Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Specifications
e - _ • GROIJP -9- 191ACKENZIEI MAY 2 1 2009 ( f', 1515 SE Water Ave #100 / PO Box 14310 Portland, OR 97293 Tel: 503.224.9560 Net: info@gnornock.com Fax: 503.228.1285 PROJECT #: 2080478.00 DATE: May 8, 2009 f?Lp TRIANGLE POINTE - TENANT IMPROVEMENT Portland, OR STRUCTURAL CALCULATIONS OFFICE LOADING L1 - L2 SNOW DRIFT DRIFT1 - DRIFT4 GRAVITY ANALYSIS/DESIGN G1 G14 LATERAL ANALYSIS/DESIGN L1 L12 MISCELLANEOUS M1 M2 DF:o2cot- ernrt -5m2cciff -occo/ City of Tigard , sA Ace •vd Plansj A i ‘ ei1/49 PROtrff_ By tit_ Date 026(L 1. r(-0;8-4wr6.C6c9 z .7.7 • G • • 21 City Of Tigard L. sc !-xpIREs: 06/3ott4 1 OFFICE COPY G R O U P - ate A C K E N Z I E I 1515 SE WATER STREET SUITE 100- P.O. BOX 14310 PORTLAND, OREGON 97293 TEL (503) 224-9560 - FAX (503) 228 -1285 OFFICE LOADING - SELF WEIGHT NOT INCLUDED IN MODEL: (SLABS, DECK, STEEL SHAPES) PROJECT NAME: Triangle Pointe Vestibule PROJECT NO.: 2080478.00 DESIGNER: GJS • ROOF LOADING: ROOF DEAD LOAD ROOFING 3.0 .psf INSULATION 1 := 2.5•psf METAL DECK D:= 2.3•psf Verco Catalog, p. 2 STEEL FRAMING j,:= 10-psf LIGHTS = I.5 .psf WOOD VENEER W := 5.psf BALLASTED ROOF BR := 31.25.psf (3" Gravel) MISC. M := 1-psf DL R +I +D +J +L +W +BR +M DLr = 56.55 psf ROOF SEISMIC DEAD LOAD ROOFING 3.0 sf P INSULATION= 2.5•psf METAL DECK ,,:= 2.3.psf Verco Catalog, p. 2 STEEL FRAMING ,1, := 10•psf LIGHTS , := 0.5•psf (Less than Gravity) WOOD VENEER W:= 5•psf • DLrfseis:= R +I +D +J +L +M +W DLrf leis = 24.3 psf 2080478.00 L 1 ROOF DEAD LOAD - SKYLIGHT GLASS /ETC , := 10•psf DL := G DL = 10 psf ROOF SEISMIC DEAD LOAD GLASS /ETC , := 10•psf DLsky_seis G DLsky_seis = 10 psf • WALL LINE LOADS - Roof WINDOW CURTAIN DL DLwindow lOpsf ASSUMED GIRDER WT wgirder 50p1f Line load for Veneer/Windows FLOOR HEIGHT htFloor := 14ft WINDOW HEIGHT htwindow 14ft wwall_r wgirder + DLwindow'htwindow wwall r = 190 plf LIVE LOADS - ROOF: LLroof 25psf Min. Snow Load LLdriti_sar 4lpsf Surcharge Drift loading - Uniform (= Peak/2) 2080478.00 L 2 O U P P 1515 SE WATER AVE, SUITE 100 - P.O. BOX 14310 -79IACKENZIEI PORTLAND, 0 2 -9 60 - FAX (503) 228 -1285 FLAT ROOF SNOW DRIFT IN ACCORDANCE WITH THE 2006 IBC AND ASCE 7 -05 ADAPTED FOR USE WITH THE 2007 OREGON STRUCTURAL SPECIALTY CODE (OSSC) PROJECT NAME: Triangle Point Vestibule PROJECT NO.: 2080478.00 DESIGNER: GJS Basic Input Note: Section and page references are to the 2007 OSSC except as noted. Drift intersecting structural edges shall be truncated, not forced to zero (ASCE 7 -05, 7.7.1, p. 83). p := 25 -psf Basic ground snow load as defined in 1608.2, p. 399, Indicates Case Study per ASCE 7 -05 Figure 7 -1, p. 85 - -> Snow Load Analysis for Oregon, SEAO 1971. Pd min 25•psf Required minimum design snow load, independent of the provisions the 2006 IBC and ASCE 7 -05, Snow Load Analysis for Oregon, SEAO 1971. E := 'B" Terrain (exposure) category as defined in 1609.4.3, p. 401 or ASCE 7 -05, 6.5.6.3, p.25. C := 1.0 Snow exposure factor as defined in ASCE 7 -05, Table 7 -2, p. 92. C := 1.0 Thermal factor as defined in ASCE 7 -05, Table 7 -3, p. 93. A,:_ "II" Occupancy category as defined in Table 1604.5, p.391. Importance factor I := 0.8 if C = "I" ASCE 7 -05, Table 7-4, p.93 I = 1 1.0 if C = "II" 1.1 if C = "III" 1.2 otherwise Density of snow 0.13 y yl 8 •p + 14.0•pcf ASCE 7 - 05, Eq. 7 - p.83 y = 17.25 pcf y2 F 30•pcf yl if yl 5 y2 y2 otherwise Calculated flat roof snow load 2080478.00 Drift 1 pf:= p'f <— 0.7•C ASCE 7 -05, Eq. 7 - p.81 pf= 20.0psf Pmin 4-- I- p if p S 20•psf I.20•psf if p > 20•psf P'f if P'f > Pmin - Pmin otherwise Rain -on -snow surcharge Toad Prs := 5•psf if p * 0•psf A p < 20•psf ASCE 7 -05, 7 -10, p. 83 prs = 0.0psf 0.psf otherwise Note The rain -on -snow surcharge load applies only to the balanced Toad case and need not actually be used in combination with drift, sliding, unbalanced or partial loads. It is included in the loads calculated below on the assumption the designer will want to consider only a single conservative Toad case for structures framed with simple spans. Basic design snow load pbas := pf + Prs p = 20.0 psf Required minimum design roof snow load Pr := Pd min if Pd min > Pbas p = 25.0 psf pb otherwise Height of calculated minimum snow load 25.psf h := h = 1.45 ft Y 2080478.00 Drift 2 CASE I: DRIFT LOAD FOR LOWER ROOF (ROOF TERRACE) (ASCE 7 -05 Section 7.7.1, p. 83 and Figure 7 -8, p. 91) I„ := 203.5•ft Horizontal length of upper roof 1 17.ft Horizontal length of lower roof h 57.5.ft Difference in height between upper and lower roofs flag := if(h < h "No Drift Required" , "OK ") flag = "OK" Drift only required if height difference is greater than height calculated for uniform roof snow Toad Minimum I ,l l„ if I >_ 25 ft ASCE 7 -05, Figure 7 -9, p. 91 I u = 203.5 ft 25.ft otherwise Leeward drift height 3 hd� := [o.43..j , p. + 10 - 1.5 •ft ASCE 7 -05, Figure 7 -9 91 h = 4.652 ft psf di - Windward drift height 3 3 1 � 4 pg h := 4. 0.4 . psf + 10 - 1.5 .ft ASCE 7 -05, 7.7.1, p.83 and hdW = 0.89 ft J p Figure 7 -9, p. 91 Unadjusted design drift height h := hd� if h >_ h dW Governing drift height, ASCE h i = 4.65 ft hd otherwise 7 -05, 7.7.1, p. 83 Adjusted difference in roof heights he hr - hb Roof height difference minus h 56.1 ft height of minimum snow load o Drift width w := 4•h' if h' < he ASCE 7 -05 7.7.1, p. 83 w= 18.61 ft otherwise 11 12 h , 4.---- d if 4.-- d S 8.h h, h h , 2 8•h if 4• d > 8.h, h, Adjusted drift height h := h' if h' < h Cannot drift higher than difference h = 4.65 ft h, otherwise in roof height Maximum drift surcharge load 2080478.00 Drift 3 Pd hd•Y Drift surcharge only, excludes p = 80.2psf uniform roof snow Toad , s := 0•ft 2080478.00 Drift 4 gil Floor Map RAM Steel v12.1 RAM DataBase: roof framing_GRAVEL 05/07/09 07:30:06 I ts c rERN IA TI"I Building Code: IBC Steel Code: AISC360-05 LRFD Floor Type: Roof / / /-: / / \ , / \\\ , / 17 \ \ 03' , \‘,.1 N' 1 VD \W S 4 0 \\ 1,1 19 co l 24\ \\\ , , • cv \ / \ , ,,,------.\ \ 10 ' • H 1 15 ‘ \ } \ , \ \ , \ \ , \ s . \ / 7 / \ 28\ \ \ 43 ,I. , t" c),, ,/ cb,/ \- \N- \\.? \ts \ -- / \ 7 , 1 32 \ , , ,/ 4 , ‘`. / \ \ -rs , , / \ \ \ \ s , , 0 , / 0 t), ,' , / / I-- CO \ \ \ \ \\\ ...L , / / , 2 12 31 I 1 /--- _EE — — L A B 0 le 1 1 f `L A o-A A t.t 4 t_. S 1S D L D rJ E Gp.rtTt� c -o EsCz t,_►laS - - T o PJC M�pEL6p 1 �� 5 _ - P� S -t' K E CZ Ae\ A o3 /SG M ( "Co C t, E . X'r L-e G k T H 7 irk € A. N A L N1 S o f l_. LD ; 6D 1" \ G 'F3 E v© vJ 1 S 6(b t S G . �jC3Ttrt C_ -NT l 62Q642- E EQL3 a c. L,- ECG krkT • •e� Pc— EIS E SSE ��S {� ©.� T E.9 O ` C-o GIB CSlQ -. tek- TJ C3 , ,4 L-1 S k S G t2 v im Q t'g t \ ►S ©I,L Se O .em L Vi2-rt:RE,1- -TIES S-V E coNSER•1 a.1 E. \S 6 V--) By G, SC") I Q G R U P Date S! / VD g ACKENZIE � Job# Smac, Te.00 Portland, Oregon I Seattle, Washington I Vancouver, Washington Sht. of G'� www.groupmackenzie.com ©2009 G ROUP MACKENZIE. ALL RIGHTS RESERVED VA 1 Beam Summary RAM Steel v12.1 RAM DataBase: roof framing_GRAVEL 05/07/09 07:30:06 INTERNATAL Building Code: IBC - Steel Code: AISC360 -05 LRFD STEEL BEAM DESIGN SUMMARY: Floor Type: Roof Bm # Length +Mu -Mu Mn Fy Beam Size Studs ft kip -ft kip -ft kip -ft ksi 1 6.08 1.6 0.0 6.9 36.0 C4X5.4 3 6.08 1.6 0.0 6.9 36.0 C4X5.4 2 3.50 0.0 -4.2 6.76 13.7 -4.2 36.5 50.0 W8X10 5 18.24 22.5 -387.7 879.2 50.0 W18X97 C $es R ‘S A output 19.26 0.0 -387.7 FoR w ►ax91. 6 6.08 1.6 0.0 6.9 36.0 C4X5.4 G W Ec-- 8 18.24 58.9 0.0 228.8 50.0 W10X45 4 3.50 0.0 -7.3 2.85 0.0 -7.3 108.3 50.0 W10X22 9 5.21 1.2 0.0 6.9 36.0 C4X5.4 7 3.50 0.0 -7.3 2.85 0.0 -7.3 108.3 50.0 W10X22 11 7.14 11.3 0.0 108.3 50.0 W10X22 12 19.00 3.8 0.0 8.2 50.0 W8X10 13 6.77 2.0 0.0 6.9 36.0 C4X5.4 10 3.50 0.0 -6.8 15.00 42.6 -6.8 151.8 50.0 W 10X30 3.50 0.0 -6.8 15 10.67 0.0 0.0 108.3 50.0 W10X22 16 7.29 1.6 -2.3 6.3 36.0 C4X5.4 3.64 0.0 -2.3 14 3.50 0.0 -7.2 2.50 0.0 -7.2 108.3 50.0 W10X22 18 9.13 4.5 -4.0 108.3 50.0 W10X22 19 5.00 0.0 0.0 108.3 50.0 W10X22 17 3.50 0.0 -7.8 3.50 0.0 -8.2 108.3 50.0 W10X22 3.50 0.0 -8.2 20 3.64 0.0 -10.0 15.62 36.7 -10.0 72.5 50.0 W12X14 21 3.64 0.4 0.0 6.9 36.0 C4X5.4 22 7.29 2.0 0.0 6.9 36.0 C4X5.4 23 9.13 4.5 -4.0 108.3 50.0 W10X22 24 2.50 0.0 -7.2 108.3 50.0 W10X22 3.50 0.0 -7.2 25 18.24 58.9 0.0 228.8 50.0 W10X45 26 6.77 2.0 0.0 6.9 36.0 C4X5.4 27 18.24 48.0 0.0 72.5 50.0 W12X14 28 2.85 0.0 -7.3 108.3 50.0 W10X22 6 30q t1-i Beam Summary 1 RAM Steel v12.1 Page 2/2 RANI DataBase: roof framing_GRAVEL 05/07/09 07:30:06 Building Code: IBC _ Steel Code: AISC360 -05 LRFD Bm # Length +Mu -Mu Mn Fy Beam Size Studs 3.50 0.0 -7.3 29 5.21 1.2 0.0 6.9 36.0 C4X5.4 30 7.14 11.3 0.0 108.3 50.0 W10X22 31 6.76 13.7 -4.2 36.5 50.0 W8X10 3.50 0.0 -4.2 32 2.85 0.0 -7.3 108.3 50.0 W10X22 3.50 0.0 -7.3 33 6.08 1.6 0.0 6.9 36.0 C4X5.4 34 6.08 1.6 0.0 6.9 36.0 C4X5.4 35 6.08 1.6 0.0 6.9 36.0 C4X5.4 * after Size denotes beam failed stress /capacity criteria. # after Size denotes beam failed deflection criteria. u after Size denotes this size has been assigned by the User. &q e F Gt I-1 X - 2.639k -.2k/ft - .19k /ft -1.6k -65k :085k/ft -.36 - k 44kk i 1 l2 N3 Loads: BLC 1, Dead Results for LC 2, Ultimate Group Mackenzie Cantilever Girder GS O F GJS May 7, 2009 at 7:49 AM 2080478.00 I cant_girder_GRAVEI_.r2d ® Y X -2.86k -2.21k -.22k/ft -1.5k -1.92k -.22k/ft - .175k/ft -1k • 441 -2 I I Loads: BLC 2, Snow Results for LC 2, Ultimate Group Mackenzie Cantilever Girder i GG 6F G t.'4 j j GJS May 7, 2009 at 7:49 AM 080478.00 cant_girder GRAVEi_.r2d Company Group Mackenzie May 7 2009 Designer GJS 7:49 AM Job Number 2080478.00 Cantilever Girder Checked By: Ut-l'i WIATE Basic Load Cases BLC Description Category X Gravity_ Y Gravity Joint Point Distributed 1 Dead I SL 1 I 6 3 2 Snow 6 3 Joint Reactions LC Joint Label X [kJ Y [kJ MZ [k -ft] 1 2 N2 0 1 42.44 0 2 2 N1 0 -1.181 0 3 2 Totals: 0 41.258 4 • I • 2 . • • COG (ft): X: 18.515 Y: 0 Load Combinations Description Solve BLC _ Factor BLC F a c t o r Factor BLC BLC Factor BLC Factor BLactor BLC Factor BLC Factor 1 1 Allowable 1Yes e _ - 1 — D L : 1 ' SL 1 i I 2 Ultimate IYes DL 5.2 SL 116 1 - 1 --- t - I Member Distributed Loads (BLC 1 : Dead) Member Label Direction Start Magnitude[k/ft.d...End Magnitude[k /ft.d... Start Location[ft. %1 End Location[ft. %1 1 1 M1 I Y I -.1 -.085 12 18 I 2 _ M 1 Y 1 -.2 i 3 _ M1 1 Y -.14 i -.06 18 38 Member Distributed Loads (BLC 2 : Snow) Member Label Direction Start Maanitudefk/ft,d..End Maanitudefk/ft.d... Start Locationlft, %] End Location[ft, %1 1 M1 Y -.22 -.22 0 12 2 M1' Y -.22 -.1 12 . 18 3 i M1 , Y - .175 1 -.175 18 38 Member Point Loads (BLC 1 : Dead) Member Label _ ________ Direction _ _ Magnitude[k,k = ft1 Location[ft. %] 1 ' Mi 1 y I 6 2 M1 I i -2.639 y • -.65 12 — 1 3 M1 _ v _ - 1.6 23 I 4 M1 i y -.365 28 5 M1 v -.553 ! 31 6 • M1 I y -.43 38 Member Point Loads (BLC 2 : Snow) Member Label Direction Maanitudefk.k -ftl Locationfft, %] 1 M1 Y -1.5 6 2 M1 Y -2.21 12 3 M1 Y -2.86 23 4 M1 Y -1 28 1 5 M1 ! Y -1.92 ; 31 6 M1 Y -.6 1 38 Member Primary Data ___� Label I Joint J Joint _ _� _ Rotate(deg)_ .._ Section /Shapes �_ype Design List Material Design Rules 1 __ _ . _ M1 I N1 ._.__ N3_ _ .. W ..1 Beam I Wide Flange I A572 Gr.50 I Typical_ 1 RISA -2D Version 7.0.0.6 [M: \Triangle Pointe\ Vestibule \cant_girder GRAVEL.r2d] & o f Cs -tq - Company Group Mackenzie May 7, 2009 Designer GJS 7:49 AM Job Number 2080478.00 Cantilever Girder Checked By: Member Section Forces LC Member Label Sec Axialfki _ Shearfkl Moment [k 1 2 M1 i 1 0 T - 1.181 -- 1 0 2 2 0 I - 12.372 57.423 3 I I 3 1 0 21.3 I 186.222 4 4 0 8.772 39.933 5 i _1 — 5 — -- . 0 - - - - -L -- -1.476 0 Member Section Deflections LC Member Label Sec x lint v finl (n) Uv Ratio 1 2 M1 1 0 0 NC 2 I 2 0 .085 5380.702 3 3 0 -.038 NC 4 4 0 -.623 731.828 5 ' 5 0 -1.358 335.735 G sfs oc- G%4 RISA -2D Version 7.0.0.6 [M: \Triangle Pointe\ Vestibule \cant_girder_GRAVEL.r2d1 ^ -- - Company Group Mackenzie Mac 7 2009 Designer GJS 7:49 AM Job Number 2080478.00 Cantilever Girder Checked By: AS 0 —. (Fc o E.fL ec..-t \ o .).1 - Basic Load Cases BLC Description Category X Gravity � Y Gravity Joint Point Distributed 1 Dead 1 DL 6 3 2 • Snow SL 6 3 Joint Reactions — L C - - - Joint Label -- -- - - — -- -X [Li_ — — Y [k] MZ [k -ftJ 1 1 N2 0 I 29.079 I 0 1 2 1 N1 -- 1 - -- 0 - --1— -.427 0 3 1 Totals: f 0 28.652 4 1 COG (ft): I X: 18.269 Y: 0 Load Combinations Description SoIvePDe...SRSS BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor 1 Allowable Yes DL 1 SL 1 1' 1 1 1 i 1 2 2 Ultimate Yes DL 1 1.2 SL 1.6 . Member Distributed Loads (BLC 1 : Dead) T Memb Label Direction Start Magnitudejk/ft,d..End Magnitude[k/ft.d... Start Location[ft. %] End Location[ft. %] Li -.19 -.085 i 12 18 _ � 2 M1 r Y j -- -.2 - -.2 r 0 12 3 = -- M1 — — Y _._ _.. =.14 =.06 — --L_ 18 — 38 Member Distributed Loads (BLC 2 : Snow) Member Label Direction Start Maanitudefk/ft,d..End Maanitudefk/ft,d... Start Locationfft. %1 End Locationfft, %1 1 M1 Y -.22 -.22 0 12 2 1 M1 • Y 1 -.22 -.1 12 • 18 3 M1 Y -.175 -.175 18 38 Member Point Loads (BLC 1 : Dead) Member Label Direction Magnitudefk,k -ftl Locationfft, %1 1 M1 v - 2.639 6 2 M1 y -.65 12 3 M1 v -1.6 23 4 • M1 y -.365 28 5 M1 ' v -.553 31 6 M1 I J y -.43 38 Member Point Loads (BLC 2 : Snow) Member Label Direction Maonitudefk,k -ftJ Location[ft, %1 • 1 M1 Y ! -1.5 6 2 M1 Y -2.21 12 3 i M1 ! Y I -2.86 23 4 M1 I Y -1 28 - 6 M1 i Y I 12 -.6 38 Member Primary Data Label I Joint J Joint Rotate[deg) Section /Shape Type Design List Material Design Rules., 1 M1 N1 N3 W18X97 Beam Wide Flange A572 Gr.50 1 Typical J RISA -2D Version 7.0.0.6 [M: \Triangle Pointe\ Vestibule \cant_girder GRAVEL.r2d] G q of G Qy Company Group Mackenzie May 7, 2009 Designer GJS 7:49 AM Job Number 2080478.00 Cantilever Girder Checked By: Member Section Forces LC Member Label Sec Axialfkl Shearfkl Momentjk -ftl 1 1 M1 1 0 -.427 i 0 2 2 0 -8.556 37.502 3 3 0 14.515 126.362 4 4 0 5.916 27.145 5 5 0 1.03 I 0 Member Section Deflections LC Member Label _ - Sec x [in] _ y [inl (n) Uv Ratio 1 1 1 M1 — 1 1 0 f 0 NC 2 2 0 I .056 8178.964 3 i 3 0 -.025 NC 4 i 4 0 -.42 1086.175 i 5 — i 5 i 0 .916_=)__J 497.832 Li 1-411 "re, LESS / I ‘'` Oefrt,EG - rtop 1 O. �( & La o F 6144 RISA -2D Version 7.0.0.6 [M: \Triangle Pointe\ Vestibule \cant girder_GRAVEL.r2d] Gravity Column Design Summary RAM Steel v12.1 RAIN DataBase: roof framing_GRAVEL 05/07/09 07:32:30 Building Code: IBC - Steel Code: AISC360 -05 LRFD Column Line A -1 C cL 5 t to Qc..Ar a £ . g c.pft- ! Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 12.4 0.0 0.0 1 0.05 Eq (H1 -lb 0.0 50 W10X33 Column Line 6.76ft - - O.00ft ( c.c)L. ro 5,,A AA' E ExwsT. c, L.0 G' Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 10.5 2.1 3.5 12 0.10 Eq (H1 0.0 50 W10X33 Column Line B - 2 Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 79.3 0.0 0.0 1 0.31 Eq (H1 - la 0.0 50 W10X33 Column Line C - 2 Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 33.5 0.0 0.0 1 0.13 Eq (H1 - lb 0.0 50 W10X33 Column Line 25.76ft - -O.00ft CFA'- '- tR�L.• To SlM ofATE Ex vs - 61,0G l) Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 10.5 2.1 3.5 8 0.10 Eq (H1-lb 0.0 50 W10X33 Column Line D - 1 CF L'- E tZ GaL, 'VC) s i M v �dwT E Ex Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 16.2 0.0 0.0 1 0.06 Eq (H1-lb 0.0 50 W10X33 Cot of G "I • Base Plate Design RAM Steel v12.1 RANT DataBase: roof framing_GRAVEL 05/07/09 07:33:03 NrENAIreslAl Building Code: IBC _ Steel Code: AISC 360 -05 LRFD Base Plate level Roof, Column Line B - 2 BASEPLATE DIMENSIONS: N (parallel to web) (in) 11.75 B (perpendicular to web) (in) 10.00 Plate Thickness (in) 0.375 Plate (ksi) 36.0 COLUMN DATA Column Size W10X33 Dead Load (kips) 22.19 Live Load (kips) 32.90 Ultimate Load (kips) 79.26 BEARING: Concrete fc (ksi) 3.00 Size of concrete support (ft x ft) 10.00 x 10.00 Area of concrete support (sq in) 14400.00 EffArea of support (A2) (sq in) 12255.32 Area Required for Bearing (sq in) 25.90 Area of Plate (A 1) (sq in) 117.50 Square Root of (A2 /A1) 10.21 Use 2.0 0.60Pp (kips) 359.55 CALCULATED DIMENSIONS: m [N- 0.95d]/2.0 (in) 1.253 n [B- 0.80b]/2.0 (in) 1.816 Lambda 0.496 n' (in) 2.200 Thickness Required (in) 0.371 Thickness controlled by cantilever portion. &v_ OF GI� ;I Base Plate Design RAM Steel v12.1 RAM DataBase: roof framing_GRAVEL 05/07/09 07:33:29 NrEENAnDNAL Building Code: IBC Steel Code: AISC 360 -05 LRFD Base Plate level Roof, Column Line C - 2 BASEPLATE DIMENSIONS: N (parallel to web) (in) 11.75 B (perpendicular to web) (in) 10.00 Plate Thickness (in) 0.250 Plate (ksi) 36.0 COLUMN DATA Column Size W10X33 Dead Load (kips) 9.56 Live Load (kips) 13.76 Ultimate Load (kips) 33.49 BEARING: Concrete fc (ksi) 3.00 Size of concrete support (ft x ft) 10.00 x 10.00 Area of concrete support (sq in) 14400.00 Eff Area of support (A2) (sq in) 12255.32 Area Required for Bearing (sq in) 10.94 Area of Plate (Al) (sq in) 117.50 Square Root of (A2 /A 1) 10.21 Use 2.0 0.60Pp (kips) 359.55 CALCULATED DIMENSIONS: • m (N- 0.95d }/2.0 (in) 1.253 n [B- 0.80b]/2.0 (in) 1.816 Lambda 0.311 n' (in) 2.200 Thickness Required (in) 0.241 Thickness controlled by cantilever portion. 613 of G•l4 Spread Footing Design FM RAM Foundation v12.1 RAM DataBase: roof framing_GRAVEL Date: 05/07/09 07:40:06 KERNATIcesAl Building Code: IBC Design Code: ACI318 -02 FOOTING DESIGN Footing # 3 Footing Column Location: (B - 2) Footing Orientation (deg): 0.00 Column Orientation (deg): 0.00 Length (ft): 7.00 Width (ft): 7.00 Thickness (ft): 1.50 Bottom Reinf. Parallel to Length: 9 - #5 Width: 9 - #5 Concrete fc (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 Ec (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: W10X33 Base Plate Dimensions (in) 14.00 x 14.00 Percent of overhang to assume Rigid: 50.00 LOADS Surcharge (ksf) Dead Load: 0.000 Live Load: 0.000 Axial (kip) Dead Load: 22.19 Pos. Live: 32.90 Neg. Live: -6.44 Pos. Roof: N/A Neg. Roof: N/A CONCRETE CAPACITY Major Ld Co /Code Ref. Minor Ld Co /Code Ref. • Required Shear (kip) 20.23 2 21.24 2 Provided Shear: (kip) 100.93 Sec. 11.5.5.1 a) b) c) 96.62 Sec. 11.5.5.1 a) b) c) Required Moment: (kip -ft) 51.15 2 52.41 2 Provided Moment: (kip -ft) 178.71 170.86 Required Punching Shear: (kip) 71.83 2 Provided Punching Shear: (kip) 242.09 REINFORCEMENT Bottom Bars Parallel to Top Bars Parallel to Length Width Length Width Bar Quantity/Bar Size: 9 - #5 9 - #5 None None Required Steel/Provided Steel (in 2.72/ 2.79 2.72/ 2.79 None None Required Steel Code Ref. Sec. 7.12 Sec. 7.12 None None Bar Spacing (in) 9.67 9.67 None None Bar Depth (in) 14.63 14.00 None None Cover (in) Top N/A Bottom: 3.00 Side: 3.00 SOIL CAPACITY Ld Co Allowable Soil Bearing Capacity (ksf) 1.50 Max Unfactored Soil Bearing (ksf) 1.34 5 Max Average Unfactored Soil Bearing (ksf) 1.34 5 Max Soil Bearing for Factored Design (ksf) 1.62 2 Max Average Soil Bearing for Factored Design (ksf) 1.62 2 & 1c,FC3ii.t G R O U P - '1ACKE NZI E' 1515 SE Water Ave # 100 / PO Box 14310 Portland, OR 97293 Tel: 503.224.9560 P Net: info @grpmack.com P Fax: 503.228.1285 £ PROJECT #: 2080478.00 DATE: May 7, 2009 Triangle Pointe Tenant Improvement STRUCTURAL NARRATIVE An existing 80,000sf four -story reinforced concrete shear wall building located at 13333 SW 68th Pkwy, in Tigard, OR is being renovated. The top level is a steel - framed penthouse. The building was originally constructed in 1968 and designed under the 1967 Uniform Building . Code. The engineering done for this project was carried out while in possession of structural construction drawings dated 4/19/1968. Lateral As part of the tenant improvement work, existing openings in the basement walls will be increased in height. Along two of the basement walls, there are two existing 4' -0" tall x 10' -6" wide window openings. Both of these window openings will be increased to 9' -6 ", extending to the floor slab for a new door. By inspection this decrease is negligible and will not decrease the strength of these walls by more than 5 %. A second part of the tenant improvement work is to cut a new opening on the first floor of the building. This opening will be 1' -0" wide x 9' -7" tall. The existing length of this wall line is approximately 30' -0 ". This 1' -0" wide opening is less than 5% of the existing wall length and therefore the decrease in flexural capacity and in -plane shear capacity will again be negligible. Per chapter 34 of the OSSC -07, alterations to existing buildings will not require a seismic upgrade if they meet the following: 1. Does not increase seismic force in any element by more than 10% 2. Does not decrease the strength of any element by more than 5% Therefore cutting the basement walls does not trigger a seismic upgrade of the building. 2080478.00 1, of LI Z TS q- t„... e • •■ c . • S t(' • c-f-t c. AT %-( pt- 4 1 . \ c, • , "L- • - • • • c -/ • t H - ) - t 1./ • • - f - -` - 1 - - • Z • • , Jr I s 5 , ts . 7 ) 7 j \N/ s c.) o (4; 1, . Zt. k • r 5-- ' L.J , s <*" 6- 1 TF.A. A. 14 6 By Date GROUP 'MACKENZIE Job # Sht. o f Portland, Oregon 1 Seattle, Washington 1 Vancouver, Washington www.groupmackenzie.com ©2 009 G ROUP MACKENZIE. All RIGHTS RESERVED pp i f .Jt1,1\t% A f H I '..- C ,�4. C rJ ✓ ` �. - . A: 1 , 4 - . q O. : 1. ' . . . V �I, IsC % Ffc f _ r k 4) c 1 i ti\ lL Lb1J T {?..c;,(... c.,, 1 *- P Lam.' C- rN f 4 1 t- i P-14-C., vA i _'r .r ,f y w 2.11.2 1 r ay _ I Et (, f k. %/ � As K N ■ t / �- ' a -1-. Y Eo .'E tdJ TC7 E.C..0 c.. - -' - c .. i 1 1 I V L. AN i.. �n 1 " rL5' JV sa r 1 c) -.= I `^� 1. t" • 1 ' 1 � „ �i ' t ' , ' . � i '•r G u I S r A c n,+ t V ✓J 4- ...&.-.., ^ C) y- 5 ,,, / 1 ?...1 r' J A 'I.-L..) T k! M-. .j e r.>:1'. E: - c By — G R Q U P Date F, ( ; M A C K E N Z (E J ob ft 7. �.. c. .. P.,, Portland, Oregon 1 Seattle, Washington 1 Vancouver, Washington Sht. L o L 2.. www.groupmackenzie.com ® 2009 GROUP M ACKENZIE. ALL RIGHTS RESERVED t-i • 4 1' • 1 7 V-- ErP- 1 ( 7. - • c:-5) * 4, k • t L r ‘1 CL— C ( E-; LA — 0A- ■ , --As o ■ -.1 ) P c23 1 117 fri es. th- es- P.. ik-t...4-c 7, (54.Yr 0 t k c H *7- k-r-Ct75 t` - C t- 0-A t); \ w- a C' v " " • _ -t- Iv% c.z By •":if. 1 . • i GRQUP Date MACKENZIE' Job # Portland, Oregon 1 Seattle, Washington 1 Vancouver, Washington Sht. of www.groupmackenzie.com ©2009 GROUP M ACKENZIE. ALL RIGHTS RESERVED Page 1 of 8 Anchor Calculations Anchor Designer for ACI 318 (Version 3.6.0.3) Job Name : Triangle Pointe Date/Time : 4/14/2009 10:18:20 AM 1) Input Calculation Method : ACI 318 Appendix D For Cracked Concrete Calculation Type : Analysis Number of Anchors : 4 Anchor : 5/8" SET -XP Embedment Depth : 7 in Steel: A307 GR. C Built -up Grout Pads : No Anchor Layout Dimensions (in): Cx1 : 24 Cx2 : 24 Cy1 : 24 Cy2 : 24 Bx1 : 1.5 Bx2 : 1.5 By1 : 1.5 By2 : 1.5 Sx1 : 10 Sy1 : 9 Concrete : Normal weight f : 2500.0 psi Cracked Concrete : Yes `l' V : 1.40 Condition : B (1)F :1381.3 psi Thickness, h : 12 in Supplementary edge reinforcement : No Temperature Range : 1 (Maximum 110 °F short term and 75 °F long term temp.) Hole Condition : Dry Concrete Inspection : Continuous Load factor source : ACI 318 Section 9.2 N : 1000 Ib V uax : 1000 Ib V uay : 10900 Ib M ux : 0 Ib *ft M : 0 Ib *ft SDF L t about:blank 4/14/2(109 Page 2 of 8 Moderate /high seismic risk or intermediate /high design category : No Sustained Tension : No Anchors only resist wind and /or seismic Toads : No 1 4' CA Sx1 �.• cx2 c .vuay by2 o r)muy s o rsk tax .` -M� Q 4 b C y 1 bx2 FOUR ANCHORS •N iS POSITIVE FOR TENSION AND NEGATIVE FOR GOMPRESStON From C- SAS -2009: Anchor Model = SETXP d = 0.625 in Category = 1 h ef = 7 in h min = 10.125 in c agy = 21 in c min = 1.75 in s min = 3 in Ductile = Yes 2) Tension Force on Each Individual Anchor Anchor #1: N uai = 250.00 Ib Anchor #2: N ua2 = 250.00 Ib Anchor #3: N ua3 = 250.00 Ib Anchor #4: N ua4 = 250.00 Ib e' = 0.00 in e' = 0.00 in 3) Shear Force on Each Individual Anchor Resultant shear forces in each anchor: Anchor #1: Vua = 2736.44 Ib (V uaix = 250.00 Ib , Vuaiy = 2725.00 Ib ) Anchor #2: V ua2 = 2736.44 Ib ( = 250.00 Ib , V ua2y = 2725.00 Ib ) Anchor #3: V ua3 = 2736.44 Ib ( = 250.00 Ib , V ua3y = 2725.00 Ib ) l.� oc. LIZ about:blank ail ai'nno Page 3 of 8 Anchor #4: V ua4 = 2736.44 Ib (V ua4x = 250.00 Ib , V ua4y = 2725.00 Ib ) e' = 0.00 in e' = 0.00 in 4) Steel Strength of Anchor in Tension [Sec. D.5.1] N = nAsefuta [Eq. D -3] Number of anchors acting in tension, n = 4 N = 13110 Ib (for each individual anchor) [C- SAS -2009] = 0.75 [D.4.4] N = 9832.50 Ib (for each individual anchor) 5) Concret e Breakout Strength of Anchor Group in Tension [Sec. D.5.2] N cbg = A NC /A Nco Jec,NtPed,N 'Pc,NPcp,NNb [Eq. D -5] Number of influencing edges = 0 h =7in A Nco = 441.00 in [Eq. D -6] A = 930.00 in ` Y ec,Nx = 1.0000 [Eq. D -9] ` P ec,Ny = 1.0000 [Eq. D -9] ` = 1.0000 (Combination of x -axis & y -axis eccentricity factors.) Smallest edge distance, c a,min = 24.00 in `' ed,N = 1.0000 [Eq. D -10 or D-11] Note: Cracking shall be controlled per D.5.2.6 = 1.0000 [Sec. D.5.2.6] cp,N = 1.0000 [Eq. D -12 or D -13] N = k f ' c heft .5 = 15742.22 lb [Eq. D -7] k = 17 Ncbg = 33197.88 Ib [Eq. D -5] = 0.65 [D.4.4] 4)Ncbg = 21578.62 Ib (for the anchor group) 6) Adhesive Strength of Anchor Group in Tension [Sec. D.5.3 (AC308 Sec.3.3)] T k,cr = 718 psi [C- SAS -2009] � h ef ij f c/(1r d [Eq. D -16i] T k,max,cr = k cr k = 17 [C- SAS -2009] L a c L t t about:blank 4/14/2009 Page 4 of 8 h (unadjusted) = 7 in t k,max,cr = 1145.35 psi N ao = t k,cr n d o h ef = 9868.53 Ib [Eq. D - 16f] t k,uncr = 2263.00 psi for use in [Eq. D -16d] s cr,Na = 15.616 in [Eq. D -16d] c cr,Na = 7.808 in [Eq. D -16e] N ag = ANa /ANao 'Ped,NaPg,NaPec,NaTo,NaNao [Eq. D - 16b] A Nao = 243.86 in [Eq. D -16c] A = 630.56 in P ec,Nax = 1.0000 [Eq. D -16j] ` = 1.0000 [Eq. D -16j] T ec,Na = 1.0000 (Combination of x -axis and y -axis eccentricity factors.) Smallest edge distance, g amin = 24.00 in ` = 1.0000 [Eq. D -16I or D -16m] ` P p,Na = 1.0000 [Sec. D.5.3.14] P g,Na = P g,Nao + ( S /S c,Na) (15 ( 1 - tP g,Nao ) [Eq. D - 16g] s = 10 in (largest spacing) g,Nao = max[ n - [( n - 1)(ti k,cr / tk,max,cr)1.5, 1.0] [Eq. D -16h] `P g,Nao = 1.5037 ` l ' g,Na = 1.1006 N = 28085.24 Ib [Eq. D -16b] = 0.65 [C- SAS -2009] N = 18255.41 Ib (for the anchor group) 7) Side Face Blowout of Anchor Group in Tension [Sec. D.5.4] Concrete side -face blowout strength is only calculated for headed anchors close to an edge, c < 0.4h Not applicable in this case. 8) Steel Strength of Anchor Group in Shear [Sec D.6.1] V = nO.6A uta [Eq. D -20] V = 7865.00 Ib (for each individual anchor) [C- SAS -2009] = 0.65 [D.4.4] V = 5112.25 Ib (for each individual anchor) of L(Z about:blank 4/14/2009 Page 5 of 8 9) Concrete Breakout Strength of Anchor Group in Shear [Sec D.6.2] Case 1: Half of shear Toad applied to anchor(s) closest to edge In x- direction... V cbgx = Avcx/AvcoxPec,VPed,VPc,VVbx [Eq. D -22] A vcx = 684.00 in A vcox = 1152.00 in [Eq. D -23] ` = 1.0000 [Eq. D -26] ` = 1.0000 [Eq. D -27 or D -28] ` = 1.4000 [Sec. D.6.2.7] V = 7(le /do)0.2 do fc(cai)1.5 [Eq. D -24] V = 26841.45 Ib V cbgx = 22311.96 Ib [Eq. D -22] = 0.70 [D.4.4] 15618.37 Ib (for the anchor group) O = In y direction... V cbgy = Avcy/AvcoyPec,VTed,VPc [Eq. D - 22] A = 696.00 in A vcoy = 1152.00 in [Eq. D -23] T ec,V = 1.0000 [Eq. D -26] `I' ed,v = 1.0000 [Eq. D -27 or D -28] To/ = 1.4000 [Sec. D.6.2.7] V = 70e/d02 •J do fc(ca1)1.5 [Eq. D -24] V = 26841.45 Ib V cbgy = 22703.40 Ib [Eq. D -22] = 0.70 [D.4.4] 15892.38 Ib (for the anchor group) �V cbgy = Case 2: Total shear load applied to anchor(s) furthest from edge In x- direction... V cbgx = Avcx/Avcox 'Pec,V'ed,V`Yc,VVbx [Eq. D -22] A vcx = 684.00 in A vcox = 1152.00 in [Eq. D -23] ` l ' ec,V = 1.0000 [Eq. D -26] L q of about:blank 4/14/2009 Page 6 of 8 `P ed,V = 1.0000 [Eq. D -27 or D -28] P c,V = 1.4000 [Sec. D.6.2.7] Vbx = 7(le /do)0.2 \/ d0 - J fc(ca1)1.5 [Eq. D -24] V = 26841.45 Ib V cbgx = 22311.96 Ib [Eq. D -22] 4) = 0.70 [D.4.4] V cbgx = 15618.37 Ib (for the entire anchor group) In y-direction... V cbgy = ' vcy/Avcoy`Pec,V ' ed ,V`Yc,VVby [Eq. D -22] A vcy = 696.00 in A vcoy = 1152.00 in [Eq. D -23] `P ec,V = 1.0000 [Eq. D -26] `P ed,V = 1.0000 [Eq. D -27 or D -28] P c,V = 1.4000 [Sec. D.6.2.7] V = 7(le /do)0.2 .� d .V fc(ca1 [Eq. D -24] V by = 26841.45 lb V cbgy = 22703.40 Ib [Eq. D -22] = 0.70 [D.4.4] 4Vcbgy = 15892.38 Ib (for the entire anchor group) Check parallel to edge condition for anchor(s) closest to edge: Limit case 1 4Vcbgy by parallel to edge strength ... V cbgx = Avcx/Avcox`Pec,VPed,V`1'c,VVbx [Eq. 0-22] A vcx = 684.00 in A vcox = 1152.00 in [Eq. D -23] `P ec,V = 1.0000 [Eq. D -26] `P ed,V = 1.0000 [Sec. D.6.2.1(c)] `Pc,v = 1.4000 [Sec. D.6.2.7] V = 7(le /do)0.2 \/ do•V fc(ca1)1•5 [Eq. D -24] V bx = 26841.45 Ib V cbgx = 22311.96 Ib [Eq. D -22] V cbgy = 2* Vcbgx [Sec. D.6.2.1(c)] E.(m o`r L.12. about:blank 4/14/2009 Page 7 of 8 V cbgy = 44623.92 Ib = 0.70 [D.4.4] Vcbgy 31236.74 Ib (for the anchor group) Limit case 2 4Vcbgx by parallel to edge strength ... V cbgy = Avcy/AvcoytPec,V ' ed,VPc,VVby [Eq. D - 22] A vcy = 696.00 in Avcoy = 1152.00 in [Eq. D -23] ` = 1.0000 [Eq. D -26] ` = 1.0000 [Sec. D.6.2.1(c)] ` = 1.4000 [Sec. D.6.2.7] V = 7(le /do)o.2 \J do4 f c(ca1)1.5 [Eq. D -24] V = 26841.45 Ib V cbgy = 22703.40 Ib [Eq. D -22] V cbgx = 2 * V cbgy [Sec. D.6.2.1(c)] Vcbgx = 45406.79 Ib = 0.70 [D.4.4] V cbgx = 31784.75 Ib (for the anchor group) Governing strengths for case 1 are: 4)V cbx = 15618.37 Ib 4V = 15892.38 Ib Goveming strengths for case 2 are: V cbgx = 15618.37 lb Vcbgy 15892.38 lb 10) Concrete Pryout Strength of Anchor Group in Shear [Sec. D.6.3] Vcpg = min[k [Eq. D -30b] k = 2 [Sec. D.6.3.2] N = 28085.24 Ib (from Section (6) of calculations) A = 630.56 in (from Section (6) of calculations) A naa = 630.56 in (considering all anchors) N ag = (A naa /A na )N ag N = 28085.24 Ib (considering all anchors) N cbg = 33197.88 Ib (from Section (5) of calculations) (�Ll oc (X2 about:blank 4/14/2009 Page 8 of 8 A = 930.00 in (from Section (5) of calculations) A Nca = 930.00 in (considering all anchors) N cbg = (A Nca /A Nc )N cbg N cbg = 33197.88 Ib (considering all anchors) V cpg = 56170.49 Ib = 0.70 [D.4.4] 4)V = 39319.34 Ib (for the anchor group) 11) Check Demand /Capacity Ratios [Sec. D.7] Tension - Steel : 0.0254 - Breakout : 0.0463 - Adhesive : 0.0548 - Sideface Blowout : N/A Shear - Steel : 0.5353 - Breakout (case 1) : 0.3444 - Breakout (case 2) : 0.6888 - Pryout : 0.2784 T.Max(0.05) <= 0.2 and V.Max(0.69) <= 1.0 [Sec D.7.2] Interaction check: PASS Use 5/8" diameter A307 GR. C SET -XP anchor(s) with 7 in. embedment LIT. • t- about:blank 4/14/2009 51d- Y LA G oT To 3 kit -r t A Cs Goo3 DJ . m>:-: ' ' ' wo,, '-- R c.:.:. PN c r u 4 pp + N (1/4.,osp,IANc eo) z ltow-t. I 1. 1 (.p A- ■-1= N Ti 3 TYtA x k s p c ‘,J) 3 `IV' StA S (1 A.s e 4A„ _ LA Te.,,i = La Sluo OP) 1(v5ru,. ii CA 2.31,5 %lopS _ 1.' x S" - MLA, Att.% CAA 16u,S )53 —S 5113 ut4 l.- 5X6AVs, N tlo GA Sts 2,211 -,- 10 M N& G� (� to 'Oslo. IS 1_5 X 3 X3/it, +1 tti (A (10(01,S k dr) -1.2S I-,,, ' iill - dm - rta 1121xXx v= vkpoS SMS ($HL , Ntett,. ScAtwS) tak z tbo5 (3) `\`b 17 L.40 LST fJ NvrN13e ' ut SMffi INN 20„a (s' *tto Go, 3 X 41iL„ k ) L *D GA S'ND$ CI .ttRbhS6 1- (=b G:• �•YUP, y. Ls L. SaIAE. OH M 0.--sos L 4,1 Fe.�..aGE L,,o ,za z .) to.Y1 A Tc4, -k- L 4 l , v c, \\ 'Tai, ( � + lO ,t'l t CIA-0) 1 o I J z 4 , "l \Au 3 � 51v PS ) IA _ vt, uS (3 i t,c6vt US \ (_) sivos ► (5' Se Ts (S SM > IS \-i , k. ) 2S t1s o PER 57vo ttov5 .o. 4 .. yt6■L I7 i '-G1 } (1.1(,u0ou-t,--1). 3(5') (.5 ) ( \ (S)(1.1.6) ictSt6(61 4 IA.' °(1)CC))(14-11.0 + 1-L 00 co y Zk, ot55� , )ti -11`1 Gn, 5 \ �`6v�.�1 1�J _to_5 •- 6\5 S-- Lft.-15 ' ,Su . )o Ipa 3(5l`.0.00) c0.yilt(s)L -.(4.(i\ f / .. IS\ Ml'6nt _ 3 PSG ,s1.)-1.) 0 .5100 )%-...i___ (1.5) 7 l �,1S�t4t,�; 07 , ose.b , Li Sva . . . 0 . 6 5 9 o • C • By u Date Ji 9 Q UP MACKENZIE Job# zo�`61'$•00 Portland, Oregon Seattle, Washington 1 Vancouver, Washington Sht. % of Z www.groupmackenzie.com ®2009 GROUP M ACKEN ZIE. All RIGHTS RESERVED E-i J s • . F __". ,,A„0, . . .... J T , ‘ 3.- cl: . . • • r 1 h 1 _ T e t� I \ 9 ' 5'--I'" �t_ �„ \ I . . \ r"\P .1 \' M (Z . RC \ U DEi , = 1-Up ,Q171 St /z,, Stat3� = MD. z ,-1 I , , O R�Fr = .�k�,ub _ icl SST TNRt E t� :ASTM pti of i) 1R>rP0 t=D Au D 0 (2.0 emt5ioDeb 3► /�t' ,.J Sfrme.su.r __ SIMsur� EP()`{ - 1 1 T A,tt6SIJ� yy C. � R 0rtt-5llif Grvitta '15 =' 1 \14 -. 5 lrl 2000 PSa J = - - - - -- e � i R Jsio C ' " cR s K att - I l.)$ N4G Co = 1,15" .J + (rto5 -5$s) 1.- ,- )5 —i 5.1S %lS) SSS 1' 3SsS. 1\ 9 4 () 1 ■3 '7 ( k4 Lf (0)4.) s ►oo c,r>$ {� - l dA ` 1 E -�- 1� 1(is1 V U u'AP— W f Ni CS kl U$ S, Sl U o 1-ki r q !■ \- Ur— f,K (1-0,nt- cT Li ( \I. -\ — 1c6c6 = -\L\-i.,., \,p, L 1 IZ ( "o''' ) TR 2 (N/Q C., L1✓. P C e'J T! B OW F GROUP Date 5((s 10 MACKENZIE' )ob" Z°4''"`` 'OO • Portland, Oregon 1 Seattle, Washington 1 Vancouver, Washington Sht. M Z of Ohn Z www.groupmackenzie.com ® 2009 GROuP M ACRENZIE. ALt RIGHTS RESERVED