.0 370.0 16.00 20.00 plf 53_172 Dead Partial UD 47.7 47.7 2.00 4.00 plf 54_172 Live Partial U0 160.0 160.0 2.0D 4.00 pl! 55_373 Dead Partial UD 47.7 47.7 0.00 2.00 pl( 56 173 L1va Partial UD 160.0 160.0 0.00 2.00 plf 411 Mind Point -5950 0.03 Iba 62 Mind Point 5050 4.00 Iba M3 Bind Point -5950 11.0) lba 94 Mind Point 5850 17.00 lb. M5 9103 _ Point -5850 20.00 lba • MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • ' I Dead Oros •++3 1379 Live 7366 9305 Total 17361 17305 Bearing: Load Comb 13 13 L Length 5.21 5.19 Glulam -Bat., West Species, 24F -V8 DF, 5- 118x22 -112 Se0.3eigte of 26.55 p0 included In loads: Lateral support tore full bola. at supports: Analysis vs. Allowable Stress (psi) and Deflection (in) using as 2305 : . Criterion Analysis Value Devlvn Value Analvviv /De91gn Sneer 70 . 192 Fv . 305 (v /FV' . 0.60 Bending(*) fb - 2392 Fla ■ 2604 (b /F0• . 0.92 Live De(1'n 0.41 ■ L/591 0.67 . 4/360 0.61 Total Del1'n 0.94 ■ L/264 1.00 . L/240 1 0.84 1 ADDITIONAL DATA: FACTORS: F/E CO CH CC CL N Cfu Cr Cfrt LC, 07' 265 1.15 1.00 1.00 1.00 1.00 r 1 00 20•4 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 3 Fop• 650 1.00 1.00 - - - - 1.00 - E' 1.8 million 1.00 1.00 - En1n' 0.95 million 1.00 1.00 - - - - 1.00 - d Shear : LC 43 . J.. V . 17361, '/ deals: 4. 13992 ]b4 9and1n944): LC e3 . 04.75(U5), 0 . 86169 109 -ft 0e(lectlon: LC 14 . 04. EI. 9756306 15 -102 Total Deflection . 1.50)0344 Lo.4 Deflection) 4 Live Load Deflection. (0.4334 L.11:e S■encw w.w0nd 1.1cpac C.coostructlOn Cid.conc3ntra 7341 1011 LC's are tinted In the Analysis output) Load combinations: I20 -100 DESIGN NOTES: 1. M osso vest) Oat the debut deflection Grab are 0ppmpdate tor your app4Catbn. 2. (i4am deNgn nein are fa materials conforming to AITC 117 -2001 and manufactured N nuada4ce wen ANSUARC A190.1 -1492 3. MOLAR tool a actual Neaten it actual depth. 4. CPA= Beams Nall to laterally supported accord}g to the prwlsia. of NOS Clause 3.3.3. 5. GLULAK beating length bead on similar of Fep(tenWn), Fcp(cor9p'n). COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR W000 DESIGN June 24, 2010 13:23 b34 LC1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psi, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 3 w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5 Dead Point 1436 11.00 lbs 7 c16 Dead Point 1389 17.00 lbs 9 Dead Partial UD 617.5 617.5 17.00 18.00 plf 11 c61 Dead Point 622 7.00 lbs 13 c62 Dead Point 622 4.00 lbs 15 w63 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17 w65 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19_w71 Dead Partial UD 613.2 613.2 7.00 7.50 plf 21 j64 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23 j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25_j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 27j48 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29_j32 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31j33 Dead Partial UD 120.2 120.2 4.50 7.50 plf 33 j34 Dead Partial UD 120.2 120.2 7.50 8.00 plf 35_ j35 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39_j67 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41_j49 Dead Partial UD 120.2 120.2 4.00 4.50 plf 43 j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45 - j65 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47_j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49j68 j68 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51_j69 Dead Partial UD 120.2 120.2 18.00 20.00 plf 53_j72 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55_j73 Dead Partial UD 47.7 47.7 0.00 2.00 plf W1 Wind Point 5850 0.00 • lbs W2 Wind Point -5850 4.00 lbs W3 Wind Point 5850 11.00 lbs W4 Wind Point -5850 17.00 lbs W5 Wind Point 5850 20.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : A la 201 Dead 7189 6822 Live 156 302 Total 7238 7018 Bearing: Load Comb #2 92 Length 2.17 2.11 Glulam -Bat., West Species, 24F -V8 DF, 5- 118x22 -1/2" Self- weight of 26.55 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using N1362006 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 74 Fv' = 238 fv /Fv' = 0.31 Bending( +) fb = 950 Fb' = 2038 fb /Fb' = 0.47 Live Defl'n negligible Total Defl'n 0.41 = L /585 1.00 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC 11 = D only, V = 7189, V design = 5674 lbs . Bending( +): LC 91 = D only, M = 34217 lbs -ft Deflection: LC 91 = D only EI= 8756e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I =impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). . 4 -C14 COMPANY PROJECT I Wood Works SOFTwAREfOR WOOD otslGN June 24, 201013:22 b34 LC2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 3_w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5_c15 Dead Point 1436 11.00 lbs 7 c16 Dead Point 1389 17.00 lbs 9 Dead Partial UD 617.5 617.5 17.00 18.00 plf • 111c61 Dead Point 622 7.00 lbs 13_c62 Dead Point 622 4.00 lbs 15_w63 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17 w65 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19 w71 . Dead Partial UD 613.2 613.2 7.00 7.50 plf 21j64 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23 j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25_j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 27 j48 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29_j32 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31j33 Dead Partial UD 120.2 120.2 4.50 7.50 plf 33_j34 Dead Partial UD 120.2 120.2 7.50 8.00 plf 35_j35 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39_j Dead Partial UD 120.2 120.2 2.00 3.50 plf 41 j49 Dead Partial UD 120.2 120.2 4.00 4.50 plf 43_j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45_j65 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47 j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49_j68 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51 j69 Dead Partial UD 120.2 120.2 18.00 20.00 plf 53 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55 Dead Partial UD 47.7 47.7 0.00 2.00 plf . W1 Wind Point -5850 0.00 lbs W2 Wind Point 5850 4.00 lbs W3 Wind Point -5850 11.00 lbs W4 Wind Point 5850 17.00 lbs W5 Wind Point -5850 20.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : Al . . la 201 Dead 7189 6822 Live Total 7189 6822 Bearing: Load Comb #1 01 Length 2.16 2.05 Glulam-Bal., West Species, 24F -V8 DF, 5- 1/8x22 -1/2" Self- weight of 26.55 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 74 Fv' = 238 fv /Fv' = 0.31 Bending(*) fb = 950 Fb' = 2038 fb /Fb' = 0.47 Live Defl'n negligible Total Defl'n 0.41 = L /585 1.00 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 Fcp' 650 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC #1 = D only, V = 7189, V design = 5674 lbs Bending( +): LC #1 = D only, M = 34217 lbs -ft Deflection: LC #1 = D only EI= 8756e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). - GICI Harper Project: Houf Peterson. Client: Job # _ Righellis Inc. ENGINEERS • PLANNERS Designer: Date: Pg. # LANDSCAPE A RCNI LECTS•SURVEYORS Wdl 10• lb 8•ft•20•ft Wdl = 1600-lb 2cik `� -Si9�, ft Seismic Forces Site Class =D Design Catagory =D Wp := Wd1 I .- 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F := 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F = 1.722 VeI -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S := F S S ml : F -S 2-S ms S : = Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a := 1.0 Rp := 2.5 (Table 13.5 -1, ASCE 7 -05) 4a • r z l F := pR •I 1 + 2 h .Wp EQU. 13.3 -1 l J Fpmax 1.6•S EQU. 13.3 -2 Fpmin := . W p EQU. 13.3 -3 F,:= if(F > Fpmax,Fpmax,if(Fp < Fpmin,Fpmin,Fp)) F = 338.5171•lb Miniumum Vertical Force 0.2• S ds• W dl = 225.6781-lb � . Harper Project: B Lk ' Houf Peterson Client: Job # Righellis Inc. ENGINEERS ,• PLANNERS Designer: Date: Pg. # LANDSCAPE ARCNITEC[ SURVEY ORS Wdl 10• lb •8•ft•20 -ft W = 1600•ib ft Seismic Forces Site Class =D Design Catagory =D W p W di 1 := 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S s := 0.942. Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F := . 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F v = 1.722 VeI -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S • -= F S Smi =Fv•Si 2 -S ms S := Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a 1.0 R := 2.5 (Table 13.5 -1, ASCE 7 -05) 4a - Sds• z F P := p -r1 + 2 hl Wp EQU. 13.3 -1 R P Fpmax 1.6•S W EQU. 13.3 -2 Fpmin .3 • S ds• I p - Wp EQU. 13.3 -3 4,:= if (Fp > F pmax; Fpmax if(F < F pmin , Fpmin, F F = 338.5171.1b Miniumum Vertical Force 0 . 2 - Sds• Wdl = 225.6781•16 L-1 • Harper COMMUNICATION RECORD HP Houf Peterson Righellis Inc. To n FROM El MEMO TO FILE Eil 1.,116INEPh • PLAtinvii: LANL.S,A1-:: AriCrlilrti«SUI..t.,,,S ---- - ----------------- --- PHONE NO.' PHONE CALL: Er MEETING: n m - 0 03 m x . .< m r.., C1 P. ,.. 7. 0 (---, E -11 U —1 i I c • 1 6 - 3 • ..." . . . . _ .1) IS: rn c.f.! . • Z s .:. 1 •t") . 6 , . er :9 (--'\ .--, CPI --C. • ....00 Cfli \ -4.......‘ .0 II N N. N. '1- . . 4 ) . "4,1 ■._ 5. -. • z 0 • e N 0 r r N. "•..I , . .. (1 Ohl) . - A0. 4 01-).11 = s. # 07_,Z1 `Z) = - 'o 1 ,71 - a ;9,17) -lh,;ci \\ x x =31#* 1C. _ ° '17.,,) #1002 °' G,.� ► ern ��.� :. . � A 1; 1 s c7) . pa sb 4 -- o DoT a d e I ` I oo a i 1 .mod Sb = 1 Vr V On = o z ❑ m . -. 1 - od\o) .. F 3 1 0 S1s�o� , __ i 16 \ t, = z ii '(3 ) N. 1 1 ' > . 1 � o m o s Z 0 „1 m O i , I90 * Clem (i / . e ` el)Lc e G1) ❑ 3 m VC:.vUUJCJ ?1I) ki1 D:)ci i0 -- kiN g 54 0 tray . . 1 a . 1q) , .__ . A E \) Jc �l -3 Vv ".J '.), r7 ;:1. 1 1 C1 '--)i "J" a :B :103 road - - - -- - • 0 :'ON BOf :31VO IVr611,07 j :A8 • - . ,-, BY DAT pn . C: yr . \Xi a . ' . JoB NO.: - - - . . . . . . PROJEq: • . . RE: - De C V7 Pgkt2fgr: !‘i.-...bol.' . • E J E O .. a: Z O ▪ 6 LoP‘\.. , li' t J .• 0 .0 . • _.._-. Bifoo 4,0 . o z . .. . 0. 84," T= C --.6tioo iht,i a I* z I • < 0 2 - u.._ 51rfor\ HD° 4 To kresk'5.. •fr\n 2 le 0 Z- 0 0 • £ O - . Li. • z w a 6 O 1 Lc)Pti F- 0- M aoo# (40" ) . 2.00#°......*_4 . ---- B000 .4tii 1 - 1 T-= C ....-= 8606.4N i -- 4. 9;400 -', 141)04 • . 0 6 i i'i I . ‘., . I-. fao = 7 • ---ye- • ' . . , • Harper 'ti COMMUNICATION RECORD . Houf Peterson Righellis Inc. To 0 FROM 0 MEMO TO FILE 0 ENGINEER!: • IIILATiNERS LArIG:IstApE ARCHITECTS•SURVEYOR.: PHONE NO.: PHONE CALL: 0 MEETING: 0 --- ... X 11 CO m XI :5 (--) ..., It 0 0 I I P (r -i d . . :-c (1. 0 ___0 8 i 0 0 0 ..... . 04) — 3 d . 01 ....2/ 3 6 W. —I le% S. ....1/4....r) 0 > V -■ P. 1 - ' VI r It. I ,.•••1 . 1 . c . N ..N. Q9 : . 7.. < \ . ' • _. ‘ narper ' 1' HoufPeterson COMMUNICATION RECORD Righellis Inc. To ❑ FROM ❑ . MEMO TO FILE ❑ Ei ?GINEERS • PLA LA::DSC;PE . PHONE NO.• PHONE CALL: ❑ MEETING: ❑ . M -o m m . . m n i M 0 C,: 3 . \ illi N, N . M . . N. c-- 0 1,. 0 lj �_ f' 1 Q S IN 'S .GN v p C. '1 1 1 1 r . 1 L 10 Z O o U N '3. COMPANY PROJECT ef I- WoodWorks® SORWARE FOR WOOD DESIGN June 8, 2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ftj Magnitude Unit tern Start End Start End LIVE Live Point 2.50 200 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : :'''''- '' ? ''!:-', "." . ."-- ' < --C. -:;.: . ,C,.■%.:' , ,Z-. 't ..;:v...',.... , :,-".,4..... ..,, :„.4 ,. ,-...1..,:,:, ,,,, ).4„, , , ,-.., _._, ..... --"'" - , .:' ' . - '''''':' '''lz` --. ' :- * P.L. ""'"::". i ; zi, ''.*:';; :... ‘..---;• " ;.' ' - ' : ',.. - ' 1 !.. ,, • .;'• ' .'": ' T - .. :. , .: : - :"... ::: • ', . - .. ' -: :- • ': . : %--:', :: ,:";'-':'. t 71, f r -" - ': - 7 1:. ,..: - ::7: -:.' ' . ,..,;.- ':,. _'.. 1 ,. . , . .,-, . : .. :::. - ." " . , .: :: ' . / : ..: ' .- . - :: I V 5 Dead Live 100 100 Total 104 104 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams Is 1/2" for exterior supports Lumber-soft, Hem-Fir, No.2, 2x6" Self-weight of 1.7 plf induded in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/'v' = 0.13 Bending(+) fb = 405 Fb' = 1048 fb/Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 . <L/999 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 ' - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 '1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending(-4-): LC #2 = L, M = 255 lbs-ft Deflection: LC #2 = L El = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. ( COMPANY PROJECT .e , tit 1/VoodWorks® SOFFWARE MD WOOD outrav June 8, 2009 16:27 Hand Rall2 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Full UDL 50.0 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : ::-•-.- ,....... ...,,n: ,.....,." ,.....:4-- Li ....;.,- 44 ..... -... :.... T r . f......:. ...;... ' I --i• 44 : . , ',..' •Y'': .'" ''':,','' ''. '''. '''':"..,'''. '' ir.. -7 - :' - 4:. '7' '' It':°, ' r .......;i.7-1 .r e ' :4: ?.''''/,' t' i '..;-.. :t'S. ''. :'" :!' -.. .S . ..4 "'••••••• •••.• : - ,-4 . .,' ,.. . ' ... '"' -...:■''.? ... .1' .4,'.1., ...,......:V:' t:*, .:!' .4 % : ..,'X'''.. , t ••-, ,. 4 ., ... ■ . ...„„: - ;,, ,....t - :. 4, : • •.,.., ..: .. ' 4 . ,''' - ' .• •• -4 .. 4 -,4. -, t . • i 10' 54 Dead Live 125 125 Total 129 129 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams is 1/2" for exterior supports Lumber-soft; Hem-Fir, No.2, 2x6" Self-weight of 1.7 Of included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 256 ft' = 1048 fb/Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.11 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp 405 1.00 1.00 - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 129, V design = 106 lbs Bending(+): LC #2 = L, M = 162 lbs-ft Deflection: LC #2 = L El = 27e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 22, 2010 13:57:56 Concept Mode: Reactions Base of Structure View Floor 2: 8' IF ' 1050 49: -6" iU3 ; - - 600L • _ 4L5 b ' 1600 L _ ' 4r' b " iui! 619 D 619 D; 45-0 a 4 'I -b' Vb •' 1193 L153 12404 L::__2404 L- : •' - ..1V 4 625 01059 11439 D 1394 D 3b''' . L. 315L ii as . _ 358 0. ` . - . 3L b • ty! 31 -b 0 , Lb'-b 0.5 : . 315 L i - - - .. L!' -b.. r � 358 0. ni . .100 L [ - , G4 -43 ! y 96 D F L3 b • ! u- -- ∎ . • -:- - :. - LL -0 • ! r 74(847 _ -- 5611 L ... ' 756 L - r rb : -: LU I b - 4!(452 D - -5546 D 25 L� . I y - !4 625 1043 rL 203 D : i -b rI -_ .. 5 D= . : • . : .- - - , 5 105 L 908 L .. 307 : t _ ! 460 II -0 Ab IU -b 245 L �.. V - b • b4 3 0 ...__ '50 L_: i. - -•- - ; u-b • b y - - r -b l �:74 . , b I 599 - 87 L . • .- 87 L - - - .. b -b buy 209 LD 6D! 1963 D : .;_ .. 1963 D :- = -• . : - ' s -- u 1540 • cb -: ..,. _ :: Q : L 11 2363 0 : , . .. I -b " t -78 DiD ' 106D v-b BB16.B B C C CCC (CCC CC CCCC C C CC CCICCCD.DDD D DD ItDDD:DD DD DD D D DD CDIDD DEE E E E E EEFEEEIEEIEEEEEEEEEEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'911111 :1 /11111'1114212222 - 3:3:3 , 3136 . 3131414 4A :4.4',414'41445(5"5:5:5 515'. 616616 :6.6;616;616470 7.7.7 V00T k NJ L 11/41 00T - V ONJT W . • 4.__Ft Wood Works® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 22, 2010 13:57:37 Concept Mode: Reactions at Base of Structure View Floor 2: 8' 1050 . :Rck" 49'-6" IU4 413 b 1 U.S : -1600 L : : : 1600 L 4/ -b • vi/ 6191 . , : 6191: : 4o G.. ?r u9 4i -b' • • 23 N -: 44 0.. • y f L 4.1 -b. • y n • •13274 L_ 3304 - -- 3 -b `3 y4 '7153 D- : --" , .r .; 70721 - -- • - - . -- - - -- its --a • J3_ o 3( b L• -' : -• •: - : : : : - - • -- -- : - 317 -b u 315E . }o 358 D : 3L -b • 25/ 3 1-0 us .. . i : . 315L . • t • tSL ._, . - -- - 358 D---: - - -- - - - -- • s 100E ` Lb - b • 10.-0 oU -96 D - L4 b • 16 * • _ .- -. _ - - -- LL • I b 74(84 611 L .. ' f 56 L �� b • f 5 • - 4(452 D_ 5546 D • - 4 r 6 L� p 1 a•_b r4 625 .: . : - 1 t5 -b • i1 203 D 5 DL ......_ i n-0 • • r1 5p - lb -0 • - -- - : 14 -0 t7 • : • . 908 L _ 13 -b no_ .: _105 L307 D ,A •iL -b e b 245 L y • L - --- - 75 -b 31 , / b .. 0.2 74 D . b 9 - 1 59 - -b bu • L `fl2587 L: 5 L - „..a 209 LD 8 D_ 1963 D _ 1963 D : - 43 � b • 1541 -iuu : 221 • -_. . cb.. . it`;.. t' LL_.. 725L_ ., - . 1 ••-b ' • ' ...: _.:1 : :78D7DD • •6171'D: s u-o BBiB. BB. CCCCCCECCCCCCCCCCCCCCCMCCCD .DDD D. DDC.D'DD.DE ,EEE E EEEtEEEIEEIEE+EEEEEE(EEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2' 3'4'56'7'8'91(1 ;1:1/1(1(1'1( 1421222;2 221221213( 31:33 424(.5 (55:5:5 '717:T77177-6" SOOT 1 k Lp • • /4„..... F2_ : leentiev Harper Houf Peterson Righellis Inc. 91.r rent Date: 6/24/2010 1:41 PM 1 system: English File name: O: HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \F1.ftd\ Design Results Reinforced Concrete Footings GENERAL INFORMATION: Global status Warnings Design Code ACI 318 -05 Footing type Spread Column type Steel Geometry :, 1-12 in 1 4 4.4 ft ~ I ktzw ft ;f * 1 : 25ft voir# .ft MEMINIUDI 4.25 ft Pagel Length 4.25 [ft] • Width 4.25 [ft] Thickness 1.00 [ft] Base depth 1.50 [ft] Base area 18.06 [ft2] ' Footing volume 18.06 [ft3] • Base plate length 5.50 [in] Base plate width 5.50 [in] Column length 5.50 [in] Column width 5.50 [in] Column location relative to footing g.c. Centered Materials Concrete, fc 3.00 [Kip /in2] Steel, fy 60.00 [Kip /in2] Concrete type Normal Epoxy coated No Concrete elasticity modulus : 3122.02 [Kip /in2] Steel elasticity modulus : 29000.00 [Kip /in2] . Unit weight 0.15 [Kip /ft3] Soil Modulus of subgrade reaction 200.00 [Kip /ft3] Unit weight (wet) 0.11 [Kip /ft3] Footing reinforcement Free cover : 3.00 [in] Maximum Rho /Rho balanced ratio : 0.75 Bottom reinforcement // to L ()ox) : 644 @ 9.00" Bottom reinforcement // to B (zz) : 644 @ 9.00" (Zone 1) Load conditions to be included in design Service loads: SC1 DL ' S1 DL ' S2 DL +LL S3 DL +0.75LL Design strength loads: DC1 1.4DL D1 1.4DL D2 1.2DL +1.6LL Loads Condition Axial Mxx Mzz Vx Vz ' [Kip] [Kip *ft] [Kip*ft] [Kip] [Kip] DL 5.55 0.00 0.00 0.00 0.00 LL 15.61 0.00 0.00 0.00 0.00 , RESULTS: Status Warnings - Insufficient development length, Section 21.5.4.1 ' Soil.Foundation interaction Allowable stress 1.5E03 [Lb /ft2] Min. safety factor for sliding 1.25 Min. safety factor for overturning 1.25 Paget frq --- F 14 Controlling condition S2 Condition qmean qmax Amax Area in compression Overturning FS " [Lb /ft2] [Lb /ft2] [in] [ft2] ( %) FSx FSz slip S2 1.38E03 1.38E03 0.0826 18.06 100 1000.00 1000.00 1000.00 Bending Factor 0.90 Min rebar ratio 0.00180 Development length _ Axis Pos. Id Ihd Dist1 Dist2 . [in] [in] [in] [in] zz Bot. 20.11 7.04 19.75 19.75 xx Bot. 20.11 7.04 19.75 19.75 Axis Pos. Condition Mu 4)•Mn Asreq Asprov Asreq/Asprov Mu/(4)*Mn) [Kip`ft] [Kip * ft] [in2] [in2] zz Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 I zz Bot. D2 13.38 45.76 1.10 1.20 0.918 0.292 k.` +1 I xx Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 I 1 xx Bot. D2 13.38 43.06 1.10 1.20 0.918 0.311 I Shear Factor 0.75 Shear area (plane zz) 3.10 [ft2] Shear area (plane xx) 2.92 [ft2] Plane Condition Vu Vc Vu/(4)*Vn) [Kip] [Kip] xy D2 8.99 46.09 0.260 r i I yz D2 8.68 48.88 0.237 I` < =1 • Punching shear Perimeter of critical section (b... : 4.67 [ft] Punching shear area 3.31 [ft2] Column Condition Vu Vc Vu /(4•Vn) [Kip] [Kip] column 1 D2 29.25 104.29 0.374 I ='I I Notes Page c * Soil under the footing is considered elastic and homogeneous. A linear soil pressure variation is assumed. * The required flexural reinforcement considers at least the minimum reinforcement * " design bending moment is calculated at the critical sections located at the support faces * Only rectangular footings with uniform sections and rectangular columns are considered. * The nominal shear strength is calculated in critical sections located at a distance d from the support face * The punching shear strength is calculated in a perimetral section located at a distance d/2 from the support faces * Transverse reinforcement is not considered in footings * Values shown in red are not in compliance with a provision of the code *qprom = Mean compression pressure on soil. *gmax = Maximum compression pressure on soil. *Amax = maximum total settlement (considering an elastic soil modeled by the subgrade reaction modulus). * Mn = Nominal moment strength. * Mu /(4 *Mn) = Strength ratio. * Vn = Nominal shear or punchure force (for footings Vn =Vc). * Vu /(4)*Vn) = Shear or punching shear strength ratio. Page4 Beam Shear bcoi := 5.5 -in (4x4 post) d := tf — 2•in := 0.85 b := Width b = 36-in V:= 4 • f -b -d V, = 16.32•kips 3 Vu := qu (13 2 toll V = 7.83-kips < V„ = 16.32•kips GOOD Two-Way Shear bs := 5.5-in Short side column width bL := 5.5-in Long side column width b := 2•(bs + d) + 2•(bL + d) b = 54-in pc := 1.0 Vim.= 4 + f 8 psi -b•d V„ = 48.96-kips ( 3 3g3 V := 2.66• f psi•b•d V = 32.56-kips ,V = qu — (b„1 + d)2] V = 15.88-kips < V = 32.56-kips GOOD Flexure 2 Mu qu. I b — 2 J 11 (0 1) M = 4.98-ft-kips 7 t:= 0.65 b•d 2 S = 0.222•ft F := 5 -k f psi F = 162.5 -psi M ° ft := s f = 155.47•psi< F = 162.5•psi GOOD PJse a 3' -0" x 3' -0" x 10" plain concrete footing 1 Plain Concrete Isolated Square Footing Design: F2 f := 2500-psi Concrete strength fy :_ 60000-psi Reinforcing steel strength • E '29000•ksi Steel modulus of elasticity 1conc ; =-1507pcf Concrete density "(soil :_ .100.pcf Soil density gall : 1500,psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totald 2659-lb Pd1 := Totaldl Totalll := 7756-lb Pll := Totalll Pd := Pdl + Pll Pd = 10415-lb Footing Dimensions t' := 10 Footing thickness Width := 36•in Footing width A,:= Width Footing Area %net : = gall — tf'"Yconc net = 1375•psf Pd Areqd gnet Areqd = 7.575.11 < A = 9.ft GOOD Widthregd A Widthregd = 2.75.11 < Width = 3.00 ft GOOD Ultimate Loads = Pd1 + tf•A'"Yconc P := 1.4 Pdl + 1.7 P11 P = 18.48• kips P qu A q = 2.05•ksf Plain Concrete Isolated Square Footing Design: F3 f 2500-psi Concrete strength f : 6'0000-psi Reinforcing steel strength • Es := 29000•ksi Steel modulus of elasticity • 'Yconc 150•pcf Concrete density Ysoil. 100�pcf Soil density gall 1500.psf Allowable soil bearing pressure COLUMN FOOTING Reaction TotaId := 2363Ib Pd1:= Totaldl Total11 405-lb Pll := Total!" P • := Pdl + Pll Pu = 6938•1b Footing Dimensions t := 10; in Footing thickness Width : = 3'0-in Footing width • A := Width . Footing Area gnet gall — tf Yconc net = 1375•psf Ptl Areqd gnet Areqd = q 5.046 ft < A = 6.25 ft GOOD Widthreqd A req d Widthreqd = 2.25-ft < Width = 2.50ft GOOD Ultimate Loads ,v Pdl + tf'A'"Yconc P„ := 1.4 Pd1 + 1.7•P11 P = 12.18 - kips P q := — q = 1.95•ksf A • Beam Shear 5.5•in (4x4 post) d := tf – 2-in := 0.85 b := Width b = 30•in V :_ 4 f psi•b•d V = 13.6.kips 3 Vu = qu (13 2 colt b V = 4.97•kips < V = 13.6-kips GOOD Two -Way Shear bs := 5 -.5•in Short side column width bL 5.5 in Long side column width b := 2 -(bg + d) + 2.(bL + d) b = 54•in � := 1.0 V 4)•r 4 + 8 f psi b d V = 40.8 -kips \ 3• OcJ Vnmax :_ 4 -2.66• f psi•b•d V ax = 27.13.kips ,:= q – (b + (1) V = 9.71 -kips < Vninax = 27.13.kips GOOD Flexure 2 Mu •- qu r b - 2 J I\ bcoi r 2 J 11 b M = 2.54 ft kips I ,:= 0.65 b 2 := 6 S = 0.185•ft F := 5 -4)• f F = 162.5 -psi M ft :_ — S f = 95.19 -psi < F = 162.5 -psi GOOD lJse a 2' -6" x 2' -6" x 10" plain concrete footing Plain Concrete Isolated Square Footing Design: F4 f 2500-psi Concrete strength f := 60000 -psi Reinforcing steel strength Es `= 29000•ksi Steel modulus of elasticity 7conc 1'50•pcf Concrete density 'isoil 100•pcf Soil density gall 1500!psf Allowable soil bearing pressure COLUMN FOOTING Reaction • Totaldi := 5001-lb Pd1 := Totaldi Totalll := 7639-lb Pll := Totalll P := Pdl + Pll P = 12640-lb Footing Dimensions tf 12-in Footing thickness Width := 42-in Footing width := Width Footing Area net gall — tf''Yconc net = 1350•psf Ptl Areqd (het A red = A ft < A = 12.2541 GOOD Widthregd Aregd Widthregd = 3.06•ft < Width = 3.50 ft GOOD Ultimate Loads '= Pdl + tf'A' P := 1.4•Pd1 + 1.7•P11 P = 22.56-kips P qu — q = 1.84•ksf A Beam Shear bcoi 5.5.in (4x4 post) d:= tf -2.in := 0.85 b := Width b = 42-in V,,:= (1)• 4 f psi b d V„ = 23.8 -kips 3 Vu ( 4 1) 2 colt V = 9.8•kips < V = 23.8-kips GOOD Two -Way Shear b 5:5 in Short side column width bL 5.5: in Long side column width b := 2•(bs + d) + 2•(bL + d) b = 62-in (3 := 1.0 V 4 + 8 f psi b d V = 71.4•kips C 3.13 Vnmax := 4.2.66• fc•psi•b•d Vnmax = 47.48•kips 44,:= qu•[b — (bcoi + (1) V = 19.49•kips < Vnmax = 47.48•kips GOOD Flexure b = b Mu qu c61t 2 C1/ M = 7.45-11-kips ,:= 0.65 2 •— bd S= 0.405.1 6 F := 5.43- f F = 162.5-psi M u f := S f = 127.79•psi< Ft = 162.5-psi GOOD .Jse a 3' -6" x 3' -6" x 12" plain concrete footing —7 Plain Concrete Isolated Round Footing Design: f5 f 3000.psi Concrete strength f 60000:• Reinforcing steel strength Es := 29000. ksi Steel modulus of elasticity 1'con6 150•pcf Concrete density looil 12A•pcf Soil density gall 1500 psf. Allowable soil bearing pressure TYPICAL FOOTING Reaction Totalal:= 619-lb Pd1 := Totaldi Total11 := 1600.1b Pll := Totalll Ptl Pd1 + Pll P = 2219-lb Footing Dimensions t := 12-in Footing thickness Dia.:= 18-in Footing diameter Tr•Dia A Footing Area 4 net gall — tf''Yconc net = 1350•psf Ptl Areqd gnet A 1.64441 < A = 1.77 ft GOOD re I Aregd•4 Dia reqd := J Dia regd = 1.45•ft < Dia = 1.50 ft GOOD Ultimate Loads Pdl + tf' A'' (conc P := 1.4•Pd1 + 1.7•P11 P = 3.96-kips Pa qu — q = 2.24•ksf A Beam Shear bcoi 3.5•in (4x4 post) d := tf — 2-in := 0.85 b := cos(45.deg).Dia b = 12.73 -in V:= 4 • f V„ = 7.901•kips 3 V := qU b — b col b V = 0.91 -kips < V„ = 7.901 .kips GOOD Two -Way Shear bs.:= 3.5.in Short side column width bL := 3.5.in Long side column width b := 2 -(bs + d) + 2.(bL + d) b = 54 -in Oc := 1.0 Vim.= 4 + 8 V = 23.703 -kips Jfi.b.d . V,,,,,,, := -2.66• f psi•b•d V = 15.76 -kips qu [b2 — �bcoi + d) V = —0.31 -kips < V„ = 15.76 -kips GOOD Flexure 2 Mu qu [( — bcoll 1 M= 0.18ftkips 2 / j( 2) A,:= 0.65 2 51:= b d S = 0.123 -ft 6 F := 5 -�- f psi F = 178.01 -psi Mu S a f 9.9•psi < F 178.01•psi GOOD Use a 18" Dia. x 12" plain concrete footing -�I Plain Concrete Isolated Square Footing Design: F( f := 2500.psi Concrete strength fy := 60000.psi Reinforcing steel strength E := 29000,ksi Steel modulus of elasticity 'Yconc := 150.pcf Concrete density '(soil 100•pcf Soil density q : 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl:= 7072•1b Pdl:= Totaldi Total11:= 13304.1b P11 := Totalll Ptl Pd1 + P11 P = 20376•1b Footing Dimensions t ;= 15-in Footing thickness Width := 48•in Footing width • A := Width Footing Area quo 9a11 — tf' net = 1313•psf P Areqd gnet A red = A ft < A = 16-ft 2 GOOD Widthregd Aregd Widthreqd = 3.94•ft < Width = 4.00 ft GOOD Ultimate Loads ,wt1k:= Pdl + tf'A•"Yconc P,:= 1.4•Pd1 + 1.7•P11 P = 36.72•kips P qu — qu = 2.29•ksf 0 \S Beam Shear b := 5.5• in (4x4 post) d := tf -2•in := 0.85 b := Width b = 48•in V„ :_ 4 • f V„ = 35.36•kips 3 V qu r b 2 col V = 16.26-kips < V = 35.36•kips GOOD Two -Way Shear b := 5.5•in Short side column width bL:= 5.5.in Long side column width b := 2•(bs + d) + 2•(bL + d) b = 74-in pc := 1.0 V + 8 f psi -b -d V, = 106.08 -kips 3 343 Vnmax := x•2.66• f psi•b•d V nmax = 70.54-kips A y 44 ,:= qu [b — (bc01 + d) V = 31.26-kips < V = 70.54-kips GOOD Flexure 2 M qu Cb — 2 J b (-_J.b col M = 14.3941-kips A t:= 0.65 b d 2 ,:= S = 0.782.11 6 F := 54• f F = 162.5 -psi M u ft := s f = 127.75•psi< F = 162.5-psi GOOD ise a 4' - 0" x 4' - 0" x 15" plain concrete footing Plain Concrete Isolated Square Footing Design: F7 fe := 2500;psi Concrete strength f 60000.psi Reinforcing steel strength Es 29000:ksi Steel modulus of elasticity "Yconc = _ 150•pcf Concrete density `Ysoil := 100•pcf Soil density gall := 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Total Totaldi := 1200-lb Pd1:= Totaldi Total `= 3200-lb PIl := Totalll P := Pd1 + P11 Pd = 4400-lb Footing Dimensions tf := 10 :in Footing thickness • Width := 24• in Footing width A Width Footing Area net gall – tf''Yconc net = 1375•psf Pt1 Areqd gnet A red q = 3.2-11 < A = 4 -ft GOOD Widthreqd A Widthregd = 1.79 -ft < Width = 2.00 ft GOOD Ultimate Loads '= P + tf'A' P := 1.4 Pd1 + 1.7•P11 P = 7.82-kips P q„ := — q = 1.96 -ksf A -F Beam Shear bcoi := 5.5. in (4x4 post) d := tf — 2-in := 0.85 b := Width b = 24•in V„ :_ ck• 4 • f -b•d V = 10.88•kips 3 Vu = qu b —2 colt b V„ = 3.01 .kips < V„ = 10.88•kips . GOOD C / Two -Way Shear lig := 5.5•in Short side column width bL := 5.5•in Long side column width 13 := 2•(bg + d) + 2•(bL + d) b = f3 := 1.0 N V:= 4 + 8 f si•b•d V = 32.64.kips (3 3•0cJ :_ x•2.66• f psi•b -d V = 21.71-kips AY/4\:= qu [b - ( bcoi + (1) V„ = 5.35-kips < V,,,,, = 21.71•kips GOOD Flexure 2 b — 'bcoi {_).b 1 Mu qu ' 2 M = 1.16-ft-kips ,t:= 0.65 2 := b d S = 0.148 -ft 6 F := 5 f psi F = 162.5 -psi M ft := s f = 54.45 -psi < F = 162.5 -psi GOOD 'Use a 2' -0" x 2' -0" x 10" plain concrete footing it31 b ? o 0 ; s , crc = •To• • • i s gfi ` V tl 9 "►m w►t (-1-9(s' _ __ - ' r a _ x,o,�,, ISL°� = - E�•1'KsoTty) A- Iso°te W9 V j (zj . 'e +$7 ' {, 1 t:C:1 = a 4J %\e — ts•es-eme = biW = 2 gox Z 7 1 Ve) c.' C 4 cast' b)c1 Q -+ LI i XZZ) (S' s s 0) `,- W o Ok'1 x'11 1\'S 1o\ 3 v` , /rip a NO ")aQ(D e tp m -�. a z 1 11 m O A v 3 ❑ m 1 3 0 `J' 1 \ Ys . AV 9t3, • ❑ ❑ pool kuoaA - b -pun :38 1 ST :1 x „/ ,see /� �� q'ooi - pu lo j :13aroad do \ bO— • V 1 ! :'ON eor l / 1°\e -- 9 .31va ) . \ 1\] ki 'A8 na• Bentley' Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:43 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\Front Load 2.etz\ M33 =51.9. [Kip`ft] M33 =12.19 [Kip`ft] • • Mcmts L L 1 f ..,4% Bentley' Harper Houf Peterson Righellis Inc. -; Current Date: 6/22/2010 10:35 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\Front Load.etz\ UM ITA—F - - • M33 =25.66 [Kip'ft] • • • M33=-30.27 [Kip•ft) Y X Mmenl L(2 -C= I BY: A W ......, DATE: - ao k 7 , JOB NO.: CVQ Ct O OF PROJECT: 5 c1 c00 I S% ' RE: UN I T A - ReRR_ Loc(r gluba 2105 k NI ❑ ❑ 1'3 30.4tkcF w z I�y J Z • ,- W 9.15 , ,, 4.1s-61,_ CC U O 1 w 1 � t c� \ � U z �� ` . W O S , 0. Z aa' - -' 0 U Check. Over fvrNr9 Z J M 3 ° 4 . ( [ b � �C b) = 11L. kFE f O MIL = co,IsoCa >(1)Cii)Caa.) 4.- - 3,1s2k) 4- 1,1s3Cat' o = a aotAL tvL w z M21nno = ‘, II' ;. �,S, w Z F- a x = aaa,a �� c� - ��,� 5.042F e= 5 ao .9.Ob c l - nnt,.,c ao ,g0 to 4- L (a0, s ( . ► '15 1TsF Calaa") C2Ya_ 2..) - 2... 91r,; n = ao,coa _ 6 (0 ,ci o(,)Cs 0 , (7.)C7-2- 0.-‘)C2:7-V- 8 c mt c < o : o S m C.x 4 Q _. - _ 4 (_4 ,G( ) a,. - 3L(r3 -2c1) 3(aYaa_ )) a .- g, r ^PVC O ;xa z� gi - F-2-2- " th Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:38 AM • Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\Rear Load.etz\ M33 =43.24 [Kip'ft] • • • M33= -45.06 [Kip'ft] • Y 1 Mv"ks Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:43 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\Rear Load 2.etz\ • M33 =41.88 [Kip'ft) • • • M33= -46.37 [KiP'ft] Mreetvk F‘ -4 _ . • • 0.; • ,;F, 5 - (IQ ° • ' CD = w 5 (44404 do, - -Ao -) " 04 14 < h cce.cu c)s--0-f)-77-7- 0 0 „ . blero . • c (�0b.) bi '0 = - 19 - hl ", S JJ k.,Ae • c t /0)06' 74f,y(.. - 00)010 '0 IN ; - • (1 cooa'69) Flo - -osA /Jr- sv • 0 q6-1 z S z -n ( — .59(9 0 0 I Ct '00 Po %ANN z o . o • ( 10 # O. ( (mos Q.' oi (COO': 09) 0 = - 0 'sr* 1.0 0 s v D'o 1,11! sa Qv) FNJJ •• z z c i, l `S'q'pPASsV cz l Lp) - %4 alo := 4\ 6 -oun z •I V 41U( - xl O • M Z • 0 M 0 — > ✓ 0 -4 ** XVW \4 8 9 3 2 m tiZi Y ` 1 X F Eti csw003 :_yo :103 rOdd dO _ I S' IN ?) oN eor IOC - C ) iva BY JOB NO.: OF PROJECT: RE Vrcy61- Ioadk COAf\B E El L., 3' -C x L)c. Iv 1 --14 O L I- w O 2 tt A • 4- Ad.— - -U-- 1 t • r- -t-a. _ — _ cr 0 w 0 i ce a_ z MrstWN. = ,L)Y v \- Pi -.°) — al - a ,--- 0 UNA-- C6-) -54.LS q 1 4 Qt‘■ k C --> — 40.04 t.ct, 0 x Mr\ - a C V) 5S •5 (A 0 a ..... AsS l0 bs:.)0 0.LIt,,,s4 x3.5a, t te_yz" . ) , (341 cc 0 a .:::- (0, (0 \ to upopc6) 4o.6Y4.3000cia):= t.4.5...3AN) E 6 • al 0 O i 0 Mr. = WO COAgAt.?)C60, — 1,1 -q? 3 /L ) _ F- 0- Tft.3 C.1. tt s esa 0C.. M= kiento,,kft- • az (\,,c_1-4_c.c.rotx5)1co,b b._,L4-2-u-1 #5@ YO � M. r‘ -z. 0 iqo CI ,"• ay._ e 101( o,c. 4 .-. 1_,,0 . 2 , 9 0 ( 1 . 0 D o e - ) / ( 0 , i 6 ) C a o c . x . )(4 - 2 : : 0 j i - - L J O . o (.5 ..t. 0 MY\ .= 1 0, C V) CI 1.2 Pii ( POP-0/ 6 X- 1 --- 9 . - - 11) 12-) - 8 t4:6s 5 r :64 ' f- \ rcxycney* 5 g .',2°. • , " 2 Tr € In." oic • As_, 0. km z. : (0,q = 0 Mn --- 0,c1 ( IS - , _ - - 4-FZL) 'IN O bm C - - 1 - - i S' S\ = x' �loS1° =`1Q „S1 K -3 % S uoi - b1 °° Cc\� -A SI1 - f - =y' - Ci 4 -L' - ( ) s'1 ? W ° ■vs.'l - 16,, } 9 Qa c) fi -="W 7(12, 4 - E,' e2 - -- x o k °' _ \-toaf -! 710 ?cis CouLiooi- 19-i-s ° o 2 U - Q °T ro - ow > ovVS'1 :!: 2:$. x: - 1C1 - 17) - + Z1 ' 49 = 0 Cro p 1C1f , A(zkrE .4 ln . 1)�C�Xz's=+Z - s) " ��`W b h� -�a� �af� +�10Sfi - c CD - t , ar->n - 1 Q I -k OW' # 1°I' 1)-+ (Z �Z' 4 C , ) - " 0 g1 1 6 61 uP4)aro -i-s o.} °on acn USA 43 ►oE= =a ibb = ll'1� z's� s ' W b � = x z o SO 113'1)p 10 m Li 9_0' _ to 0 - --AO ' ." S' 1 < 1 1 ""- IV; ; - o W 3 3 °Iv ifi = (,)° 1't 4 c 'eye'$ XS'1)(0S1'0 ) - aW . � al so t z a, p m z n m p 4-The -,/ . t i,_______± ; e4 "�� r I m O b m -1 Ill . `� • A l. In 0 3 1 G .9 m ❑ ❑ mg kU 1 - Id k ! Vl n :3N ( S2 1 K 1 e X 1 173 road do Q 6\.I ' V Y) ; eor 0 1 of 0 : 31da \N 'AEI o FIy QQ 0 w CCD ,..1., C 0 _ 1 Fri P Q 1 -I 2 0 2 ❑ m Z '1 P m 3 _((11• t —1 )(C. ), El �� � , l L a } ��� 4 j - >k A fib' k L V )' G ) 1) fl = 2" -6 3 q. S� / I 3 _ C D 5 1:7) N -i`- .S.' t " W f m O J r 1 ' n 0 -(--•O•°, D O qk —a Zg \: _ — _X ❑ m 3 3 0 RI -{ o .1e-6T = - Va „S\ x jStx- 3 (") a--k, m 0 al 0 m a)Z_ 1x0 2 ❑ ❑ . 4 - w.1) i = )(-0.4),..A0 :38 :173 road 0100- 40 1 4 V ). D : oN Igor Q we- 9 :3i.va ) — n ab Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:42 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \Interior 2.etz\ M33=23.55 lKip ft] • • M33= -17.88 [Kip *ft] Y X M LC .Bentley 7 Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:42 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \Interior.etz\ • M33 =32.26 [Kip *ft] M33= -9.27 [KiP *ft] • Me LCZ 14,f30 ACI 318 -05 Appendix D 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc = 3000 psi fc = 3000 psi h' = 3.50 inches hef ='s y; 12.00, • • inches (into the Fe Stem =± :.8:00 . inches Note: hef above is the the embedment into or cmax = 5.25 inches the foundation and does not consider stem WE Fnd Width = 36.00 inches e = 2.25 inches e = 18.00 inches Wc,N= 1.00 cast -in -place anchor y► 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor = 0.75 strength reduction factor = 0.75 strength reduction fact' Calculations Calculations ANc = 68 in` AN = 1296 in` ANo = 110.25 in` ANa = '1296 in` Nb = 8,607 pounds Nb = 55,121 pounds Wed,N = 0.8286 Wed,N — 1.00 N = 4,399 pounds N = 55,121 pounds (1)11 = 3,299 pounds 4N = 41,341 pounds Combined Capacity of Stem Wall and Foundation 4Neb = 44,640 0.754N = 33,480 BY p\ DATE: 6- zio JOB NO.. Cem,octo OF PROJECT: RE: Irv Sr\taruJc4,11 c:?) 4 , 5 -1 • 0 O M . L i j • . 6 >4. 3 IS" - J u z - w 0 Tr:ko (.‘) -4 ! 1:2," 0, s v9 470,0001 /0,e,(3o0o.X.-3(*) . . 0 .40c1 • 0 Mr‘:--. a q0(0 2 - 3l.aLZ(V t.Sb k-C6- 2 0 CO #4. e 11.) or x 0 0.3q-6a.0,000) fo,B(3c.xxi)(7&t.) • z 0 6 • • (1.. > CID t c . 0 t 12 " o . • 1 -17:: 3 Concrete Side Face Blow Out Givens Abrg = 2.15 in` Pc = 3000 psi cmin = 18.00 inches = 0.75 strength reduction factor Calculations Nsb = 231,191 pounds 4)Nsb = 173,393 pounds Concrete Pullout Strength Givens Abrg = 2.15 in` Pc = 3000 psi = 0.75 strength reduction factor Calculations N = 51,552 pounds 4'N = 38,664 pounds Steel Yield Strength Givens f = 58,000 psi A = 0.606 in = 0.80 strength reduction factor Calculations N 35,148 pounds_ 4)N, = 28,118 pounds < 33,480 Ductility Met Holdown Check Holdown: HDU14 Holdown Capacity= 14,930 pounds 1.6* Capacity= 23,888 pounds 23,888 < 28,118 Holdown Checks Nt fir aso rn %-Z tk�3'1 = (Y) CYlooi b -9Y o U 15` -Ana Gra\ _ LZ)Lo ) o �1 001: (cn Q1))) Luc is ���zf z = c1 X." � r iiosi 104? - &l 0)14-17. ( - t i t ) ) ti 'Orin :,d 00 = czRII)st a n4 11�rn�abd � \1.5\a -sO °; OO �m MOO\ bcb4. \ - 1 sp Sr'U u av nioS = • (11OOS1 nn 001-4 cchve ,. CD ( Oo(-+cc.t��� o 11 5a n p -31d os--t _ c ( < °)C,-r)<b) :11 �- °►c _ � 3 5( f.IX91) MOO) = (rn OS)) (2112 l.,ra. � s d c.se = ��% 1Q. z 3 os1) (41Q `)0a, ' -416 ficc'2 : 3sci S1 X`Sl^al b) - 11r)c`n :7C1 cou ! c'�q 3� �v.n 3 z J»aa z a Z o x3 )© °t =n'? - moo- %. M 0C11 + I h 1 0 rn . doos1= -3gd aas1= d vg x•ow, '1 Cr) 0O14 1 f b4 - z 'PO 0 1 1 ' 01 O - )ca311- 5(/ Of) = ( SC\ 010c51"a1 ZPig) a 11 ro o m (001 -_ (:"^ )0' 1)(: m 0 `Z1l9 ( 'NI IQ. U Joots old qp z _ c3S %1)(`slan 2)13 g ❑ 3 t ern . j1 d 00£ = c3sa li p jst a 1Q 0 m T!09 � saPS U�.}ooj 11 aS :38 103 road d ' ON eor .aiva