Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Specifications
AFGHAN ASSOCIATES, INC. 6!(,,s14 � CONSULTING ENGINEERS �� 2 a 1p0 D co lois- D STRUCTURAL CALCULATIONS Project: Tigard Triangle Commons Building Four 68 and Dartmouth Tigard, Oregon \ G I NE ID R. A F`s' 1 EXPIRES. 12/81 07 PROJECT #: A05224.04 DATE: February 13, 2006 PERMIT RESUBMISSION Revision to December 14 2005 Permit Set H:\Projects \Tigard Triangle Commons\Building Four \Calculations\cover permit submittal 2- 10- 06.doc 6960 SW VARNS ST., STE. 200 - TIGARD, OREGON 97223 - PHONE (503) 620 -3030 - FAX (503) 620 -5539 AFGHAN ASSOCIATES, INC. CONSULTING ENGINEERS PROJECT: Tigard Triangle Building Four PROJECT #: A05224.04 DATE: 2/10/2006 Table of Contents: Roof Framing . RF 1 — RF 23 Floor Framing . . . . . FF 1 — FF 39 Column and Footing Design . . . . CF 1 — CF 60 Lateral Analysis . . . . . L 1 — L 28 Panel Design . . . . . . P 1 — P 61 Diaphragm Analysis . . . . . D 1 — D 17 H:\Projects \Tigard Triangle Commons\Building Four \Calculations \Table of Contents Permit Revision.doc 6960 SW VARNS ST. - SUITE 200 - TIGARD, OREGON 97223 - (503) 620 -3030 - FAX (503) 620 -5539 �l } tr S* t Ltvtt- eii CCE, ) CL,(,frp 01((,0(.l,n)a,a)( -ltO (0,6 r* ' el lit z 0,1Z ) kv4 = IS`C,c �c,F o_( ' V ¥W 2 1&- tt ;w -41 3 fan 2 ,�,. ��A1v Via G � �� 'CA '? Lit 4 /fa Pelt NQ Or tT1 icM'1. CW 11 /4,-' C l,�✓- k‘ 6,1 1 i6 ttdtt40 - .- O.Cts) _ ' 7Z f (_ o 00,0A- a- ti? A FGHAN ASSOCIATES, INC. "rl (.400 '( uJrii) GetviNasc BY DATE t 1 U 1c4 CONSULTING ENGINEERS U JOB NO i vU ' 6960 S.W. VARNS ST., SUITE 200 TIGARD, OREGON 97223 (503) 620 -3030, FAX 620 -5539 SHE OF r 1 } FA- IV r ‘4ba o 6C0 C O 3 42, ,m ;] . 11/I4 N at' tFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6960 S.W. VARNS ST., SUITE 200 TIGARD, OREGON 97223 SHEdT YC OF (503) 620 -3030, FAX 620 -5539 Vkoe KL0401 400► bW tAitgwitr Iiow ( tU K ccweO t;o �.� 0,6)0,et* tut, t o l J 0. 6,1 Ck 1)7Z 4 tefil er. I I L A FGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6960 S.W. VARNS ST., SUITE 200 TIGARD, OREGON 97223 (503) 620-3030, FAX 620 -5539 SHE OF Civ jon . vv. ‘-o co % oQ( Civ ! L eg\APJS fr c . /c r 1 2 % (A,71 -ttP z'k )- -f ` °11 '1. �Ik Unix toe )(-kt-1) a1 140, 4400 m"cz (,w tFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6960 S.W. VARNS ST., SURE 200 TIGARD, OREGON 97223 SHEHT �f OF (� (503) 620-3030, FAX 620-5539 1 1 9-of %-rfrviAr \NA---foo v T op tptv oci r V = o,( - (il4- e& ' ✓� 14 � - C7 ) - 9c)at -e?s 11'19 to - 1,oe vi91),C1,- Bxlwo 4k i iiov .6$i rC I 6 'o tFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6960 S.W. VARNS ST. SUITE 200 G, TIGARD, OREGON 97223 L V (503) 620-3030, FAX 620-5539 SHEET OF 1 1 1 C ' * 1V(i1i _...__ 'mss. _ ._ __ `` , 04 \ °1'=( L MO 9 ' x 'Ve TIM kV' -.- 4 1 M' tii,MA W UC Yo0Vokt kilo -- l moo • k.FGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6960 S.W. VARNS ST., SUITE 200 TIGARD, OREGON 97223 (503) 620-3030, FAX 620 -5539 SHEET .� OF l � rz J L 9t f;i9t40 e2 - \., loo %Att 3 Kam I • wod+ -ars iv-amt' ^(`tsl-'K- Off.) ; ( G ` vii s 0 0 • f P 001 ( eliOaa )(o -g*.)( t ' (VD) s &%c �l tWbl.k/ i r 4 " (gG lac 'DP's lA-1 *et e,L67 41 3 t 6,0(0 IA I7 A FGHAN ASSOCIATES, INC. BY DATE "ONSULTING ENGINEERS JOB NO Y. VARNS ST., SUITE 200 ), OREGON 97223 20 -3030, FAX 820.5539 SHE9f OF s n : .... • CAA `0 c • ' op avC�."')/1 • I I , � 4i a tiV (b')L6 'o_s vh °lv 4OfMet 6 b , � "1)_ ; -OA 4-' • cx�ti� 1 49,A9 -, A ` - � a ') 1,10 0 747 — ►FGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS 6960 S.W. VARNS ST., SUITE 200 JOB NO TIGARD, OREGON 97223 ,�. (503) 620.3030, FAX 620 -5539 SHE OF YO U i r Map RAM Steel v9.0 Page 2/2 Steve Young RAM DataBase: A0522404R01 02/08/06 09:49:40 INT Building Code: IBC Steel Code: ASD 9th Ed. Surface Loads Label DL CDL LL Reduction CLL Mass DL _ _ psf psf psf Type psf psf ROOF 15.0 15.0 25.0 Unreducible 20.0 15.0 ' ,... ROOF M/U 100.0 80.0 25.0 Unreducible 20.0 80.0 MA PARAPET DRIFT 1 15.0 15.0 40.0 Unreducible 20.0 15.0 =-=- M/U DRIFT 1 15.0 15.0 35.0 Unreducible 20.0 15.0 Line Loads Label DL CDL LL Reduction CLL Mass DL k/ft k/ft k/ft Type k/ft k/ft L1 ROOF M/U 0.450 0.200 0.000 Unreducible 0.000 0.200 L3 ROOF PANELS 1.000 1.000 0.000 Reducible 0.000 1.000 Point Loads Label DL CDL LL Reduction CLL Mass DL kips kips kips Type kips kips P1 MECH SCREEN 1.000 0.000 0.000 Unreducible 0.000 0.000 r I. i Flr ' r Map RAM Steel v9.0 iv Steve Y RAM DataBase: A0522404R01 02/08/06 09:49:40 INTENAWDNK Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: ROOF Z r _ _ AZ - - _�— - • ._ = — B - _ i ; . i - : ,..eV..._= : ,.:,-; ;.. ,. 1 : :li . ... .... \. ..... 1 .,:_:: _:::_±: _ -- _ — = - . 77 1 - - - - - f - — — — — T __ — — — - _ ` = �_ —_ _ - - - - T -% . 2 2.2.6' :3. 1 ; 33 ..5, 3.94 X4.5 5 54 66.3 6:87 7.88 00'. .5r..---). . r le-g map 11 I RAM Steel v9 0 r i I Steve Young • RAM DataBase: A0522404R02 02/09/06 13:02:44 N TENATCN 94 Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: ROOF ( Z •:., ... ‘,.......: :: •.: .:: ,. ..... .\ :: i ,.A.., ', a - 0 • 1 SI ----- gi - -. - A21 0 •1 ;II- ■- - . €—___...: 2. v....j., .. • „ :•-- .. 955 954 6 1 9E3 ( B OAT1- 1 iR A 1C08 1039 1010 1011 1 § 101; 102P i 0 0 1026 2 1 3 7 9V szti 935 938 " Oft PL 0 :: 1 a g g Eg IR 11/Z4 • n !I .1 g 1 PI 1 \--,I LI 1 g 1 ig I] 'gig i j.43 f . . 416 132 - , 435 -975 1 443. .444 - 0:: - "LJ ' - ...:A• i 1 82. 1;13 - 14 --- 15 - - 1020 - 1016 1018 7 1023 ii , 7 983 982 581 944 { D ..._ / 1 7 -6 35 722 30 L --- 1 " 29 0 ,: 27 ? - fig 733 pi , ■: . ,5 .. 5 ,..- - PJ . . . : . - - - - - - > A ''' , ,zz')' • ( 1 1.2 2 i ' 22.6 ' :' :3.1 .. . - : 3.94 ' '45 ' -...''' ;. 5.:t ( 6 6.3 ae , . - 7 00 8 i , . Gravity Beam Design RAM Steel v9.0 Page 10/128 Steve Young RAM DataBase: A03035B430 12/13/05 15:17:05 " Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: ROOF Beam Number = 383 SPAN INFORMATION (ft): I -End (5.00,50.33) J -End (5.00,69.38) Beam Size (User Selected) = W14X34 Fy = 50.0 ksi Total Beam Length (ft) = 19.04 LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.029 0.107 - -- NonR 1.833 0.038 0.137 2 1.834 0.038 0.137 - -- NonR 19.041 0.038 0.137 3 0.000 0.054 0.127 - -- NonR 9.041 0.054 0.127 4 0.000 0.014 0.023 - -- NonR 9.041 0.014 0.023 5 9.042 0.068 0.160 - -- NonR 14.041 0.068 0.160 6 14.042 0.054 0.200 - -- NonR 19.041 0.054 0.200 7 14.042 0.014 0.033 - -- NonR 19.041 0.014 0.033 SHEAR: Max V (DL +LL) = 4.13 kips fv = 1.04 ksi Fv = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 18.5 9.7 0.0 1.00 4.57 33.00 4.57 33.00 Controlling 18.5 9.7 0.0 1.00 4.57 33.00 - -- - -- REACTIONS (kips): Left Right DL reaction 1.00 1.01 Max +LL reaction 2.79 3.12 Max +total reaction 3.79 4.13 DEFLECTIONS: Dead load (in) at 9.52 ft = -0.032 L/D = 7195 Live load (in) at 9.52 ft = -0.091 L/D = 2505 Net Total load (in) at 9.52 ft = -0.123 L/D = 1858 Gravity Beam Design RAM Steel v9.0 Page 9/128 Steve Young RAM DataBase: A03035B430 12/13/05 15:17:05 INTEZNATCNAL Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: ROOF Beam Number = 384 SPAN INFORMATION (ft): I -End (5.00,25.00) J -End (5.00,50.33) Beam Size (User Selected) = W14X34 Fy = 50.0 ksi Total Beam Length (ft) = 25.33 LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.038 0.137 - -- NonR 25.333 0.038 0.137 2 0.000 0.054 0.200 - -- NonR 5.000 0.054 0.200 3 0.000 0.014 0.033 - -- NonR 5.000 0.014 0.033 4 5.000 0.068 0.160 - -- NonR 10.000 0.068 0.160 5 10.000 0.054 0.127 - -- NonR 25.333 0.054 0.127 6 10.000 0.014 0.023 - -- NonR 25.333 0.014 0.023 SHEAR: Max V (DL +LL) = 5.39 kips fv = 1.35 ksi Fv = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 32.3 12.5 0.0 1.00 7.97 33.00 7.97 33.00 Controlling 32.3 12.5 0.0 1.00 7.97 33.00 - -- - -- REACTIONS (kips): Left Right DL reaction 1.34 1.34 Max +LL reaction 4.05 3.70 Max +total reaction 5.39 5.04 DEFLECTIONS: Dead load (in) at 12.67 ft = -0.100 L/D = 3053 Live load (in) at 12.67 ft = -0.280 L/D = 1087 Net Total load (in) at 12.67 ft = -0.379 L/D = 802 PV RAM Steel v9.0 Steve Young Gravity Beam Design RAM DataBase: A03035B430 01/19/06 11:36:50 INTIFNATCNAL Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: ROOF Beam Number = 398 SPAN INFORMATION (ft): I -End (41.50,61.33) J -End (59.50,61.33) Beam Size (User Selected) = W16X31 Fy = 50.0 ksi Total Beam Length (ft) = 18.00 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 8.583 3.43 0.00 0.0 0.73 0.00 0.0 0.00 Snow 9.000 2.23 0.00 0.0 4.41 0.00 0.0 0.00 Snow 10.583 0.82 0.00 0.0 0.21 0.00 0.0 0.00 Snow 14.583 3.21 0.00 0.0 0.80 0.00 0.0 0.00 Snow LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 8.583 0.450 0.000 - -- NonR 18.000 0.450 0.000 2 10.584 0.050 0.013 - -- NonR 14.583 0.050 0.013 SHEAR: Max V (DL +LL) = 12.46 kips fv = 3.02 ksi Fv = 19.67 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 69.0 9.0 1.6 1.04 17.54 33.00 17.54 33.00 Controlling 67.5 8.6 8.6 1.75 17.16 30.00 - -- - -- REACTIONS (kips): Left Right DL reaction 5.03 9.10 Max +LL reaction 2.84 3.36 Max +total reaction 7.86 12.46 DEFLECTIONS: Dead load (in) at 9.36 ft = -0.214 L/D = 1011 Live load (in) at 9.27 ft = -0.112 L/D = 1929 Net Total load (in) at 9.27 ft = -0.326 L/D = 663 Fr RAM Steel v9.0 Steve Young Gravity Beam Design RAM DataBase: A03035B430 02/06/06 14:13:41 Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: ROOF Beam Number = 401 SPAN INFORMATION (ft): I -End (41.50,50.33) J -End (66.33,50.33) Beam Size (User Selected) = W16X50 Fy = 50.0 ksi Total Beam Length (ft) = 24.83 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 8.250 3.09 0.00 0.0 5.70 0.00 0.0 0.00 Snow 0.00 0.0 -0.07 0.00 0.0 0.00 Snow 4.13 8.583 3.48 0.00 0.0 0.73 0.00 0.0 0.00 Snow 10.583 0.82 0.00 0.0 0.21 0.00 0.0 0.00 Snow 14.611 3.20 0.00 0.0 0.80 0.00 0.0 0.00 Snow 16.500 3.09 0.00 0.0 6.17 0.00 0.0 0.00 Snow 0.00 0.0 -0.14 0.00 0.0 0.00 Snow 4.12 LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 8.583 0.450 0.000 - -- NonR 24.833 0.450 0.000 2 10.584 0.050 0.013 - -- NonR 14.611 0.050 0.013 SHEAR: Max V (DL +LL) = 18.37 kips fv = 2.97 ksi Fy = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft f6 Fb fb Fb Center Max + 147.1 13.6 4.0 1.00 21.79 33.00 21.79 33.00 Controlling 137.5 16.5 8.3 1.75 20.37 30.00 - -- - -- REACTIONS (kips): Left Right DL reaction 9.67 11.54 Max +LL reaction 6.83 6.83 Max -LL reaction -0.10 -0.12 Max +total reaction 16.49 18.37 DEFLECTIONS: Dead load (in) at 12.42 ft = -0.505 L/D = 590 Live load (in) at 12.42 ft = -0.340 L/D = 877 Net Total load (in) at 12.42 ft = -0.845 L/D = 353 eS, Gravity Beam Design RAM Steel v9.0 Steve Young RAM DataBase: A03035B430 01/19/06 11:36:50 IMEFNAMNAI Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: ROOF Beam Number = 424 SPAN INFORMATION (ft): I -End (59.50,61.33) J -End (74.42,61.33) Beam Size (User Selected) = W16X31 Fy = 50.0 ksi Total Beam Length (ft) = 14.92 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 7.250 3.21 0.00 0.0 0.80 0.00 0.0 0.00 Snow 9.000 1.85 0.00 0.0 4.06 0.00 0.0 0.00 Snow 9.750 4.17 0.00 0.0 0.42 0.00 0.0 0.00 Snow LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.450 0.000 - -- NonR 9.750 0.450 0.000 2 7.250 0.050 0.013 - -- NonR 9.750 0.050 0.013 SHEAR: Max V (DL +LL) = 10.04 kips fv = 2.43 ksi Fy = 19.67 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 55.8 9.0 1.8 1.02 14.18 33.00 14.18 33.00 Controlling 53.5 7.2 7.2 1.75 13.61 30.00 - -- - -- REACTIONS (kips): Left Right DL reaction 6.83 6.90 Max +LL reaction 2.18 3.13 Max +total reaction 9.01 10.04 DEFLECTIONS: Dead load (in) at 7.61 ft = -0.130 L/D = 1382 Live load (in) at 7.68 ft = -0.055 L/D = 3240 Net Total load (in) at 7.68 ft = -0.185 L/D = 969 L• 1r at FRI RAM Steel v9.0 Steve Young Gravity Beam Design RAM DataBase: A03035B430 01/19/06 11:45:55 , Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: ROOF Beam Number = 443 SPAN INFORMATION (ft): I -End (128.00,50.33) J -End (141.50,50.33) Beam Size (User Selected) = W16X31 Fy = 50.0 ksi Total Beam Length (ft) = 13.50 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 7.833 2.36 9.000 3.40 0.00 0.0 6.42 0.00 0.0 0.00 Snow 9.833 0.26 0.00 0.0 0.07 0.00 0.0 0.00 Snow LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 7.833 0.450 0.000 - -- NonR 13.500 0.450 0.000 2 0.000 0.079 0.131 - -- NonR 7.833 0.079 0.131 3 7.834 0.525 0.131 - -- NonR 9.833 0.525 0.131 4 9.834 0.050 0.013 - -- NonR 13.500 0.050 0.013 SHEAR: Max V (DL +LL) = 11.70 kips fir = 2.83 ksi Fy = 19.67 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 47.0 9.0 0.0 1.00 11.95 33.00 11.95 33.00 Controlling 47.0 9.0 0.0 1.00 11.95 33.00 - -- - -- REACTIONS (kips): Left Right DL reaction 3.56 6.87 Max +LL reaction 2.99 4.84 Max +total reaction 6.54 11.70 DEFLECTIONS: Dead load (in) at 7.22 ft = -0.067 L/D = 2418 Live load (in) at 7.22 ft = -0.053 L/D = 3060 Net Total load (in) at 7.22 ft = -0.120 L/D = 1351 4 O RAM Steel v9.0 Steve Young Gravity Beam Design RAM DataBase: A03035B430 01/19/06 11:45:55 INTEVATICINAL Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: ROOF Beam Number = 444 SPAN INFORMATION (ft): I -End (141.50,50.33) J -End (155.00,50.33) Beam Size (User Selected) = W16X31 Fy = 50.0 ksi Total Beam Length (ft) = 13.50 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 0.333 0.26 0.00 0.0 0.07 0.00 0.0 0.00 Snow 4.500 3.40 0.00 0.0 6.80 0.00 0.0 0.00 Snow 11.000 0.26 0.00 0.0 0.07 0.00 0.0 0.00 Snow LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.450 0.000 - -- NonR 13.500 0.450 0.000 2 0.000 0.050 0.013 - -- NonR 0.333 0.050 0.013 3 0.334 0.525 0.131 - -- NonR 11.000 0.525 0.131 4 11.000 0.050 0.013 - -- NonR 13.500 0.050 0.013 SHEAR: Max V (DL +LL) = 14.32 kips fv = 3.47 ksi Fv = 19.67 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 52.7 4.5 0.0 1.00 13.40 33.00 13.40 33.00 Controlling 52.7 4.5 0.0 1.00 13.40 33.00 - -- - -- REACTIONS (kips): Left Right DL reaction 8.88 6.85 Max +LL reaction 5.43 2.94 Max +total reaction 14.32 9.79 DEFLECTIONS: Dead load (in) at 6.55 ft = -0.089 L/D = 1815 Live load (in) at 6.41 ft = -0.056 L/D = 2881 Net Total load (in) at 6.41 ft = -0.145 L/D = 1114 4 �,� UI Gravity Beam Design RAM Steel v9.0 Page 98/128 Steve Young RAM DataBase: A03035B430 12/13/05 15:17:05 " Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: ROOF Beam Number = 446 SPAN INFORMATION (ft): I -End (155.00,0.00) J -End (155.00,50.33) Beam Size (Optimum) = W24X55 Fy = 50.0 ksi Total Beam Length (ft) = 50.33 LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.142 0.522 - -- NonR 5.000 0.142 0.522 2 5.000 0.142 0.332 - -- NonR 10.000 0.142 0.332 3 10.000 0.142 0.237 - -- NonR 42.333 0.142 0.237 4 42.334 0.125 0.292 - -- NonR 46.333 0.125 0.292 5 46.334 0.125 0.375 - -- NonR 50.333 0.125 0.375 6 42.334 0.018 0.029 - -- NonR 50.333 0.018 0.029 SHEAR: Max V (DL +LL) = 11.39 kips fv = 1.28 ksi Fv = 18.78 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 125.6 25.0 0.0 1.00 13.10 33.00 13.10 33.00 Controlling 125.6 25.0 0.0 1.00 13.10 33.00 - -- - -- REACTIONS (kips): Left Right DL reaction 3.59 3.59 Max +LL reaction 7.80 7.05 Max +total reaction 11.39 10.64 DEFLECTIONS: Dead load (in) at 25.17 ft = -0.522 L/D = 1158 Live load (in) at 25.17 ft = -0.941 L/D = 642 Net Total load (in) at 25.17 ft = -1.463 L/D = 413 Pf I/17 ral RAM Steel v9.0 Steve Young Gravity Beam Design RAM DataBase: A03035B430 01/19/06 11:46:18 Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: ROOF Beam Number = 466 SPAN INFORMATION (ft): I -End (196.00,25.00) J -End (196.00,50.33) Beam Size (User Selected) = W14X34 Fy = 50.0 ksi Total Beam Length (ft) = 25.33 LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.057 0.208 - -- NonR 5.000 0.057 0.208 2 0.000 0.021 0.048 - -- NonR 5.000 0.021 0.048 3 5.000 0.078 0.181 - -- NonR 10.000 0.078 0.181 4 10.000 0.057 0.133 - -- NonR 25.333 0.057 0.133 5 10.000 0.021 0.034 - -- NonR 25.333 0.021 0.034 6 0.000 0.038 0.137 - -- NonR 25.333 0.038 0.137 SHEAR: Max V (DL +LL) = 5.77 kips fv = 1.45 ksi Fv = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 34.5 12.5 0.0 1.00 8.51 33.00 8.51 33.00 Controlling 34.5 12.5 0.0 1.00 8.51 33.00 - -- - -- REACTIONS (kips): Left Right DL reaction 1.46 1.46 Max +LL reaction 4.31 3.92 Max +total reaction 5.77 5.38 DEFLECTIONS: Dead load (in) at 12.67 ft = -0.108 L/D = 2813 Live load (in) at 12.67 ft = -0.297 L/D = 1023 Net Total load (in) at 12.67 ft = -0.405 L/D = 750 1 Gravity Beam Design RAM Steel v9.0 Page 80/128 Steve Young RAM DataBase: A03035B430 12/13/05 15:17:05 IsITIPNADDNAL Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: ROOF Beam Number = 656 SPAN INFORMATION (ft): I -End (128.00,60.83) J -End (128.00,84.49) Beam Size (User Selected) = W16X26 Fy = 50.0 ksi Total Beam Length (ft) = 23.66 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 10.000 2.02 0.00 0.0 3.67 0.00 0.0 0.00 Snow 20.000 1.46 0.00 0.0 4.01 0.00 0.0 0.00 Snow SHEAR: Max V (DL +LL) = 7.03 kips fv = 1.87 ksi Fv = 17.89 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 41.4 10.0 10.0 1.21 12.92 30.00 12.92 22.86 Controlling 41.4 10.0 10.0 1.21 - -- - -- 12.92 22.86 REACTIONS (kips): Left Right DL reaction 1.39 2.09 Max +LL reaction 2.74 4.95 Max +total reaction 4.14 7.03 DEFLECTIONS: Dead load (in) at 11.71 ft = -0.142 LID = 1992 Live load (in) at 11.83 ft = -0.292 L/D = 972 Net Total load (in) at 11.83 ft = -0.435 L/D = 653 RAM Steel v9.0 Steve Young Gravity Beam Design RAM DataBase: A03035B430 02/06/06 14:13:41 'TE Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: ROOF Beam Number = 657 SPAN INFORMATION (ft): I -End (128.00,60.83) J -End (155.00,60.83) Beam Size (User Selected) = W16X50 Fy = 50.0 ksi Total Beam Length (ft) = 27.00 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 7.833 2.36 9.833 0.26 0.00 0.0 0.07 0.00 0.0 0.00 Snow 13.833 0.26 0.00 0.0 0.07 0.00 0.0 0.00 Snow 14.333 1.39 0.00 0.0 2.97 0.00 0.0 0.00 Snow 24.500 0.26 0.00 0.0 0.07 0.00 0.0 0.00 Snow LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 7.833 0.450 0.000 - -- NonR 27.000 0.450 0.000 2 0.000 0.154 0.256 - -- NonR 7.833 0.154 0.256 3 7.834 0.048 0.144 - -- NonR 27.000 0.048 0.144 4 7.834 0.024 0.056 - -- NonR 27.000 0.024 0.056 5 7.834 0.003 0.005 - -- NonR 27.000 0.003 0.005 6 7.834 0.525 0.131 - -- NonR 9.833 0.525 0.131 7 9.834 0.050 0.013 - -- NonR 13.833 0.050 0.013 8 13.834 0.525 0.131 - -- NonR 24.500 0.525 0.131 9 24.500 0.050 0.013 - -- NonR 27.000 0.050 0.013 SHEAR: Max V (DL +LL) = 18.73 kips fv = 3.02 ksi Fv = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 139.7 14.3 0.0 1.00 20.70 33.00 20.70 33.00 Controlling 139.7 14.3 0.0 1.00 20.70 33.00 - -- - -- REACTIONS (kips): Left Right DL reaction 9.70 13.08 Max +LL reaction 5.20 5.65 Max +total reaction 14.90 18.73 Gravity Beam Design RAM Steel v9.0 Page 70/128 Steve Young RAIN DataBase: A03035B430 12/13/05 15:17:05 INT E N A T KN A I Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: ROOF Beam Number = 661 SPAN INFORMATION (ft): I -End (115.33,50.33) J -End (115.33,89.13) Beam Size (User Selected) = W18X40 Fy = 50.0 ksi Total Beam Length (ft) = 38.79 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 10.500 0.97 0.00 0.0 1.62 0.00 0.0 0.00 Snow 20.500 0.95 0.00 0.0 1.63 0.00 0.0 0.00 Snow 30.500 0.80 0.00 0.0 1.95 0.00 0.0 0.00 Snow LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.057 0.096 - -- NonR 28.791 0.057 0.096 2 28.792 0.000 0.000 - -- NonR 32.816 0.058 0.134 3 28.792 0.057 0.096 - -- NonR 32.816 0.000 0.000 4 32.817 0.057 0.134 - -- NonR 33.791 0.057 0.134 5 33.792 0.000 0.000 - -- NonR 38.791 0.049 0.181 6 33.792 0.057 0.134 - -- NonR 38.791 0.008 0.019 SHEAR: Max V (DL +LL) = 7.63 kips fv = 1.35 ksi Fv = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 79.4 20.5 0.0 1.00 13.92 33.00 13.92 33.00 Controlling 79.4 20.5 0.0 1.00 13.92 33.00 - -- - -- REACTIONS (kips): Left Right DL reaction 2.44 2.51 Max +LL reaction 4.27 5.12 Max +total reaction 6.71 7.63 DEFLECTIONS: Dead load (in) at 19.40 ft = -0.418 L/D = 1113 Live load (in) at 19.59 ft = -0.760 L/D = 612 Net Total load (in) at 19.59 ft = -1.179 L/D = 395 ro Gravity Beam Design RAM Steel v9.0 Page 30/128 Steve Young RAM DataBase: A03035B430 12/13/05 15:17:05 WERNATICNAL Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: ROOF Beam Number = 722 SPAN INFORMATION (ft): I -End (43.33,0.00) J -End (82.50,0.00) Beam Size (User Selected) = W24X76 Fy = 50.0 ksi Total Beam Length (ft) = 39.17 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 6.417 3.57 0.00 0.0 7.74 0.00 0.0 0.00 Snow 14.667 3.86 0.00 0.0 8.43 0.00 0.0 0.00 Snow 23.000 2.31 0.00 0.0 5.80 0.00 0.0 0.00 Snow 31.083 3.57 0.00 0.0 7.80 0.00 0.0 0.00 Snow SHEAR: Max V (DL +LL) = 22.83 kips fv = 2.17 ksi Fy = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 241.6 14.7 8.3 1.01 16.47 30.00 16.47 30.00 Controlling 241.6 14.7 8.3 1.01 16.47 30.00 - -- - -- REACTIONS (kips): Left Right DL reaction 7.09 6.22 Max +LL reaction 15.74 14.02 Max +total reaction 22.83 20.24 DEFLECTIONS: Dead load (in) at 19.39 ft = -0.338 L/D = 1391 Live load (in) at 19.39 ft = -0.762 L/D = 616 Net Total load (in) at 19.39 ft = -1.100 L/D = 427 yr i1 Gravity Beam Design FM RAM Steel v9.0 Page 44/128 Steve Young RAM DataBase: A03035B430 12/13/05 15:17:05 WERNAMNAI Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: ROOF Beam Number = 728 SPAN INFORMATION (ft): I -End (66.33,-5.33) J -End (66.33,25.00) Beam Size (User Selected) = W14X34 Fy = 50.0 ksi Total Beam Length (ft) = 30.33 Cantilever on left (ft) = 5.33 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 0.000 0.08 0.00 0.0 0.28 0.00 0.0 0.00 Snow LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.062 0.229 - -- NonR 5.333 0.062 0.229 2 5.334 0.062 0.146 - -- NonR 10.000 0.062 0.146 3 10.000 0.000 0.000 - -- NonR 10.333 0.063 0.105 4 10.000 0.062 0.145 - -- NonR 10.333 0.000 0.000 5 10.334 0.062 0.104 - -- NonR 30.333 0.062 0.104 6 0.000 0.000 0.000 - -- NonR 1.333 0.061 0.222 7 1.334 0.061 0.222 - -- NonR 5.333 0.061 0.222 8 5.334 0.000 0.000 - -- NonR 6.333 0.061 0.142 9 5.334 0.061 0.222 - -- NonR 6.333 0.000 0.000 10 6.334 0.061 0.141 - -- NonR 10.000 0.061 0.141 11 10.000 0.000 0.000 - -- NonR 11.333 0.061 0.101 12 10.000 0.061 0.141 - -- NonR 11.333 0.000 0.000 13 11.334 0.061 0.101 - -- NonR 30.333 0.061 0.101 SHEAR: Max V (DL +LL) = 4.88 kips fv = 1.22 ksi Fv = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Left Max - -9.1 5.3 5.3 1.00 2.25 33.00 2.25 33.00 Center Max + 25.2 17.9 0.0 1.00 6.23 33.00 6.23 33.00 Max - -9.1 5.3 25.0 1.75 2.25 30.00 2.25 15.36 Controlling 25.2 17.9 0.0 1.00 6.23 33.00 - -- - -- tl,F Gravity Beam Design RAM Steel v9.0 Page 45/128 Steve Young RAM DataBase: A03035B430 12/13/05 15:17:05 WERNAIDNA1 Building Code: IBC Steel Code: ASD 9th Ed. REACTIONS (kips): Left Right DL reaction 2.31 1.46 Max +LL reaction 5.80 2.61 Max -LL reaction 0.00 -0.29 Max +total reaction 8.11 4.07 DEFLECTIONS: Left cantilever: Dead load (in) = 0.057 L/D = 2240 Pos Live load (in) = -0.065 L/D = 1965 Neg Live load (in) = 0.132 L/D = 972 Pos Total load (in) _ -0.008 L/D = 16000 Neg Total load (in) = 0.189 L/D = 678 Center span: Dead load (in) at 17.83 ft = -0.096 L/D = 3113 Live load (in) at 17.83 ft = -0.190 L/D = 1578 Net Total load (in) at 17.83 ft = -0.286 L/D = 1047 BUILDING FOUR ROOF FRAMING W18 BEAM AT MECHANICAL CURB: = 1 EFFECTIVE LENGTH FACTOR ,1V.= 25•ft UNSUPPORTED BEAM LENGTH KL:= K•L KL = 25 ft EFFECTIVE BEAM LENGTH LOADING: D + L + S Ax := 0•k Mz:= 147•ft•k My:= 0.00•ft•k PROPERTIES: W 18 X 50 = 14.7•in bf:= 7.495.in tf:= 0.570•in Af:= bf•tf Af= 4.272in d := 17.99•in Iz := 800•in ly := 40.141 Sz = 88.9 in Sy = 10.711 Zz := 101•1n Zy := 16.6• in rz = 7.38in ry= 1.65in rmin= 1.65in rT:= 1.94•in SRmin : = max � K y � SRmin = 182 SLENDERNESS FACTOR IN PLANE OF BENDING 65 bf f = 9.192 2 =6.575 s 12 n Es ksi Fe := 2 Fe = 4.53ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY 23 •SRmin 2 C 2.n SRmin 1 - 2•R 21 •f 12•n 2 •Es 2•n Cc.- Cc = 107 R := Fa := if R < 0.500, fs ^^^ 2•Cc 5 3•R 3 2 3 + 4 - R 23 •SRmin Ax := A fa = Oksi AXIAL STRESS Fa = 4.5ksi ALLOWABLE AXIAL STRESS Mz fbz Sz fbz = 19.83ksi BENDING STRESS Fbz = 29ksi ALLOWABLE BENDING STRESS STRONG AXIS M Y fby :_ fby = 0ksi BENDING STRESS Fby = 37.5ksi ALLOWABLE BENDING STRESS S y WEAK AXIS • INTERACTION = 0.68 rkf ? cckno, nsa,E, (vi✓) 1.2d�l-� SV-{ oa$ G, 2-2f/k krtgxk, C i 9C ) ` � 012 _1 t. w w w w w , i iI • - ( C : ;t time 14)4 0( /c� 174 x.1.4 Ca! Ate' its , g 0 A -s A ry ?/4eo ¶ 4 �p. - 020 G b4v., V't,Ltt 114a,F C-L;24C1 crt_.*.e c1) • • , ' 1 7010 U Q ti, ) A FGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6960 S.W. VARNS ST., SUITE 200 TIGARD, OREGON 97223 A (503) 620-3030, FAX 620 -5539 SHEET_ OF V - 6 0E — • kzall 1 tqiY J 't A-1'c "Zi r \ Cq,(, /,?.,4W 'octl y _go) ) V�X.Sx ;1 „ I' • 14VOQ V *(0 (4- ,11)(L k: tFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6960 S.W. VARNS ST., SUITE 200 TIGARD, OREGON 97223 /11 (503) 620.3030, FAX 620 -5539 SHEET OF V BUILDING FOUR ROOF FRAMING W8 ELEVATOR HOIST BEAM: K := 1 EFFECTIVE LENGTH FACTOR tox II . 11•ft UNSUPPORTED BEAM LENGTH KL := K•L KL = 11 ft EFFECTIVE BEAM LENGTH LOADING: LIVE + IMPACT Ax := 0•k Mz:= 27.5•ft•k M:= 0.00•ft•k PROPERTIES: W 8 X 21 = 6.16.in 2 bf:= 5.27•in tf:= 0.400•in Af:= bf•tf Af= 2.1081n d := 8.28•in Am IZ:= 75.3•in ly:= 9.77•in Sz = 18.2in Sy = 3.7in ZZ:= 20.4•in Zy:= 5.69•in rz =3.5in ((r \ r y = 1.26in rmin= 1.2 rT:= 1.41•in SRmin := max( I KZ Ky I SRmin = 105 SLENDERNESS FACTOR IN PLANE OF BENDING ll JJ 65 bf = 9.192 = 6.587 f 2 •tf 12•n J ksi Fe := 2 Fe = 13.59ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY 23•SRmin 1 is 2. n 2 •Es SRmin (1 - 2•R 12• n 2 •Es Cc := 1 Cc = 107 R:= Fa := if R < 0.500, — - R Am 2•Cc 5 3•R 3 3 + 4 23-SRmin 2 A f := Ax fa = Oksi AXIAL STRESS Fa = 13.6ksi ALLOWABLE AXIAL STRESS M fbz:= SZ fbz= 18.14ksi BENDING STRESS Fbz= 19ksi ALLOWABLE BENDING STRESS STRONG AXIS M fby := y fb = Oksi BENDING STRESS Fby = 37.5ksi ALLOWABLE BENDING STRESS S y WEAK AXIS INTERACTION = 0.95 g q / f 4•12 Fil F1oo' Map .AM Steel v9.0 _ .'age 2/2 Steve Young RAM DataBase: A03035B430 12/13/05 15:17:05 KRNAricN Building Code: IBC Steel Code: ASD 9th Ed. Surface Loads Label DL CDL LL Reduction CLL Mass DL psf psf psf Type psf psf 1111111111 FLOOR 85.0 50.0 80.0 Reducible 50.0 75.0 Line Loads Label DL CDL LL Reduction CLL Mass DL k/ft k/ft k/ft Type k/ft k/ft L2 2ND FLOOR PANELS 1.070 1.070 0.000 Reducible 0.000 1.070 L4 CURTAINWALL 0.350 0.350 0.000 Reducible 0.000 0.350 Fir ne-r Map RAM Steel v9.0 I V Steve Young RAM DataBase: A03035B430 12/13/05 15:17:05 Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR . z . .- .. ..... . __. .. • • • 3 n 6' R4 r� 15 --\- ' ., 4 6 64 [ . . • :Ill" i 9 i t I I 635 6,4 616 634 II r 638. yy l^ < K1 a� • 8 ' k� 3 6 623 �5, .. v - . 624 • • 4 � IT 3 � : 4 2 4 _ C �, I 4 11 11 • r B.6'i 4,J. -11- tai • E 40,; - I� -. - L: - 436.. 1 - -- .� 11 - -- 3 - • g 1 647. il : • Y I Q 654 • 1 if • • 666 666 664 + • D.8 _ r r� 644 • III `` 3� • • • • `E: i .. .. t = �1 _ 40 ^ -- -- - V - -_. -. T - . aa ...- . ` I: • • • • • • 9 f 1.2 2 � I2.2.6 1 :3.1; 3. 394 X4.5 5 5.4 1 6 6.3 6`8 7 7:8 , ,.. r RAM Steel v9.0 Steve Young Gravity Beam Design RAN DataBase: A03035B430 01/19/06 12:04:07 Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 31 SPAN INFORMATION (ft): I -End (68.00,0.00) J -End (82.50,0.00) Beam Size (User Selected) = W24X55 Fy = 50.0 ksi Total Beam Length (ft) = 14.50 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 4.708 11.62 5.72 0.0 0.00 0.00 0.0 0.00 Snow 6.417 14.17 15.25 0.0 0.00 0.00 0.0 0.00 Snow -0.70 0.0 0.00 0.00 0.0 0.00 Snow 9.09 SHEAR: Max V (DL +LL) = 28.12 kips fv = 3.15 ksi Fv = 18.78 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 150.8 6.4 8.1 1.75 15.73 30.00 15.73 30.00 Controlling 150.8 6.4 8.1 1.75 15.73 30.00 - -- - -- REACTIONS (kips): Left Right DL reaction 15.75 10.04 Max +LL reaction 12.37 8.61 Max -LL reaction -0.39 -0.31 Max +total reaction 28.12 18.65 DEFLECTIONS: Dead load (in) at 6.82 ft = -0.066 L/D = 2635 Live load (in) at 6.89 ft = -0.055 L/D = 3156 Net Total load (in) at 6.89 ft = -0.121 L/D = 1436 F l e FRI RAM Steel v9.0 Steve Young Gravity Beam Design RAM DataBase: A03035B430 01/19/06 12:03:56 1m Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 32 SPAN INFORMATION (ft): I -End (58.00,0.00) J -End (68.00,0.00) Beam Size (User Selected) = W24X55 Fy = 50.0 ksi Total Beam Length (ft) = 10.00 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 4.917 13.33 7.14 0.0 0.00 0.00 0.0 0.00 Snow 8.333 5.59 7.15 0.0 0.00 0.00 0.0 0.00 Snow -0.75 0.0 0.00 0.00 0.0 0.00 Snow 4.00 SHEAR: Max V (DL +LL) = 20.68 kips fv = 2.32 ksi Fy = 18.78 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 61.6 4.9 4.9 1.75 6.43 33.00 6.43 33.00 Controlling 61.6 4.9 4.9 1.75 6.43 33.00 - -- - -- REACTIONS (kips): Left Right DL reaction 7.71 11.21 Max +LL reaction 4.82 9.47 Max -LL reaction -0.13 -0.63 Max +total reaction 12.53 20.68 DEFLECTIONS: Dead load (in) at 5.05 ft = -0.015 L/D = 8207 Live load (in) at 5.10 ft = -0.010 L/D = 12413 Net Total load (in) at 5.10 ft = -0.024 L/D = 4941 A f sic RAM Steel v9.0 Steve Young Gravity Beam Design RAM DataBase: A03035B430 01/19/06 11:52:58 ,NrErminsix Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 34 SPAN INFORMATION (ft): I -End (43.33,0.00) J -End (58.00,0.00) Beam Size (User Selected) = W24X55 Fy = 50.0 ksi Total Beam Length (ft) = 14.67 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 6.417 15.29 15.83 0.0 0.00 0.00 0.0 0.00 Snow -0.53 0.0 0.00 0.00 0.0 0.00 Snow 9.56 9.792 11.65 5.75 0.0 0.00 0.00 0.0 0.00 Snow SHEAR: Max V (DL +LL) = 25.23 kips fv = 2.83 ksi Fv = 18.78 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 149.4 6.4 6.4 1.75 15.59 30.00 15.59 30.00 Controlling 149.4 6.4 6.4 1.75 15.59 30.00 - -- - -- REACTIONS (kips): Left Right DL reaction 12.47 14.47 Max +LL reaction 10.81 10.76 Max -LL reaction -0.30 -0.23 Max +total reaction 23.29 25.23 DEFLECTIONS: Dead load (in) at 7.41 ft = -0.072 L/D = 2459 Live load (in) at 7.33 ft = -0.059 L/D = 3001 Net Total load (in) at 7.33 ft = -0.130 L/D = 1352 A. Fil Gravity Beam Design RAM Steel v9.0 Page 10/177 Steve Young RAM DataBase: A03035B430 12/13/05 15:17:05 -\ Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 383 SPAN INFORMATION (ft): I -End (5.00,50.33) J -End (5.00,69.38) Beam Size (User Selected) = W16X31 Fy = 50.0 ksi Total Beam Length (ft) = 19.04 COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular Decking type VERCO W3 Formlok VERCO W3 Formlok beff (in) = 57.13 Y bar(in) = 16.04 Seff (in3) = 66.67 Str (in3) = 80.13 Ieff (in4) = 913.09 Itr (in4) = 1285.03 Stud length (in) = 4.50 Stud diam (in) = 0.75 Stud Capacity (kips) q = 10.0 # of studs: Max = 38 Partial = 12 Actual = 16 Number of Stud Rows = 1 Percent of Full Composite Action = 34.95 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.165 0.097 0.155 0.0% Red 0.097 1.833 0.212 0.125 0.200 0.125 2 1.834 0.212 0.125 0.200 0.0% Red 0.125 19.041 0.212 0.125 0.200 0.125 3 0.000 0.388 0.228 0.365 0.0% Red 0.228 19.041 0.388 0.228 0.365 0.228 SHEAR: Max V (DL +LL) = 11.09 kips fv = 2.69 ksi Fv = 19.67 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center PreCmp+ 32.0 9.5 0.0 1.00 8.13 33.00 8.13 33.00 Max + 52.8 9.5 - -- - -- Mmax /Seff 9.50 33.00 - -- - -- Mconst/Sx+Mpost/Seff 10.69 45.00 - -- - -- Controlling 52.8 9.5 - -- - -- 9.50 33.00 - -- - -- fc (ksi) = 0.23 Fc = 1.80 REACTIONS (kips): Left Right Initial reaction 6.67 6.72 DL reaction 5.67 5.71 Max +LL reaction 5.34 5.38 Max +total reaction 11.01 11.09 f Co ro Gravity Beam Design RAM Steel v9.0 Page 9/177 Steve Young RAM DataBase: A03035B430 12/13/05 15:17:05 MENATICNAL Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 384 SPAN INFORMATION (ft): I -End (5.00,25.00) J -End (5.00,50.33) Beam Size (User Selected) = W16X31 Fy = 50.0 ksi Total Beam Length (ft) = 25.33 COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular Decking type VERCO W3 Formlok VERCO W3 Formlok beff (in) = 68.00 Y bar(in) = 16.50 Seff (in3) = 70.71 Str (in3) = 81.11 Ieff (in4) = 1042.79 Itr (in4) = 1338.15 Stud length (in) = 4.50 Stud diam (in) = 0.75 Stud Capacity (kips) q = 10.0 # of studs: Max = 50 Partial = 12 Actual = 22 Number of Stud Rows = 1 Percent of Full Composite Action = 48.07 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.600 0.353 0.565 0.0% Red 0.353 25.333 0.600 0.353 0.565 0.353 SHEAR: Max V (DL +LL) = 14.76 kips fv = 3.57 ksi Fy = 19.67 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center PreCmp+ 56.7 12.7 0.0 1.00 14.40 33.00 14.40 33.00 Max + 93.5 12.7 - -- - -- Mmax/Seff 15.86 33.00 - -- - -- Mconst/Sx +Mpost/Seff 18.26 45.00 - -- - -- Controlling 93.5 12.7 - -- - -- 15.86 33.00 - -- - -- fc (ksi) = 0.36 Fc = 1.80 REACTIONS (kips): Left Right Initial reaction 8.95 8.95 DL reaction 7.60 7.60 Max +LL reaction 7.16 7.16 Max +total reaction 14.76 14.76 DEFLECTIONS: Initial load (in) at 12.67 ft = -0.301 L/D = 1010 Live load (in) at 12.67 ft = -0.173 L/D = 1756 Post Comp load (in) at 12.67 ft = -0.249 L/D = 1221 F F 1 Net Total load (in) at 12.67 ft = -0.550 L/D = 553 a; • - T - Gravity Beam Design . ro RAM Steel v9.0 Page 33/177 Steve Young RAM DataBase: A03035B430 12/13/05 15:17:05 "Exw Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 398 SPAN INFORMATION (ft): I -End (41.50,61.33) J -End (59.50,61.33) Beam Size (User Selected) = W18X40 Fy = 50.0 ksi Total Beam Length (ft) = 18.00 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 9.000 12.64 11.89 7.6 0.00 0.00 0.0 0.00 Snow LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.468 0.440 7.6% Red 18.000 0.468 0.440 SHEAR: Max V (DL +LL) = 19.68 kips fv = 3.49 ksi Fv = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 141.7 9.0 0.0 1.00 24.86 33.00 24.86 33.00 Controlling 141.7 9.0 0.0 1.00 24.86 33.00 - -- - -- REACTIONS (kips): Left Right DL reaction 10.53 10.53 Max +LL reaction 9.15 9.15 Max +total reaction 19.68 19.68 DEFLECTIONS: Dead load (in) at 9.00 ft = -0.212 L/D = 1020 Live load (in) at 9.00 ft = -0.184 L/D = 1173 Net Total load (in) at 9.00 ft = -0.396 L/D = 546 lo Gravity Beam Design RAM Steel v9.0 Page 31/177 Steve Young RAM DataBase: A03035B430 12/13/05 15:17:05 wTErw1 Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 401 SPAN INFORMATION (ft): I -End (41.50,50.33) J -End (66.33,50.33) Beam Size (User Selected) = W24X62 )( 6 e Fy = 50.0 ksi Total Beam Length (ft) = 24.83 i �,, (V�{ POINT LOADS (kips): St Cr Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 8.250 17.36 16.61 29.9 0.00 0.00 0.0 0.00 Snow -0.10 30.0 0.00 0.00 0.0 0.00 Snow 10.32 16.500 17.28 16.69 29.9 0.00 0.00 0.0 0.00 Snow -0.17 30.0 0.00 0.00 0.0 0.00 Snow 10.33 LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.468 0.440 29.9% Red 24.833 0.468 0.440 SHEAR: Max V (DL +LL) = 38.73 kips fv = 3.80 ksi Fv = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 300.2 12.5 0.0 1.00 27.29 33.00 27.29 33.00 Controlling 300.2 12.5 0.0 1.00 27.30 33.00 - -- - -- REACTIONS (kips): Left Right DL reaction 23.20 23.06 Max +LL reaction 15.53 15.48 Max -LL reaction -0.09 -0.10 Max +total reaction 38.73 38.53 DEFLECTIONS: Dead load (in) at 12.42 ft = -0.448 L/D = 665 Live load (in) at 12.42 ft = -0.301 L/D = 990 Net Total load (in) at 12.42 ft = -0.749 L/D = 398 F � RAM Steel v9.0 Steve Young Gravity Beam Design RAM DataBase: A03035B430 01/19/06 12:04:17 olowlavi Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 424 SPAN INFORMATION (ft): I -End (59.50,61.33) J -End (74.42,61.33) Beam Size (User Selected) = W18X35 Fy = 50.0 ksi Total Beam Length (ft) = 14.92 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 9.000 11.86 11.16 0.0 0.00 0.00 0.0 0.00 Snow LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.468 0.440 0.0% Red 9.000 0.468 0.440 SHEAR: Max V (DL +LL) = 16.35 kips fv = 3.23 ksi Fv = 19.13 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 96.7 9.0 5.9 1.75 20.15 30.00 20.15 30.00 Controlling 96.7 9.0 5.9 1.75 20.15 30.00 - -- - -- REACTIONS (kips): Left Right DL reaction 7.64 8.42 Max +LL reaction 7.19 7.93 Max +total reaction 14.83 16.35 DEFLECTIONS: Dead load (in) at 7.76 ft = -0.114 L/D = 1576 Live load (in) at 7.76 ft = -0.107 L/D = 1674 Net Total load (in) at 7.76 ft = -0.220 L/D = 812 to Fil Gravity Beam Design RAM Steel v9.0 Page 60/177 Steve Young RAM DataBase: A03035B430 12/13/05 15:17:05 Nr Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 425 SPAN INFORMATION (ft): I -End (68.50,61.33) J -End (68.50,94.38) Beam Size (User Selected) = W18X50 Fy = 50.0 ksi Total Beam Length (ft) = 33.04 COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular Decking type VERCO W3 Formlok VERCO W3 Formlok beff (in) = 85.06 Y bar(in) = 17.55 Seff (in3) = 122.59 Str (in3) = 141.26 Ieff (in4) = 1880.05 Itr (in4) = 2478.82 Stud length (in) = 4.50 Stud diam (in) = 0.75 Stud Capacity (kips) q = 10.0 # of studs: Max = 66 Partial = 20 Actual = 30 Number of Stud Rows = 1 Percent of Full Composite Action = 41.39 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.634 0.373 0.597 7.4% Red 0.373 33.041 0.634 0.373 0.597 0.373 SHEAR: Max V (DL +LL) = 19.60 kips fv = 3.07 ksi Fv = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center PreCmp+ 101.8 16.5 0.0 1.00 13.74 33.00 13.74 33.00 Max + 161.9 16.5 - -- - -- Mmax /Seff 15.85 33.00 - -- - -- Mconst/Sx +Mpost/Seff 17.74 45.00 - -- - -- Controlling 161.9 16.5 - -- - -- 15.85 33.00 - -- - -- fc (ksi) = 0.40 Fc = 1.80 REACTIONS (kips): Left Right Initial reaction 12.32 12.32 DL reaction 10.47 10.47 Max +LL reaction 9.12 9.12 Max +total reaction 19.60 19.60 DEFLECTIONS: Initial load (in) at 16.52 ft = -0.431 L/D = 920 Live load (in) at 16.52 ft = -0.272 L/D = 1459 Post Comp load (in) at 16.52 ft = -0.400 L/D = 991 Net Total load (in) at 16.52 ft = -0.831 L/D = 477 f k,k Fil Gravity Beam Design RAM Steel v9.0 Page 59/177 Steve Young RAM DataBase: A03035B430 12/13/05 15:17:05 INT Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 426 SPAN INFORMATION (ft): I -End (68.50,50.33) J -End (68.50,61.33) Beam Size (User Selected) = HSS5X5X3 /8 Fy = 50.0 ksi Total Beam Length (ft) = 11.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.251 0.237 0.0% Red 11.000 0.251 0.237 SHEAR: Max V (DL +LL) = 2.68 kips fv = 0.77 ksi Fv = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 7.4 5.5 0.0 1.00 10.22 33.00 10.22 33.00 Controlling 7.4 5.5 0.0 1.00 10.22 33.00 - -- - -- REACTIONS (kips): Left Right DL reaction 1.38 1.38 Max +LL reaction 1.30 1.30 Max +total reaction 2.68 2.68 DEFLECTIONS: Dead load (in) at 5.50 ft = -0.132 L/D = 1003 Live load (in) at 5.50 ft = -0.124 L/D = 1065 Net Total load (in) at 5.50 ft = -0.256 L/D = 517 ft VI/ lo Gravity Beam Design RAM Steel v9.0 Page 113/176 Steve Young RAIN DataBase: A03035B430 12/13/05 16:21:37 ,, NrErthAncNAL Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 443 SPAN INFORMATION (ft): I -End (128.00,50.33) J -End (141.50,50.33) Beam Size (User Selected) = W16X40 Fy = 50.0 ksi Total Beam Length (ft) = 13.50 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 9.000 18.10 17.04 2.3 0.00 0.00 0.0 0.00 Snow SHEAR: Max V (DL +LL) = 23.17 kips fv = 4.75 ksi Fir = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 104.2 9.0 9.0 1.75 19.33 30.00 19.33 30.00 Controlling 104.2 9.0 9.0 1.75 19.33 30.00 - -- - -- REACTIONS (kips): Left Right DL reaction 6.03 12.07 Max +LL reaction 5.55 11.10 Max +total reaction 11.58 23.17 DEFLECTIONS: Dead load (in) at 7.36 ft = -0.092 L/D = 1764 Live load (in) at 7.36 ft = -0.084 L/D = 1919 Net Total load (in) at 7.36 ft = -0.176 L/D = 919 fT tip FRI Gravity Beam Design RAM Steel v9.0 Page 133/176 Steve Young RAN DataBase: A03035B430 12/13/05 16:21:37 mEL Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 444 SPAN INFORMATION (ft): I -End (141.50,50.33) J -End (155.00,50.33) Beam Size (User Selected) = W16X40 Fy = 50.0 ksi Total Beam Length (ft) = 13.50 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 4.500 18.10 17.04 2.3 0.00 0.00 0.0 0.00 Snow SHEAR: Max V (DL +LL) = 23.17 kips fv = 4.75 ksi Fv = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 104.2 4.5 9.0 1.75 19.33 30.00 19.33 30.00 Controlling 104.2 4.5 9.0 1.75 19.33 30.00 - -- - -- REACTIONS (kips): Left Right DL reaction 12.07 6.03 Max +LL reaction 11.10 5.55 Max +total reaction 23.17 11.58 DEFLECTIONS: Dead load (in) at 6.14 ft = -0.092 L/D = 1764 Live load (in) at 6.14 ft = -0.084 L/D = 1919 Net Total load (in) at 6.14 ft = -0.176 L/D = 919 rNkk tal Gravity Beam Design RAM Steel v9.0 Page 143/176 Steve Young RAM DataBase: A03035B430 12/13/05 16:21:37 isfrErNAncislAt Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 446 SPAN INFORMATION (ft): I -End (155.00,0.00) J -End (155.00,50.33) Beam Size (User Selected) = W24X84 Fy = 50.0 ksi Total Beam Length (ft) = 50.33 COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular Decking type VERCO W3 Formlok VERCO W3 Formlok beff (in) = 114.00 Y bar(in) = 21.70 Seff (in3) = 260.07 Str (in3) = 289.10 Ieff (in4) = 5055.46 Itr (in4) = 6272.53 Stud length (in) = 4.50 Stud diam (in) = 0.75 Stud Capacity (kips) q = 10.0 # of studs: Full = 149 Partial = 26 Actual = 46 Number of Stud Rows = 1 Percent of Full Composite Action = 47.35 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.807 0.475 0.760 26.5% Red 0.475 50.333 0.807 0.475 0.760 0.475 SHEAR: Max V (DL +LL) = 34.38 kips fv = 3.04 ksi FY = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center PreCmp+ 300.8 25.2 0.0 1.00 18.42 33.00 18.42 33.00 Max + 432.6 25.2 - -- - -- Mmax /Seff 19.96 33.00 - -- - -- Mconst/Sx +Mpost/Seff 22.23 45.00 - -- - -- Controlling 432.6 25.2 - -- - -- 19.96 33.00 - -- - -- fc (ksi) = 0.54 Fc = 1.80 REACTIONS (kips): Left Right Initial reaction 23.91 23.91 DL reaction 20.32 20.32 Max +LL reaction 14.06 14.06 Max +total reaction 34.38 34.38 DEFLECTIONS: (Camber = 3/4) - Initial load (in) at 25.17 ft = -0.998 L/D = 605 Live load (in) at 25.17 ft = -0.550 L/D = 1098 Post Comp load (in) at 25.17 ft = -0.878 L/D = 688 �� tf Net Total load (in) at 25.17 ft = -1.126 L/D = 536 Gravity Beam Design RAM Steel v9.0 Page 112/176 Steve Young RAN DataBase: A03035B430 12/13/05 16:21:37 INTERNAIn4AL Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 447 SPAN INFORMATION (ft): I -End (128.00,50.33) J -End (128.00,62.33) Beam Size (User Selected) = W24X55 Fy = 50.0 ksi Total Beam Length (ft) = 12.00 Cantilever on right (ft) = 1.50 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 5.667 -0.08 -0.07 0.0 0.00 0.00 0.0 0.00 Snow 12.000 9.54 9.17 1.0 0.00 0.00 0.0 0.00 Snow -0.20 1.3 0.00 0.00 0.0 0.00 Snow 5.61 12.000 24.19 22.77 1.0 0.00 0.00 0.0 0.00 Snow LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.829 0.780 0.0% Red 10.500 0.791 0.744 2 10.500 0.791 0.744 1.0% Red 12.000 0.785 0.739 SHEAR: Max V (DL +LL) = 67.61 kips fv = 7.58 ksi Fv = 18.78 ksi MOMENTS: -- Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 3.6 2.1 0.0 1.00 0.38 33.00 0.38 33.00 Max - -99.7 10.5 4.8 1.35 10.40 33.00 10.40 33.00 Right Max - -99.7 10.5 1.5 1.00 10.40 33.00 10.40 33.00 Controlling -99.7 10.5 4.8 1.35 10.40 33.00 - -- - -- REACTIONS (kips): Left Right DL reaction -0.65 43.99 Max +LL reaction 4.06 41.27 Max -LL reaction -4.63 -0.26 Max +total reaction 3.40 85.25 Max -total reaction -5.28 43.72 DEFLECTIONS: Center span: Dead load (in) at 6.25 ft = 0.011 L/D = 11846 Live load (in) at 6.25 ft = 0.015 L/D = 8401 Net Total load (in) at 6.25 ft = 0.026 L/D = 4915 Right cantilever: Dead load (in) = -0.011 L/D = 3273 Pos Live load (in) _ -0.013 L/D = 2833 Neg Live load (in) = 0.002 L/D = 14470 Pos Total load (in) = -0.024 L/D = 1519 Gravity Beam Design RAM Steel v9.0 Page 170/176 Steve Young RAM DataBase: A03035B430 12/13/05 16:21:37 Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 465 SPAN INFORMATION (ft): I -End (196.00,50.33) J -End (196.00,69.38) Beam Size (User Selected) = W16X31 Fy = 50.0 ksi Total Beam Length (ft) = 19.04 COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular Decking type VERCO W3 Formlok VERCO W3 Formlok beff (in) = 57.13 Y bar(in) = 16.04 Seff (in3) = 66.67 Str (in3) = 80.13 Ieff (in4) = 913.09 Itr (in4) = 1285.03 Stud length (in) = 4.50 Stud diam (in) = 0.75 Stud Capacity (kips) q = 10.0 # of studs: Max = 38 Partial = 12 Actual = 16 Number of Stud Rows = 1 Percent of Full Composite Action = 34.95 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.329 0.194 0.310 0.0% Red 0.194 19.041 0.329 0.194 0.310 0.194 2 0.000 0.165 0.097 0.155 0.0% Red 0.097 1.833 0.212 0.125 0.200 0.125 3 1.834 0.212 0.125 0.200 0.0% Red 0.125 19.041 0.212 0.125 0.200 0.125 SHEAR: Max V (DL +LL) = 10.01 kips fv = 2.42 ksi Fv = 19.67 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center PreCmp+ 28.9 9.5 0.0 1.00 7.34 33.00 7.34 33.00 Max + 47.6 9.5 - -- - -- Mmax /Seff 8.58 33.00 - -- - -- Mconst/Sx +Mpost/Seff 9.65 45.00 - -- - -- Controlling 47.6 9.5 - -- - -- 8.58 33.00 - -- - -- fc (ksi) = 0.21 Fc = 1.80 REACTIONS (kips): Left Right Initial reaction 6.02 6.07 DL reaction 5.12 5.16 Max +LL reaction 4.82 4.85 Max +total reaction 9.93 10.01 to k.1 to Gravity Beam Design RAM Steel v9.0 Page 168/176 Steve Young RAM DataBase: A03035B430 12/13/05 16:21:37 - NTEFNAI EN A L Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 466 SPAN INFORMATION (ft): I -End (196.00,25.00) J -End (196.00,50.33) Beam Size (User Selected) = W16X31 Fy = 50.0 ksi Total Beam Length (ft) = 25.33 COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular Decking type VERCO W3 Formlok VERCO W3 Formlok beff (in) = 68.00 Y bar(in) = 16.50 Seff (in3) = 70.71 Str (in3) = 81.11 Ieff (in4) = 1042.79 Itr (in4) = 1338.15 Stud length (in) = 4.50 Stud diam (in) = 0.75 Stud Capacity (kips) q = 10.0 # of studs: Max = 50 Partial = 12 Actual = 22 Number of Stud Rows = 1 Percent of Full Composite Action = 48.07 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.542 0.319 0.510 0.0% Red 0.319 25.333 0.542 0.319 0.510 0.319 SHEAR: Max V (DL +LL) = 13.32 kips fv = 3.23 ksi Fy = 19.67 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center PreCmp+ 51.1 12.7 0.0 1.00 13.00 33.00 13.00 33.00 Max + 84.4 12.7 - -- - -- Mmax /Seff 14.32 33.00 - -- - -- Mconst/Sx +Mpost/Seff 16.48 45.00 - -- - -- Controlling 84.4 12.7 - -- - -- 14.32 33.00 - -- - -- fc (ksi) = 0.32 Fc = 1.80 REACTIONS (kips): Left Right Initial reaction 8.07 8.07 DL reaction 6.86 6.86 Max +LL reaction 6.46 6.46 Max +total reaction 13.32 13.32 DEFLECTIONS: Initial load (in) at 12.67 ft = -0.272 L/D = 1119 Live load (in) at 12.67 ft = -0.156 L/D = 1945 Post Comp load (in) at 12.67 ft = -0.225 L/D = 1353 Net Total load (in) at 12.67 ft = -0.496 L/D = 613 MI? Gravity Beam Design RAM Steel v9.0 Page 77/176 Steve Young RAM DataBase: A03035B430 12/13/05 16:21:37 . 11 Z UNAT M A L Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 491 SPAN INFORMATION (ft): I -End (97.50,62.33) J -End (128.00,62.33) Beam Size (User Selected) = W24X68 Fy = 50.0 ksi Total Beam Length (ft) = 30.50 COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular Decking type VERCO W3 Formlok VERCO W3 Formlok beff (in) = 85.94 Y bar(in) = 21.08 Seff (in3) = 195.20 Str (in3) = 229.17 Ieff (in4) = 3474.67 Itr (in4) = 4830.63 Stud length (in) = 4.50 Stud diam (in) = 0.75 Stud Capacity (kips) q = 10.0 # of studs: Max = 90 Partial = 25 Actual = 28 Number of Stud Rows = 1 Percent of Full Composite Action = 30.04 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 6.000 1.53 0.90 1.44 28.6 0.00 0.00 0.0 0.00 Snow 0.90 8.917 12.14 7.14 11.43 28.6 0.00 0.00 0.0 0.00 Snow 7.14 17.833 9.55 5.62 8.99 28.6 0.00 0.00 0.0 0.00 Snow 5.62 24.500 2.04 1.20 1.92 28.6 0.00 0.00 0.0 0.00 Snow 1.20 26.593 6.95 4.09 6.54 28.6 0.00 0.00 0.0 0.00 Snow 4.09 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 17.834 0.285 0.167 0.268 28.6% Red 0.167 26.593 0.285 0.167 0.268 0.167 2 26.594 0.000 0.000 0.000 28.6% Red 0.000 27.774 0.285 0.167 0.268 0.167 3 27.775 0.285 0.167 0.268 28.6% Red 0.167 30.500 0.285 0.167 0.268 0.167 4 6.000 0.510 0.300 0.480 28.6% Red 0.300 23.250 0.510 0.300 0.480 0.300 5 23.250 0.269 0.158 0.253 28.6% Red 0.158 24.500 0.000 0.000 0.000 0.000 SHEAR: Max V (DL +LL) = 40.44 kips fv = 4.32 ksi Fv = 19.79 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center PreCmp+ 237.8 17.8 0.0 1.00 18.53 33.00 18.53 33.00 Max + 337.9 17.8 - -- - -- f � `� Fai Gravity Beam Design RAM Steel v9.0 Page 78/176 Steve Young RAM DataBase: A03035B430 12/13/05 16:21:37 m Building Code: IBC Steel Code: ASD 9th Ed. kip -ft ft ft fb Fb fb Fb Mmax /Seff 20.78 33.00 - -- - -- Mconst/Sx +Mpost/Seff 22.73 45.00 - -- - -- Controlling 337.9 17.8 - -- - -- 20.78 33.00 - -- - -- fc (ksi) = 0.56 Fc = 1.80 REACTIONS (kips): Left Right Initial reaction 24.03 28.46 DL reaction 20.42 24.19 Max +LL reaction 13.72 16.25 Max +total reaction 34.14 40.44 DEFLECTIONS: Initial load (in) at 15.25 ft = -0.372 L/D = 985 Live load (in) at 15.25 ft = -0.223 L/D = 1638 Post Comp load (in) at 15.25 ft = -0.360 L/D = 1016 Net Total load (in) at 15.25 ft = -0.732 L/D = 500 n4° ro Gravity Beam Design RAM Steel v9.0 Page 128/176 Steve Young RAM DataBase: A03035B430 12/13/05 16:21:37 1 1 Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 511 SPAN INFORMATION (ft): I -End (140.47,62.33) J -End (141.50,50.33) Beam Size (User Selected) = W12X14 Fy = 50.0 ksi Total Beam Length (ft) = 12.04 COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation 94.9 deg 94.9 deg Decking type VERCO W3 Formlok VERCO W3 Formlok beff (in) = 36.13 Y bar(in) = 13.41 Seff (in3) = 25.81 Str (in3) = 30.66 Ieff (in4) = 312.03 Itr (in4) = 411.24 Stud length (in) = 4.50 Stud diam (in) = 0.75 Stud Capacity (kips) q = 10.0 # of studs: Max = 12 Partial = 6 Actual = 10 Number of Stud Rows = 1 Percent of Full Composite Action = 45.56 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 1.143 0.673 1.076 0.0% Red 0.673 12.043 1.143 0.673 1.076 0.673 SHEAR: Max V (DL +LL) = 13.36 kips fv = 5.84 ksi Fv = 18.76 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb f6 Fb Center PreCmp+ 24.4 6.0 0.0 1.00 19.64 33.00 19.64 33.00 Max + 40.2 6.0 - -- - -- Mmax /Seff 18.71 33.00 - -- - -- Mconst/Sx +Mpost/Seff 22.86 45.00 - -- - -- Controlling 24.4 6.0 0.0 1.00 19.64 33.00 - -- - -- fc (ksi) = 0.41 Fc = 1.80 REACTIONS (kips): Left Right Initial reaction 8.10 8.10 DL reaction 6.88 6.88 Max +LL reaction 6.48 6.48 Max +total reaction 13.36 13.36 DEFLECTIONS: Initial load (in) at 6.02 ft = -0.124 L/D = 1166 (/ 4't Gravity Beam Design RAM Steel v9.0 Page 115/176 Steve Young RAM DataBase: A03035B430 12/13/05 16:21:37 " Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 514 SPAN INFORMATION (ft): I -End (128.00,62.33) J -End (155.00,62.33) Beam Size (User Selected) = W21X44 Fy = 50.0 ksi Total Beam Length (ft) = 27.00 COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation perpendicular parallel Decking type VERCO W3 Formlok VERCO W3 Formlok beff (in) = 78.19 Y bar(in) = 20.29 Seff (in3) = 116.26 Str (in3) = 133.26 Ieff (in4) = 2091.14 Itr (in4) = 2703.29 Stud length (in) = 4.50 Stud diam (in) = 0.75 Stud Capacity (kips) q = 13.3 # of studs: Full = 61 Partial = 16 Actual = 24 Number of Stud Rows = 1 Percent of Full Composite Action = 37.94 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 1.774 -0.03 -0.02 -0.03 8.2 0.00 0.00 0.0 0.00 Snow -0.02 7.167 -0.22 -0.13 -0.21 8.2 0.00 0.00 0.0 0.00 Snow -0.13 12.474 6.88 4.05 6.48 7.9 0.00 0.00 0.0 0.00 Snow 4.05 12.559 -0.03 -0.02 -0.03 8.2 0.00 0.00 0.0 0.00 Snow -0.02 18.240 6.95 4.09 6.54 7.9 0.00 0.00 0.0 0.00 Snow 4.09 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.285 0.167 0.268 7.9% Red 0.167 17.059 0.285 0.167 0.268 0.167 2 17.060 0.285 0.167 0.268 7.9% Red 0.167 18.240 0.000 0.000 0.000 0.000 3 18.241 0.285 0.167 0.268 7.9% Red 0.167 27.000 0.285 0.167 0.268 0.167 SHEAR: Max V (DL +LL) = 21.59 kips fv = 3.12 ksi Fv = 18.99 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center PreCmp+ 116.3 12.5 0.0 1.00 17.11 33.00 17.11 33.00 Max + 184.5 12.5 - -- - -- Mmax /Seff 19.04 33.00 - -- - -- Mconst/Sx +Mpost/Seff 21.58 45.00 - -- - -- Controlling 184.5 12.5 - -- - -- 19.04 33.00 - -- - -- fc (ksi) = 0.42 Fc = 1.80 IR Gravity Beam Design RAM Steel v9.0 Page 116/176 Steve Young RAM DataBase: A03035B430 12/13/05 16:21:37 w►E Building Code: IBC Steel Code: ASD 9th Ed. REACTIONS (kips): Left Right Initial reaction 11.22 13.57 DL reaction 9.54 11.53 Max +LL reaction 8.45 10.06 Max -LL reaction -0.18 -0.06 Max +total reaction 17.98 21.59 DEFLECTIONS: Initial load (in) at 13.77 ft = -0.292 L/D = 1110 Live load (in) at 13.77 ft = -0.175 L/D = 1849 Post Comp load (in) at 13.77 ft = -0.258 L/D = 1258 Net Total load (in) at 13.77 ft = -0.549 L/D = 590 ill Gravity Beam Design RAM Steel v9.0 Page 73/176 Steve Young RAM DataBase: A03035B430 12/13/05 16:21:37 INIUNATCNAI Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 528 SPAN INFORMATION (ft): I -End (97.50,50.33) J -End (97.50,61.67) Beam Size (Optimum) = W10X12 Fy = 50.0 ksi Total Beam Length (ft) = 11.33 Iv/ 7-‘4. If' LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.574 0.540 0.0% Red 11.333 0.574 0.540 SHEAR: Max V (DL +LL) = 6.31 kips fv = 3.37 ksi Fv = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 17.9 5.7 0.0 1.00 19.69 32.83 19.69 32.83 Controlling 17.9 5.7 0.0 1.00 19.69 32.83 - -- - -- REACTIONS (kips): Left Right DL reaction 3.25 3.25 Max +LL reaction 3.06 3.06 Max +total reaction 6.31 6.31 DEFLECTIONS: Dead load (in) at 5.67 ft = -0.137 L/D = 996 Live load (in) at 5.67 ft = -0.128 L/D = 1059 Net Total load (in) at 5.67 ft = -0.265 L/D = 513 II Gravity Beam Design RAM Steel v9.0 Page 75/176 Steve Young RAM DataBase: A03035B430 12/13/05 16:21:37 Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 529 SPAN INFORMATION (ft): I -End (97.50,61.67) J -End (97.50,94.37) Beam Size (User Selected) = W24X55 Fy = 50.0 ksi Total Beam Length (ft) = 32.71 COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular Decking type VERCO W3 Formlok VERCO W3 Formlok beff (in) = 94.06 Y bar(in) = 22.14 Seff (in3) = 155.97 Str (in3) = 184.32 Ieff (in4) = 2968.55 Itr (in4) = 4081.56 Stud length (in) = 4.50 Stud diam (in) = 0.75 Stud Capacity (kips) q = 10.0 # of studs: Max = 64 Partial = 23 Actual = 30 Number of Stud Rows = 1 Percent of Full Composite Action = 34.79 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 0.667 20.42 12.01 19.22 27.9 0.00 0.00 0.0 0.00 Snow 12.01 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.319 0.188 0.300 27.9% Red 0.188 32.708 0.319 0.188 0.300 0.188 2 0.000 0.255 0.150 0.240 27.9% Red 0.150 0.666 0.255 0.150 0.240 0.150 3 0.667 0.379 0.223 0.357 27.9% Red 0.223 32.708 0.379 0.223 0.357 0.223 SHEAR: Max V (DL +LL) = 52.59 kips fv = 5.89 ksi Fv = 18.78 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center PreCmp+ 117.9 15.8 0.0 1.00 12.30 33.00 12.30 33.00 Max + 168.2 15.8 - -- - -- Mmax /Seff 12.94 33.00 - -- - -- Mconst/Sx +Mpost/Seff 14.56 45.00 - -- - -- Controlling 168.2 15.8 - -- - -- 12.94 33.00 - -- - -- fc (ksi) = 0.28 Fc = 1.80 REACTIONS (kips): Left Right Initial reaction 36.87 13.91 DL reaction 31.34 11.83 efll. ro Gravity Beam Design RAM Steel v9.0 Page 76/176 Steve Young RAM DataBase: A03035B430 12/13/05 16:21:37 INTEZNAIDNAL Building Code: IBC Steel Code: ASD 9th Ed. Left Right Max +LL reaction 21.26 8.02 Max +total reaction 52.59 19.85 DEFLECTIONS: Initial load (in) at 16.19 ft = -0.291 L/D = 1347 Live load (in) at 16.19 ft = -0.154 L/D = 2549 Post Comp load (in) at 16.19 ft = -0.247 L/D = 1586 Net Total load (in) at 16.19 ft = -0.539 L/D = 728 ft FR Gravity Beam Design RAM Steel v9.0 Page 136/176 Steve Young RANI DataBase: A03035B430 12/13/05 16:21:37 Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 614 SPAN INFORMATION (ft): I -End (142.70,82.43) J -End (155.00,82.43) Beam Size (User Selected) = W12X14 Fy = 50.0 ksi Total Beam Length (ft) = 12.30 COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular Decking type VERCO W3 Formlok VERCO W3 Formlok beff (in) = 36.91 Y bar(in) = 13.46 Seff (in3) = 23.38 Str (in3) = 30.70 Ieff (in4) = 262.70 Itr (in4) = 413.16 Stud length (in) = 4.50 Stud diam (in) = 0.75 Stud Capacity (kips) q = 10.0 # of studs: Max = 12 Partial = 7 Actual = 8 Number of Stud Rows = 1 Percent of Full Composite Action = 28.77 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.093 0.055 0.088 0.0% Red 0.055 12.302 0.285 0.167 0.268 0.167 2 0.000 0.000 0.000 0.000 0.0% Red 0.000 1.181 0.285 0.167 0.268 0.167 3 1.181 0.285 0.167 0.268 0.0% Red 0.167 12.302 0.285 0.167 0.268 0.167 SHEAR: Max V (DL +LL) = 6.03 kips fv = 2.63 ksi Fv = 18.76 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center PreCmp+ 10.5 6.4 0.0 1.00 8.47 33.00 8.47 33.00 Max + 17.4 6.4 - -- - -- Mmax /Seff 8.91 33.00 - -- - -- Mconst/Sx +Mpost/Seff 10.44 45.00 - -- - -- Controlling 17.4 6.4 - -- - -- 8.91 33.00 - -- - -- fc (ksi) = 0.17 Fc = 1.80 REACTIONS (kips): Left Right Initial reaction 3.01 3.65 DL reaction 2.55 3.10 Max +LL reaction 2.40 2.92 Max +total reaction 4.96 6.03 )1 In Gravity Beam Design RAM Steel v9.0 Page 123/176 Steve Young RAM DataBase: A03035B430 12/13/05 16:21:37 . Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 622 SPAN INFORMATION (ft): I -End (135.17,62.33) J -End (135.17,71.36) Beam Size (User Selected) = HSS5X5X1 /4 Fy = 50.0 ksi Total Beam Length (ft) = 9.03 Cantilever on right (ft) = 2.33 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 9.031 0.64 0.60 0.0 0.00 0.00 0.0 0.00 Snow SHEAR: Max V (DL +LL) = 1.24 kips fv = 0.53 ksi Fv = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip-ft ft ft fb Fb fb Fb Center Max - -2.9 6.7 6.7 1.75 5.40 33.00 5.40 33.00 Right Max - -2.9 6.7 2.3 1.00 5.40 33.00 5.40 33.00 Controlling -2.9 6.7 6.7 1.75 5.40 33.00 - -- - -- REACTIONS (kips): Left Right DL reaction -0.22 0.86 Max +LL reaction 0.00 0.81 Max -LL reaction -0.21 0.00 Max +total reaction -0.22 1.67 Max -total reaction -0.43 0.86 DEFLECTIONS: Center span: Dead load (in) at 3.85 ft = 0.016 L/D = 5048 Live load (in) at 3.85 ft = 0.015 L/D = 5364 Net Total load (in) at 3.85 ft = 0.031 L/D = 2601 Right cantilever: Dead load (in) = -0.039 L/D = 1441 Pos Live load (in) = -0.037 L/D = 1531 Pos Total load (in) = -0.075 L/D = 742 ril Gravity Beam Design RAM Steel v9.0 Page 96/176 Steve Young RAM DataBase: A03035B430 12/13/05 16:21:37 INTIMIN Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 628 SPAN INFORMATION (ft): I -End (115.33,89.13) J -End (128.00,84.49) Beam Size (User Selected) = HSS8X6X3 /8 Fy = 50.0 ksi Total Beam Length (ft) = 13.49 LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.350 0.000 0.0% Red 13.488 0.350 0.000 2 0.000 0.042 0.040 0.0% Red 13.488 0.042 0.040 3 0.000 0.267 0.252 0.0% Red 13.100 0.088 0.083 4 13.101 0.088 0.083 0.0% Red 13.488 0.000 0.000 SHEAR: Max V (DL +LL) = 5.61 kips fv = 1.00 ksi Fv = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 17.6 6.5 0.0 1.00 10.65 33.00 10.65 33.00 Controlling 17.6 6.5 0.0 1.00 10.65 33.00 - -- - -- REACTIONS (kips): Left Right DL reaction 4.03 3.60 Max +LL reaction 1.57 1.17 Max +total reaction 5.61 4.77 DEFLECTIONS: Dead load (in) at 6.68 ft = -0.184 L/D = 879 Live load (in) at 6.68 ft = -0.066 L/D = 2437 Net Total load (in) at 6.68 ft = -0.251 L/D = 646 Gravity Beam Design RAM Steel v9.0 Page 88/176 Steve Young RAM DataBase: A03035B430 12/13/05 16:21:37 Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 629 SPAN INFORMATION (ft): I -End (115.33,62.33) J -End (115.33,89.13) Beam Size (User Selected) = W21X44 Fy = 50.0 ksi Total Beam Length (ft) = 26.79 COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation perpendicular parallel Decking type VERCO W3 Formlok VERCO W3 Formlok bell (in) - 80.19 Y bar(in) = 20.37 Seff (in3) = 117.96 Str (in3) = 133.48 Ieff (in4) = 2157.33 Itr (in4) = 2718.56 Stud length (in) = 4.50 Stud diam (in) = 0.75 Stud Capacity (kips) q = 13.3 # of studs: Full = 50 Partial = 14 Actual = 24 Number of Stud Rows = 1 Percent of Full Composite Action = 49.11 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 6.698 2.82 1.66 2.66 4.5 0.00 0.00 0.0 0.00 Snow 1.66 13.396 3.16 1.86 2.97 4.5 0.00 0.00 0.0 0.00 Snow 1.86 20.094 3.10 1.83 2.92 4.5 0.00 0.00 0.0 0.00 Snow 1.83 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.379 0.223 0.357 4.5% Red 0.223 26.791 0.379 0.223 0.357 0.223 SHEAR: Max V (DL +LL) = 18.40 kips fv = 2.66 ksi Fv = 18.99 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center PreCmp+ 88.3 13.4 6.7 1.13 12.98 30.00 12.98 29.56 Max + 142.4 13.4 - -- - -- Mmax /Seff 14.49 33.00 - -- - -- Mconst/Sx+Mpost /Seff 16.49 45.00 - -- - -- Controlling 142.4 13.4 - -- - -- 14.49 33.00 - -- - -- fc (ksi) = 0.32 Fc = 1.80 REACTIONS (kips): Left Right Initial reaction 11.23 11.40 DL reaction 9.55 9.69 Max +LL reaction 8.58 8.71 Max +total reaction 18.13 18.40 f �. 7-149 F Gravity Beam Design RAM Steel v9.0 Page 135/176 Steve Young RAM DataBase: A03035B430 12/13/05 16:21:37 ', . INTERNATKNAL Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 631 SPAN INFORMATION (ft): I -End (142.33,84.49) J -End (155.00,89.13) Beam Size (User Selected) = HSS8X6X3 /8 Fy = 50.0 ksi Total Beam Length (ft) = 13.49 LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.350 0.000 0.0% Red 13.488 0.350 0.000 2 0.000 0.042 0.040 0.0% Red 13.488 0.042 0.040 3 0.000 0.000 0.000 0.0% Red 0.387 0.088 0.083 4 0.388 0.088 0.083 0.0% Red 13.488 0.267 0.252 SHEAR: Max V (DL +LL) = 5.61 kips fv = 1.00 ksi Fv = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 17.6 7.0 0.0 1.00 10.65 33.00 10.65 33.00 Controlling 17.6 7.0 0.0 1.00 10.65 33.00 - -- - -- REACTIONS (kips): Left Right DL reaction 3.60 4.03 Max +LL reaction 1.17 1.57 Max +total reaction 4.77 5.61 DEFLECTIONS: Dead load (in) at 6.81 ft = -0.184 L/D = 879 Live load (in) at 6.81 ft = -0.066 L/D = 2437 Net Total load (in) at 6.81 ft = -0.251 L/D = 646 f 3I ro Gravity Beam Design RAM Steel v9.0 Page 146/176 Steve Young RAM DataBase: A03035B430 12/13/05 16:21:37 - - wry Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 632 SPAN INFORMATION (ft): I -End (155.00,70.38) J -End (155.00,89.13) Beam Size (User Selected) = W16X40 Fy = 50.0 ksi Total Beam Length (ft) = 18.75 COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation parallel perpendicular Decking type VERCO W3 Formlok VERCO W3 Formlok bell (in) = 56.25 Y bar(in) = 15.69 Seff (in3) = 86.07 Str (in3) = 102.74 Ieff (in4) = 1132.75 Itr (in4) = 1612.30 Stud length (in) = 4.50 Stud diam (in) = 0.75 Stud Capacity (kips) q = 13.3 # of studs: Full = 60 Partial = 16 Actual = 16 Number of Stud Rows = 1 Percent of Full Composite Action = 25.66 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 5.354 3.16 1.86 2.97 0.0 0.00 0.00 0.0 0.00 Snow 1.86 12.052 3.10 1.83 2.92 0.0 0.00 0.00 0.0 0.00 Snow 1.83 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.425 0.250 0.400 0.0% Red 0.250 18.750 0.425 0.250 0.400 0.250 SHEAR: Max V (DL +LL) = 14.27 kips fv = 2.92 ksi Fv = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center PreCmp+ 44.2 9.9 0.0 1.00 8.20 33.00 8.20 33.00 Max + 73.0 9.9 - -- - -- Mmax /Seff 10.17 33.00 - -- - -- Mconst/Sx +Mpost/Seff 11.19 45.00 - -- - -- Controlling 73.0 9.9 - -- - -- 10.17 33.00 - -- - -- fc (ksi) = 0.28 Fc = 1.80 REACTIONS (kips): Left Right Initial reaction 8.65 8.10 DL reaction 7.35 6.88 Max +LL reaction 6.92 6.48 Max +total reaction 14.27 13.36 1(1, FRI Gravity Beam Design RAM Steel v9.0 Page 50/177 Steve Young RAM DataBase: A03035B430 12/13/05 15:17:05 Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: 2ND FLOOR Beam Number = 673 SPAN INFORMATION (ft): I -End (66.33,0.00) J -End (66.33,25.00) Beam Size (User Selected) = W16X40 Fy = 50.0 ksi Total Beam Length (ft) = 25.00 COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular Decking type VERCO W3 Formlok VERCO W3 Formlok beff (in) = 58.85 Y bar(in) = 15.48 Seff (in3) = 89.47 Str (in3) = 103.93 Ieff (in4) = 1206.67 Itr (in4) = 1608.52 Stud length (in) = 4.50 Stud diam (in) = 0.75 Stud Capacity (kips) q = 10.0 # of studs: Max = 50 Partial = 16 Actual = 22 Number of Stud Rows = 1 Percent of Full Composite Action = 39.24 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 8.000 -0.36 -0.38 0.27 0.0 0.00 0.00 0.0 0.00 Snow 0.03 -0.22 0.0 0.00 0.00 0.0 0.00 Snow 0.03 8.000 -1.46 -1.42 0.79 0.0 0.00 0.00 0.0 0.00 Snow -0.06 -0.88 0.0 0.00 0.00 0.0 0.00 Snow -0.06 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.416 0.245 0.392 0.0% Red 0.245 8.000 0.416 0.245 0.392 0.245 2 8.000 0.698 0.410 0.657 0.0% Red 0.410 25.000 0.698 0.410 0.657 0.410 SHEAR: Max V (DL +LL) = 15.99 kips fv = 3.28 ksi Fv = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center PreCmp+ 52.4 13.7 0.0 1.00 9.71 33.00 9.71 33.00 Max + 94.4 13.2 - -- - -- Mmax /Seff 12.66 33.00 - -- - -- Mconst/Sx+Mpost/Seff 13.84 45.00 - -- - -- Controlling 94.4 13.2 - -- - -- 12.66 33.00 - -- - -- fc (ksi) = 0.40 Fc = 1.80 REACTIONS (kips): f r33 r Gravity Beam Design RAM Steel v9.0 Page 51/177 Steve Young RAM DataBase: A03035B430 12/13/05 15:17:05 IhfrEoNAnom Building Code: IBC Steel Code: ASD 9th Ed. Left Right Initial reaction 6.79 9.25 DL reaction 5.59 7.78 Max +LL reaction 7.15 8.21 Max -LL reaction -0.75 -0.35 Max +total reaction 12.74 15.99 DEFLECTIONS: Initial load (in) at 13.13 ft = -0.163 L/D = 1845 Live load (in) at 12.75 ft = -0.164 L/D = 1832 Post Comp load (in) at 12.75 ft = -0.229 L/D = 1310 Net Total load (in) at 12.75 ft = -0.391 L/D = 766 tk fr+k - 1, ckio of, 6 c .. 1 G T 72 -3,,e O . <42 2T7 26 . 2 tFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS 6960 S.W. VARNS ST., SUITE 200 JOB NO TIGARD, OREGON 97223 r (503) 620 -3030, FAX 620 -5539 SHEET Y / OF 1 tt 4 - LA , Zl t-uJ --� ( a , I ? _______ ,f8 . 1 \ e ...1 d- . 4 ¶try 2 71,‘41 \4..s Z' VI 1 2 ( 1, VI . 7 ,21,4 0 ..(I � 1-,6,.) , L-0. 1g2( 4/1)J /1 0_,/ , 2 7 /64,10,1) , v C__..,.. ,i 9 ti-.-- t* ezt.--- c4) t ,.av-c_ ' I cb ‘Afi t --?‘ 4,•sIrt, - v • 1 \FGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6960 S.W. VARNS ST., SUITE 200 TIGARD, OREGON 97223 SHEET OF 3b (503) 620-3030, FAX 620 -5539 l • 1 • • � (f) , «(,) ck • c 41 24 VD Lteont`a2 kFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6960 S.W. VARNS ST., SUITE 200 TIGARD, OREGON 97223 SHEET OF '3 1 (503) 820.3030, FAX 620 -5539 � -5k -.11 M1 M2 ..� -9.78 I 4 Ms 9.s 142‘4 cn -9.8 9.78 �: � M4 5.1 1 4.9 2 5.11 \\ Loads: LC 1, LOAD Results for LC 1, LOAD Member Axial Forces (k) Reaction units are k and k -ft ,ghan Associates, Inc. November 29, 2005 HAMID AFGHAN 4:37 PM Frames at Curtainwall.r3d Company : Afghan Associates, Inc. November 29, 2005 Designer : HAMID AFGHAN 4:37 PM Job Number : Checked By: Member Section Forces, By Combination LC Member Label Section Axial Shear y -y Shear z -z Torque Moment y -y Moment z -z (k) (k) (k) (k -ft) (k -ft) (k -ft) 1 M1 1 -9.784 -.108 0 0 0 0 2 -9.784 -.108 0 0 0 .54 1 M2 1 0 .108 0 0 0 .54 2 0 .108 0 0 0 0 1 M3 1 5.108 0 0 0 0 0 2 5.108 0 0 0 0 0 1 M4 1 9.784 0 0 0 0 0 2 9.784 0 .0 0 0 0 1 M5 1 4.892 0 0 0 0 0 2 4.892 .0 0 0 0 0 1 M6 1 0 0 0 0 0 0 2 0 0 0 0 0 0 1 M7 1 - 10.939 0 0 0 0 0 2 - 10.939 0 0 0 0 0 RISA -3D Version 4.5 [H: \Projects \Tigard Triangle Commons \Building Four \Calculations \Frames at Curtaifgl#.rBd] ■ BUILDING FOUR COLUMN DESIGN COLUMN HSS 8 x 8 x 3 / 8 : COMBINED LOADING (MAX AXIAL): Kstrong := 1 EFFECTIVE LENGTH FACTOR Kweak := 1 Lstrong := 15•ft UNSUPPORTED COLUMN LENGTH Lweak := 15-ft KLstrong = 15 ft EFFECTIVE COLUMN LENGTH KLweak = 15 ft LOADING: Ax := 119.5•k Mz:= 6.82•k•ft M 9.9•k-ft PROPERTIES: HSS 8 x 8 x 3/8 11.10•in bf:= 8•in t(:= 0.375-in d := 8•in Af:= bf•tf Af = 3in Iz:= 106•in ly 106•in Sz = 26.5 in Sy = 26.5 in r = 3.09in ry= 3.09in rmin= 3.09in SRmin := ma�q �KLstZOng KLweak SRmin = 58.2 SLENDERNESS FACTOR IN PLANE OF BENDING 12-n Fe 2 Fe = 44.01 ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY 23-SRmin 1 2•n 2 •Es SRmin (1 — 2-R 12•n C := J Cc= 112 R:= F := i fR < 0.500, — ft non 2 Cc 3 + 4R — R min 23•SR 2 A f := A f = 10.77ksi AXIAL STRESS Fa = 21.5 ksi ALLOWABLE AXIAL STRESS Mz fbz:= Sz fbz= 3.09ksi BENDING STRESS Fb 30.36ksi ALLOWABLE BENDING STRESS STRONG AXIS M fb := y fby = 4.48 ksi BENDING STRESS Fby = 30.36ksi ALLOWABLE BENDING STRESS Sy WEAK AXIS INTERACTION = 0.83 of BUILDING FOUR COLUMN DESIGN COLUMN HSS 8 x 8 x 3 / 8 : COMBINED LOADING (MAX COMBINED STRESS): & w= 1 EFFECTIVE LENGTH FACTOR = 1 L = 15.ft UNSUPPORTED COLUMN LENGTH Lam= 15•ft KLstrong = 15 ft EFFECTIVE COLUMN LENGTH KLweak = 15 ft LOADING: A U= 53.61•k A= 27.1•k•ft = 18•k•ft PROPERTIES: HSS 8 x8 x3/8 ^ A= 11.10•in A t= 8•in t= 0.375•in = 8•in Z= bf•tf Af= 3in UT. 4/ 106•in Sz= 26.5in Sy= 26.5in rz = 3.09in ry= 3.09in rmin= 3.09in rstrong KI -weak R maxSRmin = 58.2 SLENDERNESS FACTOR IN PLANE OF BENDING rz r 12•a ^^ 2 Fe = 44.01 ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY 23•SRmin 1 2•n 2 •Es SRmin •(1 - 2•R 12•a = Cc= 112 R := F = i R < 0.500, ft 2 Cc nn�v 3 — + 3 - R 23 SR 2 min A ,W= A fa = 4.83 ksi AXIAL STRESS Fa = 21.5 ksi ALLOWABLE AXIAL STRESS M = Sz fbz= 12.27ksi BENDING STRESS Fb = 30.36ksi ALLOWABLE BENDING STRESS z STRONG AXIS M Y f := fby = 8.15ksi BENDING STRESS Fb = 30.36ksi ALLOWABLE BENDING STRESS SY WEAK AXIS INTERACTION = 0.98 i2' ti BUILDING FOUR COLUMN DESIGN COLUMN HSS 8 x 8 x 3 / 8 : COMBINED LOADING (MAX AXIAL): AXIAL LOADING K := 1.00 EFFECTIVE LENGTH FACTOR L:= 15•ft COLUMN LENGTH KL:= K•L KL = 15 ft EFFECTIVE COLUMN LENGTH COLUMN LOAD: PC1 :_ 1(91.5 68.0 159.5 )•k] USE HSS 8x8x3/8 Pallow 238•k IC:= PC1 IC = (0.38 0.29 0.67): Pallow bf:= 8•in dc := 8•in COLUMN DIMENSIONS BASEPLATE DESIGN: N := 16•in B := 16•in MA fp := P B N' 2 fp = 623 psi < Fp = 1785psi m min((N — 0.95•do B — 0.8•bf)) m = 4.2in 2 J 3.fp,m tregd tregd = 0.94 in 0.75•fs t =1 USE 1 1/4" X 16" X 1' -4" BASEPLATE WITH (4) 1" DIAMETER ANCHOR BOLTS BUILDING FOUR COLUMN DESIGN COLUMN HSS 8 x 8 x 3 / 8 : COMBINED LOADING (MAX AXIAL): qa := 3 DESIGN SOIL PRESSURE (ksf) - SEE NOTES ON FOUNDATION PLAN PC1 = (91.5 68 159.5) k COLUMN LOADS i b := round5 J PC1 2 *ft b = 7.5 ft WIDTH OF FOOTING b^. ---- 8.0•ft j q Afootg b Afootg = 64 ft 2 AREA OF FOOTING 1.4•1 0 + 1.7•PC10 1 qu := qu = 3.81 ksf FACTORED PRESSURE Afootg h := 20•in DEPTH OF FOOTING d = 16in DEPTH TO CENTROID OF REINFORCEMENT STEEL b := 2.1N + B + 2.(d - m)1 b0 = 111 in CRITICAL SHEAR PERIMETER (PUNCHING SHEAR) A (N +d- m)•(B +d -m) A0 = 773in PUNCHING SHEAR: Vu := qu•(Afootg - Ao) V = 223.3k V •V (PO. c•bp•d•psi 4Vc = 331 k IC:= IC = 0.67 OVc ONE -WAY SHEAR: b bf m xows := 2 - 2 — 2 d xows = 25.9 in Vim,:= qu.(b. xows) V = 65.7k 1 Vu = 4's•2.A.130•d•psi 0Vc = 166k IC:= OVc IC = 0.4 tof .l BUILDING FOUR COLUMN DESIGN COLUMN HSS 8 x 8 x 3 / 8 : COMBINED LOADING (MAX AXIAL): BENDING: b bf m d x:= — - — - — - x= 33.9in 2 2 2 2 qu•b•x Mu := 2 Mu = 122 ftk FLEXURE M u R:= R = 66psi FLEXURAL RESISTANCE FACTOR 0f•b•d p = 0.0018 STEEL RATIO As.REQD = 2.765in AREA OF STEEL REQUIRED barno := 5 REINFORCEMENT SIZE (DIAMETER) nbar = 10 NUMBER OF BARS REQUIRED As nbar Abar As = 3.1 in AREA OF REINFORCEMENT STEEL I Y As fy 1 Mu 4 0f•As•f ' d - 1 J OMn = 217.9ft•k IIC:= � IC = 0.56 USE 8' -0" X 8' -0" X 20" DEEP FOOTING WITH (10) #5 EACH WAY 1 Gravity Column Design 111 RAM Steel v9.0 Steve Young RAM DataBase: A03035B426 11/10/05 15:53:05 I Building Code: IBC Steel Code: ASD 9th Ed. Story level 2ND FLOOR, Column Line 1.13ft - 50.33ft Fy (ksi) = 46.00 Column Size = HSS8X8X3 /8 Orientation (degrees) = 90.0 (4'04 G 4 INPUT DESIGN PARAMETERS: X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 6.50 6.50 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 1: Dead Live Roof Axial (kips) 67.56 50.04 0.00 Moments Top Mx (kip -ft) 0.03 0.02 0.00 My (kip -ft) 15.48 7.85 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) 0.00 0.00 0.00 Single curvature about X -Axis Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 11.31 Fa (ksi) = 21.55 fbx (ksi) = 0.02 Fbx (ksi) = 30.36 fby (ksi) = 11.24 Fby (ksi) = 30.36 KL/Ry = 58.16 KL/Ry = 58.16 F'ex = 44.14 F'ey = 44.14 Cmx = 0.60 Cmy = 0.60 INTERACTION EQUATION fa/Fa = 0.52 Eq H1-1: 0.525 + 0.001 + 0.299 = 0.824 Eq H1-2: 0.410 +0.001 + 0.370 = 0.781 of G7 Gravity Column Design I RAM Steel v9.0 Steve Young RAM DataBase: A03035B426 11/10/05 15:53:05 ) rsffERNATKNAI Building Code: IBC Steel Code: ASD 9th Ed. Story level 2ND FLOOR, Column Line 128.00ft - 50.33ft Fy (ksi) = 46.00 Column Size = HSS8X8X3 /8 Orientation (degrees) = 90.0 KA V4 & tt- INPUT DESIGN PARAMETERS: X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 6.50 6.50 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 1: Dead Live Roof Axial (kips) 68.50 51.00 0.00 Moments Top Mx (kip -ft) -4.99 -1.83 0.00 My (kip -ft) -6.59 -3.31 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) 0.00 0.00 0.00 Single curvature about X -Axis Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 11.49 Fa (ksi) = 21.55 fbx (ksi) = 3.29 Fbx (ksi) = 30.36 fby (ksi) = 4.77 Fby (ksi) = 30.36 KL/Rx = 58.16 KL/Ry = 58.16 F'ex = 44.14 F'ey = 44.14 Cmx = 0.60 Cmy = 0.60 INTERACTION EQUATION fa/Fa = 0.53 Eq H1 -1: 0.533 + 0.088 + 0.128 = 0.749 Eq H1-2: 0.416 +0.108 +0.157 =0.682 �� Gravity Column Design RAM Steel v9.0 Steve Young IMAM DataBase: A03035B426 11/10/05 15:53:05 olrEoslAwlsoi Building Code: IBC Steel Code: ASD 9th Ed. Story level 2ND FLOOR, Column Line 199.88ft - 50.33ft Fy (ksi) = 46.00 Column Size = HSS8X8X3 /8 Orientation (degrees) = 90.0 Of /V6 '0 l INPUT DESIGN PARAMETERS: X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 6.50 6.50 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 1: Dead Live Roof Axial (kips) 58.90 44.34 0.00 Moments Top Mx (kip -ft) 0.03 0.02 0.00 My (kip -ft) -13.59 -7.14 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) 0.00 0.00 0.00 Single curvature about X -Axis Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 9.93 Fa (ksi) = 21.55 fbx (ksi) = 0.03 Fbx (ksi) = 30.36 fby (ksi) = 9.99 Fby (ksi) = 30.36 KL/Rx = 58.16 KL/Ry = 58.16 F'ex = 44.14 F'ey = 44.14 Cmx = 0.60 Cmy = 0.60 INTERACTION EQUATION fa/Fa = 0.46 Eq H1 -1: 0.461 + 0.001 + 0.255 = 0.716 Eq H1 -2: 0.360 + 0.001 + 0.329 = 0.690 q7 Gravity Column Design RAM Steel v9.0 Steve Young RAM DataBase: A03035B426 11/10/05 15:53:05 NTERNAllowi Building Code: IBC Steel Code: ASD 9th Ed. Story level 2ND FLOOR, Column Line 97.50ft - 61.67ft Fy (ksi) = 46.00 Column Size = HSS8X8X3 /8 Orientation (degrees) = 90.0 OW V0 t INPUT DESIGN PARAMETERS: X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 6.50 6.50 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 8: Dead Live Roof Axial (kips) 34.47 19.14 0.00 Moments Top Mx (kip -ft) 16.72 10.37 0.00 My (kip -ft) 0.00 0.00 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) 0.00 0.00 0.00 Single curvature about X -Axis Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 5.16 Fa (ksi) = 21.55 fbx (ksi) = 13.05 Fbx (ksi) = 30.36 fby (ksi) = 0.00 Fby (ksi) = 30.36 KL/Rx = 58.16 KL/Ry = 58.16 F'ex = 44.14 F'ey = 44.14 Cmx = 0.60 Cmy = 0.00 INTERACTION EQUATION fa/Fa = 0.24 Eq H1 -1: 0.239 + 0.292 + 0.000 = 0.531 Eq H1 -2: 0.187 + 0.430 + 0.000 = 0.617 BUILDING FOUR COLUMN DESIGN COLUMN HSS 10 x 10 x 3 / 8 : COMBINED LOADING (MAX AXIAL): Kstrong 1 EFFECTIVE LENGTH FACTOR Kweak 1 Lstrong 15•ft UNSUPPORTED COLUMN LENGTH Lweak 15•ft KLstrong = 15 ft EFFECTIVE COLUMN LENGTH KLweak = 15 ft LOADING: A := 203•k M 7.4•k•ft My := 15.55•k•ft PROPERTIES: HSS 10 x 10 x 3/ 8 = 14.10•in bf:= 10•in tf:= 0.375•in d := 10•in Af:= bf•tf Af= 3.75in IZ:= 214•in ly:= 214•in Sz = 42.8in Sy = 42.8in rz = 3.9in Ty = 3.9in rmin = 3.9in SRmin maxi I KLs KL ak 11 SRmin = 46.2 SLENDERNESS FACTOR IN PLANE OF BENDING 12•n F° 2 Fe = 69.95ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY 23 •SRmin J( (1 — 2•R 12•n E 2•n SRmin C c : — J Co = 112 R := F := i R < 0.500, — ft MA 2 Co 3 + 4R — R 23•SR min 2 A fa := A fa = 14.4 ksi AXIAL STRESS Fa = 23.2 ksi ALLOWABLE AXIAL STRESS Mz S Z fbz = 2.07ksi BENDING STRESS Fb = 30.36ksi ALLOWABLE BENDING STRESS STRONG AXIS M fby := S fby = 4.36 ksi BENDING STRESS F = 30.36ksi ALLOWABLE BENDING STRESS INTERACTION = 0.89 BUILDING FOUR COLUMN DESIGN COLUMN HSS 10 x 10 x 3 / 8 : COMBINED LOADING (MAX COMBINED STRESS): K nn RAM= 1 EFFECTIVE LENGTH FACTOR K = 1 L S := 15.ft UNSUPPORTED COLUMN LENGTH l= 15.ft KLstrong = 15 ft EFFECTIVE COLUMN LENGTH KLweak = 15 ft LOADING: Ate= 173. k Mme= 1•k•ft A= 23.5•k•ft PROPERTIES: HSS 10 x 10 x3/8 A:= 14.10•in t 10•in X= 0.375•in 1= 10•in Ate= bf•tf Af= 3.75in = 214•in 214•in Sz = 42.8in Sy = 42.8in r = 3.9in T = 3.9in rmin = 3.9in xi I = ma KLstZOng KLweak I I SRmin = 46.2 SLENDERNESS FACTOR IN PLANE OF BENDING 12•n _ 23•SRmin2 Fe = 69.95ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY 2 •n 2 •Es SRmin (1 - 2•R 12•n Cam ft Cc = 112 R:- 2 Cc = if R < 0.500, 5 3• R 3 , 2 3 + 4 - R 23 •SRmin A = Ax fa = 12.27ksi AXIAL STRESS Fa = 23.2 ksi ALLOWABLE AXIAL STRESS M = Z fbz= 0.28ksi BENDING STRESS FbZ= 30.36ksi ALLOWABLE BENDING STRESS SZ STRONG AXIS M Y _ fby = 6.59ksi BENDING STRESS Fby = 30.36ksi ALLOWABLE BENDING STRESS S y WEAK AXIS INTERACTION = 0.8 0 V It BUILDING FOUR COLUMN DESIGN COLUMN HSS 10 x 10 x 3 / 8 : COMBINED LOADING (MAX AXIAL): AXIAL LOADING K := 1.00 EFFECTIVE LENGTH FACTOR L := 15-ft COLUMN LENGTH KL:= K•L KL= 15 ft EFFECTIVE COLUMN LENGTH COLUMN LOAD: PC1 [( 92 243)•k] USE HSS 10x10x3/8 Pallow : = IC:= PC1 IC = (0.46 0.28 0.74) Pallow a = 10-in dc := 10•in COLUMN DIMENSIONS BASEPLATE DESIGN: N:= 18-in B:= 18•in / v% fp:= PC10.2 fp = 750 psi < Fp = 1785psi B•N min((N — 0.95•do B — 0.8•bf)) • m:= m = 4.25in 2 3•fp•m tregd treqd = 1.04 in 0.75•f t= 1.25 USE 1 1/4" X 18" X 1' -6" BASEPLATE WITH (4) 1 -1/8" DIAMETER ANCHOR BOLTS (i t VI/ } BUILDING FOUR COLUMN DESIGN COLUMN HSS 10 x 10 x 3 / 8 : COMBINED LOADING (MAX AXIAL): q := 3 DESIGN SOIL PRESSURE (ksf) - SEE NOTES ON FOUNDATION PLAN PC1 = (151 92 243 ) k COLUMN LOADS b := round5 I PC10 2 •ft b = 9.5 ft WIDTH OF FOOTING b := 10.0•ft Qa' Afootg b 2 Afootg = 100 ft 2 AREA OF FOOTING 1.2•13C10 0 + 1.6•PC10 1 qu := qu = 3.28ksf FACTORED PRESSURE Afootg h := 24•in DEPTH OF FOOTING d = 19.5in DEPTH TO CENTROID OF REINFORCEMENT STEEL bo := 2.[N + B + 2.(d - m)) bo = 133in CRITICAL SHEAR PERIMETER (PUNCHING SHEAR) A =(N +d- m)•(B +d -m) Ao= 1106in PUNCHING SHEAR: Vu qu•(Afootg - A V = 303.2k V 4Vc:= �s•4•� f� bo d psi 0Vc = 483k IC := 0Vc IC = 0.63 ONE -WAY SHEAR: b bf m xows 2 - 2 - 2 - d xOWS = 33.4 in Zk qu•(b.xows) V = 91.3k Vu 44 s '2•vi c •b o •d•Psi mV = 241 k IC:= �� IC = 0.38 a k,3 1 BUILDING FOUR COLUMN DESIGN COLUMN HSS 10 x 10 x 3 / 8 : COMBINED LOADING (MAX AXIAL): BENDING: b bf m d - - - - -- x= 43.1in x:= 2 2 2 2 4u•b•x Mu := 2 M = 212 ftk FLEXURE M u R := R = 62psi FLEXURAL RESISTANCE FACTOR mf•b•d p = 0.0018 STEEL RATIO As.REQD = 4.212in AREA OF STEEL REQUIRED barno := 6 REINFORCEMENT SIZE (DIAMETER) nbar = 11 NUMBER OF BARS REQUIRED As := nbar•Abar As = 4.84in AREA OF REINFORCEMENT STEEL �Mn Of As•f d - 1 7 I @Mn = 414.375ft•k i IC= �M IC = 0.51 USE 10 " -0" X 10' -0" X 24" DEEP FOOTING WITH (11) #6 EACH WAY Gravity Column Design RAM Steel v9.0 Steve Young RAM DataBase: A03035B426 11/10/05 15:53:05 INT Building Code: IBC Steel Code: ASD 9th Ed. Story level 2ND FLOOR, Column Line 165.00ft - 50.33ft Fy (ksi) = 46.00 Column Size = HSS10X10X3 /8 Orientation (degrees) = 90.0 INPUT DESIGN PARAMETERS: X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 7.50 7.50 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 1: Dead Live Roof Axial (kips) 105.60 67.14 0.00 Moments Top Mx (kip -ft) -0.74 -0.34 0.00 My (kip -ft) 16.13 7.35 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) 0.00 0.00 0.00 Single curvature about X -Axis Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 13.09 Fa (ksi) = 23.22 fbx (ksi) = 0.32 Fbx (ksi) = 30.36 fby (ksi) = 6.98 Fby (ksi) = 30.36 KL/Rx = 46.01 KL/Ry = 46.01 F'ex = 70.53 F'ey = 70.53 Cmx = 0.60 Cmy = 0.60 INTERACTION EQUATION fa/Fa = 0.56 Eq H1 -1: 0.564 + 0.008 + 0.169 = 0.741 Eq H1-2: 0.474 +0.011 +0.230 =0.714 Cry l� Gravity Column Design RAM Steel v9.0 Steve Young RAM DataBase: A03035B426 11/10/05 15:53:05 IM Building Code: IBC Steel Code: ASD 9th Ed. Story level 2ND FLOOR, Column Line 41.50ft - 50.33ft Fy (ksi) = 46.00 Column Size = HSS10X10X3 /8 Orientation (degrees) = 90.0 INPUT DESIGN PARAMETERS: X -Axis Y -Axis Lu (ft) 15.00 15.00 1{ 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 7.50 7.50 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 1: Dead Live Roof Axial (kips) 126.04 77.04 0.00 Moments Top Mx (kip -ft) -5.14 -2.26 0.00 My (kip -ft) -10.82 -4.73 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) 0.00 0.00 0.00 Single curvature about X -Axis Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 15.39 Fa (ksi) = 23.22 fbx (ksi) = 2.20 Fbx (ksi) = 30.36 fby (ksi) = 4.62 Fby (ksi) = 30.36 KL/Rx = 46.01 KL/Ry = 46.01 F'ex = 70.53 F'ey = 70.53 Cmx = 0.60 Cmy = 0.60 INTERACTION EQUATION fa/Fa = 0.66 Eq H1 -1: 0.663 + 0.056 + 0.117 = 0.835 Eq H1-2: 0.557 + 0.072 + 0.152 = 0.782 k b i 1 BUILDING FOUR COLUMN DESIGN COLUMN HSS 8 x 8 x 1 / 2 : COMBINED LOADING (MAX AXIAL): q := 3 DESIGN SOIL PRESSURE (ksf) - SEE NOTES ON FOUNDATION PLAN PC1 = (154 83 237 )k COLUMN LOADS b := round5 i PC1 2 •ft b = 9 ft WIDTH OF FOOTING � 10.0•ft ■ qa•k Afootg b Afootg = 100 ft 2 AREA OF FOOTING 1.2•PC10 0 + 1.6•PC1 qu qu = 3.18ksf FACTORED PRESSURE Afootg h := 24•in DEPTH OF FOOTING d = 19.5in DEPTH TO CENTROID OF REINFORCEMENT STEEL b0 := 2.[N + B + 2.(d - m)] bo = 125in CRITICAL SHEAR PERIMETER (PUNCHING SHEAR) A := (N + d - m)•(B + d - m) A = 980in PUNCHING SHEAR: Vu qu - A V = 296k Vu OV • psi 4:Vc =455k IC:= - IC= 0.65 ONE -WAY SHEAR: b bf m xows 2 - 2 - 2 - d xows = 34.4 in = qu V = 91 k Vu M 4s2 • J fc•bo•d•psi il)Vc = 227k IC := — IC = 0.4 mVc I BUILDING FOUR COLUMN DESIGN COLUMN HSS 8 x 8 x 1 / 2 : COMBINED LOADING (MAX AXIAL): BENDING: b bf m d - - - -- x =44.1 in x:= - 2 2 2 2 qu•b•x M := 2 M = 215 ftk FLEXURE • M u R:= R = 63psi FLEXURAL RESISTANCE FACTOR mf•b•d p = 0.0018 STEEL RATIO As.REQD = 4.212in AREA OF STEEL REQUIRED barn°:= 6 REINFORCEMENT SIZE (DIAMETER) bar = 11 NUMBER OF BARS REQUIRED As nbar Abar As = 4.84 in 2 AREA OF REINFORCEMENT STEEL As•fy Mu 4Mn 0f•As•f d - 1.7•f� b 4Mn = 414.375ft•k ICS �Mn IC = 0.52 USE 10' -0" X 10' -0" X 24" DEEP FOOTING WITH (11) #6 EACH WAY `g2 i BUILDING FOUR COLUMN DESIGN COLUMN HSS 8 x 8 x 1 / 2 : COMBINED LOADING (MAX AXIAL): Kstrong 1 EFFECTIVE LENGTH FACTOR Kweak 1 Lstrong 15•ft UNSUPPORTED COLUMN LENGTH Lweak 15•ft KLstrong = 1 5 ft EFFECTIVE COLUMN LENGTH KLweak = 15 ft LOADING: Ax := 205.5•k MZ:= 6.42•k-ft My := 5.61•k•ft PROPERTIES: HSS 8 x 8 x1 / 2 ,&= 14.40•1n bf:= Bin tf:= 0.500•in d := 8•in Af:= bf•tf Af= 4in IZ:= 131•in l 131•in SZ = 32.75in Sy = 32.75in rz = 3.02in ry= 3.02in rmin= 3.02in rrKLstrong KLweakl) SRmin ma J SRmin = 59.7 SLENDERNESS FACTOR IN PLANE OF BENDING r r 12•n Fe :_ 23 SR 2 Fe = 41.93ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY min I 2 n Es SRmin (1 — 2•R 12•n Cc := Cc = 112 R := Fa := if R < 0.500, f I'm 2 Cc 5 + 3 R — R3 23 SR 2 — 3 4 min A fa := Ax fa = 14.27ksi AXIAL STRESS Fa = 21.3ksi ALLOWABLE AXIAL STRESS Mz fbz := SZ fbz = 2.35 ksi BENDING STRESS FbZ = 30.36ksi ALLOWABLE BENDING STRESS STRONG AXIS M fby := y fb = 2.06ksi BENDING STRESS Fby = 30.36ksi ALLOWABLE BENDING STRESS SY WEAK AXIS 1 INTERACTION = 0.89 ofa 1 BUILDING FOUR COLUMN DESIGN COLUMN HSS 8 x 8 x 1 / 2 : COMBINED LOADING (MAX COMBINED STRESS): I 1 EFFECTIVE LENGTH FACTORiri= 1 , = 15•ft UNSUPPORTED COLUMN LENGTH LW= 15. 1 KLstrong = 15 ft EFFECTIVE COLUMN LENGTH KLweak = 15 ft LOADING: hk= 175•k M 0.90•k•ft = 11.27•k•ft PROPERTIES: HSS 8 x 8 x 1/ 2 A = 14.40 in 8•in X= 0.500•in X= 8•in kl= bt•tt Af = 4 in = 131 •in = 131 •in Sz = 32.75in Sy = 32.75in rZ = 3.02 in r = 3.02 in rmin = 3.02 in KLstrong KLweak )j N= ma rZ ry SRmin = 59.7 SLENDERNESS FACTOR IN PLANE OF BENDING 12.71 2 :Es 23 SR 2 F = 41.93ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY min 2 n Es SRmin (1 — 2•R 12•n ._ i Co =112 R:= F = i R <0.500, ft MA 2•Co ^^�'� 5 3•R 3 ' 2 3 + 4 — R 23. SRmin A ,= A fa = 12.15ksi AXIAL STRESS Fa = 21.3ksi ALLOWABLE AXIAL STRESS Mz = S Z fbz= 0.33ksi BENDING STRESS FbZ= 30.36ksi ALLOWABLE BENDING STRESS STRONG AXIS MY _ fby = 4.13ksi BENDING STRESS Fby = 30.36ksi ALLOWABLE BENDING STRESS S Y WEAK AXIS INTERACTION = 0.78 t W BUILDING FOUR COLUMN DESIGN COLUMN HSS 8 x 8 x 1 / 2 : COMBINED LOADING (MAX AXIAL): AXIAL LOADING K := 1.00 EFFECTIVE LENGTH FACTOR L := 15•ft COLUMN LENGTH KL:= K•L KL = 15 ft EFFECTIVE COLUMN LENGTH COLUMN LOAD: PC1 := (154 83 237).k PC1 USE HSS 8x8x1/2 Pallow : = IC:= IC =(0.5 0.27 0.77) Pallow bf:= 8•in dc:= 8•in COLUMN DIMENSIONS l BASEPLATE DESIGN: N:= 16•in B:= 16•in nnn f := PC1 N' 2 fp = 926 psi < Fp = 1785psi min((N — 0.95.dc B — 0.8•bf)) m:= m =4.2in 2 3•fp•m fregd 0.75•fs 1 regd = in t = 1.25 USE 1 3/8" X 16" X 1' -4" BASEPLATE WITH (4) 1 -1/4" DIAMETER ANCHOR BOLTS Of /IA Gravity Column Design ' RAM Steel v9.0 Steve Young RAM DataBase: A03035B426 11/10/05 15:53:05 Building Code: IBC Steel Code: ASD 9th Ed. Story level 2ND FLOOR, Column Line 97.50ft - 50.33ft Fy (ksi) = 46.00 Column Size = HSS8X8X1 /2 Orientation (degrees) = 0.0 INPUT DESIGN PARAMETERS: X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 6.50 6.50 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 1: Dead Live Roof Axial (kips) 123.95 81.49 0.00 Moments Top Mx (kip -ft) -4.45 -1.97 0.00 My (kip -ft) 3.89 1.72 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) 0.00 0.00 0.00 Single curvature about X -Axis Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 15.22 Fa (ksi) = 21.40 fbx (ksi) = 2.47 Fbx (ksi) = 30.36 fby (ksi) = 2.16 Fby (ksi) = 30.36 KL/Rx = 59.15 KL/Ry = 59.15 F'ex = 42.68 F'ey = 42.68 Cmx = 0.60 Cmy = 0.60 INTERACTION EQUATION fa/Fa = 0.71 Eq H1 -1: 0.711 + 0.076 + 0.066 = 0.853 Eq H1 -2: 0.551 + 0.081 + 0.071 = 0.704 Gravity Column Design R! o r RAM Steel v9.0 Steve Young RAM DataBase: A03035B426 11/10/05 15:53:05 w►EA1 Building Code: IBC Steel Code: ASD 9th Ed. Story level 2ND FLOOR, Column Line 66.33ft - 50.33ft Fy (ksi) = 46.00 Column Size = HSS8X8X1 /2 Orientation (degrees) = 90.0 C;R /--)40 A- INPUT DESIGN PARAMETERS: X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 6.50 6.50 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 1: Dead Live Roof Axial (kips) 113.87 61.17 0.00 Moments Top Mx (kip -ft) -0.61 -0.29 0.00 My (kip -ft) 7.68 3.59 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) 0.00 0.00 0.00 Single curvature about X -Axis Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 12.97 Fa (ksi) = 21.40 fbx (ksi) = 0.34 Fbx (ksi) = 30.36 fby (ksi) = 4.34 Fby (ksi) = 30.36 KL/Rx = 59.15 KL/Ry = 59.15 F'ex = 42.68 F'ey = 42.68 Cmx = 0.60 Cmy = 0.60 INTERACTION EQUATION fa/Fa = 0.61 Eq H1 -1: 0.606 + 0.010 + 0.123 = 0.739 Eq H1 -2: 0.470 + 0.011 + 0.143 = 0.624 , BUILDING FOUR COLUMN DESIGN COLUMN HSS 6 x 6 x 3 / 8 : COMBINED LOADING (MAX AXIAL): Kstrong 1 EFFECTIVE LENGTH FACTOR Kweak:= 1 Lstrong 15•ft UNSUPPORTED COLUMN LENGTH Lweak:= 15•ft KLstrong = 15 ft EFFECTIVE COLUMN LENGTH KLweak = 15 ft LOADING: Ax := 105•k Mz := 0•k•ft My:= 0•k•ft PROPERTIES: HSS 6 x6 x3/8 = 8.08•in 2 bf:= 6•in tf:= 0.375•in d := 6•in Af:= bf•tf Af= 2.25in Iz:= 41.6•in Iy:= 41.6•in Sz = 13.871n Sy = 13.87in rz= 2.27in ry= 2.27in rmin= 2 . 27 in 4KLstrong Kt -weak 11 SRmin ma r r JJ SRmin = 79 .3 SLENDERNESS FACTOR IN PLANE OF BENDING z y 12•n Fe :_ 23 SR 2 Fe = 23.73ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY min 2 r 21 2 2•rz •Eg SRmin 1 – 2•R •ft 12•n .Es Cc := C� = 112 R:= Fa := if R < 0.500, ft ^^^ 2•Cc 5 3•R 3 2 3 + 4 – R 2 3•SRmin A fa := A fa = 13ksi AXIAL STRESS Fa = 18.2ksi ALLOWABLE AXIAL STRESS Mz fbz:= — fbz = 0ksi BENDING STRESS Fbz= 30.36ksi ALLOWABLE BENDING STRESS Sz STRONG AXIS M fby := y fby = Oksi BENDING STRESS Fby = 30.36ksi ALLOWABLE BENDING STRESS SY WEAK AXIS INTERACTION = 0.71 BUILDING FOUR COLUMN DESIGN COLUMN HSS 6 x 6 x 3 / 8 : COMBINED LOADING (MAX COMBINED STRESS): Kam= 1 EFFECTIVE LENGTH FACTOR n = 1 t = 15•ft UNSUPPORTED COLUMN LENGTH t = 15.ft KLstrong = 15 ft EFFECTIVE COLUMN LENGTH KLweak = 15 ft LOADING: Ate= 58.0•k Mme= 3.99•k•ft 1A= 3.96•k•ft PROPERTIES: HSS 6 x6 x3/8 A := 8.081n = 6 in= 0.375•in 6 in A A1= bf•tf Af= 2.25in AAA = 41.6•in 41.6•in SZ = 13.87M Sy = 13.87in r = 2.27in ry = 2.27in rmin= 2 . 27 in Aartiw= ma 4KLstrong KI weak )) SRmin = 79.3 SLENDERNESS FACTOR IN PLANE OF BENDING A F,Ai= 2 Fe = 23.73ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY 23. SRmin j n Es SRmin (1 - 2•R ft 12•n - ft Cb = 112 R = 2C c = i R < 0.500, 5 + 3 R - R 23 SR 2 3 4 min Ax A fa = 7.18 ksi AXIAL STRESS Fa = 18.2 ksi ALLOWABLE AXIAL STRESS M = SZ fbz= 3.45ksi BENDING STRESS Fbz= 30.36ksi ALLOWABLE BENDING STRESS STRONG AXIS f i.= MY fby = 3.43ksi BENDING STRESS Fby = 30.36ksi ALLOWABLE BENDING STRESS SY WEAK AXIS INTERACTION = 0.72 BUILDING FOUR COLUMN DESIGN COLUMN HSS 6 x 6 x 3 / 8 : COMBINED LOADING (MAX AXIAL): AXIAL LOADING K := 1.00 EFFECTIVE LENGTH FACTOR L := 15•ft COLUMN LENGTH KL:= K.L KL = 15 ft EFFECTIVE COLUMN LENGTH COLUMN LOAD: PC1 := (74 64.5 138.5).k PC1 USE HSS 6x6x3/8 P allow := 147•k IC := IC = (0.5 0.44 0.94 ) Pallow = 6•in d 6-in COLUMN DIMENSIONS BASEPLATE DESIGN: N := 14•in B := 14•in non fp := P 8 1 N' 2 fp = 707 psi < Fp = 1785 psi min((N — 0.95•dc B — 0.8•bf)) m:= m= 4.15in 2 3•fp•m treqd • 0.75•fs treqd = 0.99in t =1 USE 1" X 14" X 1' -2" BASEPLATE WITH (4) 1" DIAMETER ANCHOR BOLTS Ot 4/6 BUILDING FOUR COLUMN DESIGN COLUMN HSS 6 x 6 x 318: COMBINED LOADING (MAX AXIAL): qa := 3 DESIGN SOIL PRESSURE (ksf) - SEE NOTES ON FOUNDATION PLAN PC1 = (74 64.5 138.5) k COLUMN LOADS b := round5 I PC1 2 •ft b = 7 ft WIDTH OF FOOTING b ::= 7.0•ft qak • Afootg b Afootg = 49 ft AREA OF FOOTING 1.2.1 + 1.6•PC10 1 qu qu = 3.92 ksf FACTORED PRESSURE Afootg h := 18•in DEPTH OF FOOTING d = 14.25in DEPTH TO CENTROID OF REINFORCEMENT STEEL too := 2•[N + B + 2.(d - m)] bo = 96in CRITICAL SHEAR PERIMETER (PUNCHING SHEAR) Ao:= (N +d- m)•(B +d -m) Ao= 581in PUNCHING SHEAR: Vu qu•(Afootg - A V = 176.2k V 4Vc ms 4 ��c•bo•d• psi �Vc = 256k IC:= - IC = 0.69 ONE -WAY SHEAR: b bf m xows 2 - 2 - 2 - d Xows = 22.7 in ij= qu•(b•Xows) V = 51.8k Vu ham= 0s•21fc•bo-d•psi 4Vc = 128k IC := �Vc IC = 0.41 0 411 BUILDING FOUR COLUMN DESIGN COLUMN HSS 6 x 6 x 3 / 8 : COMBINED LOADING (MAX AXIAL): BENDING: b bf m d x x= 29.8in := - - - -- 2 2 2 2 4u•b•x Mu := 2 M = 85 ftk FLEXURE M u R := R = 66psi FLEXURAL RESISTANCE FACTOR 4f•b•d p = 0.0018 STEEL RATIO As.REQD = 2.155in AREA OF STEEL REQUIRED barno := 5 REINFORCEMENT SIZE (DIAMETER) nbar = 8 NUMBER OF BARS REQUIRED As nbar Abar As = 2.48in AREA OF REINFORCEMENT STEEL sy Mu 4Mn 4f.As•fy. d - 1.7•fc•b) 4)Mn = 155.154ft•k IC:-- n IC = 0.55 USE 7' -0" X 7' -0" X 18" DEEP FOOTING WITH (8) #5 EACH WAY GV' 4,7 Gravity Column Design ti RAM Steel v9.0 Steve Young RAIN DataBase: A03035B426 11/10/05 15:53:05 MEENAICNX Building Code: IBC Steel Code: ASD 9th Ed. Story level 2ND FLOOR, Column Line 128.00ft - 60.83ft Fy (ksi) = 46.00 Column Size = HSS6�X,6�X y t 3 /8 C Orientation (degrees) = 90.0 i �1 INPUT DESIGN PARAMETERS: X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 0.00 0.00 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 1: Dead Live Roof Axial (kips) 56.05 49.08 0.00 Moments Top Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) 0.00 0.00 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) 0.00 0.00 0.00 Single curvature about X -Axis Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 13.87 Fa (ksi) = 18.26 fbx (ksi) = 0.00 Fbx (ksi) = 30.36 fby (ksi) = 0.00 Fby (ksi) = 30.36 KL/Rx = 78.95 KL/Ry = 78.95 F'ex = 23.96 Fey = 23.96 Cmx = 0.00 Cmy = 0.00 INTERACTION EQUATION fa/Fa = 0.76 Eq H1-1: 0.760 + 0.000 + 0.000 = 0.760 Eq H1 -2: 0.503 + 0.000 + 0.000 = 0.503 rx : Gravity Column Design RAM Steel v9.0 Steve Young RAM DataBase: A03035B426 11/10/05 15:53:05 INTENATCNAI Building Code: IBC Steel Code: ASD 9th Ed. Story level 2ND FLOOR, Column Line 41.50ft - 61.33ft Fy (ksi) = 46.00 Column Size = HSS6X6X3 /8 Orientation (degrees) = 90.0 (9t2-00 VD Od INPUT DESIGN PARAMETERS: X -Axis Y -Axis Lu (ft) 15.00 15.00 I{ 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 5.50 5.50 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 1: Dead Live Roof Axial (kips) 33.39 24.36 0.00 Moments Top Mx (kip -ft) 2.43 1.56 0.00 My (kip -ft) 2.41 1.55 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) 0.00 0.00 0.00 Single curvature about X -Axis Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 7.62 Fa (ksi) = 18.26 fbx (ksi) = 3.66 Fbx (ksi) = 30.36 thy (ksi) = 3.63 Fby (ksi) = 30.36 KL/Rx = 78.95 KL/Ry = 78.95 F'ex = 23.96 Fey = 23.96 Cmx = 0.60 Cmy = 0.60 INTERACTION EQUATION fa/Fa = 0.42 EgH1 -1: 0.417 +0.106 +0.105 = 0.628 Eq H1-2: 0.276 +0.120 +0.120 =0.516 OVID 1 . 0 Gravity Column Design RAM Steel v9.0 Steve Young RAIN DataBase: A03035B426 11/10/05 15:53:05 INTENATCNA Building Code: IBC Steel Code: ASD 9th Ed. Story level 2ND FLOOR, Column Line 59.50ft - 61.33ft Fy (ksi) = 46.00 Column Size = HSS6X6X3 /8 Orientation (degrees) = 0.0 INPUT DESIGN PARAMETERS: X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 5.50 5.50 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 1: Dead Live Roof Axial (kips) 48.97 29.10 0.00 Moments Top Mx (kip -ft) -0.66 -0.40 0.00 My (kip -ft) -2.90 -1.76 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) 0.00 0.00 0.00 Single curvature about X -Axis Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 10.30 Fa (ksi) = 18.26 fbx (ksi) = 0.97 Fbx (ksi) = 30.36 fby (ksi) = 4.26 Fby (ksi) = 30.36 KL/Ry = 78.95 KL/Ry = 78.95 F'ex = 23.96 Fey = 23.96 Cmx = 0.60 Cmy = 0.60 INTERACTION EQUATION fa/Fa = 0.56 Eq H1 -1: 0.564 + 0.034 + 0.148 = 0.745 Eq H1 -2: 0.373 + 0.032 + 0.140 = 0.546 �� 171 RAM Steel v9.0 Steve Young Gravity Column Design RAM DataBase: A03035B426 11/10/05 15:53:05 Wr Building Code: IBC Steel Code: ASD 9th Ed. Story level 2ND FLOOR, Column Line 141.50ft - 50.33ft Fy (ksi) = 46.00 Column Size = HSS6X6X3 /8 Orientation (degrees) = 90.0 CON 7 S 0 INPUT DESIGN PARAMETERS: X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 5.50 5.50 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 1: Dead Live Roof Axial (kips) 48.30 29.67 0.00 Moments Top Mx (kip -ft) 1.58 0.94 0.00 My (kip -ft) 0.00 0.00 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) 0.00 0.00 0.00 Single curvature about X -Axis Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 10.29 Fa (ksi) = 18.26 fbx (ksi) = 2.31 Fbx (ksi) = 30.36 fby (ksi) = 0.00 Fby (ksi) = 30.36 KL/Rx = 78.95 KL/Ry = 78.95 F'ex = 23.96 F'ey = 23.96 Cmx = 0.60 Cmy = 0.00 INTERACTION EQUATION fa/Fa = 0.56 Eq H1-1: 0.563 + 0.080 + 0.000 = 0.643 Eq H1-2: 0.373 + 0.076 + 0.000 = 0.449 �� $1, BUILDING FOUR COLUMN DESIGN COLUMN HSS 6 x 6 x 3 / 16 : COMBINED LOADING (MAX AXIAL): Kstrong 1 EFFECTIVE LENGTH FACTOR Kweak 1 Lstrong 15-ft UNSUPPORTED COLUMN LENGTH Lweak 15-ft KLstrong = 15 ft EFFECTIVE COLUMN LENGTH KLweak = 15 ft LOADING: Ax:= 54.5•k Mz:= 0•k•ft My := 0•k•ft PROPERTIES: HSS 6x6x3/16 = 4.27•in bf:= 6.in tf:= 0.1875•in d := 6-in Af:= bf•tf Af = 1.125in I 23.8•in 4 Iy:= 23.8•in 4 Sz = 7.93in Sy = 7.93in rz = 2.36 in ry = 2.36 in rmin = 2.36 in SRmin := maxi I KLs`ZOng Ktweak 11 SRmin = 76.2 SLENDERNESS FACTOR IN PLANE OF BENDING 12•n Fe 2 F = 25.69ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY 23 •SRmin r 2-7i 2 -Es SRmin 1 — 2-R 12-u := Cb = 112 R := F := if R < 0.500, f ^^^ 2.C 5 3.R 3 ' 2 — 3 + 4 — R 23 •SRmin A fa := A fa = 12.76ksi AXIAL STRESS Fa = 18.7ksi ALLOWABLE AXIAL STRESS Mz fbz:= Sz fbz= Oksi BENDING STRESS Fbz= 27.6ksi ALLOWABLE BENDING STRESS STRONG AXIS M Y fby :_ fby = Oksi BENDING STRESS Fby = 27.6ksi ALLOWABLE BENDING STRESS S Y WEAK AXIS INTERACTION = 0.68 BUILDING FOUR COLUMN DESIGN COLUMN HSS 6 x 6 x 3 / 16 : COMBINED LOADING (MAX COMBINED STRESS): Kam:= 1 EFFECTIVE LENGTH FACTOR mKn'= 1 nRUS = 15•ft UNSUPPORTED COLUMN LENGTH , , , VAmb , ;= 15.ft KLstrong = 15 ft EFFECTIVE COLUMN LENGTH KLweak = 15 ft b 30.5•k Mme= O. k•ft A U= 4.02•k•ft PROPERTIES: HSS 6 x 6 x3/16 A := 14= 6•in= 0.1875•in A d= 6.in Ate= bf• Af= 1.125in = 23.8•in 23.8•in Sz = 7.93in Sy = 7.93 in 3 rz = 2.36 in T = 2.36 in rmin = 2.36 in R= maxQ I KLs`ZOng KLweak 11 SRmin = 76.2 SLENDERNESS FACTOR IN PLANE OF BENDING A F Aro j- 2 2 Fe = 25.69ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY 2 3•SRmin 1 2•n 2 •Es SRmin (1 - 2•R 12•n = J Co = 112 R := F = if R < 0.500, ft 2 Co nn�v 3 + 4R - R min 23 SR 2 A jk Ax fa = 7.14 ksi AXIAL STRESS Fa = 18.7 ksi ALLOWABLE AXIAL STRESS Mz fbz = 0 ksi BENDING STRESS Fbz = 27.6 ksi ALLOWABLE BENDING STRESS 1141.11= S z STRONG AXIS kw= MY fby = 6.08 ksi BENDING STRESS Fby = 27.6 ksi ALLOWABLE BENDING STRESS Sy WEAK AXIS INTERACTION = 0.69 CT BUILDING FOUR COLUMN DESIGN COLUMN HSS 6 x 6 x 3 / 16 : COMBINED LOADING (MAX AXIAL): AXIAL LOADING K := 1.00 EFFECTIVE LENGTH FACTOR L := 15•ft COLUMN LENGTH KL := K•L KL = 15 ft EFFECTIVE COLUMN LENGTH COLUMN LOAD: PC1 := (45 29.5 74.5 )•k PC1 USE HSS 6x6x3/16 p allow .= 80•k IC := IC = (0.56 0.37 0.93 ) Pallow = 6•in dc:= 6•in COLUMN DIMENSIONS BASEPLATE DESIGN: N:= 12•in B:= 12•in AAA fp := P 61 N' 2 fp = 517 psi < Fp = 1785psi min((N — 0.95•dc B — 0.8•bf)) m:= m = 3.15 in 2 1 3.fp.m 2 tregd tregd = 0.64 in 0.75•f t = 0.75 USE 3/4" X 12" X 1' -0" BASEPLATE WITH (4) 3/4" DIAMETER ANCHOR BOLTS BUILDING FOUR COLUMN DESIGN COLUMN HSS 6 x 6 x 3 / 16 : COMBINED LOADING (MAX AXIAL): q := 3 DESIGN SOIL PRESSURE (ksf) - SEE NOTES ON FOUNDATION PLAN PC1 = (45 29.5 74.5) k COLUMN LOADS PC1 0,2 b := round5 ft b = 5 ft WIDTH OF FOOTING � 5.5•ft qa•k Afootg b Afootg = 30.25 ft 2 AREA OF FOOTING 1.2•PC1 0 +1.6•PC10 1 qu := qu = 3.35 ksf FACTORED PRESSURE Afootg h := 16-in DEPTH OF FOOTING d = 12.5 in DEPTH TO CENTROID OF REINFORCEMENT STEEL b := 2.[N + B + 2.(d - m)] b0 = 85in CRITICAL SHEAR PERIMETER (PUNCHING SHEAR) Ao:= (N +d- m)•(B +d -m) A 456in PUNCHING SHEAR: Vu qu - Ao) Vu = 90.6k V O/c := 4 4Vc = 199k IC:= 0uc IC = 0.46 ONE -WAY SHEAR: b bf m xows 2 - 2 - 2 - d xows = 15.9 in A y k= '= qu V = 24.4k V _ �s•2•�c•bo d•psi 4V 99k IC:= Vu IC = 0.25 @Vc Ot 176 BUILDING FOUR COLUMN DESIGN COLUMN HSS 6 x 6 x 3 / 16 : COMBINED LOADING (MAX AXIAL): BENDING: b bf m d x 2 - 2 2 -2 x= 22.2in qu•b•x Mu : = 2 Mu = 31 ft k FLEXURE M R := R = 41 psi FLEXURAL RESISTANCE FACTOR bf•b•d p = 0.0018 STEEL RATIO As.REQD = 1.485in AREA OF STEEL REQUIRED barns := 5 REINFORCEMENT SIZE (DIAMETER) nbar = 6 NUMBER OF BARS REQUIRED As nbar Abar As = 1.86 in AREA OF REINFORCEMENT STEEL Mu OMn bf As fy 1.7• fc•b J •Mn d - A5 l I OMn = 101.85ft•k IC:= IC = 0.31 USE 5' -6" X 5' -6" X 16" DEEP FOOTING WITH (6) #5 EACH WAY O ' 271 RAM Steel v9.0 Steve Young Gravity Column Design RAM DataBase: A03035B426 11/10/05 15:53:05 INTEPNAICNAL Building Code: IBC Steel Code: ASD 9th Ed. Story level 2ND FLOOR, Column Line 3.1 - E Fy (ksi) = 46.00 Column Size = HSS6X6X3 /16 Orientation (degrees) = 90.0 INPUT DESIGN PARAMETERS: X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 0.00 0.00 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 1: Dead Live Roof Axial (kips) 32.91 21.45 0.00 Moments Top Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) 0.00 0.00 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) 0.00 0.00 0.00 Single curvature about X -Axis Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 13.66 Fa (ksi) = 18.75 fbx (ksi) = 0.00 Fbx (ksi) = 27.60 thy (ksi) = 0.00 Fby (ksi) = 27.60 KL/Rx = 76.04 KL/Ry = 76.04 F'ex = 25.82 F'ey = 25.82 Cmx = 0.00 Cmy = 0.00 INTERACTION EQUATION fa/Fa = 0.73 Eq H1 -1: 0.728 + 0.000 + 0.000 = 0.728 Eq H1-2: 0.495 + 0.000 + 0.000 = 0.495 RAM Steel v9.0 Steve Young Gravity Column Design RAM DataBase: A03035B426 11/10/05 15:53:05 NrENATKNAI Building Code: IBC Steel Code: ASD 9th Ed. Story level 2ND FLOOR, Column Line 3.4 - E Fy (ksi) = 46.00 Column Size = HSS6X6X3 /16 Orientation (degrees) = 90.0 INPUT DESIGN PARAMETERS: X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 5.50 5.50 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 6: Dead Live Roof Axial (kips) 22.18 8.40 0.00 Moments Top Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) 0.17 3.85 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) 0.00 0.00 0.00 Single curvature about X -Axis Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 7.68 Fa (ksi) = 18.75 fbx (ksi) = 0.00 Fbx (ksi) = 27.60 fby (ksi) = 6.51 Fby (ksi) = 27.60 KL/Rx = 76.04 KL/Ry = 76.04 F'ex = 25.82 Fey = 25.82 Cmx = 0.00 Cmy = 0.60 INTERACTION EQUATION fa/Fa = 0.41 Eq H1-1: 0.410 +0.000 +0.201 = 0.611 Eq H1 -2: 0.278 + 0.000 + 0.236 = 0.514 BUILDING FOUR COLUMN DESIGN COLUMN HSS 8 x 6 x 3 / 8 : COMBINED LOADING (MAX AXIAL): Kstrong 1 EFFECTIVE LENGTH FACTOR Kweak 1 Lstrong 15•ft UNSUPPORTED COLUMN LENGTH Lweak 15-ft KLstrong = 15 ft EFFECTIVE COLUMN LENGTH KLweak = 15 ft LOADING: Ax := 97•k Mz := 7.07•k•ft My:= 0.88•k•ft PROPERTIES: HSS 8 x6 x3 / 8 4= 9.58•in bf:= 6•in tf:= 0.375•in d := 8•in Af:= bf•tf Af= 2.25in Iz:= 83.7•in ly:= 53.5•in Sz = 20.93in Sy = 17.83in rz= 2.96in ry = 2.36 in rmin= 2 . 3 6in IKLstrong Kt -weak 11 SRmin := max SRmin = 76.2 SLENDERNESS FACTOR IN PLANE OF BENDING rz ry J IJ 12•n Fe 2 Fe = 25.74ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY 23 •SRmin 1 2. n 2. Es SRmin (1 – 2•R 12. 2 •Es C c : – Cc = 112 R := Fa := if R < 0.500, — ft ^ 2 Co 3 + 4 R – R min 23 SR 2 Ax fa := fa = 10.13ksi AXIAL STRESS Fa = 18.7ksi ALLOWABLE AXIAL STRESS Mz fbz:= Sz fbz = 4.05 ksi BENDING STRESS Fbz = 30.36ksi ALLOWABLE BENDING STRESS STRONG AXIS M fb := Y fby = 0.59 ksi BENDING STRESS Fby = 30.36ksi ALLOWABLE BENDING STRESS SY WEAK AXIS I . INTERACTION = 0.75 GUOo BUILDING FOUR COLUMN DESIGN COLUMN HSS 8 x 8 x 3 / 8 : COMBINED LOADING (MAX COMBINED STRESS): 1 1 EFFECTIVE LENGTH FACTOR igtn= 1 ,61403z= 15•ft UNSUPPORTED COLUMN LENGTH MAW= 15•ft KLstrong = 15 ft EFFECTIVE COLUMN LENGTH KLweak = 15 ft LOADING: A= 53.61•k M:= 27.1 •k• 18.k-ft PROPERTIES: HSS 8 x8 x 3/8 A:= 11.10 in = 8•in= 0.375•in= Bin = buff Af= 3in A lki= 106•in by 106•in Sz =26.5 in Sy = 26.5in 3 rz = 3.09 in r = 3.09 in rmin = 3.09 in = maxi I I< 5tr0ng KL ak IJ SRmin = 58.2 SLENDERNESS FACTOR IN PLANE OF BENDING 12•n _ 23 SR 2 Fe = 44.01 ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY min 2 ( 21 2 2•n •E SRmin 1 — 2•R •ft 12•n -E Cam= ft Cc = 112 R = 2 Cc = i R < 0.500, 5 3•R 3 2 3 + 4 — R 23 •SRmin A = A fa = 4.83 ksi AXIAL STRESS Fa = 21.5ksi ALLOWABLE AXIAL STRESS M = 3z fb 12.27ksi BENDING STRESS Fbz= 30.36ksi ALLOWABLE BENDING STRESS z STRONG AXIS M = y fb = 8.15 ksi BENDING STRESS Fb = 30.36ksi ALLOWABLE BENDING STRESS SY WEAK AXIS INTERACTION = 0.98 6ttr1 BUILDING FOUR COLUMN DESIGN COLUMN HSS 8 x 6 x 3 / 8 : COMBINED LOADING (MAX AXIAL): AXIAL LOADING K := 1.00 EFFECTIVE LENGTH FACTOR L := 15•ft COLUMN LENGTH KL:= K-L KL = 15 ft EFFECTIVE COLUMN LENGTH COLUMN LOAD: PC1 := (70 66 136 )•k PC1 USE HSS 8x6x3/8 Fallow 179•k IC:— IC = (0.39 0.37 0.76) Pallow = 6•in dc := Bin COLUMN DIMENSIONS BASEPLATE DESIGN: N:= 14•in B:= 14•in nnn fp := P f B N' 2 fp = 694 psi < Fp = 1785psi m._ min((N — 0.95•do B — 0.8•bf)) m = 3.2in 2 J 3.fp•m treqd 0.75•fs treqd = 0.75 in t = 0.875 USE 1" X 14" X 1' -2" BASEPLATE WITH (4) 1" DIAMETER ANCHOR BOLTS BUILDING FOUR COLUMN DESIGN COLUMN HSS 8 x 6 x 3 / 8 : COMBINED LOADING (MAX AXIAL): q := 3 DESIGN SOIL PRESSURE (ksf) - SEE NOTES ON FOUNDATION PLAN PC1 = (70 66 136) k COLUMN LOADS b := round5 J PC10'2 •ft b = 7 ft WIDTH OF FOOTING b := 7.0•ft qa.k AM Afootg b Afootg = 49 ft AREA OF FOOTING 1•4•PC1 0 +1.7•PC10 1 Qu := qu = 4.29 ksf FACTORED PRESSURE Afootg h := 18•in DEPTH OF FOOTING d = 14.25in DEPTH TO CENTROID OF REINFORCEMENT STEEL b0 := 2.[N + B + 2.(d - m)] b0 = 100in CRITICAL SHEAR PERIMETER (PUNCHING SHEAR) Ao:= (N +d- m)•(B +d -m) A0 = 628in PUNCHING SHEAR: Vu qu:(Afootg - Ao) V = 191.5k Vu (I)Vc:= �s•4• d psi 4Vc = 266k IC:= 0/0 IC = 0.72 ONE -WAY SHEAR: b bf m xows - 2 - - d xOwS = 23.1 in = qu•(b V = 57.9k V V= ms•2•j0•b (11V =133k IC:_ S v c IC = 0.44 es tear - � Gravity Column Design El RAM Steel v9.0 Steve Young RAM DataBase: A03035B426 11/11/05 07:41:40 j Building Code: IBC Steel Code: ASD 9th Ed. Story level 2ND FLOOR, Column Line 2.6 - E Fy (ksi) = 46.00 Column Size = HSS8X6X3 /8 Orientation (degrees) = 90.0 INPUT DESIGN PARAMETERS: X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 6.50 5.50 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 1: Dead Live Roof Axial (kips) 47.59 48.12 0.00 Moments Top Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) -2.84 -1.79 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) 0.00 0.00 0.00 Single curvature about X -Axis Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 10.67 Fa (ksi) = 18.80 fbx (ksi) = 0.00 Fbx (ksi) = 30.36 fby (ksi) = 3.29 Fby (ksi) = 30.36 KL/Rx = 60.62 KL/Ry = 75.79 F'ex = 40.64 F'ey = 26.00 Cmx = 0.00 Cmy = 0.60 INTERACTION EQUATION fa/Fa = 0.57 Eq H1-1: 0.568 + 0.000 + 0.110 = 0.678 Eq H1 -2: 0.387 + 0.000 + 0.108 = 0.495 Q((° ) BUILDING FOUR COLUMN DESIGN COLUMN HSS 6 x 4 x 3 / 8 : COMBINED LOADING (MAX AXIAL): Kstrong 1 EFFECTIVE LENGTH FACTOR Kweak 1 [-strong 15-ft UNSUPPORTED COLUMN LENGTH Lweak 15•ft KLstrong = 15 ft EFFECTIVE COLUMN LENGTH KLweak = 15 ft LOADING: Ax := 30.5•k M 4.05•k•ft My := 0.26•k•ft PROPERTIES: HSS 6 x4 x3/8 A := 6.58 in bf:= 4•in tf:= 0.375•in d:= 6•in Af:= bf•tf Af= 1.5in Iz := 29.7•in I := 15.6•in SZ = 9.9in Sy = 7.8in rz= 2.12in ry= 1.54in rmin =1.54 in SRmin := maxi I KLsfZOng KLweak )) SRmin = 116.9 SLENDERNESS FACTOR IN PLANE OF BENDING 12•rz Fe 2 Fe = 10.93ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY 23 •SRmin 2 (1 2 2•n •Es SRmin 1 — 2•R •ff 12•n •Es Cc:— h Co = 112 � R = 2 Cc F := if R < 0.500, 5 3•R 3 , 2 3 + 4 — R 23-SRmin A fa := A fa = 4.64 ksi AXIAL STRESS F = 10.9 ksi ALLOWABLE AXIAL STRESS M fbz:= SZ fbz = 4.91 ksi BENDING STRESS Fbz = 27.6 ksi ALLOWABLE BENDING STRESS STRONG AXIS M fby := My fby = 0.4ksi BENDING STRESS Fby = 27.6 ksi ALLOWABLE BENDING STRESS SY WEAK AXIS INTERACTION = 0.68 6 k1 BUILDING FOUR COLUMN DESIGN COLUMN HSS 6 x 4 x 3 / 8 : COMBINED LOADING (MAX COMBINED STRESS): Iluv 1 EFFECTIVE LENGTH FACTOR lAnike 1 lNrU3SI/■= 15•ft UNSUPPORTED COLUMN LENGTH n *J i= 15•ft KLstrong = 15 ft EFFECTIVE COLUMN LENGTH KLweak = 15 ft LOADING: Ate= 24.5.k A. 3.00•k•ft = 0.60.k-ft PROPERTIES: HSS 6 x4 x3/8 = 6.58•in 4= 4•in 0.375•in ^ d ^ --- 6•in= bf•tf At= 1.5in )7 29.7•in = 15.6.in SZ = 9.9in Sy = 7.8in rz =2.12 in ry= 1.54in rmin= 1.54in aja = ma{ (KLstrong KLsrZOng KLweak )l SRmin = 116.9 SLENDERNESS FACTOR IN PLANE OF BENDING 12•n - 23•SR 2 Fe = 10.93ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY min 2 2.7r E SRmin (1 - 2•R 12•n = Co = 112 R. F = i R < 0.500, ft AAA 2 Co nv 3 + 4 R - R 23 •SRmin 2 Ax = A fa = 3.72ksi AXIAL STRESS F = 10.9 ksi ALLOWABLE AXIAL STRESS • Mz = SZ fbz= 3.64ksi BENDING STRESS Fb 27.6ksi ALLOWABLE BENDING STRESS STRONG AXIS M = y fby = 0.92 ksi BENDING STRESS Fby = 27.6ksi ALLOWABLE BENDING STRESS S Y WEAK AXIS INTERACTION = 0.55 GP I BUILDING FOUR COLUMN DESIGN COLUMN HSS 6 x 4 x 3 / 8 : COMBINED LOADING (MAX AXIAL): AXIAL LOADING K := 1.00 EFFECTIVE LENGTH FACTOR L := 15•ft COLUMN LENGTH KL:= K•L KL = 15 ft EFFECTIVE COLUMN LENGTH COLUMN LOAD: PC1 := (23 26 49).k USE HSS 6x4x3/8 Pallow : =72•k IC:= PC1 IC = (0.32 0.36 0.68) Pallow = 4•in dc := 6•in COLUMN DIMENSIONS BASEPLATE DESIGN: � = 12•in B:= 12•in fp := P 1 B N' 2 fp = 340 psi < Fp = 1785psi min((N — 0.95•dc B — 0.8•bf)) m := 2 m= 3.15in 3•fp.m treqd 0.75•fs treqd = 0.52 in t = 0.625 USE 3/4" X 12" X 1' -0" BASEPLATE WITH (4) 5/8" DIAMETER ANCHOR BOLTS of et-T BUILDING FOUR COLUMN DESIGN COLUMN HSS 6 x 4 x 3 / 8 : COMBINED LOADING (MAX AXIAL): qa := 3 DESIGN SOIL PRESSURE (ksf) - SEE NOTES ON FOUNDATION PLAN PC1 = (23 26 49)k COLUMN LOADS b := round5 I PC1 2 *ft b = 4.5 ft WIDTH OF FOOTING b := 4.5•ft qa•k nnn Afootg b2 Afootg = 20.25 ft AREA OF FOOTING 1•2•1 0 + 1.6•PC10 1 qu • Afootg qu = 3.42 ksf FACTORED PRESSURE h := 12•in DEPTH OF FOOTING d = 9in DEPTH TO CENTROID OF REINFORCEMENT STEEL bo := 2.[N + B + 2•(d - m)] bo = 71 in CRITICAL SHEAR PERIMETER (PUNCHING SHEAR) Ao:= (N +d- m)-(e +d -m) Ac =319in 2 PUNCHING SHEAR: Vu qu•(Afootg - Ao) V = 61.6k Vu (Vc:= 4s•4•17c•bo•d•psi •Vc= 120k IC:= /oVc IC= 0.52 ONE -WAY SHEAR: b bf m xows := 2 - 2 - 2 - d xows = 14.4 in = qu•(b•xows) V = 18.5k Vu _ �s 2• J fc•bo•d• psi �Vc = 60k IC := IC = 0.31 OVc BUILDING FOUR COLUMN DESIGN COLUMN HSS 6 x 4 x 3 / 8 : COMBINED LOADING (MAX AXIAL): BENDING: b bf m d x:= 2 2 - 2 - 2 x= 18.9 in 4u•b•x Mu := 2 Mu = 19 ftk FLEXURE Mu R:= R = 58psi FLEXURAL RESISTANCE FACTOR 0f•b•d p = 0.0018 STEEL RATIO As.REQD = 0.875in AREA OF STEEL REQUIRED barna := 4 REINFORCEMENT SIZE (DIAMETER) nbar = 5 NUMBER OF BARS REQUIRED As nbar Abar A = 1 in AREA OF REINFORCEMENT STEEL As•f M �Mn Of As fy' d - 1.7•f�•b) OMn = 39.52ft•k IMCN. ---- 4Mn IC = 0.48 USE 4' -6" X 4' -6" X 12" DEEP FOOTING WITH (5) #4 EACH WAY i. ogl RAM Steel v9.0 Steve Young Gravity Column Design RAM DataBase: A03035B426 11/11/05 08:20:49 Building Code: IBC Steel Code: ASD 9th Ed. Story level 2ND FLOOR, Column Line 115.33ft - 89.13ft Fy (ksi) = 46.00 Column Size = HSS6X4X3 /8 Orientation (degrees) = 60.0 INPUT DESIGN PARAMETERS: X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 5.50 4.50 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 1: Dead Live Roof Axial (kips) 14.36 16.16 0.00 Moments Top Mx (kip -ft) -2.20 -1.85 0.00 My (kip -ft) 0.31 0.26 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) 0.00 0.00 0.00 Single curvature about X -Axis Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 4.94 Fa (ksi) = 11.11 fbx (ksi) = 5.15 Fbx (ksi) = 27.60 thy (ksi) = 0.93 Fby (ksi) = 30.36 KL/Rx = 84.12 KL/Ry = 115.92 F'ex = 21.11 Fey = 11.11 Cmx = 0.60 Cmy = 0.60 INTERACTION EQUATION fa/Fa = 0.44 Eq H1-1: 0.445 + 0.146 + 0.033 = 0.624 Eq H1-2: 0.179 + 0.187 + 0.031 = 0.396 bt6ti Gravity Column Design I RAM Steel v9.0 Steve Young RAM DataBase: A03035B426 11/11/05 08:20:49 ) INIT E R NATIC I N 4 Building Code: IBC Steel Code: ASD 9th Ed. Story level 2ND FLOOR, Column Line 155.00ft - 89.13ft Fy (ksi) = 46.00 Column Size = HSS6X4X3 /8 Orientation (degrees) = 120.0 INPUT DESIGN PARAMETERS: X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 5.50 4.50 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 1: Dead Live Roof Axial (kips) 10.93 13.67 0.00 Moments Top Mx (kip -ft) -1.55 -1.45 0.00 My (kip -ft) -0.31 -0.29 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) 0.00 0.00 0.00 Single curvature about X -Axis Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 3.98 Fa (ksi) = 11.11 fbx (ksi) = 3.82 Fbx (ksi) = 27.60 fby (ksi) = 0.98 Fby (ksi) = 30.36 KL/Ry = 84.12 KL/Ry = 115.92 F'ex = 21.11 Fey = 11.11 Cmx = 0.60 Cmy = 0.60 INTERACTION EQUATION fa/Fa = 0.36 EgH1 -1: 0.358 + 0.102 + 0.030 = 0.491 EgH1 -2: 0.144 +0.138 +0.032 =0.315 °t (13 Gravity Column Design RAM Steel v9.0 Steve Young RAM DataBase: A03035B426 11/11/05 08:20:49 mfFNAlioNAL Building Code: IBC Steel Code: ASD 9th Ed. Story level 2ND FLOOR, Column Line 128.00ft - 84.49ft Fy (ksi) = 46.00 Column Size = HSS6X4X3 /8 Orientation (degrees) = 80.0 INPUT DESIGN PARAMETERS: X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 5.50 4.50 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 1: Dead Live Roof Axial (kips) 11.42 15.21 0.00 Moments Top Mx (kip -ft) -1.59 -1.50 0.00 My (kip -ft) -0.12 -0.11 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) 0.00 0.00 0.00 I Single curvature about X -Axis Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 4.31 Fa (ksi) = 11.11 fbx (ksi) = 3.93 Fbx (ksi) = 27.60 thy (ksi) = 0.37 Fby (ksi) = 30.36 KL/Rx = 84.12 KL/Ry = 115.92 F'ex = 21.11 F'ey = 11.11 Cmx = 0.60 Cmy = 0.60 INTERACTION EQUATION fa/Fa = 0.39 Eq H1 -1: 0.388 + 0.107 + 0.012 = 0.507 Eq H1 -2: 0.156 +0.142 +0.012 =0.311 "I�ik RAM Steel v9.0 Steve Young Gravity Column Design RAM DataBase: A03035B426 11/11/05 08:20:49 NrEPAIAnCNAI Building Code: IBC Steel Code: ASD 9th Ed. Story level 2ND FLOOR, Column Line 142.33ft - 84.49ft Fy (ksi) = 46.00 Column Size = HSS6X4X3 /8 Orientation (degrees) = 10.0 INPUT DESIGN PARAMETERS: X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 5.50 4.50 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 1: Dead Live Roof Axial (kips) 11.42 15.38 0.00 Moments Top Mx (kip -ft) 0.15 0.14 0.00 My (kip -ft) 1.30 1.22 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) 0.00 0.00 0.00 Single curvature about X -Axis Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 4.34 Fa (ksi) = 11.11 fbx (ksi) = 0.36 Fbx (ksi) = 27.60 fby (ksi) = 4.06 Fby (ksi) = 30.36 KL/Ry = 84.12 KL/Ry = 115.92 F'ex = 21.11 Fey = 11.11 Cmx = 0.60 Cmy = 0.60 INTERACTION EQUATION fa/Fa = 0.39 EgH1 -1: 0.390 + 0.010 + 0.132 = 0.532 Eq H1-2: 0.157 + 0.013 + 0.134 = 0.304 n4- Vac ; 4 30 14 e\- 1 MO ago zyp k..odb \•U ( ~ ,)1/(w-tool 4— ( 'ye /W 1(dt` k N!' t1 t co, -bu 10 agf U - 0t. e AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS cos NO 6960 S.W. VARNS ST., SUITE 200 ' TIGARD, OREGON 97223 5 (503) 620-3030, FAX 620 -5539 SHE OF (V'( Cc "vN Ato , e A , 60f lax r bo(,r2)u) IV° .44/ Y " c4/)(i )( i f v * N -000 t r 0 ( r 49,1 Co z v. �LY ®Q�X1,VO) �ps� a &" ; *lea - (P02-40 . tt■t v ;“1- 1-'b M.o 1���k1 �mok�A�ol✓ r `moo :..:I ; o: � ee tit I YkD� `k, a b 6 1 v ik-c; 6, ic 620r14-1v VON V5' 4 alA(poo)Ct-4 4,(11 tc,,ote ‘,24„00 4 - f t - ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6960 S.W. VARNS ST., SUITE 200 TIGARD, OREGON 97223 ` (503) 620-3030, FAX 620 -5539 SHE _ '^ OF e��- - . ft K-44 i, AA-a oei NAT 11 ** 11.46 l,4966 OC) • kV d-v q '` vu� tom „, , �, r ° lop. =14 , (= ti .'1" A 14 .. ?PT 'te \,qtr AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6960 S.W. VARNS ST., SUITE 200 TIGARD, OREGON 97223 (503) 620.3030, FAX 620-5539 SHEET OF 0)0a1 am" "'VY 11, wcvdttr Qt11 tv L �iO ritctla, fLE av -K7)), +,7, --e 6" '1,oDe t)IPq -T $ AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6960 S.W. YARNS ST., SUITE 200 TIGARD, OREGON 97223 (503) 620 -3030, FAX 620 -5539 S EET OF I KW b Ivo 1-' GQ, INGU nA.)a• , Atr1G%{4fi' A` LA , ti,1- LV °r ' 1 1 kA7 1 Qo� /i • /lA (t A- CI ) / 2 7. 1t12) L ey AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS 0 JOB NO 6960 S.W. VARNS ST., SUITE 200 TIGARD, OREGON 97223 d (503) 620-3030, FAX 820 -5539 EET �� OF t,' �, t1(1 gvItfot ma - gv-ti.t,` /1v ,� r �t.° r tlzo f ieui ?tie. 1 i I 1 1 1 • )i I 1 j• ` ti I __.,� I _ , VI/ 1 1 AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6960 S.W. VARNS ST., SUITE 200 TIGARD, OREGON 97223 (503) 620 -3030, FAX 620 -5539 SHEET , OF LkCPC-t{, t10 VA)` \Zo-kr 1.6\ ►� I ► �n1� +6. o I I _ 1 . fib ac ,l , I II 10.0 _ O W; I 19.0 i d r ' 1 1 I I - l 0 E l Imo/ _ y01 ~- 13.61 1 �4 '' wp, ... - L ..--- - - - -- -- tl.. 51 arc, ! jL — Arteg- i7.271 Z I I I 'uo -- - -- .I j 't —i- t „„i11.0._ a H - - -; _ -- - �-� _ tl o ________!_____ -- 7TH -- - I ---- 0„. Q4 _1 . . 171 4r.6 — j i 0 9•° — I4I0 y izq ( J I _� AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6980 S.W. VARNS ST., SUITE 200 ^ I TIGARD, OREGON 97223 SHEET OF ' v (503) 6203030, FAX 820 -5539 1,1 VV7u IcAu7,o(5- tt 1.Q2 I v-k,cc , t am coic r 1 rta, 1 F 1 44, ... Er IA- . ,r. ..,_ it 8. - ., : °° kw. ( ' ' F 'Vs 0 Ltd • I .., . • ... i ' W70° 1 ! r x _ I ,..., 5 t ! ' \'' - - L9.17.: RI No,a - 1 • . i :.• : I . . , ., ,, , • . 0 • l 1 _ cr i------ .. J A-----4.,7--,..-0- 1 • , } • .., .0 . : 1 , n • AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6960 S.W. VARNS ST., SUITE 200 TIGARD, OREGON 97223 SHEETie_ OF 3 (503) 620-3030, FAX 620-5539 . f-VIA, e 4W*LO *1' t G 5 4 C. A-47 .Gd &of x f r 4 , 6 42/(40 Vt111312 VP 4 0 iii, Q�I :ants S ;a Cz, Via- c l -o c(9 4 - CNC( E y ti6m O 7 2 61(A-. 440)1 _ ,SAIL& 43V7100 c-PA ,{ 0 1 41, 4.A9 6 7175 v.1( clot. 1 14 SA, f o. -- V-AO �(,t.t kx) c /o' _ 0 3W Cti'? -- 0,4 (,, t4-) - 0 - 0 Atkp71,011, - 0.0 � o,tho �ti, , 011 AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS 6960 S.W. VARNS ST., SUITE 200 JOB NO TIGARD, OREGON 97223 4 (503) 620-3030, FAX 620 -5539 SHEET OF Ydepo '40' 1 I; 4 41 < (90 0/Loa , .J e‘winAl ' QQ4 - v-ca nc ciArittivrw corAtakriAr .� «0 (k l (9-o '14 0.1 ) 441 o ® We VA (.4l \ 6(0 vJ AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6960 S.W. VARNS ST., SUITE 200 TIGARD, OREGON 97223 SHEET _t# OF C V (503) 620 -3030, FAX 620.5539 LATERAL DESIGN BUILDING FOUR Rigidity R03.xmcd 11/16/2005 3:24 PM LATERAL DESIGN PANEL RIGIDITY: P:= 1000•k Ec= 4030509 psi PANEL 1, 4, 11, 14, 17, 21, 22. 27 AND 30: 2ND FLOOR h := 9.25•in hi P I—I h1 [ hi := 15 di := 4.1667 = 3.6 Al := E •h 4 d J + 3• dl e1 = 5.295in di c 1 1 e2ND: = Al e2ND = 5.295in R2ND = 0.19 PANEL 1, 4, 11, 14, 17, 21, 22, 27 AND 30: ROOF h := 9.25•in nnn r l3 h2 := 15 d2 := 4.1667 d2 = 3.6 e2 := • E- hh • 4 a 2 I + 3• d2 e2 = 5.295in ROOF e2 AROOF = 5.295in RROOF = 0.19 e1 .TOTAL := e2ND + eROOF A1.TOTAL = 10.6 in R1.TOTAL = 0.09 LATERAL DESIGN BUILDING FOUR Rigidity R03.xmcd 11/16/2005 12:54 PM 1 LATERAL DESIGN PANEL RIGIDITY: P := 1000•k Ec = 4030509psi PANEL 2, 13, 18 AND 29: 2ND FLOOR h := 9.25.in = 17.333 =20.75 di =0.84 e1:= E-h•4 d +3• d 1 el= 0.13in 3 h2 := 9.5833 = 20.75 d2 • = 0.46 A2 := A 1 - E hh • I d2 I + 3• d2 e2 = 0.09 in J h3 := 9.5833 d3 := 2.8333 d3 = 3.38 A3 := E� h • [(d113)3 + 3 63 = 1.31 in d3 h4 p [(h4) h4 h4 := 9.5833 d4 := 3.91667 - = 2.45 A4 + 3• A4 = 0.59 in d4 Ec. h d4 d4 1 A2ND := A2 + 1 1 A2ND = 0.497in A3 A4 R2ND = 2.01 PANEL 2, 13, 18 AND 29: ROOF ^ h :---= 9.25.in 3 1 U= 15.667 = 20.75 d1 = 0.76 eP + 3 d Ai = 0.107in 1 • c h • 4 d 1 1 jas= 9.5833 = 20.75 d2 = 0.46 = e - E� h [(h2)3 d2 + 3.- A2 = 0.067in • h3 P [(h3)3 F.•= 9.5833 = 2.8333 = 3.38 = + 3• h A3 = 1.31 in d E c•h d3 d3 h4 p h4 3 h4 • U= 9.5833 = 3.91667 = 2.45 = E •h d + 3•d A4 = 0.59in 4 • C 4 4 1 AROOF A2 + 1 1 AROOF = 0.474in A3 ± A4 RROOF = 2.11 A2.TOTAL •= A2ND + AROOF A2.TOTAL = 0.97in R2.TOTAL = 1.03 V1 LATERAL DESIGN BUILDING FOUR Rigidity R03.xmcd 11/16/2005 12:54 PM LATERAL DESIGN PANEL RIGIDITY: P := 1000•k Ec= 4030509psi PANEL 3, 12 AND 28: 2ND FLOOR 1= 9.25.in hi • == 17.333 = 20.5833 d = 0.84 E 4 d 1 + 3•d Al = 0.132in 1 c 1 1 l 3 I=.= 9.5833 = 20.5833 d2 = 0.47 ,,Qa j= Al -E \ d 2 ) + 3• A2 = 0.092in = 9.5833 aj= 2.6667 d 3 = 3.59 = E c h • I d[(h3)3 + 3• d3 e3 = 1.534in h4 p rh41 h4 h� 9.5833 d = 3.91667 - = 2.45 e = • I -J + 3•- A4 = 0.59in vVni '�iJ d4 AAA E d4 d4 1 AR^= A2 + 1 1 A2ND = 0.518in A3 A4 R2ND = 1.93 PANEL 3, 12 AND 28: ROOF h := 9.25•in nv� 3 h] Au= 15.667 Au= 20.5833 d1 = 0.76 E p 4 1 + 3•d Al = 0.109in -di hi -di 1 h2 p [(h2) h2 , t A ig= 9.5833 = 20.5833 d2 = 0.47 = A l - Ec hh ( + 3 d2 A2 = 0.068in h3 c [(h 3) d = 9.5833 as= 2.6667 d = 3.59 = E d + 3• d A3 = 1.534in h4 p rrh41 h41 9.5833 dam;= 3.91667 d4 = 2.45 = E C h • d4 3• d4 A4 = 0.59in 1 AkaWfvT A2 + 1 1 AROOF = 0.494in - + - A3 A4 RROOF = 2.02 • A3.TOTAL A2ND + AROOF A3.TOTAL = 1.012in R3.TOTAL = 0 L LATERAL DESIGN BUILDING FOUR Rigidity R03.xmcd 11/16/2005 12:54 PM LATERAL DESIGN PANEL RIGIDITY: P := 1o00•k E = 4030509psi PANEL 5 AND 7: 2ND FLOOR h := 9.25•in nnn hi h 3 = 17.333 = 17.5833 d = 0.99 E • 4 1 1 + 3•d1 Al = 0.182in 1 c d 1 3 1 = 9.5833 = 17.5833 d2 = 0.55 / AZ ∎ j= A l - E� h • (d2) + 3• d 2 A2 = 0.134in h3 p h3 1 �.= 9.5833 = 2.91667 d3 = 3.29 = Ec h [( d3 + 3• A3 = 1.216in h4 p rhgl hq hU. = 9.5833 = 5.3333 - = 1.8 ,= • I - I + 3-- Aq = 0.3in dq E c•h d4 J dq 1 = A2 + 1 1 62ND = 0.375in A3 A4 R2ND = 2.67 PANEL 5 AND 7: ROOF h := 9.25•in Ann r d1 J l Au= 15.667 = 17.5833 hi 1 = 0.89 F E c•h 4I h I + 3• d1 h Al = 0.148in 3 = 9.5833 = 17.5833 d 2 = 0.55 = Al - E� h (d2) + 3.-2 A2 = 0.099in • h3 p [(h3)3 = 9.5833 U= 2.91667 d = 3.29 Q�i= Eh + 3• 3 A3 = 1.216in 3 • c d3 • 3 3 = 9.5833 = 5.333 d 4 = 1.8 E c ph C d 4 / 4 4 + 3 d Aq = 0.3in 4 1 n.; 1 1 AROOF= 0 . 34 in 63 6 4 RROOF = 2.94 L 5.TOTAL A2ND + AROOF A5.TOTAL = 0.715in R53OTAL = 1.4 LATERAL DESIGN BUILDING FOUR Rigidity R03.xmcd 11/16/2005 12:54 PM LATERAL DESIGN PANEL RIGIDITY: = 1000•k Ec = 4030509psi PANEL 8 AND 9: 2ND FLOOR 1= 9.25•in hi p (1 h1 = 17.333 =30 = 0.58 = • 4 +3•h e1= 0.067in d 1 E h c 1 3 = 9.5833 = 30 d2 = 0.32 ,�g1= Al - E hh • (dZ) + 3. d2 e2 = 0.041 in tai= =3 d3 =3.19 u= EPh d[(h3)3 +3.- A3= 1.131in d3 c 3 3 3 = 9.5833 U= 3 h4 = 3.19 P • I tl + 3.- A4 = 1.131 in d Eh 4 c 4 4 1 = A2 + 1 1 A2ND = 0.606in A3 A4 R2ND = 1.65 PANEL 8 AND 9: ROOF h := 9.25•in MA hi p (h1)3 h1 = 15.667 = 30 d1 = 0.52 = Ec hh • 4 + 3.- Al = 0.057in h2 p h2 3 h2 = 15.667 = 30 d2 = 0.52 Al Ech (d2) + 3.- A2 = 0.011 in = 9.5833 =3 d3 =3.19 ,Q�i= EPh [(h3)3 +3• A3= 1.131in d3 c d3 3 i ;= 9.5833 = 3 d4 = 3.19 =Ech • [(h4)3 d + 3• d4 1 A4 = 1.131 in ^Dn n 1 1 AROOF = 0.577in A3 A4 RROOF = 1.73 A8.TOTAL A2ND + AROOF A8.TOTAL = 1.183in R8.TOTAL = 0.84 1i`O LATERAL DESIGN BUILDING FOUR Rigidity R03.xmcd 11/16/2005 12:54 PM LATERAL DESIGN PANEL RIGIDITY: P := 1000•k Ec = 4030509 psi PANEL 10, 20 AND 26: 2ND FLOOR h := 9.25•in hi = 17.333 AL= 15.333 d 1 = 1.13 E P h 4 d h 1 + 3 d1 e,1 = 0.246in 1 c 1 1 h2 p h2 3 h2 = 9:5833 15.333 d2 = 0.63 = e1 - Ec hh • ( I + 3• d2 e2 = 0.189in h3 3 / 3 = 9.5833 =3 d=3.19 ^^" EPh 3 +3•d e3= 1.131in 3 c d 3) 3 3 U= 9.5833 Ac= 3 d4 Eh = 3.19 b P [(n d l + 3• d e4 = 1.131 in 4 C 4) 4 1 = e2 + 1 1 e2ND = 0.755in — + — e3 e4 R2ND = 1.32 PANEL 10, 20 AND 26: ROOF h := 9.25•in nn� r l3 = 15.667 = 15.333 d1 = 1.02 E C h • 4I di I + 3• tl , e1 = 0.197in J 3 = 15.667 = 15.333 d2 = 1.02 Al - E� h • \d2� + 3• d2 e2 = 0.086in h3 = [(h3 ) 3 h31 = 9 .5833 =3 d = 3.19 , e, � E •h d + 3 d e3= 1.131in 3 h = 9.5833 d = 3 h = 3.19 P h4 + 3• h 44 = 1.131 in n�n nn�n d4 ^ E c•h d4) d4 1 ni- e2 + 1 1 e ROOF 0.652 in — +— A3 e4 RROOF = 1.53 Ai0.TOTAL A2ND + AROOF e10.TOTAL 1.406in R10.TOTAL = 0.71 Vol LATERAL DESIGN BUILDING FOUR Rigidity R03.xmcd 11/16/2005 12:54 PM LATERAL DESIGN PANEL RIGIDITY: P = 1000•k E = 4030509psi PANEL 16 AND 32: 2ND FLOOR h := 9.25•in Ann hi p rhi1 h1 Au= 17.333 = 27.1667 d1 = 0.64 = EC h • 4 d1 + 3• d1 e1 = 0.079in 3 • = 9.5833 = 27.1667 d2 = 0.35 M Al - E� h Cd2 + 3• d2 e2 = 0.05in 3 1 = 9.5833 =3.5 3 =2.74 = p 3 + 3• a 3 A3 = 0.771in .[( d 3 Ec h d 3 3 h4 p hq 3 hq bw= 9.5833 -d4 c = 3.6667 = 2.61 e�n1t}l= E •h d + 3. Aq = 0.689in 4) 1 = ' + 1 1 0.414in 2ND = A3 eq R2ND = 2.42 PANEL 15 AND 32: ROOF h := 9.25•in hi p (' 1 h1 = 15.667 U= 27.1667 - = 0.58 E - 4 d J I + 3. d Al = 0.067in c 1 1 3 • = 15.667 = 27.1667 tl 2 = 0.58 Al - E� h Cd2 + 3• d2 02 = 0.015in 3 U= 9.5833 = 3.5 d3 =2.74 = E C h •�I a 3J +3• A3= 0.771in 3 h4 P [ n4 = 9.5833 Ac= 3.6667 dq = 2.61 ^ EC h I d4 ) + 3• d 4 1 Aq = 0.689in ^onC t � =6'2+ 1 1 PROOF = 0.379in A3 A4 RROOF = 2.64 0 15.TOTAL a2ND + AROOF A15.TOTAL = 0.793in R15.TOTAL = 1.26 le Iti LATERAL DESIGN BUILDING FOUR Rigidity R03.xmcd 11/16/2005 12:54 PM • LATERAL DESIGN PANEL RIGIDITY: = 1000•k Ec = 4030509psi MA PANEL 16 AND 31: 2ND FLOOR - 9.25•in n�ri (h-1) = 17.333 AL= 17.1667 d P = 1.01 = 4I a1 I + 3• d1 e1 = 0.192in 1 c l 3 • = 9.5833 = 17.1667 d2 = 0.56 ,Q,$ j= e1 - E� h \d2 + 3 d2 e2 = 0.142in = 9.5833 kW= 3.6667 3 2.61 EP [(h3)3 + 3 d3 e3 = 0.689in • c h • d 3 3 = 9.5833 = 2.8333 4 = 3.38 = E P [(h4)3 + 3 d e4 = 1.31 in • C h d4 4 1 Aar e2+ 1 1 '2ND = 0.594in - + - '3 '4 R2ND = 1.68 PANEL 16 AND 31: ROOF h := 9.25-in nn� h1 p rh113 h1 • J 15.667 = 17.1667 d = 0.91 = E h 4 d J I + 3• a e1 = 0.155in 1 c 1 1 3 h2 P h2 h2 u= 15.667 = 17.1667 d = 0.91 e1 Ec h • d2 + 3• d A2 = 0.061 in 3 = 9.5833 •= 3.6667 3 = 2.61 E C h L d 3 I + 3• d 3 h4 P 4 J e3 = 0.689in • l J 3 t �.= 9.5833 = 2.8333 d = 3.38 ; = Eh d + 3• e4 = 1.31 in 4 • c 4 ) 4 1 mow- e2 + 1 1 'ROOF = 0.513in - + - '3 '4 RROOF = 1.95 '16.TOTAL : = '2ND +'ROOF '16.TOTAL = 1.106in R16.TOTAL = 0.9 to 199 LATERAL DESIGN BUILDING FOUR Rigidity R03.xmcd 11/16/2005 12:54 PM LATERAL DESIGN PANEL RIGIDITY: P := 1000k E = 4030509psi PANEL 19: 2ND FLOOR h := 9.25•in nnn hi U= 17.333 = 25 d1 = 0.69j= E C h • 4 di + 3.- 1 e1 = 0.092in 1 1J 1 h2 p h21 h2 i = 9.5833 =25 d2 =0.38 hAaj =e1- Ech• (d2I +3•- e2 = 0.059in h3 3 = 9.5833 = 2.6667 d = 3.59 ,e j= EPh [(h3j3 + 3• d e3 = 1.534in 3 c d3 3 3 h] = 9.5833 kw= 3 d 4 = 3.19 = E� • h • [(h4)d + 3• d4 e4 = 1.131 in 1 ^- e2 + 1 1 e2ND = 0.71 in A3 e4 R2ND = 1.41 PANEL 19: ROOF h := 9.25•in Am h1 p (h1) h1 h - 15.667 d 25 - = 0.63 e 4 - + 3.- e1 = 0.077in nnanJ nn�nj di ,j 25 E hh di d1 3 = 15.667 =25 A ek= +3dZ e2= 0.02in 3 J U= 9.5833 = 2.6667 d = 3.59 EPh d3 + 3• tl e3 = 1.534in 3 c 3) 3 3 = 9.5833 3 d4 = 3.19 E c h [(hd4 4j4 + 3• d4 e4 = 1.131 in 1 � ni =e2+ 1 1 ROOF = 0.671in A3 e4 RROOF = 1.49 e19.TOTAL e2ND + ROOF e19.TOTAL = 1.381 in R19.TOTAL = 0.72 VA- LATERAL DESIGN BUILDING FOUR Rigidity R03.xmcd 11/16/2005 12:54 PM .` LATERAL DESIGN PANEL RIGIDITY: P := 1000•k Ec = 4030509 psi PANEL 23: 2ND FLOOR h := 9.25•in nnA 3 h] Au= 17.333 = 15.8333 d1 = 1.09 E P h 4 d 1 + 3•d e1 = 0.229in 1 c 1 ) 1 3 = 9.5833 = 15.8333 d2 = 0.61 �Qay= Al - E h \d2 + 3• d2 42 = 0.174in 3 = 9.5833 = 3.5 d3 = 2.74 =EPh d3 + 3• d3 43 = 0.771 in d3 c 3 3 = 9.5833 U= 3 h4 = 3.19 hk= P [(4)3 + 3• h4 04 = 1.131 in - d4 Ech d4 d4 1 ,aupe 1 1 A2ND = 0.633in - + - 4 3 0 4 R2ND = 1.58 PANEL 23: ROOF h := 9.25•in AAA hi p (h1)3 h1 1 15.667 c= 15.8333 d1 = 0.99 = Ec h 4I + 3•d Al = 0.184in AWV 1 3 = 15.667 = 15.8333 d2 = 0.99 = A l - E h C d 2 J + 3• d A2 = 0.078in h3 p h3 3 h3 U= 9.5833 = 3.5 - = 2.74 ,� = Ec•h [(d3) + 3• d3 43 = 0.771 in d3 h4 p h41 1 l h F .;= 9.5833 =3 d4 =3.19 ;= Ech I- +3.- 44 1.131in A^;_ 42 + 1 1 AROOF = 0.536in - + - A3 A4 RROOF = 1.86 A23.TOTAL A2ND + AROOF A23.TOTAL = 1.169in R23.TOTAL = 0.86 k• KW LATERAL DESIGN BUILDING FOUR Rigidity R03.xmcd 11/16/2005 12:54 PM LATERAL DESIGN PANEL RIGIDITY: P := 1000•k Ec= 4030509psi PANEL 24 AND 25: 2ND FLOOR 1= 9.25•in 3 h h = 17.333 U= 29.333 dl = 0.59 = EPn • 4 (di 1 + 3• d 1 Al = 0.07in 1 • c 1 3 = 9.5833 U. 29.333 d2 = 0.33 4 Al - EP h • (d2) + 3- d2 A2 = 0.042in U= 9.5833 U =3 3 =3.19 4= P [(h3)3 +3•- A3 = 1.131in d3 Eh • d c 3 d3 r 3 h] = 9.5833 = 3 4 = 3.19 A te= EP • I d + 3• d 4 A4 = 1.131 in d 4 • C ` 4 4 1 = A + 1 1 A 2ND = 0.608in A3 A4 R2ND = 1.64 PANEL 24 AND 25: ROOF h := 9.25•in NA hi P (h1) h1 = 15.667 U= 29.333 dl = 0.53 = Ec h 4 d1 + 3 dl Al = 0.059in mmi 3 = 15.667 = 29.333 d2 = 0.53 ;= Al - E� h (d2 + 3. d2 A2 = 0.012in h3 p rrh31 h31 U. 9.5833 U= 3 d3 = 3.19 hk= E d3 + 3.- d3 A3 = 1.131 in h4 [(h4)3 h41 c= 9.5833 kw=3 d = 3.19 _ E • •h• d J +3• J A4 = 1.131in 1 n WN= A2 + 1 1 AROOF = 0.578in - + - A3 A4 RROOF = 1.73 A24.TOTAL A2ND + AROOF A24.TOTAL = 1.186in R24.TOTAL = 0 k10 LATERAL DESIGN BUILDING FOUR Rigidity R03.xmcd 11/16/2005 12:54 PM LATERAL DESIGN PANEL RIGIDITY: P := 1oo0•k Ec= 4030509psi SHEAR WALL 3.5: 2ND FLOOR h := 9.25.in nvn rr 11 = 15 19.6667 1 = 0.76 4 Z = E c h • 4I d1 J + 3•d1 Al = 0.109in e= e1 e2ND = 0.109in R2ND = 9.18 SHEAR WALL 3.5: ROOF h := 9.25.in nnn h2 i (h21 h2 147 15 = 19.6667 = 0.76 E 4 d J I + 3• e2 = 0.109in 2 Ech 2 2 2 a ROOF = 0.109in RROOF = 9.18 e45.TOTAL e2ND + ROOF e45.TOTAL = 0.218in R45.TOTAL = 4.59 ' Al LATERAL DESIGN BUILDING FOUR Rigidity R03.xmcd 11/16/2005 12:54 PM LATERAL DESIGN PANEL RIGIDITY: P := 1000•k Ec= 4030509psi SHEAR WALL 6: 2ND FLOOR 1= 9.25•in 3 = 15 = 20.333 d1 = 0.74 Ec Ph 4 d 1 1 + 3• d1 Al = 0.102in 1 n' = A2ND = 0.102in R2ND = 9.76 SHEAR WALL 6: ROOF h := 9.25•in rnn h2 p (h21 h2 17 =1.25 = — 4 +3• 42= 0.31in d 2 c d JI 2 2 4)$ 42 ROOF = 0.31 in RROOF = 3.22 4 55.TOTAL 4 2ND + ROOF 4 55.TOTAL = 0.413in R55.TOTAL = 2.42 • N-4, , i tlet -1 V. t(042 17o ago 14.0 oar C ri- k,db I 9 ! It I 11 I ! I �� w, o.49 , , Oo c.1 I I I I 8 ail � 1 ...,, 1 p '%,11- :) ,I 4 : - 4m it tgari " .. . hM - �_ l' E 1.4.... fi�O - -_..., -- ' acr _. -• -1111m _ °ddb EA '� �- „r,..� 1-1 l�(o i lf Dili% N(9 it ego # 1 . ill' ! - I 1'MO.Rl It ,. is 1 - ► I I I pO 1 I(c c, 11 1 (., ( ) ( : J ( ,i ) .FGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6960 S.W. YARNS ST., SUITE 200 TIGARD, OREGON 97223 Cr (503) 620 -3030, FAX 620 -5539 SHEET OF BUILDING FOUR North South Roof Distribution R04.xls 11/16/2005 LATERAL DESIGN 4:42 PM HORIZONTAL DISTRIBUTION: RIGID ROOF NORTH SOUTH DIRECTION DISTRIBUTION OF ULTIMATE LATERAL FORCES SHEAR = 160.00 k accidental x-ecc = 10.00 accidental y -ecc = 4.75 ex = 12.62 ey = 9.99 TORSION = 1598 ft-k Direct Torsion Total WALL Rx Ry dx dy Rd Rd2 FV FT FV + FT PANEL 1 0.09 0.00 0.00 -16.99 -2 2 1.09 -0.02 1.09 PANEL 2 0.00 1.03 93.30 0.00 96 9235 0.00 1.00 1.00 PANEL 3 0.99 0.00 0.00 -36.99 -37 1341 12.00 -0.38 12.00 PANEL 4 0.00 0.09 72.80 0.00 7 43 0.00 0.07 0.07 PANEL 5 1.40 0.00 0.00 -41.99 -59 3456 16.97 -0.61 16.97 PANEL 7 1.40 0.00 0.00 -41.99 -59 3456 16.97 -0.61 16.97 PANEL 8 0.84 0.00 0.00 -41.99 -35 1244 10.18 -0.37 10.18 PANEL 9 0.84 0.00 0.00 -41.99 -35 1244 10.18 -0.37 10.18 PANEL 10 0.71 0.00 0.00 -41.99 -30 889 8.61 -0.31 8.61 PANEL 11 0.00 0.09 -76.20 0.00 -7 47 0.00 -0.07 0.00 PANEL 12 0.99 0.00 0.00 -36.99 -37 1341 12.00 -0.38 12.00 PANEL 13 0.00 1.03 -96.70 0.00 -100 9920 0.00 -1.04 0.00 PANEL 14 0.09 0.00 0.00 -16.99 -2 2 1.09 -0.02 1.09 PANEL 15 0.00 1.26 - 102.20 0.00 -129 16582 0.00 -1.34 0.00 PANEL 16 0.00 0.90 - 102.20 0.00 -92 8460 0.00 -0.96 0.00 PANEL 17 0.09 0.00 0.00 27.01 2 6 1.09 0.03 1.12 ' PANEL 18 0.00 1.03 -96.70 0.00 -100 9920 0.00 -1.04 0.00 PANEL 19 0.72 0.00 0.00 52.01 37 1402 8.73 0.39 9.12 PANEL 20 0.71 0.00 0.00 52.01 37 1364 8.61 0.39 8.99 PANEL 21 0.00 0.09 -56.20 0.00 -5 26 0.00 -0.05 0.00 PANEL 22 0.00 0.09 -16.20 0.00 -1 2 0.00 -0.02 0.00 PANEL 23 0.86 0.00 0.00 52.01 45 2001 10.42 0.47 10.89 PANEL 24 0.84 0.00 0.00 52.01 44 1909 10.18 0.46 10.64 PANEL 25 0.84 0.00 0.00 52.01 44 1909 10.18 0.46 10.64 PANEL 26 0.71 0.00 0.00 52.01 37 1364 8.61 0.39 8.99 PANEL 27 0.00 0.09 72.80 0.00 7 43 0.00 0.07 0.07 PANEL 28 0.99 0.00 0.00 46.51 46 2120 12.00 0.48 12.48 PANEL 29 0.00 1.03 93.30 0.00 96 9235 0.00 1.00 1.00 PANEL 30 0.09 0.00 0.00 26.51 2 6 1.09 0.02 1.12 PANEL 31 0.00 0.90 98.80 0.00 89 7907 0.00 0.93 0.93 PANEL 32 0.00 1.26 98.80 0.00 124 15497 0.00 1.30 1.30 SHEAR 3.5 0.00 4.59 32.80 0.00 151 22666 0.00 1.57 1.57 SHEAR 6 0.00 2.42 -56.20 0.00 -136 18497 0.00 -1.42 0.00 EPi; 13.20 EP82 153135 160.00 0.00 EPw 15.90 V 4O kAng-ft. Or /MN 400142- vivtit. i•nclaV ;tee : -w 4tew v • I Co Ir- 00 , 03,. 1.1.0 oat • 1 ' t k 017 LII DI V 1 I Fel ,..- 1 — ti I, ----,.- i. - . ,..p vu ,.. —1.0 I.. . . •Tiloo, • ... 4-- , 1 I ak, Vq ! ve 4,, i660 oil 11 cbiki_ 4040 c , 01 Fir 1 1 otil a, I „ will • ID oft, 1 1 ) .. . i i i.01 i , __._. _____ __ rt. 006r 1 , i _ . .. , . 1 ! I ! 1 . 4 ,--r 1 ! I ! 1 -- --,, 41117 4 riN ! 1 1 '- , -- .. 1- ------ pm-. _ . ,... 1 ‘1.2--"I'll • - munT - ---L-_____:_: ___ __„___, _ .. d.,:i!t Ej PI I ko 1 ' I 040 • . „,. .., orl rj . ate -4--- 17, c„ 0 i.00 1 • — 0.11 i•CoP ,.._ - 1 __ 137 I rid . : , b '2,. l' -- =Mr"' tal VIZP 1 . i . , : . . ( 1 ) FGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6960 S.W. VARNS ST., SUITE 200 TIGARD, OREGON 97223 (503) 620•3030, FAX 620.5539 SHEET V OF 4 t 1 BUILDING FOUR East West Roof 1 Distribution R04.xls 1 11/16/2005 LATERAL DESIGN 4:42 PM HORIZONTAL DISTRIBUTION: RIGID ROOF EAST WEST DIRECTION DISTRIBUTION OF ULTIMATE LATERAL FORCES SHEAR = 59.30 k accidental x-ecc = 3.30 accidental y -ecc = 4.75 ex = 12.40 ey = 5.83 TORSION = 735 ft-k Direct Torsion Total WALL Rx Ry dx dy Rd Rd2 FV FT FV + FT PANEL 1 0.09 0.00 0.00 -23.27 -2 4 0.00 -0.05 0.00 PANEL 2 0.00 1.03 29.98 0.00 31 954 6.79 0.70 7.49 PANEL 3 0.99 0.00 0.00 - 43.27 -43 1835 0.00 -0.97 0.00 PANEL 4 0.00 0.09 9.48 0.00 1 1 0.59 0.02 0.61 PANEL 5 1.40 0.00 0.00 -48.27 -68 4567 0.00 -1.53 0.00 PANEL 25 0.84 0.00 0.00 0.00 0 0 0.00 0.00 0.00 PANEL 26 0.71 0.00 0.00 0.00 0 0 0.00 0.00 0.00 PANEL 27 0.00 0.09 9.48 0.00 1 1 0.59 0.02 0.61 PANEL 28 0.99 0.00 0.00 40.23 40 1586 0.00 0.90 0.90 PANEL 29 0.00 1.03 29.98 0.00 31 954 6.79 0.70 7.49 PANEL 30 0.09 0.00 0.00 20.23 2 3 0.00 0.04 0.04 PANEL 31 0.00 0.90 35.48 0.00 32 1020 5.94 0.72 6.66. PANEL 32 0.00 1.26 35.48 0.00 45 1999 8.31 1.01 9.32 SHEAR 3.5 0.00 4.59 -30.52 0.00 -140 19624 30.28 -3.16 _ 30.28 EPA 5.11 EPS2 32547 59.30 -1.60 EP i 8.99 to /I/10 . BUILDING FOUR East West Roof 3 Distribution R04.xls 11/16/2005 LATERAL DESIGN 4:55 PM HORIZONTAL DISTRIBUTION: RIGID ROOF EAST WEST DIRECTION DISTRIBUTION OF ULTIMATE LATERAL FORCES SHEAR = 46.10 k accidental x -ecc = 2.30 accidental y -ecc = 4.75 ex= 4.59 ey= 10.17 TORSION = 211 ft -k Direct Torsion Total WALL Rx Ry dx dy Rd Rd2 FV FT FV + FT PANEL 10 0.71 0.00 0.00 44.66 32 1005 0.00 0.63 0.63 PANEL 11 0.00 0.09 -7.07 0.00 -1 0 0.61 -0.01 0.61 PANEL 12 0.99 0.00 0,00 39.66 39 1542 0.00 0.78 0.78 PANEL 13 0.00 1.03 13.43 0.00 14 191 6.96 0.28 7.24 PANEL 14 0.09 0.00 0.00 19.66 2 3 0.00 0.04 0.04 PANEL 15 0.00 1.26 18.93 0.00 24 569 8.52 0.48 8.99 PANEL 16 0.00 0.90 18.93 0.00 17 290 6.08 0.34 6.42 PANEL 17 0.09 0.00 0.00 -24.34 -2 5 0.00 -0.04 0.00 PANEL 18 0.00 1.03 13.43 0.00 14 191 6.96 0.28 7.24 PANEL 19 0.72 0.00 0.00 -49.34 -36 1262 0.00 -0.71 0.00 PANEL 20 0.71 0.00 0.00 -49.34 -35 1227 0.00 -0.70 0.00 PANEL 21 0.00 0.09 -27.07 0.00 -2 6 0.61 -0.05 0.61 SHEAR 6 0.00 2.42 -27.07 0.00 -66 4291 16.36 -1.31 _ 16.36 EPi; 3.31 EP62 10584 46.10 0.00 UN) 6.82 • l 'V1; WfV W400 . . . II # k • VW $4 4t0 4 4 1 0 S II I 4A radie012 . 0- 9 lagempet4 V P 41 0(#1 7 N . ii N.01 (i) i I . , T . , • . , . . ..... ft J goa ..„....,„ , 1 I ri-0,1 I . g ,• ,.. / ..: il 1 1 0 -,i, 4, -... .__.,.- ., .,... , . : •••- ;I 44 . i •rna, ....., I `, ! .1 . ; SV 4- Flit•eri . 1 .. . ....r.. T 1 _ _ I'M •1,0 .4 I i IR "". , _ — 1 1 1 . , 1 . ....—..• I 1 . — 1 .,••.. . : .,. (!--) _ ' i !. ‘ • :!., I 1 / • i ! I 1 I • • . . ..1 .. *V . t I. 1 1 g I El, al i, 1 1 i a (--) 1 . Fir I 1 ijk I a VI , ! r 1 1 „,____„„ „___,V ""i4? .,. , ., , . .., I Kol 1 A,0% Fl R. ir 0.01 1 -ct , L.f,e, 1 il .....• ... 0 e ® , ct) .. , LFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS 6960 S.W. VARNS ST., SUITE 200 JOB NO TIGARD, OREGON 97223 (503) 620-3030, FAX 620-5539 SHEET t OF 1/6( BUILDING FOUR North South Floor Distribution R04.xls ' 11/17/2005 LATERAL DESIGN 9:15 AM HORIZONTAL DISTRIBUTION: 2ND FLOOR NORTH SOUTH DIRECTION DISTRIBUTION OF ULTIMATE LATERAL FORCES SHEAR = 360.00 k accidental x -ecc = 10.00 accidental y-ecc = 4.75 ex = 14.83 ey = 9.65 TORSION = 3476 ft -k Direct Torsion Total WALL Rx Ry dx dy Rd Rd2 FV FT FV + FT PANEL 1 0.19 0.00 0.00 -16.83 -3 10 2.69 -0.01 2.69 PANEL 2 0.00 2.01 - 100.93 0.00 -203 41156 0.00 -0.91 0.00 PANEL 3 1.93 0.00 0.00 -36.93 -71 5080 27.33 -0.32 27.33 PANEL 4 0.00 0.19 -80.43 0.00 -15 234 0.00 -0.07 _ 0.00 PANEL 5 2.67 0.00 0.00 -41.83 -112 12474 37.81 -0.50 37.81 PANEL 7 2.67 0.00 0.00 -41.83 -112 12474 37.81 -0.50 37.81 _ PANEL 8 1.65 0.00 0.00 -41.83 -69 4764 23.37 -0.31 23.37 PANEL 9 1.65 0.00 0.00 -41.83 -69 4764 23.37 -0.31 23.37 PANEL 10 1.32 0.00 0.00 -41.83 -55 3049 18.69 -0.25 18.69 PANEL 11 0.00 0.19 68.57 0.00 13 170 0.00 0.06 0.06 PANEL 12 1.93 0.00 0.00 -36.83 -71 5053 27.33 -0.32 27.33 PANEL 13 0.00 2.01 89.07 0.00 179 32052 0.00 0.80 0.80 PANEL 14 0.19 0.00 0.00 -16.83 -3 10 2.69 -0.01 2.69 PANEL 15 0.00 2.42 94.57 0.00 229 52377 0.00 1.02 1.02 PANEL 16 0.00 1.68 94.57 0.00 159 25242 0.00 0.71 0.71 PANEL 17 0.19 0.00 0.00 27.17 5 27 2.69 0.02 2.71 _ PANEL 18 0.00 2.01 89.07 0.00 179 32052 0.00 0.80 0.80 PANEL 19 1.41 0.00 0.00 52.17 74 5411 19.97 0.33 20.30 PANEL 20 1.32 0.00 0.00 52.17 69 4742 18.69 0.31 19.00 PANEL 21 0.00 0.19 48.57 0.00 9 85 0.00 0.04 0.04 PANEL 22 0.00 0.19 8.57 0.00 2 3 0.00 0.01 0.01 PANEL 23 1.58 0.00 0.00 52.17 82 6794 22.38 0.37 22.74 PANEL 24 1.64 0.00 0.00 52.17 86 7320 23.23 0.38 23.61 PANEL 25 1.64 0.00 0.00 52.17 86 7320 23.23 0.38 23.61 PANEL 26 1.32 0.00 0.00 52.17 69 4742 18.69 0.31 19.00 PANEL 27 0.00 0.19 -80.43 0.00 -15 234 0.00 -0.07 0.00 PANEL 28 1.93 0.00 0.00 46.67 90 8113 27.33 0.40 27.74 PANEL 29 0.00 2.01 - 100.93 0.00 -203 41156 0.00 -0.91 0.00 PANEL 30 0.19 0.00 0.00 26.67 5 26 2.69 0.02 2.71 PANEL 31 0.00 1.68 - 106.43 0.00 -179 31970 0.00 -0.80 0.00 PANEL 32 0.00 2.42 - 106.43 0.00 -258 66337 0.00 -1.15 0.00 SHEAR 3.5 0.00 9.18 -40.43 0.00 -371 137750 0.00 -1.66 0.00 SHEAR 6 0.00 9.76 48.57 0.00 474 224717 0.00 2.12 2.12 ERx 25.42 ERd2 777707 360.00 0.00 ERy 36.13 s L 44 to141944/ Otlyk,1■1 : . . 4 414 %A:1 LegoVS. • . /11W1/ .R/0917.• : V etr�k- 0 il t.(..e.7 ailif 01 h 01 LI Ed 1=3 Fi 4,.0 ( .., P , ri g1127 N, /10• -:}, ■. 1.24, , 1 gl' ' S A/ cti(o „i 91 _ 1 . (--) lA 4-1 --. --- :.... • ,,, : 8... nu., ..., 0.m g 0 - t i 'I I *e'gl .........,„..... . .:. F1A,.bi . , .. I _; ., 1. .., -.:,...,., , c1.1.27 i 1 - - • W , I I ', , 0•I t ilf° I t . ll, ..,.. ,,.., ..., . • a 1 1 1 1 I ........,...., i ../ i ______ ! . E , A.b1 k s,g i t — 4 (:) — ....,,....... F ' - A 44; .. I I o ....4---. 1 ( . ; 1 -- 11F 2111 11 1 .L .111 t 1 112I - I ■ .0i 1 ivot 0 to_ 0,1 :I (7) 9 0 a LFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS 6980 S.W. VARNS ST., SUITE 200 JOB NO TIGARD, OREGON 97223 (503) 820-3030, FAX 620-5539 SHEET V OF 1,67 BUILDING FOUR East West Floor Distribution R04.xls 11/17/2005 LATERAL DESIGN 9:10 AM HORIZONTAL DISTRIBUTION: 2ND FLOOR EAST WEST DIRECTION DISTRIBUTION OF ULTIMATE LATERAL FORCES SHEAR = 360.00 k accidental x -ecc = 10.00 accidental y -ecc = 4.75 ex = 14.83 ey = 9.65 TORSION = 5340 ft -k Direct Torsion Total WALL Rx Ry dx dy Rd Rd2 FV FT FV + FT PANEL 1 0.19 0.00 0.00 -16.83 -3 10 0.00 -0.02 0.00 PANEL 2 0.00 2.01 100.93 0.00 203 41156 20.03 1.39 21.42 PANEL 3 1.93 0.00 0.00 -36.93 -71 5080 0.00 -0.49 0.00 PANEL 4 0.00 0.19 80.43 0.00 15 234 1.89 0.10 2.00 PANEL 5 2.67 0.00 0.00 -41.83 -112 12474 0.00 -0.77 0.00 PANEL 7 2.67 0.00 0.00 -41.83 -112 12474 0.00 -0.77 0.00 PANEL 8 1.65 0.00 0.00 -41.83 -69 4764 0.00 -0.47 0.00 PANEL 9 1.65 0.00 0.00 -41.83 -69 4764 0.00 -0.47 0.00 PANEL 10 1.32 0.00 0.00 -41.83 -55 3049 0.00 -0.38 0.00 PANEL 11 0.00 0.19 -68.57 0.00 -13 170 1.89 -0.09 1.89 PANEL 12 1.93 0.00 0.00 -36.83 -71 5053 0.00 -0.49 0.00" PANEL 13 0.00 2.01 -89.07 0.00 -179 32052 20.03 -1.23 20.03'. PANEL 14 0.19 0.00 0.00 -16.83 -3 10 0.00 -0.02 0.00 PANEL 15 0.00 2.42 -94.57 0.00 -229 52377 24.11 -1.57 24.11 PANEL 16 0.00 1.68 -94.57 0.00 -159 25242 16.74 -1.09 16.74 PANEL 17 0.19 0.00 0.00 27.17 5 27 0.00 0.04 0.04 i PANEL 18 0.00 2.01 -89.07 0.00 -179 32052 20.03 -1.23 20.03 PANEL 19 1.41 0.00 0.00 52.17 74 5411 0.00 0.51 0.51 _ PANEL 20 1.32 0.00 0.00 52.17 69 4742 0.00 0.47 0.47 PANEL 21 0.00 0.19 -48.57 0.00 -9 85 1.89 -0.06 1.89__ PANEL 22 0.00 0.19 -8.57 0.00 -2 3 1.89 -0.01 1.89 PANEL 23 1.58 0.00 0.00 52.17 82 6794 0.00 0.57 0.57 PANEL 24 1.64 0.00 0.00 52.17 86 7320 0.00 0.59 0.59 PANEL 25 1.64 0.00 0.00 52.17 86 7320 0.00 0.59 0.59 PANEL 26 1.32 0.00 0.00 52.17 69 4742 0.00 0.47 0.47 PANEL 27 0.00 0.19 80.43 0.00 15 234 1.89 0.10 2.00 PANEL 28 1.93 0.00 0.00 46.67 90 8113 0.00 0.62 0.62 PANEL 29 0.00 2.01 100.93 0.00 203 41156 20.03 1.39 21.42 PANEL 30 0.19 0.00 0.00 26.67 5 26 0.00 0.03 0.03 PANEL 31 0.00 1.68 106.43 0.00 179 31970 16.74 1.23 17.97 PANEL 32 0.00 2.42 106.43 0.00 258 66337 24.11 1.77 25.88 SHEAR 3.5 0.00 9.18 40.43 0.00 371 137750 91.47 2.55 94.02 SHEAR 6 0.00 9.76 -48.57 , 0.00 -474 224717 97.25 -3.26 97.25 _ ERx 25.42 ERd2 777707 360.00 0.00 ERy 36.13 ka 4 • BUILDING FOUR North South Flom Distribution R04.xls . - 11/17/2005 i ' LATERAL DESIGN 9 : 02AM HORIZONTAL DISTRIBUTION: 2ND FLOOR NORTH SOUTH DIRECTION CENTER OF MASS name W x y Wx Wy PANEL 1 6.00 2.5 -69.0 15 -414 PANEL 2 24.00 5.5 -79.0 132 -1896 PANEL 3 27.50 15.5 -89.0 426 -2448 PANEL 4 6.50 28.0 -91.5 169 -595 PANEL 5 22.00 34.5 -94.0 759 -2088 WEST ENTRY 9.00 63.0 - 95.5 567 -860 PANEL 7 22.00 91.5 - 94.0 2013 -2068 PANEL 8 39.00 115.0 -94.0 4485 -3666 PANEL 9 36.00 145.5 -94.0 5238 -3384 PANEL 10 18.00 168.0 - 94.0 3024 -1692 PANEL 11 6.00 175.0 -91.5 1050 -549 PANEL 12 25.50 185.5 -89.0 4730 -2270 PANEL 13 24.00 195.5 -79.0 4692 -1896 PANEL 14 6.00 198.0 -69.0 1188 -414 PANEL 15 32.00 201.0 - 56.0 6432 -1792 PANEL 16 20.00 201.0 -33.5 4020 -670 PANEL 17 8.00 198.0 -25.0 1188 -150 PANEL 18 30.00 195.5 - 13.0 5865 -390 PANEL 19 32.50 183.0 0.0 5948 0 PANEL 20 19.50 162.5 0.0 3169 0 PANEL 21 6.50 155.0 -2.5 1008 -16 EAST ENTRY 9.00 135.0 -8.5 1215 -77 PANEL 22 6.50 115.0 -2.5 748 -16 PANEL 23 19.50 107.5 0.0 2096 0 PANEL 24 . 37.50 85.0 0.0 3188 0 PANEL 25 34.50 55.5 0.0 1915 0 PANEL 26 18.00 33.0 0.0 594 0 PANEL 27 8.00 26.0 -3.0 156 -18 PANEL 28 25.50 15.5 -5.5 395 -140 PANEL 29 24.00 5.5 -15.5 132 -372 PANEL 30 6.00 3.0 -25.5 18 -153 ' PANEL 31 20.00 0.0 -33.5 0 -670 PANEL 32 32.00 0.0 -58.0 0 -1792 ROOF 430.00 36.5 -47.0 15695 -20210 ROOF 800.00 112.0 -49.0 67200 -29400 ROOF 290.00 177.0 -46.0 51330 -13340 EW 1976.50 EWX 200799 EWy -93425 I xcm I 101.59 I ycm I -47.27 CENTER OF RIGIDITY WALL Rx Ry a y yRx xRy PANEL 1 0.19 0.00 0.0 -69.0 -13.11 0.00 PANEL 2 0.00 2.01 5.5 0.0 0.00 11.06 PANEL 3 1.93 0.00 0.0 -89.0 - 171.77 0.00 PANEL 4 0.00 0.19 26.0 0.0 0.00 4.94 PANEL 5 2.67 0.00 0.0 -94.0 - 250.98 0.00 PANEL 7 2.67 0.00 0.0 -94.0 - 250.98 0.00 PANEL 8 1.65 0.00 0.0 -94.0 - 155.10 0.00 PANEL 9 1.65 0.00 0.0 -94.0 - 155.10 0.00 PANEL 10 1.32 0.00 0.0 -94.0 - 124.08 0.00 PANEL 11 0.00 0.19 175.0 0.0 0.00 33.25 PANEL 12 1.93 0.00 0.0 -89.0 - 171.77 0.00 PANEL 13 0.00 2.01 195.5 0.0 0.00 392.96 PANEL 14 0.19 0.00 0.0 -69.0 -13.11 0.00 PANEL 15 0.00 2.42 201.0 0.0 0.00 486.42 PANEL 16 0.00 1.68 201.0 0.0 0.00 337.68 PANEL 17 0.19 0.00 0.0 -25.0 -4.75 0.00 PANEL 18 0.00 2.01 195.5 0.0 0.00 392.96 PANEL 19 1.41 0.00 0.0 0.0 0.00 0.00 PANEL 20 1.32 0.00 0.0 0.0 0.00 0.00 PANEL 21 0.00 0.19 155.0 0.0 0.00 29.45 PANEL 22 0.00 0.19 115.0 0.0 0.00 21.85 PANEL 23 1.58 0.00 0.0 0.0 0.00 0.00 PANEL 24 1.64 0.00 0.0 0.0 0.00 0.00 PANEL 25 1.64 0.00 0.0 0.0 0.00 0.00 PANEL 26 1.32 0.00 0.0 0.0 0.00 0.00 PANEL 27 0.00 0.19 26.0 0.0 0.00 4.94 PANEL 28 1.93 0.00 0.0 -5.5 -10.62 0.00 PANEL 29 0.00 2.01 5.5 0.0 0.00 11.06 PANEL 30 0.19 0.00 0.0 -25.5 -4.85 0.00 PANEL 31 0.00 1.68 0.0 0.0 0.00 0.00 PANEL 32 0.00 2.42 0.0 0.0 0.00 0.00 SHEAR 3.5 0.00 9.18 60.0 0.0 0.00 605.88 SHEAR 6 0.00 9.76 155.0 0.0 0.00 1512.80 ERx 25.42 EyRx -1328 , ERy 38.13 ExRy 3845 i I xcr I 106.43 I ycr I -52.17 1 V eliet r ^7 VIVA/ a ri : WA 00 1 N • kto -0i cX2 l% - (9 o Cdr f 2 0.66 6 (1At1. 0.01,64 CcracW12'xsoccrif, , 0 M* - 4t60 / Q1^( _ eV-0(0 6 11 1� k� b1 `V 0:G., \-00o C' t' 1) ' �•. l.Lja O,�i•, � . 6 1J 4r (crn Z (9VAIo tit e- kortogr pc a o 4J. vt G e 4007 ehm - (kc . (°c.c G -k ,-(%(,) - 0 ( MCNL.A C/f ?G0 k 0.0 ,2(La 60,47 Nl,,W Aiv(p rql. * 5 0 G01 ���1• C9 k "'- - v ti k Z- `000 — o .00 (9 . l �,� y 6 0a91 ( ;) _. /IA v yr S IDerr 46 - 2al 1/S Mr Pic, ip tatitkvick 4 1 14 4 3 e -&. 4X i r1 !rte r <.' torx R'2 0, figs uaFNMu ►FGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6960 S.W. VARNS ST., SUITE 200 TIGARD, OREGON 97223 (503) 620-3030, FAX 620 -5539 SHEET OF •l k•ItV 1 141.1 ►- r uoiop 41 arc fG ,4 440 ‘trik C ).--' Mid'— 4 44,27A1 friv tt$.1 a - - j - -LLY Svet VI t 44 t N kwata 413 (6/) k ekva 4" i s - Ltr 4RY tr7 n V12 S' I O - to v'1 ( L(--& 4 � . 7 1Y DV; 4r us; 4 vC epU otc (vw uw&o - ^ iN LFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6960 S.W. VARNS ST., SUITE 200 TIGARD, OREGON 97223 ^/ (503) 620.3030, FAX 820 -5539 SHEET OF L W -O 1 Qv Wi`CO rW� Cl OW f7P47 i', o . ol,* 93. 'k'1 a"lcav No. X10 1-1 1--i' ! M I i '9 '7 ( IL "r 3 . l' ( 1/ Fj 1 2L GY I 4'' V cylv . 9 t • iwi 1 ti __. W1 4 LEI at', o 1Ayo U II 1, t _ It , Q L :11 AFGHAN ASSOCIATES, INC. BY DATE CONSULTING. ENGINEERS JOB NO 6960 S.W. YARNS ST, SUITE 200 TIGARD, OREGON 97223 3 (503) 620 -3030, FAX 620-5539 SHEET OF • 1 / 44 .• Ca 9.1 -.6 044 dlc1JAI _ -1.98k w m., -3.75k rd. -3.75k -3.69k .95k/ft I I t o_ \ PAAAAAAA.A/Utai M5 -7k -7k 1 4 • Leads: LC 7. 0.9 D + 1.0 E • Results for LC 7, 0.9 D + 1.0 E _ AfghanAssociates, Inc. November 17, 2005 HAMID AFGHAN 4:16 PM . . . .• PANEL [ 2 ] Panel (21R01.r3d r 55.3 • 45.2 -10.5 • 0.4 )-01AP•T CVOriZ 41/1k)fr -3.82k ------- 96k/ft -2.8k 3.75k 111111111111E11111111111111 6 • -5.72 -1. • 68k/ft -4.15' 7k AA! •AA \ L IL:. 1 11AA• 4 • M5 • Loacis:f.6 !Afghan Associates, Inc. I November 17, 2005 HAMID AFGHAN 4:21 PM PANEL [ 2] Panel [21R01.r3d LATERAL DESIGN: SHEAR WALL DESIGN: PANEL I 2 1: SHEAR WALL INFORMATION h := 9.25•in SHEAR WALL THICKNESS H 15•ft HEIGHT OF SHEAR WALL Lw := 34•in LENGTH OF SHEAR WALL = 5000 CONCRETE COMPRESSIVE STRENGTH FOR SLABS AND FOOTINGS (psi) Ec = 4496061 psi MODULUS OF ELASTICITY FOR CONCRETE ,= 60000 YIELD STRENGTH OF STEEL REINFORCEMENT (psi) f ey := Es sy = 0.00207 MAX STEEL STRAIN AT OUTERMOST TENSION REINFORCING Ac 0.003 MAXIMUM ALLOWABLE CONCRETE STRAIN r r f� 40001 P1 := iflfc <4000,0.85, > 8000,0.65,0.85- 0.05•( J _ a1 = 0.8 L L 1000 LOAD COMBINATIONS: 1) 0.9•DL +E Put:_ —0.6•k Madd 0•ft•k ADDITIONAL MOMENT DUE TO UNBALANCED VERTICAL LOADS Vu1 := 9.1•k ULTIMATE DESIGN SHEAR Mu1 := 44.5•ft•k + Madd Mu1 = 45 ftk ULTIMATE DESIGN MOMENT 2) 1.2•DL +E +(f1•L +f2•S) Pu2:= 40.4•k Auk= 0•ft•k ADDITIONAL MOMENT DUE TO UNBALANCED VERTICAL LOADS Vu2 := 10.5•k ULTIMATE DESIGN SHEAR Mu2 := 55.3•ft•k + Madd Mu2 = 55.3 ftk ULTIMATE DESIGN MOMENT rJ- LATERAL DESIGN: SHEAR WALL DESIGN: PANEL 121: LOAD COMBINATION 1: 0.9- DL + E Put = —0.6k 0f1 = 0.9 Mu1 = 45 ftk OVERTURNING MOMENT NA := 6.05•in NEUTRAL AXIS DEPTH COMPRESSION REINFORCEMENT: CONCRETE: „R= 0.85•fo•psi•0.5•NA•h C = 119k NUMBER SIZE SPACING STEEL AREA BAR STRAIN INDIVIDUAL BAR FORCE BAR STRESS n := 2 AtrN= 5 sa := 3•in 2 Asa = 0.62 in esa = 0.00151 fsa = 43.86 ksi Ca = 27.19k n :== —= 0 Agj 5 sb := 7•in 2 Asb = 0 in esb = 0 fsb = 0 ksi Cb = 0 k n :==== 0 a= 5 so := 7•in 2 Asc = 0 in Esc = 0 fsc = 0 ksi Cc = 0 k n :== 0 b nn r := 5 sd := 7•in 2 Asd = 0 i esd = 0 fsd = 0ksi Cd = 0k Ctotal = 27.19k TENSION REINFORCEMENT: NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR STRESS BAR FORCE n ==2 I r: =5 s1: =3•in 2 As1 = 0.62 in est = 0.01237 fs1 = 60ksi Ti = 37.2 k n ==2 Atk 5 52: =7•in 2 Asg = 0.62 in Est = 0.0089 fs2 = 60 ksi T2 = 37.2 k r&= 2 n A = 5 s3 := 7.in 2 Asa = 0.62 in esa = 0.00543 f = 60 ksi T3 = 37.2k n ==2 =5 s4 : =7.in 2 Asq = 0.62 in esq = 0.00196 f54 = 56.8 ksi T4 = 35.22k te n ::==== 0 �b&= 5 s5 := 7-in 2 Ass = 0 in es5 = 0 fs5 = 0 ksi T5 = 0 k Ar ^= 0 = 5 56 := 6•in 2 As8 = 0 i esb = 0 fs6 = 0ksi T6 = 0k r 0 n w:= 5 s7 := 6.75.in 2 As7 = 0 in es7 = 0 fs7 = 0 ksi T7 = 0 k &=0 ) =5 s8:= 6.75.in 2 Asg = 0 in esb = 0 fsb = 0 ksi T8 = 0 k Ttotal = 146.82k EFb :_ (C + Ctotal) — Ttotal EFb = —0.7 k Mn1 = 225 ftk Mn1.design 0f1•Mn1 Mn1.design = 202.3 ft k > Mut = 44.5 ftk LATERAL DESIGN: SHEAR WALL DESIGN: PANEL 121: LOAD COMBINATION 2: 1.2•DL + E + (f1 •L + f2.S) Pu2 = 0f2 = 0.85 Mug = 55 ftk OVERTURNING MOMENT NA := 10.65•in NEUTRAL AXIS DEPTH NVNA COMPRESSION REINFORCEMENT: CONCRETE: C£= 0.85•fc.psi•0.5•NA•h C = 209k NUMBER SIZE SPACING STEEL AREA BAR STRAIN INDIVIDUAL BAR FORCE BAR STRESS rw 2 N = 5 s/= 23•in 2 Asa = 0.62 in Esa = - 0.00348 f = - 100.89 ksi Ca = - 62.55k r�^ =0 la =5 snn�n =7•in Asb =0in Esb =O fsb = Cb =Ok r =0 1,3zs=5 ,,,%= 7.in 2 Asc = 0 in ESC = 0 fsc = 0 ksi C = 0 k 5 0 bM= 5 sAn.= 7-in 2 Asd = 0 in Esd = 0 f = 0 ksi Cd = 0 k n::==0 1 5 se: =8•in 2 A = O in eSe = O fSe = 0 ksi Ce = 0 k TENSION REINFORCEMENT: Ctotal = - 62.55k NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR STRESS BAR FORCE n ==2 bar :=5 A s iv i v = 3•in 2 As1 = 0.62 in es1 = 0.00573 fs1 = 60 ksi Ti = 37.2k kr= 2 = 5 A w= 7.in 2 A = 0.62 in Est = 0.00376 f = 60 ksi T2 = 37.2k n n := = 2 n 5 u= 7-in 2 A = 0.62 in E = 0.00179 f = 51.87 ksi T3 = 32.16k n:: -=2 Am =5 =7•in 2 Asq = 0.62 in Esq = 0 f = 0 ksi Tq = 0 k n::====0 . E.: =5 k 7.in 2 A = 0 i es5 = 0 f = 0ksi T5 = 0k r&= 0 n w= 5 sue 6.in 2 A = 0 i es6 = 0 fs6 = 0ksi T6 = 0k n :==0 h w .: =5 =6•in 2 As7 = 0 in es7 = 0 fs7 = 0 ksi T7 = 0 k n:: -= 0 arN= 5 ,= 6.in 2 Asg = 0 in Es8 = 0 f = 0 ksi T8 = 0 k FF x_ (C + Ctotal) - Ttotal EFb = 40.2 k Ttotal = 106.56k Mn2 = 331 ft k Mn2.design 02 Mn2 Mn2.design = 281 ft k > M = 55 ftk Q� r y LATERAL DESIGN: SHEAR WALL DESIGN: PANEL I21: BOUNDARY AND CONFINEMENT REQUIREMENTS: NOMINAL AXIAL LOAD CAPACITY: Ac := Lw•h Acv = 314.5in EFFECTIVE SECTION AREA OF CONCRETE Ast = 3.1 in TOTAL AREA OF VERTICAL REINFORCING STEEL P := 0.80•[0.85•fc•psi•(Acv — Ast) + f Po = 1208k Pu Pu2 Pu.design ma•Po Pu.design = 845 k > Pu =40.4k 1) P = 40.4k < 0.10•Acv•fc•psi = 157k Po = 1208k NOMINAL AXIAL LOAD CAPACITY P = 40.4 k < 0.35•P0 = 423k WALL CAN BE USED AS SHEAR WALL Mu1 = 1.73 < 1.00 OR 3•Ac, .psi = 67k > V = 9.1 k AND Mu1 2) f = 1.73 < 3.00 Vu1•Lw Vet .Lw WALL EXEMPT FROM BOUNDARY ZONE DETAIL REQUIREMENTS 2 h,Lw 3 Pu2 = 40.4 k Mug = 55 ftk Ac = 314.5in SS 6 S = 1782.167in Pu2 Mu2 MAXIMUM EXTREME COMPRESSION FIBER STRESS fcc ACV + S f = 501 psi ASSUME LINEAR ELASTIC CONDITIONS AND UNCRACKED THEN SPECIAL TRANSVERSE REINFORCEMENT PER IF f = 501 psi < 0.2•fc•psi = 1000psi IS NOT REQUIRED AS BOUNDARY ELEMENT LATERAL DESIGN: SHEAR WALL DESIGN: PANEL 121: HORIZONTAL REINFORCING: 1ll s2.max := minl l 3w 3•h 18.inJJ s2.max = 11.333in MAXIMUM SPACING barno:= 3 REINFORCEMENT SIZE (DIAMETER) Av = 0.11 in AREA OF SHEAR REINFORCING s2 = 8in SPACING OF HORIZONTAL REINFORCEMENT ^sue: 8•in 2A Ph := — Ph = 0.00297 > 0.0025 h•s2 USE #3 TIES AT 8" O.C. REINFORCEMENT FULL HEIGHT OF PIER A�= h•LW Acv= 315in WEB THICKNESS x LENGTH IN DIRECTION OF SHEAR FORCE THEN HORIZONTAL REINFORCING TERMINATING SHEAR WALL IF Vu1 > Acvi EDGES SHALL STANDARD HOOK AROUND EDGE REINFORCING (UBC 97 - 1921.6.2.2) OR U- SHAPED REINFORCING MATCHING THE HORIZONTAL BARS AcvVic•psi = 22k SIZE AND SPACING SHALL LAP- SPLICE WITH HORIZONTAL BARS VERTICAL REINFORCING: 11 sl.max := minl, 3 3•h 18.in)) sl.max = 11.333in MAXIMUM SPACING z= 5 ` REINFORCEMENT SIZE (DIAMETER) A = 0.31 in AREA OF SHEAR REINFORCING Pn := 0.0025 + 0.5•j 2.5 – L W I•(p – 0.0025 Pn = 0.00184 p if(pn < 0.0025,0.0025,if(pn < Ph ,Pn ,Ph)) Pv= 0.0025 s1 = 18In SPACING OF VERTICAL REINFORCEMENT 7•in USE (5) #5 EACH FACE VERTICAL REINFORCING FULL HEIGHT OF PIER NOMINAL SHEAR STRENGTH: Ph = 0.00297 Acv = 315in WEB THICKNESS X LENGTH IN DIRECTION OF SHEAR FORCE Vn := Acv(ac•A• psi + ph•fypsi) Vn = 101 k IC:= Vu1 IC = 0.15 Os•Vn r `O .••• 1it,V • • • • 14.1 • • Results for LC 5, 1.2 D + 1.6 L + 0.5 S Member y Bending Moments (k -ft) *han Associates, Inc. November 17, 2005 HAMID AFGHAN 4:40 PM PANEL [ 2 ] Panel [2] R01.r3d Y X • .•• ,•• ,• • . :•• :.••• ,•• .•• ,•• 91.41 C ute, • • • • Results for LC 6, 1.2 D + 1.0 E + 0.5 L + 0.2 S 'Member y Bending Moments (k-ft) ghan Associates, Inc. November 17, 2005 HAMID AFGHAN 4:40 PM PANEL [ 2 ] Panel [2] R01.r3d rbi4bk/ Lii WV l,t9/47 (fir 'y 'in(9 f -1M' if - n t . 2.; A Y . IM, - iv- a> , i _i_. q ti - Li" I . _VW - -- o iI,m u <6 ltql. 12.6 1 i i 'l . c A FGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6960 S.W. VARNS ST., SUITE 200 TIGARD, OREGON 97223 p ` (503) 620 -3030, FAX 620 -5539 SHEET ` OF . . � , • • ' ` ` . / | ' . Il � | | | . / \ \ �_ � 48.7 po° L �� � l ^- - | �m �� | ��w | • o��__ ^^ ^ ^/y\��^x/v1 «/»` / — p - �n -2.97k -2.97k . �o�r -17.37k -17.37k -18.27k | -U ! ` -- `� ' z»� w ,uv`'���vx`^'vv`wvv"�vv\ 0 �/v`^^/vvv�w~~ vv i ' u | ! i -2.97k �ym ' ' . � � | | | 4 Ai `- | / / ` . � - -- • _ �omcu: • Results tor u:r.000~1.0s _ ___ --- Novomber�T.2O05 �ghonAoxo�000s.Inc. _ .. ___ .. • HAMm t15 PM AFGHAN _ _ ----' po�/vopm,em - -'--- | PANEL -- _- - �- -'__-'_---_- —'-' 0 n t 8�' ^~. ` :■124.6 .• 101.3 -18 ' — 50 84k/ft -2.52k r— ! 1 -5.3K 5k \ Ars A 4AA.AIA A AAAA P '‘ A A A ilis/VVII' A A sv, 11 , 5 6 - - - - - -3.96 -3.96k -29.06k -29.06k -30.56k 5k/ft 2.28 11 .28k 6.75k yv\i/v\twityvVvvIVVVVIIVA Vsi\i‘/N."/V P st'I\ ./635( PF"N4 -3.96 -3.96k -•1 402 LoaCis:1Z + + EEC+ 1 Afghan Associates, Inc. November 17, 2005 • HAMID AFGHAN 1:33 PM PANEL [ 9 ] Panel 191 R01 .r3d LATERAL DESIGN: SHEAR WALL DESIGN: PANEL f 91: SHEAR WALL INFORMATION h := 9.25•in SHEAR WALL THICKNESS Hw:= 15•ft HEIGHT OF SHEAR WALL L := 36•in LENGTH OF SHEAR WALL 5500 CONCRETE COMPRESSIVE STRENGTH FOR SLABS AND FOOTINGS (psi) Ec = 4496061 psi MODULUS OF ELASTICITY FOR CONCRETE = 60000 YIELD STRENGTH OF STEEL REINFORCEMENT (psi) f ey := ey = 0.00207 MAX STEEL STRAIN AT OUTERMOST TENSION REINFORCING Es = 0.003 MAXIMUM ALLOWABLE CONCRETE STRAIN p 1 := I f < 4000, 0.85 , itfc > 8000, 0.65 , 0.85 — 0.05 • I fC 100000) 131 = 0.775 LOAD COMBINATIONS: 1) 0.9•DL +E Pu1 := 39.4•k Madd 0•ft•k ADDITIONAL MOMENT DUE TO UNBALANCED VERTICAL LOADS Vu1 := 8.2•k ULTIMATE DESIGN SHEAR Mu1 := 48.7•ft•k + Madd Mu1 = 49 ftk ULTIMATE DESIGN MOMENT 2) 1.2•DL + E + (f1 •L + f2•S) Pu2:= 101.3•k n y 0•ft•k ADDITIONAL MOMENT DUE TO UNBALANCED VERTICAL LOADS V 18.2•k ULTIMATE DESIGN SHEAR Mug := 124.6•ft•k + Madd Mu2 = 124.6 ftk ULTIMATE DESIGN MOMENT LATERAL DESIGN: SHEAR WALL DESIGN: PANEL 1 91: LOAD COMBINATION 1: 0.9.DL + E Pu1 =39.4k 4f1 =0.86 Mu1 = 49 ft k OVERTURNING MOMENT NA := 6.56•in NEUTRAL AXIS DEPTH COMPRESSION REINFORCEMENT: CONCRETE: £:= 0.85•fc•psi•0.5•NA•h C = 142k NUMBER SIZE SPACING STEEL AREA BAR STRAIN INDIVIDUAL BAR FORCE BAR STRESS n := 2 L 4 i= 5 sa := 2•in p Asa = 0.62 in esa = 0.00209 fsa = 60 ksi Ca = 37.2 k nn:== 2 Anti= 5 sb := 8•in 2 Asb = 0.62 in Esb = 0 fsb = 0 ksi Cb = 0 k n:: —=0 =5 sc: =8•in 2 Asc = 0 in Esc = 0 fsC = 0 ksi Cc = 0 k n::==0 r: =5 sd: =8•in 2 Asd = 0 i Esd = O fsd = 0ksi Cd = 0k Ctotal = 37.2 k TENSION REINFORCEMENT: NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR STRESS BAR FORCE er n := 2 ^ 5 s1 := 2•in 2 As1 = 0.62 in 2 = 0.01255 fs1 = 60 ksi Ti = 37.2 k n == 2 ter := 5 s2 := 8•in 2 Asp = 0.62 in es2 = 0.00889 fs2 = 60 ksi T2 = 37.2 k n ==2 An i= s3: =8•in 2 Asa = 0.62 in Es3 = 0.00523 f = 60 ksi T3 = 37.2 k n := 2 ter: =5 sit : =8•in 2 Asg = 0.62 in es4 = 0.00157 fs4 = 45.62 ksi Tit = 28.29k n::====2 AnNi =5 s5: =8•in 2 Ass = 0.62 in es5 = 0 f = 0 ksi T5 = 0 k n::====0 A&= 5 s6: =6•in 2 Asg = 0 in es6 = 0 fsg = 0 ksi T6 = 0 k �nN. ---- 0 = 5 s7 := 6.75•in 2 As7 = 0 in es7 = 0 fs7 = 0 ksi T7 = 0 k r n := 0 t ry.= 5 sg := 6.75•in 2 Asg = 0 in e = 0 fsg = 0 ksi Tg = 0 k Ttotal = 139.89 k EFb :_ (C + Ctotai) — Ttotal EFb = 39.2 k Mn1 = 292 ftk Mn1.design 4f1•Mn1 d ti Mn1.design = 250.3 ftk > Mu1 = 48.7 ftk LATERAL DESIGN: SHEAR WALL DESIGN: PANEL f 91: LOAD COMBINATION 2: 1.2•DL + E + (ill + f2•S) P = 101.3k •f2 = 0.79 M = 125 ftk OVERTURNING MOMENT NA := 8.55•in NEUTRAL AXIS DEPTH AeM■ COMPRESSION REINFORCEMENT: CONCRETE: ,= 0.85•fc•psi•0.5•NA•h C = 185k NUMBER SIZE SPACING STEEL AREA BAR STRAIN INDIVIDUAL BAR FORCE BAR STRESS v= 2 Nom= 5 sue:= 2-in 2 Asa = 0.62 in esa = 0.0023 fsa = 60ksi Ca = 37.2 k & =0 Nom =5 sue: =8•in 2 Asb = 0 i esb = 0 fsb = 0ksi Cb = 0k r.^.= 0= 5 Ar 8•in 2 Asc = 0 in esc = 0 fsc = 0 ksi Cc = 0 k r&= 0 b a := 5 ssAst.= 8.in 2 Asd =Oin esd =0 fsd =0ksi Cd =0k n:=0 b =5 se: =8•in 2 A = 0 i Ese = 0 fS = 0ksi Ce = 0k TENSION REINFORCEMENT: Ctotal= 37.2k NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR STRESS BAR FORCE n := 2 liar: =5 A kv= 2•in 2 As1 = 0.62 in es1 = 0.00893 fs1 = 60ksi Ti = 37.2k � n:= 2 b rN= 5 s `.= Bin 2 As2 = 0.62 in es2 = 0.00612 f = 60ksi T2 = 37.2k � n := 2 her := 5 u= 8.in 2 A = 0.62 in e = 0.00332 f = 60ksi T3 = 37.2k � n . := 2 rH.= 5 u= 8•in 2 A = 0.62 in es4 = 0.00051 f = 14.75ksi T4 = 9.15k � n N ^:= 0 l r . i = 5 = Bin 2 As5 =0in es5 = fs5 =0ksi T5 =0k i nn := 0 �b r;= 5 sue:= 6•in 2 A = 0 in es6 = 0 f = 0 ksi T6 = 0 k � n � :=0 b �r =6•in 2 As7 = 0 i es7 = 0 f = 0ksi T7 = 0k • � n := 0 ivni= 5 sue:= 6•in 2 Asg = 0 i esg = 0 fsg = 0ksi Tg = 0k F := (C + Ctotal) - Ttotal Fb = 101.3k Ttotal = 120.75 k M = 351 ftk Mn2.design := 4)f2• Mn2 Mn2.design = 277 ftk > M = 125 ftk r t4 LATERAL DESIGN: SHEAR WALL DESIGN: PANEL(91: BOUNDARY AND CONFINEMENT REQUIREMENTS: NOMINAL AXIAL LOAD CAPACITY: Acv := Lwh Acs= 333in EFFECTIVE SECTION AREA OF CONCRETE Ast = 3.1 in TOTAL AREA OF VERTICAL REINFORCING STEEL P := 0.80•[0.85•fc•psi•(A — Ast) + fypsi•A Po = 1383k Pu Pu2 Pu.design @a Pu.design = 968k > P = 101.3k 1) P = 101.3k < 0.10•Acv4c•psi = 183k P = 1383k NOMINAL AXIAL LOAD CAPACITY P = 101.3k < 0.35.P = 484k WALL CAN BE USED AS SHEAR WALL 2) Mu1 = 1.98 < 1.00 OR 3•A . f .psi = 74k > Vu1 = 8.2 k AND Mu1 = 1.98 < 3.00 V V WALL EXEMPT FROM BOUNDARY ZONE DETAIL REQUIREMENTS 2 h• Lw 3 Pu2 = 101.3k Mug = 125 ftk A 333in G 6 S = 1998in S Pu2 Mug MAXIMUM EXTREME COMPRESSION FIBER STRESS — fcc: = A + S f 1053psi ASSUME LINEAR ELASTIC CONDITIONS AND UNCRACKED cv THEN SPECIAL TRANSVERSE REINFORCEMENT PER IF f = 1053psi < 0.2•f = 1100psi IS NOT REQUIRED AS BOUNDARY ELEMENT LATERAL DESIGN: SHEAR WALL DESIGN: PANEL I91: HORIZONTAL REINFORCING: 11 s2.max := minl (3 3•h 18•in)) 5 2ax = 12in MAXIMUM SPACING barn 3 REINFORCEMENT SIZE (DIAMETER) Av = 0.11 in AREA OF SHEAR REINFORCING s2 = 8in SPACING OF HORIZONTAL REINFORCEMENT 8•in 2Av Ph Ph = 0.00297 > 0.0025 h•s2 USE #3 TIES AT 8" O.C. REINFORCEMENT FULL HEIGHT OF PIER Ate= h•Lw Acv = 333in WEB THICKNESS x LENGTH IN DIRECTION OF SHEAR FORCE THEN HORIZONTAL REINFORCING TERMINATING SHEAR WALL IF Vu1 > Acv�c EDGES SHALL STANDARD HOOK AROUND EDGE REINFORCING (UBC 97 - 1921.6.2.2) OR U- SHAPED REINFORCING MATCHING THE HORIZONTAL BARS Acv = 25k SIZE AND SPACING SHALL LAP- SPLICE WITH HORIZONTAL BARS VERTICAL REINFORCING: Lw l si.max := min 3 3•h 18•in)) .max = 12in MAXIMUM SPACING k = 5 REINFORCEMENT SIZE (DIAMETER) A = 0.31 in AREA OF SHEAR REINFORCING Hw Pn := 0.0025 + 0.5.2.5 - I.�Ph - 0.0025) p = 0.00191 w Pv:= if(pn < 0.0025,0.0025,if(pn < Ph Pn.Ph)) Pv= 0.0025 s1 = 18in SPACING OF VERTICAL REINFORCEMENT= 8.in USE (5) #5 EACH FACE VERTICAL REINFORCING FULL HEIGHT OF PIER NOMINAL SHEAR STRENGTH: Ph = 0.00297 Acv= 333in WEB THICKNESS X LENGTH IN DIRECTION OF SHEAR FORCE Vu1 Vn := Acv.(aclic•psi + ph•f Vn = 109k IC:- IC = 0.13 Os•Vn V X1=4, C9N Cv1,0M'L') •2.. a U4' k 1Q11 - 11 A £v < o,°1 C Co1e;1)C 1Kv,- C%xo1:0It) 1 . t‘ C�) k titer ' VI oaf (WA VD' I,40oo A FGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6960 S.W. VARNS ST., SUITE 200 ^w TIGARD, OREGON 97223 vl (503) 620 -3030, FAX 620 -5539 SHEET_ OF Y IZL X - 29.06k 8060'' 47 ,661w - 30.56k - .75k/ft 'N ,„..___\1_/1\/\/4\1\11\/\./V\/1VVV\/\/*/\./\/VVV/VVV\/\/ \I/WV V , / . / \ 132.5 (6 471.2`S"' Lam r Loads: LC 8, 1.2 D + 0.5 L + 1.6 S Results for LC 8, 1.2 D + 0.5 L + 1.6 S Member y Bending Moments (k -ft) .rghan Associates, Inc. November 17, 2005 HAMID AFGHAN 3:02 PM PANEL [ 9 ] Panel [9] R01.r3d r I Y LZL X -50. !'a • - 29.06k - 30.56k -.75k/ 56.6 th/ 49 ' efr (1))1A r5Wor tqdYk ) itt q ( , Loads: LC 8, 1.2 D + 0.5 L + 1.6 S Results for LC 8, 1.2 D + 0.5 L + 1.6 S Member z Shear Forces (k) . ghan Associates, Inc. November 17, 2005 HAMID AFGHAN 3:03 PM PANEL [ 9 ] Panel [9] R01.r3d r ti3 � 1�--° | | | | 40.6 ' \ | | | ) -66.1 � � 1 � c, � Results for LCG.1.2D+1.OE+[i5L+O. S Member z Shear Forces (k) | ..ghan Assoc Inc. November 17, 2005 HAMID AFGHAN 4:42 PM PANEL [ 9 ] Panel [9]R01.mu �=��� L b ekt . qtr valt (9N 6.442.1 &l,vix\( LMb S X121 i �,9 : \ I bC q`-6 v M'V I:1 51 � gc1A-tt v (,ads (U 1164 .14;27 l01 Ii�Ar p o'�,(f✓��,1(�t,q) tit AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6960 S.W. YARNS ST., SUITE 200 TIGARD, OREGON 97223 SHEET__ OF (503) 620-3030, FAX 620-5539 LATERAL DESIGN: PANEL DESIGN: SHEAR WALL 13.51: SHEAR WALL INFORMATION h := 9.25.in SHEAR WALL THICKNESS Hw := 31 .ft HEIGHT OF SHEAR WALL Lw:= 228•in LENGTH OF SHEAR WALL 19 4000 CONCRETE COMPRESSIVE STRENGTH FOR SLABS AND FOOTINGS (psi) Ec = 3834254 psi MODULUS OF ELASTICITY FOR CONCRETE = 60000 YIELD STRENGTH OF STEEL REINFORCEMENT (psi) fypsi ey := Es ey = 0.00207 MAX STEEL STRAIN AT OUTERMOST TENSION REINFORCING = 0.003 MAXIMUM ALLOWABLE CONCRETE STRAIN - 40001 P 1 := i (f < 4000, 0.85 , Ifl r fc > 8000,0.65,0.85 - 0.05 . ( fc J p 1 = 0.85 L 1000 LOAD COMBINATIONS: 1) 0.9•DL +E Pu1 := 61•k Madd 30•ft•k ADDITIONAL ULTIMATE MOMENT DUE TO UNBALANCED VERTICAL LOADS Vu1 := 97.5•k ULTIMATE DESIGN SHEAR M := 2610•ft•k + Madd Mu1 = 2640 ftk ULTIMATE DESIGN MOMENT 2) 1.2•DL +E +(f1•L +f2•S) Pup := 121•k n J= 60•ft•k ADDITIONAL ULTIMATE MOMENT DUE TO UNBALANCED VERTICAL LOADS Vu2 := 97.5•k ULTIMATE DESIGN SHEAR Mu2:= 2610•ft•k+ Madd Mu2 = 2670 ft k ULTIMATE DESIGN MOMENT ‘tvti1 LATERAL DESIGN: PANEL DESIGN: SHEAR WALL f3.51 LOAD COMBINATION 1: 0.9•DL + E Pu1 =6 0f1 =0.89 Mui = 2640 ft k OVERTURNING MOMENT NA := 16.55•in NEUTRAL AXIS DEPTH COMPRESSION REINFORCEMENT: CONCRETE: &= 0.85•fc•psi•0.5•NA•h C = 260k NUMBER SIZE SPACING STEEL AREA BAR STRAIN INDIVIDUAL BAR FORCE BAR STRESS n := 2 b= 5 sa := 2•in 2 Asa = 0.62 in esa = 0.00264 fsa = 60 ksi Ca = 37.2 k & = n J b := 2 b n = 5 s 8•m Asb = 0.62 in esb = 0.00119 fsb =34.43 ksi Cb = 21.35k n:: -= 2 bey= 5 Sc := 8•in 2 Asc= 0.62 in Esc = 0 fsc= 0ksi Cc= 0k n: =2 1 5 sd: =8•in 2 Asd = 0.62 in Esd = 0 fsd = 0 ksi Cd = 0 k Ctotal = 58.55k TENSION REINFORCEMENT: NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR STRESS BAR FORCE n:: --2 ^ bar =5 s1: =2•in 2 As1 = 0.62 in es1 = 0.03797 fs1 = 60 ksi Ti = 37.2k n := 2 l r := 5 s2 := 8•in 2 Asp = 0.62 in es2 = 0.03652 152 = 60 ksi T2 = 37.2 k n := 2 l 5 s3 := Bin 2 Asa = 0.62 in esa = 0.03507 fsa = 60 ksi T3 = 37.2 k n ==2 =5 s4: =8•in 2 AS4 = 0.62 in eS4 = 0.03362 fS4 = 60 ksi T4 = 37.2 k n := 2 M= 5 55 := 8-in A 0.62 in e = 0.03217 f 60ksi T5 37.2k s5= s5- s5= 5= fl := 2 t L;= 4 s6 := 16•in 2 Asb = 0.4in esb = 0.02927 156 = 60ksi T6 = 24k n := 2 y ' := 4 s7 := 16•in 2 As7 = 0.4 in es7 = 0.02637 fs7 = 60 ksi T7 = 24k n := 2 = 4 s8 := 16•in 2 Asg = 0.4 in 658 = 0.02347 fsg = 60 ksi T8 = 24k Ttotal = 258 k EFb :_ (C + Ctotal) - Ttotal EFb = 61k Mn1 = 4661 ftk Mn1.design 4f1•Mn1 Mn1.design = 4127 ftk > Mu1 = 2640 ftk LATERAL DESIGN: PANEL DESIGN: SHEAR WALL (3.51 LOAD COMBINATION 2: 1.2. DL + E + (f1 •L + f2-S) P = 121k 442 = 0.87 M = 2670 ftk OVERTURNING MOMENT NA := 19.75•in NEUTRAL AXIS DEPTH mem COMPRESSION REINFORCEMENT: CONCRETE: &= 0.85•fc•psi•0.5•NA•h C = 311 k NUMBER SIZE SPACING STEEL AREA BAR STRAIN INDIVIDUAL BAR FORCE BAR STRESS nn:: -=2 bar: =5 sue: =2•in 2 Asa = 0.62 in esa = 0.0027 lea = 60ksi Ca = 37.2 k n := 2 M= 5 sue:= 8 • in Asb = 0.62 in esb = 0.00148 fsb = 42.95 ksi Cb = 26.63k n := 2 7 5 A s 4 ,97 8•in 2 Asc = 0.62 in esc = 0.00027 fsc = 7.71 ksi Cc = 4.78 k �n := 2 ?&:= 5 su:= 8•in 2 Asd = 0.62 in esd = 0 fed = 0 ksi Cd = 0 k �n:= 2 b rN= 5 se := 8•in 2 Ase = 0.62 in cSe = 0 fSe = 0 ksi Ce = 0 k TENSION REINFORCEMENT: Dotal = 68.61k NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR STRESS BAR FORCE �nN. -- 2N= 5 A w= 2•in 2 As1 = 0.62 in es1 = 0.03133 fs1 = 60ksi Ti = 37.2k ^ n:: -- 2 = 5 sue:= Bin As2 = 0.62 in es2 = 0.03011 fs2 = 60ksi T2 = 37.2 k ^ n N. ---- 2 tgrN= 5 u= 8in Asa = 0.62 in se3 = 0.0289 fs3 = 60ksi T3 = 37.2k ^ n := 2 = 5 sue:= 8in 2 As4 = 0.62 in 44 = 0.02768 fe4 = 60ksi T4 = 37.2k ^ n� N ---- 2 M.- y - 5= 8•in 2 Ass = 0.62 in es5 = 0.02647 fs5 = 60ksi T5 = 37.2k n := 2 ww= 4 so 16•in 2 Asb = 0.4 in es6 = 0.02404 fsb = 60ksi T6 = 24k 2N= 4 = 16•in 2 As7 = 0.4111 es7 = 0.02161 fs7 = 60ksi T7 = 24k n := 2 bow.= 4 Aft= 16•1n 2 Asb = 0.4 in es8 = 0.01918 fsb = 60ksi T8 = 24k = (C + Ctotal) - Ttotal EFb = 121 k Ttotal = 258 k go? Mn2 = 5172 ftk Mn2.design 0f2•Mn2 Mn2.design = 4507 ftk > Mu2 = 2670 ft k r 40 LATERAL DESIGN: PANEL DESIGN: SHEAR WALL f3.51 BOUNDARY AND CONFINEMENT REQUIREMENTS: NOMINAL AXIAL LOAD CAPACITY: A L„yh Aoy= 2109in EFFECTIVE SECTION AREA OF CONCRETE Ast = 7.4 in 2 TOTAL AREA OF VERTICAL REINFORCING STEEL Po := 0.80•[0.85•fo•psi•(Ao — Ast) + fypsi•Asf] P = 6072k Pu := Pu2 Pu.design 4a•Po Pu.design = 4250k > P = 121 k 1) P = 121k < 0.10•Aoyfo•psi = 844k Po = 6072k NOMINAL AXIAL LOAD CAPACITY P = 121 k < 0.35•P0 = 2125k WALL CAN BE USED AS SHEAR WALL Mu1 1.43 < 1.00 OR 3•Ao,f• = 400k > Vu1 = 97.5k AND Mu1 2) = = 1.43 < 3.00 Vu1 Lw Vu1•Lw WALL EXEMPT FROM BOUNDARY ZONE DETAIL REQUIREMENTS 2 h• Lw 3 Put = 61 k M = 2640 ft k Aoy = 2109in 6 S = 80142in Put Mu1 MAXIMUM EXTREME COMPRESSION FIBER STRESS f — + — f = 424 psi ASSUME LINEAR ELASTIC CONDITIONS AND UNCRACKED A S THEN SPECIAL TRANSVERSE REINFORCEMENT IF foo= 424 psi < 0.2•fo•psi = 800 psi IS NOT REQUIRED FOR BOUNDARY ELEMENT LATERAL DESIGN: PANEL DESIGN: SHEAR WALL 13.51 HORIZONTAL REINFORCING: 11 s2.max mint 3 3•h 18•i s2.max = 18In MAXIMUM SPACING barn° := 4 REINFORCEMENT SIZE (DIAMETER) Av = 0.2in AREA OF SHEAR REINFORCING s2 = 16in SPACING OF HORIZONTAL REINFORCEMENT s 16in 2Av Ph Ph = 0.0027 > 0.0025 h•s2 USE #4 AT 16" O.C.EACH FACE HORIZONTAL REINFORCEMENT FULL HEIGHT OF WALL Ate= h•Lw Ac = 2109in WEB THICKNESS x LENGTH IN DIRECTION OF SHEAR FORCE � THEN HORIZONTAL REINFORCING TERMINATING SHEAR WALL IF Vu1 > A CV•V 'c EDGES SHALL STANDARD HOOK AROUND EDGE REINFORCING OR U- SHAPED REINFORCING MATCHING THE HORIZONTAL BARS Ac lIc• psi = 133k Vu1 = 97.5k SIZE AND SPACING SHALL LAP- SPLICE WITH HORIZONTAL BARS VERTICAL REINFORCING: 11 sl.max mint 3 3.h 18•inJ I s1•max = 18in MAXIMUM SPACING I �= 4 \ REINFORCEMENT SIZE (DIAMETER) Av= 0.2in AREA OF SHEAR REINFORCING Hw pn := 0.0025 + 0.5. 2.5 - j.(Ph- 0.0025) pn = 0.00259 w Pv:= if(pn < 0.0025,0.0025,if(pn < Ph,Pn,Ph)) Pv= 0.00259 s1 = 16in SPACING OF VERTICAL REINFORCEMENT 16•in USE #4 AT 16" O.C.EACH FACE VERTICAL REINFORCEMENT FULL HEIGHT OF WALL NOMINAL SHEAR STRENGTH: Ph = 0.0027 Acv = 2109in WEB THICKNESS X LENGTH IN DIRECTION OF SHEAR FORCE Vu1 Vn := A°V•(ac. f .psi + ph•fypsi) Vn = 707k IC:- IC = 0.23 4)s•Vn LATERAL DESIGN: veVNv 1cj 4A-tvp(tz v L,PL, cal v O,(D; 7 !orlt C 0.1v k i al/C06 `QJ vtAm fo� 9( -o .o" 6 (( bu vr- - i - ttgrgia) - o (` ) k R 71 ? I ( - (4 J - 6 t 4 C gx w t 11 IsAv Olvocio X v04,6 3 (1006 w - kult.ok P ' l) /11 C M s 27240 0 c (- i/fi✓ /le ; I2711, (14'2,1'4 11,1 evoo .)oC AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 8960 S.W. YARNS ST., SUITE 200 TIGARD, OREGON 97223 SHEET OF (503) 620 -3030, FAX 620-5539 ,l/(r , QM, c i C4vG IPO db� 1v Ivvki 04> ti 1-, cbitz7)C ( 0 IT) # -o' X "tie x 7 v tAAr wt CW th(9 kv% tAkV k h't V,=4-trAfrA �C 7� (431(0)6 cote) ; o_1i % CCi NC' l� co) �M GE V c051�1' (wot 15,09:3 , 004 -0,02' 49' Z 6 -cotes ant, 1 $ AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6960 S.W. VARNS ST., SUITE 200 TIGARD, OREGON 97223 SHEET OF (503) 620 -3030, FAX 620 -5539 f7011:4_10- V v y wiAL C(,'1 C. L) C9'�O k p.1 (evw k , , alA ) :AM Gi0■;) q� O L ' tbk o CkWq A4- 1 64'04'0 - t _D (L2, , 4) bC 1'kZ ik 49.1 (tItibk0. 4- o2C U. 17) , 01(0)0 ), AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 8980 S.W. YARNS ST. SUITE 200 TIGARD, OREGON 97223 SHEET OF (503) 820.3030, FAX 820 -5539 wunof w12_ VetiOatt, Aml ke>19 o-o fv . C [4t3 4 opts 9 r you u 41 CA f\- vt 1190 )( 1 )) ic * l Lk- ofiao N o);, ifo0 b>) 2610 4ierf AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6960 S.W. VARNS ST., SUITE 200 TIGARD, OREGON 97223 (503) 620 -3030, FAX 820 -5539 SHEET C OF 1 1 4 saw \47, irvo ki L °KV �k��v �1 t ti (1 6vP. `(tr fia (e itioD)Wb2.4,) s tld" _ -V' vae ► , • ; r I It. 14w M Ce.°OG(9a)31) ((txv,3 41' NO' AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6960 S.W. VARNS ST., SUITE 200 TIGARD, OREGON 97223 (503) 620-3030, FAX 620 -5539 SHEET__ OF I obg 47+(9 ' I'M!: ' 1, I h-•> y } 60 ___ , i, _ _ 4/0. 4 i' , t • 1- ,1.4. I 401 c l i t u,Vii 29,E (9 IyMI U . ' COO 1` I c4, s i t (67) . V1A. I AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6960 S.W. YARNS ST., SUITE 200 TIGARD, OREGON 97223 (503) 620-3030, FAX 620 -5539 SHEET OF \/41A WoiON- SVral— *4 (, 1.70v. /PO' 1 tf/A7k c' A v V) vve fv s , iY� vv s 4/„0" v me , b(?rtkk — ( a Uey,l rk �'bG�1 lti G VV.,,, (19 6 = oani-ki,o ,FGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS 6960 S.W. VARNS ST., SUITE 200 JOB NO TIGARD, OREGON 97223 QQ (503) 620-3030, FAX 620-5539 SHEET OF '4V LATERAL DESIGN: PANEL DESIGN: SHEAR WALL 16 1: SHEAR WALL INFORMATION h := 9.25•in SHEAR WALL THICKNESS H := 15•ft HEIGHT OF SHEAR WALL Lw:= 144•in LENGTH OF SHEAR jr 5000 CONCRETE COMPRESSIVE STRENGTH FOR SLABS AND FOOTINGS (psi) E = 4286826 psi MODULUS OF ELASTICITY FOR CONCRETE l 60000 YIELD STRENGTH OF STEEL REINFORCEMENT (psi) fypsi ey:= E sy = 0.00207 MAX STEEL STRAIN AT OUTERMOST TENSION REINFORCING s = 0.003 MAXIMUM ALLOWABLE CONCRETE STRAIN p 1 := iry fc < 4000, 0.85 , ifl fc > 8000, 0.65 , 0.85 — 005( fc 100000) 01 = 0.8 LOAD COMBINATIONS: 1) 0.9•DL +E Put := 29.1 .k Madd 0•ft•k ADDITIONAL ULTIMATE MOMENT DUE TO UNBALANCED VERTICAL LOADS V := 43.5•k ULTIMATE DESIGN SHEAR M := 652.5•ft•k + Madd Mu1 = 653 ftk ULTIMATE DESIGN MOMENT 2) 1.2•DL +E +(f1•L +f2•S) Pup := 55.7•k M= 0•ft•k ADDITIONAL ULTIMATE MOMENT DUE TO UNBALANCED VERTICAL LOADS V := 43.5•k ULTIMATE DESIGN SHEAR Mu2:= 652.5•ft•k + Madd Mug = 653 ftk ULTIMATE DESIGN MOMENT LATERAL DESIGN: PANEL DESIGN: SHEAR WALL I6 i LOAD COMBINATION 1: 0.9•DL + E Put = 29.1 k 0f1 = 0.89 Mu1 = 653 ftk OVERTURNING MOMENT NA := 16.6•in NEUTRAL AXIS DEPTH COMPRESSION REINFORCEMENT: CONCRETE: C:= 0.85•fc•psi•0.5•NA•h C = 326k INDIVIDUAL NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR STRESS BAR FORCE n := 0 br = 5 sa := 2.in 2 A = 0 in esa = 0.00264 f = 60 ksi Ca = 0 k n === 0 bar 5 sb := 8-in „, Asb = in esb = 0.00119 f = 34.59 ksi Cb = 0k n::== 0 b 5 sc:= 8.in 2 iwtmi A = 0 in Esc = 0 fsc = 0 ksi Cc = 0 k ^ n n �: ---= 0 bar -= 5 sd := 16-in 2 Awg Asd = 0 in esd = 0 fsd = 0 ksi Cd = 0 k Ctotal = 0 k TENSION REINFORCEMENT: NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR STRESS BAR FORCE n := 2 AG= 5 s1 := 2.in 2 MA As1 = 0.62in es1 = 0.02266 fs1 = 60ksi Ti = 37.2k fl:= 2 ^ barµ.= 5 s2 := 8.in 2 As2 = 0.62 in es2 = 0.02122 fs2 = 60ksi T2 = 37.2 k f= 2 b rN.= 5 s3 := 8.in 2 A = 0.62 in esa = 0.01977 fsa = 60ksi T3 = 37.2k n :--= 2 bar := 5 s4 := 16.in 2 A = 0.62 in e = 0.01688 f = 60ksi T4 = 37.2 k � nN ---- 2 v w= 5 s5 := 16.in A 0.62 in a 0. 01399 f 60ksi T5 37.2 k s5= s5= s5= 5= = 2 nbn�iru i= 5 s6 := 16.in 2 Ash = 0.62 in esb = 0.0111 fs6 = 60 ksi T6 = 37.2k r&= 2 b ` rN.= 5 s7 := 16.in 2 A s 7 = 0.62 in e57 = 0.0082 fs7 = 60ksi T7 = 37.2 k fl ==== 2 AG= 5 sg := 16.in 2 Asg = 0.62 in ea = 0.00531 fsg = 60ksi Tg = 37.2k Ttotal = 297.6k EFb :_ (C + Ctotal) - Ttotal EFb = 29k M = 2477 ft k Mn1.design 4f1 Mn1.design = 2208 ftk > Mui = 652.5 ft k r kO LATERAL DESIGN: PANEL DESIGN: SHEAR WALL 16 J LOAD COMBINATION 2: 1.2. DL + E + (f1 •L + f2.S) Pu2 = 55.7k 02 = 0.88 M = 653 ftk OVERTURNING MOMENT N`= 17.95.in NEUTRAL AXIS DEPTH COMPRESSION REINFORCEMENT: CONCRETE: &= 0.85•fc•psi•0.5• NA. h C= 353k NUMBER SIZE SPACING STEEL AREA BAR STRAIN INDIVIDUAL BAR FORCE BAR STRESS n:====0 �b r: =5 4 =2•in 2 As = 0 i esa = 0.00267 fsa = 60ksi Ca = Ok n :== 0 bar = 5 sue:= 8-in 2 A = 0 in esb = 0.00133 f = 38.53ksi Cb = 0 k n::====0 =5 =8•in p Asc = 0 in Esc = 0 fsc = 0 ksi Cc = 0 k n::=0 b rN. =5 sue =16.in 2 A = 0 in esd = 0 f = 0 ksi Cd = 0 k g nu= 0 ter := 5 se := 16•in 2 A = 0 in ese = 0 fSe = 0 ksi Ce = 0 k TENSION REINFORCEMENT: Ctotal= Ok NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR STRESS BAR FORCE ^ n:=2 =5 u =2•in 2 Asi = 0.62 in es1 = 0.02073 fs1 = 60ksi Ti = 37.2k i nn := 2 bar 5 w= 8•in 2 A = 0.62 in es2 = 0.0194 fs2 = 60 ksi T2 = 37.2 k n:=2 ter: =5 u = Bin 2 A = 0.62in esa = 0.01806 f = 60ksi T3 = 37.2k ^ n := 2 b rw.= 5 si:= 16in 2 A = 0.62 in es4 = 0.01538 f = 60ksi T4 = 37.2k n := 2 bgk.= 5 AV 16•in 2 Ass = 0.62 in es5 = 0.01271 fs5 = 60ksi T5 = 37.2 k n n: 2 a'r:= 5 si:= 16•in 2 A = 0.62 in esb = 0.01004 fsb = 60ksi T6 = 37.2k & =2 tAj 5 =16.in 2 As7 = 0.62 in es7 = 0.00736 f = 60ksi T7 = 37.2 k i nn :: -= 2 bjr 5 sue.•= 16.in 2 A = 0.62 in esb = 0.00469 f = 60ksi T8 = 37.2 k gtvi= (C + Ctotal) - Ttotal EFb = 55.2 k Ttotal = 297.6k Mn2 = 2611 ft k Mn2.design 0f2•Mn2 Mn2.design = 2306 ft k > Mu2 = 653 ft k tat LATERAL DESIGN: PANEL DESIGN: SHEAR WALL f 6 BOUNDARY AND CONFINEMENT REQUIREMENTS: NOMINAL AXIAL LOAD CAPACITY: Acv := Lyvh A = 1332in EFFECTIVE SECTION AREA OF CONCRETE Ast = 4.96 in TOTAL AREA OF VERTICAL REINFORCING STEEL P := 0.8010.85•fc•psi•(Acv — A + fypsi•AsJ P = 4750k Pu Pu2 Pu.design 4a•Po Pu.design = 3325k > P = 55.7k 1) Pu2 = 55.7k < 0.10•Acvfc•psi = 666k Po = 4750k NOMINAL AXIAL LOAD CAPACITY Pu2 = 55.7 k < 0.35•P0 = 1663k WALL CAN BE USED AS SHEAR WALL Mu1 = 1.25 < 1.00 OR 3•Ac J psi = 283k > Vu1 = 43.5k AND Mu1 2) = 1.25 < 3.00 Vu1 Lw Vu1•Lw WALL EXEMPT FROM BOUNDARY ZONE DETAIL REQUIREMENTS 2 h . Lw 3 P = 55.7 k Mu2 = 653 ftk A = 1332in 6 S = 31968 in Pu2 Mu2 MAXIMUM EXTREME COMPRESSION FIBER STRESS f + S f = 287 psi ASSUME LINEAR ELASTIC CONDITIONS AND UNCRACKED cv THEN SPECIAL TRANSVERSE REINFORCEMENT IF f = 287 psi < 0.2•fc•psi = 1000psi IS NOT REQUIRED FOR BOUNDARY ELEMENT LATERAL DESIGN: PANEL DESIGN: SHEAR WALL f 6 l HORIZONTAL REINFORCING: Lw s2.max min (( 3 3•h 18•in )) s2.max = 18in MAXIMUM SPACING barno := 4 REINFORCEMENT SIZE (DIAMETER) A = 0.2in AREA OF SHEAR REINFORCING s2 = 16in SPACING OF HORIZONTAL REINFORCEMENT &= 12in 2Av Ph := h s2 Ph = 0.0036 > 0.0025 USE #4 AT 12" O.C.EACH FACE HORIZONTAL REINFORCEMENT FULL HEIGHT OF WALL Aw h•Lw Ac = 1332in WEB THICKNESS x LENGTH IN DIRECTION OF SHEAR FORCE THEN HORIZONTAL REINFORCING TERMINATING SHEAR WALL IF Vu1 > Acvfic EDGES SHALL STANDARD HOOK AROUND EDGE REINFORCING OR U- SHAPED REINFORCING MATCHING THE HORIZONTAL BARS Ac•ITc•psi = 94k V = 43.5k SIZE AND SPACING SHALL LAP- SPLICE WITH HORIZONTAL BARS VERTICAL REINFORCING: 11 sl.max •= minl ( 3 w 3.h 18•in)J sl,max = 18 in MAXIMUM SPACING b r . = 5 ` REINFORCEMENT SIZE (DIAMETER) Av = 0.31 in AREA OF SHEAR REINFORCING Hw Pn := 0.0025 + 0.5•I 2.5 — — 0.0025) pn = 0.00319 w Pv:= if(pn <0.0025,0.0025,if(pn <Ph Pn.Ph)) Pv= 0.00319 s1 = 18in SPACING OF VERTICAL REINFORCEMENT Av= 16•in USE #5 AT 16" O.C.EACH FACE VERTICAL REINFORCEMENT FULL HEIGHT OF WALL NOMINAL SHEAR STRENGTH: Ph = 0.0036 Acv = 1332in WEB THICKNESS X LENGTH IN DIRECTION OF SHEAR FORCE V A (a •j• si + f n = Vu1 n := cv c c P Ph� psi) V 571 k IC := IC = 0.13 II)s•Vn r k2 1 \, rte, W41190 7 s ei-vo0 sl\DA Wit S :1 . • • -'lid •O — I 1 1�Zk €14V1114) 4�21:v Q , A Fu--; vv= -0 IAA). \Glc (AAA- o -k o2S t� . q ` Merle �, f V 1 1./90,4 l �� + �'u 9114 - 10_ / 1r1 7°) - (PAM i �yI VV ( = "V� " C(T (a°oE v) ►FGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS ■ JOB NO 6960 S.W. VARNS ST., SUITE 200 TIGARD, OREGON 97223 (503) 620 -3030, FAX 620 -5539 SHEET_r_ OF LATERAL DESIGN: PANEL DESIGN: SHEAR WALL 16 1: SHEAR WALL INFORMATION h := 9.25-in SHEAR WALL THICKNESS Hw:= 15•ft HEIGHT OF SHEAR WALL Lw:= 240•in LENGTH OF SHEAR jr 5000 CONCRETE COMPRESSIVE STRENGTH FOR SLABS AND FOOTINGS (psi) Ec = 4286826psi MODULUS OF ELASTICITY FOR CONCRETE = 60000 YIELD STRENGTH OF STEEL REINFORCEMENT (psi) f psi E := E sy = 0.00207 MAX STEEL STRAIN AT OUTERMOST TENSION REINFORCING s = 0.003 MAXIMUM ALLOWABLE CONCRETE STRAIN p 1 := iffc < 4000, 0.85 , IQ fc > 8000,0.65,0.85 — 0.05.(fC 100000 131 = 0.8 LOAD COMBINATIONS: 1) 0.9•DL +E Pu1 := 99•k Madd 0•ft•k ADDITIONAL ULTIMATE MOMENT DUE TO UNBALANCED VERTICAL LOADS Vu1 := 97•k ULTIMATE DESIGN SHEAR M := 1870•ft•k + Madd Mu1 = 1870 ft k ULTIMATE DESIGN MOMENT 2) 1.2•DL +E +(f1•L +f2•S) • P 206•k ,,M= 0•ft•k ADDITIONAL ULTIMATE MOMENT DUE TO UNBALANCED VERTICAL LOADS Vu2 := 97.k ULTIMATE DESIGN SHEAR M 2622.ft.k + Madd Mu2 = 2622 ft k ULTIMATE DESIGN MOMENT IP LATERAL DESIGN: PANEL DESIGN: SHEAR WALL 161 LOAD COMBINATION 1: 0.9•DL + E Put = 99k Of1 = 0.88 Mu1 = 1870 ftk OVERTURNING MOMENT NA := 20.2•in NEUTRAL AXIS DEPTH COMPRESSION REINFORCEMENT: CONCRETE: C:= 0.85•fo•psl•0.5•NA•h C = 397k NUMBER SIZE SPACING STEEL AREA BAR STRAIN INDIVIDUAL BAR FORCE BAR STRESS n := 0 = 5 sa := 2•in 2 As = 0 i esa = 0.0027 fsa = 60ksi Ca = 0k nN ---= 0 A ttaj A 3= 5 sb := 8.in A Oin a 0.00151 f 43.93ksi C Ok Asb sb= sb= b= nN:= 0 b = 5 so := 8.in 2 Asc = 0 in ESC = 0.00033 fsc = 9.48 ksi Cc = 0 k nN:= 0 b 5 sd := 16•in 2 Asd = 0 in esd = 0 fsd = 0 ksi Cd = 0 k • Dotal = 0 k TENSION REINFORCEMENT: NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR STRESS BAR FORCE n : -= 2 b �rN.= 5 Si := 2•in 2 As1 = 0.62 in es1 = 0.03235 fs1 = 60 ksi Ti = 37.2k ner. -= 2 bN= 5 s2 := 8.in 2 As2 = 0.62in es2 = 0.03116 f = 60 ksi T2 = 37.2k r 2 = 5 53 := 8-in 2 A = 0.62 in esa = 0.02997 fsa = 60 ksi T3 = 37.2 k v= 2 ^ b:rN.= 5 54 := 16•in 2 A = 0.62 in es4 = 0.02759 f = 60 ksi T4 = 37.2 k = 2 ^ bar = 5 s5 := 16•in 2 A = 0.62 in es5 = 0.02522 f = 60 ksi T5 = 37.2k i= 2 A ktLi= 5 s6 := 16•in A = 0.62in es6 = 0.02284 f = 60 ksi Tg = 37.2k i= 2 b ,: 5 57 := 16•in 2 A = 0.62 in es7 = 0.02047 fs7 = 60 ksi T7 = 37.2 k n :== 2 b rN.= 5 s8 := 16-in 2 As8 = 0.62 in es8 = 0.01809 fs8 = 60 ksi T8 = 37.2k Ttotal = 297.6k Fb :_ (C + Ctotal) - Ttotal Fb = 99k Mn1 = 5608 ft k Mnl.design Qfl•Mnl Mnl.design = 4947 ftk > Mu1 = 1870 ftk ''4 - LATERAL DESIGN: PANEL DESIGN: SHEAR WALL 161 LOAD COMBINATION 2: 1.2- DL + E + (f1 •L + f2-S) P = 206 k 02 = 0.86 Mug = 2622 ftk OVERTURNING MOMENT NA •= 25.65-in NEUTRAL AXIS DEPTH nn w∎ COMPRESSION REINFORCEMENT: CONCRETE: = r r 0.85•fc•psi•0.5• NA- h C =504k INDIVIDUAL NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR STRESS BAR FORCE n := 0 == 5 sue`= 2-in Asa Oin a 0.00277 f 60ksi C Ok sa= sa= sa= a= n := 0 i lm A i= 5 sue:= 8•in 2 Asb = 0 i esb = 0.00183 fsb = 53.08ksi Cb = 0k n ==0 bar: =5 =8•in 2 Asp = O in esc = 0.00089 fsc = 25.95 ksi Cc = O k Ark= 0 bar = 5 sue:= 16-in 2 Asd = 0 in esd = 0 fsd = 0 ksi Cd = 0 k y0 w =5 se: =16•in 2 A = 0 in ese = 0 fSe = 0 ksi Ce = 0 k TENSION REINFORCEMENT: Ctotal= Ok NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR STRESS BAR FORCE n := 2 = 5 = 2•in 2 A = 0.62 in es1 = 0.02484 fs1 = 60ksi Ti = 37.2k n := 2 bar: =5 =8•in 2 As2 = 0.62 in es2 = 0.0239 fs2 = 60ksi T2 = 37.2 k nn:= 2 nbn�rw'= 5 u= 8in 2 Asa = 0.62 in es3 = 0.02296 f = 60ksi T3 = 37.2 k nM. ---- 2 b 5 u= 16in 2 A = 0.62 in es4 = 0.02109 fs4 = 60ksi T4 = 37.2 k = 2 == 5 A w= 16-in 2 Ass = 0.62 in es5 = 0.01922 fs5 = 60ksi T5 = 37.2 k ra 2 = 5 s,= 16.in 2 Asb = 0.62 in esb = 0.01735 f = 60ksi T6 = 37.2 k n := 2 br 5 i sx= 16.in 2 As7 = 0.62 in es7 = 0.01548 f = 60ksi T7 = 37.2 k n := 2 = 5 sue= 16-in A 0.62 a 0.0 1361 f 60ksi T 37.2k s8 = s8 = s8 = 8 = A = (C + C total ) - total b T EF = 206.6k Ttetal = 297.6k Mn2 = 6543 ftk Mn2.design 0f2•Mn2 Mn2.design = 5645 ftk > Mu2 = 2622 ftk { kl LATERAL DESIGN: PANEL DESIGN: SHEAR WALL 16 BOUNDARY AND CONFINEMENT REQUIREMENTS: NOMINAL AXIAL LOAD CAPACITY: Acv := Lwh Ac = 2220in EFFECTIVE SECTION AREA OF CONCRETE Ast = 4.96 in 2 TOTAL AREA OF VERTICAL REINFORCING STEEL P := 0.80•[0.85•fc•psi.(Acv - Ast) + fy.psi•A P = 7769k Pu Pu2 Pu.design 4a•Po Pu.design = 5438k > P = 206k 1) Pu2 = 206k < 0.10•Acvfc•psi = 1110k Po = 7769k NOMINAL AXIAL LOAD CAPACITY Pu2 = 206k < 0.35•P0 = 2719k WALL CAN BE USED AS SHEAR WALL Mu1 0.96 < 1.00 OR 3 •Acv.A . Psi = 471k > Vu1 = 97k AND Mu1 2) = = 0.96 < 3.00 Vu1 •Lw Vu1 •Lw WALL EXEMPT FROM BOUNDARY ZONE DETAIL REQUIREMENTS h • Lw 3 P = 206k M = 2622 ftk Acv = 2220in Ste= 6 S = 88800 in Pu2 Mu2 MAXIMUM EXTREME COMPRESSION FIBER STRESS fcc A + S fcc =447 psi ASSUME LINEAR ELASTIC CONDITIONS AND UNCRACKED THEN SPECIAL TRANSVERSE REINFORCEMENT IF fcc = 447 psi < 0.2•fc•psi = 1000psi IS NOT REQUIRED FOR BOUNDARY ELEMENT LATERAL DESIGN: PANEL DESIGN: SHEAR WALL 16 1 HORIZONTAL REINFORCING: 11 s2.max min, 3 3•h 18•In)) s2.max = 18in MAXIMUM SPACING bar := 4 REINFORCEMENT SIZE (DIAMETER) A = 0.2in AREA OF SHEAR REINFORCING s2 = 16in SPACING OF HORIZONTAL REINFORCEMENT 16in 2Av Ph := h s2 Ph = 0.0027 > 0.0025 USE #4 AT 16" O.C.EACH FACE HORIZONTAL REINFORCEMENT FULL HEIGHT OF WALL ,;= h•Lw Acv = 2220in WEB THICKNESS x LENGTH IN DIRECTION OF SHEAR FORCE THEN HORIZONTAL REINFORCING TERMINATING SHEAR WALL IF Vu1 > Acv�c EDGES SHALL STANDARD HOOK AROUND EDGE REINFORCING OR U- SHAPED REINFORCING MATCHING THE HORIZONTAL BARS Acv.A psi = 157k V = 97k SIZE AND SPACING SHALL LAP- SPLICE WITH HORIZONTAL BARS VERTICAL REINFORCING: l sl.max min(l 3w 3•h 18•in s1,max = 18in MAXIMUM SPACING ba = 5 REINFORCEMENT SIZE (DIAMETER) A = 0.31 in AREA OF SHEAR REINFORCING Hwl P := 0.0025 + 0.5. 2.5 — ).i(Ph — 0.0025) Pn = 0.00268 w p if(p <0.0025,0.0025,if(pn < Ph ,Pn ,PhD Pv= 0.00268 s1 = 18in SPACING OF VERTICAL REINFORCEMENT 16-in USE #5 AT 16" O.C.EACH FACE VERTICAL REINFORCEMENT FULL HEIGHT OF WALL NOMINAL SHEAR STRENGTH: Ph = 0.0027 Ac = 2220in WEB THICKNESS X LENGTH IN DIRECTION OF SHEAR FORCE Vu1 Vn Acv(ac•�c•Psi + ph•f Vn = 831k IC := IC = 0.19 ms•Vn � 1 " 911 . N 01,,A9 uolo Cek, 0-(9'01- t'to- 10(- c6 (c,_ • oce Om; ucuo trksdN ftqa) to* AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6960 S.W. YARNS ST., SUITE 200 TIGARD, OREGON 97223 (503) 620-3030, FAX 620 -5539 SHEET OF 1 , ) V 'V i hilrfIX(A/ Moi-i i EK,4- t/t. /. ' 111_4 oioc:. \.07, 600 . • to WO\ (17Ar .1C 2 (IL ,-- \ 4, 9 , VW A■s fo \, 't CC)= OrtCP VI/V i v. € fo (VIA 4 "AdoXii- VI/C I\slov- 1.- \s o k. 0 .1 7 ir l I xil t.1 /.I -- 4101V,of , 10e 1 \ 1•0 _ NI ..., opt,. - co . e 1),7, ..- , 17 . „ I !O. 4./NAAJ eZ" kitAagt V-Att a 4. tk tyMf/it/ , 1,, 1 I °1 ( V /140 v ) . - 1 v ) ar rA , Kf' 12- M q 94fr i kr O- MP717 2., tt50 Oti9V rli 1 , - rvtc '1,qtall vi.--.9-o' CIA- Ct- l/kA) AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6960 S.W. VARNS ST., SUITE 200 TIGARD, OREGON 97223 SHEET______ OF loi> (503) 820-3030, FAX 820-5539 -34.65 ' 12 17.35k -ft , 7. . 1 0.. 10 -4.2 8 17.2 -143.4 , 7 7.8 93k -ft '1.6 l• -51.4 c4.3 5 -4.2 •2.2 4 -6 3 2 1 Loads: LC 1, 1.2 D + 1.6 L + 0.5 S Results for LC 1, 1.2 D + 1.6 L + 0.5 S Member z Bending Moments (k -ft) Afghan Associates, Inc. December 6, 2005 HAMID AFGHAN 10:32 AM PANEL [ 32 ] OOP w Girder Loads.r3d r Y X -34.65 , 12 17.35k -ft F 1 10 9 8 -14 7 93 -ft 182.3 5 -4.2 182.3 4 -6 4 186.5 3 186.5 2 192.5 4 > 1 Loads: LC 1, 1.2 D + 1.6 L + 0.5 S Results for LC 1, 1.2 D + 1.6 L + 0.5 S ik1ember Axial Forces (k) .rghan Associates, Inc. December 6, 2005 HAMID AFGHAN 10:32 AM — PANEL [ 32 ] OOP w Girder Loads.r3d Company : Afghan Associates, Inc. December 6, 2005 Designer : HAMID AFGHAN 10:34 AM Job Number : Checked By: Member Section Forces, By Combination LC Member Label Section Axial Shear y -y Shear z -z Torque Moment y -y Moment z -z (k) (k) (k) (k -ft) (k -ft) (k -ft) 1 M5 1 182.25 -2.428 0 0 0 34.346 2 182.25 -2.428 0 0 0 41.628 1 M6 1 38.85 -4.515 0 0 0 - 51.372 2 38.85 -4.515 0 0 0 - 37.826 f RISA -3D Version 4.5 [H: \Projects \Tigard Triangle Commons \Building Four \Calculations \Lateral \Panel Delgurrent \Pi LATERAL DESIGN WALL DESIGN: OUT -OF -PLANE PANEL f 321: PIER 1 LOAD CASE: 1.2•D+ 1.61 + 0.5•S k1 := 1.0 SLENDERNESS COEFFICIENT Lu := 15•ft UNBRACED LENGTH b := 42•in WIDTH OF WALL CONSIDERED h := 9.25•in WALL THICKNESS heff:= h - REVEAL EFFECTIVE THICKNESS hell= 8.5in r'- hell RADIUS OF GYRATION r = 2.45 in ki •Lu SR := SR = 73.4 > SRi = 34 LONG COLUMN WITH SLENDERNESS EFFECTS r Ec = 4286826 psi MODULUS OF ELASTICITY FOR CONCRETE Es = 29000000 psi MODULUS OF ELASTICITY FOR STEEL REINFORCING: INSIDE FACE nbar 7 barrio := 5 REINFORCEMENT SIZE Asi nbar•Abar Asi = 2.17 in 2 AREA OF STEEL di = 2in DISTANCE TO REINFORCING OUTSIDE FACE = 7 b ate= 5 REINFORCEMENT SIZE Aso nbar•Abar Aso = 2.17 in 2 AREA OF STEEL do = 6.5in DISTANCE TO REINFORCING 640 LATERAL DESIGN WALL DESIGN: OUT -OF -PLANE PANEL 1 321: PIER 1 LOAD CASE: 1.2.D + 1.6•L + 0.5•S LOADS AT CRITICAL SECTION P := 182.k FACTORED AXIAL LOAD M := 41.6•ft•k IAA �.= 0•ft•k 1= 41.6•ft•k FACTORED MOMENTS MOMENT MAGNIFICATION PER ACI 318R -02 SECTION 10.12.3 3 Ig := b 12ff Ig = 2149in GROSS MOMENT OF INERTIA 2 Ise Asi•I do 2 dl 1 + Aso•( ° 2 di ) Ise = 21.97in 182•k 1 Pd = 182•k +0•k Pd= rr0.2 Ec Ig + Es•Ise 0.4•Ec•Ig 2 El := mini I 1 + pd 1 + pd El = 1240010in •k n Pc:— 2 Pc =378k (k1.Lu) Cm := {0.6 + Cu{0.4• M2J <0.4,0.4,0.6 +cu•(0.4• M2JJ Cm = 0.6 M2.min Pu•(0.6•in + 0.03•h) M2.min = 13.3ft•k M2ns max((M2.min M2)) M2ns= 41 . 6 ft•k if [M2.min > M2, 1 , 0.6 + cu• 10.4• M� IJ Cm = 0.6 Cm Cm 1.68 Ons: =i <1,1, 8 ns= Pu Pu 1 1 0.75•Pc 0.75•Pc Mc 8ns•M2ns Mc= 69.8ft•k tool i LATERAL DESIGN: WALL DESIGN: OUT -OF -PLANE PANEL f 321: PIER 1 LOAD CASE: 1.2•D+ 1.6•L + 0.5•S Pu =182k Of =0.7 M = 70 ftk OVERTURNING MOMENT NA := 3.5•in NEUTRAL AXIS DEPTH COMPRESSION REINFORCEMENT: CONCRETE: &= 0.85•fc•psi•0.5•NA•b C= 312k NUMBER SIZE SPACING STEEL AREA BAR STRAIN INDIVIDUAL BAR FORCE BAR STRESS n := 0 t 5 sa := 2•in 2 A = 0 in esa = 0.00129 fsa = 37.29ksi Ca = 0 k v= 0 ^ bars.= 5 sb := 0•in 2 Asb = 0 i esb = 0.00129 fsb = 37.29ksi Cb = Ok r&= 0 nbarw'= 5 Sc: = 0•in 2 A = 0 in Esc = 0.00129 fsc = 37.29 ksi Cc = 0 k 0 bar := 5 sd := Gin 2 ^�^ Asd = 0 in Esd = 0.00129 fsd = 37.29ksi Cd = 0 k n :-= 0 = 5 se := 0.in 2 A = 0 in Ese = 0.00129 f = 37.29ksi Ce = 0 k TENSION REINFORCEMENT: Ctotal = Ok NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR STRESS BAR FORCE &= 7 ad= 5 s1 := 2•in - 2 As1 = 2.17 in es1 = 0.00257 fs1 = 60ksi Ti = 130.2k nom:-= 0 = 5 s2 := 9•in 2 As2 = 0 in es2 = 0 fs2 = 0 ksi T2 = 0 k n:== 0 (bar := 5) s3:= 9in 2 Asa = 0 i esa = 0 f = 0ksi T3 = 0k n:= 0 (bar := 5) s4 := 9in 2 M AS4 = Oin 44 =0 f =0ksi T4 =0k ^ nn:== 0 (bar := 5) s5:= 9•in 2 Ass = 0 in E s5 = 0 fs5 = 0 ksi T5 = 0 k �n:== 0 (bar := 5) sg := 9.in 2 Asb = 0 in Es6 = 0 fsb = 0 ksi T6 = 0 k i nn. ---= 0 (bar := 5) s7 := 9.in 2 As7 = 0 in e = 0 f = 0 ksi T7 = 0 k nom.-= 0 (bar := 5) sg := 9•in 2 Asg =0in E sg =0 fsg =0ksi Tg =0k Ttotal = 130.2k (EFb = (C + Ctotal) - Ttotal) EFb = 182 k Mn2 = 105 ftk Mn2.design Of Mn2 Mn2.design = 73 ftk > Mc = 70 ft k 6 iv LATERAL DESIGN WALL DESIGN: OUT -OF -PLANE PANEL 1 321: PIER 1 LOAD CASE: 1.2•D+ 1.6•L + 0.5•S k1 := 1.0 SLENDERNESS COEFFICIENT Lu := 15•ft UNBRACED LENGTH b := 42•in WIDTH OF WALL CONSIDERED h := 9.25.in WALL THICKNESS heff := h - REVEAL EFFECTIVE THICKNESS heft= 8.5in r.- hell RADIUS OF GYRATION r = 2.45 in k1•Lu SR := SR = 73.4 > SRi = 34 LONG COLUMN WITH SLENDERNESS EFFECTS r Ec = 4286826 psi MODULUS OF ELASTICITY FOR CONCRETE Es = 29000000psi MODULUS OF ELASTICITY FOR STEEL REINFORCING: INSIDE FACE nbar := 7 barno := 5 REINFORCEMENT SIZE Asi nbar•Abar Asi = 2.17in AREA OF STEEL di = 2in DISTANCE TO REINFORCING OUTSIDE FACE 4kos= 7 galz= 5 REINFORCEMENT SIZE Aso nbar•Abar Aso = 2.17in AREA OF STEEL do = 6.5in DISTANCE TO REINFORCING LATERAL DESIGN WALL DESIGN: OUT -OF -PLANE PANEL f 321: PIER 1 LOAD CASE: 1.2•D+ 1.6•L +0.5•S LOADS AT CRITICAL SECTION P := 39•k FACTORED AXIAL LOAD M := 51.4•ft•k A1= – 17.3•ft•k If=:= 51.4•ft•k FACTORED MOMENTS MOMENT MAGNIFICATION PER ACI 318R -02 SECTION 10.12.3 3 Ig := b 12ff I g = 2149in GROSS MOMENT OF INERTIA 2 2 Ise Asi I do di ) + A501 do di J Ise = 21.97in 39.k \ \l // (id = 39•k +0•k ad= 1 i pr0. + Es 0.4•Ec•Ig 2 El := min I El = 1240010in •k 1 +ad 1 +ad a 2 -EI P := P = 378k 2 O ct .Lu) rr M1l r l Cm:= ii0. 6+ c •I0.4•— I<0.4,0.4,0.6 +cu•I0.4• — Cm =0.73 11 M2 J ` M2 J M2.min Pu-(0.6-in + 0.03•h) M2.min = 2.9ft•k M2ns:= max((M2.min M2 )) M2ns = 51.4ft•k l = i1M2.min > M2, 1, 0.6 + c 0.4• M1 M 2 I Cm = 0.73 Cm Cm fins: =if <1,1, sns = P P 1 1 0.75-Pu 0.75•Pc Mc 6ns•M2ns Mc = 51.4ft•k f G47 \� I l" V./1V VL (DJ . :493v17 /4-1V F , w -4 ti`1'j tQ't:'ct t,r,ilr 64 43 bt X1,0- 7 of (ox J- d.x wa,. o : oc &OQ ft kti` Orr/ * v , 14 -U T - i w, -CP aVa,cf tocC, kit av(v.litom 1 rtaePNAALUIA 1\11)" j 1 " fit • AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6960 S.W. VARNS ST., SUITE 200 TIGARD, OREGON 97223 (503) 6203030, FAX 620 -5539 SHEET OF 1 \A A. Mtii19 J ? Wit' ' l v t' / ,� . ([i = 1, r1 , 0 , k \9A. 4.i' 162 _ "07/0V( f (v - -66.- V KV 10 KAY k di (0,1 — ovi) ---- or c t 6 ` -, It? 1(9 6kP. 1666. 111116. Ewa( ‘1,0 \ '01 I . 0 1e ilp t6,19 ;bo 1 To' AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS 6960 S.W. VARNS ST., SUITE 200 JOB NO 1 TIGARD, OREGON 97223 4I -At (503) 620 -3030, FAX 620 -5539 SH _ OF L 1 e ' 4 p ' i , " l L 1 Viyfgl¢at PNvl, s 4,fro ' Wit v.M 6 (-- , A,Iw -Kti1$* (. C_', (1 i l' o 0 (7) C) i_' , I II I = — -- - t ----- - • .....1...1_,.).L__ lil [ _1 l , 7 .1 p .Ii I . . 1 1 1 ! I ., ..._,, , .., F 1 I I I _1 11 I I I . ;.�." I !' 1-7----- I . i - '= 1 . j - - I . ,...L.- -- I -. I ; ' 1 it ,' 1 . 1 J ';i� I ... I i I I I • I_h. -'I -. ! I I / rA, ' j - y a 1 i J. ' I - , , • _ I . I ^-, J j , , IT 71; — - .. 74� I j j i • ■ 1 i ' I 11 t<Ck I °1 I 1 11 j I I I I I' I ,: 4: I 1 I< II I 1I I I I I i ' ■ _ 1 . 4)1 _T _ - T- - - T - • I - . -- I • I ;� • i _ 1 I 1 1 � 1 1 I II 11 _ ;I I I i 1 N , 1 I 1 -- I -1 7 I I I . I 4-1 -.....: '''''' .. Ide.,„ ' t 6111 Ga 2 <� 1 �—(_ 1d=' 662�o --> (&) )p4 t i' ,.,) CFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6980 S.W. VARNS ST., SUITE 200 TIGARD, OREGON 97223 • (503) 820.3030, FAX 820.5539 SHE OF ) t-t4v)( WA (21 - 1 vtlf4:10 tAw-V-(7t 4 4440 c katir-v 0,SXM k-fxv 04W- Priv c-cuk,ecterv-S •t/l)tf;419(r- qyt 1,E4 (-) 0 c 0 c ) .. o N --- 4)00 4 (-) (--) (---) ,---1,- 111 . __ l': _____ __I __I I . 7 t i k.. .• 1.-• I ' t - -.) 1 t I 7 ._ --_-= .7 I I 0)11'1 _ _ 7 . 4 .. t.. ; - 6 , - , ko II 1\ , 1 1 1 - "" 1 , , , _i 1 , , 1 i , j • 1 —1,, .4_ ; i_ r: 4 I IL" (11 ; ..._, "•=1''... ,_ ;-- ' I 71' j _ , 1 !""?, r÷H 1 ' .:;::',.: I . ' I 1 /- fillel ' k! r 1 I 1 ,.. I .■,-.? I 1 ..,A . Y. A y, 1 j'=7 1 - ‘.:- 1 1's - I ). i ft1,1 I I O' I I Ht ' e ' . 'A : ! !, i I 1 ' H I ! i - th ! i , ,_:- :‘.! ; "! ! I , i I 44 {P I 1 ! 1 1 1 C 1 . 1 __ _ _ 1 I . ! ' 1 I ■ . _L.- - . _ 1 . _ _ _ _ _-- I 7 -11 I - 1 i , ! 1 I ,V■ ---1 I 1 A ! 1 - 1 , tj 1 1 ' ' I I 1 1 'II 1 ' ‘) i, I - I I ! l 5 1<:_,: V- . t ; ;IP' le: 1Thi 1 ' 1 M ii L 1 1 I; ,____ , ; , i , ; ,1 ! . — 1 - _______. _ _ _ • i . 1 .-, 1 - I :, I ---- - 0"- D..gt" 7v s• IS) 4,t0 . s b 3 6 ;1 SIT ss , I '6 10.:,2,z,v 'i-Afio oly. i .4- kiptc cy s e' ,k- k-:2,et', s Nil 1 V. iPspk, F t „ 1V1 ,rx I \ U ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS 16.• •13 NO 6960 S.W. VARNS ST., SUITE 20D TIGARD, OREGON 97223 (503) 620-3030, FAX 620-5539 ET IQ OF 1 1/ 0 u, A t4\31 4V1IA 01 ,(-n v v ' 4* �, , �� (k-F b1 40127i,40 ‘ ' -. bee, i le)E9 aftqA 07) VA AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6960 S.W. YARNS ST., SUITE 200 TIGARD, OREGON 97223 SHE -• , OF (503) 620.3030, FAX 620 -5539 ,1 tv\ 44 4 <sfS 2r\t0 'ade& �P- -- 9 0 - CD- 4 N 9 4 4 i v — c2�✓ w� t2�✓ _ �,�� Ai cov gi Toe - k kq;4 04,0 v, 4,2,77 k t Qa- Z3� zi, AtA) '; .QW,� k 64-z k N 140 1 1�i0 fr 1/li) ��rt.' /I �� 31,E 1, 6 (gig; vvig AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS 6960 S.W. VARNS ST., SUITE 200 JOB NO TIGARD, OREGON 97223 SH (503) 620 -3030, FAX 620 -5539 = a OF 1,14126 ;t. ort -6 0 I40 Cif Cif is iV t cti7 �6 . n AFGHAN ASSOCIATES, INC. BY DATE t CONSULTING ENGINEERS Q JOB NO 6960 S.W. YARNS ST., SUITE 200 TIGARD, OREGON 97223 SHEkT OF (503) 620-3030, FAX 620-5539 0 k , e — Vli t OvitAN 4 Ceac - - - - -_ !' ,,, -��. titer , .,;{� ISM` i - s — ._�_ , i .1;:.:7,7, _. �� iy I , ' III or IA .fir , .a 00Ake '�' '1 (' .,_ , .• � 1 ' .._- _. r ( - l - - -- vo 1$ 1 ' , .id -�.. w fro ti�� ` ��� — `` -I:. J . - -... kV - Q& Wall C"'drorokl — �_' — �_ �--� ti - _ r _ -I- I I - - - - -,- - - -- -- AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6960 S.W. VARNS ST., SUITE 200 TIGARD, OREGON 97223 y (503) 620-3030, FAX 620-5539 SH OF L 0- -►C' t(3o ■ k ofi b t - -s- WV -4---- I t 1 �� avi Doti- As/40a aii7 ���1� 47e 1.ti\ , . ,,, ._ Lc. , 141(Ca 'a lt', - 1.s. tl,botAit Al)(<4„1-7-------- _ 1, 060 7 , 1 ______ 1 ) ,_____E he . , 2ou 4 -E ve r-N ----- ° �c �' 12d� 0 , ,,,` 9-. 6b1 _____, kFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS r- I\ 6960 S.W. VARNS ST., SUITE 200 JOB NO TIGARD, OREGON 97223 /� (j (503) 620 -3030, FAX 620 -5539 SH OF 7 V -ii?..C Ctcktfrx i 121,4401k /tAtiv , toof c(ot, .- . . , r/40 iv 11)(-Iii,com itwx9 62 Pt 669-14- , WA 0 -_____— ,v,0-- 02 6W. 0_6k 0,A10., _ ( ,.(A (7) (--.D (la; G- ( (7: I ..... — T- ---[ - - '177:4:.;::::711.." :..A. :1 1 I I .. ...... : O■ I l 1 0: L d 1 . 4 • 0:. • ---. - , - --- 1 -----. . 1., . :•:. 1/4 : i ...,---" i. ••.(i , , •• •, Z tti le !! 1 i .. '''--- .. 7. , , , ., M ilti . ; ': ': 1 . i . I .', ..... E E .. 1 . E E i I 7 , 1 "L- — \)---; ::.!-• I r r , i( .. .4....,..,, L... ,,, I a . • i 1 - 1444 Aiti ' '1 v ; '1 i : 4 .. . t'.... ^ i il i,i,,..;. , ,, r. . l 4,\ .- ..IN ,.. ..r.,.'i ii „:.I 1 . ;• .---.;;-.--. ., --: .. • 7 -- - AC.' : ... .. ... 43 ,A. V .—. . •,... • - ‘.. i _ 4 ( ..,,,. ,, 1 \:: ..._., ..._,. +...,..... 1 i!.et.: ILL 1.. NiOf .: F :: , h . h _ , 1 I ... ....... . • • • • . _ T ---- I • (. t. ..\\: . 1 - --1 I . . ..... _ —, :71 \ *PO . cykoPV. •- - . \I- 4,0)Cr1) &(-tc 0 lilefl, \ i, ) ; ' Oe o0.6,2 .... V. e, A vbc; vinag e (,'V v ott as &Roe il(ft r--1 /ix. covt9 Cti't 0 4 ravi Pt 1.6 -.v. wi vc,u, 14 JA v (y v ‘tf ' l'Alci . rvP . v g t . . , . ....... AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS A46 JOB NO 6980 S.W. VARNS ST., SUITE 200 TIGARD, OREGON 97223 • OF (503) 620-3030, FAX 620-5539 SHEA OF — .a4 n :r; ( �5 °1(9f) 14.0 vo (9X2,6) mow . : 1 7ste , x 4 /O r s.g .� , `�, zlo\ \ et,przyV 127)(16)(VIP) M - ;it"? :6`1 ; (got At- U l�S ti 'M = v) Q toe L L . wii)( s 4/1)Y1/)c `hy h ( ( �ti AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6960 S.W. YARNS ST., SUITE 200 TIGARD, OREGON 97223 n (503) 620-3030, FAX 620 -5539 SHE ✓ OF 4, i 7 fi m oo �_AN \V, / taint. na kFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6980 S.W. VARNS ST., SUITE 200 TIGARD, OREGON 97223 (503) 620-3030, FAX 620 -5539 SH - 7 OF / / I , / i S )-( , MA: 9-4 • – — — I ('a ` 1(V1G - -- 1 , J - d , 1 e t .1c. a i I u' ... ..,..0 1' loran.!I r I j " x I , r x 1 . 1. .... .. I ! Vi G I - '+— ,114, i •- ,..... 4., , ,rot is I -- 0 B . ,' . ` . �. .. G --=,- __ -,--13--- – p`n — i I 1. . ' ,InI a t[ i , a. tt I I Iv, um." uL! l i p} ! - F tt•i, I t / F !a!•arl nYl II F � \ ° 1 1} F I F r 1 r J :. ....::, ata.I,N. Y RI _ a ► ; I :C:..•.R!: T _„ IJ[iroL1. ,N!I 4. - - .HI _— =a te :I. nu: .I' � 'f/ • t l N . � C� Cam- - - --.___ li • 1FGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 0 6980 S.W. VARNS ST., SUITE 200 S TIGARD, OREGON 97223 (503) 620 -3030, FAX 620 -5539 SHE' • OF Lt1V20 R444/46.91.- *fit- CVIA" DATA( ltk S 4 - Ole o O"°' 3U0 7 /At a.6?,G r-0 ii (1 45 c,tit'& ttAc,1'S,.S 7 ti c v, � ��._ 01S' = 4ts� elt0)(4.40 ta0 AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO ARL_ 6960 S.W. VARNS ST., SUITE 200 TIGARD, OREGON 97223 (503) 620-3030, FAX 620-5539 SHE OF .l ) LVyjZ 1. WALO Nlikrqfp wvt)'eil ? covti- moo( PA (Q 7 0( (. lIiet` N 0 k *S I` f V .! 6 - 0 o t' )-v:, tA\i 1 , _ \ 1)./ (7,17)cl/A-k e2):1 , ' -- - . o 1>AI a 400-34()- -4')- f i GI.I'lA olil,47 1 ,v o Gt ' l,' oc Co L m 9 0x,(0 : No lc J "- L cV-O '% ti‹ - - (,o k/V4 it b- 446 y-,.vio vie 14,v frve l '''' , 4 lk 1/ '�� ;-v .1 '). � V�� ( t : ' -dam �� t►t ` 14"c L t o-teeK t olc ova _ Vk C X. (i .Z ii )(A- 0 (te;) 10A" 2 Sic AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS 6960 S.W. VARNS ST., SUITE 200 JOB NO TIGARD, OREGON 97223 (503) 620-3030, FAX 620 -5539 SHE OF coloAt vext \i1.-. e. (A- 51 (61` ii, , t. . .i , 1 .: ___ 0)---: V106 an ( C ,g)(CD - )=1 , 0j'" - ' / I ; - I A' TkletA V� 1 0 MI e2,1e )(/)(lAt) ) - c lO j. ' 't/-77qv voeb' tom•' i e - (. -KP 1C - S,) l 23.0 Zq,<< I C *(,1 - 1 to 5Alere00— %mem ` t66 AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO n 6960 S.W. VARNS ST., SUITE 200 TIGARD, OREGON 97223 SHE OF 7 (503) 620 -3030, FAX 620-5539 BUILDING FOUR LATERAL DESIGN: W18 DRAG BEAM TO SHEAR WALL f 3.5 I K.= 1 EFFECTIVE LENGTH FACTOR = 33.ft UNSUPPORTED BEAM LENGTH KL:= K•L KL = 33 ft EFFECTIVE BEAM LENGTH LOADING: 1.2•D+ OMEGA.E + 0.5•L UBC 97 SECTION 1633.2.6 Ax := 71•k Mz:= 141.5•ft•k My := 0.00•ft•k PROPERTIES: W 18 X 50 = 14.741 bf:= 7.495•in tf:= 0.570•in Af:= bf•tf Af= 4.272in d := 18.11.in Ank Iz := 800•in 4 ly:= 40.1•in 4 Sz= 88.3in Sy= 10.7in Zz:= 101•in Zy := 16.6•in rz = 7.38in Ty = 1.65in rmin = 1.65in rT:= 1.94•in ((KL KL �l SRmin := ma \I\ r J SRmin = 54 SLENDERNESS FACTOR IN PLANE OF BENDING z 5•r y 65 bf = 9.192 — = 6.575 f 2 tf 12 n 2 Es ksi Fe := 2 Fe = 51.82ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY 23 •SRmin 2 r 21 2 2•n •E SRmin 1 — 2•R •f 12•n •Es Cc := Cc = 107 R:= Fa := if R < 0.500, fs nnn 2•Cc 5 3.R 3 ' 2 — 3 + 4 — R 23 •SRmin Ax fa 1.7A fa = 2.84 ksi AXIAL STRESS Fa = 23.8 ksi ALLOWABLE AXIAL STRESS Mz fbz:= Zz fbz = 16.81 ksi BENDING STRESS Fb = 33ksi ALLOWABLE BENDING STRESS STRONG AXIS fby := MY fb = Oksi BENDING STRESS Fby = 37.5 ksi ALLOWABLE BENDING STRESS 4 WEAK AXIS INTERACTION = 0.63 BUILDING FOUR LATERAL DESIGN: W18 DRAG BEAM TO SHEAR WALL ( 3.5 t AXIAL := 71•k LOAD CASE 1.2•D+ OMEGA•E + 0.5•L UBC 97 SECTION 1633.2.6 SHEAR := 18•k MOMENT := 6•ft•k WELD A: SHEAR TAB WELD b b: =3•in d:==12•in &: =2•b +d A =18in M:= N =0.5in 2•b + d d Cy := 2 Cy = bin Cx =b - N Cx =2.5in d2 2 (2•b + d) b + d) 3 Sx := b•d + 3 Sx = 84in 2 12 2•b + d J = 373.5in 3 f1 := 0 k f1 = O k in in SHEAR SHEAR.eb.Cx k f2 := A + J f2 = 1.422— in tw:= 0.25•in AXIAL SHEAR.eb.Cy k f3 := A + J f3 = 4.956 in Fu := 70•ksi E := 0.707 f := 1.7 2 2 2 k k fw fw:= f1 + f2 + f3 fw = 5.156 i Fw := f•E•0.3•Fu•tw Fw = 6.31 F = 0.82 in w WELD B: WELD AT W18 1= 12-in AXIAL SHEAR•eb•3 k f= 2.d + 2 f1 = 4.458— in = 0.25•in AAA E = 0.707 M= 1.7 d 2 SHEAR k = 2 d f2 = 0.75 in 70•ksi = Jft +f2 fw =4.521 k = f•E•0.3Futw Fw =6.31 k fw =0.72 in in Fw $ v1 BUILDING FOUR LATERAL DESIGN: W18 DRAG BEAM TO SHEAR WALL f 3.5 1 K := 1 EFFECTIVE LENGTH FACTOR nnn ,,t .= 30.ft UNSUPPORTED BEAM LENGTH KL:= K•L KL = 30 ft EFFECTIVE BEAM LENGTH LOADING: 1.2•D+ OMEGA•E + 0.5•L UBC 97 SECTION 1633.2.6 Ax := 50•k Mz:= 84•ft•k My := 0.00•ft•k PROPERTIES: W 18 X 50 14.7•1n bf:= 7.495•in If:= 0.570•in Af:= bf•tf Af= 4.272in d := 18.11•in Iz := 800•1n ly := 40.1 •in Sz= 88.3in Sy= 10.7in Zz:= 10141 Zy := 16.6•in r 7.38 in ry= 1.65in rmin= 1.65in rT:= 1.94•in r(KL KL 11 SRmin ma JJ SRmin = 73 SLENDERNESS FACTOR IN PLANE OF BENDING rz 3•ry 65 bf = 9.192 — = 6.575 fs 2 'tf ksi 12•n Fe := Fe = 28.29ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY 2 23 •SRmin 2•n 2 • E S SRmin (1 - 2.R 12 n Es Cc:= fs Cc = 107 nR 2 Cc Fa := if R < 0.500, 5 3.R 3 2 3 + 4 - R 23 SRmin Ax fa := fa = 2 ksi AXIAL STRESS F = 20.4 ksi ALLOWABLE AXIAL STRESS 1.7A M fbz:= Z fbz= 9.98ksi BENDING STRESS Fbz= 27.1 ksi ALLOWABLE BENDING STRESS Zz STRONG AXIS fb :_ MY fby = O ksi BENDING STRESS Fb = 37.5ksi ALLOWABLE BENDING STRESS Zy WEAK AXIS INTERACTION = 0.47 d0 BUILDING FOUR LATERAL DESIGN: W18 DRAG BEAM TO SHEAR WALL( 3.51 CONNECTION AT W18 BEAM: AXIAL := 50•k LOAD CASE 1.2•D+ OMEGA•E + 0.5•L UBC 97 SECTION 1633.2.6 SHEAR := 15•k MOMENT:= 6.5•ft•k WELD A: SHEAR TAB WELD b b := 3•in N d:= 12-in A := 2•b + d A = 18in N:= N = 0.5in 2•b + d d Cy := 2 Cy =bin Cx := b - N Cx = 2.5in d Sx:= b•d + - SX = 84in J.= (2.b + d) - b + d) 3 J = 373.5in 3 ^^i 12 2•b + d f1: =0•k f1 =0k in i SHEAR SHEAR•eb•CX k f2 := A + J f2 = 1.235— in tw:= 0.25•in AXIAL SHEAR•eb• k f3 := A + J f3 = 3.742— in Fu := 70•ksi E := 0.707 f := 1.7 2 2 2 k k f fw := if1 +f2 +f3 fw= 3.94i Fw:= f•E•0.3•F�•t Fw = 6.31 i n F =0.62 w WELD B: WELD AT EMBED PLATE d := 12-in - nnn AXIAL SHEAR•eb•3 k = 2 d + 2 f1 = 3.333 i n to= 0.25-in i &.= 0.707 ,= 1.7 d SHEAR k = 2 d f2 = 0.625— in 70•ksi 1 j f12 + f2 fw = 3.391- = f•E•0.3•Fu•tw Fw = 6.31 k fw = 0.54 in in Fw n1 .) l IC 0) D � o G • r b - a - c , V I A (‘'\-, - V - t ' t . t 1 v 6- s ( YLtt ' 1 \G L----. '1 k C-4 fit, 40 t7, l,a t ri,v 4--OL I.-}- l LDE • Fv- / - \l v = I i Lopt- �'R'1)i i- , 2,107,41) 1 k" tIZ X11) J ' I 1: 1� .,M, 44t` >t P. I 0-4 1- f) �- i .r— . 4 Q)(1 , (L.GRr AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6960 S.W. VARNS ST., SUITE 200 TIGARD, OREGON 97223 (503) 620 -3030, FAX 620 -5539 SHEET OF .} l (� Co 1 ,, 0 W ri-o .c v■c. AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6960 S.W. YARNS ST., SUITE 200 �y TIGARD, OREGON 97223 "' (503) 820 -3030, FAX 620 -5539 SHEET OF 1 BUILDING FOUR LATERAL DESIGN: W16 DRAG BEAM TO SHEAR WALL f 6 1 N : = 1 EFFECTIVE LENGTH FACTOR ,,= 18•ft UNSUPPORTED BEAM LENGTH KL:= K•L KL = 18 ft EFFECTIVE BEAM LENGTH LOADING: 1.2•D+ OMEGA.E + 0.5•L UBC 97 SECTION 1633.2.6 Ax := 25•k Mz:= 63•ft•k My := 0.00•ft•k PROPERTIES: W 16 X h 11.8•in bf:= 6.995•in tf:= 0.505•in Af:= bf•tf Af= 3.532in d := 16.01•in IZ := 518 in Iy := 28.9•in SZ = 64.7in Sy = 8.3in Zz = 72.9•in Zy:= 12.7•in rz =6.63 in ry= 1.56in rmin =1.56 in rT:= 1.82•in SRmin max Z y JJ SRmin = 33 SLENDERNESS FACTOR IN PLANE OF BENDING 65 bf = 9.192 — = 6.926 fs 2-tf 12•n Es ksi Fe := 2 Fe = 140.5ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY 23 •SRmin 2.n .Es SRmin (1 — 2•R 12•n Cc:= Cc= 107 R.= Fa := i R<0.500, fs AM 2•C 5 3.R 3 ' 2 3 + 4 — R 23 •SRmin A fa :_ fa = 1.25 ksi AXIAL STRESS Fa = 26.8 ksi ALLOWABLE AXIAL STRESS 1.7A Mz fbz:= fbz= 10.37ksi BENDING STRESS FbZ= 12.3ksi ALLOWABLE BENDING STRESS STRONG AXIS fby := MY fb = Oksi BENDING STRESS Fby = 37.5 ksi ALLOWABLE BENDING STRESS Z y WEAK AXIS INTERACTION = 0.89 VVo BUILDING FOUR LATERAL DESIGN: W16 DRAG BEAM TO SHEAR WALL f 61 CONNECTION AT W16 BEAM: AXIAL:= 0•k LOAD CASE 1.2•D+ OMEGA•E + 0.51 UBC 97 SECTION 1633.2.6 SHEAR := 17.5•k MOMENT := 0•ft•k WELD A: SHEAR TAB WELD b b:= 2.5•in d::= An' =2•b +d A =17in N= 0.368In AA A 2•b + d d C y : - 2 Cy = bin Cx: =b - N Cx =2.13 in d 2 (2•b + d) b 2 .(b + d) 3 Sx: =b•d+ 3 Sx =78in= 12 2•b +d J= 332.12in f1• k f1 -0 in in SHEAR SHEAR•eb•Cx k f2 = A + J f2 = 1.438— in tw:= 0.25•in AXIAL SHEAR•eb•C k f3 := A + J f3 = 1.148 i � Fu := 70•ksi E := 0.707 f:= 1 J 2 2 2 k k f fw:= f1 + f2 +f3 fw= 1.84i Fw:= f•E•0.3•Fu•tw Fw= 3.712— F =0.5 w WELD B: WELD AT EMBED PLATE 1= 12•in AXIAL SHEAR•eb•3 k f = 2 d + d 2 f1 = 1.458— in = 0.25•in F&.= 0.707 M= 1 d SHEAR k = 2 d f2 = 0.729— in = 70•ksi f j f1 + f2 f = 1.63 k F = f•E•0.3•Fu•tw Fw = 3.712 k fW = 0.44 ^�( i n Anl(%/ in F 42 1 1 4_4(y vieV- 1- f'{ i' ' t l )1 cA3 0...• k i V \1-: ....141' .- 7 U '-' /1#CVC. 12 ' i ..� .. • AI-1 j! ' ^ }L i . . . I 'Valli 1 I i i -- b P _ ; 1 J. �r Ea" ,27 4 1 ] I 1V' = cl, c AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS 8960 S.W. VARNS ST., SUITE 200 JOB NO TIGARD, OREGON 97223 J� (503) 620-3030, FAX 620 -55 SHEET V OF l 1 BUILDING FOUR LATERAL DESIGN: W 24 DRAG BEAM TO SHEAR WALL f 61 K:= 1 EFFECTIVE LENGTH FACTOR nnn ,t = 50•ft UNSUPPORTED BEAM LENGTH KL:= K•L KL = 50 ft EFFECTIVE BEAM LENGTH LOADING: 1.2-D + OMEGA-E + 0.51 UBC 97 SECTION 1633.2.6 Ax:= 61•k Mz:= 70•ft•k My:= 0.00•ft•k PROPERTIES: W 24 X 55 = 11.8•in bf:= 6.995-in tf:= 0.505•in Af:= bf•tf Af = 3.532in d := 16.01•in Iz 518•in ly:= 28.9•in Sz= 64.7in Sy = 8.3in Zz := 72.9•in Zy = 12.7•in rz= 6.63in ry= 1.56in rmin = in rr:= t82•in SR m ((KL KL 11 min a l 5•r JJ SRmin = 91 SLENDERNESS FACTOR IN PLANE OF BENDING rz y 65 bf — = 9.192 — = 6.926 f 2 •ff I s ksi Fe := 2 Fe = 18.21 ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY 23• SRmin I 2•n2•Es • SRmin (1 - 2-R 12•11 Cc:- Is Cc = 107 �R = 2 Cc Fa := i R < 0.500, 5 3•R 3 2 3 + 4 - R 23-SRmin A fa := Ax fa = 3.04 ksi AXIAL STRESS Fa = 16.8 ksi ALLOWABLE AXIAL STRESS 1.7A M fbz:= ZZ fbz= 11.52ksi BENDING STRESS Fbz= 26.2ksi ALLOWABLE BENDING STRESS STRONG AXIS fby := MY fby = Oksi BENDING STRESS Fby = 37.5ksi ALLOWABLE BENDING STRESS Z Y WEAK AXIS INTERACTION = 0.63 1 . f,, V t i BUILDING FOUR LATERAL DESIGN: W 24 DRAG BEAM TO SHEAR WALL f 61 CONNECTION AT W16 BEAM: AXIAL := 61•k LOAD CASE 1.2•D+ OMEGA.E + 0.5•L UBC 97 SECTION 1633.2.6 SHEAR := 8•k MOMENT := 0•ft•k WELD A: SHEAR TAB WELD b b:= 2.5•in d := 12•in nA: =2•b +d A =17in = N= 0.368in 2•b + d d Cy:= 2 Cy = bin Cx: =b — N Cx= 2.13in d 2 (2.b + d) b + d) 3 Sx: =b•d+ 3 Sx =78in= 12 2•b +d J = 332.12 in f1 —0 k ft =0k in in SHEAR SHEAR•eb•Cx k f2 := A + J f2 = 0.657— in tw:= 0.25•in AXIAL SHEAR•eb•Cy k f3 := A + J f3 = 4.113 i n Fu := 70• ksi E := 0.707 f := 1.7 f fw:= f1 + 12 + 13 fw = 4.165— Fw f•E•0.3•Fu•tw Fw = 6.31 k w = 0.66 in in F WELD B: WELD AT EMBED PLATE d 12•in n� AXIAL SHEAR•eb•3 k f 2 d + d 2 f1 = 3.208— in = 0.25•in &= 0.707 M= 1.7 d SHEAR k = f2 = 0.333— 70•ksi 2•d in f = Jf1 +f2 fy�= 3.226k = f•E•0.3•Fu•tw Fw = 6.31 k w = 0.51 m in —Fw 1 ,;, ,, ., „ ,c, WI . -\);V"--. J. i I ` VI/ �_ 1 -- =_ �1 _ (or . I. •I{, 11 Ii , ,,. r I i Al . - :l r . 7,iA L. 1 r..., v q \r- AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6960 S.W. VARNS ST., SUITE 200 TIGARD, OREGON 97223 , (503) 620-3030, FAX 620-5539 SHE OF