Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Specifications (4)
Site Address: ii 6 -77-14 A os ede - cr, V Building Division J j i Transmittal Letter City of Tigard J ��` DATE RECEIVED: TO: lac. RECEIVED DEPT: BUILDING DIVISION 14 2006 • CITY OF TIGARD FROM: ,� L, BUILDING DIVISION COMPANY: }-'I.tL.t.aeD.l. t ` 'L 12--ct7 PHONE NO.: :.3 . Z ¢4. o 5 57_ I By: T RE: u' Zoos oo (,s4- (Case number, site address, etc.) -12. L 6 - New TA, ll Iw Ci3i.t_niN , q,Jtc ) (Project name or subdivision name and lot number) f�ob ATTACHED ARE THE FOLLOWING ITEMS: �'\ � bi 1 Copies: 1 Description: 1 Copies: 1 Description: 1 Additional set(s) of plans. / Revisions: .5-re- ftar►Jto' Cross section(s) and details. Wall bracing and/or lateral analysis. Floor /roof framing. Basement and retaining walls. Beam calculations. / Engineer's calculations. (5�ppu,..e.s.)1 4.. .�srelac VAL. Other (explain): REMARKS: '''` 17:5 c12-Jcry 4. 4\f Cot -tr«r rrs 'I —r t 2/13 FOR OFFICE USE ONLY Routed to Permit Technician: Date: Initials: Fees Due: 1 ❑ Yes 1 ❑ No Fee Description: Amount Due: $ $ $ $ $ Special Instructions: Reprint Permit (per PE): ❑ Yes 1 ❑ No ❑ Done Applicant Notified: Date: Initials: 1: B uilding \Forms\LetterTransmittal.doc 01/17/06 AFGHAN ASSOCIATES, INC. CONSULTING ENGINEERS PROJECT: Tigard Triangle Building Four g 2c - PROJECT #: A05224.04 DATE: 12/14/2005 Table of Contents: Roof Framing . . . . RF 1— RF 22 Floor Framing . . . FF 1— FF 39 Column and Footing Design . CF 1— CF 55 Lateral Analysis . L 1 — L 28 Panel Design . . . P 1 — P 61 Diaphragm Analysis . . D 1 — D 17 E:\Building Four \Calculations \Tableo1Contents Permit Submittal r02.doc 6960 SW VARNS ST. - SUITE 200 - TIGARD, OREGON 97223 - (503) 6204030 - FAX (503) 620 -5539 C - C— 4 r eq, too f.[ 0.1(1 11.(t7 O 3 0.(27 LLO) tA. 6 t or 01 ■,,,A 407-07;04717-z,A44,_ 4 N .- e toloV1.fekl = fo " 114 4 66 01 ° F - ; 1- t ----- k 4( (t 40 49 M tCa Clbv .t 6o ' W ' , / 't& . WaG aNI¢ie \ NA- AZ _ _.AN ASSOCIATES, INC. 11 (911-17 , COMM** BY cel DATE V41, (4 CONSULTING ENGINEERS t 054,. 6960 S.W. VARNS ST., SUITE 200 JOB NO 17: TIGARD, OREGON 97223 (rte) 620 -3030 FAX 620-5539 SHEET OF C° iiktilfWvAe UN, 4 112 ‘.441 "" Obi t bI1 6 € o P' -- loo e ago' CAE" x ti d tit• k�o file 4 kistlieW 4910/10( t/ )k 004 4,civ A� .,IIAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS 6980 S.W. VARNS ST., SUITE 200 JOB NO TIGARD, OREGON 97223 (503) 620-3030, FAX 620-5539 SNEET OF ['nor Map RAM Steel v9.0 Page 2/2 Steve Young RAM DataBase: A03035B430 12/13/05 15:17:05 NIIINATICNAI Building Code: IBC Steel Code: ASD 9th Ed. Surface Loads Label DL CDL LL Reduction CLL Mass DL psf psf psf Type psf psf ROOF 15.0 15.0 25.0 Unreducible .20.0 15.0 ROOF M/U 100.0 80.0 . 25.0 Unreducible 20.0 80.0 PARAPET DRIFT 2 . 15.0 15.0 35.0 Unreducible 20.0 15.0 ......... PARAPET DRIFT 1 15.0. 15.0 55.0 Unreducible 20.0 15.0 M/U DRIFT 2 15.0 15.0 35.0 Unreducible 20.0 15.0 M/U DRIFT 1 0 15.0 15.0 45.0 Unreducible 20.0 15.0 Line Loads Label DL _ CDL. 1,1, Reduction. C1 Mass D1, k/ft k/ft k/ft Type k/ft k/ft Ll ROOF M/U 0.450 0.200 0.000 Unreducible 0.000 0.200 L3 ROOF PANELS 1.000 1.000 0.000 Reducible . 0.000 1.000 pm FP - 9r Map • • RAM Steel v9.0 . Steve Young . - • RAM DataBase: A03035B430 12/13/05 15:17:05 MEBJNx741 Building Code: 1BC Steel Code: ASD 9th Ed. Floor Type: ROOF . Z -- . ; A _I . n huEu araroirrr9Irorr: rr*esusia�ir®crinidtrrroarnrr :i � �� " rrrrrrrr_ rronrrrrrnn .■ . .. .. 11 ■■ ■■I ■ ■ ■1 ■ ■ ■■ 11 ■l A.2't ��_ •t -- Ri [ \ \ � \ ■ C \ \ \ \ j \ \� tp ■ ■ Ii �. \ ■ \ i ■ Ittg;:■ \ \ ■ \ ■ ■ ■ ■ ■ ■ ■ ■■1 ■ �� \ ■ � \ ■ ` : :rn■■■ . �. ■ :: ■CC :. .. ■� ■ i.s • . liS . ....... „,„ 1/4 „.. \ \,,,.._____ . ::::._.,: • II :; B L o �� • d Ina 8S „ . .: 1 �::c� , g F . ..• . nu Wis ____ ptirm,. _��,��� gyp■ 1 1 •""\ ttttttttt�tttd ♦®t :*444:II :IIIII : :• — •. � a =3 ' ;I•I ; ; :' ' == Mr � ,1 "` mum= i - i's • -•' v :;: ��� • B6. u \ : .� .•: ! =MEOW :•I :::•; a ::�: `% :: ° ■ - ■ I 11 l• ii s,„,,, ! Ell . •••• t:C } L, \ �mm • : 3 '. 6Eadi = ■■i � • _ ' ,�•Tf'_ 411.4.&.4._ ■ ■ SsdlJ6N.lel..�� ■ b8 •e- `■�LL■�12 cad■■ -1.- 9:! ; 11.2: 2 1l 't r," ) t i 2.2.6 '� i f3.3 3.94± ! `4.511 5 5.4 ' 63 ` 687 7�8 '. . ( 00 ) • 1j . t ( s i 1 ;i • • FR Gravity Beam Design RAM Steel v9.0 Page 10/128 Steve Young RAM DataBase: A03035B430 12/13/05 15:17 :05 F3N Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: ROOF Beam Number = 383 SPAN INFORMATION (ft): I -End (5.00,50.33) J -End (5.00,69.38) Beam Size (User Selected) = W14X34 Fy = 50.0 ksi Total Beam Length (ft) = 19.04 LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.029 0.107 - -- NonR 1.833 0.038 0.137 2 1.834 0.038 0.137 - -- NonR 19.041 0.038 0.137 3 0.000 0.054 0.127 - -- NonR 9.041 0.054 0.127 4 0.000 0.014 0.023 - -- NonR 9.041 0.014 0.023 5 9.042 0.068 0.160 - -- NonR 14.041 0.068 0.160 6 14.042 0.054 0.200 - -- NonR 19.041 0.054 0.200 7 14.042 0.014 0.033 - -- NonR 19.041 0.014 0.033 - SHEAR: Max V (DL +LL) = 4.13 kips fir = 1.04 ksi Fv = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 18.5 9.7 0.0 1.00 4.57 33.00 4.57 33.00 Controlling 18.5 9.7 0.0 1.00 4.57 33.00 - -- - -- REACTIONS (kips): Left Right DL reaction 1.00 1.01 Max +LL reaction 2.79 3.12 Max +total reaction 3.79 4.13 DEFLECTIONS: Dead load (in) at 9.52 ft = -0.032 L/D = 7195 Live load (in) at 9.52 ft = -0.091 L/D = 2505 Net Total load (in) at 9.52 ft = -0.123 L/D = 1858 RAM Steel v9.0 Page 9/128 Steve Young Gravity Beam Design RAN DataBase: A03035B430 12/13/05 15:17:05 Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: ROOF Beam Number = 384 SPAN INFORMATION (ft): I -End (5.00,25.00) J -End (5.00,50.33) Beam Size (User Selected) = W14X34 Fy = 50.0 ksi Total Beam Length (ft) = 25.33 LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.038 0.137 - -- NonR 25.333 0.038 0.137 2 0.000 0.054 0.200 - -- NonR 5.000 0.054 0.200 3 0.000 0.014 0.033 - -- NonR 5.000 0.014 0.033 4 5.000 0.068 0.160 - -- NonR 10.000 0.068 0.160 5 10.000 0.054 0.127 - -- NonR 25.333 0.054 0.127 6 10.000 0.014 0.023 - -- NonR 25.333 0.014 0.023 SHEAR: Max V (DL +LL) = 5.39 kips fv = 1.35 ksi Fv = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 32.3 12.5 0.0 1.00 7.97 33.00 7.97 33.00 Controlling 32.3 12.5 0.0 1.00 7.97 33.00 - -- - -- REACTIONS (kips): Left Right DL reaction 1.34 1.34 Max +LL reaction 4.05 3.70 Max +total reaction 5.39 5.04 DEFLECTIONS: Dead load (in) at 12.67 ft = -0.100 L/D = 3053 Live load (in) at 12.67 ft = -0.280 L/D = 1087 Net Total load (in) at 12.67 ft = -0.379 L/D = 802 Pf Cy Gravity: Beam Design III RAM Steel v9.0 Page 28/128 Steve Young RAM DataBase: A03035B430 12/13/05 15:17:05 IN rE F MCN A L Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: ROOF Beam Number = 398 SPAN INFORMATION (ft): I -End (41.50,61.33) J -End (59.50,61.33) Beam Size (User Selected) = W14X34 Fy = 50.0 ksi Total Beam Length (ft) = 18.00 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 8.583 3.43 0.00 0.0 0.73 0.00 0.0 0.00 Snow 9.000 2.23 0.00 0.0 4.41 0.00 0.0 0.00 Snow 10.583 0.82 0.00 0.0 0.21 0.00 0.0 0.00 Snow 14.583 3.21 0.00 0.0 0.80 0.00 0.0 0.00 Snow LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 8.583 0.450 0.000 - -- NonR 18.000 0.450 0.000 2 10.584 0.050 0.013 - -- NonR 14.583 0.050 0.013 SHEAR: Max V (DL +LL) = 12.46 kips fv = 3.12 ksi Fv = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 69.0 9.0 1.6 1.04 17.04 33.00 17.04 33.00 Controlling 67.5 8.6 8.6 1.75 16.66 30.00 - -- - -- REACTIONS (kips): Left Right DL reaction 5.03 9.10 Max +LL reaction 2.84 3.36 Max +total reaction 7.86 12.46 DEFLECTIONS: Dead load (in) at 9.36 ft = -0.236 L/D = 917 Live load (in) at 9.27 ft = -0.124 L/D = 1749 Net Total load (in) at 9.27 ft = -0.359 L/D = 601 -r1 Gravity,Beam Design RAM Steel v9.0 Page 26/128 Steve Young RAM DataBase: A03035B430 12/13/05 15:17:05 MERNIAlreqAt Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: ROOF Beam Number = 401 SPAN INFORMATION (ft): I -End (41.50,50.33) J -End (66.33,50.33) Beam Size (Optimum) = W18X40 Fy = 50.0 ksi Total Beam Length (ft) = 24.83 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 8.250 3.09 0.00 0.0 5.70 0.00 0.0 0.00 Snow 0.00 0.0 -0.07 0.00 0.0 0.00 Snow 4.13 8.583 3.48 0.00 0.0 0.73 0.00 0.0 0.00 Snow 10.583 0.82 0.00 0.0 0.21 0.00 0.0 0.00 Snow 14.611 3.20 0.00 0.0 0.80 0.00 0.0 0.00 Snow 16.500 3.09 0.00 0.0 6.17 0.00 0.0 0.00 Snow 0.00 0.0 -0.14 0.00 0.0 0.00 Snow 4.12 LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 8.583 0.450 0.000 - -- NonR 24.833 0.450 0.000 2 10.584 0.050 0.013 - -- NonR 14.611 0.050 0.013 SHEAR: Max V (DL +LL) = 18.37 kips fv = 3.26 ksi Fv = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 147.1 13.6 4.0 1.00 25.80 33.00 25.80 33.00 Controlling 137.5 16.5 8.3 1.75 24.12 30.00 - -- - -- REACTIONS (kips): Left Right DL reaction 9.67 11.54 Max +LL reaction 6.83 6.83 Max -LL reaction -0.10 -0.12 Max +total reaction 16.49 18.37 DEFLECTIONS: Dead load (in) at 12.42 ft = -0.544 L/D = 548 Live load (in) at 12.42 ft = -0.366 L/D = 815 Net Total load (in) at 12.42 ft = -0.910 L/D = 328 Pf Gravity.Beam Design RAM Steel v9.0 Page 42/128 Steve Young RAN DataBase: A03035B430 12/13/05 15:17:05 Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: ROOF Beam Number = 424 SPAN INFORMATION (ft): I -End (59.50,61.33) J -End (74.42,61.33) Beam Size (User Selected) = W14X34 Fy = 50.0 ksi Total Beam Length (ft) = 14.92 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 7.250 3.21 0.00 0.0 0.80 0.00 0.0 0.00 Snow 9.000 1.85 0.00 0.0 4.06 0.00 0.0 0.00 Snow 9.750 4.17 0.00 0.0 0.42 0.00 0.0 0.00 Snow LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.450 0.000 - -- NonR 9.750 0.450 0.000 2 7.250 0.050 0.013 - -- NonR 9.750 0.050 0.013 SHEAR: Max V (DL +LL) = 10.04 kips fir = 2.52 ksi Fir = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 55.8 9.0 1.8 1.02 13.78 33.00 13.78 33.00 Controlling 53.5 7.2 7.2 1.75 13.22 30.00 - -- - -- REACTIONS (kips): Left Right DL reaction 6.83 6.90 Max +LL reaction 2.18 3.13 Max +total reaction 9.01 10.04 DEFLECTIONS: Dead load (in) at 7.61 ft = -0.143 L/D = 1253 Live load (in) at 7.68 ft = -0.061 L/D = 2938 Net Total load (in) at 7.68 ft = -0.204 L/D = 878 FR Gravity Beam Design RAM Steel v9.0 Page 79/128 Steve Young RAM DataBase: A03035B430 12/13/05 15:17:05 I NTIPI Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: ROOF Beam Number = 443 SPAN INFORMATION (ft): I -End (128.00,50.33) J -End (141.50,50.33) Beam Size (User Selected) = W14X22 Fy = 50.0 ksi Total Beam Length (ft) = 13.50 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 7.833 2.36 9.000 3.40 0.00 0.0 6.42 0.00 0.0 0.00 Snow 9.833 0.26 0.00 0.0 0.07 0.00 0.0 0.00 Snow LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 7.833 0.450 0.000 - -- NonR 13.500 0.450 0.000 2 0.000 0.079 0.131 - -- NonR 7.833 0.079 0.131 • 3 7.834 0.525 0.131 - -- NonR 9.833 0.525 0.131 4 9.834 0.050 0.013 - -- NonR 13.500 0.050 0.013 SHEAR: Max V (DL +LL) = 11.70 kips fv = 3.91 ksi Fv = 18.96 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 47.0 9.0 0.0 1.00 19.45 33.00 19.45 33.00 Controlling 47.0 9.0 0.0 1.00 19.45 33.00 - -- - -- REACTIONS (kips): Left Right DL reaction 3.56 6.87 Max +LL reaction 2.99 4.84 Max +total reaction 6.54 11.70 DEFLECTIONS: Dead load (in) at 7.22 ft = -0.126 L/D = 1283 Live load (in) at 7.22 ft = -0.100 L/D = 1624 Net Total load (in) at 7.22 ft = -0.226 L/D = 717 g `o Gravity. Beam Design RAM Steel v9.0 Page 90/128 Steve Young RAM DataBase: A03035B430 12/13/05 15:17:05 Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: ROOF Beam Number = 444 SPAN INFORMATION (ft): I -End (141.50,50.33) J -End (155.00,50.33) Beam Size (User Selected) = W14X22 Fy = 50.0 ksi Total Beam Length (ft) = 13.50 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 0.333 0.26 0.00 0.0 0.07 0.00 0.0 0.00 Snow 4.500 3.40 0.00 0.0 6.80 0.00 0.0 0.00 Snow 11.000 0.26 0.00 0.0 0.07 0.00 0.0 0.00 Snow LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.450 0.000 - -- NonR 13.500 0.450 0.000 2 0.000 0.050 0.013 - -- NonR 0.333 0.050 0.013 3 0.334 0.525 0.131 - -- NonR 11.000 0.525 0.131 4 11.000 0.050 0.013 - -- NonR 13.500 0.050 0.013 SHEAR: Max V (DL +LL) = 14.32 kips fir = 4.78 ksi Fv = 18.96 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 52.7 4.5 0.0 1.00 21.81 33.00 21.81 33.00 Controlling 52.7 4.5 0.0 1.00 21.81 33.00 - -- - -- REACTIONS (kips): Left Right DL reaction 8.88 6.85 Max +LL reaction 5.43 2.94 Max +total reaction 14.32 9.79 DEFLECTIONS: • Dead load (in) at 6.55 ft = -0.168 L/D = 963 Live load (in) at 6.41 ft = -0.106 L/D = 1529 Net Total load (in) at 6.41 ft = -0.274 L/D = 591 Pf FR Gravity., Beam Design RAM Steel v9.0 Page 98/128 Steve Young RAN DataBase: A03035B430 12/13/05 15:17:05 Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: ROOF Beam Number = 446 SPAN INFORMATION (ft): I -End (155.00,0.00) J -End (155.00,50.33) Beam Size (Optimum) = W24X55 Fy = 50.0 ksi Total. Beam Length (ft) = 50.33 LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.142 0.522 - -- NonR 5.000 0.142 0.522 2 5.000 0.142 0.332 - -- NonR 10.000 0.142 0.332 3 10.000 0.142 0.237 - -- NonR 42.333 0.142 0.237 4 42.334 0.125 0.292 - -- NonR 46.333 0.125 0.292 5 46.334 0.125 0.375 - -- NonR 50.333 0.125 0.375 6 42.334 0.018 0.029 - -- NonR 50.333 0.018 0.029 SHEAR: Max V (DL +LL) = 11.39 kips fv = 1.28 ksi Fv = 18.78 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 125.6 25.0 0.0 1.00 13.10 33.00 13.10 33.00 Controlling 125.6 25.0 0.0 1.00 13.10 33.00 - -- - -- REACTIONS (kips): Left Right DL reaction 3.59 3.59 Max +LL reaction 7.80 7.05 Max +total reaction 11.39 10.64 DEFLECTIONS: Dead load (in) at 25.17 ft = -0.522 L/D = 1158 Live load (in) at 25.17 ft = -0.941 L/D = 642 Net Total load (in) at 25.17 ft = -1.463 L/D = 413 vz Gravity Beam Design RAM Steel v9.0 Page 121/128 Steve Young RAM DataBase: A03035B430 12/13/05 15:17:05 nvt Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: ROOF Beam Number = 466 SPAN INFORMATION (ft): I -End (196.00,25.00) J -End (196.00,50.33) Beam Size (Optimum) = W14X22 Fy = 50.0 ksi Total Beam Length (ft) = 25.33 LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.057 0.208 - -- NonR 5.000 0.057 0.208 2 0.000 0.021 0.048 - -- NonR 5.000 0.021 0.048 3 5.000 0.078 0.181 - -- NonR 10.000 0.078 0.181 4 10.000 0.057 0.133 - -- NonR 25.333 0.057 0.133 5 10.000 0.021 0.034 - -- NonR 25.333 0.021 0.034 6 0.000 0.038 0.137 - -- NonR 25.333 0.038 0.137 SHEAR: Max V (DL +LL) = 5.77 kips fir = 1.92 ksi Fy = 18.96 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 34.5 12.5 0.0 1.00 14.27 33.00 14.27 33.00 Controlling 34.5 12.5 0.0 1.00 14.27 33.00 - -- - -- REACTIONS (kips): Left Right DL reaction 1.46 1.46 Max +LL reaction 4.31 3.92 Max +total reaction 5.77 5.38 DEFLECTIONS: Dead load (in) at 12.67 ft = -0.185 L/D = 1646 Live load (in) at 12.67 ft = -0.508 L/D = 599 Net Total load (in) at 12.67 ft = -0.692 L/D = 439 Gravity Beam .Design RAM Steel v9.0 Page 80/128 Steve Young RAN DataBase: A03035B430 12/13/05 15:17:05 ItrEaVD Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: ROOF Beam Number = 656 SPAN INFORMATION (ft): I -End (128.00,60.83) J -End (128.00,84.49) Beam Size (User Selected) = W16X26 Fy = 50.0 ksi Total Beam Length (ft) = 23.66 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 10.000 2.02 0.00 0.0 3.67 0.00 0.0 0.00 Snow 20.000 1.46 0.00 0.0 4.01 0.00 0.0 0.00 Snow SHEAR: Max V (DL +LL) = 7.03 kips fv = 1.87 ksi Fv = 17.89 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 41.4 10.0 10.0 1.21 12.92 30.00 12.92 22.86 Controlling 41.4 10.0 10.0 1.21 - -- - -- 12.92 22.86 REACTIONS (kips): Left Right DL reaction 1.39 2.09 Max +LL reaction 2.74 4.95 Max +total reaction 4.14 7.03 DEFLECTIONS: Dead load (in) at 11.71 ft = -0.142 L/D = 1992 Live load (in) at 11.83 ft = -0.292 L/D = 972 Net Total load (in) at 11.83 ft = -0.435 L/D = 653 Gravity Beam Design RAM Steel v9.0 Page 81/128 Steve Young RAM DataBase: A03035B430 12/13/05 15:17:05 NT E F NAIM A I Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: ROOF Beam Number = 657 SPAN INFORMATION (ft): I -End (128.00,60.83) J -End (155.00,60.83) Beam Size (User Selected) = W18X50 Fy = 50.0 ksi Total Beam Length (ft) = 27.00 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RooILL Red% 7.833 2.36 9.833 0.26 0.00 0.0 0.07 0.00 0.0 0.00 Snow 13.833 0.26 0.00 0.0 0.07 0.00 0.0 0.00 Snow 14.333 1.39 0.00 0.0 2.97 0.00 0.0 0.00 Snow 24.500 0.26 0.00 0.0 0.07 0.00 0.0 0.00 Snow LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 7.833 0.450 0.000 - -- NonR 27.000 0.450 0.000 2 0.000 0.154 0.256 - -- NonR 7.833 0.154 0.256 3 7.834 0.048 0.144 - -- NonR 27.000 0.048 0.144 4 7.834 0.024 0.056 - -- NonR 27.000 0.024 0.056 5 7.834 0.003 0.005 - -- NonR 27.000 0.003 0.005 6 7.834 0.525 0.131 - -- NonR 9.833 0.525 0.131 7 9.834 0.050 0.013 - -- NonR 13.833 0.050 0.013 8 13.834 0.525 0.131 - -- NonR 24.500 0.525 0.131 9 24.500 0.050 0.013 - -- NonR 27.000 0.050 0.013 SHEAR: Max V (DL +LL) = 18.73 kips fir = 2.93 ksi Fv = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 139.7 14.3 0.0 1.00 18.86 33.00 18.86 33.00 Controlling 139.7 14.3 0.0 1.00 18.86 33.00 - -- - -- REACTIONS (kips): Left Right DL reaction 9.70 13.08 Max +LL reaction 5.20 5.65 Max +total reaction 14.90 18.73 or FR Gravity.Beam Design RAM Steel v9.0 Page 70/128 Steve Young RAM DataBase: A03035B430 12/13/05 15:17:05 ME" Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: ROOF Beam l b • r = 661 SPAN INFORMATION (ft): I -En ' 115:33,50.33) J- nd (115.33,89.13.)" Beam Size (User Selected) = W18X40 . 1- j Fy = 50.0 ksi Total Beam Length (ft) = 38.79 � POINT LOADS (kips): TA- Dist DL RedLL Red% NonRLL StorLL Red% RoofLL ' Red% 10.500 0.97 0.00 0.0 1.62 0.00 0.0 0.00 Snow 20.500 0.95 0.00 0.0 1.63 0.00 0.0 0.00 Snow 30.500 0.80 0.00 0.0 1.95 0.00 0.0 0.00 Snow LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.057 0.096 - -- NonR 28.791 0.057 0.096 2 28.792 0.000 0.000 - -- NonR 32.816 0.058 0.134 3 28.792 0.057 0.096 - -- NonR 32.816 0.000 0.000 4 32.817 0.057 0.134 - -- NonR 33.791 0.057 0.134 5 33.792 0.000 0.000 - -- NonR 38.791 0.049 0.181 6 33.792 0.057 0.134 - -- NonR 38.791 0.008 0.019 SHEAR: Max V (DL +LL) = 7.63 kips fv = 1.35 ksi Fv = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 79.4 20.5 0.0 1.00 13.92 33.00 13.92 33.00 Controlling 79.4 20.5 0.0 1.00 13.92 33.00 - -- - -- REACTIONS (kips): Left Right DL reaction 2.44 2.51 Max +LL reaction 4.27 5.12 Max +total reaction 6.71 7.63 DEFLECTIONS: Dead load (in) at 19.40 ft = -0.418 L/D = 1113 Live load (in) at 19.59 ft = -0.760 L/D = 612 Net Total load (in) at 19.59 ft = -1.179 L/D = 395 Clif (6 IR Gravity Beam Design RAM Steel v9.0 Page 30/128 Steve Young RAM DataBase: A03035B430 12/13/05 15:17:05 14T MATCI N AL Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: ROOF Beam Number = 722 SPAN INFORMATION (ft): I -End (43.33,0.00) J -End (82.50,0.00) Beam Size (User Selected) = W24X76 Fy = 50.0 ksi Total Beam Length (ft) = 39.17 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 6.417 3.57 0.00 0.0 7.74 0.00 0.0 0.00 Snow 14.667 3.86 0.00 0.0 8.43 0.00 0.0 0.00 Snow 23.000 2.31 0.00 0.0 5.80 0.00 0.0 0.00 Snow 31.083 3.57 0.00 0.0 7.80 0.00 0.0 0.00 Snow SHEAR: Max V (DL +LL) = 22.83 kips fv = 2.17 ksi Fv = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 241.6 14.7 8.3 1.01 16.47 30.00 16.47 30.00 Controlling 241.6 14.7 8.3 1.01 16.47 30.00 - -- - -- REACTIONS (kips): Left Right DL reaction 7.09 6.22 Max +LL reaction 15.74 14.02 Max +total reaction 22.83 20.24 DEFLECTIONS: Dead load (in) at 19.39 ft = -0.338 L/D = 1391 Live load (in) at 19.39 ft = -0.762 L/D = 616 Net Total load (in) at 19.39 ft = -1.100 L/D = 427 fir t1 Gravity Bean' Design R AM Steve Y oung S teel v9.0 Page 44 /128 RAM DataBase: A03035B430 12/13/05 15:17:05 "rE Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: ROOF Beam Number = 728 SPAN INFORMATION (ft): I -End (66.33,-5.33) J -End (66.33,25.00) Beam Size (User Selected) = W14X34 Fy = 50.0 ksi Total Beam Length (ft) = 30.33 Cantilever on left (ft) = 5.33 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 0.000 0.08 0.00 0.0 0.28 0.00 0.0 0.00 Snow LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.062 0.229 - -- NonR 5.333 0.062 0.229 2 5.334 0.062 0.146 - -- NonR 10.000 0.062 0.146 3 10.000 0.000 0.000 - -- NonR 10.333 0.063 0.105 4 10.000 0.062 0.145 - -- NonR 10.333 0.000 0.000 5 10.334 0.062 0.104 - -- NonR 30.333 0.062 0.104 6 0.000 0.000 0.000 - -- NonR 1.333 0.061 0.222 7 1.334 0.061 0.222 - -- NonR 5.333 0.061 0.222 8 5.334 0.000 0.000 - -- NonR 6.333 0.061 0.142 9 5.334 0.061 0.222 - -- NonR 6.333 0.000 0.000 10 6.334 0.061 0.141 - -- NonR 10.000 0.061 0.141 11 10.000 0.000 0.000 - -- NonR 11.333 0.061 0.101 12 10.000 0.061 0.141 - -- NonR 11.333 0.000 0.000 13 11.334 0.061 0.101 - -- NonR 30.333 0.061 0.101 SHEAR: Max V (DL +LL) = 4.88 kips fv = 1.22 ksi Fv = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Left Max - -9.1 5.3 5.3 1.00 2.25 33.00 2.25 33.00 Center Max + 25.2 17.9 0.0 1.00 6.23 33.00 6.23 33.00 Max - -9.1 5.3 25.0 1.75 2.25 30.00 2.25 15.36 Controlling 25.2 17.9 0.0 1.00 6.23 33.00 - -- - -- ti•F 10 Gravity Beam Design RAM Steel v9.0 Page 45/128 Steve Young RAM DataBase: A03035B430 12/13/05 15:17:05 Building Code: IBC Steel Code: ASD 9th Ed. REACTIONS (kips): Left Right DL reaction 2.31 1.46 Max +LL reaction 5.80 2.61 Max -LL reaction 0.00 -0.29 Max +total reaction 8.11 4.07 DEFLECTIONS: Left cantilever: Dead load (in) = 0.057 L/D = 2240 Pos Live load (in) = -0.065 L/D = 1965 Neg Live load (in) = 0.132 L/D = 972 Pos Total load (in) = -0.008 LID = 16000 Neg Total load (in) = 0.189 UD = 678 Center span: Dead load (in) at 17.83 ft = -0.096 L/D = 3113 Live load (in) at 17.83 ft = -0.190 L/D = 1578 Net Total load (in) at 17.83 ft = -0.286 L/D = 1047 Pr r BUILDING FOUR ROOF FRAMING W18 BEAM AT MECHANICAL CURB: 1C^= 1 EFFECTIVE LENGTH FACTOR k 25•ft UNSUPPORTED BEAM LENGTH KL = K.L KL = 25 ft EFFECTIVE BEAM LENGTH LOADING: D + L + S Ax:= 0•k Mz:= 147•ft•k . My :_ 0.00•ft•k PROPERTIES: W 18 X 50 = 14.7•in bf := 7.495-in tf:= 0.570•in Af:= bf•tf Af = 4.272in d := 17.99-In Iz := 800 in ly := 40.1.1n Sz= 88.81n Sy= 10.7in Zz= 101•1n Zy =16.6•in C rz = 7.381n Ty = 1.651n [Min = 1.65 in rT := 1.94• in r�KL KL SRmin m rz Ty JJ SRmin = 182 SLENDERNESS FACTOR IN PLANE OF BENDING 65 = 9.192 bf = 6.575 2 •tf 12•n Es ksi Fe := 2 Fe = 4.53 ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY 23 •SRmIn i 2•n SRmin (1 - 2 • R 2 ). f s 12 -n 2 - Es Cc:- fs Cc = 107 R = 2 Fa := R < 0.500, 5 3•R 3 2 3 + 4 - R 23 •SRmin Ax fa := A fa = 0 ksi AXIAL STRESS Fa = 4.5ksi ALLOWABLE AXIAL STRESS Mz fbz:= fbz = 19.83ksi BENDING STRESS Fbz = 29ksi ALLOWABLE BENDING STRESS z STRONG AXIS fby := fby = Oksi BENDING STRESS Fby = 37.5k81 ALLOWABLE BENDING STRESS Sy WEAK AXIS r INTERACTION = 0.68 t 4A0 C__ ( L\ ! Ve(14Amboi(r C + -bstP+QA-- c k " 11,E 2,k H Cer r-) 4 t4 %0, 17,./ v . &WA 44-- t C G 0 t V., Kt( AFt)_.AN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS 6960 S.W. VARNS ST., SUITE 200 JOB NO TIGARD, OREGON 97223 4 (503) 620-3030, FAX 620-5539 SHEET_ OF C . C C YDT -- a-olci -- 4 vi,s t,f6X -7 \ . i 1 1, II 1.t17 JC, ( 6:c1_00:ir.k 1 ......, ,..... Wcr‘tc;* , 41 tlygLe6)) 1 ! 'i Ill 1 , - 1,2), vv_00 ih,24.96,3s(0)(9 arl,(06t5v) (§}froiti) 6)6 11/4 6 6 (3- k, ..v 0 - ei _____ ..._ e € L AF ....AN ASSOCIATES, INC. BY DATE CONSUMING ENGINEERS JOB NO 6960 S.W. YARNS ST, SUITE 200 TIGARD, OREGON 97223 (503) 620.3030, FAX 820.5639 SHEET ff OF In" i ll F1 "nr Map RI RAM Steel v9.0 Page 2/2 Steve Young RAIN DataBase: A03035B430 12/13/05 15:17:05 irsin Building Code: IBC Steel Code: ASD 9th Ed. Surface Loads Label DL CDL LL Reduction CLL Mass DL 1111111111 FLOOR 85.0 psf psf Type . psf psf 5.0 • 50.0 80.0 Reducible 50.0 .75.0 Line Loads Label DL CDL LL Reduction •CLL Mass DL k/ft k/ft k/ft Type k/ft k/ft L2 2ND FLOOR PANELS 1.070: 1.070 0.000 Reducible 0.000 1.070 L4 CURTAINWALL 0.350 0.350 0.000 Reducible 0.000 0.350 • For Map. ft • RAM Steel v9.0 Steve Young • • RAM Data Base: A03035B430 • 12/13/05 15:17:05 14524414144 Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR . • . ( Z 4 : i. • • •,_.... : . • • ' i; . ....x..„ „,, .*... , ,, - . .._ ,.. .., ... : , t ., . t 21 --..--Foliimil El ., NI 42 It eV 1 .0e;imihe iirt MIL .. - ... . s.: '': 11 .1 f B. :1- ---- - --- •• , , . i .11 EllAl 11111 -,___-- [I I liji11111 - ;;------ 1 ' e 1 - 1e . IIMBOM 1 11 11 mot ..::: ., . ii II 111 : ' " 1 ' ill a • 1 . . , • , .._.._. \_../ 1 • . 1 1 '''' •• - . : ! ,•• :; : • • ! .. • . .. . : • 'VII • :: „ . _FL • _ . i ZZ I: •"- '''. • -,,,. ,7 7 :;. : t . .1 -. :. ..4.7,r•', - , ."e.C:.\ •":.? yr :: '', /. ,"\ (*.--' ,.• - --- .S. -1- ': ........ ./: ................... /.."1 '-k- 9 ' i \' (' i 1.2 ) i 2 1 ( (226 1 t f al) )f' - 8: ,- 3.5 ) ( 3.94 ) if 4.5 c 5 ) ( 5. ) g '. ) - ( :8' 7 ) , , .. / . 3 , , 6 , . , yi ) 00 - ) ,.__...., ----- ._ ___..- .......- Gravity;Beam Design Page 57/177 RAM Steel v9.0 Steve Y oung RAM DataBase: A03035B430 12/13/05 15:17:05 NMNAIDA Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 31 SPAN INFORMATION (ft): I -End (68.00,0.00) J -End (82.50,0.00) Beam Size (User Selected) = W18X50 Fy = 50.0 ksi Total Beam Length (ft) = 14.50 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 4.708 11.62 5.72 0.0 0.00 0.00 0.0 0.00 Snow 6.417 14.17 15.25 0.0 0.00 0.00 0.0 0.00 Snow -0.70 0.0 0.00 0.00 0.0 0.00 Snow 9.09 SHEAR: Max V (DL +LL) = 28.12 kips fir = 4.40 ksi Fir = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 150.8 6.4 8.1 1.75 20.35 30.00 20.35 30.00 Controlling 150.8 6.4 8.1 1.75 20.35 30.00 - -- - -- REACTIONS (kips): Left Right DL reaction 15.75 10.04 Max +LL reaction 12.37 8.61 Max -LL reaction -0.39 -0.31 Max +total reaction 28.12 18.65 DEFLECTIONS: Dead load (in) at 6.82 ft = -0.112 L/D = 1550 Live load (in) at 6.89 ft = -0.094 L/D = 1856 Net Total load (in) at 6.89 ft = -0.206 L/D = 845 ff3 Gravity:,Beam• Design RAM Steel v9.0 Page 44 /177 Steve Young RAM DataBase: A03035B430 12/13/05 15:17:05 NrENATIoNAI Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 32 SPAN INFORMATION (ft): I -End (58.00,0.00) J -End (68.00,0.00) Beam Size (User Selected) = W18X50 Fy = 50.0 ksi Total Beam Length (ft) = 10.00 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 4.917 13.33 7.14 0.0 0.00 0.00 0.0 0.00 Snow 8.333 5.59 7.15 0.0 0.00 0.00 0.0 0.00 Snow -0.75 0.0 0.00 0.00 0.0 0.00 Snow 4.00 SHEAR: Max V (DL +LL) = 20.68 kips fv = 3.24 ksi Fir = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 61.6 4.9 4.9 1.75 8.31 33.00 8.31 33.00 Controlling 61.6 4.9 4.9 1.75 8.31 33.00 - -- - -- REACTIONS (kips): Left Right DL reaction 7.71 11.21 Max +LL reaction 4.82 9.47 Max -LL reaction -0.13 -0.63 Max +total reaction 12.53 20.68 DEFLECTIONS: Dead load (in) at 5.05 ft = -0.025 L/D = 4828 Live load (in) at 5.10 ft = -0.016 L/D = 7302 Net Total load (in) at 5.10 ft = -0.041 L/D = 2906 • Frk I Gravity Beam Design RAM Steel v9.0 Page 35/177 Steve Y oung RAM DataBase: A03035B430 12/13/05 15:17:05 INITENAMNAL Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 34 SPAN INFORMATION (ft): I -End (43.33,0.00) J -End (58.00,0.00) Beam Size (User Selected) = W18X50 Fy = 50.0 ksi Total Beam Length (ft) = 14.67 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 6.417 15.29 15.83 0.0 0.00 0.00 0.0 0.00 Snow -0.53 0.0 0.00 0.00 0.0 0.00 Snow 9.56 9.792 11.65 5.75 0.0 0.00 0.00 0.0 0.00 Snow SHEAR: Max V (DL +LL) = 25.23 kips fv = 3.95 ksi Fir = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft It fb Fb fb Fb Center Max + 149.4 6.4 6.4 1.75 20.17 33.00 20.17 33.00 Controlling 149.4 6.4 6.4 1.75 20.17 33.00 - -- - -- REACTIONS (kips): Left Right DL reaction 12.47 14.47 Max +LL reaction 10.81 10.76 Max -LL reaction -0.30 -0.23 Max +total reaction 23.29 25.23 DEFLECTIONS: Dead load (in) at 7.41 ft = -0.122 L/D = 1446 Live load (in) at 7.33 ft = -0.100 L/D = 1766 Net Total load (in) at 7.33 ft = -0.221 L/D = 795 RAM Steel v9.0 Page 10/177 Steve Young RAM Gravity Beam Design DataBase: A03035B430 12/13/05 15:17:05 Nirm mow Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 383 SPAN INFORMATION (ft): I -End (5.00,50.33) J -End (5.00,69.38) Beam Size (User Selected) = W16X31 Fy = 50.0 ksi Total Beam Length (ft) = 19.04 COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular Decking type VERCO W3 Formlok VERCO W3 Formlok beff (in) = 57.13 Y bar(in) = 16.04 Seff (in3) = 66.67 Str (in3) = 80.13 Ieff (in4) = 913.09 Itr (in4) = 1285.03 Stud length (in) = 4.50 Stud diam (in) = 0.75 Stud Capacity (kips) q = 10.0 # of studs: Max = 38 Partial = 12 Actual = 16 Number of Stud Rows = 1 Percent of Full Composite Action = 34.95 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.165 0.097 0.155 0.0% Red 0.097 1.833 0.212 0.125 0.200 0.125 2 1.834 0.212 0.125 0.200 0.0% Red 0.125 19.041 0.212 0.125 0.200 0.125 3 0.000 0.388 0.228 0.365 0.0% Red 0.228 19.041 0.388 0.228 0.365 0.228 SHEAR: Max V (DL +LL) = 11.09 kips fv = 2.69 ksi Fv = 19.67 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center PreCmp+ 32.0 9.5 0.0 1.00 8.13 33.00 8.13 33.00 Max + 52.8 9.5 - -- - -- Mmax/Seff 9.50 33.00 - -- - -- MconstlSx+Mpost/Seff 10.69 45.00 - -- - -- Controlling 52.8 9.5 - -- - -- 9.50 33.00 - -- - -- fc (ksi) = 0.23 Fc = 1.80 REACTIONS (kips): Left Right Initial reaction 6.67 6.72 DL reaction 5.67 5.71 Max +LL reaction 5.34 5.38 Max +total reaction 11.01 11.09 feco FR Gravity Beam Design RAM Steel v9.0 Page 9/177 Steve Young RAN DataBase: A03035B430 12/13/05 15:17:05 m Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 384 SPAN INFORMATION (ft): I -End (5.00,25.00) J -End (5.00,50.33) Beam Size (User Selected) = W16X31 Fy = 50.0 ksi Total Beam Length (ft) ' = 25.33 COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular Decking type VERCO W3 Formlok VERCO W3 Formlok beff (in) = 68.00 Y bar(in) = 16.50 Seff (in3) = 70.71 Str (in3) = 81.11 Ieff (in4) = 1042.79 Itr (in4) = 1338.15 Stud length (in) = 4.50 Stud diam (in) = 0.75 Stud Capacity (kips) q = 10.0 # of studs: Max = 50 Partial = 12 Actual = 22 Number of Stud Rows =1 Percent of Full Composite Action = 48.07 LINE LOADS (k/ft): Load Dist DL ' CDL LL Red% Type CLL 1 0.000 0.600 0.353 0.565 0.0% Red 0.353 25.333 0.600 0.353 0.565 0.353 SHEAR: Max V (DL +LL) = 14.76 kips fv = 3.57 ksi Fy = 19.67 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center PreCmp+ 56.7 12.7 0.0 1.00 14.40 33.00 14.40 33.00 Max + 93.5 12.7 - -- - -- Mmax/Seff 15.86 33.00 - -- - -- Mconst/Sx+Mpost/Seff 18.26 45.00 - -- - -- Controlling 93.5 12.7 - -- - -- 15.86 33.00 - -- - -- fc (ksi) = 0.36 Fc = 1.80 REACTIONS (kips): Left Right Initial reaction 8.95 8.95 DL reaction 7.60 7.60 Max +LL reaction 7.16 7.16 Max +total reaction 14.76 14.76 DEFLECTIONS: Initial load (in) at 12.67 ft = -0.301 L/D = 1010 Live load (in) at 12.67 ft = -0.173 L/D = 1756 Post Comp load (in) at 12.67 ft = -0.249 L/D = 1221 Net Total Load (in) at 12.67 ft = -0.550 L/D = 553 FR Gravity= Beam Design RAM Steel v9.0 Page 33/177 Steve Y oung RAM DataBase: A03035B430 12/13/05 15:17:05 KERNAncNAL Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 398 SPAN INFORMATION (ft): I -End (41.50,61.33) J -End (59.50,61.33) Beam Size (User Selected) = W18X40 Fy = 50.0 ksi Total Beam Length (ft) = 18.00 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 9.000 12.64 11.89 7.6 0.00 0.00 0.0 0.00 Snow LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.468 0.440 7.6% Red 18.000 0.468 0.440 SHEAR: Max V (DL +LL) = 19.68 kips fv = 3.49 ksi Fv = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 141.7 9.0 0.0 1.00 24.86 33.00 24.86 33.00 Controlling 141.7 9.0 0.0 1.00 24.86 33.00 - -- - -- REACTIONS (kips): Left Right DL reaction 10.53 10.53 Max +LL reaction 9.15 9.15 Max +total reaction 19.68 19.68 DEFLECTIONS: Dead load (in) at 9.00 ft = -0.212 L/D = 1020 Live load (in) at 9.00 ft = -0.184 L/D = 1173 Net Total load (in) at 9.00 ft = -0.396 L/D = 546 Gravity. Beam. Design RAM Steel v9.0 Page 31/177 Steve Y oung RAM DataBase: A03035B430 12/13/05 15:17:05 INTE Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 401 SPAN INFORMATION (ft): I -End (41.50,50.33) J -End (66.33,50.33) Beam Size (User Selected) = W24X62 Fy = 50.0 ksi Total Beam Length (ft) = 24.83 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 8.250 17.36 16.61 29.9 0.00 0.00 0.0 0.00 Snow -0.10 30.0 0.00 0.00 0.0 0.00 Snow 10.32 16.500 17.28 16.69 29.9 0.00 0.00 0.0 0.00 Snow -0.17 30.0 0.00 0.00 0.0 0.00 Snow 10.33 LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.468 0.440 29.9% Red 24.833 0.468 0.440 SHEAR: Max V (DL +LL) = 38.73 kips fv = 3.80 ksi Fir = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 300.2 12.5 0.0 1.00 27.29 33.00 27.29 33.00 Controlling 300.2 12.5 0.0 1.00 27.30 33.00 - -- - -- REACTIONS (kips): Left Right DL reaction 23.20 23.06 Max +LL reaction 15.53 15.48 Max -LL reaction -0.09 -0.10 Max +total reaction 38.73 38.53 DEFLECTIONS: Dead load (in) at 12.42 ft = -0.448 L/D = 665 Live load (in) at 12.42 ft = -0.301 L/D = 990 Net Total load (in) at 12.42 ft = -0.749 L/D = 398 f 1 • G"r"avity- Beam. Design RAM Steel v9.0 Page 47/177 Steve Young RAN DataBase: A03035B430 12/13/05 15:17:05 NEWATM Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 424 SPAN INFORMATION (ft): I -End (59.50,61.33) J -End (74.42,61.33) Beam Size (User Selected) = W18X40 Fy = 50.0 ksi Total Beam Length (ft) = 14.92 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 9.000 11.86 11.16 0.0 0.00 0.00 0.0 0.00 Snow LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.468 0.440 0.0% Red 9.000 0.468 0.440 SHEAR: Max V (DL +LL) = 16.35 kips fv = 2.90 ksi Fv = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 96.7 9.0 5.9 1.75 16.97 30.00 16.97 30.00 Controlling 96.7 9.0 5.9 1.75 16.97 30.00 - -- - -- REACTIONS (kips): Left Right DL reaction 7.64 8.42 Max +LL reaction 7.19 7.93 Max +total reaction 14.83 16.35 DEFLECTIONS: Dead load (in) at 7.76 ft = -0.095 L/D = 1891 Live load (in) at 7.76 ft = -0.089 L/D = 2009 Net Total load (in) at 7.76 ft = -0.184 L/D = 974 to Gravity Beam Design RAM Steel v9.0 Page 60/177 Steve Young RAM DataBase: A03035B430 12/13/05 15:17:05 I Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 425 SPAN INFORMATION (ft): I -End (68.50,61.33) J -End (68.50,94.38) Beam Size (User Selected) = W18X50 Fy = 50.0 ksi Total Beam Length (ft) = 33.04 COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular Decking type VERCO W3 Formlok VERCO W3 Formlok beff(in) = 85.06 Ybar(in) = 17.55 Seff (in3) = 122.59 Str (in3) = 141.26 Ieff (in4) = 1880.05 Itr (in4) = 2478.82 Stud length (in) = 4.50 Stud diam (in) = 0.75 Stud Capacity (kips) q = 10.0 # of studs: Max = 66 Partial = 20 Actual = 30 Number of Stud Rows =1 Percent of Full Composite Action = 41.39 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.634 0.373 0.597 7.4% Red 0.373 33.041 0.634 0.373 0.597 0.373 SHEAR: Max V (DL +LL) = 19.60 kips fv = 3.07 ksi Fv = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center PreCmp+ 101.8 16.5 0.0 1.00 13.74 33.00 13.74 33.00 Max + 161.9 16.5 - -- - -- Mmax/Seff 15.85 33.00 - -- - -- Mconst/Sx +Mpost/Seff 17.74 45.00 - -- - -- Controlling 161.9 16.5 - -- - -- 15.85 33.00 - -- - -- fc (ksi) = 0.40 Fc = 1.80 REACTIONS (kips): Left Right Initial reaction 12.32 12.32 DL reaction 10.47 10.47 Max +LL reaction 9.12 9.12 Max +total reaction 19.60 19.60 DEFLECTIONS: Initial load (in) at 16.52 ft = -0.431 L/D = 920 Live load (in) at 16.52 ft = -0.272 L/D = 1459 Post Comp load (in) at 16.52 ft = -0.400 L/D = 991 Net Total load (in) at 16.52 ft = -0.831 L/D = 477 �� FR Gravity: Beall' Design RAM Steel v9.0 Page 59/177 Steve Young RAM DataBase: A03035B430 12/13/05 15:17:05 Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 426 SPAN INFORMATION (ft): I -End (68.50,50.33) J -End (68.50,61.33) Beam Size (User Selected) = HSS5X5X3 /8 Fy = 50.0 ksi Total Beam Length (ft) = 11.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.251 0.237 0.0% Red 11.000 0.251 0.237 SHEAR: Max V (DL +LL) = 2.68 kips fir = 0.77 ksi Fir = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 7.4 5.5 0.0 1.00 10.22 33.00 10.22 33.00 Controlling 7.4 5.5 0.0 1.00 10.22 33.00 - -- - -- REACTIONS (kips): Left Right DL reaction 1.38 1.38 Max +LL reaction 1.30 1.30 Max +total reaction 2.68 2.68 DEFLECTIONS: Dead load (in) at 5.50 ft = -0.132 IJD = 1003 Live load (in) at 5.50 ft = -0.124 L/D = 1065 Net Total load (in) at 5.50 ft = -0.256 L/D = 517 ft l,4/ Gravity Beam Design RAM Steel v9.0 Page 113/176 Steve Young RAM DataBase: A03035B430 12/13/05 16:21:37 Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 443 SPAN INFORMATION (ft): I -End (128.00,50.33) J -End (141.50,50.33) Beam Size (User Selected) = W16X40 Fy = 50.0 ksi Total Beam Length (ft) = 13.50 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 9.000 18.10 17.04 2.3 0.00 0.00 0.0 0.00 Snow SHEAR: Max V (DL +LL) = 23.17 kips fv = 4.75 ksi Fv = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 104.2 9.0 9.0 1.75 19.33 30.00 19.33 30.00 Controlling 104.2 9.0 9.0 1.75 19.33 30.00 - -- - -- REACTIONS (kips): Left Right DL reaction 6.03 12.07 Max +LL reaction 5.55 11.10 Max +total reaction 11.58 23.17 DEFLECTIONS: Dead load (in) at 7.36 ft = -0.092 L/D = 1764 Live load (in) at 7.36 ft = -0.084 L/D = 1919 Net Total load (in) at 7.36 ft = -0.176 L/D = 919 FR Gravity Beam Design RAM Steel v9.0 Page 133/176 Steve Young RAM DataBase: A03035B430 12/13/05 16:21:37 ''° Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 444 SPAN INFORMATION (ft): I -End (141.50,50.33) J -End (155.00,50.33) Beam Size (User Selected) = W16X40 Fy = 50.0 ksi Total Beam Length (ft) = 13.50 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 4.500 18.10 17.04 2.3 0.00 , 0.00 0.0 0.00 Snow SHEAR: Max V (DL +LL) = 23.17 kips fv = 4.75 ksi Fv = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 104.2 4.5 9.0 1.75 19.33 30.00 19.33 30.00 Controlling 104.2 4.5 9.0 1.75 19.33 30.00 - -- - -- REACTIONS (kips): Left Right DL reaction 12.07 6.03 Max +LL reaction 11.10 5.55 Max +total reaction 23.17 11.58 DEFLECTIONS: Dead load (in) at 6.14 ft = -0.092 L/D = 1764 Live load (in) at 6.14 ft = -0.084 L/D = 1919 Net Total load (in) at 6.14 ft = -0.176 L/D = 919 fr IR Gravity Beam Design RAM Steel v9.0 Page 143/176 Steve Young RAM DataBase: A03035B430 12/13/05 16:21:37 INTEr Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 446 SPAN INFORMATION (ft): I -End (155.00,0.00) J -End (155.00,50.33) Beam Size (User Selected) = W24X84 Fy = 50.0 ksi Total Beam Length (ft) = 50.33 COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular Decking type VERCO W3 Formlok VERCO W3 Formlok bell (in) = 114.00 Y bar(in) = 21.70 Seff (in3) = 260.07 Str (in3) = 289.10 Ieff (in4) = 5055.46 Itr (in4) = 6272.53 Stud length (in) = 4.50 Stud diam (in) = 0.75 Stud Capacity (kips) q = 10.0 # of studs: Full = 149 Partial = 26 Actual = 46 Number of Stud Rows =1 Percent of Full Composite Action = 47.35 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.807 0.475 0.760 26.5% Red 0.475 50.333 0.807 0.475 0.760 0.475 SHEAR: Max V (DL +LL) = 34.38 kips fv = 3.04 ksi Fir = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center PreCmp+ 300.8 25.2 0.0 1.00 18.42 33.00 18.42 33.00 Max + 432.6 25.2 - -- - -- Mmax/Seff 19.96 33.00 - -- - -- Mconst/Sx+Mpost/Seff 22.23 45.00 - -- - -- Controlling 432.6 25.2 - -- - -- 19.96 33.00 - -- - -- fc (ksi) = 0.54 Fc = 1.80 REACTIONS (kips): Left Right Initial reaction 23.91 23.91 DL reaction 20.32 20.32 Max +LL reaction 14.06 14.06 Max +total reaction 34.38 34.38 DEFLECTIONS: (Camber = 3/4) Initial load (in) at 25.17 ft = -0.998 L/D = 605 Live load (in) at 25.17 ft = -0.550 L/D = 1098 Post Comp load (in) at 25.17 ft = -0.878 L/D = 688 ;, Net Total load (in) at 25.17 ft = -1.126 L/D = 536 Gravity Beam Design RAM Steel v9.0 Page 112/176 Steve Young RAN DataBase: A03035B430 12/13/05 16:21:37 NrEiNAT Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 447 SPAN INFORMATION (ft): I -End (128.00,50.33) J -End (128.00,62.33) Beam Size (User Selected) = W24X55 Fy = 50.0 ksi Total Beam Length (ft) = 12.00 Cantilever on right (ft) = 1.50 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 5.667 -0.08 -0.07 0.0 0.00 0.00 0.0 0.00 Snow 12.000 9.54 9.17 1.0 0.00 0.00 0.0 0.00 Snow -0.20 1.3 0.00 0.00 0.0 0.00 Snow 5.61 12.000 24.19 22.77 1.0 0.00 0.00 0.0 0.00 Snow LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.829 0.780 0.0% Red 10.500 0.791 0.744 2 10.500 0.791 0.744 1.0% Red 12.000 0.785 0.739 SHEAR: Max V (DL +LL) = 67.61 kips fv = 7.58 ksi Fv = 18.78 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 3.6 2.1 0.0 1.00 0.38 33.00 0.38 33.00 Max - -99.7 10.5 4.8 1.35 10.40 33.00 10.40 33.00 Right Max - -99.7 10.5 1.5 1.00 10.40 33.00 10.40 33.00 Controlling -99.7 10.5 4.8 1.35 10.40 33.00 - -- - -- REACTIONS (kips): Left Right DL reaction -0.65 43.99 Max +LL reaction 4.06 41.27 Max -LL reaction -4.63 -0.26 Max +total reaction 3.40 85.25 Max -total reaction -5.28 43.72 DEFLECTIONS: Center span: Dead load (in) at 6.25 ft = 0.011 L/D = 11846 Live load (in) • at 6.25 ft = 0.015 L/D = 8401 Net Total load (in) at 6.25 ft = 0.026 L/D = 4915 Right cantilever: Dead load (in) = -0.011 L/D = 3273 Pos Live load (in) = -0.013 L/D = 2833 Neg Live load (in) = 0.002 L/D = 14470 Pos Total load (in) = -0.024 L/D = 1519 III Gra v ity Beam Design RAM Steel v9.0 Page 170/176 Steve Young RAM DataBase: A03035B430 12/13/05 16:21:37 INTENgme Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 465 SPAN INFORMATION (ft): I -End (196.00,50.33) J -End (196.00,69.38) Beam Size (User Selected) = W16X31 Fy = 50.0 ksi Total Beam Length (ft) = 19.04 COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular Decking type VERCO W3 Formlok VERCO W3 Formlok bell (in) = 57.13 Y bar(in) = 16.04 Seff (in3) = 66.67 Str (in3) = 80.13 Ieff (in4) = 913.09 Itr (in4) = 1285.03 Stud length (in) = 4.50 Stud diam (in) = 0.75 Stud Capacity (kips) q = 10.0 # of studs: Max = 38 Partial = 12 Actual = 16 Number of Stud Rows =1 Percent of Full Composite Action = 34.95 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.329 0.194 0.310 0.0% Red 0.194 19.041 0.329 0.194 0.310 0.194 2 0.000 0.165 0.097 0.155 0.0% Red 0.097 1.833 0.212 0.125 0.200 0.125 3 1.834 0.212 0.125 0.200 0.0% Red 0.125 19.041 0.212 0.125 0.200 0.125 SHEAR: Max V (DL +LL) = 10.01 kips fv = 2.42 ksi Fy = 19.67 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center PreCmp+ 28.9 9.5 0.0 1.00 7.34 33.00 7.34 33.00 Max + 47.6 9.5 - -- - -- Mmax/Seff 8.58 33.00 - -- - -- Mconst/Sx+Mpost/Seff 9.65 45.00 - -- - -- Controlling 47.6 9.5 - -- - -- 8.58 33.00 - -- - -- fc (ksi) = 0.21 Fc = 1.80 REACTIONS (kips): Left Right Initial reaction 6.02 6.07 DL reaction 5.12 5.16 Max +LL reaction 4.82 4.85 Max +total reaction 9.93 10.01 fe ti FR Gravity B eam Design RAM Steel v9.0 Page 168/176 Steve Young RAM DataBase: A03035B430 12/13/05 16:21:37 MEPNATCNA Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 466 SPAN INFORMATION (ft): I -End (196.00,25.00) J -End (196.00,50.33) Beam Size (User Selected) = W16X31 Fy = 50.0 ksi Total Beam Length (ft) = 25.33 COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 . Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular Decking type VERCO W3 Formlok VERCO W3 Formlok bell (in) = 68.00 Y bar(in) = 16.50 Seff (in3) = 70.71 Str (in3) = 81.11 Ieff (in4) = 1042.79 Itr (in4) = 1338.15 Stud length (in) = 4.50 Stud diam (in) = 0.75 Stud Capacity (kips) q = 10.0 # of studs: Max = 50 Partial = 12 Actual = 22 Number of Stud Rows =1 Percent of Full Composite Action = 48.07 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.542 0.319 0.510 0.0% Red 0.319 25.333 0.542 0.319 0.510 0.319 SHEAR: Max V (DL +LL) = 13.32 kips fv = 3.23 ksi Fir = 19.67 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center PreCmp+ 51.1 12.7 0.0 1.00 13.00 33.00 13.00 33.00 Max + 84.4 12.7 - -- - -- Mmax/Seff 14.32 33.00 - -- - -- Mconst/Sx+Mpost/Seff 16.48 45.00 - -- - -- Controlling 84.4 12.7 - -- - -- 14.32 33.00 - -- - -- fc (ksi) = 0.32 Fc = 1.80 REACTIONS (kips): Left Right Initial reaction 8.07 8.07 DL reaction 6.86 6.86 Max +LL reaction 6.46 6.46 Max +total reaction 13.32 13.32 DEFLECTIONS: Initial load (in) at 12.67 ft = -0.272 L/D = 1119 Live load (in) at 12.67 ft = -0.156 L/D = 1945 Post Comp load (in) at 12.67 ft = -0.225 L/D = 1353 Net Total load (in) at 12.67 ft = -0.496 L/D = 613 fl tj Gravity Beam Design RAM Steel v9.0 Page 77/176 Steve Young RAN DataBase: A03035B430 12/13/05 16:21:37 riu Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 491 SPAN INFORMATION (ft): I -End (97.50,62.33) J -End (128.00,62.33) Beam Size (User Selected) = W24X68 Fy = 50.0 ksi Total Beam Length (ft) = 30.50 COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular Decking type VERCO W3 Formlok VERCO W3 Formlok beff (in) = 85.94 Y bar(in) = 21.08 Seff (in3) = 195.20 Str (in3) = 229.17 Ieff (in4) = 3474.67 Itr (in4) = 4830.63 Stud length (in) = 4.50 Stud diam (in) = 0.75 Stud Capacity (kips) q = 10.0 # of studs: Max = 90 Partial = 25 Actual = 28 Number of Stud Rows = 1 Percent of Full Composite Action = 30.04 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 6.000 1.53 0.90 1.44 28.6 0.00 0.00 0.0 0.00 Snow 0.90 8.917 12.14 7.14 11.43 28.6 0.00 0.00 0.0 0.00 Snow 7.14 17.833 9.55 5.62 8.99 28.6 0.00 0.00 0.0 0.00 Snow 5.62 24.500 2.04 1.20 1.92 28.6 0.00 0.00 0.0 0.00 Snow 1.20 26.593 6.95 4.09 6.54 28.6 0.00 0.00 0.0 0.00 Snow 4.09 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 17.834 0.285 0.167 0.268 28.6% Red 0.167 26.593 0.285 0.167 0.268 0.167 2 26.594 0.000 0.000 0.000 28.6% Red 0.000 27.774 0.285 0.167 0.268 0.167 3 27.775 0.285 0.167 0.268 28.6% Red 0.167 30.500 0.285 0.167 0.268 0.167 4 6.000 0.510 0.300 0.480 28.6% Red 0.300 23.250 0.510 0.300 0.480 0.300 5 23.250 0.269 0.158 0.253 28.6% Red 0.158 24.500 0.000 0.000 0.000 0.000 SHEAR: Max V (DL +LL) = 40.44 kips fir = 4.32 ksi Fy = 19.79 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center PreCmp+ 237.8 17.8 0.0 1.00 18.53 33.00 18.53 33.00 Max + 337.9 17.8 FM Gravity Beam Design RAM Steel v9.0 Page 78/176 Steve Young RAM DataBase: A03035B430 12/13/05 16:21:37 Building Code: IBC Steel Code: ASD 9th Ed. kip -ft ft ft fb Fb fb Fb Mmax/Seff 20.78 33.00 - -- - -- Mconst/Sx +Mpost/Seff 22.73 45.00 - -- - -- Controlling 337.9 17.8 - -- - -- 20.78 33.00 - -- - -- fc (ksi) = 0.56 Fc = 1.80 REACTIONS (kips): Left Right Initial reaction 24.03 28.46 DL reaction 20.42 24.19 Max +LL reaction 13.72 16.25 Max +total reaction 34.14 40.44 DEFLECTIONS: Initial load (in) at 15.25 ft = -0.372 L/D = 985 Live load (in) at 15.25 ft = -0.223 L/D = 1638 Post Comp load (in) at 15.25 ft = -0.360 L/D = 1016 Net Total load (in) at 15.25 ft = -0.732 L/D = 500 n Gravit Beam Design RAM Steel v9.0 Page 128/176 Steve Y oung RAM DataBase: A03035B430 12/13/05 16:21:37 MANATICNAL Building Code: IBC . Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 511 SPAN INFORMATION (ft): I -End (140.47,62.33) J -End (141.50,50.33) Beam Size (User Selected) = W12X14 Fy = 50.0 ksi Total Beam Length (ft) = 12.04 COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation 94.9 deg 94.9 deg Decking type VERCO W3 Formlok VERCO W3 Formlok beff (in) = 36.13 Y bar(in) = 13.41 Seff (in3) = 25.81 Str (in3) = 30.66 Ieff (in4) = 312.03 Itr (in4) = 411.24 Stud length (in) = 4.50 Stud diam (in) = 0.75 Stud Capacity (kips) q = 10.0 # of studs: Max = 12 Partial = 6 Actual = 10 Number of Stud Rows =1 Percent of Full Composite Action = 45.56 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL - LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 1.143 0.673 1.076 0.0% Red 0.673 12.043 1.143 0.673 1.076 0.673 SHEAR: Max V (DL +LL) = 13.36 kips fv = 5.84 ksi Fir = 18.76 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center PreCmp+ 24.4 6.0 0.0 1.00 19.64 33.00 19.64 33.00 Max + 40.2 6.0 - -- - -- Mmax/Seff 18.71 33.00 - -- - -- Mconst/Sx +Mpost/Seff 22.86 45.00 - -- - -- Controlling 24.4 6.0 0.0 1.00 19.64 33.00 - -- - -- fc (ksi) = 0.41 Fc = 1.80 REACTIONS (kips): Left Right Initial reaction 8.10 8.10 DL reaction 6.88 6.88 Max +LL reaction 6.48 6.48 Max +total reaction 13.36 13.36 DEFLECTIONS: Initial load (in) at 6.02 ft = -0.124 L/D = 1166 ('V Nt Gravity Beam Design RAM Steel v9.0 Page 115/176 Steve Young RAN DataBase: A03035B430 12/13/05 16:21:37 NrstoncNAI Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 514 SPAN INFORMATION (ft): I -End (128.00,62.33) J -End (155.00,62.33) Beam Size (User Selected) = W21X44 Fy = 50.0 ksi Total Beam Length (ft) = 27.00 COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation perpendicular parallel Decking type VERCO W3 Formlok VERCO W3 Formlok bell (in) = 78.19 Y bar(in) = 20.29 Seff (in3) = 116.26 Str (in3) = 133.26 Ieff (in4) = 2091.14 Itr (in4) = 2703.29 Stud length (in) = 4.50 Stud diam (in) = 0.75 Stud Capacity (kips) q = 13.3 # of studs: Full = 61 Partial = 16 Actual = 24 Number of Stud Rows =1 Percent of Full Composite Action = 37.94 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 1.774 -0.03 -0.02 -0.03 8.2 0.00 0.00 0.0 0.00 Snow -0.02 7.167 -0.22 -0.13 -0.21 8.2 0.00 0.00 0.0 0.00 Snow -0.13 12.474 6.88 4.05 6.48 7.9 0.00 0.00 0.0 0.00 Snow 4.05 12.559 -0.03 -0.02 -0.03 8.2 0.00 0.00 0.0 0.00 Snow -0.02 18.240 6.95 4.09 6.54 7.9 0.00 0.00 0.0 0.00 Snow 4.09 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.285 0.167 0.268 7.9% Red 0.167 17.059 0.285 0.167 0.268 0.167 2 17.060 0.285 0.167 0.268 7.9% Red 0.167 18.240 0.000 0.000 0.000 0.000 3 18.241 0.285 0.167 0.268 7.9% Red 0.167 27.000 0.285 0.167 0.268 0.167 SHEAR: Max V (DL +LL) = 21.59 kips fv = 3.12 ksi Fv = 18.99 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center PreCmp+ 116.3 12.5 0.0 1.00 17.11 33.00 17.11 33.00 Max + 184.5 12.5 -- - -- Mmax/Seff 19.04 33.00 - -- - -- Mconst/Sx+Mpost/Seff 21.58 45.00 - -- - -- Controlling 184.5 12.5 - -- - -- 19.04 33.00 - -- - -- fc (ksi) = 0.42 Fc = 1.80 Gravity Beam RAM Steel v9.0 Page 116/176 Steve Young RAM DataBase: A03035B430 12/13/05 16:21:37 Building Code: IBC Steel Code: ASD 9th Ed. REACTIONS (kips): Left Right Initial reaction 11.22 13.57 DL reaction 9.54 11.53 Max +LL reaction 8.45 10.06 Max -LL reaction -0.18 -0.06 Max +total reaction 17.98 21.59 DEFLECTIONS: Initial load (in) at 13.77 ft = -0.292 L/D = 1110 Live load (in) at 13.77 ft = -0.175 L/D = 1849 Post Comp load (in) at 13.77 ft = -0.258 L/D = 1258 Net Total load (in) at 13.77 ft = -0.549 L/D = 590 fe 10/7 i RAM Steve Y oung Steel v9.0 Page 73/176 RAM DataBase: A03035B430 12/13/05 16:21:37 M E FN ATEN A L Building Code: IBC Gravity Beam Design Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 528 SPAN INFORMATION (ft): I -End (97.50,50.33) J -End (97.50,61.67) Beam Size (Optimum) = W10X12 Fy = 50.0 ksi Total Beam Length (ft) = 11.33 LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.574 0.540 0.0% Red 11.333 0.574 0.540 SHEAR: Max V (DL +LL) = 6.31 kips fir = 3.37 ksi Fir = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 17.9 5.7 0.0 1.00 19.69 32.83 19.69 32.83 Controlling 17.9 5.7 0.0 1.00 19.69 32.83 - -- - -- REACTIONS (kips): Left Right DL reaction 3.25 3.25 Max +LL reaction 3.06 3.06 Max +total reaction 6.31 6.31 DEFLECTIONS: Dead load (in) at 5.67 ft = -0.137 L/D = 996 Live load (in) at 5.67 ft = -0.128 L/D = 1059 Net Total load (in) at 5.67 ft = -0.265 L/D = 513 Gravity Beam Design RAM Steel v9.0 Page 75/176 Steve Y oung RAM DataBase: A03035B430 12/13/05 16:21:37 M Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 529 SPAN INFORMATION (ft): I -End (97.50,61.67) J -End (97.50,94.37) Beam Size (User Selected) = W24X55 Fy = 50.0 ksi Total Beam Length (ft) = 32.71 COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular Decking type VERCO W3 Formlok VERCO W3 Formlok beff (in) = 94.06 Y bar(in) = 22.14 Seff (in3) = 155.97 Str (in3) = 184.32 Ieff (in4) = 2968.55 Itr (in4) = 4081.56 Stud length (in) = 4.50 Stud diam (in) = 0.75 Stud Capacity (kips) q = 10.0 # of studs: Max = 64 Partial = 23 Actual = 30 Number of Stud Rows =1 Percent of Full Composite Action = 34.79 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 0.667 20.42 12.01 19.22 27.9 0.00 0.00 0.0 0.00 Snow 12.01 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.319 0.188 0.300 27.9% Red 0.188 32.708 0.319 0.188 0.300 0.188 2 0.000 0.255 0.150 0.240 27.9% Red 0.150 0.666 0.255 0.150 0.240 0.150 3 0.667 0.379 0.223 0.357 27.9% Red 0.223 32.708 0.379 0.223 0.357 0.223 SHEAR: Max V (DL +LL) = 52.59 kips fv = 5.89 ksi Fv = 18.78 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center PreCmp+ 117.9 15.8 0.0 1.00 12.30 33.00 12.30 33.00 Max + 168.2 15.8 - -- - -- Mmax/Seff 12.94 33.00 - -- - -- MconstlSx+Mpost/Seff 14.56 45.00 - -- - -- Controlling 168.2 15.8 - -- - -- 12.94 33.00 - -- - -- fc (ksi) = 0.28 Fc = 1.80 REACTIONS (kips): Left Right Initial reaction 36.87 13.91 DL reaction 31.34 11.83 f f 11A Gravity Beath Design RAM Steel v9.0 Page 76/176 Steve Young RAM DataBase: A03035B430 12/13/05 16:21:37 Building Code: IBC Steel Code: ASD 9th Ed. Left Right Max +LL reaction 21.26 8.02 Max +total reaction 52.59 19.85 DEFLECTIONS: Initial load (in) at 16.19 ft = -0.291 L/D = 1347 Live load (in) at 16.19 ft = -0.154 L/D = 2549 Post Comp load (in) at 16.19 ft = -0.247 L/D = 1586 Net Total load (in) at 16.19 ft = -0.539 L/D = 728 • n Gravity Beam Design RAM Steel v9.0 Page 136/176 Steve Young RAM DataBase: A03035B430 12/13/05 16:21:37 Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 614 SPAN INFORMATION (ft): I -End (142.70,82.43) J -End (155.00,82.43) Beam Size (User Selected) = W12X14 Fy = 50.0 ksi Total Beam Length (ft) = 12.30 COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular Decking type VERCO W3 Formlok VERCO W3 Formlok beff (in) = 36.91 Y bar(in) = 13.46 Seff (in3) = 23.38 Str (in3) = 30.70 Ieff (in4) = 262.70 Itr (in4) = 413.16 Stud length (in) = 4.50 Stud diam (in) = 0.75 Stud Capacity (kips) q = 10.0 # of studs: Max = 12 Partial = 7 Actual = 8 Number of Stud Rows =1 Percent of Full Composite Action = 28.77 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.093 0.055 0.088 0.0% Red 0.055 12.302 0.285 0.167 0.268 0.167 2 0.000 0.000 0.000 0.000 0.0% Red 0.000 1.181 0.285 0.167 0.268 0.167 3 1.181 0.285 0.167 0.268 0.0% Red 0.167 12.302 0.285 0.167 0.268 0.167 SHEAR: Max V (DL +LL) = 6.03 kips fir = 2.63 ksi Fir = 18.76 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center PreCmp+ 10.5 6.4 0.0 1.00 8.47 33.00 8.47 33.00 Max + 17.4 6.4 - -- - -- Mmax/Seff 8.91 33.00 - -- - -- Mconst/Sx+Mpost/Seff 10.44 45.00 - -- - -- Controlling 17.4 6.4 - -- - -- 8.91 33.00 - -- - -- fc (ksi) = 0.17 Fc = 1.80 REACTIONS (kips): Left Right Initial reaction 3.01 3.65 DL reaction 2.55 3.10 Max +LL reaction 2.40 2.92 Max +total reaction 4.96 6.03 Gravity Benin Design FR , RAM Steel v9.0 Page 123/176 Steve Young RAM DataBase: A03035B430 12/13/05 16:21:37 wF Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 622 SPAN INFORMATION (ft): I -End (135.17,62.33) J -End (135.17,71.36) Beam Size (User Selected) = HSS5X5X1 /4 Fy = 50.0 ksi Total Beam Length (ft) = 9.03 Cantilever on right (ft) = 2.33 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 9.031 0.64 0.60 0.0 0.00 0.00 0.0 0.00 Snow SHEAR: Max V (DL +LL) = 1.24 kips fv = 0.53 ksi Fv = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max - -2.9 6.7 6.7 1.75 5.40 33.00 5.40 33.00 Right Max - -2.9 6.7 2.3 1.00 5.40 33.00 5.40 33.00 Controlling -2.9 6.7 6.7 1.75 5.40 33.00 - -- - -- REACTIONS (kips): Left Right DL reaction -0.22 0.86 Max +LL reaction 0.00 0.81 Max -LL reaction -0.21 0.00 Max +total reaction -0.22 1.67 Max -total reaction -0.43 0.86 DEFLECTIONS: Center span: Dead load (in) at 3.85 ft = 0.016 L/D = 5048 Live load (in) at 3.85 ft = 0.015 L/D = 5364 Net Total load (in) at 3.85 ft = 0.031 L/D = 2601 Right cantilever: Dead load (in) = -0.039 L/D = 1441 Pos Live load (in) = -0.037 L/D = 1531 Pos Total load (in) = -0.075 L/D = 742 Gravity Beam Design RAM Steel v9.0 Page 96/176 Steve Young RAM DataBase: A03035B430 12/13/05 16:21:37 IslusignslAt Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 628 SPAN INFORMATION (ft): I -End (115.33,89.13) J -End (128.00,84.49) Beam Size (User Selected) = HSS8X6X3 /8 Fy = 50.0 ksi Total Beam Length (ft) = 13.49 LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.350 0.000 0.0% Red 13.488 0.350 0.000 2 0.000. 0.042 0.040 0.0% Red 13.488 0.042 0.040 3 0.000 0.267 0.252 0.0% Red 13.100 0.088 0.083 4 13.101 0.088 0.083 0.0% Red 13.488 0.000 0.000 SHEAR: Max V (DL-I-LL) = 5.61 kips fv = 1.00 ksi Fy = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 17.6 6.5 0.0 1.00 10.65 33.00 10.65 33.00 Controlling 17.6 6.5 0.0 1.00 10.65 33.00 - -- - -- REACTIONS (kips): Left Right DL reaction 4.03 3.60 Max +LL reaction 1.57 1.17 Max +total reaction 5.61 4.77 DEFLECTIONS: Dead load (in) at 6.68 ft = -0.184 L/D = 879 Live load (in) at 6.68 ft = -0.066 L/D = 2437 Net Total load (in) at 6.68 ft = -0.251 L/D = 646 Gravity Beam Design RAM Steel v9.0 Page 88/176 Steve Y oung RAN DataBase: A03035B430 12/13/05 16:21:37 one Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 629 SPAN INFORMATION (ft): I -End (115.33,62.33) J -End (115.33,89.13) Beam Size (User Selected) = W21X44 Fy = 50.0 ksi Total Beam Length (ft) = 26.79 COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation perpendicular parallel Decking type VERCO W3 Formlok VERCO W3 Formlok bell (in) = 80.19 Y bar(in) = 20.37 Seff (in3) = 117.96 Str (in3) = 133.48 Ieff (in4) = 2157.33 Itr (in4) = 2718.56 Stud length (in) = 4.50 Stud diam (in) = 0.75 Stud Capacity (kips) q = 13.3 # of studs: Full = 50 Partial = 14 Actual = 24 Number of Stud Rows =1 Percent of Full Composite Action = 49.11 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 6.698 2.82 1.66 2.66 4.5 0.00 0.00 0.0 0.00 Snow 1.66 13.396 3.16 1.86 2.97 4.5 0.00 0.00 0.0 0.00 Snow 1.86 20.094 3.10 1.83 2.92 4.5 0.00 0.00 0.0 0.00 Snow 1.83 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.379 0.223 0.357 4.5% Red 0.223 26.791 0.379 0.223 0.357 0.223 SHEAR: Max V (DL +LL) = 18.40 kips fv = 2.66 ksi Fv = 18.99 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center PreCmp+ 88.3 13.4 6.7 1.13 12.98 30.00 12.98 29.56 Max + 142.4 13.4 - -- - -- Mmax/Seff 14.49 33.00 - -- - -- Mconst/Sx+Mpost/Seff 16.49 45.00 - -- - -- Controlling 142.4 13.4 - -- - -- 14.49 33.00 - -- - -- fc (ksi) = 0.32 Fc = 1.80 REACTIONS (kips): Left Right Initial reaction 11.23 11.40 DL reaction 9.55 9.69 Max +LL reaction 8.58 8.71 Max +total reaction 18.13 18.40 f 7" Gravity. Beam Design RAM Steel v9.0 Page 135/176 Steve Y oung RAM DataBase: A03035B430 12/13/05 16:21:37 NrE" /Cesgi Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 631 SPAN INFORMATION (ft): I -End (142.33,84.49) J -End (155.00,89.13) Beam Size (User Selected) = HSS8X6X3 /8 Fy = 50.0 ksi Total Beam Length (ft) = 13.49 • LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.350 0.000 0.0% Red 13.488 0.350 0.000 2 0.000 0.042 0.040 0.0% Red 13.488 0.042 0.040 3 0.000 0.000 0.000 0.0% Red 0.387 0.088 0.083 4 0.388 0.088 0.083 0.0% Red 13.488 0.267 0.252 SHEAR: Max V (DL +LL) = 5.61 kips fir = 1.00 ksi FIT = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 17.6 7.0 0.0 1.00 10.65 33.00 10.65 33.00 Controlling 17.6 7.0 0.0 1.00 10.65 33.00 - -- - -- REACTIONS (kips): Left Right DL reaction 3.60 4.03 Max +LL reaction 1.17 1.57 Max +total reaction 4.77 5.61 DEFLECTIONS: Dead load (in) at 6.81 ft = -0.184 L/D = 879 Live load (in) at 6.81 ft = -0.066 L/D = 2437 Net Total load (in) at 6.81 ft = - 0.251 L/D = 646 3 I FR Gravity Beam Design RAM Steel v9.0 Page 146/176 Steve Young RAM DataBase: A03035B430 12/13/05 16:21:37 - M1^ Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 632 SPAN INFORMATION (ft): I -End (155.00,70.38) J -End (155.00,89.13) Beam Size (User Selected) = W16X40 Fy = 50.0 ksi Total Beam Length (ft) = 18.75 COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation parallel perpendicular Decking type VERCO W3 Formlok VERCO W3 Formlok bell (in) = 56.25 Y bar(in) = 15.69 Seff (in3) = 86.07 Str (in3) = 102.74 Ieff (in4) = 1132.75 Itr (in4) = 1612.30 Stud length (in) = 4.50 Stud diam (in) = 0.75 Stud Capacity (kips) q = 13.3 # of studs: Full = 60 Partial = 16 Actual = 16 Number of Stud Rows =1 Percent of Full Composite Action = 25.66 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 5.354 3.16 1.86 2.97 0.0 0.00 0.00 0.0 0.00 Snow 1.86 12.052 3.10 1.83 2.92 0.0 0.00 0.00 0.0 0.00 Snow 1.83 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.425 0.250 0.400 0.0% Red 0.250 18.750 0.425 0.250 0.400 0.250 SHEAR: Max V (DL +LL) = 14.27 kips fir = 2.92 ksi Fv = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center PreCmp+ 44.2 9.9 0.0 1.00 8.20 33.00 8.20 33.00 Max + 73.0 9.9 - -- - -- Mmax/Seff 10.17 33.00 - -- - -- Mconst/Sx+Mpost /Sell 11.19 45.00 - -- - -- Controlling 73.0 9.9 - -- - -- 10.17 33.00 - -- - -- fc (ksi) = 0.28 Fc = 1.80 REACTIONS (kips): Left Right Initial reaction 8.65 8.10 DL reaction 7.35 6.88 Max +LL reaction 6.92 6.48 Max +total reaction 14.27 13.36 '^ Gravity: Beam Design RAM Steel v9.0 Page 50/177 Steve Young RAM DataBase: A03035B430 12/13/05 15:17:05 l'Irmalcm Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 673 SPAN INFORMATION (ft): I -End (66.33,0.00) J -End (66.33,25.00) Beam Size (User Selected) = W16X40 Fy = 50.0 ksi Total Beam Length (ft) = 25.00 COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular Decking type VERCO W3 Formlok VERCO W3 Formlok bell (in) = 58.85 Y bar(in) = 15.48 Seff (in3) = 89.47 Str (in3) = 103.93 Ieff (in4) = 1206.67 Itr (in4) = 1608.52 Stud length (in) = 4.50 Stud diam (in) = 0.75 Stud Capacity (kips) q = 10.0 # of studs: Max = 50 Partial = 16 Actual = 22 Number of Stud Rows =1 Percent of Full Composite Action = 39.24 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 8.000 -0.36 -0.38 0.27 0.0 0.00 0.00 0.0 0.00 Snow 0.03 -0.22 0.0 0.00 0.00 0.0 0.00 Snow 0.03 8.000 -1.46 -1.42 0.79 0.0 0.00 0.00 0.0 0.00 Snow -0.06 -0.88 0.0 0.00 0.00 0.0 0.00 Snow -0.06 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.416 0.245 0.392 0.0% Red 0.245 8.000 0.416 0.245 0.392 0.245 2 8.000 0.698 0.410 0.657 0.0% Red 0.410 25.000 0.698 0.410 0.657 0.410 SHEAR: Max V (DL +LL) = 15.99 kips fv = 3.28 ksi Fy = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center PreCmp+ 52.4 13.7 0.0 1.00 9.71 33.00 9.71 33.00 Max + 94.4 13.2 - -- - -- Mmax/Seff 12.66 33.00 - -- - -- Mconst/Sx+Mpost/Seff 13.84 45.00 - -- - -- Controlling 94.4 13.2 - -- - -- 12.66 33.00 - -- - -- fc (ksi) = 0.40 Fc = 1.80 REACTIONS (kips): � Gravit Beam Design RAM Steel. v9.0 Page 51/177 Steve Young RAM DataBase: A03035B430 12/13/05 15:17:05 IMERNATCNAL Building Code: IBC Steel Code: ASD 9th Ed. • Left Right Initial reaction 6.79 9.25 DL reaction 5.59 7.78 Max +LL reaction 7.15 8.21 Max -LL reaction -0.75 -0.35 Max +total reaction 12.74 15.99 DEFLECTIONS: Initial load (in) at 13.13 ft = -0.163 L/D = 1845 Live load (in) at 12.75 ft = -0.164 L/D = 1832 Post Comp load (in) at 12.75 ft = -0.229 L/D = 1310 Net Total load (in) . at 12.75 ft = -0.391 L/D = 766 3d( C - C Aw vicilif ,,w. G cAss/ t I -C-6 mo tive , 22,e6 C _ O . .moo 23� 23, 6 /Il. / AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS 6960 S.W. VARNS ST., SUITE 200 JOB NO TIGARD, OREGON 97223 Q� (503) 620- 3030, FAX 620 -5539 SHEET OF 7r/ 1 7 C 7 j • a okti,k/ • g I • c Tv244,1 vio12,441, 1( 12Tik . • • cri te) ,07;00 • gi • ( --c‘•=44/1)J . c_4•.) cto 10 • c .0 CIA aZA.441[1011 -4 4.- • AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6980 S.W. VARNS ST., SUITE 200 TIGARD, OREGON 97223 (503)690-3030, FAX 620-5539 SHEETEe_ OF .110 C 1 If -s CCU ck /,21 'tisP) J lei v' /V�!/I.gf J "'1 - Tv-5 -� 6 to to_ ti , Cna l3 �� c k _ � k Lemcstusikeu (37,i vo k AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6960 S.W. YARNS ST.. SUITE 200 TIGARD, OREGON 97223 SHEET OF S1 (503) 620-3030, FAX 620-5539 �Q 1U i -X -5k -.11 M1 M2 -9.78 Ammo 41 4 1■1■1_16 g -9.8 r 9.78 5.1 1 4.9 2 5.11 Loads: LC 1, LOAD Results for LC 1, LOAD Member Axial Forces (k) Reaction units are k and k -ft `ghan Associates, Inc. November 29, 2005 HAMID AFGHAN 4:37 PM Frames at Curtainwall.r3d Company : Afghan Associates, Inc. November 29, 2005 Designer : HAMID AFGHAN 4:37 PM Job Number : Checked By: r-, Member Section Forces. By Combination LC Member Label Section Axial Shear y -y Shear z -z Torque Moment y -y Moment z -z (k) (k) (k) (k -ft) (k -ft) (k -ft) 1 M1 1 -9.784 -.108 0 0 0 0 - 2 .''• - 9.784 -108 - 0 0 0 1... M2 1 0 .108 0 0 0 .54 2 0. .108 0 0 0. 1 M3 _ 1 5.108 0 0 0 0 0 2 5.10€1 0 0 0 0:: 0= 1 M4 1 9.784 0 0 0 0 0 1 M5 1 4.892 0 0 0 0 0 2 4.892 0 0 0 0 , .0: 1 M6 1 0 0 0 0 0 0 2 0 0 0 0 0 . : 0 1 M7 1 - 10.939 0 0 0 0 0 2 10.939 0 , . -. 0 0 . :- 0 .. :. .. 0 0 RISA -3D Version 4.5 [H: \Projects \Tigard Triangle Commons \Building Four \Calculations \Frames at Curtail g&rTd] 0 BUILDING FOUR COLUMN DESIGN COLUMN HSS 8 x 8 x 3 / 8 : COMBINED LOADING (MAX AXIAL): Kstrong 1 EFFECTIVE LENGTH FACTOR Kweak 1 Lstrong 15ft UNSUPPORTED COLUMN LENGTH Lweak 1 5•ft KLstrong =15 if EFFECTIVE COLUMN LENGTH KLweak = 15 ft LOADING: A := 119.5.k M 6.82•k•ft My:= 9.9•k•ft PROPERTIES: HSS • 8 x8 3 /8 Ae 11.10 in bf:= 8•in tf:= 0.375•In d := 8•in Af:= bf•tf Af= 3In Iz:= 106•in ty 106•i if Sz = 26.51n Sy = 26.5 in rz = 3.09 in ry = 3.091n rmin = 3.09 in IKLstrong KLweak' SRmin max SRmin = 58.2 SLENDERNESS FACTOR IN PLANE OF BENDING rz ry J 12.n Fe :_ 23•SRmin2 Fe = 44.01 ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY 1 2 •x 2 •Es SRmin 6 - 2•R 12.x Co: = ft Co =112 i R= 2cc Fe: =• R <0.500, 5 3•R 3' 2 3 + 4 - R 23 •SRmin Ax _ . _......... - _.....fa fa = 10.77ksi AXIAL STRESS Fe = 21.5ksi_ -.. ALLOWABLE AXIAL STRESS -- ._ . .... .. ...... ... .. M fbz:= S Z fbz= 3.09ksi BENDING STRESS Fbz = 30.36ks1 ALLOWABLE BENDING STRESS STRONG AXIS M Y fby := fby = 4.48ksi BENDING STRESS Fby = 30.36ksi ALLOWABLE BENDING STRESS c ) Sy WEAK AXIS INTERACTION = 0.83 Of i C BUILDING FOUR COLUMN DESIGN COLUMN HSS 8 x 8 x 3 / 8 : COMBINED LOADING (MAX COMBINED STRESS): (= 1 EFFECTIVE LENGTH FACTOR N =1 l ^= 15•ft UNSUPPORTED COLUMN LENGTH = 15•ft KLstrong = 15 ft EFFECTIVE COLUMN LENGTH KLweak = 15 ft h 53.61.k j= 27.1•k•ft 2= 18•k•ft PROPERTIES: J-ISS 8x8x3/8 = 11.10.in 2 Xi= 8-in = 0.375•In= 8 in= bttf At= 3 M = 106•in ,= 106•In Sz = 26.51n Sy = 26.5 in rz = 3.091n ry = 3.09In rmln = 3.09 in �q m r� K- weak)) n An= S Rmin = 58.2 SLENDERNESS FACTOR IN PLANE OF BENDING r Z r y J 12•a V 2 Fe = 44.01 ks1 EULER STRESS DIVIDED BY FACTOR OF SAFETY 23 •SRmin J 2-n SRmin �1 - 2•R 12•n Es = ft Cc = 112 R.- 2C i = i R <0.500, 5 3•R 3 2 3 + 4 - R 23 •SRmin Ax f •_ - fa = 4.83 ksi AXIAL STRESS Fa = 21.5 ksi ALLOWABLE AXIAL STRESS M y , = SZ fbz= 12.27ksi BENDING STRESS Fbz= 30.36ksi ALLOWABLE BENDING STRESS STRONG AXIS U= Z by = 8.15 ksI BENDING STRESS Fb = 30.36ksi ALLOWABLE BENDING STRESS C WEAK AXIS INTERACTION = 0.98 0 BUILDING FOUR COLUMN DESIGN COLUMN HSS 8 x 8 x 3 / 8 : COMBINED LOADING (MAX AXIAL): AXIAL LOADING K := 1.00 EFFECTIVE LENGTH FACTOR L := 15•ft COLUMN LENGTH KL:= XL KL = 15 ft EFFECTIVE COLUMN LENGTH COLUMN LOAD: PC1 := ((91.5 68.0 159.5 ).k) PC1 USE HSS 8x8x3/8 p allow := 238.k IC :_ - IC = (0.38 0.29 0.67 ) Pallow bf:= 8•In dc:= 8•in COLUMN DIMENSIONS BASEPLATE DESIGN: �N = 16•In B := 16.1n f . P B. N' 2 fp = 623psi < Fp = 1785ps1 \ m c= min((N - 0.95.do B - 0.8.9f)) m = 4.21n 3•fp•m treqd treqd = 0.94In 0.75•fs t =1 E 1 1/4" X 16" X 1' -4" BASEPLATE WITH (4) 1" DIAMETER ANCHOR BOLTS 0 0 BUILDING FOUR COLUMN DESIGN COLUMN HSS 8 x 8 x 3 / 8 : COMBINED LOADING (MAX AXIAL): q := 3 DESIGN SOIL PRESSURE (ksf) - SEE NOTES ON FOUNDATION PLAN PC1 = (91.5 68 159.5)k COLUMN LOADS b := round 5111 Pgalk'2 •ft b = 7.5 ft WIDTH OF FOOTING X= 8.0•ft Afootg b Afootg = 64 ft AREA OF FOOTING 1.4•PC1 0 + 1.7•PC1 qu : Afootg qu = 3.81 ksf FACTORED PRESSURE h := 20•in DEPTH OF FOOTING d = 16in DEPTH TO CENTROID OF REINFORCEMENT STEEL b := 2.(N + B + 2•(d — m)) bo = 111 in CRITICAL SHEAR PERIMETER (PUNCHING SHEAR) Ao:= (N+d— m)•(B +d —m) Ao= 773in PUNCHING SHEAR: Vu qu.(Afootg — A V = 223.3k V 4Vc:= O A.b $Vc = 331 k IC:= IC = 0.67 ONE-WAY SHEAR: b bf m xows := 2 — - - d xows = 25.9In ,xyj= qu•(b•xows) Vu = 65.7k Vu _ 4s•2• f i bo•d•psi O/c = 166k IC:= 0Vc IC = 0.4 afk BUILDING FOUR COLUMN DESIGN COLUMN HSS 8 x 8 x 3 / 8 : COMBINED LOADING (MAX AXIAL): BENDING: b bf m d 2 2 2 2 x= 33.91n qu•b•x Mu := 2 M = 122 ftk FLEXURE M R:= R = 66psi FLEXURAL RESISTANCE FACTOR 0f•b•d p = 0.0018 STEEL RATIO As.REQD = 2.7651n AREA OF STEEL REQUIRED • barn° := 5 REINFORCEMENT SIZE (DIAMETER) nbar = 10 NUMBER OF BARS REQUIRED As := nbar Abar As = 3.1 in AREA OF REINFORCEMENT STEEL As Mu OMn :_ +f•As•fy d — 1 .7•fc•b ) 4Mn = 217.9ft.k ^I ,Mn IC = 0.56 USE 8' -0" X 8' -0" X 20" DEEP FOOTING WITH (10) #5 EACH WAY v�� RAM Steel v9.0 Steve Young Gravity Column Design RA DataBase: A03035B426 11/10/05 15:53:05 mENATosim Building Code: IBC Steel Code: ASD 9th Ed. Story level 2ND FLOOR, Column Line 1.13ft - 50.33ft Fy (ksi) = 46.00 Column Size = HSS8X8X3 /8 Orientation (degrees) = 90.0 G I GPI t INPUT DESIGN PARAMETERS: X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 6.50 6.50 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 1: Dead Live Roof Axial (kips) 67.56 50.04 0.00 Moments Top Mx (kip -ft) 0.03 0.02 0.00 My (kip -ft) 15.48 7.85 0.00 Bot Mx (kip -ft) 0.00 . 0.00 0.00 My (kip -ft) 0.00 0.00 0.00 Single curvature about X -Axis Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 11.31 Fa (ksi) = 21.55 fbx (ksi) = 0.02 Fbx (ksi) = 30.36 fby (ksi) = 11.24 Fby (ksi) = 30.36 KL/Rx = 58.16 KL/Ry = 58.16 F'ex = 44.14 F'ey = 44.14 Cmx = 0.60 Cmy = 0.60 INTERACTION EQUATION fa/Fa = 0.52 EgH1 -1: 0.525 +0.001 + 0.299 = 0.824 - Eq H1 -2: 0.410 + 0.001 + 0.370 = 0.781 a F C� Gravity Column Design RAM Steel v9.0 Steve Young RAN DataBase: A03035B426 11/10/05 15:53:05 Building Code: IBC Steel Code: ASD 9th Ed. Story level 2ND FLOOR, Column Line 128.00ft - 50.33ft Fy (ksi) = 46.00 Column Size = HSS8X8X3 /8 Orientation (degrees) = 90.0 CgtAV4 t INPUT DESIGN PARAMETERS: X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 6.50 6.50 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 1: Dead Live Roof Axial (kips) 68.50 51.00 0.00 Moments Top Mx (kip -ft) -4.99 -1.83 0.00 • My (kip -ft) -6.59 -3.31 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) 0.00 0.00 0.00 Single curvature about X -Axis Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 11.49 Fa (ksi) = 21.55 fbx (ksi) = 3.29 Fbx (ksi) = 30.36 fby (ksi) = 4.77 Fby (ksi) = 30.36 KL/Rx = 58.16 KL/Ry = 58.16 F'ex . = 44.14 F'ey = 44.14 Cmx = 0.60 Cmy = 0.60 INTERACTION EQUATION fa/Fa = 0.53 H1 1 0.533 +0.088 + 0.128 =- 0:749 EgH1 -2: 0.416 +0.108 +0.157 =0.682 1 RAM Steel v9.0 Steve Young Gravity Column Design RAM DataBase: A03035B426 11/10/05 15:53:05 Building Code: IBC Steel Code: ASD 9th Ed. Story level 2ND FLOOR, Column Line 199.88ft - 50.33ft Fy (ksi) = 46.00 Column Size = HSS8X8X3 /8 Orientation (degrees) = 90.0 6 4( 12 INPUT DESIGN PARAMETERS: X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 6.50 6.50 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 1: Dead Live Roof Axial (kips) 58.90 44.34 0.00 Moments Top Mx (kip -ft) 0.03 0.02 0.00 My (kip -ft) -13.59 -7.14 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) 0.00 0.00 0.00 Single curvature about X -Axis Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 9.93 Fa (ksi) = 21.55 fbx (ksi) = 0.03 Fbx (ksi) = 30.36 fby (ksi) = 9.99 Fby (ksi) = 30.36 KL/Rx = 58.16 KL/Ry = 58.16 F'ex = 44.14 F'ey = 44.14 Cmx = 0.60 Cmy = 0.60 INTERACTION EQUATION fa/Fa = 0.46 Eg111 :1: - 0:461 +0.001 +0:255 =0.716 Eq H1 -2: 0.360 + 0.001 + 0.329 = 0.690 e Gravity Co lunri Design FR RAM Steel v9.0 Steve Young RAM DataBase: A03035B426 11/10/05 15:53:05 MEAL Building Code: IBC Steel Code: ASD 9th Ed. Story level 2ND FLOOR, Column Line 97.50ft - 61.67ft Fy (ksi) = 46.00 Column Size HSS8X8X3I8 Orientation (degrees) = 90.0 ` e INPUT DESIGN PARAMETERS: X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 6.50 6.50 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 8: Dead Live Roof Axial (kips) 34.47 19.14 0.00 Moments Top Mx (kip -ft) 16.72 10.37 0.00 My (kiP - ft) 0.00 0.00 0.00 Bot Mx (kip -ft) 0.00 0:00 0.00 My (kiP-ft) 0.00 0.00 0.00 Single curvature about X -Axis Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 5.16 Fa (ksi) = 21.55 fbx (ksi) = 13.05 Fbx (ksi) . = 30.36 fby (ksi) = 0.00 Fby (ksi) = 30.36 KL/Rx = 58.16 KL/Ry = 58.16 F'ex = 44.14 F'ey = 44.14 Cmx = 0.60 Cmy = 0.00 INTERACTION EQUATION fa/Fa = 0.24 Eq-H1-1: +0:292 +0:000 -= 0 531 -. Eq H1-2: 0.187 + 0.430 + 0.000 = 0.617 G• � n BUILDING: FOUR COLUMN DESIGN COLUMN HSS 10 x 10 x 3 / 8 : COMBINED LOADING (MAX AXIAL): Kstrong := 1 EFFECTIVE LENGTH FACTOR Kweak := 1 strong := 15•ft UNSUPPORTED COLUMN LENGTH Lweak := 15.ft KLstrong = 15 ft EFFECTIVE COLUMN LENGTH KLweek = 15 ft LOADING: Ax := 203•k Mz:= 7.4•k•ft My :_ 15.55•k•ft PROPERTIES: HSS 10 x1 0 x3 /8 14.10•in bf := 10.in tf := 0.375•In d = 10-In Af := bf•tf Af= 3.751n Iz:= 214•in l := 214•1n Sz = 42.8In3 Sy = 42.8 in r = 3.9in ry = 3.9in rmin = 3.9in {(KLst KLweak SRmin := ma rz ry SRmin = 46.2 SLENDERNESS FACTOR IN PLANE OF BENDING 12. .E Fe := 23•SRmin2 Fe '= 69.95ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY 2•a SRmin ( 1 — 2•R 12•n Cc := Co= 112 R:= Fe := R <0.500, ft 2 � 3 + 4 — R , 23 • 5 Rmin 2 A fe = 14.4 kst- ..__... _ .AXIAL STRESS -._ _ _ F = 23:2 -C& - - ....... ALLOWABLE -AXIAL STRESS-- _.......... _ _ .... _.. _. fbz:= S ibz= 2.07ks1 BENDING STRESS Fbz= 30.36ksi ALLOWABLE BENDING STRESS STRONG AXIS M Y ib fby = 4.36ksi BENDING STRESS Fby = 30.36ksi ALLOWABLE BENDING STRESS C) Sy WEAK AXIS INTERACTION = 0.89 O V' ` 0 BUILDING FOUR COLUMN DESIGN COLUMN HSS 10 x 10 x 3 / 8 : COMBINED LOADING (MAX COMBINED STRESS): itUMW= 1 EFFECTIVE LENGTH FACTOR Now 1 l ,;= 15•1t UNSUPPORTED COLUMN LENGTH L 15•ft KLstrcng = 15 ft EFFECTIVE COLUMN LENGTH KI -weak = 15 ft LOADING: = 173.k A= 1 •k•ft 23.5•k•ft PROPERTIES: HSS 1 0 x1 0 x3/8 he 14.10. n ki= 10-in = 0.375 in 1= 10 in - bf•tf Af= 3.751n A 214•in 2y 214.1n Sz = 42.8 in Sy = 42.8In rz = 3.9in Ty = 3.91n 'Min = 3.91n - m ((KLs Zong KI weak )) SRmIn = 48.2 SLENDERNESS FACTOR IN PLANE OF BENDING Ada 12•n n4V 23 SRmin2 Fe = 69.95ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY 2-n 2 -Es SRmIn (1 - 2-R 12•n = ft Cc = 112 ^ R = 2 Cc = R < 0.500, 5 3•R 3 , 2 3 + 4 - R 23 •SRmin Ax ,j= - fa = 12.27ksi AXIAL STRESS Fa = 23.2ks1 ALLOWABLE AXIAL STRESS Mz ,fj= S z fbz= 0.28ks1 BENDING STRESS Fbz = 30.36ksi ALLOWABLE BENDING STRESS STRONG AXIS = fby = 6.59ksi BENDING STRESS Fby = 30.36ksi ALLOWABLE BENDING STRESS y WEAK AXIS 0 INTERACTION = 0.8 0 f ti ri BUILDING FOUR COLUMN DESIGN COLUMN HSS 10 x 10 x 3 / 8 : COMBINED LOADING (MAX AXIAL): AXIAL LOADING K := 1.00 EFFECTIVE LENGTH FACTOR L := 15•ft COLUMN LENGTH KL:= K.L KL = 15 ft EFFECTIVE COLUMN LENGTH COLUMN LOAD: PC1 [(151 92 243 )•k] PC1 USE HSS 10x10x3/8 Pallow : =3 IC:= IC = (0.46 0.28 0.74) Pallow = 10•in dc:= 10•in COLUMN DIMENSIONS r BASEPLATE DESIGN: nNn .= 18•In B:= 18•in f : P B 7 N' 2 fp = 750psi < Fp = 1785ps1 min((N — 0.95•dc B — 0.8•bf)) m:= 2 m = 4.251n 3•fp•m treqd 0.75•fs treqd = 1.04in t = 1.25 USE 1 1/4" X 18" X 1' -6" BASEPLATE WITH (4) 1 -1/8" DIAMETER ANCHOR BOLTS 0 BUILDING FOUR COLUMN. DESIGN COLUMN HSS 10 x 10 x 3 / 8 : COMBINED LOADING (MAX AXIAL): (la := 3 DESIGN SOIL PRESSURE (ksf) - SEE NOTES ON FOUNDATION PLAN PC1 = (151 92 243 ) k COLUMN LOADS b':= round PC10'2 .ft b = 9.5 ft WIDTH OF FOOTING - 10.0•ft J qa.k- • Afootg b2 Afootg = 100 ft 2 AREA OF FOOTING 1.2•PC/ 0 + 1.6•PC1 1 qu • Afootg • • qu = 3.28ksf FACTORED PRESSURE h := 24.in DEPTH OF FOOTING d = 19.5in DEPTH TO CENTROID OF REINFORCEMENT STEEL b 2.[N + B + 2.(d - m)] b = 133In CRITICAL SHEAR PERIMETER (PUNCHING SHEAR) Ao =(N +d- m).(B +d -m) Ao= 1106In PUNCHING SHEAR: Vu qu•(Afootg - Ao) Vu = 303.2k +Vc := +s•4•A.bo•d•psl Vu �Vc = 483 k IC := mVc IC = 0.83 ONE-WAY- SHEAR:.... -. . _.. ..... ............ ...... .. . ...... _ ...._ .._ ...._... -... _.. _ ...... ....... . b bf m xows 2 2 2 - d 'rows = 33.4 in qu•(b•xows) V = 91.3k �j Vu _�s2•�•bo•dpsi 4Vc =241k IC:= mac IC =0.38 oV � 3 BUILDING FOUR COLUMN DESIGN COLUMN HSS 10 x 10'x 3'/ 8 : COMBINED LOADING (MAX AXIAL): BENDING: b bf m d x: = 2 2 2 2 x =43.1in qu•b•x Mu :- 2 Mu = 212ftk FLEXURE M u R:= R = 62psi FLEXURAL RESISTANCE FACTOR $ p = 0.0018 STEEL RATIO As.REQD = 4.212In2 AREA OF STEEL REQUIRED barns := 6 REINFORCEMENT SIZE (DIAMETER) nbar = 11 NUMBER OF BARS REQUIRED As nbar Abar As = 4.84in AREA OF REINFORCEMENT STEEL r As•fy Mu 0Mn $f•As•fy. d' 1. �Mn =414.375ft•k J;=- � IC =0.51 _ USE 10 " -0" X 10' -0" X 24" DEEP FOOTING WITH (11) #6 EACH WAY Ltr RAM Steel v9.0 Steve Young Gravity Column Design RAM DataBase: A03035B426 11/10/05 15:53:05 Building Code: IBC Steel Code: ASD 9th Ed. Story level 2ND FLOOR, Column Line 165.00ft - 50.33ft Fy (ksi) = 46.00 Column Size = HSS10X10X3 /8 Orientation (degrees) = 90.0 INPUT DESIGN PARAMETERS: X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 7.50 7.50 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 1: Dead Live Roof Axial (kips) 105.60 67.14 0.00 Moments Top Mx (kip -ft) -0.74 -0.34 0.00 My (kip -ft) 16.13 7.35 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) 0.00 0.00 0.00 Single curvature about X -Axis Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 13.09 Fa (ksi) = 23.22 fbx (ksi) = 0.32 Fbx (ksi) = 30.36 fby (ksi) = 6.98 Fby (ksi) = 30.36 KL/Rx = 46.01 KL/Ry = 46.01 F'ex = 70.53 F'ey = 70.53 Cmx = 0.60 Cmy = 0.60 INTERACTION EQUATION fa/Fa = 0.56 - -- Eq H -1 -1 :- 0. 564 +. 0.008 + 0.169 -= 0.741 -- -- EgH1 -2: 0.474 +0.011 + 0.230 = 0.714 C 4 Gravity Column Design . Steel v9.0 Steve Y oung RAM DataBase: A03035B426 11/10/05 15:53:05 INT Building Code: IBC Steel Code: ASD 9th Ed. Story level 2ND FLOOR, Column Line 41.50ft - 50.33ft Fy (ksi) = 46.00 Column Size = HSS10X103C3/8 Orientation (degrees) = 90.0 INPUT DESIGN PARAMETERS: X-Axis Y-Axis Lu (ft) 15.00 15.00 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 7.50 7.50 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 1: Dead. Live Roof Axial (kips) 126.04 77.04 0.00 Moments Top Mx (kip-ft) -5.14 -2.26 0.00 My (kip-ft)' -10.82 -4.73 0.00 Bot Mx (1dp-ft) 0.00 0.00 0.00 My (kip-ft) 0.00 0.00 0.00 Single curvature about X-Axis Single curvature about Y-Axis CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 15.39 Fa (ksi) = 23.22 fbx (ksi) = 2.20 Fbx (ksi) = 30.36 thy (ksi) = 4.62 Fby (ksi) = 30.36 KL/Rx = 46.01 KL/Ry = 46.01 F'ex = 70.53 F'ey = 70.53 Cmx = 0.60 Cmy = 0.60 INTERACTION EQUATION fa/Fa = 0.66 Eq H1-1: 0.663 + 0:056 + 0.117 = 0.835 Eq H1-2: 0.557 + 0.072 + 0.152 = 0.782 r BUILDING FOUR COLUMN DESIGN COLUMN HSS 8 x 8 x 1 / 2 : COMBINED LOADING (MAX AXIAL): qa = 3 DESIGN SOIL PRESSURE (ksf) - SEE NOTES ON FOUNDATION PLAN PC1 = (154 83 237)k COLUMN LOADS b := round 1 Pqa• 2 •ft b = 9 ft WIDTH OF FOOTING A V= 10.0.ft Afootg := b Afootg = 100 ft AREA OF FOOTING 1.2•PC1 0 + 1 .6•PC1 0,1 qu : Afootg qu = 3.18ksf FACTORED PRESSURE h := 24•in DEPTH OF FOOTING d = 19.5in DEPTH TO CENTROID OF REINFORCEMENT STEEL bo := 2•[N + B + 2.(d - m)] bo = 125in CRITICAL SHEAR PERIMETER (PUNCHING SHEAR) Ao:= (N +d- m)•(B +d -m) Ao= 980In PUNCHING SHEAR: Vu qu.(Afootg - A V = 296k +Vo: =m f bo•d•psI +Vo =455k IC:= L IC =0.65 - - .. - - - ._ ... .. ._-. -.._ ... . . . .... _.. _ . _ b bf m xows := - - - d xows = 34.41n \ A l= qu•(b•xows) V = 91k V A u= 4, s.2.l bo•d•psi 4V =227k IC:= �c IC = 0.4 0 BUILDING FOUR COLUMN DESIGN COLUMN HSS 8 x 8 x 1 / 2 : COMBINED LOADING (MAX AXIAL): BENDING: b bf m d x:= - - - — x= 4411n • 2 2 2 2 qu.b x Mu :=- 2 Mu = 215 ftk FLEXURE Mu R:- R = 63 psi FLEXURAL RESISTANCE FACTOR • • 4>tbd p = 0.0018 STEEL RATIO As.REQD = 4.212In AREA OF STEEL REQUIRED bar := 6 REINFORCEMENT SIZE (DIAMETER) nbar = 11 NUMBER OF BARS REQUIRED • As := nba•Abar As = 4.841n AREA OF REINFORCEMENT STEEL As.fy SMn A := d - 1 Tfcb +M = 414.375ft.k j;.= - rsu -- IC = 0.52 USE 10 X 10'-0" X 24" DEEP FOOTING WITH (11) #6 EACH WAY kg? r) BUILDING FOUR COLUMN DESIGN COLUMN HSS 8 x 8 x 1 / 2 : COMBINED LOADING (MAX AXIAL): Kstrong 1 EFFECTIVE LENGTH FACTOR Kweak 1 Lstrong 15-ft UNSUPPORTED COLUMN LENGTH Lweak 1 5•ft KLstrong = 15 ft EFFECTIVE COLUMN LENGTH KLweak = 1 5 ft LOADING: Ax := 205.5.k Mz:= 6.42•k•ft My :_ 5.81•k•ft PROPERTIES: HSS 8 x 8x 1/ 2 := 14.40 in bf:= 8•in tf:= 0.500•In d := 8•in Af:= bftf Af= 4in Iz:= 131•in ly:= 131•in C Sz = 32.751n Sy = 32.751n rz= 3.02in ry= 3.02in rmin= 3.021n K-strong K4veak JJ SRmin m SRmin = 59.7 SLENDERNESS FACTOR IN PLANE OF BENDING r ry 12•n Fe 2 Fe = 41.93ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY 2 3-SRmin 2-n -Es SRmin (1 - 2•R 12•n Cc := Co = 112 R := Fa := if R < 0.500, $ ^^ 2•Cc 5 3•R 3 ' 2 3 + 4 - R 23 •SRmin Ax a =. . _ _ ALLOWABLE AXIAL STRESS - -- fa := A fa = 14.27ks1 .. - .. AXIAL STRESS ... _ . F 21.3ksi . - Mz fbz := Sz fbz= 2.35ks1 BENDING STRESS Fbz= 30.36ks1 ALLOWABLE BENDING STRESS STRONG AXIS fby:= fby = 2.06ksi BENDING STRESS Fby = 30.36ks1 ALLOWABLE BENDING STRESS ( Sy WEAK AXIS INTERACTION = 0.89 at a 0 BUILDING FOUR COLUMN DESIGN COLUMN HSS 8 x 8 x 1 / 2 : COMBINED LOADING (MAX COMBINED STRESS): Uwe 1 EFFECTIVE LENGTH FACTOR Om Ic= 1 a = 151 UNSUPPORTED COLUMN LENGTH USW= 151 K4strong = 15 if EFFECTIVE COLUMN LENGTH KLweak = 15 ft LOADING: 44= 175•k A W= 0.90•k•ft ,= 11.27.k-ft PROPERTIES: HSS 8 x 8x 1/ 2 = 14.40•In ,= 8•in= 0.500•in= 8-In Au= bf•tf Af= 4in A4= 131•in ,= 131•in S = 32.751n Sy = 32.75in rz = 3.02 in ry = 3.02 in rmin = 3.02 in m ((M-strong Kl- weak�l SR MAW �q r ry J min = 59.7 SLENDERNESS FACTOR IN PLANE OF BENDING 12•n A4 23 SRmin2 Fe = 41.93ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY j 2•n SRmtn (1 - 2•R 12•n n i = Co =112 R= 2C = R<0.500, 5 3•R 3 2 3 + 4 - R 23•SRmin A b — f = 12.15ksi AXIAL STRESS Fa - 21.3 ksi ALLOWABLE AXIAL STRESS - Mz f= S fbz = 0.33 ksi BENDING STRESS Fbz = 30.36ksi ALLOWABLE BENDING STRESS STRONG AXIS M Y U= fby = 4.13 BENDING STRESS Fby = 30.36ksi ALLOWABLE BENDING STRESS —Sy WEAK AXIS C.- INTERACTION = 0.78 v- 0 BUILDING FOUR COLUMN DESIGN COLUMN HSS 8 x 8 x 1 / 2 : COMBINED LOADING (MAX AXIAL): AXIAL LOADING K := 1.00 EFFECTIVE LENGTH FACTOR L := 15•ft COLUMN LENGTH KL:= K•L KL = 15 ft EFFECTIVE COLUMN LENGTH COLUMN LOAD: PC1 := (154 83 237)•k USE HSS 8x8x1/2 p pC1 allow = 307•k IC : = IC = (0.5 0.27 0.77 ) Paiiow bf:= 8-in dc:= 8•in COLUMN DIMENSIONS C BASEPLATE DESIGN: • 16•in B := 16•in f := P B.N 2 fp = 926 psi < Fp = 1785ps1 min((N — 0.95•dc B — 0.8.1:1)) m := 2 m = 4.2In 3•fp•m treqd 0.75.fs treqd = 1.141n t= 1.25 USE 1 3/8" X 16" X 1' -4" BASEPLATE WITH (4) 1 -1/4" DIAMETER ANCHOR BOLTS 0 Ot 4,1 Gravity Column Design R .A M Steel v9.0 Steve Y oung M DataBase: A03035B426 11/10/05 15:53:05 E M Building Code: IBC Steel Code: ASD 9th Ed. Story level 2ND FLOOR, Column Line 97.50ft - 50.33ft Fy (ksi) = 46.00 Column Size = HSS8X8X1 /2 Orientation (degrees) = 0.0 4-6o4-0 INPUT DESIGN PARAMETERS: X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 6.50 6.50 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 1: Dead Live Roof Axial (kips) 123.95 81.49 0.00 Moments Top Mx (kip -ft) -4.45 -1.97 0.00 My (kip -ft) 3.89 1.72 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 C My (kip -ft) 0.00 0.00 0.00 Single curvature about. X -Axis Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 15.22 Fa (ksi) = 21.40 fbx (ksi) = 2.47 Fbx (ksi) = 30.36 fby (ksi) = 2.16 Fby (ksi) = 30.36 KL/Rx = 59.15 KL/Ry = 59.15 F'ex = 42.68 F'ey = 42.68 Cmx = 0.60 Cmy = 0.60 INTERACTION EQUATION fa/Fa = 0.71 Eq H1-1: 0.711 +0.07 +0.066= 0. Eq H1 -2: 0.551 + 0.081 + 0.071 = 0.704 0 Of 4N Gravity Column Design RAM Steel v9.0 Steve Y oung RAM DataBase: A03035B426 11/10/05 15:53:05 n Building Code: IBC Steel Code: ASD 9th Ed. Story level 2ND FLOOR, Column Line 66.33ft - 50.33ft Fy (ksi) = 46.00 Column Size = HSS8X8X1 /2 Orientation (degrees) = 90.0 C9;6 1,60 k(! INPUT DESIGN PARAMETERS: X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 Braced. Against Joint Translation Yes Yes Colunm Eccentricity (in) Top 6.50 6.50 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 1: Dead Live Roof Axial (kips) 113.87 61.17 0.00 Moments Top Mx (kip -ft) -0.61 -0.29 0.00 My p-ft) 7.68 3.59 0.00 Bot Mx (kip -ft) 000: 0.00 0.00 My (kip -ft) 0.00 0.00 0.00 Single curvature about X -Axis Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 12.97 Fa (ksi) = 21.40 fbx (ksi) = 0.34 Fbx (ksi) = 30.36 fby (ksi) = 4.34 Fby (ksi) = 30.36 KJJRx = 59.15 KURy = 59.15 F'ex = 42.68 F'ey = 42.68 Cmx = 0.60 Cmy = 0.60 INTERACTION EQUATION fa/Fa = 0.61 ' Eq H -1: 0:606 +0:010 +-0.1-23 = 0.739 .. Eg H1 -2: 0.470 + 0.011 + 0.143 = 0.624 011,) BUILDING FOUR COLUMN DESIGN COLUMN HSS 6 x 6 x 3 / 8 : COMBINED LOADING (MAX AXIAL): Kstrong 1 EFFECTIVE LENGTH FACTOR Kweak 1 Lstrong 15-ft UNSUPPORTED COLUMN LENGTH Lweak: =15•ft KL trong = 15 ft EFFECTIVE COLUMN LENGTH KLweak = 15 ft LOADING: • Ax := 105•k M 0•k•ft M 0•k•ft PROPERTIES: HSS 6 x6 x3 / 8 = 8.08•1n bf:= 6•In tf:= 0.375•in d := 6-in Af:= bf•tf Af= 2.251n I := 41.6•in Iy:= 41.6•1n Sz = 13.871n Sy = 13.871n rz = 2.27In ry= 2.27in rmin= 2.27in i( '<I-strong KLweak SRmin := m J SRmin = 79.3 SLENDERNESS FACTOR IN PLANE OF BENDING rz ry 12•n Fe 2 Fe = 23.73ks1 EULER STRESS DIVIDED BY FACTOR OF SAFETY 23 •SRmin 2 2•a •Es SRmin' � 1 - 2•R 12•n Co:= ft Cc = 112 Rte= 2 Cc F := R <0.500, 5 3•R 3' 2 3 + 4 - R 23 •SRmin A :_ fa = 13ksi AXIAL STRESS _ Ea =_18.2ksi_. _ ALLOWABLE.AXIAL STRESS. - _ . M fbz := Sz fbz= Oksi BENDING STRESS Fb = 30.36ksi ALLOWABLE BENDING STRESS STRONG AXIS fby := M fby = Oksi BENDING STRESS Fb 30.36ks1 ALLOWABLE BENDING STRESS S Y WEAK AXIS Y = INTERACTION = 0.71 b411( 0 BUILDING FOUR COLUMN DESIGN COLUMN HSS 6 x 6 x 3 / 8 : COMBINED LOADING (MAX COMBINED STRESS): &v = 1 EFFECTIVE LENGTH FACTOR AVOW 1 15•ft . UNSUPPORTED COLUMN LENGTH 5• ft AQ�= m 1 - KLsfong = 15 ft EFFECTIVE COLUMN LENGTH KLWeak = 15 ft LOADING: = 58.0•k hk = 3.99•k ft 2k= 3.96•k.ft PROPERTIES: HSS 6x6x3 /8 := 8.08•in 2w= 6•1n t = 0.375•in £= 6.h Au= b{•tf Af= 2.25in 4 41.6•in 4 , = 41.6•in 4 C '. Sz = 13.87in Sy = 13.87in3 rz = 2.271n ry = 2.27 in rmin = 2.27 in mow= m ax rrK- strong Klweak S ` I ` rz ry I I Rmin = 79.3 SLENDERNESS FACTOR IN PLANE OF BENDING 12n 2 Fe = 23.73ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY :. . 23 SRmin 2 2 n Es SRmin - 2•R -ft 12. .Ea = Co = 112 R F if R < 0.500, f ^^^ 2•C nn8V 5 3.R 3 , 2 3 + 4 - R 2 3•SRmin Ax 4 — fa = 7.18 ksi AXIAL STRESS Fa = 18.2 ksi ALLOWABLE AXIAL STRESS Mz S fbz = 3.45 ksi BENDING STRESS Fbz = 30.36ksi ALLOWABLE BENDING STRESS STRONG AXIS M Y ^ f= fby = 3.43ksi BENDING STRESS Fb = 30.36ksi ALLOWABLE BENDING STRESS S y WEAK AXIS INTERACTION = 0.72 G� f BUILDING FOUR COLUMN DESIGN COLUMN HSS 6 x 6 x 318: COMBINED LOADING (MAX AXIAL): AXIAL LOADING K := 1:00 EFFECTIVE LENGTH FACTOR L := 15.ft COLUMN LENGTH KL := K•L KL = 15 ft EFFECTIVE COLUMN LENGTH COLUMN LOAD: PC1 :_ (74 64.5 138.5).k USE HSS 6x6x3/.8 P PC1 allow �= 147•k IC:= IC = (0.5 0.44 0.94 ) Pallow Ak= 6•in dc := 6•in COLUMN DIMENSIONS BASEPLATE DESIGN: t N = 14•in B:= 14•in P fp := B. N' 2 fp = 707 psi < Fp = 1785psi min - 0.95•dc B — 0.8•bf)) m:= m= 4:15In 2 3•fp.m trawl := 0.75•fs trawl = 0.99M t =1 USE 1" X 14" X 1' -2" BASEPLATE WITH (4) 1" DIAMETER ANCHOR BOLTS Ot I C '. (") BUILDING FOUR COLUMN DESIGN COLUMN HSS 6 x 6 x 3 / 8 : COMBINED LOADING (MAX AXIAL): cis := 3 • DESIGN SOIL PRESSURE (ksf) - SEE NOTES ON FOUNDATION PLAN PC1 = (74 64.5 138.5)k COLUMN LOADS PC1 2 b := round (J qa.k ).ft b = 7 ft WIDTH OF FOOTING 1= 7.0.ft b Af D ootg := Afootg = 49 ft AREA AREA OF FOOTING 1 ' 2.PC1 0 0 + 1 ' PC1 1 chi:= qu = 3.92 ksf FACTORED PRESSURE Afootg h := 18.in • DEPTH OF FOOTING d = 14.25In DEPTH TO CENTROID OF REINFORCEMENT STEEL b0 := 2.[N + B + 2-(d - IT)] 1)0 = 96in CRITICAL SHEAR PERIMETER (PUNCHING SHEAR) • Ao := (N + d - m).(B + d - m) Ao = 581 in PUNCHING SHEAR: V := qu - Ao) Vu = 176.2k Vu 4)Vc := Os.4-jc.bo.d.psI oV = 256k IC := — IC = 0.69 4)Vo - — - - - - - ONE-WAY SHEAR: _ _ _ -- b b m xows = 22.7 in X quib.xows) Vu = 51.8k ( 1-1) Vu Os.2-fic bo.d.psi 4)Vc = 128k IC := — IC = 0.41 OVo C) BUILDING FOUR COLUMN DESIGN COLUMN HSS 6 x 6 x 3 / 8 : COMBINED LOADING (MAX AXIAL): BENDING: b bf m d x 2 2 2 2 x= 29.81n Qu•b•x Mu := 2 M = 85 ftk FLEXURE M R:= R = 66ps1 FLEXURAL RESISTANCE FACTOR 0f•b•d p = 0.0018 STEEL RATIO As.REQD = 2.1551n AREA OF STEEL REQUIRED - barns := 5 REINFORCEMENT SIZE (DIAMETER) - nbar = 8 NUMBER OF BARS REQUIRED As := nbar Abar As = 2.481n AREA OF REINFORCEMENT STEEL A s .f y Mu OMn := Of•As•fy d — 1.7•f.b) OMn = 155.154ft•k .1Q.:= mMn IC = 0.55 USE 7' -0" X 7' -0" X 18" DEEP FOOTING WITH (8) #5 EACH WAY ________. _ _ of 10 Gravity Column Design FR , RAM St eel v9.0 Steve Y oung RAM DataBase: A03035B426 11/10/05 15:53:05 Building Code: IBC Steel Code: ASD 9th Ed. Story level 2ND FLOOR, Column Line 128.00ft - 60.83ft Fy (ksi) = 46.00 Column Size = HSS6X6X3 /8 Orientation (degrees) = 90.0 C �,_ �� 4,c4C_ INPUT DESIGN PARAMETERS: ' � 'w � X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 0.00 0.00 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 1: Dead Live Roof Axial (kips) 56.05 49.08 0.00 Moments Top Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) 0.00 0.00 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) 0.00 0.00 0.00 Single curvature about X -Axis Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 13.87 Fa (ksi) = 18.26 fbx (ksi) = 0.00 Fbx (ksi) = 30.36 fby (ksi) = 0.00 Fby (ksi) = 30.36 KL/Rx = 78.95 KL/Ry = 78.95 F'ex = 23.96 F'ey = 23.96 Cmx = 0.00 Cmy = 0.00 INTERACTION EQUATION fa/Fa = 0.76 Eq H1-1: 0.760 + 0:000 -+ 0.000 0.760 - - Eq H1 -2: 0.503 + 0.000 + 0.000 = 0.503 Y RAM Steel v9.0 Steve Young Gravity Column Design RAM DataBase: A03035B426 11/10/05 15:53:05 Building Code: IBC Steel Code: ASD 9th Ed. Story level 2ND FLOOR, Column Line 41.50ft - 61.33ft Fy (ksi) = 46.00 Column Size = HSS6X6X3 /8 Orientation (degrees) = 90.0 C vA 44 J ` INPUT DESIGN PARAMETERS: X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 5.50 5.50 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 1: Dead Live Roof Axial (kips) 33.39 24.36 0.00 Moments Top Mx (kip -ft) 2.43 1.56 0.00 My (kip -ft) 2.41 1.55 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) 0.00 0.00 0.00 Single curvature about X -Axis .Single curvature about Y -Axis • CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 7.62 Fa (ksi) = 18.26 fbx (ksi) = 3.66 Fbx (ksi) = 30.36 fby (ksi) = 3.63 Fby (ksi) = 30.36 KL/Rx = 78.95 KL/Ry = 78.95 F'ex = 23.96 F'ey = 23.96 Cmx = 0.60 Cmy = 0.60 • INTERACTION EQUATION fa/Fa = 0.42 - Eq H1=1: 0 41 + 0.106 +0 _ . EgH1 -2: 0.276 +0.120 +0.120 =0.516 Utnjo RAM Steel v9.0 Steve Young Gravity Column Design RAM DataBase: A03035B426 11/10/05 15:53:05 NrE MCN A L Building Code: IBC Steel Code: ASD 9th Ed. Story level 2ND FLOOR, Column Line 59.50ft - 61.33ft Fy (ksi) = 46.00 Column Size = HSS6X6X3 /8 Orientation (degrees) = 0.0 e4 �"�_ e , 4 ; INPUT DESIGN PARAMETERS: � X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 5.50 5.50 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 1: Dead Live Roof Axial (kips) 48.97 29.10 0.00 Moments Top Mx (kip -ft) -0.66 -0.40 0.00 My (kip -2.90 -1.76 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) 0.00 0.00 0.00 Single curvature about X -Axis Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 10.30 Fa (ksi) = 18.26 fbx (ksi) = 0.97 Fbx (ksi) = 30.36 fby (ksi) = 4.26 Fby (ksi) = 30.36 KL/Rx = 78.95 KL/Ry = 78.95 F'ex = 23.96 F'ey = 23.96 Cmx = 0.60 Cmy = 0.60 INTERACTION EQUATION fa/Fa = 0.56 Eq H1 -1: 0.564 + 0.034. + 0.148 = 0.745 Eq H1 -2: 0.373 + 0.032 + 0.140 = 0.546 Q GraVIty_Coluinii Design RAM steve Y oung v9.0 0 , RAM DataBase: A03035B426 11/10/05 15:53:05 NT Building Code: IBC Steel Code: ASD 9th Ed. Story level 2ND FLOOR, Column Line 141.50ft - 50.33ft Fy (ksi) = .46.00 Column Size = HSS6X6X3/8 Orientation (degrees) = 90.0 egf-toso r-)S. INPUT DESIGN PARAMETERS: X-Axis Y-Axis Lu (ft) 15.00 15.00 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 5.50 5.50 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 1: Dead Live. Roof Axial (kips) 48.30 29.67 0.00 Moments Top Mx (kip-ft) 1.58 0.94 0.00 • My (kip-ft) 000 000 0.00 Bot Mx (ldp-ft) 0.00 0.00 0.00 My OdP 0.00 0.00 0.00 _ Single curvature about X-Axis Single curvature about Y-Axis CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 10.29 Fa (ksi) = 18.26 fbx (ksi) = 2.31 Fbx (ksi) = 30.36 fby (ksi) = 0.00. Fby (ksi) . 30.36 KL/Rx = 78.95 ICL/Ry = 78.95 F'ex = 23.96 F'ey = 23.96 Cmx = 0.60 Cmy = 0.00 INTERACTION EQUATION fa/Fa = 0.56 -- Eq - 1-11-I: - 0.563 +11.080 + 0:0 = 0.643 Eq H1-2: 0.373 + 0.076 + 0.000 = 0.449 Ot r) BUILDING FOUR COLUMN DESIGN COLUMN HSS 6 x 6 x 3 / 16 : COMBINED LOADING (MAX AXIAL): • Kstrong := 1 EFFECTIVE LENGTH FACTOR Kweak := 1 Lstrong := 15.ft UNSUPPORTED COLUMN LENGTH Lweak := 15.ft KLstrong = 15 ft EFFECTIVE COLUMN LENGTH KL = 15 ft LOADING: Ax := 54.5•k Mz:= 0•k•ft M :_ 0•k•ft PROPERTIES: HSS 6 x 6 x 3/ 16 = 4.27•in bf:= 6-In tf = 0.1875•1n d := 6•In Af:= bf•tf Af = 1.1251n I := 23.8.1n ly := 23.8.1n Sz = 7.93 in Sy = 7.931n r 2.36in r = 2.36in raft = 2.36in ) S Wnin :_ `l maxi I KLstrong KI -weak // rz ry SRmin = 76.2 SLENDERNESS FACTOR IN PLANE OF BENDING 12•n Fe :_ 23•SRmin2 Fe = 25.69ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY 2•n 2 .Es SRmin (1 - 2•R 12•n Co := ft Co = 112 �R = 2 Cc F := R < 0.500, 5 3•R 3 2 3 + . - R 23 •SRmin A --- ---- - f a = _ A - _ .... _ - . - . - - - f a = 12.76ks1 _ _ AXIAL .STRESS ...... _ . - .F 18.7 ksi .- -- - - ALLOWABLE AXIAL STRESS - - -- - - - - -.- M fbz:= - fbz = 0 ksi BENDING STRESS Fbz= 27.6ksi ALLOWABLE BENDING STRESS STRONG AXIS fby := fb = 0 ks1 BENDING STRESS Fby = 27.6ksi ALLOWABLE BENDING STRESS M Y (� Sy WEAK AXIS INTERACTION = 0.68 • t.. :3 BUILDING FOUR COLUMN DESIGN • COLUMN HSS 6 x 6 x 3 / 16 : COMBINED LOADING (MAX COMBINED STRESS): • 2= 1 EFFECTIVE LENGTH FACTOR = 1 • Aa 15•ft UNSUPPORTED COLUMN LENGTH A 15.ff • KLstrong = 15 ft EFFECTIVE COLUMN LENGTH KLweak = 15 ft LOADING: • = 30.5•k= 0•k•ft ,= 4.02.k-ft • • • PROPERTIES: HSS 6 x6 x 3/ 16 • = 4.27•in ,= 8•Iri • X= 0.1875•in= 6•1n= bf•tf Af = 1.1251n 0 14- 1 = 23.8•in 23.8.in Sz = 7.93 in Sy = 7.93 in • rz = 2.36in ry= 2.36in rmin= 2.36In 'Mae' m r KLweakl SR �q r r J J mIn = 76.2 SLENDERNESS FACTOR IN PLANE OF BENDING • 12•n 2 Fe = 25.69ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY 2 3 : SRmin • 2.n 2 .Es SRmin ( 1 - 2•R 12•n = Co= 112 R:_ R<0.500, ft 2.Cc 3 + . - R , 23 •SRmin 2 A 14e — fa = 7.14ksi AXIAL STRESS F =_.18.7.ksi.,_ - ... _ . ALLOWABLE AXIAL _STRESS__. __ __._.____.-_- -_ M = SZ fbz = 0 ksi BENDING STRESS Fbz = 27.6ksi ALLOWABLE BENDING STRESS STRONG AXIS fN= fby = 6.08ksi BENDING STRESS Fb = 27.6ksi ALLOWABLE BENDING STRESS Ty WEAK AXIS INTERACTION = 0.69 0 BUILDING FOUR • COLUMN DESIGN • COLUMN HSS 6 x 6 x 3 / 16 : COMBINED LOADING (MAX AXIAL): AXIAL LOADING K := 1.00 EFFECTIVE LENGTH FACTOR L := 15•ft COLUMN LENGTH KL:= K.L KL= 15 ft EFFECTIVE COLUMN LENGTH • COLUMN LOAD: PC1 := (45 29.5 74.5 ).k PC1 USE HSS 6 6 x3/16 := 80.k IC := IC = (0.56 0.37 0.93) • Pallow U= 6.in dc: 6•in COLUMN DIMENSIONS BASEPLATE DESIGN: • m = 12.In B:= 12-in • PC1 f P B.N fp = 517ps1 < Fp = 1785psi min((N - 0.95d 8 - 0.8.bf)) m:= 2 • m - 3.15In 3-fp.m 2 treqd = 0.64In • treqd := 0.75.ts t = 0.75 - - - - - - US - E - 3/4" - X - 1 2" X 1'-'0" BASEPLATE WITH (4) 3/4" DIAMETER ANCHOR BOLTS bell7c1 BUILDING FOUR COLUMN DESIGN COLUMN HSS 6 x 6 x 3 / 16 : COMBINED LOADING (MAX AXIAL): qa := 3 DESIGN SOIL PRESSURE (ksf) - SEE NOTES ON FOUNDATION PLAN PC1 = (45 29.5 74.5) k COLUMN LOADS b := round J P qa k 2 .ft b = 5 ft WIDTH OF FOOTING 1= 5.5•ft Afootg b2 Afootg = 30.25 ft 2 AREA OF FOOTING 1.2•PC1 0 + 1.6•PC1 qu • Afootg qu = 3.35ksf FACTORED PRESSURE h := 16•In DEPTH OF FOOTING d = 12.5In DEPTH TO CENTROID OF REINFORCEMENT STEEL bo 2.[N + B + 2.(d — m)) bo = 85in CRITICAL SHEAR PERIMETER (PUNCHING SHEAR) Ao:= (N +d— m)•(B +d —m) Ao= 456in PUNCHING SHEAR: Vu qu — Ao) V = 90.6k Vu 4>Vo:= O f .bo•d•psi $V = 199k IC:= mac IC = 0.46 ONE-WAY SHEAR: b bf m xows= - 2-2 - d xows= 15.9in 4)= qu•(b•xows) V = 24.4k V Os•2•j•bo•d•ps1 OVc =99k IC:= ma IC = 0.25 of 310 BUILDING FOUR COLUMN DESIGN COLUMN HSS 6x 6 x 3 / 16 : COMBINED LOADING (MAX AXIAL): BENDING: b bf m d x = 22.2In 2 qubx Mu := 2 Mu = 31 ftk FLEXURE Mu R := R = 41 psi FLEXURAL RESISTANCE FACTOR Of.b.d p= 0.0018 STEEL RATIO As.REQD = 1.485in 2 AREA OF STEEL REQUIRED barno := 5 REINFORCEMENT SIZE (DIAMETER) bbar = 6 NUMBER OF BARS REQUIRED As := Mbar A = 1.86 In 2 AREA OF REINFORCEMENT STEEL As-fy Mu StAs.fyid 17!b) +Mn = 101 85ft.k JQ:= — IC = 0.31 USE 5 X 5 '-6 " X 16" DEEP FOOTING WITH (6) #5 EACH WAY 0 771 Gravity Column Design FR RAM Steel v9.0 Steve Y oung RAN DataBase: A03035B426 11/10/05 15:53:05 ( MESN Building Code: IBC Steel Code: ASD 9th Ed. Story level 2ND FLOOR, Column Line 3.1 - E Fy (ksi) = 46.00 Column Size = HSS6X6X3/16 Orientation (degrees) = 90.0 • INPUT DESIGN PARAMETERS: X-Axis Y-Axis • Lu (ft) 15.00 15.00 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 0.00 0.00 Bottom o.00 0.00 CONTROLLING COLUMN LOADS - Load Case 1: Dead Live. Roof Axial (kips) 32.91 21.45 0.00 Moments Top Mx (kip-ft) 0.00 0.00 0.00 MY OdP 0.00 0.00 0.00 • Bot Mx Okip-ft ) 0.00 0.00 0.00 C MY (kip-ft) 0.00 0.00 �0O Single curvature about X-Axis Single curvature about Y-Axis CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 13.66 Fa (ksi) = 18.75 fbx (ksi) = 0.00 Fbx (ksi) = 27.60 fby (ksi) = 0.00 Fby (ksi) = 27.60 ICL/Rx = 76.04 KL/Ry = 76.04 F'ex = 25.82 Fey = 25.82 Cmx = 0.00 Cmy = 0.00 INTERACTION EQUATION fa/Fa = 0.73 ._ _ . _ Eq H - 07284 0:000 +- 0:000 - = - 0:728 -- - -- - - - -- - Eq H1-2: 0.495 + 0.000 + 0.000 = 0.495 G , otio RAM Steel v9.0 Steve Young Gravity Column Design RAM DataBase: A03035B426 11/10/05 15:53:05 MEMNATI Building Code: IBC Steel Code: ASD 9th Ed. Story level 2ND FLOOR, Column Line 3.4 - E Fy (ksi) = 46.00 Column Size = HSS6X6X3 /16 Orientation (degrees) = 90.0 INPUT DESIGN PARAMETERS: X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 5.50 5.50 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 6: Dead Live Roof Axial (kips) 22.18 8.40 0.00 Moments Top Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) 0.17 3.85 0.00 Bot Mx (kip -fl) 0.00 0.00 0.00 My (kip -ft) 0.00 0.00 0.00 -Single curvature about X -Axis .Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RI ) fa (ksi) = 7.68 Fa (ksi) = 18.75 fbx (ksi) = 0.00 Fbx (ksi) = 27.60 fby (ksi) = 6.51 Fby (ksi) = 27.60 KL/Rx = 76.04 KL/Ry = 76.04 F'ex = 25.82 F'ey = 25.82 Cmx = 0.00 Cmy = 0.60 • INTERACTION EQUATION fa/Fa = 0.41 - - -- . -.. 0 +0:000 +0201-= 0:61 -1 . _ .__ ..- Eq H1 -2: 0.278 + 0.000 + 0.236 = 0.514 ( -1) of S1 rt.) BUILDING FOUR COLUMN DESIGN COLUMN HSS 8 x 6 x 3 / 8 : COMBINED LOADING (MAX AXIAL): Kstrong 1 EFFECTIVE LENGTH FACTOR )(weak 1 Lstrong 15•ft UNSUPPORTED COLUMN LENGTH Lweak := 15•ft KLstrong = 15 ft EFFECTIVE COLUMN LENGTH KLweak = 15 ft LOADING: A := 97•k Mz:= 7.07•k•ft M := 0.88.k-ft PROPERTIES: HSS 8 x6 x3/8 ,c= 9.58•1n bf:= 6.1n tf:= 0.375 in d := 8-In Af:= bf•tf Af= 2:25In Iz := 83.7• In4 Iy := 53.5.1;14 Sz = 20.93In Sy 17.83in rz= 2.96In ry= 2.36In rmin = 2.36in SRmin := m 4(Ki8Zong KI weak)l SRmin = 76.2 SLENDERNESS FACTOR IN PLANE OF BENDING 12 n Es Fe:_ 23•SRmin2 Fe = 25.74ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY 2. 2 .Es SRmin �1 - 2•R t 12•n s Cc = ft � Cc R 2 � = Fe R <0.500, i 5 3•R 3' 2 3 + 4 - R 23 •SRmin A fa: =.__ .. .._- _-- .---- -_ -._- _ fa.=. 1 0. 13ksi__..._..._ AXIAL STRESS_ _..--...--_. Fe.=_ 18 .7ksi.......__._ ALLOWABLE AXIAL STRESS---- --- .._._..___ -.__ Mz ibz fbz = 4.05 ksl BENDING STRESS Fb = 30.36ksi ALLOWABLE BENDING STRESS STRONG AXIS fby := MY fb = 0.59ksi BENDING STRESS Fby = 30.36ksi ALLOWABLE BENDING STRESS Sy WEAK AXIS INTERACTION = 0.75 0 BUILDING FOUR COLUMN DESIGN COLUMN HSS 8 x 8 x 3 / 8 : COMBINED LOADING (MAX COMBINED STRESS): = 1 EFFECTIVE LENGTH FACTOR beanie 1 t o= 15•ft UNSUPPORTED COLUMN LENGTH. 15•ft KLstrong = 15 ft EFFECTIVE COLUMN LENGTH KL*eak = 15 ft LOADING: = 53.61•k ^ i)= 27.1.k.ft ^ f= 18•k•ft PROPERTIES: HSS 8x8x3/8 =11 .10 in 8•1n ^ t= 0.375 -In ^ c= 8•1n= bf•tf . A f= 3in / 1 4 4= 106 = 106•in C . Sz = 26.51n Sy = 26.51n r = 3.091n ry = 3.09in rmin = 3.09In - r�KLstrong KLweak11 RUIN= m J) SRmin = 58.2 SLENDERNESS FACTOR IN PLANE OF BENDING rz ry 12•n 23 SRmin 2 Fe = 44.01 ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY 2.n .Es SRm1n (1 - 2•R 12.x ,may= ft Cc = 112 ^ R = 2 A F, Jk i= it R < 0.500, 5 3•R 3 ' 2 3 + 4 - R 23 •SRmin A fa.=. 4. 8 3ksi _. _ ..__ ..._. AXIAL _ STRESS_ .._._.._... -F - 21.5ksi.__.__._.. ALLOWABLE .AXIAL STRESS ------ .- _-- - - - - -- M = SZ fbz = 12.27ks1 BENDING STRESS Fb 30.36ksi ALLOWABLE BENDING STRESS STRONG AXIS U= fb = 8.15ks1 BENDING STRESS Fb = 30.38ksI ALLOWABLE BENDING STRESS 0 y WEAK AXIS INTERACTION = 0.98 0 BUILDING FOUR COLUMN DESIGN COLUMN HSS 8 x 6 x 3 / 8 : COMBINED LOADING (MAX AXIAL): AXIAL LOADING K := 1.00 EFFECTIVE LENGTH FACTOR L := 15•ft COLUMN LENGTH KL:= K•L KL= 15 ft EFFECTIVE COLUMN LENGTH COLUMN LOAD: PC1 := (70 66 136 ).k PC1 USE HSS 8x6x3/8 p allow .= 179•k IC:— IC = (0.39 0.37 0.78 ) Pallow ,= 6•in do:= 8.in COLUMN DIMENSIONS BASEPLATE DESIGN: N = 14•In B:= 14•in P fp := B. N' 2 fp = 694psi < Fp = 1785ps1 min — 0.95.do B — 0.8•bf)) m:= 2 m =3.2In 3•fp•m treqd 0.75•fs treqd = 0.75 in t = 0.875 USE 1" X 14" X 1' -2" BASEPLATE WITH (4) 1" DIAMETER ANCHOR BOLTS Of 0 BUILDING FOUR COLUMN DESIGN COLUMN HSS 8 x 6 x 3 / 8 : COMBINED LOADING (MAX AXIAL): qa := 3 DESIGN SOIL PRESSURE (ksf) - SEE NOTES ON FOUNDATION PLAN PC1 = (70 66 136) k COLUMN LOADS b := round J P qa k 2 •ft b = 7 It WIDTH OF FOOTING 1= 7.0.ft Afootg b Afootg = 49 ft 2 AREA OF FOOTING 14PC1 0 + 1.7•PC1 1 qu : Afootg qu = 4.29 ksf FACTORED PRESSURE h := 18.in DEPTH OF FOOTING d = 14.25In DEPTH TO CENTROID OF REINFORCEMENT STEEL bo := 2.[N + B + 2.(d — m)] b0 = 100In CRITICAL SHEAR PERIMETER (PUNCHING SHEAR) Ao:= (N +d— m)•(B +d —m) Ao= 628in PUNCHING SHEAR: Vu qu•(Afootg — Ao) V = 191.5k f .b •d•psi V c o �V = 266 k IC :_ IC = 0.72 mVc +Vc 0s•4• ONE-WAY -- --- b bf m xows — — —d xows = 23.1In qu•(b•xows) V = 57.9k Vu = rbs•2•�•bo•d• •Vc= 133k IC := mac IC = 0.44 ef 6(3 BUILDING FOUR COLUMN DESIGN COLUMN HSS 8 x 6 x 3 / 8 : COMBINED LOADING (MAX AXIAL): BENDING: b bf m d x= 30.31n Qu•b•x Mu 2 M = 96 ftk FLEXURE M R:= R = 75psi FLEXURAL RESISTANCE FACTOR mf•b•d p = 0.0018 STEEL RATIO As.REQD = 2.155in AREA OF STEEL REQUIRED bar := 5 REINFORCEMENT SIZE (DIAMETER) nbar = 8 NUMBER OF BARS REQUIRED As Mbar Abar As = 2.48 in 2 AREA OF REINFORCEMENT STEEL As•f M Skin $f•As•fy.(d — 1.7•f° b 4)Mn = 155.154ft•k N IC E := SMn IC = 0.62 USE 7' -0" X 7' -0" X 18" DEEP FOOTING WITH (8) *5 EACH WAY �F Gravity Column Design I RAM Steel v9.0 Steve Young RA DataBase: A03035B426 11/11/05 07:41:40 musonaNAI Building Code: IBC Steel Code: ASD 9th Ed. Story level 2ND FLOOR, Column Line 3.9 - E Fy (ksi) = 46.00 Column Size = HSS8X6X3 /8 Orientation (degrees) = 90.0 INPUT DESIGN PARAMETERS: X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 6.50 5.50 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 1: Dead Live Roof Axial (kips) 49.79 47.17 0.00 Moments Top Mx (kip -ft) 4.51 2.56 0.00 My (kip -ft) 0.56 0.32 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 MY (kiP 0.00 0.00 0.00 Single curvature about X -Axis Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 10.81 Fa (ksi) = 18.80 fbx (ksi) = 4.29 Fbx (ksi) = 30.36 fby (ksi) = 0.62 Fby (ksi) = 30.36 KL/Rx = 60.62 KL/Ry = 75.79 F'ex = 40.64 Fey = 26.00 Cmx = 0.60 Cmy = 0.60 INTERACTION EQUATION fa/Fa = 0.58 + - 0:1 r5 + 0 :021 - = D:7T2 ' . -. . Eg H1 -2: 0.392 + 0.141 + 0.021 = 0.554 El RAM Steel v9.0 Steve Young Gravity Column Design RAM DataBase: A03035B426 11/11/05 07:41:40 0 NENATD Building Code: IBC Steel Code: ASD 9th Ed. Story level 2ND FLOOR, Column Line 2.6 - E Fy (ksi) = 46.00 Column Size = HSS8X6X3 /8 Orientation (degrees) = 90.0 INPUT DESIGN PARAMETERS: X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 6.50 5.50 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 1: Dead Live Roof Axial (kips) 47.59 48.12 0.00 Moments ' Top Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) -2.84 -1.79 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 C My (kip -ft) 0.00 0.00 0.00 Single curvature about X -Axis Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RI) fa (ksi) = 10.67 Fa (ksi) = 18.80 fbx (ksi) = 0.00 Fbx (ksi) = 30.36 thy (ksi) = 3.29 Thy (ksi) = 30.36 KL/Rx = 60.62 KL/Ry = 75.79 F'ex = 40.64 F'ey = 26.00 Cmx = 0.00 Cmy = 0.60 INTERACTION EQUATION fa/Fa = 0.57 - - _1: _0:568 + - 0:000 + 0 1 - 1 - 0 -- = - 0 - .678 --- - - - -- _ - -- - - - ----- - ----- - - - _._ . - - - - - -- - - - -- - ___ ._ - -- - - -- Eq H1 -2: 0.387 + 0.000 + 0.108 = 0.495 C r) BUILDING FOUR COLUMN DESIGN COLUMN HSS 6 x 4 x 3 / 8 : COMBINED LOADING (MAX AXIAL): Kstrong := 1 EFFECTIVE LENGTH FACTOR Kweak = 1 Lstrong := 15-ft UNSUPPORTED COLUMN LENGTH Lweak : =15.ft KLstrong = 15 ft EFFECTIVE COLUMN LENGTH KLweak = 15 ft LOADING: A := 30.5•k Mz = 4.05•k•ft M : = 0.26.k-ft PROPERTIES: HSS 6x4x3/8 4= 6.58•in bf:= 4•1n t(:= 0.375•in d := 6•in Af:= bf•tf. At = 1.5in I := 29.741 ly := 15.6•in4 C .. Sz = 9.91n3 Sy = 7.81n rz= 2.12in ry =1.54 in rmin =1.54 in ax i SRrnin := m 4(M-strong Kl weak )) SRmin = 116.9 SLENDERNESS FACTOR IN PLANE OF BENDING 12•n Fe:_ 2 Fe = 10.93ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY 23 •SRmin 1 2 •n 2 •Es SRmin (1 - 2. 2 ).ft 12 .7r 2 . Es Cc =J ft Co =112 "R= 2 F := R <0.500, 5 3 •R 3 2 3 + 4 - R 23.SRmin A fa;= A...._._._..__-------. .__ fa =4.64ksi - - - - -. AXIAL STRESS .__ ._..__..- .._ . 10.9kW-- - - - - -- ALLOWABLE - AXIAL STRESS - - -. - Mz fbz := S fbz = 4.91 ksi BENDING STRESS Fbz = 27.6ksi ALLOWABLE BENDING STRESS STRONG AXIS MY fby :_ fby = 0.4ks1 BENDING STRESS Fb 27.6ks1 ALLOWABLE BENDING STRESS S Y WEAK AXIS Y = ( INTERACTION = 0.68 4 I BUILDING FOUR COLUMN DESIGN COLUMN HSS 6 x 4 x 3 / 8 : COMBINED LOADING (MAX COMBINED STRESS): = 1 EFFECTIVE LENGTH FACTOR AVOW= 1 U ^= 15•ft UNSUPPORTED COLUMN LENGTH 151 �JNaI �i Klstrong = 15 ft EFFECTIVE COLUMN LENGTH KLweak = 15 ft LOADING: h 24.5.k ,= 3.00•k•ft = 0.60•k•ft PROPERTIES: HSS . 6 x 4 x 3/8 he 6.58•in = 4•1n= 0.375 in= 6•in A b t Af = 1.5in 29.7•1n 15.6.in Sz = 9.01 3 Sy = 7.81n rz = 2.12In ry = 1.541n rmin = 1.54 in m - rrKLstrong KLweakJ� RIM m a SRmin = 116.9 SLENDERNESS FACTOR IN PLANE OF BENDING r z r 12•a fra 2 Fe = 10.93ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY 23 •SRmin 1 2. n 2 •Es SRmin ( 1 - 2•R 12•n J ft C = 112 R = 2• Us= R < 0.500, 3 + 3.R - R 23 •SRmin 2 A 2,1 — fa = 3.72 ksi AXIAL STRESS ,_ F = 10.9ks1. _ _ _....ALLOWABLE AXIAL STRESS. . - - .. - — .. Mz ,f,j= Sz fbz= 3.64 ksl BENDING STRESS Fbz= 27.6ksi ALLOWABLE BENDING STRESS STRONG AXIS M Y AV fb = 0.92ksi BENDING STRESS Fby = 27.6ksi ALLOWABLE BENDING STRESS WEAK AXIS INTERACTION = 0.55 Ord► ( BUILDING FOUR COLUMN DESIGN COLUMN HSS 6 x 4 x 3 / 8 : COMBINED LOADING (MAX AXIAL): AXIAL LOADING K := 1.00 EFFECTIVE LENGTH FACTOR L := 15•ft COLUMN LENGTH KL := K•L KL = 15 ft EFFECTIVE COLUMN LENGTH COLUMN LOAD: PC1 := (23 26 49).k USE HSS 6x4x3/8 Pallow : =72.k IC:- PC1 IC = (0.32 0.36 0.68) Pallow A t= 4•In dc := 6•in COLUMN DIMENSIONS BASEPLATE DESIGN: = 12.in B:= 12.in Anti fp := P B. N' 2 fp = 340 psi < Fp = 1785ps1 min((N - 0.95•dc B - 0.8•bf)) m:= m= 3.151n 2 i 3•fp•m tregd • 0.75•fs treqd = 0.52In t =0.625 USE 3/4" X 12" X 1' -0" BASEPLATE WITH (4) 5/8" DIAMETER ANCHOR BOLTS 0 or 4-4V C BUILDING FOUR COLUMN DESIGN COLUMN HSS 6 x 4 x 3 / 8 : COMBINED LOADING (MAX AXIAL): qa 3 DESIGN SOIL PRESSURE (ksf) - SEE NOTES ON FOUNDATION PLAN PC1 = (23 26 49) k COLUMN LOADS b ,n= round I Pga.k .ft b = 4.5 ft WIDTH OF FOOTING 4.5.ft J qa•k Afootg b 2 Afootg = 20.25 ft AREA OF FOOTING 1.2•PC10 0 + 1 . 6 •PC1 01 qu := qu = 3.42 ksf FACTORED PRESSURE Afootg h := 12•in DEPTH OF FOOTING d = 9in DEPTH TO CENTROID OF REINFORCEMENT STEEL b := 2•[N + B + 2.(d — m)) b = 71 in CRITICAL SHEAR PERIMETER (PUNCHING SHEAR) Ao:= (N +d— m)•(B +d —m) Ao= 319in PUNCHING SHEAR: Vu qu — Ao) V = 61.6k 4Vc := +s• �Vo =120k IC:= IC =0.52 NE- WAI�SHEAR: - -.. ._ - -- - - --- --- — - - -- -- - -- -...-- ... -- - - -- - - - --- -- -- -- - -- - - - -- b bf m xows = 14.41n ,yyj= qu.(b.xo Vu = 18.5k C) Y, $s•2• fc•bo•d•psi 4Vc =60k IC: =w IC =0.31 E•-.l BUILDING FOUR COLUMN DESIGN COLUMN HSS 6 x 4 x 3 / 8 : COMBINED LOADING (MAX AXIAL): BENDING: b bf m d x =2 - - x= 18.9in Qu•b•x Mu 2 Mu = 19 ftk FLEXURE Mu R R = 58psi FLEXURAL RESISTANCE FACTOR 4f•b•d p =0.0018 STEEL RATIO As.REQD = 0.875in AREA OF STEEL REQUIRED barn := 4 REINFORCEMENT SIZE (DIAMETER) nbar = 5 NUMBER OF BARS REQUIRED As nbar•Abar As = 1 in AREA OF REINFORCEMENT STEEL A M 4iMn = $f•As•fy(d – 1.7•f()b 0Mn = 39.52ft•k IC= — IC = 0.48 4) Mn USE 4' -6" X 4' -6" X 12" DEEP FOOTING WITH (5) #4 EACH WAY C� ai RAM Steel v9.0 Steve Young Gravity Column Design RAN DataBase: A03035B426 11/11/05 08:20:49 Building Code: IBC Steel Code: ASD 9th Ed. Story level 2ND FLOOR, Column Line 115.33ft - 89.13ft Fy (ksi) = 46.00 Column Size = HSS6X4X3 /8 Orientation (degrees) = 60.0 INPUT DESIGN PARAMETERS: X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 5.50 4.50 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 1: Dead Live Roof Axial (kips) 14.36 16.16 0.00 Moments Top Mx (kip -ft) _ -2.20 -1.85 0.00 My (kiP -ft) 0.31 0.26 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 My (lip -ft) 0.00 0.00 0.00 Single curvature about X -Axis Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RE) fa (ksi) = 4.94 Fa (ksi) = 11.11 fbx (ksi) = 5.15 Fbx (ksi) = 27.60 thy 30.36 KL/Rx = 84.12 KL/Ry = 115.92 F'ex = 21.11 Fey = 11.11 Cmx = 0.60 Cmy = 0.60 INTERACTION EQUATION fa/Fa = 0.44 ------- 0A45 0. +-0.033-=-0.624 __ __._ _ - - - - - - - - - -- - Eq H1 -2: 0.179 + 0.187 + 0.031 = 0.396 C) IF Gravity Column Design RAM Steel v9.0 Steve Y oung RAM DataBase: A03035B426 11/11/05 08:20:49 isfrEPNATovt Building Code: IBC Steel Code: ASD 9th Ed. Story level 2ND FLOOR, Column Line 155.00ft - 89.13ft Fy (ksi) = 46.00 Column Size = HSS6X4X3 /8 Orientation (degrees) = 120.0 INPUT DESIGN PARAMETERS: X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 5.50 4.50 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 1: Dead Live Roof Axial (kips) 10.93 13.67 0.00 Moments Top Mx (kip -ft) _ -1.55 -1.45 0.00 My (kiP-ft) -0.31 -0.29 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 C My (kip -ft) 0.00 0.00 0.00 Single curvature about X -Axis Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 3.98. Fa (ksi) = 11.11 fbx (ksi) = 3.82 Fbx (ksi) = 27.60 fby (ksi) = 0.98 Fby (ksi) = 30.36 KL/Rx = 84.12 KL/Ry = 115.92 F'ex = 21.11 F'ey = 11.11 Cmx = 0.60 Cmy = 0.60 INTERACTION EQUATION fa/Fa = 0.36 - - -- - - -- Eq.H1 -1 :- .0358 +- 0.102 + 0,030-= 0.491 - - EgH1 -2: 0.144 + 0.138 + 0.032 = 0.315 • G Gravity Column Design RAM Steel v9.0 Steve Y oung RAM DataBase: A03035B426 11/11/05 08:20:49 ImE"Tovt Building Code: IBC Steel Code: ASD 9th Ed. Story level 2ND FLOOR, Column Line 128.00ft - 84.49ft Fy (ksi) = 46.00 Column Size = HSS6X4X3 /8 Orientation (degrees) = 80.0 INPUT DESIGN PARAMETERS: X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 5.50 4.50 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 1: Dead Live Roof Axial (kips) 11.42 15.21 0.00 Moments Top Mx (kip -ft) -1.59 -1.50 0.00 My (kip -ft) -0.12 -0.11 0:00 Bot Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) 0.00 0.00 0.00 • Single curvature about X -Axis Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 4.31 Fa (ksi) = 11.11 fbx (ksi) = 3.93 Fbx (ksi) = 27.60 thy (ksi) = 0.37 Fby (ksi) = 30.36 KL/Rx = 84.12 KL/Ry = 115.92 F'ex = 21.11 Fey = 11.11 Cmx = 0.60 Cmy = 0.60 INTERACTION EQUATION fa/Fa = 0.39 -- - - -•- -+ 0:107 0:012 EgH1 -2: 0.156 +0.142 +0.012 =0.311 4,01k Fil Gravity Column Design RAM Steel v9.0 Steve Y oung RAM DataBase: A03035B426 11/11/05 08:20:49 0 wTE' Building Code: IBC Steel Code: ASD 9th Ed. Story level 2ND FLOOR, Column Line 142.33ft - 84.49ft Fy (ksi) = 46.00 Column Size = HSS6X4X3 /8 Orientation (degrees) = 10.0 INPUT DESIGN PARAMETERS: X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 5.50 4.50 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 1: Dead Live Roof Axial (kips) 11.42 15.38 0.00 Moments Top Mx (kip -ft) 0.15 0.14 0.00 My (kip -ft) 1.30 1.22 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 / My (kip -ft) - 0.00 0.00 0.00 Single curvature about X -Axis Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 4.34 Fa (ksi) = 11.11 fbx (ksi) = 0.36 Fbx (ksi) = 27.60 thy (ksi) = 4.06 Fby- (ksi). = 30.36 KL/Rx = 84.12 KL/Ry = 115.92 F'ex = 21.11 F'ey = 11.11 Cmx = 0.60 Cmy = 0.60 INTERACTION EQUATION fa/Fa = 0.39 - - - -- - -- - =1: 0:390 + 0:01 +-0:132 - =- 0:532- - - - - - -- -- - - -- .. - EgH1 -2: 0.157 + 0.013 + 0.134 = 0.304 ( vc 0 r t `^ hil is yak � i- ,i Willi fib. OVIcAsit flti - 44- ' l '0" g00 "Plia t too 1 1 _ , Imo I (t-Ki IZ 1 ! f 911° ' C . (th( 6) , lti .kc (PO i f14-a4 144- - trdd f `� IwoR 129Q ' tzof0 t kgo f 0 1 1` ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS 8980 S.W. VARNS ST., SUITE 200 JOB NO TIGARD, OREGON 97223 (503) 820-3030. FAX 820-5539 SHEET_ OF • ∎,1 1, Milo-) k N►/ t. • 1,frA . • • ® �� 7 a � . Ld 1741. A , . . l i p, 6 , 6 1Ew I ' 4,G, ' ' - . . _ . I ...' , - Eia • . 1 4ta I «6 • • -a I X11 ''' ' 01.,: 1 , / -= •—I-- -. _..- - v.. 1A.° M^ • H i! I - I- I I 17 ' C .. ... i - - I f -- , . • ' `,. I ' ' ' ' '' I 4.1 al ,... - H , . . I I 1 Yt.... - .. . . • ;, .: __,; , ••,--:,, :-,.,.._, .. • „, I Ililig,.. i r 4! - _ :(47' ' —_ _. ... ... tVID g • .. .144 I -- . ; I I _ Ir • .., - - - -- - ! - .....- ' -, 4.* li . at • 1`' 10P I .' , 1 1 . - !sr I8! O - , ._:_____.___ . . ___ .. _.. 2 •___ .1 E j.a • 0 0 'J I J C AFtillAN ASSOCIATES, INC. BY _ DATE CONSULTING ENGINEERS JOB NO 6960 S.W. VARNS ST., SUITE 200 TIGARD, OREGON 97223 (503) 8203030, FAX 8203569 SHEET OF Al ' t.tvww.. nv-Avi"-I Ofil,Lataty 1041WT VlAsc(l 0 .,_rA ra ,_.., (fr. G..o ito.o i 1 46, E 1- --- ..... ri ; 0 ,,,. 1 II .. , 4 o ‘,0 .. )' ' A04' tet R „To .... li (1, i 4/.0 1_91 • I • '._ •I , • 4.* (I r _- r. ■.,. .t ..n. ......" \g„ IT (- 1 0 ..I • , . IM. ',I ••••• / fl://7. '‘' { ilAt 0 21 F:S 1 0 -- • . I I IISPY ..., A • t 3 4' ••..... it...o.o or, I ."Trrr• ' :I • 4 ' I ••••■•• •••■.... I ; il/k . 21 mo 00.0 I . . - 0 4 : I . ; , 1 erit.0 - . 0 II ." . 1 11. - ■I _ _ _ _ _ _ INIO . EL I " -T--- .. i ( c i r ) 0 .i. C., • AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6900 S.W. YARNS ST, SUITE 200 71GARD, OREGON 97223 (503) 020-3030, FAX 620-5539 SHEET1,_ OF • 0 0 ,v044. 1414311 ivt4ttlio Pvt* 4 10ge, 6 CLOOt 91 014)9(0 6 . A. ,LA &014,f4m 4 cV-v-1 • • 06 - *to. - • - ivit4elo 4(4)44:, 1 - 4 j110' k*P6 • _ , , - AS1 - • , • • : 4VI64192‘.*Va. . ; - • ,•, : &C's Fix ' tia0 4*, VC& - T ■ . ' c to • • '00a-) YWArd! *Mitt/ 4 *41A 3 4i0`g : % 4■Air 404- I( . ( -441 col 0. 0.4;0, 9 cl A° 0 4yivtie. oaNtrittvr, 6(7 x60 41190 '"" tO elt CM, I 0. ale0 au*, 1-C AO 62-01p)UPPY tc(,v4) 0_0 66€04,1yvi9 0 0 0 ,„ 0,020 ' 4 v47 , I 4va, .1) Ansi:IAN ASSOCIATES, INC. • BY DATE CONSULTING ENGINEERS JOB NO 6980 S.W. VARNS ST., SUITE 200 TIGARD, OREGON 97229 (503) 820-3030, FAX 820-5539 SHEET OF 4e. 0 0 hi - 4b d - 0 r _ � s hoo: : �� 4 � �yi�/nT/�' �i�27 r C _� j ` ' 44-00 4/11 o ® 'lit 649'1 dt \Qifl (01 , , ( ,) AP'i3dA \ ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS 6960 S.W. YARNS ST., SUITE 200 JOB NO TIGARD, OREGON 97223 (503) 6203030, FAX 620.5539 SHEET � OF C LATERAL DESIGN BUILDING FOUR Rigidity R03.xmcd 11/16/2005 3 :24 PM ( LATERAL DESIGN PANEL RIGIDITY: P := 1000.k Ec= 4030509psi PANEL 1.4.11.14.17.21.22.27 AND 30: 2ND FLOOR: h := 9.25.1n h1 p h1 h1 =15 d1 = 41667 = 36 e1 := • [4(J3+3] • dl e1 = 5.2951n ' 2ND : ='1 '2ND = 5.295In R2ND =0.19 PANEL 1.4,11.. 14. 17.21.22.27 AND 30:. ROOF 9.25•1n 3 • h2 := 15 d2 := 4.1667 d2 = 3 .6 e2; E hh 4 (d2) + 3 d2 e2 5.2951n 'ROOF = e2 'ROOF = 5.2951n RROOF = 0.19 A1.TOTAL '2ND +'ROOF el .TOTAL = 10.6 in R1 .TOTAL = 0.09 V & LATERAL DESIGN BUILDING FOUR Rigidity R03.xmcd 11/16/2005 e 12:54 PM LATERAL DESIGN PANEL RIGIDITY: P := 1000.k Ec = 4030509ps1 PANEL 2, 13. 18 AND 29: 2ND FLOOR h := 9.25.1n h' 17.333 20.75 h = 0.84 O P h1 tiNni Aj= d1 1 = E • 4( d 3. d1 e1 = 0.131n h2:= 9.5833 = 20.75 d2 = 0.46 e2 := e1 - ECh • [(h2)3 a + 3• e2 = 0.091n h3 P hg 3 h9 ] h3 := 9.5833 d3 := 2.8333 d3 = 3:38 e ! 3 := Eh • .(d3) + 3•. e3 = 1.31 in hq p hq h4 := 9.5833 d4 := 3.91667 dq = 2.45 e4 := Ech • [( d q + 3. dq e4 = 0.591n A2ND := e2 + 1 1 - + - e2ND = 0.4971n A3 A4 R2ND = 2.01 PANEL 2. 13, 18 AND 29: ROOF be 9.25.in h1 p h1 3 h1 �F •= 15.667 U= 20.75 d = 0.76 = ECh • 4(d + 3•d1 e1 = 0.1071n hp p [(h2) by F •= 9.5833 A 20.75 d2 = 0.46 ,Q? e1 - ECh • d2 + 3•- A2 = 0.067in h3 F h F= 9.5833 cam= 2.8333 d = 3.38 = E�•h • d + 3• d3 e3 = 1.31 in 3 = 9.5833 ,= 3.91667 d4 = 2.45 Ilk E hh (d4) + 3• d4 e4 = 0.591n AROOF e2 + 1 1 AROOF = 0.4741n A3 A4 RROOF = 2.11 H e2.TOTAL e2ND + AROOF A2.TOTAL = 0.971n R2.TOTAL = 1.03 L1 LATERAL DESIGN BUILDING FOUR Rigidity R03.xmcd 11/16/2005 12:54 PM 0 LATERAL DESIGN PANEL RIGIDITY: =1000.k Ec = 4030509ps1 ANK PANEL 3.12 AND 28: 2ND FLOOR ,= 9.25•In hi p (1 h1 1114= 17.333y= 20.5833 d1 = 0.84 448j= ECh • 4 + 3.d e1 = 0.1321n 1 = 9.5833 = 20.5833 d 2 = 0.47 = Al - ECh • [(112)3 d + 3• d2 A2 = 0.092in 3 I= 9.5833 Ak= 2.6667 d2 = 3.59 =ECh ia3 I + 3• d 3 A3 = 1.5341n 3 Us= 9.5833 ay= 3.91667 d4 = 2.45 =ECh • [C14)d + 3 d� 1 A4 = 0.591n R= e2 + + A2ND = 0.518in C A3 A4 R2ND = 1.93 PANEL 3. 12 AND 28: ROOF Zi= 9.25•1n h1 p (h11 h1 Au= 15.667 Au= 20.5833 d = 0.76 ,= ECh • 4 d1 J + 3• d1 e1= 0.109in 3 = 9.5833 = 20.5833 2 = Asi= Al - E C h • I d 2 I + 3• d2 e2 = 0.068In 3 1 = 9.5833 = 2.6667 d3 = 3.59 ,j= ECh f(h3)d3 + 3. d3] e3 = 1.5341n h4 p [(J h41 =9.5833 =3.91667 d4 = 2.45 = d4 +3• e4 = 0.59in ,1,fti.99g i= e2 + 1 1 eROOF = 0.4941n A3 e4 RROOF = 2.02 (_•) A3.TOTAL A2ND + AROOF A3.TOTAL = 1.012In R3.TOTAL = 0.99 1, 0 LATERAL DESIGN BUILDING FOUR Rigidity R03.xmcd 11/16/2005 r � 12:54 PM ) LATERAL DESIGN PANEL RIGIDITY: = 1000.k Ec = 4030509 psi PANEL 6 AND 7: 2ND FLOOR ,= 9.25•1n 3 U= 17.333 as= 17.5833 hi = 0.99 = p • 4I h1 I + 3.- Al = 0.1821n d1 ECh d1 dl 3 = 9.5833 = 17.5833 d2 = 0.55 4.4.;= Al - E -h • C + 3. d 2 A2 = 0.1341n h3 P h3 3 h3 = 9.5833 = 2.91667 d = 3.29 4 = ECh • (d3) + 3. d3 A3 = 1.2161n hq p hq U= 9.5833 = 5.3333 dq = 1.8 = ECh • [(h4)3 dq + 3. A4 = 0.3in 1 = A2 + + A2ND = 0.375in C A3 A4 R2ND = 2.67 PANEL 5 AND 7: ROOF 1= 9.25•in hi p (hil h1 1 y = 15.667 = 17.5833 d1 = 0.89 = ECh • 4 d1 + 3• Al = 0.1481n = 9.5833 = 17.5833 d2 = 0.55 424= Al - Evil • [(h2)3 d2 + 3. d2 A2 = 0.099in h3 p [(113 )3 h3 • = 9.5833 a= 2.91667 d = 3.29 j= Evil 3 3 - J + 3 tl e3 = 1.2161n h4 P h4 3 h4 �t .= 9.5833 = 5.333 dq = 1.8 ,A:= E� hh • (d4) + 3. d4 Aq = 0.31n - -- - -- - ----- ---- -- - -- --- - - - - -- - - IoGaNM= A2 + 1 + 1 AROOF= A3 A4 RROOF = 2.94 C A5.TOTAL A2ND + AROOF A5.TOTAL = 0.7151n R5.TOTAL = 1.4 V or • LATERAL DESIGN BUILDI FOUR Rigidity R03.xmcd 11/16/2005 - 12:54 PM 0 LATERAL DESIGN PANEL RIGIDITY: = 1000•k Ec = 4030509ps1 ANC PANEL 8 AND 9: 2ND FLOOR 2u= 9.251n hi p (hi; h1 y= 17.333 ='30 d1 = 0.58 Ecn • • 4I d + 3• di e1 = 0.067in = 9.5833 = 30 - = 0.32 = Al -' EC h • [(h2)3 + 3.- e = 0.041in 3 ,= 9.5833 = 3 d3 = 3.19 = • I a3) + 3• d 3 e3 = 1.1311n h4 p (h41 h4 bki= 444= 3 d =3.19 "= E I d +3•d4 e4 = 1.131in 1 ` J 7. ,QRA A2 + 1 1 A2ND = 0.606in A3 e4 R2ND = 1.65 PANEL 8 AND 9: ROOF = 9.25.1n hi p (hi ) hi =15.667 U =30 =0.52 _ E -h•4 d +3•d e1= 0.0571n d1 C (1 1 h2 p [(h2) h2 15.667 Us= 30 - d2 =0.52 %- e1 - - • E d2 •I - +3• d2 e2 0.011in n�i± �r ... ,.. h3 p h3 = 9.5833 = 3 d = 3.19 k= E •[( d + 3. d e3 = 1.1311n h4 p [ (h4)3 h4 bo d =3.19 " = E Ch • d4 +3•d e4 = 1.1311n 1 - A2 + 1 1 AROOF = 0.5771n A3 A4 . RROOF = 1.73 1 A8.TOTAL A2ND + AROOF A8.TOTAL = 1.183in R8.TOTAL = 0 `N V`O LATERAL DESIGN BUILDING FOUR Rigidity R03.xmcd 11/16/2005 12:54 PM LATERAL DESIGN PANEL RIGIDITY: P. = .1000•k Ec= 4030509psi PANEL 10.20 AND 26: 2ND FLOOR 9.25•1n hi p (h1 3 h1 =17.333 =15.333 d =1.13 � = +3• e 0.246in l J 3 • - u= 9.5833 A 15.333 d2 = 0.63 , 3.t Al - ECph [(h2)d + 3 d2 A2 = 0.1891n r l3 Zs= 9.5833 ,= 3 d3 = 3. E C h • I d 3 J + 3.- e3 = 1.131In hq p kh4)3 h q 1 =9.5833 =3 d4 =3.19 = E d +3•d4 e4 =1.1311n mw 42019.:= ' + e2ND = 0.755in + A3 e4 R2ND = 1.32 PANEL 10, 20 AND 26: ROOF 1= 9.25•In 3 1 Au= 15.687 = 15.333 1 d = 1.02 15.333 Ech h • ( ) 1 4 d1 + 3•d Ai = 0.197in 1 = 15.887 = 15.333 d2 = 1.02 " W V= e1 - Ech • (d2) + 3• d2 A2 = 0.086in [( = 9.5833 t y =3 d3 =3.19 = E C h •d +3•d3l e3= 1.1311n hq p h41 hq ,= 9.5833 n =3 d4 =3.19 =ECh �d +3 •d 4 A4= 1.131in 1 ' ^i= A2 + 1 1 eROOF = 0.6521n + 4 3 e4 RROOF = 1.53 G e10.TOTAL A2ND + AROOF Al0.TOTAL = 1.4061n R10.TOTAL = 0.71 V41 LATERAL DESIGN BUILDING FOUR Rigidity R03.xmcd 11/16/2005 12:54 PM n LATERAL DESIGN PANEL RIGIDITY: ^ P NK •= 10004 Ec = 4030509ps1 PANEL 16 AND 32: 2ND FLOOR ti= 9.25•In hi p (hi) h1 = 17.333 = 27.1667 d1 = 0.64 = Ech • 4d + 3.- e1 = 0.0791n 9.5833 = 27.1667 = 0.35 2j= e- Ech • [(J3 + 3.d2 A2 = 0.051n 3 9.5833 = 3.5 h3 = 2.74 P [(h3 + 3• h A3 = 0.771 In Alli= n i d3 %= Ech d3 d3 hq ! p 3 hq U= 9.5833 = 3.6667 dq = 2.61 ,AA := E- • [(h4)d4 + 3. dq Aq = 0.6891n vvw 1 =A2+ + A2ND = 0.4141n A3 A4 R2ND = 2.42 PANEL 15 AND 32: ROOF = 9.25.1n 3 Ale 15.667 27.1667 d' = 0.58 4j= E hh • 4 (d , I + 3•d' e1 = 0.0671n h2 p h2 = 15.667 = 27.1667 d=0.58 ,�j =Al - ECh• [(h2)3 d2 +3.d A2= 0.015In h p I(h h 241,7 =3.5 d =2.74 Ale E�•h • d +3• A3= 0.7711n = 9.5833 AL= 3.6667 d4 = 2.61 , AA .= E�h • [(d4 h4)3 + 3. dq A4 = 0.689In AWaXi =e2+ 1 1 eROOF = 0.379in + A3 A4 RROOF = 2.64 A15.TOTAL A2ND + AROOF A15.TOTAL = 0.793in Ri 5.TOTAL = 1.26 k`N LATERAL DESIGN BUILDING FOUR Rigidity R03.xmcd 11/16/2005 12:54 PM LATERAL DESIGN • PANEL RIGIDITY: P .= 1000.k Ec = 4030509 psi ism PANEL 16'AND 31: 2ND FLOOR 24= 9.25•In hi p [ (hi) hi • ] o t . i= 17.333 Ai= 17.1667 cw = 1.01 Ech • . + 3. d1 el = 0.192In h2 p [(h2) h2 Ne• 9.5833 A4= 17.1667 - = 0.56 • 44= - Ech d2 3. d2 A2 = 0.142In h3 h3) ,= 9.5833 Ai= 3.6667 = 2.81 Aa v ; Aw= p [( E ch d3 3. h3 d3 = 9.889in h4 _ p h4)3 3.h4 , j= 9.5833 a 2.8333 4 = 3.38 E ch [( est = 1.31In - d4 1 hagle + 1 1 A2ND = 0.594In - + A4 • • R2ND = 1.68 PANEL 16 AND 31: ROOF 1= 9.25•In hi p [ (1 hi] A q i ur 15.667 lii= 17.1667 = 0.91 u= - • 4 - + = 0.155In Ech di d1 h2 h2) h2 2v 15.667 A 17.1687 = 0.91 A - E ch [( d2 d2 A2 = 0.061In h3 p h3 h3 px= 9.5833 Ai= 3.6667 = 2.61 la E c h • [(d3 ) + e3 = 0.6890.689111 = d3 h4 p 114 h4 i ttv 9.5833 kt4= 2.8333 4 = 3.38 4 E ch • [( d4 ) d4 A4= 1.31 in 1 A8.9.9fAi A2 + .1 1 ROOF = 0.513in e3 A4 RROOF = 1.95 %TOTAL := A2ND + AROOF eig.TOTAL = 1.106In R16.1 = 0.9 to 119 LATERAL DESIGN BUILDING FOUR Rigidity R03.xmcd 11/16/2005 12:54 PM C LATERAL DESIGN PANEL RIGIDITY: = 1000k Ec= 4030509psi PANEL 19: 2ND FLOOR 1= 9.25•in hi p (hi) h1 Au= 17.333 = 25 d1 = 0.69 = Ch • 4 d1 + 3•d1 e1 = 0.092in 3 = 9.5833 = 25 d2 = 0.38 ,2,j= Al - ECh • [()+ 3.- 2 e2 = 0.059in A= 9.5833 A U= 2.6667 d3 = 3.59 = C • [(h3)3 d + 3 d3 e3 = 1.534in 3 c 3 3 3 ,y= 9.5833 g =3 d 4 =3.19 = d4 +3• 4= 1.131in 4 • c 4 4 _ 1 - A2+ 1 1 e 0.71 in + _ 2ND = A3 i4 R2ND = 1.41 PANEL 19: ROOF Zi= 9.25•in 3 = 15.667 AL= 25 d1 = 0.63 = E P h • 4 1 d + 3•d1 e1 = 0.077in 1 c 1 1 3 ,= 15.667 = 25 d2 = 0.63 ,a,�;= e1 - E� p h [(h2)d2 + 3. d2 e2 = 0.02in = 9.5833 Az= 2.6667 c - 1 - 3 - = 3.59 =ECh • [(h3)3 d + 3• tl 3e3 = 1.5341n 3 J = 9.5833 = 3 h4 = 3.19 = E P[( h4 )d + 3 d e4 = 1.131 in d 4 • C h 4 4 1 0 e2 + 1 1 AROOF = 0.671 in A3 4 RROOF = 1.49 e19.TOTAL := e2ND + eROOF e19.TOTAL = 1.381 in R19.TOTAL = 0.72 Vtiii° LATERAL DESIGN BUILDING FOUR Rigidity R03.xmcd 11/16/2005 12:54 PM 0 LATERAL DESIGN PANEL RIGIDITY: / P = 1000-k Ec = 4030509psi PANEL 23: 2ND FLOOR bi= 9.25•1n 3 = 17.333 ,= 15.8333 d1 = 1.09 hk Ech • 4 d1 J + 3• d1 e1 = 0.229in • l ] = 9.5833 = 15.8333 2 = 0.81 • , =e1 - E hh [(h)3 d2 + 3• Q2 e2 = 0.1741n d h3 p [(h3; h3 2414= =3.5 d3 = 2.74 = E a e3= 0.7711n h4 P I h4 3 hq = 9.5833 = 3 dq = 3.19 = ECh • a4 J + 3 tl e4 = 1.1311n 1 424 1 1 +- e2ND= 0 .633In A3 e4 R2ND = 1.58 PANEL 23: ROOF 1= 9.25•in = 15.667 = 15.8333 d 1 = 0 .99 =E 4 (13 + 3• 1 e1 = 0.184in • = 15.667 = 15.8333 d2 = 0.99 ,j= Al - E hh [C12)3 + 3• d2 A2 = 0.0781n h3 p h3 ,= 9.5833 n i= 3.5 d3 = 2.74 = ECh • [( tl3 + 3• d3 e3 = 0.7711n h4 P 3 h4 = 9.5833 - = 3 dq = 3.19 = E • [( + 3• d4 e4 = 1.1311n 1 Awake A2 + 1 1 eROOF = 0.5361n - + - e3 e4 RROOF = 1.86 C -.) e23.TOTAL e2ND + ROOF e23.TOTAL = 1.1691n R23.TOTAL = 0.86 k• 1C0 LATERAL DESIGN BUILDING FOUR Rigidity R03.xmcd 11/16/2005 12:54 PM 0 LATERAL DESIGN PANEL RIGIDITY: P:= 1000-1( Ec = 4030509ps1 Nv.■ PANEL 24 AND 25: 2ND FLOOR 1= 9.25•In hi p 3 h1 ,= 17333 =29333 c -i-- . = 0.59 Ad ;= Ec. f - 4 () - + 3.- 1 ei = 0.071n Nv9v h di d1 h2 (h2 A2 Age 9.5833 9k= 29.333 = 0.33 hk Al - p [) Ech • d2 + 3] = 0.0421n . d2 h3 p [(h3) h3] )11. 9.5833 a.= 3 = 3.19 A 1= _. _ + 3._ e3 = 1.1311n d3 fivAi Ech d3 d3 h4 h4) h4 Us= 9.5833 Ak= 3 = 3.19 A= A4 = 1.131in d4 s k E p • [(ch d4 3 + 3. 1 d4 1 42ta= ' 4- 1 1 - + - A3 A4 A2ND = 0.6081n C R2ND = 1.64 PANEL 24 AND 25: ROOF 1= 9.25•in hi p [ I hi; h1 141 15.867 A tt4= 29.333 -- = 0.53 lie - • 4 - + 1 - ei = 0.059in dl Ech di d1 h2 p [(h2) h2 V 15.667 Ur- 29.333 = 0.53 Azi= el - - • - + 1- A2 = 0.012in Ech d2 d2 h3 h3)3 4. 3. ] h3 ,= 9.5833 ,=3 = 3.19 e p e3 1.131in d3 114 Ech • [( d3 d3 h4 p h4 h4 / 114= 9.5833 As= 3 d4 =3.19 ar Ech [( • d4 ) + 3. (14 ] eg = 1.131in MAW ' + 1 i AROOF = 0.5781n A3 + A4 RROOF = 1 g A24.TOTAL := A2ND + A ROOF A24.TOTAL = 1.1861n R24.TOTAL = 0.84 V 10 LATERAL DESIGN BUILDING FOUR Rigidity R03.xmcd 11/16/2005 12:54 PM 0 LATERAL DESIGN- PANEL RIGIDITY: = 1000.k Ec = 4030509ps1 NA SHEAR WALL 3.5: 2ND FLOOR 1= 9.25.In h1 p h1 3 h1 Au= 15 U= 19 ..6667 d = 0.76 = E�h • 4(d1 I + 3.— e1 = 0.109In "Awl e Al 0 2ND = 0.109in R2ND =9.18 SHEAR WALL 3.5: ROOF 1= 9.25.in h2 p h2 3 h2 = 15 = 19.6667 d2 = 0.76 = E C h • 4 I d 2 I + 3.— A2 0.109in i i= A2 AROOF = 0.109in RROOF = 9.18 A45.TOTAL A2ND + AROOF A45.TOTAL = 0.218in R45.TOTAL = 4.59 11 LATERAL DESIGN BUILDING FOUR Rigidity R03.xmcd 11/16/2005 12:54 PM 0 LATERAL DESIGN PANEL RIGIDITY: =1000.k Ec= 4030509psi Avi SHEAR WALL 6: 2ND FLOOR 9.25 In h1 P h1 Al4= y= 20.333 d =0.74 = E�h• 4(hi)3 a, +3•d 01 = 0:102In Powv AM A A2ND = 0.102in R2ND = SHEAR WALL 6: ROOF be 9.25.in h2 F h2 n ='15 . 12 d2 = 1.25= Ec h • 4(h2)3 d + 3.— A2 = 0.31 in ANW 4,59== A2 ROOF = 0.31 in RROOF = 3.22 A55.TOTAL 0 2ND + AROOF A55.TOTAL = 0.413in R55.TOTAL = 2.42 1441;f-ii,' VIM& • 4I*w,s • te.) . c „,,... w-c, wixt-40 ‘,..1 Gra IF. • • 001 0.40. IVY Goer A El 1,________ F r, • 1 4iv'b • • 9 j . a 1: b I - Q11 9 . i cot.,.. 40 „ 1 • -nrn-- I v l I . , . ::1 . fi 0 n . i - • - :.. — --n,,— amt W ' ;i t ( , '.. --r ir t -4' .. . i I . I I Qy I` I 1 N a.49 De a 01 • ogo 14 .. 0 • AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS 8980 S.W. YARNS ST., SUITE 200 JOB NO /y TIGARD, OREGON 97223 ' � (503) 820.3030, FAX 820.8539 SHEET L of 0 BUILDING FOUR North South Roof Distribution R04.xls 11/16/2005 LATERAL DESIGN 4:42 PM HORIZONTAL DISTRIBUTION: RIGID ROOF NORTH SOUTH DIRECTION DISTRIBUTION OF ULTIMATE LATERAL FORCES SHEAR = 160.00 k accidental x-ecc = 10.00 I accidental y-ecc = 4.75 ex = 12.62 ey = 9.99 TORSION = 1598 ft-k Direct Torsion Total WALL Rx Ry dx dV Rd Rd2 FV FT - FV .+ FT PANEL 1 0.09 0.00 0.00 -16.99 -2 2 1.09 -0.02 1.09 PANEL 2 0.00 1.03 93.30 0.00 96 9235 0.00 1.00 1.00 PANEL 3 0.99 0.00 0.00 -36.99 -37 1341 12.00 -0.38 12.00 PANEL 4 0.00 0.09 72.80 0.00 7 43 0.00 0.07 0.07 PANEL 5 1.40 0.00 0.00 -41.99 -59 3456 18.97 -0.61 16.97 PANEL 7 1.40 0.00 0.00 - 41.99 -59 3456 16.97 -0.61 16.97 PANEL 8 0.84 0.00 0.00 -41.99 -35 1244 10.18 -0.37 10.18 PANEL 9 0.84 0.00 0.00 -41.99 -35 1244 10.18 -0.37 10.18 PANEL 10 0.71 0.00 0.00 -41.99 -30 889 8.61 -0.31 8.61 PANEL 11 0.00 0.09 -76.20 0.00 -7 47 0.00 -0.07 0.00 PANEL 12 0.99 0.00 0.00 -36.99 -37 1341 12.00 -0.38 12.00 PANEL 13 0.00 1.03 -96.70 0.00 -100 9920 0.00 -1.04 0.00 PANEL 14 0.09 0.00 0.00 -16.99 -2 2 1.09 -0.02 1.09 PANEL 15 0.00 1.26 - 102.20 0.00 -129 16582 0.00 -1.34 0.00 'PANEL 16 0.00 0.90 - 102.20 0.00 -92 8460 0.00 -0.96 0.00 C PANEL 17 0.09 0.00 0.00 27.01 2 1.09 0.03 1.12 0.00 PANEL 18 0.00 1.03 -96.70 0.00 - 100 9920 0.00 -1.04 PANEL 19 0.72 0.00 0.00 52.01 37 1402 8.73 0.39 9.12 PANEL 20 0.71 0.00 0.00 52.01 37 1364 8.61 0.39 8.99 '.PANEL 21 0.00 0.09 -56.20 0.00 -5 26 0.00 -0.05 0.00 PANEL 22 0.00 0.09 -16.20 0.00 -1 2 0.00 -0.02 0.00 :PANEL 23 0.86 0.00 0.00 52.01 45 2001 10.42 0.47 10.89 PANEL 24 0.84 0.00 0.00 52.01 44 1909 10.18 0.46 10.84 PANEL 25 0.84 0.00 0.00 52.01 44 1909 10.18 0.46 10.64 PANEL 26 0.71 0.00 0.00 52.01 37 1364 8.61 0.39 8.99 PANEL 27 0.00 0.09 72.80 0.00 7 43 0.00 0.07 0.07 PANEL 28 0.99 0.00 0.00 46.51 46 2120 12.00 0.48 12.48 PANEL 29 0.00 1.03 93.30 0.00 96 9235 0.00 1.00 1.00 PANEL 30 0.09 0.00 0.00 26.51 2 6 1.09 0.02 1.12 PANEL 31 0.00 0.90 98.80 0.00 89 7907 0.00 0.93 0.93 PANEL 32 0.00 1.26 98.80 0.00 124 15497 0.00 1.30 1.30 SHEAR 3.5 0.00 4.59 32.80 0.00 151 22668 0.00 1.57 1.57 SHEAR 6 0.00 2.42 -56.20 0.00 -136 18497 0.00 -1.42 0.00 EPt. 13.20 E262 153135 160.00 0.00 EPw 15.90 V 4,0 V AV I 4t/ t 0(40N - 0 401094* V44A ► i r) w: 0-w RA:0%w v-14.1... . . o o , t 03 1.,O oat ' ri --F-- 11 h -. 1 9:0 1 a' I I . 011 I j I 049 all L t a �`� -4 O ®:T yl 1r. I - . —.:.R I -- — „ j °' a i:. -----' ), 1 -7. " . " - "i - 7- I:1 c..6r • ti - .:,.1 , 1- :.,,.::...,:I - -- it t 4- H , 4/r z.. � � T ' I j -� AEiC 1 1111111111 Z .,1 . ° I __I :... ' eta g ° D RI iro i o�� ° � 6° ..... - .___ I j - a'o _ A.1.0,1 ice I I - -.. -. I all n , , . it I ,.. � I . L.� 0 (I () G , AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS 6960 S.W. YARNS SL, SUITE 200 JOB NO TIGARD, OREGON 97223 14 t (503) 620.3030, FAX 620.5539 SHEET V OF BUILDING FOUR East West Roof 1 Distribution R04.xls 11/16/2005 - LATERAL DESIGN 4:42 PM HORIZONTAL DISTRIBUTION: RIGID ROOF EAST WEST DIRECTION DISTRIBUTION OF ULTIMATE LATERAL FORCES SHEAR = 59.30 k accidental x-ecc = 3.30 accidental y-ecc = 4.75 I ex= 12.40 1 ey= 5.83 TORSION = 735 ft -k Direct Torsion Total WALL Rx Ry dx dy Rd Rd2 FV FT FV + FT PANEL 1 0.09 0.00 0.00 -23.27 -2 4 0.00 -0.05 0.00 PANEL 2 0.00 1.03 29.98 0.00 31 954 6.79 0.70 7.49 PANEL 3 0.99 0.00 0.00 - 43.27 -43 1835 0.00 -0.97 0.00 PANEL 4 0.00 0.09 9.48 0.00 1 1 0.59 0.02 0.61 PANEL 5 1.40 0.00 0.00 - 48.27 _ -68 4567 0.00 -1.53 0.00 PANEL 25 0.84 0.00 0.00 0.00 _ 0 0 0.00 0.00 0.00 PANEL 26 0.71 0.00 0.00 0.00 0 0 0.00 0.00 0.00 PANEL 27 0.00 0.09 9.48 0.00 1 1 0.59 0.02 0.61 PANEL 28 0.99 0.00 0.00 40.23 40 1586 0.00 0.90 0.90 PANEL 29 0.00 1.03 29.98 0.00 31 954 6.79 0.70 7.49 PANEL 30 0.09 0.00 0.00 20.23 2 3 0.00 0.04 0.04 PANEL 31 0.00 , 0.90 35.48 0.00 32 1020 5.94 0.72 _ 6.66 PANEL 32 0.00 1.26 35:48 0.00 45 1999 8.31 1.01 9.32 SHEAR 3.5 0.00 4.59 -30.52 0.00 -140 19624 30.28 - 3.16 30.28 EPl; 5.11 £P82 32547 59.30 -1.60 EN/ 8.99 c to 44 BUILDING FOUR East West Roof 3 Distribution R04.xls ' LATERAL DESIGN 11 4::55 55 PM HORIZONTAL DISTRIBUTION: RIGID ROOF . EAST WEST DIRECTION DISTRIBUTION OF ULTIMATE LATERAL FORCES SHEAR = 46.10 k I accidental x-ecc = 2.30 I accidental y-ecc = 4.75 ex= 4.59 ey= 10.17 TORSION = 211 ft-k Direct Torsion Total ' WALL Rx Ry dx dy Rd Rd2 FV FT FV + FT PANEL 10 0.71 0.00 0.00 44.66 32 1005 0.00 0.63 0.63 PANEL 11 0.00 0.09 -7.07 0.00 -1 0 0.61 -0.01 0.61 PANEL 12 0.99 0.00 0 ; 00 , 39.66 39 1542 0.00 0.78 0.78 PANEL 13 0.00 1.03 13.43 0.00 14 191 6.96 0.28 7.24 PANEL 14 0.09 0.00 0.00 19.66 2 3 0.00 0.04 0.04 PANEL 15 0.00 1.26 18.93 0.00 24 569 8.52 0.48 8.99 PANEL 16 0.00 0.90 18.93 0.00 17 290 6.08 0.34 6.42 PANEL 17 0.09 0.00 0.00 -24.34 -2 5 0.00 -0.04 0.00 PANEL 18 0.00 1.03 13.43 0.00 14 191 6.96 0.28 7.24 PANEL 19 0.72 0.00 0.00 -49.34 -36 1262 0.00 -0.71 0.00 PANEL 20 0.71 0.00 0.00 -49.34 -35 1227 0.00 -0.70 0.00 PANEL 21 0.00 0.09 -27.07 0.00 -2 6 0.61 -0.05 0.61 SHEAR 6 , 0.00 2.42 -27.07 0.00 -66 4291 16.36 -1.31 16.36 EP4 3.31 EP82 10584 , 46.10 0.00 EPw 6.82 C ( 1)' te / , . .-.. -. . WOK. Vf1401j . ■ . . . I . • IskVPP v.)fotot, WOOS • (... 1 • itAA? rAgria : Isi - 9 Giferittet4 IPA V s■ 1 .)&1/4, (41.CIPV) • . . . . . . . 0 19' t 410 4 114) 0.t4 . Cl i .,, _ N01 Til N iy. . . .. itp ...". . , I 13 a 4 ,, 1 -1, trv• lael "nt 1 40 , I 4 0 ...,...,....1 ft: inoa ...at I • 1=1049 on.r.o ...t I On/ 1 I . .. NI (.. n c gam 1 . I . , 4.16 0 . — l it En —.!- - Illil• ca -, .,--.,1,--- -.., •,....,...„..... 1 444 . . \\,/ k , • , 5 .....,z,„.... I • I . \ a . • 0.il gj ,''' KIN -; • ...,_... . 0 .._______: t .._ _i_i_ _ _ _ _ ..___ _____ _ _ El . 1 44 • • i .. ' 110 i .. rorn...0 ow* I (...... . r 100.11711.4• I 0 si 14,4;6::_ . _ ___ . _.._ ,, rNt f:111.W x r i 100.4t111 utr I --2 L.., 1 / IprA.Nal um I t . . ...N,...., 2 ^wa 1 ..... ,.. .. _ .,,ta—_...„ . • i : . rot r.l. otr, .01MOttil .0 I — . / I ''.1 • .8.00.1... itli.110 I w i 1:721,1 f i r pi lit 1 •::. N,„...... 1 . •..., I x 0 III:_fi 1 ,c'1 •SI. NI 0 ... , 41.11 . A- lc:WI r 1 a I 1 . 1 II 0 4,1 &i 0 , ' • i •' .' ..._. 2 ...(1:-...7E.1---l'ECC.:--- 0- ------. -,..— -. . 6 0 . UGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS 6960 S.W. VARNS ST., SUITE 200 JOS t40 TIGARD, OREGON 97223 (503) 020-3030, FAX 6204539 SHEET _ ' OF 4/6( Q BUILDING FOUR North South Floor Distribution R04.xls LATERAL DESIGN 11/17/2005 9:15 AM HORIZONTAL DISTRIBUTION: 2ND FLOOR NORTH SOUTH DIRECTION DISTRIBUTION OF ULTIMATE LATERAL FORCES SHEAR = 360.00 k ` accidental x-ecc = 10.00 I accidental y-ecc = 4.75 I ex '= 14.83 ey = 9.65 TORSION = 3476 ft-k Direct Torsion Total WALL Rx Ry dx dy Rd Rd2 FV FT FV + FT PANEL 1 0.19 0.00 0.00 -16.83 -3 10 2.69 -0.01 2.69 PANEL 2 0.00 2.01 - 100.93 0.00 -203 41156 0.00 -0.91 0.00 PANEL 3 1.93 0.00 0.00 -36.93 -71 5080 27.33 -0.32 27.33 PANEL 4 0.00 0.19 -80.43 0.00 -15 234 0 o0 -0.07 0.00 PANEL 5 2.67 0.00 0.00 -41.83 -112 12474 37.81 -0.50 37.81 'PANEL 7 2.67 0.00 0.00 -41.83 -112 12474 37.81 -0.50 37.81 PANEL 8 1.65 0.00 0.00 - 41.83 -69 4764 23.37 -0.31 23.37 PANEL 9 1.65 0.00 . 0.00 - 41.83 -69 4764 23.37 -0.31 23.37 PANEL 10 1.32 0.00 0.00 - 41.83 -55 3049 18.69 -0.25 18.69 PANEL 11 0.00 0.19 88.57 0.00 13 170 0.00 0.06 0.06 PANEL 12 1.93 0.00 0.00 -36.83 -71 5053 27.33 -0.32 27.33 PANEL 13 0.00 2.01 89.07 0.00. 179 32052 0.00 0.80 0.80 'PANEL 14 0.19 0 :00 0.00 -16.83 -3 10 2.69 -0.01 2.69 PANEL 15 0.00 2.42 94.57 0.00 229 52377 0.00 1.02 1.02 'PANEL 16 0.00 1.68 94.57 0.00 159 25242 0.00 0.71 0.71 C PANEL 17 0.19 0.00 0.00 27.17 5 27 2.69 0.02 2.71 PANEL 18 0.00 2.01 89.07 0.00 179 32052 0.00 0.80 0.80 PANEL 19 1.41 0.00 0.00 52.17 74 5411 19.97 0.33 20.30 PANEL 20 1.32 0.00 0.00 52.17 69 4742 18.69 0.31 19.00 PANEL 21 0.00 0.19 48.57 0.00 9 85 0.00 0.04 0.04 PANEL 22 0.00 0.19 8.57 0.00 2 3 0.00 0.01 0.01 PANEL 23 1.58 0.00 0.00 52.17 82 6794 22.38 0.37 22.74 PANEL 24 1.64 0.00 0.00 52.17 86 7320 23.23 0.38 23.61 PANEL 25 1.64 0.00 0.00 52.17 86 7320 23.23 0.38 23.61 PANEL 26 1.32 0.00 0.00 52.17 69 4742 18.69 0.31 19.00 PANEL 27 0.00 0.19 -80.43 0.00 -15 234 0.00 -0.07 0.00 PANEL 28 1.93 0.00 0.00 46.67 90 8113 27.33 0.40 27.74 PANEL 29 0.00 2.01 - 100.93 0.00 -203 41156 0.00 -0.91 0.00 PANEL 30 0.19 0.00 0.00 26.67 5 26 2.69 0.02 2.71 PANEL 31 0.00.. . 1.68 - 106.43. 0.00.. -179 . 31970. . 0.00 -0.80. 0.00 PANEL 32 0.00 2.42 - 106.43 0.00 -258 66337 0.00 -1.15 0.00 SHEAR 3.5 0.00 9.18 -40.43 . 0.00 -371 137750 0.00 -1.66 0.00 SHEAR 6 0.00 9.76 , 48.57 0.00 474 224717 0.00 2.12 2.12 ERx 25.42 ERd2 777707 360.00 0.00 ERy 36.13 _____. _______ ____ ___ __ _ 0 t 400 r . . 441 wl,(A, t • toP • . . 0 • .filaPriP ■ , s oloki iAltetitit44%1 . . . • • . . . 01 Elp • /v 0 1 GI 1.4 tv.o, 1111111111ruaNIIII• ___ - -- allillil ValliAlliii • g13 . . ',. . L 10 • 1 - 4111101.1. I la I o•4 9 . • a t, ---.. ...... 4,11 4 S. 190 VIO “1.4 1 0 on, . • 04, 1 N 1 , q.-16, . _ . 1 I , • • i .___.•- . • ...ii CI .-. ' ' 112 . • . ,. 4. .11111.1. 1 ID k .ag • . to..1,.... I . i 1 I . • , • : 0 \ Illi a ----....■ a ... , .... • 7r. _ „.. .._ _ _EL _ ___,A ov .. . . t — . ,........".. I . - . —. .........11 •••• . t Fl /1,b1 . r ... 101.01 ..... O gi •, ..,. , cora” oon.,4tE0 mi. I f.1 1 1 _...; lorwAZO "Or I ''''''''' "" I • Ste a.. ,•••k ......,.. • ....., o . . . - i No ••■••••■ • nv ”...1 .7. I : 1 . .i .411. OW on.t Ittt..1d111.. I - 1 tig Cr 1121 •1 . I n I — 0 141 , i klo.V1 ....,...,,, I 1 • 1• 4444- s -", I 101.01 A I ' ../ ' ,..... 3 . 4•14■INIIM I . O . I CI 0.. — _I A.- 11F _ Irr I I 1°11 cm i .01 _.. atcf - - k•6¢ 4,0 . ... ._ _ ._ ___ _ _.... ._ .... . _ _ .__ ___. . 0 --- 2, - • • . .. ____._____._..... _. ______ AFGHAN-ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS 6980 S.W. VARNS sr.. SUITE 200 JOB NO TIGARD, OREGON 97423 (503) 0204030, FAX 620-5539 SHEET V OF 4,6 BUILDING FOUR East West Floor Distribution R04.xls LATERAL DESIGN 11/17/2005 9:10 AM HORIZONTAL DISTRIBUTION: 2ND FLOOR EAST WEST DIRECTION DISTRIBUTION OF ULTIMATE LATERAL FORCES SHEAR = 360.00 k I accidental x-ecc = 10.00 I accidental y-ecc = 4.75 ex = 14.83 ey = 9.65 TORSION = 5340 ft-k Direct Torsion Total WALL Rx Ry dx dy Rd Rd2 FV FT FV + FT PANEL 1 0.19 0.00 0.00 -16.83 -3 10 0.00 -0.02 0.00 PANEL 2 0.00 2.01 100.93 0.00 203 41156 20.03 1.39 21.42 PANEL 3 1.93 0.00 0.00 -36.93 -71 5080 0.00 -0.49 0.00 PANEL 4 0.00 0.19 80.43 0.00 15 234 1.89 0.10 2.00 PANEL 5 2.67 0.00 0.00 -41.83 -112 12474 0.00 -0.77 0.00 PANEL 7 2.67 0.00 0.00 -41.83 -112 12474 0.00 -0.77 0.00 PANEL 8 1.65 0.00 0.00 -41.83 -69 4764 0.00 -0.47 0.00 PANEL 9 1.65 0.00 0.00 -41.83 -69 4764 0.00 -0.47 0.00 PANEL 10 1.32 0.00 0.00 - 41.83 -55 3049 0.00 -0.38 0.00 PANEL 11 0.00 0.19 -68.57 0.00 -13 170 1.89 -0.09 1.89 PANEL 12 1.93 0.00 0.00 -36.83 -71 5053 0.00 -0.49 0.00 PANEL 13 0.00 2.01 -89.07 0.00 -179 32052 20.03 -1.23 20.03 PANEL 14 0.19 0.00 0.00 -16.83 -3 10 0.00 -0.02 0.00 PANEL 15 0.00 2.42 -94.57 0.00 -229 52377 24.11 -1.57 24.11 PANEL 16 0.00 1.68 - 94.57 0.00 -159 25242 16.74 -1.09 16.74 C PANEL 17 0.19 0.00 0.00 27.17 5 27 0..04 0.04 PANEL 18 0.00 2.01 -89.07 0.00 -179 32052 2 0.03 -1 20.03 PANEL,19 1.41 0.00 0.00 52.17 74 5411 0.00 0.51 0.51 PANEL 20 1.32 0.00 0.00 52.17 69 4742 0.00 0.47 0.47 PANEL 21 0.00 0.19 -48.57 0.00 -9 85 1.89 -0.06 1.89 .. PANEL 22 0.00 0.19 -8.57 0.00 -2 3 1.89 -0.01 1.89 PANEL 23 1.58 0.00 0.00 52.17 82 6794 0.00 0.57 0.57 PANEL 24 1.84 0.00 0.00 52.17 86 7320 0.00 0.59 0.59 PANEL 25 1.64 0.00 0.00 52.17 86 7320 0.00 0.59 0.59 PANEL 26 1.32 0.00 0.00 52.17 69 4742 0.00 0.47 0.47 PANEL 27 0.00 0.19 80.43 0.00 15 234 1.89 0.10 2.00 PANEL 28 1.93 0.00 0.00 46.67 90 8113 0.00 0.62 0.62 PANEL 29 0.00 2.01 100.93 0.00 203 41156 20.03 1.39 21.42 PANEL 30 0.19 0.00 0.00 26.87 5 26 0.00 0.03 0.03 PANEL 31 0.00 1.68 106.43 -0.00 179 • 31970 - 16.74 1.23 17:97 PANEL 32 0.00 2.42 106.43 0.00 258 66337 24.11 1.77 25.88 SHEAR 3.5 0.00 9.18 40.43 0.00 371 137750 91.47 2.55 94.02 SHEAR 6 0.00 9.76 -48.57 - 0.00 - 474 224717 97.25 -3.26 97.25 ERx 25.42 ERd2 777707 360.00 0.00 ERy 36.13 g . ti l K=m • ' I 88488888148518°18 $888838$888 4 4 2'Y 4 00000'44ga30sY 7� 1/48 .. 8 25141 8^ o. - 8 ;887 888a8R888i ' . 7dtto N o�do ob000 dodo • � . ,� '$ 2S ffi is .- ,ypQy, ySiffioY�o 8 � 0 °000000 000�?0";000o n $R WIM1 §3118� .- 8�7i282:2 o N " RE 7o.7oa64444o7o7od'R , dcdood dddho'6�i0000i 7 o4u�4nooOO4 0in m�nn 0000 E 0 o n 0 r m ]� ][ °� y� '� Q0000 y oo n o0 y 000 00000 0 0 0 00 0 00 000 A �S�+ 4;44pf oggw7ddc1.5-1 /4 Y x Gndgdadd Gl ,e OOYts�O'OOMOb OOOM0 • v:onowlgwtogqqoo4o x,Rn�� � �8n��$ � n o oo N y � j gogoo,g 0 00 A 1 o0oo GGGiii S y m m N mm mm I I) � m Nom m Q Nn si�a �s`�OUf Nl�sgs ��nai0 V � � OO O M 8 88 538$ � 8 y 8 � 8 p 88 6i8. 8 ,Q,.,Q,.88Q;88888888 08$86688`!' m 88888m8; 88u3R888m8888a> h m4mi' m{ Vg wte mtVxml/Rmo4itmammmlit.;xm6gA6m 3 �lia - OO.zde4N.z , O , 000O00,,00. - 1 1 ,,O,OOOOOOM. PS +� ZZ NSJVn ZZ ^mm Z m O"N »emm�mbg gRaRRMI8gjgyj`LLLLLL2 „ ff33 LL Na�vnnmm e�Nn�monm mR &pR �SNIIN I�ROI i�f a�fn — C K�� Q mmmmmm QQQmQQQQQ �0.Qa.000 SG � �QQQ " " :". mamamma mG<¢ anmamm Q mammawm aaaaa aaaaaa aaaaaaaaa�aaaaaaaaaaa anaaaaaa u5 aaaaaaaaaaaaaaaaaaaaaaamN rc 6 E o C a b" 4 9 N = • CO 41410 0 .1114 ‘Swei j. • • 0 . • • 0 • • • • . .. • • • .. .... . I • .. .• .• . • •., .. . . • • .. ... . . .. . . . . , v • . .• _ • ,. 6of A - - • :. ; , --• - --- - - i __. , . . . ... . .. . ... . ... . :_..: .i, % �.' - t 96 . . ■ ,.._ '° ' ir p .- . p . 4 • �° Atif�i r- , . t. 0 . �1/_ . ?74 1: . * o . • Cti fQ.ilk; } , . teN .. ct -----..... ,..,.. . „.... c • . . i z ��� G�" .4 tVgi , 0 4 V. tel l Sk ( ' C. k Q.; 0 .4 1 . ;(1Q3 CO As VIVO k 0.. 040 0004) 46 It.,g MAO O %4 tl� AVNN 6 t 03 0 & ... • • , . • • ti4:1%.6.4✓ 1,+54-) "?MOP.? . • . t4lir 2 > m 40C9 it, 6 1 (061(. , )y4Ati v V Iv (4r; 510 Ili VW By 4 ivti AKitibikviefr /1.L'irl 11.w,� ; ,,,,t,, vy * Z ckoc61 'IBS Lux Gsulivi) C AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS 8980 S.W. YARNS ST., SUITE 200 JOB NO TIGARD, OREGON 97223 1 (503) 8203030, FAX 620-5539 SHEET OF . • ' . . . . 0 . • • . . . . - . . 0 . . . . . • . . . . . . . . . . • ' . . . - • • .. . . . . . • . , . • • . . . . . . - , • . • . • - . • . . . . . . . •r1.• -•.,44.,„,,,,,,,,,4 • . • • •• ..• . .. ... .. . . . . . • • . . .. .. ....,.... . • . .. , . • . . •• . . ..•......... . , .• . . ._.. .. ......._ . ..... . , • .. . .. . . . .. . . . ..• ....... . .. . ... . .. . ., .. •. • .. ....... .. . . . . . . . . .. .... .... ...,..._ ....,... • • . • . . . . • . : ,.., . ... .,,,:,.......:, • . .. • . ; .... ; . . . .. .. _... .,.. . .. .. . . . .. , , .• .. . . . . .... . , . . . . .. , ..,. . .. . .. . , • -- • - i - • - ... '•• - ' . .. .. . .... . . . ,. ..... .... __....,.•..... .. . i , . • • . ... .. i 4 tiAtlUe • C li ft 40001, i **1/ . , . . . . . . 7 • , •,--- • i.- I : • , •-• • .•. • . ,, 7 , , , • .....•. . i..j. , - • :00f 4 004044‘.0.-f. • • • '- ,:. -, . :. ' .--,-.! - ;•••.- . , .. , ., . • , . . ., , .. *., . '4 • , • • - - , .-:-.-•-. ,t • . ' 1 ' . • ' • • ---- - -7. - .-- ' . ter.,I0 IN - t - kt.4 .. - '04 ----- - --- . - -- ... r ' , • ' . . . • , . : . , . • . . . . . ., 1 : . . . . . ' 4 1 Vtit6 100 ' . . . . 0 19.114?. .. • 0 -Asvf oq , , . ,. ' .‘ . .. • . . , , . • • , 0 ; -,- .; . . : . .. . ,. .. .... • , .. - : .,". - ' ....t - •:. . . : , • • . „ • . • . . . .. .. .. .. .. . .. . ... .. . : . . . . . . .._. 44. $ '.'.)( . :. 4 k.9 f.. ... . :- . • .. :. -. . ' r ' * ( ' * .. . :• ' • • • , . ..... ,..0, . .., CM 1 0Z2.11 2 e 4 . . ., • . ; t : ' . . .. . , • . , . . ftiA1M . ia, kk0e4 kt .0e , ..,,. k :. ,-J- r of. l I• • ' • • • I, • .. • . . • .: . . .. . .. . . .. . . . . . . .. . . . .. .... . . . . . . . . . . . ; . . . . .. tO 1 . ' ' ■ it1) * 4' w)..s\-r ---- pip ie eL.L. 2(—. . 4i7..4.• (34 . . . .. . . . : . • . • .. . .... .. : , . ._ , 4 WA° . , .. - . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .... . . . .. . , . . • . . . . . . . . . . . , . .. .. . . .. . . . !. , • : . , . • . . . . . . . . . . . . . , . . . . . ...... . . . . . . 01440, .49r. 4p te-abt. • fict* W?itliel-1 . . .. . . . .. . . . . • . . . • . . , . . . . . . . . . . . •. • c7' 'a/ . . 4A,V. ilfi., 0 4040 - - , . . . . _ ._..._. • . . . . . . • . . . . . . .. . . . . . • C . • AF'tyriAN ASSOCIATES, INC. BY DATE . CONSULTING ENGINEERS JOB NO 8980 S.W. VARNS ST., SUITE 200 TIGARD, OREGON 97223 • • t SHEET o OF 40 (503) 8204030, FAX 820-5539 • • 0 0 • : . • • . .. . . r. ‘._,,,.„).„,,,,,..„,,,, .. . ... . .. • . • . . . . . ..... .... • . . • . . .• 'ti+n��sy '1!. .:.•... ... , • • • . . . . . ... .. . . ... • ....... • . . . .• . . . .•...:.... • . _. • .. .. . . . ... , : ,;,••. • • • . . , . • .. � Al-- .. , ..(iv • ..... .. .. • � �'�! .., ' I �� , • .. , ..,_: - ,..,, i. " ,.t i , • _. -_ ... .< f •• • ,. • TrV _ . •f . (Al CI i • aW0 017 . . - 11 : 3 ... L .41;:iii. .• . 1 . . ... •: t • ■ , C) . . . . AFGHAN ASSOCIATES, INC. BY DATE CONSULTING. ENGINEERS • JOB NO 6960 S.W. YARNS ST„ SUITE 200 • TIGARD, OREGON 97223 2) (503) 620-9030, FAX 620.5539 SHEET OF • (1-*-) /44.5 -42.7 • • • 9.1. .8 0 4440\4" 4‘44( • -1.98k • 11111 1 1 11111 • -3.75k wor__ -3.75k . • • • . • C. • -3.09 .95k/ft III 2.7k - • -7k • • M5 ••0 k„,,) • - Loads: LC 7, 0.9 + 1.0 E Results for LC 7, 0.9 D + 1.0 E _ Afghan Associates, Inc. November 17, 2005 HAMID AFGHAN • 4:16 PM . . PANEL [ 2 ] Panel 12] R01.r3d . _ r T. • co ■•■■•■■ 45.2 -10.5 0.4 \\t-otvw -3.82k -. -.438k/ft -2.8k 3 75k 11111111111IFIIIIIIIII/Ill — • -5.72 ; ;kat -4.15 7k _ _ A•A•A•A•••• ‘.,.'....A•AA•UAAAAA.4. 4 • " [Owls: La, 1.2 D +1.0 E + 0.5 L +0.2S 1 I Afghan Associates, Inc. November 17, 2005 HAMID AFGHAN • 4:21 PM PANEL (2J Panel pi RI:11.r3d r 4 LATERAL DESIGN: SHEAR WALL DESIGN: PANEL 121: SHEAR WALL INFORMATION h := 9.25•In SHEAR WALL THICKNESS Hw:= 15•ft HEIGHT OF SHEAR WALL LW := 34•1n LENGTH OF SHEAR WALL gi= 5000 CONCRETE COMPRESSIVE STRENGTH FOR SLABS AND FOOTINGS (psi) Ec = 4496061 psi MODULUS OF ELASTICITY FOR 14r 60000 YIELD STRENGTH OF STEEL REINFORCEMENT (psi) fy.psi ey := E ey = 0.00207 MAX STEEL STRAIN AT OUTERMOST TENSION REINFORCING Ar 0.003 MAXIMUM ALLOWABLE CONCRETE STRAIN P 1 := Iltfd < 4000, 0.85, iQ fc > 8000, 0.65, 0.85 — 0.05.( f c 1000 4000 131 = 0.8 LOAD COMBINATIONS: 1) 0.9•DL +E Pu1:= —0.6.k Madd := 0•ft•k ADDITIONAL MOMENT DUE TO UNBALANCED VERTICAL LOADS Vu1 := 9.1•k ULTIMATE DESIGN SHEAR M := 44.5•ft•k + Madd Mu1 = 45 ftk ULTIMATE DESIGN MOMENT 2) 1.2•DL +E +(f1•L +f2•S) Pup := 40.4•k i= 0.ft.k ADDITIONAL MOMENT DUE TO UNBALANCED VERTICAL LOADS Vu2 := 10.5•k ULTIMATE DESIGN SHEAR Mu2 := 55.3•ft•k + Madd Mu2 = 55.3 ftk ULTIMATE DESIGN MOMENT �pJ- ` fo 0 LATERAL DESIGN: SHEAR WALL DESIGN: PANEL f21: LOAD COMBINATION 1: 0.9•DL + E Pu1 = —0.6k On = 0.9 Mu1 = 45 ftk OVERTURNING MOMENT NA := 6.05•In NEUTRAL AXIS DEPTH COMPRESSION REINFORCEMENT: CONCRETE: &= 0.85•fd•psI.0.5•NA•h C = 119k NUMBER SIZE SPACING STEEL AREA BAR STRAIN INDIVIDUAL BAR FORCE BAR STRESS n := 2 =5 sa: =3•in Asa = 0.62In s sa = 0.00151 fsa = 43.86ks1 Ca = 27.19k = 0 Aoki= 5 sb := 7•In Asb = 0 2 in e sb = fsb =0ks1 Cb = Ok = 0 law= 5 so:= 7•In 2 Asc =0in esc = fsc = Co =Ok =0 =5 sd := 7•in Asd =0in e sd =0 fsd =0ksi Cd =Ok Ctotal = 27.19k TENSION REINFORCEMENT: NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR STRESS BAR FORCE Ai= 2 = 5 s1 := 3•In As1 = 0.821n es1 = 0.01237 fs1 = 60ksi Ti = 37.2k I= 2 AIL= 5 s2 := 7•In 2 Asp = 0.82 in ss2 = 0.0089 fs2 = 60ksi T2 = 37.2k , =2 Isj= 5 s3: =7•In 2 Asa = 0.821n sS3 = 0.00543 fsa = 80ks1 T3 = 37.2 k ,= 2 = 5 84 := 7•In p AS4= 0.821n 44= 0.00196 fS4= 56.8ksi T4= 35.22k i tu= 0 Axj= 5 s5 := 7.In 2 Ass = 0 in es5 = 0 fs5 = 0 ksi T5 = 0 k A =0 W 5 — 6•in — — — - -- s6`— Ase= 0In 2 - — __.Ea 0 -- fsb O __ __T8..= 0.k ----- - - - - .. , =0 AIL= 5 s7:= 6.75•1n 2 As7 = 01n es7 = 0 fs7 = 0ksi T7 = 0k i= 0 Agr 5 s8 := 6.75•In 2 Asb = 01n es8 = 0 fsb = 0 ks1 T8 = 0 k TtotaI = 146.82 k EFb = (C + Ctotal) — Ttotal EFb = —0.7k Mnl = 225 ftk Mn1.design 4) f1•Mn1 Mnl.desIgn = 202.3 ft k > Mu1 = 44.5 ftk r 1 0 LATERAL DESIGN: SHEAR WALL DESIGN: PANEL 121: LOAD COMBINATION 2: 1.2•DL + E + (11.1 + f2.S) Pu2 =40.4k 02 =0.85 Mu2 = 55 ftk OVERTURNING MOMENT N 10.651n NEUTRAL AXIS DEPTH COMPRESSION REINFORCEMENT: CONCRETE: £= 0.85•fc•ps1- 0.5•NA•h C = 209k NUMBER SIZE SPACING STEEL AREA BAR STRAIN INDIVIDUAL BAR STRESS BAR FORCE At =2 as= 5 A v . 23•1n 2 Aga = 0.621n ega = - 0.00348 fg = - 100.89ksi Ca = - 62.55k &= 0 = 5 = 7•in Asb = 01n2 ssb = 0 lab = Oksi Cb = Ok ,Ari= 0 Afvw= 5 h 7•In 2 Asc =0in esc =0 l =0ksi C Ok C Ale 0 Agroi= 5 sue = 7•In Asd =01n sad =0 f =0ksi Cd =Ok zi=0 xi= 5 se: =8•In ASe = 0in ese = 0 fS = 0ksl Ce = 0k TENSION REINFORCEMENT: Dotal = - 62.55k NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR STRESS BAR FORCE /49n =2 ai =5 AU=3•in 2 Am = 0.62 in s81 = 0.00573 fs1 = 60ks1 Ti = 37.2k Ai=2 ar 5 a = 7•In 2 As2 = 0.62 in es2 = 0.00376 fs2 = 80ks1 T2 = 37.2k xc =2 a 5 a = 7•In 2 As3 = 0.82 in ss3 = 0.00179 f = 51.87ks1 T3 = ,tu= 2 & 5= 7•In As4 = 0.82 in sS4 = 0 f = 0 ksi T4 = 0 k I=0 ai= 5 s av 7•In As5 =0in 45 = 0 fa5 =0ksi T5 =0k / Ri =0 as= 5 •in - - — - - - - - - - -- 5 _ - =6 -- .In _ As6 = -Din -- -- - ase-= ©- ---- --- --- fse- =-Oksl - - -- Tg -= 9k--- - - ---- =0 as= 5 =8•In 47 =01n 47 =0 fs7 =0ks1 T7 =0k I=0 =5 Atle 6dn A58 =01n eg8 =0 fa =0ksi T8 =0k g _ (C + Ctotal) - Ttotal EFb = 40.2 k Ttotal = 106.56 k M = 331 ftk Mn2.design 0f2•Mn2 Mn2. design = 281 ftk > Mu2 = 55 ftk re' C LATERAL DESIGN: SHEAR WALL DESIGN: PANEL f 21: )3OUNDARY AND CONFINEMENT REQUIREMENTS: NOMINAL AXIAL LOAD CAPACITY: Acv := L Ac = 314.51n EFFECTIVE SECTION AREA OF CONCRETE Ast = 3.11n 2 TOTAL AREA OF VERTICAL REINFORCING STEEL P := 0.8010.85•fCpsl.(A — Ast) + fypsI.Ast] P = 1208k Pu Pu2 Pu.design 0a•Po Pu.design = 845k > P = 40.4k 1) P = 40.4k < 0.10•Acv-fo•psi = 157k Po = 1208k NOMINAL AXIAL LOAD CAPACITY P = 40.4 k < 0.35•Po = 423k WALL CAN BE USED AS SHEAR WALL 2) Mu1 = 1.73 < 1.00 OR 3•Acy f psi = 67k > V = 9.1 k AND Mu1 = 1.73 < 3.00 Vu1•Lw Vol .1-w WALL EXEMPT FROM BOUNDARY ZONE DETAIL REQUIREMENTS Pu2 = 40.4 k 2 h Lw2 3 Mug = 55 ft k Any = 314.51n 1= 6 S = 1782.167In Pu2 Mu2 MAXIMUM EXTREME COMPRESSION FIBER STRESS fcc = 501 psi ASSUME LINEAR ELASTIC CONDITIONS AND UNCRACKED THEN SPECIAL TRANSVERSE REINFORCEMENT PER IF f = 501 psi < 0.24 = 1000psi IS NOT REQUIRED AS BOUNDARY ELEMENT C) C LATERAL DESIGN: SHEAR WALL DESIGN: PANEL! 21: HORIZONTAL REINFORCING: W 11 82•max := mir 3 3•h 18.in)) s2,max = 11.333in MAXIMUM SPACING barn° := 3 REINFORCEMENT SIZE (DIAMETER) A = 0.111n 2 AREA OF SHEAR REINFORCING s2 = 8In SPACING OF HORIZONTAL REINFORCEMENT 8•In n�v� 2A Ph h s2 Ph = 0.00297 > 0.0025 USE #3 TIES AT 8° O.C. REINFORCEMENT FULL HEIGHT OF hav= h•Lry Acv = 315in WEB THICKNESS x LENGTH IN DIRECTION OF SHEAR FORCE � THEN HORIZONTAL REINFORCING TERMINATING SHEAR WALL IF Vu1 > A CVV '° EDGES SHALL STANDARD HOOK AROUND EDGE REINFORCING (UBC 97 - 1921.6.2.2) OR U- SHAPED REINFORCING MATCHING THE HORIZONTAL BARS A . [ .psi = 22k SIZE AND SPACING SHALL LAP- SPLICE WITH HORIZONTAL BARS VERTICAL REINFORCING: l s1 : =min(j 3. 3•h 18•in)J s1 = 11.3331n MAXIMUM SPACING Mai= 5 ` REINFORCEMENT SIZE (DIAMETER) A = 0.31 in AREA OF SHEAR REINFORCING pn := 0.0025 + 0.5•I 2.5 - ' ]. � ph - 0.0025) pn = 0.00184 pv:= If(pn < 0.0025 , 0.0025 , If(pn < Ph.Pn,Ph)) Pv= 0.0025 Si =18in SPACING OF VERTICAL REINFORCEMENT 7.In h.)? USE /5) 85 EACH FACE VERTICAL REINFORCING FULL HEIGHT OF PIER NOMINAL SHEAR STRENGTH: Ph = 0.00297 C) Acv = 315 in WEB THICKNESS X LENGTH IN DIRECTION OF SHEAR FORCE Vn := A°V(ac. f .psi + ph•fypsi) Vn = 101k IC:= Vu1 IC = 0.15 0s•Vn r `O lZ •X -33. :L a 14.1 v 24 0 Results for LC 5, 1.2 D + 1.6 L + 0.5 S C y ember y Bending Moments (k -ft) `than Associates, Inc. November 17, 2005 riAMID AFGHAN 4:40 PM PANEL [ 2 ] Panel [2] R01.r3d r tt • Y - 8 Q 91.4 ti t e e Results for LC 6, 1.2D +1.0E +0.5L +0.2S C y ember y Bending Moments (k -ft) "ghan Associates, Inc. November 17, 2005 HAMID AFGHAN 4:40 PM PANEL [ 2 ] P anel [2] R01.r3d ['b • 0 . 0. • • • .. .. . • . -. -- - _ • • . • a J' � • • �,./�f ;r, �P•:1C► :. I ! ail -� �t� i t : � �^ . _ • . -- i ; i.._ _ , ti , .. • • • _tot: . II . Ike - ns& �, ,. • • . ... • - . • . . • . . r , 44 i • c r... -N . A'lstIAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS 6960 S.W. YARNS ST., SUITE 200 JOB NO TIGARD, OREGON 97223 (503) (503) 620.30{0, FAX 620-5539 SHEET OF . ! . i I . I I ! I ! . - - - - - - - -- .— I . , i I , 1 I I I I " C 9.4 .. 7 48. -8 . .. _ • -.63kift -1.89k ' ----7 .89k . La. s 324 5.2k I 4•A g ,AA■■••• •• .I. 22.,A AA.• AA/1,4••ak 41 • 46 -2.97k * . -2.97k ., . . • ' ' , . . -17.37k -17.37k -18.27k r . _. 21Uft di .711, - - 7.02k_ _ 3 1 ‘. \Iv vV' vvvvvivvvvi■ /V4VVVVVV/IVVV.0 / Vlip 44 ! . -2.97k -2.97k I . ... . , . . 1 - I .... I • • • 1 1 Loads: LC f, d.e o + iii g — • - --- Results for LC 7, 0.9 D + 1.0 E Afghan Associates, Inc. November 17, 2005 _ (---\ ' HAMID AFGHAN _____ PANEL [ 9 ] 1:15 PM Panel pi R01.r3d _ _ - - - — -- -- -- -. — -•- --- --- ---- _ . r LA- \ . • • 124.6 • • 101.3 -18 — 50 . • • • -.84k/ft . • -2. rill/P 57Jc • 5k PRIP./1////1///1/Prrrig//1.1Art/n/E9// .52k • • . • -. -3.96k -3.98 . • • • . . • . -29.06k -29.06k -30.56k • -2 . 2814.5kift 111 : 6.75k - Illiii!,1111111111111111111111111 -3.96k -3.96» 1 43 Loads:LC 6, 1.2 D 1.0E + 0.5 L + 0.2 Si Afghan Associates, Inc. November 17, 2005 ...__..... • HAMID AFGHAN 1:33 PM PANEL 9 ] Panel (9) R01.r3d • LATERAL DESIGN: SHEAR WALL DESIGN: PANEL[91: SHEAR WALL INFORMATION h 9.25•in SHEAR WALL THICKNESS Hw:= 15•ft HEIGHT OF SHEAR WALL Lw := 38•in LENGTH OF SHEAR WALL be 5500 CONCRETE COMPRESSIVE STRENGTH FOR SLABS AND FOOTINGS (psi) Ec = 4496081 psi MODULUS OF ELASTICITY FOR CONCRETE Iy 80000 YIELD STRENGTH OF STEEL REINFORCEMENT (psi) fy.psi Ey := E Ey = 0.00207 MAX STEEL STRAIN AT OUTERMOST TENSION REINFORCING r s i w= 0.003 MAXIMUM ALLOWABLE CONCRETE STRAIN a 1 := i < 4000, 0.85 , IQ fc > 8000,0.65,0.85 - 0.05.(fC 1000 4000 131 = 0.775 LOAD COMBINATIONS: 1) 0.9•DL +E Put= 39.4.k Madd 0•ft•k ADDITIONAL MOMENT DUE TO UNBALANCED VERTICAL LOADS Vu1 := 8.2.k ULTIMATE DESIGN SHEAR M := 48.7•ft•k + Madd Mul = 49 ftk ULTIMATE DESIGN MOMENT 2) 1.2•DL + E + (f1 L + f2•S) Pu2:= 101.3•k m= 0•ft•k ADDITIONAL MOMENT DUE TO UNBALANCED VERTICAL LOADS Vu2:= 18.2•k ULTIMATE DESIGN SHEAR Mu2:= 124.8•ft•k + Madd Mug = 124.8 ftk ULTIMATE DESIGN MOMENT C LATERAL DESIGN: SHEAR WALL DESIGN: PANEL f91: LOAD COMBINATION 1: 0.9.DL + E Pu1 = 39.4k +f1 = 0.88 Mu1 = 49 ft OVERTURNING MOMENT NA := 6.56•in NEUTRAL AXIS DEPTH COMPRESSION REINFORCEMENT: CONCRETE: ,= 0.85•fc•ps1.0.5• NA. h C= 142k INDIVIDUAL NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR STRESS BAR FORCE n: =2 M 5 sa: =2•In 2 Asa = 0.62 In Esa = 0.00209 fsa = 60ksi Ca '= 37.2k ,a,,i= 2 i tai= 5 sb := 81n 2 Asb= 0.621n Esb = 0 . fsb =Oksl - Cb =Ok = 0 uw= 5 sc:= 8•In 2 Asc = Esc =0 fsc =0ksi Cc =Ok I Ai-0 , , -5 sd : =8•1n 2 Asd = 0 I Esd = O fsd = 0 ksi Cd = O k Ctotal = 37.2k TENSION REINFORCEMENT: NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR STRESS BAR FORCE xv 2 Ini= 5 s1 := 2•In 2 AO = 0.62 In Est = 0.01255 fs1 = 60ksi 1) = 37.2k Ai =2 =5 s2 8•in As2 = 0.62In2 E s2 = 0.00889 fs2 = 80ksi T2 = 37.2k Ai= 2 p 5 s3 := 8-In 2 Asa = 0.62 In Es3 = 0.00523 fsa = 60ksi T3 = 37.2k =2 2w 5 84 : =8.in Aso = 0.62 1n Es4 = 0.00157 fs4 = 45.62ks1 T4 = 28.29k A qA.= 2 lef 5 55 := 81n 2 Ass= 0.62in Es5 =0 fs5 =0ksI T5 =0k o v v i= Agw= 5 sg: =6•in 2 H s i - - - - - - - --- - as= 5 s7 := 6.75• In AO = Oin E s7 =0 fs7 =0ksi T7 =0k Ai= 0 1044= 5 sg 6.75•In 2 Asg =Oin Es8 =0 fag =0ksi Tg =0k Ttotal = 139.89k EFb :_ (C + Ctotal) - Ttotal EFb = 39.2 k Mn1 = 292 ft Mn1.desIgn = +f1•Mn1 r 4 Mnl.desIgn = 250.3 ft k > M = 48.7 ftk LATERAL DESIGN: SHEAR WALL DESIGN: PANELf91: LOAD COMBINATION 2: 1.2•DL + E + (1 •L + f2•S) P = 101.3k 012 = 0.79 Mug = 125 ftk OVERTURNING MOMENT = 8.55-In NEUTRAL AXIS DEPTH COMPRESSION REINFORCEMENT: CONCRETE: &= 0.85•fc•psI.0.5•NA•h C = 185k NUMBER SIZE SPACING STEEL AREA BAR STRAIN INDIVIDUAL BAR FORCE BAR STRESS ' a t ,- 2 M. 5 ' = 2 in Asa = 0.62In esa = 0.0023 f = 80ks1 Ca = 37.2k , 1= 0 laj 5 m 8•In 2 Asb = 0 in esb = 0 fsb = 0 ksi Cb = Ok R= 0 & 5 A 8.1n 2 Asc =01n esc =0 fsc =0ks1 Cc =0k ,= 0 = 5 AC= 8.in A 2 sd =Oin esd =0 fsd =Oksl Cd =Ok ,= 0 Ass= 5 se := 8•1n 2 ASe = O in sSe = O f = O ks1 Ce = O k TENSION REINFORCEMENT: Ctotal= 37.2k NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR STRESS BAR FORCE Au= 2 lc= 5 Am= 2•1n As1 = 0.62 in es1 = 0.00893 f s1 = 60ks1 Ti = 37.2k = 2 = 5 8•in As2 = 0.62In es2 = 0.00612 f = 60ks1 T2 = 37.2k , ^.= 2 Ap 5 ,= 8•ln Asa = 0.62 in ss3 = 0.00332 f s3 = 60ksi T3 = 37.2k = 2 AVIAr 5 8 In A = 0.621n es4 = 0.00051 f = 14.75ks1 T4 = 9.15k =0 =5 u= 8•in As5 =0In es5 =0 fs5 = 0ksI T5 =0k "ASg ° Oin esb - 0 fsb = 0 T6 Ok - - - --- - -- r�` =0 At 5 , =6in As7 =0in es7 =0 fs7 =0ksi T7 =0k r�^.= 0 Ani= 5 4= 6•In As8 = 0In e s8 = fs8 =0ksi T8 =0k abi= (C + Ctotal) - Ttotal EFb = 101.3k Ttotal = 120.75 k M = 351 ftk Mn2.desIgn 4f2•Mn2 Mn2.deslgn = 277 ftk > M = 125 ftk LATERAL DESIGN: SHEAR WALL DESIGN: PANEL I' 91: BOUNDARY AND CONFINEMENT REQUIREMENTS, NOMINAL AXIAL LOAD CAPACITY: Ac := L Ac = 333in EFFECTIVE SECTION AREA OF CONCRETE Ast = 3.11n 2 TOTAL AREA OF VERTICAL REINFORCING STEEL Po := 0.80•[0.85•fo•psi•(A - Ast) + fypsI•Ast] P = 1383k P := P Pu.design 0a•Po Pu.design = 968k > Pu = 101.3k 1) P = 101.3k < 0.10•Avfo•psI = 183k Po = 1383k NOMINAL AXIAL LOAD CAPACITY / P = 101.3k < 0.35•Po = 484k WALL CAN BE USED AS SHEAR WALL 2) Mu1 = 1.98 < 1.00 OR 3•A� j = 74k > Vui = 8.2k AND Mu1 = 1.98 < 3.00 Vu1•Lw Vu1•Lw WALL EXEMPT FROM BOUNDARY ZONE DETAIL REQUIREMENTS h Lw 2 Pu2 = 101.3k Mug = 125 ftk A 2 Acv 3331n = 8 S = 1998In Pu2 Mu2 MAXIMUM EXTREME COMPRESSION FIBER STRESS fcc := acv + 3 f = 1053psi ' ASSUME LINEAR ELASTIC CONDITIONS AND UNCRACKED THEN SPECIAL TRANSVERSE REINFORCEMENT PER IF f = 1053psi < 0.2•f = 1100psI IS NOT REQUIRED AS BOUNDARY ELEMENT ki LATERAL DESIGN: SHEAR WALL DESIGN: PANEL (91: HORIZONTAL REINFORCING: Lw s2.max := mint 13 3•h 18.14 s2.max = 12In MAXIMUM SPACING barno:= 3 REINFORCEMENT SIZE (DIAMETER) Av = 0.11 in AREA OF SHEAR REINFORCING s2 = 8in SPACING OF HORIZONTAL REINFORCEMENT n w= 8•In , 2A Ph = 0.00297 > 0.0025 Ph := h s2 USE 03 TIES AT 8" O.C. REINFORCEMENT FULL HEIGHT OF PIER Acto= h Lw Any = 333In WEB THICKNESS x LENGTH IN DIRECTION OF SHEAR FORCE THEN HORIZONTAL REINFORCING TERMINATING SHEAR WALL IF Vu1 > Any [ EDGES SHALL STANDARD HOOK AROUND EDGE REINFORCING (UBC 97 - 1921.6.2.2) OR U- SHAPED REINFORCING MATCHING THE HORIZONTAL BARS Acv f .psi = 25k SIZE AND SPACING SHALL LAP- SPLICE WITH HORIZONTAL BARS VERTICAL REINFORCING: (Lw llll sl.max := mint 3 3.h 18•In4J sl.max = 12in MAXIMUM SPACING = 5 \ REINFO SIZE (DIAMETER) A = 0.311n 2 AREA OF SHEAR REINFORCING Pn := 0.0025 + 0.5•I 2.5 — •(ph 0.0025) On = 0.00191 w) Pv:= If(Pn < 0.0025,0.0025,1f(pn < Ph,Pn,Ph)) pv = 0.0025 s1 = 18In SPACING OF VERTICAL REINFORCEMENT A 8•in USE (5) #5 EACH FACE VERTICAL REINFORCING FULL HEIGHT OF PIER NOMINAL SHEAR STRENGTH: Ph = 0.00297 Any = 333In WEB THICKNESS X LENGTH IN DIRECTION OF SHEAR FORCE C Vn := Acy f .psi + ph•fypsi) Vn = 109k IC:= - IC = 0.13 0 0 k Ott, cOitcPN C 644A,. po.A , � � ��y . , - olk-v, -; 7 , . -. „ , - , -,. .- . ; -: •- • . : • 1 - : ‘ , C iillii4 ' ' . , ____ . 0' 1 ' s 4.03 b Ii"):t,(i` W( Q 11 .mom - , wIti 0.1*y 011Nt,)14- Xa 60 wi r o' VP) AV) 41 ' t c_ o C' IMP yvl act 4, A 1115 kvd = teiz," C 400 AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS 6960 S.W. VARNS ST., SUITE 200 JOB NO TIGARD, OREGON 97223 411 (503) 6203030, FAX 5203539 SHEET OF Y �' V .X - 29.06k =.06k ' • • ' , 30.56k -.75k/ft 132.5 4 ' I 1 Loads: LC 8, 1.2 D + 0.5 L + 1.6 S Results for LC 8, 1.2 D + 0.5 L + 1.6 S _Member y Bending Moments (k -ft) ( ` jhan Associates, Inc. November 17, 2005 HAMID AFGHAN 3 :02 PM PANEL [ 9 ] Panel [9] R01.r3d r Y r ^w 9 -50. ' -29.06k -30.56k 7 5k/ft, / / / / r� i is� , V \ i / l 56.6 I 6 Loads: LC 8, 1.2 D + 0.5 L + 1.6 S Results for LC 8, 1.2 D + 0.5 L + 1.6 S Member z Shear Forces (k) (wqhan Associates, Inc. November 17, 2005 ..AMID AFGHAN 3:03 PM PANEL [ 9 j Panel [9] R01.r3d (") 0 ;8.6 ifi • 227.5 • Results for LC 6, 1.2 D + 1.0 E + 0.5 L + 0.2 S Member y Bending Moments (k-ft) \ lhan Associates, Inc. November 17, 2005 riAMID AFGHAN 4:41 PM PANEL [ 9 ] Panel [9] R01.r3d e ufk- I ' . Y X • • . . . . . . . . . . . . . • . . . • . . 1 • • I . . . . . . • • • . . . . . . . • . • • : 1 • 1 66.11 4, b- • •• • • • Results for LC 6, 1.2 D + 1.0 E + 0.5 L + 0.2 S Member z Shear Forces (k) ghan Associates, Inc. • November 17, 2005 HAMID AFGHAN 4:42 PM PANEL [ 9 ] Panel [9] R01.r3d r 1/#9 0 0 tq wtv4L - tVA00.. (Th ofkot, va4 (91\1 at-fr LegAS fitvir 0.1.7fr- 041 . 4 1: • _ 1 V A-Al..4- A-P.14007) \ !AA" 1 [ ,,, ft,...nt. g rft•-e ' - i, vf 0. 'eo ,% 1 1.1( 7 7 it2 1 , 1 a• #4, 140 / 4 efe \4J I : • ‘ , i_ 4 ,. . -t . • p.°7,,k/k (Ttjr-g11 - . C 1 , f e. Ar 6 14 1 : . ovvitt c; GoAs 6NtloKn 440 • A-07 . .. , , tat ll.te , _. /406a14)(014):' J. . AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS 6950 S.W. VARNS ST., SUITE 20 JOB NO TIGARD, OREGON 97223 i lk (503) 620-3030, FAX 620-5539 SHEET _ LATERAL DESIGN: PANEL DESIGN: SHEAR WALL 13.51: SHEAR WALL INFORMATION h := 9.25•In SHEAR WALL THICKNESS Hw:= 31•ft HEIGHT OF SHEAR WALL Lw := 228•in LENGTH OF SHEAR A k s i= 4000 CONCRETE COMPRESSIVE STRENGTH FOR SLABS AND FOOTINGS (psi) Ec = 3834254psi MODULUS OF ELASTICITY FOR CONCRETE ki= 60000 YIELD STRENGTH OF STEEL REINFORCEMENT (psi) fy.psi By := E s ey = 0.00207 MAX STEEL STRAIN AT OUTERMOST TENSION REINFORCING r b= 0.003 MAXIMUM ALLOWABLE CONCRETE STRAIN P 1 its f < 4000, 0.85, it fc > 8000, 0.65 , 0.85 - 0.05.1 fC 100000 P 1 = 0.85 LOAD COMBINATIONS: 1) 0.9•DL +E Pu1 := 61•k Madd 30.ft.k ADDITIONAL ULTIMATE MOMENT DUE TO UNBALANCED VERTICAL LOADS Vu1 := 97.5•k ULTIMATE DESIGN SHEAR Mu1 = 2610•ft•k + Madd Mul = 2640 ftk ULTIMATE DESIGN MOMENT 2) 1.2•DL +E +(f11 +f2•S) P 121.k i= 60•ft•k ADDITIONAL ULTIMATE MOMENT DUE TO UNBALANCED VERTICAL LOADS 1 Vu2:= 97.5•k ULTIMATE DESIGN SHEAR Mu2 := 2610•ft•k + Madd Mug = 2670 ftk ULTIMATE DESIGN MOMENT If/41 LATERAL DESIGN: PANEL DESIGN: SHEAR WALL 13.51 LOAD COMBINATION 1: 0.9•DL + E Pu1 =61k mf1 = 0.89 Mu1 = 2640 ftk OVERTURNING MOMENT NA := 16.55-In NEUTRAL AXIS DEPTH COMPRESSION REINFORCEMENT: CONCRETE: &= 0.85•fc psi•0.5•NA•h C = 260k NUMBER SIZE SPACING STEEL AREA BAR STRAIN INDIVIDUAL BAR FORCE BAR STRESS n: =2 Ami= 5 sa: =2•In 2 Asa = 0.62 In ssa = 0.00264 fsa = 60kst Ca = 37.2k kli= 2 Apj 5 sb := 8•In Asb = 0.621n eta) = 0.00119 fsb = 34.43ks1 Cb = 21.35k A 2 = 5 sc: 8•in Asc= 0.62in s sc = fsc = Cc =Ok r AA= 2 M 5 sd := 8•In Agd= 0.621a ssd =0 fsd =0ksl Cd =Ok Ctotal = 58.55k TENSION REINFORCEMENT: NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR STRESS BAR FORCE p 2 e izi= 5 s1 := 2•in 2 Asi = 0.82 In ss1 = 0.03797 fs1 = 60ks1 Ti = 37.2k = 2 i= 5 82 := 8•In 2 As2 = O.621n ss2 = 0.03652 fs2 = 80ks1 T2 = 37.2k jai= 2 a4= 5 s3:= 8•In 2 Asa = 0.62 In ss3 = 0.03507 fsa = 60ksi T3 = 37.2k avri =2 Isi= 5 sit : =8•In 2 Aso = 0.62tn ss4 = 0.03362 fsg = 60ks1 T4 = 37.2k =2 gr 5 85: =8in A55 = 0.62In 6s5= 0.03217 f s5 = 60ks1 T5 = 37.2k i tu= 2 Atr 4 s6 := 16.In 2 Ash = 0.4In ea = 0.02927 fsb = 60ksi T6 = zv 2 = 4 87 := 16•in 2 As7 = 0.41n ss7 = 0.02637 f87 = 60ksi T7 = 24k A`= 2 Aw 4 sg := 16 in As8 = 0.4in ss8 = 0.02347 fsb = 60ks1 Tg = 24k Ttotal = 258 k EFb :_ (C + Ctotal) - Ttotal EFb = 61k C Mn1 = 4661 ftk Mnl.design Oft Mn1 Mnl.design = 4127 ftk > Mui = 2840 ftk LATERAL DESIGN: PANEL DESIGN: SHEAR WALL F3.51 LOAD COMBINATION 2: 1.2.DL + E + 01 + f2•S) Pu2 =121k 42 =0.87 • M = 2670 ftk OVERTURNING MOMENT a = 19.75.In NEUTRAL AXIS DEPTH COMPRESSION REINFORCEMENT: CONCRETE: A. 9 , ,,= 0.85•fc•psi•0.5•NA•h C =311k INDIVIDUAL NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR STRESS BAR FORCE , =2 M= 5 h 2•In 2 Asa = 0.62 in esa = 0.0027 fs = 60ksi Ca = 37.2k =2 AW = 5 AV 5.1n 2 Asb = 0.62 in esb = 0.00148 fsb = 42.95ks1 Cb = 26.63k A 2 11&= 5 = 8 In Asc = 0.62 in esc= 0.00027 f = 7.71 ks1 Cc = 4.78 k r =2 =5 =8•in Asd = in esd =0 fsd =0ksi Cd =0k A= 2 m= 5 se := 8•in Asa = 0.621n e se =0 fsa = Ce =0k TENSION REINFORCEMENT: Ctotal = 68.61k NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR STRESS BAR FORCE = 2 low= 5= 2•In 2 As1 = 0.62 in es1 = 0.03133 fs1 = 60ks1 Ti = 37.2k ' j 1 ^ = 2 , = 5 ^- 8 in As2 = 0.621n es2 = 0.03011 fS2 = 60ks1 T2 = 37.2k ,N 2 law= 5 kv= 8In 2 As3 =0.621n es3 =0.0289 fs3 =60ks1 T3 =37.2k ni =2 M. =5 , =8In 2 Aso = 0.821n eS4 = 0.02768 fs4 = 60ks1 T4 = 37.2k , = 2 M 5 Av= 8•In 2 Ass = 0.621n es5 = 0.02647 f = 60ks1 T 5 = 37.2k _ = 4 16 in Asg = 0,41n2_- . -- . _ ea 0.02404_- -.. -.. - t --- - _ __ _- - - - - - - - - - -- -- - - - - - - - - ...- -- - - - - -- - - -- - s8 = 80ksi - -- -- T6 = 24k -- = 2 M= 4= 16•1n As7 = 0.4In es7 = 0.02161 fS7 = Wks' T7 = 24k = 2 M= 4 =16In Asb= 0.4In esg= 0.01918 fs8 =60ks1 Tg = 24k , F „= (C + Ctotal) - Ttotal EFb = 121 k Ttotal = 258k C \ M = 5172 ftk Mn2.design 4f2•Mn2 Mn2.design = 4507 ftk > Mu2 = 2670 ftk rtiq LATERAL DESIGN: PANEL DESIGN: SHEAR WALL 113.51 BOUNDARY AND CONFINEMENT REQUIREMENTS: NOMINAL AXIAL LOAD CAPACITY: Acv L A 2109in EFFECTIVE SECTION AREA OF CONCRETE Ast = 7.4In TOTAL AREA OF VERTICAL REINFORCING STEEL Po := 0.8010.85•fopsi•(Acv - Ast) + fypsl•Asj Po = 6072k P = P Pu.design $a•Po Pu.design = 4250k > P = 121k 1) P = 121 k < 0.10•Ayfo•psi = 844k P = 6072k NOMINAL AXIAL LOAD CAPACITY P = 121k < 0.35•P0 = 2125k WALL CAN BE USED AS SHEAR WALL Mu1 2) = 1.43 < 1.00 OR 3•A .psi = 400k > Vu1 = 97.5k AND Mu1 = 1.43 < 3.00 Vu1 •Lw Vu1 •L WALL EXEMPT FROM BOUNDARY ZONE DETAIL REQUIREMENTS Pu1 = 61k M = 2640 ftk A h Lw � = 2109 1= 6 S = 801421n Put Mu1 MAXIMUM EXTREME COMPRESSION FIBER STRESS fcc: =. A- + S f = 424psI ASSUME LINEAR ELASTIC CONDITIONS AND UNCRACKED THEN SPECIAL TRANSVERSE REINFORCEMENT IF f = 424 psi < 0.2•fCpsi = 800 psI IS NOT REQUIRED FOR BOUNDARY ELEMENT fib0 • r) LATERAL DESIGN: PANEL DESIGN: SHEAR WALL 13.51 HORIZONTAL (REINFORCING: l L s2.max mint 1 3•h 18-In)) 5 2.max = 18In MAXIMUM SPACING barri := 4 REINFORCEMENT SIZE (DIAMETER) A = 0.2in AREA OF. SHEAR REINFORCING s2 = 161n SPACING OF HORIZONTAL REINFORCEMENT 161 nri 2Av Ph h s2 Ph = 0.0027 • > 0.0025 USE 04 AT 16" O.C.EACH FACE HORIZONTAL REINFORCEMENT FULL HEIGHT OF WALL U= h•L Acv= 21091n WEB THICKNESS x LENGTH IN DIRECTION OF SHEAR FORCE � THEN HORIZONTAL REINFORCING TERMINATING SHEAR WALL r IF Vu1 > A or c EDGES SHALL STANDARD HOOK AROUND EDGE REINFORCING OR U- SHAPED REINFORCING MATCHING THE HORIZONTAL BARS Acv 133k Vu1 = 97.5k SIZE AND SPACING SHALL LAP- SPLICE WITH HORIZONTAL BARS VERTICAL REIN sl.max := mIn(j 3W 3•h 18.In)) s1,max = 18In MAXIMUM SPACING Atr4W 4 l` REINFORCEMENT SIZE (DIAMETER) Av = 0.2In AREA OF SHEAR REINFORCING Pn := 0.0025 + 0.5.I 2.5 - .I• (p - 0.0025) pn = 0.00259 l wJ Pv := ipn < 0.0025,0.0025,If(p < Ph, Pv= 0.00259 Si = 16in SPACING OF VERTICAL REINFORCEMENT , =16n USE 04 AT 16" O.C.EACH FACE VERTICAL REINFORCEMENT FULL HEIGHT OF WALL NOMINAL SHEAR STRENGTH: Ph = 0.0027 A = 2109in WEB THICKNESS X LENGTH IN DIRECTION OF SHEAR FORCE e Vn Acv(ac• f •PsI + ph•fyps1) Vn = 707k IC •_ Vu1 0s•Vn IC = 0.23 LATERAL DESIGN: t ;' e tmAxtiocf Wyu 0& kb woe wiytA, X71 kow goo o . e kot of t 4 1 4 0 2 ) 14 1 .0- e 2 14(1,0 m 090X0') 11(2 g. 0444 oh(1)j, 10' RCL- '0794% \„t. ad 3 01014- btk tvi tav z9� �7 (0-7 tir) 121 A V 0106) - 1416 c c hi)�3�lif/✓' �0 (14141 J _ , 11, 06CV .: . Mel AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS 8980 S.W. VARNS ST., SUITE 200 JOB NO TIGARD, OREGON 97223 (503) 8204030, FAX 620-5539 SHEET OF t-/N"V 4/042 4AAA: C4c1 - - t a 4e, C 4(' (7 k- (oft 4- QiC ; c690') ihkatiO • 1 pp 0 .001 b- . t,Y 2 • (19)(66) 14wy, -. a [ - t i t r e �•� �1c � irk' 1b 11)t 4 w wr) wt () U,t;9 ' , tv ,A7 te dp. 0 • i-or 4 .0i1"01"‘ N 1 ► C�rX D)f�.Q 147) , o4 , w(04 t 2 T � t gAti M ' Vk 6 v '29 J appeCe t 641934. ag .Z . cosy W1,49 se. AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 8980 S.W. YARNS St, SUITE 200 TIGARD, OREGON 97223 (503) 8203030, FAX 820.5539 SHEET OF 0 fx)tiAat FM, C T-0.atwitA 40a stn, C , e c) itot . t tottii 8 0 t 7 dt" t C "fV (li'Iit ko *L1-. 0 t % , )' 04)1V/it)) zA•elf) C AFGHAN ASSOCIATES, S, INC. BY DATE CONSULTING ENGINEERS JOB NO 6960 8.W. VARNS ST., SUITE 200 TIGARD, OREGON 97223 SHEET_ Sk (500) 8203030, FAX 8206539 OF 0 0 _ 4vuvt V-4 . C .' 4 Cam?! • t - ; �,�.�:� : C at 4 k o rs A ��) ' I � Q,,i,h� �) . &41.1161 - V i ' 'eve 1. 4 . f =- =.x' 60 _ 1 ,, fit 0 eh L , L ' 6 C2-; . c f\ U'Xiv) t Vt6 , Pe is criSo OA A- 2140‘ 4iS5 )u z, G tr~ Nu(4) 9 Q 0 4 7 7X0 1 18 12,4. C AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS .IOB No 6960 S.W. YARNS St, SUITE 200 TIGARD, OREGON 97223 (503) FAX 6204539 OF � 0 0 1 4,11ami - vol.- r) wAWiet, vatol-i . ' Day tei4-$ itiYO'aiop 19 - - r o t O.In -,, to • w ,., j .,..t. .. . i . „ - , , i ' : : • i , f I-, i . : ' 1 II 1 I , , ■ . . ik.. . r\ 14V14 . 4 . _. . , . v v C ' • \ • c -: ' - ' ' . - . H V ibra - - tuf,(e-itigoVv.)ter 2 4, A 14) , 4 34 14 0 f Wivire fint-eaut-b- h 0 Ow • -1>"4---4` • ( 1 1 1 4 - ,____......... . _ . ' vfrir /. • 31 v to' &JO lt C '- c/A0 (-------- ■,.. AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6960 S.W. VARNS ST., SUITE 200 TIGARD, OREGON 97223 (503) 620-3030, FAX 620-5539 SHEET SC° 0 0 C) fl)Wte gi-AtS ► ,.o , ,_ _,,,,,,,,, ., r ,,,,.,„,,i- ' .. _ ,...., . 6 4 l .. . 1. C . tAikk Sp, 'b &a VitAk 11 (, datifif • . 1.n 1 A sti 4 ' AO Is'° 14 a , � � • itko i C ,, - AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS 8980 S.W. VARNS ST., SUITE 200 JOB NO TIGARD, OREGON 97223 (503) 6204030, FAX 6204539 SHEET 0 OF V*1 \40pm, icutwo n , 6voy..4stui cyi 1 4ap vt. , • 41P CA VA- k tkie 1.04 CO•it#' 60' LC) . ! Icy' Uo�%C(� C AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS 8960 S.W. VARNS ST., SUITE 200 JOB NO TIGARD, OREGON 97223 r p, (503) 620-3030, FAX 620-5539 SHEET OF �a LATERAL DESIGN: PANEL DESIGN: SHEAR WALL 1 61: SHEAR WALL INFORMATION h := 9.25•In SHEAR WALL THICKNESS H := 15-ft HEIGHT OF SHEAR WALL Lw:= 144•In LENGTH OF SHEAR WALL ,= 5000 CONCRETE COMPRESSIVE STRENGTH FOR SLABS AND FOOTINGS (psi) Ec = 4286826psi MODULUS OF ELASTICITY FOR CONCRETE ,= 60000 YIELD STRENGTH OF STEEL REINFORCEMENT (psi) fypsI ey:= E Ey = 0.00207 MAX STEEL STRAIN AT OUTERMOST TENSION REINFORCING Ac 0.003 MAXIMUM ALLOWABLE CONCRETE STRAIN (f� 4000 81 := i l[ f c < 4000, 0.85, iQ r f� > 8000, 0.65 , 0.85 - 0.05.1 1000 )� 11 = 0.8 LOAD COMBINATIONS: 1) 0.9•DL +E P := 29.1•k Madd := 0•ft•k ADDITIONAL ULTIMATE MOMENT DUE TO UNBALANCED VERTICAL LOADS Vu1 := 43.5•k ULTIMATE DESIGN SHEAR Mu1 := 652.54k + Madd Mu1 = 653 ftk ULTIMATE DESIGN MOMENT 2) 1.2•DL +E +(f11 +f2•S) -- — — PU2 := 55.7,k .. - - - - . 11a= 0•ft•k ADDITIONAL ULTIMATE MOMENT DUE TO UNBALANCED VERTICAL LOADS V := 43.5•k ULTIMATE DESIGN SHEAR Mu2:= 652.54k Madd Mug = 653 ftk ULTIMATE DESIGN MOMENT e LATERAL DESIGN: PANEL DESIGN: SHEAR WALL f 6 l • LOAD COMBINATION 1: . 0.9.DL + E Put = 29.1k •fl = 0.89 Mu1 = 653 ftk OVERTURNING MOMENT NA:= 1616•in NEUTRAL AXIS DEPTH • COMPRESSION REINFORCEMENT:' CONCRETE: . = 0.85•fc•0I.0.5•NA•h Cr 326k INDIVIDUAL NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR FORCE BAR STRESS n := 0 = 6 s := 2•In 2 Asa =0In esa = 0.00264 fsa =60ksi Ca =0k Ai= 0 A ktr o r. 5 sb := 8•1n 2 Asb = 01n 2 =0.00119 f = 34.59ksi Cb = 0 n i =:0 •= 5 sc:= 8•In . Asc= 010 esc= o fsc= O ksi Co = Ok r, =0 i tw= 5 sd : =16•1n 2 Asd = Oin esd = 0 fsd = Oksi Cd = Ok Dotal = 0 TENSION REINFORCEMENT:. NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR STRESS BAR FORCE ,= 2 ai= 5 s1 = 2•in A 0.62in a 0.02266 f 81 = s1 = s1 = 60ks1 T1 = 37.2k 2 M 5 s2 := 8•In 2 As2 = 0.821n es2 = 0.02122 fsg = 60ksi T2 = 37.2k ,pi= Aaj 5 s3: =8•In _0.6210 Asa - es3 =0.01977 fs3 =60kW T3 =37.2k = 2 =5 s4: =16•In 2 Aso = 0.62 in es4 = 0.01688 f = 60ks1 T4 = 37.2k z 2 At 5 s5 := 16•in Ass = 0.621n es5 = 0.01399 f s5 = 60ksi Tg = 37.2k Ai= 2 & 5 sg := 16•1n 2 Asg = 0.62In esg = 0.0111 fsg = 60ks1 Tg = 37.2k Ai= 2 as= 5 s7 = 16•in A 0.621n • a 0.0082 f s7= s7= s7 =60ksi T7 =37.2k Ai= 2 M 5 sg := 16•In p Agg = 0.62 in so = 0.00531 f = 60ks1 Tg = 37.2 k Ttotal = 297.6k EFb :_ (C + Ctotal) - Ttotal EFb = 29k Mn1 = 2477 ftk Mnl.design Oft Mn1 Mnl.design = 2208 ftk > Mul = 652.5 ft k l k LATERAL DESIGN: PANEL DESIGN: SHEAR WALL f 61 LOAD COMBINATION 2: 12•DL + E + (f1 •L + f2•S) Pu2 = 55.7k 042 = 0.88 M = 653 ftk OVERTURNING MOMENT n� 17.95•1n NEUTRAL AXIS DEPTH COMPRESSION REINFORCEMENT: CONCRETE: ,&= 0.85•fc•ps1.0.5•NA•h C= 353k • NUMBER SIZE SPACING STEEL AREA BAR STRAIN INDIVIDUAL BAR FORCE BAR STRESS 4 =0 mi= 5 =2•in Asa = Oin 2 esa= 0.00287 f sa =60ksi Ca =Ok hi 0 Awe 5 Ate 8.In Asb = 01n2 esb = 0.00133 fsb = 38.53ks1 Cb = Ok = 0 = 5 Ape 8•in Asc =Oin esc = fsc =0ksl Cc =0k n:= 0 Apii= 5 A 16•In 2 Asd = 01n ssd = 0 fsd = O ksI Cd = 0 k ittfi= 0 A tovw = 5 s = 16•In 2 Ase = O in ese = O fse = 0 ksi Ce = O k TENSION REINFORCEMENT: Ctotal = Ok NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR STRESS BAR FORCE i= 2 = 5 U= 2•in As1 = 0.62 in es1 = 0.02073 f s1 = 60ks1 T1 = 37.2k Ai=2 gr 5 a =8•in 2 AS2 = 0.62in es2 = 0.0194 fs2 = 60ksi T2 = 37.2k = 2 - 5- Bin Asa = 0.62In es3 = 0.01806 fs3 - 60ks1 T _ .._.. .. - 3 = 37.2k k 2 Att4= 5 sue= 16In AS4 = 0.62 in eset = 0.01538 fS4 = 60ksi T4 = 37.2 k r�\.= 2 = 5 A:= 16•in Ass = 0.62In so = 0.01271 f = 60ksi T5 = 37.2k A 2y= 5= 16 in Asg = 0.62 in e = 0.01004 fsg = 60k8I Tg = 37.2k r�`= 2 AtLi= 5 a= 18•in As7 = 0.62in e = 0.00738 f = 60ksl T7 = 37.2k Ai= 2 as= 5= 16•in As8 = 0.62In es8 = 0.00469 f = 60ksi Tg = 37.2 k F= (C + Ctotal) - Ttotal EFb = 55.2 k Ttotal = 297.6k Mn2 = 2611 ftk Mn2.design 0f2 Mn2.design = 2306 ftk > M = 653 ftk fit LATERAL DESIGN: PANEL DESIGN: SHEAR WALL f 61 BOUNDARY AND CONFINEMENT REQUIREMENTS: NOMINAL AXIAL LOAD CAPACITY: Acv := Lw•h Acv = 13321n EFFECTIVE SECTION AREA OF CONCRETE /tot = 4.96In TOTAL AREA OF VERTICAL REINFORCING STEEL Po := 0.80•[0.85•fcpsiiAcv - Ast) + fypsi•Asa P = 4750k Pu Pu2 Pu.design .a•Po Pu.design = 3325k > P = 55.7k 1) P = 55.7k < 0.10•Acyft•psi = 666k P = 4750k NOMINAL AXIAL LOAD CAPACITY Pu2 = 55.7 k < 0.35•P0 = 1663k WALL CAN BE USED AS SHEAR WALL 2) Mu1 = 1.25 < 1.00 OR 3•Ady Tic psi = 283k > V = 43.5k AND Mu1 = 1.25 < 3.00 u 1 Vu1•Lw Vu1•Lw WALL EXEMPT FROM BOUNDARY ZONE DETAIL REQUIREMENTS 2 h Lw 2 P = 55.7k M = 653 ft k A 1332in 1= 6 S = 319881n f Pu2 Mu2 f 287 MAXIMUM EXTREME COMPRESSION FIBER STRESS oz:_ A + S p ASSUME LINEAR ELASTIC CONDITIONS AND.UNCRACKED a THEN SPECIAL TRANSVERSE REINFORCEMENT IF f = 287psi < 0.2•fCpsi = 1000ps1 IS NOT REQUIRED FOR BOUNDARY ELEMENT _ _ _ _ �� V LATERAL DESIGN: PANEL DESIGN: SHEAR WALL 16 HORIZONTAL REINFORCING: 1l1l s2 := min(( 3 3 •h 18•In)J s2 = 18In MAXIMUM SPACING barno := 4 REINFORCEMENT SIZE (DIAMETER) A = 0.2In AREA OF SHEAR REINFORCING s2 = 161n SPACING OF HORIZONTAL REINFORCEMENT = 121n 2A Ph := s2 Ph = 0.0036 > 0.0025 USE M4 AT 12" O.C.EACH FACE HORIZONTAL REINFORCEMENT FULL HEIGHT OF WALL = h•L Acv = 133210 WEB THICKNESS x LENGTH IN DIRECTION OF SHEAR FORCE � THEN HORIZONTAL REINFORCING TERMINATING SHEAR WALL IF Vu1 > Acv- 'o EDGES SHALL STANDARD HOOK AROUND EDGE REINFORCING OR U- SHAPED REINFORCING MATCHING THE HORIZONTAL BARS A = 94k Vu1 = 43.5k SIZE AND SPACING SHALL LAP- SPLICE WITH HORIZONTAL BARS VERTICAL REINFORCING: s1 .max := min(j 3 3•h 18•in� J s1 •max = 18in MAXIMUM SPACING = 5 REINFORCEMENT SIZE (DIAMETER) A = 0.31 in AREA OF SHEAR REINFORCING Hw pn := 0.0025 + 0.5(2.5 - � •�ph - 0.0025) pn = 0.00319 Lw Pv := Iftpn < 0.0025,0.0025,if ( p < Ph,Pn,Ph)) Pv = 0.00319 51 = 181n SPACING OF VERTICAL REINFORCEMENT nuri- = 16•In - -- - - -- — USE- 125 -AT 16"- O:C:EACH-FACE VERTICAL REINFORCEMENT FULL HEIGHT- OFINALL - -- NOMINAL SHEAR STRENGTH: Ph = 0.0036 Acv = 1332In WEB THICKNESS X LENGTH IN DIRECTION OF SHEAR FORCE Vn Aov(aco• j•ps1 + ph•fyps1) Vn = 571 k IC:= Vu1 IC = 0.13 Ss•Vn C r �7 0 0 \ 9A— 0 O Vir, amigo ii; 1 .- . r) Q' t . , ... , C : • 4X-filto0 :: " " ' ' ''' :"'4 ' • • : • • ' _ _ _ F6 TOO VI)ArlifOr t 1 t, " a aeg Vk,.c- ft)-6 vb.-, crii.` otAkilibilftf: . iblortk . w= TON c°,79 . _ . ! -.-?4� � _. __. __._. _. - - --- t_. __- __.____ . C - \ AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS 6960 S.W. YARNS St. SUITE 200 JOB NO , TIGARD, OREGON 97223 (503) 620.0, FAX 620.9 SHEET_, OF LATERAL DESIGN: PANEL DESIGN: SHEAR WALL 161: SHEAR WALL INFORMATION h := 9.25•in SHEAR WALL THICKNESS H := 15ft HEIGHT OF SHEAR WALL Lw := 240•in LENGTH OF SHEAR 194= 5000 CONCRETE COMPRESSIVE STRENGTH FOR SLABS AND FOOTINGS (psi) Ec = 4286826 psi MODULUS OF ELASTICITY FOR CONCRETE h= 60000 YIELD STRENGTH OF STEEL REINFORCEMENT (psi) f psi Cy:- E By = 0.00207 MAX STEEL STRAIN AT OUTERMOST TENSION REINFORCING • E kw 0.003 MAXIMUM ALLOWABLE CONCRETE STRAIN r r f� 4000 is 1 := iQ f < 4000, 0.85 ,ft[ f� > 8000, 0.65 , 0.85 — 0.05.1 ( 1000 )� 11 .1 = 0.8 LOAD COMBINATIONS: 1) 0.9•DL +E Pu1 := 99•k Madd 0•ft•k ADDITIONAL ULTIMATE MOMENT DUE TO UNBALANCED VERTICAL LOADS V := 97•k ULTIMATE DESIGN SHEAR M := 18704k+ Madd Mu1 = 1870 ftk ULTIMATE DESIGN MOMENT 2) 1.2•DL +E +(f1•L +f2•S) u2 206•k — — — - -- — — - -- — — — -- = 0.ft.k ADDITIONAL ULTIMATE MOMENT DUE TO UNBALANCED VERTICAL LOADS Vu2 := 97.k ULTIMATE DESIGN SHEAR Mug := 2622•ft•k + Madd Mu2 = 2622 ftk ULTIMATE DESIGN MOMENT LATERAL DESIGN: PANEL DESIGN: SHEAR WALL [ 61 . LOAD COMBINATION 1: 0.9•DL + E Put = 99k 0fl = 0.88 Mu1 = 1870 ftk OVERTURNING MOMENT NA := 202•in NEUTRAL AXIS DEPTH COMPRESSION REINFORCEMENT: CONCRETE: - 0.85•fc•ps1•0.5•NA•h C= 397k NUMBER SIZE SPACING STEEL AREA BAR STRAIN INDIVIDUAL BAR FORCE BAR STRESS n: =0 At 5 sa: =2•In Y A = 01n esa = 0:0027 f = 60ks1 Ca = Ok = 0 nni= 5 sb := 8•In Asb = Oin esb = 0.00151 fsb = 43.93ks1 Cb = Ok = 0 AF64= 5 sc:= 8•In 2 Asc = Oin sc = 0A0033 fsc = 9.48ks1 Cc = Ok n = 0 n ni= 5 sd := 16•in 2 Asd = Oin esd = 0, fsd = Oksi Cd = Ok Ctotal = 0 k '. TENSION REINFORCEMENT: NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR STRESS BAR FORCE = 2 ar 5 s1 := 2•1n As1 = 0.621n ss1 = 0.03235 f = 60ksi T1 = 37.2k 4A=2 a4= s2: =8•In A = 0.821n es2 =0.03116 f = 60ksi T2 = 37.2k Ai= 2 as= 5 s3 := 8•1n A 0.62in s 0.02997. f s3 = s3 = s3 = 60ksi T3 = 37.2k Ai= 2 21&= 5 s4 := 16•In 2 Aso = 0.621n ssq = 0.02759 f = 80ksi T4 = 37.2k r��= 2 a 5 s5 := 16•in Ass = 0.82In 8s5 = 0.02522 f = 6Oks1 T5 = 37.2k D^_ ' ' 2 5 sg := 16•In 2 �_ A = 0.621n ssg = 0.02284 f = 8Oksi Tg = 37.2k p 2 ar 5 s7 := 16•In A = 0.62in e = 0.02047 f = 60ksi T7 = 37.2k Asg = 0.621n esg = 0.01809 f = 60ksi Tg = 37.2k Ttotal = 297.6k EFb :_ (C + Ctotal) - Ttotal EFb = 99k Mn1 = 5608 ft k Mnl.design 4f1•Mn1 C .1 Mnl.desIgn = 4947 ft k > M = 1870 ftk r 4(0 r) LATERAL DESIGN: PANEL DESIGN: SHEAR WALL f 61 LOAD COMBINATION 2: 1.2.DL + E + (f1 •L + f2•S) Pu2 = 02 =0.86 Mug = 2622 ftk OVERTURNING MOMENT = 25.65•in NEUTRAL AXIS DEPTH COMPRESSION REINFORCEMENT: CONCRETE: &= 0.8540ps1•0.5•NA•h C = 504k INDIVIDUAL. NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR FORCE BAR STRESS Ai= 0 ;by= 5 h 2•1n 2 Asa = 0 in tea = 0.00277 fs = 60k& Ca = 0 k = 0 Ay= 5 = 8•1n Asb = 0in e - 0.00183 f sb - sb_= 53:08ksi Cb = Ok - 0 Ag 5 '"- 8-In Asc = 0in2 Esc = 0.00089 fsC = 25.95ksi Cc = 0k A^ = = 5 : = 16 in Asd =Oin esd = fsd =Oksi Cd = Ok • Ai= 0 = 5 . se := 16.In Ase = 0in ese = 0 fse = 0ksl Ce= 0 ;TENSION REINFORCEMENT: Ctotal = 0k . NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR STRESS BAR FORCE LIA= / i 5 Ate 2•In 2 As1 = 0.62 in es1 = 0.02484 fs1 = 60ksi Ti = 37.2k Ari= 2 Ar 5 ,x= 8•in 2 As2 = 0.62111 es2 = 0.0239 fs2 = 60ksi T2 = 37.2k =2 Mr 5 =bin As3= 0.621n ss3= 0.02296 fs3 =60ksi T3 =37.2k r�^= 2 Mu= 5 u= 161n Aso = 0.621n es4 = 0.02109 fso = 60ksi T4 = 37.2k i o v i= 2 = 5 A:= 16.1n Ass = 0.62In a 0.01922 f s5 = s5 = 60ksi T5 = 37.2k zu= 2 = 5 n w= 16•in Asb = 0.621n e = 0.01735 f s6 = s8 = 60ksi Tg = 37.2k rte:= 2 ARL= 5 M= 16•in 2 A = 0.62 in es7 = 0.01548 fs7 =60ksi T7 =37.2k _ 2 ------ _ iBTn - 2 - -- - -- �" '^ A = 0.62 in esg = 0.01361 f - sg =60ksi Tg =37.2k = (C + Ctotal) - Ttotal EFb = 206.6k Ttotal = 297.6k Mn2 = 8543 ft k Mn2.design 4f2•Mn2 C I Mn2.design = 5645 ftk > Mu2 = 2622 ftk LATERAL DESIGN: PANEL DESIGN: SHEAR WALL f 61 BOUNDARY AND CONFINEMENT REQUIREMENTS: NOMINAL AXIAL LOAD CAPACITY: Acv := Lwh Ac = 2220In EFFECTIVE SECTION AREA OF CONCRETE Ast = 4.96 In TOTAL AREA OF VERTICAL REINFORCING STEEL Po := 0.80•[0.85•fcps1•(Acv - Ast) + fypsI•A Po. = 7769k Pu Pu2 Pu.design •a•Po Pu.deslgn = 5438k > P = 206k 1) Pu2 = 206k < 0.10•Acv.f•psl = 1110k P = 7769k NOMINAL AXIAL LOAD CAPACITY P = 206k < 0.35•P = 2719k. WALL CAN BE USED AS SHEAR WALL 2) My1 = 0.96 < 1.00 OR 3•A f s1= 471 k > V AND Mu1 - < Vu1 Lw cv�c P u1 97k V 0.96 3.00 u1•L w WALL EXEMPT FROM BOUNDARY ZONE DETAIL REQUIREMENTS 2 h. Lw 3 Pu2 = 206 k M = 2622 ftk Acv = 22201n 6 S = 888001n Pu2 Mu2 MAXIMUM EXTREME COMPRESSION FIBER STRESS fcc:= Acv + S fcc = 447 psi ASSUME LINEAR ELASTIC CONDITIONS AND UNCRACKED - THEN SPECIAL TRANSVERSE REINFORCEMENT IF f = 447 psi < 0.2•fc.ps1= 1000ps1 IS NOT REQUIRED FOR BOUNDARY ELEMENT r k v LATERAL DESIGN: PANEL DESIGN: SHEAR WALL 161 HORIZONTAL REINFORCING: l s2,max := minJ ( 3•h 18•In)) s2,m = 18In MAXIMUM SPACING barn( := 4 REINFORCEMENT SIZE (DIAMETER) A = 0.210 AREA OF SHEAR REINFORCING s2 = 16in SPACING OF HORIZONTAL REINFORCEMENT h 161n 2Av Ph h — s2 Ph = 0.0027 > 0.0025 USE #4 AT 16" O.C.EACH FACE HORIZONTAL REINFORCEMENT FULL HEIGHT OF WALL = h•L Acv = 22201n WEB THICKNESS x LENGTH IN DIRECTION OF SHEAR FORCE THEN HORIZONTAL REINFORCING TERMINATING SHEAR WALL IF Vu1 > Acyj EDGES SHALL STANDARD HOOK AROUND EDGE REINFORCING OR U- SHAPED REINFORCING MATCHING THE HORIZONTAL BARS Ate• fCpsi = 157k V = 97k SIZE AND SPACING SHALL LAP- SPLICE WITH HORIZONTAL BARS VERTICAL REINFORCING: 11 sl.max := minl j 3 3.h 18•In)J s1. = 18In MAXIMUM SPACING = 5 ` REINFORCEMENT SIZE (DIAMETER) Av = 0.311n 2 AREA OF SHEAR REINFORCING Hwl Pn := 0.0025 + 0.5(2.5 -I•(Ph - 0.0025) pn = 0.00268 w Pv IPn < 0.0025, 0.0025, I0n < Ph , Pn ,Ph)) Pv = 0.00288 s1 = 18In SPACING OF VERTICAL REINFORCEMENT 16•In USE #6 AT 16" O.C.EACH FACE VERTICAL REINFORCEMENT FULL HEIGHT OF WALL NOMINAL SHEAR STRENGTH: Ph = 0.0027 Ac = 22201n WEB THICKNESS X LENGTH IN DIRECTION OF SHEAR FORCE Vul Vn := Acv(ac•.cpsi + ph•fypsi) Vn = 831k IC := Ss Vn IC = 0.19 1 OvWl"v f f001 Vatt,14 *elet? o.6v 4- 0 41 , (P.0 - t4o0 ' ' 1 ` 162 4'"," ,_ toa . ti p A C4/1;t6 , , ,c. tam )(?)) 10 ' /1j2,9!1/ vAA A- 13,4Y tite- 4 7149-0 t-6 1 7(144 9 - IW i.f2 ;or M(tvz,c0 c\ AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS 6960 S.W. VARNS ST., SUITE 200 JOB NO TIGARD, OREGON 97223 (603) 620.3030, FAX 620-5539 SHEET„__ OF &Aikialklk 91 WA (3601AnASAIL CI GOP ChSt. o o . i i - l e ( , Ute 0 UttO m141 4 C � A tillAN ASSOCIATES, ENC. BY DATE CONSULTING ENGINEERS JOB NO 6980 S.W. VARNS ST., SUITE 200 TIGARD, OREGON 97223 (503) 820-3030, FAX 820 d 5539 SHEET i OF 0 ' 0 0 r upTvaiviZiot Ev� . , . o' 6v-t` n s • . 1.-L : ' : •'.. 1 .t..,- cita,-.3(4 ' : . . : .: :_..: :. • .. : , - • : • t : -, :- - - , • H. .. ..19v.4 . A=.:!\.:01-..),-.0.,c4 ,..,. ..: -!. .... . 1_ ._. ., i - i . - i - -. ' 'ii. " - - - - - 0, , ioNos.-Jkv:i.‘,..4 , :.-1 -,- • - .- - , -!-- ---,.- " • " ‘ " . - , • -. - - -- • - •- iilt.r;.,,..-,- - -- - , . •-. • - :- ,......!... .. . i . • - - : i - :- . • :,,.' • oa -. • , : 4 . • mi ii4,19._•...._ al •! , . : ; • . :: . : : . : , :. __H... •_ . -7- --- C 1' I 1 - ; i4=- '1 q t6o 6° . tit ice' . . . : .. . . _ 64;0 _ _ . wer I Mr , ■ . _. , ,; ,,,., &Ai w!•! - --e0 Y0- ---- _______ - --- -- 1 ple.4____ r I ll / ,t KC 'Awl . kfr AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS 8980 S.W. VARNS ST., SUITE 200 JOB NO TIGARD, OREGON 97223 /� (503) 8203030, FAX 820.5539 SHEET___ OF • v Iv •Z .X -34.65 , 12 17.35k -ft I 10 -4.2 17.2 -143.4 7 7.8 93k -ft 1.6 Lag -51.4 5 4 13 2 1 Loads: LC 1, 1.2 D + 1.6 L + 0.5 S Results for LC 1, 1.2 D + 1.6 L + 0.5 S Member z Bending Moments (k -ft) Ighan Associates, Inc. December 6, 2005 HAMID AFGHAN 10:32 AM PANEL [ 32 ] OOP w Girder Loads.r3d t .Y -0 .Z .X -34.65 , 12 17.35k -ft i t 1 ill . 9 8 -14: O. 7 93k -ft 182.3 5 -4.2 182.3 i 4 -6 186.5 3 186.5 2 192.5 a 1 Loads: LC 1, 1.2 D + 1.6 L + 0.5 S Results for LC 1, 1.2 D + 1.6 L + 0.5 S Member Axial Forces (k) )han Associates, Inc. December 6, 2005 HAMID AFGHAN • 10:32 AM PANEL [ 32 J OOP w Girder Loads.r3d Company : Afghan Associates, Inc. December 6, 2005 Designer : HAMID AFGHAN 10 AM Job Number : Checked By: ( )Wernher Section Forces. By Combination LC Member Label Section Axial Shear y -y Shear z -z Torque Moment y -y Moment z -z (k) (k) (k) (k -ft) (k -ft) (k -ft) 1 M5 1 182.25 -2.428 0 0 0 34.346 ;. .. 2 , 182.25 . 2:424 ' ' 0 Q • 0 r - 41 . .628 1 M6 1 38.85 - 4.515 0 0 0 - 51.372 2 , `• 38.85 .-4:516 _, : -: 0 , 0 : _° ':.37426 ". r __ _______ _____ ______ ___ _ RISA -3D Version 4.5 [H: \Projects \Tigard Triangle Commons \Building Four\Calculatioris \Lateral \Panel Delliggllrrent \R • LATERAL DESIGN WALL DESIGN: OUT -OF -PLANE PANEL 1 321: PIER 1 LOAD CASE: 1.2•D + 1.8•L + 0.5•S k1 := 1.0 SLENDERNESS COEFFICIENT Lu := 15•ft UNBRACED LENGTH b := 42•in WIDTH OF WALL CONSIDERED h := 9.25•In WALL THICKNESS heff h - REVEAL EFFECTIVE THICKNESS heff = 8.5In r•- heff RADIUS OF GYRATION r= 2.451n k1 •Lp SR := SR = 73.4 > SRI = 34 LONG COLUMN WITH SLENDERNESS EFFECTS r . Ec= 4286826ps1 MODULUS OF. ELASTICITY FOR CONCRETE E.= 29000000ps1 MODULUS OF ELASTICITY FOR STEEL REINFORCING: INSIDE FACE nbar := 7 barrio := 5 REINFORCEMENT SIZE Asi:= nbar•Abar Asi = 2.171n ... AREA OF STEEL _ .. di = 2in DISTANCE TO REINFORCING OUTSIDE FACE Misvi= 7 MAU= 5 REINFORCEMENT SIZE Aso nbar•Abar Aso = 2.17in AREA OF STEEL do = 6.5In DISTANCE TO REINFORCING LATERAL DESIGN WALL DESIGN: OUT-OF-PLANE PANEL 1 32 1: PIER 1 LOAD CASE: 1.2.D + 1.61 + 0.5.S LOADS AT CRITICAL SECTION Pu := 182.k FACTORED AXIAL LOAD Mu := 41.6.6.k = 0.ft.k &= 41.6.ft.k FACTORED MOMENTS MOMENT MAGNIFICATION PER ACI 318R-02 SECTION 10.12.3 3 b.heff 4 i g := 12 19= 2149In GROSS MOMENT OF INERTIA 2 d do - di Ise := Ask 2 ) + Ascr( - 2 Ise = 21.97In • 182•k Iicl := 13d = 1 182.k + 0.k r 40.2.Ec-I9 + Es.lse 0 )) El := ml El = 12400101n 2 .k n Pc: Pc = 378k a (ki .Lu) Cm:40.6 + cu.(0.4. — < 0.4,0.4,0.6 + c.u.(0.4.— Cm = 0.6 • M2 M2 M2.mln:= Pu.(0.6.In + 0.0311) M2mM=13.36.k • M2ns:= max((M2.mln M2 )) M2 = 41.6 ft.k -- M . A cW {M2.min > M2,1,0.6 + cu (0 . 4 M )] Cm = 0.6 Cm 8n Cm s u :- tfi _ pu < 1,1, Sus 1.68 P 1 0.75.Pc 0.75.Pc] C ) Mc:= Ons.M2ns Mc 69.8 ft.k tool r LATERAL DESIGN: WALL DESIGN: OUT-OF -PLANE PANEL f321: PIER 1 LOAD CASE: 1.2•D + 1.6. L + 0.5.S Pu =182k Of =0.7 Mc = 70 ft k OVERTURNING MOMENT NA := 3.5• in NEUTRAL AXIS DEPTH COMPRESSION REINFORCEMENT: CONCRETE: ,&= 0.85•fc•psi•0.5• NA. b C= 312k NUMBER SIZE SPACING STEEL AREA BAR STRAIN INDIVIDUAL BAR FORCE BAR STRESS n := 0 M= 5 se =2.1n 2 Asa = 0 in esa = 0.00129 fsa = 37.29ksi Ca = O k R =5 sb: =0•in 2 Asb = 0(n esb = 0.00129 fsb = 37.29ksi Cb = 0k . 0 ac 5 S = 0•In 2 An 0 in en = 0.00129 fs = 37.29ksI Cc = 0 k ,= 0 Mi= 5 sd := 0•in 2 Asd =Oin esd =0.00129 fsd =37.29ks1 Cd =Ok r rN= 0 Mi= 5 se := 0•In A = O in e8e = 0.00129 f = 37.29ksi Ce = O k TENSION REINFORCEMENT: Dotal = 0 NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR STRESS BAR FORCE Ai= 7 Mk= 5 s1 := 2•In 2 As1 = 2.171n es1 = 0.00257 fs1 = 60ksi T1 = 130.2k Ai= 0 pA 5 s2 := 9•In 2 Asg = 01n esg = 0 f = 0 ksi T2 = 0 k is v= 0 (bar := 5) s3 := 91n 2 A = 0 in esa = 0 fsa = 0 ksl T3 = 0 k = 0 (bar := 5) sq := gin 2 Asq =Oin es4 =0 fsq =Oksi Tq =Ok ,= 0 (bar := 5) s5 := 9•In As5 = O 2 n e s5 = 0 fs5 =0ksi T5 =0k Ai= 0 (bar := 5) sg := 9•in 2 Asg =0in es6 =0 fs6 =0ks1 T6 =0k - 0 (bar :- 5) - 9•In - s7 : — 2 - - s - 7 - - ------ ___ - - - --- -- - - — _ - --- As-r =inn - - O - — - - - --f - Ukst - -- . -T- _ UK = 0 (bar := 5) sg 9•In 2 Asg = 01n esg = 0 f = 0ksi Tg = 0k Ttotal = 130.2k (EFb :_ (C + Ctotal) - Ttotal) EFb = 182 k Mn2 = 105 ft k Mn2.design 0f'Mn2 e l Mn2.design = 73 ftk > Mc = 70 ftk 6 OR7 LATERAL DESIGN WALL DESIGN: OUT-OF -PLANE PANEL 1 321: PIER 1 LOAD CASE: 1.2.D + 1.6•L + 0.5.S k1 := 1.0 SLENDERNESS COEFFICIENT Lu := 15.ft UNBRACED LENGTH b := 42•In WIDTH OF WALL CONSIDERED h 9.25•In WALL THICKNESS hell := h - REVEAL EFFECTIVE THICKNESS hell= 8.5In r.= heft RADIUS OF GYRATION r= 2.45 In k1 Lu SR := SR = 73.4 > SRI = 34 LONG COLUMN WITH SLENDERNESS EFFECTS r Eo = 4286826psi MODULUS OF ELASTICITY FOR CONCRETE Es = . 29000000 psi MODULUS OF ELASTICITY FOR STEEL REINFORCING: INSIDE FACE nbar := 7 barno := 5 REINFORCEMENT SIZE Asi := nbar•Abar Asl = 2.171n AREA OF STEEL di = 21n DISTANCE TO REINFORCING OUTSIDE FACE Atigvi= 7 MAW 5 REINFORCEMENT SIZE Aso nbar Abar Aso = 2.17 in 2 AREA OF STEEL do = 6.5in DISTANCE TO REINFORCING fV c r LATERAL DESIGN WALL DESIGN: OUT-OF -PLANE PANEL 1 32 1: PIER 1 LOAD CASE: 1.2.0 + 1.6•L + 0.5.S LOADS AT CRITICAL SECTION Pu := 39.k FACTORED AXIAL LOAD Mu := 51.4.ft.k Mu= — 17.31.k hp 51.4.ft.k FACTORED MOMENTS MOMENT MAGNIFICATION PER ACI 318R -02 SECTION 10.12.3 b•heff Ig := 12 19 = 2149in GROSS MOMENT OF INERTIA I / l 2 2 Ise := Asi•I do di ) + Aso( di ) Ise = 21.971n 39•k Pd 39•k+ 0•k �d = 1 0.2•Ec•Ig + Es•Ise 0.4•Ec•19 2 El := 1 +(id 1 +pd )) EI= 1240010In •k a Pc:= /r Pc =378k ( k1•L u) 2 Cm = 110.6 +cu•(0.4•M 0.4,0.4,0.6 +cu•(0.4•MZ )] Cm =0.73 M2.mIn Pu•( + 0.03•h) M2.mIn = 2.9ft•k M2ns max((M2.mIn M2 )) M2ns = 51.4ft•k ________ _ ----M1)1 ___ _ _____ rte:= M2.min >M2, +cu• 0.4• Cm = 0.73 Cm Cm 8ns:= P < 1,1, P 8ns =1 1— u 1— u 0.75•Pc 0.75 Pc r Mc 8 ns•M2ns Mc= 51.4ft•k f{p0 r LATERAL DESIGN: WALL DESIGN: OUT-OF -PLANE PANEL 1 321: PIER 1 LOAD CASE: 1.2•D+ 1.6•L + 0.5.S P = 39k Of = 0.86 Mc = 51 ftk OVERTURNING MOMENT NA := 1.9•In NEUTRAL AXIS DEPTH COMPRESSION REINFORCEMENT: CONCRETE: &= 0.85•fc•psi•0.5•NA•b C = 170k NUMBER SIZE SPACING STEEL AREA BAR STRAIN INDIVIDUAL BAR FORCE BAR STRESS n := 0 1014= 5 se := 2•In 2 Asa = Oin esa = 0 1sa=- 4.58 Ca =Ok ,r 0 b = 5 sb := 0-In 2 Asb = 0In esb = 0 fsb = 0 ksi Cb = O k r� 0 Aw= 5 sc:= 0.In A Oin e 0 f Oksf = Ok h sc = sc = sc = Cc - n�= b ar = sd - 0 5 0 in Asd = 0In esd = 0 fsd = O ksi Cd = Ok T =0 ART 5 . se: =0dn 2 ASe = O In ese = O f3e = 0 ksi Ce = 0 k TENSION REINFORCEMENT: Ctotal = Ok NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR STRESS BAR FORCE : =7 Alw= 5 s1: = 2•in 2 Am = 2.171n es1 = 0.00726 fs1 = 60ksi Ti = 130.2k n:= 0 a 5 82 := 9•in 2 As2 =01n es2 =0 fs2 =0ksi T2 =Ok = 0 (bar := 5) 83 := 91n ...... ... _...... .. 2. . Asa = OIn es3 = 0 fs3 = Oksi T3 = Ok h 0 (bar := 5) s4 = gin 2 AEA = 0In es4 =0 fs4 =0ksl T4 =Ok p 0 (bar := 5) s5 := 9•in 2 As5 =01n es5 =0 fs5 =0ksI T5 =Ok p 0 (bar := 5) s6:= 9.1n 2 Asb =Oin es6 =0 fs6 =0ksi Tg =Ok -- - --- ---- -- - - - - - -MA- 0 - - - (bar := 5) 57 := 9 In - -- 2 1% = OIn - e - s7 = 0 - ... - fs7 = `01(s1 -- T7 O IC - -- - - -- - ---- --- .. rn:= 0 (bar 5) sg := 9•In 2 As8 =01n esg =0 fsg =0ksi Tg =Ok Ttotal = 130.2k (EFb :_ (C + Ctotal) - Ttotal) EFb = 39k Mn2 = 76 ft k Mn2.design OfMn2 r 1 Mn2.design = 65 ftk > Mc = 51 ftk f l 0 0 oilsizte9m (OM, - t h. 041 Wit ItNt &Ili ETA e" Cab lie 42L to W t flu - Q&) C ii Akti, Yr t 1f.) 61'7069 Vti - wi AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 8880 S.W. YARNS ST.. SUITE 200 TIGARD, OREGON 97223 (503) 820.3030 FAX 820 SHEET OF 1.441 0944€4•1 Qt %W *4- rl cloAQ ( l Fl jf t14A 0(t 140' L AFGHAN ASSOCIATES, INC. CONSULTING ENGINEERS 8980 S.W. VARNS St, SUITE 200 TIGARD, OREGON 97223 (503)820 -3030, FAX 820.5539 1 -46 lewc 1L4 Oftra / hav5 BY DATE JOB NO /� SHEET 0 ff OF '!/ " 4/.4 ;.� ._�• , ti__ 'CJ r. - - ipaillikts t I.. Ch ..!' , 7 -... , y...:( Ail AntliVz 4. _. ..- ) — % fi r . i I . .. , 1 A I 1 I , sN 1.441 0944€4•1 Qt %W *4- rl cloAQ ( l Fl jf t14A 0(t 140' L AFGHAN ASSOCIATES, INC. CONSULTING ENGINEERS 8980 S.W. VARNS St, SUITE 200 TIGARD, OREGON 97223 (503)820 -3030, FAX 820.5539 1 -46 lewc 1L4 Oftra / hav5 BY DATE JOB NO /� SHEET 0 ff OF '!/ I te 110,141A. tVA&N . vv,Impfruiv sisktirfl- 444)9 IPI -- / 4 404 1 WO T N L , 4 ,1 , 42 ,.... o 31q I 3, .. ' - -- { Zl (111.9 CO)' ' t - . T - ' ; ' mo o j 4;4$, � - tT ; '2 : ,r 1e 4 { ■ .. j —_ o I 90 '. r E - �l I ' ¢ o � _ I ( \7) ; 1 t ‘41r 44 . liati . !!! 1 34. CV 11 ' :. T ''' , ,,e A -----... ' .: ( ; `o'� _ . � A I � I �) ma I- k-" . xi" , , }. (.) 101' - = i.. -1 - -- .. ,.. . ; 41 ......1 a .. ,, ag - - -P ..., I ., _____... '— . °C14) cl?i) `� .. %,,./: ` I :0,b-0 • Atfc b l� • acdde :. I V 'i I VI.... ■.. ■■■■■■■■■ ... ■■■■••■•■■■■■ ■■■ 41) (...) ) . - - F {yes i • AFGHAN ASSOCIATES, INC. ev DATE CONSULTING ENGINEERS JOB NO 6980 S.W. VARNS ST.. SUITE 200 TIGARD. OREGON 97223 OF (503) 6204030, FAX 620-5539 • BUILDING FOUR LATERAL DESIGN: W18 DRAG BEAM TO SHEAR WALL 13.5 1 • &:= 1 EFFECTIVE LENGTH FACTOR = 33.ft UNSUPPORTED BEAM LENGTH KL:= K•L KL = 33 ft EFFECTIVE BEAM LENGTH LOADING: 1.2•D+ OMEGA.E + 0.5•L UBC 97 SECTION 1633.2.6 Ax:= 71•k Mz:= 141.54k 0.00•ft•k PROPERTIES: W 18 X 60 = 14.7•1n bf:= 7.495.In tf = 0.570•In Af:= bftf Af= 4.2721n d := 18.11•1n Iz := 800•In ly := 40.1 •in Sz = 88.31n Sy = 10.7in Zz := 101 •In Zy = 16.6•1n rz = 7.38In Ty = 1.651n rmin = 1.65In rT:= 1.94.In SRmIn max(( 5 y I� SRm1n = 54 SLENDERNESS FACTOR IN PLANE OF BENDING rz J 65 bf 9.192 = = 6.575 f 2•tf 12 n 2 Es ksi Fe = Fe = 51.82ks1 EULER STRESS DIVIDED BY FACTOR OF SAFETY 23 •SRmin 2 • 2. n 2 •Es SRmin (1 - 2.R 12•n Cc: fs Cc= 107 &= 2 Cc Fa := R <0.500, 5 3•R 3 2 3 + 4 - R 23 •SRmin A - fa := 1.7A fa = 2.84 ksi AXIAL STRESS Fa = 23.8 ksi ALLOWABLE AXIAL STRESS Mz fbz:= fbz = 16.81 ksi BENDING STRESS Fb = 33ksi ALLOWABLE BENDING STRESS STRONG AXIS fby := T fb = Oksi BENDING STRESS Fb = 37.5 ks1 ALLOWABLE BENDING STRESS y WEAK AXIS INTERACTION = 0.63 r BUILDING FOUR LATERAL DESIGN: W18 DRAG BEAM TO SHEAR WALL 13.5 l AXIAL:= 71•k LOAD CASE 1.2.D + OMEGA•E + 0.51 UBC 97 SECTION 1633.2.6 SHEAR := 18•k MOMENT 6.f1.k WELD A: SHEAR TAB WELD - b 2 b: =3•1n n = 12.1n & =2•b +d A =181n N:= N =0.51n ^AK 2•b + d d Cy 2 C y = 811 C x := b - N Cx = 2.5 in S - b d + d S - 84in (2•b + d) - b + d) 3 X:- 3 x 4 .i - 12 2•b +d J =373:5In 1.1 O. n f1 =0 n SHEAR SHEAR•eb•Cx k f2 = A . + - f2 = 1.422 tw:= 0.25•1n AXIAL SHEAR•eb•C k f3 :_ A + J f3 = 4.956 i 1 F := 70.k81 E := 0.707 f := 1.7 fw:= 11 2 +fy 2 +f3 2 fw= 5:156— k F w:= f•E•0.3•Fu•tw F = 6.31 k w = 0.82 In . F w ... WELD B: WELD AT W18 1= 12•In f - AXIAL + SHEAR•eb•3 k ^ 2.d d 2 f1 = 4.458 tom:= 0.25 -in = 0.707 M-- 1.7 —SHEAR- - — -- k A 2.d f2 = 0.751 ,= 70•ksi = Jf1 + f22 fw = 4.521 1n N FL•= f•E• Fw = 6.31 I F = 0.72 w VO rs BUILDING FOUR . LATERAL DESIGN: W18 DRAG BEAM TO SHEAR WALL r 3.51 &= 1 EFFECTIVE LENGTH FACTOR ,= 30-ft UNSUPPORTED BEAM LENGTH KL:= K•L KL = 30 ft EFFECTIVE BEAM LENGTH LOADING: 1.2•D+ OMEGA.E + 0.5•L UBC 97 SECTION 1633.2.6 AX:= 50•k Mz:= 84•ft.k My:- = 0.00;ft•k PROPERTIES: W 18 X 60 = 14.7•in bf:= 7A95•in tf:= 0.570•1n Af:= bf•tf . Af = 42721n d := 18.11•in lz := 800.1n l = 40.1.1n 4 3 Sz = 88.31n 3 Sy = 10.71n Zz := 1 3 01 •In Zy := 16.6•1n r = 7.381n ry = 1.651n rmin = 1.651n rr := 1.94•in S Rmin • l r ma�Q �KL KL 11 3•r JJ SRmin = 73 SLENDERNESS FACTOR IN PLANE OF BENDING z y 6f - = 9.192 2 = 6.575 12 n Es J ksi Fe := 2 Fe = 28.291(81 EULER STRESS DIVIDED BY FACTOR OF SAFETY 2 3 . SRmin 1 2•n 2 •E SRmin (1 - 2•R 12•n Cc: =J f s Cc =107 ^R= 2•C.c F a R<0.500,• 3•R 3' 2 + — - R 23 •SRmin 3 4' A fa := Ax fa = 2 ksi AXIAL STRESS Fa = 20.4 ksi ALLOWABLE AXIAL STRESS Mz fbz:= fbz= 9.98ksi BENDING STRESS Fbz= 27.1 ksl ALLOWABLE BENDING STRESS STRONG AXIS M Y fby := fby = O ksi BENDIINN K STRESS S Fby = 37.51(81 ALLOWABLE BENDING STRESS C INTERACTION = 0.47 ril BUILDING FOUR LATERAL DESIGN: W18 DRAG BEAM TO SHEAR WALL f 3.51 CONNECTION AT W18 BEAM: AXIAL= 50•k LOAD CASE 1.2.0 + OMEGA•E + 0.5.1 UBC 97 SECTION 1633.2.8 SHEAR := 15•k MOMENT := 6.54k WELD A: SHEAR TAB WELD b b: =3•in 1= 12.In is =2•b +d A =18In N:= N =0.51n ^^^ 2•b + d d Cy := 2 Cy =61n Cx: =b -N Cx =2.51n d2 2 (2•b + d) b 2 -(b + d) 3 Sx := b d + 3 Sx = 841n j= 12 - 2 b + d J = 373.51n f 1 := 0 I n f 1 = 0 1 n Q - + SHEAR SHEAR.eb.Cx k A J f2 = 1.235- tw := 0.25•In AXIAL SHEAR•eb•C k f3:= A + J f3 = 3.742 Fu = 70•ks1 E:= 0.707 f:= 1.7 2 2 2 k k tw f f1 +f2 +f3 fw= 3.94 Fw:= f•E•0.3•F�•tw Fw =6.31 in F =0.62 WELD B: WELD AT EMBED PLATE n7v� AA� = 12•In AXIAL SHEAR•eb•3 + f1 = k _ 3.333— — Ix= 025•In . _- F 0 _ _1.7 -- ___ - - - - - -- - d � -- — -- in — — - SHEAR f0'= 2.d f2 = 0.6251 = 70•ks1 fc= f1 2 .02 fw = 3.391— In = f•E•0.3 Fu•tw Fw = • 8.31 i F =1154 w v1 ® 0 f u,z- 080 b ��a-1 vas k,1 , Via' _a ,00 .. . k / vkv) 31x.4'1 Th ck L b k <<ZD 4 0 vfl.+ ,Lpt Fv-= ( ti ) � ausi I)� 4._ ti u �C32..9��) '� 1) C. � t S" C AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6960 S.W. VARNS ST., SUITE 200 TIGARD, OREGON 97223 (503) 820-3030, FAX 820 -5539 SHEET OF • 0 0 • (1"') ; t/ 111 . . . f 1 � - .._ . • • ifi - . Iq . ' , •• , • �i 1 . . r ci ' Q . • -.-). s Ttr)-C. . ) • • N*3 t-rt_.''' . . .5- - 4 1 i54''' ' z t . . . ...- • • • 41i 1 k C ' '-') . . AFtiflAll ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS . • 8980 S.W. YARNS ST., SUITE 200 JOB NO TOARD, OREGON 97223 (603) 820.9030, FAX 820-5538 SHEET O OF r) BUILDING FOUR LATERAL DESIGN: W16 DRAG BEAM TO SHEAR WALL 16 i C = 1 EFFECTIVE LENGTH FACTOR Li= 18.ft UNSUPPORTED BEAM LENGTH . KL := K•L KL= 18 ft EFFECTIVE BEAM LENGTH LOADING: 1.2.D + OMEGA•E + 0.5.L UBC 97 SECTION 1633.2.6 Ax := 25.k Mz := 634 k M :_ 0.00•ft•k PROPERTIES: W 16 X 40 = 11.8•1n bf:= 6.995•In tf:= 0.505•In Af:= bf•tf Af= 3.5321n d := 16.01•In Iz:= 5181n Iy:= 28.9•In Sz = 64.7In Sy = 8.31n Zz := 72.9•1n Zy := 12.7•In rz= 6.631n ry= 1.56in rmin = 1.561n rT:= 1.82•In SRmin max �KZ 5 - �� SRmin = 33 SLENDERNESS FACTOR IN PLANE OF BENDING 65 bf 9.192 = = 6.926 f 2•tf 12 a Es ksl Fe := 2 Fe = 140.5ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY 23 •SRmin 2 •x 2 •Es SRmIn (1 — 2 •R2). f s 12. .E Cc := is Cc = 107 ,&= 2 Cc Fa := R < 0.500, 5 3.R 3 , 2 3 + 4 — R 23 •ERmin Ax fa :_ — 7A fa = 1.25 ksi AXIAL STRESS Fa = 26.8 ksi ALLOWABLE AXIAL STRESS Mz fbz:= fbz = 10.37ks1 BENDING STRESS Fbz= 12.3 ksl ALLOWABLE BENDING STRESS STRONG AXIS fby = fby = OksI BENDING STRESS Fb = 37.5 ksi ALLOWABLE BENDING STRESS Z y WEAK AXIS INTERACTION = 0.89 Q kv • r) BUILDING FOUR LATERAL DESIGN: . W16 DRAG BEAM TO SHEAR WALL f 61 CONNECTION AT W16 BEAM: AXIAL := 0•k LOAD CASE 1.2.D + OMEGA•E + 0.5•L UBC 97 SECTION 1633.2.6 SHEAR := 17.5.k MOMENT := 0•ft•k WELD A: SHEAR TAB WELD b b := 2.5.1n 1= 12•In A:= 2•b + d A = 171n N = 0.388in X 2•b +d d Cy := 2 Cy =61n Cx: =b - N Cx= 2.13in 2 d 3 2 (2•b + d) b 2 •(b +d) 2 3 Sx:= b•d + 3 Sx = 78in ,�,i= 12 2•b + d = 332.12in r f1. O.- f1 = 0- SHEAR SHEAR.eb•Cx k f2 := A + J f2 = 1.438- tw = 0.25•In AXIAL SHEAR•eb•Cy k f3 := A + J f3 = 1.148 i n F := 70•ks1 E := 0.707 f 1 k ..... ' . fw:= f1 2 +f2 2 +f3 2 fw =1.84- in Fw: = f•E•0.3•Fu•tw Fw =3.712- k in F =0.5 T,; WELD B: WELD AT EMBED PLATE t= 12.1n AXIAL SHEAR•eb•3 k W ?' ± f1 = 1.458 -- - 0.25•1n - — + -0.707 -- - - SHEAR f��y= 2 d f2 = 0.729- = 70•ksi in k k fw -- hou= 1 f1 2 + f2 2 fw= 1.63 in= f•E•0.3•Fu•tw Fw = 3.712- in F = 0.44 w 'n 11 41 AO j ON SOP 31v0 A8 4Arn 8ES9-OZ9 xvd 'osoeoss (COs) 3221.0 N0031:1O 'OHvE)LL 003 311f1S "LS SWIM MS 0969 s1133w9■3 oru 'IasxoD 'D II `SILVIDOSSV NVHO3V u4trok ttstoo . . voNattio oi)e- 94-1 DA---tiot r) t. _ 6,, , 16o I0 44 leo �6 ti � 19.0 � WhOt i‘ r ati a All l3:Co � I t i "' I 1. 710,1,,.. V it v /I I, • - I_ I i o ° 'e j -- 1 M . r a. „ CS i e _ 4 —. H_ I ., .. i - — �'l� . r ya flop iii me., _ VW . - t : i , : 4, -- 446 ‘ . • y ui,,,�, !V '�u'. ..... �1 •� '_ tbo �• V 04- , 'J -� -.: -.; . ...,..„ t 7 r le. a - - - - - ., , - . .:,- - 111.48 - \ - -40, \ \ - s .„....,,, ____ 11,,i� ec,P nab - 1 - - t `b.v j i . 1¢t I' — — C) ' J _ . p .i--) AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6960 S.W. YARNS ST., SURE 200 TIGARD, OREGON 97223 ,�•� � 620.3030 FAX 820 -5539 SHEET y OF , 4<iff sf (301,v-010' .7.6A t ri.) Ao., tv? , ...M1■1, 1 ,, c w 4 07 tk4 1 v Aft‘. tO WV _ flo‘C VA? Clle& 1 . 4, tosbr5 . __ , to... ..„,.. .. .., I _______________ ,1 ,,,,..„ _. • A . 'AO 44. %v.. 2,1 I i 4.4 - Mt° • • 1 I ' ..., , . _ . ,..... --- ____—..— _ . . . I n" ' • • 21. . ... 1 . I , 1 .- I ' 1 I . .. I ' r I- . = , 4„.. • . .. , , ...._.0 .• , .„ . • ..,„ .. 4,.. , _ le . }. 11 44 7 11 . 14 LA . 53k 4 9 4 i , tin • 4.0 17 t .! b t "- , 3111 _ _. _ i . ._ . i . VtieS tl,q 165 ''' _______,,. • 1 4. ! . . r 1 4 . , I ■ • V \ . i q • I! I ' • ,,, ________4,2. , , •• l vb. ____i _____ _ __ _ ___ _ __ __ _ ___ t e z4 ,___ . _•4...• I_A• _______________ ____ _____________ -----_ __ I r ,1 ( r ( J • af__‘ a ‘ AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 89130 S.W. YARNS ST, SUITE 200 TIGARD. OREGON 97223 (503) 820-3030. FAX 829-4539 SHEET 1 9 OF AA /- --- r4 BUILDING FOUR • LATERAL DESIGN: } W 24 DRAG BEAM TO SHEAR WALL f 61 &= 1 EFFECTIVE LENGTH FACTOR _ .501 UNSUPPORTED BEAM LENGTH KL := K•L KL = 50 ft EFFECTIVE BEAM LENGTH LOADING: 1.2•D + OMEGA.E + 0.5•L UBC 97 SECTION 1633.2.6 Ax: = MZ:= 70•ft•k M :° 0.00.ft.k PROPERTIES: W 24 X 65 = 11.8•in bf:= 6.995•in tf:= 0.505-In Af = bf•tf Af= 3.532In d := 16.01•1n I 518•In ly:= 28.9•1n SZ = 64.7In Sy = 8.3In ZZ 72.9•in Zy := 12.7•In rZ = 6.631n ry = 1.561n (min = 1.56In rr := 1.82•In KL SRmin max I K 5 J � SRmin = 91 SLENDERNESS FACTOR IN PLANE OF BENDING 65 = 9.192 = 6.926 fs 2 •tf 12•n Es ksi Fe := 2 Fe = 18.211c81 EULER STRESS DIVIDED BY FACTOR OF SAFETY 23 SRmin 2 2•n .Es SRmin (1 - 2•R 12•n Cc:- fa Cc = 107 Rte.= 2 Cc Fe R < 0.500, 5 3•R 3 , 2 3 + 4 - R 23 •SRmin Ax fa := fa = 3.04 ksi AXIAL STRESS Fa = 16.8ks1 ALLOWABLE AXIAL STRESS 1.7A Mz ib fbZ= 11.52ks1 BENDING STRESS FbZ = 26.2 ksi ALLOWABLE BENDING STRESS STRONG AXIS M Y fby fby = 0 ksi BENDDIINN K STRESS SS Fby = 37.5 ksi ALLOWABLE BENDING STRESS INTERACTION = 0.63 r) BUILDING FOUR LATERAL DESIGN: W 24 DRAG BEAM TO SHEAR WALL f 61 CONNECTION AT W16 BEAM: AXIAL := 61•k LOAD CASE 1.2.0+ OMEGAE + 0.5.L UBC 97 SECTION 1633.2.6 SHEAR := 8•k MOMENT := 0•ft•k WELD A: SHEAR TAB WELD _ b b:= 2.5•In ,= 12.1n A= 2•b + d A = 171n N= 0.388in ^^ 2•b +d d Cy 2 Cy =6In Cx: =b -N Cx= 2.13In 2 3 2 2 Sx:= b.d + d Sx = 78In (2•b + d) - b •(b + d) J = 332.121n 3 ^ �� 12 2•b + d r f1 := 0.in fi = 0 SHEAR SHEAR•eb•Cx k 12 := A + 12 = 0.657 i tw:= 0.25•In J AXIAL SHEAR•eb•C k f3 := A + 13 = 4.113 In Fu := 70•ks1 E := 0.707 f := 1.7 2 2 2 k k fw fw:= f + f 2 + f 3 fw = 4.165 Fw:= f E•0.3•Fu•tw Fw = 6.31 1n F = 0.66 w WELD B: WELD AT EMBED PLATE = 12•In f - + AXIAL SHEAR•eb•3 k , j f1 = 3.208— 0.25•In 0.707 f.= 1.7 SHEAR k ^ 2 d f2 = 0.333 in 70•ksl k ,ix= J f1 2 + f2 2 fw = 3.226 f•E•0.3•Fu•tw Fw = 6.31 k F = 0.51 K., e 0 ry, . . , . -. --0 ._, . o „pa ‘,. . .... i if ..__L_,........_ •,_ c_i__, .; 1 i ,_ _ .._. • , .., . . . __ • r- • - • .: . . , , , ,...., _ t , , , • CV r7 /4Ir 9 . . ■T: I 1 NN W 11/11 ,,,..4...... " .,... i . • . 4....■.■.,-.---- _: ___=?",,, 1 . . . - - ' ' • - . 1. ■ ' 1 ',0 . . . , . . ■ _ 1 .., ... • , . i, , , . . _ , ,,, miL - • - : , ' _.. ..,. ._ . .. 1 .- ,..:' . . .• _ ---......... 1 . , Viti. ' 1 ' $ I I v. - - a '..7 - .. . I 1 _. • . ■ ta7i it ,.. H . . , i 0 :\ 9 •I L: (Vfl -- _ . er 4)(14A-P1 \SL- k 1 • . . ..-........ ks-1)16b ) 1— _,L elf. n,„„ , 45 . 1.tg . Al` bflAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS 6980 S.W. VARNS ST, SUITE 203 JOB NO TIGARD, OREGON 97223 (503) 820-3030, FAX 820.5539 SHEET O' OF 11 G E4 ESIGN REPORT OF GEOTECHNICAL ENGINEERING SERVICES Tigard Triangle Commons Tigard, Oregon For Pacific Northwest Properties July 19, 2005 GeoDesign Project: PNWP -30 -02 Engineers I Geologists I Envi rnnmo .i TABLE OF CONTENTS PAGE NO. 1.0 INTRODUCTION 1 1.1 Background 1 1.2 Project Understanding 1 2.0 PURPOSE AND SCOPE 2 3.0 SITE CONDITIONS 2 • 3.1 Surface Conditions • 2 3.2 Subsurface Conditions 3 4.0 CONCLUSIONS AND RECOMMENDATIONS 4 4.1 General 4 4.2 Site Preparation 5 4.3 Excavation and Shoring 7 4.4 Erosion Control 8 4.5 Structural Fill 8 4.6 Shallow Foundations 10 4.7 Floor Slabs 1 1 4.8 Fill- Induced Settlement 12 4.9 Rockery Retaining Structures 12 4.10 Conventional Retaining Structures 14 4.11 Pavement 15 4.12 Seismic Design Criteria 16 5.0 OBSERVATION OF CONSTRUCTION 17 6.0 LIMITATIONS 18 FIGURES Vicinity Map Figure 1 Site Plan Figure 2 Settlement Plate Detail Figure 3 APPENDICES Appendix A Field Exploration A -1 Laboratory Testing A -1 Key to Test Pit and Boring Log Symbols Table A -1 Soil Classification System and Guidelines Table A -2 Rock Classification Guidelines Table A -3 Test Pit Logs Figure A -1 Consolidation Test Results Figure A-1 2 Appendix B Previous Field Explorations by GeoDesign, Inc. B -1 Site Plan Exploration Logs Appendix C Previous Field Explorations by GeoPacific Engineering, Inc. C -1 Exploration Logs GEODESIGN? PNWP-30-02:0 71 905 TABLE OF CONTENTS PAGE NO. APPENDICES continued Appendix D Rockery Wall Construction D -1 Typical Rockery Section Figure D -1 Design Calculations • Acronyms GEODESIGN= 1.0 INTRODUCTION This report presents the results of GeoDesign's geotechnical engineering evaluation of the proposed Tigard Triangle Commons to be located at the intersection of SW 67th Avenue and SW Clinton Street in Tigard, Oregon. The site relative to surrounding physical features is shown on Figure 1. The proposed site plan is presented on Figure 2 along with our exploration locations. Definitions of all acronyms used are attached at the end of this document. • 1.1 BACKGROUND GEI prepared a geotechnical engineering report for the original site on March 29, 2001. The original site comprised approximately the eastern half of the current site. Mr. Gene Mildren of Mildren Design Group, P.C. provided us with a copy of the report and a preliminary grading plan for the site. GEI's evaluation of the site included five test pit explorations. The explorations were completed with a small excavator (8 -ton Mitsubishi MS070). Two of the explorations encountered hard rock refusal at relatively shallow depths (5 to 6 feet BGS), while the remaining three were terminated (4.5 to 8 feet BGS) prior to encountering hard rock. • GeoDesign subsequently provided additional geotechnical services for the original site. The purpose of our work was to determine the depth to hard rock in the areas of the site where deeper cuts would be constructed and the excavatability of the rock where it was encountered. A large excavator (30 -ton CAT -225) equipped with rock teeth was used to excavate our test pits. Our test pits encountered basalt bedrock between 9 and 13 feet BGS in the northeastern corner of the site. In one test pit, we were able to excavate approximately 6 feet into the weathered zone of basalt with a CAT -225 trackhoe before encountering refusal. The results of our work were presented in our September 28, 2001 report titled Geotechnical Engineering Services, Bradford Place Office Building, Tigard, Oregon. 1.2 PROJECT UNDERSTANDING Since our previous report was issued, the site layout has been revised. The location of the original building has been moved to the southeastern corner of the original site. The overall site has expanded to the west of SW 67th Avenue, to SW 68th Avenue, and north and south of SW Clinton Street. One building, a parking structure, and a detention pond have been added to the development plans. We understand that both of the buildings will consist of two -story office structures. At -grade asphalt parking lots will accompany the multi -story parking structure. We understand that maximum continuous wall loads will be 5 kips per lineal foot and maximum column loads will be 190 kips. We have assumed that the maximum floor slab loading will be on the order of 150 psf. Cuts up to 10 feet are expected in the western portion of the site. Fills up to 18 feet are expected in the southeastern portion of the site in the building area. Retaining walls will be necessary to support cuts and fills. We understand that specific wall types have not yet been determined, but will likely include rockery walls. GEODESIGN? 1 PNWP -30- 02:071905 2.0 PURPOSE AND SCOPE The purpose of our geotechnical engineering evaluation was to explore the subsurface conditions at the site and provide geotechnical engineering recommendations for design and construction. The specific scope of our services is summarized below: • Coordinate and manage the field investigation, including utility locates, access preparation, and scheduling of contractors and GeoDesign's staff. • Complete the following subsurface exploration at the site: • Three test pits in the original site area to further evaluate soil conditions in the new building area • Eight test pits in the added site area • Classify the materials encountered in the test pits and maintain a detailed log of each exploration. • Measure groundwater levels within explorations upon completion. • Complete laboratory analyses on disturbed and undisturbed soil samples obtained from the explorations as follows: • Twenty -one moisture content tests • Two percent fines determinations • One consolidation test to determine compressibility of the on -site soils where maximum fills are expected • Provide recommendations for site preparation, grading and drainage, stripping depths, fill type for imported materials, compaction criteria, trench excavation and backfill, use of on -site soils, and wet /dry weather earthwork. Include a discussion on rock excavation. • Provide shallow foundation recommendations for the support of building loads. Our recommendations include allowable bearing capacity, estimated settlement, and lateral resistance. • Provide recommendations for preparation of the subgrade for floor slabs. • Recommend design criteria for retaining walls, including lateral earth pressures, backfill, compaction, and drainage. • Provide recommendations for construction of asphalt pavements for on -site access roads and parking areas, including subbase, base course, and asphalt paving thickness. • Provide recommendations for the management of identified groundwater conditions that may affect the performance of structures or pavement. • Provide settlement estimates for newly placed fill embankments. • Provide recommendations for IBC seismic coefficients. • Provide this written report summarizing our recommendations. • Prepare a rockery wall design for the project, 3.0 SITE CONDITIONS 3. 1 SURFACE CONDITIONS The site is located north of the I -5 off-ramp exit to SW Haines Street. The site is bounded on the west by SW 68th Avenue and extends approximately 700 feet north of the I -5 off -ramp. rffralnrctrAN SW Clinton Street intersects the property east to west on the south side of the property and dead - ends just east of SW 64th Avenue. The site moderately rises from the southwest to the northeast with elevation differences of approximately 25 feet. Two existing residential dwellings are located at the north and south sides of the intersection of SW Clinton Street and SW 68`h Avenue. Two footprints of previous residential dwellings or out structures that have been removed lie approximately 300 feet north of SW Clinton Street, between SW 68th and SW 67th Avenue. The site is heavily vegetated with mature deciduous and conifer trees and moderate shrubs, blackberries, and tall grasses. The site is bounded on the west by undeveloped property and SW 68th Avenue, on the southeast by the I -5 off -ramp exit to SW Haines Street, and on the north by an existing parking lot. 3.2 SUBSURFACE CONDITIONS We explored subsurface conditions at the site by excavating 11 test pits (TP-1 through TP -11) to depths of 7.5 to 16.0 feet BGS. The approximate locations of the test pits are shown on Figure 2. Figure 2 also shows the approximate depth at which intact bedrock or interlocked boulders were encountered in each test pit. Descriptions of the field explorations, test pit logs, and laboratory — procedures are included in Appendix A. Logs from the prior explorations are included in Appendices B and C. The subsurface profile generally consists of silt and clay to clayey gravel over basalt bedrock. Some fill was encountered at the ground surface in several test pits. The clay layer represents the upper portion of the bedrock unit, which is weathered to a clay soil. The weathered bedrock zone is generally 2 to 5 feet thick and was encountered generally between 8 and 11 feet BGS. Our test pits typically encountered refusal on boulders in the weathered basalt layer or within 1 to 2 feet of the intact bedrock surface. We encountered a 1- to 4- inch -thick root zone at the ground surface; however, deeper vegetative layers are expected in the areas of trees and shrubs. We encountered fill in test pits TP -2, TP -3, TP -4, TP -7, and TP -1 1. Fill generally extends from the ground surface to a depth of 1 to 3 feet BGS. Test pit TP -2 likely encountered a backfilled test pit from a previous exploration to a depth of 10 feet BGS. Fill material generally consists of native material with some gravel. It does not appear the fill was placed with significant compactive effort. Medium stiff to very stiff, native silt unit was encountered near the ground surface or just below the fill layer. It contains small amounts of fine sand and occasional gravels to boulders. Boulders were generally encountered deeper in the silt unit. The upper 1 to 2 feet of the silt unit has roots up to 3 inches in diameter. Based on laboratory results, the silt unit had moisture contents ranging from 19 to 30 percent at the time of our explorations. The dense to hard weathered bedrock layer was encountered below the silt unit and generally consists of clay and cobbles to boulders. Most of our test pits were able to penetrate the weathered layer; however, some test pits encountered refusal on boulders in this layer. Based on laboratory results, the day soil had moisture contents ranging from 24 to 34 percent at the time of our explorations. GEODESIGN? 3 PNWP -30- 02:071905 The basalt bedrock was encountered below the weathered zone to the maximum depth of our explorations. Where encountered, the Hitachi EX -120 trackhoe was able to excavate no more than 0.5 foot into the intact basalt bedrock unit. Our observations indicate that the basalt is slightly to moderately weathered with little fracturing. We observed slow to moderate groundwater seepage at depths between 8 and 14 feet BGS in seven of our test pits. Groundwater is likely perched on the weathered or intact basalt bedrock. • The depth to groundwater is expected to fluctuate in response to seasonal changes and changes in surface topography. 4.0 CONCLUSIONS AND RECOMMENDATIONS 4.1 GENERAL Based on the results of our explorations, laboratory testing, and analyses, it is-our opinion that the site is suitable for the proposed development. The proposed structures can be supported on shallow footings bearing on undisturbed native silt, weathered or intact basalt layer, or structural fill supported by this soil. Our explorations indicate that some undocumented fill is present at the site. Strength properties of undocumented fill can be highly variable and difficult to predict. Due to the relatively unknown quality of these soils, we recommend that within all building, pavement, and fill areas, the undocumented fill be removed and replaced, or scarified and compacted in accordance with the "Structural Fill" section of this report. Our specific recommendations for subgrade preparation are provided in the "Site Preparation" section of this report. Excavation in the weathered basalt zone should generally be possible with conventional earth - moving equipment, although boulders present in the weathered zone may require special equipment. Excavation of the intact basalt unit will be difficult and will require special rock excavating equipment. The native, on -site silt is sensitive to small changes in moisture content and difficult, if not impossible, to adequately compact during wet weather. A more detailed discussion is presented in the "Wet Weather/Wet Soil Grading" and "Structural Fill" sections of this report. Recommendations for site winterization, if applicable, are included in the "Construction Considerations" section of this report. Several residential structures and foundations from previous structures are present on site. Existing structures and pavements to be removed should be completely demolished and hauled off site. Resulting voids should be backfilled with structural fill. Our specific recommendations for addressing demolition are presented in the "Site Preparation" section of this report. Specific recommendations for geotechnical design and construction are provide in the following sections. G EODESIGN= 4 DAMP- n.n7•n7, on 4.2 SITE PREPARATION 4.2.1 Demolition Demolition will require complete removal of existing buildings, buried foundations, pavement, or other structures within areas to receive new pavements, buildings, retaining walls, or engineered fills. Underground utility lines or hidden, buried tanks encountered in areas of new improvements should also be completely removed or grouted full if left in place. Materials generated during demolition should be transported off site for disposal or stockpiled in areas designated by the owner. Crushed asphalt or concrete may be acceptable for use as structural fill in non - structural areas. GeoDesign can provide additional recommendations if this option is desired. Voids resulting from removal of structures or loose soil in utility lines should be backfilled with compacted structural fill, as discussed in the "Structural Fill" section of this report. The bottom of such excavations should be excavated to expose a firm subgrade before filling and their sides sloped at a minimum of 1 H:1 V to allow for more uniform compaction at the edges of the excavations. 4.2.2 Stripping and Grubbing Trees and shrubs should be removed from all building, fill, and pavement areas. In addition, root balls should be grubbed out to the depth of the roots, which could exceed 3 feet BGS. Depending on the methods used to remove the root balls, considerable disturbance and loosening of the subgrade could occur during site grubbing. We recommend that soil disturbed during grubbing operations be removed to expose firm, undisturbed subgrade. The resulting excavations should be backfilled with structural fill. The existing topsoil zone should be stripped and removed from all proposed structural fill, pavement, and improvement areas and for a 5 -foot margin around such areas. Based on our explorations, the average depth of stripping will be approximately 1 to 4 inches. However, we expect areas where greater stripping depths will be required to remove localized zones of dense root masses or organic soil. We encountered root masses up to 24 inches BGS in some areas. The actual stripping depth should be based on field observations at the time of construction. Stripped material should be transported offsite for disposal or used in landscaped areas. 4.2.3 Uncontrolled Fill Between 1 and 3 feet of uncontrolled fill was encountered in isolated areas at the site. The fill was generally silty material with some gravel. It is unlikely that a systematic method of compaction was used when the fill was placed. Accordingly, reliable strength properties are difficult to predict and there is an associated risk with supporting structural elements on the existing fill. In our opinion, and as stated in the "Shallow Foundations" and "Floor Slabs" sections of this report, the footings and floor slabs should not be supported on the existing fill. Where encountered, we recommend that the fill be completely removed down to the native silt unit within building areas. The removed material can be re -used as structural fill provided deleterious material is removed and the fill is placed and compacted as recommended in the "Structural Fill" section of this report. G EO DESIG N? 5 PNWP -30- 02:071905 4.2.4 Subgrade Evaluation A member of our geotechnical staff should observe the exposed subgrades after stripping and site cutting have been completed to determine if there are areas of unsuitable or unstable soil. Our representative should observe a proof -roll with a fully loaded dump truck or similar heavy rubber -tire construction equipment to identify soft, loose, or unsuitable areas. Areas that appear to be too wet and soft to support proof - rolling equipment should be evaluated by probing and prepared in accordance with the recommendations for wet weather construction presented in the • • following section of this report. 42.5 Compacting Test Pit Locations The test pit excavations were backfilled using the relatively minimal compactive effort of the backhoe bucket; therefore, soft spots can be expected at these locations. We recommend that these relatively uncompacted soils be removed from the test pits to the full depth in building areas and to a depth of 3 feet below finished subgrade elevation in pavement areas. The resulting excavation should be backfilled with structural fill. 4.2.6 Wet Weather/Wet Soil Grading The fine- grained soils at the site are easily disturbed during the wet season and when they are moist. If not carefully executed, site preparation, utility trench work, and roadway excavation can create extensive soft areas and significant subgrade repair costs can result. If construction is planned when the surficial soils are wet or may become wet, the construction methods and schedule should be carefully considered with respect to protecting the subgrade to reduce the need to over - excavate disturbed or softened soil. The project budget should reflect the recommendations below if construction is planned during wet weather or when the surficial soils are wet. If construction occurs when wet soils are present, site preparation activities may need to be accomplished using track - mounted excavating equipment that loads removed material into trucks supported on granular haul roads. The thickness of the granular material for haul roads and staging areas will depend on the amount and type of construction traffic. Generally, a 12- to 18- inch -thick mat of imported granular material is sufficient for light staging areas and the basic building pad, but is generally not expected to be adequate to support heavy equipment or truck traffic. The granular mat for haul roads and areas with repeated heavy construction traffic typically needs to be increased to between 18 to 24 inches. The actual thickness of haul roads and staging areas should be based on the contractor's approach to site development and the amount and type of construction traffic. The imported granular material should be placed in one lift over the prepared, undisturbed subgrade and compacted using a smooth -drum, non- vibratory roller. Additionally, a geotextile fabric should be placed as a barrier between the subgrade and imported granular material in areas of repeated construction traffic. The imported granular material should meet the specifications in the "Structural Fill" section of this report. As an alternative to placing thick rock sections to support construction traffic, it may be possible to stabilize the subgrade using a cement amendment. Cement amendment should be limited to GEODESIGNZ 6 vNwo.Rn.m•n7 i ons silty soils only. This will not be feasible in areas of deep cuts where gravel to boulders are exposed in the subgrade. If this approach is used, the cement amended soil should meet the guidelines provided in the "Structural Fill" section of this report. 4.3 EXCAVATION AND SHORING 4.3.1 Basalt Bedrock The upper 2 to 5 feet of the basalt bedrock is weathered to a conglomeration of clay and cobbles to boulders. We were generally able to excavate through the weathered zone with a Hitachi EX- 120 trackhoe with moderate effort, although we encountered refusal on boulders in some areas. All of our test pits encountered refusal in the intact basalt bedrock (see Appendix A for excavation depths described in test pits logs). TP -4 encountered refusal in the bedrock at a depth of approximately 7.5 feet BGS. Excavatability was also evaluated during our prior explorations. The logs from these explorations (using a 30 -ton excavator) are in Appendix B. The project grading plan indicates that site cuts up to 10 feet deep will occur in this area. Special excavation equipment, such as hydraulic breakers or rock trenchers, will likely be required to excavate the intact basalt bedrock or large boulders where our test pits encountered refusal. — 4.3.2 Trench Cuts and Shoring Trench cuts in the silt and clay soils should stand near vertical to a depth of at least 4 feet. Open excavation techniques may be used to excavate trenches with depths between 4 and 8 feet, provided the walls of the excavation are cut at a slope of 1 H:1 V, groundwater seepage is not present, and with the understanding that some minor caving may occur. The trenches should be flattened to 1VzH:1V if excessive caving occurs. Increased backfill volumes should be expected given the presence of boulders and bedrock soil conditions. Use of a trench shield or other approved temporary shoring is recommended in the silt and clay soils where sloping is not possible. If a conventional shield is used, the contractor should limit the length of open trench. If shoring is used, we recommend that the type and design of the shoring system be the responsibility of the contractor, who is in the best position to choose a system that fits the overall plan of operation. All excavations should be made in accordance with applicable OSHA and state regulations. 4.3.3 Temporary Dewatering Perched groundwater may be encountered by excavations deeper than 8 feet below current site grades. Groundwater flowing into open excavations should be removed by pumping from a sump. The pump should be capable of handling variable flow rates. Water should be routed to a suitable discharge point. 4.3.4 Safety All excavations should be made in accordance with applicable OSHA and state regulations. While we have described certain approaches to the utility vault and trench excavations in the foregoing discussions, the contractor is responsible for selecting the excavation and dewatering methods, monitoring the trench excavations for safety, and providing shoring as required to protect personnel and adjacent improvements. GEODESIGN? 7 PNWP-30-02:071 90 5 4.4 EROSION CONTROL The soil at this site is eroded easily by wind and water. Therefore, erosion control measures should be planned carefully and be in place before construction begins. Erosion control plans are required on construction projects located within Washington County. Measures that can be employed to reduce erosion include the use of silt fences, hay bales, buffer zones of natural growth, sedimentation ponds, and granular haul roads. 4.5 STRUCTURAL FILL 4.5.1 General Fills should only be placed over a subgrade that has been prepared in conformance with the "Site Preparation" section of this report. All material used as structural fill should be free of organic matter or other unsuitable materials. The material should meet the specifications provided in ODOT SS 00330, depending on the application. All structural fill should have a maximum particle size of 4 inches. A brief characterization of some of the acceptable materials and our recommendations for their use as structural fill is provided below. 4.52 On - Site Material The on -site silt materials are suitable for use as structural fill provided they meet the requirements set forth in ODOT SS 00330.12 - Borrow Material. Clay soil and soil containing debris, cobbles, and boulders exceeding 4 inches in diameter should not be used as structural fill. Based on laboratory test results, the moisture contents of the on -site silty soil are between 19 and 30 percent. Based on our experience, we estimate the optimum moisture content for compaction to be approximately 16 to 18 percent for the on -site silt; therefore, some degree of moisture conditioning (drying) will be required to use on -site, silty soil for structural fill. Accordingly, extended dry weather will be required to adequately condition the soils for use as structural fill. When used as structural fill, the on -site, silty soil should be placed in lifts with a maximum uncompacted thickness of 8 inches and be compacted to not less than 92 percent of the maximum dry density, as determined by ASTM D 1557. 4.5.3 Imported Granular Material Imported granular material used for structural fill should be pit or quarry run rock, crushed rock, or crushed gravel and sand and should meet the requirements set forth in ODOT SS 00330.14 and 00330.15. Imported granular material should be fairly well graded between coarse and fine material and have less than 5 percent by weight passing the U.S. Standard No. 200 Sieve. When used as structural fill, imported granular material should be placed in lifts with a maximum uncompacted thickness of 12 inches and be compacted to not less than 95 percent of the maximum dry density, as determined by ASTM D 1557. 4.5.4 Floor Slab Base Rock Imported granular material placed beneath building floor slabs should be clean, crushed rock or crushed gravel and sand that is fairly well graded between coarse and fine. The granular materials should have a maximum particle size of 1%2 inches, less than 5 percent by weight passing the U.S. Standard No. 200 Sieve, have at least two mechanically fractured faces, and GEODESIGNZ o should meet ODOT SS 2630.11 - Open- Graded Aggregate. The imported granular material should be placed in one lift and compacted to not less than 95 percent of the maximum dry density as determined by ASTM D 1557. 4.5.5 Pavement Base Rock Imported granular material used as base rock for pavements should consist of %- or 1Y2-inch- minus material meeting the requirements in ODOT SS 00641 - Aggregate Subbase, Base, and • Shoulders Base Aggregate, with the exception that the aggregate have less than 5 percent passing a U.S. Standard No. 200 Sieve and at least two mechanically fractured faces. The imported granular material should be placed in lifts with a maximum uncompacted thickness of 12 inches and be compacted to not less than 95 percent of the maximum dry density, as determined by ASTM D 1557. 4.5.6 Trench Backfill Trench backfill for the utility pipe base and pipe zone should consist of well - graded granular material with a maximum particle size of 1 inch and less than 5 percent by weight passing the U.S. Standard No. 200 Sieve and should meet ODOT SS 00405.14 - Class B Backfill. The material should be free of roots, organic matter, and other unsuitable materials. Backfill for the pipe base and pipe zone should be compacted to at least 90 percent of the maximum dry density, as determined by ASTM D 1 557 or as recommended by the pipe manufacturer. Within building, pavement, and other structural areas, trench backfill placed above the pipe zone should consist of imported granular material as specified above. The backfill should be compacted to at least 92 percent of ASTM D 1557 at depths greater than 2 feet below the finished subgrade and 95 percent of ASTM D 1557 within 2 feet of finished subgrade. In all other areas, trench backfill above the pipe zone should be compacted to at least 92 percent of the maximum dry density, as determined by ASTM D 1557. 4.5.7 Trench Stabilization Material Trench stabilization material should consist of pit or quarry run rock, crushed rock, or crushed gravel and sand and should meet the requirements set forth in ODOT SS 00330.14 and 00330.15, with a minimum particle size of 4 inches and less than 5 percent passing the U.S. Standard No. 4 Sieve. The material should be free of organic matter and other deleterious material. Trench stabilization material should be placed in one lift and compacted to a firm condition. 4.5.8 Drain Rock Drain rock should consist of angular, granular material with a maximum particle size of 2 inches and should meet ODOT SS 00430.11 - Granular Drain Backfill Material. The material should be free of roots, organic matter, and other unsuitable materials and have less than 2 percent passing the U.S. Standard No. 200 Sieve (washed analysis). 4.5.9 Soil Amendment with Cement As an alternative to the use of imported granular material for wet - weather structural fill, an experienced contractor may be able to amend the on -site, silty soils with portland cement or with limekiln dust and portland cement to obtain suitable support properties. Successful use of soil GEODESIGNz g PNWP -30- 02:071905 amendment depends on the use of correct mixing techniques, soil moisture content and gradation, and amendment quantities. Soil amending should be conducted in accordance with ODOT SS 00344 - Treated Subgrade. Soil amendment will be difficult to impossible in soils containing significant quantities of clay, gravel, cobbles, and boulders. Specific recommendations, based upon exposed site conditions, for soil amending can be provided if necessary. However, for preliminary design purposes, we recommend a target strength for cement - amended soils of 100 psi. The amount of cement used to achieve this target generally varies with moisture content and soil type. It is difficult to predict field performance of soils to cement amendment due to variability in soil response, and we recommend laboratory testing to confirm expectations. Generally, 4 percent cement by weight of dry soil can be used when the soil moisture content does not exceed approximately 20 percent. If the soil moisture content is in the range of 25 to 35 percent, 4 to 7 percent by weight of dry soil is recommended. The amount of cement added to the soil may need to be adjusted based on field observations and performance. Moreover, depending on the time of year and moisture content levels during amendment, water may need to be applied during tilling to appropriately condition the soil moisture content. Portland cement - amended soils are hard and have low permeability. Therefore, these soils do not drain well, nor are they suitable for planting. Future planted areas should not be cement amended, if practical, or accommodations should be planned for drainage and planting. • 4.6 SHALLOW FOUNDATIONS Based on the results of our subsurface explorations and analyses, it is our opinion that the proposed structures, with the anticipated design foundation loads previously described, can be supported on shallow foundations bearing on undisturbed, native soils or compacted structural fill placed on the native soil. The footings should not be founded on undocumented fill or subgrade containing excessive roots. If encountered during footing preparation, these materials should be removed and the resulting excavation should be backfilled with structural fill material compacted as recommended in the "Structural Fill" section of this report. We recommend that GeoDesign observe all footing subgrade to verify that any unsuitable material encountered is adequately removed. 4.6.1 Dimensions and Capacities Continuous wall and isolated spread footings should be at least 16 and 20 inches wide, respectively. The bottom of exterior footings should be at least 18 inches below the lowest adjacent exterior grade. The bottom of interior footings should be established at least 12 inches below the base of the slab. Footings bearing on subgrade prepared as recommended above should be sized based on an allowable bearing pressure of 3,000 psf. This is a net bearing pressure; the weight of the footing and overlying backfill can be ignored in calculating footing sizes. The recommended allowable bearing pressure applies to the total of dead plus long -term live loads and may be increased by one -third for short-term loads such as those resulting from wind or seismic forces. G EODESIGN 111 Based on our analysis and experience with similar soils, total post- construction settlement should be less than 1 inch, with differential settlement of less than %z inch over a 50 -foot span. 4.6.2 Resistance to Sliding Lateral loads on footings can be resisted by passive earth pressure on the sides of the structures and by friction on the base of the footings. • Our analysis indicates that the available passive earth pressure for footings confined by native soils and structural fills is 350 pcf modeled as an equivalent fluid pressure. Typically, the movement required to develop the available passive resistance may be relatively large. Therefore, we recommend using a reduced passive pressure of 250 pcf equivalent fluid pressure. Adjacent floor slabs, pavements, or the upper 12 -inch depth of adjacent, unpaved areas should not be considered when calculating passive resistance. Additionally, in order to rely upon passive resistance, a minimum of 10 feet of horizontal clearance must exist between the face of the footings and any adjacent down slopes. For footings in contact with native soil, a coefficient of friction equal to 0.35 may be used when calculating resistance to sliding. This value may be increase to 0.40 for gravelly soils. The passive and frictional resistance may be combined provided that the passive component does not exceed two- thirds of the total. These values do not include a factor of safety. We recommend a safety factor of 3 when designing for 'dead loads plus frequently applied live loads and a safety factor of 2 be applied when considering transitory loads such as wind and seismic forces. 4.6.3 Construction Considerations All footing and floor subgrades should be evaluated by the project geotechnical engineer or their representative to confirm suitable bearing conditions. Observations should also confirm that all loose or soft material, organics, unsuitable fill, prior topsoil zones, and softened subgrades, if present, have been removed. Localized deepening of footing excavations may be required to penetrate any deleterious materials. If footing excavations are conducted during wet weather conditions, we recommend that a minimum of 3 inches of granular material be placed and compacted until well keyed at the base of the excavations. The granular material reduces water softening of subgrade soils, reduces subgrade disturbance during placement of forms and reinforcement, and provides clean conditions for the reinforcing steel. 4. FLOOR SLABS Satisfactory subgrade support for building floor slabs supporting up to 150 -psf area loading can be obtained provided the building pad is prepared as described previously. To help reduce moisture transmission and slab shifting, we recommend a minimum 6- inch -thick layer of floor slab base rock be placed and compacted over a subgrade that has been prepared in conformance with the 'Site Preparation" section of this report. The floor slab base rock should meet the requirements in the "Structural Fill" section of this report and be compacted to at least 95 percent of ASTM D 1557. GEODESIGN= 11 PNWP -30- 02:071905 The native soils are fine grained and will tend to maintain a high moisture content. The installation of a vapor barrier may be warranted in order to reduce the potential for moisture transmission through, and efflorescence growth on, the floor slabs. Additionally, flooring manufacturers often require vapor barriers to protect flooring and flooring adhesives and will warrant their product only if a vapor barrier is installed according to their recommendations. • Actual selection and design of an appropriate vapor barrier, if needed, should be based on discussions among members of the design team. Slabs should be reinforced according to their proposed use and per the structural engineer's recommendations. Load - bearing concrete slabs may be designed assuming a modulus of subgrade reaction, k, of 125 pounds per square inch per inch. 4.8 FILL INDUCED SETTLEMENT Large fills, up to 18 feet thick, are planned in the southeastern portion of the site. Surcharge loads from fills will result in settlement of the underlying on -site soils. Our analyses indicate that post - construction settlement will likely be less that 1 inch. We recommend monitoring the settlements with a minimum of three settlement plates. A typical settlement plate detail is shown on Figure 3. For ease in handling, the casing and rod portions of the settlement plate are usually installed in 5 -foot sections. As filling progresses, couplings are used to install additional sections. Continuity in the monitoring data is maintained by reading and recording the top of the measurement rod immediately prior to and following the addition of new sections. Care must be taken during fill construction not to bend or break the rods. The settlement plates should be installed prior to site filling and immediately surveyed. Survey shots should be taken at each settlement plate at least twice per week during fill construction and for at least 1 month after fill construction. The settlement plates should be monitored using survey equipment with an accuracy of 1 /100`h of a foot and referenced to a stationary datum established at least 500 feet from the edge of the surcharge area. In addition to recording the elevation of the settlement plates during each survey event, a complete record of the surcharge history requires reading and recording the fill height at each settlement plate. The survey data should be supplied to GeoDesign within 3 days of the survey. We will provide a Microsoft Excel spreadsheet to the surveyors that can be used to transfer data via email. 4.9 ROCKERY RETAINING STRUCTURES 4.9.1 General Rockeries generally act as a gravity wall to resist lateral load. Important elements of a rockery are: 1) its size, weight, and shape; 2) friction developed between individual rocks (internal friction); 3) friction between the base layer of rocks and underlying ground; 4) passive resistance to sliding developed by soil or pavement in front of the rockery; and 5) lateral load acting on or resisted by the rockery. Rockery wall construction is not an exact science and depends largely on the skill of the builder. Although rockeries can offer significant lateral restraint, they are partially indeterminate and present some risk relative to other retaining structures when not properly constructed or G EO DESIG N? nmiuin 11 rInr designed. In addition, internal friction is very difficult to quantify and is, in part, dependent on the rock strength at the contact and again, to a large degree, on the skill and judgment of the builder. Internal friction can change over time, due to weathering of the rock and from rockery movement. Rockeries typically experience a "settling in" during and for some time after construction. Also, many rockeries are subject to an additional lateral load that causes additional movement due to wetting of the retained soil or other factors that reduce the strength of the soil. For poorly constructed marginal rockeries, movement can result in loss of internal friction and a rockery failure. 4.9.2 Assumptions Our rockery wall design recommendations are based on the following assumptions: (1) the walls are battered back no steeper than 6H:1 V, (2) the walls are no taller than 8 feet, (3) the backfill is drained and consists of imported granular materials, (4) rockery walls do not support building loads or heavy truck traffic, and (5) the backfill has a slope flatter than 5H:1 V. Re- evaluation of our recommendations will be required if the retaining wall design criteria for the project varies - from these assumptions. 4.9.3 Wall Construction Analyses were performed for various wall heights to determine the minimum required wall thickness and embedment depths. A surcharge of 150 psf was applied to account for light traffic loads behind the walls. We did not apply hydrostatic pressures in our design because we have recommended specific drainage requirements behind the walls. Our recommendations and calculations are included in Appendix D. A typical rockery wall section is presented in the attached Figure D -1 along with Construction Notes and a calculation package for typical wall sections. The typical rockery wall section and Construction Notes can be integrated into the project plans. As shown on Figure D -1, the minimum required wall embedment is 1 foot. The minimum wall thickness will vary with wall height as shown in the table presented on Figure D -1. The free - draining zone immediately behind the walls should consist of angular, crushed rock or gravel as described in the attached Construction Notes. Perforated collector pipes should be placed at the base of the granular backfill behind the walls as shown on Figure D -1. The collector pipes should discharge at an appropriate location away from the base of the wall. Unless measures are taken to prevent backflow into the wall's • drainage system, the discharge pipe should not be tied directly into stormwater drain systems. Settlements of up to 1 percent of the wall height commonly occur immediately adjacent to the wall as the wall rotates and develops active lateral earth pressures. Consequently, we recommend that construction of flat work adjacent to retaining walls be postponed at least 4 weeks after backfilling of the wall, unless survey data indicates that settlement is complete prior to that time. GEODESIGNi 13 PNWP -30- 02:071905 4.10 CONVENTIONAL RETAINING STRUCTURES 4.10.1 Assumptions Our retaining wall design recommendations are based on the following assumptions: (1) the walls consist of conventional, cantilevered retaining walls, (2) the walls are less than 10 feet in height, (3) the backfill is drained and consists of imported granular materials, and (4) the backfill has a slope flatter than 4H:1 V. Re- evaluation of our recommendations will be required if the • retaining wall design criteria for the project varies from these assumptions..Conventional walls taller than 10 feet should be designed by an engineer registered in the state of Oregon. 4.10.2 Wall Design Parameters For unrestrained retaining walls, an active pressure of 40 pcf equivalent fluid pressure should be used for design. For the embedded building walls, a superimposed seismic lateral force should be calculated based on a dynamic force of 6H pounds per lineal foot of wall, where H is the height of the wall in feet, and applied at 0.6H from the base of the wall. Where retaining walls are restrained from rotation prior to being backfi.11ed, a pressure of 58 pcf equivalent fluid pressure should be used for design. — If any surcharges (e.g., retained slopes, building foundations, vehicles, steep slopes, terraced walls, etc.) are located within a horizontal distance from the back of a wall equal to twice the height of the wall, then additional pressures will need to be accounted for in the wall design. Our office should be contacted for appropriate wall surcharges based upon the actual magnitude and configuration of the applied loads. The bases of the wall footing excavations should extend a minimum of 18 inches below lowest adjacent grade. The footing excavations should then be lined with a minimum 6- inch -thick layer of compacted, imported, granular material, as described in the "Structural Fill" section of this report. The wall footings should be designed in accordance with the guidelines provided in the appropriate portion of the "Shallow Foundations" section of this report. 4.10.3 Wall Drainage and Backfill The above design parameters have been provided assuming that back -of -wall drains will be installed to prevent build -up of hydrostatic pressures behind all walls. If a drainage system is not installed, then our office should be contacted for revised design forces. Backfill material placed behind retaining walls and extending a horizontal distance of %zH, where H is the height of the retaining wall, should consist of well - graded sand or gravel, with not more than 5 percent by weight passing the U.S. Standard No. 200 Sieve and meeting ODOT SS 00510.12 - Granular Wall Backfill. We recommend the select granular wall backfill be separated from general fill, native soil, and /or topsoil using a geotextile fabric that meets the requirements provided in ODOT SS 350 and 2320 for drainage geotextiles. Alternatively, the on -site soils can be used as backfill material provided a minimum 2- foot -wide column of angular drain rock wrapped in a geotextile is placed against the wall and the on -site soils can be adequately moisture conditioned for compaction. The rock column should extend GEO D ESIGN? 1 DMA /D 7n_n1.n71 nnc from the perforated drainpipe or foundation drains to within approximately 1 foot of the ground surface. The angular drain rock should meet the requirements provided in the "Structural Fill" section of this report. The wall backfill should be compacted to a minimum of 95 percent of the maximum dry density, as determined by ASTM D 1557. However, backfill located within a horizontal distance of 3 feet from a retaining wall should only be compacted to approximately 90 percent of the. maximum dry density, as determined by ASTM D 1557. Backfill placed within 3 feet of the wall should be compacted in lifts less than 6 inches thick using hand - operated tamping equipment (such as jumping jack or vibratory plate compactors). If flat work (sidewalks or pavements) will be placed atop the wall backfill, we recommend that the upper 2 feet of material be compacted to 95 percent of the maximum dry density, as determined by ASTM D 1557. Perforated collector pipes should be placed at the base of the granular backfill behind the walls. The pipe should be embedded in a minimum 2- foot -wide zone of angular drain rock. The drain rock should meet specifications provided in the "Structural Fill" section of this report. The drain rock should be wrapped in a geotextile fabric that meets the specifications provided in ODOT - SS 350 and 2320 for drainage geotextiles. The collector pipes should discharge at an appropriate location away from the base of the wall. Unless measures are taken to prevent backflow into the wall's drainage system, the discharge pipe should not be tied directly into stormwater drain systems. Settlements of up to 1 percent of the wall height commonly occur immediately adjacent to the wall as the wall rotates and develops active lateral earth pressures. Consequently, we recommend that construction of flat work adjacent to retaining walls be postponed at least 4 weeks after backfilling of the wall, unless survey data indicates that settlement is complete prior to that time. 4.11 PAVEMENT Pavements should be installed on native subgrade or new engineered fills prepared in conformance with the "Site Preparation" and "Structural Fill" sections of this report. We do not have specific information on the frequency and type of vehicles expected at the site. We have assumed that the traffic will consist of passenger cars and light delivery trucks, with an occasional bulk - handling larger truck. Our pavement recommendations are based on the following assumptions: • The pavement subgrade is prepared as recommended in the "Site Preparation" and "Structural Fill" sections of this report. • The top 12 inches of soil, subgrade below the roadway alignment is compacted to at least 92 percent of its maximum density per ASTM D 1557. • The CBR value is at least 4. This value was used to estimate a resilient modulus of 4,500 psi for the subgrade. • A resilient modulus of 20,000 psi was estimated for the base rock. • Initial and terminal serviceability index of 4.2 and 2.5, respectively. GEOD66IGN? 15 PNWP -30- 02:071905 • Reliability and standard deviation of 85 percent and 0.4, respectively. • Structural coefficient of 0.42 and 0.10 for the asphalt and base rock, respectively. Assuming the traffic volumes described in Table 1 and a 20 -year design, we calculated the pavement sections provided below. Our pavement design recommendations are summarized in Table 1 for two different traffic scenarios. Table 1. Pavement Design Recommendations Traffic Levels Pavement Thicknesses' (inches) Cars per Day Trucks per Day AC Base Rock 200 0 . 2.5 6.0 200 15 3.0 9.0 1. All thicknesses are intended to be the minimum acceptable values. If any of the above assumptions are incorrect, our office should be contacted with the appropriate information so that the pavement designs can be revised. The AC should be Level 2, 12.5 -mm, dense HMAC according to ODOT SS 00745 and be compacted to 91 percent of Rice Density of the mix as determined in accordance with ASTM D 2041. Minimum lift thickness for 12.5 -mm HMAC is 1.5 inches. Asphalt binder should be performance graded and conform to PG 70 -16. The base rock should meet the specifications for aggregate base rock provided in the "Structural Fill" section of this report. • Construction traffic should be limited to non - building, unpaved portions of the site or haul roads. Construction traffic should not be allowed on new pavements. If construction traffic is to be allowed on newly constructed road sections, an allowance for this additional traffic will need to be made in the design pavement section. 4.12 SEISMIC DESIGN CRITERIA • 4.12.1 IBC Parameters Seismic design criteria in accordance with 2003 IBC and 2004 SOSSC are summarized in Table 2. GEODESIGN2 1 Miurn in n�.n nnr Table 2. Seismic Design Criteria Short Period 1 Second Maximum Credible Earthquake Spectral Acceleration S = 1.06 g S = 0.37 g Site Class C • Site Coefficient F = 1.00 F = 1.43 Adjusted Spectral Acceleration S, = 1.06 g SM, = 0.53 g Design Spectral Response Acceleration Parameters 0.70 g 0.35 g Design Spectral Peak Ground Acceleration 0 g 4.12.2 Liquefaction and Lateral Spreading Liquefaction can be defined as the sudden loss of shear strength in a soil due to an excessive buildup of pore water pressure. Liquefied soil layers generally follow a path of least resistance to dissipate pore pressures, often resulting in sudden surface settlement, sand boils or ejections, and /or lateral spreading in extreme cases. Clean, loose, uniform or silty, fine- grained, saturated sands are particularly susceptible to liquefaction. Lateral spreading is a liquefaction - related seismic hazard. Areas subject to lateral spreading are typically gently sloping or flat sites underlain by liquefiable sediments adjacent to an open face, such as riverbanks. Liquefied soils adjacent to open faces may "flow" in that direction, resulting in lateral displacement and surface cracking. Based on the soil plasticity and stiffness and groundwater elevation, it is our opinion that the on- site soils are not susceptible to liquefaction during the design seismic event. Consequently, there is no risk of lateral spreading. 5.0 OBSERVATION OF CONSTRUCTION Satisfactory foundation and earthwork performance depends to a large degree on quality of construction. Sufficient monitoring of the contractor's activities is a key part of determining that the work is completed in accordance with the construction drawings and specifications. Subsurface conditions observed during construction should be compared with those encountered during the subsurface exploration. Recognition of changed conditions often requires experience; therefore, qualified personnel should visit the site with sufficient frequency to detect whether subsurface conditions change significantly from those anticipated. We recommend that GeoDesign be retained to monitor construction at the site to confirm that subsurface conditions are consistent with the site explorations and to confirm that the intent of project plans and specifications relating to earthwork and foundation construction are being met. • G EO DESIG N? 17 PNWP- 30- 02:071905 6.0 LIMITATIONS We have prepared this report for use by Pacific Northwest Properties and the design and construction teams for the proposed Tigard Triangle Commons development. The data and report can be used for bidding or estimating purposes, but our report, conclusions, and interpretations should not be construed as a warranty of the subsurface conditions and are not applicable to other sites. Explorations indicate soil conditions only at specific locations and only to the depths penetrated. They do not necessarily reflect soil strata or water level variations that may exist between exploration locations. If subsurface conditions differing from those described are noted during the course of excavation and construction, re- evaluation will be necessary. The site development plans and design details were preliminary at the time this report was prepared. When the design has been finalized and if there are changes in the preceding site grading or location, configuration, design loads, or type of construction for the building, the conclusions and recommendations presented may not be applicable. If design changes are made, we should be retained to review our conclusions and recommendations and to provide a written evaluation or modification. The scope of our services does not include services related to construction safety precautions, and our recommendations are not intended to direct the contractor's methods, techniques, sequences or procedures. Within the limitations of scope, schedule, and budget, our services have been executed in accordance with the generally accepted practices in this area at the time this report was prepared. No warranty or other conditions, expressed or implied, should be understood. ♦♦♦ We appreciate the opportunity to be of service to you. Please call if you have questions concerning this report or if we can provide additional services. Sincerely, GeoDesign, Inc. 4 % . 0 PRO �� GIN 630 4 Scott P. McDevitt, P.E. (� Geotech i ll Project Engineer OREGON eor4 enders, P.E. EXPIRES; a 31 c C Princi ' . Geotechnical Engineer GEODESIC;NZ „ Figures _ 1i° ! J X r {nllr..�ns+�'• �'M 4 ,T •" ,• q . ' 7 ,.' ,-_-° - 4,.. . +4;: » -r - c,�'�¢,''r � .cf i rte+ t �. t `~ • w J e' J 1+ f C "1NII• MS.e �� ' ` M l 4� 1J r'� + ° J "S N.4liF r A - ,.:r,! rSrLS t � Iww II r, p .. � } - s L. ,.. Y,2.,!' ..m , • - _ — ` -. 9 -,.. aT . Y y ,w ' • - 447 ..�,,._ 1 i ''L"'.. - rl. .N 1 ��J M ryVP` MI•v,. - r ,� l , •_ �� _ 1 ` t' 2 ; M 1 '�t ) t �,� l �.. q . • 11 I- j r F 1 @•� a ' 4' ,1 1 L 4r•. d T ,s . 11 I ry r ' r W ' ? L � fu g7 l{ � 1 ,4 ` j � a� h' r i� y i i � - ` Sl " `' � , ` 3 il. � _ ..r� 4 at f �IA1 F� I..tl ✓. 1 ' I n � l y } '� (fib, Pv �' _ ! ^ G l } ` � ' - . .. . a f ti, l 1 L .1li , [ ti ' i ,� i T" . 4 ` r , t..,., "t� x t FI'' 3 1 I F 1. 4 li' i D � , t 4 • . .. ,.' ([ II ! t ; ,e I �-- .r^' 4.� , tr- 1� rL ''' r r , ;wI ) 5' �f r I �d�" ' t 7 . i' � ` �d 1 .I, [ I , 9 , i i �•C. 4r' L tr' i ' I , l r ,l ti j �, l i':! 1 , gyfT � - '4 4 . ' � '•` a • � {L , 0 f , ( L ' i, r '1 1 I fr,.Lls irk, rI�1.11.' t. fi • CI C ! I y L' r i. 1 L' wl � ' e t 1 -- w ? i f L'," :I_" ry r ' L !L t. Rt, `:"r � ' � �>< r , 4� 'xtd V x ti. h n c M1 , '1y'u -+g*r t ' � ; ' �I ,,: - - > ' ,w7s� ._;-e-mi,; -- ! L � ' 4 .Y , !• 1 ." 1.A I, , - ! � , ry „ ) . .�• -. ]y JI [ (y a . I r�• T ( �rt ' N � � � P , p r�. . �•� " y I . , : 1j{ f , ! , l •4c. w.`" 1 -It T' c 7r 4 11 ' l ,ilr, t i( I , • 1 , c Y . ,� , f . , i , ,t' - ,,� 1 '`.r. . r , .I ; , " �''c, ewl r� -1 V� �I .v'�h " i " )71 " ti :: f te - IifF"' _, ^y _� µ 1 • • .1 1 i _ 1 ',1 � t b ' 4∎N - f , :: r " 1 . q ii f' I - 4f3 � � ` r • I MF `a 4 n I ,17Pm i j i . ft7 P 9 i r o 1 t t -: f 4 I 'L ' • h.4,.: t r . ! MI r r r ` �, - ' j El y , I.J i t ( , G j ` ' • t,. 3d '." , ' t ie' Q' L fi e` • f •trjY�- .tw —.....6.„, �I� � fi +•' "r .:;:"h",' ., ' .th ,,•. ! -i .. � '" i iT ( 5 yt I '- I , ' y .41;11.7:1/4' . 6' li .,✓"+. • r , ,,, ° 5 '� II 0-'1 .II . � r I . . 1 � , , ;.,:e x ' i { r Y -"•�, , , n � 1 r �� � V. � I I,, 1 .1 41.j IA ! 4E1 I ]' we � ,_`'���i� -" rr I� 53� ••••••••• . L u 1, t �'"c i fe t , r+r s?• �Y� e t E x,11 r ""�' 4 4 P' - a . ,?a'. •. k 1. httl . ,l d' . i a, , ir a � ,L . 4• -ti ,. i ` is (7", . , ° ., la , c , 1 • . it ♦ ` •, d ,,, ,,va„ ntk,y 4, s E1 � I .. f ... -�.-.- . _ , F .' 3 ,:a; •,,:s3.,., j v .-- e n y " ` , r f , 1. : . L aM i I .. �, lIt f � 1, ' i• y ..,`,. Z ',� '-" J 1 t 1 r l , R, tTt. i M' .;, %] t '�^�'� 1, 7 /... •J+ I. 7'i.�� {IL; ■ 1 �� 1 n ' _ p .Itj r +�'a••- �' J ' • . i I f I : 41117 ....' .. • i q. • ••ft . • Ct,_, . ;P N e d } r i p r ' #4,,,:..• h e 4 S" _ �t f i J2 r� • 1'1 ij ,u �z ( Ilt t I ,. f �,, •., r / t ' 1 • ' r t i . , f � I :�, . ;l`,.� � e r • w �� ,t !!!:... ', ` � I w 'f { I tt , rI� ij •:,,,, u' , i I y • t I t • J "� ki •' .i • i•T' il r'1,•• ` ry, r I I I ` I I x'T i�t • ,�. ,, 1 aid. �• - _ 11 • •- - , �' :• •., c , • ? 'i , �, Y .r. I i ! � � t . I , 3 ` � / I * !ice t ', v • v, i'.: .: l� _ , I 1 . t "11 — � .. . t E It all.• i I P' ' •� 1 '' 44 i I r . ° ., .,.. 4 4 : I9 w �" y . ; � ., imo 4. {L •..r 4� ', K . • , y 1 \11,,, N. • ®y ' .y d o• IS 1 . �' .'• � .,. - m ..: . ` . J L �� • r 4, t �, t " It��� w + ', - . • � ,I.I r • l a *,. ,( :ot J 1 . 'vF 1111" . • 4:M. ..i 'iffi -"t4 ..l 0: , l e x • . • ... ' , - • 4 , s : VA • • •r q t .. -i.. . t , '� F i y „r.• t `. .'. • � ' • L ,' , 0 Z .. . 4 u• - •'A• , ' - �' ', . 4P 3 t+ ` � ` L. ( w a`..,'a It ^ ir, w�- ..i P,.,,. f '+ " 0 F' ., Rte' ti rill t� d ,�.�.- - 4 1 ; ' , °,. 4...4 r w C o a t -- r ;��Ifid1� ti 1 4, � ' ' N USGS QUADRANGLE MAP • fa i Z MAP CREATED WITH TOPO!• . 4.....\, - ,''' z �.: • - *_!� T 'It: 2800 4 100 r `sit' i 1 02002 NATIONAL GEOGRAPHIC „' * ', k t ,��' f/ (IN FE �'�. rx G Ep DESIG PNWP -30 02 VICINITY MAP ni 1 5S75S W6 eqR N 0 P ni ortland OR 97224 -- IANGE Off S03.968.8787 Fax S03.968.3068 JULY 2005 TIGARD TRGARDL OR MMONS FIGURE 1 • Jul 19, 2005 - 10:57:03 DWG Name: PNWP- 30- 02- 5P- flC -2.dwg Updated By: cmp 7 / A -ill `-'4 / , 1 • I 1 ,\ i ��. I ' � ' •. ,` C N O ass— '6 �r w - I i t i. ;....... „...._, E� \ \ . I _ — o _ J a . \ -i Z r1 to 2 — , tn ` l i ��I�,��a� ----K---- -� \ \= -2 o l. \ ' •St .." I 1 .. \ \ k \ .\ \ •, ....., . .... 4, ... , , , , , , 1 1 \ \--,—, ,,. .., Z p Z o � ' I I I v F^ =—I —� co co / \ / I. — - -- o ,,,gym z J _ I I1 ( I I' - �� . �'� no Z - n 7C ��� � , \� ` \ \ O Z t ) D •_____.--\-'5"---::0_>-_____________:: .310 ..________ --... 0 Il Z ---. to --1 n —o 0 0 0 G E O DES I G N? PNWP -30 -02 — SITE PLAN 15575 SW Sequoia Parkway - Suite 100 Portland OR 97224 JULY 2005 TIGARD TRIANGLE COMMONS FIGURE 2 00 503.968.8787 Fax 503.968.3068 TIGARD, OR MEASUREMENT ROD, 1/2" DIAMETER PIPE OR REBAR CASING, 2" DIAMETER PIPE (SET ON PLATE, NOT FASTENED) . fy COUPLING WELDED TO PLATE SETTLEMENT PLATE 16"x 16"x 1/4" • SAND OR GRAVEL PAD IF NECESSARY EXISTING GROUND SURFACE NOT TO SCALE NOTES: 1. INSTALL MARKERS ON FIRM GROUND OR ON SAND OR GRAVEL PADS IF NEEDED FOR STABILITY. TAKE INITIAL READING ON TOP OF ROD AND AT ADJACENT GROUND LEVEL PRIOR TO PLACING ANY FILL. g y. 2. FOR EASE IN HANDLING, ROD AND CASING ARE USUALLY INSTALLED IN 5 -FOOT SECTIONS. AS FILL PROGRESSES, COUPLINGS ARE USED TO INSTALL ADDITIONAL LENGTHS. CONTINUITY IS MAINTAINED BY READING THE TOP OF THE MEASUREMENT ROD, THEN IMMEDIATELY ADDING THE NEW SECTION AND READING THE TOP OF THE ADDED ROD. BOTH READINGS ARE RECORDED. 3. RECORD THE ELEVATION OF THE TOP OF THE MEASUREMENT ROD IN EACH MARKER AT THE RECOMMENDED TIME INTERVALS. EACH TIME, NOTE THE ELEVATION OF THE ADJACENT FILL SURFACE. ca; 4. READ THE MARKER TO THE NEAREST 0.01 FOOT, OR 0.005 FOOT IF POSSIBLE. NOTE THE FILL ELEVATION TO THE NEAREST 0.1 FOOT. 5. THE ELEVATIONS SHOULD BE REFERENCED TO A TEMPORARY BENCHMARK LOCATED ON STABLE GROUND AT LEAST 500 FEET FROM THE EMBANKMENT. 0 ° u PNWP -30 -02 ° • G.EO�ES�G(v? SETTLEMENT PLATE DETAIL N 15575 SW Sequoia Parkway • Suite 100 Portland OR 97224 JULY 2005 TIGARD TRIANGLE COMMONS Off 503.968.8787 Fax 503.9683068 TIGARD, OR FIGURE 3 Appendix A APPENDIX A FIELD EXPLORATIONS GENERAL • Subsurface conditions at the site were explored by excavating 11 test pits (TP -1 through TP -1 1) to depths of 7.5 to 16.0 feet BGS. The test pits were excavated on June 16, 2005 by Western States Soil Conservation, Inc. of Aurora, Oregon, using a Hitachi EX-120 trackhoe. The approximate locations of the explorations are shown on Figure 2. Logs of the explorations are included in this appendix. Logs of previous explorations are presented in Appendices B and C. The locations of the explorations were determined in the field by pacing from site features. This information should be considered accurate to the degree implied by the methods used. SOIL SAMPLING A member of our geologic staff observed the explorations. We obtained representative samples of the various soils encountered in the test pits for geotechnical laboratory testing. Samples were obtained from the trackhoe bucket and sealed in plastic bags. Soil classifications and sampling intervals are shown on the exploration logs included in this appendix. A relatively undisturbed sample was obtained using a standard Shelby tube in general accordance with guidelines presented in ASTM D 1587, the Standard Practice for Thin - walled Tube Sampling of Soils. SOIL CLASSIFICATION The soil samples were classified in accordance with the "Key to Test Pit and Boring Logs Symbols" (Table A -1), "Soil Classification System and Guidelines" (Table A -2), and "Rock Classification System and Guidelines" (Table A -3), copies of which are included in this appendix. The exploration logs indicate the depths at which the soil /rock or their characteristics change, although the change actually could be gradual. Classifications and sampling intervals are shown on the exploration logs included in this appendix. LABORATORY TESTING CLASSIFICATION The soil samples were classified in the laboratory to confirm field classifications. The laboratory classifications are included on the exploration logs if those classifications differed from the field classifications. MOISTURE CONTENT DETERMINATION We tested the natural moisture content of selected soil samples in general accordance with ASTM D 2216. The natural moisture content is a ratio of the weight of the water to soil in a test sample and is expressed as a percentage. The test results are included on the exploration logs presented in this appendix. FINES CONTENT. ANALYSIS Fines content analyses were completed on one sample in general accordance with ASTM C 1 17 (percent passing a U.S. Standard No. 200 Sieve). The test results are presented on the exploration logs in this appendix. GEODESICN= A PNWP -30- 02:071905 CONSOLIDATION TESTING We performed a one - dimensional consolidation test in general accordance with ASTM D 2435 on a relatively undisturbed sample obtained from the test pit explorations. The test measures the volume change of a soil sample under predetermined loads. The results of the consolidation tests are included in this appendix. G EO DESIG N= A-2 PNWP- 30- 02:071905 KEY TO TEST PIT AND BORING LOG SYMBOLS SYMBOL SOIL DESCRIPTION 11 Location of sample obtained in general accordance with ASTM D 1586 Standard Penetration Test with recovery Location of sample obtained using thin wall, shelby tube, or Geoprobe® sampler in general . J accordance with ASTM D 1587 with recovery N Location of sample obtained using Dames & Moore sampler and 300 -pound hammer or pushed with recovery - N Location of sample obtained using Dames & Moore sampler and 140 -pound hammer or pushed with recovery Graphic Log of Soil and Rock Types Location of grab sample ;•`,,.' Observed contact between soil or rock units (at depth indicated) r Rock coring interval Inferred contact between EZ Water level during drilling soil or rock units (at approximate depths Vindicated) , Y Water level taken on date shown : GEOTECHNICAL TESTING EXPLANATIONS PP Pocket Penetrometer DD Dry Density TOR Torvane ATT Atterberg Limits CON Consolidation CBR California Bearing Ratio DS Direct Shear OC Organic Content P200 Percent Passing U.S. Standard No. 200 P Pushed Sample Sieve RES Resilient Modulus HYD Hydrometer Gradation VS Vane Shear UC Unconfined Compressive Strength kPa kiloPascal SIEV Sieve Gradation c Y. • ENVIRONMENTAL TESTING EXPLANATIONS z T CA Sample Submitted for Chemical Analysis ND Not Detected t a PID Photoionization Detector Headspace NS No Visible Sheen .1, Analysis S ppm Parts Per Million SS Slight Sheen 2 P Pushed Sample MS Moderate Sheen g HS Heavy Sheen Z- F S GEODESIGN? • 15575 5W Sequoia Parkway - Sore 100 KEY TO TEST PIT AND BORING LOG SYMBOLS TABLE A -1 Z Portland OR 97224 ar Off 503.968.8787 Fax 503.968.3068 a • SOIL CLASSIFICATION SYSTEM CONSISTENCY - COARSE - GRAINED SOILS p Standard Penetration Dames & Moore Sampler Dames & Moore Sample Relative Density Resistance (140 -pound hammer) (300 -pound hammer) Very Loose 0 - 4 0- 1 1 0 4 Loose 4 -10 11 -26 4 -10 Medium Dense 10 - 30 • 26 - 74 10 - 30 Dense 30 - 50 74 - 120 30 - 47 Very Dense More than 50 More than 120 More than 47 CONSISTENCY - FINE - GRAINED SOILS Consistency Standard Penetration Dames & Moore Sampler Dames & Moore Sampler Unconfined Compressive Resistance (140 -pound hammer) (300 -pound hammer) Strength (tsf) i Very Soft Less than 2 Less than 3 Less than 2 Less than 0.25 Soft 2 -4 3 -6 2 -5 0.25 -0.50 • Medium Stiff 4 -8 6 -12 5 -9 0.50 -1.0 Stiff 8 - 1 5 12 - 25 9 -19 1.0 -2.0 Very Stiff 15 -30 25 -65 19 -31 2.0 -4.0 Hard _ More than 30 More than 65 More than 31 More than 4.0 SOIL CLASSIFICATION NAME Name and Modifier Terms Constituent Percentage GRAVEL, SAND >50% sandy, gravelly 30 - 50% silty, clayey 15 - 50% Coarse- grained some (gravel, sand) 15 - 30% some (silt, clay) trace (gravel, sand) 5 15% trace (silt, clay) <5% CLAY, SILT >50% silty, clayey sandy, gravelly 30 50% Fine - grained some (sand, gravel) some (silt, clay) 15 30% trace (sand, gravel) trace (silt, clay) 5 15% PEAT 50 -100% Organic organic (soil name) 15 - 50% (soil name) with some organics 5 - 1 5% MOISTURE CLASSIFICATION m Term Field Test 0 a , dry very low moisture, dry to touch moist damp, without visible moisture ° wet _ visible free water, usually saturated GRAIN SIZE CLASSIFICATION Description Sieve* Observed Size boulders 0. cobbles - 3" > - 12" • gravel coarse 0.75" - 3" 0.75" - 3" 5 fine #4 - 0.75" 0.1 9" - 0.75" coarse #10 - #4 0.079" - 0.19" € sand medium #40 - #10 0.01 7" - 0.079" fine #200 - #40 00029" - 0.017" fines < #200 <0.0029" Vs * Use of #200 field sieve encouraged A � 3 GEODESIGN E 15575 SWSequoa Parkway •5uae100 SOIL CLASSIFICATION SYSTEM AND GUIDELINES TABLE A -2 'o Portland OR 97224 Z Off 503.968.8787 Fax 503.968.3068 -9 ° L.) LL, DEPTH u > Z ii • MOISTURE COMMENTS FEET MATERIAL DESCRIPTION u W I g CONTENT t r j � 50 loo —0.0 — mss Soft to medium stiff, dark gray SILT with - i. ` trace to some organics (roots up to 1- � t , inch diameter); moist (topsoil, 3- to 4- Th _ -i nch thick root zone). Medium stiff to stiff, gray SILT with 1 ' 3 ® PP = 1.5 tsf _ orange mottles, trace fine sand, and PP occasional organics (fine rootlets); PP PP = 2.5 tsf 2.5 — moist. _ grades to light brown, gray- orange with . occasional fine, subrounded gravel at 5.0 4.0 feet P20 PP = 3.0 tsf P • P200 = 70% grades to clayey with occasional 7.5 boulders to 2 -foot diameter at 7.0 feet Slow groundwater seepage 10.0 — observed at 9.5 feet. • Minor caving observed at 10.5 Dense, gray red - brown, clayey 10. feet. - � d BOULDERS; moist to wet. Hard digging at 11.0 feet. O 12.5 —• _/ O Jo; Dense, red - brown, clayey GRAVEL with 13.5 :c..);;;06 O^ some sand and cobbles, and occasional • • boulders; moist to wet (residual basalt). • • ° 15.o a s�C� OP:c Test pit completed at 16.0 feet. 16.0 z - rn w - ° 0 17.5 — a c9 E. O d 20.0 a 0 50 100 CD w a EXCAVATED BY: Western States Soil Conservation, Inc. LOGGED BY: JGH COMPLETED: 06/16/05 w a. EXCAVATION METHOD: trackhoe (see report text) C7 • • PNwP 30 02 TEST PIT TP -1 G EO D ES I G N w snssw P s ni:�ao r Suite ioo TIGARD TRIANGLE COMMONS Off 503.968.8787 59 503.988.30613 JULY 2005 TIGARD, OR FIGURE A -1 v C = V J DEPTH = M ATERIAL D ESCRIPTION > - a • MOISTURE COMMENTS FEET w J W Q CONTENT % H —0.0 , 0 50 100 • Soft, brown -gray SILT with some gravel • Likely side with :• • and organics (3-inch-diameter wood 10-foot-deep previous test pit. . :•: fragments and roots), and occasional ■;•••• debris (asphalt fragment) and boulders; •••• moist (fill, 4- inch -thick root zone). • ❖• 2.5 iii•• • • •�• ••• %•�• ••••• ••�•• ••• 5.0 VA I )• •• • ••••• 7.5 .4 111 • ••• • Slow groundwater seepage 10.0 p. observed at 10.0 feet. Medium stiff, red -brown CLAY with some 10 0 Moderate to severe caving boulders; moist. ® • observed at 10.0 feet. Test pit completed at 1 2.0 feet due to 12.0 12.5 refusal. c c. z 15.0 • E G H O Z U • LL • 0 O Ui 1 7. 5 Q_ C7 a O C z 20.0 Q_ 0 50 100 w t, EXCAVATED BY: Western States Soil Conservation, Inc. LOGGED BY: JGH COMPLETED: 06/16/05 w a. EXCAVATION METHOD: trackhoe (see report text) O v PNWP -30 -02 a G EO DES IGN? TEST PIT TP -2 i357ssw Sequoia rnkw.r- smuICU TIGARD 68.578700.9)3 JULY 2005 FIGURE A -2 Off 55 503.966.6787 Fax 503.966.3066 TIGARD, OR u 0 DEPTH T > Z a • MOISTURE FEET MATERIAL DESCRIPTION W Q w Q CONTENT % COMMENTS —o.o _ o 50 1 00 • .*;• Medium dense, brown -gray, silty GRAVEL •,. with trace to some sand; moist, well •••• graded, subrounded (fill, 1- inch -thick v.., root zone). ,•; Medium stiff, dark brown, brown -gray 2.0 • 2.5 V" SILT with trace fine sand and occasional PP = 1.25 tsf *' *' organics (fine rootlets); moist (fill). _ PP ® • Stiff, light brown -gray SILT with orange 3.0 mottles and trace fine sand and clay; moist, low plasticity. P20 • 0 PP = 2.5 tsf PP P200 = 91% 5.0 — 7.5 — = ® • with some basalt boulders to silty Minor caving observed at 8.5 feet. boulders to 214 -foot diameter at 8.5 feet 10.0— _ I • No groundwater seepage observed Test pit completed at 11.0 feet due to 11.0 to the depth explored. refusal on boulders. 12.5 — C u5 — 0 U, _ z 15.0 — Q. I— - a z - u • w 0 CD 1 7.5 — c9 a N 0 n — d 11 20.0 - 0 50 100 w a EXCAVATED BY: Western States Soil Conservation. Inc. LOGGED BY: JGH COMPLETED: 06/16/05 o. w EXCAVATION METHOD: trackhoe (see report text) G EO DESIG N= PNWP -30 -02 TEST PIT TP -3 �) 15571 SW Sequoia Parkway • wn. 100 TIGARD TRIANGLE COMMONS w JULY 2005 Portland OR97271 LY FIGURE A -3 Off 503.966.8767 R9 503.958.30U TIGARD, OR v 0 DEPTH T > Z • MOISTURE COMMENTS FEET MATERIAL DESCRIPTION 1-0 W W ¢ CONTENT % L- N —0.0 50 100 . Soft to medium stiff, brown, gravelly s!� SILT with trace organics (roots up to %z- _71,1, inch diameter); moist (fill, 3- inch -thick 0.7 a ; ,, ' root zone). Medium stiff, dark brown- orange SILT 1 PP = 1.0 tsf with trace fine sand and organics (roots PP • up to Yz -inch diameter); moist, low 2.5 — lasticity (topsoil). _ Stiff to very stiff, light brown -gray SILT PP PP = 2.75 tsf with orange mottles, trace fine sand and - clay, and occasional organics (fine rootlets); moist. with isolated 3- inch - diameter tree root - at 4.0 feet 5.0 — grades with some boulders at 5.0 feet o..) Dense, red - brown, clayey GRAVEL with 6.0 JO :. o e some boulders and cobbles; moist - o� (residual basalt). ® • � No groundwater seepage observed 7.5 to the depth explored. Test pit completed at 7.5 feet due to 7.5 No caving observed to the depth - refusal on basalt. explored. 1 0.0- 12.5 — 0 w - z 1 5.0 — c - I- 0 z - c - 0 O 1 7.5 — a. c c9 r _ 9 O z 20.0 CL 0 50 100 w a EXCAVATED BY: Western States Soil Conservation. Inc. LOGGED BY: JGH COMPLETED: 06/16/05 w a EXCAVATION METHOD: treckhoe (see report text) G EO DESIGN PNWP-30-02 TEST PIT TP -4 I 5575 SW Sequoia Partway •Sot,. 00 TIGARD TRIANGLE COMMONS w Portland Fax Off 303.98 rtlan 7 Fax 503 JULY 2005 FIGURE A -4 503.988.3089 TIGARD, OR • 0 DEPTH u >1 H Z • MOISTURE FEET MATERIAL DESCRIPTION w N CONTENT % COMMENTS N 0 50 100 --o.� Medium stiff to stiff, light brown -gray SILT with orange mottles, trace fine sand, and occasional organics (fine rootlets and roots up to Y2 -inch PP • PP = 1.5 tsf • – diameter); moist (2'A-inch-thick root _ zone). 2.5 — grades to very stiff and orange -brown at PP PP = 3.0 tsf 3.0 feet PP ® PP = 3.0 tsf • 5.0— 7.5 — Slow to moderate groundwater C Dense, red, gray -brown BOULDERS (to 3- 8.5 ® seepage observed at 8.5 feet. i foot diameter) with some clay, gravel, _ O and sand; moist to wet (residual basalt). 10.0: p Minor caving observed from 10.0 to 12.5 feet. • aQ 12.5 • Test pit completed at 12.5 feet due to 12.5 0 refusal on basalt. N _ W _ 0 • 1 5.0 — 2 F- 0 t7 z - 0 rn W 0 0 • 17.5 — a – a- I- - 4 O n — 20.0 a 0 50 100 w a EXCAVATED BY: Western States Soil Conservation, Inc. LOGGED BY: JGH COMPLETED: 06/16/05 cc w a. EXCAVATION METHOD: trackhoe (see report text) 0 r G EO D ES I G N? PNWP -30 -02 TEST PIT TP -5 w i157SSWS.yuaa Parkway - Sadie 1oo TIGARD TRIANGLE COMMONS Portland 0897I:3 JULY 2005 FIGURE A -5 �– Off so3.988.8787 593.988.3068 TIGARD, OR u • DEPTH u > Z e • MOISTURE COMMENTS FEET MATERIAL DESCRIPTION w w CONTENT % c N • u H _0 o 50 100 Medium stiff, dark brown -gray SILT with trace fine sand and organics (roots up to 1 -inch diameter); moist (topsoil, 2- to 3- 1 0.7 inch -thick root zone). Medium stiff to stiff, gray SILT with PP PP = 1.5 tsf orange mottles, trace fine sand and clay, and occasional organics (roots up to %2 2.5 inch diameter); moist. grades to light brown - orange -gray at 3.0 PP = 2.5 tsf feet PP ® • 5.0 • grades to some boulders to silty 7.5 boulders at 7.0 feet / Stiff, red -brown CLAY with some silt and 9.0 trace gravel; moist, medium to high 10.0 plasticity (residual basalt). Slow groundwater seepage grades to no gravel and high plasticity observed at 10.0 feet. at 10.0 feet • grades to some sand and gravel at 12.0 12.5 feet o No caving observed to the depth Test pit completed at 14.0 feet. 14.0 explored. • 15.0 it c 0 O Z to w 17.5 0 • a O a- N O I li I 20.0 0 50 100 w a EX CAVATED BY: Western States Soil Conservation, Inc. LOGGED BY: JGH COMPLETED: 06/16/05 w a EXCAVATION METHOD: trackhoe (see report text) GEO DES IG PNWP -30 -02 TEST PITTP -6 W 1 SS7S SW Seryoola Parkway - Sure 100 Portland OR 97224 JULY 2005 TIGARD TRIANGLE COMMONS FIGURE A -6 Off S03.968.5787 Fax 003.966.3066 TIGARD, OR U w . ii DEPTH v > Z • MOISTURE COMMENTS FEET d MATERIAL DESCRIPTION w l W N CONTENT d S Li s Q —0.0 •* 0 50 100 , • Medium stiff, brown -gray- orange SILT — • ••with trace to some organics (roots up to ❖• '/2-inch diameter); moist (fill, 3- inch -thick V" root zone). /' 1.2 Medium stiff to stiff, dark gray SILT with trace fine sand and organics (roots up to ss 1 -inch diameter); moist (possible old ® PP = 1.5 tsf 2.5 ' \topsoil). r 2.5 PP • Stiff, gray SILT with orange mottles, trace clay and fine sand, and occasional pp PP = 1.75 tsf organics (roots up to % -inch diameter); moist. grades to light brown - orange -gray with PP PP = 1.75 tsf occasional organics (fine rootlets) at 4.0 5.0 feet • with some boulders at 7.0 feet • 7.5 10.0 - - Stiff, gray- brown -red, gravelly CLAY with ' 1.0 some boulders (18 -inch diameter) and cobbles of basalt; moist (residual basalt). 12.5 o Slow groundwater seepage observed at 14.0 feet. 15.0 No caving observed to the depth Test pit completed at 1 5.0 feet. 15. explored. t— - 0 z — C L1.1 — 0 w 17.5 — a c9 E. R O 20.0 a 0 50 100 w a EXCAVATED BY: Western States Soil Conservation. Inc. LOGGED BY: JGH COMPLETED: 06/16/05 • tY W a EXCAVATION METHOD: trackhoe (see report text) (.1 r G EO DESI G NU PNWP -30 -02 TEST PIT TP -7 w ts s7s SW Sequoia . sue. too TIGARD TRIANGLE COMMONS Portland d OR 97224 JULY 2005 FIGURE A -7 on 503.988.8787 Fax $81.968.3089 TIGARD, OR DEPTH > = Z a • MOISTURE COMMENTS FEET s MATERIAL DESCRIPTION 2 CONTENT % —0.0 em 50 loo , Medium stiff, dark gray SILT with some - organics (roots up to 3 -inch diameter) t t, LI and trace sand and clay; moist (topsoil, tY0e, 2- to 3- inch -thick root zone). us i; PP PP = 1.25 tsf jsssk " ,ISM grades to gray -dark gray with orange • 2.5 -�' mottles and occasional organics (roots / 2 PP ® PP = 1.0 tsf ■up to % -inch diameter) at 2.0 feet J Medium stlight brown -gray- orange - SILT with trace fine sand and clay; moist. ® PP = 1.0 tsf PP 5.0 • 7.5 — with isolated boulders up to 2 -foot - diameter at 8.0 feet 1 0.0 Medium stiff, red -brown CLAY with 10. ® • occasional boulders, cobbles, and gravel; moist to wet, high plasticity (residual basalt). 12.5 boulder zone at 12.5 feet 0 No groundwater seepage observed to the depth explored. Test pit completed at 14.0 feet due to 14 No caving observed to the depth W refusal on basalt /boulders. explored. O 15.0 — C • a - f - e z - c7 w - C w 17.5 — c9 a. 4 O d z 20.0 0 50 100 • w a. EXCAVATED BY: Western States Soil Conservation. Inc. LOGGED BY: JGH COMPLETED: 06/16/05 w a EXCAVATION METHOD: trackhoe (see report text) a. • G EO D ES I G N? PNWP -30 -02 TEST PIT TP -8 rn I 5575 SW Sequoia Parkway - Suhe 100 PoNand0997224 JULY 2005 TIGARD TRIANGLE COMMONS FIGURE A -8 Off 553.960.8787 F. 503.968.3068 TIGARD, OR 0 DEPTH u > Z a • MOISTURE FEET a MATERIAL DESCRIPTION W - g CONTENT % COMMENTS Q 5 p w < 1- -D.0 0 50 100 it it Medium stiff, dark brown SILT with trace - ,; , - sand and organics (roots up to Y2 -inch On east side of test pit, coarse " diameter); moist (topsoil, 3- inch -thick 2 - inch aggregate drain line — root zone). r 1.2 running north - south from 1.0 to Medium stiff to stiff, gray SILT with PP 2.0 feet. orange mottles, trace fine sand and clay, PP = 1.0 tsf and occasional organics (fine rootlets); PP PP = 1.75 tsf 2.5 — moist to wet. Slow groundwater seepage observed at 4.0 feet. 5.0 — grades to moist at 5.5 feet 7.5 — ® Slow groundwater seepage • observed at 8.0 feet. boulder zone (with silt) to 3 - foot Minor caving observed at 8.5 feet. - diameter at 8.5 feet 10.0 j Stiff, gray- red -brown CLAY with some 10.0 - silt, gravel, and sand, and trace cobbles and boulders; moist to wet (residual basalt). 12.5 � E • o I I I Soft to medium hard (R2 -R3), gray - 13.0 • • BASALT; slightly to moderately /- 13.5 - weathered. Test pit completed at 1 3.5 feet due to Q - refusal on basalt. z 15.0 — a C7 Z - C9 xi 0 w 17.5 — 'a 0. 0 N - O C. z 20.0 - a 0 50 100 W EXCAVATED BY: Western States Soil Conservation, Inc. LOGGED BY: JGH COMPLETED: 06/16/05 tY W a. EXCAVATION METHOD: trackhoe (see report text) G EO DES I G N? PNWP-30-02 TEST PIT TP -9 1 5573 SM' Portland OR 97226 X6100 TIGARD TRIANGLE COMMONS Off 503.968.6787 85 S03.968.3068 JULY 2005 TIGARD, OR FIGURE A -9 0 DEPTH v > Z a • MOISTURE COMMENTS FEET MATERIAL DESCRIPTION W W w Q CONTENT o —0 ,�. o 50 100 Soft to medium stiff, dark brown SILT -\, : with trace fine sand and organics (roots 7\ up to 3 /4-inch diameter); moist (topsoil, 4- r 0.8 inch -thick root zone). / - Medium stiff to stiff, light brown -brown ® PP = 1.0 tsf • _ SILT with orange mottles, trace fine sand PP and occasional organics (roots up to %z- • 2.5 — inch diameter); moist. grades to stiff and gray with orange PP = 1.5 tsf • PP ® • mottles at 3.0 feet 5.0 — grades to stiff to very stiff with some ® PP = 2.5 tsf clay and no organics; medium plasticity PP _ at 5.0 feet grades to light brown -gray- orange with - trace clay; low plasticity at 6.0 feet 7.5 — _ ® • Slow groundwater seepage observed at 9.0 feet. 1 0.0- - Slow groundwater seepage with occasional cobbles and boulders at observed at 11.0 feet. - 1 1.0 feet • • 12'5 Test pit completed at 12.5 feet. 12.5 No caving observed to the depth I p P explored. C W— H z • 15.0 — c C — C z Z - CD y W — 0 0 w 17.5 — C — 0 0 Z 20.0 C 0 50 100 CD a EXCAVATED BY: Western States Soil Conservation, Inc. LOGGED BY: JGH COMPLETED: 06/16/05 - EXCAVATION METHOD: trackhoe (see report text) C0 a CEO DESIGN? PNWP -30 -02 TEST PIT TP -10 • I 5t75 SW Sequoia Parkway •swr. loo TIGARD TRIANGLE COMMONS Portland OR 97224 JULY 2005 FIGURE A -10 Off 503.968.8787 OR 503.968.3068 TIGARD, OR O DEPTH u MATERIAL DESCRIPTION > i- c • MOISTURE COMMENTS FEET W Q w Q CONTENT % Lr1 -0.0 0 50 100 .❖ Soft to medium stiff, dark gray-gray- 44 orange SILT with trace fine sand and �; ; occasional organics (roots up to 3 / -inch •;.j diameter); moist (fill, 4- inch -thick root .❖ zone). PP PP = 1.0 tsf ' Medium stiff to stiff, dark gray SILT with 1.8 "" some clay and trace organics (roots up 2.5 — ;;; '\to -74-inch diameter); moist (topsoil). z 7 ® PP = 1.5 tsf - Stiff to very stiff, light brown SILT with PP orange mottles, trace fine sand, and occasional organics (fine roots up to PP = 2.5 tsf • - 1/8-inch diameter); moist, low plasticity. PP 5.0 — 7.5 — _ • - with isolated basalt boulders up to 2- 10.0 — foot diameter at 9.5 feet Stiff, gray -dark gray CLAY with some silt; 10.5 moist, medium to high plasticity (residual basalt). PP = 1.5 tsf PP El 12.5 — 0 W / Z 0 • 15.0 grades to some gravel and cobbles; a / moist to wet at 1 5.0 feet No groundwater seepage observed � to the depth explored. Test pit completed at 16.0 feet. 16 0 No caving observed to the depth explored. • 65 w 0 w 17.5 — 0_ a C a r _ N R t7 -' d 20.0 _ a 0 s0 100 w a EXCAVATED BY: Western States Soil Conservation, Inc. LOGGED BY: JGH COMPLETED: 06/16/05 to to a. EXCAVATION METHOD: trackhoe (see report text) C7 v PNWP -30 -02 TEST PIT TP -1 1 GEODESIGN? F tSS75sw Sequoia and OR 9723. s, he 100 TIGARD TRIANGLE Off S03.9681787 Fax S01.968.3066 JULY 2005 TIGARD, OR FIGURE A -11 -0.010 - • • . 0.015 - — • • 0.040 — - . • • i V . z H W I 0.065 -- - - - -- - -- - - - - -- z z • • 0.090 - — . - - -- - - -- -- —. -. -- —.. • 0.115 -- - -- ----- - -- - -- • v s m 0.140 . 100 1000 10000 100000 PRESSURE (PSF) a, • fV u_ EXPLORATION SAMPLE MOISTURE DRY 5 KEY NUMBER DEPTH CONTENT DENSITY SOIL DESCRIPTION q (FEET) (PERCENT) (PCF) 0 rn i t TP -1 4.5 26.6 93.2 Light brown, gray- orange SILT with fine gravel E z u o 0 b 9. ry 0 GEODESIGN? PNWP -30 -02 CONSOLIDATION TEST RESULTS N 15575 SW Sequoia Parkway • Suite 100 Portland OR 97224 JULY 2005 TIGARD TRIANGLE COMMONS Off 503.968.8787 Fax 503.968.3068 TIGARD, OR FIGURE A -12 Appendix B APPENDIX B PREVIOUS FIELD EXPLORATIONS BY GEODESIGN, INC. We explored subsurface conditions at the site in a previous investigation by excavating four test pits to depths of up to 17 feet BGS in the northern and eastern portions of the site. Test pits were excavated in September 2001 using methods similar to those described in Appendix A. A qualified member of our geotechnical staff observed and documented field activities. A copy of the site plan and exploration logs from our report is included in this appendix. • GEODESIGN B -1 PNWP -30- 02:071905 • N w cc u 0 0 N . Q . . • • w • GO Z w I— n_ Q w J Cl- 1.1J cn cL - __ : --- - - - ----- - , o �~� ,�•� >T7 3 . z W ' El - -g� - . / - o _ - , ' '�' - P 0, / / SAW \-• -- . r ,,,.. f „...4 ..,, .. , z. 1 „ ______ . .....„-- . , , , i . „. ,- .i... , w z ..- ; 1iltem DNt I Z 1 _ � V sU • V) ` 0 EXPLANATIOI <= O TP -1 N 11.J ® 13.0 0 50 100 FT TP -1 Immommemmew , .-., , , , ..z,--.: , ..-. ® 5.0 SITE PLAN FROM DRAWING PROVIDED BY ANKROM MOSIAN ASSOCIATED ARCHITECTS KEY TO TEST PIT AND BORING LOG SYMBOLS SYMBOL SOIL DESCRIPTION Location of sample obtained in general accordance with ASTM D 1 586 Standard Penetration Test Location of SPT sampling attempt with no sample recovery i Location of sample obtained using thin wall, shelby tube, or Geoprobe® sampler in general accordance with ASTM D 1587 Location of thin wall, shelby tube, or Geoprobe® sampling attempt with no sample recovery Location of sample obtained using Dames and Moore sampler and 300 pound hammer or pushed N Location of Dames and Moore sampling attempt (300 pound hammer or pushed) with no sample recovery N Location of grab sample I Rock Coring Interval = Water level GEOTECHN ICAL TESTING EXPLANATIONS PP Pocket Penetrometer LL Liquid Limit TOR Torvane PI Plasticity Index CONSOL Consolidation PCF Pounds Per Cubic Foot DS Direct Shear PSF Pounds Per Square Foot P200 Percent Passing U.S. No. 200 Sieve TSF Tons Per Square Foot W Moisture Content P Pushed Sample DD Dry Density OC Organic Content ENVIRONMENTAL TESTING EXPLANATIONS CA . Sample Submitted for Chemical Analysis ND Not Detected PID Photoionization Detector Headspace NS No Visible Sheen Analysis SS Slight Sheen PPM Parts Per Million MS Moderate Sheen MG /KG Milligrams Per Kilogram HS Heavy Sheen P Pushed Sample KEY TO TEST PIT AND GEODESIGN BORING LOG SYMBOLS TABLE A -1 SOIL CLASSIFICATION SYSTEM MAJOR DIVISIONS SYMBOL NAME Gravel Well graded, fine to coarse More than 50% of Gravel GW gravel Coarse Grained coarse fraction GP Poorly graded gravel Soils retained on GM Silty gravel No. 4 Sieve Gravel with Fines GC Clayey gravel More than 50% Sand Well graded, fine to coarse retained on No. 200 Sand SW More than 50% of sand Sieve SP Poorly graded sand coarse fraction passes No. 4 Sieve Sand with Fines SM Silty sand SC Clayey sand Silt and Clay ML Low plasticity silt Inorganic Fine Grained Soils Liquid Limit CL Low plasticity clay less than 50% Organic OL Organic silt, organic clay More than 50% passes Silt and Clay MH High plasticity silt No. 200 Sieve Liquid Limit Inorganic CH High plasticity clay, fat clay greater than 50% Organic OH Organic clay, organic silt Highly Organic Soils PT Peat SOIL CLASSIFICATION GUIDELINES GRANULAR SOILS . COHESIVE SOILS Standard Standard Unconfined Relative Density Penetration Consistency Penetration Compressive Resistance Resistance Strength (tsf) \ /ery Loose 0 - 4 Very Soft Less than 2 Less than 0.25 Loose 4 -10 Soft 2 -4 0.25 -0.50 Medium Dense 10 - 30 Medium Stiff 4 - 8 0.50 - 1.0 Dense 30 - 50 Stiff 8 - 15 1.0 - 2.0 Very Dense More than 50 Very Stiff 15 - 30 2.0 - 4.0 Hard More than 30 More than 4.0 GRAIN SIZE CLASSIFICATION Boulders 12 - 36 inches Subclassifications Cobbles 3 - 12 inches Percentage of other material in sample Gravel % - 3 inches (coarse) Clean 0 - 2 1 /4 - 3 inches (fine) Trace 2 - 10 Sand No. 10 - No. 4 Sieve (coarse) Some 10 - 30 No. 10 - No. 40 Sieve (medium) Sandy, Silty, Clayey, etc. 30 - 50 No. 40 - No. 200 Sieve (fine) Dry = very low moisture, dry to the touch; Moist = damp, without visible moisture; Wet = saturated, with visible free water. SOIL CLASSIFICATION SYSTEM GEODESIGN AND GUIDELINES TABLE A -2 ROCK CLASSIFICATION GUIDELINES HARDNESS DESCRIPTION Very soft (RH -0) For plastic material only Soft (RH -1) Carved or gouged with a knife Moderate (RH -2) Scratched with a knife Hard (RH -3) - Difficult to scratch with a knife Very hard (RH -4) Rock scratches metal; rock cannot be scratched with a knife STRENGTH DESCRIPTION Plastic Easily deformable with finger pressure Friable Crumbles by rubbing with fingers Weak Crumbles only under light hammer blows Moderately Strong Few heavy hammer blows before breaking Strong Withstands few heavy hammer blows and yields large fragments Very Strong Withstands many heavy hammer blows, yields dust and small fragments WEATHERING DESCRIPTION Severely Weathered Rock decomposed; thorough discoloration; all fractures extensively coated with clay, oxides, or carbonates Moderately Weathered Intense localized discoloration of rock; fracture surfaces coated with weathering minerals Little Weathered Slight and intermittent discoloration of rock; few stains on fracture surfaces Fresh Rock unaffected by weathering FRACTURING FRACTURE SPACING Crushed Less than 5/8 inch to contains clay Highly Fractured 5/8 inch to 2 inches Closely Fractured 2 inches to 6 inches Moderately fractured 6 inches to 1 foot Little Fractured 1 foot to 4 feet Massive Greater than 4 feet • JOINT SPACING DESCRIPTION Papery Less than 1/8 inch Shaley or Platey 1/8 inch to 5/8 inch Very Close 5/8 inch to 3 inches Close 3 inches to 2 feet Blocky 2 to 4 feet Massive Greater than 4 feet ROCK CLASSIFICATION GUIDELINES GEODESIGNz TABLE A -3 DEPTH /FT MATERIAL DESCRIPTION TESTING TP -1 0 -_ AC ASPHALT CONCRETE (1 -inch thick). 1 - CAM -FILL Medium dense, gray GRAVEL ALL with some sand and trace silt; dry to moist (1 -inch thick root —' zone). 2- PP= 2.5TSF 3 - ML Very stiff, dark gray SILT with trace fine sand and organics; moist. grades to green -gray with some fine sand at 2.5 feet 4_ PP= 2.0TSF 5- PP = 2.5 TSF 6- 7 - grades to orange -light brown and gray, sandy with some boulders at 7.0 feet 8- 9- • 10- 1 1 - CH Medium stiff to stiff, red -brown CLAY with some silt and gravel; moist. 12 13 --- Test pit completed at 1 3.0 feet due to refusal on hard rock on August 14, 2001. 14 - Disturbed sample obtained at 2.0 feet. - No groundwater seepage observed to the depth explored. 15 - No caving observed to the depth explored. TP -2 o — ML Hard, orange -gray SILT with trace to some clay and organics; dry to moist (2 -inch thick root zone). 1- 2 - grades to hard, orange -gray and dark brown with trace organics at 2.0 feet 3- PP= 4.5TSF 4- 5- subrounded boulders encountered at 5.5 feet PP = 4.5 TSF 6- 7- CH Hard, dark red - brown, gravelly CLAY; moist. 8- 9- 10 - .Test pit completed at 9.5 feet due to refusal on hard rock on August 14, 2001. Disturbed samples obtained at 3.0, 5.5, 8.0 and 9.5 feet. 11 - No groundwater seepage observed to the depth explored. 12 - No caving observed to the depth explored. 13- 14- 15- • TEST PIT LOGS • GEO DES IGN PNWP - 30 SEPTEMBER 2001 FIGURE A -1 • DEPTH /FT MATERIAL DESCRIPTION TESTING TP -3 0- ML Hard, gray SILT with some clay and trace organics; dry to moist (1.5 -inch thick root zone). 1- 2- 3- 4- 5- 6 - boulder encountered at 6.0 feet 7 8 - CH Stiff, red -brown CLAY with some silt and angular gravel; moist. 9 Test pit completed at 9.0 feet due to refusal on hard rock (boulder ?) on August 14, 2001. 10 - Disturbed samples obtained at 4.0, 5.0 and 8.5 feet. No groundwater seepage observed to the depth explored. 11 - No caving observed to the depth explored. 12- 13- 14- 15- GEO DES IGN TEST PIT LOGS PNWP - 30 SEPTEMBER 2001 FIGURE A -2 DEPTH /FT I MATERIAL DESCRIPTION TESTING TP -4 0- ML Medium stiff, orange -light brown SILT with trace to some fine sand; moist (1 -inch thick root 1 - zone). 2- 3- 4- 5- 6- 7- 8 - becomes red with trace to some clay and gravel at 8.0 feet 9 • CH Medium stiff to stiff, red -brown CLAY with some silt and gravel; moist. 10- 1 12 - RK Very soft to soft (RH -0 to RH -1), weak, moderate to severely weathered, closely fractured BASALT. 13- 14- 15- 16- 17— Test pit completed at 17.0 feet on August 14, 2001. 18 - Disturbed samples obtained at 5.0, 10.0 and 14.0 feet. No groundwater seepage observed to the depth explored. 19 - No caving observed to the depth explored. 20 - 21- 22 - 23 - 24 - 25- • TEST PIT LOGS. GEODESIGNz PNWP - 30 SEPTEMBER 2001 FIGURE A -3 Appendix C APPENDIX C PREVIOUS FIELD EXPLORATIONS BY GEOPACIFIC ENGINEERING, INC. GEI explored subsurface conditions at the site in a previous investigation by excavating five test pits in the northern and eastern portions of the site. Test pits were excavated in September 2001 using methods similar to those described in Appendix A. The approximate location of the explorations is included on the site plan in Appendix B. GEODESIGN? C -1 PNWP -30- 02:071905 1.11 - o GEOPACIFlC ENGINEERING, INC. 0 17700 SW Upper Boones Ferry Road, Suite 100 Portland, Oregon 97224 TEST PIT LOG Tel: (503) 598$445 Fax: (503) 598 -8705 Project: Root Office Building Tigard, Oregon Project No. 01 -7186 I Test Pit No. TP -1 E E ti - � ^ m C ,� m �mr� � m �N n o o : c o, Da =° 1°c o a m° a zv o_ Material Description a O V m — Organic SILT (OL), dark brown, many coarse roots to 16 inches, moist (Topsoil) 1— 0.75 2— 2 . 0 Stiff SILT — ( ML ), gray, leached, damp to moist (Soil A- Horizon) 3— >4.5 — _ Hard, clayey SILT (ML), strongly mottled light orange -brown and gray, common 4— >4.5 day seams, damp (Soil B- Horizon grading to Willamette Formation) 5- 6— Hard (R4) BASALT, gray 7 Practical Refusal @ 6 to 7 feet on Hard (R4) to Very Hard (R5) BASALT 8— 9— Note: No seepage or groundwater encountered. Very slow digging below 3 feet 10- 11- 12- 13- 14— 15- 16— 17— LEGEND 0 t Dat aated: 3/8/01 leo to o 1,000 a PAC I , Bag Sample Bud etSampte Shelby Tube Sample Seepage Water Surface Elevation: Bearing Zme water Level at Abandonment I - -. GEOPACIFIC ENGINEERING, INC. _ 17700 SW Upper Boones Ferry Road, Suite 100 `"' Tel (503) 598-8445 ? Fax: (503) 598 -8705 TEST PIT LOG Project: Root Office Building Tigard, Oregon Project No. 01 -7186 Test Pit No. ?'P.2 - O E E" m ^ m c .Y C I - y, ern -. mN t n Q °= m �m °' m � °° g a m s i g" o W Material Description a. w ° v m — Organic SILT (OL), dark brown, many coarse roots to 16 inches, moist (Topsoil) 1 — 1.0 — Stiff SILT (ML), mottled gray and orange, leached, damp to moist 2— 1.5 (Soil A- Horizon) 3— >4.5 Hard, clayey SILT (ML), strongly mottled light brown, orange and gray, common 4— >4.5 clay seams, dry to damp (Soil B- Horizon grading to Willamette Formation) 5- - Hard (R4) BASALT, gray 6 — Practical Refusal @ 5 to 6 feet on Hard (R4) to Very Hard (R5) BASALT 7- 8— 9— Note: No seepage or groundwater encountered. Very slow digging below 3 feet 10- 11- 12- 13 14— , . 15 16— , 17 ;END e swat Date Excavated: 3/8/01 100 to 1.000 g a Logged By: PAC Bag Sample Bucket Sample Shelby tube samp wring Zone Water Level at Abandonment e Seepage Water e� Surface Elevation: > GEOPAgFlC ENGINEERING, INC. o 17700 SW Upper Boones Ferry Road, Suite 100 .. Portland, oregon 97224 TEST PIT LOG Tel: (503) 598 -8445 Fax: (503) 598 -8705 Project: Root Office Building Tigard, Oregon Project No. 01 -7186 Test Pit No. TP -3 E 1 Et m 6 a 9 Da c m � o a m v _ o Material Description l fl- Cr) U m 3/4'-0 crushed aggregate (Fill) 1- - 1-inch to 4 inch diameter river rock with silt matrix (Fill) 2- - 1.5 Organic SILT (OL -ML), dark brown, no roots or coarse organic (Topsoil) 3— 3.0 Very stiff, clayey SILT (ML), mottled orange and gray, moist — (Soil A- Horizon) 4 3.5 Very stiff, clayey SILT (ML), mottled light orange -brown and gray, damp 5— (Soil B- Horizon) 6— Test Pit Terminated @ 5.5 feet 7— Note: No seepage or groundwater encountered. 8- 9- 10- 11- 12- 13 14- 15 16- 17— LEGEND Date Excavated: 3/8/01 000g _ 45 Logged By: PAC I+we Bucket sample sl,elby tube sample Surface Elevation: Bag 9e Water Bearing Zone Water Level at Abandonment -� GEOPACIFlC ENGINEERING, INC. 17700 SW Upper Boones Ferry Road, Suite 100 Portland, Oregon 97224 TEST PIT LOG Tel: (503) 598-8445 Fax: (503) 598 -8705 Project: Root Office Building Project No. 01 -7186 Tigard, Oregon Test Pit No. TP-4 m E o c mn N.� E. t. ,N m 8: 0 a 6 c3- 4 C 2 a 70 .€ G o a E — zv 2 g 3 Material Description a `" co 0 v m 1 _ 1/4 inch to 3 inch diameter rock with silt matrix (Embankment Fill) 2— 3 -inch pipe line @ 2 feet 3— 2.5 — Very stiff, clayey SILT (ML), mottled gray and orange, damp (Soil A- Horizon) 4— _ 5— Test Pit Terminated @ 4.5 feet 6— Note: No seeps or groundwater encountered. 7- 8- 9- 10- 11- 12- 13 14- 15- 16- 17— SEND 1 4111k -z- Date Excavated: 3/8/01 op , '9 — Aid, ® Logged By: PAC o Surface Elevation: 1 Bag Sample Bucket Sample Shelby Tube Sample Seepage Water Bearing Zone Water Level at Abandonment > : l - GEOPACIFIC ENGINEERING, INC. 17700 SW Upper Boones Ferry Road, suite 100 TEST PIT LOG n ' t Portland, Oregon 97224 >- Tel: (503) 598 -8445 Fax: (503) 598 -8705 Project: Root Office Building - Tigard, Oregon Project No. 01 -7186 Test Pit No. TP -5 z- =7 \ C y ^ m ? � ` n m � .� � C � o a o E � o to Material Description tl v to 0 V co Organic SILT (OL), dark brown, many roots to 16 inches (Topsoil) 1 - 0.75 2— 2 Very stiff to hard, clayey SILT (ML), mottled orange and gray, damp and moist (Soil A- Horizon) 3— >4.5 4— >4.5 - 5— Hard, clayey SILT (ML), strongly mottled light brown, orange and gray, common clay seams, dry to damp (Soil B- Horizon grading to Willamette Formation) 6- 7— • 8 Test Pit Terminated @ 8 feet 9— 10— Note: No seeps or groundwater encountered. Very slow digging below 3 feet. 11- 12- 13 14- 15 16- 17— LEGEND • Date Excavated: 3/8/01 ' Logged By: P 1,000 g d ® 99 y: AC Bag sample Bucket sample Shelby Tube Sample e Surface Elevation: Seepage Water Bearing Zone Water Level at Abandonment Appendix D APPENDIX D ROCKERY WALL CONSTRUCTION This appendix provides design parameters, Construction Notes, and design calculations for rockery retaining walls. GEODESIGN? D -1 PNWP -30- 02:072905 CONSTRUCTION NOTES ROCKERY CONSTRUCTION CONTRACTOR ROCK -FACE CONSTRUCTION SHALL BE PERFORMED BY A CONTRACTOR HAVING AT LEAST 3 YEARS EXPERIENCE BUILDING ROCK AND ROCKERY -TYPE WALLS. MATERIALS ALL ROCK SHALL BE SOUND, ANGULAR LEDGE ROCK THAT IS RESISTANT TO WEATHERING AND CONFORM TO PROJECT ARCHITECTURAL REQUIREMENTS. THE LONGEST DIMENSION OF ANY INDIVIDUAL ROCK SHALL NOT EXCEED 3 TIMES ITS SHORTEST DIMENSION. ROCK MATERIAL SHALL BE APPROVED BY THE DESIGN ENGINEER AND THE PROJECT ARCHITECT. ROCK SHALL BE OF GENERALLY CUBICAL, TABULAR, OR RECTANGULAR SHAPE. ANY ROCKS OF BASICALLY ROUNDED OR TETRAHEDRAL SHAPE SHALL BE REJECTED OR USED FOR FILLING LARGE VOID SPACES. THE DENSITY OF THE ROCK SHALL BE EQUAL TO OR GREATER THAN 1 55 PCF. ROCKS USED FOR ROCKERY CONSTRUCTION SHALL BE SIZED APPROXIMATELY AS FOLLOWS: ROCK SIZE ROCK WEIGHT AVERAGE DIMENSION ONE MAN 50 TO 200 POUNDS 12 TO 18 INCHES TWO MAN 200 TO 700 POUNDS 18 TO 28 INCHES THREE MAN 700 TO 2,000 POUNDS 28 TO 36 INCHES FOUR MAN 2,000 TO 4,000 POUNDS 36 TO 48 INCHES FILL MATERIAL BETWEEN ROCK FACE SECTIONS AND THE ADJACENT SOIL SHOULD BE A MINIMUM 1 FOOT WIDE AND CONSIST OF WASHED AND SCREENED CRUSHED ROCK RANGING FROM 3/4- INCH MINIMUM TO 4 -INCH MAXIMUM GRADATION. PERCENT PASSING THE U.S STANDARD NO. 200 SIEVE SHALL BE LESS THAN 5 PERCENT BY WEIGHT ACCORDING TO ASTM C 1 1 7. THE BACKFILL ZONE SHOULD BE FILLED AND THOUROUGHLY COMPACTED AS EACH COURSE OF BOULDERS IS PLACED. ALL FILL MATERIALS SHOULD BE APPROVED BY THE DESIGN ENGINEER. CONSTRUCTION CONSTRUCT ROCKERY WALL SECTIONS AT LOCATIONS SHOWN ON CIVIL PLANS. VERIFY ROCK FACE LOCATIONS WITH CIVIL ENGINEER. ROCKERY WALL SECTION SHALL NOT BE CONSTRUCTED HIGHER THAN THE PROPOSED FULLY CONSTRUCTED ELEVATION AT ANY TIME. THE ROCKERY FACE SHALL SLOPE TOWARD THE BANK BEING SUPPORTED AT NOT STEEPER THAN 1 H:6V, BUT NO FLATTER THAN 1 H:3V. ROCKERY WALL SECTION KEYWAY (EMBEDMENT) SHALL BE AT LEAST 12 INCHES BELOW NEAREST ADJACENT GRADE AND SHALL EXTEND THE ENTIRE LENGTH OF THE WALL SECTION. THE GEODESIGN= D -2 PNWP- 30- 02:072905 KEYWAY SUBGRADE SHALL BE SLIGHTLY INCLINED BACK. KEYWAY SUBGRADE SHOULD BE EVALUATED BY THE DESIGN ENGINEER PRIOR TO ROCK PLACEMENT. THE FIRST COURSE OF ROCK SHALL BE PLACED ON FIRM, UNYIELDING SOIL WITH FULL CONTACT BETWEEN THE ROCK AND SOIL. ESTABLISHING FULL CONTACT MAY REQUIRE SHAPING OF THE GROUND SURFACE, PLACEMENT OF GRANULAR FILL BASE, OR SLAMMING OR DROPPING THE ROCKS INTO PLACE SO THAT THE SOIL FOUNDATION CONFORMS TO THE ROCK FACE BEARING ON IT. THE BOTTOM OF THE FIRST COURSE OF ROCK SHALL BE A MINIMUM OF 12 INCHES BELOW THE LOWEST ADJACENT SITE GRADE. AS THE ROCKERY WALL IS CONSTRUCTED, THE ROCKS SHALL BE PLACED SO THAT THERE ARE NO CONTINUOUS JOINT PLANES IN EITHER THE LATERAL OR VERTICAL DIRECTION. WHEREVER POSSIBLE, EACH ROCK SHALL BEAR ON AT LEAST TWO ROCKS BELOW IT. ROCKS SHALL BE PLACED SO THAT THERE IS SOME BEARING BETWEEN FLAT ROCK FACES RATHER THAT ON JOINTS. JOINTS BEWEEN COURSES (THE TOP SURFACE OF THE ROCK) SHALL SLOPE SLIGHTLY BACK AWAY FROM THE FACE. ROCK FACE CONSTRUCTION SHOULD BE PERIODICALLY MONITORED BY THE DESIGN ENGINEER TO VERIFY THAT THE NATURE AND QUALITY OF THE MATERIALS BEING USED IS CONSISTENT AND APPROPRIATE. THE CONTRACTOR SHALL NOTIFY DESIGN ENGINEER FOR MONITORING VISITS DURING CONSTRUCTION. SPALLS SHOULD BE USED BEHIND THE ROCKERY ROCKS TO BLOCK SPACES AND, WHERE NECESSARY, TO WEDGE BETWEEN ROCKS AND TO LOCK THEM TOGETHER. THIS SHOULD ALSO SERVE TO PREVENT WASHING OF BACKFILL MATERIAL THROUGH THE ROCKERY. THE CONTRACTOR SHOULD HAVE SUFFICIENT SPACE AVAILABLE SO THAT HE CAN SELECT FROM AMONG A NUMBER OF STOCKPILED ROCKS FOR EACH SPACE IN THE ROCK FACE SECTION TO BE FILLED. ROCKS WHICH HAVE SHAPES THAT DO NOT MATCH THE SPACES OFFERED BY THE PREVIOUS COURSE OF ROCK SHOULD BE PLACED ELSEWHERE TO OBTAIN A BETTER FIT. GEO DESIGN? D -3 PNWP-30-02:072905 CALCULATION COVED SHEET Rockery Retaining Wall Design Tigard Triangle Commons For Pacific Northwest Properties Portland, Oregon July 29, 2005 V E3G94 fi[ • `'t �OAEG 0 i P MM c 3 � EXPIRES: t2(3t (PC' Limitations GeoDesign, Inc. performed design calculations based on geotechnical engineering parameters developed from our subsurface explorations and laboratory testing and assumed site topography and surcharge loading. if actual conditions differ from those shown in the attached drawings and calculations, our design recommendations may not be valid. The design should be used in conjunction with the attached Construction Notes and our July 19, 2005 geotechnical engineering report, titled "Report of Geotechnical Engineering Services, Tigard Triangle • Commons, Tigard, Oregon". MINIMUM WALL THICKNESS H Bb Bt (FEET) (FEET) (FEET) FINISHED GRADE 0 - 2 1.0 0.5 PER GRADING PLAN 2 - 4 2.0 1.0 4 - 6 2.5 1.5 Bt 6 - 8 3.0 2.0 8 - 1 0 3.5 2.5 10 - 12 4.0 3.0 1 , Bt = TOP WIDTH MINIMUM Bb = BOTTOM WIDTH 6 MAXIMUM H = 12 FEET alp F ij DRAINING FINISHED GRADE GRAVEL PER GRADING PLAN 1 Bb 1 - 6 2 2 - 2 4-INCH-DIAMETER PERFORATED 2 c PVC DRAIN PIPE a. E Pd U 0 CI3 0 F, ".' NOT TO SCALE co GEODESIGNk) PNWP-30-02 TYPICAL ROCKERY WALL SECTION 15575 SW Sequala Parkway • Sulte 100 Portland 0R97224 JULY 2005 TIGARD TRIANGLE COMMONS 4,4 00 503.968.8787 Fax 503.968.3068 TIGARD, OR FIGURE D-1 -5 1 1) I i_l_i _H 1 i_.1_1._r,_1 1_1-i - i i-i--- 11 , ! , 4- - 1 • - "i -1- ---1--i-; 1,H1111,H14111.1 1 1 . 1 - 1 1__, j i_j f 1 1 I : --- 1 -i-',- -- -1 1 1-1-1 1-1-1-1- ..,]- I, ;" 1 ''-, I "; 1 ` j 1 1 I' I ; : i 1 i1!!111 -1 ,111 -- 1 -- 1 - 1 J ri ; I 1 I 1 1 1 I [I - c . i . i . i - I - i _J i . .17, I : ! 1 i ■ I I H E - t" 1 -I- 1 I--i- 1 .-' I : I -I 1 ' 1 I r r. --i , 1 , , 1 ! ! , --;- 11- , , ! -1 • ! H ■ 1 , . i i , ; ,- "1 " ',11 I 1 1 1 i ill !.. "H ! : I i ji il I 1 I I_ 1_, V 1 1 , " t . F1 -- ; ; 1 , • 1 T. 1-' . , 1-'1. i- 1 : I - 1" -; "I - -- I ; --; i - H 1 LI I 1 i ft 1 1 i 1 Li' i - - 1 1 j• - 1 - 1 .- i --. - 1 - - j - t_ 1 ' ' " ' ' ' . I 1 r J 1 - I 11 W i ' . 1 L F1 i . i t . F i i I i'if i - i - I j I N - r- i i 1 11 - ' ' , ---• • • ' L- I ., -4 i- -1--i ! : _j_ l _ i !_ 1 4.1_,___]__ LI 1 1 , 11 HT !" I . --- - r - f - rtrj - i k_ ,.. _1 ■ ! - I _1i 1 - I 1 - 1.7 ! ■ I ii ...1 - 1 !... HI H HI A i t_ '.1' 1 .- 1 -1, 1 ; j 1._! i __,_, , , f , 1 , 1-- : ', 1 - , - 7 ' -. -11 i - I H ' . --- ---1- ,_ii_i 1_4 1._.1 ' , I 1 1 • , ! I I T -1.- I .1_4____■.__ 1 1 - -1--T- i t ---1.- _. .4...._ _ i . . ..._ - I - 17 . .1 - ; , 1 : ! 1 r ---- I I . I. i _. i -- I" _ i i 1 Li _ i__., . t_i_t_ 1 0 . - -F -..i-1-4-1-1-1--1- --- -- -- --- ---- 1 - 1 -11 i 1-- -1.---1-- - d - , 1 [ -- 1 Li _1 , j ! 1 _ it , . 1.., - L r 1 t ri I i 11 I-1-; - 1 - .. 1.. .__bl . _ j 1 . _T. ! T _-_ • __,_._ ! T 1 -r LI- i .._,.L. .., -_ 1 _ I i I I, I -is ! -- ! - 1 - c - - 1-1 I _i_ - 1 I 0 I lni I I I 1, V-1-1 f-I - [ I I . 1 4- " 1 • \-- I _,. I _L - -_4: , 7 7 16 . 1 I I, - I 1 ,__ - ._,..4.,_ 1__H• 4 i : 1_1 . l___I__ _ _ .._.! . .1__,_:_. : . _I '..-- 0 T 1_._;c4i._ ( .1 ,., __ _ j i --ci 1 I _. _ I F 1_ 1 ! L.; _I, i 4 e y ,s . g s 1 , _ • ! i i i_ _,1_:__1_7_ - _I_ .,_„1_114-_,L. r 44..1 ' '• _- - 1 . -- , - ,: t _. 7 __.1.4_ _ • II 1 .1_' rp,...' 1_ 1-1---i-ti- --1- . Fir ---1-]-1---L - 1 - 1:_t_i__I -- r - IL - t --- _" . .,_ - _ . .1 - : - .L. ,- : ------: 11 f 1 E.L_ -i i -I- ! 1-- ...i r . 11 I- 1 1 .1_...: , I- it-- I- I-- - Li - . ,. i --) I 17 i-i- , --1 -1 ir -.- i __ . i-! ft T . i IN- i _ r 1 _ 4 , • 7 , L I 1 j i -- -- - 1 1 ' ft -- . T ■ . , - - - 1 .1 i r. Lig:V it _ 'I Fil • Li r L -::_r_11.11-. - 1-----h-1 . 1 i • • . • r i _l_t . i• '. ' r '-' '-- '• I ... 1 4 ' I--1-1 i,I - - r - a - I -1- n - L ' , El [ 1 'P • 1 a I i.. .-i- LI, 1 hi I L_ E 1 i , v I f 1 1 t-T , -1 i- {-1 , LI - -11-1- 1 1 1-.- • 1 _1_ 1 _ - -1 1 r I L-F- 1 -I-4-1 n -- 1 ir-Nt [ 1 -I- r1 1 I_ 1 MI .. ,-1-_--1-- • _ -- - - '4' !--111-1-'1111-1-: 1 n 1 I - i 1 4_; 1 I -t-- 1__,_ 1 hi ' 1 .--i ii i :.1..i._ 111 1 I L i l , --L 1 .7 ___1 iv 1 ! - _ ._ -- 1 _ -- -- ...... I _ _ -I.-- __:_ _i__ - r--1-fli. I I - -- ' _i_._i 1 r I I __ ii _____T I 1 j J__1 fl _i_ 1 _ . - . - L __ , I I -- .- • -- -- .1-4.1-1- -- - r- f 1 1 I L I I 1;0 11 1 I -T-1 I i'zb- - N 1 1 1 • , - -I- - -1-4 -- r1 I 1 • [ I- Li 1 I- I • IMM -- ii_ 1 1 1 -] - I I ,_, I 1 • - - I LE, , , 1 i 1 1 41. I_ rR- i__ - r - 4 I r - ----I ---- - 17 1 --1- - - I . -I 1 1 1 1 I r r 1 1-- r I I n g • , n, 7. , z n z 0 rn 0 INC GE0 DE SIGNt' ; , • , , :li ! ; , , , , ; 1.._-__i_._t_4.. , , ! • ! 1 ! " ! , _i__ _,__,___:._ --,----t --;---1--: ,--i--1 r , ; , ;1 ; ; r„ _ ; , i , , , , i _ i _ ; , , • „ ; ; ; : REFERENCES / NOTES _..4.,_;._,._1.2,...___!---4--,-4-÷---,-i-i-1.--i--t- - H - 1-7-1- -,-,-.-h I t ; 1 r! • 1-1":• I I I ' ; . _f_ , -- ' T , --, j1; . i i i ; 1 I I , 1. 1 ; , 1 ; ; , ! ' , ; , i 1 I 1,.11 : _r_L;; ■ . , 1 : ; i 111 - 1 - 7-1--- 1 I ■ 1 r . --- " :.--:--- H -7---4- + - i - l - f - .'. --1-1- 1 r I ■ 1 1 n T ---7-, - - -7-1- - 1 - 1 - h - 127:7_17- I -i---ri--!-- 1 -1-1 Li ! ' '-----! . , , 1---:--; , . ,. 1 , i ii 7 I'm i 1 1 ; ; j ; 1 ■ • , ;._ • : ...4_ 4.-, -1-.., . 1 ! . • • -- ri 1 _t_Li ; ! , _I I ; 1 _....; I . • 21_ r , ! ,17-7-1-1--1-1,m11 dir1.11 ; 1 •, . . :1 ;!!!!t1.4 I ! ! 1!!!! --,,- ------.------- - --t-----••-t-7-1--F-r-r I . i!;11 Ili 1 1 fe... • - my: r ---- 1 -, I 1 ' I • , :11.; 1 ■';''11111:,.11 L fr.....i I . ; l_i am= ! ■ ! 1 .- -..- . -2-- ,-... - :---:..-1-- -j ' -- 1 r r r 1 L.-4- I 1 1 Atli i ! 1 n r ' I i ' 1 • i ■ i 1 • ' I ; t r -7-/- ' .1 1 1 1 1_ 1 1_ I OWN', ' • r 1_4_ 1 _,.._4...1 ... 1 ' I r r p • . . 1 9_4: ■ . : 1 . i . I ; : I 1 1 - 7 - 1 1 ell : ; , ; • ,-. -- ; --- ; -,-- L --- i - 7 --- ..i-:-1-1-1-1-1-rr ,, ; ; ; ( ; 1 1 1 I i Li 1 i ,- •-4 ■ .4 ' Li ' i ITh ,_.,_....' - 2,.• . , 1 • 1 i -4-1- HH---7-4- - 1 -- r - r3 - 7 1- 1 - "E.,...1 -- M. ,...L„.!_kI I 1 I V ‘ - V1_,... H ■ :- :--E-: 1:,,i Li 1 iilLiii71711 i 1 , _I t ___ _._! , I I i . .• ,0 • 1 1 4_ -- -7 t T I , i 1 I I - 1 - 1 - l' I , , ! t I I I - l• - / , -- , 7 . . ' ' . 1 I I __,!;__ • , , ; ! *. 1 ' - 7 . I__, I --- ' I I I ! ; i ' I I I ' 1 _____; 1....,.....71._ .--,----- LL__ li iIfrj;:! !_ii 1 :(7 IiIirl -'.- 7 - ' - ' - r --- 1 - " -- ! it tII__11 II , I , L 4 1,L IM, - 1 - 1 - ! ,!! I I I '- -- 1 --- H 1 L i 1-1--I-! J I II 1 I 1 I 1 _1___,417177 I 41 r••• ! ; 1 - ! I 1 ! ! I -- - : --- --,---- __ I E, 1 i 4 i ■ I 1_11 1 ---:-'---:----'1--II-7-;,■:-.1; ;;:ii].1.; ThliIi_i_. Li,. .2,__!,__ _j_ ___:_--:-,--!.-. - -i- - ..--;--;--•—i-- 7 --i----i- -- 1 - 7-1--i---h-tj, -- ; IT - 777 - ! ; I ; I 1 ; 1 1 , 4 • ; . ; . 1 _;._„ 1_ . 1 ,., ,_ -- ' ' 1- --,---.-* , . : : ; . '':: ' . • 1 .I 1 ! 1 ' 1 1 1 r 1 ; 1 ; ; ! 1 • , , ; — , , III ,_____ 11 ',: ;1'iIi_Th__1_,LI :---"--. - II ,--n-r- -1 r—_.. ,,, ,_;_, , • !_ ; 1, ,i, ' • • ■ • I ; : ! , 1 fl ,2- ...L. 1 , 1 . I ;_.! . _./ _i_l_..L___ • _,4...' 1_ 1 .1_14 _ 1 . . • , •• . Li , 1 , i t . 1..., . ,..7- .... .:7a : . ---..hd . i •••••-. - ; --- •,--,--4.---- T 1_1___ r t . ; 1 ! 1 ! 1 ! 1 ! I LI I ; • • : . . --4 ! ----- • tl 1 T -,-- r -- i -- TT - Er - 1 - 1 i , . 1 I 1 T 1 1 7 1 1 I 1 , , L 1 ; ! • • 1_1 ; 1 ; I -'-;-• ! 1 -7-, 1 On - r - r - i i i I . v„i.... , 7 1 ! • ......,- !Loob." • ! 1 1 I i 1i1 • ! v 1 - %.7- -- -t--1- ' ;.-!NI;;- , i 1 1 , 1 I .__. _:...._._ _ , -_•------ • -i-,---,--: 1-------t- , , 1 • 5 i ' • , • 1 , , ; - . • ! 1 . L : 1 . 1_14_1_, 1 ! 1 •_i_ j_ , ._ ; .__i__,_ 4 •._,_,L4..._ , • . , • , , , ; ! , • : , 1 . I ri,../); 01,k; --r 1--- : ' f-] LTT T..14-i_l 1 I-Li--_i ig : 4 .--i--- , --- -- - -,---,-- , ! ;--) 1_1 1 ; _ - :-- - ! 7 1 '7 ■ !!il,i1 , tl . 1 ; I . , t . ! ! I I _i_L ! 1 ..... , .. . . _,. , : " • . . .....C"" • ., 1 =T:,1 , . , ,.... . • "_,_ , ___•___•„_•_•••••___„••.___ :_T__•„•-r--!--1-7-' - - ... --- 1 -- ,n-irryrET , .: r ;i•iii I . _j_ 1 ; : 1 • g LI i _I !I I 1-,- ' i I . 1---1-- I I 1 14 ,;• ; .• .1 --7-1 . -1- 1 1 111 1 1illil___I L,___;___•11;1■1 , _ , r , • 1 I I I I ' 1 , I I ---,:-.-:--;,-..-...---- I!,, 1 , , ,_, 1 2,-,:, , :Ii! ' I •, • 4 .-- ' • I--4- L.T-4---• 'gq- ; N-4-, P1 (i , :_ii , i (4,_7,7 i_i_ 1,,_ N -- -,-- , ; ; , ! . • ; ; I ; I ; : ! I „_.! 1 1 ,__1_4_ ___,___Li Li I ! I I I I I +7_ .4.-+-4-1._ ' ; H " i • r 1 T 1 ! - 7 ! 7 ' , . -- , 1. 1 11 - r - 1 - 771 , 11!!!, 1„ 111,1 1, , • . . --- . --,--.--4--- - ---- 1 --- r - 7- 4 -- , —, - r - i -- . 1 1 t• I 1 4 I . a • , • , ‘ ., • 1 ..1 LLI 1 1 L 1 _1„J___4_• i 1 _, , __:__ i , , , i , Fr 1 , , , --, ! , , i i 1 , ! , =! I4--1 __L 1 1 1 ! -, •-:,:,-1-1-, .4- „ „ ,.,,_ ,,, , , . „ „ " „ , , , =----„ „ F - --L- - - - - - - - j,: - „,- - „::„;„],„ - -„t:„ „ „r-' , ,- - -if- - -„*-f--- 1 _I l'i Er" '1 -- - ' • . • . ---c, 1 1-;,---1. . I - 1. -- 1 - 7 - t i 1 i $ 4 - -011. 1 ; ii_ . LIIII.II - . 1 I' TI 1,11 ' ,-- , • - 1 - - r -- , --- , - 1 , 1 9 1 ...1 rifiltr,...-- - , - I _ la, I - fr_ . 1 •__, . 1 '4-14 - ± - + .-- ', --- ; -- i - J.... --.. - - 1-1--1-17.-6.-r- r -i , --__ L - t-I-, I - , ! , __,_ 11-r41 _i__!_i_ rir__,..._,! : , ,_: 1 , --,----,H--. 7 ' -- - - 1 - r - -- 1 --r --1--- , , i ir - -,--- 'IT! ii . FT : , , 1 . • y , ; ! I - 7 - --- • ; .1 . 1 __, sie____1 i_J_LI_J____'___________LL__1_ ' ' ' I ,---1-1-1-- I ----!----i-"--:---r--,-7-1---1- .:Ii tli i 1 ! I , __.1 1 ...4_4._.!_4__,_! t 1 "-- I I • ; • ; ; 1. ' .; - - - ;_i El L _ ! 1 1 ! H i, ,..,_ 1 i ,-7-,-- , _____I____ Li...1_ , I , -7-717- 1 I Ty „ , , r ; 1 r ! , II I •• , ;___;_, , ! . ; 1 ;_,• • ni" I, ! ! 1 1 T , • ; ... ; - , -,. ■ . I M-71- I 1 . I • 1 / t.....I . ' a.j....‘,..."'" .2 ' - I - I -I- .. 32 1 • ' ■ I I • 1 F • 0 _i_P- P 7-1 _ 1 ' . 1 k OMNI ; 717- ,C- ''' ' -lb,• - ' ' ''' - . , + __ ; ! _i___4. :._.;_i_ ill i I, I ! --- • .it 1 .L.I. i k i 1 1 1 - h .- H - 1 -i ";! ■ Hilll i ...: lola-11111.1 I , , t miim 1 1 ig : 1 .■:: 1 --,-- ' • r- - . . I --1--,--1. ,....,---_ i__!_j i__.;__LI I J....J. •. MIME IIM111 _I _111__ 1 - ■ .1 17 - T - i .---- ; ; _i ! ! 1 1 I 1 [ s, • --i-f-r-i----711 , ' 1 1 ' .i I ! 1 1 1 j_i_ 1 1 L . 1 I i - -7 1 .- [T 1 i r , 1 i 1 1 1 ' I - I ■1111111: : 11! 111: 1 11 1 1 , -T-r- - 1 - -- E ;III! I,.1,4__LI.I - ff I T TT 1,-77-1 1 ■ --i-i---1-- • , , , -t--i_ ,- _ i-H-1 1 _t_;..._.,... ..!__,— i 1 I 1 11;1 11 i ; I ' ' I ' 1 ; ! 4_1 I 1 , , H , _4 .4 _ 1 L_L L-LI H - T 71 1 I I I t 1-7-1-1- ' . r --- 1 - . •, - 1 --- ,1 - (1 L r i FIT 7 i , 1 1 1 , _ 1 1 - ;• • "! . 71 -1 7 1 • 1 ! ! I ! ! 1 i I 1 I . , , ; : „ : ; , . , . 1 ! 1 ' I 1 I I i ! .... 1..., _ .i I t,i -- 7 - -!--!!-:- ,I SHEET NO. 1 DATE CHECKED CHECKED BY JOB NUMBER BY DATE CALC NO. fl 11.611,60 - r.a.46_4( a. ill, &ic, a. PROJECT SUEUECT n m O 0 rn to C z INC GEO DESIGN= - J- - -/ - - I ' __ ,-.1---;--i--, : i I 1 � I i r I , ■ 7 1 ' , , I I I I 1 ! REFERENCES / _. IL i • -_ I -I I ' 1 i � I I i `� ' , T __ 1 i I 1 1 i i:: I ! 1 CES NO TES • i .. - , ' 1 � 1' ! -', , -. i - I I I I ' -1 ! ._j.._ I - I ! Li j ""�- I f _ I I 1 i i I -; ! ;_- ;11.. � l i i .�_, I i � 'II ! 1,...0, ' 1 ��! .L. ` j t- 1 -•! _ L 1 �' -"1---1 1 - TT -I! i �.r �` 1 i { I I ' ' I I t J ----.-.!-t-- , , , i I I ( ,_.} i I ; I I 1 1-:- LY ��i;. I I 11,1 - -- - - I 1 11 � I! 1 1 1 1 - I' NOIRE -FT 1 1 , , , , • , . , • , • . • • i • •4_•__ . ,._,_,__ ft , i i , • , , , ,,_.„_,,_, , ,_, , L...... , • ,._,....,.... , , : ...L.Li. 1 i 1 • , .1.....LL i Lt---1-4-1 ! 1 ' : ; 1 H •' -" . estue , , , __,._______•,•-7----7.-',.-r-n--1-,--7-r--;- ;,, ; I 1 ,- - 11_ ! Ii iN J I 1 i ■■1►`�- ii .......i } i .___.._.__ , 17 1 1 1 1 1�J ■ _ 1 1 1 1 1 1 7 - I! 1 1 !It 7-_,___„... _.. -. - -. - - . -' " -- _�; -_ -� -! iJ. � �' 1-I � I i t j 1 �' � T - i ` '-- - = j -- r i -1 I 1 i j � I _ viTix =L F -.+-• ;_ : 7 ' I • t i i i i 1 I ; 1 i s - - =j 111.1111. I . . - ' <�SL1M - - -- , .1-"Tf_'._1 1 1 `� Hi-- 4 - - L-- , _ oA.t_ ' � T I _ - - - -y- ---- ' --t-- I --I i I � - l_� I ' i 1 i 4-1 ' 1 ! j � �1 : I -^- -- v 1 I l • - . - - - - - j-- ( - - - -- I. r- '. I - • I - --,_-_ . 1 1 i 1 - i - r - r -- i, - I 1 1 • - I -7 i - I • 1 i, 1 I' 1 i . - - . - - 1 �1 - = - - - _ L _t- 1 I i _j__LL 1-E TT '.' I ' • .-.4.-141-4 I 1 I J ' - : - - i _ 1 1 1 1 T ...1 ! 1 1 1 1 i � i - � - -- ` I ; i i =- ' .- - - - _ _ i .. _ — , ' 1 I ! I I Li 1 I i i_ I I jI I - ,: I I I X 1 1 /! i �--: -' J � I -' i; - r - I i I I -': I � r a i- I r ; i- hi ._l 1� ! 1 1 1 : 1 : - ! i • ' • , - i : , , i , fi { 1 � ! i ` 1 - +nTj • - j ' � - r � I Fri I 1, 1 ! IT' ! 1 I i d D • ; - - - - 7 - . - 1 - .1----11'1; . .._ � 1 1.1 I 1 1 1 T i 1 - , 1 ; � 1 1/ i__,_,--r-r7 1, 1 =. S�ec.� f wQ�P� -i �. . _ - - � 1 "_` 1_ 1 ! i I (� I I I i r I I I !Tj { i i 1 !_ -_ ' ;_- r_l-i i 11 I 1' fff 1 I I I L1_ �l i I•, I i t ' .--:-,-k----,- �. 1. _. -7"I_ T - L` -46 .L r� - i 1 I! - - ` - i 1 1 f 1 1 1 l -- t-- r - -' -. 1 1 -- - �� F.�'� -� � 1 � j � , i I 1 I i � , _I , � , , � I , I � - 1 - ± � 1 I • I , I i • !... _ i _ t ift -�� -_ �__I_ i . ! - � � � I l i l 1 i I' I I � s � _._ -. 1 1 1 � 1 1 1 1 - 7 - ! 1 �.1 1 - . ` i - -r - 1 1 Imo -- ; i_LI i__ _i I I I ' , 1 I , 1 = 2-E>. ��{ i I I 7_i I 1 I -I _ -- i !! { 1_ -f ... 1 I 1 I I I I le i ce _ 1 1 - I I I T J .--4-___. • I : 1 n C. 11 1! ; I 1 T - � -- 4 i -- + � gi- ` 1 . � L - i� I I t -I I i 1 i = 1 1! I , 1 ! 1 - 1 ,, 1 , - I i i I , I ' 1 11 I - G ( � 1_J 11 i!i I � I 1 -- 1 �C rt l ' - -- • - 1 _ � ' H I . I - w HT = -- - - - _1 i - _ 1-• i-L i 1 1 ' I 1 1 [_i 1 ( - ,_•- - --: --- - i - .4_4_144_1 1 -� 1 1 , 1 1 1 I I I 1 1 1 1 ! 1 J ' 1 -, i ' 1 t 1 •'' I 1 '_ j ii.' Li 1 1 i I 11 1 ' I � _ '- "_ t_ - I-• H ■■ I 1 1 I - } - I Il f I I! I -1- 1 =r ; 1 1 1 1 1 - 1 1 1 I 1 1 -� I° 1 '17i --'i- -• i-4- '. ' I 'II ! 1 1 T- I :1 - � 1 J I I . -1,--i } ; I 1 1_1_1_1_14444 `T L;- T -' •• — 1 l , l T' 1 , ' I i ?. i 1 i ' `I 1 ! I 1 I . ••.I - i I i --i--,--11-': T -r I • l I l rt _ 1 -- 1 - 17 - 177 . - L } { i i _ r ■■ L im 1 1 ' - i: 10 1 _! LI 1 i I 1 71 7TT - `1771 I; 1 I 1 ' . I i r I I • WI ■■ '_ 1 I ! I 1 I J_ ' 1 1 I _ I I 1 I i i I - r - I 11 u I , r.,-,-[_! : • T , 1 ! 1 •11,1, 1 I ; 1 1 1 1 1 ! 1 1 1 1 1 , ii • 1 1 iii I a )_ 11.111.111 I i1 Ii, JUl EP . !! i _ . -- 1 I 1 1, i f 1 -I I I -- I— + -� 1 1 I I I I I I I f -- -� I -- -= - ; � l r _ - I ; —•— 1 I ; I 1 1 I { i - - I 1 ,i I i I I i,,i• . ; . ,; • F ! r - : , : 7 .' T ! !I I 1� I I • S T NO. PNwP - 3o — p7- (fir',, -7/l2- o S' 1 DATE CHECKED CHECKED BY JOB NUMBER G BY DATE CHIC N0. - 11,1 r ) 112��ss uE- Q� l �i �'t r �Tl C. e`1 f G (�S d L CS . PROJECT l SUBJECT l ! _ ; I I i 1 1 ; f I 1 i 1 ! 1 1 . ' 1 - . I '� . : ...I I i 11 I - !_1_1 j i..; i ; ;. _ I.i _ -i j . I ! i I I ' i i I 1 I 1 - ;- -'i -_ ; - . - -;. .;... 1 I. _ � - I- i 1 .. i E ' n O .I_.' i - 1 , i . . I I _ . I I (.. - f , ::'. .! :I: :I -;' -1- j ; I _ i I . I m f I ! 1 L!_ ' - ! L tri. _ ' j : I 1, , 1 ' ; I i I j I' j r i ;- I 1 I t I i i I' I i ' rn 1 1 I i. I .l i I - !- - i -i -- a - - �- 1_..}_ ._L_l. ± . : _ L _! : . � _ � _ � ..� ! - . ; I: � I :�.. . I . i I _ : I - -t � •- I - I - I - -- a . . _; - - - _, � .1 ., i _1_ j; j � -t ' 1 1 1 1 1 I l i r I 1 1 j - -i'- - I _ -�- � -i --i- , i _ I _ I _ .i... i j i . 1 I - 1 -I- 1 �'_I.. L,.. __ 1 _ -F-�__ � 1 i.....�� I I I j... . j - - I. , _1._1 -1--71- 1 1 , I - ;. f _ _- a -- ; -, -, r_ s , ! i , , _ : .!_�..I I � �i= - _ I vi _J..l -' - L- - J_ 1..J.. 1 - 1 I I t i ° 1 _ - I . _ I - I I ! i. 1 ^ p � .. �.' � I I , h 1 1 � t I � I - I 1 j �� - L . � _l�_�_ - .1. : � _a i . I ! . I _ _� .I . �.. I I _ ., I .I _i._ i . '� . i . L_{ I - : � -, j .. '. I t ! I , . .. t 'T -. - ' I �L_ 1 i �r ;_ _i_: _ ; _1_: 1 L i ..; -1_ - I - } - - ; In r' - 6 . 1 ! i ..I . J . - 1 - 1 _� ' ' I .�_ : = j�1 =� � _i _ - I . � s_ : I ' r = 1 �- ; - ; -4 -: • -- � - ,- -r-i- - , -�. � � . --k- �! 1 I Z >-' 1 - ' I _ II 1 I -1 I --1-14 I - 1 _ z J-1-1111 I Jr- T _' •-1 -' i Ci I I 1 : ; - i I I 1-1 11' 1 . .1 _ � . A; .. . i _ i -, • we .i. 1_ 1 � - - -- j �- 1 -1 -j . ! ' I - -� i I . ! i - 1 I ' " } ' -JIVI � -- - - I - -... - -'- r _ _ _ 1 j_ __,4 I -i - - -� •- - - -- - ' -!_ -I (-1:-.--'. I-> �"t =1- i ' ' ' -' , . _ : i r 1 1 1 I i(a _ _ _r �_ �� :' 1' 1 I I; _'_ 1, Vii- - I I- I---� I i l - I N -- �. ti � _ M I n _ I �� r ! ■ I _ I % 1 _1 - i ' J_L ! ,- - -1 - L_.._ , ( 1_°_ _ _ I - � , ( � L _ _Ii jl'(� \i _ 1_ _ �I - .-; _ , " , 1 I i -j - _ ._l ._ I __I J ._ I_ � I __ _ +_ .� . -.._.. _ �__ - - 1_ _ __ _ — _ ' +. _1 - 1- _L ! 1 -� _1 . _- - _ _ _ _ 1 6 I _ 1 _ _ _'_ :--2 =-! i- 1 i _ __I . _ _ � -- �-- � -'{- - u__I 11_Irt ,_� �� I_C - - I'- ( : - - }- - I r� i._ , _ y v 1 / -� I: tt I , _ iI -� 1 I � t - -i_- -1.- _1 -�- 1 1 I- d _t. � -- _1-- ! - { - .!._rI - ! _ _ _l l _r_ 1 _I I I -l_ l - = - I_. ' - ',y�- ::L_ ;- - . -F -}- _.LL. - ...1 - -1= 1- - 1_ _ t -- -- - ._ _ _ _ _ 1- - I - t_T-1- -I -' - 1 _. I i i I_I _ - r_ F j - - - - - - _ ! _1. L- 1 _f-I_ ! - ; I I - - i -- [ I - I - -_---1_,- -LI --I - i ; :_ 44 _4/. f __•:-. ri I] i j,-!--1-T -1-, 1 1 7.---- f 0 E -- - - -7 i-h el --E-1.- - IJ- f - I Imo I r -� I' I ! -r r 1 - - I ► 1- a � il _.o- ! r � 1 - , --! . ,__ - E. 1 - - - i � - - - 1 _ 1 1-1 ■._l I - 1 - 1_1 — • � _.! I I 1-')H--E-1--I I - 1 - , I 1 I I DTI , I ; 1- -- , . - �0 - --1 1. � t ;3 1_,_,---L- -----I- --- - I- - 4 - 1 ri-, , . I-1-1- - i- d 1-i- I- . ,,,,D_ __FIT:p. i r-i-J. t r i_ 1 ! LI-1 T-1 , 4-__-111 --[ - �__{ ,,.� ��__; __�- - -- ! 1 I�! - - - r - _ I - I _. : -_, � I- - r 1- f iLt4-:i' L fl :1 _! 1 - r 1 1 ! 1 -! -- - � - I - 1 1 . _ 1_� . �_ _ - I -r - ! r .� ' I o L_t . ! � , h -_ � :: :� _ . � 1 J=' - I� J_1 I - - L -' - - -�� � - = = I �__ , ' � � , - -1_ -1-14-1-4--V 1 - III ' I 1 , - �- -- ! t _ - _ a � = 1- -1I � I j L � i j.; ' I , i 1 Ti _ 1 .111_`. �_ Lt-f---- _ I {1-1-I - 1 - - - - ___I--: =J -r k -_ - - - -I -- - - . ,_i I -1 J- 41_[_-'-_-1I - - - - - -- ---1'I 71 I- .+ fl.— I — ! - I I I I - 1 -. �_�. - , -- a - -T -- .. I __'' -� -, I . _ 1 I 1 ._� _ I _1_ _ _� I Y1' vt_I-fiv_L _________=__::____."__. 114 ti-r I ice_,._ _I -- 1 _,_ _ -! -�. _ __ I�I I - 1 — I ! ; I 1 7- " g 0 E I� 11 - j ,- -- -I- t 1- ` • - — - -� - ' - -- >- ±_ -_�-1 I -j- - - I 'I -+- -- -- -- Li- I �j T 4 ' i - ■ I I I ` - I I T = -I . ._- . =1_.I -I 1=- I T =1 = 1 = 1 _ -` 1 e i --hi \ I I • m m R 4 o Z NI A 0 gXK--- , --N • - . ct- - ,.,. 4 o r k ■_ , / .\ -.-k --A . Z - e A - 0 si. i -,, ti_, _.... ce L., I■ i. e 0 u • kle- - i 1 L I rE- - _t1 T :.- , :fit - M _1_,:_f_ .-___ - • - 1 __;---, 1 - - [ , r 1 _____, i i 1---_,--!--tf I ___.t.___ _.___.__ _11_1 j --1 --1 t., --I -LI [ - --,11 1 , -1--[ 1 , Hi_ I I ! ' a ss. t_i_ 0 - - -- L ---1 - i rl I i _ 1 11 - F 1 -_- 1 - --' tl , ,--- ,_,H- i , _ - _ - !_____ L_, 1 - I I- _r i-. - -----i- --1------- _1_i_ . ..- , t t - ,- - 1 HI ' ril.- 11 I -1-i - 1 L t - i - i t= 1 - LI 1 • ir I -1_ I - - -1-1 -[-,. I, _ . ,-- t -- i• - • - - - • - ( - P ---- -- - AI - Ti: E I i 1-1 [ II I , _,_.<11)1. 1 :ir: „I-- i L_I 11 i j 4 , d--- _ _ , Ft 1 --- " , I . ___„ ___ i . _._____. _i_i_l__ _1 1 -.- 21- - - L1 .- ' -l i ----.- ) - i -- . ----. - - FL - - -L i ' 1 i ' ' ' - 1 - -- k - --- Ii - c l- F 1 7 - 1:17_• - - , -1- - -- - - L 11+ --it-- -,,i 1 .--11--1--1-1im .1 I - -.:_1- rt - .:14 - 1 - 1 t f_ ; r i 1- L I -i] t _T 'ER -- r - r - ..:[.: - _._. -P--;-- - - 1 , " I '-' 1 r ■ 1 1 - 1 ' 1 IL 1 1.- I ' j - -- II - 1 - _ - __7._..4_ - __._ ...1 p ---1 d --4- 1 --- 1 -- -- - • - - -- I - I - -1,-H. [- __i -- - -- 1 --- -1 -- " ,,,) ry.- - t r . - [ - T - f 1 t - i l--2---- 1 - 1 - [ -- t - - - 1, - I - - 1 1 1 •- 1 1 i -r (---• 1.- 1 i• 1 _ 7 - • 1 1--1- 1 II-I. • 4.4- (I :q r - 1 -- -t1-1-- - --,- 1 - - ILI -. .1 i l k - r A . i - 1 -- i - r - f _ .-__._... i -I-- F- - ' II 1 3/4 F -- 1 - ' r: - „J._ r _„.., - 3---- --1-1- i -1 --- - -- / 1 - - -- ., - .7. --- 1 - -- .1: 4 JT_EA -. - p __L 1.' i r : +er i , 1,____I I N..L.1 __J___ ... I . 1. - 1 -------]-1 --1--t -f - 1 ---t- - -1-1 1- ---1-r ' ' T --v --L- - --'-' . 1 . 1 T • ' .4 I _r 1 T, _.f r - 1-_rH-,--- i !-! - i -I- f ' ' . ' L n -1.) - [ -- 1 - 11. - Li ._ _ -_-. I. I- I. I- r - , - , 1- it . i ..._ 1 i -qui IT HI lit I I i ' 0 + Ti-- ' c_ 1- P r • • .4. . ,- 1 -1- 1 ,-- -i . -1-t-i-E-,t 1 1 T- ---: ---, :-• L•r .- 1- . 3 1 . 1 4 .4. -- i ‘ --i- / If _4_ , - I , -- - -i 1 - l' I 1 ' H '-- ' • __I I i - I' - 11 t -- - ri if . - t - 1 1_ I I-1- I- _N--I-i- ki --I-- il •- -, , 1 1 -I-- --I-- - -r- -7 - i i 1 - 7, - 1 t , 1 F...-..-o -- • 1 . r , . ,- 1 i 1 . 1 J.ri 1_ 4_1 _._,_ .__---4 i-- -,1-■ . -I--.-14--_ -- I -1 I -- - 1 N L I ' i 1 4 I. ' - •• - -1 1-1 , -. -- I - __,... _l_. 1.1. ,_. !_ r. ,_..i ___! _I__ _i--- - --!-.I-- -- I- •-1-1 Jr-1-1-1--1-1-1- 1-- - v - r _ r- ---1---1--i-- H H f- i L _, t , ; i--,-1J-,-, ' . 1-. I I .-1 '.. i I - I . I 1 .1 _l__1. LI J__!...j __...__F_l_.! Dm 1 . I ' .1_1_1 I_ _LJ._:..-... - ---- !-- -4- -i--i-I-4--, j --• * 1 - r ---- i 1 I ! ! ; 1 .it 1 I ,-...-ii, ,- ,,-,!..,11-il,iw,iii.,..,.._.1.ii.,:---.,,---T--1- L.) - !--' 1 - !' - 1 - ) 1-.4-1! I - I - !! -- 1 -- !, 1" i i! I! !-- - I . ! !I • I ! 1 I I 1 i ; ; : 1 ' !.! 1. . :. : L.: _I ,_ - _ ---- ! - -- - HI---1 ;---; 4--!----; -4- i 1 / --i--;--, ,- --; -1 --1---1-1-- 1--, --; ; s ; ; i 1_1_,.._...r.;., ... (N-4.1 i ;1 - , • !, ! „ ; , .. , .. :; ; :1; 1.1_1_1 . 4-!-;--!!! -I 1 i 1 - 1 . I - ' ... r la' 4 ! I 1 Ii '-li I I ; - . i - I ',. '.. i , •i . I 11 ! . 1 ! 1 1 : .'.__J .I..: I i..i .' ...i....-: i 1 I • i 1, k ., , • , ; ! i ; 1! ;II! ...! ' 1 '..: - •I• 1 1 1 1:!-',-; : • !-!-- , - '. , ; ! -•-' , , ...' L---I 'I 1 '' 1 1 i: i 1 . ' 'ii V• 1 'O. H . ' . '. - 1 -: . i ., i:1;.!..'1.1i1 W;:;!1.1 ;- 4 :: .-- , ;--;- 1 -I- r , •:. -; -i- 1 - -; 1 - 1 - I•!i ( it 1 1 .; ,., ; 1 1..1 I I I i. I :. i .1..1 ,.;_i ;.•_, ; ; _Li. I -1 I 1-1. -i- 1 i- 1 -I • i i ; i III - - I!! 1 Lir -. - 1 . 1_1 I. 1 1. I . 1 ..... I 1.1 . 1 il 1 ; . ; 1 'LI LI 1 ;a , 1 , ,. 1 I 1-r-1 1 1 I 1 1 i i - 1 I . 1 1 ! : i - i -; ! - I LH 1 I I 1 ! 1 i 1 I. i O Z L, z W o ,.- Z W u u tf4iEL L' — 1 _41 I i a li _ ri i,_ . __L___. +f ___ t _ Li - it' .-- ' --- - [Tr -- --. 1--,:z---r- , — . — ___, ti -1-1- I- . - , I - t j_ ! - 1 - } -L E ti1:i I L L - - - ' T, _ r � - a -- — 1 � 1 ± i I L T ; Ji 1 1 I - - - I a ( • - - - _ I 1�{ _ (� - ± - _ I _ ,_ � �- � - � ; - - - :: • • (... 6 I , �- I - Lo ; - T -�-- _ -T j 1 - �- - � - - • ■ - - - Imp 1 L ' -� - -. i I ._ _.. - }I ,. II�r R ? I 1 I if I ! j {- 1 i ' I I fi , 1 . . r - I - T. I t " -; 11 jf ' t I LL____�' �' 1 - I i ! LL I -� j � I � I 1 , a' r -j I -I -- -1- _, 1- r f --r 1! S - T 1 1, _ _. . 1- f � - I •. - - 1 - r- +- - I I r - HI I_. 1 I i. I i , ; _ 1 ; )_' L J [ - ; I -, i_ - I . J_ _ L }_ .. -1 L - i ' - - ill i ,- -1 1_l_ : L 1 _ 1 I_ _ I L__ ,�::_ _ tii i_. i= _ of C l 1 - r {h� I �_ -1 -; 11' 1■ ■ I I T- 1 1 - 1 r ill-f t I I ! I , I 1 , -- - - -- 15 r 1 -1 - 1 4_ 1 I -I ' I I 1 - -r- -1 - I _ _I I I I - 1 I • ■ ■ - I I f . F : .1__ .it _ 4 [j T I 1 �1 - 1__ ' 1_ 1.. i . i 1. _ I i I- I ' ( _ i_ ' � 1 I I i r1_' •--I- -- -. -t._ -'' - _ �- I _ _ I - --1- - > r_T - N _ i iY - _- _ 1 r { I- -, 1 - ' -$ i r I ' 1 1. i 1 I ,-,---� - 1.- � 1 .I...- _ 1 .. -r i - j-- 1 -j..- -- _.1__;_.;_ � 1- I F -r __f_i F i -� - I t r _1_� , I ! _I._! I , ; r - 1 .. i ._ ! 1 •... { , i-r J. _ j =1._.i. .. f.. ; � ; ���1 1 _ -4_11 , , 4 = f.1= + 1 I_' �I ► a �_ 1_:� -} =j `� - -i I_ -; }- i III _,_ -!- �'__ # I 1 -- - • r`_� T - - � I mo . _ . t f ' - I ''-' ■ t_ . 1- I I ; - � F. 1 I _. . �_} _� _' I � 1 + � I - �-V ' -I -' i � . - j > I_'' _ _' I I I 1 _ �t r- i 4-Li- L L ! LL I7 1 - l._, 1 I 1 ?- ( I i 7 ; I } 1 . -11 ! _ L I r I , I l , j` ft"f H . - - 1 - - .+- . -r -- --- - • _ I I 1 F I , } i 1 1� -- r- -1 - -- I - -1' - "i 1 _I _ i' I -_ -.� .'l - • ` - - - - - _ - _ � L _ 1 __ _ •, JNI _TILL, -r 1 . �. 1._1_111..1 ' l .l _ i � T . _ _ _ ^� 1 I 1 - _. _,_ . .. . _ I-1-"'. 1 ' r -+ - i -,.-.:i: I l ._ ` t � - - -'- • -a -i- �- - - t" - - - I � - - F-- - - Ci 1 Z .• - ' ,_I , • 1 , 1 _,__I .I � L L ' -j ' 1 i 1 I I • : i .., - j'-, ; , T- -- I - - Ll -1' g U -1 H . _. . ..;_ i _I . _ - 1 I i J. , i . ! i - I -- r i � � �__. I � =1 ? 1 :I:� 11.. ( i _ - i - 1- - - i -1 -' - -- I - -I - - � i I - � - - � 1 II • -1 i i..j. I- j-1 -' °r - - - ..1_....1 - -I i- -1 - -� Ir vi 1 ,_.; ! { i 1 i 1 1 • I i �! I " 1 ' 1 ■ i 1 � ' i , � 1 , 1.. ! I Hi.: � - i_I � 1 : ?_i l l f I I I l_ i • 1 -' ; 11 1 I I+ '. I I I 1 1'+ I.1 I _I 1 1 - ' 1 I ' i 1 1 I 1 i . . . 1 I 1-1 . _ -- 1 .1 1 I.,_ 1.. 1_, U I I f � I } ,., 1 - } I .1 .I r -.. i i i 1 1 -1 1 I -r-- -1 . 1 . i . i 1 . 1 _ i 1 1 i , i , I 1 1 i ' ; - i -- -'- -- �! 4 ' i- ! _; 1 I 1I _ l 1 1 1_ I, , i i 1 !; I, i i I 1 : . 1 _i. i 1_ j i I + 1 ,_ ; _I ; ;_ , j j I _k 1 E - 1 I 1 - 1 1 i I I I i !' I .i. I i i I 1 r. • , . • • GEO DE.SIGNY , . . . , -- --- . , . , : • , --!.--; ----. - : -.- -----!---1- : , . • . , ,----, _;___. . • • • • • • -i•- : . • . . ; '-i--------1 ' : ' -: .--i- ,..- ' ,, '. : ' ; i--1---,-: : ; ol.- ' - 71 - H -7 I, 1 ! I -i-- REFERENCES r NOTES - -- • -- rr re•;;Fs 1 - w.-•••-• • -,- - i •-:,--•;----4•-• ..I...:_j_j_4__I • _•__, ,.__,____4. 1 • 1 1 :-i vk .5- :D.-s-1-4 B 1-- . • : 1 • -r- --1------ ___ , . . 7 . .N.:4 , , ; • ......1 - - .. _ • : 1 : ,.• 1 ;•- : ...!•-• • . -,:- ' '..-.,'--.,. ' I -L 1 . kl.<1 _IA. * " 1 1 / 1 ! • - • . ' .. • : • : . • -1- ..4- • : I • ; 1 .-•--I , • .._ ' .- . • . : . • . , . ! 1 _ ." i .. •_____; _ .__ ±1 4/1 - r11I 1 I ._ _ -_ ., __. ___:__1__'_•__ 1 I 1 1 : :-. . .1...... ' -I-- • ! ! • I ONIk.. 1 I 1 AMU/ s • • ' : • • ' ' 1 ' ' 7--- r• : : ! • 7 1 iwr • : . i j • :. . . , . 1 I 1 ' • • .:.• 1,1..Ji ; •;;L1 1 • ._,_ ._ ; 1 ; __j__:, 1 ' . ) • . ' : _ , , , , .. 1 - _ .._ 1_ 1, 1 I !,, H t.i_-_. iC) : ,• , 11. 1 :c c . 1 j - i - r- fi,.. c,,,r6,D 1 . • , •i 7 , . ,j--, H ---- 1 ; . . . . ; f : ! 4 .- t . " 4-- .. ', , • -,- ..-....... ...,:dir_r_l_L. _ i Cg 91 L , i , i ! I . , , . .- ' . : ; . : :' : : : ' : - i • : , - ;--.;---"- " I L ' : 1' i 'ie arip - t - i-, ti-4-- 1 ..1 I f I 1 , , • , -. -, i.. • • -••j.-- -+- . '''''- - . • J 1_ J .. 1 1 I _1 _ 1 , 1 , 1 ; , . , i ; , , . . , , ; • 1 I l' 7 r' - i" -- 1 --,.- 7 - ■ I • l,FFIIIIIIT _.__H--- - ......- ..,. _.......I - . . - -•, ... - : .:. . : ..:..........1..._ _.:.... _.,... _I ___: _ _L_ !._ I 1 Li ' HI : : j 1 i f ' I I ,.....,..!*;!..,.• •!• • ' 1!11•1'1-1 -A-ts4-..-45._ , • ! ; : • . . , , . . : • ..---, ---,•--- 71 ; 7---.• -7--; t, •-t-r-, ' - 7 - 1,,L - r -, •r ii , !i III F4'''' - --A. • -- -,- 1- :. - ,:-.:.--.- , 7 :.,.-- 7 , ...,$ , : - !,:. :: __ .... .....__, ;,.. ; !.....; : ;....; - .,_...,... , , ; _.. i • • ... ; . _____._1_,__ . -,- : : • . ' ; , ; ..L__i_.:....L.. L:._,...__... Ns : Q_A_s )(t oa ) . . • . .....: . __ .,.....,. .. _ _ , 2_ J.. _ .L :. i. .... • ....i .._ „....1.. ,..... _. .:. ty.....7_ _:: 2 _...•• ._ ...,.._ I • ..• ;;,•: ;;;;": ''.:.if •I ' i !----, :--; • ••-.4.--2,-. ___,__;__. 2- :• • . ; • _.,_ ; _ • ; • _ ,__;_ ' • :, • . --.. , I -- i__.1....: '• l_i_ I ';___;.• ; _i__I I I _;_... • .;- ' • _ •__LKs iv... : 6.... ' • . • 1 ' ' , : ,,L ! ' 1 . • " ' 7 ? ;_.., ,, . , . • ,, L ; . I__ i 1_1__,I__,__,__[_4 i t_ . 1 . I • . • : ' • • , . • ,_, : ,_- .: H 1. . .-- ' • :- • • • • • . L.,- . i-• I i _fi I' -: , . ■ ) 171 ! - 1 • 'I 1 1 1 ' ! . • - 7 . I r" , r•- -, r " 4- 1- " • :, ,,,:,•.! 1 I I . . , , , 1 ' ' • ' ! ' . • , • s • , . . . , TI 1 ;711,1_1 j • si. ' • : ' . , , : ' • : : - . 1 ---; ,,, v. .,,,___-,_,_.=_-_,,_:,,-__,_-__-_,••••• _ -_--.• (l_s. e_3c)(0-z-i)(,-; I _•,.._...___.• _ •. _.................:______ , . -- ...--; - • • .-- • • : : ... -'.. - - ; • .! • 7 --...--•-• -,:- --;--- 7 • -,.. •- i- • ;-- : ;44- .1-• . ___! ; __:__.1_ i....2_.......LL...1._:_i_.. _.]..J__,... ,..' .L.;.. : i i 1 -, I 6/ , _ . ....._ . . .,,. ,i • . . • • 3 4 r : , : ---- 77 - '''S - 7 .- .."'7 -- 7 - 77)( , r - • . < *---- 77 - ; - r - r -- 1 f 2 ,.. ' : : • / . 7.' . • ,' "1 . ' ' , . 1 T ". ; ; • ; " ; ; r• • • r - T - ' . • • " - -I .- ' '. --4----' ', -- . • -.-I-- ! . :.- • I ' ; ' ' l_ ' ' __.....__ ' ' . • .. • ' • • ' I • ,Ii•• • • • , -- • .- • . --- -0- . • I-- , : ' -,- -,-;--:__-■___,_,,__,..__,_,_, ....._ • . ': ',.-.( a, p ! o...t. 1 4-4- 7 ) '. ,•' ; • -i .4- 1 . '.. • • '__)_._...__• , . :__•;....': • " i_j. i i I ..-M .- ' . . : .: • ---- --, .. : .--1-•• -':- -;' ' • o • ! ; ; ' ; .1' .,'; ;,,•;;;',., ; ' i'',.; i"1111 '''''..;•"'''"' ; ' r ''''' ;''''''', : . ''. . . ! 1 . . , ; • : 1‘..., . , , ' - • , ' , , . , ,•,., _ . : i _:,_ : ,._ : __,;_j_ i : ! _1_, I s•Li,ii ; • , , : : . ■ . , : . ' • 1••• ■ ": . ' • ri• ' ' • • ' • " • , ' • ' • ! • : ! • 1 : ■ 1 - 1 • • ' . ' • • • 1 j ! • fT ; :- - 4 - 1 7 , . . • ; ; • . , ; ; ....1 ; , . I ' ' • " • . ". t I". I • ', • • ; • , • ; : ,......,.... -L..; • ? ft2 : : .._. . . H . ! r , ,.. __..1_ . . : _ t __, _. 1 I ., I 1 ! .......... _... . fL._ i%•\ -._ A_ L !__ ' ...._A_!.. .._ t)_,-,.._.,.__L;4...._1,..:.._-_ __ 2 2__ _ ....:,.._.__i_t I ! 1 c WIA... ____.14..•-_. i I . -. 1 .."_:_II..!:! LI • •••• I .) 1 _!. ,__.' "._..,,,.;• ! ...! I I TTT - • - • - • ..... - - ' '.------ .. ' ••--1,--:---i • 1 : : •---',---i--. --■ ' 1-- 1. ! 1 . 1 \ 1 i -4- 4 ,• • ' • • •-....1..._ __ ' :: ! - • . • ' • , : ki • 0 -IL' -$ ' . ' ' ' ' ' 7-' :11 1: '1" !"! Cr ! !- : : , ' : --!---, - i - 1- -•!--i - '---1-•-•:- •,------ • I :,--L-:, 1 - . ! , 1 • ' 1,..._:,. ! 1 1 T _i_j 1 ; 1 __L____ : _......I...._....__ ____ ,.._ ' ' ! 1 ' 1 , __!_..•___„.1 I__LJ 1 ' : 1 1,__: ' , I ' : I : ; i 1 1 • 1 • : • • • 1 1 ' : . • ' ; ' • , : ".'"1.7.7.777"7.."71 , I /7 .'"' h . r . ' • ; : :. ' .. . '' ..;' : . t • : . •'''• '. H, .','' ' I, .' '. ; 1 : . • .' ; ''.; '• +.; .1. IL.L • ' ' ';' • .... ... . " . . .. '.. ., '... r . + ' ........ .......i ..:... ' ',. ....; ; ' ' • r . ....:. ''. : ".....,.. 4 .. .A....1.; '.i . 4..4 .. 4...4. ' ... ...,.4■4 .... 4 4 .4■ 4 , 1 .i '• 4■; 4; 144L1 I I i • • ; / ; ; , , ' ; , ' ' ...... . , • I . , I Z f :, ' ; ; I , ,. , ■/ . , ! e h - - • , , . , P I • ••• (_ -i A'71.. 11 . 3 2.7._- --- i - N - (1,.iis:L1 - 2 7 .t.7: 1 !It_t;F:I(.',.7:61*(.,_13 - i57J L i : , , 1 , ,. , . - i 1. ,, j • . .....„1_,_,_ , ,_ • _ , i ,,- , --!---7- ---1 .: / • l' • • . ( :t. --) Co ‘i• •,C1, 11 tS±4 4 --, - .--1 .--i--±. - i---.-- 1 - h - • • _________. .........:,_.•,,::•..1•••:•;: :, •;I!'!: 1•"!•!:: ;ri, __!i L ----- , - ------, ' ,- -7 7-7-'.''''''.--77-1-1-7-•'-:--.6-7-7-7'.--Mr-T-1-■-",1-7-'-.-1--"--"---,--"-"*-4-- " ' ' ..i .4 ' :■•■..7,..`,...,...1 `■ ....... i....... _.4....,___,._ ..!_,____ , .._.1_ • ___.:_j__, L't L.L.H.I . ' • i . .. • . . I . ..i,,. ! • : I ' , a ; : : ,. : • ! • j I i _Lj_. : ! ! ,. . - I • . • - 1 . 11 , 1111:1 - 1! -- 7 .: . . : : 1 . 1, ..,!__Li i I ._:. .I.__. ____'- I_I_ !...- . 1 ! L. 1_1 I • I 1 .__I__ • 1__i_1_ .. I_ ...,._:,. ! .i... I 4.....4..._i_..1_2 _J_ 1 , . ,. 1 . • ;;I, J ilt,.• "--4 .1 --' - . ' ; . . ... • !---!--', -'- '--"--4.- : -- 4- . ' i ."- " . ^ . .. ; -d .--,, -1--L-t-L_,..._ ;__L ' I_Li__4_,1___ ---,-. -•••••-• •-; -;.- - --•-••••• •- ' --,- • •----•••-•,---;---- ..•-• .L_LL_.I.,.".--._ L,_.:___!. I .i_ 1 _i•_;___L-i__I : -7 1 I 1 14 1 ; _..,.._;:, : I . • ' .4_ : _; • I . _ 1 I : : ; I. ; L i i , ! , „ .... _ - , . ., : r , --, TT 2. 0. , . . -,---„• . , • .,• , .,, , .•.,17: , ;;,,, , ..,,, , - --.----:- :::-:::-T -:;-•,---- -•.----:--, -TT ---t-,-/J-1-5-1--- -,--,, -----,-,-, ----4- J.•___LI _.L..".,_, 1 • 1 , 1 1 1 ...._... ,__.__ ._4 .J.,...i...4 1 .__.! 1,._.j , ! • ; : ! ; 1 ,..,_! _j,_ j 1 1_1. i_i. !I LIITi! . _;_;_:__;;;_____•____ • !, r_j i.._.: I I I 1 I l . •; , ;; , :;: , ;; , lii•;17 - 1,..):;:;:!;!I i i Iii .-_1 --;---------:---; ----- . --- "F ---' --'-1-1- J :-L_ 1- • .1...1i, • ' __L__:_-__.-:_._...__,.__.....:.._.:__.,.._'__;_-',._, -4 -.2.- - ' ._I__j__,•_L_I__:__j_;__.L___1-:_L_L.. 1 ....i.. . : ... , :..: • , :, :._,,.,.,..,._,,,,,,,,,.,,„•1•1‘,,,I,,L1_,,,,..,_ • . : • , . , ; • , . , ,. : 1 1 ; - -:- ! ; i - 1 .-- 1 - ! -- 1-7-7-1-..---,--,-- 1 --- ; --•-•- i -- ; -t- ---- ,1 ; ci , I I -- . ; .1-;,--;•-i-... I ....I._„-_,___:__T---,_4_1____-:.-i- 4 _ ___L • _ - - ---. ------'----- - ;--.---,--: - ; --L :-----4.-:---+-4---:- -, . ',-------:..., _. . i ' • I . 1 ; 1 s , I I. I •J•i 1••■ •1•''1:,Ii: • ''''' , 1 , 1 . i 1 --1--1--H -.----. : -1 .• . ---..-+ -1 -r-, , - .-t---i • 1 -4--:-.i.--i-,-L-;-- , . --- - - --- L- -- -:.-------.--- -.--,- '.• - - = --:. ---, !-: , -.'. ;--'. 1 :-.4...1 -.-1. :.-.j.. ; I . ; . ' ! i 1 • 1 l_j ; I i r . . .1 t --------,--;----.-- - ---:---'. --:--- ----I- 4-.!--=-1---i---j,---:-•,--1.+1-i....__! 4....:_..1-;._i_i_i_i_i_ I ' 1 f ' i 1. I ' ' I I :-..' , , , , -.. . SHEET NO. IP DATE CHEC (ED CHECKED BY JOB NUMBER . BY ATE CALC NO. . 1 124 14.-t LE PROJECT QC ' . CA ASRI E 4114 ., CS • SUBJECT GEO DESIGN= .. .. - lit�l aLL '.__,I C ' ' -' - - 1 - E �..._�1�1. _ S. J - -- - -�"1 REFERENCES / NOTES F ,. I _ 1' � i • f , I 1 ! 1 r - _ • • _ !j ._ c T : :... . 0- 5$; '_, -- - . _4. 1 1 -ice 1 j I -, I 1 1 ". 1 ) 1- n-.r.;---r--r:, , 1 . _ ..... -1.� -..._.. _W +- - — � = ? I �.,_._. _ T--- L -.,-- ; • , I i 7 l _ I ! I •�7 I = i • • L -1 - - I k ! „- � 1 T j-1: r ' ri Y l I, • • r � I i I h I ' I 1 -i� + ..._ j _ i J 1 I i I , � " � J 1 I I _ I . I _ l I I � I i i ■ T • i -1� 1-1 ... H j 1 ....,_4 I _ f _- -_.:____.:. I - - 1 f- , 1 te 1 — ----t _ I 77 : . j SHEET NO. lil PrwP 3o -p2- set.. D ATE CHECKED CHECKED BY ` JOB NUMBER BY i ' 26lb5 3 , ATE CALC NO. '1'1 A -rv__ 1'''' Yie?ti S i .1 GA 5 , ROJECT SUBJECT • • GEODESIGN= n n _ ` - - - -._ ... - - - - REFERENCES • . CN C9._A\ -YEN L j�- - • -- - -- - • -- ! NOTES • u - —i • . I. ____ • : ._t. . -.- - - ' , � - . • i . . _ _ . _ l �_ , I I !i N ! 1 1 , - • I J� j i I i _r T - - - - l I _.T._t_dr:# 'j,. � - - - -' • - -� -- - -- , � -7- ' [ � - "1 - - � ` � ---7 am ■ � I _ � 1 _� -' -- - - � - - Fp • /1 Z 'Z - i 1, `' ', � 2 r 1 ._ 1 1 _ I ifrt . _ p I ; k _ I 1_ i I -1 -r 1 I Y r ..k -- ..._.. _______ __ -.__ __ ___ I I 1 I 1 ' { -' -- -- _ .1_. -- _...:_i_'.--L.; 1_1_.:__..L.-Li If F i ., - -,- L.1...2 rr . - .,, I1 •. - - , � ,. � :' � ..� 1 - • 1 t i T, I I._. I � ' _ ___ _ _ _ _ 1 -. _ _ _ _ __ ' ■ _ � 1 I ; 1 1 I 7-r- _ .. I I � L , I I I- t r--,------.--;.--1--!-- r - - . ' ' I I 5 __,__-4----,-i--'.--i'-'1----:--:'-'-'1-t-i'-t-H-7--r-1,--i--1,-. I ' ' t - r I h I '; 1---1- I I I t i I :j '-- • '� 1 l I ! • SHEZ NO. ( • ' DATE CHECKED CHECKED BY JOB NUMBER BY p ATE CALC NO. (,3 • - h f')* r -i O4 c i-k t,E_: Gam/ �,_5 4/4 G� -L-cS PROJECT 1/ SUBJECT • GEO DESIGN= , _' . I t-- '-! I ! I _ ; 1 REFERENCES / NOTES I 11 rl -- .- - -- --- ' - - - -•- .---.2.-:-.:-_ -___.--..._......J _ ___ _ • , : , . • • , ' I �O.I' � i i ,ii _ - - -h —_j1 • _ 1 I • - • .., i i .. -i I . � i t I , ,� r - - -_ - .__ • . -.. -- , -T- 63ao_- Q- - - c_ O-: S — - -- _ - ._..._ .. __. -_ -. _J_.__..._..__.._I._.. - r i __._ , 3`] qo -' - . -- • r _I- . ? -' 7 _ , ; r II i , r l � ! I I i I S _.. . .. . _ - - I : I ! t I , + ir i `�T , -.. , ,I - _.._. -_. _._..._ :.__ -L � - , _ 1_ - — -- � • -... - -•- - ---- ' - - --- - I • ___ 1 - _ , 11 1 . is 1 , 1 , t ! lam I • . , I ! I LJ -~ -- .t I �1 1 II I i I I �• i I 1 • ....__ i ' i I � t� _ - I ft • :r /� + � ; , -- . .. -� _ I - ' I I I -T -T1 • -- - -. - -� • ._. , ..._.. -_I B i l l I I ,_J I I I I i I I I I_ I. 1 1 ; -. -- -- -' --• --^j 1 - ---' -� j� - _.{�___I._I I i I _I - I I I I �I 11 I I I I I -- -.._ . ._ _... ,._. -` c 1 -I - 1._i..--_1;_- - 1 I, I I I I I I I I II I -' - - - --- - --- ._ - 1.. -4 - - -- - - - -I . ' rT ' I- -' H ; I ! I , I I ; i 1 I ! I 1 r , 1 ,-T n iT 1" ' -� ) 1 � I ' ; I I i ; I I ; � I I I , I • SI,EF � N P4 �� CP►� - iCZg,IPs '`J DATE CHECKED CHECKED BY JOB NUMBER BY BATE CALC NO - 1 4 , 4 -e- 0 - t -- (2 , 1A-A6-11-E- J •� tS c< C p L C - s PROJECT SUBJECT O C/p ACRONYMS AC asphalt concrete ASTM American Society for Testing and Materials BGS below the ground surface CBR California Bearing Ratio 9 acceleration due to gravity GEI GeoPacific Engineering, Inc. H:V horizontal to vertical HMAC hot mix asphalt concrete IBC International Building Code mm millimeter ODOT Oregon Department of Transportation OSHA Occupational Safety and Health Administration pcf pounds per cubic foot PG performance grade psf pounds per square foot psi pounds per square inch SOSSC State of Oregon Structural Specialty Code SS Standard Specification GEODESICN= PNWP -30- 02:071 905