Loading...
Specifications (3) Structural Calculations for Full Lateral & Gravity Analysis of Plan A 1460 Lot 45, Summer Creek Townhomes Tigard, OR RE CF\fr �. Prepared for AUG 17 2.010 Pulte Group C6`ri oF i I {GARD July 13, 2010 �ui1 -Did° DIVISION NUMBER: CEN -090 ** *Limitations * ** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and /or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 117 sheets total including this cover sheet. Oaarratl c3E N ROF �ff G I E i k �� 12,320 9 ,:- j e.„=......___. tP OREGON ... y 15,15 _,4 d. E I EXPIRES.12 -31 -2011 1 This Packet of Calculations is Null and Void if Signature above is not Original • Harper Houf Peterson Righcllis Inc. LAnv9cA A_ • ` p EC3.:UG VI 'J 205 SE Spokane St. Suite 200 • Portland, OR 97202 • [P] 503.221.1131 • [F] 503.221.1171 1104 Main St. Suite 100 • Vancouver, WA 98660 • [P] 360.450.1 141 • [F] 360.750.1141 1133 NW Wall St. Suite 201 • Bend, OR 97701 • [P] 541.318.1161 • [F] 541.318.1 141 Structural Calculations for Full Lateral & Gravity Analysis of Plan A 1460 Summer Creek Townhomes Tigard, OR Prepared for Pulte Group July 13, 2010 JOB NUMBER: CEN -090 ** *Limitations * ** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and /or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 117 sheets total including this cover sheet. This Packet of Calculations is Null and Void if Signature above is not Original • Harper Houf Peterson Righellis Inc. NGINI: ERS. PLANNERS LANUSGAPL ARG,ITCOTS•SURV[YONS 205 SE Spokane St. Suite 200 • Portland, OR 97202 a [P] 503.221.1131 m [F] 503.221.1171 1 104 Main St. Suite 100 s Vancouver, WA 98660 e [P] 360.450.1 141 0 [F] 360.750.1 141 1133 NW Wall St. Suite 201 ♦ Bend, OR 97701 m [P] 541.318.1 161 • [F] 541.318.1 141 • Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit A Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, lW: 1 2006 IBC / 2007 OSSC Occupancy Category: II Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed, ASCE.7 -05 Ch. 20 Importance, IE: 1 ASCE 7 -05 Table 11.5-1 Ss: 0.942 USGS Spectral Response Map S 1: 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: " 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength, f'c: 3000 psi Foundations & Slab on Grade Concrete Unit Weight, yc: 145 pcf Steel Reinforcement Yield Strength, f 60,000 psi Wood Studs (Wall Studs): Hem -Fir #2 2x & 4x Wood Beams & Posts: DF -L #2 6x & Greater Wood Beams & Posts: DF -L# 1 Glulam Beams: 24F -V4 PSL Beams: Fb =2,900 psi, FV= 328psi, E =2.0 Million TS /LSL Beams: Fb =2325 psi, FV= 460psi, E =1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : .1 500 psf Assumed 2. All manufactured trusses, joists, and flush beams u.n.o. shall be designed by others. Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 WoodWorks — Sizer version 2002 Bently RAM Advanse k , Harper Project: SUMMERCREEK TOWNHOMES UNIT A HPP Houf Peterson Client PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS -- Designer: AMC Date: Pg. # IANDSCAPE ARCRITEC(9• SURVEYORS DESIGN CRITERIA 2007 Oregon Structural Specialty Code & ASCE 7 -05 Roof Dead Load RFR := 2.5.psf Framing RPL := 1.5.psf Plywood RRF := 5. psf Roofing RME := 1.5.psf Mech & Elec RMS := 1.psf Misc RCG := 2.5•psf Ceiling RIN := 1.psf Insulation RDL = 15•psf Floor Dead Load FFR := 3.psf Framing FPL := 4•psf Sheathing FME := 1.5.psf Mech & Elec FMS := 1.5.psf Misc FIN := .5•psf Finish & Insulation FCLG := 2.5•psf Ceiling FDL = 13 ;psf Wall Dead Load WOOD EX Wall : =. 12•psf INT_Wall := 10•psf Roof Live Load RLL := 25.psf Floor Live Load FLL := 40•psf • Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP_:• Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. EIi GINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCNIIECTS•SUFVEYORG Transverse Seismic Forces Site Class = D Design Catagory = D Building Occupancy Category: II Weight of Structure In Transverse Direction Roof Weight Roof Area := 843 • ft 2 .1.12 RFwr := RDL•Roof Area RFw-r = 14162•1b Floor Weight Floor_Area2 := 64741 FLRwr2nd := FDL•Floor Area2nd FLRW - rend = 8411-lb Floor Area3rd :' 652•ft FLRWT3rd := FDL•Floor Area3rd FLRWT3rd = 8476-lb Wall Weight EX Wall Area :• (2203)41 INT_Wall_Area := (906)• 1 WALLWT := EX_Wall,,, Area + INT_Wal1 WALLw-r = 35496•1b • WTTOTAL = 66545 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h := 32 Mean Height Of Roof 1 := 1 Component Importance Factor (11.5, ASCE 7 -05) := 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C := .02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x := .75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period Ta := C(•(hn) T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. . (Chapter 22, ASCE 7- 05)...or Ss := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F := 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F, := 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) < ? , Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP c Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • .,CANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCNITEC TS •SURVEYORS SMS := F SMS = 1.058 (EQU 11.4 -1, ASCE 7 -05) Sd .— 2 • 3MS Sd = 0.705 (EQU 11.4 -3, ASCE 7 -05) S := F S1 SMl = 0.584 (EQU 11.4 -2, ASCE 7 -05) Sdl 2 3 M1 Sdl = 0.389 (EQU 11.4 -4, ASCE 7 -05) Cst := Sds Ie Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) R ...need not exceed... Sdrie 12.8 -3, ASCE 7 -05 Csmax :_ , Csmax = 0.223 (EQU 7-05) T ...and shall not be less then... C1 := if(0.044• Sd I < 0.01, 0.01,0.044• Sd l C2:= if Si S1 <0.6,0.01, •S1•Iel J (EQU 12.8 -5 &6, ASCE 7 -05) l R Csmin := if(Ci > C2,C1,C2) Cs = 0.031 Cs := if (Cst < Cs ,Cs < Cs Cst, Csmax)) Cs = 0.108 V : =. Cs• WTTOTAL V = 72201b (EQU 12.8 -1, ASCE 7 -05) E := V•0.7 E = 50541b (Allowable Stress) / L`3 Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP. Hod' Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. �- EN GINS ERS • PLANNERS - Designer: AMC Date: Pg. # LANDCCAPE ARCHITECTS• SURVEYORS Transverse Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed; 100 mph (3 Sec Gust) Exposure: B Building Occupancy Category: H := 1.00 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X 1'.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... a2 := 2•.1.20 -ft Zone A & B Horizontal Length a2 — 4 ft (Fig 6 -2 note 10, ASCE 7 -05) or = .4•fi ft a2 = 25.6 ft but not less than... a2min := 3-2-ft a = 6ft Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzOneA 19.9•psf PnetzoneB 3.2•psf PnetzoneC == 14.4•psf PnetzoneD 3.3•psf Vertical PnetzoneE 8.8•psf PnettOneF 12•psf PnetzoneG —6.4psf PnetzoneH 9.7•psf Basic Wind Force PA := PnetZOneA'IW.X PA = 19.9•psf Wall HWC PH := PnetzoneB'Iw; X PH = 3.2•psf Roof HWC PC := PnetzoneC'Iw Pc = 14.4•psf Wall Typical PD := PnetzoneD'Iw•X PD = 3.3•psf Roof Typical PE := PnetzoneE'Iw•X PE = — 8.8•psf PF := PnetzoneF'Iw,•X PF = — 12•psf Pc, := PnetzoneG' Iw' X PG = — 6.4• psf PH := PnetzoneH'lw•X PH = — 9.7•psf r L � . Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. Designer: AMC Date: Pg. # LANDSCAPE ARCH TECT5•5URVEV'OR5 Determine Wind Sail In Transverse Direction WSAILZoneA (41 + 59 + 29)•ft WSAILZoneB (19 + 0 + 23).ft WSAILZoneC (391 + 307 + 272)•ft (0 + 0 + 5) WSAILZoneD •ft 2 WA := WSAII- ZoneA'PA WA = 2567 Ib WB := WSAILZoneB'PB WB = 134 Ib WC := WSAII- ZoneC'PC WC = 13968 lb WD := WSAILZoneD•PD WD = 161b Wind_Force := WA + WB + WC + WD Wind_Force := 10•psf•(WSAILZ + WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind_Force = 16686 Ib Wind_Force = 114601b WSAILZoneE 94412 W SAU -ZoneF 108. ft WSAILZoneG 320•ft WSAILZoneH := 320412 WE := WSAILZoneE'PE WE = —827 Ib WF := WSAILZoneF WF = —1296 lb WG WSATLZoneG WG = — 20481b WH := WSAILZoneH WH = — 31041b Upliftnet WF + WH + (WE + WG) + RDL•[WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneG) }. 6.1 . 12 Upliftnet = 1212 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION Harper Project: SUMMERCREEK TOWNHOMES UNIT A P Houf Peterson � ,: Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCHIFECTS•SURVEYORS Longitudinal Seismic Forces Site Class = D Design Catagoiy = D Building Occupancy Category: II Weight of Structure In Longitudinal Direction Roof Weight Roof Area = 944 ft JDGI^,:= RDL -Roof Area RFW-1- = 14162•lb Floor Weight Floor_Area2 = 647 ft F= FDL•Floor Area2nd FLRwra = 8411-lb Floor Area3rd = 652 ft • , awmiv:= FDL.Floor_Area3 FLRWT3rd = 8476-lb Wall Weight . NA1. deg: _ (2203).ft INT Wall Area = 906 ft , j= EX Wall Area + INT Wall INT_Wall_Area WALLw -r = 35496•1b WTTOTAL = 66545 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h = 32 Mean Height Of Roof Ie = 1 Component Importance Factor ' (11.5, ASCE 7 -05) iJJRR v'= 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C = 0.02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x = 0.75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period j C T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) Si = 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S = 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F = 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F„ = 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) 4 -U F . Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCM 7ECT3• SURVE YOR3 F SMs = 1.058 (EQU 11.4 -1, ASCE 7 -05) 2•SMs Sd = 0.705 (EQU 11.4 -3, ASCE 7 -05) 3 = F Si SM1 = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2 •SM1 3 Shc = 0.389 (EQU 11.4 -4, ASCE 7 -05) Sds•Ie Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) R ...need not exceed... s Shc'Ie Cs = 0.223 (EQU 12.8 -3, ASCE 7 -05) ' Ta •R ...and shall not be less then... j:= if 0.044. Sd I < 0.01, 0.01, 0.044• Sds' Ie) r 0.5 S1 Ie1 (EQU 12.8 -5 &6, ASCE 7 -05) ,:= ifl S1 <0.6,0.01, R J := if (CI > C2,C1,C2) Cs = 0.031 N Cs .= if (Cst < Csmin, Cs if (Cst < Csmax , Cst, Csmax)) Cs = 0.108 V := Cs•WTTOTAL V = 72201b (EQU 12.8 -1, ASCE 7 -05) • E := V•0.7 E = 50541b (Allowable Stress) 11 9 )1"- Harper Project: SUMMERCREEK TOWNHOMES UNIT A . ' Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. - - - � - ENGINEERS • PLANNERS Designer:. AMC Date: Pg. # LANDSCAPE AR CNITEC rS• SUR,EYORS Longitudinal Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 110 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I = 1.0 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X = 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... = 2•.1.20.ft Zone A & B Horizontal Length = 4 ft (Fig 6 -2 note 10, ASCE 7 -05) or hZ;= .4-11,-2-ft a2 = 25.6 ft but not less than... M 3.2.ft a = Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA = 19.9•psf PnetZOneB = 3.21psf PnetzoneC = 14.4•psf PnetzoneD = 3.3•psf Vertical PnetzoneE = —8.8 psf PnetzoneE = — 12•psf PnetzoneG = —6.4•psf PnetzoneH = — 9.7•psf Basic Wind Force ,:= PnetzoneA'Iw; X PA = 19.9•psf Wall HWC ,P ,.,:= PnetzoneB'Iw A PB = 3.2•psf Roof HWC = PnetzoneC'Iw Pc = 14.4•psf Wall Typical Sa:= PnetzoneD' I • X PD = 3.3.psf Roof Typical Pte:= PnetzoneE'Iw X PE = — 8.8•psf ,,:= PnetzoneF'Iw• PF = — 12•psf ,:= PnetzoneG I A Pc, = —6.4• psf ,:= PnetzoneH'Iw•X PH = — 9.7•psf 17 . L C 6 . . Harper Project: _ SUMMERCREEK TOWNHOMES UNIT A P r. Houf Peterson Cl PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE a RCHITED Determine Wind Sail In Longitudinal Direction M1:= (48 + 59 + 40)•ft WW A:= (10 +0 +44)•ft y =. (91 + 137 + 67)-ft N := (43 + 0 + 113) A W , , = WSAILZoneA'PA WA = 29251b Wes:= WSAILZoneB•PB WB = 173 Ib WvvlvL := WSAILZoneC'PC WC = 42481b Wes:= WSAILZoneD'PD WD = 515 Ib Wince' WA + WB + WC + WD 3 w = 10•psf•(WSAILZ + WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind Force = 7861 lb Wind_Force = 6520 Ib ,WAAALLza = 148.ft W A ,,:= 120•ft SA1 L 323•ft AyAvAAwII ,R41,:= 252- ft W:= WSAILZoneE'PE WE = — 13021b W,:= WSAILZoneF'PF WF = — 144016 Wes= WSAILZoneG'PG WG = — 20671b W, = WSAILZoneH'PH WH = — 2444 lb A l := WF + WH + (WE + WG) + RDL•[WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZonea'• Upliftnet = 1243 Ib (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION g 191 . Harper Houf Peterson Righellis Pg #: • Transverse Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = • 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X= 1.00 Iw= 1.00 Wind Sail (ft Wind Net Design Wind Pressure (psf) Pressure (Ibs) Zone A = 19.9 129 2567 Wall High Wind Zone Horizontal Zone B = 3.2 42 134 Roof High Wind Zone Wind Forces Zone C = 14.4 970 13968 Wall Typ Zone Zone D = 3.3 5 • - 17 Roof Typ Zone Zone E = -8.8 94 -827 Roof Windward High Wind Zone Vertical Zone F = -12.0 108 -1296 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 320 -2048 Roof Windward Typ Wind Zone Zone H = -9.7 320 -3104 Roof Leeward Typ Wind Zone Total Wind Force =l 16686 Ibs I Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -7275 Ibs Resisting Dead Load= .8472 Ibs E =I 1197 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm (ft Zone A Zone B Zone C Zone D Main Floor 41 19 391 0 Upper Floor 59 0 307 0 Main Floor Diaphragm Shear = 6507 Ibs Upper Floor Diaphragm Shear = 5595 lbs Roof Diaphragm Shear = 4584 Ibs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Diaphragm Diaphragm (Ibs) (Ibs) (lbs) Width ft Width ft ) Width (ft) A 13.08 1737 18 2797 19 2323 Al 24.50 3254 0 0 0 0 B 11.42 1516 18 2797 18.5 2261 . E= 49 6507 36 5595 37.5 4584 — "9— Leo Harper Houf Peterson Righellis Pg #: Transverse Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = 1I Site Class = D S1 = 0.34 Ss = 0.94 • Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 • Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 S 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 Sin= 0.71 Equ. 11.4 -3, ASCE 7 -05 Spf= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = . 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 ' Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 • Floor 2 Wt (Ib)= 8411 Floor 3 Wt (Ib)= 8476 Roof Wt (Ib) = 14162 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22609 • Trib. Floor 3 Diaphragm Wt (Ib) = 22674 Trib. Roof Diaphragm Wt (Ib) = 21261 Vertical Dist of Seismic Forces I Cumulative % total of base shear I Rho Check to Shearwalls (Ibs) to shearwalls Req'd? Vfl 2 (Ib) = 720 100.0% Yes Unoor 3 (Ib) = 1625 85.8% Yes Vroof (Ib) = 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft Ibs Ibs Ibs A 102 361 394 114 897 1266 Al 432 0 0 481 0 0 B 113 .293 449 126 728 1443 Sum 647 654 843 720 1625 2709 Total Base Shear* = I 5054 LB c • *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. / — L‘, \ Harper Houf Peterson Righellis Pg #: Longitudinal Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph • Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= 11 (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf 2t. = 1.00 lw= 1.00 Wind Sail (ft Wind Net Design Wind Pressure (psf) Pressure (Ibs) Zone A = 19.9 147 2925 Wall High Wind Zone Horizontal Zone B = 3.2 54 173 Roof High Wind Zone Wind Forces Zone C = 14.4 295 4248 Wall Typ Zone Zone D = 3.3 156 515 Roof Typ Zone Zone E = -8.8 148 -1302 Roof Windward High Wind Zone Vertical Zone F = -12.0 120 -1440 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 323 -2067 Roof Windward Typ Wind Zone Zone H = -9.7 252 -2444 Roof Leeward Typ Wind Zone Total Wind Force =l 7861 Ibs I Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -7254 Ibs Resisting Dead Load= 8483 Ibs E_1 1229 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Dia hragm (ft Zone A Zone B Zone C Zone D Main Floor 48 10 91 43 Upper Floor 59 0 137 0 Main Floor Diaphragm Shear = 2440 Ibs . • Upper Floor Diaphragm Shear = 3147 Ibs Roof Diaphragm Shear = 2275 Ibs Wind Distribution To Shearwall Lines . MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm (Ibs) Diaphragm (Ibs) Diaphragm (Ibs) Width (ft) Width (ftl_ Width (ft) 1 10 1220 10 1573 10 1137 2 10 1220 10 1573 10 1137 E= 20 2440 20 3147 - 20 2275 . A - 1, r2..... Harper Houf Peterson Righellis Pg #: Longitudinal Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D S1 = 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 SMg 1.06 Equ. 11.4 -1, ASCE 7 -05 SMI= 0.58 Equ. 11.4 -2, ASCE 7 -05 S 0.71 Equ. 11.4 -3, ASCE 7 -05 SDI= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (Ib)= 8411 Floor 3 Wt (Ib)= 8476 Roof Wt (Ib) = 14162 Wall Wt (Ib) = 35496 • Trib. Floor 2 Diaphragm Wt (Ib) = 22609 Trib. Floor 3 Diaphragm Wt (Ib) = 22674 - Trib. Roof Diaphragm Wt (Ib) = 21261 Vertical Dist of Seismic Forces I Cumulative % total of base shear I Rho Check to Shearwalls (Ibs) to shearwalls Req'd? VOoor 2 (Ib) = 720 100.0% Yes VBoo, 3 (Ib) = 1625 85.8% Yes Vroof (lb) = 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft Ibs Ibs Ibs 1 286 291 415 318 725 1334 2 361 361 428 402 900 1375 Sum 647 652 -843 720 1625 2709 Total Base Shear* = I 5054 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. 4 L■3 Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 'Transvere Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel Mo M Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht I k ht I k ht I k (klf) (plf) (ft -k) (ft -k) (k) 101 Not Used • 102 7 1.75 3.50 4.00 8.00 1.74 18.00 2.80 27.00 2.32 1959 Double 1.40 NG '103 7 1.75 3.50 4.00 ' i - 8.00 1.74 8.00 2.80 8.00 2.32 1959 Double 1.40 NG 103a 7 4.00 4.00 1.75 ox 8.00 3.25 814 Single 1.40 IV 104 8 4.50 10.50 1.78 ox 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 105 8 3.00 10.50 2.67 OK 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 106 8 3.00 10.50 2.67 OK 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 109 8 4.58 17.08 1.75 OK 8.00 1.74 18.00 2.80 27.00 2.32 401 Single 1.40 II 110 8 12.50 17.08 0.64 ox 8.00 1.74 8.00 2.80 8.00 2.32 401 Single 1.40 II 111 8 4.50 7.25 1.78 OK 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 112 4.75 1.38 7.25 3.45 OK 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 113 4.75 1.38 7.25 3.45 OK 8.00 " 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 201 9 3.92 10.79 2.30 OK ' 9.00 2.80 18.00 2.32 474 Single 1.40 I1 201a 9 4.17 _ 10.79 2.16 OK 9.00 2.80 18.00 2.32 474 Single 1.40 ' Il 201b 9 2.71 10.79 3.32 ox 9.00 2.80 18.00. 2.32 474 Single 1.40 II 202A 9 2.96 11.96 3.04 ox 9.00 2.80 18.00 2.26 423 Single 1.40 _ II 202E 9 3.00 11.96 3.00 ox 9.00 2.80 18.00 2.26 423 Single 1.40 II , 203 9 3.00 11.96 3.00 ox 9.00 2.80 18.00 2.26 423 Single 1.40 II 204 9 3.00 11.96 3.00 ox 9.00 2.80 18.00 2.26 423 Single 1.40 II 301 8 3.92 - 13.96 2.04 OK 8.00 2.32 166 Single 1.40 _ I 302 8 5.79 13.96 1.38 ox 8.00 2.32 166 Single 1.40 _ I 303 8 4.25 13.96 1.88 co( 8.00 2.32 166 Single 1.40 I 304 8 2.96 5.96 2.70 OK 8.00 2.26 379 Single 1.40 11 305 8 3.00 5.96 2.67 ox 8.00 2.26 379 Single 1.40 II Spreadsheet Column Definitions & Formulas , L= Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check • V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht . Mr (Resisting Moment) = Dead Load • L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • il -- L,\-t, Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 fransvere Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho*V % Story 8 Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load • Strength Bays Sides Factor Type T (ft) (ft) (ft) ht I k ht I k ht I k (klf) (plf) (plf) (ft-k) (ft -k) (k) 101 Not Used . 102 7 1.75 3.50 4.00 8.00 0.11 18.00 0.90 27.00 1.27 651 846 0.10 0.50 Double 0.50 NG 103 7' 1.75 3.50 4.00 a ` 8.00 0.11 8.00 0.90 8.00 1.27 651 846 ' 0.10 0.50 Double 0.50 NG 103a 7 4.00 4.00 1.75 OK 8.00 0.48 0.00 0.00 120 156 0.22 1.14 Single . 1.00 I 104 8 4.50 • 10.50 1.78 OK 8.00 0.13 8.00 0.73 8.00 1.44 219 284 0.25 1.13 Single 1.00 II _ 105 8 3.00 10.50 2.67. OK 8.00 0.13 8.00 0.73 8.00 1.44 219 284 0.17 . 0.75 Single 0.75 III 106 8 3.00 10.50 2.67 ox 8.00 0.13 8.00 0.73 8.00. 1.44. 219 284 0.17 0.75 Single 0.75 III 109 8 4.58 17.08 1.75 OK 8.00 0.11 18.00 0.90 27.00 1.27 134 174 0.25 1.15 Single 1.00 I 110 8 12.50' 17.08 0.64 OK 8.00 0.11 8.00 0.90 8.00 1.27 134 174 NA 3.13 Single 1.00 I 1 11 8 4.50 7.25 1.78 ox 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.25 1.13' , Single 1.00 III 112 5 1.38 7.25 3.45 OK 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.08 0.58 Double 0.58 VII 113 5 1.38 7.25 3.45 OK 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.08 0.58 Double 0.58 ' VII _ 201 9 3.92 10.79 2.30 OK , 9.00 0.90 18.00 1.27 200 261 0.17 0.87. Single 0.87. II - 201a 9 4.17 10.79 2.16 or 9.00 0.90 18.00 1.27 200 261 ' 0.18 0.93 Single, 0:93 11 201b 9 2.71 10.79 3.32 oK 9.00 0.90 18.00 1.27 200 261 0.12 0.60 Single 0.60 III 202A 9 2.96 11.96 3.04 OK 9.00 0.73 18.00 1.44 182 236 0.13 '0.66 Single 0.66 III 202B 9 3.00 11.96 3.00 oK 9.00 0.73 18.00 1.44 182 236 0.13 ' 0.67 Single 0.67 III • 203 9 3.00 11.96 3.00 OK 9.00 0.73 18.00 1.44 181 236 0.13 0.67 Single 0.67 III - 204 9 3.00 11.96 3.00 oK . 9.00 0.73 18.00 1.44 - 181 236 0.13 0.67 Single 0.67 III 301 8 3.92 13.96 2.04 OK 8.00 1.27 91 • 118 0.20 0.98 Single 0.98 1 302 8 5.79 13.96 1.38 oK 8.00 1.27 91 118 0.29 1.45 Single 1.00 I 303 8 4.25 13.96 1.88 OK 8.00 1.27 91 118 0.21 1.06 Single 1.00 I 304 8 2.96 5.96 2.70 OK 8.00 1.44 242 315 0.15 0.74 Single 0.74 III 305 8 3.00 5.96 2.67 OK 8.00 1.44 242 315 0.15 . 0.75 Single .0.75 II1 Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total transverse base shear? Yes Total 1st Floor Wall Length = is.00 Total 8 1st Floor Bays = 4.77 • Are 2 bays minimum present along each wall line? No 1st Floor Rho = 13 Total 2nd Floor Wall Length = 22.75 Total 8 2nd Floor Bays = s Are 2 bays minimum present along each wall line? No 2nd Floor Rho = u Total 3rd Floor Wall Length = 19.92 Total ti 3rd Floor Bays = s Are 2 bays minimum present along each wall line? No 3rd Floor Rho = 1.3 • Spreadsheet Column Definitions & Formulas L = Shear Panel Length • H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load•Rho / Total L % Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) 8 Bays = 2•L/H Shear Factor = Adjustment For II/L > 2:1 Mo (Overturning Moment) = Wall Shear • Shear Application ht • Mr (Resisting Moment) = Dead Load * I., 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • /4- ..--- \,..:\:c Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klf) (plf) (ft-k) (ft -k) (k) 107 8 15.50 15.50 0.52 ox 10.00 1.22 18.00 1.57 27.00 1.14 1.03 254 Single 1.40 I 71.21 123.49 -0.19 108 8 15.50 15.50 0.52 OK 10.00 1.22 18.00 1.57 27.00 1.14 1.03 254 Single 1.40 I 71.21 123.49 -0.19 205 9 13.00 13.00 0.69 OK 9.00 1.57 18.00 1.14 0.70 208 Single 1.40 I 34.62 59.15 -0.07 206 9 13.00 13.00 0.69 OK 9.00 1.57 18.00 1.14 0.70 208 Single 1.40 I 34.62 59.15 -0.07 I 306 8 10.00 10.00 0.80 OK - 8.00 1.14 0.29 114 Single 1.40 I 9.10. 14.401 0.05 I 307 8 10.00 10.00 0.80 OK 8.00 1.14 0.29 114 Single 1.40 I 9.10 14.401 0.05 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overtuming Moment) = Wall Shear ' Shear Application ht Mr (Resisting Moment) = Dead Load * L ' 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • • Li\c, Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho• V % Story # Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Fir. From 3rd Flr. _ From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klf) (plf) (plf) (ft -k) (ft -k) (k) 107 8 15.50 15.50 0.52 oK 10.00 0.32 18.00 0.73 27.00 1.33 1.09 153 153 NA 3.88 Single 1.00 1 52.25 130.70 -1.74 108 8 15.50 15.50 0.52 OK 10.00 0.40 18.00 0.90 27.00 1.38 1.09 173 173 NA 3.88 Single 1.00 1 57.35 _ 130.70 -1.40 205 206 9 9 13.00 13.00 13.00 13.00 1 0.69 0.69 . o K I 9.00 I 0.73 1 18.00 1.33 0.76 158 I 158 I NA 2.89 Single 1.00 1 30.54 1 64.22 I -0.64 I 9.00 0.90 18.00 1.38 0.76 175 175 NA 2.89 Single 1.00 1 32.85 64.22 -0.45 306 8 1 10.00 10.00 1 0.80 I OK I 00 1.33 0.35 133 133 NA 2.50 Single 10.67 1 17.40 I 0.02 307 8 10.00 10.00 0.80 OK I 1 8 8.00 138 0.35 138 138 NA 2.50 Single 1.00 1.00 I I 11.00 17.40 0.062 Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes • Total 1st Floor Wall Length = 31.00 Total # 1st Floor Bays = 7.75 Are 2 bays minimum present along each wall line? Yes • 1st Floor Rho = 1.0 Total 2nd Floor Wall Length = 26.00 Total # 2nd Floor Bays = 6 Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho = 1.0 Total 3rd Floor Wall Length = 20.00 Total # 3rd Floor Bays = s Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho = 1.0 Spreadsheet Column Definitions & Formulas . L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load•Rho / Total L Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2'L/H Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear • Shear Application ht Mr (Resisting Moment) = Dead Load' L • 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) • Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Transvere Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good For V (p11) (plf) (Ib) (Ib) 101 Not Used 102 Simpson Strongwall 103 Simpson Strongwall 103a 814 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 833 104 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 105 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 106 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 109 401 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 110 401 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 111 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 112 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 990 113 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 990 201 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 201a 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 201b 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 202A 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 202B 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 203 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 204 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 301 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 302 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 303 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 , 304 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 305 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design Toads. Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Longitudinal Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good For V (p1f) \ (PM (lb) (lb) milummusursumm. 107 254 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -192 Simpson None 0 108 254 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -192 Simpson None 0 205 208 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -69 Simpson None 0 206 208 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -69 Simpson None 0 306 133 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 48 Simpson None 0 307 138 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 59 Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design Toads. /4 1---- L\.9 • Transverse Wind Uplift Design . • Unit A Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. Fir. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ - floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 102 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.192 0.832 27.43 0.57 1.69 21.31 20.79 21.31 20.79 103 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.832 0.192 27.43 1.69 0.57 20.79 21.31 20.79 21.31 103A 8 1.1667 4.00 4.00 3.254 3.254 814 0.04 2.016 1.664 26.03 8.38 6.98 . 6.00 6.24 .. 6.00 6.24 104 8 1.1667 4.50 10.50 1.516 2.8 2.26 6.576 .626 0.1 0.8 0.078 25.08 4.61 1.36 5.58 _6.06 5.58 6.06 105 8 1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 0.048 0.252 0.156 16.72 0.97 0.68 6.45 6.52 6.45 6.52 106 8 1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 - 0.048 0.156 0.252 16.72 0.68 0.97 6.52 6.45 6.52 6.45 109 8 1.1667 4.58 17.08 1.737 2.8 2.32 6.857 401 0.152 0.192 0.156 16.31 2.47 2.31 3.63 3.66 201L 201R 4.82 5.09 8.45 8.75 110 .8 1.1667 12.50 17.08 1.737 2.8 2.32 6.857 401 ' 0.096 0.156 0.192 44.52 9.45 9.90 3.24 3.21 201 aL 201 bR 4.95 4.88 8.18 8.09 111 8 1.1667 4.50 7.50 1.516 2.8 2.26 6.576 877 0.144 0.8 0:078 35.11 5.06 1.81 8.02 8.51 8.02 8.51 112 8 1.1667 1.50 7.50 1.516 2.8 2.26 6.576 877 0.048 0.252 0.234 11.70 0.43 0.41 11.44 11.46 11.44 11.46 113 8 1.1667 1.50 7.50 1.516 2.8 2.26 ._ 6.576 877 0.048 0.234 0.252 11.70 0.41 0.43 11.46 11.44 11.46 11.44 201 9 1.1667 3.92 10.8 2.8 2.32 5.12 474 0.225 0.432 0.156 17.71 3.42 2.34 3.99 4.16 301L 301R 0.83 0.93 4.82 5.09 201a 9 1.1667 4.17 10.8 2.8 2.32 5.12 474 0.225 0.156 0.156 18.84 2.61 2.61 4.14 4.14 302L 302R 0.80 0.80 4.95 4.95 201b 9 1.1667 2.71 10.8 2.8 2.32 5.12 . '474 0.225 0.156 .0.432 12.24 1.25 2.00 4.24 4.08 303L 303R 0.91 0.80 5.15 4.88 202A 9 1.1667 2.96 11.958333 2.8 2.26 5.06 423 0.173 0.432 0.052 11.92 2.04 0.91 3.62 3.84 304L 304R 2.60 2.75 6.21 6.59 202B 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.173 0.052 0.216 12.09 0.93 1.43 3.84 3.74 305L 305R 2.74 2.16 6.58 5.91 203 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.309 0.216 0.312 12.09 2.04 2.33 3.62 3.56 3.62 3.56 204= 9 1.1667 3 11.958333 2.8 2.26_ 5.06 423 0.225_ 0.312 0.432 12.09_ 1.95 2.31 3.64 3.57 3.64 3.57 301 8 3.92 13.96 2.32 2.32 166 0.232 0.384 0.204 5.21 3.29 2.58 0.83 0.93 0.83 0.93 302 8 5.79 13.96 2.32 2.32 166 • 0.232 0.204 0.204 7.70 5.07 5.07 0.80 0.80 0.80 0.80 303 8 4.25 13.96 2.32 2.32 '166 0.232 0.204 0.384 5.65 2.96 3.73 0.91 0.80 0.91 0.80 304 8 2.96 5.96 2.26 2.26 379 0.232 0.384 0.136 8.98 2.15 1.42 2.60 2.75 2.60 2.75 305 8 3 5.96 2.26 _ 2.26 379 0.232_ 0.136 1.104_ 9.10 1.45 4.36 2.74 2.16 2.74 2.16 Spreadsheet Column Definitions & Formulas L = Shear Panel Length A. H = Shear Panel Height • Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L 1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) • • Transverse Seismic Uplift Design Unit A Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. Flr. Roof Shear including Load Load Momen ® Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @, Floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 102 8 1.1667 1.75 3.50 0.114 • 0.9 1.27 2.284 653 0.152 0.192 0.832 10.40 0.57 1.69 7.91 7.11 0 0 7.91 7.11 103 8 1.1667 1.75 3.50 0.114 0.9 1.27 2.284 653 . 0.152 0.832 0.192 10.40 1.69 0.57 7.11 7.91 0 0 7.11 7.91 103A 8 1.1667 4.00 4.00 0.481 0.481 120 - 0.04 2.016 1.664 3.85 8.38 6.98 -1.06 -0.69 0 • 0 -1.06 -0.69 104 8 1.1667 4.50 10.50 0.126 0.73 1.44 2.296 219 0.1 0.8 0.078 8.96 4.61 1.36 1.20 1.93 0 0 1.20 1.93 105 8 1.1667 3.00 10.50 0.126 0.73 1.44 2.296 219 0.048 0.252 0.156 5.97 0.97 0.68 2.04 2.14 0 0 2.04 _ 2.14 106 8 1.1667 3.00 10.50 0.126 0.73 1.44 2.296 219 0.048 0.156 0.252 5.97 0.68 0.97 2.14 2.04 0 0 2.14 2.04 109 8 1.1667 4.58 17.08 0.114 0.9 1.27 2.284 134 0.152 0.192 0.156 5.58 2.47 2.31 0.82 0.86 201L 201R 1.13 1.54 1.95 2.40 110 8 1.1667 12.50 17.08 0.114 0.9 1.27 2.284 134 0.096 0.156 0.192 15.23 9.45 9.90 0.56 0.53 201 aL 201 bR 1.32 1.32 1.88 1.85 111 8 1.1667 4.50 7.50 0.126 0.73 1.44 2.296 306 0.144 0 :8 ' 0.078 12.54 5.06 1.81 2.00 2.73 0 0 2.00 2.73 112 8 1.1667 1.50 7.50 0.126 0.73 1.44 2.296 306 0.048 0.252 0.234 4.18 0.43 0.41 3.79 3.82 0 0 3.79 3.82 113 8 1.1667 1.50 7.50 0.126 0.73 1.44 2.296 306 0.048 0.234 0.252 4.18 0.41 0.43 3.82 3.79 0 0 3.82 3.79 201 9 1.1667 3.92 10.80 0.9 1.27 2.17 201 0.225 0.432 0.156 7.63 3.42 2.34 1.16 1.41 301L 301R -0.03 _ 0.13 1.13 1.54 201a 9 1.1667 4.17 10.80 0.9 1.27 2.17 201 0.225 0.156 0.156 8.11 2.61 2.61 • 1.38 1.38 302L 302R -0.06 _ -0.06 1.32 1.32 201b 9 1.1667 2.71 10.80 0.9 ' 1.27 2.17 201 0.225 .0.156 0.432 5.27 1.25 2.00 1.53 1.28 303L 303R 0.10 -0.06 1.63 1.22 202A 9 1.1667 2.96 11.96 0.73 1.44 2.17 181 0.173 0.432 0.052 5.25 2.04 0.91 1.15 1.50 304L 304R 1.28 1.50. 2.43 - 3.00 202B 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.173 0.052 0.216 5.32 0.93 1.43 1.49 1.35 305L 305R • 1.50 0.63 2.99 1.97 203 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.309 0.216 0.312 5.32 2.04 2.33 1.16 1.08 0 0 1.16 1.08 204 9 1.1667 3.00 ' 11.96 0.73 1.44 2.17 . 181 0.225 0.312 0.432 5.32 1.95 2.31 1.19 1.08 0 0 1.19 1.08 • 301 8 0 3.92 13.96 ' 1.27 1.27 91 0.232 0.384 0.204 2.85 3.29 2.58 -0.03 0.13 0 0 -0.03 0.13 302 8 0 5.79 13.96 1.27 1.27 91 0.232 0.204 0.204 4.21 5.07 5.07 -0.06 -0.06 0 0 -0.06 -0.06 303 8 0 4.25 13.96 1.27 1.27 91 0.232 0.204 0.384 3.09 2.96 3.73 0.10 -0.06 0 0 0.10 -0.06 304 8 0 2.96 5.96 1.44 1.44 242 0.232 0.384 0.136 5.72 2.15 1.42 1.28 1.50 0 0 1.28 1.50 305 8 0 3.00 5.96 . 1.44 1.44 242 0.232 0.136 1.104 5.80 1.45 4.36 1.50 0.63 0 0 1.50 0.63 Spreadsheet Column Definitions & Formulas _�. L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line • V (Panel Shear) = Sum of Line Load / Total L Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • TRANSVERSE UPLIFT CALCULATIONS - SUMMARY UNIT A Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right k Simpson k k Simpson k . 102 Wind 21.31 Holdown None 0.00 Wind 20.79 None 0.00 103 Wind 20.79 Holdown None 0.00 Wind 21.31 None 0.00 103A Wind 6.00 Holdown HDQ8 w 3HF 6.65 Wind 6.24 HDQ8 w 3HF 6.65 104 Wind 5.58 Holdown HDQ8 w 3HF 6.65 Wind 6.06 HDQ8 w 3HF 6.65 105 Wind 6.45 Holdown HDQ8 w 3HF 6.65 Wind 6.52 HDQ8 w 3HF 6.65 106 Wind 6.52 Holdown HDQ8 w 3HF 6.65 Wind 6.45 HDQ8 w 3HF 6.65 109 Wind 8.45 Holdown HDQ8 w DF 9.23 Wind 8.75 HDQ8 w DF 9.23 110 Wind 8.18 Holdown HDQ8 w DF 9.23 Wind 8.09 HDQ8 w DF 9.23 111 Wind 8.02 Holdown HDQ8 w DF 9.23 Wind 8.51 HDQ8 w DF 9.23 112 Wind 11.44 Holdown HDUI4 14.93 Wind 11.46 HDUI4 14.93 113 Wind 11.46 Holdown HDU14 14.93 Wind 11.44 HDU14 14.93 201 Wind 4:82 Strap MST48x2 5.75 Wind 5.09 MST48x2 5.75 201a Wind 4.95 Strap MST48x2 5.75 Wind 4.95 MST48x2 5.75 r a C 201b Wind 5.15 Strap MST48x2 5.75 Wind 4.88 MST48x2 5.75 202A Wind 6.21 Strap MST60x2 8.11 Wind 6.59 MST60x2 8.11 202B Wind 6.58 Strap MST60x2 8.11 Wind 5.91 MST60x2 8.11 _-) 203 Wind 3.62 Strap MST60 4.06 Wind 3.56 MST60 4.06 204_Wind 3.64 Strap MST60 4.06 Wind 3.57 MST60 4.06 1 301 Wind 0.83 Strap MST37 1.79 Wind 0.93 MST37 1.79 302 Wind 0.80 Strap MST37 1.79 Wind 0.80 MST37 1.79 303 Wind 0.91 Strap MST37 1.79 Wind 0.80 MST37 1.79 304 Wind 2.60 Strap MST48 2.88 Wind 2.75 MST48 2.88 305 Wind 2.74 Strap MST48 2.88 Wind 2.16 MST48 2.88 • By A t ^ DATE: ( a . JOB No c N ,..,(3 0 OF PROJECT: RE: 3SW a.V.:x - 1 eo,r Lock& ❑ ❑ Axia\ Loads: Uki1i-y,. Wi00- wao\s �vS\- \`f1sioc. oc p cu,�a W \rt �.x.�115 0- Ck.x ‘ck 4 iocA_ :- r f 2 o Ca ?roc i Ali) o P Sswa, \ C- 'y oa \bs fir. c k\ p J CC w Gc kVA (_Oa = " a - 31 - r as -- - 1 - a3 a.3 = GaS tbs 1 ►is w D • = 3 9aa1lwatl actual < Cu.puci-fki : • 0 k1 U_ Z D 2 o CGc)otc 4 oc ssU3aike = 3aiov- 0 ❑ if... /1' c.. vm c \ o ! • 0 o , f IL Z w ❑ Z O O = O • 6 a.. — 15 cn n, 5..o : Ei o.; :• a x 14 LW)_7 0 0 . • . @ • . 5W TN IS Le Atvi mc - caits L 4C .... 0 t UP (I ,, RI I i a CI - ; P h 'i i L \ i l IOl' TY2E�4D5 / I I iN O ; � I `. : , . / 1 1 ____ v 1 1 9 ti L c" - —J 0 1 . r ?,--__ ), .) ;fi . z d C "7" F.,,,, (.*3 _ _ 1 1 0 --1 \ 0 Pt! e s J l-h% LC r ciTH 0 Awyc., T4 LtIQL Z • - -1 J ✓ J 1 SW Trik,s LEN- -cri+ P.0.3- u►sAs2,. PrwN&I 'U+1$ LC C O - `` - +I O —11.41 al i N -et 0 , I ® ❑ r n ❑ r 1 i ^^ v D Y Y 1 G a . s ir, t�io+t^:���!."a' .`..".rj .::5: ,qtr* ‘ �. ` :3" '�xs- ,c.'�"�."°=.' ,a•�..,. W.-<.:.,,,.�;'t„ „ „, . ... ^',.Y s3: '9 I I� : !, , Q ❑ a SOS m S w l fti 5 Ll': J C-rnt ANY Ui ttev -e' No.*, - Nis LINE` 1 V t C E . . • ) . SW 11+1.S 1cit A L.C.A.JC-, VIS ONE . ).05 r‘ . 0 z.. ----------■ ...--------- gausawm--..--,. - -,71:47-.:.---... , ,- , ,..4,..._,44- E4 • . 1 ! . (11 g tk ! •-..., t 1 • • ...."-- . • . , .‘........../ II . <7 • I . 1 i 1 ! ' \ >LI 6-- 0 IIIIIIIIM" J r r SO 1 ....". , . 1 , I •' r . . . • ,• . ,. I, i., r a 0 0 t..M.i...' •N 5A) 1\r■ke, Le N.4:NTI A V,Y+.) C..‘ THIS eb Lk N !-S. . . • - -- yv p S1I L-- )NmNd 44...0.)r,0") S1f MS —L. OZ • n i s "° . .. ..._.e is ? .. y :.. L u 5T L L 0 f.+ 0 f _ 7 0 ,, • \ I i • f l L C co d ti e L O ,-.... .t.11 fe ..„,„..r._ _ ,..„, 4.., _______,. :4., / ._........_. ....., ..._ . .,,,. 1 , ,,,, o:. z., ,. 0 , ,..0;N ------' --,_ -----I '9 OE • N h 41A 1 t--) iNf (7\ .1-t..0 -) Na m at 111^ (\11S d CO) 2 BY A n 4 DATE: c1 O\ JOB NO.: A ' L/ O OF PROJECT: • RE: 'D o, +m k o ■r1Se r a\- 'ET a nV Cc house ❑ ❑ z VL%ne 05 8 X 1-4 wind. (tin) fro ts) 6.51'-4 `` o(t m phrag taid1Yl = aUPt 1- O M ❑ CO 3aot PVF i . 0 W CryPac.l oF ur htoUked dia phyu evn W = (150 1,4) = asek9•-f 0 10 WOOL d iCk + r n i a U / \/ Z 6 /12... Eva 64 pa�u� = (as5 pi-f �C t 4) 351'>t,.._) oic.- 2 2 0 U f . ¢ O ti Z w ❑ . Z 0 O x H a o • U • , • . o 0 4a -= y . x y o, 4 -L BY: DATE: ....... JOB NO.: i C Nil (Dat. C PROJECT: {+ `, 9-09.P al-'- 8}lsp. RE: Des .iQ'( ac r.I C't\ l b\oC�c.tr @ Sto If S ❑ ° ONION 1- J Z I* O W / /III ~ W TRIG Woarfi. ON ►►! F . F . Iq'- ;la" i 0 SO 1 J T = ci 9'12" ; To? 91.-T 18'- 5`' o Max 5141 tt_0(414kAJC--.= Er o W tS'-3'' i U Z W O a e5 IC - 1NJ GJ1Nt) PfeSSUf z = - a0, O QC o . r. R - 3 % il r 0€5\ cjN '9 \o es 'co ;};c.k. . \ J iQ 1�. -s - °(% TOP 4lASES s'- IV z Whitt\ tm \1_ t00d OC 191pLP D 2 U ❑ R \ e m°lo gz = kg qot ii o'- o ', f cc • Z z IV\ ,m�x : 2 2 1 ° l 4365.353' 5 }2 #ct. ❑ O I- . V orate = 1 \I-GM 14 ' - 1 r EP s,_, m _.51.__LL-tr_ ,, ,.. ; i-,.(3.5-30.a.5) - A SY _ V _ 1t.°I1 # - (62#11N1- A (3.sS,7,5 i Fb (ir\w : = (Bso ? ai.G/► .s yl.ts= 331_4( <_ 6 q 12 .. N.) G ,. - l ` = 1so ?SL (i•c; = auo 7 �2- ..av_ cd o - m = 0 : --; ! =:•• NC-N -- c(i • o 2_ 9 —L9 BY: AA DATE : �/ \ f 1 / \ JOB No.. C (�: A 0 / . 0 U l \ / A C N VI PROJECT: RE: OPT10a3 2 Ll W ‘ 0 0 ‘\ \°° n ftckty�e 3 Twos i_ w D f ❑ Tr "\b 1_,AJ :d rr+ or> 1NT - 13'. 0 J Mo\ \ O .i \ r c. O r\ \ f (= k2. O w ✓ z Z Loc.), d. asN \ov11 vi) \o\o c'.. = av2 pLF- . 0 a y 1- 1 1- 1, 17j U_ Z T ( 1 2 U MANX = t) (Me - ct.?�� _, �l� ! G? v ' k v k , C' — ----. Ts" �r.� 0:45 • cc ", Vrrox = 1L w ' i F I II, 2. = 19 / 5) G►aS 1 NJ� d VA' o = (1,S = :3;6€) i wet i '' / ' 1"Z LS" A 1 a = Q. 9 .S tr..)-1 k 3.'"---\ o 6 - : A Q-!.,4,,,,.;•;: 0- I..r L. 4 Ci „ o s U� l r i ^ ro . -7 r- • _ 1 = x,3,5 t- a4., (0,61S) �,� -� x�� �� ��), � =r�� j-r � ,3b+ ®� �,�� 4 0 0 i r ..: ' ‘'S kt-CN s` S. "? t 0 4= S ,?,t ry #- 0 ,Y .v_-- . N\ c. = tqlqi, # > > — t 9 6. Si. 1 — IL95G t a y } b = T .CLCt -iCr • ''F1, = 850 P 5 Jy(.(.,)(t.o - ii.ox,,o )C,. --y )Ct.t) k- .,, '3ck-L, pL 1 c: - i- t: -- xi 3 O6,0)(k,60.c\ii,iy.t.0-y,,,,) „,_ 4o1cb ,f. 0 1___ L30 • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load Wood Workst9Sizer 7.1 June 24, 2010 12:49:04 COMPANY 1 PROJECT RESULTS by GROUP - NDS 2005 SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF Mnf Tr ==........ 00000 -- = == ='j Not designed by6ceques == (2) 2xe Lumber n -ply D.Fir-L 9o.2 1- 2x8 • By Others Not designed by request (2) 2x6 Lumber n -ply Hem -Fir (lo.2 2- 2x6 (3) 2x6 Lumber n -ply Hem-Fir No.2 3- 2x6 Typ Wall Lumber Stud Hem -Fir Stud 2x6 916.0 SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR Mnf Jat Not designed by request Sloped Joist Lumber -soft D.Fir -L No.2 2x6 916.0 (2) 2x8 (1) Lumber n -ply D.Fir -L No.2 1- 2x8 (2) 2x8 Lumber n -ply D:Fir-L No.2 2- 2x8 By Others Not designed by request By Others 2 Not designed by request (2) 2x12 Lumber n -ply D.Fir -L No.2 2- 2x12 5.125x10.5 Glulam - Unbalan. West Species 24F -V4 DF 5.125x10.5 4X6 Lumber -soft D.Fir -L No.2 • 4x6 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 4x6 Lumber Post Hem -Fir No.2 4x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 (21 2x4 Lumber n -ply Hem -Fir No.2 2- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 916.0 SUGGESTED SECTIONS by GROUP for LEVEL 2 - FLOOR = � � : = = = =_ = -^- -1 Not designed by request Mnf Trusses Mnf Jet Not designed by request Deck Jet Lumber -soft D.Fir -L No.2 2x0 816.0 (2) 2x8 Lumber n -ply D.Fir -L No.2 2- 2x8 3.125x9 Glulam - Unbalan. West Species 24F -V4 DF 3.125x9 408 Lumber -soft D.Fir -L No.2 408 By Others Not designed by request • By Others 2 Not designed by request (2) 2010 Lumber n -ply D.Fir -L No.2 1- 2x10 5.125X12 GL Glulam - Unbalan. West Species 24F -V4 DF 5.125x12 By Others 3 Not designed by request 3.125014 LSL 1,51, 1.55E . 2325Fb 3.5x14 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 404 Lumber Post Hem -Fir No.2 404 • 4x6 Lumber Post Hem -Fir No.2 4x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 6x6 Timber -soft Hem -Fir No.2 6x6 (2) 2x4 Lumber n -ply Hem -Fir No.2 2- 2x4 6x6 nol Timber -soft D.Fir-L No:1 6x6 (3) 2x4 Lumber n -ply Hem -Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 616.0 SUGGESTED SECTIONS by GROUP for LEVEL 1 - FLOOR = == =s =ue= � = =_= � = = �� = �� Not designed by request Fnd CRITICAL MEMBERS and DESIGN CRITERIA Group Member Criterion Analysis /Design Values = = Mn f Jet =__ = = = = Mnf Jot Not designed by toque== = = ===________ - -__ Deck 301 j65 Bending 0.41 Sloped Joist j30 Bending 0.10 Floor Jst4 unknown Unknown 0.00 (2) 2x0 (1) b35 Bending 0.47 (2) 2x8 b8 Bending 0.89 3.125x9 b3 Bending 0.06 4x8 b30 Bending 0.12 By Others By Others Not designed by request By Others 2 By Others Not designed by request (2) 2x12 b6 Bending 0.93 (2) 2x10 bl Shear 0.78 5.125012 GL b10 Bending 0.76 By Others 3 By Others Not designed by request 5.125x10.5 b9 Deflection 0.95 416 b20 Bending 0.08 3.125x14 LSL 614 Deflection 0.73 (2) 2x6 c2 Axial 0.91 4x4 c55 Axial 0.07 4x6 c23 Axial 0.80 (31 2x6 c29 Axial 0.75 6x6 c26 Axial 0.70 • (2) 2x4 t39 Axial 0.62 6x6 nol c12 Axial 0.06 (3) 2x4 *31 Axial 0.89 Typ wall w14 Axial 0.48 Fnd Fnd Not designed by request -= ..............•__ __. ........ ..._.__ .... .__...__ DESIGN NOTES: � = 1. Please = verify that the = = = = = =__ default deflection appropriate for your application. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result is considered the final design and appears in the Materials List. 3. ROOF LIVE LOAD: treated as w load with corresponding esponding duration factor. Add an empty roof level to bypass this interpretation. 4. BEARING: the designer is responsible for ensuring that adequate bearing is provided. 5. GLULAM: bxd = actual breadth x actual depth. 6. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. • 7. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 8. BUILT -UP BEAMS: it is a s umed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that ' each ply is equally top - loaded. Where beams are side- loaded, special fastening details may be required. ' 9. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 10. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:41:17 Concept Mode : Beam View Floor 2 : 8 ' `' ��� 10 b31 : 49'-6" 1 U4 • 40 -b IU3 . : . . 4/ -b IUI 4D Vit 44 b y 9 :: 43-b V0 - - i 61 -- • - • - .. - -- - 4L'-0 `J3.- . - - - - - - - -- .. by b2 3S'-0 WY' .5U 4 0 • 04 ;. - LO '-5 bU - .. s b10 - Z4 -b (V GJ' b r b 33 LI -n (4 . _ ...__ ;.. • __- --- - - - - -- - - - - 10 -0 /L. ' - - -b32 - - -- • --� - - - -- . - - - -- - -- ' - - -- -- - -- -... -- - - -- - - _ .. 10 -b (0 E . . - - - .. - : -- -- -- - b ou b19�1� i i b D b SM. .. -- - o ill b4 .. b14 i7. 0.. of b30 1 b2 . b3. .E : .5 -0 ' - .. r _ • L b' I -b BBiBB8CCCCCCCCiCCC CCICCCDDDDDDDDEDDCD DD°DDDDDDCDIDDDE.EE EEEEEFEEEiEEIEBEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'567'8'9111 '1 :1 :1 1 !1(1'1(12(2 22:2 4A :4 5:5:5 - 6:6:6 , 6(6(6 . 6(61717:7:77 , 77(77-6 ' 14-- G17-N Woodworks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks ®Sizer 7.1 June 24, 2010 12:41:19 Concept Mode: Column View Floor 2: 8 ' (�� ��pD c58 c14 ��J �J 105 ., - . . . . . . . - ... - - . -. -_ 49'-6" 104 • - W3 - - .... - - - 4/ -0' IUib. _; _ - -- - - - - - - --- --- 4 iUv ' - ' - .. 43-b 0 • c69 - c2 : -c70 - ; . c71 _ - - - - - - ... - : 42 - b yb - - _ . • ..._ 41 - b 4U -b 3`J-0 Jt5 3 ._ . _ . • - - - - - - - -- -- 3f. -0 VG - - c3 .. -- SID -b I : -- _ . . ` --- - .50 -b JU tSy 33 -0 00 --- - - -= — =-- -.. -- -._ .: -- -'- - -- -- - - - - --- - - - .. - - , 3L -0 00 LJ 03 .. _. .. .. L1 - b - 01 L b -0 6° c25 c12 . c26 L4 -u no __ :__;c2 a Ic73 L u b 14 ". ... ...-- - - --- -- - -- ..I..L._ - -=— -- - _.. - --- - _. ,- -- - -- .. - 10 -0.. i 2- - . . c3 _ .. __.. _ ib4 r 1 -c78 .. _ 10-0 /U Q - ---- -- -- --- --- ----- -- - . . 14 -b bo- -' - : . -_ _ i _.: .. ---- -- - -- - -. IL -b' 0/ f - - N ■ -0 03 • c31 c76 c79 / ._ b .. 62? c30 • I;:1 c32 b b 0u' ❑. o . -QFT S b o -n c55 c - b .. I o -b u-b BB\B.6 BC CC C C CC C ECCC CC CCCCC C CC CC1CC CD DDD DOD DEDDD CD DD DD D D DD CD1D D DE.E EE E.EE'EEEEE'EEiE EEEEEEBEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48 50' 52 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'9111 111 :1 , 1:111:1i1 212 222 - 3,3:3 , 3'3(3'31314W 4A :4414'4' 414'.5'5 5:515 515 6(66;6:&6 ;6(6'616f717 7:77 4 - (1*"3 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 24, 2010 13:14:33 • Concept Mode : Beam View Floor 2 : 8' O fkO � 631 • �� F 105 - . - 49' -6" • 10.5 IUGt3 . ;.. - - - 40'45' IUI 40-0 1 UU - 44'-13" y9 43 -b U0 • .. b34 . -. _ •• _ . . 4L -0 . - - - y0 41 b 4U -b' 3 y0 .. . ? .. .. y -b - ...' 5 ar 45 `JU - J4• -0 tsy 62 ' : . , . - . .5.5 -0 tar 31 -0 2513 _ 3U -b t54 - 0.5 .. . . .. . . . . ; . Lr b.. . .. _ .. - : . ' ._ • .. Lb-0 .... t5U .. G4 -0 la : : ::b10 . : - : • ' : . . . Ls b Ri 11 . . it • ' LL -b • r/ ? _ 1333 • Z . -0 fb „_,3 /L GU -13 - : b32 ' -- -- - • --- - - -- .. .. ----•--- -- - --.. ' --- - -- - - - - -- -- 13-0 f i :: . . : . , _. : - - - 10-0 • lU -..- ---- -.. -- . .. -- - 14_0 tpy _ ` '13-0 136 - ; -1319115__, IL -b 13 .._ - . 3 is b • 134 } ors � 134 ` 1314 b.. ot b30 - - : - b35 ; • E • •'. • _ 4 - o • r.a 1329 - ..1 -to 1 -b i U -b 13818.8 BC CCCCCC C FCCC CC CCCCC CC C CCICCCDDD D DDD DODD CD DDDD D D DD CD'DD DEE E E E:EEEFEEEEEIE E +EEEEE €IEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18'20' 22'24' 26' 28' 30' 32' 34' 36' 38'40' 42' 44' 46'48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70'72' 74' 76' 0'1'2'3'4'5'6'78'91(11:1:1 (1111 2E222:2 2(2'21 2130 33:3 :4.4!4(4 4(4(5(5'5:5 :5 :6 • • • 4 - C,--)Li WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 24, 2010 13:14:35 Concept Mode: Column View Floor 2: 8' 4 G WO c58 c14 r ��J - 7U5 - 4 / -b 1 UL - - ' 4b-0 1U UI n 45 b -. _._ 46 -10 V0 :C82 ' i C81" • - - _ 4L "-0 . [ . .: . Jy b y3. 3(- 5" t5: JJ .. J1-0 - - ..5U -0 00 °: ... LV 06 L/ -b 25 1b -0 zy- c25 c12 c26 G3 n (i -- ■ 0 0 : Q "1 -- -. _._ - - . - - - - ------ -- - -- - -- - --- - -- LL -b c72 to c73 1 b . - . : /1 ' c78 -- - • . ; 1� n f U - ❑ . - - - ' - - --" --- -- -- .-- - -- - _ .. 14 -b ny .. 16 O 04)._ .- :C31 - c76 - - c71..:- - - -` - -- -- - ..- - b-0 0z, c30 ; 0 c32; . . " 01- -- .. . . .. .. ... . - . --- ---- -- -" - ._ 4 -b ou) gc56��- o � b . c55 BBIB.B BCCCCCCCCICCC CC CCCCCCCCCCICCCDDDDDCDDt0DD DDDD'DDDDDDCD!DDDE.EEE EiEE :EFEEBEE'EE+EEEEEEfEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3 '4'5'6'7'8'91(1'1 :I :1.1 :1(1'111 2(2222202'21 213(33 :33 :3'3244(44A :4.414(4'414 55515 515: 6166 :6:6 6" 4- ...._ cis WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:44 Concept Mode: Beam View Floor 3: 17' 1050 - - -- -- - --- - - - -- : - - - -: - -- 7-' --- - - -: :. - - - : - - - -- -... -- - - ----- - -- - - -- - - - - -" 49' -6" 40 -15 103 : 41' b l UG - : - • - .. 40 -0 101 4b' -0 100 &9 1 : ' : : : 1 . : : : ' : : ; : 43 -b 0 - b35 .. b6; .. . - . - . -..: -b y1 ' , :Mr . 111 `' --.. . : : -- -- - -- - - - ---- - -- -- -- -- ... 4.1 -0 4 - -. • : i : _: . :. - 30 3 3 b y U 34'-0 0, ` b7: SS'-0 025 : -: :' '----'- - :-`_._.- -- __ - - - -- - - - - -- - - -- - ..IL -0 31 - 00 SU' - b 00 : L`J' 03 L 1 -0 : Lb 0 1 : - : Lb-0 OU L4 7 (y b9 : LS // b2 L'1 • (b- : : ly -b 1L :. b21- +b b .. rt : -b20 : t -b 4 b bb__ _b1ib17- ic- 0 bb b0 y -O b4 } -= _b34 0 - 0.5 (-b bi b-b bU : 4 -b 1 0 .,_ U b B BC CC CC CC CICCC CC CCCC C C CC CC1CC CD DDD D DD D1DDD CD DD.DD " D D DD CDIDD DE.E E E E EEEFEEEEEE EEEEEEE(EEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56 58' 60' 62' 64' 66 68' 70' 72' 74' 76' 0'1'2'3'4'5'67'8'91(1 1 :1 :1 . 11 71 :1 S2(2 22:2 21213(3 3:3;3 4 A :4.4!444'41415(5 5:5 :5 5(5(.616 6:6:6 6(6'6t617(7'7;7:7 -6" . /4 --- (" L WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:42 Concept Mode: Column View Floor 3: 17' 1050. _ _ 49' -6" I - - - 46 -b SU S --- _ : - -- 4/ -b IUlb - --- _._.... --- 4b -b 1VU j, - - - 44 J9 43 -b JO - - : c62 `c61 - . - c15 = .c16 - . .. : - - - - - 42 -0 4 s .: . .: .. -- r . _ ... - 30 - i _. 30 - 1:', 33 -b 00 .. ...__... -.. - - -- -- --- - --- --- -- . .- -- - - --- -- -- - L -b 0 - ' 31 -b 60 c18 - 3u -b' 253 .: ii _ - - - 2/-0 251 : - LS 4 uu.. _ .. c39 c24 - c23 L4 -b (23 - no" , -: 'm 1 1 c59 LL -b (4 " (( _._ 125. -10 . t3 11 b /2 - 10 -0 1 1 ' c37. : ' :. 10 -b (U. 14-b bb._.__: ._. ._: :.-- - ---__ - _ .. ._. _... l U -b b4 . • . c66 c63 is -b 0L 111 1 1- n c756520 c1 n b Cb - i b E3Bte.E3 E3CCCCCCCCICCC CC CCCC C CCC CCOCC CDDDD D DD DEDDD DD DD DD D D DD CD!DD DE.E E E'EEE•EEEEEIEE!E E+EEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16 18' 20' 22' 24' 26 28' 30' 32' 34' 36' 38' 40' 42'44' 46' 48' 50' 52' 54' 56' 58'60' 62' 64' 66' 68' 70:72' 74' 76' 0'1'2'3'4'5'67'8'9111 1:1:1 ;1 tl ( 22: 2: 2 2 !2E2'212f3(33:3:3 4:4:4.44(4 5:5:5<55(5 (.(.66 0:6:6 77:7.7.7(77-6" • /4 (:f*A''':)... WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:38 Concept Mode: Beam View Roof: 25' 1050 , .. . _ .. _ . 49' 40 - I U4 b ! VUtr . - 7 i . , - • . • - - 44 . -13 .. &9 : : .. 43' b' WS :- - : : b23 : b24 .. _ • " 4L -b 1 -- "iii �: 4 1 -b yd .. : _ ... : - 4U -b yb 3y'b 3 = = s r -b by 33 -b 00 :• . 2 -0 L25 b L / - b 238 .. : /V 23 -0 (1 b25; c u n ro yb l4 :_ .. .. i 4 b bb_ ._. _. :. : -.: - - __ - - ..._... . b4 ' b 2 7 :' : bi b bth �.. 4 -b . . : . 3 -b . . L -b 1 -b V b BBIB.B BCCCC C CC CtCCC CC CCCC C C CC CCtCC CD DDD D DD DIDDD DD DD DD D D 00 CD'DD DEE E E EEEEIEEEIEEEEBEEEEEEEEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' U1'2'3'4'5'678'910 '1 ;1:1 :1112(2 22:2 4A :4 5:5:5 5;6:66'6(6 x(6'.7(7 7.7(77 -6" 4 ...._ 6:1?) WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:40 Concept Mode: Column View Roof: 25' 1050 .. _ - - --- .. 49'-6" 1 U4 ; 40 -0 10.3 . _ 4/ -0 40-0 IU'I 40 9 43 b y c42 c43 • - -c44 c45 4G -0 41 -0 y"I- ,50 -0 0`J _ 33 -b 00 ._ _ -,._ -___. _ _ _ _ _ .. _ _ _.. 3L-0 0/ 31 - i ; 00 `` 30 -b 03 Gy -0 04__. _ __ _ _ ____ _.__., _ _ "_ . . -_ . ____ _ .. _._ ._. G0-0 • 01 : ; _ . - - G0'-0 OU L4 -0 /& L3-b (O - - - -- -- _ . c46 LL -b r 5 i -0 14 - - - . -- --- -- - -- •-- - - = - = --- _: 10-0 .. .... . - - - - -- -- - - -- - !L - -- -- -- -- :. _.:- - --- -- ._ __ ...- _.. . --- 10 -0 (U_. 14 -b 0V .. .: -: - ._ --- :. -- -- . b0. --- . .--- -- -- -...-- ._.. - - -- -- . IG -0 0/ .. - 11 -0 00 _...: - - --- - --- . : _.. -- - - -- -- -..__ _ - .. _ I0 -0 b4) .. c51 c50. c52. c53 - • . a -0 b n2 IIIIII ri a Ci l lim•0901••■•••108 n1 r " 0-b BB\BB BC CC C C CC CFCCC CC CCCCC C CC CC \CC CD DDD D DD DICDD CD D D DD D DOD CD'DD DEE E E E EEEtEEE!EE!E EEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22'24' 26' 28' 30' 32' 34' 36' 38'40' 42' 44' 46' 48' 50' 52' 54' 56' 58'60'62' 64' 60 68' 70' 72' 74' 76' 0'1'2'3'4'5'67'8'51(1 1;1:1 (1 1 1102 2:2:222(2 4:4:4-4(4(4 5:5:5 8;6 :6 7.77 4. _ (i9 COMPANY PROJECT 111 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:42 b1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w61 Dead Partial UD 613.2 613.2 2.50 3.00 plf 2'w61 Snow Partial UD 795.0 795.0 2.50 3.00 plf . 3 c61 Dead Point 622 2.50 lbs 4 c61 Snow Point 1192 2.50 lbs 5_j28 Dead Full UDL 47.7 plf 6_j28 Live Full UDL 160.0 plf 7_j33 Dead Full UDL 120.2 plf 8 j33 Live Full UDL 370.0 plf MAXIMUM RE l o' . 31 Dead 391 1061 Live 795 1615 Total 1186 2676 Bearing: - Load Comb #2 #3 Length 0.63 1.43, Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2 -Plys Self- weight of 6.59 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv* = 67 Fv' = 207 fv * /Fv' = 0.32 Bending( +) fb = 331 Fb' = 1138 fb /Fb' = 0.29 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.05 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +,75(L +S), V = 2676, v design* = 1237 lbs Bending( +): LC #3 = D +.75(L +S), M = 1178 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 158e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. • ifQ - 61 \tiO COMPANY PROJECT r 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:43 b3 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1_j45 Dead Full UDL 17.0 plf 2 j45 Live Full UDL 25.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • A 9 4 Dead 106 106 Live 112 112 Total 218 218 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Glulam- Unbal., West Species, 24F -V4 DF, 3- 1/8x9" Self- weight of 6.48 Of included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 10 Fv' = 265 fv /Fv' = 0.04 Bending( +) fb = 140 Fb' = 2400 fb /Fb' = 0.06 Live Defl'n 0.01 = <L/999 0.30 = L/360 0.04 Total Defl'n 0.03 = <L/999 0.45 = L/240 0.06 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 218, V design = 182 lbs Bending( +): LC #2 = D +L, M = 491 lbs -ft Deflection: LC #2 = D +L EI= 342e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). COMPANY PROJECT i WoodWorks® sosno RE FOR WOOD DESIGN June 24, 2010 12:40 b6 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1_c44 Dead Point 444 2.00 lbs 2_c44 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 w44 Snow • Partial UD 431.2 431.2 0.00 2.00 plf 5 c45 Dead Point 444 5.00 lbs 6 c45 Snow Point 647 5.00 lbs 7 w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf B w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9 j25 Dead Full UDL 120.2 plf 10 j25 Live Full UDL 370.0 plf MAXIMUM REACTIONS (Ibs1 and BEARING LENGTHS (inl : • 0 Dead 1436 1389 Live 1803 1803 Total 3239 3192 Bearing: Load Comb #3 • #3 Length 1.73 1.70 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys • Self- weight of 8.02 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. - COMPANY PROJECT 1 WoodWorks° SOFTWARE FOR WOOD DESIGN June 24, 2010 12:50 b8 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j14 Dead Full UDL 113.7 plf 2 114 Live Full UDL 350.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • • 0 , 61 Dead 357 357 Live 1050 1050 Total 1407 1407 Bearing: Load Comb #2 #2 Length 0.75 0.75 Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Piys Self- weight of 5.17 plf included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 77 Fv' = 180 fv /Fv' = 0.43 Bending( +) fb = 963 Fb' = 1080 fb /Fb' = 0.89 Live Defl'n 0.07 = <L/999 0.20 = L/360 0.33 Total Defl'n 0.10 = L/712 0.30 = L/240 0.34 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 1407, V design = 1123 lbs Bending( +): LC #2 = D +L, M = 2110 lbs -ft Deflection: LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. , 4_ COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:40 b9 Design Check Calculation Sheet Sizer 7.1 • LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j50 Dead Partial UD 113.7 113.7 0.00 1.50 plf 2_j50 Live Partial UD 350.0 350.0 0.00 1.50 plf 3 j14 Dead Partial UD 113.7 113.7 3.00 9.00 plf 4_j14 Live Partial UD 350.0 350.0 3.00 9.00 plf 5_j51 Dead Partial UD 113.7 113.7 1.50 3.00 plf 6 j51 Live Partial UD 350.0 350.0 1.50 3.00 plf 7_j24 Dead Partial UD 120.2 120.2 0.00 3.00 plf 8_j24 Live Partial UD 370.0 370.0 0.00 3.00 plf 9 j25 Dead Partial UD 120.2 120.2 3.00 9.00 plf 10_j25 Live Partial UD 370.0 370.0 3.00 9.00 plf 11_j26 Dead Partial UD 120.2 120.2 9.00 12.00 plf 12_j26 Live Partial UD 370.0 370.0 9.00 12.00 plf 13_j52 Dead Partial UD 113.7 113.7 9.00 10.50 plf 14_j52 Live Partial UD 350.0 350.0 9.00 10.50 plf 15_j53 Dead Partial UD 113.7 113.7 10.50 12.00 plf 16 j53 Live _ Partial UD 350.0 350.0 10.50 12.00 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 10' 12i Dead 1478 1478 Live 4320 4320 Total 5798 • 5798 Bearing: Load Comb #2 #2 Length 1.74 1.74 • Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x10 -1/2" Self- weight of 12.39 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 138 Fv' = 265 fv /Fv' = 0.52 Bending( +) fb = 2217 Fb' = 2400 fb /Fb' = 0.92 Live Defl'n 0.38 = L/381 0.40 = L/360 0.94 Total Defl'n 0.57 = L/252 0.60 = L/240 0.95 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 D +L, V = 5798, V design = 4953 lbs Bending( +): LC #2 = D +L, M = 17395 lbs -ft Deflection: LC 92 = D +L EI= 890e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I- impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4 - (1)4 • COMPANY PROJECT 1 WoodWorks SOF7WAREEOR WOODDESJGN June 24, 2010 12:43 b10 Design Check Calculation Sheet Sizer 7.1 LOADS ( ibs, psi, or pif ) Load Type Distribution Magnitude Location [ft] Pat - Start End Start End tern 1 w39 Dead Partial UD 311.0 311.0 0.00 4.50 No 2_w39 Live Partial UD 680.0 680.0 0.00 4.50 No 3 c39 Dead Point 267 2.00 No 4 Live Point 822 2.00 No 5 Dead Partial UD 120.2 120.2 0.00 0.50 No 6_j32 Live Partial UD 370.0 370.0 0.00 0.50 No 7 j33 Dead Partial UD 120.2 120.2 1.00 4.00 No 8_j33 Live Partial UD 370.0 370.0 1.00 4.00 No 9_j34 Dead Partial UD 120.2 120.2 4.00 4.50 No 10 j34 Live Partial UD 370.0 370.0 4.00 4.50 No 11 • Dead Partial UD 120.2 120.2 4.50 7.50 No 12 Live Partial UD 370.0 370.0 4.50 7.50 No 13_j36 Dead Partial UD 113.7 113.7 4.50 16.50 No 14 j36 Live Partial UD 350.0 350.0 4.50 16.50 No 15 j37 Dead Partial UD 100.7 100.7 3.00 4.50 No 16 j37 Live Partial UD 310.0 310.0 3.00 4.50 No 17 Dead Partial UD 120.2 120.2 7.50 13.50 No 18_j47 Live Partial UD 370.0 370.0 7.50 13.50 No 19 j48 Dead Partial UD 120.2 120.2 13.50 16.50 No 20 Live Partial UD 370.0 370.0 13.50 16.50 No 21 j49 Dead Partial UD 120.2 120.2 0.50 1.00 No 22_j49 Live Partial UD 370.0 370.0 0.50 1.00 No 23 b32 Dead Point 300 3.00 No 24 Live Point 922 3.00 No • MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : lo' 4' -6° 16-61 Dead 452 4067 1180 Live 847 11291 3436 Uplift 12 Total 1300 15358 4616 Bearing: Load Comb #2 #2 #2 Length 0.50` 4.24 1.27 Cb 1.00 1.09 1.00 'Min. bearing length for beams is 1/2' for exterior supports Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x12" ' Self- weight of 14.16 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 265 fv /Fv' = 0.60 Bending(*) fb = 1074 Fb' = 2400 fb /Fb' = 0.45 Bending( -) fb = 1396 Fb' = 1844 fb /Fb' = 0.76 Live Defl'n 0.13 = <L/999 0.40 = L/360 0.32 Total Defl'n 0.19 = L/740 0.60 = L/240 0.32 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fb'- 1850 1.00 1.00 1.00 0.997 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC 02 = D +L, V = 8357, V design = 6496 lbs Bending( +): LC 02 = D +L, M = 11006 lbs -ft Bending( -): LC 02 = D +L, M = 14310 lbs -ft Deflection: LC #2 = D +L EI= 1328e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live S =snow W =wind I= impact C= construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. Grades with equal bending capacity in the top and bottom edges of the beam cross - section are recommended for continuous beams. 4. GLULAM: bxd = actual breadth x actual depth. 5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 6. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). . iq __ 1 ----------__ s-_,, 1 . COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:44 b13 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 c40 Dead Point 217 5.50 lbs 4 c40 Live Point 668 5.50 lbs 51c67 Dead Point 518 5.00 lbs 6 c67 Snow Point 778 5.00 lbs 7 Dead Point 573 3.00 lbs 8 c68 Snow Point 942 3.00 lbs 9 w59 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10 w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 1037 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12 j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13_j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14_j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15_j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16_j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 18 Live Point 389 3.50 lbs 19 Dead Point 225 6.50 lbs 20 Live Point 693 6.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : „o te e . , rs - a._� - ', -- "" � s �±. ': . m.. ..,Y =.� !� =.5 :�,_ „; te a 4..: � +. � ,.. _- _:s+►�.r. ?,__ • rs" :a_. °", te - • _ - sue :iari Y _ =`Y „a te _ "71'1 1 O e1 Dead 2561 3033 Live 2699 3789 Total 5261 6822 Bearing: Load Comb #3 #3 Length 1.88 _ 2.44 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 pif included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L/680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC #3 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC 83 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. • - 1 COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:43 b14 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w33 Dead Partial UD 317.7 317.7 9.00 12.00 plf 2 w33 Live Partial UD 350.0 350.0 9.00 12.00 plf 3 c19 Dead Point 357 9.00 lbs 4 c19 Live Point 1050 9.00 lbs 5_c20 Dead Point 357 3.00 lbs 6_c20 Live Point 1050 3.00 lbs 7 Dead Partial UD 317.7 317.7 0.00 3.00 plf 8 w34 Live Partial UD 350.0 350.0 0.00 3.00 plf 9 c64 Dead Point 165 10.50 lbs lb' _ c64 Snow Point 225 10.50 lbs 11 c65 Dead Point 165 1.50 lbs 12 c65 Snow Point 225 1.50 lbs 13_j36 Dead Full UDL 113.7 plf 14 j36 Live Full UDL 350.0 plf 15 Dead Partial UD 17.0 17.0 0.00 0.50 plf 16 Live Partial UD 25.0 25.0 0.00 0.50 plf 17_j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 18 j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 19 Dead Partial UD 17.0 17.0 1.50 10.50 plf 20 j45 Live Partial UD 25.0 25.0 1.50 10.50 plf 2046 Dead Partial UD 17.0 17.0 10.50 12.00 plf 22 j46 Live Partial UD 25.0 25.0 _ 10.50 12.00 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : ,...04. e,:.: ae , y - _ ......47." -..� -�_ . ..it a�- . •..s..;> - :` i ..o._ .an .+z..__ r. i..'■a --._+y . ,..= -..F � -. v. - `�e..Ar.,.'ac . .g lit 1 0' 121 Dead 2351 2351 Live 4350 4350 Total 6701 6701 Bearing: Load Comb #2 #2 Length 2.39 2.39 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 163 Fv' = 310 fv /Fv' = 0.52 Bending( +) -fb = 1769 Fb' = 2325 fb /Fb' = 0.76 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.43 = L/333 0.60 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 6701, V design = 5314 lbs Bending( +): LC #2 = D +L, M = 16851 lbs -ft Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. ii, ...._ 1 :,,,i1 (----4,,, COMPANY PROJECT 1 WoodWo SOFlWARE FOR WOOD DESIGN June 24, 2010 12:41 b20 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1_j30 Dead Full UDL 21.7 plf 2 j30 Live - Full UDL 60.0 plf • MAXIMUM REAnTIANR /lhcl and RFARIN/: 1 FNnTMR /inl 1 0 ' � 3-6 Dead 46 46 Live 105 105 Total 151 151 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x6" Self- weight of 4.57 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 9 Fv' = 180 fv /Fv' = 0.05 Bending( +) fb = 90 Fb' = 1170 fb /Fb' = 0.08 Live Defl'n 0.00 = <L/999 0.12 = L/360 0.02 Total Defl'n 0.00 = <L/999 0.18 = L/240 0.02 • ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 151, V design = 111 lbs Bending( +): LC #2 = D +L, M = 132 lbs -ft • Deflection: LC #2 = D +L EI= 78e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 14- Li COMPANY PROJECT I WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:50 b30 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j41 Dead Partial UD 68.0 68.0 2.00 4.00 plf 2_j41 Live Partial UD 100.0 100.0 2.00 4.00 plf 3_j42 Dead Partial UD 72.2 72.2 0.00 2.00 plf 4 142 Live Partial UD 106.2 106.2 0.00 2.00 plf MAXIMUM REACTIONS (lbsl and BFARIN(; I FN(;THS lint • 0' 44 Dead 154 150 Live 209 203 Total 364 353 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x8" Self- weight of 6.03 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 15 Fv' = 180 fv /Fv' = 0.08 Bending( +) fb = 140 Fb' = 1170 fb /Fb' = 0.12 Live Defl'n 0.00 = <L/999 0.13 = L/360 0.03 Total Defl'n 0.01 = <L/999 0.20 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 364, V design = 253 lbs Bending( +): LC #2 = D +L, M = 359 lbs -ft Deflection: LC #2 = D +L EI= 178e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. • / .�L . COMPANY PROJECT d 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:42 b31 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j65 Dead Partial UD 47.7 47.7 0.00 4.00 plf 2_j65 Live Partial UD 160.0 160.0 0.00 4.00 plf 3_j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4_j28 Live Partial UD 160.0 160.0 4.50 7.50 plf 5_j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 6_j62 Live Partial UD 160.0 160.0 7.50 11.00 plf 7_j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 8_j63 Live Partial UD 160.0 160.0 11.00 17.00 plf 9_j64 Dead Partial UD 47.7 47.7 17.00 20.00 plf 10j64 Live Partial UD 160.0 160.0 17.00 20.00 plf 11_j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 12 j66 Live Partial UD 160.0 160.0 4.00 4.50 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 10' 20 Dead 619 619 Live 1600 1600 Total 2219 2219 Bearing: Load Comb #2 #2 Length 0.67 0.67 Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x12" Self- weight of 14.16 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 49 Fv' = 265 fv /Fv' = 0.18 Bending( +) fb = 1082 Fb' = 2400 fb /Fb' = 0.45 Live Defl'n 0.43 = L/553 0.67 = L/360 0.65 Total Defl'n 0.69 = L /350 1.00 = L/240 0.69 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 • Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 2219, V design = 1997 lbs Bending( +): LC #2 = D +L, M = 11095 lbs -ft Deflection: LC #2 = D +L EI= 1328e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4- Ge2o COMPANY PROJECT il 111 I 1 WoodVVork June 24, 2010 13,15 034 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet 51zer 7.1 LOADS Pbs. Pat «PR)' Load Type Dlatributlon Magnitude Location (ft) Units Start End End l w62 Dead Partial UD 613.2 613.2 5 0.00 2.00 plf • 2%62 Snow Partial UD 795.0 795.0 0.00 2.00 plf 3_w29 Dead Partial UD 611.5 617.5 7.00 11.00 plf 4 025 Snow Partial UD 001.2 901.2 1.50 11.00 plf 5 015 Dead Point 1436 11.00 iba 6_015 Snow Point 2404 11.00 Dos 016 Dead Point 1359 17.00 la 9 016 Snow Point 2404 17.00 iba 9 064 Dead Partial UD 617.5 617.5 17.00 19.00 plf 15_064 Snow Partial UD 601.2 801.2 17.00 15.00 plf 11 061 Dead Point 622 7.00 iba . 12 Snow Point 1192 7.00 10a 19062 Dead Point 622 4.00 1ba 14 062 Snow Point 1192 4.00 lion 15%63 Dead Partial UO 613.2 613.2 2.00 4.00 elf 16 Snow Partial UD 195.0 795.0 2.00 4.00 plf 11%65 Dead Partial ID 611.5 617.5 19.00 20.00 plf 19 w65 Snow Partial UD 601.2 801.2 18.00 20.00 plf 19 Dead Partial UD 613.2 613.2 7.00 7.50 plf 20 071 Snow Partial UD 795.0 795.0 7.00 7.50 plf 21_164 Dead Partial UD 47.7 11.7 17.00 18.00 plf 3 22 164 Live Partial UD 160.0 160.0 17.00 18.00 plf 2 128 Dead Partial UD 47.7 47.7 4.50 7.50 plf 24 4 ]29 Live Partial ID 160.0 160.0 4.50 1.50 plf . 26162 Dead Partial ID 47.7 47.7 7.50 11.00 plf 26 )62 Live Partial UD 160.0 160.0 7.50 11.00 plf 21 )48 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29_149 Live Partial UD 370.0 370.0 0.00 2.00 plf 29_132 Dead Partial UD 120.2 120.2 3.50 4.00 plf 30_132 Live Partial UD 370.0 370.0 3.50 4.00 plf 31_133 Dead Partial U0 120.2 120.2 4.50 7.50 plf 32_133 Live Partial UD 370.0 370.0 4.50 7.50 Of 33_134 Dead Partial UD 120.2 120.2 7.50 8.00 plf 34_134 4 Live Partial UD 310.0 370.0 7.50 9.00 plf 35_135 Dead Partial UD 120.2 120.2 9.00 11.00 Of 36)35 Live Partial UD 210.0 370.0 9.00 11.00 plf 347 Dead Partial UD 120.2 120.2 11.00 17.00 Of 39_147 Live Partial UD 310.0 370.0 11.00 17.00 plf 39_167 Dead Partial UD 120.2 120.2 2.00 3.50 plf 40_167 Live Partial UD 370.0 370.0 2.00 3.50 plf 41 149 Dead Partial UD 120.2 120.2 4.00 4.50 plf 4_ 349 Live Partial ID 370.0 370.0 4.00 4.50 plf 43_163 Dead Partial UD 47.7 47.7 11.00 11.00 plf 44_163 Live Partial ID 160.0 160.0 11.00 17.00 plf 45 365 Dead Partial UD 47.7 47.7 19.00 20.00 plf 46165 Live Partial ID 160.0 160.0 19.00 20.00 elf 47_166 Dead Partial UD 47.7 47.7 4.00 4.50 plf 4 )66 Live Partial UD 160.0 160.0 4.00 4.50 plf 49 )68 Dead Partial UD 120.2 120.2 17.00 19.00 plf 50_168 L1ve Partial ID 370.0 370.0 17.00 19.00 plf 51_169 Dead Partial UD 120.2 120.2 19.00 20.00 plf 52_169 Live Partial ID 370.0 370.0 19.00 20.00 plf 53_172 Dead Partial UD 11.7 47.7 2.00 4.00 plf • 54_172 Live Partial ID 160.0 160.0 2.00 4.00 plf 55_3 Dead Partial ID 47.7 47.7 0.00 2.00 plf 56 173 Live Partial ID 160.0 160.0 0.00 2.00 olf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : C. Q. 1.100 9 Live 9956 9979 Total 17361 17305 Bearing: LO+d Comb 13 13 Loath 5.21 5.19 • Glulam -Bat., West Species. 24F -V8 DF, 5- 118x22 -1/2" s,....1 6a 0,28.55 p6Ircluda8 ei boob; Lateral support: top. 6& team. el supports: Analysis vs. Allowable Stress (psi) and Deflection (in),aelr,a NOS 2005: Criterion n _ el'/a1a Value Donlan Value AnalVala /1es13n Shear fv - 192 FY' ■ 305 Cr /7r' - 0.60 Bending).) 00 - 2392 Fb' . 2604 Ib /Fb' - 0.92 L17. 0601'0 0.40 ■ 9/555 0.67 - 9/360 0.60 Total D301'n 0.34. 1/295 1.00 - L/240 0.94 ADDITIONAL DATA: FACTORS: F/E CD CM CL CV Clu 4 Clrt LC4 2v' 265 1.15 1.00 1.00 1.00 1.00 1.00 3 20'+ 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 - E' 1.9 minion 1.00 1.00 - - - - 1.00 - - 3 Emir) 0.95 Million 1.00 1.00 - - - - 1.00 - - 3 Shear : LC 13 . 0+.7511 -.1), V ■ 17361, V denten - 13392 1ba Bending 0 ); LC 13 - 02.75(141), n 96199 166 -0t Deflection: LC 13 ■ 00.7511 +5) EI. 9756.06 le -102 TOtal Def1a:t1on - 0.50)0640 Lad Defle0tionl . Live Load Deflection. t2■dead 1.1106 0 -ancw W.wind Ieapact C- 00046010tlon C1d.ccncentrated) (A11 LC'0 a e listed in the Analyala output) . Load c0ebination6: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glu7am deign oEo,o are for =facial. o0001.Mng to AITC 117 -2001 and manufactured In acrnrdmea wen ANSUAITC A190.1 -1992 3. GLULAM: tad 4 actual breadth 0 oct2al depth. . 4. Gldam Beams shall be laterally supported according to Duo provisions of 005 CI. 3.3.3. 5. GLULAM: tearing length based on under of Fcp(tenslon), Fep(eornpn). / Cl -;\ COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:49 b35 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type . Distribution Magnitude Location [.ft] Units Start End Start End 1_j21 Dead Partial UD 120.2 120.2 0.50 1.50 plf 2j21 Live Partial UD 370.0 370.0 0.50 1.50 plf 3_j59 Dead Partial UD 120.2 120.2 0.00 0.50 plf 4_j59 Live Partial UD 370.0 370.0 0.00 0.50 plf 5_j60 Dead Partial UD 120.2 120.2 1.50 3.00 plf 6 j60 Live Partial UD 370.0 370.0 1.50 3.00 plf MAXIMUM R • ' 0 3' Dead 188 188 Live 555 555 Total 743 743 Bearing: Load Comb #2 #2 Length 0:50 *_ 0.50* 'Min. bearing length for beams is 1/2" for exterior supports Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 31 Fv' = 180 fv /Fv' = 0.17 Bending( +) fb = 254 Fb' = 1080 fb /Fb' = 0.24 Live Defl'n 0.00 = <L/999 D.10 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 743, V design = 444 lbs Bending( +): LC #2 = D +L, M = 557 lbs -ft Deflection:,LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (A11 LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. • - (la\ COMPANY PROJECT WoodWorks® SOFf WARE FOR WOOD DESIGN June 24, 2010 12:51 c2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End l bl Dead Axial 1056 (Eccentricity = 0.00 in) 2 bl Rf.Live Axial 2153 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 1 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 2 -Plys Self- weight of 3.41 plf included in Toads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 0.00= 0.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 196 Fc' = 980 fc /Fc' = 0.20 Axial Bearing fc = 196 Fc* = 1644 fc /Fc* = 0.12 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.596 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 3236 lbs Kf = 1.00 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. f:),s3 _,. COMPANY PROJECT Th ` W oodWorks® SOFZWARE FOR WOOD DESIGN June 24, 2010 12:54 c12 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1_c24 Dead Axial 1478 (Eccentricity = 0.00 in) 2 c24 Live Axial 4320 (Eccentricity = 0.00 in) 3 b10 Dead Axial 4067 (Eccentricity = 0.00 in) 4 Live Axial 11291 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): . ''' , ?..,�.t�°'�a. xs -.fir ' *.P ,- , _.�"_..�„_,JC• •- _•' v = + K. i r_'..r b ''"`�"i,;. � � R'o's � "6 : ' ,°�yy�Z�,. �.:''r`9°v- ��.� -���'"- �•Y�'- ''-� �y� _ �-c. .i ^ A 0' 8' Timber -soft; D.Fir -L, No.1, 6x6" Self- weight of 7.19 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 701 Fc' = 820 fc /Fc' = 0.86 Axial Bearing fc = 701 Fc* = 1000 fc /Fc* = 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC #. Fc' 1000 1.00 1.00 1.00 0.820 1.000 - - 1.00 1.00 2 Fc* 1000 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 21214 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. • (-PH COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:53 c23 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_b9 Dead Axial 1478 (Eccentricity = 0.00 in) 2 Live Axial 4320 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 9' Lumber Post, Hem -Fir, No.2, 4x6" Self- weight of 3.98 pif included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 303 Fc' = 379 fc /Fc' = 0.80 Axial Bearing fc = 303 Fc* = 1430 fc /Fc* = 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.265 1.100 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 5834 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2c COMPANY PROJECT ? ill Wood Works® SOFIWAREFOR WOOD DESIGN June 24, 2010 12:54 c26 Design Check Calculation Sheet Sizer 7.1 LOADS (ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c23 Dead Axial 1478 (Eccentricity = 0.00 in) 2_c23 Live Axial 4320 (Eccentricity = 0.00 in) 3 b10 Dead Axial 1180 (Eccentricity = 0.00 in) 4 Live Axial 3436 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): • 0' 8' Timber -soft, Hem -Fir, No.2, 6x6" Self- weight of 6.25 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 346 Fc' = 492 fc /Fc' = 0.70 Axial Bearing fc = 346 Fc* = 575 fc /Fc* = 0.60 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.00 1.00 1.00 0.856 1.000 - - 1.00 1.00 2 Fc* 575 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 10465 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 6-iz(4, COMPANY PROJECT 1 WoodWorks° SOFTWARE FOR WOOD DESIGN June 24, 2010 12:52 c29 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b13 Dead ' Axial 3033 (Eccentricity = 0.00 in) 2 Rf.Live Axial 5052 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): C • 0' 8• Lumber n -ply, Hem -Fir, No.2, 2x6 ", 3 -Plys Self- weight of 5.11 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 328 Fc' = 439 fc /Fc' = 0.75 Axial Bearing fc = 328 Fc* = 1644 fc /Fc* = 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.267 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 8126 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. 4 G COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:55 c31 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b13 Dead Axial 2561 (Eccentricity = 0.00 in) 2 Rf.Live Axial 3599 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0, 8 Lumber n -ply, Hem -Fir, No.2, 2x4 ", 3 -Plys Self- weight of 3.25 pif included in Toads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 393 Fc' = 443 fc /Fc' = 0.89 Axial Bearing fc = 393 Fc* = 1719 fc /Fc* = 0.23 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.258 1.150 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 6186 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT f fl WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:54 c39 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 b21 Dead Axial 267 (Eccentricity = 0.00 in) 2 Live Axial 822 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 9 , Lumber n -ply, Hem -Fir, No.2, 2x4 ", 2 -Plys Self- weight of 2.17 plf included in Toads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 106 Fc' = 171 fc /Fc' = 0.62 Axial Bearing fc = 106 Fc* = 1495 fc /Fc* = 0.07 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.114 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 1108 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. ' 6,29 COMPANY PROJECT i 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:52 c55 • Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_b30 Dead Axial 154 (Eccentricity = 0.00 in) 2 Live Axial 209 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 8' Lumber Post, Hem -Fir, No.2, 4x4" Self- weight of 2.53 pif included in Toads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 31 Fc' = 470 fc /Fc' = 0.07 Axial Bearing fc = 31 Fc* = 1495 fc /Fc* = 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.315 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 384 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 149 Cn? 0 BY: A I\Ikc DATE: 6 - &O k0 JOB NO.: c EN _ OF PROJECT: RE: 'Beams w I Lal-crat i eac1 ons ❑ ❑ w i J F W beo�rn to - t� ) all s p3 - 303 O m L ❑ 1oec.v v3 -, . Walls ao a' aoa J O J a CC w i YYI 1 4 WALkS - 3‘.0 - 6 ' an L'1 w = z a z beam 4-I Wo∎115 aa , ao t A 7' ao I g O U 5 knce Witt. �'ec,�c,�i ass >> 5-e isc..... reach c each S Z 2 Or\tk uprck uitl be. Ca(cUtv+veci. 2 O U E cr O lL Z w ❑ o O 2 1- 4_ O U N ~ N a= i' o x /4 — ( \ COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 13:07 b6 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 c44 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 - c45 Dead Point 444 5.00 lbs 6 c45 Snow Point 647 5.00 lbs 7 w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 w 45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9 Dead Full UDL 120.2 plf 10 j25 Live Full UDL 370.0 plf WIND1 Wind Point 800 2.00 lbs WIND2 Wind Point -910 5.00 lbs MAXIMUM REACTIONS (Ihsl and BEARING LENGTHS (in) : 10' 61 Dead 1436 1389 Live 2089 1803 Total 3525 3192 Bearing: Load Comb #4 #3 Length 1.88 1.70 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.15 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 4 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 4 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #4 = D +.75(L +S +W) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. "9- 6i32 COMPANY PROJECT 111 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 13:07 b6 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) • Load Type Distribution Magnitude Location (ft] Units Start End Start End 1_c44 Dead Point 444 2.00 lbs 2_c44 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4_w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5_c45 Dead Point 444 5.00 lbs 6 c45 Snow Point 647 5.00 lbs 7_w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9 Dead Full UDL 120.2 plf 10 j25 Live Full UDL 370.0 plf WIND1 Wind Point -800 2.00 lbs WIND2 Wind Point 910 5.00 lbs MAXIMUM REACTIONS llbsl and BEARING LENGTHS lint : I 0' 61 Dead 1436 1389 Live 1803 2172 Total 3239 • 3561 Bearing: Load Comb #3 #4 Length 1.73 1.90 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 , Total Defl'n 0.06 = <L/999 0.30 = L/240 _ 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. _ 533 COMPANY PROJECT 1 i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 201013:09 b14 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf) l Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2 Live Partial UD 350.0 350.0 9.00 10.50 plf 3 c19 Dead Point 357 9.00 lbs 4 c19 Live Point 1050 9.00 lbs 5 c20 Dead Point 357 3.00 lbs 6 Live Point 1050 3.00 lbs 7 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8 Live Partial UD 350.0 350.0 0.00 1.50 plf 9 Dead Point 165 10.50 lbs 10_c64 Snow Point 225 10.50 lbs 11 c65 Dead Point 165 1.50 lbs 12 c65 Snow Point 225 1.50 lbs 13 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14_w67 Live Partial UD 350.0 350.0 1.50 3.00 plf 15_w69 Dead Partial UD 317.7 317.7 10.50 12.00 plf 16w69 Live Partial UD 350.0 350.0 10.50 12.00 plf 17_j36 Dead Full UDL 113.7 plf 1 j36 Live Full UDL 350.0 plf 19 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20_j43 • Live Partial UD 25.0 25.0 0.00 0.50 plf 21_j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22_j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 23j45 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24_j45 Live Partial UD 25.0 25.0 1.50 3.00 plf 25_j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26 j46 Live Partial UD 25.0 25.0 10.50 12.00 plf • 27_j70 Dead Partial UD 17.0 17.0 3.00 9.00 plf 28_j70 Live Partial UD 25.0 25.0 3.00 9.00 plf 29_j71 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30 j71 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point 3560 3.00 lbs WIND2 Wind Point -3640 9.00 lbs wind3 Wind Point -3620 0.00 lbs • winds Wind Point 3570 12.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : Wi z .. -J`r"' _- - � -r - � .., .' ° ' •+r .5 �""" .- - - --°+q ...sz.-�....iircw� d er - �.. J,,,.► . . tea- . s .--- - ,;,_ -±,.' -.,..v ^" � :r. 1r L...._ a;S = -%Y`" ' r =-- "..../i irr -. -± ,�- --' w- _ e16 =.r f ti•i r , 1 0' 121 Dead 2207 2207 Live 4350 4350 Uplift 499 479 Total 6557 6557 Bearing: Load Comb 02 • #2 Length 2.34 _ 2.34 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; • Lateral support top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 310 fv /Fv' = 0.51 Bending( +) fb = 1735 Fb' = 2325 fb /Fb' = 0.75 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.42 = L/343 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - E. 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 6557, V design = 5170 lbs Bending( +): LC #2 = D +L, M = 16527 lbs -ft • Deflection: LC 02 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I =impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. /42-63Gf COMPANY PROJECT dt WoodWorks® SOFTWARE FOR WOOD OtSMCK June 24, 2010 13:09 b14 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2 w68 Live Partial UD 350.0 350.0 9.00 10.50 plf 3 c19 Dead Point 357 9.00 lbs 4_c19 Live Point 1050 9.00 lbs 5_c20 Dead Point 357 3.00 lbs 6 c20 Live Point 1050 3.00 lbs 7 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8 Live Partial UD 350.0 350.0 0.00 1.50 plf 9 Dead Point 165 10.50 lbs 10_c64 Snow Point 225 10.50 lbs 11 c65 Dead Point 165 1.50 lbs 12 c65 Snow Point 225 1.50 lbs 13 w67 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14 Live Partial UD 350.0 350.0 1.50 3.00 plf 15 w 69 Dead Partial UD 317.7 317.7 10.50 12.00 plf 16 w 69 Live Partial UD 350.0 350.0 10.50 12.00 plf 17_ j36 Dead Full UDL 113.7 plf 18_j36 Live Full UDL 350.0 plf 19 j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20 j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 21_j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22_j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 23j45 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24_j45 Live Partial UD 25.0 25.0 1.50 3.00 plf 25 j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26 j46 Live Partial UD 25.0 25.0 10.50 12.00 plf 27_j70 Dead Partial UD 17.0 17.0 3.00 9.00 plf 28_j70 Live Partial UD 25.0 25.0 3.00 9.00 plf 29j71 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30 j71 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point -3560 3.00 lbs WIND2 Wind Point 3640 9.00 lbs wind3 Wind Point 3620 0.00 lbs winds Wind Point -3570 12.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : = ." ...a N - `` ate - v ,____ - = ,o.: a' " - • L k l0' 121 Dead 2207 2207 Live 4826 4811 Total 7033 7018 Bearing: Load Comb #4 04 Length _ 2.51 2.51 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 310 fv /Fv' = 0.51 Bending( +) fb = 1735 Fb' = 2325 fb /Fb' = 0.75 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.42 = L/343 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 6557, V design = 5170 lbs Bending( +): LC 02 = D +L, M = 16527 lbs -ft Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer: 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. COMPANY PROJECT 1 WoodWorks° I sO lWAREFORWOOD DESIGN June 24, 2010 13:11 b13 LC1 • Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psi, or p11 ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 w Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 Dead Point 217 5.50 lbs 4 c40 Live Point 668 5.50 lbs 5 c67 Dead Point 518 5.00 lbs 6 c67 • Snow Point 778 5.00 lbs 7 Dead Point 573 3.00 lbs 8_c68 Snow Point 942 3.00 lbs 9 w59 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10 w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12_j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13_j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14 j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15_j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16 j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 Dead Point 126 3.50 lbs 18 b15. Live Point 389 3.50 lbs 19 b32 Dead Point 225 6.50 lbs 20 b32 Live Point 693 6.50 lbs W1 Wind Point 6590 0.00 lbs W2 Wind Point -6590 3.00 lbs W3 Wind Point 6590 5.00 lbs W4 Wind Point -6590 8.00 lbs MAXIMUM R,EACTIfNS IIhs1 and BEARING 1 ENGTHS Hill , 4 - i. .-'.+a r .i "'^ - .,` -tom -.:�y ..,+ or -• --t... � • lPt Ka`.'. t.... - _.:07..` . � •_ ;•••"'''' - -� �.�..i T�.�. a i a 81 Dead 2561 3033 Live 6406 3789 Uplift 3098 Total 8968 • 6822 Bearing: Load Comb 04 03 Length 3.20 2.44 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L /680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC0 Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC 113 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC 113 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC 03 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. • COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 13:11 b13 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1_w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 Dead Point 217 5.50 lbs 4 Live Point 668 5.50 lbs 5 c67 Dead Point 518 5.00 lbs 6 c67 Snow Point 778 5.00 lbs 7 Dead Point 573 3.00 lbs 8 Snow Point 942 3.00 lbs 9 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10 w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12 Live Partial UD 310.0 310.0 6.50 8.00 plf 13 j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14 j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 18 b15 Live Point 389 3.50 lbs 19 Dead Point 225 6.50 lbs 20 b32 Live Point 693 6.50 lbs W1 Wind Point -6590 0.00 lbs W2 Wind Point 6590 3.00 lbs W3 Wind Point -6590 5.00 lbs W4 Wind Point 6590 8.00 lbs MAXIMUM R : • . . . r . : - :. ' . • .ia.... 7, *- ... ,� _ _s___-,7„ • .." f - :. ` -- --,- - _..ai..... -- dr . ,.gio = `- "`� -fi n -. '� - - -'`� -. 'Qa • -.s ��a,�r....� .. '- " '= '1- s' ..- sr - •^ - -- ° `� r - I a 81 Dead 2561 3033 Live 2699 7496 Uplift 3381 Total 5261 10529 Bearing: Load Comb 03 64 Length 1.88 3.76 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n _ 0.14 = L /680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC 63 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC 63 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC 63 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (A11 LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 4 -6-,7`;--ir COMPANY PROJECT 1 Wood VVo r k s ® June 24.201013:19 E]/LCI SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Spa 7.1 LOADS ilw, pa. w paI' Load Type D16tribut00n Magnitude Location (ft] Unita Start End Start End 1 0762 Dead Partial U0 613.2 613.2 0.00 2.00 plf 2 Snow Partial UO 195.0 795.0 0.00 2.00 Of 34,29 Deed Partial UD 611.5 617.5 1.50 11.00 plf 44,29 Snow Partial UV 901.2 801.2 1.50 11.00 pif 5 015 Dead Point 1436 11.00 lb. 6 015 Snow 20105 2404 11.00 1bn 1 016 Dead Point 1389 17.00 lba 8c16 Snow Point 2404 17.00 lb. 9 Dead Partial UD 611.5 611.5 17.00 13.00 plf 10 w64 Snow Partial UD 901.2 001.2 11.00 18.00 p11 11 061 Dead Point 622 7.00 lba 12 061 Snow Point 1192 1.00 lb. 13_062 Dead Point 622 4.00 lba 14_062 Snow Point 1192 4.00 I0. 15 w63 Dead Partial UD 613.2 613.2 2.00 4.00 plf 16_w63 Snow Partial UD 135.0 195.0 2.00 4.00 plf 11 Dead Partial UD 617.5 617.5 10.00 20.00 plf 19_065 Snow Partial UD 901.2 901.2 11.00 20.00 plf 19 0771 0.ad Partial UD 613.2 613.2 1.00 1.50 plf 20:w71 Snow Partial U0 795.0 195.0 7.00 1.50 plf 21_164 Deed Partial UD 47.1 47.7 11.00 19.00 plf 22_364 Live Partial UD 160.0 160.0 11.00 13.00 plf 23_129 Dead Partial UD 47.7 41.1 4.50 1.50 plf 24_028 Live Partial UD 160.0 160.0 4.50 7.50 plf 25_162 Dead Partial Up 1.7 41.1 7.50 11.00 plf 26 _062 L100 Partial UD 160.0 .160.0 7.50 11.00 plf 21 Doad Partial UD 120.2 120.2 0.00 2.00 plf 29_048 Live Partial U0 300.0 370.0 0.00 2.00 plf 29_132 Dead Partial 00 120.2 120.2 3.50 4.00 plf 30_332 Live Partial UD 370.0 310.0 3.50 4.00 plf 31_133 Dead Partial UD 120.2 120.2 4.50 1.50 plf 32_033 Live Partial UD 370.0 310.0 4.50 7.50 plf 33 _134 Dead Partial UD 120.2 120.2 7.50 9.00 plf 34_334 Live Partial UD 310.0 310.0 7.50 9.00 plf 35_335 Dead Partial UD 110.2 120.2 9.00 11.00 plf 36_135 Live Partial UD 370.0 370.0 9.00 11.00 plf 37_347 Dead Partial UD 120.2 120.2 11.00 11.00 plf 39_347 Live Partial UD 370.0 370.0 11.00 11.00 pit 3 961 Dead Partial UD 120.2 120.2 2.00 3.50 plf 40_161 Live Partial UD 310.0 310.0 2.00 3.50 plf 41_1 Dead Partial UD 120.2 120.2 4.00 4.50 plf 42_149 Live Partial UD 310.0 310.0 4.00 1.50 plf 43_163 Dead Partial U0 47.7 47.7 11.00 11.00 plf 41)63 Live Partial UD 160.0 160.0 11.00 11.00 plf 45 165 Dead Partial UD 41.1 47.7 19.00 20.00 plf 46_165 Live Partial UD 160.0 160.0 19.00 20.00 plf 4 66 Dead Partial UD 41.7 41.1 1.00 4.50 plf 48_366 Live Partial UD 160.0 160.0 4.00 4.50 plf 49 _369 Dead Partial U0 120.2 120.2 17.00 18.00 plf 50)60 Live Partial UD 310.0 370.0 17.00 18.00 plf 51 _069 Dead Partial UD 120.2 120.2 16.00 20.00 plf 52361 Live Partial UD 310.0 310.0 19.00 20.00 plf 53 _172 Dead Partial UD 41.1 47.7 2.00 4.00 plf 54 _172 Live Partial UD 160.0 160.0 2.00 4.00 plf 55_173 Dead Partial U0 17.1 41.1 0.00 2.00 plf 56_113 Live Partial U0 160.0 160.0 0.00 2.00 plf 01 9103 20170 5950 0.00 1ba 02 third Point -5950 1.00 lb4 03 Wind Point 5950 11.00 Its 914 Wind Point -5950 11.00 lbs 145 Wind Point 5950 20.00 lb. MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (In) : • 43 Dead 1405 ++1 1127 Love 12550 12112 Total 19555 19499 Bearing, Load Comb 14 11 Length 5.97 • _ 5.95 • Glulam -Bas., West Species, 24F -V8 DF, 5- 118x22 -1/2" sat.weght .7 25.55 rn 61ce1ded to Math: Larval support tope ha, boMmm at supports; Analysis vs. Allowable Stress (psi) and Deflection (In) Usb NI2 2609: Criterion Analysis valve Dealan value A nalvale/Dee: Shur fv . 162 Ev' ■ 305 fv /F0' .9 0..66 0.60 Evndln0(4I fb . 2392 . 2604 fb /i1.' . 0.92 Live Defl'n 0.40 ■ L /595 0.67 . 1./360 0.60 Total Defl'n 0.34. 1/295 1.00. 1/240 0.34 ADDITIONAL DATA: EAC0003: EVE CD Ot Ct CL C/ Cfu Cr Cfrt notes Cn LC9 • P2' 265 1.15 1.00 1.00 1.00 1.00 1.00 3 E0'4 2100 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 Ecp' 650 1.00 1.00 - - - - 1.00 - - - 1.9 01111on 1.00 1.00 - - - - 1.00 - - Evin' 0.95 million 1.00 1.00 - - - - 1.00 - - 3 Shear : LC 13 . 50.15(1.451, 3 ■ 17361, V deolgn ■ 13992 1ba 4.nding(41: LC 13 . 04.1511.05). 0 . 96159 lba -ft 0,21.30103: LC 13 ■ 04.751145) EI. 0756.06 1b -402 Total Deflection ■ 1.50(Dead Load 0.1102010n, 4 Live Load Deflection. (0.dud L■111e S.anow W.wind I■l0pact C■00n400000lon CLd■0on0eneratcdl (A11 L o lfated In the Analy.11 cutputl Ina] comblnaticn.: ICC -IEC DESIGN NOTES: I. Please venfy that Os defaA defection Anita are appropriate for your apploalbn. 2. Guinn design values are for =Lanais conforming to ANC 117.2001 and manufactured in accordance with ANSUA)TC A190.1.1992 3. GLUTAM: bed a actual breadth 1 actual depth. 4. G1Wan Beans shall be laterally wpparled acccAling to On provisions of 005 Claw 33.3. 5. GUAM: tearing length based on smeller of Fcp(Iennen) Fop(canpn). 4 - Cr i' 3 , - COMPANY PROJECT • 1 WoodVVo r k June 24, 201013:19 b34 LC2 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Slier 7.1 LOADS I bs Pe.orpNI • Load Typo Distribution Magnitude Location [ft) Unita Start End Start End 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 962 Snow Partial UD 195.0 795.0 0.00 2.00 plf 3 029 Dead Partial UD 617.5 617.5 7.50 11.00 plf 4 1+29 Gnaw Partial UD 501.2 801.2 7.50 11.00 plf 5 Dead Point 1436 11.00 lta 6c15 Snow Point 2404 11.00 lta _ c16 Dead Point 1399 17.00 lb. 6 716 Snow Point 2404 17.00 lba 9 764 Daad Partial UD 617.5 617.5 17.00 19.00 plf 1 Snow Partial UD 801.2 801.2 17.00 19.00 plf 11 c61 Dead Paint 622 7.00 164 12 Snow Point 1192 7.00 lba 13c62 Dead Point 622 4.00 lba 14 Snow Point 1192 4.00 lba 15 Dyad Partial UD 613.2 613.2 2.00 4.00 plf 16_963 Snow Pert141 UD 795.0 795.0 2.00 4.00 plf 17 :65 Dead Partial UD 617.5 617.5 19.00 20.00 plf 19_1+65 Snow Partial UD 901.2 801.2 18.00 20.00 plf 19 :71 Dead Partial VD 613.2 613.2 7.00 7.50 plf 20 Snow Partial UD 795.0 795.0 7.00 7.50 plf 21_164 Dead Partial UD 47.7 47.7 17.00 19.00 plf 22 )64 Live Partial U0 160.0 160.0 17.00 18.00 plf 23326 Dead Partial U0 47.7 47.7 4.50 7.50 plf 24_229 Live Partial U0 160.0 160.0 4.50 7.50 plf 25_762 Dead Partial UD 47.7 47.7 7.50 11.00 plf 26_762 Live Partial U0 160.0 160.0 7.50 11.00 Of 27_149 Dyad Partial UD 120.2 120.2 0.00 2.00 plf 28 149 Live Partial UD 370.0 370.0 0.00 2.00 plf 29 )32 Dyad Partial UD 120.2 120.2 3.50 4.00 plf 30_332 Live Partial U0 370.0 310.0 3.50 4.00 plf 31_133 Dead Partial U0 120.2 120.2 4.50 7.50 p11 32733 Live Partial UD 370.0 370.0 4.50 7.50 pll 33_134 Dead Partial UD 120.2 120.2 7.50 9.00 plf 34_734 Live Partial UD 370.0 370.0 7.50 9.00 plf 35_135 Dead Partial UD 120.2 120.2 8.00 11.00 plf 36_739 Live Partial UD 370.0 310.0 9.00 11.00 plf 37_147 Dead Partial UD 120.2 120.2 11.00 17.00 plf 39747 Live Partial UD 370.0 370.0 11.00 17.00 plf 39_167 Dead Partial UD 120.2 120.2 2.00 3.50 plf 40_167 Live Partial UD 370.0 370.0 2.00 3.50 plf 41_149 Dead Partial UD 120.2 120.2 4.00 4.50 plf 42_149 Live Partial UD 370.0 370.0 4.00 4.50 plf 43 163 Dead Partial UD 47.7 47.7 11.00 17.00 plf 44_763 Live Partial UD 160.0 160.0 11.00 17.00 pit 45_765 Dead Partial UD 47.7 47.7 15.00 20.00 plf 46_165 Live Partial UD 160.0 160.0 19.00 20.00 plf 47766 Dead Partial UD 47.7 47.7 4.00 4.50 plf 45_166 Live Partial UD 160.0 160.0 4.00 4.50 plf 49_165 Dead Partial UD 120.2 120.2 17.00 19.00 plf 50_169 Live Partial UD 310.0 370.0 17.00 15.07 pif 51_169 Dead Partial UD 120.2 120.2 15.00 20.00 plf 52769 Live Partial UD 370.0 370.0 19.00 20.00 plf 53_172 Deed Partial UD 47.7 47.7 2.00 4.00 plf 54_172 Live Partial UO 160.0 160.0 2.00 4.00 plf 55_173 Dead Partial UD 47.7 47.7 0.00 2.00 plf 56773 Live Partial UD 160.0 160.0 0.00 2.00 plf M1 Wind Point -5950 0.00 Its W2 Wind Point 5850 4.00 lba 973 Wind Point -5950 11.00 lbe W4 Wind Po1nt 5950 17.00 Its 05 Wind Point -5950 20.00 lba MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : Deed 1 /4f% 7327 Live 9956 9978 Total 17361 17305 Bearing: • Load Coro 13 13 Leneth 5.21 5.19 Glulam -Bat., West Species, 24F -V8 DF, 5- 118x22 -112" Self eilpd er 2055 plf to76rded In loads; Lal.M support lope 1ua bottoms m .uppods: Analysis vs. Allowable Stress (psi) and Deflection (in) using ND5211os Criterion 3611' /.10 value Deai:n /aloe Analysis/09.1,7 Shear Fv' - 305 1v /0:' - 0.60 B 9.415 1.1 fb ' - 392 Ft. - 2604 fb /Fb' - 0.92 Live 0931'n 0.41 - 0 /591 0.67- - L/360 0.61 Total Den, 0.84 - L/284 1.00 - L /240 0.64 ADDITIONAL DATA: FACTORS: F/E 00 ^ -L C/ Cfv Cfrt s En L08 E72' 265 1.15 1.00 1.00 1.00 1.00 1.00 0b'4 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 - E' 1.9 pillion 1.00 1.00 - - - - 1.00 - - 4 E:ln' 0.55 :111170 1.00 1.00 - - - - 1.00 - - 4 Shear : LC 43 - D- .7511. v - 17361, v 2964147 - :3962 lb. 0977169(41: LC 13 - 00.3511. 97 - 16159 1b4-30 De :lec010n: LC i4 - 04.7511.45401 El. 57569606 lb -102 Total. Deflection - 1. Load Deflection) • Live Load Deflection. ' ID-dead 1,117e .*Ind 1.iopacc onstruct /cr.. CLd-concontrate0I 1211 LC', are listed in the Analysis output) Load :70216801cns: 19C -150 DESIGN NOTES: 1. Please verify But to default deflection Ihnts are appropriate for your application 2. GMam design values me for material, conkani g to AITC 117 -2001 and manufactured in accordance MN ANSI/ARC A190.1 -1992 3. GLULAM: had . actual beadle a actual depth. 4. Gbdern Beams shoe be lateraey supported according to the provl9bns of NOS Claus. 3.3.3. 5. GLULAM: bearing length based on moaner of Fop(tentim), Fcp(comp'n). / (:=,-2. 9 COMPANY PROJECT I Wo Jury 24, 2010 1320 634 LC2 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet SDv7.1 • LOADS (MA Fat 4 .an 1049 Type DSatributlon Magnitude Location Eft] Un1ta Start End Start End 1_562 Dead Partial UD 613.2 613.2 0.00 2.00 pif 2_562 Snow Partial 180 795.0 795.0 0.00 2.00 pif 3_029 Dead Partial U0 617.5 617.5 7.50 11.00 pif 4 529 Snow Partial UD 901.2 801.2 1.50 11.00 plf 5 c15 Dead Point 1436 11.00 1b. 6015 Snow Point 2404 11.00 lb. 1 _ 016 Dead Point 1389 17.00 lb. 1 016 Snow Point 2404 11.00 lb, 9,61 Dead Partial UD 617.5 611.5 11.00 18.00 pif 10 0264 Snow Partial UD 901.2 801.2 17.00 19.00 pif 11 Dead Point 622 7.00 lbs 12 Inc. Point 1192 7.00 lba 13_062 Dead Point 622 4.00 160 14 Snow Point 1192 4.00 lb, 15 Dead Partial UD 613.2 613.2 2.00 4.00 pif 16_163 5500 Partial UD 795.0 ]95.0 2.00 4.00 pit 17 Dyad Partial UD 617.5 617.5 18.00 20.00 pif 19165 Snow Partial U0 601.2 901.2 18.00 20.00 pif 19 1]1 Dead Partial UD 613.2 613.2 7.09 1.50 Of 20 wll Snow Partial UD 795.0 795.0 7.00 7.50 plf 21 164 Dead Partial UD 41.7 47.7 17.00 19.00 pif 22_164 Live Partial UD 160.0 160.0 17.00 18.00 p19 3_320 Dead Partial UD 47.7 47.7 1.50 7.50 plf 24,29 Live Partial U0 160.0 160.0 4.50 7.50 plf 25 162 Deal Partial UD 47.7 47.7 1.50 11.00 pit 26_162 Live Partial UD 160.0 160.0 7.50 11.00 plf 27_140 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29_349 Live Partial UD 370.0 370.0 0.00 2.00 pif 19 ]32 Dead Partial UD 120.2 120.2 3.50 4.00 pif 20_332 Live Partial V0 370.0 370.0 3.50 4.00 pif 31_333 Dead Partial 00 120.2 120.2 4.50 1.50 pif 12_333 Live Partial UD 370.0 310.0 4.50 9.50 pif 33_134 Deed Partial UD 120.2 120.2 7.50 9.00 plf ]4_134 Live Partial UD 370.0 390.0 7.50 6.00 Of 35_135 Dead Partial UD 120.2 120.2 9.00 11.00 pif 26_135 Live Partial UD 370.0 370.0 9.00 11.00 pif 37_149 Dead Partial UD 120.2 120.2 11.00 17.00 pif 39_147 Live Partial UD 310.0 370.0 11.00 17.00 pif 39_167 Dead Partial UD 120.2 120.2 2.00 3.50 plf 40 161 Live Partial UD 370.0 370.0 2.00 3.50 pif 41 549 Dead Partial 00 120.2 120.2 4.00 4.50 p12 42_149 Live Partial U0 370.0 390.0 4.00 4.50 plf 43_363 Dead Partial UD 49.7 41.7 11.00 17.00 Of 44 Live Partial UD 160.0 160.0 11.00 17.00 plf 45 _165 Dead Partial UD 47.7 47.7 18.00 20.00 Of 46_365 11ve Partial 23 260.0 160.0 19.00 20.00 pif 41_166 Deal Partial UD 47.7 47.7 4.00 4.50 plf 46 166 Live Partial VD 160.0 160.0 4.00 4.50 plf 49 26441 Partial ID 120.2 120.2 17.00 19.00 pif 50_369 Live Partial UD 310.0 370.0 17.00 18.00 pIf 51_169 Dead Partial UD 120.2 120.2 19.00 20.00 pif 52 369 L1v0 Partial UD 310.0 370.0 19.00 20.00 plf 53 112 Goad Partial UD 1.7 2.00 1.00 pIf 54 j]2 Live Partial UD 160.0 160.0 2.00 1.00 plf 55_173 Dead Partial UD 47.1 0.00 2.00 pif 5 373 Live Partial UD 160.0 160.0 0.00 2.00 pIf M3 6159 Point -5850 0.00 1ba M2 Mind Point 5850 1.00 154 63 Mind Point -5950 11.00 1b4 Mind Point 5850 17.00 158 975 Mind Point -5850 20.00 lbe • MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (In) : • • Dead 405 T 21 Live 9956 9979 Total 17361 17305 Bearing: Load bomb 43 13 Length 5.21 5.19 Glulam -Bat., West Species, 24F -V8 DF, 5- 118x22 -112" See-weight of 26.55 pD Included in loads; Lateral support bp. torn. bottom• et support.: Analysis vs. Allowable Stress (psi) and Deflection (in) using ADS 2005: . criterion Ana tvala value De41an Value An /17 /Design f5 /3Y' Shear 00 s 182 Fv' a 305 ' . 0.60 6endln0( lb ■ 2392 Fb' a 2604 fb /Fb' ■ 0.92 0. Live 0efl'n 0.41 ■ L /591 0.61 ■ L/360 0.61 Total 008'5 0.91. L/294 1.00. 4/240 0.94 ADDITIONAL DATA: FACTORS: F/E CD CM Cc CL CV Cfu Cr Cfrt Moto. Cn LC4 re' 265 1.25 2.00 1.00 1.00 1.00 1.00 3 Ib'. 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 Fop' 650 1.00 1.00 - - - - 1.00 - - E' 1.9 million 1.00 1.00 - Fain' 0.95 million 1.00 1.00 - Shear : LC 13 . 0 *.15(115). V • 17361, V deafen - 13992 lbn 6e7dfng141: LC 43 - 0.1511.301. M - 86169 lbe -ft Deflection: LC 14 - 7,. +M) EI. 9156006 16 -In2 Total Deflection ■ 1.00(Dead Load Deflection( 4 Live Load Deflection. (D -dead L.live S -anew w.wind 2■10pae 50conetruction CLd.concentr.1ed( (A11 1.C'a are 11.ted in the Analysts output) Load co.:binatlons: ICC -190 DESIGN NOTES: 1. Nene verify that be default de0ectbn 9ntb are appropriate fa your application. 2. Ghdmn design values are fa materials corriambg to AITC 117 -2001 and manufactured b accordance with ANSVARC A190.1 -1992 3. GUAM: tad• actual breadths actual depth. 4. GU= Beams ata9 be latent, supported according to the pmvlsbts 66 NOS Chorea 3.3.3. 5. GLULAM: bearing length based as manor of Fep(2.nsicn), Fcp(canp'n). /41 '''. 6 1 , q CI COMPANY PROJECT 1 WoodWorks® SOFIWARE FOR wood DESIGN June 24, 2010 13:23 b34 LC1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif) : Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 pif 3 w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5 c15 Dead Point 1436 11.00 lbs 7 c16 Dead Point 1389 17.00 lbs 9 w64 Dead Partial UD 617.5 617.5 17.00 18.00 plf 11 c61 Dead Point 622 7.00 lbs 13 Dead Point 622 4.00 lbs 15 w63 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17 w65 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19 Dead Partial UD 613.2 613.2 7.00 7.50 plf 21_j64 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23 j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25 j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf j 27 48 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31 Dead Partial UD 120.2 120.2 4.50 7.50 plf 33 j34 Dead Partial UD 120.2 120.2 7.50 8.00 plf 35_j35 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39 j67 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41 Dead Partial UD 120.2 120.2 4.00 4.50 plf 43_j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45 j65 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47 j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49 j68 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51_j69 Dead Partial UD 120.2 120.2 18.00 20.00 plf 53 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55_j73 Dead Partial UD 47.7 47.7 0.00 2.00 plf W1 Wind Point 5850 0.00 lbs W2 Wind Point -5850 4.00 lbs W3 Wind Point 5850 11.00 lbs W4 Wind Point -5850 17.00 lbs W5 Wind Point 5850 20.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : la ' 201 Dead 7189 6822 Live 156 302 Total 7238 7018 Bearing: Load Comb #2 02 Length 2.17 2.11 Glulam -Bat., West Species, 24F -V8 DF, 5- 118x22 -1/2" Self- weight of 26.55 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 74 Fv' = 238 fv /Fv' = 0.31 Bending( +) fb = 950 Fb' = 2038 fb /Fb' = 0.47 Live Defl'n negligible Total Defl'n 0.41 = L/585 1.00 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 .Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC 01 = D only, V = 7189, V design = 5674 lbs . Bending( +): LC #1 = D only, M = 34217 lbs -ft Deflection: LC #1 = D only EI= 8756e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). • 4-Ci L f 1 COMPANY PROJECT 1 Wood Works SOFTWARE FOR W000 DESIGN June 24, 201013:22 b34 LC2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location tft) Units Start End Start End 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 3_w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5 c15 Dead Point 1436 11.00 lbs 7 c16 Dead Point 1389 17.00 lbs 9 w64 Dead Partial UD 617.5 617.5 17.00 18.00' plf • 11 c61 Dead Point 622 7.00 lbs 13_c62 Dead Point 622 4.00 lbs 15_w63 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17_w65 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19 w71 Dead Partial UD 613.2 613.2 7.00 7.50 plf 2064 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23_j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25_j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 27j48 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29_j32 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31j33 Dead Partial UD 120.2 120.2 4.50 7.50 plf 33_j34 Dead Partial UD 120.2 120.2 7.50 8.00 plf 35_j35 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39 j67 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41 Dead Partial UD 120.2 120.2 4.00 4.50 plf 43_j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45_j65 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49_j68 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51_j69 Dead Partial UD 120.2 120.2 18.00 20.00 plf 53_j Dead Partial UD 47.7 47.7 2.00 4.00 plf 55_j73 Dead Partial UD 47.7 47.7 0.00 2.00 plf . W1 Wind Point -5850 0.00 lbs W2 Wind Point 5850 4.00 lbs W3 Wind Point -5850 11.00 lbs W4 Wind Point 5850 17.00 lbs W5 Wind Point -5850 20.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • A 201 Dead 7189 6822 Live Total 7189 6822 Bearing: Load Comb #1 #1 Length 2.16 2.05 Glulam -Bal., West Species, 24F -V8 DF, 5- 1/8x22 -1/2" Self- weight of 26.55 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 74 Fv' = 238 fv /Fv' = 0.31 Bending( +) fb = 950 Fb' = 2038 fb /Fb' = 0.47 Live Defl'n negligible Total Defl'n 0.41 = L /585 1.00 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC 01 = D only, V = 7189, V design = 5674 lbs Bending( +): LC #1 = D only, M = 34217 lbs -ft Deflection: LC #1 = D only EI= 8756e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (A11 LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). - CIA Harper Project: Houf Peterson Client: Job # *•• Righellis Inc. ENGINEERS • PLANNERS Designer: Date: Pg. # LANDSCAPE ARCM rEC Wdl 10. lb V 8•ft•20•ft Wdl = 1600-lb Deck_ `� -Si9� ft Seismic Forces Site Class =D Design Catagory =D Wp W dl 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S .= 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F • = 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F v .= 1.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S • = F S S := F S 2:Sms S ds := Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a -= 1.0 R := 2.5 (Table 13.5 -1, ASCE 7 -05) • .4a S ds' I . r z l F P •I 1 + 2 hl Wp EQU. 13.3 - Fpmax 1.6- S -I EQU. 13.3 -2 F pmin := • EQU. 13.3 -3 F if(F > Fpmax,Fpmax,if(Fp < Fpmin,Fpmin,Fp)) F = 338.5171•Ib Miniumum Vertical Force 0.2- Sds•Wd1= 225.6781•lb t � Harper Project: > Houf Peterson Client: Job # ;iz Righellis Inc. ENGINEERS .• PLANNERS Designer: Date: Pg. # LANDSCAPE ARCNITEC rS• SURVEYORS Wdl 10• lb - 8•ft•20•ft W = 1600-lb ft Seismic Forces, Site Class =D Design Catagory =D W p Wdl 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 - 05) 1 P' - S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S := 0.942. Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F a - ='1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F • = 1.722 VeI -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S : F S S := F S1 2 • S ms S := Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a := 1.0 R := 2.5 (Table 13.5 -1, ASCE 7 -05) 4a • r z1 F := pR •I 1 + 2 hJ Wp EQU. 13.3 -1 Fpmax:= 1.6•S EQU. 13.3 -2 F pmin := .3 • S ds -l p'Wp EQU. 13.3 -3 4 if(F > F pmax , Fpmax, if(F < Fpmin, Fp min, Fp)) F = 338.5171 -lb Miniumum Vertical Force 0.2 • S ds• W dl = 225.6781•lb /4 H 0 HP H arper Houf Peterson . COMMUNICATION RECORD Righellis Inc. TO 0 FROM 0 MEMO TO FILE 0 ..“......,,,,, • PI.A.,11b 1.1■10,:,APE bli,Clilltir:3.1., PHONE NO.' PHONE CALL: D MEETING: El M "0 CO . . • . 2 m i■ „. a . , q e. . il 3 • G II —4 . 11 c 1 . p . .......... 0 . .0 ...P .....■.. U.) S . •; 3 6 j) SI . Cil —0 + ?s.. I I ri- it ,- • ...." , _ • _ _ . . _ . _ _ NrA a —1 03 ...c) ...—....9 * .... 4 1 1 . ( .-.0 1 . —4.....‘ N . "S. .• 7 . f ) . :,..,,,, 0 s , . . • i z 0 e . r • r ",.. 0 BY: A* (....01W\ DATE: Dex JOB NO.: 'PROJECT: RE' De.c. - olmztoA cApNc\ry r 2x G El _ / „ DECkar461 _1 0 - z V IL 0 E (tL etg L i' 0 (1.$3)(.( 1) ;r I(0.‘,(2 W inail . ' 0 w O z • • e w o ce a. n 0 e z , Vi: ,, • ) (aboar,, ---- < 1 (a t'v.i F.6 1 \...' - ' - u E ,o\sr5 2 LT r pLc . . A -- V --- ' 0 IC Spacin5 \Z)e n f‘ai d.s . ''' Mac. _ Cacxxcis ( w a 6 . kik) /), t Too\ 1 ... t( 5 L 1 .. 1 i . , . i • \) — tG pLf-- • O ) s • Ir\,:— or) Srp.) !4- x41112._ i 1 0 d L 0 : u (1 ;. a) 0 - 1 :-.- 4.. •r. :‘ 1 0 a= ts., , C T '54' -2 -... .1., & a 4tir:e SNon?scrr\ 5D5 ti4- 4i2 11" . 4-GLIG BY: h p, )\\Off czy DATE: JOB NO • ■-■ - - - . PROJ ECT: RE: Decv--, Po- Coy 0 0 J (5 O E Lo PIr C,A) 1_ : X / l i i E- 0 x .= 0 0 . Li, 0 — ago01* o I, < 0 _ z u,_ 5.,,,,,,, NDu4 2 1 0 YeS‘'5,. kff\Or‘ I 2 ‘12-5" 0 0 z it ci u. z w 0 6 O x LoPti M -.. aooit (40 ) -zoo it 1 > BOW 4t-tri --= aaawt- 3.S" 1 , 400 -', 1+Do4 3 1( 1:1 ■ r : 1.. Oke i f CD - •-• !..„ ce g to '''' i R I Harper 1 1 l • Houf Peterson . COMMUNICATION RECORD ' Righellis Inc. To D FROM 0 MEMO To FILE 0 ElialetEEPs .PCA11rIERi. LAr■G'4,APE ARCHITECTA•SURVEVOR.: PHONE NO • PHONE CALL: 0 MEETING: 0 XI - 0 CD F9 xi :5 • ri tr a • IT, ,-, 7, .... It 2 E- -C n --- - 0 0 0 . • .go —o 0 0 ce, 6 1 It ' it 1 . e•-• d . 01 ..._.../ 3 . I, 6 . . -,-....i . r -Tv ....1, • • • ,....cc.614. . I-) "-I ..C... cs. • 1 _ , ,i .1 ... • :. I 0 • • . • < \ ... • narpCr HOUfPeterson COMMUNICATION RECORD Righellis Inc. To ❑ FROM El MEMO TO FILE El End GINEEHJ ...PLANNER: LA,DSC1PE •n'CNITECTS•SU:'V =VOR:i • ' ------ - -- PHONE NO.: PHONE CALL: El MEETING: . M - D m m t P .. m . n . . g . _Th • ,t -„, _i_. • N N.M." Fl 'NI ri I' G C c .6 \ V r ; r C\ ci% ,li C C y 1 r i ! r t i • • �� 0 m p O U. — 1 , • .4. I COMPANY PROJECT 1112 VVOOdWOrkSII SOFTWARE FOR WOOD DAWN June 8, 2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Point 2.50 200 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : -''-' ' . . =-:-: . 7' . `7, -,- :7 ' ::- . :- - '''' 44 'f fl 'U - ,:`, '',',. ' ''',•'','.' •IP'7,.'7 ' .' ':: . 7 '.' •;-.: '7; ',.. ----: .-- - V ' f : , : :- . 1 - 'i :.;!•,' ,':-.-:: '',‘-,-- ',-. 4`; : '. t : ', .f:'. ,-: :i. i';.* ';'", ;" . ':•; :. `•.- : :%•.. . :' '. F'.:',.: =,..-.:::'--:::' --.'..„;-::' 7 :',.. ' ::.''' ' .:, ' .-''': ''. ;,:,'' .'f -.':,: - '.• '.:''''.. ...• : .:.-.. r: - .'"' ?...:::-..:. :.--, : ' '. ' . .-- . l • .• 'i . • . •-• ': .' .•'• :: ''. ' ,..:. ...-.. ' . r ' '... I a 5 Dead Live 100 100 Total 104 104 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00, 1.00 *Min. bearing length for beams Is 1/2" for exterior supports Lumber-soft, Hem-Fir, No.2, 2x6" Self-weight of 1.7 pif included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/'v' = 0.13 Bending(+) fb = 405 Fb' = 1048 fb/Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Pi,' 150 1.00 1.00 1.00 - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 '1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - 1.00 1.00 - Et 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending(+): LC #2 = L, M = 255 lbs-ft Deflection: LC #2 = L El = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Cause 4.4.1. lq GI cr) ( COMPANY PROJECT in. WoodWorks .... SOFTWARE FON WOOD DESIGN June 8, 2009 16:27 Hand RaiI2 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Full UDL 50.0 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 'rtr'izt'A' :V:,,.."--;,..: ., e , :'''s ::"": e.... i- 7 .: ..P.3:' ' .:: ,, ., ::i ..a.:....,„:„;,;,,,, .... .1,..., r,.....::,; ;.;.,. 4 ,..., ; :.,- ; .,..,...,:„... r .-..,:;....e...: ...:,,.... _ ,, .- ,.. ;:,...,.;.. • 2 :-ti :::: :,...:',.'i ,..'..-.,;.;-.• ...-:: --...;',::::?-..-..-: ::: ::::- ,. z. , ,.. -'':".'•.•-•:'.•':'::;'',;,-.. 1-: • : . . ' 7 r: :. -. 7, ,'-: - -: -- T. - ":-." :, ... -." : ' " • - - -•:, ' "::: .... '..': ' -„,, 1 - -- 10' 51 Dead Live 125 125 Total 129 129 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 "Min. bearing length for beams is 1/2" for exterior supports Lumber-soft, Hem-Fir, No.2, 2x6" Self-weight of 1.7 plf included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 256 Fb' = 1048 fb/Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.11 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 129, V design = 106 lbs Bending(+): LC #2 = L, M . 162 lbs-ft Deflection: LC #2 = L EI = 27e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 22, 2010 13:57:56 Concept Mode: Reactions Base of Structure View Floor 2: 8' 1050 ... - \ 49 f U4 - : _ 46 - 10 - 1U3 -' 1600 L -- - 600 L. • _ 4r' -o' I vG r 619 D 7 619 D : 40'0 'IU't ....c 4b' • i VU 44' b yg 4.5-0- • yC 4Z•-•0 ! ,- ... 4•1 - b' 5 • 1193 L.15312404 L; :_:2404 L .., . .: ': 3y' -b.. y3 625 D1059 11439 D ::1394 D 3 n . • by - 315 L : . . • . . ss n • 00 . •: _ - -.c. -- - -. • -- -- -- -- - - • - -- • -- -- -- -= 3G -b Or .. 3 58 D 31-0' a0 GV 0 • • 0 0 4 3 315 L ; - -- Lts 0 • 0 i - 100 L '1 358 D �5 a /V :96 D 6.. _ .. _ Ga3 -b - :: r r 74(847 5611 L • : : 756 L. G•■•_0 • e 4!(452 D 5546 D 2-5-11 - _ . . is •-b:. r4 625 L, lu b i � 2 03 D - i .... 5D . 1u n . b • :: ' 908 L 105 L - 3 - icn 307 D� b 4 6D iu b �' —245 L_.. v. - v -0 • } 4 ) ' • :; : • bu, 599 ,r 8 7 L • _ 8 7 L . - - : . - . _ v � .. „..� 2 LD 8 D: 1963 D . . 1963 D _ '' 3 -b 154D.: i0u G b • t .t..._ D L _ 11 106 0 2363 D: 1 - 0' - - 1 781336 : : 0 -b .B818. CCC C}CCC CC CCCCC C CC CCICCCDDDD D DDDIDDD:DD D.D DDD D DD CD!DD DE�E E E EiE 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26` 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70'7Z 74'76' U1'2'3'4'5'678'91(1'1;1 :1 !1 11:111 0222: 2 2 2(2"212f3(33:33 3t3f4(4 4A :44:4(4 - 414(5(5 :5 :5 5;5 6t6 E: 6: 6.6!6t6;66?7(7 -6" ' FOOT k I el • L1OUT • -F NT LD - • 4....._ F( _ WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 22, 2010 13:57:37 Concept Mode: Reactions at Base of Structure View Floor 2: 8' 1050--.-. a �'1 - -- 49'-6„ g. 0S : 1600 L , . - _ -- - 1600 L. 4 / - e IuL/ 619D is 619D' ' .• - 4b - o 1 kJ" 1 UtJ 44 -b y9 43 -b' ao -13274 L_ • _ 3304 L - : sa o 4 7153 D:; - -r- - 7072 D - - - - stS -b.. s ; 3 •-b . .: , • - . - . - :. . . - --. ... - -- - : :- -- - .30 - y! 3b -O • u a 315E : .. 3j- �° 358 D; 3 I -5• • zsb . • _ su -b • 03 -. 315 L - - Li - b' • 62 - 358 D _.... _ - _ - .... - - - -- z0-13 61 ' 100E C L� • uu 96 D ;/ G4 b • 1 / 74(84 611 L r 56 L • �u � • 10 ' 4(452 D 5546 D r 5 L� D y -b' is .:625 L, _ - 5D, : 10 . L 203 D -' - I 0•-•0 it ..: -.: - : 5D. : : .. • E � 105 •-908 L -; 307 0 . 4:'''f ' 460 F� ii r e = -245 •--• . - : yu�b • 661: L - - �.n. 02. _1-." :: . 740 • i - 9 _ --- - - bbu' - ' 59 L�'ss�258 L: � � - - $ 5 87 L . : ... 0 4 - b �..> 209 L D8 D-j1963 D : _ i ' _ 1963 D - :, . - : . 3-0 1540 s: . _ . -iuu • �` cb" • . D LL:... 725L.219 D . . ■ Vv 78D�DD 6170'0 u- ' BB \B.B BC. CCCCCCCICCC CCCCCCCCCCCC \CCCD.DDDDDDD(DDDDDDD DDDDDDCDDDDEEEE E EEEEEEEIEBEE+EEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 - 1:1:1'1?1t1: 11112( 22.'2;2 313( 4( 4 :5(56(68:6 :6 7.7.7 :7177' -6" • OoT LtJ(\ Lpc./UuT 4_ F : Y l� Harper Houf Peterson Righellis Inc. Cs.rrent Date: 6/24/2010 1:41 PM l system: English Fuu name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\F1.ftd\ Design Results Reinforced Concrete Footings GENERAL INFORMATION: Global status Warnings Design Code ACI 318-05 Footing type Spread Column type Steel Geometry , i , , I i j 12 in 1 4 4.25 ft ' I i "-mk.,-,t ,w . �. E te - 1 I 4.25ft I x' 4.25 ft i • Pagel tq -- F3 Length • 4.25 [ft] • Width • 4.25 [ft] Thickness • 1.00 [ft] Base depth • 1.50 [ft] Base area • 18.06 [ft2] Footing volume • 18.06 [ft3] • Base plate length • 5.50 [in] Base plate width • 5.50 [in] Column length • 5.50 [in] Column width • 5.50 [in] Column location relative to footing g.c. • Centered Materials Concrete, fc • 3.00 [Kip /in2] Steel, fy 60.00 [Kip /in2] Concrete type • Normal Epoxy coated No Concrete elasticity modulus : 3122.02 [Kip /in2] Steel elasticity modulus : 29000.00 [Kip /in2] Unit weight • 0.15 [Kip /ft3] Soil Modulus of subgrade reaction 200.00 [Kip /ft3] Unit weight (wet) 0.11 [Kip /ft3] Footing reinforcement Free cover : 3.00 [in] Maximum Rho /Rho balanced ratio : 0.75 Bottom reinforcement // to L (x() : 644 @ 9.00" Bottom reinforcement // to B (zz) : 644 @ 9.00" (Zone 1) Load conditions to be included in design Service loads: SC1 DL S1 DL ' S2 DL +LL S3 DL +0.75LL Design strength loads: DC1 1.4DL 01 1.4DL D2 1.2DL +1.6LL Loads Condition Axial Mxx Mzz Vx Vz [Kip] [Kip *ft] [Kip*ft] [Kip] [Kip] DL 5.55 0.00 0.00 0.00 0.00 LL 15.61 0.00 0.00 0.00 0.00 RESULTS: Status Warnings - Insufficient development length, Section 21.5.4.1 • Soil.Foundation interaction Allowable stress 1.5E03 [Lb /ft2] Min. safety factor for sliding 1.25 Min. safety factor for overturning • 1.25 Paget / F Controlling condition S2 Condition qmean qmax Amax Area in compression Overturning FS [Lb /ft2] [Lb /ft2] [in] [ft2] ( %) FSx FSz slip S2 1.38E03 1.38E03 0.0826 18.06 100 1000.00 1000.00 1000.00 Bending Factor 4) 0.90 Min rebar ratio 0.00180 Development length Axis Pos. Id Ihd Dist1 Dist2 . [in] [in] [in] [in] zz Bot. 20.11 7.04 19.75 19.75 xx Bot. 20.11 7.04 19.75 19.75 Axis Pos. Condition Mu 4)*Mn Asreq Asprov Asreq/Asprov Mu /(4)*Mn) [Kip *ft] [Kip *ft] [in2] [in2] zz Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 1 1 zz Bot. D2 13.38 45.76 1.10 1.20 0.918 0.292 VA I xx Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 ] 1 xx Bot. D2 13.38 43.06 1.10 1.20 0.918 0.311 I' _► Shear Factor 0.75 Shear area (plane zz) 3.10 [ft2] Shear area (plane )x) 2.92 [ft2] Plane Condition Vu Vc Vu /(4)*Vn) [Kip] [Kip] xy D2 8.99 46.09 0.260 I'-ll - I yz D2 8.68 48.88 0.237 l z4 Punching shear Perimeter of critical section (b... : 4.67 [ft] Punching shear area 3.31 [ft2] Column Condition Vu Vc Vu /(4)*Vn) [Kip] [Kip] column 1 D2 29.25 104.29 0.374 l 1 1 Notes Page3 fl 2C-..-- *Soil under the footing is considered elastic and homogeneous. A linear soil pressure variation is assumed. * The required flexural reinforcement considers at least the minimum reinforcement I design bending moment is calculated at the critical sections located at the support faces * Only rectangular footings with uniform sections and rectangular columns are considered. * The nominal shear strength is ca lculated in critical sections located at a distance d from the support face * The punching shear strength is calculated in a perimetral section located at a distance d/2 from the support faces * Transverse reinforcement is not considered in footings * Values shown in red are not in compliance with a provision of the code *qprom = Mean compression pressure on soil. *gmax = Maximum compression pressure on soil. *Amax = maximum total settlement (considering an elastic soil modeled by the subgrade reaction modulus). * Mn = Nominal moment strength. * Mu /(4 *Mn) = Strength ratio. * Vn = Nominal shear or punchure force (for footings Vn =Vc). * Vu /(4)'Vn) = Shear or punching shear strength ratio. • Page4 Beam Shear b0i 5.5•in (4x4 post) d:= tf -2•in := 0.85 b := Width b = 36•in V :_ 0 4 • f psi•b•d V = 16.32.kips 33 Vu qu b 2 c011 b V = 7.83•kips. < V = 16.32.kips GOOD Two -Way Shear bs := 5 5•in Short side column width bL := 5.5•in Long side column width b := 2 -(bg + d) + 2•(bL + d) b = 54•in 33 1.0 Vim.= 4 + 8 f psi•b•d 3 3'13c V = 48.96 kips V := 2.66 f psi b d V = 32.56•kips = qu [b2 – (b + d) V„ = 15.88-kips < V = 32.56.kips GOOD Flexure 2 Mu q I \ b – 2 /f bco11 (12) M = 4.98•ft•kips A := 0.65 2 := b•d S = 0.222.11 6 F := 5 f psi F = 162.5 -psi M ° f := — f = 155.47•psi< F = 162.5 -psi GOOD 'Use a 3' -0" x 3' -0" x 10" plain concrete footing Plain Concrete Isolated Square Footing Design: F2 f := 2500-psi Concrete strength f := 60000-psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity "(conc 150•pcf Concrete density "(Soil := 100•pcf Soil density gall 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl := 2659-lb Pd1 := Totaldl Totalll := 7756-lb Pll := Totalll PU := Pd1 + Pu = 10415-lb Footing Dimensions t := 10• in Footing thickness Width := 36-in Footing width A:= Width Footing Area clnet gall — tf' net = 1375•psf Ptl Areqd gnet Areqd = 7.575•ft < A = 9 - ft 2 GOOD Widthregd A reg d Widthregd = 2.7541 < Width = 3.00 ft GOOD Ultimate Loads A pA:= Pd1 + tf'A' "(cone P := 1.4-1 1.7•Pil P = 18.48-kips P qu A q = 2.05•ksf Plain Concrete Isolated Square Footing Design: F3 f c := 2500-psi Concrete strength f 60000•psi Reinforcing steel strength Es := ' 29000• ksi Steel modulus of elasticity ' fconc 150.pcf Concrete density Ysoil := 100 pcf Soil density all 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totalal := 2363.1b Pdl:= Totaldi Totallj 4575.1b Pll := Totalll Pg:= Pdl + Pll Pg = 6938•lb Footing Dimensions t := 10•in Footing thickness Width := 30.in Footing width A:= Width . Footing Area clnet gall — tf' Yconc net = 1375•psf P Areqd gnet A = = 5.046 ft < A = 6.2541 GOOD Width Aregd Widthreqd = 2.2541 < Width = 2.50 ft GOOD Ultimate Loads Pdl + tf'A''Yconc • P„ := 1.44 + 1.7. PH P = 12.18•kips P q := — q = 1.95•ksf A • • 1 Beam Shear bcol :5.5•in (4x4 post) d:= tf -2.in 41:= 0.85 b := Width b = 30•in V„ := 40 4 f V, = 13.6-kips 3 Vu — qu r b 2 toll b Vu = 4.97-kips < V = 13.6-kips GOOD Two -Way Shear bs 55•in Short side column width bL : 5.5-in Long side column width b := 2•(bs + d) + 2•(bL + d) b = 54•in Rc := 1.0 _ + 8 f c psi b d Vo = 40.8-kips 3 3•13 V :_ x•2.66- f si•b•d V = 27.13 -kips = qu•[b — � bcol + d) V = 9.71 -kips < V• ax = 27.13-kips GOOD Flexure 2 Mu := qu [(b - bcoll (11 b M = 2.54- ft•kips 2 /I l2 J A t:= 0.65 b d 2 1:= S = 0.185•ft 6 F := 5•(4)• f F = 162.5-psi M u ft := f = 95.19 -psi < F = 162.5 -psi GOOD 'Use a 2' -6" x 2' -6" x 10" plain concrete footing Plain Concrete Isolated Square Footing Design: F4 f := 2500-psi Concrete strength f := 60000•psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity "Yconc 15••pcf Concrete density lsoil .100.pcf Soil density • gall := .1500.psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl :='5001.1b Pdl := Totaldi Total1l := 7639•lb Pll := Totalli Ptl := Pd1 + Pil Pti = 126401b Footing Dimensions tf :- . 12•in Footing thickness Width := 42•in Footing width A := Width Footing Area gnet gall — trIconc gnet = 1350.psf Ptl Areqd gnet Areqd = 9.363 ft 2 < A = 12.2541 GOOD Widthreqd A reg d Widthreqd = 3.06•ft < Width = 3.50 ft GOOD Ultimate Loads = Pd1 + tf'A'"Yconc P := 1.4 Pdl + 1.7•P11 P = 22.56•kips P qu := — q 1.84•ksf A • Beam Shear boot 5.5•i■ (4x4 post) d:= tf -2•in := 0.85 b := Width b = 42-in V„ :_ 4) 4 f psi•b•d V = 23.8-kips 3 Vu := 9u (b 2 colt b V = 9.8 < V = 23.8-kips GOOD Two -Way Shear bs 5.5-in Short side column width bL 55 in Long side column width b := 2-(bs + d) + 2•(bL + d) b = 62•in (3, := 1.0 Vim.= 4)(- + 8 • psi•b•d V„ = 71.4•kips 3 3'0c) fu Vm := 2.66 f� psi b d V nmax = 47.48-kips ,XM = 9u•[b — �bcol + d) V = 19.49-kips < V nmax = 47.48-kips GOOD Flexure 2 [(b — bcol 1 M := au ' 2 • (2 I b M = 7.45 ft kips 0.65 J 2 •— bd S= 0.405.1 6 F := 5.4)• f� psi F = 162.5•psi M n f := f = 127.79•psi< Ft = 162.5•psi GOOD 'Use a 3' -6" x 3' -6" x 12" plain concrete footing / — r2— Plain Concrete Isolated Round Footing Design: f5 f := 3000•.psi Concrete strength f := 60000-psi Reinforcing steel strength Es := 29000•ksi Steel modulus of elasticity • 'Yconc 150 -pcf Concrete density •Ysoii 120•pcf Soil density • g := 1500 -psf Allowable soil bearing pressure TYPICAL FOOTING Reaction Totaldl : =_ 619-lb Pd1 := Total& Totalll := :1600.1b Pll := Totalll P := Pdl + Pll P = 2219-lb Footing Dimensions t := 12 ir► Footing thickness Dia := 18-in Footing diameter rr Dia Footing Area nnv'= 4 gnet = gall - tf Yconc gnet = 1350•psf P Areqd — Areqd = 1.644 ft 2 < A = 1.77 ft 2 GOOD gnet Diaregd J Areqd 4 Diaregd = 1.45-ft < Dia = 1.50ft GOOD 7r Ultimate Loads = Pdl + tf'A''Yconc P„ := 1.4•Pdl + 1.7•Pll P = 3.96-kips P qu A q = 2.24•ksf • 1) \ Beam Shear bet)]. 3.5•in (4x4 post) d := tf — 2-in := 0.85 b := cos(45•deg)•Dia b = 12.73.in V :_ 4 f psi b d V = 7.901 -kips 3 Vu •= qu r b 2 toll b V = 0.91 -kips < V = 7.901 -kips GOOD • Two -Way Shear bs := -3•5•in Short side column width bL := 3.5-in Long side column width b := 2•(bg + d) + 2•(bL + d) b = 54 -in (3 := 1.0 V 4)•( + . 8 / f psi b d V = 23.703•kips 3 3•0 V := 2.66 f psi b d V,,,, = 15.76 -kips A V y 4.= qu [b2 — kb + d) V = —0.31-kips < V = 15.76 -kips GOOD Flexure ( 2 Mu == qu I b — bcotl ( 1 b = 0.18•ft•kips 2 / A:= 0.65 2 4'•— b d S = 0.123 -ft 6 F 5•(13 f F 178.01 -psi M f := u f = 9.9 -psi < F = 178.01-psi GOOD Use a 18" Dia. x 12" plain concrete footing Plain Concrete Isolated Square Footing Design: F( f := 2500-psi Concrete strength fy 60000-psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity "Yeonc := 150•pcf Concrete density Ysoil 100•pef Soil density g :=, 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl:= 7072.113 Pd1:= Totaldi Totaljl := 13304-lb Pll := Totalll Pt1 Pd1 + P11 P = 20376-lb Footing Dimensions t := l'5-in Footing thickness Width := .48• in Footing width • A Width Footing Area gnet gait — tf•'Yconc gnet = 1313•psf P1 Areqd (het Areqd = q 15.525•ft < A = 16•ft GOOD Widthreqd Aregd Widthreqd = 3.94•ft < Width = 4.00 ft GOOD Ultimate Loads Pdl + tf'A''Yconc := 1.4•Pd1 + 1.7•P11 P = 36.72•kips P qu — q = 2.29•ksf A Beam Shear bcoi 5.5•in (4x4 post) d := tf — 2-in := 0.85 b := Width b = 48.in • V :_ 0. • f V = 35.36•kips 3 Vu qu Cb — 2 colt V = 16.26•kips < V = 35.36.kips GOOD Two -Way Shear bs := 5.5-in Short side column width bL := 5.5•in Long side column width b := 2•(bs + d) + 2•(bL, + d) b = 74•in • f := 1.0 _ 4 + 8 l f V = 106.08•kips C3 3•13cJ Vnmax := 4.2.66• f psi•b•d Vnmax = 70.54•kips A V,yt, ‘ := qu [b 2 - ( bc01 + d) V = 31.26•kips < Vnmax = 70.54•kips GOOD Flexure b -bcol 2 ( 1l M := qu 2 •I .).b M = 14.39.ft.kips A:= 0.65 \ b 2 1:= 6 S = 0.782•ft F 5•(1)• f F 162.5•psi M a ft := s f = 127.75•psi< F = 162.5•psi GOOD Ise a 4' -0" x 4' -0" x 15" plain concrete footing Plain Concrete Isolated Square Footing Design: F7 f := 2500•psi Concrete strength f := 60000•psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity ^(conc 150 pcf Concrete density 'ysoil := 100•pcf Soil density q := 1500-psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 1200-lb Pd1:= Totaldi Total1l := 3200•Ib Pit := Totalll P11 Pd1 + P11 Pg = 4400.1b Footing Dimensions tf := 10;in Footing thickness Width := 24-in Footing width ,A,:= Width Footing Area gnet := gall — tf'"(conc net = 1375•psf Pu Areqd — A — 3.2 ft < A = 441 GOOD gnet regd Width Areqd Widthreqd = 1.79-ft < Width = 2.00 ft GOOD Ultimate Loads Avv,1, Pd1 + tf'A'1conc P„ := 1.4'dl + 1.7•Pll P„ = 7.82-kips P qu := A ch = 1.96•ksf Beam Shear bcol := 5.5-in (4x4 post) d:= tf -2 -in := 0.85 b := Width b = 24 -in V:= 4 • f psi•b•d V = 10.88•kips 3 Vu qu (b 2 boil) 4) Vu = 3.01-kips < V = 10.88•,kips GOOD Two -Way Shear bs := 5:5 in Short side column width bL 5.5 -in Long side column width b := 2•(bs + d) + 2•( + d) b =54-in := 1.0 _ 4 + 8 f psi•b•d V = 32.64 -kips ( 3 3-0c Vnmax := I•2.66• f V im= = 21.71•kips := q [b – (b + (1) V = 5.35 -kips < V nmax = 21.71-kips GOOD Flexure 2 b bcot 1 M qu' 2 . M = 1.16-ft-kips A:= 0.65 2 := b-d S = 0.14841 6 F := 5.43- f psi F = 162.5 -psi M u f :_ — f = 54.45 -psi < F = 162.5 -psi GOOD IUse a 2' -0" x 2' -0" x 10" plain concrete footing I 4--P?2 10\-3 b r xa oa 2. . Iv as ow 5- j g1 ° o - I'M - I--5-1.= ■A"""'to - < ^S (7 1 t ` - 'CI -- S181' '0 - Q-F.t..'t So' r')°) * I so °t'e - W 9 4 --67-'4'17 (z),92.' e. + SZc.; {,1 t-.:1 = a 4J %\e - Ls'QB-t°1L = tolW = (1 )coc...i l° -E <st,'L°9 c.err...-e_ 4 (t i)(e -z s,"KS' I )dos t i o) _ -41, z El 1 J 'e,°) � = W Z x a Q ` e ." tS.. C 4 ( Z' 1 0)21Z * t' 4 Q 1)ZZ)Cs' 'K )(®st' a) = W a O :\t- L'11 -r tl'Scr., - low o V�J 3 3 Fi D I . ter- t 6 x 2 G m } ,.�---�--- �y� z 0 l I l 1 $VO — *— � ; ' / > 0 A r I 1 1 ❑ m 3 3 O 2 71 k1_, ' 13 .S.• o m pool -1-U.Aj - d -1-() .3a iS‘e t x „G)---1q x iE°e e 0U400j . ( au lci / :l93r0ad do Q bOI r Z : BOf Olge 1 :31V4 TWI — Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:43 AM Units system: English File name: 0:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\Front Load 2.etz\ M33 =51.9 [Kip• t] M33 =12.19 [Kiplt] • X MMmet �L\ Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:35 AM Units system: English File name: O: \HHPR Projects \CEN - Centex Homes {309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \Front Load.etz\ UM VT `M33 =25.66 [Kip *ft] • • M33= -30.27 [Kip *ft] Y ii Mbmen Lc 2 — ! Zt 00 ° ,n N W M __�_ _ ru < b'ne)k, - 0b - x3U0 *: o> i p _5.-,. e.:- a ' sx Tr:' o�), - `,o1o'o = u "'''`t 1.C- t -t)(t7 C'e�eX,e) _.$--4 sb I" i �S S �0� 0�° � C ) 4 ") y ob ot • '`V""to 10b O'e 0 Z m f$'� - Ao 5'1C qb'l °wl-vW o m 0 131 lb b a (I e)S5vt4 c9ssvE 4 ct'eXi 1)LIK 0) = - sW n 0 31 X31 ' l 1 = cc7exc2,9t'e) 4- t-b' (3. A- 1 fi' o . = 10W 3 c Z 6u1uJV - paw) 0 4 _. Z 2 m n D 1 F 0 1 1-1' +C .1 1 n El 3 , I 3 3 - A 431A, , "AqSI't m o -A WOE iA WOE I ❑ ❑ T -- Ig>lue clprl vcG6. - .I. \ (fin :3a 'K. Is v (3o3- p:k. :133 road Ao { / ) o— N ._1 : oN eor 010t-9 :3iva )■sl :A. RAP Bentley.- Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:38 AM • Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\Rear Load.etz\ . M33 =43.24 [KiP•ftl • • • M33= -45.06 [Kip'ft] X M3rerks L�.1 -Ta3 :Bentley, Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:43 AM Units system: English File name: O: HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \Rear Load 2.etz\ M33 =41.88 [Kip`ft] • • M33=- 46.37lKip ftl M - Liz ._sZ.3 • • • ; • 20<t . . Ct • - :*••••., ,'-' = CD — . • - • o 0 (442,4cq ac24 - 110 1 < h S cOC Smpf) • „ . • 0 ( 6 ) 6 ' 0 -u w . . ciN w (D0b) toG) '0 -- - 11110 r-s-V - Dv „ -$9(5i06 W� obfro; _ - (2 - taXctoot)4 - ' 0/coo o FA? "PI -V - Y • „01 4 q31 .Q.ENFIE 0 z rn ( " COC))(../09,,:0)0b 0 XAVI :(7) 0 , 3 N 11 0 0- 1 1.0 V • 0 itr . 'Q=S V To - 1,1 - A () Pule 0 3 3 t 7 S -41 e8t -C T S V =40 0 "WO t"In 2 • v 4 z • 0 • 0 • • , ; 3 2 21 9.1.d t Z1 X 9 ir " 11 I El k-1 003 071 0 :103108 ci 0 N • N eor IOC - -- ) - \NV :A. • . . . ; s1) Q : X I O ' 01 k-S SA.: 04' 0 V4 0 - . -,': ■ : = ( XP- ea ' Of ctrn ) :-' y) IT/ 0 = sV ° --)' 0 „7..i a i2-4. c\ki... ' -a I\ WirC6a.1, - = ■-o - r 5 5 0 -.- /I h . )--3 - i - S = S: 0_ •-." ,I )C... 0 CJO s olk l o - t i 9 ° 1060 = ) 0 ; P 0 N 1 214_ 0 ....... x c900 , crocvz. -. 9 - _ :-- • . 1 ,01 - 710 . • I.,S < +.,' - rtntxycic,f...-. - , V•Li.--ti-•.)4C7- ; EI1)(90 0 b e l )c.QA:01417) 0 0 IS ‘1 1A1 0 ,,0% a■SW\ ri A - tt)71 4 9 : Z-7 L76 t oy/ Lcoo'0 v 1° . f - "..m clE = %V ")•0 p a 41 .i k _C: 47,' 1' -; -SNY.,c00 TT Ob = uNti 2) -, -I x o • rn P m biTil A# 1 3S°;x -e f- 5 1 -- Yo in - D s4-Q-")•,\.1. . 3 0 C117 - Sq Pi C V V ".°4 - 0 3 Q 0\7.1'0 ='\ii3O ti 0' 0A-1 - <- -) k !k -i = \Auk/4 z m z 0 - --- * 11 - yr 1/4)1/43c ' ' ITA \O G C1- kJ k k . \ JO Z:. - \AI 0 r2 K 0 4(241 = g -7k-- 1 . tql )( 1 . :103 road 40 ON eor :31va :As BV: j\N‘c. DATE: ao 1 0 JOB - c ` ^ c t () OF PROJECT: b'x3' x 1.25 RE: u 1 y� 1i 0 `} 1 {^� t -In* (s ❑ ❑ z aL.O3ktt li 0 La t o 1 1 t- I ____-_- 1- J o W 1--s--1 1 a' U Z Z Check_ °vertu rnw' O t ' tor" = ac;..03 1c-C M (& 0 liSN3)4f.(a hLL(C 4i Ais 2 MA (b1(0,150)(-t 5 .a(4. ) 4- I sC. t2 z - M - 0 - 1 7 d(o.03 W E a X _ Mt _ 4t- a(,,03 - 'd� -o3 \ - e.= a:a-o1 Ft S 1'5.2 4.10, gvro x - r _ LC , a,ci _- v-6 :- ot. 3 LCr3 2-e-' _ 3CZY $ -a(a,-3-00) Fa{ S hw(4 , Use S fo fes\ Sit Ove (f v ir)y 0 { 8` = N1P-L= 5. a }- 3.2(,2)4- Cl,b1.4- 3.2.(L).3-4DL. ub.e 5f& 51- er a Mtv- ( i-3. Z Y(0) a-- C I . Co L 4- 3.2) )-- q D �-- a 1 s,a , 6'5 4 � &o. tZ 4 4-DL._ >~�w'= I,5mo <1`42 = 1,SCa6037 G k4s,ot(,+Y DL x - b t< = - I, 3 : . 54-J foc} -in g S 1,3e_ 01L LI iF Sb01-‘ r\y - 12C, Icsrxi _ M'RL;. (572 +2,21.) 4- (1,11:,+- 3.2X5) +3D\ - 331-- )r- 31)1_ Me__ 1- G.b61 1 )1__ 1, SMociv1ft.. \s(2-)3) G ;l a- 31)L b_...: Q.115 1c - 25 L('"\- kmg x .3C x 15" r,_- a _asor._ = (a.as+- s.2¢3,2.;-I Li3.2 15,51 e_z__ t ,22 1 -)mix 4(s,cs 1..) - 0„q0 IJ C) 3CAL-2( 1,22)) 1 -D21- _ b = zx: S C E f ro . CD • c x n O u � I 1 I 0 2 ❑ m Z 'T1 O 3 ,,s1 ) ) 4 1 C\J1 �sc� Sic' = c(531' 1 )Z r c )) 1-)E 7 N ( �.� X -, oUJ 0 n ° 1\ 0 \' t X31 x )E `)+) �/ - ❑ • o m • O O m <a)Z- 1)0)2 ❑ ❑ 173 road AO Q100 ' mi l ON 90r ® oe / :31v0 \N A9 n al. Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:42 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \Interior 2.etz\ M33 =23.55 [Kip`ft] • • • • M33 = -17.88 [Kip`ft] Y Name LC I naP, .$tt Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:42 AM Units system: English File name: O:\HHPR Projects\CEN - Centex Homes (309)\CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \Interior.etz\ • M33 =32.26 [KiP'ft] • M33= -9.27 [Kip'fti Y Me ACI 318 -05 Appendix D 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc = 3000 psi fc = 3000 psi h' = 3.50 inches h = X1200 „; inches (into the Fc Stem = 8.00 } inches Note: hef above is the the embedment into or cmax = 5.25 inches the foundation and does not consider stem m Fnd Width = 36.00 inches c = 2.25 inches cmin = 18.00 inches W 1.00 cast -in -place anchor W 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor = 0.75 strength reduction factor = 0.75 strength reduction fact' Calculations Calculations AN = 68 in` AN = 1296 in` AN = 110.25 in` AN = 1296 in` Nb = 8,607 pounds Nb = 55,121 pounds lVed,N = 0.8286 Wed,N = 1.00 N = 4,399 pounds N = 55,121 pounds 4 N = 3,299 pounds 4 )N = 41,341 pounds Combined Capacity of Stem Wall and Foundation 4Ndb = 44,640 0.754)N = 33,480 123 - ;.! • o'cl z P. 5' 5 o 'AO 1 / 4 s"tA ) < tabt)e -:- ( -20 (000 62, 0 = viy/6 X 0 la' 0 z 1 0 Z ()o)0/ (coob"))2.1D2_ 0 = 0 : 0 sivci 4;- -) 11, - b41- ( g - o; 9i1 SS -h cg-i...1)el Cli 0 - 7 0)0b ''' \Ai e • (C)E.X.000f)ea (00 6e; 5' o 3 baS'o rrsv 1 21 # (,k) k6-A•• • Z LI o • m z 0 r 0 I ISI -54 IS • 0 m 4 * ore' eg: x•o\uw r 0 0 7 kg 133 rod d AO 0 0 r\ e) ,. oN so r oio -9 :a. Concrete Side Face Blow Out Givens Ab = 2.15 in` fc = 3000 psi c min = 18.00 inches 4, = 0.75 ' strength reduction factor Calculations Nsb = 231,191 pounds 4,Nsb = 173,393 pounds Concrete Pullout Strength Givens Abrs = 2.15 in fc = 3000 psi (I) = 0.75 strength reduction factor Calculations N = 51,552 pounds 4 N = 38,664 pounds Steel Yield Strength Givens f = 58,000 psi A = 0.606 in = 0.80 strength reduction factor Calculations N 35,148 pounds. DNS = 28,118 pounds < 33,480 Ductility. Met Holdown Check Holdown: HDU14 Holdown Capacity=`- 14,930 pounds 1.6* Capacity= 23,888 pounds 23,888 < 28,118 Holdown Checks, BY DATE:' JOB rJ.. OF PROJECT: RE: Ve r wa►► ' Voo ii ❑ .. t S; des oP Bui tckro 0 2 1)1_° ascr..Cmcnc); 300 PLp •t} -(k \ ❑ 'B cU21eve1s(13 50 = a db ?Ls . SIoor° O J 40IN (tsopc0C)Zil(�itz)_- 333 PLP 5k-e n • W (sIt .)(tS0xc�)( u.. - 100w Pu i o Z - ` Z il. Z LI_ ; 05c0(2 tevels)C4o t > = Lilo p■T Stoor 0 II a o Z To}al lead. . ‘9-`61 t- Ioou) of f-' . 2 MOO( sbp= lso0 p = ls04)LP • w x O II-0 I + (co L C•-•-• . iSCSOw .., - W = 1n©(4 Cc x IV 2 0 0 • U. Z ❑ o e fea C it F\rcm ' - k.. ac- i 1d I ncp 0 = r a DLp asCitl= - 3oo pL.. w 611Z.tevets)(1 9sF a34 PLF ...Pkooc 40ttJC►50 x 'in_ Cbl, = 333 s1-e. Ctit2)(tso w� = mow P ''Y1 (X = Wo pt-c COO 1 LL 09)(1.A4 -0 = 1-2 0 p Lp Citb>CZS) = 4-so Pt✓ - 4 TL ti a34'31 100VJ a °' J a3u31 LOU _ i sUoc.0 .� c 0 bo x a - w t ,( 0 - + '° a,t \.N @ vni V F/ a Of e u vv 0-s b C. = So 'e cc,& p mir1v5 , S IOW loads TL,-e? \ - "A cl 100 L J W = 1.00 < o-e is C Po, tvwcdo. \ Dl.. o asC1Z >(2) = (ow pa- aIi ( X (3)C. = 4 t (..F S loo 40kalsOKOk ): 333pLc 5 - rr ( 1 o.)(. t o Lt.)) : 100 u. LI_ o (6 ?L'' 5toc3c Tt_ : a6aci t IOOuJ LA.) = 1,(2:(11 23 us-e_ ..7.41/.)