Specifications (2) i ; SPECIAL j NSPECTION REQUIRED' . A
State of Oregon Structural Special Ode Mk
Concrete and Reinforcing Steel 1 L L E R Li ' c
1 1 D Bolts Installed in Concrete G N S U LT I N G SEP 0 I ? O ' 0
Y �_;] Sp4c:.1aI Moment - Resisting Concrete Frame . N ` G I N E E R S BUILDING ! 1 G, '�
D R= win;orcing Steel 8, Prestressing. Stee fAli U B• L CALCULATIONS DivisioN
1 O Structural Welding Drive ay Retaining Wall
l'• 0 High-Strength Bolting 9495 SW Sha sL Place, Tigard, OR 97223
Andy ,I filler Contracting
' O Structural Masonry I
1 0 Reinforced Gypsum Concrete .4 my 8, 2010
O insulating Concrete Fill. Pr act No. 100529
17 pages
I Q Spray Applied Fire - Resistive Mated
D
L OFI'j'IGAR
® Filings, Drilled Piers an d C Principal "I ec ked: AR � - A pproved . t
Conditionally Approved [ 1
o S crate - See Letter to: Follow I I
Special Grading, Excavation and FIB . �� ,� Attached L 1
THESE CALL V OID IF> I wnberf � °OLD
O Smoke - Control Systems i , �G i rli fr y: Ad _ .: ' S . s 5
O Other Inspections 8977 ; „ fay: i `�� Date: ��
,� i 1 ,/,t ll
=,�/ . OFFICE COPY
`may .!^. "1,,,,�',{ - i F:
AND SIGN q, { - ORIGINAL
* * * LIMITATIONS * * *
ENGINEER WAS RETAINED IN A LIMITED CAPACITY FOR THIS PROJECT.
DESIGN IS BASED UPON INFORMATION PROVIDED BY THE CLIENT,
WHO IS SOLELY RESPONSIBLE FOR ACCURACY OF SAME.
NO RESPONSIBILITY AND / OR LIABILITY IS ASSUMED BY,
OR IS TO BE ASSIGNED TO THE ENGINEER FOR ITEMS
BEYOND THAT SHOWN ON THESE SHEETS.
9570 SW BARBUR, #100
PORTLAND, OR 97219
• PHONE (503) 246 -1250
FAX (503) 246 -1395
9570 SW Barbur Blvd., Suite'100 Portland, Oregon 97219 -5412
Phone (503) 246 -1250 Fax (503) 246 -1395 www.millerengrs.eom
Ameriran Consulting 44 Engineers Coun:i!
Building Code: 2006 International Building Code as amended by the state of Oregon
Soils Report: No Soils Report by: N/A Dated: N/A
Soil Bearing: 1500 PSF Retaining Walls: Yes
N Equivalent Fluid Pressure (active): 40 PCF Passive bearing: 150 PCF Friction: 0.35
ti
•
Seismic Design
Seismic Design Parameters based on USGS Seismic Hazard Curves for:
Conterminous 48 States
2003 NEHRP Seismic Design Provisions 2% PE in 50 years, 0.2 sec SA = Ss
Latitude = 45.4514 2% PE in 50 years, 1.0 sec SA = S1
Longitude = - 122.7516
Spectral Response Accelerations Ss and S1 (Site class B parameters are indicated on this page, for actual site class
Ss and S1 = Mapped Spectral Acceleration Values used in design, refer to seismic design summary)
• Site Class B- Fa= 1.0,Fv= 1.0
Data are based on a 0.05000000 deg grid spacing
Period Sa
(sec) (g)
•0.2 0.961 (Ss, Site Class B)
1.0 0.343 (S1, Site Class B)
Design Summary:
The following calculations are for the Keystone retaining wall for the proposed driveway. The retaining wall is constructed out of Keystone Compac units with Synteen SF35
geo -grids.
9570 SW Barbur Blvd. Project Name: Driveway Retaining Wall Project #: 100529
Suite One Hundred
Portland, OR 97219 Location: 9495 SW Shady Place, Tigard, OR 97223
MILLER (503)246 -1250 Client: Andy Miller Contracting
Consulting FAX: 246 -1395
Engineers BY: MAM Ck'd: Date: 07/08/10 Page 1 of 17
pr,,,,
. ' E� ,.STONE
t v 4 RETAINING WALL SYSTEMS RETAINING WALL DESIGN
s KeyWall_2010 Version 3.7.1 Build 1
Project: Driveway Retaining Wall Date: 7/7/2010
Project No: 100529 Designer: MAM
Case: Case 1
Design Method: Rankine -w /Batter (modified soil interface) - - -- - - - - --
m
usi
Design Parameters
Soil Parameters: k c psf y pcf s ___ . /
Reinforced Fill 28 0 120
Retained Zone 28 0 120 m r
Foundation Soil 28 0 120 ■E/
Reinforced Fill Type: Sand, Silt or Clay
Unit Fill: Crushed Stone, 1 inch minus
Seismic Design
A =0.14 g, Kh(Ext) =0.092 , Kh(Int) =0. , Kv =0.000
Minimum Design Factors of Safety (seismic are 75% of static)
sliding: 1.50/1.13 pullout: 1.50/1.13 uncertainties: 1.50/1.13
overturning: 2.00/1.50 shear: 1.50/1.13 connection: 1.50/1.13
bearing: 2.00/1.50 bending: 1.50/1.13
(Base Friction used in Tension of base grid)
Reinforcing Parameters: Synteen Geogrids
Tult RFcr RFd RFid LTDS FS Tal ,Ci Cds
SF35 3435 1.54 1.10 1.08 1878 1.50 1252/2570 0.80 0.80
Analysis: Case: Case 1
Driveway Retaining Wall
Unit Type: Compac / 120.00 pcf Wall Batter: 0.00 deg.
Leveling Pad: Crushed Stone
Wall Ht: 11.00 ft embedment: 1.00 ft
Level Backfill Offset: 0.00 ft
Surcharge: LL: 50 psf uniform surcharge DL: 100 psf uniform surcharge
Load Width: 20.00 ft Load Width: 20.00 ft
Results: Slidi Overturning Bearin Shear Bending
Factors of Safety: 2.33/1.90 5.51/4.09 5.78/5.06 3.55/2.78 1.75/1.82
Calculated Bearing Pressure: 1749 / 1712 / 1855 psf
Eccentricity at base: 0.84 ft/1.20 ft
Reinforcing: (ft & lbs /ft)
Cale. Allow Ten Pk Conn Sery Conn Pullout
Laver Height Length Tension Reinf. Type Tal Tel Tsc FS
6 10.00 10.0 150 / 224 SF35 1252/2570 ok 648/864 ok N/A 3.64%1.95 ok
5 8.67 10.0 207/ 315 SF35 1252/2570 ok 731/974 ok N/A 5.76/3.03 ok
4 7.33 10.0 367 / 497 SF35 1252/2570 ok 814/1085 ok N/A 5.58/3.30 ok
3 5.33 10.0 599 / 765 SF35 1252/2570 ok 938/1250 ok N/A 6.24/3.91 ok
2 3.33 10.0 773 / 980 SF35 1252/2570 ok 1062/1416 ok N/A 7.65/4.82 ok
1 1.33 10.0 776 / 1031 SF35 1252/2570 ok 1140/1521 ok N/A > 10/6.64 ok
Reinforcing Quantities (no waste included):
SF35 6.67 sy /ft
NOTE: THESE CALCULATIONS ARE FOR PRELIMINARY DESIGN ONLY AND SHOULD
NOT BE USED FOR CONSTRUCTION WITHOUT REVIEW BYA QUALIFIED ENGINEER
Date 7/8/2010 Case 1 L
Il'i
DETAILED CALCULATIONS
•
Project: Driveway Retaining Wall Date: 7/7/2010
Project No: 100529 Designer: MAM
Case: Case 1
Design Method: Rankine -w /Batter (modified soil interface)
Soil Parameters: 4 c psf y pcf
Reinforced Fill 28 0 120
Retained Zone 28 0 120
Foundation Soil 28 0 120
Leveling Pad: Crushed Stone
Modular Concrete Unit: Compac
Depth: 1.00 ft In -Place Wt: 120 pcf
Geometry
Internal Stability External Stability
(Horizontal geometry) (Horizontal geometry)
Height: 11.00 ft Height: 11.00 ft
Backslope:
Angle: 0.0 deg Angle: 0.00 deg
Height: 0.00 ft Height: 0.00 ft
Batter: 0.00deg Batter: 0.00deg
Surcharge:
Dead Load: 100.00 psf Dead Load.: 100.00 psf
Live Load: 50.00 psf Live Load:50.00 psf
Base width: 10.0 ft
Earth Pressures:
.
-p
q
sin ( a + 0)
k, = 2- 7
s in +S sin
sin a sin( a —
cF} 1 + � 1 +�� —� ,.,.. 8---- sin�a— 8) sin(a+ fl) lil$
H W, P • • 4
riii
Internal Externa
4) = 28 Deg 4) = 28 Deg
a = 90.00 Deg a = 90.00 Deg
13 = 0.00 Deg 13 = 0.00 Deg
6 = 0.00 Deg 6 = 0.00 Deg
H = 11.00 ft
ka = 0.361 ka = 0.361
Hinge Height: Hinge Ht= 10000 ft
Date 7/8/2010 Case 1
Reinforcing Parameters: Synteen Geogrids
Tult RFcr RFd RFid LTDS FS Tal Ci Cds
SF35 3435 1.54 1.10 1.08 1878 1.50 1252/2570 0.80 0.80
Connection Parameters: Synteen Geogrids
Frictional 1 Break Pt Frictional 2
SF35 Tcl= Ntan(37.80) + 879 1000 Tcl= Ntan(19.30) +1304
Unit Shear Data
Shear = N tan(40.00)
Inter -Unit ShearShear = N tan(26.90) + 769.00
Calculated Reactions
For the "modified" design method, the back of the mass assumed to be vertical for calculation of resisting forces.
effective sliding length = 10.00 ft
q
Wt3
Pa := 0.5H• (y•H•ka - 2c• a) P := q•H-ka vti'a
Pa
:= Pa cos(8) Pqh := P cos(8) Pas, Pa:d
Pa, := Pa- sin(8) Pq = P H Al � Pa
WI
o
a •
Pa • Y't3
c' ��
t
Reactions are: vv2 V
Area Force Arm -x Arm -y Moment
WI 1320.00 [0.500] 5.500 660.00
W3 11880.00 [5.500] 5.500 65340.00
ql 450.00 [5.500] 11.000 2475.00
qd 900.00 [5.500] 11.000 4950.00
Pa_h 2621.10 N/A [3.667] - 9610.71
Pgl_h 198.57 N/A [5.500] - 1092.13
Pqd h 397.14 N/A [5.500] - 2184.25
Sum V = 14550.00 Sum Mr = 73425.00
• Sum H = 3216.81 Sum Mo = - 12887.09
Date 7/8/2010 Case 1
Calculate Sliding at Base
For Sliding, Vertical Force = W1 +W2 +W3 +W4 +W5 +W6 +qd = 14100
The resisting force within the rein. mass , Rf_1 = N tan(28)
= 7497
The resisting force at the foundation, Rf_2 = N tan(28.00)
= 7497
The driving forces, Df, are the sum of the external earth pressures:
Pa_h +Pgl_h +Pgd_h =3217
the Factor of Safety for Sliding is Rf 2/Df = 2.33
Calculate Overturning:
Overturning moment: Mo = Sum Mo = -12887
Resisting moment: Mr = Sum Mr = 70950
Factor of Safety of Overturning: Mr/Mo = 5.51
Date 7/8/2010 Case 1 j
I 7
Calculate eccentricity at base: with Surcharge / without Surcharge
Sum Moments = 60538 / 58063
Sum Vertical = 14550/14100
Base Length = 10.00
e = 0.839 / 0.882
Calculate Ultimate Bearing based on shear:
where:
Nq = 14.72
Nc = 25.80
Ng = 16.72 (ref. Vesic(1973, 1975) eqns)
Qult = 10113 psf
Equivalent footing width, B' = L -2e = 8.32 / 8.24
Bearing pressure = sumVB' = 1749 psf / 1712 psf [bearing is greatest with liveload]
Factor of Safety for bearing = Qult/bearing= 5.78
Calculate Tensions in Reinforcing:
The tensions in the reinforcing layer, and the assumed load at the connection,
is the vertical area supported by each respective layer, Sv.Column [7] is '2c sgrt(ka)'.
Table of Results ppf
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]
Layer Depth zi hl ka/rho Pa (Pas +Pasd) c (5 +6)cos(d) -7 Ti Tcl Tsc
6 1.00 0.83 0.361/59 60 90 0 150 150 648 N/A
5 2.33 2.33 0.361/59 135 72 0 207 207 731 N/A
4 3.67 3.83 0.361/59 277 90 0 367 367 814 N/A
3 5.67 5.67 0.361/59 491 108 0 599 599 938 N/A
2 7.67 7.67 0.361/59 664 108 0 773 773 1062 N/A
1 9.67 9.50 0.361/59 686 90 0 776 776 1140 N/A
Calculate sliding on the reinforcing:
The shear value is the lessor of base -shear or inter -unit shear.
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]
Layer Depth zi N Li Cds T RF ka Pa Pas +Pasd DF FS
6 1.00 1980 9.00 0.80 830 1672 0.361 22 54 76 22.05
5 2.33 3420 9.00 0.80 911 2366 0.361 118 126 244 9.68
4 3.67 4860 9.00 0.80 992 3060 0.361 291 199 490 6.25
3 5.67 7020 9.00 0.80 1114 4100 0.361 696 307 1002 4.09
2 7.67 9180 9.00 0.80 1236 5141 0.361 1273 415 1688 3.04
1 9.67 11340 9.00 0.80 1358 6181 0.361 2024 523 2548 2.43
Date 7/8/2010 Case 1 % /
(i/ 1 -7
Calculate pullout of each layer
The FoS (R * /S *) of pullout is calculated as the individual
' layer pullout (Rf) divided by the tension (Df) in in that layer.
The angle of the failure plane is: 31.00 degrees from vertical
[1] [2] [3] [4] [5] [6] [7] [8]
Layer Depth zi Le SumV Ci POi Ti FS PO
6 1.00 2.99 644 0.80 548 150 3.64
5 2.33 3.79 1402 0.80 1192 207 5.76
4 3.67 4.59 2409 0.80 2050 367 5.58
3 5.67 5.80 4392 0.80 3737 599 6.24
2 7.67 7.00 6943 0.80 5907 773 7.65
1 9.67 8.20 10063 0.80 8561 776 11.03
Check Shear & Bending at each layer
Bending on the top layer is the FOS of overturning of the Units
(Most surcharge loads need to be moved back from the face.)
[1J [2] [3] [4] [5J [6] [7J [8] [9]
Layer Depth zi Si DM Pv RM FS b DS RS FS Sh
6 1.00 1.00 34 120 60 1.75 76 830 10.95
Seismic 1.00 1.00 33 120 60 1.82 72 830 11.47
5 2.33 1.33 30 200 173 5.74 94 911 9.71
Seismic 2.33 1.33 45 200 173 3.84 139 911 6.54
4 3.67 1.33 43 360 280 6.50 132 992 7.50
Seismic 3.67 1.33 61 360 280 4.61 185 992 5.35
3 5.67 2.00 135 560 433 3.20 278 1114 4.01
Seismic 5.67 2.00 176 560 433 2.46 359 1114 3.10
2 7.67 2.00 173 800 593 3.43 348 1236 3.55
Seismic 7.67 2.00 221 800 593 2.69 444 1236 2.78
1 9.67 2.00 177 1040 753 4.26 349 1358 3.89
Seismic 9.67 2.00 230 1040 753 3.27 457 1358 2.97
Date 7/8/2010 Case 1
71 1
•
EXTERNAL STABILITY
Horizontal Acceleration = 0.14g
Vertical Acceleration = 0.00g
Am= (1.45 -A)A = 0.183
Kh(ext) = Am/2 = 0.092
Kh(int) = Am = 0.183
Inertia Force of the Face:
W l s = H x Wu x gamma = 1320.00 ppf
. Inertia Forces of the soil mass:
W2s = H x (H2/2 - face depth) * gamma
= 11.00 x 4.50 x 120.00
= 5940.00 ppf
Pif = WI * kh(ext) = 1320.00 x 0.092 = 121.044
Pir = W2s * kh(ext) = 544.70
Pi dl = Wdl * kh(ext) = 41.27
Seismic Thrust , Pae
D_Kae =Kae - Ka = 0.421 - 0.361 = 0.060
Pae = 0.5 x gamma x sqr(H2) x D_Kae = 0.5 x 120.00 x sgr(11.00) x 0.060 = 435.67
Pae h/2 = Pae x cos(delta) /2 = 217.84
Calculated Reactions
For the "modified" design method, the back of the mass assumed to be vertical for calculation of resisting forces.
effective sliding length = 10.00 ft
Reactions for Seismic Calculations
Area Force Arm -x Army Moment
WI 1320.00 [0.500] 5.500 660.00
W3 11880.00 [5.500] 5.500 65340.00
qd 900.00 [5.500] 11.000 4950.00
Pa h 2621.10 N/A [3.667] - 9610.71
Pqd h 397.14 N/A [5.500] - 2184.25
Pir 544.70 3.250 [5.500] - 2995.84
Pif 121.04 0.500 [5.500] - 665.74
Pidl 41.27 N/A [11.000] - 453.92
Pae h/2 217.84 5.500 [6.600] - 1437.73
Sum V = 14100.00 Sum Mr = 70950.00
Sum H = 3943.08 Sum Mo = - 17348.19
Date 7/8/2010 Case 1
Of 11
Sliding Calculations
Pa_h = 2621.10 ppf
Paeh/2 = 217.84 ppf
PIR = 707.01 ppf
Resisting Forces, RF = (W1 + W2) tan(phi)
Foundation fill = 14100.00 x tan(28.00) = 7497.10
FS = RF /(Pa_h + Pae_h/2 + P_ir)
= 1.90
Overturning Calculations
Overturning moment: Mo = Sum Mo = -17348
Resisting Moments Mr = Sum Mr = 70950
Factor of Safety of Overturning = Mr/Mo = 4.09
Calculate eccentricity at base:
Sum Moments = 53602
Sum Vertical = 14100
Base Length = 10.00
e = 1.20
Calculate Ultimate Bearing based on shear:
where:
Nq = 14.72
Nc = 25.80
Ng = 16.72 (ref. Vesic(1973, 1975) eqns)
Qult = 9392 psf
Equivalent footing width, B' = L -2e = 7.60
Bearing pressure = sumV/B' = 1855 psf
Factor of Safety for bearing = Quit/bearing = 5.06
INTERNAL STABILITY
kh(int) = (1.45 -A) A
= (1.45- 0.14)0.14 =0.183
Inertia Forces
WI = 1.00 x 11.00 x 120.00 x khint) = 242.09 ppf
Wedge = Wedge x kh_int [for failure plane angle of 59.00deg.]
= 4362.25 x 0.18 = 800.04 ppf
Dead Load = = 82.53 ppf
Total Additional Internal Dynamic Loading
800.04 + 242.09 + 82.53 = 1124.65 ppf
Tension in Reinforcing
Laver Le ft Tension Dim Tension Total Tension( ppf) FoS Pullout
6 2.99 120.34 103.94 224.28 1.95
5 3.79 182.92 131.77 314.69 3.03
4 4.59 336.96 159.61 496.57 3.30
3 5.80 563.21 201.36 764.57 3.91
2 7.00 736.51 243.11 979.62 4.82
1 8.20 746.14 284.87 1031.00 6.64
Date 7/8/2010 Case 1
9/11
IrEYSTONE
RETAININGWALL SYSTEMS RETAINING WALL DESIGN
. ; s KeyWall_2010 Version 3.7.1 Build 1
Project: Driveway Retaining Wall Date: 7/7/2010
• " Project No: 100529 Designer: MAM
• Case: Case 2
Design Method: Rankine -w /Batter (modified soil interface)
®
• Design Parameters c
Soil Parameters: . c psf p f 6 ,r -
Reinforced Fill 28 0 120 ® / x
Retained Zone 28 0 120 --/- ,"
Foundation Soil 28 0 120 11 '/
G Reinforced Fill Type: Sand, Silt or Clay L - 4 501
Unit Fill: Crushed Stone, 1 inch minus
Seismic Design
A =0.14 g, Kh(Ext) =0.092 , Kh(Int) =0.183 , Kv =0.000
Minimum Design Factors of Safety (seismic are 75% of static)
sliding: 1.50/1.13 pullout: 1.50/1.13 uncertainties: 1.50/1.13
overturning: 2.00/1.50 shear: 1.50/1.13 connection: 1.50/1.13
bearing: 2.00/1.50 bending: 1.50/1.13
(Base Friction used in Tension of base grid)
- Reinforcing Parameters: Synteen Geogrids
Tult RFcr RFd RFid LTDS FS Tal Ci Cds
SF35 3435 1.54 1.10 1.08 1878 1.50 1252/2570 0.80 0.80
Analysis: Case: Case 2
Driveway Retaining Wall
Unit Type: Compac / 120.00 pcf Wall Batter: 0.00 deg.
Leveling Pad: Crushed Stone
Wall Ht: 6.00 ft embedment: 1.00 ft
Level Backfill Offset: 0.00 ft
Surcharge: LL: 50 psf uniform surcharge DL: 100 psf uniform surcharge
Load Width: 20.00 ft Load Width: 20.00 ft
Results: Sliding Overturning Bearing Shear Bending
Factors of Safety: 1.73/1.49 3.26/2.62 4.43/3.66 6.00/4.76 2.75/2.03
Calculated Bearing Pressure: 1143 / 1127 / 1262 psf
Eccentricity at base: 0.60 ft/0.83 ft
Reinforcing: (ft & lbs /ft)
Calc. Allow Ten Pk Conn Sery Conn Pullout
Layer Height Length Tension Reinf. Type Tal Tcl Tsc FS
3 5.33 7.0 150 / 272 SF35 1252/2570 ok 627/836 ok N/A 2.79/1.24 ok
_ 2 3.33 5.0 339 / 412 SF35 1252/2570 ok 751/1002 ok N/A 2.04/1.35 ok
1 1.33 4.5 415 / 532 SF35 1252/2570 ok 876/1167 ok N/A 3.55/2.21 ok
Reinforcing Quantities (no waste included):
`.. SF35 1.83 sy /ft
NOTE: THESE CALCULATIONS ARE FOR PRELIMINARY DESIGN ONLY AND SHOULD
NOT BE USED FOR CONSTRUCTION WITHOUT REVIEW BY QUALIFIED ENGINEER
Date 7/8/2010 Case 2
/0 /11
DETAILED CALCULATIONS
I. Project: Driveway Retaining Wall Date: 7/7/2010
Project No: 100529 Designer: MAM
Case: Case 2
Design Method: Rankine -w /Batter (modified soil interface)
1 Soil Parameters: .. Y
c asf Ac!'
Reinforced Fill 28 0 120
' Retained Zone 28 0 120
Foundation Soil 28 0 120
Leveling Pad: Crushed Stone
Modular Concrete Unit: Compac
Depth: 1.00 ft In -Place Wt: 120 pcf
Geometry
Internal Stability External Stability
(Horizontal geometry) (Horizontal geometry)
Height: 6.00 ft Height: 6.00 ft
Backslope:
Angle: 0.0 deg Angle: 0.00 deg
Height: 0.00 ft Height: 0.00 ft
Batter: 0.00deg Batter: 0.00deg
Surcharge:
Dead Load: 100.00 psf Dead Load: 100.00 psf
Live Load: 50.00 psf Live Load: 50.00 psf
Base width: 4.5 ft
Earth Pressures:
•
1
R
sin ( a + 0)
ka 2 Z
sin a sin(a — S) 1 + / sin(+&)sin(— M 6--- sin(a- 5)sin(a + J3) �
H W1 P ' 4
Internal Externa ∎
■
4) = 28 Deg 4) = 28 Deg
a = 90.00 Deg a = 90.00 Deg
R = 0.00 Deg 13 = 0.00 Deg
S = 0.00 Deg 5 = 0.00 Deg
H = 6.00 ft
_ ka = 0.361 ka = 0.361
Hinge Height: Hinge Ht= 10000 ft
Date 7/8/2010 Case 2
(( //-1
Reinforcing Parameters: Synteen Geogrids
Tult RFcr RFd RFid LTDS FS Tal Ci Cds
' SF35 3435 1.54 1.10 1.08 1878 1.50 1252/2570 0.80 0.80
Connection Parameters: Synteen Geogrids
Frictional 1 Break Pt Frictional 2
SF35 Tcl= Ntan(37.80) + 879 1000 Tcl= Ntan(19.30) +1304
. Unit Shear Data
Shear = N tan(40.00)
Inter -Unit ShearShear = N tan(26.90) + 769.00
Calculated Reactions
For the "modified" design method, the back of the mass assumed to be vertical for calculation of resisting forces.
effective sliding length = 4.50 ft
9
le we
Pa := 0.5H• (7•H•ka - 2c• sa) P := q•H•ka i irra
Pah := Pa. cos(8) Pct, := P cos (8)
• lir Pas, Paso
Pa := Pa.sin(8) Pcj := P uvt o
H
NI
E
.�
8
a
Pa wi
WY/
W2 M'
Reactions are:
Area Force Arm -x Arm -y Moment
WI 720.00 [0.500] 3.000 360.00
W3 2520.00 [2.750] 3.000 6930.00
ql 175.00 [2.750] 6.000 481.25
qd 350.00 [2.750] 6.000 962.50
Pa h 779.83 N/A [2.000] - 1559.66
Pgl_h 108.31 N/A [3.000] - 324.93
Pqd h 216.62 N/A [3.000] - 649.86
Sum V = 3765.00 Sum Mr = 8733.75
Sum H = 1104.76 Sum Mo = - 2534.45
•
Date 7/8/2010 Case 2
IZ /n
Calculate Sliding at Base
For Sliding, Vertical Force = W 1 +W2 +W3 +W4 +W5 +W6 +qd = 3590
• The resisting force within the rein. mass , Rf_1 = N tan(28)
= 1909
The resisting force at the foundation, Rf_2 = N tan(28.00)
= 1909
The driving forces, Df, are the sum of the external earth pressures:
i • Pa_h +Pgl_h +Pgd_h = 1105
the Factor of Safety for Sliding is Rf 2/Df = 1.73
Calculate Overturning:
Overturning moment: Mo = Sum Mo = -2534
Resisting moment: Mr = Sum Mr = 8253
Factor of Safety of Overturning: Mr/Mo = 3.26
Date 7/8/2010 Case 2
Calculate eccentricity at base: with Surcharge / without Surcharge
Sum Moments = 6199 / 5718
Sum Vertical = 3765/3590
Base Length = 4.50
e = 0.603 / 0.657
Calculate Ultimate Bearing based on shear:
. where:
Nq = 14.72
Nc =25.80
Ng = 16.72 (ref. Vesic(1973, 1975) eqns)
Qult = 5069 psf
Equivalent footing width, B' = L -2e = 3.29 / 3.19
Bearing pressure = sumV/B' = 1143 psf / 1127 psf [bearing is greatest with liveload]
Factor of Safety for bearing = Qultlbearing= 4.43
Calculate Tensions in Reinforcing:
The tensions in the reinforcing layer, and the assumed load at the connection,
is the vertical area supported by each respective layer, Sv.Column [7] is 2c sqrt(ka)'.
Table of Results ppf
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]
Layer Depth zi hl ka/rho Pa (Pas +Pasd) c (5 +6)cos(d) -7 Ti Tcl Tsc
3 0.67 0.83 0.361/59 60 90 0 150 150 627 N/A
2 2.67 2.67 0.361/59 231 108 0 339 339 751 N/A
1 4.67 4.50 0.361/59 325 90 0 415 415 876 N/A
Calculate sliding on the reinforcing:
The shear value is the lessor of base -shear or inter -unit shear.
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]
Layer Depth zi N Li Cds T RF ka Pa Pas +Pasd DF FS
3 0.67 1080 6.00 0.80 810 1269 0.361 10 36 46 27.75
2 2.67 1680 4.00 0.80 931 1646 0.361 154 144 298 5.51
1 4.67 2310 3.50 0.80 1053 2036 0.361 472 253 724 2.81
•
Date 7/8/2010 Case 2
(1
Calculate pullout of each layer
• - The FoS (R * /S *) of pullout is calculated as the individual
• layer pullout (Rf) divided by the tension (Df) in in that layer.
The angle of the failure plane is: 31.00 degrees from vertical
[ [ [ [ [ [ [ [
Layer Depth zi Le SumV Ci POi Ti FS PO
• _ 3 0.67 2.80 494 0.80 420 150 2.79
2 2.67 2.00 815 0.80 694 339 2.04
1 4.67 2.70 1730 0.80 1472 415 3.55
Check Shear & Bending at each layer
Bending on the top layer is the FOS of overturning of the Units
(Most surcharge loads need to be moved back from the face.)
[1] [2] [ [4] [ [ X [ [
Layer Depth zi Si DM Pv RM FS b DS RS FS Sh
3 0.67 0.67 14 80 40 2.82 46 810 17.70
Seismic 0.67 0.67 13 80 40 3.02 43 810 18.99
2 2.67 2.00 70 200 193 2.75 148 931 6.29
Seismic 2.67 2.00 95 200 193 2.03 194 931 4.79
• 1 4.67 2.00 87 440 353 4.04 175 1053 6.00
Seismic 4.67 2.00 110 440 353 3.22 221 1053 4.76
Date 7/8/2010 Case 2
EXTERNAL STABILITY
Horizontal Acceleration = 0.14g
Vertical Acceleration = 0.00g
Am= (1.45 -A)A = 0.183
Kh(ext) = Am/2 = 0.092
Kh(int) = Am = 0.183
Inertia Force of the Face:
W l s = H x Wu x gamma = 720.00 ppf
. Inertia Forces of the soil mass:
W2s = H x (H2/2 - face depth) * gamma
= 6.00 x 2.00 x 120.00
= 1440.00 ppf
Pif = W1 * kh(ext) = 720.00 x 0.092 = 66.024
Pir = W2s * kh(ext) = 132.05
Pi_dl = Wdl * kh(ext) = 18.34
Seismic Thrust , Pae
D_Kae =Kae - Ka = 0.421 - 0.361 = 0.060
Pae = 0.5 x gamma x sgr(H2) x D_Kae = 0.5 x 120.00 x sqr(6.00) x 0.060 = 129.62
Pae_h/2 = Pae x cos(delta) /2 = 64.81
Calculated Reactions
For the "modified" design method, the back of the mass assumed to be vertical for calculation of resisting forces.
effective sliding length = 4.50 ft
Reactions for Seismic Calculations
Area Force Arm -x Army Moment
WI 720.00 [0.500] 3.000 360.00
W3 2520.00 [2.750] 3.000 6930.00
qd 350.00 [2.750] 6.000 962.50
Pa_h 779.83 N/A [2.000] - 1559.66
Pqd h 216.62 N/A [3.000] - 649.86
Pir 132.05 2.000 [3.000] - 396.14
Pif 66.02 0.500 [3.000] - 198.07
Pidl 18.34 N/A [6.000] - 110.04
Pae h/2 64.81 3.000 [3.600] - 233.32
Sum V = 3590.00 Sum Mr = 8252.50
Sum H = 1277.68 Sum Mo = - 3147.10
• _
Date 7/8/2010 Case 2
laf
Sliding Calculations
Pa_h = 779.83 ppf
• ` Pae_h/2 = 64.81 ppf
PIR = 216.41 ppf
Resisting Forces, RF = (W1 + W2) tan(phi)
Foundation fill = 3590.00 x tan(28.00) = 1908.84
FS = RF /(Pa_h + Pae_h/2 + Pir)
= 1.49
Overturning Calculations
•
Overturning moment: Mo = Sum Mo = -3147
Resisting Moments Mr = Sum Mr = 8253
Factor of Safety of Overturning = Mr/Mo = 2.62
Calculate eccentricity at base:
Sum Moments = 5105
Sum Vertical = 3590
Base Length = 4.50
e = 0.83
Calculate Ultimate Bearing based on shear:
where:
Nq = 14.72
Nc =25.80
Ng = 16.72 (ref. Vesic(1973, 1975) eqns)
Quit = 4619 psf
Equivalent footing width, W = L -2e = 2.84
Bearing pressure = sumVB' = 1262 psf
Factor of Safety for bearing = Qult/bearing = 3.66
INTERNAL STABILITY
kh(int) = (1.45 -A) A
= (1.45- 0.14)0.14 =0.183
Inertia Forces
W1 = 1.00 x 6.00 x 120.00 x kh_int) = 132.05 ppf
Wedge = Wedge x kh_int [for failure plane angle of 59.00deg.]
= 1297.86 x 0.18 = 238.03 ppf
Dead Load = = 36.68 ppf
- Total Additional Internal Dynamic Loading
238.03 + 132.05 + 36.68 = 406.76 ppf
Tension in Reinforcing
Laver Le ft Tension Dvn Tension Total Tension( van FoS Pullout
• • 3 2.80 120.34 151.78 272.13 1.24
2 2.00 303.27 108.44 411.71 1.35
1 2.70 385.10 146.54 531.64 2.21
Date 7/8/2010 Case 2
. x� • RECEIVED
SEP 01 2010
• ` CITY OF TIGARD
Andy Miller Contracting Date 7 -9 -10 BUILDING DIVISION
Driveway Replacement
For Lauren O'neal
Contractor: Andy Miller Contracting
503- 784 -4442
' •
�
' *
'
'
~
~�
'
^ ^
^
'
~
^
�
�
••
.
,., _ _
__N ,
- f° _`4 .. . AI � � /� ° yam . 1.. � °� .'� , } tY le1 / r ,, . , ...
„..,- _. _ _ __ _ ,
_, ,. _
__
. _.,. ..
,...
______ ...
, _ e •
`'' gig a .. 1 ♦ �!`t' �"N . ft , t' 4. . . r ' . g 4: t. a� - - ' ".. ,,. v , . c. - .e' '„. • � , � k: ~ 1{y f . l / " `. ..;44 , �oS, ' 'J
I
+ _ r m + c 2
b } . ir .. , ".`�
� i Orr t � " , ._ ° , . . /' � `� "y; •
+` e � i
r ' �`•r. +_ 1 u °
1 , ) DI Y � Y � t vr ' . "� '''.. • i �,
. • +y . y •A■ :.i• , ,f a. r ,7 i. , ; kry , , , i ` i, ,, y ? T 7` \ 777Yrrr v � . 'N/' 2 I •
s • yi ^, SIB J i .• , P,; .a - + . f, • •
' • .I.f.ka ti o. �� �i�' ` �` - , { '� :- A l ='P';� ";j a': • 9 ` �' ' � 1 � ( � �� 1 L I ��f � � 1 ' �� • 1 e� 1+ Y 'mob •;a• ' •th� ,,+ y o+s q o � ; y yt J. , �1 t • { - j 1 1 11 'b� 1`•� / •
�
4,,41,-...... ' ✓ ` D , , ''i ,a * « ' � TM i � 1 f 1.� 4 , 1 1 - � .. q", ,, A i
1 S - � '�. .. �. f{ ' .'� ! Y + _'' t +if '-w Fi. •�' t/ A ,,•,,,,l � •41( ;i
a + 'X
,f
i �r „ / e fC ,1, s.
` 1! - t A r /.� - ` f •
• _ ((yy ( J • I 4 0 ,, w .
.., ,!f -_� i 11 I � ,� ...' j + yam O ' :1,,.1,‘,., I \ )) , J•
. , 1 E .1' , - ,
..r _ _ _ —����1 ) ! e l a.
, Ili V , s . , 1 s ,, 1,,
� ., y y� J t • v lle �[ i �( ,
- h 4 - ° o 5 9. c . • Yi. \ t T \ I / Z � � -III • � _ ,� .V2J
fi t. : .,at. ''i ''• _ °•.' v b Yi«.- , + :. •
99 c,k
�pe+'' i ....-,;!•- ? ° ?;;1„, + sle3 � ~ d� v < t 2 ° - Cr ti n
1/ . 1•
4 STONE®
RETAINING WALL SYSTEMS
~ � A CON TFCH CON PANY
Retaining Excellence'"'
•
Gravity Wall Tables
Keystone Standard Unit
Load Case
�\ c v Soil Type A B C •
' ,: `' -= UBC Class 3 4' -8" 4' -0" 4' -0"
UBC Class 4 4' -8" 3' -3" 3' -3"
` ,= .. Max Total Height
Keystone Compac Unit
Load Case
•
f‘,,, -> Soil Type A B C
I €... UBC Class 3 3' -0" 2' -0" 2' -0"
UBC Class 4 2'-8" 1' -8" 2' -0"
1 , - Max Total Height
Keystone Country Manor Units
Load Case
.` • :.
Soil Type A B C
oY _ • �y�, UBC Class 3 2' -0" 1' -6"
UBC Class 4 l' -6" 1' -0" 1' -6"
3 -
Max Total Height
Case A Case B Case C
100 psf 2
Level Backfill Level Backfill Sloping Backfill
No Surcharge 100 psf Surcharge 2H:1V Maximum
8 of 13
s
STONE®
RETAINING WALL SYSTEMS
CONT
'. A CONT[CN COMPANY
Retaining Excellence'
Introduction
•
This manual is specifically written, and all material contained within, for the Keystone
Retaining Wall System. Each Keystone block unit has different strength, weight, and
size considerations which require individual analysis. Geogrid soil reinforcement has
• performance properties which are unique to the polymer type and material designation
also requiring individual analysis. Different Keystone block unit and geogrid combina-
tions have unique design properties that require special analysis.
The purpose of Standardized Engineering is to provide working parameters for the
design and construction of small Keystone retaining walls in accordance with current
UBC and BOCA building codes for the 3 to 6 foot height range. Larger or more complex
walls typically require site specific engineering analysis.
Wall Materials
The wall materials covered under Standardized Engineering are the Keystone struc-
tural pinned units; the Standard Unit, Compac Unit, and Country Manor Units.
Keystone Standard Unit
Size: 8" (h) x 18" (w) x 22" (d)
.: . Weight: 94 Ibs /ea approximately
Face Area: 1.0 sq. ft.
= Delivery: 30 units per pallet
Keystone Compac Unit
Size: 8" (h) x 18" (w) x 12" (d)
Weight: 70 Ibs /ea approximately !7
mo t .
Face Area: 1.0 sq. ft.
Delivery: 45 units per pallet /�
\ Keystone Country Manor Units
• Size: 6" (h) x 4 " -16" (w) x 10" (d)
' Weight: 25 to 60 Ibs /ea approximately
. Face Area: 0.25 to 0.67 sq. ft.
s W Delivery: 80± units per pallet (Ave 33 SF per pallet)
2 of 13
StormTech SC -740 Chamber
�pf
Designed to meet the most stringent industry performance
standards for superior structural integrity while providing designers StormTech®
i. ! • with a cost - effective method to save valuable land and protect
water resources. The StormTech system is designed primarily to Detention • Retention. Recharge
be used under parking Tots thus maximizing land usage for Subsurface Stormwater Management'
. commercial and
. municipal
_ applications.
ACCEPTS 4' (100 mm)
SCH 40 PIPE FOR OPTIONAL
INSPECTION PORT
. SrSC -740 Chamber
t e) mamber Specifications , 1 011iN )
x ` o cirniI o x 762 mm)
Chamber Storage �f- 1 I— f 1 ;_,(Il,_,1,_,1,_II;_,1,_1,_ 1 _IL. L,.
45.9 ft (1.30 m3) L 6 � 24' (610 mm) DIA. MAX 90. ( mm)
- - -- (203 mm) SC -740 Chamber
Minimum Installed Storage* SC - 740 End Cap
74.9 ft (2.12 m 65.4' (2170 mm) INSTALLED 1
74.0 Ibs (33.6 kg) I !!! II I ! I I i l I I I I I I I
eg 1. ,,�.f '_� ' � ' � .'. ICI .l.f I'
Shipping (7s mm) \ f
30 chambers /pallet \ I I I
60 end caps /pallet 1
12 pallets/truck . • ' ' t ` I > ' ,; ' I 1 ; i 1 ' ' 1.I ' Ii' "r 1 ' ,I
- - -- -- - -51.0' (1295 mm)
• Typical Cross THE INSTALLED CHAMBER SYSTEM SHALL PROVIDE CHAMBERS SHALL MEETASTM F 2418-05 'STANDARD
THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED
Section Detail BRIDGE DESIGN SPECIFICATIONS SECTION 12.12 FOR WALL STORMWATER COLLECTION CHAMBERS.'
EARTH AND LIVE WADS. WITH CONSIDERATION FOR
(not to scale) IMPACT AND MULTIPLE VEHICLE PRESENCES. GRANULAR WELL GRADED SOIL/AGGREGATE
3/4-2 (19-50 mm) CLEAN. CRUSHED, ANGULAR STON MIXTURES 45% FINES. COMPACT IN 6' (150 mm)
LIFTS TO 95% STANDARD PROCTOR DENSITY. SEE
SC-740 CHAMBER THE TABLE OF ACCEPTABLE FILL MATERIALS.
ADS 601 GEOTEXTILE OR EQUAL
PAVEMENT SC-740 END CAP
dIraV ,,or r I II Ili ��",W R]R CO ER T 24456
RU11Wp R�IA VBaCLB WYO 96' II -1I „1. i walLASeCOVmto2ale,onaN 16 (4somm)(zaaom,R)
1 11 I I '.4 �I l : �� lr 4i 4i� �� lr �l l 4i a 1 � 11 •/1 �/ 1 ! �/ 1 �Itl � � 1 �� 1 411 1 X1 j M N. .
h9 r• •��ir.: �'. -44- r•�•/•1 i4 a •vgav a •�df • _ • ti• 8'(150 mm) MIN.
- I I 1 I ?� J �.J i! i) 0 t1
• • �t. , a� 1 J i t'fi ti -1'i 1 . % ! ! i.J� i �1 1 �
► IJ I I .41 4 /tN + L it ka` 11 tItit �1 µAl - P I ti �:
11=I 1 :• .f,I � g . t4,: !. `.f J a J; i L� /I�. i 6-
I I I WOO .1 / 1 1� ! . � �; � � �. a l. 30' (762 mm) SC -740
'III= 11rr�'r:ri tvol ■ ��4 Ir�, 1 .II a
1
1 I. Y � . O ) 6 1 / 0 � , , 1 vat; ' J i J i oe
a I� 1 1t J.1 }:. :. • ar•1i. . _ . , �. �I / �� L �
f slit 4 , :: r � . : .r .1 - Jirrer, J,.4 'r. f,,,14: Or J or . 40 • •r i.0 ,7 p Orr Orr Or : t,t �- DEPTH OF STONE
la- �l / ; :14111:1 .1 ∎1 I'10 i i�ti IA •E:f 1 —I 4L : . x 1.5:81.::_ 0 BE DETERMINED
1111 1 -111 =I 11 I � I 11—1 1 II I -1 11= I'�I I - 1 I I —I 1 I 4 1 1 11 I i I I i r l i I I l� 11 I i 6' (150 I- BY DESIGN ENGINEER'
1 - I - 111 = ' -1 I I I—I I I— 1 —1 I I— 11 —I 11 1 I� 1 I I= III —I I I-1 I I� I I —III- mm) MIN.
-11 -1= 1 1 11! II 1=I I I 11 — I I i 1 1= I I I I I I II 111- 111- 111- 111 -111-
11 -11 1 — f t i — .
._. -. _. ,. DESIGN ENGINEER IS RESPONSIBLE FOR 51' 1295 mm MIN.
ENSURING THE REQUIRED BEARING CAPACITY 6' (150 mm) MIN. ( ) . ---..- 12' MIN. (305 mm) TYP.
'�__ OF SUBGRADE SOILS'
THIS CROSS SECTION DETAILS THE REQUIREMENTS NECESSARY TO SATISFY THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE
MADE IN ME USA DESIGN SPECIFICATIONS SECTION 12.12 FOR EARTH AND ONE LOADS USING STORMTECH CHAMBERS
• •storm i ecn 1 Acceptable Vehicle Loads Page 2 of 2
Acceptable Acceptable Vehicle Loads
About Us
• Products Information on allowable construction vehicles at various stages of system construction.
• • Resources Maximum Allowable Axle Loads for Wheeled Vehicles at Various
Overview
• Site Calculator = ' ' . t
Manuals & Tech Sheets
• ACCEPT. VEHICLE Fill Depth Max. Axle Load
LOADS (in. over chamber) (lbs)
Accept. Fill Materials 24+ without pavement 32,000
Accept. Geotextlles
AASHTO /ASTM 18 with pavement 32,000
• Industry links 12 16,000
Case Studies 6 8,000
FAQ -
Contact Us
Maximum Allowable Ground Pressures for
StormTech LLC Various Vehicle Track Widths and Fill Depths
20 Beaver Road
Suite 104
Wethersfield, CT 06109
Fill Depth Track Width Max. Ground Pressure
P 888- 892 -2694
F 866 -328 -8401 (in. over chamber) (in.) (PSF)*
Intemational
+1- 860 -529 -8188 12 1070
•
18 900
info(stormtech.com 6 24 800
30 760
36 720
' 12 1540
18 1190
12 24 1010
30 910
36 840
12 2010
18 1480
18 24 1220
30 1060
36 950
*Ground pressure is vehicle weight divided by total truck contact area for both tracks.
StormTech... We Make Land Work for You
't • Developers ( Contractors I Engineers I Regulators I Homeowners
About Us I Products I Resources I Markets I Downloads ( Contact Us
Copyright; 2008 StormTech LLC, 20 Beaver Road Suite 104, Wethersfield, Connecticut 06109
http.//ww %. stormtech .com /resoijre..es /arrPntah1 irahirine l, tml n i� n i ....
2 . . . - . 4 3 L . 1 0 ` ti,IrV✓ b 1
Id A lr V M 'e 5bh10
X �'�I,) X 671 ,I i
-4° � � , w
Ok ID° y OZZ 1g °-/OS \L 1_31, 0 SIL 1.0 � d11718 t' '
0 St 1- /1 \1 ? < - \ 61')-47,1 L.:61.11 ''''
a'c z 1 \ �``_...._' ; ,
i
4 - k \ \ � - coi'. t , t. °2 Z 1�
l
(non \, /2J 1-0-)1-49-3 \ ./ , ,../ N � .1
V r I
1Z3: \ ---- -- : / \ ' l
Z s4q1 ./
t & . \ --- &-oN. , \ f ./ / /
,� � / / C
i.cfr- oii / L i l
1i`
_Li \ -I�
. \/ N.
.. . s . .
.. ‘. . .., .... ,
. . . , a ! .