Loading...
Specifications OCT -31. -2008 11:34 FROM: T0:5032461395 P.2 RECEIV N0 0 4 2008 r Engineering, En ineerin inc. CITY � S ON P Box 566 Newberg, OR 97132 (503) 554-0999 Bu1LnIN STAIR SYSTEM MIRAGE STORAGE SW Warner Ave. Tigard, OR ►.9 1. 1�L' .� ,_ •tJ _. 1f a_.,.i - V' .:1)rd ...F..: 2,TE Terry L. Potter, P.E. 701 _ ?7 PERMIT �; Engineer „- _.. Lic 14539PE DATE t i`•'�_ P C Engineering, Inc. P.O. Box 566, Newberg, OR 97321 Phone 503 - 554 -0999 Fax 503 - 554 -0756 OCT 31,= =2008 11 :34 FROM: TO:5 032461395 P.3 • L W� Lam b src,it/ c aJ ru i /CO I b %r 2 - /s/a -z� . Ltv. c.e = C /oo %=)(� % _ / /4 }( may = 7668 c � s s L 1 u = C Soo 1 "47-& - e S vs) = 2 7caG ibs n za. SrEcL 32.4 (4 's /r7'Z 1. �N GrL 7 (/4 I ter 3 )( 63 ;��(f / Y C 3) 2 4 ( U P►? E ce Lcr.-rm./ sr roc.. = 4 G 9 /6s _ , 4 c. cc-v.-rm./5 7 re- SrFP sr=`z = 2 3. /6s / O F'r�( /0, 6 %, - � (Z� = 21_ , a x i o. 6 # 7 5' 77412 La G!vE L04.0 4 1. 4 4 (27bo 164 4 23.s /63) + (Zrz /ds)= 31 a3. S Os To L / v7 KZ - c o -0 - (3a4 /bs)+ - (2460 Ibs)1-(4988 /Ss) = 77 7 2 ( bs rftC 0 ./ 6u, LL t rz / 6o 7. 7. ( v vfFor c1 gD o 0 1 ' 3 U /Lo C-c) . 0 7 . ' 7 / . 5 19C-1-1£_ coti o Mae Lc 4.6 _ mac) (bs r 2 >►-� a 1,3 C) +L o r. e. Co 6E /6 0 >. 7. / - Z t — Fn 2 F / c. x. rZ P A V UN� FoR,vi X40 So 4- _ f OCT-3172008 11:34 FROM: TO:5032461395 P.4 . . : . S: 7 1 At 67-6-4 . .40V4C—YSI.S : . i 3/23 . ,•.: 7/ L r- (2_0 3o,000 ksr 32 - I I ! , - 2 odo i L I ■7 .... - 7 I . ' Z ; I ■■■■■■OW I CI 2. X ) O. - I 1 i ZD ii z 1 „ F ! 11 ? i 1 i ! 2 , • 1 1 /0.= cox (i_ x ) (/32.4 )( = (11 P40 , -t- /6 ! i s Sal z 1 4- i . _ 2,9 000 1 r5...r. r. 1.-- z_r 3 3- ■•■••••....1 I . OCT -31 72008 11:35 FROM: TO:5032461395 P.5 C © L -VAlw Lc,46) NG, 7772!bs 31 Z3 tbs C©LUMN 1-4t1,46 461 l • 3 l23�bs / l / / / 7772 lbs 7 ---" 31 23 /11; .7 1 i _ I i j _ I , i U f f F►2 COL vM'/ 46 i 3 ( - '\+ 777Z 6, s - 4333..5 16s > Z 333 ly / oLV -7IJ Z_ i Lo w LrZ coLU..h4v [ 1 4a 1 3 - 3123 15 + z (77?z 1,5s) + ( = 2 4 634..r 7 1 - /5 4- 4e, = 2oCp7 /bs j 5/74 (b a j 1 I OCT-31;-2006 1135 FROM: TO:5032461395 P.6 CoL.u.114/ ALy3i,S" zr CC,L—ClevW 4Qt_kl-iNG • ) --: 3 .73 2 E- 3o , 000 icsf ) S ;, //c 2, 8R ; • ',-F2 L L 44. 3/ • 0 (A) Eft C-4 .5 br \ (C-vs 000 0 • 1 ° /7%1 8014 Psi CaLC40,14/ 9 z q f' z333 27_ es, , 5 . 80 )4 _ (2.8 4 ‘ 3.75'7 ( 2 I • t( (3 000 = 5 PSI coLve74/ p 5774165 (313o PCI 2_,000 21. /5460 OCT -31 -2088 11:36 FROM: TO:5032461395 P.7 f f tkaLp _ A1VA-LYSLS SN 042 = F Lt z,/ 9 in Ci/ iwo L Wt21Q .70 l. /- f 1.e-H 143E L13 Z7ODO r - Psi = (4 Sea Psi reC• 707) Ll (14500 I % , 7 a 7 )(/ Q J,4 /• ('4,) / 9 `17.7 lbs P4 /i"G/�/ 0,4` "JEL- A7L -e-eT V5i,/v ,c/ m4 v4Lve f 5 - ?,0 / 7 = EO J© 3 R e_efrD 1"7-4/2 s rfab /ti F, C a- lbs j ALL 4r7 -R nxiti 7 Poi A/ 7 'L 1 �X c mtE / N /.n't wv1 2 F .12012-.E M ,Eiv T • OCT -31 -2008 11:36 FROM: TO: 5032461355 P. • 'Model + name: STEP Study name: COSMOSXpressStudy • ;Plot type: Static nodal stress Piot1 (- vonMises -) ;Deformation scale: 308.337 • ,i ,' k , 4. K m na "° 1pr e' r 5 y f,; von Mises (psi) < �� `, 1- ` : 'k .:- � ' 9.356e +003 � s H t a,, „ 8.506e +003 ' { }� t t� j r « C 7.658e +003 �,s � � k k e �y��F + ' ' 6.8068 +003 , z 4 .c �' ;* %,,-,;;, G ' ., f � ` : L wS ' r 5.856e +003 a== l r .,y., a O ,.. d r , 4 5.105e +003 .,:. 1,0 "' +� �^ *, �^ .; a � 4.255e +003 y-.k `,SIA '. , : 4,j 7 d , 4 0 44 �:'•� rnti im. M �K .� `'"' t,. , �'^ ; 3.405e +003 �� i P r � . i , 7 4r y rq , , k x k "� a 7 1 � � + ., ; � A . . ,' �,a r � Y ' 1 ∎t" : 2 555e +003 ," t , � k Y 4-2 :jk f # , 4 » - rri � r '' � 1.705e +003 ;i e h r ^ + . cur �4 + � P ��ri' � i °?�r» ? " 8.545e +002 x t �� . 0 ,1 . 4 +000 r vt " N i,Ea � p `,gyp yI 5;�° 0,1: ,.' — *Yield strength: $ 4b6c+�GL1d F Mtp + kA , s'M lr1,... 'rc,�y A ,. 1 ��:., g 74 1 i fi 6 : I .1' N r'wa J'l�t'F A k, Jr* f +� .ten. 'C' • • OCT 11:36 FROM: TO:5032461395 P.9 RAIL Le Atbi/4., AluALy.si s : M 4)cim LiAt■ La 44 oc0(2, s oA /$r F2-004Q- LEAD/A/G- Po_sr 0 u3C 2_ ■ --rue5 1%z x. 1 '2.5.4 . / z 1 N ... ,,, z oc, FE3 b %/ C 2.1 1 I 1 14 %111 40" F5 V \ '4_ -- .,,1 1 (2. -■ , 1 1 ..... i I 1 i , 353 ;--1 (EE /vex r PII-E Foa._ M C4 r , (qaoo ,•.,_ IL sY ...7 N ,-. 2- 0 e 2_1, S pg, ;-- - z _ oe ,2_1 - Z.Z. -> /. 6 ‘. ■ Fao iv) 4/ SC.. 44, czpo PSI 'si'c, e_g yua/tve.7 J - i I 1 OCT-3172008 11:3? TO:5032461395 P.10 CA- Z_cQ1,4TIoAJ F moo, pj posr AloA4L oF j7) FiVAIrAilr/AVARVISS Pea dir s 2 1 orgov Ammordiums... _ F 13 J 2 k , 0 °5 A E . 00 sz 2-5 S ) 3 4- -1 ) 5" 7 I', OCT -31, -2008 11:37 FROM: TO: 5032461395 P.11 'Model name: Partl 'Study name: COSMOSXpressStudy Plot type: Static nodal stress Piot1 (- vonMises -) Deformation scale: 40.0095 von Nimes (psi) � A 2.861 a +004 ; , `.+ a or. 2.3848 +004 a . y 21468+004 f r v 1.9084 +004 y y?� 1.6698+004 e x x 1.4316 +004 1. 1938+004 9.546e +003 r . r. i ry � 7 a 7.1634 +009 4 +003 • 2.3988 +003 �FJe> L F 1.4786+001 M m . — ,Yield strength: 04 ., �,� _ per ' �✓., - ti T 9 000 B SI F5 Z o Z ZS ° L_oN A-7 1 VE._ / 4_4/ 4-L-/ SI 2 S M 6 4-NA4 LyS/ S(j S E ( 4) c • � � � D s°,0 / b 4-0 A 6 — I N psi /i77 off 1-o SCl2._✓ - 7 - 1v`f_ y s S 2 coo PS t , OCT -31 -2008 11:38 FROM: TO:5032461395 P.12 REVISIONS SYM. DESCRIPTION DATE APPROVAL 68 © 32' 0 #10 im•D #4 0 . 0 91,, #4 0 8 .4 40 401 9'-32„ OS#:.:40400 ♦0 *V 0.000000 A° * 0014.$* Atli r 3 4 4 D • , •#:********# 0 I # 1 . 1 _ 9 q , . A # 0.0 44440# 1 4# 00 . 0 0 0000 4 * 4.0 # 4 , II . ♦ *V0 O FIELD INSTALL ' * 0 4 .0 4° 1 L A 6 8., T Y P • \ r -7- 1 h0� 5" \ 2„ i / 0 8' 0 ED 0 SECTION A - A FLIGHT #1 ONLY.S" - REVISION 2, 10/29/08 - MATERIAL AS NOTED FINISH HEAT TREAT _ WEIGHT N/A DIMENSIONAL TOLERANCES - UNLESS OTHERWISE NOTED STAIR # & #2 P C ENGINEERING, INC f.030 1.015 ±.010 FLIGHT 1 & 3 P.O. Box 566 Newberg, OR 97132 — .X .XX .XXX - SCALE No. DRAWN TLP DATE 6 -24 -08 SIZE DRAWING NUMBER POCKET 1 0: 1 REQO. CHECKED DATE SHEET 10 OF 10 APPROVED DATE B JC3009 ,OCT -31 - 2008 11:38 FROM: T0:5032461395 P.13 58' O 32' f 1, 5 , I ' l < 32' 58• g 8 9' -102" SEE SHEET JC3007 10 \----------- __________ _____ i. 0 ( 1 L____ 0 • • _ 0 MO .0 ' pi• 0 t i ` C A� A 3�� t • 3' -¢ ) I I 4 PP � 8 -10 '-R 11 J i 64" 1ST STEP I 58' 4 f 10 A/R TUBE 1 -1/2 X 1 -1/2 X 1/8 MS 9 — DIAMOND PLATE 1/8 THK MS 18.50" X 36" 8 1 1-1/4 SCH 40 PIPE, 2-1/2" LONG R 7 A/R MESH 4 X 4 WELDED 1/4 DIA WIRE MS M? 6 A/R •FB 1/2 X 1/2 MS 5 1 FB 1/4 X 3 -1/2 ° U 4 A/R 1-1/4 SCH 40 PIPE 3 A/R 90 DEG ELBOW 1-1/4 SCH 40 PIPE,1.8 CL RAD 2 A/R FB 1/4 X 1-1/2 MS sc, 1 1 RT,1 LT CHANNEL 12 X 10.6 MS, 118.5" LC ITEM QTY DESCRIPTION ,� , - 001 Zc:07 G�, -3 Form 2a Project Name: M ` 1 1 Y\A G STOM4E Page: 1 SUMMARY t $ii a a i,n :r $. I ,„ ,, , 4d ..1 py' 1 „, „ —, „.. ,';+� _;n4 .it :1 . vi,,,,. .. t 1,. ., . ■ .gym i .. .,, w I.. a , s. „a ■ . r. .. Project 1. Project Name 1`-'(\1ZA G S'fORAG15 2. Project Address S 0 1 PIP■IN)SAZ. v � 3. City/Town ' G ■ b1Z'EG n 5. County I\A) AS I0GTo 4. Building, Gross Area (ft2) 4 3 C7 6. No. of Floors I 3 7. Construction Site Elevation Above 2,000 ft? ❑ YES 'Kw Attached Chapter Type ID Description Attach Forms and Building Envelope Form 3a Building Envelope - General 3b Prescriptive Path - All Climate Zones ►0 Worksheets * CodeComp Report for Simplified Trade -off ❑ * In lieu of 3b * Floppy disc with .occ CodeComp file ❑ Check boxes to Worksheet 3a Wall U- factor ❑ indicate attached OFFICE COPY 3b Roof U- factor ❑ forms and 3c Floor U- factor ❑ worksheets 3d Window /Skylight Schedule ❑ Systems Form 4a Systems - General ❑ 4b Complex Systems ❑ f Worksheet 4a Unitary Air Conditioners - Air Cooled El Unitary Air Cond. - Water & Evap Cooled ❑ 1'�tt- -5v e , j1G1\j / � ot �� 4c Unitary Heat Pump - Air Cooled ❑ 4d Unitary Heat Pump - Water Cooled ❑ S‘ 5 W IT1't 4e Packaged Terminal A.C. - Air Cooled ❑ 'C.' t, '6 4f Packaged Terminal Heat Pump - Air Cooled LI 0 4g Water Chilling Pkgs - Water & Air Cooled ❑ 'Td 1G b‘ Heat Rejection Equipment ❑ A- r , 4i Boiler - Gas -Fired and Oil-Fired ❑ vH E 4j Furnace & Unit Heaters - Gas and Oil -Fired ❑ Fs zlz. 1, 5u13' i1'1... 4k Simultaneous Heating and Cooling ❑ 41 Air Transport Energy ❑ 4m Natural Ventilation ❑ Lighting Form 5a Lighting - General ❑ 5b Interior Lighting Power - Tenant Method ❑ 5c Int. Ltng. Power - Space -by -Space Method ❑ Worksheet 5a Lighting Schedule ❑ 5b Interior Lighting Power ❑ Applicant 7. Name G j } f J \\ \I & \,.e ,t � 10. Telephone 'SD(j -2 " ] 51� 8. Company \) r . • !-t - i4.1-1 6,-t- 11. Date 1(/..11 1 of 9. Signature /1 iS Attached No. of Pages Description of n . , entation Document- t - FOF- 'Ljp\ ation 4 f o ■e--. ; 3 b rr i- ,, _ ,,, .. 1 1, 4 1. r MI^ 'r f. ,.3",I,: 1 ;, e ',"1,;1, .1., 17,'.1;, , .;,, -, ,,.,. r ,. ■ `".0 a . .. i ,, l.ornpnance wur l.../Dal.,., erreeuve u riu uuo Form 3a Project Name: V'A\ Vc (AS cDto'ZAge" Page:` 2 BUILDING ENVELOPE - GENERAL Check all boxes 1. Exceptions (Section 1312) that apply. ❑ No Envelope Components. The building plans do not call for new or altered building envelope components, e.g., walls, floors or roof /ceilings. ❑ A Non - conditioned Building. The proposed structure has no spaces heated or cooled by an HVAC system. Exceptions 14 Exception. All new or altered building envelope components do not comply with the Discussion of qualifying requirements, Section 1312, but qualify for Exception: X1 0-2 0-3 0-4 0-5 exceptions in Portions of the building that qualify: instructions section. 5 t -C 'OMP t\i TrMt) wOP, Plans /Specs 11 A oot Show compliance by The plans /specs show compliance in the following locations: including a drawing sheet, detail number, 2. Air Leakage (Section 1312.1.1) specification section and /or subparagraph. Complies. Plans require penetrations in building envelope are sealed and windows and doors are caulked, gasketed or weatherstripped. The plans /specs show compliance in the following locations: A -00\ 3. Suspended Ceiling (Section 1312.1.2.1) IX Complies. Building plans do not show suspended ceilings used to separate conditioned space from unconditioned space. No exceptions permitted. 4. Recessed Light Fixtures (Section 1312.1.2.2) X Complies. The building plans do not show recessed Tight fixtures installed in ceilings separating conditioned spaces from unconditioned spaces. ❑ Exception. The building plans require that fixtures installed in direct contact with insulation be insulation coverage (IC) rated. The plans /specs show compliance in the following locations: 5. Moisture Control (Section 1312.1.4) - Complies. A one -perm vapor retarder is installed on the warm side (in winter) of all exterior floors, walls and ceilings, and a ground cover installed in the crawl space of both new and existing buildings where insulation is installed. The plans /specs show compliance in the following locations: / -CPO■ t A -cooZ ❑ Exception. All new or altered building envelope components do not comply with the vapor retarder requirements of the code, but qualify for an exception. Note applicable exception. Section 1312.1.4, Exception: ❑ -1 0-2 Portions of the building that comply: Climate 6. Climate Zones Zones X Zone 1 - A building site is in Climate Zone 1 if its elevation is less than 3000 feet above sea level and it is in one of the following counties: Benton, Columbia, Clackamas, Clatsop, Coos, Curry, Douglas, Jackson, Josephine, Lane, Lincoln, Linn, Marion, Multnomah, Polk, Tillamook, Yamhill, or Washington. ❑ Zone 2 - Building sites not in Zone 1, or where construction site elevation is 3000 feet or t . 0 4. ` higher in Zone 1, are in Zone 2. 1 ' , t9 "F o fi tP v ,.. u I - r., .,,, 1 1,J' .� :, S:,v I, f u1 I.q' i � , , ,`' 4 n . "d, 44.' r a id.�,. r e �I,,..d't r I • +,4 1 , N L . . - '. �. , , 1M� I i , . : i : _ , .I i 5 n u i 7r � v � S , .-, I,Y t, r!��4 d� :f h :�. �, v '41, h J G L,[ .alvi !I 0 3 -1 Compliance with OSSC, effective 04/01/07 Form 3b Project Name: VA \ g. A Gs Glo gR G,S Page: 3 PRESCRIPTIVE PATH Part 1 of 4 CLIMATE Exterior Wall Window Area Area Glazing Maximum Glazing (total rough frame ft2) (gross ft2) % Fraction Complies Glazing Conditioned Zk 4- q 64V2 Percent Space 9 X 100 = 041.6 N/A Calc- Semi- ulation Conditioned N / R ÷ ' A X 100 = hi-A- N/A Space See instruction section for a Conditioned discussion of Mechanical N 1 Pt - K) 1 -A X 100 = N `P N/A glazing percent Penthouse calculation. Windows Window Max Minimum Window Shading Minimum From Work- (from Worksheet 3d) U- Factor Assembly (from Worksheet 3d) Coefficient Assembly sheet 3d, place #N /A - �' #N /A - the highest Overall Window U - Value Complies SC Complies U- factor and - highest Center -of Required Minimum "ix. S C- = .51 Glass SC. Or Assembly (Fixed Required Minimum check minimum Windows) Assembly assembly and identify window. Required Mini - v c _C%LA mp yAQtX V- 5,4. mum Assembly YZ Al� Si'l1GE (Operable Windows and Let...) -£ GoA't tw Curtainwall) ' t - t,'R1MALt. pI -e ) F The plans /specs show window compliance in the following locations: A -OO1 Notes 'From Worksheet 3d, place the highest Overall Window U- factor or check (Minimum Assembly). See "Window Requirements" in table on the following page for specific MA requirements. Excel version will automatically insert minimum assembly requirements or greatest U -value from Worksheet 3d. 2. From Worksheet 3d, place the highest "center -of- glass" shading coefficient (SC) for glass or check MA (Minimum Assembly). See "Window Require- ments" in following table for specific MA requirements. Excel version will automatically insert minimum assembly requirements or greatest SC from Worksheet 3d. Shading Coefficient (SC) can be calculated from Solar Heat Gain Coefficient using the equation: SC = SHGC .- 0.87. Manufacturers data may also be used to document SC. Walls R -Value Wall / Insulation Type Insulation Only U- Factor fora I I CJ\\_ . FkAWe /1 lW SUL- L F- -2,t or ofwallrequire- C�\) `iVq}5o��� l`kCtl'O 1W _i or WA ments. J or I or J or id Of Below R -Value Grade Walls Insulation Only U- Factor See instructions Below - Grade Walls (Min. R -7.5) (Max. 0.11) for a discussion of l ` ' t /� \ / J� or ,{ y : requirements. { ,• Notes 3 Submit Worksheet 3a for each calculated assembly U- factor A r_ 3 -2 Compliance with OSSC, effective 04/01/07 Form 3b Project Name: Page: 1 PRESCRIPTIVE PATH Part 2 of 4 Code Requirements - Zone 1 Discussion of these requirements in the instruction section. ZONE 1 Wall Requirements Window Requirements Max. Max. Glazing R -Value Shading Fraction Wall 1 Insulation Type Insulation Only U- Factor Max. U- Factor Coefficient U to 15% CMU 'Masonry w /integral loose fill insulation N/A or 0.300 > p Masonry or concrete w /cont. exterior insulation 1.4 or 0.300 0.540 0.57 CMU Masonry w /integral rigid fill insulation N/A or 0.210 Masonry or concrete w /interior insulation 11 or 0.130 Up to 30% Masonry or concrete w /cont. exterior insulation 2.8 or 0.210 0.540 0.57 Frame (wood or metal framing) 13 or 0.130 Other (provide short description) 13 or 0.130 CMU Masonry w /integral rigid fill insulation N/A or 0.210 Masonry or concrete w /interior insulation 11 or 0.130 Up to 40% Masonry or concrete w /cont. exterior insulation 2.8 or 0.210 0.37010 0.3510 Frame (wood or metal framing) 13 or 0.130 Other (provide short description) 13 or 0.130 Code Requirements - Zone 2 Discussion of these requirements in the instruction section. ZONE 2 Wall Requirements _ Window Requirements Wall / Insulation Type Max. Max. Glazing R -Value U- Factor Max. U- Factor Shading Fraction Insulation Only Coefficient CMU 'Masonry w /integral loose fill insulation N/A or 0 11 11 Up to 15% Masonry or concrete w /cont. exterior insulation 1.8 or 0.270 0.500 0.57 CMU Masonry w /integral rigid fill insulation N/A or 0.160 Masonry or concrete w /interior insulation 13 or 0.090 Up to 25% Masonry or concrete w /cont. exterior insulation 4.3 or 0.160 0.500 0.57 Frame (wood or metal framing) 19 or 0.090 Other (provide short description) 19 or 0.090 CMU Masonry w /integral rigid fill insulation N/A or 0.160 Masonry or concrete w /interior insulation 13 or 0.090 Up to 33% Masonry or concrete w /cont. exterior insulation 4.3 or 0.160 0.370 0.43 Frame (wood or metal framing) 19 or 0.090 Other (provide short description) 19 or 0.090 Notes ° The Simplified Trade -off Approach must be used if glazing fraction exceeds allowable percentages. 5 Minimum weight of masonry and concrete walls = 45 Ib /ft2 of wall face area 6 All cores to be filled. At least 50% of cores must be filled with vermiculite or equivalent fill insulation. 7 Prescriptive MA (Minimum Assembly) - For Fixed Windows: double - glazed window with a 0.5 inch air space, low -e coating and aluminum frame. MA shading coefficient description is a tinted outboard pane of glass. For Operable Windows or Curtainwall: double - glazed window with a 0.5 inch air space, low -e coating and thermally broken frame. MA shading coefficient description is a tinted outboard pane of glass. 8 - All cores except bond beams must contain rigid insulation inserts approved for use in reinforced masonry walls 9 Batt insulation installed in metal or wood frame walls shall be insulated to the full depth of the cavity, up to 6 inches in depth. 70 Prescriptive MA (Minimum Assembly) - For Fixed Windows: double - glazed window with a 0.5 inch argon filled space, low -e coating (e <= 0.05) and thermal break frame. For Operable Windows or Curtainwall: only use Max U- Factor. MA shading coefficient description is a 0.25 -inch thick glass with low -e coating (e <= 0.05) with a tinted outboard pane. 11 Prescriptive MA (Minimum Assembly) - For Fixed Windows: double - glazed window with a 0.5 inch air space, low -e coating and aluminum frame. For Operable Windows or Curtainwall: double - glazed window with a 0.5 inch air space, low -e coating (e<= 0.1) and thermally broken frame. MA maximum shading coefficient description is a tinted outboard pane of glass. 3.111%, 12 Prescriptive MA (Minimum Assembly) - For Fixed Windows, a double - glazed window with a 0.5 inch argon filled space, low -e coating (e <= 0.05) ‘y,,... - i i and thermal break frame. For Operable Windows or Curtainwall, only use Max U- Factor. MA shading coefficient description is a 0.25 -inch thick 0: `' .' class with low -e coatina (e <= 0.05). 3 -3 Compliance with OSSC, effective 04/01/07 Form 3b Project Name: � 11P-,6 (^x (51-o PtG�1 Page: 15' _ PRESCRIPTIVE PATH Part 3 of 4 • Roofs/ R -Value Insulation Only U- Factor Ceilings iO ' Roof / Ceiling" (Min. R -19) (Max. 0.050) See a f dicussion 1_ ussion of \t1 ;1�1\, `V 11/J L ) 0•V` a \i'd%1F M, .) V— \,I:\ or roofs /ceilings. Notes 11 Write -in a short description for assembly with the lowest insulation R -value or the highest assembly U- factor. 12 Submit Worksheet 3b for each calculated roof /ceiling assembly U- factor. Skylight Area Roof Area Skylight Maximum Skylight (total rough frame ft2) (gross ft2) % 13 Fraction Complies Skylights Conditioned V l A + 1,, , f ^ X 100 = r A N/A Includes glazed Space rV ,f smoke vents. . Semi - See instructions Conditioned N ' r1 a - M r . X 100 = k v , I A N/A for a dicussion of Space 1 skylights. Conditioned 1 Mechanical l ` 1 4 - 1N l J fr X 100 = N/4 N/A Penthouse 1V �T Skylight Area Roof /Ceiling Area Skylight (total rough (gross ft2) Percent frame ft2) Skylights Skylights Max Minimum Skylights Shading Minimum From Worksheet (from Worksheet 3d) U- Factor Assembly 15 ) y (from Worksheet 3d) Coefficient Assembly 3d, place highest Overall Vertical #N /A - El #N /A - N/A Window U- factor and highest U -Value Complies Yes SC Complies Yes Center -of -Glass SC. Required Minimum N/A Required Minimum N/A (must use SC) Assembly Assembly The plans /specs show window compliance in the following locations: t O l UID N C1 14P1 0 b W l.14 4-11 Code Compliance Thermal Performance Shading Coefficient Require- Option Overall Vertical U- Factor Center of Glass SC Performance U -1.230 for overall assembly in overhead plane SC -0.47 center -of -glass ments Min. Assembly Double glazed, 0.5 -inch airspace N/A (MA) Notes 1 Skylight percentage area is based on total skylight and smoke vent rough frame area divided by total conditioned roof area. Percentage must not exceed 6 percent of total roof /ceiling area in conditioned building space. The Simplified Trade -off Approach must be used if glazing fraction exceeds allowable percentages. 14 From Worksheet 3d, place the highest Overall Vertical U- factor or write -in MA (Minimum Assembly). See "Skylight Requirements" in table above for specific MA requirements. 15 From Worksheet 3e, place the highest "center -of- glass" shading coefficient (SC) for glass. See "Skylight Requirements" in table above for specific MA requirements. Shading Coefficient (SC) can be calculated from the Solar Heat Gain Coefficient using the equation: SC = SHGC * 0.87. Manufacturers data may also be used to document SC. r �. 1:1 3.4 Compliance with OSSC, effective 04/01/07 Form 3b Project Name: WO C I'r b1 Gi E Page:16 ___ PRESCRIPTIVE PATH Part 4 of 4 Floors R -Value See instructions Floors over Unconditioned Spaces Insulation Only U- Factor for a dicussion of floors. (v l Pe Or Heated Concrete Slab Edge R -Value Insulation Only N1 Heated Slab -on -Grade (Section 1312.1.2.4) ❑ Complies. Building plans show insulation extending downward from the top of the slab a minimum distance of 24 inches or downward and under the slab for a combined minimum distance of 24 inches or to the bottom of the thickened edge of the of slabs used as a foundation. The plans /specs show compliance in the following locations: Notes 16 Write -in a short description for assembly with the lowest insulation R -value or the highest assembly U- factor. 17 Submit Worksheet 3c for each calculated floor assembly U- factor. 18 Write -in a short description for Heated Slab, which has heat, integrated into slab such as hydronic heat. If more than one floor type, enter the lowest insulation R -value or the highest component U- factor of any floor. Code Compliance Options Require- Min. R -Value Max. U- Component Insulation Only Factor ments Floor over Unconditioned Spaces 1 11 1 or 1 0.070 Climate Climate Component Zone 1 Zone 2 Heated Concrete Slab Edge, Min. R -Value 1 7.5 1 or I 10:0 Doors R -Value U- Factor See instructions Doors Insulation Only Center -of -Panel for a dicussion of opaque, W\ e, with leaf width greater than 4' (Min. R -5) (Max. 0.20) doors. 1 N50k -f<'Ma I I.- or Notes 19 Write -in a short description for Doors. If more than one door type, enter the lowest insulation R -value or the highest center -of- panel U- factor of any door. The following doors are exempt from door and window U- factor and shading coefficient requirement 3 -5 Compliance with OSSC, effective 04/01/07 � • OoP 7GO7- 6c:6 PROJECT NAME: Mirage Storage AAI PROJECT NO.: A07072 PROJECT ADDRESS: SW Warner Avenue, Tigard, Oregon DATE: November 1, 2007 RESPONSE TO CITY OF TIGARD PLAN REVIEW COMMENTS MIRAGE STORAGE ITEM PAGE NO. CITY OF TIGARD COMMENT AAI RESPONSE NO. 1. Sheets A- Submit calculations and details for Exterior metal panel siding is an architectural 201, A -202, metal panel siding. (non - structural) item. Siding design and A2 -3 and A- connection information will be provided as a 204 deferred submittal. 2. Sheet S -100 Submit completed section. The formatting errors for the Steel Deck, Steel Studs Steel Stud and Steel Shear Panel section of the Structural Notes have been corrected. 3. Sheets S- Clarify conflict on wall thickness Detail 9/S3.01: Reference to 8" CMU 201A and S- between S -201A and S -202A with detail removed; Concrete wall thickness callouts 202A and 9/S -301A. modified to 8" at 8" CMU, 10" at 10" CMU Detail and 6" at Sim. Cond. 9/S -30 IA 4. Sheets S- Clarify wall thickness Grid 1, B to D; The CMU wall thickness at all referenced 202A And S- Grid 6; Grid 9; Grid A +. locations is 8 ". Callouts for masonry wall 202B type M1 have been added to these locations on sheets S -202A and S -202B. 5. Sheets S- Submit details for connection of two or Detail 6/S4.03 has been modified to show 202A three wide flanges and two or three configurations with 2 or 3 beams supported S -202B, headers bearing at the same column. by a HSS column. Detail 3/S4.03 already S -203A, shows detailing for multiple beams supported S -2036 by WF columns. Callouts for detail 6/S4.03 has been added to the 2nd and 3rd floor plans. 6. Sheets S- Submit details for connection of wide Details 9/S3.02 and 10/S3.02 have been 202A flange beams to each other. added to show WF beam to beam S -202B, connections. A callout for detail 9/S3.02 has S -203A, been added to S -202A. S -203B 7. Sheet S- Clarify detail at grid A+ between grids The callout for 4/S4.01 has been removed 202B Detail 11 and 12 on direction of steel decking from sheet S -202B, Grid A +, between 11 and 4/S -4.01 and 12. The floor deck span is parallel to the wall 5/S -4.01 length in this area. 8. Sheet S- Clarify note on detail 2/S4.03 about Keynote callout No. 5 currently shows (2) 203A Detail double studs below at grids 2 and C, 400S200-68 studs at interior jamb studs and 2/S4.03 also Grids 3 and D. header supports, while keynote callout No. 6 shows (2) 600S162-54 studs. These keynotes are referenced on S -203A at the locations where HSS columns are above. To further clarify, the stud sizes have been added to detail 2/S4.03. 9. Sheet S- Submit calculation and details for lateral The out -of -plane wind loads from the exterior 203A Detail Toad transfer at grid G+ and 2 +. wall is transferred from the angles shown in 6/S4.03 detail 11/S4.03 to the HSS columns, then to the W10x12 beam, into the floor diaphragm through the deck/beam welds, and is then resisted by the (2) #4 drag -strut reinforcing in the slab. The out -of -plane Toad transferred through the beam /column connection (6/S4.03) is only 1.2 kips (see calc sheet 6.41), while the vertical shear load transferred through the connection is only 4.1 kips. These loads are resisted by (2) 7/8" A325 bolts, with approx. 20 kips of capacity. Detail is adequate as drawn. 10. Sheet S- Submit calculation and details for lateral See attached calc sheets 2.39 and 2.40 for 202A load transfer at grid 1 and D. calculation of drag strut force and shear wall dowel requirements for the CMU wall at Grid 1, B -D. Although dowels shown on detail 5/S4.01 for this area (#4 at 24" oc) are adequate, detail 5/S4.01 has been modified to show #4 dowels at 16" oc at Grid 1. 11. Sheet S -3.01 Submit soils engineer verification of Recommendations from the Geotechnical Detail values used for retaining wall on Engineer were not available at the time of 9/S3.01 calculation Sheet 3.33 design. An active pressure of 35 pcf for non - restrained walls and an at -rest pressure of 60 pcf for restrained walls were used according to 2007 OSSC, Table 1610.1. 12. Details Submit calculation and detail for # 12 x Details 4 & 5/S4.01 have been revised to 4/S4.01 and 3/4" screw into CMU. show powder actuated pin fasteners instead 5/S4.01 of the #12 screws. These fasteners are provided only to prevent movement of the steel deck during concrete placement. All in- plane and out -of -plane lateral Toads are transferred between the wall and floor diaphragms through the #4 dowels. 13. Details Submit calculation and details for Details 7 & 8/S4.02 show the connections of 7/S4.02 and loading and connection. the (non- bearing) sides of the non - structural 8/S4.02 partition walls to CMU or structural metal stud walls. The partition walls, which are very few in number, will span vertically and will be attached to the slabs at the top and bottom with powder actuated pins. See architectural drawings for partition wall construction. 14. Detail Provide location of continuous Detail 12/S4.02 shows the weak axis stud 12/S4.02 galvanized steel flat strap. bracing for interior wall studs and is referenced from the CFS bearing wall schedule on Sheet S -101. According to the "Stud Bracing" column of the schedule, the straps and associated blocking are to be located at mid - height of all interior wall studs. To further clarify the need and location of the stud bracing, keynotes and keynote callouts have been added to the 2nd floor, 3rd floor and roof plans referencing the stud schedule and detail 12/S4.02. 15. Detail Submit detail with required weld for Detail 4/S4.03 modified to show 1/4" fillet 4/S4.03 plate to web. weld between 3/8" plate and beam web. 16. Detail Submit gage for weld studs. Detail 9/S4.03 modified to show (1) dia. weld 9/S4.03 studs to be located 1 -1/2" from each end of plate. Size of bearing plate at W12x53 and W12x79 beams revised to 7/8 "x 5 "x 1' -6 ". . 17. Detail Submit plans and details with HSS Three possible end (lateral support) 11/S4.03 Cols. Noted on details. conditions exist for the angles supporting the out -of -plane lateral Toads at the exterior walls of the stair wells. Support conditions include support by the slab with DBA's, welded connections to HSS columns, and welded connections to intersecting angles at the corners of the openings. Detail 11/S4.03 has been revised to better explain the three possible connections of the angles to the supporting structure. HSS columns, where required for support of WF steel beams, are already called out on plans in the stair well areas. 18. Special Special Inspection per requirements Inspection noted on sheet S -100. 19. General Submit one set of steel stairs shop (Deferred drawings, which have been reviewed Submittal) and initialed by the project engineer, to be filed with the City of Tigard before placement. 20. General Submit one set of railing system shop (Deferred drawings, which have been reviewed Submittal) and initialed by the project engineer, to be filed with the City of Tigard before placement. 21. General Submit one set of reinforcing steel shop (Shop drawings, which have been reviewed Drawings) and initialed by the project engineer, to be filed with the City of Tigard before placement. 22. General Submit one set of miscellaneous steel (Shop shop drawings, which have been Drawings) reviewed and initialed by the project engineer, to be filed with the City of Tigard before placement. 23. General Submit one set of steel decking shop (Shop drawings, which have been reviewed Drawings) and initialed by the project engineer, to be filed with the City of Tigard before placement. 24. General Submit one set of light gage steel shop (Shop drawings, which have been reviewed Drawings) and initialed by the project engineer, to be filed with the City of Tigard before placement. 25. General Approved resolution of the above items shall be incorporated into submittal plans before a permit will be issued. Submit four (4) sets of revised plans to the city of Tigard. E:\2007\A07072 \Documents \MT Responses to Mirage Plan Review Comments.doc 1-tce_ L 1 t, „n. S 9 200 'F,te... 11u z _.- ( ) c Jitr e 0.- -1 t 4E/., ...., 1 r k.'" (4 1 2. y 1.-4 2. s e t � L t y.-T —> * 4- 2 d "n c- n, 7 s (loo) (o. to ) 0 . 0 I . 7 UoZ 1I !IS coo c Iil 4„ r_ 62, r771 l FT => 4 4- Z4 v c... Tss>L 25 4 - C 4V , = I,1 tz- i nr 31. `� 4,, L9,04 y ; ,, 2 1 rT 7 44- 4- 0 Z� 0 L. c G I tdi. a L F:!...0."' iii; 1 : -2/31 6 AAI afghan associates, inc. �^ f P\ 44t t B � i Date: 5 Z Z/ 7 ENGINEERING � 4875 SW Griffith Drive 1 Suite 300 I Beaverton, DR 97005 Project No.: 503.620.3030 1 lel 503 620.5539 [ fax p www.aaieng.com Sheet: 1 C� ` 9-of: OPP 5-E Pekti 517-, Ge 10 1 i _ ((.4- )- 1 ,L -o) z e K z, L IT° / m.R too) , ti 119 5 c L • 4) ZSoo ► ftdso / 1 ) D + >( Z. J 2loo z Z�c2 • k. I _ 449 ' ,I c (Z4) 4 a 3 u o c... 0‘9 C (fc ) F , , , z S L 1 , 41 l ) L ' ' L) Z0 X z, S c 5 G 0,9.5 L (s) tl 61.� P 1 -� ��� `i (4 C i. -) , - � ZSa, J 3 I-ll U ) �q) 4 V 2 11 t9 � • f t a , ] ,2. / a, c_ f , !1!4Y 17 , A9 , j 12131 ANA u, ''I 1Vt 7 I afghan associates, inc. By. E Date: I Z Z I° ENGINEERING 4875 SW Griffith Drive Suite 3001 Beaverton, OR 1 97005 Project No.: 410 7. 503.820.30301 tel 503.820.5539 1 fax www.eateng.com Sheet: t 2 4 of: OPP �e pe � �i v 7 - . 6 � • n. 19n 4 F„ ` - ( 1 .4 - )frhe.), m '' Y z, sL ,w I � ` p �Ccmo) ' �� If i #- 4- .2 3 'o c_. V 6i V? 3) r5 -D . ,S$ ,} _ T.., G 'O L 1 . 4 > •( ZS I t op. r SO ' ) z 10 T .X Z. J G 2(vo 8- f z Z Tvc7. L e u . 0 f9 Cie ) z 4. f .I I. 7!--> a+) 4 a 3 0 c. 'F� ti 5S k- C 1, d ; ` (, 2L'') z Z(.9 Xz. S r 5 o t 0,9 L (5) 13 E 3 t, c_ r., L f . - 4 k C I , 4 ., 2 q ) 3`1 K s L 9 ) 2 II , ( -1 : 4 v % ° i i Y X01 �� afghan assocates, inc �1/� t ( � t� 1� L i BY I rc ' Date: Z Z IIO 7 ENGINEERING 4875 SW Griffith Drive I Suite 3001 Beaverton. OR 1 97005 Project No.: !rOl 0 7, 503.62D.3030 I tel 5 03.620.5539 I tax www Sheet: 2' -cit.: ?fr 2 6,(c -a, )5- ( -2) G,+✓) © II -15 i. (:,Rc p ( r°9 - 1 s N5- . -A -r.,- ,,x A ! L "T Y 1 Celt . C t rt cot-- i 2 15K-Acp,. . t. - t 35fic-) I)c Pt e- A -ogii? $ w ; ( FiJ4-1.-- cA9,-)a 7-103) 30(/, otr If 4. f),_ 1,0., W z 1 ZS p-,F d- z 34.s� � lZ t 4 _ k/\. ,-- F. r- \ -`PS p1'P (10.5h_) /1t7 z - s r- . ) -- t ,' 9 Lo e4 7 Q z zSdo no.W.l L 1 �)3- / x,d. 2 ‘-310 �∎ , v,1 � . it t L.-4 roe- .n z- 1 - o 0�761 L �.. , 7 71 _,.. C AA-ko Lioki.L 1 i 7-i¢ C 1 I , S ' ) , I _, c.,7- ,--,) ki ¢, s (Z z-) / 9 I z4 I�f-s 4 )-( 7 4 . (z,s') Zoo f� >" ' z �t ' '[ ( z.s') 1 , 7- : �c� ,z5,,,, (z.s') 3)3 ‘ a. �c PSG. 5 PooF 2Spay Cz. .. (p ? eJ )56 cd j • ,5-c7�0w i.,>c -9-tktO C : 7 L - L L ig h ,:ifl', AA I aI han associates, Inc. , 9 I r-1 .tsi, 9 � By' Date: (O 1 17 ENGINEERING Po1017-. Project No.: 4875 SW Griffith Drive 1 Suite 300 !Beaverton, OR! 97005 503.620.3030 I tel 503.620.5539 [fax www.aaieng.com Sheet: ?' 2 / of: • 1(1 Pg4sSv6 -f sastic 4 - , i 0 gbvrn grtis.s 4 - • .a 1 IQ A , ill . . is , 1 .....______ 7 . A 1 r. A ) 1 5c_. 2.003 /6o(p A) is c. zoo I Roof. 3, 2. I SLtD /^4GI /.5 s .f• . tts t a7 1 1 0 va -47Tu t,.Pc . f. > 5. f. SL I DI Aw : _ 1.1 SF • Sol L a B 6P.rG /N(., P 6--`1 ZI (A 5 b) ° .?, 1, I s f Sa y L$�n,ln� ; 1/ ,4c42 -0 �r f EInJFd/L- -ct t /(0O.) . 2.. 2 . off 6 G. s) E'INra I Nca 4 Asc.49- _02- 2 1 ft•G 1Cooj . 2.L. .9 -{- 1.Co 14 (uLTIMVZe Asc.a. 1 _ o z 2.3.E sTg..ENG7 H 9 r dr e + I, C. 1-1 7 u sE 5e., sM rc. E'A4-14 P,e.€s.suiti F s4, Ls )450•Arr . 1; 1 AA i afghan associates, inc. , Pr P; a 7/� 0 , E T� 1N �r.X� s+,! 1� By' ,� i l�U Date: 1 ENGINEERING 1 4875 SW GtilRh Drivel Ste 3001 Beaverton, OR 97006 CS l G Protect No j 503.620.303011e1 603.620.55391 fax www.aaleng.com Sheet: T 3 of: / 3 ,333,1 Title : Mirage Storage Job # A07072 Dsgnr: MT Date: 2:37PM, 8 NOV 07 Description : Scope : Code Ref: ACI 318 -02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 • Rev: 580014 - - - Usser: er: K W -00600774 08.Ver5.8.0.1- Dec -2003 Restrained Retaining Wall Design Page 1 K I NERCALC Engineering Software mirage storage.ecw:Lateral Description EQ. Restrained Retain Wall at Grids 13, 0.5A & D,- (H Criteria J Soil Dat Footing Strengths & Dimensions Retained Height = 9.00 ft Allow Soil Bearing = 2,000.0 psf fc = 3,000 psi Fy = 60,000 psi Wall height above soil = 0.00 ft Equivalent Fluid Pressure Method Min. As % = 0.0014 Total Wall Height = 9.00 ft Heel Active Pressure = 60.0 Toe Width = 2.00 ft Toe Active Pressure = 0.0 Heel Width = _ 3.50 Top Support Height = 9.00 ft Passive Pressure = 250.0 Total Footing Width = 5.50 Footing Thickness = 15.00 in Slope Behind Wall = 0.00: 1 •FootingllSoil Friction = 0.400 Height of Soil over Toe = 0.00 in Soil height to ignore Key Width = 8.00 in Key Depth = 24.00 in Soil Density = 110.00 pcf for passive pressure = 0.00 in Key Distance from Toe = 2.00 ft Wind on Stem = 0.0 psf Cover @ Top = 2.00 in @ Btm.= 3.00 in Surcharge Loads j Uniform Lateral Load Applied to Stem I Adjacent Footing Load Surcharge Over Heel = 32.0 psf Lateral Load = 1,215.0 #/ft Adjacent Footing Load = 0.0 lbs »>NOT Used To Resist Sliding & Overturn ... Height to Top = 6.53 ft Footing Width = 0.00 ft Surcharge Over Toe = 0.0 psf ...Height to Bottom = 5.53 ft Eccentricity = 0.00 in NOT Used for Sliding & Overturning Wall to Ftg CL Dist = 0.00 ft Axial Load Applied to Stem Footing Type Line Base Above/Bel Axial Dead Load = 1,774.0 lbs l Soil = 0.0 ft Axial Live Load = 407.0 lbs at Back of Wall Axial Load Eccentricity = 0.0 in Design Summa j Concrete Stem Construction Total Bearing Load = 7,046 lbs Thickness = 8.00 in Fy = 60,000 psi ...resultant ecc. = 4.04 in Wall Weight = 96.7 pcf fc = 3,000 psi Soil Pressure @ Toe = 1,751 psf OK V 8fem is FIXED to top of footing Soil Pressure @ Heel = 811 psf OK Allowable = 2,000 psf Mmax Between Soil Pressure Less Than Allowable @ Top Support Top & Base @ Base of Wall ACI Factored @ Toe = 2,482 psf - - -- - -- ACI Factored @ Heel = 1,149 psf Stem OK Stem OK Stem OK Design height = 9.00 ft 5.86 ft 0.00 ft Footing Shear @ Toe = 28.7 psi OK Rebar Size = # 5 # 5 # 5 Footing Shear @ Heel = 32.2 psi OK Rebar Spacing = 16.00 in 8.00 in 7.00 in Allowable = 93.1 psi Rebar Placed at = Center Center Center Reaction at Top = 1,180.9 lbs Rebar Depth 'd' = 4.00 in 4.00 in 4.00 in Reaction at Bottom = 3,364.9 Ibs Design Data - - -- Sliding Stability Ratio = 1.23 Ratio < 1.: fb /FB + fa /Fa = 0.000 0.697 0.960 Sliding Calcs ' 1 ��- Mu....Actual = 0.0 ft-# 5,167.8 ft-# 7,981.5 ft4 Lateral Sliding Force = 3,364.9 Ibs less 100% Passive Force= - 1,320.3 Ibs Mn ' Phi Allowable = 3,945.8 ft-# 7,413.2 ft-# 8,316.0 ft-# less 100% Friction Force= - 2,818.5 Ibs Shear Force @ this height = 2,007.6 Ibs 4 lbs Added Force Req'd = 0.0 lbs OK Shear Actual = 41.82 psi 92.83 psi ....for 1.5:1 Stability = '908- 5'1bs - Shear Allowable = 93.11 psi 93.11 psi _ FOOtin Desi nResults Rebar Lap Required = 21.36 in 21.36 in oe eel Rebar embedment into footing = 6.00 in Factored Pressure = 2,482 1,149 psf Other Acceptable Sizes & Spacings: Mu' : Upward = 4,642 0 ft-# Toe: # 4 @ 12.00 in -or- Not req'd, Mu < S ' Fr Mu' : Downward = 525 6,797 ft-it Heel:# 5 @ 16.00 in -or- #4@ 11.50 in, #5@ 17.75 in, #6@ 25.25 in, #7@ 34 Mu: Design = 4,117 6,797 ft-# Key: #4@ 28.75 in, #5@ 44 - #4@ 28.75 in, #5@ 44.50 in, #6@ 48. Actual 1 -Way Shear = 28.66 32.17 psi Allow 1 -Way Shear = 93.11 93.11 psi ,3 1/ Title : Mirage Storage Job # A07072 Dsgnr: MT Date: 2:37PM, 8 NOV 07 Description : Scope : Code Ref: ACI 318 -02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Rv: e 580014 —` ' User KW- 0607406 Ver580 1 Dec2003 Restrained Retaining Wall Design Page 2 (01983.2003 ENERCALC Engineering Software mirage store 9e.ecv:Lateral !. .a - :.r: -, �.r .. .. .... . rr. a. i..,. •.r ., r - .v.,.. :r.,.:i ... .:... -.., —. r. - _uf..: .. r:r.,. .... .. -. vr. ,- ,.... -:.'. Description EQ: Restrained Retain Wall at Grids 13, 0.5A & D (H - 9'- 0 ") ummaraf of Forces on ing : S1ab is NOT providing slidin ,stem is FIXED at footing hltlu.wW11 Foot "'L" "�alni wi M Y......,..— ....._.- .......�� Forces acting on footing for sliding & soil pressure.... Sliding Forces Load & Moment Summary For Footing : For Soil Pressure Calcs Stem Shear @ Top of Footing = - 2,621.2 Ibs Moment @ Top of Footing Applied from Stem = - 4,695.0 ft-# Heel Active Pressure = -743.7 Sliding Force = 3,364.9 Ibs Surcharge Over Heel = Ibs 5 ft-# Axial Dead Load on Stem = 2,181.0 lbs 2.33 ft 5,089.0ft-# Net Moment Used For Soil Pressure Calculations Soil Over Toe = Ibs ft ft-# 2,371.2 ft-# Surcharge Over Toe = Ibs ft ft4 Stem Weight = 870.0 lbs 2.33ft 2,030.054 Soil Over Heel = 2,805.0 lbs 4.08ft 11,453.8ft-# Footing Weight = 1,190.2 Ibs 2.63 5 3,128.154 Total Vertical Force = ` 7,046.2 Ibs Base Moment = 17,005.85 -# • 3 - at e , ?i Title : Mirage Storage Job # A07072 Dsgnr: MT Date: 2:42PM, 8 NOV 07 Description : Scope : Code Ref: ACI 318 -02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Rev: 580014- -- ._ . - --- - - - - - -- -- -- ___ User: KW- 0607408. Ver5.80 1- Dec -2003 Restrained Retainin g Wall Design Page 1 (c)1983 -2003 ENERCALC Engineering Software mirage slorage.ecw:l.ateral Description EQ: Restrained Retain Wall at Grids 13, 0.5A & D (H = 6'- 0 ") Criteria 1 Soil Data Footing Strengths & Dimensions „mama s j Retained Height = 6.00 ft Allow Soil Bearing = 2,000.0 psf fc = 3,000 psi Fy = 60,000 psi Wall height above soil = _ 0.00 ft Equivalent Fluid Pressure Method Min. As % = 0.0014 Total Wall Height = 6.00 ft Heel Active Pressure = 60.0 Toe Width = 1.25 ft Toe Active Pressure = 0.0 Heel Width = 1.92 Top Support Height = 6.00 ft Passive Pressure = 250.0 Total Footing Width = - 3.17 = Footing Thickness = 15.00 in Slope Behind Wall = 0.00:1 FootingljSoil Friction = 0.400 Height of Soil over Toe = 0.00 in Soil height to ignore Key Width = 8.00 in Soil Density = 110.00 pcf for passive pressure = 0.00 in Key Depth = 12.00 in Key Distance from Toe = 1.25 ft Wind on Stem = 0.0 psf Cover @ Top = 2.00 in @ Btm.= 3.00 in Surcharge Loads vizzamsawsznamax aw l Uniform Lateral Load Applied to Stem . I Adjacent Footing Load wrarci Surcharge Over Heel = 32.0 psf » >NOT Used To Resist Sliding & Overturn Lateral Load = 540.0 #/ft Adjacent Footing Load = 0.0 Ibs ...Height to Top = 4.50 ft Footing Width = 0.00 ft Surcharge Over Toe = 0.0 psf NOT Used for Sliding & Overturning ...Height to Bottom = 3.50 ft Eccentricity = 0.00 in Wall to Ftg CL Dist = 0.00 ft Axial Load Applied to Stem Footing Type Line Base Above /Below Soil Axial Dead Load = 1,366.0 Ibs j at Back of Wall = 0.0 ft Axial Live Load = 320.0 lbs Axial Load Eccentricity = 0.0 in • D esign Summary a Concrete Stem Construction 1 Total Bearing Load = 3,764 Ibs _ psi Thickness 8.00 in Fy = 60,000psi ...resultant ecc. = 2.11 in Wall Weight = 96.7 pcf Pc = 3,000 p si Soil Pressure © Toe = 1,583 psf O Stem is FIXED to top of footing Soil Pressure © Heel = 792 psf OK Allowable = 2,000 psf Mmax Between Soil Pressure Less Than Allowable @ Top Support T op & Base @ Base of Wall ACI Factored @ Toe = 2,256 psf Stem OK Stem OK Stem OK ACI Factored @ Heel = 1,129 psf Design height = 6.00 ft 3.83 ft 0.00 ft Footing Shear @ Toe = 16.0 psi OK Rebar Size = # 5 # 5 # 5 Footing Shear @ Heel = 10.4 psi OK Rebar Spacing = 16.00 in 18.00 in 18.00 in Allowable = 93.1 psi Rebar Placed at = Center Center Center Reaction at Top = 535.9 Ibs Rebar Depth 'd' = 4.00 in 4.00 in 4.00 in Reaction at Bottom = 1,707.5 Ibs Design Data - _ Sliding Stability Ratio = 1.25 Ratio < 1.ff fb /FB + fa /Fa = 0.000 0.433 0.683 Sliding Calcs ?I' i c? Mu....Actual = 0.0 ft-# 1,527.3 ft-# 2,412.0ft -# Lateral Sliding Force = 1,707.5lbs less 100% Passive Force= - 632.8 lbs Mn * Phi Allowable = 3,945.8 ft-# 3,531.0 ft-# 3,531.0 ft-# less 100% Friction Force= - 1,505.8 Ibs Shear Force @ this height = 911.0 lbs 2,021.0 Ibs Added Force Req'd = 0.0 Ibs OK Shear Actual = 18.98 psi 42.10 psi .._.for 1.5:1 Stability = 422.7 Ibs NG Shear Allowable = 93.11 psi 93.11 psi FOOtin De es n Results Rebar Lap Required = 21.36 in 21.36 in oe feel Rebar embedment into footing = 6.00 in Factored Pressure = 2,256 1,129 psf Other Acceptable Sizes & Spacings: Mu' : Upward = 1,647 0 ft-# Toe: None Spec'd -or- Not req'd, Mu < S • Fr Mu' : Downward = 205 967 ft-# Heel: None Spec'd -or- Not req'd, Mu < S * Fr Mu: Design - 1,442 967 ft-# Key: #4@ 28.75 in, #5@ 44 -or- #4@ 28.75 in, #5@ 44.50 in, #6@ 48. Actual 1 -Way Shear = 16.05 10.37 psi Allow 1 -Way Shear = 93.11 93.11 psi Title : Mirage Storage Job # A07072 Dsgnr: MT Date: 2:42PM, 8 NOV 07 Description : Scope : Code Ref: ACI 318 -02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Rev 580014 — User KW- 0607408,Ver 5.8.0.1- Dec-2003 Restrained Retaining Wall Design Page 2 (01983-2003 ENERCALC Engineering Software mirage storage.ecw.Lateral Description EQ. Restrained Retain Wall at Grids 13, 0.5A & D (H = 6'- 0 ") Summa of Forces on Footing • Slab is NOT providing slidin., stem is FIXED at footing Forces acting on footing for sliding & soil pressure.... Sliding Forces _ Load & Moment Summary For Footing : For Soil Pressure Calcs Stem Shear @ Top of Footing = - 1,188.8 Ibs Moment @ Top of Footing Applied from Stem = - 1,418.8 ft-# Heel Active Pressure = -518.7 Sliding Force = 1,707.5 Ibs Surcharge Over Heel = Ibs ft ft -# Axial Dead Load on Stem = 1,686.0 Ibs 1.58ft 2,669.5ft-# Net Moment Used For Soil Pressure Calculations Soil Over Toe = Ibs ft ft-# 662.2 ft-# Surcharge Over Toe = Ibs ft ft-# Stem Weight = 580.0 Ibs 1.58ft 918.3ft-# Soil Over Heel = 827.2 Ibs 2.54ft 2,103.8ft-# Footing Weight = 671.21bs 1.54ft 1,031.5ft -# Total Vertical Force = 3,764.4 Ibs Base Moment = 5,304.4ft -# • • Title : Mirage Storage Job # A07072 Dsgnr: MT Date: 2:45PM, 8 NOV 07 ' Description : Scope : Code Ref: ACI 318 -02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Rev 580014 - - -- -- - - -- - - -- _ - ...- - -- - -- - -- - -- User: KW- 0607408, Ver5.8.0, 1- Dec -2003 Restrained Retaining Wall Design Page 1 (c)1983 -2003 ENERCALC Engineering Software mirage storage.ecw.Foundatlon Description EQ: Restrained Retain Wall at Grids 13, 0.5A & D (H = 3'- 0 ") Criteria NM Soil Data • Footing Strengths & Dimensions Retained Height = 3.00 ft Allow Soil Bearing = 2,000.0 psf fc = 3,000 psi Fy = 60,000 psi Wall height above soil = 0.00 ft Equivalent Fluid Pressure Method Min. As % = 0.0014 Total Wall Height = 3.00 ft Heel Active Pressure = 60.0 Toe Width = 0.67 ft Toe Active Pressure = 0.0 Heel Width = 1.33 Top Support Height = 3.00 ft Passive Pressure = 250.0 Total Footing Width = 2.00 Slope Behind Wall = 0.00 = Footing Thickness. = 12.00 in P FootingIiSoil Friction = 0.400 Height of Soil over Toe = 0.00 in Soil height to ignore Key Width = 0.00 in Soil Density = 110.00 pcf for passive pressure = 0.00 in Key Depth = 0.00 in Key Distance from Toe = 0.00 ft Wind on Stem = 0.0 psf Cover @ Top = 2.00 in @ Btm.= 3.00 in Surcharge Loads Uniform Lateral Load Applied to Stem x Adjacent Footing Load : - IJ:FF +4'. :tFAR' 4 J y: 7" ,,, -T A ,-- • - Surcharge Over Heel = 32.0 psf Lateral Load = 135.0 #/ft Adjacent Footing Load = 0.0 Ibs »>NOT Used To Resist Sliding & Overturn ... Height to Top = 2.50 ft Footing Width = 0.00 ft Surcharge Over Toe = 0.0 psf ...Height to Bottom = 1.50 ft Eccentricity = 0.00 in NOT Used for Sliding & Overturning Wall to Ftg CL Dist = 0.00 ft Axial Load Applied to Stem Footing Type Line - IF Axial Dead Load = 1,470.0 lbs Base Above /Below Soil = 0.0 ft at Back of Wall Axial Live Load = 254.0 Ibs Axial Load Eccentricity = 0.0 in Design Summary Concrete Stem Construction Total Bearing Load = 2,523 Ibs Thickness = 8.00 in Fy = 60,000 psi ...resultant ecc. = 0.16 in Wall Weight = 96.7 pcf fc = 3,000 psi Soil Pressure @ Toe - 1,311 psf OK £stem is FIXED to top of footing Soil Pressure @ Heel = 1,212 psf OK V Allowable = 2,000 psf Mmax Between Soil Pressure Less Than Allowable @ Top Support Top & Base @ Base of Wall ACI Factored @ Toe = 1,874 psf Stem OK Stem OK Stem OK ACI Factored @ Heel = 1,734 psf Design height = 3.00 ft 1.87 ft 0.00 ft Footing Shear @ Toe = 10.8 psi OK Rebar Size = # 5 # 4 # 4 Footing Shear @ Heel = 4.2 psi OK Rebar Spacing = 16.00 in 18.00 in 18.00 in Allowable = 93.1 psi Rebar Placed at = Center Center Center Reaction at Top = 144.3 Ibs Rebar Depth 'd' = 4.00 in 4.00 in 4.00 in Reaction at Bottom = 540.6 Ibs Design Data - - - -- -- - - - -- - Sliding Stability Ratio = 2.10 OK '-- fb /FB + fa /Fa = 0.000 0.081 0.136 Sliding Calcs Mu....Actual = 0.0 ft-# 188.1 ft-# 315.8 ft-# Lateral Sliding Force = 540.6 Ibs less 100% Passive Force - 125.0 Ibs Mn ' Phi Allowable = 3,945.8 ft-# 2,321.3 ft-# 2,321.3 ft-# less 100% Friction Force= - 1,009.2 Ibs Shear Force @ this height = 245.2 lbs 532.3 lbs Added Force Req'd = 0.0 Ibs OK Shear Actual = 5.11 psi 11.09 psi ....for 1.5:1 Stability = 0.0 lbs OK Shear Allowable = 93.11 psi 93.11 psi Foot gDesignResults Rebar Lap Required = 21.36 in 17.09 in oe eel Rebar embedment into footing = 6.00 in Factored Pressure = 1,874 1,734 psf Other Acceptable Sizes & Spacings: Mu' : Upward = 417 0 ft-# Toe: None Spec'd -or- Not req'd, Mu < S * Fr Mu' : Downward = 47 158 ft-# Heel: None Spec'd -or- Not req'd, Mu < S * Fr Mu: Design = 370 158 ft-# Key: No key defined -or- No key defined Actual 1 -Way Shear = 10.78 4.23 psi Allow 1 -Way Shear = 93.11 93.11 psi 3 . 4.6 . \. • Title : Mirage Storage Job # A07072 Dsgnr: MT Date: 2:45PM, 8 NOV 07 Description : Scope: Code Ref: ACI 318 -02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Rev: 580014 User: KW- 0607408,Ver 5.8.0. 1- Dec -2003 Restrained Retaining Wall Design Page 2 (c)1983-2003 ENERCALC Engineering Software Design mirage storage.ecw:Foundation Description EQ: Restrained Retain Wall at Grids 13, 0.5A & D (H = 3'- 0 ") Summa of Forces on Footin • : Slab is NOT providin • sliding, stem is FIXED at footing Forces acting on footing for sliding & soil pressure.... Sliding Forces Load & Moment Summary For Footing : For Soil Pressure C alcs Stem Shear @ Top of Footing = -313.1 lbs Moment @ Top of Footing Applied from Stem = -185.8 ft-# Heel Active Pressure = -227.5 Sliding Force = 540.6 Ibs Surcharge Over Heel = lbs ft ft-# Axial Dead Load on Stem = 1,724.0 Ibs 1.00ft 1,729.7ft-# Net Moment Used For Soil Pressure Calculations Soil Over Toe = Ibs ft ft-# 32.8 ft-# Surcharge Over Toe = lbs ft ft-# Stem Weight = 290.0 lbs 1.00ft 291.0ft -# Soil Over Heel = 218.9 Ibs 1.67ft 365.2ft-# Footing Weight = 290.0 lbs 1.00 ft 290.0ft -# Total Vertical Force = 2,522.9 lbs Base Moment = 2,490.1 ft-# • • 3, Isr (0.- 6 ' p luo1-O05-23 , 4 0 20 20 / / . , 1 1 . 54.01 TYP. , , . 0 TYP. I. ! . I (M1 I ■ : ' ' ' , - 0 - (5) • ,_, 0 TYP. ,,...", ,\\ . , 0 0 TYP. 54.0 TYR • TT 1 53.02 e e Tye (4) 48 4 OCNT. TO GRID S / ( (SEE S2-2025) ( ( (5) *4 CONT. TO GRID 13 — \ ) (SEE S2-2025; 1 W I i D SW 0 VI :11 ; .02 ''Sfer J'I'JV,77 2 - - - - - - Aomori' :VIZZ7ACCl/227' 0 I F. 5 Ze) 1 tu I I z I _11 a .9 E l 1 2NED FLOOR F4MINC FLAN (PARTIAL) -2024 FIRST FLOOR WALLS BELOW SOWN. SCALE: 1/8" = l'-0" 1 / 41 41Y NORTH MIRAGE STORAGE BY CLC DATE i;f4 AA I afghan associates, inc. Pa.4 1-1IGHWAY ee 4211 CHK BY HIRA DATE ENGINEERING S.W. WARNER AVENUE JOB NO 401012 4875 SW Griffith Drive 1 Suite 300 1 Beaverton, OR 197005 503.620.3030 tel I 503.620.5539 fax 1 www.aateng.com TIGARD, OREGON SHEET I OF 5 1 0 3 / 11' -3" 20' -0" 1 11 I 4.03 5 , -._ _ _.-1 .._. -- m X q d) n 4.0 ., , �� k ".. "Cr i•.<:[ ©w A - Or I 8 XCI . 8 „,w ( 0 ) P\ �� (2) #4 7 . ,,,_, BE OW 'u)1 x12 - _ t 2 0 u / // 0 f..... ABOVE I ; - ROOF �� I r ' 12A RIDGE (BELOW . I 4* ABOVE 12A ' � 1 IU . 40 1 2A A O ; D ( ABOVE I - ,:,' ■ , ((IV -- 0 BELOIUI (3) *4 2 ./ 403 A \ TYP. I 1:3 \ _ 1 .. , , i , / 1 K.13ELOUJ 1/4110 0 / (2) 10 0 I S172 -91 1 A NORTH 1 3RD FLOOR FRAMING FLAN (PARTIAL.) -203 SECOND FLOOR WALLS BELOW SI -IOWN, SCALE: vs" = 1' -0" MIRAGE STORAGE BY CLC DATE . 11 /9 /ml t afghan associates, inc. HIGHWAY 99 4211 CHK BY 1— IRA DATE 11/9/07 ENGINEERING S.W. WARNER AVENUE JOB NO 401012 4875 SW Griffith Drive I Suite 300 1 Beaverton, OR 1 97005 T IGARD OREGON 2 5 503.620.3030 lel 503.620.5539 fax 1 www.aaieng.com SHEET OF KEYNOTES: O 1. 'W2' x 18 GA. METAL COMPOSITE FLOOR DECKING BY ASC, TOPPED BY 2 -1/2" THICK CONCRETE SLAB (4 -1/2" TOTAL SLAB THICKNESS) REINFORCED WITH 6X6 - W1.4 x W1.4 WELDED WIRE MESH PLACED AT MID -DEPTH OF SLAB. 2. SEE FLOOR FRAMING HEADER SCHEDULE FOR HEADER SIZE AND CONNECTIONS. 3. INTERIOR BEARING WALLS CONSIST OF CF METAL STUD SUPPORTS WITH CORRUGATED STEEL PANELS. SEE STRUCTURAL WALL KEY, SHEAR WALL SCHEDULE AND BEARING WALL SCHEDULE FOR ADDITIONAL INFORMATION. 4. EXTERIOR BEARING WALLS CONSIST OF CF METAL STUD SUPPORTS WITH CORRUGATED STEEL PANELS. SEE STRUCTURAL WALL KEY, SHEAR WALL SCHEDULE AND BEARING WALL SCHEDULE FOR ADDITIONAL INFORMATION. 5. INTERIOR JAMB STUDS AND HEADER SUPPORTS: (2) 400S200 -68. 6. EXTERIOR JAMB STUDS: (2) 6005162 -54. 1. I WX 1 INDICATES BEARING WALL CONSTRUCTION. SEE BEARING WALL SCHED. 8. I'SX INDICATES CFS METAL SHEAR WALL. SEE CSF SHEAR WALL SCHED. .- .����-^.r.� .�----..^��� -.--' 9. INSS 4x4x1/4 COLUMN. (BLOCKOUT SLAB AS REQUIRED BY 2/S4.03) 10. (4) 4005250 -6S JAMB STUDS. 11. SHORE FLOOR DECK AT MIDSPAN AT INDICATED AREAS ONLY. 12. SEE CFS BEARING WALL SCHEDULE AND DETAIL 12/S4.02 FOR STUD BRACING AT ALL INTERIOR WALLS. 0 13. SEE CFS BEARING WALL SCHEDULE AND DETAIL 6/S4.02 FOR STUD BRACING AT ALL EXTERIOR WALLS. (14. (4) 4005200 - 68 STUDS BELOW HSS COLUMN AT INTERIOR WALL. ) C 15. (4) 4005162 -68 STUDS BELOW HSS COLUMN AT EXTERIOR WALL. 0 � 31RD FLOOR FRAMING FLAN KEYNOTES - 203 N.T.S te n; MIRAGE STORAGE BY CLC DATE 11/9/01 AA I afghan associates, Inc. HIGHWAY 99 4211 CHK BY HRA DATE 11/9/01 ENGINEERING S.W. WARNER AVENUE JOB NO 401012 4875 SW Griffith Drive I Suite 3001 Beaverton, OR] 97005 T IGARD OREGON 3 5 503.620.3030 tel 1 503.620.5539 fax 1 www.aaieng.com SHEET OF MAX WALL FOOTING DIMENSIONS REINFORCING HEIGHT "H" B BT FT KT A 5 0 D 3' -0" 2' -0" 0' -0" 1' -0" - "4 6 1' -0" 4 *4 a 1' -0" - (3) "4 6' -0" 3' -2" 1' -3" 1' -3" 1' -0" "5 6 1' -4" "4 a 1' -0" - (4) "5 9' -0" 5' -6" 2' -0" _ 1' -3" 2' -0" S a ( 0' -1 "; "S a6 1' -4" "5 a 1' -0" (10) "S i 2 %ou Mi. IMP "'x4' -6" DOWEL NOTE: TO MATCH OMIT CMU WALL AT SPACING OF 11 it 19 N SIM. CONDITION. CMU WALL VERT. RE INF. I CMU Olt 1_ --.• • 0 2) "4 2' -5" ' n "4xe 18" 0.C. c0 I GLR '01 RE INF "A" 8 "ATS "CMU WALL ` 4 "4 a =' — AT 10" CMU WALL ii " na \ EQ. • 6" AT SIM. COND. d 0 / FOR N < 6' -0n 4 "4' PERFERATED /EQ - a, DRAINAGE PIPE • / DOWEL W/ STD 1-100K DRAINAGE MAT / TO MATCH SIZE 4 q / SPACE OF WALL RE INF. "B" W/ • VERT RE INF. `� STD. HOOK i • Z EA END ■9 ` F \ MIN EXIST. GRADE _� ELEVATIONS. +- 0 \ — "4 a l8" O.C. W/ STD. r " NOOK a6 EA. END RE INF. "C" g« / "5T" m REINF. "D" (1) "4 - / _.1 �2" CLR / 0 "8n X \ CD g 15UILDING RETAINING WALL 5 3.0 01230109 TJD SCALE: 3/4" = 1' -0" L.1 50043 , ' AAI MIRAGE STORAGE BY GLG DATE 11/9/01 afghan associates, inc. HIGHWAY 99 4211 CHK BY HRA DATE 11//01 ENGINEERING S.W. WARNER AVENUE JOB NO A01012 4875 SW Griffith Drive 1 Suite 300 1 Beaverton, OR 1 97005 T I OREGON 4 5 503.620.3030 tel 1 503.620.5539 fax 1 www.aaieng.com SHEET OF CFS TOP TRACK PER (C4) CFS STUDS BELOW ) BEARING WALL SCNED. ( (4) 4005200 -6S AT INT. TYP. ( WALLS ) ® LISS COL PER PLAN ( (4) 6005162 -54 AT EXT. ) !—_ ( WALLS ) Mt . ) j I fE 3/8x44 j10 (10) 0 12x 1 1/4° 1-J SCREWS © A PLAN A __ ( (4) CFS STUDS BELOW fE 3/S(x1x1 i,J/ (10) 0 12x1 1/4° SCREWS ( (4) 4005200 -68 AT INT. ) ( WALLS ) ((4) 6006162 -54 AT EXT. ) ( WALLS ) ra°0 .. 1 i •. CFS TOP TRACK PER BEARING WALL SCNED. © NSS COL • • PER PLAN BLOCK —OUT SLA 4 B INSTALL COL. BRG. fE PLAN B � TL — f — tC1� OF CFS TOP TRACK. 2 ASS COLUMN SASE LAN 4.0 01240302 LSA SCALE: 1 1/2" = 1 -0" 1 �� MIRAGE STORAGE 11//°-1 �p I afghan associates, inc. 1— IIGNWAY 99 4211 BY GLC DATE 11//� NRA 11/9/07 CHK BY DAT ENGINEERING S.W. WARNER AVENUE JOB NO 401012 48 Griff 1 Sui 1 Be OR 10 9 RD, R 503.620.3030 ith tel Drive 503.620.5539 te 300 fax averton, www.aaien.com 7005 T IGA OREGON SHEET 5 OF 5 RESPONSE TO CITY OF TIGARD PLAN REVIEW COMMENTS 11 ' 1 `` ) MIRAGE STORAGE BUILDING NOV 1 3 ZOO/ Revised: 11/9/07 CITY(3F //GARD ITEM PAGE NO. CITY OF TIGARD COMMENT AAI RESPONSE �� ®I�1 NO. 1. Sheets A- Submit calculations and details for Exterior metal panel siding is an architectural 201, A -202, metal panel siding. (non- structural) item. Siding design and A2 -3 and A- connection information will be provided as a 204 deferred submittal. 2. Sheet S -100 Submit completed section. The formatting errors for the Steel Deck, Steel Studs Steel Stud and Steel Shear Panel section of the Structural Notes have been corrected. 3. Sheets S- Clarify conflict on wall thickness Detail 9/S3.01: Reference to 8" CMU 201A and S- between S -201A and S -202A with detail removed; Concrete wall thickness callouts 202A and 9/S -301A. modified to 8" at 8" CMU, 10" at 10" CMU Detail and 6" at Sim. Cond. 9/S -30 IA 4. Sheets S- Clarify wall thickness Grid 1, B to D; The CMU wall thickness at all referenced 202A And S- Grid 6; Grid 9; Grid A +. locations is 8 ". Callouts for masonry wall 202B type M1 have been added to these locations on sheets S -202A and S -202B. 5. Sheets S- Submit details for connection of two or Detail 6/S4.03 has been modified to show 202A three wide flanges and two or three configurations with 2 or 3 beams supported S -2028, headers bearing at the same column. by a HSS column. Detail 3/S4.03 already S -203A, shows detailing for multiple beams supported S 203E by WF columns. Callouts for detail 6/S4.03 has been added to the 2nd and 3rd floor _plans. 6. Sheets S- Submit details for connection of wide Details 9/S3.02 and 10/S3.02 have been 202A flange beams to each other. added to show WF beam to beam S -202B, connections. A callout for detail 9/S3.02 has S -203A, been added to S -202A. S -203B 7. Sheet S- Clarify detail at grid A+ between grids The callout for 4/S4.01 has been removed 202B Detail 11 and 12 on direction of steel decking from sheet S -202B, Grid A +, between 11 and 41S -4.01 and 12. The floor deck span is parallel to the wall 5/S -4.01 length in this area. 8. Sheet S- Clarify note on detail 2/S4.03 about Keynote callout No. 5 currently shows (2) 203A Detail double studs below at grids 2 and C, 400S200 -68 studs at interior jamb studs and 2/S4.03 also Grids 3 and D. header supports, while keynote callout No. 6 shows (2) 600S162 -54 studs. These keynotes are referenced on S -203A at the locations where HSS columns are above. To further clarify, the stud sizes have been added to detail 2/S4.03. 8.1 Sheet S- Clarify note on detail 2/S4.03 about We're not quite sure what "calculation for 203A Detail double studs below at grids 2 and C, bearing on stud" you're looking for, but 2IS4.03 also Grids 3 and D. see calc sheets 6.22 through 6.24 for Note: Submit calculations for bearing design of studs below the HSS columns. on stud. Note that, on a one -to -one comparison, the two studs beneath the HSS columns OFFICE COPY _ �'V E� 2col - , 5 t t oa) cdA-T2-tuEw._ • are carrying less Toad per stud than the typical studs. See calc sheets 6.2 through 6.3 for typical stud loads. To better spread out the column Toad and prevent any bearing issues at the third floor, S -203A and detail 2/S4.03 will be modified to show (4) studs beneath each HSS column, and the base plate size will be increased. Note that detail 2/S4.03 requires the column bearing plate to be installed directly on top of the CFS top track, avoidin • bearin • on the concrete slab. 9. Sheet S- Submit calculation and details for lateral The out -of -plane wind loads from the exterior 203A Detail load transfer at grid G+ and 2 +. wall is transferred from the angles shown in 6/S4.03 detail 11/S4.03 to the HSS columns, then to the W10x12 beam, into the floor diaphragm through the deck /beam welds, and is then resisted by the (2) #4 drag -strut reinforcing in the slab. The out -of -plane load transferred through the beam /column connection (6/S4.03) is only 1.2 kips (see calc sheet 6.41), while the vertical shear load transferred through the connection is only 4.1 kips. These loads are resisted by (2) 7/8" A325 bolts, with approx. 20 kips of capacity. Detail is adequate as drawn. 10. Sheet S- Submit calculation and details for lateral See attached calc sheets 2.39 and 2.40 for 202A load transfer at grid 1 and D. calculation of drag strut force and shear wall dowel requirements for the CMU wall at Grid 1, B -D. Although dowels shown on detail 5/S4.01 for this area ( #4 at 24" oc) are adequate, detail 5/S4.01 has been modified to show #4 dowels at 16" oc at Grid 1. 10.1 Sheet S- Submit calculation and details for (9) #4 are provided in sets of 4 and 5 bars 202A lateral load transfer at grid 1 and D. continuous between Grids 1 and 8. (5) #4 Note: Submit calculation for 444 on continue past Grid 8 to the end of the grid D. building at Grid 13. See attached previously submitted (partial) plan S -202A and calc sheet 2.40. 11. Sheet S -3.01 Submit soils engineer verification of Recommendations from the Geotechnical Detail values used for retaining wall on Engineer were not available at the time of 9/S3.01 calculation Sheet 3.33 design. An active pressure of 35 pcf for non - restrained walls and an at -rest pressure of 60 pcf for restrained walls were used according to 2007 OSSC, Table 1610.1. 11.1 Sheet S -3.01 Submit soils engineer verification of See attached calc sheets 3.33, 3.33.1, Detail values used for retaining wall on 3.36.1, 3.36.2, 3.41.1, 3.41.2, 3.46.1, 3.46.2 91S3.01 calculation Sheet 3.33 for out -of -plane seismic loading calcs. Note: Provide seismic loading The vertical wall reinforcing for the 9' -0 calculations. wall was modified slightly on detail 9/S3.01 to take into account the seismic loading. 12. Details Submit calculation and detail for # 12 x Details 4 & 5/S4.01 have been revised to 4/S4.01 and 3/4" screw into CMU. show powder actuated pin fasteners instead 5/S4.01 of the #12 screws. These fasteners are provided only to prevent movement of the steel deck during concrete placement. All in- plane and out -of -plane lateral loads are transferred between the wall and floor diaphragms through the #4 dowels. 13. Details Submit calculation and details for Details 7 & 8/S4.02 show the connections of 7/S4.02 and loading and connection. the (non- bearing) sides of the non - structural 8/S4.02 partition walls to CMU or structural metal stud walls. The partition walls, which are very few in number, will span vertically and will be attached to the slabs at the top and bottom with powder actuated pins. See architectural drawings for partition wall construction. 13.1 Details Submit calculation and details for Details 7 & 8/S4.02 are not necessary for 7/S4.02 and loading and connection. the lateral or vertical structural support of 81S4.02 the building and will be marked as "NOT USED" on the drawings. 14. Detail Provide location of continuous Detail 12/S4.02 shows the weak axis stud 12/S4.02 galvanized steel flat strap. bracing for interior wall studs and is referenced from the CFS bearing wall schedule on Sheet S -101. According to the "Stud Bracing" column of the schedule, the straps and associated blocking are to be located at mid - height of all interior wall studs. To further clarify the need and location of the • stud bracing, keynotes and keynote callouts have been added to the 2nd floor, 3rd floor and roof plans referencing the stud schedule and detail 12/S4.02. 15. Detail Submit detail with required weld for Detail 4/S4.03 modified to show 1/4" fillet 4/S4.03 plate to web. weld between 3/8" plate and beam web. 16. Detail Submit gage for weld studs. Detail 9/S4.03 modified to show (1) dia. weld 9/S4.03 studs to be located 1 -1/2" from each end of plate. Size of bearing plate at W12x53 and W12x79 beams revised to 7/8 "x 5 "x 1' -6 ". 17. Detail Submit plans and details with HSS Three possible end (lateral support) 11/S4.03 Cols. Noted on details. conditions exist for the angles supporting the out -of -plane lateral loads at the exterior walls of the stair wells. Support conditions include support by the slab with DBA's, welded connections to HSS columns, and welded connections to intersecting angles at the corners of the openings. Detail 11/S4.03 has been revised to better explain the three possible connections of the angles to the supporting structure. HSS columns, where required for support of WF steel beams, are already called out on plans in the stair well areas. 18. Special Special Inspection per requirements Inspection noted on sheet S -100. 19. General Submit one set of steel stairs shop (Deferred drawings, which have been reviewed Submittal) and initialed by the project engineer, to be filed with the City of Tigard before placement. 20. General Submit one set of railing system shop (Deferred drawings, which have been reviewed Submittal) and initialed by the project engineer, to be filed with the City of Tigard before placement. 21. General Submit one set of reinforcing steel shop (Shop drawings, which have been reviewed Drawings) and initialed by the project engineer, to be filed with the City of Tigard before placement. 22. General Submit one set of miscellaneous steel (Shop shop drawings, which have been Drawings) reviewed and initialed by the project engineer, to be filed with the City of Tigard before placement. 23. General Submit one set of steel decking shop (Shop drawings, which have been reviewed Drawings) and initialed by the project engineer, to be filed with the City of Tigard before placement. 24. General Submit one set of light gage steel shop (Shop drawings, which have been reviewed Drawings) and initialed by the project engineer, to be filed with the City of Tigard before placement. 25. General Approved resolution of the above items shall be incorporated into submittal plans before a permit will be issued. Submit four (4) sets of revised plans to the city of Tigard. \\ SPECIALTY STRUCTURE'S STRUCTURAL CALCULATIONS NO EXCEPTION NOTED MAKE CORRECTIONS NOTED IJ 6 JOB NAME: Mirage Storage 51 -6947 REJECTED u REVISE AND RESUBMIT C.I JOB NO: 08021 THIS REVIEW IS FOR GENERAL CONFORMANCE WITH DESIGN CONCEPT ONLY ANY DEVIATION FROM PLANS OR SPECIFICATIONS NOT CLEARLY NOTED BY THE CONTRACTOR HAS NOT BEEN CLIENT: Darby Owenby REVIEWED. REVIEN W *LL NOTCONSTITUTEACOMPLETE American Buildings Company ALLY DIMENSIONS OR COUNT OR SERVE TO RELIEVE THE 1150 State Docks Road CONTRACTOR OF CONTRACTUAL RESPONSIBILITY FOR ANY ERROR OR DEAN RiOMCONTRACT REQUIREMENTS. Eufaula, Alabama 36027 MI ENGINEERING DATE: May 1, 2008 D �a By S2 License and Non Disclosure and Reproduction IMPORTANT NOTICE TO BUILDING AND SAFETY PERSONNEL - The enclosed calculations and hard copy � PR prints ("Enclosed ") are copyright protected by S2 Specialty Structures ("S2•'). It is understood that while the F F S Enclosed may be required for verification of structural design and approval, it is not necessary for the 5� ke TA E'ER S • • manufacture or construction of the structure or its components. It is the express wish of S2 that these proprietary calculations not be returned or redistributed to anyone other than the copyrighted owner as 2SPE 9 referenced in the ownership paragraph below and that any unecessary submitted copies be returned or r destroyed. / Ownership: This document and the Enclosed are copyrighted by 52 Specialty Structures (•'S2 ") 8076 W. OREGON Sahara Ave. Las Vegas, NV 89117. All rights reserved. This is not a sale or transference; all right, title and interest in the Document (in both electronic file and hard copy) belong to S2 Specialty Structures. n D O C 13 200 O �� P 2C67 E. J City of figard rEXPIRATION DATE: 06/30/0 A: • .ve Plans MAY 0 ll zoos Engineers Stamp B Date 51140 0 107 LO- REV DATE BY DESCRIPTION AO 5.1.2008 HW Building Department Submittal A A A A OFFICE COPY 8076 W. Sahara, Suite B, Las Vegas, Nevada 89117 Phone: 702.240.9956 Fax: 702.313.9394 01/18/2008 `ss 1 . # r?t4CVUat� .�V h,0 C ;pG JOB # 01.08021.01 �.° F XIIO 1 DATE: 06/20/9 1 STRUCTURAL CALCULATION 04.30.2008 INDEX 1. FRONT SUMMARY .page 1 -6 2. ROOF LEVEL GRAVITY DESIGN page 7 -35 3. SECOND FLOOR LEVEL GRAVITY DESIGN page 36 -46 4. FIRST FLOOR LEVEL GRAVITY DESIGN page 47 -57 5. POST DESIGN .page 58 -68 6. LATERAL DESIGN page 69 -92 7. CONNECTION DESIGN page 93 -100 8. DOCUMENTS AND ICC REPORTS page 101 -137 01.08021.01 1 of 137 01/18/2008 2 d 0 SPECIALTY s1PU[71JRES Letter to Building Official DATE: January 18, 2008 TO: Structural Plans Examiner Permit No City of Tigard, OR CLIENT: Darby Owens American Building Company PHONE: 334 - 687 -2032 ext. 2436 FAX: 334 - 688 -2311 JOB NAME: Mirage Storage JOB NO: 08021 COMPLETED BY: [Hongyu Wang, P.E REVIEWED BY: [Scott Jacobs. P.E.] Dear Plan Check Engineer, Previous structural drawings were prepared by others and approved by city. We. Specialty Structures, are specialized on storage building structural design and have done numerous story building at west coast. Per client's request, we have reviewed original structural plans and prepared new structural framing plans for this 3 -story storage building. The following is a short summary for what we have done on plans. 1. We have revised roof system from 24GA ASC CP -32 panel to 24GA standing seam roof system with X strap bracing on top of purlin, which is typical system for storage building. 2. We have added "J" type drag struts at interior 3 level shear walls. 3. We have revised light gauge stud from SSMA product to American Building Company Stud, which conform to standard AISI specification. 4. We have revised wall panel from "U" shape Panel to "R" shape panel. 5. We have revised bottom track anchor bolts from Hilti KB -II anchors to Hilti KB -TZ bolts, which conform to 1BC2006 code and can be used to resist shear from seismic load. 6. We have prepared more structural details for construction purpose. 7. Elevator walls will be masonry at ground level. 8. Most stair walls will be steel stud walls at all levels. 01.08021.01 2 of 137 8076 W. Sahara, Suite B, Las Vegas, Nevada 89117 Phone: 702.240.9956 Fax 702.313.9394 - —_-- -. 01/18/2008 ili ' s ? 3P S1 auCTURES 9. There is no change on floor deck. which is 2Wx18GA ASC composite deck with 2 -1/2" concrete topping (total 4 -1/2" thick). 10. There is no significant change on Heavy steel members (wide flange beams and columns) except roof hip and hip support. 11. There is no change on design gravity loads and lateral loads. 12. There is no change on slab on ground. foundation and retaining wall (designed by others). 13. There is no change on building masonry walls (designed by others). 14. All inspection and special inspection shall be performed according to local building department requirements. If you have any questions, please feel free to contact us. Thank you very much. Sincerely, Hongyu Wang, P.E., Project Engineer Reviewed by Scott Jacobs, P.E.. President. Specialty Structures r \ OHE�t)i S �'�y9S,2� 09" .O E. A 16FIRATI ON OA TE;05 / /(f�i 04.24.2008 01.08021.01 3 of 137 8076 W. Sahara, Suite B, Las Vegas. Nevada 89117 Phone: 702.240.9956 Fax 702.313.9394 01/18/2008 Basis For Design 1.1 BUILDING CODE: 2006 INTERNATIONAL BUILDING CODE 1.2 GRAVITY DESIGN: ROOF LOADING DEAD LOAD 4.0 PSF LIVE LOAD (SNOW) 25.0 PSF FLOOR LOADING DEAD LOAD 43 PSF* LIVE LOAD 125 PSF *45PSF MAYBE USED FOR DESIGN 1.3 LATERAL DESIGN: WIND LOADING MPH BASIC WIND SPEED 94.5 IMPORTANCE FACTOR 1.0 WIND EXPOSURE B SEISMIC LOADING SEISMIC USE GROUP 11 SDS 0.71 SD( 0.39! SITE CLASS D SEISMIC DESIGN CATEGORY D LFRS LIGHT FRAMED STEEL R 6.5 2.1 STRUCTURAL STEEL: SHAPE STANDARD Fy (UNLESS NOTED OTHERW)SE) STANDARD ROLLED SECTIONS ASTM A992 OR A572 50 KSI MISC. BARS AND PLATES ASTM A36 36 KSI (U. N.O.) PIPES ASTM A501 36 KSI OR ASTM A53 TYPE E OR S, GRADE B 35 KS1 TUBES ASTM A500 46 KSI BOLTS (EXCEPT IN WOOD CONNECTIONS) ASTM A -325N - -- THREADED ROD, EPDXY BOLTS, STUDS AND BOLTS IN WOOD CONNECTIONS ASTM A -307 - -- WELDS E -70 SERIES 3.1 STEEL DECK: ROOF DECK: 24GA ROOF STEEL DECK. FLOOR DECK: 18GA 2W COMPOSITE DECK WITH NORMAL WEIGHT CONCRETE IN FILL, TOTAL THICKNESS 4- 1 /21N, DECK SHALL CONFORM TO ICC REPORT ER -1414. 4.1 COLD FORMED STEEL FRAMING: STANDARD ABC 12, 14 AND 16 GAGE STUDS AND JOISTS MINIMUM YIELD STRENGTH 50 KSI. 18. 20 AND 25 GAGE STUDS AND JOISTS, ALL GAGES OF TRACK, ALL DIAGONAL TENSION STRAPS OR BRACES, AND BRIDGING MINIMUM YIELD STRENGTH 33 KSI. 5.1 FOUNDATION DESIGN: 01.08021.01 4 of 137 01/18/2008 FOUNDATIONS FROM OTHERS 5.2 CONCRETE DESIGN: CONCRETE: FLOOR DECK fc 3000 PSI 5.3 CONCRETE REINFORCING: REBAR CONFORM TO ASTM A615 GRADE 60 (FY = 60 KSI). W. W. F.ASTM A185. 6.1 INSPECTION: AS REQUIRED BY THE GOVERNING MUNICIPALITY. 6.2 SPECIAL INSPECTION: REQUIRED AS NOTED ON PLANS 01.08021.01 5 of 137 01/18/2008 Gravity Design Loads ROOF 24 GA RIB Deck 1 PSF "Z" Purlin - 4" 16GA @5' OC 0.45 PSF Buildup 1.1 PSF Insulation 0.40 PSF (may occur) Miscellaneous 0.25 PSF Dead Load Roof 4.0 PSF Live Load Roof 20 PSF FLOOR 2WX18GAComposite Deck (4.5" total thick) 42.3 PSF Miscellaneous 0.7 PSF Dead Load Floor 43 PSF Live Load Floor 125 PSF TYPICAL PARTITION WALL 1 29 GAR Panel 0.68 PSF Studs —4C16 @ 60" O.C. 0.50 PSF Misc. 0.82 PSF Dead Load Typical Steel Wall 2.0 PSF TYPICAL PARTITION WALL 2 29 GA R Panel 0.68 PSF Studs —4C16 @ 30" O.C. 0.80 PSF Misc. 1.52 PSF Dead Load Typical Steel Wall 3.0 PSF TYPICAL PARTITION WALL 3 29 GA R Panel 0.68 PSF Studs —6C16 @ 30" O.C. 1.00 PSF Misc. 1.32 PSF Dead Load Typical Steel Wall 3.0 PSF 01. 08021.01 6 of 137 01/18/2008 Roof Panel INPUT INFORMATION HERE Select Roof Standing Seam Panel: 24GA Purlin Spacing Pur_Spcng := 511 M allow gray 2.571 in kip Mallow_wind 2.571 in.kip Roof Load RDL —4ps1 R LL := —25. wind := 25.7psf Wind Uplift, use zone 3 with 50 sq.ft effective area OUTPUT DESIGN RESULT + + 'plf.g (RLL + R 134 111 ++ 'pif g = —29plf := (wind + 0.6R It w plf.w = 23.3plf L := Pur_Spcng L = 5f ( \\ PIf.( M(x) 6-L•x — L 2 — 6.x ) M1(x) ++'plf.w •(6.L x— L 2 — 6-x 12 (12) M(Oft) = 0.725 in-kip Ml(Oft) = — 0.583in•kip L1 MI ( 2) = —0.362 in-kip Ml (L Z = 0.291in•kip Mgrav := max(IM(Oft)I,K--12 11) Mwind:= ma-{IMl(Oft)I >IM1 2JIJ M grav = 0.725 in-kip M wind = 0.583in•kip M allow_grav = 2.571 in kip M allow_wind = 2.571in kip Check:= if � M grav < M allow grav A Mwind < M allow wind, "Okay!" , "NG! ") Check = "Okay!" ATTACH ROOF TO PURLIN PER MANUFACTURER RECOMMENDATIONS AND GSN NOTES • 01.08021.01 7 of 137 01/18/2008 Exterior Cee Stud 3rd Story INPUT INFORMATION HERE: 6C16 @ max 60 "O.C., Stud Unbraced Height L := 12.5-ft Stud Spacing := 60-in Lx := L Ly := I L k := 1.0 Fy := 50-ksi Roof Load RI 1 := 25 psf RDL := 4•psf Trib Width Trib:= 5.0 W := 4-psf Elastic Modulus E := 29500•ksi Lateral wind Load p := 19.136-psf Use Zone 5 with 50sq.ft effective area for conservative design. OUTPUT DESIGN RESULT Pu := Spacing•Trib [I.2•(R + 1.6•(R + 1.2.Spacing•(L)• W ILL Axial Load for Each Stud Stud Effective Section Area A eIf = 0.64•in Stud Section Gyration r = 2.3•in r , = 0.73•in "k -Lx k -Ly 1 Slenderness Ratio k = 1 Ratio := max Ratio = 205.479 r r y Slenderness Parameter: r 1 Fy X := (Ratio)• J TC E a = 2.693 Fcr := (o.658 if X _< 1.5 0.877 Fy if X > 1.5 X 2 c Fcr = 6.048 - ksi Nominal Capacity of axially loaded stud member: Reduction factor := 0.85 Pn := Fcr-Acff 143.-Pn = 3.3•kipl 01.08021.01 8 of 137 01/18/2008 1.6.p. Spacing- L Mu :_ 12 Mu = 1.993- 11-kip Maximum Moment for Each Stud 43b := 0.95 Fy Q e y . F P. t 1.11 1.28 � - e >' X2 . e Y Cy:= 3 if p <X1 1 if p >_X P - X1 3 -2- if Xi ` - p ` X2 -X1 Nominal Bending Capacity Mn := Fy -S IMn = 4.583•kip -111 Tr E -1 Pu P := a := 1 - — a = 0.968 max(k•Lx,k•Ly) P EX Cm := 1.0 for conservative design. • Pu Cm Mu + = 0.905 Pn 43b-Mn-of Pu Cm -Mu Check := if + <_ 1 ,"Stud is enough for given load!" ,"NG!" 4)• Pn 4b•Mn•a (Check = "Stud is enough for given load!" 01.08021.01 9 of 137 01/18/2008 Interior Cee Stud 3rd Story INPUT INFORMATION HERE: Stud Unbraced Height L. := 12ft worst case 4C16 @60 "O.C. Stud Spacing := 60in Lx := L Ly := 1.0L k := 1.0 Fy := 50ksi Roof Load R11 := 25psf RDI := 4psf Trib Width Trib := 1 Oft W := 4psf Lateral Live Load p := 5psf Aeff 0.52in B := 2in E := 29000ksi r := 1.59in t := 0.06in r 0.75in Acf := 13.1 S := 0.64in 1 := 1.31 in S } , • = 0.22in OUTPUT DESIGN RESULT Pu := Spacing•Trib•[12(R + 1.6.(R + l.2Spacing•(L). WDL Axial Load for Each Stud Pu = 2.528-kip Stud Effective Section Area A eff = 0.52•in Stud Section Gyration r = 1.59-in r = 0.75•in Slenderness Ratio k•Lyl k = 1 Ratio := ma J r r Ratio = 192 x y Slenderness Parameter: X := (Ratio)•( Fy E J X = 2.538 a 2 Fcr :_ (0.658 c • Fy if X <_ 1.5 0.877 Fy if X >1.5 X 2 c Fcr = 6.809•ksi 01.08021.01 10 of 137 01/18/2008 Nominal Capacity of axially loaded stud member: Reduction factor := 0.85 Pn := Fcr • A eff I = 3-kif: Check Axial := if(4-Pn >_ Pu, "Stud is sufficient!" , "NG!" ) Check Axial = "Stud is sufficient!" For lateral load, assume uniform load distribution for conservative design. w := p•Spacing w = 25.plf w - Mmax := 8 Maximum Moment for Each Stud M max = 5.4 b := 0.95 Nominal Bending Capacity Mn := Fy.S I•b•Mn = 30.4 kip ir� Check_bending := ifOb-Mn > M "Stud is enough for given Toad!" , "NG!" ) ICheck_bending = "Stud is enough for given load!" 01.08021.01 11 of 137 01/18/2008 Typical Gauge "Z" Purlin Design INPUT INFORMATION Select Purlin Type := F := 50ksi .r i f ir2.4,6P771 Purlin Span !4Z 14 ;6216 No more than L := 10ft Purlin Load R DL := - 4psf RLL := - 25.psf WSCOMP := 21.4psf Use zone 2 and 50sq.ft effective area for conservative design. Purlin Spacing Pur_Spcng := 5fi OUTPUT DESIGN RESULT w := Pur_Spcng•(1.2.R + 1.6-R w = — 224 -p!f w := Pur_Spcng•(.9R + 1.6WS COMP) "v2 = 153.2 plf M(x) := wl .(6-Lx — L — 6-x MI(x) := w2 �6 L •x L — 6x 12 12 Design Purlins for maximum at x = 0,L Ml(Oft) = - 15.32- in•kip M(Oft) = 22.4-in•kip M := max( IM(Oft)I ,IMI(Oft)I) M = 22.4 in•kip Select Purlin Based Upone Section Modulus S = 0.61-in Z := I.25-S Z = 0.763-in M := Z M = 38.125-in•kip 11)17, := .9 �b-Mn = 34.313-in•kip Check := if(4 _< M "NG" , "Bending is OKAY! ") Icheck = "Bending is OKAY!" I Service Load Deflection Check E := 29000ksi w := Pur_Spcng.(RLL + R DL) 01.08021.01 12 of 137 01/18/2008 O:= 5•w•L 1. 384 E Ix allow 120 0 = —0.827 -in m allow = 1 in Check_D := if(I DI 5 Aallow "Deflection is OK!" , "NG!" ) Check _D = "Deflection is OK!" Vu := max( Iw ,1w Vu = 1.12 -kip Allowable shear i := 0.3•F } , f = 15•ksi Web area Ae := t -D Ae = 0.24. in V := Ae-f V = 3.6-kip Check_V := if (V >_ Vu, "Shear is OK!" , "NG!" ) Check_V = "Shear is OK!" 01.08021.01 13 of 137 01/18/2008 Gauge "2" Purlin Uplift Check Span < =10ft INPUT INFORMATION Select Purlin Type := F , := 50ksi t . Purlin Span , Z14 6Z 16 No more than L := 10ft Purlin Load R DL := —4psf R :_ — 25 psf WS COMP := 21.4psf Use zone 2 and 50sq.ft effective area for design. Purlin Spacing Pur_Spcng := 5ft Lb := 1 L. Lb = 10 h Unbraced length OUTPUT DESIGN RESULT w := Pur_Spcng.(.6R + I.OWSCOMP) w- L M u := M = 9.5- kip -in 1 Select Purlin Based Upone Section Modulus S = 0.61 -in I = 1.36 in B =2•in 13 =2 -in L0 =0.563in t = 0.06 -in r = 1.61 .in E := 29500ksi Fv := 50ksi l = 0.59 -in A eff = 0.52 in d := D d = 4 -in Fbl := 0.6Fy Fb1 = 30 -ksi Sf := S Sf = 0.61 -in M := Sf•Fy M = 30.5- kip -in Conservatively use C :-- 1.0 (B + LO)•t 2 lyc := 12 + (B + LO) t (O.5d – O.5t) l = 0.597.111 l�, := min(l�, l 7r y c M : = M = 23.858•kip•in 2Lb Critical moment M := M if M -- 2.78M M if M <– 0.56M 10 10 -M 9 My. l – 36M y otherwise M = 21.855 - kip -in e Fb2 := — Mc Fb2 = 35.828•ksi S 01.08021.01 14 of 137 01/18/2008 Allowable Bending Stress Ft) := min(Fb1,F)2) Fb = 30-ksi M := Fb•S M = 18.3-kip-in Check := if`M n 5 M , "NG" , "13ending is OKAY!" ) (Check = "Bending is OKAY!" Service Load Deflection Check w := Pur_Spcng•(RLL + R DL) 5wI A := 4 I_ 384 E• 1 'allow 120 allow = 1 'in A = — 0.813-in Check_D := if(I AI _ Aallo� +, "Deflection is OK!" "NG!" ) Check _D = "Deflection is OK!" Vu := w- I,- Vu = — 0.725-kip Allowable shear f`, := 0.3-1= f = 15-ksi Web area Ae := t-D Ae = 2 V := Ae•f V = 3.6-kip Check_V := if (V >_ Vu, "Shear is OK!" , "NG!" ) Check_V = "Shear is OK!" 01.08021.01 15 of 137 01/18/2008 Gauge "C" Beam Design for Span 5ft in Roof Level INPUT INFORMATION Beam Location .= Number of Ns Select Beam: 4C16 ort Floor Sections One Type := Beam Span L := 5•ft r 14C14 Number of Floors Supported by Beam Boundary := j6C 16 Nu := 0 mete, Suls±xtd` Two Ends Fixed Beam Load RDI :_ — 4.0psf 12 := — 25 -psf WS COMP := 25.7psf W := —4psf FDL := - 45psf FI I := - 125psf Zone 3 for conservative design. Tributary Width Beam_Spcng := 1Oft Purlin_Spcng := 511 Top Wall Height H := Oft OUTPUT DESIGN RESULT w RI := 13eam_Spcng (1.2 R 1)1. + 1.6 -RI I) w R2 := 13eam_Spcng- (.9R + 1.6WSCOMP) w := Beam_Spcng- (1.2•R + 0.5•R 1 ) + Nu [Beam Spcng.(1.2 F + I.6 -F + 1.2- W -I-11 w := max( 1 "R 1 IwFI I wR21) if Location = 1 Pu := a Purlin Spcng if Location = 2 Pu • 1_ M := I if Boundary = 1 4 Pu = 2.24 -kip Pu•l_ if Boundary = 2 8 M(x) := if lx <— 0.5L,0.5 -Pu- x,0.5 -Pu•(L — x)] if Boundary = 1 if Ix <— 0.5L,0.125-Pu-(4.x — L),0.125- Pu•(3L — 4 -x)] if Boundary = 2 Maximum Moment M = 33.6 -in -kip Select Beam Based Upon Section Modulus S = 0.64•in Z := 1.25•S Z = 0.8 -in E := 29000ksi I := Ns -I F Y := 50 -ksi c1: := .9 M := Ns Z_x•Fy kb -Mn = 36 -in -kip Check := if (4 -M <— M "NG" , "OKAY!" ) (Check = "OKAY!" 8x10 4 — — — — M(x) 4 4x10 — 0 0 1 2 3 4 5 x 01.08021.01 16 of 137 01/18/2008 Deltaallow := 120 DeIta allow = 0.5 in Check Service Load Deflection w := Purlin_Spcng•(R + R w = — 145•plf P:= w L 4 I= 1.31-in P•L Delta := Delta = 0.086• in 48E•1 CheckD := if(Deltaallow > Delta, "Deflection is OK!" , "NG!" ) CheckD = "Deflection is OK!" Factored Reaction Rea := 0.5Pu Rea = I.12-kip 01.08021.01 17 of 137 01/18/2008 "C" 4C16 Beam Uplift Check Span 5ft INPUT INFORMATION Select beam: 4C16 Select Purlin Type := Beam Span i.6 ;43:049 ;4C 14 No more than L := 511 16C16 Load R := - 4psf R :_ - 25 psf WSCOMP:= 25.7psf Use zone 3 and 50sq.ft effective area for conservative design. Beam Spacing Pur_Spcng := 10ft Lb := L Lb = 5 11 Unbraced length OUTPUT DESIGN RESULT w := Pur_Spcng- (.6R + I .OWSCOM P) P := 0.5w -L P = 0.582 -kip vv-L M M = 1.456- kip -in M u 48 u Select Beam Based Upone Section Modulus r = 0.75 in LO := Bf 1 y , := 0•in S = 0.64 in l = 1.31 -in B = 2-in K 1.0 L := L t = 0.06•in r,.:= r E := 29000ksi FY := 50ksi J eff = 0.52in2 d := D d = 4-in r 1.59in Fbl := 0.6Fy Fbl = 30•ksi S : = S S = 0.64•in Conservatively use C := 1.0 Tr cr eY 2 Q = 44.722•ksi K Y •L Y r Y G := 11200ksi J = 0.00062•in bf •= B b':= bf -0.5t b'= 1.97•in tf: =t t = 0.06-in h := d – t h = 3.94-in t =t t f -b E 0 • = E = 0.73 -in h•t 2b + — 3 C = 1.1 in r = 2.43 -in • 01.08021.01 18 of 137 01/18/2008 K := 1.0 L := 0.5L ir :_ • G-.1 + o = 116.19 -ksi 1 Aeff-r02 (K1 -Lt)2 t M e C b . r O .A eff - ff ev it M = 91.086-kip-in M := S Fv M = 32- kip -in Critical moment M := M if M ? 2.78M�, M if M 5 0.56M 10 10 -M 9 My, I 36M y otherwise M = 32-kip-in e M Fb2 :_ — 1 = 50•ksi Sf Allowable Bending Stress Fb := min(Fbl ,Fb2) Fb = 30 -ksi M := Fb•S M = 19.2- kip•in Check := if(M 5 M "NG" , "Bending is OKAY!" ) (Check = "Bending is OKAY!" I Service Load Deflection Check w := Pur Spcng -(R service load deflection w Pur_Spcng-R 5 -w•L 384.E. I A allow := 120 allow = 0•5• in 0 = – 0.093•in Check_D := if( I �I allow, "Deflection is OK!" , "NG!" ) Check shear Check D = "Deflection is OK!" Vu := w-1„. 0.5 Vu = – 0.625•kip Allowable shear c := 0.3.Fy f = 15•ksi Conservative design. 01.08021.01 19 of 137 01/18/2008 Web area Ae := t- D Ae = 0.24 in V := Ae• f V = 3.6 kip Check_V := if(V > Vu, "Shear is OK!" , "NG!" ) Check_V = "Shear is OK!" 01.08021.01 20 of 137 01/18/2008 Gauge "C" Beam in Roof Level Trib length 10 ft Trib width 10 ft INPUT INFORMATION Select Beam Type := Beam Location i4C 16 I obf Number of Ns := i4C 14 Beam Span L := 10•ft `Floor Sections 1 6 n e , ..,'';'.:::-°..e: Tr, pg Number of Floors Supported by Beam Boundary - Sirrr ke a aged. Nu := 0 ITwo Ends Fixed F := 50-ksi Beam Load RDL := —4psf R :_ — 25-psf WS COMP := 18.4psf N'DI :_ —4psf 1=DI :_ —45psf I' :_ — 125psf Zone 2 for conservative design. Tributary Width Beam_Spcng := l Oft Top Wall Height 11 := Oft Purlin_Spcng:= 5ft Purlin_Leng := 10•ft OUTPUT DESIGN RESULT w R1 := Purlin_Spcng•(1.2-R + 1.6.R WR2 := Purlin_Spcng•(.9R + 1.6WSCOMP) w : := Beam_Spcng•(1.2•R + 0.5-R + Nu•[Beam_Spcng-(1.2•F + 1.6•F + 1.2•WDL•11 w:= max (I w R1I IwR2I) if Location = 1 Pu := w Purlin Leng Pu = 2.24 kip I" if Location = 2 Pu L M := 1- I if Boundary = I IPuLI if Boundary = 2 8 M(x) .— Pu-x if x < L 2 2 Pu-(L — x) otherwise 2 Maximum Moment M = 67.2•kip•in Select Beam Based Upon Section Modulus S = 1.1 • in Z := 1.25. S Z = 1.375 • in (k :_ .9 M := Ns-Zx•Fy (I)b-Mn = 123.75•in - kip Check := if(4 _< M "NG" , "OKAY!" ) (Check = "OKAY!" I 01.08021.01 21 of 137 01/18/2008 2x 10 — 1.5x10 5- M(x) lx 10 5x10 4- 0 2 4 6 8 10 Delta allow 1 2 0 Delta allow = 1-in Check Service Load Deflection p := Purlin_Spcng.(R + R 1 )•Purlin_Leng L ' Delta := p Delta = 0.261-in 48E-Ns-1 CheckD := if(Deltaallo«, > Delta,"Deflection is OK!" , "NG!" ) CheckD = "Deflection is OK!" Factored Reaction Rea := 0.5Pu Rea = 1.12-kip 01.08021.01 22 of 137 01/18/2008 "C" 6C16 Beam Uplift Check Trib length 10 ft INPUT INFORMATION Select beam Trib width 10 ft Type := Number of Ns := 4C16 Beam Span C14 Sections One No more than L := 1011 ow Purlin Load R := — 4psf RLL := — 25.psf WSCOMP 21.4psf Use zone 2 and 50sq.ft effective area for conservative design. Purlin Spacing Pur_Spcng := 5ft Pur_Leng := 10- ft Lb := L Lb = 10- ft Unbraced length OUTPUT DESIGN RESULT w := Pur_Spcng.(.6R + I.OWS COMP) p Pur_Leng-w M := — M = 28.5-kip-in 4 Select Beam Based Upone Section Modulus r = 0.73-in LO := B I := 0 in S = 1.1.in l := I B = 2-in K := 1.0 L := L t = 0.06- in r .:= r E := 29000ksi Fy := 50ksi A ef1 = 0.64 in d := D d = 6-in r = 2.3•in Fb I := 0.6Fy Fb I = 30-ksi Sf := S Sf = 1. I - in Conservatively use C := 1.0 •n 2 E eY 2 Q = 10.592•ksi 1(),•LV , ) r G := 1 1200ksi J = 0.00077 in bf := B b' := b — 0.5t be = 1.97•in tf := t t = 0.06-in h := d — tf h = 5.94•in t := t tf- b' E • = E = 0.649•in h-t 2bftf +— 3 01.08021.01 23 of 137 01/18/2008 C = 2.51 1n r = 2.82 -in K := 1.0 L := 0.5L 1 Tr -E -C (3- + Q = 40.904 -ksi A eff .r 0 2 _ (K1.L1) t M e := Cb- rO -Aeff- v t M = 37.567-kip-in M := Sf•Fy M = 55-kip-in Critical moment M := M if M ? 2.78M M if M 5 0.56M 10 10 -M 9 M �, 36M 1 otherwise M = 36.258- kip -in ej Fb2 := — Mc Fb2 = 32.962 -ksi Sf Allowable Bending Stress Fb := min(FbI,Fb2) Fb = 30•ksi M := Ns -Fb -S M = 66-kip-in Check := if(M _< M "NG" , "Bending is OKAY!" ) (Check = "Bending is OKAY!" Service Load Deflection Check P := Pur_Spcng•(R L + R Pur_Leng allow • _ 120 allow = l -in P -L 48•E•Ns-I A = 0.265 -in Check_D := if(I DI <_ Dallow "Deflection is OK!" , "NG!" ) Check _D = "Deflection is OK!" Vu := w•L•0.5 Vu = 0.475-kip 01.08021.01 24 of 137 01/18/2008 Allowable shear f := 0.3•Fv f`, = 15-ksi Conservative design. Web area Ae := Ns t•D Ae = 0.72•in V := Ac 1; V = 10.8•kip Check _V := if(V ? Vu, "Shear is OK!" , "NG!" ) Check _V = "Shear is OK!" • 01.08021.01 25 of 137 01/18/2008 Gauge "C" Beam Design for Span 16ft in Roof Level INPUT INFORMATION Select Beam Type := Beam Location 8C 16 not; Number of Ns := Span Floor � 1804 Beam S P L := 16� ft � Sections ® • . 812 Number of Floors Supported by Beam Boundary := KM t I � a#a Nu := 0 "1 Ends Fixed F := 50•ksi Beam Load R DI := — 4psf RLL := — 25.psf WS COMI := 18.4psf W := —4psf FDL := - 45psf F :_ - 125psf Zone 3 for conservative design. Tributary Width Beam_Spcng := l Oft Purlin_Spcng := 51t Purlin_leng := l Oft Top Wall Height H := Ott OUTPUT DESIGN RESULT w Rl := Purl in_Spcng.(1.2.R + 1.6-R "R2 := Purlin_Spcng-(.9R + 1.6WSCOMP) wF := Beam_Spcng.(1.2.R + 0.5•R + Nu [Beam_Spcng (1.2-F + I.6 F + 1.2. WDL.H11 w := max I I ' I"R2I) 2 if Location = 1 l �VFI if Location = point load Pu := w Purlin leng J 4 Pu- L M :_ — 2 Pu•Purlin_Spcng if Boundary = 1 4 Pu = 2.24-kip Pu•L . if Boundary = 2 8 Maximum Moment M = 161.28-kip-in Select Beam Based Upon Section Modulus S = 3.18• in Z := 1.25• S Z = 3.975 • in (1) := .9 M := Ns•Z 4 = 178.875-in-kip Check := if(cl) <_ M "NG" , "OKAY! ") 'Check = "OKAY!" Delta allow := L Delta allow = 1.6•in 120 Check Service Load Deflection w := Purlin_Spcng•(RDL + R LL) 01.08021.01 26 of 137 01/18/2008 5 w. L Delta := Delta = 0.579-in 384E•Ns- CheckD := if(Deltaallow > Delta, "Deflection is OK!" , "NG!" ) CheckD = "Deflection is OK!" Factored Reaction Rea := 0.5Pu Rea = 1.12•kip 01.08021.01 27 of 137 01/18/2008 "C" 8C12 Beam Uplift Check Span < =16ft INPUT INFORMATION Select beam Type :_ Number of Ns := }8C16 Beam Span '8C14 Sections . .� No more than L := 16ft� Purlin Load R :_ - 4psf R :_ - 25•psf WSCOMP 18.4psf Use zone 2 and 100sq.ft effective area for conservative design. Tributary Width Beam_Spcng := l Oft Purlin_Spcng := 511 Purlin_Ieng := 100 Lb := 0.331, Lb = 5.28.0 Unbraced length OUTPUT DESIGN RESULT w := Purlin_Spcng- (.6R + 1.OWSCOMP) point load p := w •Purlin_leng w• L M := 8 M = 30.72-kip-in Select Beam Based Upone Section Modulus r ` , = 0.9 in LO := 13i := 0•in S = 3.18 in l := 1 B = 2.5 -in K := 1.0 1. := L t = 0.099•in r := r E := 29000ksi Fy := 50ksi 9 A eff = 1.39•in d := D d = 8 -in r = 3.05•in Fbl := 0.6Fy Fbl = 30•ksi S := S S 3.18 -in Conservatively use C := 1.0 7T E o- eY ' 2 b = 6.289•ksi K r G := 11200ksi J = 0.00448•in bf := B b' := b - 0.5t b' = 2.45•in tf := t t = 0.099•in h := d - tf h = 7.901 -in t := t t E0 := E = 0.787 -in h -t 2bf -t + — 3 01.08021.01 28 of 137 01/18/2008 C = 14.38-in r = 3.63-in K := 1.0 L := 0.5L • 1 71 1E.-C`c rr GJ + cr = 27.122•ksi t Aet,f r02 (Kt -Lt) t M e := C b• r O -A eff a ey t M = 65.899-kip-in M := S M = 159-kip -in Critical moment M := M if M ? 2.78M M if M 5 0.56M 10 10•M 9 M� , 1 36M otherwise M = 65.899-kip -in e M Fb2 := — Fh2 = 20.723•ksi S f Allowable Bending Stress Fb:= min(Fbl,Fb2) Fb = 20.723-ksi M := Ns•Fb.S M = 65.899•kip•in Check := if(M <_ M "NG" , "Bending is OKAY!" ) (Check = "Bending is OKAY!" Service Load Deflection Check allow -= 120 allow = 1.6•in • w := Purlin_Spcng•(R1 L + R DL) 5• 0 :_ 384•E-Ns-lh 0 = 0.579-in Check_D := if( I OI <_ Dallow, "Deflection is OK!" , "NG!" ) Check _D = "Deflection is OK!" 01.08021.01 29 of 137 01/18/2008 Vu := w-L•0.5 Vu = — 1.16-kip Allowable shear f := 0.3-Fy f = 15-ksi Conservative design. Web area Ae := Ns-t-D Ae = 0.792-in V := Ae-f f V = 11.88-kip Check_V := if(V >_ Vu, "Shear is OK!" , "NG!" ) Check_V = "Shear is OK!" 01.08021.01 30 of 137 01/18/2008 Gauge "C" BeamSpan < =17ft in Roof Level INPUT INFORMATION Select Beam Beam Location := Type := 9f! ` Number of Ns := 18C16 Beam L := 17ft 'Floor Sections SIM 1 8C14 Span <17ft Two gqitaSTISM Number of Floors Supported by Beam Boundary := Nu := 0 ?Two Ends Fixed F�, := 55 ksi Beam Load R DI := — 4psf R 1 := — 25-psf WS COMP := 21.4psf W := —4psf F := - 40psf FI I := - 125psf Zone 3 for conservative design. Tributary Width Beam_Spcng := I Oft Purlin_Spcng := 5ft Top Wall Height 1-1:= Oft OUTPUT DESIGN RESULT w1 := Purlin + 1.6•R w := Purlin_Spcng•(.9R + 1.6WSCOMP) w := Beam_Spcng.(1.2.R + 0.5-R + Nu[Beam_Spcng-(1.2-F + 1.6-F + 1.2- WDL.I11 w := max(I �� I I , I "2I ) if Location = 1 Pu := w Beam Spcng I�a if Location = 2 Pu = 2.24-kip 4-Pu-1, M •= if Boundary = 1 9-V Pu L if Boundary = 2 8 Maximum Moment M = 117.256-in -kip Select Beam Based Upon Section Modulus S = 3.18 in Z := 1.25•S Z = 3.975•in (k :_ .9 M : = Ns-7 x �b-Mn = 196.763-in - kip Check := if(4 <_ M "NG" , "OKAY!" ) (Check = "OKAY!" L Delta allow — Delta allow = 1.7-in • 120 Check Service Load Deflection w := Purlin_Spcng•(R + R w = — 145•plf P := w- Beam_Spcng 01.08021.01 31 of 137 01/18/2008 Delta := 0.013 2P•L3 Delta = 0.867- in E-1 CheckD := if(Deltaallow > Delta, "Deflection is OK!" , "NG!" ) CheckD = "Deflection is OK!" 01.08021.01 32 of 137 01/18/2008 "C" 8X2.5X16GA Beam Uplift Check Span < =17ft INPUT INFORMATION Select Purlin T := F := 50ksi 8C 16 beam Span '8 8C14 No more than L := 17ft Unbraced length 1_,b := 5.0 Purlin Load RDI := — 4psf R I :_ 25 psf WSCOMP := 21.4psf Use zone 3 and 50sq.ft effective area for conservative design. Purlin Spacing Pur_Spcng := 5ft Pur_leng := I0 -ft OUTPUT DESIGN RESULT w := Pur_Spcng (.6R + I.OWSCOMP) 1' := 0.5w 1011 P = 0.475 -kip 4 -P -L M := M = 24.865•kip•in 9.41 Select Beam Based Upone Section Modulus r = 0.9 -in LO := 0.773in 1 = 1.11 -in S = 3.18 -in I = 12.73 in 13 = 2.5 in K Y • = 1.0 L L t = 0.099.in r := r E := 29000ksi Fy := 50ksi A eff = 1.39 in d := D d = 8•in r = 3.05 -in Fb1 := 0.6Fy FbI = 30 -ksi Sf := S Sf = 3.18•in Conservatively use C • = 1.0 7T 2 .E cr ey 2 • a = 5.571 -ksi K L ) r G := l 1200ksi J = 0.00448 -in b := B b' := b – 0.51 b' = 2.45 -in tf := t t = 0.099 -in h := d – tf h = 7.901 .in t := t tf•b' E := E = 0.787 in h -t C = 14.38 -in 2bftf +— 3 01.08021.01 33 of 137 01/18/2008 K := 1.0 L := L r = 3.63•in 1 Tr 2 .L--Cw R :_ G .1 + cr = 8.139•ksi t Aeff.r0 (Kt•Lt) t Me := C b• r O• A eff ffe�.at M = 33.976•kip-in M := Sf.Fy M = 159-kip-in Critical moment M := M�, if M ? 2.78M M if M _< 0.56M 10 10-M, M 1 otherwise M = 33.976•ki in 9 Y 36Me p M Fb2 := — Fb2 = I0.684•ksi S Allowable Bending Stress Fb := min(Fbl,Fb2) Fb = 10.684•ksi M := Fb.S M = 33.976•kip•in Check := if(M –< M "NG" , "Bending is OKAY!" ) 'Check = "Bending is OKAY!" Service Load Deflection Check service load deflection P := Pur leng• Pur_Spcng. RLL 2P•L 0 := 0.013 L E I allow ' 120 allow = I.7 - in A = 0.747. in Check_D := if ( I AI < Dallow, "Deflection is OK!" , "NG!" ) Check _D = "Deflection is OK!" 01.08021.01 34 of 137 01/18/2008 4-P Vu := Vu = 0.633-kip 3 Allowable shear f' := 0.3 - F ` , f = 15.ksi Conservative design. Web area Ae := t -D Ae = 0.792-in V := Ae f`, V = 11.88-kip Check _V := if (V >_ Vu, "Shear is OK!" • "NG!" Check _V = "Shear is OK!" 01.08021.01 35 of 137 01/18/2008 Floor Deck Check Floor Load I= II := — I25psf Maximum Span L := 1011 Try 78GA 2W Deck, NW concrete in fill, 4.5in total thickness. Design based on 1 foot wide section. From Deck MFR Specifications, allowable superimposed load 147 psf for maximum 10ft span. Please Refer to report ER -1414 Maximum live load I25psf <147 psf, sufficient! 01.08021.01 36 01 137 01/18/2008 Exterior Cee Stud @ 2nd Story INPUT INFORMATION HERE: Stud 6C16 stud at maximum 30" Stud Spacing := 30in 1, := 1011 O.C. Braced at the middle height. Stud Unbraced Height Lx := L Lv := 0.51. Roof Load R11 := 25psf R I)L := 4psf Floor Load FI 1 := 125psf FDI := 45psf k := 1.0 Wall Spacing Trib := 5ft WDI := 4psf Fy := S0ksi Elastic Modulus E := 29500ksi Lateral load W S CAMP := 21.2psf Use corner zone (Zone 5) with effective area 20 sq.ft for conservative design. Top wall height L := 12.5ft OUTPUT DESIGN RESULT . Pu := Spacing.Trib.[1.2.(R + F + 1•6•(F + 0•5.RLL] - F. 1.2.W + L Axial Load for Each Stud Pu = 3.66-kip Stud Effective Section Area A eff = 0.64•in2 Stud Section Gyration r = 2.3-in r = 0.73•in Slenderness Ratio k = 1 Ratio := maxi Lx k•Lyl r ry J Ratio = 82.192 Slenderness Parameter: :_ (Ratio) • (— f-y c . E J x = 1.077 X z Fcr:= (0.658 c •Fy if X S 1.5 0.877 Fy if > 1.5 x 2 c Fcr = 30.767-ksi Nominal Capacity of axially loaded stud member: Reduction factor cb := 0.85 Pn := Fcr•Aeff 144)•Pn = 16.7•kipl 01.08021.01 37 of 137 01/18/2008 1 .6 W S COM P- Spacing- L Mu :_ 8 Maximum Moment for Each Stud Mu = 1.06-kip•ft 01) := 0.95 Nominal Bending Capacity Mn := Fy-S IMn = 4.583•kip-fl Tt 2 .E• I Pu PEX := a := 1 – — max(k•Lx,k•Lv) 2 P EX Cm := 1.0 Pu Cm•Mu + =0.476 (1)•Pn (13•b•Mma Pu Cm-Mu 1 Check := if + <_ 1 , "Stud is enough for given load!" , "NG!" (13,-Pn 4b•Mn-a (Check = "Stud is enough for given load!" I 01.08021.01 38 of 137 01/18/2008 Interior Cee Stud @ 2nd Story INPUT INFORMATION HERE: Stud S pacing Stud 4C16 stud at 30" O.C. Braced p := 3vin L := 1011 at the middle height Stud Unbraced Height Lx := L Ly := 0.5-L Roof Load RI I := 25psf R := 4psf Floor Load FI L := 125psf FD1 := 45psf k := 1.0 Wall Spacing Trib := IOfi W := 4psf Fv := 50ksi Elastic Modulus E := 29500ksi Lateral load WS COMP := 5psf Top wall height L := 12.511 OUTPUT DESIGN RESULT Pu := Spacing- Trib-[1.2•(R + I - DL ) + I.6 (F + 0.5•R + 1.2•W -(L + L lc Axial Load for Each Stud Pu = 7 -kip Stud Effective Section Area A eff = 0.52 -in Stud Section Gyration r = 1.59 -in r = 0.75 -in i k•Lx k -Lyl Slenderness Ratio k = 1 Ratio := max Ratio 80 r x r Y Slenderness Parameter: 1 Fy " . X := Ratio Tr X = 1.048 Fcr := (o658 if X <_ 1.5 0.877 Fy i f X > l .5 Xc Fcr = 31.564•ksi Nominal Capacity of axially loaded stud member: Reduction factor := 0.85 Pn := Fcr -A eff I0 -13n = 14•kirl 01.08021.01 39 of 137 4 01/18/2008 1 .6W SCOM P- Spacing- L Mu :_ 8 Maximum Moment for Each Stud Mu = 0.25•kip•ft 01) := 0.95 Nominal Bending Capacity Mn := Fy-S Mn = 2.667-kip-ft Tr 2 •l•1 Pu • PEX a: =1 -- maxlk- Lx,k•Lv) P EX Cm := 1.0 Pu Cm-Mu + =0.64 (1)•Pn (1)b-Mn-a ll Check := if + Pu Cm-Mu 5 4 Pn 015-Mn-o. 1 ,"Stud is enough for given load!" , "NG! " $1 'Check = "Stud is enough for given load!" 01.08021.01 40 of 137 0 01/18/2008 Beam 5', trib width 10ft @ 2nd Floor Level INPUT INFORMATION Select Beam Type := Beam Location := C16 Roof Number of Ns := , C14 Beam Span L := 5 fi F,1551. Sections One �, Two fit; Number of Floors Supported by Beam Boundary Simsle Sus,ogTO F�, := 50•ksi Nu := 1 l - wo Ends Fixed Beam Load RDL.:_ -4psf , R :_ - 25 -psl W := -4psf 1•DL :_ -45psf I' := - 125psf Beam Tributary Width Beam_Spcng := 10fi Above Wall Height H := 12.5ft OUTPUT DESIGN RESULT wR1 := Beam_Spcng -(1.2 -RDL+ 1.6 -RLL) w := Beam_Spcng- (1.2•R + 1.6-R 1 ) + Nu-[l3eam_Spcng- (1.2•F + 1.6- I' + 1.2- W -II] w := w I if Location = 1 I w F I if Location = 2 2 w . x w L M(x) :_ --(L - x) if Boundary = 1 M u := if Boundary = 1 2 8 1 16L -x - L - 6x if Boundary = 2 Na L if Boundary = 2 12 Maximum Moment M = 114.3 -in -kip Select Beam Based Upon Section Modulus S = 1.1•in Z := 1.25.S Z_ = 1.375•in ch := .9 E := 29000•ksi M := Ns•Z_ M = 137.5- in•kip Check := if(O <_M "NG ", "OKAY! ") (Check = "OKAY!" 3x10 5 — — M( x) 2x10 - lx 10 0 0 1 2 3 4 5 x 01.08021.01 41 of 137 01/18/2008 Deltaallo�+, := 240 Delta allow = 0.25-in Check Service Load Deflection w := Beam + Nu•F w = —1.5 x 10'•plf 5wL 4 Delta := Delta = 0.107•in 384E-Ns I CheckD := if(Deltaallow > Delta, "Deflection is OK!" , "NG!" ) CheckD = "Deflection is OK!" Beam reaction at the each end PDI_ := I0.5LBeam_Spcng.(1.2.R + 0.5LNu.[Beam_Spcng•(1.2.F + 1.2.W 1I P 1, := I0.5EBeam_Spcng-(1.6•R 1 ) + 0.5LNu•[Beam_Spcng.(1.6-F PDL 1.62•kip P L = 6. kip • P- -= P DL + PLL P "I L = 7.62•kip 01.08021.01 42 of 137 01/18/2008 Beam 10' -0 ", trib width 10ft @ 2nd Floor Level INPUT INFORMATION Select Beam Beam Location := .._._ Type f ;Roof Number of Ns := o9.5C 14 Beam Span L := 10ft Film' Sections One 9T5011r til 12C12 Number of Floors Supported by Beam Boundary i IMM �_ �.,: , ,W4 , F • = SO-ksi Nu := 1 Two Ends Fixed y Beam Load R DL := —4psf R := — 25•psf 41'DL := —4psf —45psf I' := — I25psf F IR := Beam Tributary Width Beam_Spcng := 10ft Above Wall Height 1 -1 := 12.5ft OUTPUT DESIGN RESULT wR1 := Beam_Spcng•(1.2-R + 1.6.R1 1 ) w := Beam_Spcng11.2.(F + R + 1.6 F 1,1 + 0.5-R + 1.2-W w := w 1 if Location = 1 I w F I if Location = 2 2 M(x) := w xx N L (1_ — x) if Boundary = 1 M ° := if Boundary = 1 2 8 12 •(6L•x — L — 6.x if Boundary = 2 w•L if Boundary = 2 12 Maximum Moment M = 415.95•in•kip Select Beam Based Upon Section Modulus S = 4.46•in Z := 1.25-S Z = 5.575•in itlb := .9 E := 29000 ksi M := Ns•Z M = 557.5-in-kip Check := if(4 5 M "NG" , "OKAY!" ) 'Check = "OKAY!" 4x10 — M(x) 4 — 2x10 — — 0 0 1 2 3 x 01.08021.01 43 of 137 01/18/2008 Deltaallow := 240 Delta allow = 0.5 in Check Service Load Deflection w := Beam_Spcng -(R + Nu.F w = —1.5 x 10 plf 5wL Delta := Delta = 0.267-in 384E•Ns'I CheckD := if(Deltaallow > Delta, "Deflection is OK!" , "NG!" ) CheckD = "Deflection is OK!" Beam reaction at the each end P := 10.5L Beam_Spcng.(1.2.R + 0.5LNu.[Beam_Spcng.(1.2.F + 1.2-WDI 1 ]I P := 10.5L 13eam_Spcng.(I.6.R + 0.5LNu•[Beam_Spcng•(1.6.F PDL = 3.24-kip P 12-kip TL P DL + h l-,L P TL = I5.24-kip 01.08021.01 44 of 137 Title : Mirage Storage 0 114/W08021 Dsgnr: slu Date: 9:30AM, 18 JAN 08 Description : Light frame Scope : 01 Rev: 580007 I User KW- 0606211, Ver580, 1 -Nov -2006 Steel Beam Design Page 1 „ (c)1983 -2006 ENERCALC Engineenng Software 08021.ecw:Calculations ' Description Beam W12x22 @gridline E.1 &F.1, 3rd framing length 16ft [General Information Code Ref: AISC 9th ASD, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Steel Section : W12X22 Fy 50.O0ksi Pinned - Pinned Load Duration Factor 1.00 Center Span 16.00 ft Bm Wt. Added to Loads Elastic Modulus 29,000.0 ksi Left Cant. 0.00 ft LL & ST Don't Act Together Right Cant 0.00 ft Lu : Unbraced Length 1.00 ft Distributed Loads Note! Short Term Loads Are WIND Loads i #1 #2 #3 #4 #5 #6 #7 DL 0.450 k/ft LL 1.250 k/ft ST k/ft Start Location ft End Location ft ri Summary Beam OK Static Load Case Governs Stress Using: W12X22 section, Span a 16.00ft, Fy = 50.0ksi End Fixity = Pinned- Pinned, Lu = 1.00ft, LDF = 1.000 Actual Allowable Moment 55.104 k -ft 69.850 k -ft Max. Deflection -0.561 in fb : Bending Stress 26.034 ksi 33.000 ksi fb / Fb 0.789:1 Length /DL Defl 1,248.0 : 1 Length /(DL +LL Defl) 342.1 : 1 Shear 13.776 k 64.012 k fv : Shear Stress 4.304 ksi 20.000 ksi fv /Fv 0.215:1 • [Force & Stress Summary .ri a _ « -- These columns are Dead + Live Load � placedas noted - -» DL LL LL +ST LL LL +ST Maximum Only a Center (cD Center (a Cants (D Cants Max. M + 55.10 k -ft 15.10 55.10 k -ft Max. M - k -ft Max. M @ Left k -ft Max. M @ Right k -ft Shear @ Left 13.78 k 3.78 13.78 k Shear @ Right 13.78 k 3.78 13.78 k Center Defl, -0.561 in -0.154 -0.561 -0.154 0.000 0.000 in Left Cant Defl 0.000 in 0.000 0.000 0.000 0.000 0.000 in Right Cant Defl 0.000 in 0.000 0.000 0.000 0.000 0.000 in ...Query Defl @ 0.000 ft 0.000 0.000 0.000 0.000 0.000 in Reaction @ Left 13.78 3.78 13.78 3.78 k Reaction @ Rt 13.78 3.78 13.78 3.78 k Fa calc'd per Eq. E2 -1, K *Ur < Cc I Beam Passes Table B5.1, Fb per Eq. F1 -1, Fb = 0.66 Fy 01.08021.01 45 of 137 Title : Mirage Storage 01 Jb' 021 Dsgnr: slu Date: 9:30AM, 18 JAN 08 Description : Light frame Scope : 01 Rev: 580007 i User: KW- 0606211, Ver5.80, 1-Nov-2006 Steel Beam Design Page 2 (c)1983 -2006 ENERCALC Engineering Software 08021.ecw:Calculations ;.i Description Beam W12x22 @gridline E.1 &F.1, 3rd framing length 16ft Section Properties W12X22 <.....e_.^ .°'d.'°w` , ,., ., J�.i'� 3'!.." ... .. ^.^ r GY.y. = %m" '. .,..:.. >,'. -. ._:. A -„"•'4 .'; c_ .,:WM_.. -.,... .. ., ... ,e, .. „' Depth 12.310 in Weight 22.01 #/ft Web Thick 0.260 in lxx 156.000 in4 Width 4.030 in lyy 4.660 in4 Flange Thick 0.425 in Sxx 25.400 in3 Area 6.48 in2 Syy 2.310 in3 Rt 1.020 in R -xx 4.910 in Values for LRFD Design.... R 0.848 in J 0.290 in4 Zx 29.300 in3 Cw 165.00 in6 Zy 3.660 in3 K 0.725 in 01.08021.01 46 of 137 01/18/2008 Interior Cee Stud @ 1st Floor Level INPUT INFORMATION HERE: Stud Spacing := 30in L : 1o.sf� Stud 4C14 stud at 30" O.C. Braced at every 1/3 height Stud Unbraced Height Lx := L Ly := 0.3331, Roof Load R := 25psf R ix, := 4psf Floor Load FLl := 125psf FDI := 45psf k := 1.0 Wall Spacing Trib := 10ft WDI := 4psf Fv := 50ksi Elastic Modulus E := 29500ksi Lateral load WSCOMP := 5psf Top wall height L := 23ft OUTPUT DESIGN RESULT Pu := Spacing. Trib.[I.2•(R + 2 •F + I.6.(2 FLL) + 0.5-R L ] + 1.2•W .Spacing•(L + L Axial Load for Each Stud Pu = 13535•lbf Stud Effective Section Area A eff = 0.67 in Stud Section Gyration r = 1.58-in r = 0.75•in Slenderness Ratio k = 1 r Ratio := max Lx r k•Ly� \ x y Ratio = 79.747 Slenderness Parameter: ._ (Ratio).(_, F c 7r X = 1.045 X 2 Fcr := (0.658 c • Fy if X 5 1.5 0 .877 Fy if Xe> 1.5 x 2 c l Fcr = 31.655•ksi Nominal Capacity of axially loaded stud member: Reduction factor := 0.85 Pn := Fcr-Aeff 1(1)-Pn = 18•kipl 01.08021.01 47 of 137 01/18/2008 1.6WS S -L2 Mu :_ 8 Maximum Moment for Each Stud Mu = 0.276- kip -ft 4b := 0.95 Nominal Bending Capacity Mn := Fv•S Mn = 3.417- kip -ft 7r -E -I Pu P EX := a := 1 – — max(k•Lx ,k.Lv) P EX Cm := 1.0 Pu Cm•Mu + = 0.904 Pn 4b•Mn•a Pu Cm•Mu l Check := if + 1 , "Stud is enough for given load!" , "NG!" 41-Pn (I)b -Mn -a 'Check = "Stud is enough for given load!" 01.08021.01 48 of 137 01/18/2008 Beam 5', trib width 10ft @ 1st story INPUT INFORMATION Select Beam 'type :_ Beam Location := 6C14 ;Roof Number of Ns := __ 8C I6 Beam Span L := 5ft FRO Sections One :8C14 Number of Floors Supported by Beam I3oundary S100 ctt etl ,' F := 50• ksi Nu := 2 Two Ends Fixed Beam Load R DL := –4psf R := – 25 -psf WDI_ := –4psf 1• := –45psf E :_ – 125psf Beam Tributary Width Beam_Spcng := l0ft Above Wall Height H := 22.1 ft OUTPUT DESIGN RESULT w := Beam_Spcng- (1.2.R + 1.6 -RLI_) w := Beam_Spcng- (1.2 -R + I.6•R + Nu [Beam_Spcng.(1.2.F + I.6 -F L ) + 1.2- W -1 1 w := w 1 if Location = 1 Ivr:I if Location = 2 2 M(x) := w — •(L – x) if Boundary = I M w- L if Boundary = 1 2 u 8 1 2 -(6L -x – L – 6•x if Boundary = 2 w L if Boundary = 2 12 Maximum Moment M = 215.256-in-kip Select Beam Based Upon Section Modulus S = 2.46 in Z := 1.25 -S Z_ = 3.075 -in (ti := .9 E := 29000-ksi M := Ns-Z -F M = 307.5•in•kip Check := if(4) -M _< M "NG" , "OKAY!" ) 'Check = "OKAY!" ' 6x10 5 4x10 – M(x) 2x10 – 0 0 1 2 3 4 5 x 01.08021.01 49 of 137 01/18/2008 Deltaallo��' := 240 Delta allow = 0.25. in Check Service Load Deflection w := Beam_Spcng•(R + Nu•F w = —2.75 x 10 3 -pit' 5w-L Delta := Delta = 0.066- in 384E Ns 1 CheckD := if(Deltaallow > Delta, "Deflection is OK!" , "NG!" ) CheckD = "Deflection is OK!" Beam reaction at the each end P := I0.51. 13eam_Spcng (1.2 R 1 � L ) + 0.5L Nu.[Beam_Spcng.(1.2.F DL ) + I.2•W P 10.51_ Beam_Spcng.(1.6 R + 0.5L Nu.[Beam_Spcng.(1.6.FL1 )]I P = 3.35•kip PL.L = l 1 kip 1 'TL P DL + PLL P- - = 14.35.kip 01.08021.01 50 of 137 Title : Mirage Storage OWN4 Dsgnr: slu Date: 9:32AM, 18 JAN 08 Description : Light frame Scope : 01 Rev. 580007 1 User. KW-0606211, Ver 5.8.0, 1 -Nov -2006 Steel Beam Design Page 1 I, (c)1983 -2006 ENERCALC Engneenng Software 08021.ecw.Calculations ?! Description Beam W12x53 @gridline F, 2nd framing length 20ft L General Information Code Ref: AISC 9th ASD, 1997 UBC, 2003 IBC, 2003 NFPA 5000 I T Steel Section : W12X53 Fy 50 .O0ks i� Pinned - Pinned Load Duration Factor 1.00 Center Span 20.00 ft Bm Wt. Added to Loads Elastic Modulus 29,000.0 ksi Left Cant. 0.00 ft LL & ST Don't Act Together Right Cant 0.00 ft Lu : Unbraced Length 1.00 ft Distributed Loads Note! Short Term Loads Are WIND Loads. l^ #1 #2 #3 #4 #5 # # 7 DL 0.450 0.490 0.490 k/ft LL 1.250 1.250 1.250 k/ft ST k/ft Start Location 8.500 ft End Location 3.500 20.000 ft _ Point Loads Note! Short Term Loads Are WIND Loads. ` 7,- ---- , , : ._,. ,� ,:. .7. - - A , . . -_.�_ �w .. - - ZM =.t, 7. =',Z:. ,, xR.m- .7Gurc »mn...'T........ �,..... C .4"W «M„m e , v., n . �... . .... ... ......- . #1 # 2 #3 #4 # #6 # 7 Dead Load 1.250 1.250 k Live Load 3.200 3.200 k Short Term k Location 3.500 8.500 ft 1, Summary a Beam OK Static Load Case Governs Stress Using: W12X53 section, Span = 20.00ft, Fy = 50.0ksi End Fixity = Pinned - Pinned, Lu = 1.00ft, LDF = 1.000 Actual Allowable Moment 175.249 k -ft 194.150 k -ft Max. Deflection -1.016 in fb : Bending Stress 29.787 ksi 33.000 ksi Length /DL Defl 831.2: 1 fb / Fb 0.903: 1 Length /(DL +LL Defl) 236.2: 1 Shear 35.070 k 83.214 k fv : Shear Stress 8.429 ksi 20.000 ksi fv / Fv 0.421 : 1 LForce & Stress Summary ras'^'_'e -- ,., - =- 7.- . „ ....- =:-,s: ,,., .., -^--' . :721 _ .- �:...,= a�5r^ - a P.o.�.e;;.' '- ,.:,.7 72ar -K: -.: '. :r ..rz._-r°..zz.:;. ::�._�. �°: �� .U. « -- These columns are Dead + Live Load placed as noted - -» DL LL LL +ST LL LL +ST Maximum Only a Center a Center 0 Cants A Cants Max. M + 175.25 k -ft 49.80 175.25 k -ft Max. M - k -ft Max. M @ Left k -ft Max. M @ Right k -ft Shear © Left 35.07 k 9.96 35.07 k Shear © Right 34.99 k 9.94 34.99 k Center Defl. -1.016 in -0.289 -1.016 -0.289 0.000 0.000 in Left Cant Defl 0.000 in 0.000 0.000 0.000 0.000 0.000 in Right Cant Defl 0.000 in 0.000 0.000 0.000 0.000 0.000 in ...Query Defl @ 0.000 ft 0.000 0.000 0.000 0.000 0.000 in Reaction @ Left 35.07 9.96 35.07 9.96 k Reaction @ Rt 34.99 9.94 34.99 9.94 k Fa calc'd per Eq. E2 -1, K *L/r < Cc I Beam Passes Table B5.1, Fb per Eq. F1 -1, Fb = 0.66 Fy 01.08021.01 51 of 137 Title : Mirage Storage 01J421 Dsgnr: slu Date: 9:32AM, 18 JAN 08 Description : Light frame Scope : 01 • Rev: 580007 User KW-0606211. Ver 580, 1- Nov -2006 Steel Beam Design Page 2 (c)1983 -2006 ENERCALC Engineering Software 08021.ecw:Calculationsi Description Beam W12x53 @gridline F, 2nd framing length 20ft Section Properties W12X53 Depth 12.060 in Weight 52.99 #/ft Web Thick 0.345 in Ixx 425.000 in4 Width 9.995 in Iyy 95.800 in4 Flange Thick 0.575 in Sxx 70.600 in3 Area 15.60 in2 Syy 19.200 in3 Rt 2.710 in R -xx 5.230 in Values for LRFD Design.... R 2.480 in J 1.580 in4 Zx 77.900 in3 Cw 3,160.00 in6 Zy 29.100 in3 K 1.170 in 01.08021.01 52 of 137 Title : Mirage Storage OUb$r021 Dsgnr. slu Date: 9:33AM, 18 JAN 08 Description : Light frame Scope : 01 Rev: 580007 User: KW-0606211, Ver 5.8.0, 1- Nov -2006 Steel Beam Design Page 1 z (c)1983 -2006 ENERCALC Engineering Software 08021.ecw:Calculations ,: Description Beam W12x53 @gridline G.1, 2nd framing length 20ft L General Information Code Ref: AISC 9th ASD, 1997 UBC 2003 IBC, 2003 NFPA 5000 '50.00 �� Steel Section : W12X53 Fy ksi Pinned - Pinned Load Duration Factor 1.00 Center Span 20.00 ft Bm Wt. Added to Loads Elastic Modulus 29,000.0 ksi Left Cant. 0.00 ft LL & ST Don't Act Together Right Cant 0.00 ft Lu : Unbraced Length 1.00 ft Distributed Loads Note! Short Term Loads Are WIND Loads. :i # 1 # 2 # 3 # 4 # 5 # 6 .. #7 _ DL 0.450 k/ft LL 1.250 k/ft ST k/ft Start Location ft End Location ft L Point Loads Note! Short Term Loads Are WIND Loads. P #1 #2 #3 #4 #5 #6 #7 Dead Load 4.000 2.000 k Live Load 9.000 4.000 k Short Term k Location 4.000 15.500 ft Summary Beam OK Static Load Case Governs Stress Using: W12X53 section, Span = 20.00ft, Fy = 50.0ksi End Fixity = Pinned- Pinned, Lu = 1.00ft, LDF = 1.000 Actual Allowable Moment 127.595 k -ft 194.150 k -ft Max. Deflection -0.773 in fb : Bending Stress 21.688 ksi 33.000 ksi Length /DL Defl 1,045.9 : 1 fb / Fb 0.657: 1 Length /(DL +LL Defl) 310.5: 1 Shear 29.280 k 83.214 k fv : Shear Stress 7.037 ksi 20.000 ksi fv / Fv 0.352 : 1 [Force & Stress Summary L « -- These columns are Dead + Live Load placed as noted - -» DL LL LL +ST LL LL +ST Maximum Only (D- Center (c r Center (7a Cants (aa Cants Max. M + 127.59 k -ft 37.77 127.59 k -ft Max. M - k -ft Max. M © Left k -ft Max. M @ Right k -ft Shear @ Left 29.28 k 8.68 29.28 k Shear @ Right 24.78 k 7.38 24.78 k Center Defl. -0.773 in -0.229 -0.773 -0.229 0.000 0.000 in Left Cant Defl 0.000 in 0.000 0.000 0.000 0.000 0.000 in Right Cant Defl 0.000 in 0.000 0.000 0.000 0.000 0.000 in ...Query Defl © 0.000 ft 0.000 0.000 0.000 0.000 0.000 in Reaction @ Left 29.28 8.68 29.28 8.68 k Reaction @ Rt 24.78 7.38 24.78 7.38 k Fa calc'd per Eq. E2 -1, K'Ur < Cc I Beam Passes Table B5.1, Fb per Eq. F1 -1, Fb = 0.66 Fy • 01.08021.01 53 of 137 Title : Mirage Storage 0 1Jat 021 Dsgnr. slu Date: 9:33AM, 18 JAN 08 Description : Light frame Scope : 01 Rev: 580007 User: KW- 0606211, Ver 5.8.0, 1- Nov -2006 Steel Beam Design Page 2 ii (c)1983 -2006 ENERCALC Engineering Software 08021. ecw:Caiculations s Description Beam W12x53 @gridline G.1, 2nd framing length 20ft LSection Properties W12X53 Depth 12.060 in Weight 52.99 # /ft Web Thick 0.345 in Ixx 425.000 in4 Width 9.995 in Iyy 95.800 in4 Flange Thick 0.575 in Sxx 70.600 in3 • Area 15.60 in2 Syy 19.200 in3 Rt 2.710 in R -xx 5.230 in Values for LRFD Design.... R 2.480 in J 1.580 in4 Zx 77.900 in3 Cw 3,160.00 in6 Zy 29.100 in3 K 1.170 in • 01.08021.01 54 of 137 Title : Mirage Storage 011b11✓021 Dsgnr: slu Date: 9:33AM, 18 JAN 08 Description : Light frame Scope : 01 Rev: 580007 I User: KW- 0606211, Ver 5.8.0, 1- Nov -2006 Steel Beam Design Page 1 ri (01983 -2006 ENERCALC Engineering Software 08021.ecw:Calculations 4 Description Beam W12x53 @gridline E.1 &F.1, 2nd framing length 20ft General Information Code Ref: AISC 9th ASD, 1997 UBC, 2003 IBC, 2003 NFPA 5000 1 0 Steel Section : W12X53 Fy 50.00ksi Pinned - Pinned Load Duration Factor 1.00 Center Span 20.00 ft Bm Wt. Added to Loads Elastic Modulus 29,000.Oksi Left Cant. 0.00 ft LL & ST Don't Act Together Right Cant 0.00 ft Lu : Unbraced Length 1.00 ft Distributed Loads Note! Short Term Loads Are WIND Loads. °1 #1 #2 #3 #4 #5 #6 #7 DL 0.450 k/ft LL 1.250 k/ft ST k/ft Start Location ft End Location ft [point Loads Note! Short Term Loads Are WIND Loads. I F # 1 = # # #4 . � # . 5 _ . # - Dead Load 4.000 k Live Load 10.000 k Short Term k Location 4.000 ft i Summary , I: Beam OK ' Static Load Case Governs Stress Using W12X53 section, Span = 20.00ft, Fy = 50.0ksi End Fixity = Pinned- Pinned, Lu = 1.00ft, LDF = 1.000 Actual Allowable Moment 117.886 k -ft 194.150 k -ft Max. Deflection -0.699 in fb : Bending Stress 20.037 ksi 33.000 ksi fb / Fb 0.607:1 Length /DL Defl 1,198.4: 1 Length /(DL +LL Defl) 343.5: 1 Shear 28.730 k 83.214 k fv : Shear Stress 6.905 ksi 20.000 ksi fv / Fv 0.345: 1 Force & Stress Summary _ «- These columns are Dead + Live Load placed as noted - -» DL LL LL +ST LL LL +ST Maximum Only 0 Center a Center a Cants a Cants Max. M + 117.89 k -ft 33.79 117.89 k -ft Max. M - k -ft Max. M © Left k -ft Max. M @ Right k -ft Shear @ Left 28.73 k 8.23 28.73 k Shear @ Right 20.33 k 5.83 20.33 k Center Defl. -0.699 in -0.200 -0.699 -0.200 0.000 0.000 in Left Cant Defl 0.000 in 0.000 0.000 0.000 0.000 0.000 in Right Cant Defl 0.000 in 0.000 0.000 0.000 0.000 0.000 in ...Query Defl @ 0.000 ft 0.000 0.000 0.000 0.000 0.000 in Reaction @ Left 28.73 8.23 28.73 8.23 k Reaction @ Rt 20.33 5.83 20.33 5.83 k Fa calc'd per Eq. E2 -1, K *Ur < Cc I Beam Passes Table B5.1, Fb per Eq. F1 -1, Fb = 0.66 Fy 01 08021.01 55 of 137 Title : Mirage Storage 0 V4/W08021 Dsgnr: slu Date: 9:33AM. 18 JAN 08 Description : Light frame Scope : 01 Rev: 580007 ., User: KW-0606211, Ver 5.8.0, 1- Nov -2006 Steel Beam Design Page 2 (c)1983 -2006 ENERCALC Engineering Software 08021.ecw:Calculations Description Beam W12x53 @gridline E.1&F.1, 2nd framing length 20ft [Section Properties W12X53 Depth 12.060 in Weight 52.99 # /ft Web Thick 0.345 in Ixx 425.000 in4 Width 9.995 in Iyy 95.800 in4 Flange Thick 0.575 in Sxx 70.600 in3 Area 15.60 in2 Syy 19.200 in3 Rt 2.710 in R -xx 5.230 in Values for LRFD Design.... R - yy 2.480 in J 1.580 in4 Zx 77.900 in3 Cw 3,160.00 in6 Zy 29.100 in3 K 1.170 in 01.08021.01 56 of 137 • Title : Mirage Storage 0 lfikl4 Dsgnr. slu Date: 9:31AM, 18 JAN 08 Description : Light frame Scope: 01 Rev: 580007 4 User. KW- 0606211, Ver 5.8.0, 1- Nov -2006 Steel Beam Design Page 1 r: (c) 1983 -2006 ENERCALC Engineering Software 08021 ecw:Calculations rI Description Beam W12x26 @gridline G to G11, 1st framing length 11ft General Information Code Ref: AISC 9th ASD, 1997 UBC, 2003 IBC, 2003 NFPA 5000 " Steel Section : W12X26 Fy 5 ksi Pinned - Pinned Load Duration Factor 1.00 Center Span 11.00 ft Bm Wt. Added to Loads Elastic Modulus 29,000.0 ksi Left Cant. 0.00 ft LL & ST Don't Act Together Right Cant 0.00 ft Lu : Unbraced Length 10.00 ft F Point Loads Note! Short Term Loads Are WIND Loads. 1 ii #1 #2 #3 #4 #5 #6 #7 Dead Load 4.000 k Live Load 10.000 k Short Term k Location 1.000 ft Summary 1 Beam OK Static Load Case Governs Stress Using: W12X26 section, Span = 11.00fl, Fy = 50.0ksi End Fixity = Pinned- Pinned, Lu = 10.00ft, LDF = 1.000 Actual Allowable Moment 12.843 k -ft 70.641 k -ft Max. Deflection -0.033 in fb : Bending Stress 4.614 ksi 25.380 ksi Length /DL Defl 12,728.8: 1 fb / Fb 0.182: 1 Length /(DL +LL Defl) 4,029.6 : 1 Shear 12.870 k 56.212 k fv : Shear Stress 4.579 ksi 20.000 ksi fv /Fv 0.229:1 Force & Stress Summary 1 «-- These columns are Dead + Live Load placed as noted - -» DL LL LL +ST LL LL +ST Maximum Only (a Center A Center (u. Cants (ca Cants Max. M + 12.84 k -ft 3.76 12.84 k -ft Max. M - k -ft Max. M @ Left k -ft Max. M @ Right k -ft Shear @ Left 12.87 k 3.78 12.87 k Shear @ Right 1.42 k 0.51 1.42 k Center Defl. -0.033 in -0.010 -0.033 -0.010 0.000 0.000 in Left Cant Defl 0.000 in 0.000 0.000 0.000 0.000 0.000 in Right Cant Defl 0.000 in 0.000 0.000 0.000 0.000 0.000 in ...Query Defl @ 0.000 ft 0.000 0.000 0.000 0.000 0.000 in Reaction @ Left 12.87 3.78 12.87 3.78 k Reaction @ Rt 1.42 0.51 1.42 0.51 k Fa calc d per Eq. E2 -2, K *Ur > Cc I Beam, Major Axis, (102,000 * Cb / Fy) ^.5 <= UrT <= (510,000 * Cb / Fy) ^.5 , Fb per Eq. F1-E [Section Properties W12X26 Depth 12.220 in Weight 25.98 #/ft Web Thick 0.230 in Ixx 204.000 in4 Width 6.490 in Iyy 17.300 in4 Flange Thick 0.380 in Sxx 33.400 in3 Area 7.65 in2 Syy 5.340 in3 Rt 1.720 in R -xx 5.170 in Values for LRFD Design.... R -yy 1.510 in J 0.300 in4 Zx 37.200 in3 Cw 606.00 in6 Zy 8.170 in3 K 0.680 in 01.08021.01 57 of 137 01/18/2008 Post Design (2)4C16 Stud Type := Post height L := 12ft 4C14 Post Unbraced Height L := L L := L 1. := L ,6C16 (2) Stud 4C16 Back and Back, #12 screws at typical 12" O.C. at the web. a Single Section Properties I := 50ksi E := 29500ksi G := 11300ksi Y . W := 1.77p1f A := A eff A := A eff d := 0.688in xio S := 0.22in I.09in R := 0.1875in := —1.82in m : = j := 2.47in x iba := 0.759in Properties of built section A := 2•A A = 1.04n I x • := 2.1 xi l = 2.62.in 4 r •= r i • r = 1.59.in I v := 2. ( I vi + Ai.xiba2) I = I.199-in 4 x • x Y r := r = 1.074.in C := 2.C C = 2.2•in 6 Y . J := 2•J J = 0.00124-in 4 x := 0 distance from shear center to centroid of combined shape r 0 := I 2 + r2 + x0 2 r = 1.919.in A := 2-A A = 1.04-in 2 Bracing Parameters K := 1.0 K := 1.0 K := 1.0 x • X-axis Flexural Buckling The buckling mode does not involve relative deformations that produce shear forces in the connectors between individual shapes, so AISI equation C4.5-1 does not apply. K X • X IT 2 -E Ratio x := Ratio = 90.566 F • 2 F = ex -- 35.497•ksi rx ex Ratio ex 01.08021.01 58 of 137 01/18/2008 Y-axis Flexural Buckling The buckling mode does involve relative deformations that produce shear forces in the connectors between individual shapes, so AISI equation C4.5 -1 does apply. 2 2 K,-L Ratio, := } ' + Ratio = 135.057 r ( a r i F := F = 15.962•ksi Ratio, 2 - Torsion Buckling 7r w cr := 1 . G-J + Q = 11.729• t A r0 - (K Lt) t F := min(F „Q F = 11.729-ksi Slenderness Parameter: F : = Y y. = 2.065 A c I- c x Fcr := (0.658 c •F if X <_ 1.5 0.877 .F if if X c > 1.5 ^2 Fcr= 10.286•ksi Nominal Capacity of axially loaded (2) 4C16 Studs: P : = Fcr•A P = 10.7-kip P St := 1.80 P a := - P = 5.943-kill I4SD I nc (0 := 0.85 P LRFD := (1) P n P LRFD = 9.093•kir ILRFDI 01.08021.01 59 of 137 01/18/2008 Post Design (2)4C16 Stud T yp e � r w Post height L := I Ofi 4C1 I4C 14 Post Unbraced Height L := L L := I L L := I L !6C16 (2) Stud 4C16 Back and Back, #12 screws at typical 12" O.C. at the web. a := 12in Single Section Properties F Y := 50ksi E := 29500ksi G := 1 1300ksi w := 1.77p1f Ai := A eff - A ei Aeff d := 0.688in Sy1 := 0.22in3 m := 1.09in R := 0.1875in xi0 I.82in xiba 0.759in ji := 2.47in Properties of built - up section A := 2.A. A = 1.04 in 2 l := 2 Ixi 1 = 2.62•in 4 r := rxi r = 1.59 in 1 := 2 (I + Ai'xiba2) 1 = 1.199 -in r .= fy r = 1.074 -in C��, := 2 -C C = 2.2 -in A J := 2 J J = 0.00124 in x := 0 distance from shear center to centroid of combined shape r := Jrx2 + r + x02 r = 1.919-in A := 2•A A = 1.04 - in 2 Bracing Parameters K 1.0 K 1.0 K := 1.0 X-axis Flexural Buckling The buckling mode does not involve relative deformations that produce shear forces in the connectors between individual shapes, so AISI equation C4.5 -1 does not apply. K X ' L X Ir 2 • E Ratio := Ratio = 75.472 F • : = F = 51.1 16 ksi r 2 ex Ratio Y Flexural Buckling 01.08021.01 60 of 137 01/18/2008 The buckling mode does involve relative deformations that produce shear forces in the connectors between individual shapes, so AISI equation C4.5 -1 does apply. L � 2 2 } a Ratio := r + • / Ratio, = 112.894 Y / Y Tr 2 -E F • F = 22.844•ksi • Ratio Torsion Buckling 7r 2 •E•C , 1 N v := - G,1 + Q = 15.279-ksi t A r0 - (K1 Lt) t F := min(F F ,cr F = 15.279-ksi Slenderness Parameter: } x := Xc = 1.809 Fe 2 Fcr := (0.658 c - if > <_ 1.5 0.877 F if X > 1.5 X c 2 Fcr = 13.4-ksi Nominal Capacity of axially loaded (2) 4C16 Studs: P : = Fcr•A P = 13.9•kip P Si c := 1.80 P :_ P = 7.742•kid I4SD I S2 I (1) := 0.85 PLRFD := (1) P LRFD = 1 1.845•kiF ILRFD) 01.08021.01 61 of 137 01/18/2008 Post Design (2)4C16 Stud with mid bracing Type := Post height L := I Oft .. 7. 4C14 Post Unbraced Height L := L L := 0.5L L := 0.5L 6•16 (2) Stud 4C16 Back and Back, #12 screws at typical 12" O.C. at the web. a := 12in Single Section Properties F := 50ksi E := 29500ksi G := 1 I300ksi w := I.77plf Ai := A eff A ei Aeff d 0.688in Sy := 0.22in3 m • 1.09in R := 0.1875in xi0:= -1.82in xiba := 0.759in ji := 2.47in Properties of built -up section A := 2-A- 1 A = 1.04 in l := 2•I 1 = 2.62 -io r := rxi r = 159-i .n I �, := 2•(1 + Ai-xiba 1 = 1.199 •in r := F r ` , = 1.074-in C��,:= 2-C C = 2.2•in J := 2J J = 0.00124-in 4 x := 0 distance from shear center to centroid of combined shape r := Jr + r + x r = 1.919-in A • = 2•A A = 1.04•in Bracing Parameters K := 1.0 1.0 K x K := t := 1.0 X-axis Flexural Buckling The buckling mode does not involve relative deformations that produce shear forces in the connectors between individual shapes, so AISI equation C4.5 -1 does not apply. K X • L X 71 Ratio := Ratio = 75.472 F : = F = 51.1 16 ksi r x Ratiox2 ex Y Flexural Buckling 01 08021.01 62 of 137 01/18/2008 The buckling mode does involve relative deformations that produce shear forces in the connectors between individual shapes, so AISI equation C4.5 -1 does apply. \ 2 2 K� , L� , a Ratio, :_ ` ' + ( i) Ratio = 58.123 r, ry- ) 11 F := F = 86.184 -ksi 2 Ratio Torsion Buckling ar -C , I �� cr :_ - G-.1 + cr = 50.136 -ksi t A -r (Kt -1.0 t F := min(F o F = 50.136 -ksi Slenderness Parameter: F X = 0.999 c le c X c , Fcr := (0.658 -F if X c <_ 1.5 0.877 F if X c > 1.5 �` c2 Fcr = 32.937 -ksi Nominal Capacity of axially loaded (2) 4C16 Studs: P := FcrA P = 34.3 -kip P n Si := 1.80 P := P = 19.031.11 14SD it fi := 0.85 P LRFD := (1) P LRFD = 29-1"-kip ILRFD 01.08021.01 63 of 137 01/18/2008 Post Design (2)4C14 Type :_ Post height L := I0.5fi 4C16 Post Unbraced Height L := L L := L L := L 16C16 (2) Stud 4C14 Back and Back, #12 screws at typical 12" O.C. at the web. a := 12in Single Section Properties F,, := 50ksi E := 29500ksi G := 1 1300ksi W := 2.28p1f A •= A ft A := Aeff d := 0.688in S := 0.28in m := L09in R := 0.18751n xi0 1.82in xiba 0.766in ji := 2.46in Properties of built -up section 7 A := 2.A- 1 A = 1.34 in l := 2.1xi 1 = 3.3. in r := r r = 1.58 in l := 2(l + Ai•xiba2) l = 1.526 in 1 r�, :_ A r �, = 1.067 in C 2•C�,�, C = 2.7•in A J := 2 J J = 0.0026 in x0 := 0 distance from shear center to centroid of combined shape r := Jr + r + x r = 1.907-in A := 2•Aei A = 1.34 -in Bracing Parameters K := 1.0 1.0 • K := 1.0 x K y = t X-axis Flexural Buckling The buckling mode does not involve relative deformations that produce shear forces in the connectors between individual shapes, so AISI equation C4.5 -1 does not apply. 2 E Ratio := K •L Ratio = 79.747 Fex :_ F = 45.782 ksi r R atiox2 ex Y-axis Flexural Buckling 01.08021.01 64 of 137 01/18/2008 The buckling mode does involve relative deformations that produce shear forces in the connectors between individual shapes, so AISI equation C4.5 -1 does apply. 2 2 K a Ratio • + Ratio = 119.141 r (r}, i 2 L F := F = 20.512•ksi Ratio 2 Torsion Buckling �r F C �� Q • 1 • G •J+ v = 16.196ksi t A.r0 (Kt.Lt) t F := min(Fex,Fey,crt) F 16.196•ksi Slenderness Parameter: F �`c :_ Xc = 1.757 2 Fcr:= (0.658 c • F if X c <_ 1.5 0.877 .F if if x c > 1.5 �`c2 Fcr= 14.204 -ksi Nominal Capacity of axially loaded (2) 4C16 Studs: P • = Fcr•A P = 19-kip P St := 1.80 P :_ P = 10.574-ki}l kSD SZc I 1 �c := 0.85 P LRFD := ( I ) c' P n P LRFD = 16.178•kir ILRFDI Good for: 2nd floor beam: length 5ft, trib width 10ft; 01.08021.01 65 of 137 01/18/2008 Post Design (2)4C14 with 1/3 height bracing Type := Post height L := 10.5ft 1406 Post Unbraced Height I, := L L := 0.33L L := 0.33E 6C16 (2) Stud 4C14 Back and Back, #12 screws at typical 12" O.C. at the web. a := 12in Single Section Properties F := 50ksi E := 29500ksi G := 1 1300ksi w := 2.28p1f A := A eff A ei Aeff d := 0.688in 3 S y1 : 0.28in m i : 1.09in R := 0.1875in xi() 1.82in xiba := 0.766in ji := 2.46in Properties of built - up section A := 2•A A = 1.34 in I := 2-lxi 1 = 3.3.in r := r r = 1.58 in I �, := 2.(1 + A i •x iba 2) l , = 1.526 in F r :_ r = 1.067-in C := 2•C� C� = 2.7•in A J := 2•J J = 0.0026 in x := 0 distance from shear center to centroid jrx2 of combined shape r := + r + x r = 1.907-in A • = 2-A ei A = 1.34• in Bracing Parameters K := 1.0 1.0 K := 1.0 X-axis Flexural Buckling The buckling mode does not involve relative deformations that produce shear forces in the connectors between individual shapes, so AISI equation C4.5 -1 does not apply. 2 Ratio := Kx Lx Ratio = 79.747 Fex :_ .E F = 45.782-ksi r 2 ex Ratio Y-axis Flexural Buckling 01.08021.01 66 of 137 01/18/2008 The buckling mode does involve relative deformations that produce shear forces in the connectors between individual shapes, so AISI equation C4.5 -1 does apply. iry-Lyj 2 a�2 Ratio :_ + Ratio, = 42.118 r r l 2 F ey L F = 164.13 ksi Ratio 2 Torsion Buckling 7C 2 .E•C 11 °"t := 1 G J+ Q= 99.369 ksi A r0 _ (K 2 _ t F := min(F F = 45.782•ksi Slenderness Parameter: FLY = 1.045 c c Fcr:= (0.658 c )•F if > 5 1.5 0.877 .F if if )\ > 1.5 Xc Fcr= 31.655•ksi Nominal Capacity of axially loaded (2) 4C16 Studs: P := Fcr•A P = 42.4•kip P St := L80 P := P = 23.566•kipl IASD I S2 I (p := 0.85 PLRFD :_ c Oc' P n P LRFD = 36.056•kij [LRFE Good for: 2nd floor beam: length 5ft, trib width 10ft; 01.08021.01 67 of 137 )ESt N Ut C ,ivIPIV ::SSION 1`ic :MnriRS ' 11-;1:1.. COiMPR8SSIUN - -M[M1 R SEI.NCTION TA r -iti 4 -i Table 4 -4 (continued) Table 4 -4 (continued) o Available Strength in F - 46 ksi l F - 46 ksi Available Strength in M . Axial Comp r ession, kips y - y - Ax Compression, kips o ;SS41/2-HSS4 Square HSS Square HSS HSS4 HSS4 /2x4 HSS4x4x ° Shape 3/8 I 5 /16 1 /4 3 /t6 1 1 / 2 ; ;' S hape 3 /a 5 /16 1/4 HSS4x4x 3 /16 1 /8 _ / design. In 0.349 0.291 0.233 0.174 - 0.116 0.465 ` t desig , in. - ', 'izs; - 0.349 0.291 0.233 - 0.174 0.116 Wt/tt - 19.7 16.9 13.9 10.7 7.30 21.5 Wt/ft 17.2 14.8 12.2 9.40 6.45 - -_ Pnliic SncPi P (J P gi P r� Fyi2c `hcPn Pn /Slc 4icPn P n /i2 c p c P n Po/12c m P P /12 P P /Sl P P !i2 N P Design -- Design c n n c c n n c n n c c n ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASO LRFD ASD LRFD ASD' LRFD ASD LRFD .. ASD LRFD ASD LRFD ASD LRFD 0 151 227 129 194 106 159 80.8 121 54.4 81.8 166 249 , '. 0 132 198 ' 113 170 92.9 140 71.2 107 48.7 73.2 1 150 226 129 193 105 158 80.5 121 54.3 81.6 185 248 -1 . ? . 1 131 197 112 169 92.5 139 70,9 107 48.5 72.9 2 149 224 127 191 104 157 79.8 120 54.0 81.1 163 2 3 146 220 125 188 103 154 78.5 118 53.4 80.3 159 238 2 129 194 111 167 91.3 137 70.1 105 47,9 72.0 4 143 215 122 184 100 151 76.8 115 52.5 78,8 153 230 3 127 190 109 163 89.4 134 68.7 103 47,0 70.7 5 138 208 119 1 78 97.4 14 74 .7 11 51 76.7 147 221 4 123 184 105 158 86.8 131 66.8 6 46:7 68.8 c' c 5 118' 177 101 152 83.6 126 64,4 96.7 44.2 66.4 141 72.1 108 49.3 74,2 139 209 ° 1 ,. ° 6 1 33 2 11 4 72 94.0 . i ea 6 1'12 168 • 96.6 145 79.9 120 61:6 92.6 42;3 63.6 A 7 127 191 109 164 90.1 135 69.2 104 47.4 71.3 131 196 O1 8 121 182 104 156 85.8 129 66.0 99.3 45.3 68.1 121_ 182 co 7 106 159 91:3 137 75.6 114 58.4 87.8 40;2 60.5 5 c 8 98.7 148 85.5 129 71.0 107 55.0 82.7 38.0 57.0 in 9 114 171 98.2 148 81.2 122 62.6 94.1 43,0 64.7 tfi 16 in .4 1 37 7 9 . 4 119 6 9 916.2 99.4 51.4 77.2 35.5 53.4 b 1 59 88 .6 40 61 .0 10 15 3 10 107 160 92.1 138 76.3 ii .�. 138 10 83.9 126 73.1 110 61.1. 91.8 47.6 71.5 33'.0 49.6 i 11 99.1 149 85.9 129 71.3 107 55.2 83.0 38.1 57.2 91.8 � . ... N m 12 91.5 138 79.5 11 66.2 99.4 51.3 7 7.2 35 .5 53 82 .1 12 11 76.3 115 66.8 100 56.0 84,1 43.7 65.7 30.4 45.7 o 13 83.9 126 73.1 110 61.0 91.7 47.5 71.3 32.9 49. 72.6 109 12 68.8 103 60.4 90.8 50.8, 76,4 39.8 59.9 27,8 41.8 IS 14 76.4 115 66.7 100 55.9 84.0 43.6 65.5 30.3 45.5 '63.6 95.6 w 13 61.5 92,4 54.2 81,5 45.8 68.8 ' 36.0 54,1 25,2 37,9 15 69.1 104 60.5 91.0 50.8 76.4 39.8 59.8 27.7 41.7 55.4 83.3 cn 14 54.4 81.8 48.2 72.4 40.9. 61.5 32.3. 48.6 22:7 34.1 = 16 62.0 93.2 54.5 82,0 46.0 69.1 36.1 54.2 252 37,9 48.7 73.2 ii 15 47.6 71,6 42.4 63.7 36.2 54.4 28.7 43.2 20:3 30.5 3 17 55.2 82.9 48.7 73.2 41.3 62.0 32'.5 48.9 22.8 3 43.1 64,8 2 : . , •3 16 41.9 62,9 37.3 56.0 , 31.8 47.8 25.3 38,1 17,9 27.0 18 49.2 74.0 43.5 65.3 36.8 55.3 29.1 43.7 20.5 30.7 38.5 57,8 i., ., r 17 37.1 55.7 33.0 49.6 28:2 42,4 22.4 33.7 15.9 23,9 x 19 44.2 66.4 39.0 58,6 33.0 49.7 26.1 39.2 18.4 27,6 34.5 51.9 Y 18 33.1 49.7 29.4 44,3 25.1' 37,8 20.0 30.1 14.2 21.3 a 20 39.9 59.9 35.2 52,9 29.8 44.8 23.5 35,4 16.6 24.9 31.2 46.8 19 29.7 44.6 26.4 39.7 22.6 33.9 18.0 27.0 12.7 19.1 m 21 36.2 54.3 31.9 48.0 27.0 40,6 21.4 :32_.1 15.0 22,6 28.3 42.5 d 20 26.8 40.3 23:9 35.9 ' 20.4 30.6 16.2 24,4 11.5 17.3 o 22 32 49 29.1 43 24 37 19 29,3 13.7 20,6 25.8 38.7 a? o 23 30.1 45.3 26.6 40 22 33 17 26 12 18 23 35.4 21 24.3 36.5 21.6 32.5 96 . 18.5 27.8 14.7 22.1 1D,4 15.7 W 22 22.1 33.3 24 27.7 41,6 24.4 36.7 20.7 31. 16.4 24 11 17.3 Y = 1.9.7 296 . 16.8 25,3 13.4 20,1 9.49 14,3 25 25.5 38.3 22.5 33.9 19.1 28, 7 15.1 22.7 10.6 15.9 "' 23 20.3 30.5 18.0 27.1 15.4 23.1 12.3 18.4 8.66 13.0 24 18.6 28.0 16:6 24.9 14.1 21,3 11.3 16.9 7.97 P 12.0 26 23.6 35.5 20.8 31 3 17.6 26,5 13.9 20.9 9.80 14.7 , ; i{;. 25 26 r .-- 27 21.9 32.9 19.3 29,0 16.4 24,6 12.9 19.4 9.09 13.7 .. 13. 7 J 6 1 1 5 . 6 735 O 11.0 q; ,. 26 `° 28 18.0 27.0 15.2 22.9 12.0 18.1 8.45 12.7 ,. 6,79; ° 10.2 29 112 16,8 7.88 11.8 0 - Properties ii •'j. - - Properties A 311, 5,48 4,68 3.84 2.93 2,00 6.02 ; ; A 4 (113 2 ) 4.78 4.10 3.37 2.58 1.77 I = I (in ' 15.3 13.5 11,4 9.02 6.35 11.9 '! "r .-i / l y (ir1. 10.3 9,14 7,80 6.21 4.40 r, = r 311. 1,67 1,70 1,73 1.75 1.78 1.41 r = r (41. 1,47 1,49 1,52 1.55 1.58 p p ?y ASD LRFD Note: Heavy line indicates K / /requal to or greater than 200. ASO LRFD ° Sha e is slender ter compression with F = 46 ksi. Pnt., 14. Una ineiirnIuc /Oh- an.laI In nr nrPalar than 21111 ..1:_ '! • -- 01/18/2008 Lateral Design Introduction 1. The Main Lateral Force Resisting Systems for this project are Light Framed Steel Shear Walls (C stud with steel R panel), composite floor diaphragm (concrete over metal deck), steel standing seam roof deck with X steel strap bracing, and concrete foundation on ground. For ground floor, shear resistance elements are special reinforced masonry walls designed by others. 2. Structure is a storage building, which has significant number of steel shear walls in both directions. All steel shear walls are light gauge 4" or 6" C stud with steel R panels. Shear wall shear capacity was referenced from ICC report ER -5409. 3. In addition to light gauge steel shear walls, masonry walls were used at the ground floor perimeter walls of the building due to architectural issue. Those additional masonry walls will add the strength of the building. Even using steel shear wall replacing those masonry wall, building still has sufficient strength to resist design loads. In lateral design, those masonry walls were treated as light gauge steel shear walls. Numerous interior steel shear walls can take huge lateral load. 4. Per soil report, site soil profile is "D". For top two floors, per current code, R factor 6.5 and redundancy factor 1.0 were used in design per ASCE7 -05 section 12.3.4.2. 5. Rigid diaphragm analysis was performed in Enercalc program from top level to ground level. See calculation package and shear wall call outs on plan. 6. Building is relatively heavy and relatively long length shear walls were used, therefore no significant overturning moment occur. Shear wall anchor bolts will be mainly subjected to shear force and there was no holdown anchors required for this type of storage building. At the top floor level, anchors will be evaluated based on shear and wind uplift combination for conservative design. AD anchor bolts were designed based on current ACI -318 code. Hilit KB -TZ expansion anchor bolts (ESR -1917) were used for this project and "Cracked" concrete were used in calculation. 7. Continuous load transfer was checked for all roof and floor diaphragm to shear walls. Continuous angle, drag strut, or top tracks were specified on plans and details to transfer loads from diaphragm to shear walls below. 8. Masonry wall anchorage to floor and roof diaphragm: design check was performed based on current IBC2006 code. Sufficient dowel reinforcement or anchor bolts were used to provide solid anchorage for masonry wall to diaphragm. 9. All government required inspection and special inspection shall be performed accordingly. Refer to plan notes for required items. 01.08021.01 69 of 137 01/18/2008 Wind Pressure for Main Wind Resisting System Building Dimension L := 231.511 B := 151 ft Wind Speed V := 94.5mph using V =95MPH for design Importance Factor 1 := 1.0 Mean Roof Height <= h := 340 Exposure Factor X := 1 + 1.05 1 for Exposure B 5 Flat roof, slope =1" : 12" End Zone Length a := if( min( 0. 4- h, 0. 1. 13 ) >_max(3ft,0.04•B), min( 0.4•h,0.1 B),max(3ft,0.04.B)) a= 13.60 2a= 27.2 ft Zone A (Wall End Zone) P s30 A 12.8 + 15.9 psf IBC Table 1609.6.2.1 2 Ps_A X I w Ps30_A IP = 14.924•psf - Zone B (Roof End Zone) Ps30 I3 := 11.9 — 8.2 psf IBC Table 1609.6.2.1 2 Ps B min I w•Ps30_B ,— lO Ps B = — 10.452-psf Zone C (Wall Interior Zone) Ps30 C 8.5 + 10.5 psf IBC Table 1609.6.2.1 2 Ps_C := > • I \V Ps30 C IPs C = 9.88.psf • Zone D (Roof Interior Zone) Ps30 D — 4.9 psf IBC Table 1609.6.2.1 2 ps_D := min ( X.1 w'Ps30_D , - 10 Ips D = — 10•psf Zone E (Windward Roof End Zone) —15.4 — 19.1 P s30E 2 ps IBC Table 1609.6.2.1 p s_E := min(X.lwips30_E,_10psf) p s_E = — 17.94•psf Zone F (Leeward Roof End Zone ) P — 8.8 — 10.8 ( s30 F �= psf IBC Table 1609.6.2.1 2 ps_F := min(X.Iw Ps30_F,_lOpsf) p s_F = — 10.192•psfl Zone G (Windward Roof Interior Zone) P s30 G —10.7 — 13 psf IBC Table 1609.6.2.1 2 ps_G := min (w'Ps30_G ,— IO Ps G = —12.48 psf X•I Zone G Leeward Roof Interior Zone — 6.8 — 8.4 G ( Leeward P s30 H := psf IBC Table 1609.6.2.1 2 Ps _H := min(X.1`k,.Ps30_H IOpsf) Ips H = — 10•psf 01.08021.01 • 70 of 137 01/18/2008 Wind Pressure for Component and Cladding — 14.6 — 18 Roof Zone 1 10 sq.ft Effective Area pnet301 10 2 p sf IBC Table 1609.6.2.1 Pnet_1_10 := minX-1 �`ti pnet30_I_10' 10 Pnet 1 lO — — 16.952 psll —14.2 — 17.5 20 sq.ft Effective Area pnet30 20 2 psf IBC Table 1609.6.2.1 Pnet_1_20 :— min Pnet30 1 20 10 IPnet — —16.484-psf —13.7 — 16.9 50 sq.ft Effective Area Pnet30_1 50 2 p IBC Table 1609.6.2.1 Pnet_1_50 : min ( X-1 `j , •pnet30_1 50 l0 Pnet 1 50 — — 15.912 -Psf1 —13.3 — 16.5 f 100 sq.ft Effective Area Pnet30 2 p IBC Table 1609.6.2.1 Pnet_1_l00 := min(X.1�, pnet30_1_100 10 IPnet_1_100 — — 15.496 psf —24.4 — 30.2 Roof Zone 2 10 sq.ft Effective Area Pnet30_2_10 2 p sf IBC Table 1609.6.2.1 Pnet_2_10 :— min ( X.1 �� ,. pnet30_2_10' — IO Pnet 2 10 = — 28.392 psf l —21.8 -27 20 sq.ft Effective Area pnet30_2 20 2 psf IBC Table 1609.6.2.1 Pnet_2_20 := min pnet302_20 10 IPnet_2_20 = —25.376-psi 50 sq.ft Effective Area pnet30 2 — 18.4 — 22.7 II 50 2 psf IBC Table 1609.6.2.1 Pnet_2_50 := min ( X.l w . pnet30_2_50 ,- 10 IPnet_2_50 — — 21.372•Ps11 —15.8 — 19.5 100 sq.ft Effective Area Pnet30_2_100 2 p IBC Table 1609.6.2.1 Pnet_2_100 mm ( >.1 w•Pnet30_2_100' - 1O IPnet_2_100 = —18356 P —36.8 — 45.4 Roof Zone 3 10 sq.ft Effective Area pnet30 3_10 2 psf IBC Table 1609.6.2.1 Pnet_3_10 := min ( X • I w'Pnet30_3_10' - 1O Pnet310 = —42.744-psi —30.5 -37.6 20 sq.ft Effective Area pnet30 3 20 2 psf IBC Table 1609.6.2.1 Pnet_3 -20 := min ( X ' I w . pnet30_3_20 ,— l0 IPnet_3_20 = — 35.412•ps1 —22.1 -27.3 50 sq.ft Effective Area pnet30_3 50 2 psf IBC Table 1609.6.2.1 01.08021.01 71 of 137 01/18/2008 Pnet_3_50 mm(X -1w Pnet30_3_50' IO IPnet_3_50 - — 25.688 -psli —15.8 -19.5 fI 100 sq.ft Effective Area Pnet30 3 100 2 Psf IBC Table 1609.6.2.1 Pnet_3_100 -- min(X.1 \ 10 Pnet 3 100 = — 18.356 -psf —15.8 — 19.5 Wall Zone 4 10 sq.ft Effective Area Pnet30 4 10 2 Psf IBC Table 1609.6.2.1 Pnet 4 10 min(X.1v+, pnet30_4 10 10 IPnet_4_10 = — 18.356 psf —15.1 — 18.7 20 sq.ft Effective Area Pnet30 4 20 2 Psf IBC Table 1609.6.2.1 Pnet_4_20 min(X I v■ ,- pnet30_4_20 , _ 10 p sf ) IPnet_4_20 — — 17.576 -psfi 50 sq.ft Effective Area Pnet30 4 50 —14.3 — 17.6 II 2 P IBC Table 1609.6.2.1 Pnet_4_50 min ( X.I w - pnet30_4_50 ,— IO IPnet_4_50 = — 16.588 -psf • —13.6 — 16.8 100 sq.ft Effective Area Pnet30 4 100 2 P IBC Table 1609.6.2.1 Pnet_4_100 min >- I vv . Pnet30_4_100> — IO IPnet_4_100 = — 15.808.psfl —12.1 — 14.9 500 sq.ft Effective Area Pnet30 4 500 2 P IBC Table 1609.6.2.1 Pnet_4_500 .- min ( X. C . Pnet30_4 500> 1O IPnet_4_500 — —14.04 . psf —19.5 — 24.1 Wall Zone 5 10 sq.ft Effective Area Pnet30_5_10 2 psf IBC Table 1609.6.2.1 Pnet_5_10 min(X.I .pnet30_510 10 IPnet_5_10 = — 22.672 -psfl —18.2 — 22.5 20 sq.ft Effective Area Pnet30 5 20 2 Psf IBC Table 1609.6.2.1 Pnet_5_20 :— min ( X.I N , •pnet30_5_20 ,— IO IPnet_5_20 - —21.164-psf —16.5 — 20.3 50 sq.ft Effective Area Pnet30 5 50 2 P IBC Table 1609.6.2.1 Pnet_5 50 := min ( X • I w'Pnet30 550, 10psf) IPnet_5_50 = — 19.136•psf —15.1 — 18.7 100 sq.ft Effective Area Pnet30 5 100 2 P IBC Table 1609.6.2.1 Pnet_5_100 mm pnet30_5_100 > 1O IPnet_5_100 = — 17.576• psf —12.1 — 14.9 500 sq.ft Effective Area Pnet30_5_500 2 psf IBC Table 1609.6.2.1 Pnet_5_500 :— mm ( X-I w . Pnet30_5_500 ,— IO IPnet_5_500 = — 14.04•psf 01.08021.01 72 of 137 • 01/18/2008 Wind Load Analysis Pend ` 14.924psf p int := 9.88psf From wind pressure calculation L := 231.5ft B := 151 ft Building Dimension a := 13.6ft End Zone Length 6.5ft Tributary Height for Roof Diaphragm h roof := h 3rdfloor := 11.5° Maximum Tributary Height for 3rd Floor Diaphragm h 2ndfloor := 10.5ft Maximum Tributary Height for 2nd Floor Diaphragm "roof end := pend `'roof end = 97.006 plf W roof int pint• "roof int = 64.22 plf "3rdfloor end := Pend h 3rdfloor W 3rdfloor end = 171.626-plf W 3rdfloor int Pint' h 3rdfloor W 3rdfloor int = 113.62 plf W 2ndfloor end := Pend• W 2ndfloor end = 156.702 plf W 2ndfloor int := Pint W 2ndfloor int = 103.74 p1f Total Wind Force in Longitudinal Direction for Diaphragm W w (2•a) + w (B — 2.a) roof long := roof encl roof int� Check minimum load to diaphragm based on 10psf wind pressure. W roof long ax ( W roof long > lO p sf • h roof' B ) g g I = 10.59 kig W 3rdfloor_long := W3rdfloor_end.(2•0 + W 3rdfloor int'(B — 2.0 Check minimum load to diaphragm based on 10psf wind pressure. W 3rdfloor long := max ( W 3rdfloor _long > 1O ps f.h 3rdfloor• B ) W = 18.73-kip 3rdfloor_long W 2ndfloor_long W 2ndfloor end•(2•a) + w2ndfloor_int•(B — 2•a) Check minimum Toad to diaphragm based on 10psf wind pressure. W 2ndfloor long := max( W 2ndfloor_ long' lO p sf • h 2ndfloor• B ) IW = 17.11 *kip 2ndfloor_ long — Total Wind Force in Longitudinal Direction for Shear Wall SW 3rd long := W roof long I = 10.589-kip SW 2nd long := W 3rdfloor long + SW 3rd long I = 29.323 kip SW lst_long := W2ndfloor_long + SW 2nd_long SW lst long = 46.429•kip 01.08021.01 73 of 137 01/18/2008 Total Wind Force in Transverse Direction for Diaphragm W roof tran "roof end (2.a) + + roof int (L - 2-a) Check minimum load to diaphragm based on 10psf wind pressure. W roof trap max ( W roof Iran IOPsf h roof - L ) ( trap — 15.8.kirl W 3rdfloor Iran := "'3rdfloor end-(2.a) + "'3rdfloor int — 2 a) Check minimum load to diaphragm based on 10psf wind pressure. W 3rdfloor trap := max ( W 3rdiloor Iran^ IO P sf.h 3rdfloor 1 ' � — — (W3rdfloor = 2 7.9 - k i r W 2ndfloor tran "2ndlloor end.(2.a) + vv '2ndfloor int.(L — 2.a) Check minimum load to diaphragm based on 10psf wind pressure. W 2ndfloor trap max � tram IOpsf h2ndfloor l') ( Iran = 25 • 5 ' ki p Total Wind Force in Transverse Direction for Shear Wall SW3rd_tran : — W roof Iran I — 15.759•kir SW 2nd tran := W 3rdfloor Iran + SW 3rd Iran I = 43.64 kir� SW lst trap := W 2ndfloor tran + SW 2nd Iran I 1st tran - 69.096 kid 01.08021.01 74 of 137 01/18/2008 Effective Weight Calculation 4psf Dead Load of Roof FDl := 45psf Dead Load of Floor F := 125psf Live Load of Floor W D1 : 4psf Dead Load of Light Gauge Wall W DLm 60 psf Dead Toad of masonry wall Area_roof := 9604•ft Area of roof h : = 6.5ft Tributary Wall height Area 3rd := 9604- ft Area of 3rd floor h 3rd 11.50 Tributary Wall height Area 2nd := 9604- n Area of 2nd floor h 2nd_light 5.00 Tributary light gage Wall height h 2nd m := 5.5f1 Tributary masonry Wall height Approximately Roof Level Effective Weight Approximately estimate wall weight. total wall length for roof LW roof 2250•ft total wall length for floor LW floor 2350-ft Lmasonn, 870.0 Wei g ht roof := Area_roof • RDL + W M . L W roof _ N ei g ht roof = 97 kip Wei g ht 3rd := Area_3rd.(F + 25 % • F LL) + W DL .1 'W floor h 3rd Wei g ht 3rd = 840.405-kip Wei g ht 2nd := Area_2nd -(F + 25 %.F LL) + W DL L W_floor h 2nd_Iight + W DLm L masonry .h 2nd_m Wei g ht 2nd = 1.066 x 10 Input effective weight in Enercalc Program to get design seismic lateral force. 01.08021.01 75 of 137 Title: Mirage Storage Ott6W .J21 Dsgnr. slu Date: 4:56PM, 8 JAN 08 Description : Light frame Scope: 01 Rev: 580016 , User KW- 0606211, Ver5.80, 1- Nov -2006 ASCE 7 -02 Earthquake Load Calculations Page 1 (c)1983 -2006 ENERCALC Engineering Software 9 08021. ecw:Calculations) Description Mirage Storage Occupancy Category ASCE 7 -02 Table 1 -1, 2003 IBC Table 1604.5 "II" : All Buildings and other structures except those listed as Category I, III, and I Occupancy Importance Factor = 1.00 ASCE 7 - 02 9.1.4 Seismic Use Group = I ASCE 7 - 02 Table 9.1.3 Ground Motion ASCE 7 -02 9.4.1.1, 2003 IBC 1615.1 Latitude = 0.000 deg North Longitude = 0.000 deg West Location : Max. Ground Motions, 5% Damping, from USGS 1996 maps : S s = 0.951 g, 0.2 sec response S 1 = 0.341 g, 1.0 sec response Site Classification ASCE 7 -02 Table 9.4.1.2, 2003 IBC Table 16.15.1.1 "D" : Shear Wave Velocity 600 to 1,200 ft/sec = D Site Coefficients Fa & Fv ASCE 7 -02 9.4.1.2.4, 2003 IBC 1615.1.2 (using straight -line interpolation from table values) Fa = 1.12 Fv = 1.72 Maximum Considered Eartquake Acceleration ASCE 7 - 02 Equation 9.4.1.2.4 - 1 & 2, 2003 IBC Equations 16 - 38 & 16 - 39 S Ms = Fa * Ss = 1.065 S = Fv* S1 = 0.586 Design Spectral Acceleration ASCE 7 - 02 9.4.1.2.5, 2 - -3 IBC 1615.1.3 Sin= S ms* 2/3 = 0.710 SDt= SMI * 2/3 = 0.391 Seismic Design Category = D ASCE 7 -02 9.4.2.1, 2003 IBC 1616.3 ( SDS is most severe ) Basic Seismic Force Resisting System ASCE 7 -02 Table 9.5.2.2, 2003 IBC Table1617.6.2 Bearing Wall Systems Light- framed walls sheathed w /wood structural panels rated for shear resist NOTE! See ASCE 7 -02 for all applicable footnotes. Response Modification Coefficient " R " = 6.50 Building height Limits System Overstrength Factor " Wo " = 3.00 Category "A & B" Limit: No Limit Deflection Amplification Factor " Cd " = 4.00 Category "C" Limit: No Limit Category "D" Limit: Limit = 65 Category "E" Limit: Limit = 65 Category "F" Limit: Limit = 65 01.08021.01 76 of 137 Title : Mirage Storage O'Ubb' *J21 Dsgnr. slu Date: 4:56PM, 8 JAN 08 Description : Light frame Scope : 01 Rev: 3.2016 ASCE 7 - 02 Earthquake Load Calculations 2 User: KW- 0606211, Ver 5.8.0, 1- Nov -2006 Page (c)1983 -2006 ENERCALC Engineering Software 08021.ecw:Calwlations ::-z.�= .. , -.., . , . . , .. _. - ._..... .. • r .;.;::^° .,,..: :.....,.. ,... �.z..:__,..., ,... ,. _ _ ....».,as ^saw. . , - Description Mirage Storage Average Floor Area per Level = 9,600 ft2 User defined Shear Carrying % Ratio = 0.408 Reliability Factor " p " = 1.500 Equivalent Lateral Force Procedure ASCE 7 - 02 9.5.2.5, 2003 IBC 1617.4 The "Equivalent Lateral Force Procedure" is being used according to the provisions of ASCE7 -02 9.5.5 Determine Building Period Use ASCE 9.5.5.3.2 -1 Structure Type for Building Period Calculation : All Other Structural Systems " Ct " value = 0.020 " hn " : Height from base to highest level = 34.00 " x " value = 0.75 " Ta " Approximate fundemental period using Eq. 9.5.5.3.2 -1 : Ta = Ct * (hn A x) = 0.282 " Cu " factor from Table 9.5.5.3.1 = 1.40 Per ASCE 9.5.5.3.1 the true fundamental Building Period shall not exceed = = 0.394 sec Building Period " Ta " Calculated from Approximate Method selected = 0.282 sec " Cs " Response Coefficient ASCE 7 - 02 9.5.5.2.1 Sos : Short Period Design Spectral Response per 9.4.1.2 = 0.710 " R " : Response Modification Factor from 9.5.2.2 = 6.50 " I " : Occupancy Importance Factor from 9.1.4 = 1.00 From Eq. 9.5.5.2.1 -1 : Preliminary Cs = 0.11 From Eq. 9.5.5.2.1 -2 Cs need not exceed = 0.21 From Eq. 9.5.5.2.1 -3 & 4 Cs shall not be less than = 0.03 9.5.5.2.1 : Seismic Response Coefficient = 0.11 Seismic Base Shear ASCE 7 - 02 9.5.5.2 Cs = 0.1092 from 9.5.5.2.1 W ( see Sum Wi below) = 2,038.00 k Seismic Base Shear V = Cs *W = 222.56 k Vertical Distribution of Seismic Forces ASCE 7 - 02 9.5.5.4 " k " : hx exponent based on Ta = 1.00 Table of building Weights by Floor Level... Level # Wi : Weight Hi : Height Wt * Hi ^k Cvx Fx =Cvx * V Sum Story Shear Sum Story Moment 3 97.00 34.00 3,298.00 0.10 22.20 22.20 0.00 2 841.00 21.00 17,661.00 0.53 118.90 141.10 288.63 1 1,100.00 11.00 12,100.00 0.37 81.46 222.56 1,699.62 Sum Wi = 2,038.00 k Total Base Shear = 222.56 k Sum (WI * Hi ^k) = 33,059.0 k -ft Base Moment = 4,147.8 k -ft Diaphragm Forces : Seismic Design Category " D ", " E " & " F " ASCE 7 - 02 9.5.2.6.4.4 Level # Wi Fi Sum Fi Sum Wi Fpx 01. 08021.01 77 of 137 Title: Mirage Storage 0 1J66421 Dsgnr. slu Date: 4:56PM, 8 JAN 08 Description: Light frame Scope: 01 Rev: 580016 User: KW- 0606211, Ver 5.8.0, 1- Nov -2006 ASCE 7 -02 Earthquake Load Calculations Page 3 (c)1983 -2006 ENERCALC Engineering Software 08021.ecw.Calculations Description Mirage Storage 3 97.00 22.20 22.20 97.00 22.20 2 841.00 118.90 141.10 938.00 126.51 1 1,100.00 81.46 222.56 2,038.00 156.16 Wpx Weight at level of diaphragm and other structure elements attached to it. Fi Design Lateral Force applied at the level. Sum Fi Sum of "Lat. Force" of current level plus all levels above MIN Req'd Force @ Level 0.20 * S DS' I * Wpx MAX Req'd Force @ Level ... 0.40* S DS' I * Wpx Fpx : Design Force @ Level . Wpx ' SUM(x->n) Fi / SUM(x - >n) wi, x = Current level, n = Top Level Combination of Load Effects ASCE 7 - 02 9.5.2.7, 2003 IBC 1617.1.1 D Qe H & V Load Effect E Load Description Dead Load Seismic Load 0.000 0.000 E = p ' Qe + 0.20 ' SDS* D = 0.000 0.000 0.000 E = p ' Qe + 0.20 • SDS * D = 0.000 0.000 0.000 E = p ' Ue + U.2U ' SUS ' U = 0.000 0.000 0.000 E = p ' Qe + 0.20 ' SDS * D = 0.000 0.000 0.000 E = p ' Qe + 0.20 * SDS * D = 0.000 0.000 0.000 E = p * Qe + 0.20 * SDS * D = 0.000 0.000 0.000 E = p * Qe + 0.20 * SDS • D = 0.000 0.000 0.000 E = p ' Qe + 0.20 ' SDS • D = 0.000 01.08021.01 78 of 137 01/18/2008 Shear Wall Load Summary 3rd Floor Shear Wall Total Load ASD Level Longitudinal direction SW3rd_Iong_wind 10.589.kip SW3rd_eq 22.20kip ASD level: 0.7SW 3rd_eq = I5.54-kip SW 3rd_Iong max(S W 3rd_Iong_wind 0.7S W 3rd_eq) SW3rd_long r". 15.54.kip Seismic Govern! Transverse direction SW 3rd trap wind 15 :759. kip ASD level: 0.7SW eq = 15.54-kip SW 3rd_tran := max(SW 3rd_tran_wind, 0.7SW 3rd_eq) SW 3rd tran = 15.76-kip Wind Govern! 2nd Floor Shear Wall Total Load ASD Level SW2 eq := 141.10-kip Longitudinal direction SW 2nd long wind 29.323-kip ASD level: 0.7 S W 2nd eq = 98.77-kip SW2nd_long := max ( SW 2nd_long_wind 0.7SW 2nd_eq) SW 2nd_Iong = 98.77 kip Seismic Govern! Transverse direction SW 2nd trap wind 43.64 kip ASD level: 0.7SW 2nd_eq = 98.77-kip SW 2nd_tran max(SW 2nd_tran_wind, 0.7SW 2nd_eq) SW 2nd trap = 98.77-kip Seismic Govern! 01.08021.01 79 of 137 01/18/2008 1st Floor Shear Wall Total Load ASD Level SW l st eq 222.56kip Longitudinal direction SW 1st_iong_wind := 46.429-kip ASD level: 0.7SW lst_eq = 155.792-kip SW Ist long := max(SW 1st_long_wind 0.7SW 1st_eq) SW lst long = 155.792-kip Seismic Govern! Transverse direction SW 1st Iran wind := 69.096 kip ASD level: 0.7SW Ist eq = I55.792-kip SW I st_tran •= max(SW 1 st_tran_wind 0.7SW 1 st_eq) SW 1 st trap = 155.79 kip Seismic Govern! Diaphragm Load Summary Roof Diaphragm Total Load ASD Level DlA roof eq := 22.20kip Longitudinal direction DIA roof long_wind := 10.59 kip ASD level: 0.7D1A roofeq = 15.54 kip DlA roof long := max ( DJA roof long_wind> eq) DlA roof long = 15.54-kip Seismic Govern! Transverse direction DlA roof Iran wind := 15.759-kip ASD level: 0.7DIA eq = 15.54-kip • DlA roof trap := max ( D1A roof tran_wind> eq) DlA roof Iran = 15.759-kip Wind Govern! 01.08021.01 80 of 137 01/18/2008 3rd Floor Diaphragm Total Load ASD Level DIA3rd_eq 126.51 kip Longitudinal direction DIA 3rd long wind 18.73 -kip ASD level: 0.7D1A 3rd_eq = 88.557 kip DIA 3rd_long max ( D1A 3rd_long wind• DIA 3rd long = 88.557 -kip Seismic Govern! Transverse direction DIA 3rd Iran wind 27.9 -kip ASD level: 0.7DIA 3rd_eq = 88.557•kip DIA 3rd_tran max ( DIA 3rd_tran_wind' 0.71)1A 3rd_eq) DIA 3rd Iran = 88. 557 -kip Seismic Govern! 2nd Floor Diaphragm Total Load ASD Level DIA2nd_eq:= 156.16kip Longitudinal direction DIA 2nd long wind 17.11 kip ASD level: 0.7DIA eq = 109.312 -kip DIA 2nd_long max ( DIA 2nd_long_wind> 0.7DIA 2nd_eq) DIA 2nd_Iong = 109.312 -kip Seismic Govern! Transverse direction DIA 2nd tran wind kip 25 -5- ASD level: 0.7DIA eq = 109.312 -kip DIA 2nd_tran max ( DlA 2nd_Iran_wind 0.7DIA 2nd_eq) DIA 2nd tran = 109.312 -kip Seismic Govern! 01.08021.01 81 of 137 • 01/18/2008 Roof Level Lateral Design L := 231 ft 13 := 1501t Area := 9604- ft` Roof Check Maximum Lateral force V := I 5.8kip worst case v := V v = 1.645 psf uniform load Area Shear force very small. Use 24GA standing seam Panel, maximum span 5ft. Detail information please refer to report standing seam panel specification. Design purlin and drag strut as a collector to transfer lateral load, use 4" flat strap X- bracing to resist lateral Toad, see following calculations for purlin and bracing check. Roof Structure is OK! Roof Level Collector and Edge Angle Maximum unit area shear for roof structure from lateral load analysis vroof := v Purlin 5ft O.C., maximum span 10ft L := I Oft Conservative design, use 50ft tributary length Trib := 50ft Maximum chord force T =C Tension := v roof .L.Trib Compression := Tension Tension = 823.Ibf Compression = 823•Ibf Use 4Z16 Purlin as a Collector Yield Stress fy := 50ksi Effective Area Ae := 0.52in Section Modulus S := 0.64in Conservatively set allowable force Fallow 5.71(iP allowable compression load Check_Collector := if (F allow >_ Tension A Fallow > Compression , "Purlin is OK to be collector!" , "NG!" ) Check Collector = "Purlin is OK to be collector!" Check Purlin Compression and Bending Interaction F allow Fc := Fc = 10.962•ksi Ae 01.08021.01 82 of 137 01/18/2008 Compression fc := fc = 1.582•ksi Ae Fb := 0.6fv Fb = 30 -ksi R := –4psf RLL := –20psf Wup := 21.4•psf Spacing := 511 using zone2, 50 sq.ft uplift load control from previous calculation. w := Spacing-0.6-12 + Wup) w = 95•plf w L Maximum bending moment from roof M := M = 9.5•in -kip 12 1b := S fb = 14.844•ksi fc fb Interaction := — + — interaction = 0.639 Fc Fb Check Int := if(lnteraction _< 1 , "Bending and compression interaction is OK!" , "NG!" ) Check_Int = "Bending and compression interaction is OK!" Design Angle at the Edge of the Roof maximum length between vertical supporting element L := l Oft Design depth d := 5ft Roof lateral force v roof = 1.645 psf Maximum chord force v roof • d • 2 Tmax := Tmax = 21 -Ibf 8•d Use GA - 1 Angle( Ae= (A +B) *T) at the edge of the roof. Flange A := 5.125•in B := 2.25 -in Thick T := 0.06 -in fy := 36ksi Ae := (A + B)•T Ae = 0.442 -in Conservatively set allowable force Tallow 0.6 - fy -Ae T allow = 9558• Ibf Check_Edge := if(Tallow > Tmax, "Angle is OK!" , "NG!" ) 01.08021.01 83 of 137 01/18/2008 Check_Edge = "Angle is OK!" Design Fastener at Splice Use #12 TEK Screws, capacity in GA16 material Vnol2 := 6221bf Required number N req N req 0.033 req • ',nol2 req USE Minimum (2) #12 Screws at Splice. Roof Level X- Bracing Design Maximum unit area shear for roof diaphragm from lateral load analysis. vroof Design based on roof lateral uniform load Purlin 5ft O.C., maximum span 10ft L := 100 spacing := 50 X- Bracing Spacing 'Drib := 600 worst case Maximum Lateral force each X- bracing T :_ `Tool spacing•Trib T = 0.494•kip 6 := atan L = 1.107 spacing Each bracing tension force Tension Tension Tension 2 cos(0) Tension = 0.552 kip ■aft Use 4" X16GA Flat Strap Bracing, tension only Yield Stress fy := 50ksi t := 0.0566in b := 4in Effective Area Ae := t-b Ae = 0.226-in Conservatively set allowable force Fallow := 0.6-f F allow = 6.792. kip Check_Bracing := if(Fallow > Tension, "Bracing is OK!" , "NG!" ) Check_Bracing = "Bracing is OK!" 01.08021.01 84 of 137 01/18/2008 Design Fastener at Connection Use #12 Screws, capacity in GA16 material v no12 : - 622Ibf Required number N req Tension N re = 0.887 9 V no12 9 USE Minimum (4) #12 Screws at Connection. 01.08021.01 85 of 137 01/18/2008 Floor Level Diaphragm and Shear Wall Design L := 231.51t B:= 151 ft Area := 9604.1 t 2 building dimension Use 18GA 2W Deck, Normal Weight Concrete in Fill, Total Thickness 4 1 /2in. For detail information, please refer to report ESR -1414. V dia := 98.77kip worst case `'uni V dia uniform shear of diaphragm Area Maximum Shear wall spacing S p c long := 30f1 Spctran 20f1 This is a very conservative approach. Maximum diaphragm shear force Tong `'uni S p c long `long = 3°9131f Maximum diaphragm shear force `' trap : _ `'uni S p c tran ` 'trap = 206•plf Floor diaphragm shear capacity "' alloy+ I 1963p1f Floor deck and track connection capacity(using (1) #12 screw @12" o.c.) "allow 2:= 326•plf "allow := min ( w allow_1 ,w allow_2) "allow = 326•plf Check_Dia := if ( v long "allow A V tran "allow, "Floor Diaphram Shear is OK!" , "NG!" ) Check_Dia = "Floor Diaphram Shear is OK!" 01.08021.01 86 of 137 01/18/2008 3rd floor shear wall In the floor level, there are (2) shear walls in long direction(for conservative design, only consider the two exterior wall) and (20) shear walls in transverse direction. All of them are steel panel walls with relative high shear capacity. Longitudinal Direction design total lateral force V := 15.54kip N long := 2 Unit shear v uni = 10.284-psf All the shear walls are approximately to be symmetrically distributed along the building. L := 23111 unit shear for longitudinal direction shear walls V v lon v lon = 33.636.plf g "long lJe g Using SW2 v allow := 109-plf for seismic Use 29 GA "R" panel,6 @60" O.0 equivalent value Check_Wa!I := if ( v iong vallow, "Shear Wall Capacity is OK!" , "NG!" ) Check_Wall = "Shear Wall Capacity is OK!" Transverse Direction design total lateral force V := 15.76kip Nshon 20 All the shear walls are approximately to be symmetrically distributed along the building. L : = 35ft Minimum length in shear line unit shear for transverse direction shear walls v tran V v tran = 22.5-pif N shon' L e Use SW1 v allow := 116•plf for wind Use 29 GA "R" panel,6 @60" O.0 equivalent value Check_Wall := if ( v tran vallow, "Shear Wall Capacity is OK!" , "NG!" ) Check_Wall = "Shear Wall Capacity is OK!" 01.08021.01 87 of 137 01/18/2008 Uplift Check for Shear Wall DL roof := 4•psf p" := 21.4psf use roof zone 2 50sq.ft for conservative design. L := 10-ft B := 5- -fi trib length and width per cee stud Pup := wind p = 21.4 psf Uplift := L — 0.6DLroof) Uplift = 0.95-kip Total uplift force per shear wall transverse direction Uplift t up • B t up = 190.plf Unit uplift force per shear wall Use anchor bolts anchorage all the shear wall /bearing walls to concrete slab, refer to following anchor bolts design. Shear Wall Anchor Bolts Use Hilti Kwik TZ 1/2" diameter expansion bolts with minimum 2" embedment at maximum 5' -0" O.C. for all shear wall and bearing walls. Assume 3000 psi normalweight concrete for conservative design. Spacing := 5 - ft V anchor • = 2974Ibf Allowable shear force per anchor bolt T anchor : 12231bf Allowable tension force per anchor bolt V anchor 'anchor 'anchor = 594.8•plf • Spacing T anchor t anchor t anchor = 244.6•pif Spacing 'sw •_ 'tran CheckV := if(vsw 'anchor, "Shear is OK!" , "NG!" ) CheckV = "Shear is OK! "` CheckT := if(v <_ 0 • 2v anchor A t up tanchor, "Uplift is OK!" , "NG!" ) 01.08021.01 88 of 137 01/18/2008 CheckT = "Uplift is OK!" longitudinal direction Uplift t := t = 95 -p1 f' Unit uplift force per shear wall L s Use anchor bolts anchorage all the shear wall /bearing walls to concrete slab, refer to following anchor bolts design. Shear Wall Anchor Bolts Use Hilti Kwik TZ 112" diameter expansion bolts with minimum 2" embedment at maximum 5' O.C. for all shear wall and bearing walls. Assume 3000 psi normal weight concrete for conservative design. Spacing := 5 • ft V anchor 2974Ibf Allowable shear force per anchor bolt anchor 12231bf Allowable tension force per anchor bolt V anchor v anchor v anchor = 594.8-plf Spacing T anchor t anchor t anchor = 244.6 plf Spacing v sw := v long CheckV := if(v < v anchor , "Shear is OK!" , "NG!" ) CheckV .. "Shear is OK!" CheckT := if(v < 0.2v anchor ^ tup < tanchor, Uplift is OK!" , "NG!" ) CheckT = "Uplift is OK! 01.08021.01 89 of 137 01/18/2008 2nd Floor Shear Wall For the worse case shear wall unit shear: 11.32kip /70ft= 162p1f Shear wall SW3 and SW4 capacities: 211 plf for seismic. 224p1f for wind. Using SW3 for interior shear wall and SW4 for exterior shear wall. ® .4 » -5.90 < 4 -1.2 A -8.78 1 A A A A __. 12ik_ A d 0 11 A A 4 4 AA 5.95 k 6.07 - . 4 k -1 k 4.51 k 4.62 k 4.729 4.839 -1.2 k 335932693,249333934193459 -� 4 -- •� 3.969 3.29k3.21k3.1 k3. k2.98k 4 -_ -7.48 53 &_wF .®...... A LCO€792o47k ' .. �q y� i �g 1k ! K ''1 v ♦ Y v 7, -1.1 ® �.. C.M : (10952,95..7) t.7 k ___ -- -2.13k - 1 -1.1 k {i> ®... -31.23 k 18.2 1 - 00. 0 4 1 1 1.38 k �' -2.28 worse case -1.27 _ . Iy .�_. ® 09 - .7Rk 72 — ..: 4— Q 7 k 4 1321 - ® k - 4Rk to. x/0779 -0 .90F -4.90 k • 01.08021.01 90 of 137 01/18/2008 1st Floor Shear Wall For the worse case shear wall unit shear: 11.03kip/75ft= 147pif Shear wall SW5 capacity: 211 pif for seismic, 224p1f for wind. Using SW5 for interior shear wall and masonry wall for exterior shear wall. ....._. ae -11.6: k 1 -3.7 ® � k -17.2 k ... 0 k ®- ® A A A A 8.45 k 864 - kt ... k ® A -2 8 k j 12 75803 k 6.65 k 6.84 k -1 k 1 3.4 y ® 0 9.75114.7 k 4.6C k 4.67 k 4.8C k 4.92 k - - - _ .7 1222 k $ 4.9 z 4.8 k 4.7 k 4.58 k 4.4E k -11.0; k ak -6 73 11 1 1 1 CM (10952,95.77) - 2 k �y -1.7 k -56.14k -1 tk worse case 23.25 k Y A2.15 k 1a I> -6.26 k 'W ..si -9.83 k 01.08021.01 91 of 137 01/18/2008 Standard Shear Wall Capacity Summary SWl (29GA R panel one side (ER- 5409)): Stud "C" 4 "x2 "x 16GA @60" O.C; Bottom track 4 -3/ 16 "x2x 16GA; Top track 4 -3/ 16 "x2 "x 16GA to composite deck (1) 412 HH TEK@12" O.C. (1 per low pan is ok); Anchor bolts: HILTI KB -TZ 1/2" diameter x 2" embedment expansion anchor @ 5' -0" O.C.; R -panel to top and bottom track connection: (1) 412 @5' -0" O.C. R -panel laps: (1) 412 @ TEK @12" O.C. 109plf for seismic, 116 plf for wind; SW2 (29GA R panel one side (ER- 5409)) : Stud "C" 6 "x2 "x 16GA @60'' O.C; Bottom track 6 -3/ 16 "x2 "x l 6GA; Top track 6 -3/ 16 "x2 "x 1 6G to composite deck (1) 412 HH TEK@12" O.C. (1 per low pan is ok); Anchor bolts: HILTI KB -TZ 1/2" diameter x 2" embedment expansion anchor @ 5' -0" O.C.; R -panel to top and bottom track connection: (1) 412 @5"-0" O.C. R -panel laps: (1) 412 @ TEK @l2" O.C. 109plf for seismic, 161 plf for wind; SW3(29GA R panel one side (ER- 5409)): Stud "C" 4 "x2 "x16GA @30'' O.0 with middle height bracing; Bottom track 4-3/16"x2"x 1 6GA; Top track 4- 3/ 16 "x2 "x I6GA to composite deck (1) 412 HH TEK@12" O.C. (1 per low pan is ok); Anchor bolts: HILTI KB -TZ 1/2" diameter x 2" embedment expansion anchor @ 5' -0" O.C.; R -panel to top and bottom track connection: (1) 4 12 @5' -0" O.C. R -panel laps: (1) 412 @ TEK @l2" O.C. 21 1 plf for seismic, 224 PLF for wind; SW4 (29GA R panel one side (ER- 5409)) : Stud "C" 6 "x2 "xl6GA @30" O.0 with middle height bracing; Bottom track 6- 3 /16 "x2 "xI6GA; Top track 6- 3 /16 "x2 "xl6GA to composite deck (1) 412 HH TEK @12" O.C. (1 per low pan is ok); Anchor bolts: HILTI KB -TZ 1/2" diameter x 2" embedment expansion anchor @ 5' -0" O.C.; R -panel to top and bottom track connection: (1) 412 @5' -0" O.C. R -panel laps: (1) # 12 @ TEK @l2" O.C. 211 plf for seismic, 224 PLF for wind; SW5(29GA R panel one side (ER- 5409)): Stud "C" 4 "x2 "xI4GA @30" O.0 with every 1/3 height bracing; Bottom track 4- 3/16 "x2 "x14GA; Top track 4- 3 /16 "x2 "xI2GA to composite deck (1) #12 HH TEK @12" O.C. (1 per low pan is ok); Anchor bolts: HILTI KB -TZ 1/2" diameter x 2" embedment expansion anchor @ 5' -0" O.C.; R -panel to top and bottom track connection: (1) # 12 @5' -0" O.C. R -panel laps: (1) 412 @ TEK @12" O.C. 211 plf for seismic, 224 PLF for wind; 01.08021.01 92 of 137 01/18/2008 CONNECTION DESIGN FOR TYPICAL PURLIN Trib := 5-11 L 10-11 R1.1_ := —25 psf RDl_ := — Dead and live load WScoMP:= 25.7psf Uplift pressure, conservative design use zone 3 W, := 4psf Horizontal Load from lateral analysis, use 4psf for conservative design. w := Trib.( Rix + 1.0-R1.1) w2 := Trib-(.6RDL + I.OWScoMP) W1 = —145 plf w = 116.5 plf Vmax := max( Iwi - Lmaxl , I max l ) Vmax = 1.45 kip I := I.OW', L max Trib P = 0.2-kip Vnol216ga := 0.622 kip Shear Capacity of #12 in 16 ga material Vnol2I6ga = 0.622-kip 2 2 5 (Vmax + Pm„ ) Nfast Vnol2_16ga Nfast = 2.353 USE (4) #12 Screws at Purlin (L < -10ft) Stud (Post) Connections! 01.08021.01 93 of 137 01/18/2008 CONNECTION DESIGN FOR ROOF LEVEL GAUGE BEAMS Span < ='I Oft R I := — 25-psf R := —4psf Dead and Live Load Trib := 10 ft L max • = 10• ft WSCOMP 25.7psf Uplift Load, zone 3. W := 4psf Horizontal Toad from lateral analysis, use 4psf for conservative design. WI := Trib + 1.0 RLL) w2 := Trib (.6R + 1.0WSCOMP) w = — 290-plf w = 233-plf wrLmax w2.1-max V max •= max V max = I.45•kip 2 2 max : - 1.0W L max .Trib P max = 0.4-kip V no12 16ga := 0.622kip Capacity of #12 in 16 ga material V nol2_16ga = 0.622•kip 2 5 + + (Vmax + Pmax) + + N fast u no12_16ga N fast = 2.418 USE (4) #12 Tek Screws at each beam (span < =10ft) end to post connection! 01.08021.01 94 of 137 01/18/2008 CONNECTION DESIGN FOR 2nd Floor 5' Beams R := 25-psf R 1)1 := 4psf Dead and Live Load PLL := 125psf FDL := 45psf Trib := 10 tt L, max : 5-ft W := lOpsf Horizontal load from lateral analysis, use 10psf for conservative design w := Trib.(RDL + I DL + max(0.75R + 0.75FLL,FLL)) w = 1740-plf V _ wl.Lmax V = 4.35 ki max • 2 max p W Pmax = 0.5-kip P max V not2_I6ga • = 0.622kip Capacity of #12 in 16 ga material = 0.622-kip V nol2_16ga 5 + + (V + Pmax + + • N fast V no12_16ga N fast = 7.04 USE total (10) #12 SD Screws at each beam end to post connection! 01.08021.01 95 of 137 01/18/2008 CONNECTION DESIGN FOR 2nd Floor 10' Beams At Opening R 1 := 25•psf R := 4psf Dead and Live Load } LL := 1 25psf F := 45psf Trib := I0- ft L max : = 10-ft W •= l0psf Horizontal load from lateral analysis, use 10psf for conservative design. w := Trib.[l.0•(R + F + max(0.75R + 0.75F F O] w 1' L max w = 1740-plf V max := Vmax = 8.7 kip 2 P max := I.OW P max = 1 kip Vno12_l6ga 1.0-0.622kip Capacity of #12 in 16 ga material V nol2_l6ga = 0.622-kip 2 5 + + (Vmax 2 +P max) ++ N fast V nol2 l6ga N fast = 14.079 USE (16) #12 SD Screws at each beam end to post connection! 01.08021.01 96 of 137 01/18/2008 CONNECTION DESIGN FOR 2nd Floor 5' Beams RL1 := 25.psf := 4psf Dead and Live Load F := 125psf F D1, := 45psf Trib := 10 1i L max : = 5.11 N := 2 Support two floor W t := 1O Horizontal load from lateral analysis, use 10psf for conservative design ga := Trib (RDL + N F + max(0.75R 1 + 0.75-NFLL,N.FLL)) ga = 3440 plf " _ "�1'Lmax " = 8.6 ki max 2 max p P W frib P max = 0.5•kip " nol2_l6ga • = 0.622kip Capacity of #12 in 16 ga material " no12_16ga = 0.622-kip _5 2 + + (Vmax2 + ++ N fast " no12_16ga N fast = 13.85 USE total (16) #12 SD Screws at each beam end to post connection) 01.08021.01 97 of 137 01/18/2008 Deck to Top Track Connection u no' 2_ 18ga 1.0.0.326kip Allowable Capacity of #12 in 18 ga material u no12_18ga = 0.326-kip Spacing of #12 screw Spacing := 1 ft Shear capacity of shear wall SW1 SW1 := 1 16•plf Required No. of screws the calculations of the No. of #12 screws are based on shear wall capacity _ SW1 NSWI N SW1 = 0.356 u no12_18ga Spacing USE (1) #12 TEK Screws @12" o.c. for shear wall SW1 Shear capacity of shear wall SW2 SW2 := 1 16•plf Required No. of screws SW2 NSW2 N 0.356 u nol2_18ga SW2 = Spacing USE (1) #12 TEK Screws @12" o.c. for shear wall SW2 Shear capacity of shear wall SW3 SW3 := 224.plf Required No. of screws SW3 NSW3 :_ u no12_18ga N SW3 = 0.687 Spacing USE (1) #12 TEK Screws @12" o.c. for shear wall SW3 Shear capacity of shear wall SW4 SW4 := 224•plf Required No. of screws 01.08021.01 98 of 137 \ 01/18/2008 SW4 Nsw4 u no12_18ga N SW4 = 0.687 Spacing USE (1) #12 TEK Screws @12" o.c. for shear wall SW4 Shear capacity of shear wall SW5 SW5 := 224•plf Required No. of screws • SW5 N SW5 u no12_18ga NSW = 0.687 Spacing USE (1) #12 TEK Screws @12" o.c. for shear wall SW5 • 01.08021.01 99 of 137 01/18/2008 CMU Wall Anchorage To Floor Checking Check the tenson of floor anchorage Anchorage spacing S 60-in anchorage Anchorage capacity (Kwik 3, 5/8 anchorage,min 4in embedment), from ICC ESR 1385 report AllowableTension T allow := I.294-kip Story height h := 11. ft Weight of CMU wall W ' cmu := 60-psf EQ coef S DS := 0.71 Importance factor I - := 1.0 The effective weight of the CMU wall applied to one anchorage Ww Sanchorage'h•"'cmu The tention due to EQ applied to one anchorage: 0.4-S , F F = 0.669-kip P • 1.4 p F p.min := Sanchorage •(0.7-max(280,400-SDS.IE)).p1f minimum force per ASCE7 - 12.11.2 F p min = 0.994 -kip F := max(Fp,Fp min) F = 0.994-kip Tension checking: Check_tension := if (Tallow > F "Anchorage is good" , "NG" ) Check_tension = "Anchorage is good" 01.08021.01 100 of 137 E 1414 ��® A T M Issued January 0 1. 2006 This report is subject to re- examination in one year. ICC Evaluation Service, Inc. Business/Regional Office • 5360 Workman Mil Roaci. Whittier. California 90601 • (562) 699-0543 Regional Office • 900 Montclair Road. Suite A. Birmingham. AIaba 35213 • (205) 599 -9800 WwW.icc-es.org Regional Office • 4051 West Rossmoor Read. Country CU : Hills. Illinois 60478 708) 799 -2305 DIVISION: 05- METALS deck type. When the deck webs are embossed for composite Section: 05310 -Steel Deck action. sections are referred to as Hi -Form type. When the deck flanges or webs are perforated for acoustical effects. REPORT HOLDER: sections are referred to as Acustadek type. The "F" designation refers to cellular units composed of fluted upper ASC PROFILES sheets resistance - welded to flat lower sheets. 2110 ENTERPRISE BOULEVARD 3.2 Roof Deck Types B. BR, BF, DGB. DGBF, N, NR, NF, WEST SACRAMENTO, CALIFORNIA 95691 DGN, DGNF: (800) 360 -2477 en =e .v.asr.profites . com Decking is made from steel conforming to ASTM A 653 Designation SS. minimum Grade 33, and ASTM A 924 with a EVALUATION SUBJECT: galvanized finish: ASTM A 611, minimum Grade C. or ASTM A 1008. SS Grade 33 (minimum). with a painted finish: or ASTM A 611. minimum Grade C. or ASTM A 1008. SS Grade ASC STEEL FLOOR AND ROOF DECK 33 (minimum). with a primer - painted or mill finish. All steel has a 38.000 psi (261.9 MPa) minimum yield strength and a ADDITIONAL LISTEES: 52.000 psi (358.5 MPa) minimum tensile strength. These • decks are also available as Acustadek' " type. AEP SPAN The decking may be used with lightweight insulating 2110 ENTERPRISE BOULEVARD concrete fill in accordance with evaluation report ER -3260. WEST SACRAMENTO, CALIFORNIA 95691 ER -3081 or ER -3627. ASC BUILDING PRODUCTS 3.3 Composite Floor Deck Hi -Form" Types B, BR, BF, N. 2110 ENTERPRISE BOULEVARD NR. NF, 2W. 2WF, DG2W, DG2WF, 3W, 3WF, DG3W, WEST SACRAMENTO. CALIFORNIA 95691 DG3WF: Decking is made from steel conforming to ASTM A 653 ASC STEEL DECK Designation SS. minimum Grade 33. and ASTM A 924, with 2110 ENTERPRISE BOULEVARD a galvanized finish: ASTM A 611. minimum Grade C. or WEST SACRAMENTO, CALIFORNIA 95691 ASTM A 1008. SS Grade 33 (minimum). with a painted finish: or ASTM A 611, minimum Grade C. or ASTM A 1008. SS 1.0 EVALUATION SCOPE Grade 33 (minimum). with a primer - painted or mill finish. All Compliance with the following codes: steel has a 38.000 psi (261.9 MPa) minimum yield strength and a 52.000 psi (358.5 MPa) minimum tensile strength. The O 2003 International Building Code' (IBC) decking may be used with or without concrete fill. See O 1997 Uniform Building Code "" (UBC) General Note 10 (in the "General Notes" that precede the figures and tables in this report) for concrete fill requirements. Properties evaluated: 3.4 ELECTRI - DECK`: O Structural ELECTRI- DECK' floor decks are cellular sections, cold- ▪ Fire resistance formed from galvanized steel complying with ASTM A 653 2:0 USES Designation SS. minimum Grade 33. and ASTM A 924. with minimum yield strength of 38.000 psi (261.9 MPa). and a ASC Steel Floor and Root Deck is used as floor deck. roof 53,400 psi (368.1 MPa) minimum tensile strength. Deck types deck. horizontal diaphragms, and composite floor and roof include ASC2 (24). ASC2 (30). ASC3 (24) and ASC3 (30). assemblies. The decks are formed by resistance- welding fluted top 3.0 DESCRIPTION sections to flat bottom sheets in the manufacturing facility. The flat sheets contain the sidelap configuration. Deck 3.1 General: sections used for composite action with concrete have All decks include fluted sections and are cold- formed from embossed webs. Sections are galvanized in accordance with steel sheets. Deck types include ASC2. ASC3. B. BR. BF. ASTM A 653 and ASTM A 924. Class G-60. minimum. DGB, DGBF, N, NR. NF, DGN. DGNF, 2W, 2WF, DG2W. 3.5 AcustadekTM Perforations: • DG2W F. 3W, 3WF. DG3W. DG3WF. CP -32. CF. Deep Deck. Mini -V- Beam "". HR-36TM. Box Rib " X- Span"•'. Alta Rib'' 3.5.1 B, BR, DGB, N, NR, DGN and Deep Deck Type and U- Panel. See the Index to Tables and Figures. following Decks: For web perforated Acustadek'"'. the holes are the text of this report. and Figure. 1. for the details of each centered on each web running the full panel length (see t" . r. •a J.., rrr,. ..r a +Jrn.. ,r•. ,,, ,,. r Jv,eir., .. .., „fe ,J +r.. r .aw ter.. MOM 0.111.4,w 01.08021.01 101130 37ot 100 Copyright (0 2006 Page 2 of 100 ESR -1414 01/10/2000 Figure 2 for perforation patterns). For fully perforated B. DGB. 3.9 DeItaGripTM System: N and DGN Acustadek "f. the perforations cover the width of the deck section excluding the deck sidelap (see Figure 2 for The DeltaGrip' "'shear and flexibility design values only apply perforation patterns). The pattern consists of 0.127-inch- to deck bearing the DGB -36. DGBF -36. DGN -24. DGNF -24. diameter (3 mm) holes spaced 0.375 inch (10 mm) on center DG2W36. DG2W F36. DG3W36 or DG3WF36 identification transverse to the panel length. and 0.325 inch (8 mm) on markings. This system consists of the DeltaGrip 'm side seam center (staggered) along the panel length. See Table 2. attachment system installed per Figure 6 on roof deck designated DGB -36. DGBF -36. DGNF -24. or DGN -24 3.5.2 BF, DGBF, NF, DGNF. 2WF, DG2WF, 3WF, DG3WF fabricated per Section 3.2. or floor deck without concrete fill and Cellular Deep Deck Type Deck: The perforations are in designated DG2W36. DG2WF36. DG3W36 or DG3WF36 the flat sheet centered under each top flange running the full fabricated per Section 3.3. A DeltaGrip'm seam attachment is panel length (see Figure 2 for perforation patterns). The comprised of three triangular tabs produced by !,„- inch -wide pattern consists of 0.157 -inch- diameter (4 mm) holes spaced (10 mm). 60- degree triangular punches that tightly clinch the 0.433 inch (11 mm) on center transverse to the panel length. side lap standing seam interlock. The allowable diaphragm and 0.375 inch (10 mm) on center (staggered) along the shear values. factored diaphragm shear values and the panel length for the BF. DGBF. NE. DGNF. 2WF. DG2WF. flexibility factors with arc spotiseam welds or mechanical 3WF. and DG3WF. The pattern consists of 0.127 -inch- fasteners attaching the panels to underlying steel supports diameter (3 mm) holes spaced 0.375 inch (10 mm) on center are set forth in Tables 7. 12. and 14. The arc spot'seam welds transverse to the panel length. and 0.325 inch (8 mm) on are as noted in General Note 5. and the mechanical fasteners center (staggered) along the panel length for the Cellular are as noted in the footnotes to Tables 7. 12 and 14. Deep Deck. See Table 2. 3.10 CI-Max''' System: 3.6 Concrete Pan CP -32 Deck: This special end - support system consists of a No 16 gage L'' Decking is made from galvanized steel conforming to ASTM shaped restraining device and the B deck described in A 653 Designation SS. Grade 80. and ASTM A 924. with a Section 3.2. The restraining device is used only at shear - minimum yield strength of 80,000 psi (551.6 MPa) and a collecting elements transverse to the corrugations where the minimum tensile strength of 82.000 psi (565.4 MPa) for Nos. deck is not end - lapped. Attachments. allowable shears. and 20. 22. 24 and 26 gage: or ASTM A 653. Designation SS. flexibility factors are shown in Tables 9A and 9B and Figure minimum Grade 33. and ASTM A 924, with a minimum yield 7 strength of 38.000 psi (262.0 MPa) and a minimum tensile strength of 52.000 psi (358.5 MPa). for No. 18 gage. 3.11 Deep Deck and Cellular Deep Deck Types 4'/ and Consisting of fluted sections 1 - i, inches (35 min) deep at a 7 Inch: pitch of 4'7, inches (1 16 mm). the decks may be used with or Decking is made from steel conforming to ASTM A 653. SS without lightweight insulating concrete till. If used. the Grade 33. and ASTM A 924. The decking is either painted. concrete fill shall be at least 2 inches (50.8 mm) thick over the galvanized or mill - finished. The minimum yield strength is top flutes. The lightweight insulating concrete shall have a 33.000 psi (228 MPa). and the minimum tensile strength is minimum compressive strength of 140 psi (0.96 MPa) when 45,000 psi (310.3 MPa). Decking depths are 4'/,,. 6 and 7 tested in accordance with ASTM C 495. and shall conform to inches (114. 152 and 191 mm). respectively, with a width of the following specifications: 12 inches (305 mm) for Deep Deck or 24 inches (610 mm) for a. Oven -dry weight of 25 to 30 pounds per cubic foot (400 to Cellular Deep Deck. The decking may be used with 480 kg/m). lightweight insulating concrete in accordance with evaluation b. 1 -to -6 ratio by volume of cement to aggregate. report ER 3081, ER 3260 or ER 3627. c. Aggregate shall comply as a Group 1 aggregate per 3.12 Concrete Diaphragms with Shear Studs: ASTM C 332. The lightweight aggregate shall be tested in Concrete diaphragm systems with shear studs may be used accordance with ASTM C 495, with deck Types B. BR. BF. N. NR. NF. 2W. 2WF. 3W and Allowable diaphragm shear values may be determined in 3WF. The deck thickness shall be at least No. 22 gage. accordance with this evaluation report or ICC -ES evaluation Minimum reinforcement consists of 6 x 6 W1.4 x W1.4 report ER -3260 or ER -3627. welded -wire fabric placed 1 inch (25.4 mm) below the top of the concrete. Where concrete fill is thicker than 37, inches 3.7 CF Decks: (82.5 mm), the concrete shall be reinforced in each direction Decking is made from galvanized steel conforming to ASTM with a steel area equal to 0.00075 times the area of concrete A 653 Designation SS. Grade 80. and ASTM A 924, with a over the top of the flutes. Additional reinforcement minimum yield strength of 80.000 psi (551.6 MPa) and a requirements along with shear values are shown in Table 26. minimum tensile strength of 82.000 psi (565.4 MPa) for Nos. Deck shall be fastened to supports and members parallel to 20. 22. 24 and 26 gage: or ASTM A 653. Designation SS, flutes using arc spot (puddle) welds. Deck types. weld minimum Grade 33, and ASTM A 924, with a minimum yield patterns and stud details are provided in Figures 1. 3 and 10. strength of 38.000 psi (262.0 MPa) and a minimum tensile 3.13 Mini-V-BeamTM, HR-36TM and Box RibTM Sections: strength of 52.000 psi (358.5 MPa). for No. 18 gage. CF -1' / is identical to CP -32. CF- '/,, is '/ inch (22 mm) deep at a Decking is made from steel conforming to ASTM A 792. SS pitch of 2 inches (68 mm). Grade 80 (minimum): or ASTM A 653. SS Grade 80 3.8 ShearventT" System with B Deck: (minimum): or ASTM A 611. Grade E (minimum): or ASTM A 1008. SS Grade 80 (minimum). with a minimum yield strength The system consists of the B deck fabricated as noted in of 80.000 psi (551.6 MPa) and a minimum tensile strength of Section 3.2. The system has allowable diaphragm shear 82.000 psi (565.4 MPa) for No. 26. 28 and 29 gage: or to values based on special welding. as specified in Table 11 and ASTM A 792. SS Grade 33 (minimum): or ASTM A 653. SS Figure 8. Allowable vertical loads are based on section Grade 33 (minimum): or ASTM A 611. Grade C (minimum): or properties of the Type B steel deck. The system also has a ASTM A 1008, SS Grade 33 (minimum). with a minimum yield two -hour fire- resistance rating and additional diaphragm strength of 38.000 psi (262.0 MPa) and a minimum tensile sheof gnyvhen constructed in accordance with current strength of 45.000 psi (358.5 MPa) for Nos. 1430A; pg. and ICC -ES evaluation report ER -3081. ER -3260 or ER -3627. 24 gage. The deck coating shall be either Zincalume ". G90 Page 3 of 100 ESR -1414 01/10/2000 galvanized. or a painted finish- Mini -V -Beam "m panel section provided demonstrating that the resistance welds develop the and strength properties are noted in Table 35. Mini- V -Beam "^ lull section properties of the cellular decks. Resistance welds allowable reactions based on web crippling are noted in Table shall be placed in rows parallel to the flutes. See Figure 4 for 36. The allowable horizontal diaphragm shear capacities and details. flexibility factors for Mini -V- Beam' "' are noted in Table 37. 4.0 DESIGN AND INSTALLATION HR -36 "^ and Box Rib'm panel section properties are noted in Table 38. Mini -V- Beam'"' panels are attached to diaphragm 4.1 General: perimeter and intermediate structural steel supports with # 12- 24 ITW Buildex TEKS or ICH TRAXX fasteners as shown in The section properties and allowable load tables are Figure 11 and as described in evaluation report ER -3056. The established using the base -metal thicknesses of the decks spacing of screws to transfer shear forces to elements noted in Table 1. The concrete fill shall comply with the parallel to the panel flutes shall be determined by equations applicable code, utilize normal- weight or expanded shale in Note 5 of Table 37. Panel sheet -to -sheet attachments shall aggregates and have a minimum compressive strength of be done with #12 -14 ITW Buildex TEKS or ICH TRAXX 3.000 psi (20.68 MPa). Additional design criteria are set forth fasteners spaced according to the values listed in Table 37. in the `General Notes" preceding the figures and tables in this TEKS or ICH TRAXX fasteners shall penetrate beyond the report. The decking shall be clean and free of foreign steel supports or bottom panel sheet a minimum of three materials prior to placement of concrete. pitches of thread. 4.2 Vertical Composite Load: 3.14 U- Panel, X- Span'"" and Alta RIbTM Section: Values in tables indicate maximum unshored clear spans and Decking is made from steel conforming to ASTM A 792. SS allowable composite superimposed loads for deck with Grade 80 (minimum): or ASTM A 653. SS Grade 80 concrete fill. Spans containing trench headers shall be (minimum): or ASTM A 611. Grade E (minimum): or ASTM A designed as noncomposite. using section properties of the 1008. SS Grade 80 (minimum). with a minimum yield strength deck as noted in Tables 1A and 1B: section properties for of 80.000 psi (551.6 MPa) and a minimum tensile strength of Acusiadek'm profiles need to be adjusted using the 82.000 psi (565.4 MPa) for Nos. 30. 29. 26 and 24 gage. The adjustment factors noted in Table 2. Composite sections shall deck coating shall be either Zincalume ". G-90 galvanized. or not be used to support loads that are predominately vibratory. a painted finish. U -Panel panel section and strength such as for operation of heavy machinery. reciprocating properties are noted in Table 39. The U-Panel profile is motors and moving loads. Large concentrated loads shall be shown in Figure 12. The allowable horizontal diaphragm analyzed and designed accordingly. shear capacities and flexibility factors for Inverted U -Panel are The allowable superimposed load tables give one -. two- or noted in Table 40. X- Span'^' and Alta Rib'm panel section three -span conditions for construction loading with maximum properties are noted in Table 41. The allowable horizontal spans to be used without midspan shoring and the allowable diaphragm shear capacities and flexibility factors for Inverted superimposed loads based on a simple -span condition for X- Span'm are noted in Table 42. Inverted U-Panel and composite behavior. The determination of shoring limits shall Inverted X- Span'"' panels are attached to diaphragm be based on the strength or deflection of the deck section perimeter and intermediate structural steel supports with No. using a construction uniform live load of 20 pst (957.6 Pa) or 12 self - drilling TEKS Screws manufactured by ITW Buildex a concentrated construction live load of 150 pounds (667.5 (ER- 3056). as shown in Figures 13 and 15. The spacing of N). screws to transfer shear to elements parallel to the panel flutes shall be determined by equations shown in Note 5 of One row of shoring shall be required at midspan for values Tables 40 and 42. Panel sheet -to -sheet attachments shall be to the right of the heavy line in the load tables. The dead load with #12 self - drilling TEKS Screws manufactured by ITW includes the weight of concrete deposited as a result of the Buildex, spaced according to the values listed in Tables 40 deflection of the deck during the pouring sequence. No and 42. All self - drilling fasteners shall penetrate beyond the allowance shall be made for weights resulting from the steel supports or bottom panel sheet a minimum of three deflection of supporting framing members. The deflections pitches of thread. resulting from the tabulated loads are less than the first. second and fourth limitations specified in Table 9.5b in ACI 3.15 Allowable Diaphragm Shears for Decks with 318. To meet the third limitation in the table. special Concrete Fill Attached to Structural Supports with calculations are required. Mechanical Fasteners: 4.3 Diaphragm Shear and Flexibility: Table 28 establishes adjustment ratios that must be applied to the allowable diaphragm shear values noted in Tables 22 A one -third stress increase (or 0.75 reduction of the resulting through 25, when using mechanical fasteners to substitute for forces) shall not be permitted for Allowable Stress Design for puddle welds, for attachment of decks to structural supports. load combinations containing wind or seismic forces for shear The mechanical fasteners are power- driven fasteners as values in the diaphragm tables. noted in Footnotes 2. 3 and 4 of Table 28. The ASC3 (24) cellular deck units can be used in a blended 3.16 Welding: diaphragm system consisting of alternating cellular and noncellular fluted units used with and without a trench header. For all decking described, welding shall use E60 or E70 filler The noncellular, fluted units shall be 3W36. All decks shall metal. Other weld requirements shall comply with AWS D1.3- have a minimum G60 galvanized coating. The trench width is 98. Allowable tension loads for arc spot welds shall be a maximum of 36 inches (914 mm). Trench header centerline determined in accordance with Section 2205.1 of the IBC or shall be placed not less than 31 inches (788 mm) from the Section 2217 of the UBC. centerline of the supporting parallel beam or girder. See Table 33 for allowable diaphragm shear values and flexibility 3.17 Resistance Welds: factors of blended decks with a trench header and Where Types BF, DGBF. NF. DGNF. 2WF. DG2WF. 3WF. nonblended decks of 3W36 units with a trench header. For DG3WF or Cellular Deep decks are used as bare deck. blended systems of ASC3 and 3W36 units without a trench allowable vertical loads shall be based on section properties header. the diaphragm shear capacity shall be the lower in T o 3 r Types B, DGB, N. DGN. 2W. DG2W. 3W, shear capacity of the two deck types. and the flMt it DG3W or Deep Deck. unless special calculations are shall be the greater flexibility factor of the two decks. Page 4 of 100 ESR -1414 01/10/2000 Decks are attached to supporting framing members with arc B. BR. N. NR. NF. 2W. 2WF. ASC2. ASC3. 3W and spot welds in the patterns shown in Figure 3. 3WF. Sidelaps of interlocking deck types may also be connected with the DeltaGrip"f side seam attachment 4.4 Diaphragm Design Considerations: described in Section 2.9. spaced at a maximum of 3 The diaphragm design shall include the following feet (914 mm) on center: or nestable deck Types B. considerations: BR. N and NR. use 1 (38 mm) seam welds at 3 feet (914.4 mm) on center. When using a blend of a. Diaphragm classification (flexible or rigid) shall comply interlocking and nestable decks. 1'!_. -inch (38 mm) with Section 1602 of the IBC or Section 1630.6 of the seam welds shall be used at 3 feet (914.4 mm) on UBC: the diaphragm deflection (A) shall be calculated center. using the equation noted in Table 34. e. The concrete fill above the top flange shall be either 3'!, b. Diaphragm flexibility limitations shall comply with Table inches (83 mm) for 110-pound- per-cubic-foot (1762 kg /'m') 34. structural lightweight concrete with f = 3.000 psi (20.68 c. Diaphragm deflection limits shall comply with either MPa). or 4`I. inches (114 mm) for 150- pound - per- cubic- Section 1620.1 of the IBC for general seismic design. or foot (2403 kg/m normal - weight concrete with f'.. = 3.500 Section 1620.2.5 of the IBC. or Section 9.5.2.6.4.4 of psi (24.13 MPa). ASCE 7 (Seismic Design Categories D. E and F) for 1. The concrete fill is reinforced with minimum 6 x 6 W 1.4 x simplified seismic design: or Section 1633.2.9 of the UBC. W1.4 welded -wire fabric. placed at the center of the fill. d. Horizontal shears shall be distributed in accordance with g No conduits or pipes shall be embedded in the concrete. Section 1617.4 of the IBC or Sections 1630.6 and 1630.7 of the UBC. The interior spans of continuous steel- frarned construction slabs may be assumed to be restrained for fire- resistance- 4.5 Restrained Fire- resistance Ratings: rated construction. The perimeter spans are assumed CP-32. 2W. 3W. B and N decks may be used in two -hour fire - unrestrained unless restraint is substantiated by the structural resistance -rated roof deck assemblies with exposed soffits. designer and approved by the code official. provided: For additional restrained fire - resistance ratings. see Table a. The fill type. thickness and construction are as set forth in 21. ICC -ES evaluation report ER -3081. ER -3260 or ER -3627. 4.6 Unrestrained Fire - resistance Ratings: or Table 720.1(3) of the IBC or Table 7 -C of the UBC. whichever is applicable. a. Types B. BF. N. NF, 2W, 2WF. ASC2. ASC3. 3W and 3WF decks with a structural concrete fill are one- or two - b. The maximum clear span for CP -32 in No. 26 gage deck hour fire - resistance -rated roof or floor decks with exposed is 6 feet. 8 inches (2.032 m). and in heavier gages is up soffits. provided: to 8 feet. 6 inches (2.591 m). 1. The minimum deck thickness is No. 22 gage. c. The decks are attached to supporting structural elements as set forth in the tables of this report. 2. Attachments shall be in accordance with item d of the second paragraph of Section 4.5. d. No conduits or pipes are embedded in the concrete. 3. The concrete fill shall be structural lightweight with Hi- Form "' Types B. BR. BF. N, NR. NF. 2W. 2WF, 3W, expanded shale or slate aggregate and 4 to 7 percent 3WF. ASC2 and ASC3. when used with a structural concrete entrained air. Other concrete properties include 110- f ill. have a two -hour fire - resistance rating with exposed soffits pound- per - cubic -foot (1762 kg /m) density. 3.000 psi when used as either a roof or floor. provided: (20.68 MPa) compressive strength at 28 days, and a. The maximum clear span for the B. BR. and BF decks is 3V,,-inch (83 mm) fill above the top flange of the deck. 12 feet (3.658 m). and for the N. NR. NF. 2W. 2WF, 4. The unrestrained assembly is assigned a one -hour ASC2. ASC3. 3W. 3WF decks is 13 feet. 2 inches (4.01 fire - resistance rating when the supports are minimum m). W8 x 18 steel beams. and a two -hour fire - resistance b. Minimum steel gage shall be No. 22 for fluted units and rating when the supports are minimum W8 x 28 steel No. 20/20 for cellular units. Unit finishes may be beams. galvanized. phosphatized, painted or mill finished. 5. No conduits or pipes are embedded in the concrete. c. Electrical inserts may be installed when fireproofing is b. One -hour and two -hour unrestrained fire - resistance sprayed on the deck soffits in accordance with current ratings for steel decking with lightweight insulating ICC -ES evaluation report ER -1244 or ER -4607. concrete and insulation board are described in ICC -ES d. Minimum attachments to supports shall be as follows: evaluation report ER 3260. c. Fire - resistance ratings when fireproofing material is spray - 1. All welds at each support are `!,- inch - effective- applied to the deck soffit are described in current ICC -ES diameter (13 mm) arc spot (puddle) welds. Weld evaluation reports ER -1244. ER -4607 and ER -4818. patterns include three welds at 12 inches (305 mm) on center (maximum) for 24- inch -wide (610 mm) units. 4.7 Special Inspection: and four welds. at 12 inches (305 mm) on center 4.7.1 Concrete: Continuous special inspection for concrete (maximum). for 30 inch- or 36-inch-wide (762 or 914 and concrete reinforcement shall be in accordance with mm) units. Where welded shear connectors coincide Section 1704.4 of the IBC or Sections 1701.5.1 and 1701.5.4 with arc spot welds. the arc spot welds may be of the UBC. whichever is applicable.. The inspector's duties eliminated. include sampling and testing. and verification of concrete 2. Attachments to chords or struts are as specified in the mixes, reinforcement types and placement. and concrete "General Notes." placement. d1 0 Mif s shall be button - punched at a maximum of 3 4.7.2 Jobsite Welding: Continuous or pe,��li ecial reel ( � i 4.4 mm) on center for interlocking deck Types inspection for welding shall be in accordance with ection Page 5 of 100 ESR -1414 01/1014000 1704.3 of the IBC or Section 1701.5.5 of the UBC. whichever 5.2.3 Diaphragm deflections shall not exceed the is applicable. Prior to proceeding. the welder shall permitted relative deflections of walls between the demonstrate his ability to produce the prescribed weld to the diaphragm level and the floor below. See Table 34 special inspector's satisfaction. The inspector's other duties for diaphragm flexibility and deflection limitations. include verification of materials. weld preparation. welding procedures, and welding processes. 5.3 Vertical load design of deck without a concrete fill shall be based on section properties and web crippling values 4.7.3 Additional Requirements for Installations Under set forth in this report. Vertical load capacity of the IBC: concrete - filled. composite deck systems shall be as set 4.7.3.1 Periodic Special Inspections: Periodic special forth in the tables in this evaluation report. inspections in accordance with Section 1707.4 of the IBC are 5.4 Special inspection in accordance with Section 4.7 is required where the steel deck systems are used as part of a required for all concrete and field - welding. seismic-force-resisting system in structures assigned t0 5.5 Fire - resistive ratings are as described in Sections 4.5 Seismic Design Category C. D. E or F. Periodic special inspections apply to connections such as screws. power- and 4.6 or as set forth in Table 720.1(3) of the IBC or actuated fasteners. DeltaGrip M side seam attachments and Table 7-C of the UBC. whichever is applicable. provided button punches. Periodic special inspections also apply the fill type. thickness. metal gage and construction are where noted in Tables 1704.3 and 1704.4 of the IBC. as specified therein. 4.7.3.2 Continuous Special Inspections: Continuous 5.6 Calculations and details demonstrating that the loads special inspections shall be provided where noted in Tables applied to the decks comply with this report shall be 1704.3 and 1704.4 of the IBC. submitted to the code official for approval. Calculations and drawings shall be prepared. signed. and sealed by 4.7.3.3 Quality Assurance Plan: A quality assurance plan a registered design professional where required by the shall be submitted to the code official as set forth in Sections statutes of the jurisdiction in which the project is to be 1705 and 1706 of the IBC. The plan shall include the special constructed. inspection duties noted in Sections 4.7.1. 4.7.2 and 4.7.3 of this report. 5.7 All cellular deck types are fabricated at the West Sacramento. California. facility under a quality program 5.0 CONDITIONS OF USE with inspections by Kleinfelder, Inc. (AA -558). The ASC Steel Floor and Roof Deck described in this report 6.0 EVIDENCE SUBMITTED complies with. or is a suitable alternative to what is specified in. those codes listed in Section 1.0 01 this report. subject to 6.1 Data in accordance with the ICC-ES Acceptance the following conditions: Criteria for Steel Decks (AC43), dated October 2004. 5.1 Concrete - filled composite sections shall not be used for 6.2 Reports of fire resistance tests. loads that are predominantly vibratory. 7.0 IDENTIFICATION 5.2 Where used as a diaphragm: Labels on each bundle of the decking bear the type and gage. 5.2.1 A one -third stress increase (or 0.75 reduction of the together with the ASC Profiles. ASC Steel Deck. AEP Span resulting forces) shall not be permitted for Allowable or ASC Building Products logo: the customer's name: and the Stress Design for load combinations containing wind ICC -ES evaluation report number (ESR- 1414). In addition. or seismic forces for shear values in the diaphragm cellular deck bears the name of the inspection agency. cables. Kleinfelder. Inc. 5.2.2 Allowable shear values shall be limited to values set forth in the accompanying tables for the types of deck involved. 01.08021.01 105 of 137 Page 6 of 100 ESR -1414 01/t 0 /2000 General Notes: The following notes apply to all of the tables in this report unless otherwise noted. 1. The allowable diaphragm shear values listed in the tables are in pounds per linear foot (Nrm). 2. Allowable superimposed loads listed in the tables are in pounds per square foot (Pa). 3. The base -metal thickness for all decks is indicated in Tables 1A. 1B. 35. 38, 39, and 41. For decks with specified yield strength of 80.000 psi (551 MPa). yield strength used for design shall be 60.000 psi (413 MPa). 4. Deck panel seams shall be fastened by welds. button punches or DeltaGrip'"' seam attachment. as indicated in the report. The length of seam welds shall be a minimum of 1 'f.. inches (38 mm). The DeltaGrip" seam attachments shall be as described in Figure 6. The seam attachment. where required. shall be in accordance with the appropriate table. not to exceed 3 feet (914 min) on center unless noted otherwise. 5. Arc seam or spot (puddle) welds shall have an effective fusion area to supporting members at least equivalent 10 'i., inch (10 mm) wide by 1 inch (25 mm) long or 'i_. inch (13 mm) in diameter. DGB and DGBF deck types shall be attached to supporting members with welds that have an effective area o1 inch (10 mm) wide by 1 inch (25 mm) long in the flutes adjacent to the deck interlock. See Figure 5. 6. Puddle weld patterns are shown in Figure 3 for Types ASC2, ASC3, B. BR. BF. DGB. DGBF. N. NR. NF. DGN. DGNF. 2W, 2WF. DG2W. DG2WF, 3W. 3WF. DG3W and DG3WF decks: and Figure 9 for CF 1 and CP -32 decks: and Figure 7 for 0 -Maxi' Systems: and Figure 8 for Shear - Vent "" Systems. 7. Spacing of marginal welds to members parallel to flutes shall comply with the following. unless otherwise noted: a. Arc seam or spot (puddle) welds to members such as chords and to collector elements such as struts or ties shall have a spacing in feet (mm) equal to 35.000(10 (For SI: 6.130(t)/v). where: t = Uncoated base -metal thickness of fluted steel deck. in inches (mm). v = Actual diaphragm shear at marginal supports or actual shear transferred to collector. in pounds per foot (N /m). b. Fillet welds to members such as diaphragm chords shall have a spacing in feet (mm) equal to 480 (1.,)iv (For SI: 84 ( /.) /v), where: 1 = Length of weld. in inches (mm) [not less than 1 inches (38 mm)]. v = Actual diaphragm shear to be transferred to chords. in pounds per foot (Nim). c. Fillet welds attaching the diaphragms to struts. ties or other collector elements shall have a spacing in feet (mm) equal to 300 (I.)!v (For SI: 52.5 f,.l v). where v is the actual shear to be transferred to the collector element. in pounds per foot (Nan). d. Weld spacing is Limited to 3 feet (914.4 mm). maximum. 8. Regarding attachments at interior lines of shear transfer perpendicular to deck corrugations: The shear transfer from a diaphragm to interior tie or strut lines perpendicular to deck corrugations shall not exceed the shear values indicated in the tables. Two lines of puddle welds may be used to develop the actual shear transfer to these collector elements. 9. Where individual panels are cut. the partial panel shall be tastened in a manner to fully transfer the shears at the point of the diaphragm to the adjacent full panels for the values specified in the tables. 10. The minimum 28 -day compressive strength for structural concrete shall be 3,000 psi (20.68 MPa). The appropriate concrete density (normal weight or structural lightweight) is indicated in the tables. The minimum concrete depth shall be 2 inches (51 mm) over the top flange. and the concrete shall be reinforced with a minimum 6 x 6 W1.4 x W1.4 welded -wire fabric. The reinforcement shall be placed near the center of the fill over the top flange. If the fill exceeds a 3'/, -inch (83 mm) thickness over the top flange. reinforcement is required in each direction equal to 0.00075 times the area of concrete fill over the metal deck. 11. All decks with structural concrete fill may be considered to have F < 1. 12. For decks with concrete fill. the diaphragm shear values and flexibility factors apply to deck sections with or without embossments. 13. The diaphragm shear values. for decks without fill. also apply to the acoustical version of the specific deck, known as Acustadek'M. For fully perforated Acustadek'". multiply the allowable or factored shear strength in the tables by 0.85. 14. Composite deck panel seams shall be fastened at 36 inches (914.4 mm) on center. maximum. to reduce differential deflection during concrete placement with button punches or screws. DeltaGrip'"' seam attachments or welds may be used to reduce differential deflection with the seam attachments when spaced at a maximum of 60 inches (1524 mm) on center. 15. For decks with structural concrete fill. the diaphragm shear values and flexibility factors apply whether or not the sidelaps are attached. 16. Deck panel seams may be fastened with self - lapping or self - drilling screws in place of button punches without affecting the tabulated allowable diaphragm shear and flexibility factors under the following conditions: a. Screws are minimum No. 10 size, with a minimum' /, -inch (19 mm) length. b. Screw spacing is no greater than tabulated button-punch spacing. c. The deck material base -metal thickness is minimum No. 22 gage 10.0299 inch (0.737 mm)). 17. For decks with structural concrete fill. the allowable diaphragm shear and flexibility factors shall apply to galvanized. painted, Ejitep decks. 106 of 137 Page 7 of 100 ESR -1414 01/10 /2000 INDEX TO TABLES AND FIGURES TABLE NUMBER SUBJECT Page No: Floor Deck Diaphragm Shears and Superimposed Load Capacities 1A. 18 Section Properties 9 21 Fire - Resistive Ratings 6 2 2 Acustadek' Section Property Adjustment Factors 11 22 B. BR and BF Deck with Structural Co.ncrete Fi1I 63 3 Allowable Reaction 12 23 N. NR and NF Deck writh Structural Concrete Fill 67 4 Nominal Weld Capacity 13 24 2V and 2WF Deck with Structural Concrete Fit! 71 5 Mechanical Fastener Nominal Shear Strength 14 25 341 and 3WF Deck with Structural Concrete Fill 76 6 AISI Factors of Safety and Resistance Factors for Diaphragms .... 14 26 Diaphragm Shears for Types 6. BF. 6R. N. NF. NR 2W. 2WF 3 and 3WF (Decks with Concrete Fill and Shear Studs 81 Root Deck 27 2 Superimposed Load with Studs 82 28 Diaphragm Shears for Types B. 8F. BR. N. NF. NR. 2:,1. 2WF. DeltaGrip "` System Notes 16 3W and 3WF Decks with Concrete Fill and Mechanical Fasteners 83 B Deck • Superimposed Load 7 DGB-36 DeltaGrip "' System Diaphragm Shears 29 . ASC3 (24) Deck with 145 pcf Concrete 84 DGB -36 with Arc Spot Searn Welds 17 30 ASC3 124i Deck wi-h 1:0 pcf Concrete 86 DGB -36 with IT': : Buildex Pin Fasteners 21 DGB -36 with Hilti Pin Fasteners 25 Diaphragm Shears D38 -36 ..ith Pneutek SDK61075 Pirn. Fasteners 29 DG8 -36 with Pneutek SDK63075 Pin Fasteners ..... ......... 33 37 ASC3 124: Deck with 110 pcf Concrete 87 DGB -36 with Pneutek K64052. K64075. K66062 32 ASC3 (24r Deck with 145 pc' Concrete 88 or K66075 Pin Fasteners 1 7 33 ASC3 (24i Deck with Trench Header 89 D38 -36 with 1701 Buildex Screw Fasteners . 41 8 5 Deck Diaphragm Shears 45 Misc 9A 0 -Max Diaphragm Shears twith Lap Welds) 47 96 0 -Max' Diaphragm Shears (without Lap Welds) 48 34 Diaphragm Flexibility Limitations 90 10 B Deck With Lightweight Insulating Fill 48 35 (.Mini- V- Bearn" ° Section Properties 91 11 Shear Ventt' Diaphragm Shears 49 36 Mini -V- Beam ' Allowable Reactions .. 91 37 Mini-:I-Beam '" Diaphragm Shears (with Screwsi 92 N Deck 38 HR -36''' and Box Rib "' Section Properties 94 39 U -Panel Section Properties 95 12 DGN -24 DeltaGrip ": System Diaphragm Shears 40 L -Panel Diaphragm Shears tv :ith Screws) 96 DGN -24 with Arc Spot Seam Welds 50 41 X -Span' -' .5 Alta Rib'" Section Properties 99 DGN -24 with Pin Fasteners 51 42 X-Span" Diaphragm Shears {with Screws( 100 DGN -24 with ITW Buildex Screw Fasteners 52 13 N Deck Diaphragm Shears 53 FIGURE SUBJECT PAGE NO. 2W and 3W 1 Deck Profiles 9 2 Acostadeck "' Perforation Patterns 1 1 14 DG2W36 & DG3W36 DeltaGrip' :' System Diaphragm Shears 3 Attachment Patterns 15 DG2W36 & DG3W36 with Arc SpotiSeam Welds 54 4 Resistance Weld Details 1 5 DG2W36 & DG3W36 with Pin Fasteners 55 5 Weld Details :5 15 2W Diaphragm Shears without Fill 56 6 DeltaG« p' System Details 16 16 3 Diaphragm Shears without Fill 57 7 0-Max Details 47 8 Shear Vent"' Details . 49 Deep Deck 9 Weld Patterns for Concrete Parr Deck 1CP32) 59 10 Shear Stud Details 81 17A. 178 Deep Deck Diaphragm Shears 58 11 Mini -V- Beam'' ' Profile and Attachment Pattern 91 12 U -Panel Profile 95 CP32 / CF 13/8 13 Inverted U -Panel Attachment Details 95 14 X- Span "` and Alta Rib Profile 99 18 CP32 Diaphragm Shear with Insulating Fill "9 15 Inverted X- Span"" Attachment Details 99 19 CP32 Deck Attachment 59 20 CP32 and CF 1'4 Diaphragm Shears 60 01.08021.01 107 of 137 Page 8 of 100 ESR -1414 01/10/2000 DECK PROFILES • .. ~ - ^l ._ • CELLULAR PROFILES • r !y t s u ..c 6 COMPOSITE DECK EMBOSSMENT DETAILS • .. • 1 ..L2 L;'110SS:_r :S -• =sc;_ r >� 23 EvBDSS't' I S ... • s_ "...'e 3 e' FIGURE 1 —DECK PROFILES AND EMBOSSMENT DETAILS 01.08021.01 108 of 137 Page 9 of 100 ESR -1414 A TABLE 1A- SECTION PROPERTIES'" BASE BASE METAL NEGATIVE DECK METAL I POSITIVES NEGATIVE DECK GAGE THICKNESS t POSITIVE 5 GAGE S TYPE (in) (1n) S , TYPE THICKNESS (in) (in) (in) (in) (in') (in) _ 16 .059 1.582 0.976 0.975 16 .0598 0.379 0.407 0.415 18 .047 1.260 0.780 0.777 8 18 .0478 0.302 0.321 0.336 DG8 3W 19 .042 1.126 0.692 0.694 BR 20 .0359 0.220 0.235 0.246 DG3W 20 .035 0.938 0.550 0.574 22 .0299 0.178 0.180 0.195 21 .033 0.881 0.511 0.540 16/16 .0598'.059 0.715 0.612 0.712 22 .029 0.753 0.433 0.471 18/16 .04781.059 0.615 0.445 0.585 16/16 .059/.059 2.350 1.113 1.080 18/18 .0478/.047 0.546 0.436 0.561 18/16 .047 7.059 1.984 0.899 0.873 BF 18120 .0478%.036 0.479 0.426 0.470 DGBF 18x18 .047.047 1.832 0.885 0.855 20116 .0359.059 0.478 0.295 0.453 3WF 1820 .047x.036 1.662 0.870 0.832 20.'18 .0359'.047 0.447 0.289 0.435 DG3WF 20/16 .035.059 1.585 0.643 0.666 20'20 .0359x'.036 0.392 0.282 0.398 20118 .035:.047 1.469 0.634 0.646 16 .0598 1.716 0.882 0.949 20.20 .0351.036 1.328 0.623 0.623 N 18 .0478 1.330 0.689 0.765 DGN 14 .075 5.49 2.056 2.056 NR 20 .0359 0.945 0.467 0.554 4 16 .059 4.36 1.608 1.635 22 .0299 0.771 0.361 0.449 Deep Deck' 18 -047 3.42 1.266 1.313 16/16 .0598'.059 3.029 1.198 1.545 20 .035 2.44 0.924 0.957 18/16 .04781.059 2.597 .0.878 1.342 14 .075 10.78 3.085 3.087 18/18 .0478:.047 2.310 0.861 1.228 6 " 16 .059 8.56 2.406 2.451 NF 18/20 .0478.036 2.039 0.841 0.946 Deep DGNF Deck` 18 .047 6.68 1.892 1.966 20/16 .0359/.059 1.987 0.595 1.040 20 .035 4.79 1.380 1.314 20/18 .0359.'.047 1.868 0.562 0.977 • 14 .075 18.26 4.238 4.245 20120 .0359/.036 1.666 0.566 0.850 77.1. 16 .059 14.47 3.300 3.367 16 .059 0.752 0.670 0.670 Deep Deck 18 .047 11.28 2.593 2.528 18 .047 0,601 0.535 0.538 20 .035 8.11 1.889 1.670 2W 19 .042 0.543 0.464 0.481 18 .0480 0.195 0.263 0.263 DG2W 20 .035 0.465 0.397 0.411 20 .0374 0.146 0.205 0.205 21 .033 0.423 0.338 0.376 CP32 22 .0314 0.122 0.169 0.169 22 .029 0.380 0.298 0.339 CF 1 "r 24' .0254 0.098 0.131 0.131 16/16 .059`.059 1.196 0.771 0.749 26= .0195 0.072 0.094 0.094 18/16 .047`.059 1.003 0.621 0.608 20` .0374 0.051 0.113 0.113 18/18 .0471.047 0.928 • 0.611 0.592 22 .0314 0.043 0.095 0.095 2WF 18/'20 .0471.036 0.901 0.601 0.600 CF' DG2WF 24' .0254 0.035 0.078 0.078 20/16 .035/.059 0.797 0.429 0.463 26' .0195 0.027 0.060 0.060 20/18 .035%.047 0.741 0.423 0.451 For SI. 1 inch = 25.4 nrm 20/20 .035'.036 0.674 0.416 0.435 'Tabulated values are based on a 1 loot wide section. 'Properties based on 38.000 psi yield strength. except where noted. (Tensile strength = 52.000 psi) `The name - Acustadek as suffix to deck type refers to web or pan perforations. See Section 3.5 for additional details. Section properties tor Acustadetem profiles shall be adjusted using the adjustment factors noted in Table 2. The name "Hi- Form®" is used as a suffix to deck types B. BR. BF. N. NR. NF. 2W. 2WF. 3W and 3WF. when the webs are embossed as detailed in Figure 1. `Properties based on 75 percent of 80.000 psi yield unless noted otherwise. (Tensile strength = 82.000 psi) "BR and NR indicate inverted profiles tor which the section moduli are to be reversed. The first number is the gage thickness of fluted top sheet. The second number is the gage or thickness of flat bottom sheet. 'Properties based on 33,000 psi yield. (Tensile strength = 45.000 psi) `All section properties are net values. 01.08021.01 109 of 137 Page 10 of 100 ESR -1414 0 I/10/2008 TABLE 1B- SECTION PROPERITES'' - BASE METAL BASE METAL DECK 1 POSITIVES NEGATIVES DECK I POSITIVES NEGATIVE'S TYPE GAGE THICKNESS (in') (in') (in') TYPE GAGE , THICKNESS' (in') • (in') (in') (in) (in) 20'20 .035-.035 1.339 0.620 0.570 20,20 .035'.035 0.618 0.411 0.395 20:18 .035.047 1.455 0.622 0.598 20/18 .035.047 0.674 0.421 0.415 20/16 .035:.059 1.536 0.628 0.627 20/16 .035/.059 0.719 0.430 0.435 ASC3 1820 .047 %.035 1.664 0.827 0.744 ASC2 18/20 .047'.035 0.761 0.576 0.514 24" 24 1818 .047!.047 1.812 0.850 0.779 1818 .047/.047 0.835 0.592 0.539 18:'16 .047.059 1.933 0.868 0.813 1816 .047/.059 0.895 0.605 0.564 16/16 .059.'.059 2.293 1.071 0.995 16/16 .0591.059 1.060 0.746 0.689 20/20 .035`.035 1.137 0.497 0.463 2020 .035.035 ' 0.526 0.334 0 321 20/18 .035'.047 1.224 0.502 0.489 • 20:18 .0351.047 0.572 0.343 0.339 20:16 .035'.059 1.299 0.527 0.516 20116 .035.059 0.607 0.349 0.358 A 30 3 18.20 .047`.035 1.415 0.675 0.604 A 30 2 18/20 .0471.035 0.650 0.470 0.417 18.18 .047/.047 1.538 0.693 0.635 1818 .047/.047 0.711 0.433 0.440 1816 .047.059 1.636 0.707 0.669 1816 .047/.059 0.760 0.492 0.463 16!16 .059`.059 1.947 0.873 0.816 16,16 .059`.059 0.904 0.608 0.565 BASE METAL BASE METAL DECK I POSITIVE S NEGATIVE S DECK I POSITIVE S NEGATIVE S TYPE GAGE THICKNESS GAGE THICKNESS (in) ( in.' ) (in') (t' n ) TYPE (in) (in. ) (in' (in') 20:20 .035.035 3.84 1.14 126 20/20 .035.035 11.98 1.97 2.23 20/18 .0351.047 4.39 1.13 1.57 2018 .035`.047 13.51 1.97 2.85 4 , ' . 2016 .035!.059 4.84 1.13 1.65 7,:.. 20 %16 .035:.059 14.36 1.97 3.10 Cellular 18/20 .047/.035 4.68 1.75 1.54 Cellular 18/20 .047 /.035 14.63 3.20 2.93 Deep Deep Deck` 18/18 .047-.047 5.32 1.79 1.85 Deck' 18/18 .0471.047 16.36 3.18 ' 3.53 18/16 .047!.059 5.93 1.82 2.15 18/16 .047/.059 18.16 3.17 4.03 16/16 .059.059 6.86 2.44 2.45 _ 16/16 .059/.059 21.08 4.63 4.63 20!20 .035'.035 7.25 1.55 1.78 20:18 .035.047 8.23 1.55 2.24 6" 20/16 .035/.059 8.93 1.55 2.35 Cellular 18 .047/.035 8.85 2.54 2.24 Deep Deck` 1818 .047 /.047 9.99 2.51 2.65 18/16 .047/.059 11.10 2.49 3.05 16/16 .059.059 12.88 3.52 3.49 For SI: 1 inch = 25.4 rnm. 1 psi = 6894 Pa. Tabulated values are based on a 1- foot -wide section. ` section properties are based on 38.000 psi yield stress. except where note. (Tensile strength = 53.400 psi) - 'Strength calculation using these listed section properties shall include verification of the strength of the resistance welds attaching the fluted element to the flat element. The standard resistance weld spacing used for the development of Tables 29 and 30 are shown in Figure 4. The first number is the gage or thickness of fluted fop sheet. The second number is the gage or thickness of flat bottom sheet. 'Properties based on 33.000 psi yield. (Tensile strength = 45.000 psi) "AIL section properties are net values. 'The name "Acustadek "' as suffix to deck type refers to web or pan perforations. See Section 3.5 for additional details. Sections properties for Acustadek'm profiles need to be adjusted using the adjustment factors noted in Table 2. 01.08021.01 110 of 137 Page 15 of 100 ESR-1414 0 1t1 arcvuu • • . - - , ... • . . • • 3673 • 161 • • • • _ • _ FIGURE 3—ATTACHMENT PATTERNS (AT PERPENDICULAR SUPPORTS) • f j „ • , . , I • ;;;. 1;; ; . I ; ..... • • TYFE FIGURE 4—CELLULAR DECK RESISTANCE WELD PATTERNS , , • L BUTTON PUNCH ARC SEAM WELDS ARC SEAM WELDS FILLET ARC SPOT WELD ARC SPOT WELDS FIGURE 5—WELD DETAILS 01.08021.01 111 of 137 Page 73 of 100 ESR-1414 01/18/2008 TABLE 24-2W AND 2WF DECK WITH STRUCTURAL CONCRETE FILL ALLOWABLE SUPERIMPOSED LOAD (psf) AND DIAPHRAGM SHEAR (pit) (Continued) No. of SPAN Gage Spans 6 6 7 7 8 8 9 9 10 10 11 11 12 4' 1 243 210 7E3 130 112 97 84 73 63 55 48 42 36 SLAB 2 243 235 152 60 143 127 115 • 73 63 55 48 42 36 DEPTH 3 243 235 7 02 750 . ;43 127 ri 84 73 63 55 48 42 36 22 q3 7673 ;652 7624 7619 1605 7594 158.2 1574 1565 1557 1556 1544 1532 q6 7575 7780 7742 7721 '696 7675 1656 1639 7624 1610 1597 1585 1575 ,, 1 259 222 :05 772 153 106 92 80 70 • 62 54 47 41 2 259 222 195 772 752 737 123 711 . 70 62 54 47 41 CON 21 3 250 222 1 772 53 137 22 711 70 62 54 1 47 41 ' CRETE (13 7522 1656 7635 621 1505 1592 i 550 7569 1559 1551 7543 1535 1529 TYPE: p4 '861 1019 7782 707 7723 ;699 3577 1658 1640 1624 16:0 1597 1585 1 267 221 202 176 ;55 110 96 84 74 65 57 50 44 2 267 221 232 :72 155 ;42 122 355 74 65 57 50 44 20 3 267 232 202 778 156 142 26 16 los a 65 57 50 44 p3 1555 1663 1642 1623 1607 1593 ;580 1569 1558 1549 1541 1533 1526 NW' q4 7884 7829 1501 1767 1720 7712 1609 7669 1650 1633 1612 1604 1592 145 1 299 2 2 2: 200 175 6 145 '31 tt 88 78 69 62 55 PCF 2 299 259 227 200 178 160 ;45 181 120 110 69 62 55 19 3 299 259 227 200 ;75 160 :45 31 120 ;10 i0 93 II 55 (43 356 7692 1 352 '640 7520 503 1562 1574 1562 1351 1541 1531 1523 q4 1972 1018 707 :821 1795 753 1727 ;777 1593 1670 1652 1635 1620 SLAB 1 323 220 246 216 194 175 158 1 121 120 79 71 63 WT 2 323 280 246 279 194 175 152 743 131 ;20 171 71 63 36.4. 18 3 323 220 246 215 194 175 153 143 131 120 111 102 95 PSF q3 1744 1710 162; 7655 1635 1 6 1 5 ■ 598 1523 1569 1557 7545 1535 1526 q4 202-5 1978 7926 1881 1842 1507 1776 1748 1724 1701 1651 1662 1645 1 392 342 231 252 240 216 ;96 779 164 151 139 p • 97 88 2 392 342 327 265 240 216 196 179 164 151 139 129 120 16 3 392 342 331 268 240 216 ;96 179 164 151 139 129 120 Q3 1817 1775 1739 7709 1680 7 .656 ;635 7676 1598 1553 1558 1555 1543 q4 2207 2131 2666 2070 1950 7917 _ 1272 1843 1812 ;784 1752 1725 1714 No. of SPAN Gage Spans 6 6 7 7*-6" 8'-0" 1 8 9'-0" 9*-6" 10%0" 10'-6" 11'-0" 11%6" 12*-0" 1 273 236 g 170 145 125 108 93 81 70 61 53 46 40 SLAB 2 273 236 205 181 165 143 93 81 • 70 61 . 53 46 40 DEPTH 22 3 273 236 205 187 160 143 93 81 70 61 53 46 40 43 1912 1891 1873 185E, 1845 1832 1622 18;3 1804 1797 1790 1783 1777 q4 2057 2020 1958 1960 1935 1914 1895 1278 1863 1849 1836 1825 1844 1 291 251 219 193 136 118 102 89 . - 78 . 68 60 52 46 2 291 251 219 792 172 152 1 38L 89 - 78 68 60 52 46 CON 21 3 291 251 219 193 172 153 138 125 Li . 78 68 60 52 46 CRETE 03 1921 1897 1877 1260 1844 1851 1819 1808 1798 1790 1782 1774 1768 TYPE: q4 2100 2058 202; 1990 1062 1938 1915 1897 1879 1254 1849 1855 1824 1 300 259 226 200 ;77 01 123 107 94 .82 72 63 56 - 49 2 303 259 226 220 177 159 143 94. ' 82 72 63 56 49 20 3 300 259 226 200 177 159 ;42 130 118 ti 72 63 56 49 43 1927 1902 128; 1262 1845 1832 18;9 1208 1797 1762 1780 1772 1755 NW' q4 2123 2076 2040 2006 1977 195; 1928 1908 1889 1872 1857 1643 1831 145 1 , 335 290 254 224 200 179 162 111 98 87 77 . 68 60 PCF 2 335 290 254 224 200 179 162 147 134 a . 37 77 68 60 19 3 335 290 254 224 203 179 162 147 134 123 11314 - 68 . 60 93 1957 1927 1031 1879 1859 1842 1827 1813 1801 1790 1780 1770 1762 q4 2211 2157 2110 2070 2035 2004 1976 1952 1930 1910 1891 1875 1859 SLAB 1 361 314 275 244 217 195 177 161 147 Ei 98 87 78 70 WT. 2 361 314 275 244 277 195 177 161 147 135 4 87 78 • 70 42.3 18 3 3E1 314 275 244 217 195 177 161 147 135 124 115 !k 70 PSF q3 1983 1949 1920 1895 1874 1854 1837 1822 1808 ' 1796 1785 1774 1765 (14 2277 2217 2155 2770 . 2081 2046 2015 1986 1963 1940 1920 1901 1884 1 427 381 536 299 267 241 219 200 182 168 118 • 107 97 2 437 381 • 336 209 267 . 241 219 203 183 168 155 144 134 16 3 437 381 335 299 267 241 219 203 183 162 ;55 144 134 al 2055 2014 ;972 :947 1919 1895 1674 1855 1837 1822 1507 1794 1783 cr4 _ 2446 2370 2355 2249 2199 - 2156 _ 2117 2023 2051 _ 2023 1992 ;974 1953 For SI 1 inch . 25.4 on. 1 foot = 304.8 mm. 1 plf = 14.593 Nei. 1 pcI 818.018 kc, 1 psi = 47.88 Pa. ' -1, For footnotes see Table 22. 01.08021.01 112 of 137 • 01/18/2008 IF t =. c LEGACY REPORT Reissued ER-3866 3 ICC Evaluation Service, Inc. Business/Regional Office • 5360 Workman Mill Road, Whither, California 90601 • (562) 699 -0543 Regional Office m 900 Montclair Road, Suite A, Birmingham, Alabama 35213 • (205) 599 -9800 www.icc-es.org Regional Office • 4051 West Flossmoor Road, Country Club Hills, Illinois 60478 • (708) 799 -2305 Legacy report on the 1997 Uniform Building CodeTM DIVISION: 07— THERMAL AND MOISTURE PROTECTION Allowable transverse loads are based on section properties Section: 07410 —Metal Roof and Wall Panels in Table 1. Maximum spans are indicated in Table 2. Allowable panel reactions based on web crippling are in Table STEEL RIB -ROOF PANELS 3. 2.2 Identification: RIB -ROOF, INC. 2745 NORTH LOCUST AVENUE Bundles of panels bear a label or tag noting the Rib -Roof, RIALTO, CALIFORNIA 92376 Inc., name; the deck type and gage; and the evaluation report number (ER- 3866). 1.0 SUBJECT 3.0 EVIDENCE SUBMITTED Steel Rib -Roof Panels. Data in accordance with the ICC -ES Acceptance Criteria for 2.0 DESCRIPTION Steel Decks (AC43), dated January 2002. 2.1 General: 4.0 FINDINGS Rib roof panels are roof and wall siding panels. The panels That the Steel Rib -Roof panels described in this report are cold - formed from steel complying with ASTM A 792 -97 SS comply with the 1997 Uniform Building CodeTM (UBC), Grade 50A and have a hot - dipped, aluminum -zinc coating subject to the following conditions: with an AZ50 coating designation. Panels are rolled in 18 -inch 4.1 The spans and loading do not exceed the allowable (457 mm) widths with 1 inch -high (48 mm) ribs at 9 inches spans and vertical loading set forth in Tables 2 and (229 mm) on center, as shown in Figure 1. Ribs interlock at 3 the seams. Panels are available in thicknesses of No. 26 gage through No. 20 gage. The panels are attached, using 4.2 When the Steel Rib -Roof panels are used as siding, interlocking panel clips at 18 inches (457 mm) on center, to walls are braced as required by the UBC. steel supporting elements having a minimum No. 16 gage 4.3 Panels are installed in accordance with this report thickness; the clips are typically attached to the steel supporting elements using No. 10 self - drilling, self tapping and the manufacturer's instructions. sheet metal screws having sufficient length to protrude at 4,4 Justification of the clips and fasteners for applicable least '/ inch (12.7 mm) through the steel support. Clips are wind uplift loads is submitted to the building official also typically attached to wood supporting elements using No. for approval. 9 Sur -grip screws (as manufactured by Sierra Manufacturers) of sufficient length to provide a minimum 1 -inch (25.4 mm) 4.5 Lateral load- resistance details are furnished to the penetration. The fastener type and number of fasteners must building official for approval, since the panels have be designed for each project. The panel clips are cold- formed not been assigned diaphragm capacities. from ASTM A 653 -97 SS Grade 50 Class 1 steel having a minimum base -metal thickness of 0.050 inch (1.27 mm) and This report is subject to re- examination in two years. a G90 coating. At their base, the clips are 2 inches (63.5 mm) (width) by 1 inches (38 mm) (height) by 8 inches (203 mm) (length). See Figure 2 for additional details. Accessory trim for ridges and eaves is provided. ICC -ES legacy reports are not to be construed as representing aesthetics or any. other attributes not specifically addressed, nor are they to be construed as s t an endorsement of the subject of the report or a recommendation for its use. There is no warranty by /CC Evaluation Service, Inc., express or implied, as to ANSI f any finding or other matter in this report, or as to any product covered by the report 01.08021.01 113 ,J1e71of 2 Copyright © 2004 9 Page 2 of 2 ER -3866 pi/18121108 TABLE 1- SECTION AND STRENGTH PROPERTIES PANEL TOP PANEL BOTTOM STEEL THICKNESS IN COMPRESSION IN COMPRESSION PANEL WEIGHT 1 M, I At, y gage inch (p (inch`lfoot) (inch- kips/foot) (inchdIloot) (inch- kips/toot) (kipsAcrot) 26 0.0197 • 1.2 0.1017 1.878 0.1015 2.031 1.104 24 0.0250 1.6 0.1285 2.571 0.1285 2.571 1.777 22 0.0305 1.9 0.1653 3.243 0.1219 2.763 2.330 20 0.0376 2.3 0.2028 3.975 0.1612 3.504 2.773 For SI: 1 inch = 25.4 mm. 1 psf = 0.0479 kN /m 1 inch /foot = 1369 cm I inch - kips /foot = 370.6 N • m. 1 kip /foot = 14 600 N /m. I/, is the moment of inertia for deflection determination. 2 The strength properties are based on allowable stress design using Fv = 50 ksi and a bending safety factor of 167 "Combined stresses are to he considered in accordance with the following interaction formulae: 1.2 (P /P + (M/A405 1.5 lterc: P = Concentrated load or reaction. P„ = Allowable concentrated load or reaction from Table 3. M = Actual bending moment at or immediately adjacent to the point of application of the concentrated load or reaction. M„ = M, = Allowable bending moment. (M/14,) + (V /l 0 ) 2 <_ 1.0 where: ,14 = Actual heading moment. M = M = Allowable bending moment. V = Actual shear force. 1, = Allowable shear force. 'Uncoated base -metal thickness. TABLE 2- ALLOWABLE GRAVITY LOAD SPANS (in feet) AND WIND UPLIFT LOADS 1 . 2,3,4,5 (in pounds per square foot) 20 PSF LL 30 PSF LL 40 PSF LL PANEL THICKNESS Wind U180 U240 Wind Wind (gage) SPAN CONDITION Stress 1/180 Deft U240 Dell Uplift (psf) Stress Defl. Dell Uplift last) Stress U180 Dell. U240 Detl. Uplift (psi) Simple Span 7.7 7.5 6.8 30 6.3 6.3 6.0 45 5.5 5.5 5.4 59 26 2 Spans 6.5 6.5 6.5 26 5.0 5.0 5.0 38 4.1 4.1 4.1 51 3 or more Spans 7.4 7.4 7.4 26 5.6 5.6 5.6 38 4.6 4.6 4.6 51 Simple Span 8.9 8.0 7.3 23 7.4 7.1 6.4 35 6.4 6.4 5.9 46 24 2 Spans 8.3 8.3 8.3 29 6.8 6.8 6.8 42 5.7 5.7 5.7 55 3 or more Spans 9.3 9.3 9.0 29 7.6 7.6 7.6 42 6.4 6.4 6.4 55 Simple Span 9.9 8.3 7.5 25 8.2 7.3 6.7 36 7.2 6.7 6.1 48 22 2 Spans 9.1 9.1 9.1 34 7.6 7.6 7.6 49 6.6 6.6 6.6 64 3 or more Spans 9.9 9.9 9.3 34 8.2 • 8.2 8.2 49 7.1 7.1 7.1 64 Simple Span 10.9 8.9 8.1 26 9.0 7.9 7.2 38 7.9 7.2 6.6 51) 20 2 Spans 10.2 10.2 10.2 34 8.5 8.5 8.5 49 7.4 7.4 7.4 64 3 or more Spans 11.0 11.0 10.0 34 9.2 9.2 8.9 49 8.0 8.0 8.0 64 For SI: 1 foot = 304.8 mm. 1 psf = 0.0479 kN /m 'Allowable gravity load spans are based on the allowable stress design for a total load equal to the live Toad plus the dead load of the panel shown in Table 1. 2 Reactions at supports must not exceed those shown in Table 3. 3 The allowable spans in this table have been computed for uniform live or wind loads continuous over all panel spans. Consideration must be given to the effects of potential unbalanced accumulations of snow at roof valleys. parapets, roof structures and offsets in roofs of uneven configuration. 4 Roofs must be designed with sufficient slope to ensure adequate drainage as required by Section 1611.7 of the UBC. 5 For multiple span conditions. all spans are of equal length. TABLE 3- ALLOWABLE PANEL REACTION LOAD BASED ON WEB CRIPPLING (pounds per foot of panel width) REACTION LOCATION PANEL THICKNESS (inch) Ends Interior 0.0197 193 250 0.0250 285 541 0.0305 400 896 0.0376 573 1,426 For SI: 1 inch = 25.4 mm. 1 plf = 14.6 N /m, 1 ksi = 6.89 MPa. 'Values are based on an allowable stress design using a steel yield stress of 50 ksi. 2 End reaction values are based on a minimum hearing length of 2 inches. 3 lnterior reaction values are based on a minimum bearing length of 3 inches. 01.08021.01 114 of 137 01/18/2008 le ER -5409P N LEGACY REPORT Reissued March 1. 2005 • ICC Evaluation Service, Inc. Business/Regional Office • 5360 Workman Milt Road. Whither. Califon 90601 • (562) 699-0543 Regional Office • 900 Montclair Road. Suite A. Rim iingbarn. Alabama 35213 • (205i 599 www.icc-es.org Regional Office • 4051 West Flossmoor Road. Country Club Hip:,. Illinois 60-178 • (708) 799-2305 Legacy report on the 1997 Uniform Building CodeTM DIVISION: 05— METALS Steel sections are formed from steel having a minimum Section: 05310 —Steel Deck 50.000 psi (345 MPa) yield strength. complying wish ASTM A Section: 05400 —Cold- Formed Metal Framing 653 designation SS Grade 50 Class 1. ASTM A 570 Grade 50 Section: 05410 —Load- Bearing Metal Studs or ASTM A 607.92 Grade 55 for all steel thicknesses. The steel has a G 90 galvanized or red oxide coating. The C. Z STEEL ROOF, WALL AND FLOOR PANELS. AND COLD- and Eave Strut section designations and conligurations. and FORMED STEEL STRUCTURAL SECTIONS section. torsional and bending and axial properties. are set forth in the specific tables and pages of the handbook noted NCI BUILDING SYSTEMS, L.P. in Section 2.1.1.5 of this report. 14031 WEST HARDY 2.1.1 Design: HOUSTON. TEXAS 77060 2.1.1.1 Load - bearing Stud Walls: Allowable axial loads are A & S based on the compression flange being braced at the OLD HIGHWAY 25 WEST specified lateral support distance. Allowable loads also CARYVILLE. TENNESSEE 37714 assume the use of plates or clips at supports: the plates or clips effectively transfer loads directly to the centroid of the member. Axial load values are noted starting on pages II - - 1. MBCI. L.P. II -H -1. III -G -1. III -H -1. V -G -1. VI -G -1 and VII -G -1 of the 14031 WEST HARDY handbook noted in Section 2.1.1.5. Combined shear and HOUSTON. TEXAS 77060 bending. or axial and bending loads. are as noted in the tables of the handbook noted in Section 2.1.1.5. MESCO HIGHWAY 114 WEST & 400 NORTH KIMBALL 2.1.1.2 Joists: The allowable loads for C- and Z- sections for SOUTH LAKE, TEXAS 76092 various spans are listed in the simple span tables on pages II -1 -1 through II -1 -10 and 111 -1 -1 through 111 -1 -7 of the handbook METALLIC /MIDWEST noted in Section 2.1.1.5. The values are valid only if both 7301 FAIRVIEW flanges are continuously supported laterally with decking or HOUSTON, TEXAS 77240 a positive bracing system. Sections must be checked for web crippling when members are bearing directly onto the 1.0 SUBJECT supports. See web crippling tables on pages II -F -1. III -F -1, V- F - 1. VI - - and VII -F -1 of the handbook noted in Section Steel Roof. Wall and Floor Panels. and Cold - formed Steel 2.1.1.5. Structural Sections. 2.1.1.3 Roof Purlins and Wall Girts: Multiple span load 2.0 DESCRIPTION tables for Z- sections are listed on pages III -J -1 through 1)1 -0- 135 of the handbook noted in Section 2.1.1.5. These values 2.1 C. Z and Eave Struts: are valid only if both flanges are continuously supported The C. Z and Eave Struts are prepunched cold - formed steel laterally with decking or a positive bracing system. Sections stud and joist sections conforming to Chapter 22. Division VII. must be checked for web crippling when members are of the 1997 Uniform Building Coder'''. The C. Z and Eave bearing directly onto the supports. See web crippling tables Struts are roll - formed in various depths and configurations. on page III -G -1 of the handbook noted in Section 2.1.1.5. with the following minimum base -steel thicknesses used in 2.1.1.4 Eave Struts: The allowable loads for Eave Struts for design: various spans are listed in the simple span tables on pages THICKNESS DESIGN THICKNESS V - - 1. VI -H -1 and VII -H -1 of the handbook noted in Section (gage) (inch) (mm) 2.1.1.5. The values are valid only if the compression flange is 16 0.059 1.50 continuously supported laterally with decking or a 'positive 15 0.065 1.65 bracing system. Sections must be checked for web crippling 14 0.070 1.78 when members are bearing directly onto the supports. See 13 0.085 2.16 web crippling tables V -F -1. VI -F -1 and VII -G -1 of the 12 0.105 2.67 handbook noted in Section 2.1.1.5. rrr.+.J rr ,rr'b�r h,..rl .. +t r,. r, rr.nrr tr rr n.. - /lr. r .rrrrr,r. lr lfl. rr,.in.nu.� •,.1. - . r„gr?,..-t. ANSI, 01.08021.01 11 5 Rig 'ot 28 Copyright 6) 2005 Page 2 of 28 ER -5409P 01/10/2000 2.1.1.5 Tables and Notes: Specific tables and notes in the for sections having one flange attached to a qualifying handbook entitled - Light Gage Structural Steel Framing deck or sheathing with qualifying fasteners. P is System Design Handbook. dated October 15. 1998. computed assuming the fasteners are centered on the published by the Light Gage Structural Institute (LGSI). are flange. Refer to Section C4.4 of the 1996 edition of the part of this report and must be available to the building official AISI specifications. at the jobsite. The handbook is available directly from NCI q Combined Shear and Bending: Building Systems. Inc. Only the following tables and general notes are considered as part of this report: a. Combined shear and bending capacities are for ITEM PAGE NUMBERS combined shear and bending in the absence of axial 'table of Contents _ load. Nast 1. General Inforrnai on and I -A -1 through I -A -2 b. Values in the combined shear and bending and Definitions combined axial and bending tables are for sections Pail I. Lateral Stability I -B -1 through 1 -8 -4 supported laterally at both flanges. for their full length. Part 11. C- Section Properties and II-A -1 through 11 -1 -10 Capacities c. The applied shear and bending forces for each section Pan III. z Section Properties and III-A-1 to -pooh 01-0-135 must each be less than the paired values of shear. V. Capacities and moment. M. noted in the combined shear and Pad V. Universal Eave Strut V -A -1 through V -H -3 bending tables. Properties and Capacities 5. Combined Axial and Bending: Part VI. Single Slope Lave Strut VI-A- 1 through VI-H -8 Properties and Capacities a. The applied combined axial and bending forces for Part VII. Double Slope Eave Strut VII-A -1 through VII -H -8 each section must each be less than the paired values Properties and Capacities of axial load. P. and moment. M. noted in the Note: Refer to General Notes for C. Z and Eave Strut Tables. combined axial and bending tables. General Notes for C, Z and Eave Struts: b. The distance between major -axis supports for the 1. General: section must not exceed the buckling length. KL,, noted on page I -B -6 of the LGSI Handbook. a. Computations are based on the Specifications for Design of Cold- formed Steel Structural Members. 6. Web Crippling: 1996 edition. published by the American Iron and a. Web - crippling loads are in accordance with Section Steel Institute (AISI). using allowable stress design C3.4 of the 1996 AISI specification. (ASD) provisions. b. Web - crippling end values are applicable when the b. Structural properties for effective moments of inertia location of the load or reaction is at a distance of at (1) are determined by using Procedure I for deflection least 1.5 tirnes the section depth (1.5h) from the end determination at the allowable moment (M „), in of the bearing support. accordance with Section C3.1.1 of the 1996 edition of the AISI specifications. c. Capacities assume the opposing loads are separated by a distance greater than 1.5 times the section depth. c. When determining the gross section properties. and bending and axial properties of the C sections and Z 7. Axial Capacities: sections. the through - fastened provisions noted on a. Axial capacities are allowable concentric loads in the pagel -B -1 of the LGSI handbook have been absence of bending moment. considered. Refer to Section C3.1.3 of the 1996 edition of the AISI Specification. b. Axial capacities are for sections supported laterally at d. Appropriate factors of safety in accordance with the the distances specified in the table. 1996 edition of the AISI specifications. ASD c. Distance between major axis supports must not provisions. or page I -C -2 of the LGSI Handbook have exceed the buckling length. KL on page 1 -B -6 of the been applied to the specific load conditions. LGSI Handbook. e. Capacities were computed assuming the use of plates 8. Simple Span Capacities: or clips at supports, which will effectively transfer loads directly to the web of the member. If sections a. Simple -span capacities are based on total (dead and are to bear directly on the supports. the sections must live) loads uniformly distributed and in the absence of be checked for web crippling. axial load. The weight of the section has not been subtracted from these values. 2. Torsional: b. Transverse load span capacities are based on a. Torsional properties are used to compute laterally sections being supported laterally at both flanges, for braced strength of sections. Refer to Section C3.1.2 of their full length. the 1996 edition of the AISI specifications. c. In simple -span conditions. the deflection values are 3. Bending and Axial Properties: the amount of deflection that occurs when the full a. The effective section modulus. S. noted in the allowable transverse load is applied. For applications • bending and axial properties. noted on the - C - ' section with special deflection requirements. it may be pages of the LGSI Handbook noted in Section 2.1.1.5 necessary to adjust the allowable capacities. of this report. is computed using effective widths of 9, Continuously Braced Capacities: elements based on sections. Refer to Sections B2, B3 and B4 of the 1996 edition of the AISI specifications. a. Continuously braced capacities are total (dead and live) loads that can be supported by the section in the b. The compressive axial strength for through- fastened absence of axial load. The weight of the section has 01.0 $0e1d in the bending and axial properties noted on not been subtracted from these values116 of 137 the -- section page is the compressive axial strength Page 3 of 28 ER -5409P 0f/10,2000 b. Transverse load span capacities are based on deflection is computed in accordance with the equation in sections being supported laterally at both flanges, for Table 17. See Table 18 for diaphragm stiffness limitations. their full length. 2.2.2 Installation: The "R" and ..U.. panels are attached to c. The values for continuously braced capacities are end structural supports and intermediate steel supporting computed assuming the sections are continuous over members using minimum No. 12 by 14 by'/',- inch -long (19.1 the designated number of spans. with lap conditions mm) hex washerhead (HWH). self - drilling. self- tapping. as specified at all interior supports in the continuously corrosion- resistant steel screws. The screws are supplied by braced capacities table. NCI. LP. The screw fasteners have a 0.092 -inch (4.9 mm) d. The lap conditions and rotation for the C. Z and Eave shank diameter and a / „- inch - diameter (9.5 mm) hex Struts are shown on pages I -C -1 and I -C -2 of the washerhead. The fasteners are installed at end and handbook noted in Section 2.1.1.5 of this report. intermediate supports. using the corresponding number of fasteners and the fastener pattern shown in Figure 3. Panels e. In multiple -span conditions. the deflection values are installed perpendicular to structural members. as shown in the amount of deflection that occurs when the full Figure 4. are attached at the side laps. using minimum '/ -14 allowable load is applied. For applications with special by ' / inch -long (22 mm). TEK corrosion- resistant screws or deflection requirements. it may be necessary to adjust minimum No. 12 -14 by 'l,- inch -long (19.1 mm). TEK the allowable capacities. corrosion- resistant steel screws for the "R” panel or the U" 10. Laterally Braced Capacities: panel. respectively. The panel side lap fasteners are spaced at the maximum spacing of 12 inches (305 mm) or 20 inches a. Laterally braced capacities are total (dead and live) (508 mm) on center as noted in Tables 7 through 16. See loads that can be supported by the section in the Figure 4 for typical installation details. absence of axial load. 2.3 BattenLok Roof and Wall Panels: b. Laterally braced capacities are based on sections The BattenLok panels are cold- formed from steel conforming being supported laterally at both flanges at a distance to the product specifications and thicknesses noted in Table no greater than L . 1. The steel is AZ50 aluminum -zinc -alloy coated (galvalume). c. The values for laterally braced capacities are The sheet steel is used in its bare galvalume state. or coated computed assuring the sections are continuous over with a primer followed by a silicone polyester or a premium the designated number of spans. with lap conditions fluorocarbon finish on both sides. The panels have as specified specified at all interior supports in the laterally wide (19 mm) ribs and are manufactured in cut -to -order braced capacities table. lengths and 12- and 16 -inch nominal widths. They are available in various colors. Standard or custom trim d. In the region between the interior support and the components for eaves. ridges. and valleys are available. See inflection point. the bending strength is computed Figures 5 and 6 for panel profiles. Panel section properties using a lateral brace distance equal to the smaller of are noted in Tables 19A and 20A. and allowable uniform L and the distance from the support to the inflection loads are noted in Tables 19B and 20B. point. Refer to pages I -B -5 and I -B -6 of the LGSI Handbook. Roof panel flashing and trim are installed in accordance with the booklet entitled "MBCI BattenLok Design /Installation e. In multiple -span conditions, the deflection values are Manual, dated April 26, 1999. BattenLok panels are installed the amount of deflection that occurs when the full at a minimum 7,:12 slope. BattenLok panels used as wall allowable load is applied. For applications with special panels are installed over solid substrate or open framing. deflection requirements. it may be necessary to adjust the allowable capacities. 2.4 SuperLok Roof Panels: Parts IV. VIII. IX and A -1 are not part of this evaluation The SuperLok roof panels are cold- formed from steel report. conforming to the product specifications and thicknesses noted in Table 1. The steel is AZ50 aluminum -zinc -alloy 2.2 "R" and "U" Roof Panels: coated (galvalume). The sheet steel is used in its bare The "R and' U" panels are cold- formed from steel conforming galvalume state. or coated with a primer followed by a silicone to the product specifications and thicknesses noted in Table polyester or a premium fluorocarbon finish on both sides. The 1. The steel is AZ50 aluminum- zinc -alloy coated (galvalume). panels have /,,,- inch -wide (11.1 mm) ribs and are The sheet steel is available in its bare galvalume state. or manufactured in cut -to -order lengths and 12- and 16 -inch coated with a primer followed by a silicone polyester or a nominal widths. They are available in various colors. Standard premium fluorocarbon finish on both sides. The panels are or custom trim components for eaves, ridges. and valleys are manufactured in cut -to -order lengths and a 36 -inch (914 mm) available. See Figures 7 and 8 for panel profiles. Panel width. They are available in various colors. Standard or section properties are noted in Tables 21A and 22A, and custom trim components for eaves. ridges. and valleys are allowable uniform loads are noted in Tables 21B and 22B. available. See Figure 1 for R' panel profile and Figure 2 for Roof panel flashing and trim are installed in accordance "U" panel profile. with the booklet entitled "MBCI SuperLok Design /Installation 2.2.1 Design: Information Manual." dated March 8. 1999. SuperLok panels are installed at a minimum '1 slope. 2.2.1.1 General: The panels section properties are noted in Table 3 of this report. The allowable reactions based on web 2.5 Ultra -Dek ' Roof Panels: crippling are noted in Table 4 of this report. The allowable The Ultra -Dek roof panels are cold- formed from steel uniform loads for the "R" panel and the "U" panel are noted in conforming to the product specifications and thicknesses Tables 5 and 6. respectively. noted in Table 1. The steel is AZ50 aluminum - zinc -alloy 2.2.1.2 Diaphragm: The diaphragm shear strength and coated (galvalume). The sheet steel is used in its bare shear stiffness factors for the "R" and "U panels are shown galvalume state. or coated with a primer followed by a silicone in tatt t3021?obhrough 16. Panel end and interior support polyester or a premium fluorocarbon finish on bialt? Wye,s The fastener patterns are shown in Figure 3. Shear diaphragm panels are manufactured in cut -to -order lengths and 2 - 1. 18- Page 4 of 28 ER -5409P 01/10/2000 and 24 -inch nominal widths. They are available in various 4.2 The allowable loads and spans for the C, Z and Eave colors. Standard or custom trim components for eaves. strut members are as set forth in the tables in the ridges. and valleys are available. See Table 23 for panel referenced "Light Gage Structural Steel Framing profiles. Panel section properties are noted in Table 23. and System Design Handbook," cited in Section 2.1.1.5 allowable uniform loads are noted in Tables 24. 25 and 26. of this report. The architect or engineer of record Roof panel flashing and trim are installed in accordance submits to the building official, for approval. with the booklet entitled "MBCI Ultra -Dek Technical /Erection calculations demonstrating that the applied loads Information." dated July 1. 1999. Ultra -Dek root panels are comply with this report. installed at a minimum 1,:12 slope. 4.3 The handbook entitled "Light Gage Structural Steel 2.6 Double - Lok Roof Panels: Framing System Design Handbook." dated October The Double -Lok roof panels are cold- formed from steel 15. 1998, published by the Light Gage Structural conforming to the product specifications and thicknesses Institute, is to be used in conjunction with this noted in Table 1. The steel is AZ50 alurninurn- zinc -alloy report. The handbook must be available to the coated (galvalume). The sheet steel is used in its bare building official upon request. The handbook is galvalume state. or coated with a primer followed by a silicone available directly from NCI Building Systems, Inc. polyester or a premium fluorocarbon finish on both sides. The 4 Panel and cold- formed -steel structural section panels are manufactured in cut -to -order lengths and 12 -. 18- reactions resulting from allowable heights and and 24 inch nominal widths. They are available in various spans noted in the tables must be checked for web colors. Standard or custom trim components for eaves. crippling as noted in the tables of this report and in ridges. and valleys are available. See Table 27 for panel accordance with Section C3.4 of the document profiles. Panel section properties are noted in Table 27. and allowable uniform loads are noted in Tables 28. 29 and 30. entitled "Specifications for Design of Cold- formed Steel Structural Members." 1996 edition. published Roof panel flashing and trim are installed in accordance by the American Iron and Steel Institute (AISI), and with the booklet entitled "MBCI Double -Lok Technical /Erection the 1986 edition (with December 1989 Addendum) as Information." dated July 1. 1999. Double -Lok root panels are referenced in Chapter 22, Division VII, of the UBC. installed at a minimum '1.:12 slope. 4.5 Uncoated minimum steel thickness of members is at 2.7 Identification: least 95 percent of the thickness used in design. Each stud is identified with the manufacturer's logo. stud type. 4.6 Where "R" and "U" panels are used as diaphragms: minimum bare -metal (uncoated thickness) and the ICBO ES evaluation report number (ICBO ES ER- 5409P). Each bundle 4.6.1 The one -third increase in stress (or 0.75 of panels bears an identification label with the manufacturer's reduction of required forces) permitted for name (see list in Table 2). the panel type. the panel minimum Allowable Stress Design, for load bare -steel (uncoated) thickness. and the ICBO ES evaluation combinations containing wind or seismic report number (ICBO ES ER- 5409P). in accordance with forces, shall not be used for shear values in Section 2203.3 of the UBC. the diaphragm tables. 3.0 EVIDENCE SUBMITTED 4.6.2 Allowable diaphragm shear values are set Descriptive details: engineering calculations: computer forth in Tables 7 through 16. printouts: data in accordance with the ICBO ES Acceptance Criteria for Steel Studs. Joists and Tracks (AC46), dated 4.6.3 Diaphragm deflections do not exceed the January 2001. and applicable portions of the ICBO ES permitted relative deflections for walls Acceptance Criteria for Steel Decks (AC43). dated July 1996: between the diaphragm level and the floor and a quality control manual covering each of the below. See Tables 17 and 18 for diaphragm manufacturing locations. deflection and stiffness limitations. 4.0 FINDINGS 4.7 The panels and sections are manufactured at the facilities noted in Table 2. • That the Steel Roof, Wall and Floor Panels, and Cold - formed Steel Structural Sections described in this report This report is subject to re- examination in two years.\ comply with the 1997 Uniform Building Code"' (UBC), subject to the following conditions: 4.1 Studs and panels are installed in accordance with this report and the manufacturers' instruction booklets. 0 01.08021.01 118 of 137 Page 5 of 28 ER -5409P 01/10/2000 TABLE 1- PRODUCT SPECIFICATIONS PRODUCT STEEL STANDARD DESIGN STEEL MINIMUM YIELD THICKNESSES STRENGTH (ksi) (inch - gage) 01 29 GA R .,nn - I1' 91 0 . . , . ::S751A792 -8:4 6Z (t 9 0.7ti 26 GA 0 0223 • 24 GA Cr ;.[ie D D 028 - 22 GA r, 9 0240 - 24 C E0u0'.Le, Rt; J' rr.rct i4' ; ^.. �.. AS71,1 A 7 92 - 83 AZ5/; GiaiX D I 50 C, I3 0293 - 22 A 00185 - 26 GA SJ0 Rnn_ A571,1 792 - 83 8250 Game D 00249.21 2A 50 ) 02991 22 24. (i 0185 - 26 GA Uit,+ - D[:. i191 8921 8792 - 83 AZ50 200.44 D 002 GA 50 0 029:1 • 22 GA 0185.26 G. Cuub'o L;K RUn' a•n: ASTI.1 A 792-83 AZ5() Gc.o[: D 0 0240 - 24 GA .x. _ 0 0290 - 22 GA ^ "o, SI: 111101 2E 4 r'rn 1 TABLE 2- MANUFACTURING FACILITIES S k1, 1:■ 9,, time: C[, ^1:x0.35 Inr- (3C t i [ .. !,' 24 20111 7000 ,i S: , , I', 0•. .'oi1;i CF: OK41100,1 1.1(11. (.1,Ni P,, :ilnt; (10,1; ;...1,1,1111: I0C 11.;.0,1 ,',41 8677 1- 1i(E ?..M 60,:1 - 1. , 11 761 , 92 Ccr:crsc 7,.: ;.,,78109 3,11151 C; .. (',c 6'1 6, : - .c. n;: Co ^ :o0'lo rs (111 4+0 1.0 ,05 91 + ' 56. 1801 2iic, tdcK;>v Doo!eoa'o 50n Ai t[>1•: 86353 Erin s 7[..:0 75119 t,1i :a 6.1 , i n , C0'0090..3:5 I•,r 610a' 80.3i nit Ccr , i:xnC:nts 1110. 553 ,., sl : l:` 14031 9 ..0.131110') 110,030,1 'e IS 77060 1,1:.0,•, 6,1',, ,y CO lu[ M;.'t., Eu- 1(,,,; Co ^rxne•+.ts In[: 11.1 Ro :O'.: 11u.,,, FM 4(1 (2 1.1'111 6,00 Luna 289i 80.; Gcoo a 31620 Lu:a +1.5:, 7. ca.1, 79.01 1,1111.1 0..•i 0.„9 C0'11 111C Meta E;Idd41p c0 Inc 2280 Mir) 01 Avenue 1155 f:est 2300 Norl'; L .., .. S:wnx;o- C,c1151, 31336(7 Sail L:•,e C ty titan 84116 (..Via Cs., .5 „_; 6'c1;, c 0 owes! 30011 ¢ 5'11 14, 1' 7391 + - 0.,v e:. HLtn,,' Gt,. >iss ,' 381332 How-40n Texas 77240 1.1::•0 E.+::i nq C a:r,,o•,r:•,:s Inc t IS, • Bu'11 0: 00•rex!• u'•11s tilt 1011 C 1;11„''0r +tdr 801 SO:,lh 0 1 4, 1 11-1 Ni:11:l:..: 68110 110'1'1.,1 lie (p05 V.(;1 a 23834 1. 6,1 luny C0'11; tr„. 61()/19c.,10 Rr,,,1i. 2:33 R(1rvv Ne;, 'Sc..-. 13:40 TABLE 3 -"R" AND "U" PANEL SECTION AND STRENGTH PROPERTIES'" PANEL TYPE METAL THICKNESS DECK TOP IN COMPRESSION DECK BOTTOM IN COMPRESSION Gage Inch 1 ai V. I 4.f V, (Inch'/toot) (inch- k/foot) (k/toot) (inch'itoot) (Inch- kltoot) (611001) -R. 2+11e' 29 0 0133 0 0215 0 679 0 2611 r. 0 0212 0.976 0 266 211 00176 00341 1 108 0.618 00324 1.355 0618 24 0 0223 0 0498 1 467 1 069 0 0465 1 487 1 069 22 0 0286 0 0653 1 978 1.718 0 041 1 698 1 7 18 • 94' Pnn(' 29 Cl 0133 0.0151 0 827 0.403 0 0106 0 822 0 403 231 0 0176 0 0223 1 319 0 729 () 0152 1 222 (i 72 24 0 0223 00307 1547 0 886 00217 452 0 886 22 0 0286 0 0 403 2 1 1 1 1 133 0 0309 1 916 1 133 For SI: 1 inch = 25.4 min. 1 inch': toot = 136 6 mm`ymm. 1 kltoot = 1.46 x 10` kN'mm. I inch -kip = 0.113 N -m. 1 kip = 4.45 kN, 1 k- inchrtoot = 0.371 k'N'mrn. 1 ksi = 6.89 F4Pa. 'Combined stresses are to be considered rn accordance with the following interaction formulas: 1.2 (P'P) - (AA 1 where: P = Actual concentrated load or reaction (kip). P. = Allowable concentrated load or reaction based on 1 able 4 (kip) 54 = Actual bending moment at o' immediately adjacent to the point 01 application of the concentraction bad reaction (Inch - kip). = Allowable bending moment based on 1 able 3 (mch -kip). (V V,,)' ; I M M,,, ,)' 1.0 where: V = Actual shear force (kip). V, = Allowable shear torte based on 1 able 3 (kip). 54 = Actual bending moment (inch -kip). = Allowable bending moment based on fable 3 (inch -kip). 'Structural properties must be based on f = 50 ksi. nunimum. for 24:22 9a.. and h = 60 ksi. minimum, for 29.26 ga. '13)0 etlecuve moment 01 inertia U,,.) is based on Procedure I of Section C3.1.1 of the AISI Specification for deflection deterrnmation at the allowable 13101nent (4.7,14 01.08021.01 119 of 137 Page 6 of 28 ER-5409P oiii8/2n08 TABLE 4—"R" AND - U" PANEL ALLOWABLE REACTIONS BASED ON WEB CRIPPLING I BASE STEEL THICKNESS I ALLOWABLE LOAD fpoundsrfeett MINIL.113,1 BEARING End Reaction or Load Intern Reaction of PANEL TYPE Gage Irtch LENGTH finches) (F) Load (P,,,) ,„ filil;', I _ 7; 1 IN • 1,22 1 . . • III. If:i ' . s . II 112,,,,, • _ I ... 2,. li.,) x:': ik li ,17,, • ,.. . 12: "2:•••• 1 1 - l'..01,..■ _ _ 2 1 .: .: i - • : • .. 1 ,-- li.ism, i ; ;nu, 1 ;;. 001 I.ri ..I (1:.; .` kg /),. ..I I • s %1,.:111 ts. HIII ..1 1 ) . , , , ; : 1 ; 1 ' , . . : 1 0 ` 0 1 , \ . 1 . 1 . . g . li g i f , . i g i l , 1 1 1 1 ‘ ' , \ 1 , - , 1 . and R i l l 1 1 / , , , : \ 1 1 . 1 1.1pL, ...._' , lik.• 1 ;3. /;;;;;',L 1 .. I. 1. .,,, 1 Ili,. 1 `.;:ff ifILI ,' , 6.1 III,' c il .: - ,..:■:. - 1;, , ,It ,7 ::1,..1:.: ill.w: I .-, .:7■1:,:::: ilk- .1,-..', :1■71 -- 7 4. 4 , ; - .. ; .;'4, ' , ." °' : ,,°.' :°- 1 " 1 ''', 7, i 4 " , '..._ .° °' ' ' "..' ' ": 1 .".! . " " -, .----,' '' ','' '..=." '.`" .''. ": " '-', —• ' ' ' °, 1 ' ■°. 1 3",, - I 24 '',. 4‘1 ',I ',..' '° r ,' 7 ---.-: .-..'-.. 1 .- 7 ,s7 .—..:1 :::,: 1: -:. ; ... : :H.: 7 -)... r 4: .. ,-,,—,..- '' 2::::„ , - •:::- ----:" --.k, i ..-.4.: I •:-., I 1.:.: "- -:,.: ' :— ..F: -:-7 :' .-, --.:: .:,7-., 7 --:: 7: 1 47 " : = 7 "-- 1 tf 7, .': 1 ,' ....,, ... _ ; . - • ,,, ,^; .,.... .;,...; .r i '.;,.. _ ! ‘.; ;,... 1 • ..,,_, 7 ...,: ' --.- -, - 1 !::: " ...:-!,) 7 ::„. " :4 . ..,...`,,i- I. , 2 ,..2 I. .:I: ; - 22 1 Ii. fl I. , - :; - 7' • . , • ;,,,,. '' 2.; ‘,1: ` 4 ; ' ' 7 I 4 ,1I. , ...t, 'I r • ' 1 .H. " : .. 1 '..III.'. 1 " .; iI , I ,"• I , ' I , I , I I . : _ I ' 4 :244 L ' C ,; C: ',., 1: r !. "; 9 'a : ''....; r i •:: . 1 "4 ,,, 1 , ,.-1; 1 .: '2 7 ' 1 . , •.1 , •:;: r: ! 1' ., : : ,.•' I :4‘..,i, . 1 - -,i- --,, 0 1 .,.--, :-, i ,,«", 6 • I , ,,... '.. 71 :-_• 12 I ...,- .... 7 ..,....,... 7 , ' - .' ' 1 , : 4 l' i .. „. :::-::- :::-.p... , ,r,-.4 ' 0 F , ' : 11. r;:;00; 1 " ' -1 ' ''; : 1 r r iT* 1 '; I 4 5 7: : S. r.: I :-.. . . j' i , if,: 7 ,:) ',.. ::,: 1 I ; 0 ‘. . i • It; 7-777 _; , ; i ; ..;,:, ;,,,,,.; ; ,,, . , : .;,;-•• , ..`!;;.- 1 : 7 7 , - .' ' 11: 77 '-7 1 7- '1 Y- 1 ' : 1 , '1 "0 .1-S1 , J , ..:. . .'.'l. ,.,:•', .. 11 ,=.• ,1 , ,, +,::: i 4.',.; ',. i ,,.= 7 ,,, Le • .I.: . Z27. ;;., I ' :f- ;LI :I ,„- 1 4.. °.: :. : .°° `, r °'.,°" --- 1 -.):: r 1 7.r' I '• 7 1 1 . 1 = ;. 4. - L 1 , \ I+ ' 0 ' C ...., ." ':;: ;2.4 ".., ..,, . Ina:Is :IT !;;;:•..r...: r.;" C;;',:r. *,::31" 1.."....^.1`,1 . :',i''.1 ` . ",' 4,.. '.', .:, :"• 4f. ..!," ...? an...: I; i .;;;; ';.: 0.. 17,; :4 ..1.- ,I;;;A:.■ 2 '...;+,..; ;',.;;J:1, 01 ..;;;,,a ." ',.: , J 1 * .,:./ ..."...- .1 ...,, '....,,,...“ r .- .I.•••' , I.1 , '•_)• .t......-.III .t.I 7I, ,•,f•el i7.4,1 - !.41.: - ....4;;;* ,, I.7.3 L.•;.•,..c. r.;41 c•r•d1 .r,a1 l'reol,•9 • , ,, , In,:ir 40°1 - ,...°X., te.C.,' ecri,;-...ort 4 I- .: ,,. .IIer."*.,;.," 1.;... °.)°r h j 7 /7.....1l.y, ... ;,•. ±4r ,, , r ,. .a. , /•% , •:, - .:,..I.Y•4_,r ..4.:: II:Yr • II. 1,7e1. Y..tr: • ,.. ,•;■-.1',...;r1 iv !nil 1 "".1•, le. I' A.I .f.).;11t. ID ,..... ?'.r ,,,,..... ,....,, .,,,, .,..so ,......:, ...., 1...4,I.-..t.rit. 1 T;J;;;;;,-.,;;;, cr , , - ,•:: . -x - ,■;:m , z1 ro.r*..r !.t.; 1.4:31. ;' r ; ID ,..., ,,,.,...... ;',4tqr ! ci'.'r 1. ..,-;1»,, ,, , ID ID ID ID ID ID ID ID 01.08021.01 120 of 137 ID (III 0 Page 10 of 28 ER-5409P al / 1 A131.E 4 1 ALL(Y1•IABLE VERTICAL A7 i fORIZON T AL_ DIAPliPAGf 5HFAP TN) S) -4 ii AP 30-32' - R" PANEL 1 ... , . .... .... .... _i ... ' . .. : . ;•.....• Pivic.. 1 .-.. r, : ;:o -.,:: -..,-.. ....- • 77 ',', .T. „f• -,•,..; I .'''• ' "...'' • • •"'"'„,`„ • "2 ' ' . 1 ..'",, 2 ':::";:: ;•••,•-: 1. r. • . • - . ••••:.,;.., , , i : ::: :•:.•:.,•,, .... ... --4 i ; - • , ••-: c:: -;': •=, c" ;•:: ',"•• '.' ••• i ••'.' ';ir 1 --- .., 2 ;2; •••., *••., -.:'4 .; c.- .-.; , , „ ;.• •.,! 1 :-, r. ':: - 1..'i .'", .7 , fi ':'.! • ""';',. " '...'', *. ' . :''..: :2 ...: ; ' : ': ''...:::: .: ,..:'• ., "'...: , 4! .: l',.::. .1 .”..: ,..: 7: ', ',.1., C,17".. :.• C .., :2: ;:. P 3 t ' i', ,,' • , '" : 7 1 •• 1 •••'• :2, '.." —'• '2• : '.• , .. 1 ..":": ".. :::, :',": ;:" , 1 • E ' : ■:. ' :''., t " 2:,..... 1 :".; i; '..;! ".: ".f.:;:: :., ,..-■ i'D . :•..i. ,:, , ....1; *.7.-•.' ; 1.z.: .1: .7.:• —... %i c• :•:', c. ...,.., *.... = iC.ZL! D j ? ......!-:; • ..,-1 ,,,•.,". ' ,"•!„••••••..• . :, ,••-•'••:,)•: ;• ■-•"•• .4 •"'" • ''• ,,,,,,• •,' •,' „. ,•••',"• ...:',,,, ' ,,`",•,..,!, — ,r. 4 , , , , - , - .7.• : 7' !I•e•• •.,:•.:. 1 , 1,: , 1, zi ..”-,.. '..,:,,: 1' t: c:.,'.,C /. .1:".7.1 •1.."1 :..131,:c. 1: ,-:•,.:,...-.., --.---;.., 1:t ■:.-.1W.I, J.f. l',3,..21 tla ■;■,-. ! • It:: *, ..V t'l,:.. i..... Z ....... "....t,' :•:::. li 1 01.08021.01 121 of 137 Page 14 of 28 ER -5409P 01/18/20n8 TABLE 17— DEFLECTION OF SHEAR DIAPHRAGMS TYPE OF DIAPHRAGM LOADING CONDITION BENDING DEFLECTION. y, SHEAR DEFLECTION. A ',i:tl;'I.' I 1;111.•;; I'nik.rnt I,■.■,l __ "! _'I ' f ;s:la fli,l .:r .:mil II ! ' i' • :;1'l '1121 !Y. .',1:lt•I,i..,:u 1 t .I ,, 1a1. , q :n1 t 1N( ■/ ;'i, J t ;Ui. ., b..nn , .n . „. ,..,Ir I ad,.., 1 ,.n' .. 1. - . - -- 1/ 2/, is .0 :t LI: I,. : n,1 r I. ,.:,I 1' :,I :,I ,, i vi:d -- ∎l / I „I Si: 1 1 1 1 . 1 : = _ . . I : n : . t : . f 1 , . . _ 0` \ 1 1 ' , . . I . y r ; t n . = 1 .t \:nt. 1 ,, „1 = ..0 I.Y nln1. f ki; _ . 1 :. 1, \_ ; kip/1,,,,I = 1 , 1.\ nl \t I.II_•I;i , , ::Inl!...it 1 ;11:11. - - I >,;•11: .,i 1:11 'll l :flit ii., . r• , til:.:! , iilln :• , ■1 ! , „ I • .i.11:.a 11•m l :,hli, _ thn In ILI:Itch: / \1..1111::1 , 1n.:ii.: „1 t1:u12.' j'd:Inici..1 u1, ,.:II,, tn. iiun :I\1 ,d tit: ,li:wln..nu , :;1.11'!. i - Ai k.'r.,_1 „1 .1 .11.1; 11,.11 ; ^. ti:I - 1 :10..:111 I, I . I.I I !..•,..i , \1) IT: l I.. • 1 , I:1i ,Ii1l:,•li„n , . , 11.... ,h:,I :•in.. „n.. „I hosh (II: hi 1111:11:' And , h1.0 111111. In ): mar,•:,:: _ I ,1rii; rinit rl .'n1:I dioph .,rn; .nk h, 0 : \. - ,,,,h„,,, .,....;,.•:•,,,.. , 1:1;11:. .A 111:.:! ,1, 1;c.t: iu:hl.tir.c Ihr ;I.II:.r.;• du: 1„ ,:.■nI •lir :m,! ) JI „rtion :iu:',t,. ID TABLE 18— DIAPHRAGM STIFFNESS LIMITATIONS 40 ' MAXIMUM SPAN SPAN DEPTH LIMITATION SHEAR IN FEET FOR STIFFNESS MASONRY OR Rotation Not Considered in Diaphragm Design Rotation Considered in Diaphragm Design STIFFNESS CONCRETE CATEGORY G (kip+mch) WALLS Masonry or Concrete Walls I Flexible Walls' Masonry or Concrete Walls Flexible YJalls' \ii\ 11,-.:1 - \ u \„t :1 1 ” I \. 11,,,t l I L'.11 '!r! 2:1 , .t :I I,•yuili,l l '1 ili1l:ili I ::1 \,n n.:J - , it : .lh!: ! + ! 11 xi ,:1 “t :Is ti,luili•,1 lip ,:ell :ti in , 1:1 \. I:,lu i.,1 1 1,1.1 I :1 Sin1t , till I I iilln ! \„ Ii 111.1li,'n :1 „1 :is 1:::1111w,1 t.n Uu ,Iiilii. ,s:1 r:ynu :l \, „ l I.n , L( .Ii .+:! ID \Ull !!115 \n Iunu.ai „n I As riyuirill 1. r de1loction I NO IilltiialL•11 \, rryun.',l 1. ,1,11c,.6„, ::1 40 F„, SI: i H.r1 - t11: > ;11111. 11.11 1 k \1111. I \111r11 .11 :nr Ia: hunt:un 1, i.I!ud:\ct.h.t; iI c •pant &wit -ratio t, ill hi „::•11:111 Ih:u ,It „+,n. IlD III 3' -0” COVERAGE I RP. 1 1' TYP. SMOOTH t� 1 �E — 3 1/8” TYP. 1 I FIGURE 1 —"R” PANEL PROFILE 1, 3' -0' COVERAGE 0 6" TYP. 1" IYP. SA100TH n 0 / 1 11 0 25 /16'TM. I 1 FIGURE 2 —"U" PANEL PROFILE 01.08021.01 122 of 137 Page 15 of 28 ER -5409P 0 1 I1 8/2n08 3' -0' 3' 1 6' 1 6' + 6" r 1 r 3' V MR MU DO SUPPORT 9' I f � f if PANfl PFOi*E I(IERIELIAT[ SUPPORT 2 1/2' r 5" T 5" i 7' 1 2 1/2' I 1 if PAWL PROW DO 41W1 2 1/2' 1' -0' 1' -0' 9 1/2' R' F J PROFIE IIIDI IWE %Mat FIGURE 3 —END SUPPORT AND INTERIOR SUPPORT FASTENER PATTERNS 01.08021.01 123 01 137 Page 16 of 28 ER -5409P 0 METAL STUD "R" PANEL OR FRAWING v PANEL CLRT A b — Iii -- "R' PANEL OR 11" PANEL 12 -14 X 3/4 LANG —LIFE SELF — DRILLER W ASHER 12 - X 1 1/4 LONG —UFE SELF - 6 PER PANEL TOP VIEW MIER W/WASNER 6 PER PANEL - ENDLAP AT PARTITION WALL -WALL PANEL ENDLAP SIDELAP FASTENER 1 0 12" OR 20" D.C. 12 -14 X 1 1/4 LONG —UFE SELF - "R" PANEL ORILLFR Vs/WASHER 4 0 12 -14 X 1 1/4 LONG —UTE 2 " _ � - - - � _ SELF= DRIUER W/NASHER 0 6" O.C. 1111 U" PANEL PURUN OR GIRT - 12 - PANEL OR 1J" PANEL - SOW FASTENER 1. r 0 1Y OR 20" O.C. 12 - 14 X t 1/4 LONG —LIFE SELF— 1R1 —BEAD TAPE SEALER DRILLER W/WASHER PANEL PURLIN PURUN OR GIRT 49 -ROOF PANEL ENDLAP -PANEL SIDELAP FASTENERS 1 USE 1/4 -14 X 7/8" FOR ROOF MD EXTERIOR WALLS—"R" PANEL USE 12 -14 X 3/4" FOR ROOF AND EXTERIOR WALLS -V PANEL 2 USE 112 -14 X 3/4" FOR MINI STORAGE INTERIOR WALL PARTITIONS le FIGURE 4 40 01.08021.01 124 of 137 • ® 4 O1 17 0 RTTM � k � Reissued September 1. 2007 This report is subject to re- examination in two years. ICC Evaluation Service, Inc. Business/Regional Office • 5360 Woikrnan Mill Raid. Whittier. California 90601 • (562) 699 -0543 Regional Office • 900 Montclair Ro30. Suite A. Birmingham. Alabama 35213 • (205) 599 -9800 www.icc-es.or Regional Office • 4051 West Fiossmoor Road. Country Club Hills. Illinois 60478 • (708) 799 -2305 DIVISION: 03— CONCRETE stainless steel. The hex nut for carbon steel conforms to Section: 03151— Concrete Anchoring ASTM A 563 -04. Grade A. and the hex nut for stainless steel conforms to ASTM F 594. REPORT HOLDER: The anchor body is comprised of a high- strength rod threaded at one end and a tapered mandrel at the other end. HILTI. INC. The tapered mandrel is enclosed by a three - section 5400 SOUTH 122 EAST AVENUE expansion element which freely moves around the mandrel. TULSA. OKLAHOMA 74146 The expansion element movement is restrained by the (800) 879 -8000 mandrel taper and by a collar. The anchor is installed in a rfwVt "r.urs.flilti.com predril(ed hole with a hammer. When torque is applied to the HiitiTechE-na: us.hilti.con nut o1 the installed anchor. the mandrel is drawn into the expansion element. which is in turn expanded against the wall EVALUATION SUBJECT: of the drilled hole. Installation information and dimensions are set forth in HILTI KWIK BOLT TZ CARBON AND STAINLESS STEEL Section 4 -3 and Table 1. ANCHORS IN CONCRETE Normal- weight and structural lightweight concrete must 1.0 EVALUATION SCOPE conform to Sections 1903 and 1905 of the IBC and UBC. Compliance with the following codes: 4.0 DESIGN AND INSTALLATION n 2006 International Building Code" (IBC) 4.1 Strength Design: ▪ 2006 International Residential Code` (IRC) 4.1.1 General: Design strengths must be determined in accordance with ACI 318 -05 Appendix D and this report. • 1997 Uniform Building Code" (UBC) Design parameters are provided in Tables 3 and 4. Strength Property evaluated: reduction factors 0 as given in ACI 318 0.4.4 must be used for load combinations calculated in accordance with Section Structural 1605.2.1 of the IBC or Section 1612.2 of the UBC. Strength 2.0 USES reduction factors O as given in ACI 318 D.4.5 must be used for load combinations calculated in accordance with ACI 318 The Hilti Kwik Bolt TZ anchor (KB -TZ) is used to resist static. Appendix C or Section 1909.2 of the UBC. Strength reduction wind. and seismic tension and shear loads in cracked and factors O corresponding to ductile steel elements may be uncracked normal- weight concrete and structural sand used. An example calculation is provided in Figure 6. lightweight concrete having a specified compressive strength. of 2.500 psi to 8.500 psi (17.2 MPa to 58.6 MPa): and 4.1.2 Requirements for Static Steel Strength in Tension: cracked and uncracked normal- weight or structural sand The steel strength in tension must be calculated in lightweight concrete over metal deck having a minimum accordance with ACI 318 D.5.1. The resulting N values are specified compressive strength. f'. of 3.000 psi (20.7 MPa). provided in Tables 3 and 4 of this report. The anchoring system is an alternative to cast -in -place 4.1,3 Requirements for Static Concrete Breakout anchors described in Sections 1911 and 1912 of the IBC and Strength in Tension: The basic concrete breakout strength Sections 1923.1 and 1923.2 01 the UBC. The anchors may in tension must be calculated according to ACI 318 Section also be used where an engineered design is submitted in 0.5.2.2. using the values of h. and k, as given in Tables 3 accordance with Section 8301.1.3 of the IRC. and 4 in lieu of h,., and k. respectively. The nominal concrete 3.0 DESCRIPTION breakout strength in tension in regions where analysis indicates no cracking in accordance with ACI 318 Section KB -TZ anchors are torque - controlled. mechanical expansion D.5.2.6 must be calculated with (P as given in Tables 3 and anchors. KB -TZ anchors consist of a stud (anchor body). 4. For carbon steel KB -TZ installed in the soffit of structural wedge (expansion elements). nut. and washer. The anchor sand lightweight or normal - weight concrete on steel deck floor (carbon steel version) is illustrated in Figure 1. The stud is and roof assemblies, as shown in Figure 5. calculation of the manufactured from carbon or stainless steel materials with concrete breakout strength may be omitted. (See Section corrosion resistance equivalent to Type 304 stainless steel. 4.1.5.) Carbon steel KB -TZ anchors have a minimum 5 um (0.00002 inch) zinc plating. The expansion elements for the carbon and 4.1.4 Requirements for Critical Edge Distance: In stainless steel KB -TZ anchors are fabricated from stainless applications where c < c,., and supplemental reinforcement to steel with corrosion resistance equivalent to Type 316 control splitting of the concrete is not present, the concrete F5 REPORTS+ L ) t ) r tl r r r r I r r 1 rr _ u , 6 1 /: ;)u , n \u.r.'.. I , r_ r nr.yk. , ;s t .m• r �� C � .i , rs.vwmranq.. mmucr Mrvrwpw 01.08021.01 125 of 137 Copyright (0 2007 rage of 14 Page 2 of 14 ESR -1917 01/10/2000 breakout strength in tension for uncracked concrete. lightweight or normal- weight concrete on steel deck floor and ID calculated according to ACI 318 Section D.5.2. must be roof assemblies. as shown in Figure 5. is given in Table 3. further multiplied by the factor 1 -0,.. ; ,.. ; as given by the following equation: 4.1.7 Requirements for Static Concrete Breakout ID Strength of Anchor in Shear. V„ or V„ Static concrete c breakout strength shear capacity must be calculated in W„,. = (1) accordance with ACI 318 Section D.6.2 based on the values C. provided in Tables 3 and 4. The value of t,. used in ACI 318 49 Equation (0 -24) must taken as no greater than h,.,. whereby the lactor W need not be taken as less 4.1.8 Requirements for Static Concrete Pryout Strength 1.5h of Anchor in Shear. V, or V Static concrete pryout than . For all other cases. W,..., = 1.0. Values for the c,,. strength shear capacity must be calculated in accordance critical edge distance c,,. must be taken from Table 3 or Table with ACI 318 Section 0.6.3. modified by using the value of k._ 4. provided in Tables 3 and 4 of this report and the value of k. or N,,,,. as calculated in Section 4.1.3 of this report. For 4.1.5 Requirements for Static Pullout Strength in anchors installed in the soffit of structural sand lightweight or Tension: The pullout strength of the anchor in cracked and normal- weight concrete over profile steel deck floor and roof uncracked concrete. where applicable. is given in Tables 3 assemblies. as shown in Figure 5. calculation of the concrete and 4. In accordance with ACI 318 Section D.5.3.2. the pry -out strength in accordance with ACI 318 Section D.6.3 is nominal pullout strength in cracked concrete must be not required. calculated according to the following equation: 4.1.9 Requirements for Minimum Member Thickness, ' f Minimum Anchor Spacing and Minimum Edge Distance: 0 N "'" y (Ib. psi) (2) In lieu of AC1 318 Section D.8.3. values of c ,, , , . , and s, , as given in Tables 2 and 3 of this report must be used. In lieu of ACI 318 Section 0.8.5. minimum member thicknesses h,._. as 49 given in Tables 3 and 4 of this report must be used. Additional combinations for minimum edge distance c,,., and spacing s., f may be derived by linear interpolation between the given • N...,. = N,. l � (N. MPa) boundary values. (See Figure 4.) The critical edge distance 17'2 at corners must be minimum 4h, , in accordance with ACI 318 Section D.8.6. In regions where analysis indicates no cracking in 4.1.10 Requirements for Seismic Design: For load accordance with AC1318 Section D.5.3.6. the nominal pullout combinations including earthquake. the design must be strength in tension must be calculated according to the following equation: performed according to ACI 318 Section D.3.3 as modified by Section 1908.1.16 of the IBC, as follows: f CODE ACI 318 D.3.3. CODE EQUIVALENT N ; .,, , , = N ,,,, ; (lb, psi) {3} SEISMIC REGION DESIGNATION Moderate or high Seismic Design IBC and IRC Categories seismic risk C. D. E. and F Moderate or high Seismic Zones N,, = N ,,, i f (N. MPa) • UBC seismic risk 2B. 3, and 4 y17.2 • The nominal steel strength and the nominal concrete 49 breakout strength for anchors in tension. and the nominal Where values for N or N,,,,,,,., are not provided in Table 3 concrete breakout strength and pryout strength for anchors in or Table 4. the pullout strength in tension need not be shear. must be calculated according to ACI 318 Sections D.5 evaluated. and D.6. respectively, taking into account the corresponding • The pullout strength in cracked concrete of the carbon steel values given in Tables 3 and 4. The anchors comply with ACI KB -TZ installed in the soffit of sand lightweight or normal- 318 D.1 as ductile steel elements and must be designed in weight concrete on steel deck floor and roof assemblies. as accordance with ACI 318 Section D.3.3.4 or D.3.3.5. The shown in Figure 5, is given in Table 3. In accordance with ACI nominal pullout strength N. and the nominal steel strength 318 Section 0.5.3.2. the nominal pullout strength in cracked for anchors in shear V must be evaluated with the values concrete must be calculated according to Eq. (2). whereby given in Tables 3 and 4. The values of N„,„„,,,.. must be adjusted • the value of N ., must be substituted for N,.,,,_ The use of for concrete strength as follows: stainless steel K -TZ anchors installed in the soffit of concrete on steel deck assemblies is beyond the scope of t f N....., = N .., .. ' (lb. psi) ( this report. In regions where analysis indicates no cracking in " ''' 2.500 accordance with ACI 318 Section D.5.3.6. the nominal pullout strength in tension may be increased by W,..,, as given in Table 3. tP , is 1.0 for all cases. Minimum anchor spacing N = N ,,,. ; _ . ! f (N. MPa) along the flute for this condition must be the greater of 3.0h,,. N 17.2 or 17, times the flute width. 4.1.6 Requirements for Static Steel Shear Capacity V,: In If no values for N., or V, are given in Table 3 or Table lieu of the value of V, as given in ACI 318 Section 0.6.1.2(c). 4. the static design strength values govern. (See Sections the values of V, given in Tables 3 and 4 of this report must be 4.1.5 and 4.1.6.) used The shear strength V,,,,,,.,, as governed by steel failure 4.1.11 Structural Sand Lightweight Concrete: When of Ne %/ $2 installed in the soffit of structural sand structural lightweight concrete is used. values t 5lrrtMed in Page 3 of 14 ESR -1917 01/10/2000 accordance with ACI 318 Appendix D and this report must be installations into the soffit of concrete on steel deck modified by a factor of 0.60. assemblies. see Figure 5. 4.1.12 Structural Sand Lightweight Concrete over Metal 4.4 Special Inspection: Deck: Use of structural sand lightweight concrete is allowed in accordance with values presented in Table 3 and Special inspection is required. in accordance with Section installation details as show in Figure 5. 1704.13 of the IBC and Section 1701.5.2 of the UBC. The special inspector must be on the jobsite continuously during 4.2 Allowable Stress Design: anchor installation to verify anchor type. anchor dimensions. 4.2.1 General: Design resistances for use with allowable concrete type, concrete compressive strength, hole stress design load combinations calculated in accordance dimensions. hole cleaning procedures. anchor spacing. edge with Section 1605.3 of the IBC and Section 1612.3 of the distances. concrete thickness. anchor embedment. and UBC. must be established as follows: tightening torque. 5.0 CONDITIONS OF USE = (5) The Hilti KB -TZ anchors described in this report comply with the codes listed in Section 1.0 of this report. subject to the where R. = b R. represents the limiting design strength in following conditions: tension (ON.) or shear (OV.,) as calculated according to ACI 5.1 Anchor sizes. dimensions and minimum embedment 318 Sections D.4.1.1 and D.4.1.2 and Section 4.1 of this depths are as set forth in this report. report. For toad combinations including earthquake. the value R, in Equation (5) must be multiplied by 0.75 in accordance 5.2 The anchors must be installed in accordance with the with ACI 318 Section D.3.3.3. Limits on edge distance. manufacturer's published instructions and This report. In anchor spacing and member thickness. as given in Tables 3 case of conflict. this report governs. and 4 of this report. must apply. Allowable service loads for 5.3 Anchors must be limited to use in cracked and single anchors in tension and shear with no edge distance or uncracked normal - weight concrete and structural sand spacing reduction are provided in Tables 6 through 9. for lightweight concrete having a specified compressive illustration. These values have been derived per Equation (5) strength. f' of 2.500 psi to 8.500 psi (17.2 MPa to 58.6 using the appropriate strength reduction factors ¢from Tables MPa), and cracked and uncracked normal- weight or 3 and 4 and the a factors provided in Section 4.2 of this structural sand lightweight concrete over metal deck report. having a minimum specified compressive strength. 1' . The value of a must be taken as follows: of 3.000 psi (20.7 MPa). REFERENCE FOR STRENGTH a 5.4 The values of f' . used for calculation purposes must not REDUCTION FACTORS Including Excluding exceed 8.000 psi (55.1 MPa). Seismic Seismic 5.5 Loads applied to the anchors must be adjusted in ACI 318 Section D.4.4 1.1 1.4 accordance with Section 1605.2 of the IBC and ACI 318 Section D.4.5 1.2 1.55 Sections1612.2 or 1909.2 of the UBC for strength design. and in accordance with Section 1605.3 of the 4.2.2 Interaction: In lieu of ACI 318 D.7.1. D.7.2 and D.7.3, IBC and Section 1612.3 of the UBC for allowable stress interaction must be calculated as follows: design. For shear loads V 0.2 V the full allowable load in 5.6 Strength design values must be established in 5.. tension T , may be taken. accordance with Section 4.1 of this report. For tension loads T 0.2 • T . the full allowable load 5.7 Allowable design values are established in accordance in shear V , <• may be taken. with Section 4.2. For all other cases: 5.8 Anchor spacing and edge distance as well as minimum member thickness must comply with Tables 3 and 4. T t V 1.2 (6) 5.9 Prior to installation. calculations and details TaR .A SO V,rro .A SLY demonstrating compliance with this report must be submitted to the code official. The calculations and details must be prepared by a registered design 4.3 Installation: professional where required by the statutes of the Installation parameters are provided in Table 1 and in Figure jurisdiction in which the project is to be constructed. 2. The Hilti KB -TZ must be installed according to 5.10 Since an ICC•ES acceptance criteria for evaluating data manufacturer's published instructions and this report. Anchors to determine the performance of expansion anchors must be installed in holes drilled into the concrete using subjected to fatigue or shock loading is unavailable at carbide- tipped masonry drill bits complying with ANSI this time. the use of these anchors under such B212.15 -1994. The nominal drill bit diameter must be equal conditions is beyond the scope of this report. to that of the anchor. The drilled hole must exceed the depth of anchor embedment by at least one anchor diameter to 5.11 Anchors may be installed in regions of concrete where permit over - driving of anchors and to provide a dust collection cracking has occurred or where analysis indicates area as required. The anchor must be hammered into the cracking may occur ( > f.). subject to the conditions of predrilled hole until at least four threads are below the fixture this report. surface. The nut must be tightened against the washer until 5.12 Anchors may be used to resist short -term loading due to the torque values specified in Table 1 are achieved. For wind or seismic forces. subject to the conditions of this installation in the soffit of concrete on steel deck assemblies. report. the hole diameter in the steel deck not exceed the diameter of tte.lp®teinUhe concrete by more than '/, inch (3.2 mm). For 5.13 Where not otherwise prohibited in the 1Q4c}it.1 8 -TZ member thickness and edge distance restrictions for anchors are permitted for use with fire- resistance -rated Page 4 of 14 ESR -1917 0 I/10/2000 construction provided that at least one of the following 6.0 EVIDENCE SUBMITTED conditions is fulfilled: 6.1 Data in accordance with the ICC -ES Acceptance • Anchors are used to resist wind or seismic forces only. Criteria for Mechanical Anchors in Concrete Elements • Anchors that support a fire - resistance -rated envelope (AC193). dated January 2007 (ACI 355.2). or a fire- resistance -rated membrane are protected by 6.2 A quality control manual. approved fire - resistance- rated materials. or have been evaluated for resistance to fire exposure in 7.0 IDENTIFICATION accordance with recognized standards. The anchors are identified by packaging labeled with the • Anchors are used to support nonstructural elements. manufacturer's name ( Hilti. Inc.) and contact information, 5.14 Use of zinc - coated carbon steel anchors is limited to anchor name. anchor size. evaluation report number (ICC-ES dry. interior locations. ESR- 1917). and the name of the • inspection agency (Underwriters Laboratories Inc.). The anchors have the letters 5.15 Special inspection must be provided in accordance with KB -TZ embossed on the anchor stud and four notches Section 4.4. embossed into the anchor head. and these are visible after 5.16 Anchors are manufactured by Hilti AG. in Schaan. installation for verification. Liechtenstein. under a quality control program with inspections by Underwriters Laboratories Inc. (AA -637). • • • 0 4) 0 01.08021.01 128 of 137 Page 5 of 14 ESR -1917 01/18/2008 UNC thread mandrel t #1 �, dog point i f+.Ei ) expansion setting assist element collar washer hex nut bolt FIGURE 1 —HILTI CARBON STEEL KWIK BOLT TZ (KB - TZ) TABLE 1— SETTING INFORMATION (CARBON STEEL AND STAINLESS STEEL ANCHORS) SETTING Nominal anchor diameter (in.) INFORMATION S - mbol Units 38 112 518 3 4 In. 0.375 0.5 0.625 0.75 Ancho:O.O. c (rnm) (9.5) (12JI 115.9) ;19.1. Nominal b6 diameter c; • In. 3 1'2 5'8 3 Effective min. In. 2 2 3.1:4 3 -1'8 4 3 -34 -34 embedment (rnm) (51) (51) (83) 179) (102) (95) (121) In- 2.5 e 2-5'8 4 3-7/8 4 -14 4 -5 ;.3'4 Min. hole depth (rnm) (67) (67) 11021 198) (121) (117; 11461 Min. thickness of In. 34 1!4 3'8 34 1.8 56 fastened pan' (rnm) (6) (19) (6) ( (19) (3) (41I h -Ib 25 40 60 110 Installation torque Ti„ (Nm) (341 (5 (81) (149) Min. dia. of hole in In. 7:16 9 11:16 13.16 fastened par (mm) (11.1) 04.3) (17.5) (20.6) Standard anchor In. 3 3-3/4 5 3 -3 4 -1:2 5-1/2 7 4 -3'4 6 8-1/2 10 5 -1:2 8 10 lengths (mm) (76) (95) 11271 (95) (114) (146) 1178) (121) (1521 (216) (254) (1401 (203) (254) Threaded length In, 718 1-5/8 2-7/8 1-5,8 2 -38 3 -3•8 4 -718 1-1/2 2 -3 4 5-1:4 6-3:4 1 -1:2 4 6 lind.doy point;' (min) (22) (41) (73) (41) (60) (86) (124) (38) (70) (133) 1171) (38) (102) (152) Unthreaded length Q In. 2-1/8 2-1/8 3-1/4 4 (mm( (54) (54) (83) (102) I The minimum thickness of the fastened part is based on use of the anchor at minimum embedment and is controlled by the length of thread. If a thinner fastening thickness is required. increase the anchor embedment to suit. 01.08021.01 129 of 137 Page 10 of 14 • ESR -1917 01/18/2008 TABLE 7 -KB -TZ CARBON AND STAINLESS STEEL ALLOWABLE STATIC TENSION (ASD), NORMAL- WEIGHT CRACKED CONCRETE, CONDITION B (pounds) Concrete Compressive Strength` • Nominal Embedment Anchor Depth h.., f'c = 2.500 psi fe = 3.000 psi fc = 4.000 psi f'c = 6.000 psi Diameter (in.) Carbon Stainless Carbon Stainless Carbon Stainless Carbon Stainless steel steel steel steel steel steel steel steel 3/8 2 1.054 1.086 1.155 1.190 1.333 1,374 1.633 1.683 2 1.116 1.476 • 1.223 1.617 1.412 1.868 1.729 2.287 1/2 31/4 2.282 2,312 2.500 2.533 2.886 2.925 3.535 3.582 3 1/8 2.180 2.180 2.388 2.388 2.758 2.758 3.377 3.377 5/8 4 3.157 2.711 3.458 2.970 3.994 3.430 4.891 4.201 3 3/4 2.866 3.765 3,139 4.125 3.625 4.763 4.440 5.833 3/4 4 3/4 4,085 4.085 4.475 4.475 5.168 5.168 6.329 6.329 For SI: 1 Ibt = 4.45 N. 1 psi = 0.00689 MPa For pound -inch units: 1 111rn = 0.03937 inches 'Values are for single anchors with no edge distance or spacing reduction. For other cases. calculation of R as per ACI 318 -05 and conversion to ASD in accordance with Section 4.2.1 Eq. (5) is required. Values are for normal weight concrete. For sand - lightweight concrete. multiply values by 0.60. 'Condition B applies where supplementary reinforcement 111 conformance with ACI 318 - 05 Section D.4.4 is not provided. or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified. the strength reduction factors associated with Condition A may be used. TABLE 8 -KB -TZ CARBON AND STAINLESS STEEL ALLOWABLE STATIC SHEAR LOAD (ASD), (pounds)' Nominal Allowable Steel Capacity. Static Shear ID Anchor - Diameter Carbon Steel Stainless Steel ID 3/8 1.669 2.661 1/2 2.974 3.194 5/8 4.901 5.495 0 3/4 7.396 9.309 For SI: 1 lb( = 4.45 N 'Values are for single anchors with no edge distance or 0 • spacing reduction due to concrete failure. ID el 0 0 01.08021.01 130 of 137 Page 11 of 14 ESR -1917 01/18/2008 TABLE 9 -KB -TZ CARBON AND STAINLESS STEEL ALLOWABLE SEISMIC TENSION (ASD). NORMAL - WEIGHT CRACKED CONCRETE, CONDITION B (pounds)' 2 ' 3 Concrete Compressive Strength' Nominal Embedment f'c = 2.500 psi f'c = 3.000 psi lc = 4.000 psi ft = 6.000 psi Anchor Depth h • Diameter (in.) Carbon Stainless Carbon Stainless Carbon Stainless Carbon Stainless steel steel steel steel steel steel steel steel 3./8 2 1.006 1.037 1.102 1.136 1.273 1.312 1.559 1.607 2 1.065 1.212 1.167 1.328 1.348 1.533 1.651 1.878 1/2 31/4 2.178 2.207 2.386 2.418 2.755 2.792 3.375 3.419 3 118 2.081 2.081 2.280 2.280 2.632 2.632 3.224 3.224 5/8 4 3.014 2.588 3.301 2.835 3.812 3.274 4.669 4.010 3 3`4 2.736 3.594 2.997 3.937 3.460 4.546 4.238 5.568 3/4 4 3/4 3.900 3.900 4.272 4.272 4.933 4.933 6.042 6.042 For SI: 1 Ibf = 4.45 N. 1 psi = 0.00689 MPa For pound -inch units: 1 mm = 0.03937 inches `Values are for single anchors with no edge distance or spacing reduction. For other cases. calculation of R. as per ACI 318 -05 and conversion to ASD in accordance with Section 4.2.1 Eq. (5) is required. 'Values are for normal weight concrete. For sand - lightweight concrete. multiply values by 0.60. Condition 8 applies where supplementary reinforcement in conformance with ACI 318 -05 Section D.4.4 is not provided. or where pullout or p•yout strength governs. For cases where the presence of supplementary reinforcement can be verified. the strength reduction factors associated with Condition A may be used. TABLE 10 -KB -TZ CARBON AND STAINLESS STEEL ALLOWABLE SEISMIC SHEAR LOAD (ASD). (pounds)' Nominal Allowable Steel Capacity. Seismic Shear Anchor Diameter Carbon Steel Stainless Steel 3/8 999 1.252 1/2 2.839 3.049 5/8 4.678 5.245 3/4 6.313 6.477 For SI: 1 lbf = 4.45 N `Values are for single anchors with no edge distance or spacing reduction due to concrete failure. • 01.08021.01 131 of 137 .� R EPORTTM E�I�i�b�5* Reissued January 1. 2007 This report is subject to re- examination in two years. Business/Regional Office • 5360 \Mohrnnn Mill Road. Whittier. California 90601 • (562) 699-0543 ICC Evaluation Service, Inc. Regional Office • 900 Montclair Road. Suite A. Birmingham. Alabama 35213 • (205i 599 -9800 W W W .1 C C -e S . O r g Regional Office • 1051 West Flossmoor Road. Country Club Hills. Illinois 60478 • (708) 799 - 2305 DIVISION: 04—MASONRY 153 The studs. nuts and washers of the 304 and 316 Section: 04081 — Masonry Anchorage stainless steel Kwik Bolt 3 anchors are also made from stainless steel All 304 stainless steel. 316 stainless steel. REPORT HOLDER: and hot - dipped galvanized Kwik Bolt 3 anchors use 316 stainless steel wedges. HILTI. INC. The stud consists of a high- strength rod threaded at one 5400 SOUTH 122 EAST AVENUE end. The standard Kwik Bolt 3 has a thread length equal to or TULSA. OKLAHOMA 74146 less than three bolt diameters. while the Long Thread Kwik (800) 879 -8000 Bolt 3 has a thread length greater than three bolt diameters. lV wVl- us.hilti.corn The tapered mandrel has an increasing diameter toward the HiltiTechEncl(4 11 anchor base. and is enclosed by a three - section wedge that freely moves around the mandrel. In the vertical direction. the EVALUATION SUBJECT: wedge movement is restrained by the mandrel taper at the bottom and by a collar al the top of the mandrel. When the KWIK BOLT 3 MASONRY ANCHORS anchor nut is tightened. the wedge is forced against the wall of the predrilled hole to provide anchorage. 1.0 EVALUATION SCOPE 4.0 DESIGN AND INSTALLATION Compliance with the following codes: 4.1 Design: ■ 2006 International Building Code` (IBC) Minimum embedment depth. edge distance. and spacing • 2006 International Residential Code' (IRC) requirements are set forth in Table 1. Allowable stress design tension and shear loads are as noted in Tables 2 and 3. • 1997 Uniform Building Code'M (UBC) Allowable loads for Kwik Boll 3 anchors subjected to Properties evaluated: combined shear and tension forces are determined by the following equation: Structural PIP, + V.'V 2.0 USES ( ) i ) " :: 1 where: ID The Kwik Bolt 3 (KB3) Masonry Anchor is used to resist static and transient seismic and wind tension and shear loads in P = Applied service tension load (Ibf or N). untracked, grout - filled concrete masonry. The anchor system P = Allowable service tension load (Ibf or N). is an alternative to cast -in -place anchors described in Section 2107 (ACI 530) of the IBC and Section 2107.1.5 of the UBC.. V = Applied service shear load (Ibf or N). The anchor systems may also be used where an engineered V = Allowable service shear load (lbf or N). design is submitted in accordance with Section 8301.1.2 of the IRC. 4.2 Installation Requirements: 3.0 DESCRIPTION Kwik Bolt 3 shall be installed in holes drilled into the base material using carbide - tipped masonry drill bits complying The Kwik Bolt 3 expansion anchors consist of a stud, wedge. with ANSI 8212.15 -1994 or where permitted by the tables. nut. and washer. The stud is manufactured from carbon or Hilti Matched - Tolerance Diamond Core Bits. The nominal drill stainless steel material. The carbon steel Kwik Bolt 3 anchors bit diameter shall be equal to that of the anchor. The drilled have a 5 pm (0.0002 inch) zinc plating. The anchor is hole shall exceed the depth of anchor embedment by at least illustrated in Figure 1 of this report. one anchor diameter to permit over - driving of anchors and to The wedges for the carbon steel anchors are made from provide a dust collection area. The anchor shall be hammered carbon steel. except for all V4 -inch (6.4 mm) lengths and the into the predrilled hole until at least six threads are below the ! - inch by t 2 inch. 1- inch -by -6 -inch. 1- inch -by -9 -inch and 1- fixture surface. The nut shall be tightened against the washer 9 inch -by -12 -inch (19.1 mm by 305 mm. 25 mm by 152 mm, 25 until the torque values specified in Table 1 are attained. mm by 229 mm, and 25 mm by 305 mm) sizes. which have 4.3 Special Inspection: AISI 316 stainless steel wedges. All carbon steel components are zinc - plated. The'J, -. `' / and'l -inch- diameter (12.7.15.9. Special inspection shall be provided in accordance with and 19.1 mm) carbon steel Kwik Bolt 3 anchors are available Section 1704 of the IBC or Section 1701 of the UBC when with a hot - dipped galvanized plating complying with ASTM A design loads are based on special inspections being provided 'Corrected May 2007 F-S REPORTS r 1. r + , _ . ,i.., ,/ / . r .. ,•' t� ;' ..ar.# um aczeme.waaa. MAW 01.08021.01 a 1320 7 Copy:iyht(� . ? 2007 rage 1 of 4 Page 2 of 4 ESR -1385 01 /10 /2000 during anchor installation. as set forth in Tables 2 and 3. 5.7 Where not otherwise prohibited in the applicable code. Special inspection in accordance with Section 1704 of the anchors are permitted for use with fire- resistance -rated IBC shall be provided under the IRC when special inspection construction provided that at least one of the following is specified in Tables 2 and 3. The code official shall receive conditions is fulfilled: a report. from an approved special inspector. that includes the following details: • Anchors are used to resist wind or seismic forces only. 1. Anchor description. including the anchor product name. • Anchors that support fire-resistance-rated construction nominal anchor and bolt diameters. and anchor length. or gravity load bearing structural elements are within a fire- resistance -rated envelope or a fire- resistance- 2. Hole description. including verification of drill bit rated membrane, are protected by approved fire - compliance with ANSI B212.15 -1994 or the Hilti resistance -rated materials. or have been evaluated for specification for matched tolerance diamond core bits. resistance to fire exposure in accordance with hole depth. and cleanliness. recognized standards. 3. Installation description. including verification of masonry • Anchors are used to support nonstructural elements, compressive strength. and verification of anchor installation and location (spacing and edge distance) in 5.8 Use of carbon steel Kwik Bolt 3 anchors shall be limited accordance with Hilti's published installation instructions to dry. interior locations. Hot- dipped galvanized and and this report. stainless steel Kwik Bolt 3 anchors are permitted in 5.0 CONDITIONS OF USE exterior exposure or damp environments. The Kwik Bolt 3 Masonry Anchors described in this report 5.9 Since an ICC ES acceptance criteria for evaluating data comply with, or are suitable alternatives to what is specified to determine the performance of expansion anchors in. those codes listed in Section 1.0 01 this report. subject to subjected to fatigue or shock loading is unavailable at the following conditions: this time. the use of these anchors under these conditions is beyond the scope of this report. 5.1 Anchor sizes. dimensions. and installation shall comply with this report and Hilti s published installation 5.10 Special inspection shall be provided in accordance with instructions. Section 4.3 of this when required by Tables 3 through 14. 5.2 Allowable tension and shear loads shall be as noted in Tables 3 through 14 of this report. 5.11 Anchors shall be manufactured by Hilti. Inc.. Feldkircherstrasse 100, Schaan, Liechtenstein, under a 5.3 Calculations and details demonstrating compliance with quality control program with inspections conducted by this report shall be submitted to the code official for Underwriters Laboratories Inc. (AA -668). approval. 5.4 The use of anchors shall be limited to installation in 6.0 EVIDENCE SUBMITTED uncracked grout filled concrete masonry. Cracking 6.1 Data in accordance with the ICC -ES Acceptance occurs when J. > f due to service loads or deformations. • Criteria for Expansion Anchors in Concrete and Masonry 5.5 Design of Kwik Bolt 3 Masonry Anchors installed in Elements (AC01), dated January 2007. including grout tilled concrete masonry to resist dead, live, wind- seismic tests, reduced spacing tests and reduced edge and earthquake load applications must be in distance tests. accordance with Section 4.1 6.2 Quality control manuals. 5.6 When using the basic Toad combinations in accordance 7.0 IDENTIFICATION - with IBC Section 1605.3.1 or UBC Section 1612.3.1. allowable loads are not permitted to be increased for The anchors shall be identified in the field by dimensional wind or earthquake loading. When using the alternative characteristics and packaging. The packaging label indicates basic Toad combinations in IBC Section 1605.3.2 or the manufacturer's name (Hilo. Inc.) and address. the size UBC Section 1612.3.2 that include wind or seismic and type of anchor, the name of the inspection agency loads. the allowable shear and tension loads for (Underwriters Laboratories Inc.), and the ICC -ES report anchors are permitted to be increased by 33V. percent. number (ESR - 1385). A length identification code letter is Alternatively. the basic load combinations may be stamped on the threaded end of the bolt. The length reduced by a factor of 0.75 when using IBC Section identification system is described in Table 4. 1605.3.2. 01.08021.01 133 of 137 Page 3 of 4 ESR -1385 01/10/2000 TABLE 1— INSTALLATION SPECIFICATIONS' SETTING DETAILS ANCHOR SIZE 1 /, inch 3 / 8 inch '/ inch S /8 inch 3 / 4 inch 1 inch Drill bit size = anchor diameter (inches) 1 Wedge clearance hole (inches) 1 Anchor length (min. ;rnax.) (inches) 1 4';. 2, :,. 7 2'7- 7 37-,. 10 6 12 6 12 Thread length std./long thread length (inches) 3 i,. 5' ,; 1'I, 4 ., 1 - L. 7 1'i, 6 2 'I. ; 6 Installation: Torque guide values Carbon steel: Min. Embedment 4 15 25 65 120 — (ft-lb) in Carbon steel: Std. Embedment 4 15 25 65 120 — concrete masonry Min. base material thickness (inches) 3 inches or 1.5 x embedment depth. whichever is greater For SI: 1 inch = 25.4 mrn. 1 f1 -lbf = 1.356 N -m. 'Installation torques are applicable for all anchors installations unless noted otherwise in this report. TABLE 2— ALLOWABLE TENSION AND SHEAR VALUES FOR HILT! KWIK BOLT 3 CARBON STEEL ANCHORS INSTALLED IN THE FACE SHELLS OF GROUT - FILLED CONCRETE MASONRY WALLS (in pounds)' ANCHOR EMBEDMENT MINIMUM TENSION SHEAR DIAMETER DEPTH DISTANCE (inch) (inches) FROM EDGE OF WALL' UBC With UBC Without IBC /IRC UBC IBC /IRC (inches) Special Special Inspection' Inspection 4 152 76 121 380 304 12 152 76 121 380 304 2 4 540 270 432 427 342 12 540 270 432 427 342 `-- 4 321 161 257 736 589 • 1 7,: 12 342 171 273 938 751 " 4 782 391 626 955 • 764 2.. 12 782 391 626 1.317 1.054 ID 4 628 314 502 830 664 27, 12 667 333 533 1.464 1.171 4 905 452 724 1.051 840 12 905 452 724 2.317 1.853 4 814 407 651 888 . 710 ID 2``i, 12 866 433 692 2.165 1.732 ,/ , 4 1.242 621 994 929 743 4 12 1.294 647 1,035 2.654 2.123 ID 4 1.036 518 829 784 . 627 3`_ ID 12 1.036 518 829 3.135 2.508 4 1.645 823 1.316 821 657 ID 4'1, 12 1.711 855 1.368 3.283 2.627 For SI: 1 inch = 25.4 min. 1 lb = 4.45 N. ID 'Values valid for anchors installed in face shells of Type 1. Grade N. lightweight. medium- weight. or normal - weight concrete masonry units ID conforming to ASTM C 90 or UBC Standard 21 -4. The masonry units shall be fully grouted with coarse grout conforming to IBC 2103.10 and ASTM C 476 or UBC Section 2103.4 and UBC Standard 21 -19. Mortar shall comply with IBC Section 2103.7 and ASTM C 270 or UBC Section 2103.3 and UBC Standard 21 -15. Type S. N. or M. Masonry prism strength shall be at least 1.500 psi at the time of anchor installation when tested in accordance with IBC Section 2105.2.2.2 and ASTM C 1314 or UBC Section 2105.3.2 and UBC Standard 21 -17. `Anchors shall be installed a minimum of 1'; inches from any vertical mortar joint in accordance with Figure 2. "Anchor locations are limited to one per masonry cell with a minimum spacing of 8 inches on center. 'Allowable loads or applied loads may be modified in accordance with Section 5.6 of this report due to short -term wind or seismic loads. 'Embedment depth shall be measured trom the outside face of the concrete masonry unit. 'For intermediate edge distances. allowable Toads may be determined by linearly interpolating between the allowable loads at the two tabulated edge distances. 'These tension values are only applicable when anchors are installed with special inspection in accordance with Section 4.3 of this report. 'Special inspection shall comply with Section 1704.5 of the IBC for anchorages in masonry. ID 01.08021.01 134 of 137 0 0 Page 4 of 4 ESR -1385 0 1/ I0r400o TABLE 3— ALLOWABLE TENSION AND SHEAR VALUES FOR HILTI KWIK BOLT 3 CARBON STEEL ANCHORS INSTALLED IN TOP OF GROUT - FILLED CONCRETE MASONRY WALLS"'" (in pounds) ANCHOR EMBEDMENT TENSION SHEAR DIAMETER DEPTH' (inch) (inches) Perpendicular to Wall Parallel to Wall UBC With UBC IBC /IRC' UBC IBC /IRC' UBC IBC /IRC' Special Without Inspection Special Inspection 3 646 323 517 311 249 614 491 3r, 852 426 682 311 _ 249 _ 614 _ 491 For SI: 1 inch = 25.4 mm. 1 lb = 4.45 N. 'Values valid for anchors installed into top cells of Type 1. Grade N. lightweight. medium- weight. or normal - weight concrete masonry units conforming to ASTM C 90 or UBC Standard 21 -4. The masonry units must be fully grouted with coarse grout conforming to IBC 2103.10 and ASTM C 476 or UBC Section 2103.4 and UBC Standard 21 -19. Mortar shall comply with IBC Section 2103.7 and ASTM C 270 or UBC Section 2103.3 and UBC Standard 21 -15. Type S. N. or M. Masonry prism strength shall be at leasst 1.500 psi at the time of anchor installation when tested in accordance with IBC Section 2105.2.2.2 and ASTM C 1314 or UBC Section 2105.3.2 and UBC Standard 21 -17. 'Anchors must be installed a minimum of 1', inches from edge of the block. 'Anchor locations shall be limited to one per masonry cell with a minimum spacing of 8 inches on center_ 'Allowable loads or applied loads may be modified in accordance with Section 5.6 of this report due to short -term wind or seismic loads. 'Embedment depth is measured from the top edge of the concrete masonry unit. "These tension values are only applicable when anchors are installed with special inspection in accordance with Section 4.3 of this report. 'Special inspection shall comply with Section 1704.5 of the IBC tor anchorages in masonry. TABLE 4— LENGTH IDENTIFICATION CODES STAMP ON ANCHOR A B C D E F G H • I J K L M N O P O R S T U V W X Y Z Length of From 1'! 2 2' .. 3 37.. 4 47, 5 5'i.: 6 6'1., 7 7'1., 8 8'!.. 9 9'i. 10 11 12 13 14 15 16 17 18 Anchor Up to but not ' . ' (inches) including 2 2", 3 3'/ 4 4i. 5 5'i. 6 6'r.: 7 77. 8 87, 9 97., 10 11 12 13 14 15 16 17 18 18 For SI: 1 inch = 25.4 rnrn. =_.__....- Nut Anchor Installation is Restricted to Non - Shaded Areas - -._-- - -- - Washer 1 r 1 1 1 ♦ i --- -- --- -... Thread Area *i n 1 '..% I. III 4 v J _- -M .-- .--. - - Anchor Body =Mt= ..-r1 r: i ii , i J/ ' : Triple - Mortar Joint 1 - 3/2' 1 ' • Concrete Masonry Unit Segmented -- . - - -- Mandrel - (� I-------, 1 = 3i8' 1 i (Grouted) Area R � Wedge ' FIGURE 1 —KWIK BOLT 3 FIGURE 2— ACCEPTANCE LOCATIONS (NON- SHADED AREAS) FOR HILTI KWIK BOLT 3 ANCHORS IN GROUT - FILLED CONCRETE MASONRY ANCHORS 01.08021.01 135 of 137 01/18/2008 c ER -5202 LEGACY REPORT Reissued March 1. 2006 Business/Regional Office • 5360 Workman Mill Road. Whiner. California 90601 • (562) 699-0543 ICC Evaluation Service, Inc. Regional Office • 900 MorncLw Road. Suite A. Birmingham. Alabama 35213 • (205) 599 -9800 www.icc-es.org Regional Office • 4051 West Flossmoor Road. Country Club Hilt. Illinois 60478 • (708) 799 -2305 Legacy report on the 1997 Uniform Building Code"' DIVISION: 05- METALS 2.3 Installation: Section: 05090 -Metal Fastenings DARTS ''self - drilling.: self -tapping screw fasteners are installed without predrilling holes in the receiving member of the DARTS BRAND SELF - DRILLING /SELF- TAPPING STEEL connection. Fasteners of No 4 through No. 10 screw SCREWS diameter must be installed with a screw gun having a maximum speed of 2.500 rpm. with 1.800 rpm for fasteners COMPASS INTERNATIONAL of No. 12 and' l. -inch (6.4 mm) screw diameter incorporating POST OFFICE BOX 4876 a depth- sensitive or torque - limiting nose piece: Installed • ANAHEIM, CALIFORNIA 92803 fasteners must protrude through the attached members three full threads beyond the attached members. The distance from 1.0 SUBJECT the center of a fastener to the edge and end of a stud or track shall not be less than three times the screw diameter. The DARTS" Brand Self-Drilling/Self-Tapping Steel Screws. minimum edge and end distance from connections subjected 2.0 DESCRIPTION to shear force in one direction only may be reduced to 1.5 times the screw diameter in the direction perpendicular to the 2.1 General: force. DARTS' Brand screw fasteners are manufactured from heat- 2.4 Identification: treated steel and have a coating consisting of phosphate Fastener heads are marked with the Compass International andlor electroplated zinc. Screws are self- drillingiself- tapping logo as noted in Figure 1. Each box of fasteners has a label steel screws available in various nominal shank diameters bearing the DARTS' brand name. fastener description. head ranging from 0.138 to 0.250 inch (3.51 to 6.35 mm). with style. size. point type. length. quantity. country of origin. nominal shank lengths varying from 1 ,,, to 3 inches (11.1 to evaluation report number (ER- 5202). and screw gun RPM 76 mm) with smooth or knurled shanks. The screws are recommendation as noted in Figure 2. available in head styles of pan. hex washer head. pancake, flat. wafer and bugle. The screws comply with SAE J78 -79 3.0 EVIDENCE SUBMITTED and ASTM C 954 -98. Data and reports of tests in accordance with the Acceptance 2.2 Connection of Steel Members: Criteria for Tapping Screw Fasteners (AC118). dated July 1996 (editorially revised August 1999). Allowable fastener loads using Allowable Stress Design are 4.0 FINDINGS as shown in Table 1. Allowable values are for a single shear connection consisting of two steel sheets of the same That the DARTS Brand Self - Drilling /Self- Tapping Steel material type and thickness. Steel sheets must conform with Screws described in this report comply with the 1997 ASTM A 653 SS Grade 33 with a minimum 33.000 psi (228 Uniform Building CodeTM (UBC), subject to the following MPa) yield strength for minimum uncoated thicknesses of conditions: 0.0359 inch and 0.0478 inch (0.91 mm and 1.21 mm): and 4.1 Fasteners are installed in accordance with the Grade 50 with a minimum 50.000 psi (345 MPa) yield strength manufacturer's instructions and this report. for minimum uncoated thicknesses of 0.0747 inch and 0.1046 inch (1.90 mm and 2.66 mm). 4.2 Allowable shear and tension values comply with Table 1. The fasteners are for metal -to -metal connections of cold - formed steel wall framing and trusses designed in accordance 4.3 Allowable loads may be increased due to duration of with Chapter 22, Division VII. of the 1997 Uniform Building load such as wind or earthquake forces. Code'm This report is subject to re- examination in two years. ID ID ID vr .w, ...r r'. r „ru.. r,u :l. r.r ntart •r ,a, :. rt r. .,uJ1. arr p,a;. �t'm.c..a.p'.A' 01.08021.01 136 nJ 137 Copyright © 2006 age 1 of 2 ID 01/18/2008 Page 2 of 2 ER - 5202 TABLE 1— ALLOWABLE SCREW LOADS"' STEEL GAGE THICKNESS' 20 18 16 14 12 CONNECTING (in.) MATERIAL Size No. Nominal Minimum Point Shear Tension Shear Tension Shear Tension Shear Tension Shear Tension Screw Head O.D. Type' Diameter (in.) (in.) p6 0.138 0.302 SD 42 168 81 251 138 423 231 452 220 436 320 !!8 0.164 0.322 SD i2.3 222 93 330 143 458 302 533 352 534 363 :;10 0.190 0.384 SD #2.3 225 83 344 155 629 230 624 337 660 575 #12 0.216 0.398 SD #3 232 123 326 141 622 294 829 379 884 497 '?. inch 0.250 0.480 SD #3 242 120 _ 351 137 689 219 920 _ 386 1.102 591 For S1: 1 inch = 25.4 ruin. 1 Ibf = 4.45 N. 1 psi = 6.89 kPa. 'Steel rnembers shall conform to Section 2230. A3. of the UBC. • 20 ga. 18 ga- -ASTM A 653 Grade 33 SS with a minimum yield strength of 33.000 psi. • 16 ga. 14 ga. 12 ga —ASTM A 653 Grade 50 SS with a minimum yield strength of 50.000 psi. 'Allowable screw loads are based on test methods provided in AISI CF 92 -1. "Test Methods for Mechanically Fastened Cold - Formed Steel Connections. Safety }actor is 2.5. 'SD = Self -drill point. 'Allowable shear values are based on two steel sheets of the same material type. thickness and minimum yield strength. 'Steel thickness is the thickness for a single sheet. LETTERS CI NOTATING COMPASS INTERNATIONAL PART NO.: 73 iA .i+ PANCAKE — srze: uxz HEX WASHER /----`. SELF -0 W RRLO. Y] POINT NW. : ISLE'S AMC A No S L P HEX WASHER HEAD O c HO .W.: 3SL8S icSSREPORr: 5`Lpen") c. l MODIFIED MODIFIED TRUSS FIGURE 1— MARKINGS ON FASTENER HEADS FIGURE 2— LABELING ON BOXES OF FASTENERS 01.08021.01 137 of 137 ee eee66666666666AAA ■ This form is recognized by most Building Departments in the Tri- County area for transmitting information. Please complete this form when submitting information for plan review responses and revisions. This form and the information it provides helps the review process and response to your project. BUILDING DIVISION ma ash n e, 0 e IruA TRANSMITTAL LETTER ! �� �P . p yy�� s TO DA Hal a (1.: f Did l ' DEPT: BUILDING DIVISION AUG 2 8 / 0 ; CITY 6 F TIGARL FROM: 1 I = % NG DIVISION COMPANY: , 1 PHONE: 5o3 6%6 9690 50 96 X58' By: � 1 2 L RE: / 1 7c g �� &)i9 ( Address) (Permit/ Number) 11 I G 'rolect name or su.. ivision name . of num.er) ATTACHED ARE THE FOLLO ING ITEMS: Copies: Description: Copi :: 5 escription: n Additional set(s) o .lans. �; Revisions: /'L /-Lint 6(1 o /35 Cross section(s) .. d tails. . Wall bracing and/or lateral analysis. Floor /roof fram g. Iv Basement and retaining walls. Beam calcula : ons. Engineer's calculations. Other (expla)s ): REMARKS: FOR O FICE USE ONLY f j Routed to Permit Technici . Date: / Ice Initial . Fees Due: ❑ Yes [ a o Fee Description: Amount Special Instructions: Reprint Permit (per PE): ❑ Yes ❑ Done Applicant Notified: Date: C -�1 Initials: I: \ Building\ Forms \TransminalLetter- Revisions.doc 4/4/07 //A Agqii4':''6 111 III BUILDING DIVISION :Tirpivio SHOP DRAWINGS TRANSMITTAL LETTER TO: DAN NELSON DATE RECEIVED: DEPT: BUILDING DIVISION FROM: COMPANY: PHONE: By: RE: 11708 SW WARNER RD. BUP2007-00523 (Site Address) (Permit/Case Number) MIRAGE STORAGE (Project name or subdivision name and lot number) Structural Plan Review Item #: 21 ATTACHED ARE THE FOLLOWING ITEMS: V4, iiiO4UAWMWji:IPMVIt'a, Light gauge steel framing 1 Reinforcing steel Steel decking Structural & miscellaneous steel i ll■.,,, Other (explain): 1 list A 7 1 Argzart 5 t 41 11Vgi:op drawings are stamped and signed by the design professional in responsible charge as to having been reviewed and found to be in general conformance to the design of the building. 1: \BuildingWorms\Transmittal Letter-ShopDrawings doc 11/27/07 04/08/2008 08:53 503-620-5539 AFGHAN ASSOCIATES PAGE 04 04/04/2008 15: 28 5036577709 DUBENKO • PAGE 03 1 -.1.-.(1 iN , 06 i . , , ., .., , .....,, , , : ,....,,, i . ,, A , , . f: . ].. .:..._....., , i i pcii, , . i : i , — ......._.*.i.....1 . _, :-w: , , , I I I 1 i , i 1, I . I . - - : ." - ' I ,6 ' .ZI ig K g.........a. .: i. ..._...;......,...... 1 _ , \;\, . 1 1 i • 0 • iz4, .t. .111.1-■.- 1 i : i 1 1 • Ni 3 i; I ' ', ! 1 I 1 j • i i tit i„,..,....i.c ,, ,..•,.,,,,, , , ., 0 ...,.. 1\ , , , , • . , . 4 . IN „........,......_..,__,..._„_ • c °V 04/08/2008 08:53 503 - 620 -5539 AFGHAN ASSOCIATES PAGE 05 04/04/2008 15:28 5036577709 DUBENKO PAGE 04 `e-C-) c S • 1 . ......_ , s., . .... „, .,L,1 . ,. 0 co t I 1 3 t w �. i r ,---., „ . . ,,,,-,, ----------t-----41)' , , al • i. • o� 04/08/2008 08:53 503-620-5539 AFGHAN ASSOCIATES PAGE 86 04/04/ 2008 15: 28 , 5036577709 DUBENKO PAGE 05 • • • • • • • • • 04/08/2008 08:53 503-620-5539 AFGHAN ASSOCIATES PAGE 08 04/04/2E108 15:28 5036577709 DUBENKO PAGE m7 • N- ..,,,.,:‘,.., 1 , , ., , 1 • , : , , , , : , , : , , , , • • • ■ j .• • • • i I 'AU_ DETAILED !DIMENSICiNS CIR COUNT iOR SERVE TO KutvE - n-1E , • D,. "' t) uo.____ ' s . r _ • • 04/08/2008 08:53 503 - 620 -5539 AFGHAN ASSOCIATES PAGE 09 04/04/2008 15:28 5036577709 DUBENKO PAGE 08 trN • • 1 • . l 1 j r"`, • li 2. IQ Alit • , . . , 40 . . . r 3 . •_- + .. • A[''A :z' wMr•: ‘s, • co Y . • a • �s..1 1 04/08/2008 08:53 503-620-5539 AFGHAN ASSOCIATES PAGE 07 04/04/2008 15:28 5036577709 DUBENKO PAGE 06 i :i1M07g 0 41 i t'" 1 , 3 JI -.1 ....,„ i ,, • , .0 ...... 1 - - .- - -- ( -4 4b . 1 , ....:--- • 1.0 , 4.... ,-----, i--- (-..... •i-- - t --- ,....4 - -.....::;) = 4.) -. ........, j .4.... , ....0 go as L., ....., L „,, • - "-J, • , Le) t ' ) s , ... 4 / e..., ...':..% r„.. i et 0- ... • %....+ & ' t ft...... 3 1 •••■ .4., . .... .:4, 0 0 0 . 44, ..• 1 la.".... ./ ;.% , lE 4 1 re) -.{. C...1 . ' f 4 , X g of: .,, 1-44. —r.-- ............—..........,.., — --0 le...n 04/04/2008 15:28 ` -N EN — "09 DUBENKO PAGE 10 I , I • i . Ja i , 1 I a `� ! •._. .,....._ I . ... ». _.- :_�..., p - _.. .; . i . _._ r .. • _�_ - - -. —_', ..j- .._' y . ' ' 1 - - - —_ _ -- . ...... I, I 1 _ i I ' • 11 1 1 I ( 1 1 { i 1 i ' ' : t ..g IF ; St. 3 ? ......,....._i__....:.._...,......,.______•,___;_______:__„__ ,?, . i , , r?"474 i,.inb:...._.i...2..........i.....4._Ir,._...:4_:...._L_...L_i.r._..ih..L......ft__ i ; _ >' ._,' __ - ... .,- ._. ± - - _._. ._...� }._.y i J- i�....a., .._ --i± ;_._�_., —_ _... - •may - •-_ + -- • a I 1 • , 1 1, • ' -- ' - - -•-- •-'- .,i -} ; I _. 1 I i IH ' ,..- , • 1 1 I ! 1 1 i , I __ . - I , • I I 1 1 i .._..._.._.. . — I 1. 1,- I. 1 i , j. 1 i i ■ • 1 l'ili i f — - .:.. 1 1 I _ .v..a. ._ : i _ _ . _ . , i / ..� s ; I T I All __ -�l . ...... _ _ •-• _,_ - -r 1 • T ! ff 1 I • - I r i 1 I i ► ' ; ! I _ I I _ _ r r I I , r t I _ 1 ; { . 5 L'F ; ; i 1 1 1 • I _.. ! ... _ 1__1_._I .. _ IC6 1 1 ' .. — 1 I � • I l'�'' / i • . • . . ...., ... .,.., , ii - (j.. ,/r x 5 x 1 .8 (1) it 5 )% 1 t it . , , ,. To.p vo • . N cv .N1 .1- ( ' I C it tiers .. -..... -..... c ,„ Q !cove . . • . , • Til r eadea , 919i- to C- . 14)c, l 6. (59 m . co co I" — . ■—• ...m — .. w 01 GO 1 . .. 2.V2" ,..., ., co 1 i ---).— * . 1 _ . a LT! 0 • ca (,) 5 : Z. . 111 . . oi oi I r.) -.4 CS . . -4 . . 1 . , • in See f)OikOlie". . co L.0 V t k Nkif . a ....., . . . • c w 1'] -r, ri . . . . . - i -- 8 ......._,......._............................4 .› c,-, w . . . . . Q . . C) - PO 7' :C.: N.. • m in — - . . rs•:',:i7c-rED Ul 1 SE NO RE rAJ:-I.III „ 3. • P.FYI EH IS FOR GENERAL CiI:›N FOR :-,kA\ NOF. WIT, •I IT:1 : ; 1 . C4'iNt 0;-.0..Y N-' DEVIATION FROM PLANS O ''.:IFII AMY NOTED F3Y THE C;CI,ITRACiOR RAS t.ic IV EH • . in — S a 3 N .. EVIEW:::D REVIEW F.,HALL NOT CON SITIUTE AC OMEt EYE. (3-I. AII: EFI'All.FD DIWIENSIS OR COUNT OR Si 10 R9 L ' 11 0: )sr, I: ci (I.: 41 Of Gaff 1RACTUAL RESF.'ONSIBt_rTY 1 ) T .1 p. NIATION FROc'el CION .. . -0 D. • • • Af ENV: . . . . .. • . - .. . . . .... . . . . .- ., - . 04/04/2008 15:28 5036577709. DUBENKO PAGE 11 0 } 0/ • i d i \ ♦ 1 t/' v 1 * • • Q stye i 1 5 f ' �r 04/08/2008 08:53 503-620-5539 AFGHAN ASSOCIATES PAGE 11 10 • 1 i ; 1 (....) '.. 1 ! _ . . 1 ,........, 4-. , DO , . • 4 l i :,.. -. -.--i.--.1 --............. . .: -,.. ..i___i_........_______L_ ! ...L._. . L-„..._-__,--j..---1----j.----..L-1.--------1--f---------i- I)._ • • • ii i • • • r _l ._ ;,, .1_, ... : ._ i. r. . • _ . . • _. I 11 • • • .i ; . ! ...;..0.,..1 • • • . -.(,g, . .�s 5.y, .1`- -:.0 (1: 2i,4) " P� IMJ A � ‘‘ .. . . 1 . 1 . ' r i± -LI . • ' . .. . 2 3,4 - -1141,_ .i.in,t_inuirr, • . m A KJ CD • 09 _ s4-,./c.) C O ' N (?7 OD W ' . 0 7 1/2. ----)----- . . tit cn N • CS) , W LD VI•tV _ 410, — — . d D m - T1 • D . - _ ' i 7 0 U7 Ul 0 - n H . _ - ..- ... ^r e1 OTCD .. h ^J;t�i_C ^1, ^`ff'��_GflC - ^i.j � L 37 if) Nor- . ^�t_ IC:; AND RE �a�r: °r:1T IBS .. F..;EC,D ... • MIS PF V1E �' IS FOR GENERAL CONFORMANCE tom? -1 DE.:7: � I Cr PT ONLY. A7+r DE'.nATION 1 ,'O A PLC NS OR SPECIFIC;ATiONS S POT E5 N . - - -. F; ;:r G.f1vZLY NOTED BY Tri �C TTTU ACP E C FiFCY c7 p';'1 I'ED. R PEW SHA! L NOT CO,: 10 R !JI-IE _ - . all: C °.. A .E0 DIMEt.ISIONS OR COUNT OR SEJ? E T n E ,� RESPONSIBILITY FOR C : 7) T ,CTCO2 CA' COI,FRACTU.AL RE. Cn ", DE L T1ON FROM CONTRACT REOUI9EMTE • o ' y �. � _ G) 7 / I ENG ,iN m D . m / 2} c ; ®_ • 04/08/2008 08:53 503- 620 -5539 AFGHAN ASSOCIATES PAGE 12 04/04/2008 15:28 5036577709 DUBENKO PAGE 11 4/ 4 • LA ta Oa 1 III � ' w. BUILDING DIVISION ,-, , 3, ` SHOP DRAWINGS TRANSMITTAL LETTER TI TO: DAN NELSON DATE RECEIVED: DEPT: BUILDING DIVISION FROM: COMPANY: PHONE: By: RE: 11708 SW WARNER RD. BUP2007 -00523 (Site Address) (Permit/Case Number) MIRAGE STORAGE (Project name or subdivision name and lot number) Structural Plan Review Item #: 23 ATTACHED ARE THE FOLLOWING ITEMS: Copies:" ,De crap4aon:. tI ? .: g 4 1;Copae's•006ii ptiiiii , a x Light gauge steel framing Reinforcing steel 1 Steel decking Structural & miscellaneous steel Other (expla „ //i+ Shop drawings are stamped and signed by the design professional in responsible charge as to having been reviewed and found to be in general conformance to the design of the building. 1.\Building \Forms \Transmittal Letter- ShopDrawings.doc 11/27/07 BUILDING DIVISION t J I n , - SHOP DRAWINGS TRANSMITTAL LETTER TAIG0D TO: DAN NELSON DATE RECEIVED: DEPT: BUILDING DIVISION FROM: COMPANY: PHONE: 13y: RE: 11708 SW WARNER RD. BUP2007 -00523 (Site Address) (Permit/Case Number) MIRAGE STORAGE (Project name or subdivision name and lot number) '2(+22 23-b i Structural Plan Review Item #: 24 ATTACHED THE FOLLOWING ITEMS: C Fi ytitiaf ?i ;*ye .3' y 2r l S Y .� ,�.. y °s� C �' _ ,� ... .1 . r .. ,.. _ , , � � �,.....{ �o�p><es .. I�Des��'lRtaOln: x 1 Light gauge steel framing Reinforcing steel Steel decking Structural & miscellaneous steel ► �, Other (explain): = ,�/1.`) .1/4-(16 ' Sho drawings are stamped P g mped and signed by the design professional in responsible charge as to having been reviewed and found to be in general conformance to the design of the building. 1 : \BuildingU'orms \Transmittal Letter- ShopDrawings.doc 11/27/07 i,t.„,,,,,;„:„.„..,:„, 7 ;4 �° BUILDING DIVISION SHOP DRAWINGS TRANSMITTAL LETTER TO: DAN NELSON DATE RECEIVED: DEPT: BUILDING DIVISION a - K r (, FROM - t' CV _Ar Z ∎fc . 1� � W L,,;':.;.:::-!‘ r,.. - \ _ _ f COMPANY: ikL, ( CSafly1'uCtiOir! � . PHONE: 813 7 - :? - _ - 7P51 Li By: _ � T RE: 11708 SW WARNER RD. BUP2007 -00523 (Site Address) (Permit/Case Number) MIRAGE STORAGE (Project name or subdivision name and lot number) - Structural Plan Review Item #: 22 ATTACHED ARE THE FOLLOWING ITEMS: t4iiiesi } 1. l e :i4O4 '3 ;r., .x op> esi .{ }; eke iu s . ' . , 5 x Light gauge steel framing Reinforcing steel Steel decking 1 Structural & miscellaneous steel Other (explain): Cetmpue:. 1 f (II 1 ce — v Shop drawings are stamped and signed by the design professional in responsible charge as to having been reviewed and found to be in general conformance to the design of the building. 1: \Building \Forms \Transmittal Letter- ShopDrawings.doc 11,27/07 Site Address: 1.I 708SW Warner Rd. u r at J tiar Building Division T Deferred Submittal - rans ittal Letter C � (2/2 4o-we TO: DAN NELSON DATE RECEIVED: DEPT: BUILDING DIVISION E: 4 EN' FROM: � OCT 1 3 2008 COMPANY: 6q,17 ! ( ^ Ch'UJ CITY ®FTIGAR® BUILDING DIVISION PHONE: 503 — CP — 3u3 By RE: 11708 SW WARNER RD. BUP2007 -00523 (Site Address) (Permit/Case Number) MIRAGE STORAGE (Project name or subdivision name and lot number) Valuation of Deferred Submittal: $ MarriM OM ATTACHED IS THE FOLLOWING DEFERRED SUBMITTAL ITEM: 2 SUBMIT STEEL STAIR SHOP DRAWINGS Remarks: PRIOR TO INSTALLATION ah Re vre w re (9' NOTE: Documents for deferred submittal items shall be submitted to the registered design professional in responsible charge who shall review them and forward them to the building official with a notation indicating that the deferred submittal documents have been reviewed and been found to be in general conformance to the design of the building. The deferred submittal items shall not be installed until the design and submittal documents have been approved by the building official. Oregon Structural Specialty Code Section 106.3.4.2 Routed to Permit Technician: Date: Initials: Fees Due: Description: Amount Due: S No Fee Descri tion: Deferred Submittal Fee: $ Additional fee based on valuation: $ KI Other: } $ Total Fees Due: $ Special Instructions: _ ... Re.rint Permit .er PE): ❑ Yes ❑ No • Done Applicant Notified: Date: Initials: The fee for processing and reviewing deferred plan submittal shall be an amount equal to 65% of the building based on the valuation of the particular portion or portions of the project with a minimum $200.00 fee. This fee is in addition to the project plan review fee based on the total project value. s h\\ l:Building\Forms \Transmittal Letter- DefrdSubmtl.doc 04/04/07 IECEVED OCT 1320 , CITY OFTIAHL. BUILDING DIVISION ak ei Engineering Inc. P.O. Box 566 Newberg, OR 97132 (503) 554-0999 STAIR SYSTEM MIRAGE STORAGE SW Warner Ave. Tigard, OR NO EXCEPTION NOTED U MAKE CORRECT IONS NOTED Li REJECTED IJI REVISEAND RESUBMIT Li THIS REVIEW IS FOR GENERAL CONFORMANCE WITH DESIGN CONCEPT ONLY. ANY DEVIATION FROM PLANS OR SPECIFICATIONS NOT CLEARLY NOTED BY THE CONTRACTOR HAS NOT BEEN . r REVIEWED. REVIEW SHALL NOT CONSTITUTE A COMPLETE CHECK OF ALL DETAILED DIMENSIONS OR COUNT OR SERVE TO RELIEVE THE ........ 7. /7 . _,, CONTRACTOR OF CONTRACTUAL RESPONSIBILITY FOR ANY ERROR _. . - ir—..-___ 1 04/0 r OR DEVIATION FROM CONTRACT REQUIREMENTS. MI ENGINEERING Date / 0 /1 3/ By l/AA -.,-r-r, T '? .- -" ri^i.:r , If ,• .-t,? ,,,,.*, ■ 1 47C.4.1i,i ...1_.'1'1.. 7 \ ... IS!. 'n Terry L. Potter, P.E. I .: . 11P-A) ! zare.•_,_.:7.1 PO Lic 14539PE riArr._15? (I 4_._ ......„.:.,......4c,„,.1.,_ :-:',' (- P C Engineering, Inc. P.O. Box 566, Newberg, OR 97321 Phone 503-554-0999 Fax 503-554-0756 ' ? . '1 �.viC - _ _ nit•! W;� ciY� . - ,t; - - - - t :.' Lv/ / /t /�, L1 L<,4 546 A. ` r ^ t 7W(.11 /CO %_r 2 LIVE L. ) ( /o.0 '%"7-1-)(63;:.,)( 114 ;), y y= ; 9 `l f f's S1r44 L i u L 4 (, 0 5 ;7EPs) = 7c:G i 6s = 32 4 1ios = (/4g 11 4 1- r 3 )(6 . 3 , #4;,y44,Y ;} 2 46 ( bs UPPr ceLu—rm.1 s/'2'C.:(.- z `T 9 /5s l , vn •4 c t s 7T;r .57 /' s r7: 4_ - 2 3 3 ( FrY 7o. l % ,Yz) = 212. l's /2x/0,‘* 70774E S' r4 /r2 LoAj = 61 uE L_o Az f .3 4 (2 700 (bs) f 0X 23.5" 1- (21z. 11,11= 3123 To TA / 1 - 7 � 04-0 = 324 I in) i-( ,4 go Ibs )t(49es i .L,) - 77 7 2 /bs $ T21n) c-e(Z AaVAi.YSi1- 2 T = sue'. 8 L - 3v,voa le _ co IsZ4 16s 1 Z0" Z F .: 6' 42 li % .F tt j W= /32 -4 1 %r CT= y / = ` .X CI- X) = 032.4 f 2 X .4 4 66 (� P'6 �•,,_tbj - / 8 O ;1 - Z.i 3c. P r$, _ _ 2_9000 cr- Z_ 3 , • CC L-1/41 N 1- 418 1N6.-: 777 z i 6s 3 i 2.3 ibs 46q If 3i231ys 7772. (bs 3?2.3 O I f E/2. C�L uM 4) r� 4 6 r3 iz 3 lbs f 777 2 Ids = 4 33 3..s lds 2 33 3 L,L)L2 CeLuvy,V ( 3( 3i23 lys ± Z (777z as) +( 467 /5s) — z 44g4, g /57s44 4‘, = 20C ?7 1b5 5/74 fl*" "Cr, 3 oZ 2'Z,r o'IZ OIS/ 000 r '.6 = 'S /S& Oged 9/171-/-5 ` 22,9 � 1 O R.rdn /5 1 / O F /V S' C) 'VT M 0 1. )•d q6/o5 = ( -' . 0oo'000 ( Od.) Z I ) _ ."7 n sd 9'9 L .A /1 l£ °try =7 rvwn-707 VJddn '" 8R . 0 // = 7 Z �s=r zoo 'oE = 3 - f '- for LL f, x -k Z v' L =t7' (-/ -0 \ 7 000 '©00 'OE .2 z (4) = ��✓ z \ 9 9L ) s SZ sq/ £.£gz S _- 2 (2'z6 /) ♦ t • WEL6 4 levc-i- 1NtOvi i4A'A1LYSfS (- 5 .54a 2 - - .19 ;-► C WA4rti6 L w;iFe 707k pg.t. /-v -( 441T L) 00 psi = 1 Seo p5/ 1-/C:70 7 ) in (/4500 `/s .7 ©7X. i9f.� � 404, 19 47.7 /65 P /�€.y (3i wE&I) Fie.-4-Er • V5r, A- / JI6 4 t vA¢Lve f. S: = 3.O -.:49 /F47., 7 y. 6 So Los /,,, oJ wdr ,43 3 c_0,4) Fo lL E,9c6/ ;7-4i2 5 i 2/.rt/<.. 2 6 6 2 - (b5 LL 4- 7 y Pa i." G e- E -q-r�y 7 / i H/. r? tA/V7 (Z GrozE 7' Model name: STEP Study name: COSMOSXpressStudy Plot type: Static nodal stress PIot1 (- vonMises -) Deformation scale: 308.337 ,:. Q. 8 kc x 4 y ,a' '.: a E'.. d 4.,-..,,,',/,, ', a ' • !` ' 9 "FyY., ,a ' 0 1F l A g k 1 ' 4 ? ,: 441..;,, ], ; ' . A Al' von Mises (psi) $ ,, a ' � J p � . , , 1.021 e +00 • J •� 4 . A re ar d ' d • h G\ 1L ,;o" - t , ' - 4-356e-1-003� • •-•, s a ' r a� s Yr „: `` , 8.506e +003 ' 8 ' d , " , 4-4 '" i am 7.656e +003 e m z : y ` D �"� s a , El 6.806e +003 E �x �+* o F:� �ri0ti`�' � 5.956e +003 r� s� s 5.105e +003 as i 1., r � r3lr .,tiq & y b 4.255e +003 • ww�m d'"1 .y 4 i " ' - �`'�'x . ^t d` 1 t a, . 3.405e +003 * +� 4 a n 2.555e +003 - ., . 1.705e +003 znx , c g':. ", °�� ^Ft �,� 8.545e +002 F t • g ,. d q r v ,e f � i � � , ' 4.3086 +000 • F.` }. r a 4 , • k ;-- u sYield strength: `d 4A8e+884 =t ! : + k . b 19 ! S r , �5 r- v2. n i,- e, N T 0, ' LU EXHIBIT 05 • PiiLo r R GOT 9 2001 CIS Y ur I KuARD U LDING DIVISION '1 ' I '( GE ST � I STORM WATER CALCULATIONS S.W. Warner Drive ("-?08 Tigard, Oregon City of Tigard A • rove • Plans B Date 114os (30 P - co s y is f y LL/ 5841 r OFFICE COPY 01 ON 9 4 7 5 9. Stec EXPIRES: kW 07 June 30 2005 PROJECT NUMBER: A05077.11 AFGHAN ASSOCIATES INC 6960 SW YARNS STREET SUTTE 200 TIGARD, OREGON 97223 PH 503.620.3030 FX 503.620.5539 EMAIL: craigh @afghaninc.com 'j. 1 MIRAGE STORAGE TABLE OF CONTENTS I. Project Overview II. Water Quality, Quantity and Detention III. On -Site Pipe Sizing and Diagram IV. Off -Site Pipe Sizing and Diagram V. Details and Supporting Documents = .c . • MIRAGE STORAGE I. Project Overview Project Overview The Mirage Storage are located north of the intersection of S.W. Warner Drive and Highway 99W (Pacific Highway) along S.W. Warner Drive with additional frontage along Highway 217. The existing site consists of a large open grass area. After the required right -of -way dedication, the total site area in 25,500 square feet. The proposed development will include a 3 -story building with a building footprint of 14,000 square feet, 4,125 square feet of additional impervious area, and a water quality /quantity facility. The water quality and quantity facility required for this project will be designed according to the requirements outlined in the "Design and Construction Standards for Sanitary Sewer and Surface Water Management" by Clean Water Services, dated March 2004. The stormwater quality will be accomplished using a mechanical device. Stormwater Management builds the device specified for, this project. The water quality device was sized using 0.36in over a 4 -hour period over the post- development impervious area. After the mechanical water quality device, the stormwater will be detained in an underground storage system. The stormwater will be piped to the new public storm sewer located in S.W. Warner Drive and released at pre - development flow levels. Please see the attached calculations showing that the on -site water quality and detention facility meet the said requirements. MIRAGE STORAGE II. Water Quality and Quantity Design Water Quality and Quantity Water Quality The Water Quality Storm is 0.36 inches falling in 4 hours with a storm return period of 96 hours. The Water Quality Volume is 0.36 inches over 100% of the new impervious area. Water Quality Volume (WQV) = 0.36in. x Area 12 /ft . _ 0.36in. x 18,125 ft. 12tH. /ft. Water Quality Volume = 544 ft 3 The Water Quality Flow is the average design flow anticipated from the water quality storm. Water Quality Flow (WQF) _ WQV 14,400sec. 544fi. 14,400 sec . Water Quality Flow (WQF) = 0.038 fi3 sec = 0.03 Required number of catchbasin filters: ( 449 gpm ` Number of Filters N = Q x cfs ��r , gpm Q� � / artr i dge 1 = Q = 0.038cfs, Qcan =15 �artridge 449 gpm N =0.038cfsx cfs filter — 15 cartridge Number of Filters N filter = 1.130cartridges Use 2- Cartridge StormFilter Catchbasin. The Stormwater Management two - cartage catch basin Unit treats a flow (Q) up to 0.7cfs. The device will have a built in high flow bypass for the difference in the water quality flow (Q = 0.038cfs) and the 25YR. flow (Q = 1.323cfs). The device will be located prior to the detention and water control structures. Water Quantity (Detention) The required water quantity is to detain the post - developed 2 -year (Q= 0.28cfs), 10 -year (Q= 0.42cfs) and 25 -year (Q = 0.49cfs) storms and release it at the pre - developed 2 -year (Q= 0.04cfs), 10 -year (Q= 0.12cfs) and 25 -year (Q= 0.17cfs) discharges. The required detention volume is 1,747 cf. Using two 48" diameter corrugated metal pipe with a length of 70' each, we will have an available detention volume of 1,759 cf. Detention Manhole Release The orifice for the 10 -year storm will be installed 2.88' above the bottom of the detention pipe. The orifice diameter calculates to be 2.0 ". The orifice for the 25 -year storm will be placed at the max elevation of the 10 -year storm (3.41' above the bottom) with a diameter of 1.0 ". The overflow elevation will be set at 3.90' above the bottom elevation. MIRAGE STORAGE III. On -Site Pipe Sizing and Diagram F :ct Name: Mirage Storage On -Site Design Frequency: _ YR Designed By: IKF Date: 06/02/05 Sheet: 1 of 1 Project #: A05077.11 Checked By: CNH Date: Time of Total Total Time Average Capacity Velocity Index Runoff Equiv. Concent. Design Pipe Invert Flow Pipe Area Drainage of Rainfall IE (in) IE (out) Pipe Size Flowing Flowing Area Coeff. Area Area Or Flow Content. Intensity Discharge Length Slope Full Full Time Time (A) (c) (cA) (cA) (t) (T) (I) (Q) (L) (s) (D) (Q) (V) (t) acres acres acres min min in /hr cfs ft ft ft % in cfs fps min .. DS 0.321 0.90 0.289 0.289 .5.0 . 5:0. • 3.80 ' 1.099 225.00 222.16 283.92 1.0% 8 1.21 3.47 1.4 OK CB1 0.029 0:90 0.026 0.026 5.0 ' 5.0 3.80 0.098 224.40 222.16 20.86 4.0% 6 1.12 5.73 0.1 OK A 0.90 0.315 5.0 . 5.0 3.80 1.197 222.16 221.40 76.37 1.0% 8 1.21 3.46 0.4 OK CB2 0.037 0.90 0.033 0.033 6,0 ' 5:0 3 :80 1. ' 0.126 B 0.90 0.348 - 5,0 ;; 5,0 . .. _,3 , 1.323 221.30 221.26 3.00 1.5% 8 1.48 4.25 0.0 OK 0.90 5.0 '.. 5.0 3.80 - 0.90 ' 5.0 5.0 3.80 0.90 5.0 5.0:. 3,80 0.90 5.0 5,0 - 3.80 0.90 5.0 5:0 3.80 0:90 5.0 5.0 3.80 0.90. 5.0 5.0. 3.80 0.90 5.0 5.0 3.80 0.90 5.0. 5.0 3:80 0.90 5.0 5.0 3.80 0.90 5.0 5.0 3.80 0.90 5.0 5.0 3.80 0.90 5.0 5:0 3.80 0.90 5.0 5.0 3.80 0.90 5.0 5.0 3.80 0.90 5.0 5.0 3.80 ` . ' 0 / N6233'46 198 01' \? - ---- ---- -- ------ 9 ^ IN 50" CONTROL MH m RIM=224.58 • 44. 1E I 3 N u = 1 _21 : . ' I . (_, ■I\ ) *,) / I E= 224740 . , .7: -��� - 4r^ ' ( it 8 ,, ) N. , , . , A lE=221.26 1 0 Aft _ ^" ~ - \ |E= '" . ` u4 o t � i . 4. ' 11 FF=227.60 ?�� ~ & _ � - w I 1 1111.104 :2 EIO ['eV 1 ^093 \- \� Lp Millir ' ---—'-------- cri / CURB _ «l ,/ rn ' z ~ / / ' .^ o iu } ^ '� / U | v / U � MIRAGE STORAGE IV. Off -Site Pipe Sizing and Diagram Project Name: Mirage Storage Off -Site Design Frequerk.,. 25 -YR Designed By: IKF Date: 06/30/05 Sheet: 1 0. Project #: A05077.11 Checked By: CNH Date: Time of Total Total • Average Capacity Velocity Index Runoff Equiv. Concent. Design Pipe Invert Flow Pipe Area Drainage Time of Rainfall IE (in) IE (out) Pipe Size Flowing Flowing Area Coeff. Area Area Or Flow Concent. Intensity Discharge Length Slope Full Full Time Time (A) (c) (cA) (cA) (t) (T) (I) (Q) (L) (s) (D) (Q) (V) (t) acres acres acres min min in /hr cfs ft ft ft % in cfs fps min On -Site 0.90 0.348 5.0 5.0 3:80 1.323 A 0.90 0.348 5.0 5.0 - 3.80 1.323 217.40 216.90 50.00 1.0% 10 2.20 4.03 0.2 OK 0.90 5.0 5.0 3.80 B 0.90 0.348 5.0 5.0 3,80 1.323 216.80 212.45 194.00 2.2% 10 3.29 6.03 0.5 OK AD1 0.243 0.90 0.219 0.219 5.0 5,0 .3,80 0.832 214.00 212.45 24.00 3.0% 6 0.97 4.96 0.1 OK C 0.90 0.567 5:0 5.0 3.80 2.155 212.45 208.88 162.00 2.2% 10 3.26 5.98 0.5 OK 0.90 5.0 5.0 3.80 D 0.90 0.567 . 5.0 - 5.0 • 3:80 2.155 208.48 208.04 90.00 0.5% 12 2.50 3.18 0.5 OK 0.90 5.0 ,5,0 , 3.80 0.90 5.0 5.0 3.80 0.90 5.0 5.0 3.80 0.90 5.0 5.0 3.80 0.90 5.0 5.0 3.80 0.90 5.0 5.0 . 3.80 0.90 5.0 5.0 3.80 0.90 5.0 5.0 3.80 0.90 5.0 5.0, 3.80 0.90 5.0 5.0 3.80 0.90 5.0 5.0 3.80 0.90 5.0 5.0 3.80 0.90 5.0 5.0 3.80 ,F .W r � sQ i,., :: , -. ; i hv : r i l D - A, 4 .fts ,Th," 4 1 ,, ! li !l :;*1411!. — - I - O IUf At fl 18 . X 111 - ,.,4‘ 0 r 121. '�� i + - � •• 1 1f00 _' .. WO \ a v 760 11. i i ilk j % 53Z1 FAWWW MIRAGE STORAGE V. Details and Supporting Documents 1-1( )-`i flok' 4 L'CI'l . A --r• ,r e 0 r ; • / 3 11f, ) P _,2 ' ,AN 1 ra - Tr., •,„ A': 2. , - ; k'C u. - II ' ,.. ,... y t ' - F% ''' % , r , • I c .- pi. - . • • 1 • • - - -* g•::-51 1,ez • -11 '-•• • • - If , 4 - .. - 1-, "",,:. i ii #,, " IP , il .. ..z OA"-, , e: - 1- I '; I' ' • ''''' :- -- . 1 At. .v.. ' - ' WS% ''' r 4r .. i I •'' Ji. " ' :` biall'^ 1 4 '' matan .o • -,-.. 1- - . , .„ . ,.. - -------- - Ft dir 7 , ' - ` 1 ". 0 i r' ' at kV' M I ' -r• %Is% ' I' 4 10 Pi g IV. - r•* ir'..114 6 I it. r jr • rg r .„.- 5 - i - . . 1 en- irra r . • , -• i r. • r ' , i'f'. i Er . .4: . , - ',taw- I N '. ': 4 - - 1 ' ,..ge ' 4•1•4:s '1' ":. r NA 'ski,' .1; $ ' ' .. ' P.I.:. • NA. '2, • 1., - 0; c . ., 4 , 4 , I • h 1 •IN y 7,14 . , ' ki , r „,., Jiti,:al,i...,41,‘ r,t 0. - . " i t fifi ' ' ' ' ' ;ft" l'44 ' /1111,44 /i: F le`4Y 4 . 11 1 4 ,4 11 4Z%1 4 . ! * 1 -#E) 1 ; ' i e' 1 - ' VI ". • '• I e f.k!d,eA t jo . ..i l i -'' . . ,,Iii,kr. :: '• . • ';' - ' alit,' 1, : :4 ":„ '' .0 :11 la . • . ' I . -#: 4i . I t )11 ,4 ‘il ;7,4;Ve; 11 1 lit N/i l k- ' '''. • ;41 )4 i .1 II ` '' 4' 3 4rk l i g • • ..... 7 ! •I'l ' ' .1 ...)1',". - l'I"re .si.7;,! Ilii TUT' i :. '- DI 1 i • • I '' 'J. ■. i r 4-k - ' tAi f.'";' r .F, 3 A t ` j 11 .4;;;. V;;;,..:1 r; ', e ":(.4 I , , , • 1 i - , r . . . h ' 1....' 44- 4, VAleil.‘` ..,4ye- i 1 ' li v7, • Y .; ,2, r NI • I.- „ , , l 7....!4 t. r I a ' \ .. A ' r'. • ' roy.' 1 el Mi. r 1 , 11.4,,*0 . , •1 ., il• ! 1%)•••1.1 ,. e‘. °•:,..... ;'•:, • :I:. 4 /,144;p1 $,, - 4 .. ,;• 1 1 .c., ,i 6 ,.,... - t• , - t - ' •• 4 : . - •?2.,01 1 7.._ . : 1 ••* ■ --• il • ,c • -. ' 5 . -, _ 1 : ? r_'! ; id -; . Ss,' k• 44. 4 -- . " i 't - 0 a ••_`.1 ?:_.',9". ;.,1. - 1% lif m 1 ....Q",.J — 410 J ' A V• 4 ;,, , it ; ''i' ' i r i 4 L _ ec i e ip. fr 4 .'i 4 itic':-''.......... 1 .' illif, 1 'Ili' L I 4 , 1 1 'I'VE: '1. •._ " • I ' 2 ' 1 0 . ''.7.,-.:.! r 2,;I: I I t11-..W.•;:til.",1"11ft.; 1 :Ir ........_.114 - .. - - - ; - -111 • - '''.. '1. , ,...e.tit k 7' . ' -. ' 'br , 41 . _ • - fi tl.tp - ":4,7;#'„ L.,,;.,, „;', • •,„•••.",",,,•::::., ::,*(Arsol l r 1 , , . . , 3,..., ,. „B „,,,,, ill • ' 111 .e t, k , : .1%.4r i.: . 11 ,,' ''''sti . •Ly '• ' PI- .1 -6;,•,,lliP V t ;Lr.'' 1 IlVira7 4? 10441.•'•il i" 1 ' 1 ' , • ' 315V r.. I $ i Ar t I r.•Cle.;;:;.....-;.. : )1 .. rt• - L I s • j i , I 4 ii r,.. it- rt,17.4,.4..1 .ti;-:--.,:.,.),,..i.,,,. 1 ,,. IIA. ..-....„ ,..0 I 4 cke tiki,Al• ' " & i '4 7- 0 * ... 44 ; . ' „ I i.t . :0:a ., , , - - 7.7.'•' . , , , V, , i . ..." . • . ' ..- . zt ..nr. ' • 1 . - ,. r •.- •a T •, e , . • . ••.'is a ... ' ..- V • : s I . ., .:■; Il 1 '' o lf:dfr -4501 i r ' ' •,{___ i , 1 4. , •1 r "'' , ':. l i I . W . r ' 04-^ ''' ' VA'a, • ii, ' - $' ' 4A- VI' 4 " 4 I/ - -- • %;" t's yi7i 1 - 4f i ,, f.""`,.(00,., il .- .g.1. 4,1 • e 4 v.., , .r. , - .. _ .___ ,,,, .., , r _ • „;.-..; , ;1 , 4 4. it. ...moi.• . . _. - A .1. , • -1 . •• c- ••-• I 1 . • ' ' • '. ' da - ' -1. ••1. -2 1'•..rik s 'ill • ;••, - , . • • A• - w , c rEF...*.ealsi VI g .... ,-r. .14 stl , ; Il..."' ,a kis. . . ., i vi,,, ,,,a•-_-, - .. NI . 1. y ..1, J . ., 'As Ir " . • 1 ..# 11 %. "•''W si .' . rort''''a . .a. ' , iti. .- lk .1 ke ‘1 0..0.,0 "et el•reari".)(..!il, , • ,` •,,,_. .. • g I .,„ •■•. • Z... 0: • , .,„,•1••.,,,• .? ..,: • .4: r.i...,'• y ri .. % 471 .0 ..01,-01 : A „L,14 i ..,.:' , ''.1 .", g • - ,,l' , ...;,..mi V, :Its ''''.. .1. :1• tv-- • " L.L• '$T,' r ,. .4.. ... ,„, 44e:f Al ' le , 1 4, 4 I: •t? ; l'ii:.;•? 'it • ; I r - ....* .. .• (1 ii• • •ViV L " 7 i' l ',/e . 9 . 'FIT' 1 4 I I S i:z 1 .,..* . . 1•11 i l k ._ ...} I ,..'s, _ -.... ..1. '118, - 1...'4„ i ti a lph.:'' . #46f,s,,,.." 11 1. 1 " , _ "'";/. i* ..:Alf ' , thal, ?IV j14.,1;:ti I A ! 'ti -1 xi ., :21, V. 1:4 k dr ... 4... .... ,,":,... (I .. t [ . t ' 11111 k, 4 . 7.41 . 1- :.••a s "`W_ Ii i roo r. - Hr! l •r•-"' 7, ;."" !kr .. '-, t'' sr,0101•1 " /` . •,1. 't '' L.:: ; I' -'i; ;'I:• ...,''. 'di '11 Lr.r,' 'q f'.,'' ( #r L • ' S_ Litt .4.' ' ,,,,,', Xi' - - a r,,,-.i, . 4 :•'*" ".., ,`,04 4 .1,1 1 ... .. 21 • _•":•;.... l • ,• 1 r, 1 1 ,), li .. kVi ..•••": ‘1 ,i, . . „ , (e . in ,. _t ilk: :., hil • ,,,,% , ..,... , , .,,i fi).: *AA 4- • - II k; -4 9:1• , f '••-i,a ve ttill i • - •.1 % ' •••-• --- • . . L ig 1 :l . • 11 • ' "- se v•-• -1"4 • 4 "" '. .4 -., 4 .47 . - ' .22. ,p' • ,4 • •• i p iIII'' il k/ . I' la, a l . • I; i • ••• ', • • 1, • 6 • .' ..._,I .. ;.*„.-- x..f72, •• ..4 .• 4Vir;„4"••• 11 .4t,ati.,1 ••' As• , , , , ...,, . 1 ., .• 41 : '‘',!, ;".... •' - ' ' I. -.VI 'F frP • I.A.---.- r .. .-- ,..,,, . i . ., , - ...... . ..,,,, -,'; .,* , 0 , .,ktto!-...4...„11 , - , .. ,,,,, 4. n . - Tiv:Pie. ,, ,-..7-_,c.. _. - 1 ,,, .- --.. c f. , - --- erg ••'.10'• 'NI 4` "" :.; • • t , 1, I • , ;•11,.; ,., •• 11,4 0 ';•'-':' ',* .,, 1 . , - - . 1 ..*: •••••,ry'..^ ., . / , _. "A4' )5 '. ,..,' 1 \.-4- V,',.r, ,-..:1 , - 1,,ty,.,4 r ; . ''''',1 r: ..,, ificii f ,.. fp:".,:illviC g,'''.(‘•_ ,' -...„, 1, .7, Aik: 4. „tii:a ,:lip;, ., i : , ., p 2 • 1 ••• 4...,,_ , 11 ' . .' - th . 1 4 4*-- ;. I IP .1, li qfP .") .?. zi:”: 0:', , . -. k... % fil..-T . ii k ,..g....%.4' 'rift-) fi :..., / • ,...t. 141.1:..p i,,,',70 _ i i' ;-1 ', - : r I. 4 1 4 .,.... 1"-\' ‘ii .,: ,› C '''' „. ,,E:•" .1. ,..,.. 1 0'• ;," ‘, • licire,.. i N . ,. i ,A3 , ....... ' i.iLii , ., - ;., 1 ,11 . :r . 4_,.. :;; ; ‘ --..A . ,/ , .!•r t. 1 " p , q.„.....••. , ic / .•,.;7 6 1 14 .11:6, . 4a .•: , ;1 ; . 4, • . 1 0eit. 11.c,! 4.2 .i..t ' i. t 1,,.. roe* ,,, N ,ei 1..-1 i , e ll I. kgi I t:4 gVe... ? i LI : .0., f -2,%1• VI • . --.; -,..,74.74,..i i i i ' 11 4, 1 : ;'' .e.;: i r li r i . - 1s4 oliiilyerytiii- - .,,,-. 3 it % }, :'-. A. :Is ni) A• 7 0''";• i i '; I y , .:.' .:, r4-1,.. ,.- i , t. . • ,., .., , '. ' !,,,:r ;,... P i . • ••,A• 41 1.t.4.30.....?vri%•.-., -. : , :,`....: 7 :1•:+l it .!,; .07,er .';;Z-NZ :iii_. . 4 ...v..4,, ''''' r i,:, : l iVr . l' 5 i ' $ ; , r1 .0 4 4 ' O .* '" , I ' .1 i• r. • #. 'W hi,... e J 1 , . - ,V.44,,. "71 ''' P i A , "Ora ;, ,i,„,■ .. -, -... i - _•,,,,,y*-,,, ( 1, „, : :• 4 4 . i , _ pi 0 a4 ..,-; I 1 i * 1'.''''.1 *r4;;;. 11 , -, - -- . --, - ;so r; , - 1, .....-`1, - .,.., #•'''..-, ,, - Ir 1.7 -- ;,:..r.....k . ,,",,_, ; ''.-1.# I. I '' . , • ,..... ‘0 , ,-,,,, • . - .,,, .„ A, - 1 I,,. . % .4b.., •-• .71" ; c . f.,..., .4.1 . "„:, ..., II. ..... "--, ` , . 4, .4 , mi ..5.1 41,. 4 • r— ea: 11, ,1 • ?,.. . r f 4 3 •>", , . s , ., Z./ I.L ej ' • ' '-', 44 '..;11 • t. f &• ' It „ NI ' i llt ill ' '....,,,., , ' r . ICI Na. A .•a" 1 .'. .. „,,. s, . .,, • 1•70... .7 .eite.-- ' ..."-, 11 ''' [‘-' ';•` j ' , = .. 'Fr" .,'..',,° AI le ' i 0,, / It '...? f i . •At..:70 • ,7*.r, '41 i,...‘i f • ri imic„ ....4.11 . / , 1,. in - 4 -.0P v.!' •Nri:" ',' ' "--• •'•4f- '.", ii- AV" -.1 .41,1 • il .. % '... 1 1,.kg . vici t. , . - ' - - . t , fr ' - , . I .i • . ; 4. , IA! - .,,,:, ir - i• ..... P - %••• ft / re, • V 4 :1,1" r• i iit.:-. ',..t. ' V„■ ,: "."•,:. "' ': • ' .,Eil ;b.! ' ' ' ' ,, -'r .:•`, ., -: : i 1 * .4 ;71ot j rid V: 11 •1 7 ! I • ''''' . c • : ::' )Y • 4 i1 ' • . , A• ,1'.' A. r t _ . ill 11 II? -, i . . • Ali; (0j!, , : - I - 1,.-.. - .- -• ,.• -% -- ---cr 8 ,- • 4 : . .'i v :I ia " - otto 1 . I ai . j ' 0 1.1# ..0 , .4.; NI-1 . .. :NI ,. ', •;,, • 1 : - ,• - • •Th ...4, "it i .4.5447,-gi, i 41 c411 11 , ,,,1 1 1 , , •.!,!,iV1:: 4a E• Fr?, ... I • . ,rr••4 ; Ili j • 1 . - 1 . :., . - _..,.. ,.. • •-•••• ... . • *4- ':;•:.1 „:. . .rif ir , i; 1-7,.....* ))---_, ,- t 4 i•Nr LI . ' ''''1114 4 . ... • , .1 #•_, I t 4 i„ . - 4 - , o t..., ry P-r? :ion 1...v-44•-•?..--pr . - • , _ ... „, 1 ., _ - 2;0 , „. • IN I f_ - 0 --. • • .1 i I . ,...„, * O ' . , 1 , V II "Is % ' % • r lwet„, *,, I • :q ..„) t Ai . xylit. , L... I F it o° • 2;4 , In _4 I • • • 1: T, " -. ....e"; ' . ..a. . 1 , jiti .,,,,d..e.‘,1011r It -• a. •• 4 , •,0 ' -"it • ar-t• ,,,,, e:, /., ...h. . # - ... • . 0.4. • ....,. _ ...4( - . 1 _ ,,,. i . . . iso , 4 . 1 ' L ." . . 1 t#..,;i ji, f 1 , - ,; 1 ',. 1.i.,.. 1,...,- 1 ... „; ,r, P_. ti 1 1 t f . , s lali... ,,,,,.• , hi p. i .t oo t„,:e 40 -.,, 11... ... 4 1 ,,, ,..n....._41.t .41 „,t . „,.... ili .i, : .1. • ."41.1 1 i 3 ' 7 . , r ;. 4 ' i ei 0 - .; -P ., ' ... , g , ' ■';.... ' . 1 " II • ,.. '''''. 4 1 tri.,P,I; ..f 0 ,,,'. t „.,•, ,,i rik, 'fp ....411 A{ J[1,1 is .• L.71%. .• ° I - • ...AP. • . • . • 1, i ..1,--* . %%al •", i; ' :.. • ' . ' .' . i or i klie . ° ' i I e . ' ' F a 't"i'',".. 4 ' ' " . g, '-: '..` c"■ E. -". v..... • .,:-**,-' e .,_.N .• *.! 0 y - 0 *a ..... • `4.1 1 0 :110 !fa': " ' . 4 ka.' i" 0 .4."- .. ... . - T e '• , i r, 1"!:' r. r -,, • 2" I '' 44 4". • '. • ' " . 1 1 '. .' i n • • I!" '' '•.' • . :•'' • 4 4.. ' • .....* k 0 , r. , . ,.. - I '' •- lr`i ... 1 I irj,A. i''' NI Iv* - l ikry • •," 5 0- ----, i'l . 4 , 4^ ,.'.■ _.‹ " - g . •4. , , .. .".." ,-- . - • .2:.'a .'. „ -.','..1,', :•., •.: ,..t ' jr. :4;:. ,,,„,. • ,,, ' "4,, " rs ,,,, # . IL, ,...i r . -- , mg . Ai • •••• .q ....• I - ..• 4 1, z ., „ 1.. _ , — ..." 91 bl, ,-, - r,:s •• , +" . .7 IP ''Irl ' - 1 ) • F.: J• 'le, ' r . • s, r 1, •:..,- _ .... • -- ' . • , - ., zir..#1',.:• .'f'-'• ' .•:,, I, : ''1 '' # r„ . L'7.1'., 1 P. il .-:. .4 %. 1 ; '. 41 'i f,. , : . ...„. riitc -04 .1, - : &Jo' 4 "'".....i !; re'''',....;', 1 - '-', - .11: - -• ' , ' - - ... - .,. , r olo.r ., • it. . ;- •N t' • ,1 11. 2" ' • I. , 14 n r. Jr.% „ T , L .13. I ..," .0 i ,,. .... , ... j or rrop or. 7 ___ if . .4 . - ••• •oi•- , :, ,,, 1 •.= ..- i' i • .; .,741.111rri ..- : a . . .',' 11 ., ' '..! 4. t I 4. - I le * I ''" ii he ; .. •-" lez-at I d 0,01 ' . e; , t .!',' ..r2":-.1, Ig ;•;• . i t,..- ; -1 ; 11 1 1 :4 z e, ta• • • ••••.1 . .. 01 i g , g Nrair willow oer ...... ' .-,.. '1-...3.,A,,..-.,•. . r . '',. •.•,,,,F, a ",:;. ! 1 . :: ,... Er ...-ir i lpi-,- s , .„,p . .,j,.& 1 4, 0 0,.....p..4 .73 1 . ; r _ij 1 ! cv ,zt 4:7014 .4 , ,, - • - c.g:r..10:....1.,.?, - i..,. - ,:j. 11 .r ; Mill* . i , ,,1, , , . ' "i ^,-;;.- 1 :0 I `.'". 3 11 ,.....:.=•'-:-':'••••*ii,$' - •• r: '" .•e.Are i 7 .. , .1; :1 " .., 1 • forl •.,..--.,.....:,....A.,....:p.,...„ - - - ;.-.,. .r. 'i t I. ; I - 1 1''''' ) : ir :-:;,...+' . :': 1 ' 1 : Li t "P'; 'ir ' . 1 \R. I - 1, td ' .. A 1.... - ./0" e git,H . 1 . .. I , . 1 II 11:17 I .. 1 1 1 l' - • . ' . il l 1116 4911616. . itili ' - a - V.I' - 1. `, , 41 ru "Is ' •s .1. sr• r A. '1 o • Al • It • -••• / I''' ' .* 4• N • ' " • ' ' 14,X4 ?• • A• -' ? Vg. .:5, l b Is ',1[ - %,., ,- --.. .. .{.. .... 4 . . 1 / -, ...-,.. 1 .• =-, 1 • '... . ' t ,AN• FN.?' r_f ...,,,,, 1 ,.,.,,,..., *; 1 kr L -Argi ' ,,a i ' L ' : . l - • . P r ii it„ , . , 16..N...,, i gi ,v- ....-2.7•P' '''', ',., 7 " 7 r:f e- .., : i.r...}C:. • 4-•••••,.15 ; '''' '' ''Is. 2 i 7• % ' 11. 1 1kJ. " t... , • ' ' ' k 2 k'' 16. A I • I 1 k.-if t I I • 1 4 - ; ' I 'I' cti ( •- - .1 'It.. I..'" .v • , .0- .; , l' '''... ll - ;"-- ' .111 * I itsr s l• t a• ' ' ''', :•'.. .. '' .7, 4; •: 7 . e .... , ••'"o 4 9 ,r. az .............11.,...7mi. ..... ii 6.4 ...v .. ji v: • iv Iirs..441. 1 4.... A4s., ...‘ •th itto.., '''''.r .' : _ IN ,' Ni • 1 . ' ._, ' . z! 4:-; ; • .1 . ''• ., ,,ii.„,i,.-r, 1 f , ,,•,:, •..4',..$'• 1 ir l e A i. .. „1._.., . :,, r i .i. , .,,,..„ . , T.,, .. i. .7.,...., 0, f.,64,<.. t ., „ ..„.. -.<0,,,.".1± 1 -, k -, .. MI ,,,ir . ,. a It • s r ' ; 1 "II EIS . %NI - - •• .1 f ' '' :•."-,', . ..1,. 4 ;-;. ;-' .1". l':..re: I .9t ,•, i....1 ,, r . ,... ': , C• * --• 7 r: ' 4 111 1PC''', ".^. - • ."•• ',.. 4 . a • „ • " • , ,•• . ,a ; r 1 • , • . ,'!" --'.---•' • , '. 0 0.-i- g, .1 . • • . ......4 • , .-r- • •-• .. 1.1--. : 1- jer .... .' 1.11'. *. ' ;Il • 4 i r I l i ...9 F7j.'4 .4 I . 1 • • nier IQZ1 • 1 ti . ''''r^t - Itr:6 • c ' ' \N5 '' 9■. • 5 N ..........."-- ............. 3c7\ , . • _ . . ‘' • . , ..,;...- . 0) •-•,' i • ,...: - , • '', I r - ' " ', • ' ."..,,I.N .`'.., - ' * ". ''''• ' l 1 ''CA ". '„...... • : , .1 ..- ' • 4 - 0 . • ' / ' - - " * " ' .0 Alk' ' -•'-' ' :, .. ' i.r!-0• -".,'''' 1 , .....• , N '• • , . - 1 A. 111Z - ' " 7 . 1•1* • ••a'' ' .1. °9 * • . ' -'.. • . 4,4."-A° . . , • ,. 1 . • , ; , 6, , 2°c.... , . -., ° . • . , a , ,, • , . • .. ...-, , . 4, . Aloriiii , ... , .1 iO.....: 7..11if.,.14Z • ....tcji..4r514- t.,..,... . ,.. • . 4 .......i i , ? .,., i . i .....,,••,.. i .,, :: .,,•,, ., 11/4. ..,..... ik _-.:. pit .. 1111 - • . -,,., .-, ,', • , ..01,..- . e ..i ' 11 ' 1 ' V• • ..: r . ' t... .'• ', .- 1+ 41 ,t.... ,-- — ,,,1 • I - .0? • • - • • • : k ••••••• • . - .... •" • ;If 1 -• • -A ,' .. • fl i. A Lir..., •• k.. ,, i ye r . . ,y; ' ,C.-...,,,m .•... „..........„,....,:x - • 1...,,, ri . .0 ....-• z ...• ,... -,• „: %ft •-,, - , 4,,•;`,.., .,04 1.';•*` • ,.-... 1 . • . • • '1," 1 ft. • 4'11 „is•-_,, ‘-„,-- • .. • 4 .41...; •• ••,•,;1k:w. A •) .4.7-• los,1 - s:,1 0 . ,; •u f V JO ...• . r r - (.{..;,:.• C.5 1.- " -- ",..57.1.i'Lr-V— A I I li 4 l‘ ' . " v .7 f, / +J.' 9 - i , 7•,. Tit. . r, , p. A. •V • 61- -■ sr • •,, ,-,..., 1 ,. .1 1 1 . • . 1, I il. 1 1 .y. ':•i' 7+ ••.• • _ ....: . - 1-4 .:•••• :-r.,,• -• —. r N I . .. • . •_ c 1.. .:+. . .. ,.. • ,c • • . ... oc•t• ., te k ; ' - ';ii t ii • elf.. I - I ''P e . -W' MI) . .I . /".. .4', •-"' • $ 1: i , :""• i• Trikit-f0„Ck• "% • ' ' , ; . - - : • -.., • •., 1 . • %•• ••• •"„ ,...1-'' ..' 4 , ; Ll W• ' .- ,. 1 , .77 • ii ,,) . ,.,?!; .:: ii,.,...,1,. : i • vii... s- --. 1 I ' 1 k-1 -.0%. • A. •r• r k .- - - l i r% R w • - • 1 :• ,..,.. ,6 ..,..„-,• , • I 1 ., i b.. , .. • , • . .. f ,, er , , , i .. v . - - • , - ., . .... ' . ; - . „,.. , i - - .; . .. - . . i L c tri,,, _ , • , , 1 , r -,-,.. 4 .,,-. , 1 d , . ,-,, . , 4 . , , , ,,f . a e .• ' - 4, , , : . 6. : , „ ' I 1 I r•'.1 1,, ky 1 ,..-9..kr: •J - I 'it. n -; ili ,,,, ... • .1 i - • 41 •. j 1 .,. • . g , , - i , . .• ;f ; ..s._ r15• I 'A . 1 4 0.. 7 1 4 . ' i ..I. • 4 ; 0 1i. i s . ,v.,.. .. kg.. .....t ..sZ 0,,, ‘1 , 41 . •i` .. rp . 1:,..; ‘1, • 1 j,lie' 4 1. iite: '..,. i r ,,,.. - ... , . : ...,, i1 . .: - .. , . . t 411 I t ,- ' , .v !,-; .. - 4 . sk .ki .... -. ter ...',1 .7 ": .ii. i 1 i • , a,::, 11 !..,V i . IA tr ,. : 1- ' ,.-,, i .. :• • - • ... 3 ' :, j ,...• : f .'• 1 j' A : ‘A, ' ' ' • r, ....,1 1.,. , -1.. i . , -... L e. 4 .• Ist . 1 . ' 1 tr. .4 I i i ' '64 . s. ■ I. ,,k .. .41; . 1111 T-. 11 .*:1 ; .:% *-.,t ,I . IA 1 pt.) ;i • ,•i tv.ir .J.?:,-;,- , -\---' cie 4„ma...,..e.ui.i , - ii? i N- • .....,,,' .. ,,, c.,:i ; • ..,::: '11,• ° • :' ,i i 6 r • •• 1 i ",,., ...4 • e pal • • ' itiLl ..':... 'llrilNr - .;41.1.'i... - •'..41 , A PA . a:• •••A''. t 1. 1...i.:' ii. iwr li.la"..1.1 .. ' 16,41_,: f al:!'' _ c••• ' '" -:•.: 7 •-. .. 4 !:, . - • ... . '. • 4,. • % Aki n ,' :kil rk .'.? e. • . - v• —:•:. . rt . , 1•• :174 k ' - ...1 ' t ri. ttlio. - . ir .111 1 ri : .;4 rAty i . . rt•7•1,P i ve , , t,, , • k ,•, ).... , .. . , I . 1.. , . --- fgri 6 ., a. .. : _ — • .i.,!. ti , - - I*. - , .. , 2 . -, ..„,,,--- -- -..... ,.,. rpip t7,1 ..,-._ E.A. „ .. . • i • ., .1.13. •r i . ......L L. i ,..- — ir- 1 .,,,:.• o 4 , .. - - .- - ',Ii--0 -. -; • •:- :-. : - : • : ,.• • - . • .„, • ,,,,, - 9. vo 4 . .1 -•,;.i. ro i - 1 '• 1.4.• • - • f WIC lc 'I I .1 k -.1. -- r 1- ' ,g ' - 4 ".. iei,ofsifil , '. 1 - ''..!.., -....,'• --. .:''..,'.. ".” 2 - . • * ' a li 1. - * . I Cr ' 1 711 ' .... ... ...,,... .4••.;,- -•'-•: i• i ....tf-:4 i.-''.' • ' i 1.••• A .v ti,4 E• et; . .'0.1. 1 _.1 - 1 . ." 0 :a ' il / i •-" . - ' • 1 ‘1 0 'Ps ' il 1 ' " k . l . p 14 ",;1.•, ! 0; 1 -1; 4 •`:;; j i t 1. Uri l•- i k ", . 7_ i :• •w . `• , • - "•1- ,A.vi.if if ;:g. .- • -..,,,i,1 • -..__ •• „ . 4 :-.,, ,,.,, .,. „, t e .1 --.- - 1...'...-!: ..4:(0 - 1.• ' '' ,ret. ofr.,,,,- 4 i t I --7.-_ ,-.4.g ' I )1 It i !', .. ''f .' "A '- : '' ' I 11: ": - "` ' : .g 11 , . - - .. . ' - ' '-- ‘.- ii - ,...) .. - ', ' • . .. ',. •.‘ ' ' e 4" - ,.. 4 (7. , . L., . cA 1 ;.. 11 p - 0 .f.r •,..,.. . , ,p! : 'i 61.-:. ,; 1 b...41N ` iilt . 1 ;1. •A i.A A , ,, , I rl. ',,;,? 6• 1 EA. ' .. , ,, j - - .... _,A1 IA ,,... , $ l ' - YE... I . 1r,, " ....'. 4 ' 4 '-.7'. itt .., l'if 'Lk-0 i i L.. ri,,r z II ... . * .. ff. . .1 k 1 , 6<,1%., ,..y• 1 I I:, ..,!, i, ,p ' .. . . .- -- • . bal..a. .,AVILS•:7 ,,... -„ :,....,..; ,.- 44 ._ ' ..litr.. . :2,.. ......., .11; (t * I. , ., 616, • A 1 ,-, 1 . , . , . ... _ , J iii a $ ..... :....,.- 4 . . ,% , L .ki . , i i i ,• ,.L 1.," ) ....,... , .„..... , _. 4 ,t . _ , - ;..?.. - 2. • 1 * .,.,,L. 1 . -. , i• w ls ....• 1-1,-4.1,:, Aw 1,, • -Ai. - . -I fa"! ) •••6`.6 t IL 4 • . ' fie.' ". : - ' ; .. * ' ''*4- er .... li • :',' .1. AM • 4 *,'" 1. 7 - ,;ft - '4 1- APr il.* : 1.7 'I ' . E .i•1 ). 1 1.* *L ' • g l u l q, 1 0 '' . P. A - -...1 im - " • "" '''•:" • rj; i .:4 -ext ern , , -qv t 4 i i I' - 1 4 0. 0 ".f ..... Ai, :—• . • • 1 - ,, .1 "r r -• , -- r i- . .-, !F • €: )11 . ' . ' e" Z4 Of_ ' I • if t mom AL ';• ' I N. 4,.. Pe, ',. IN i I ".,_,A .' ,-;!. 'A. Ar-:_„ 74‘, r ., , - :A . _,,,_A AA:1 . ' 41 . C ' 11 i .„ ' .- i :..,., - 7. ' . . . 'i! 'X !„. • O. ' VA -it' 1 it.: .. 4,:ein a. " „hip ti.....v:: . . . :7 .0% . ' ' •t ',,,, I . 111 I ••••' ''Fr ". DI "I i's., - - ar:1.•.."'• s • ‘ • A 1 It ' - ' ..rk r • if„,..t • 1.1. I'lli .t fie Wlf•A. -- l ' 1 , ' ... - 1 1 Ft r,..t. - Mr, +' r .. • ...r .:•,L, el 1 _ • - -.- 7 .1 ..: • ' ,, . • - • ie..- Ls ig,:41 ••1 r• • • ' 4-- s, .„ z, 4 0 . •-• - • 'A 1 ° E ii. ''. '` •• ,,' . • • • '' ■ "'• ''' ' • - . t • ' t. pi ,4p . - t •• -t7 .1".1...; '., ''s: P- :.: .. :A' I .. .L.:4•:.•:•:::;,:i..:.. ii f!,,, kr.: !I .1 , ff. J. '40 „..1, , . tjt1 . ,- , " ' e . . , ... il ., , .,.. _ ,,,r,.. ,) • - ,,,.. J. .L. ..., ...... : , .. r ..),.... . . 1.. ..... •,• • i Li i E 31 J- 1 ':;,., , : c y,' , ..k*; 1 . I ' - 1 , Uakabi . 7 ..' a kl:;* • VI/ ' IL ' 11' if. • 6 '" 1 ,1, !.1.4..• ...1' 1.,hFaii'... t..!:'..;_ 6- :!;:..1 . .. 6 •'' • ' .1, ' " ' ' ' .7 'I „I' .,.-^ . • '1. .,.. 1 ' 6 111)1# . . 1 .'0' * Z.C.D.. .* • 1 i • ..EE r • " ;''. 'L.,, 4 ' . 4' ---' ' i. ; • „,-. j .. ..„....'er7 , ii.'....... ! '- r 4 ,- i !i', • ' e .4 N. itlf.. - ' ali At _ j gars i .„ rut.S i s, : 1 . . .... ..,..i...1 - • - 4. , Ir'L t l ' . : 4 44 . 4b,. .....• - 11 , C.. •" . - r • \:- • ' I i 'I , • 6 6:),' , • :,. , .!"..“ - Ar ••••- , , ..... Re" iii A y L * f f twi l .al I ..ti 1 E a ili ' . .. i ii & gli f Ail ,.. ' k.. A , - ..,, i i .,!, .. ,i, .. - • • 1- . d : * Vit .. .r...,! ;•./ , 01,?.. ; 41 , .., -.. .1. ., 3 :s t .. 1.1 if ■ • ,.... . ,.... -5, :Iv . III. t -; i *. : • ' . • • , : ' :: 4 ''.. " = .!i I ! I &C 'i.L. ::1 1 4 ,i ''‘ ' '' ' -'?" 7. 4 1 ?"!• 131" '" 71-7 . - . 1 i'l i ii ii iki ...,...,:. _ 7, ; v It ..i'..i. Re II tr (ell ' '1 :"... .! '';'! , , i.., -41 , -.: ( . 1.1 -i --7:6 .44.wi ril r%_....,„',... g,.. k -oi.' - . 1 (4 1 4 I \ f" .w yt rAttl,, ' -' • is ufr .49I; I' I ■4,-2:' . ,i , ,f1-5' . ' , 6 - 1 ; Fie' 7 ^" . .. , ,N 1 L t , L . e r . ,. 1 P -4 '''' ' ' jj''' '' i ky 44J ' l 'el 61 * e '''`' 1. ; - '''' 9 71• F• l' ?i-r. t" '-''' 4 . 1 1".1 i 1 ' 6 . 4" . .". ' N 1 1 1 1'4' 1 1 .sma.... -. 1; 1 4.1.'' - ''Z' 4 4eit' r l'i -e r,. 0; I.' ' * .- !. r , r11:17;-i±;...p..:,t,,„ ' :, ".*. !- • . .4 Ri ' 1 ' 1 .1 ;'' 5 '3 ' fIl s - ''''' V i.' !.... , .....L-..., , .. ' i .A......--:•'.' • t ci.'-' .7 1 R '2).1-=:,; i:i N I 1 -,. : ' . ,i, v , : ...-t ,f l ..r,.. .- . ,,', i - t. • A . , ii , . , .• L .. 6 , ,,, t i o , 2 6, i a r .1 .' .4 4 1■ 11 31 i t'. i t ,, i , .. . 4..0 , ..,,,,, , ...,..,. , , , liK ..,,,.. I , ° 1.1 1 4 , 1 1.1 .„ 1‘ .., m .,, ,,..,,I, . , , ., i....,..,,:.. „ . , . „ . ,,- " '... '.•.! .' . 1 .• . IA ysi,.. 3 • ., ,/ , g•- L. e. 1 ,: '•.' t I g ':.',••,.. .. ."1 „.1,'„, 3, •,. _ '• 7'j, ...- ..".k;,, . : • :1 „ ‘• _ . , ' i , , , -; „ . . . -,•..- , _ , • . • • ' ti * -4 4... • ••••"' • .1 ' '4 • '• * •', I 'A' i t . .1:4• '"'" . _I.' ,i IL:. rid g 0i ..:1": Is ".•• I l l s z: l :.: . e ., .. . .,. •,,,r,' ',.,-- - .`. . ., . %h . , Jr ,- ./ '-•-. , . ' -,--,:: . .",• 4 ' , •' Lr,. r.;...i., i iiii r i:+; Ala: 4,....1 : ....: ‘''''„, ,. • ''".cA' ..... -. :, ... rg - . -'," • . .1. .-.. • ,1 - ”." ....i. , ,i ' .16rv.• '. • . - 11., , , ..___. I ; . . . - „. - , .- , , •-...)., ' •,,,, .i*,'.**" 'SfE, r"s,,,,, ,,,!..* c,,,•+' 'rn;* 4. "I„, • 1 _ •.-' 11 : -1- ,IVI:rrf, ;%' blYi jrlirgr A frl -4 . 4 * * / .,". ‘i i • , - . ` t ; ,• '_-•. I pr, r +Iv'. s'" - , '' ' 1 e 1 .4 1 : 4 34. ..40 ill • • ; • • .,...-- , •-5„,,, ,, ,.%--., ',.. Pl..."1 :6' ; i r ?.. 1 4 1 li . . -I e.') 1 . q a , . .., c -,;i : ,,.7 , ,,, i -....-, ; F 4.1, -..,....-:-.:., . ,•,...,:p...,.-- .. ...c . ;.....•,, .,,,, ,,,,,,,,, . -or ,.. . ,.. •;;,,, ,. - ..... , . .,„. •, . „ .... i . .,..... . , W/14 • • • • ;!„ ..0 .:;,-; *''' ' E . tAi,,rii; A.,. "A 14 a'A'..!;11 k1,:i . .1..." " ; ; 1 ,.. 1 . 1 ," * .' ' , ' ■.: , , , , ( . 1:- .. - . 1 E1 sil l 11 0 i 'l,, p , i •.,1 u .... 1 4 4 ?If k g. , , -„,,-, . r ,f,,_„ i vet •„).• t . . ir i T ,111 1 i If , .2 - 0 F .*' '. ' . • c;F 41 • ti ' • t1-'1( ':-.1 Ji 1 4 'Iii:,. ..e,.. A: liA a.' : A . E ll 1: 11, ' rt ; ' 4 22 Etr * 7.'71 r q, ' •1 3" 2 '. '1. 1 ( 1'",14. •4 4; * *1 .t.-- - Aft i J.-:,:•-• .5. • •,' tii 1 ..... 1 • ,....' . 7..;o1 , , . ...' --.: - ' .... ,,i. ..,- .14,0c. it 4*/ :Lin.; ;.11 .., I. ? pi* illii...-1Art.q. ti}..cPti . wlf.a.e.., " • ":"..' ,... ,f. 1 r- , . .!,:i - ■ t o' LA . : E '.: • •;•' - ;"1"4 , .!•1' tr4i..-r . , ' 4 . 1. " ■ .,4,, ; !' ' -- r • i 4 :, . ; ' V le . III I ■ .• i lL - ..," , I 1 I . . :• i L. Q11% YI:, I. 14- 1• ' '1' ? '14 - 31 . 17 -•• - ■,....•s m.' NJ '•'''' ; s r .'. in ii'le,,t P:: % ■'' f./.:•':„,61-',-. . 11-• i ,.,,•,..- ., . -!..... Ztl ',". •'.. - 6■',i' , ; a n„.-, 13..,,: ..4, - -, i Ni ' roi . . il , . . !._ .- 4, r ...u! . ..-t r ,, , l, .,_,,-. 44, is,..;• r,4,1 I 1: ,t. -... L ., L. .!,,y; ;.,,, :!..or,„ . .1,,,,,, e - .0, 1 411• 11 (7•;-;•"4 - , - ...nz.1. 4 "•s• . raT'"t0 . ..‘ , ......- • s c • • •• i ' .. 1 i `,. r '.• ... ..'• • - : '. • ";,"": -:" • ••11.',.. • . , ..••.,• 1,1,11 q N r,, 1 .,. ,e, it,,,.... s . 1 • oft r.r,.'s i.‘o l•-.; :.- 1-2-A.n.,• .hill- - 0 hi !,),!'-.• M.- 7 :. ., 'i. -- ' "- i ' .- 4 -3 ,•, s• ,, ,-..,.. , , • ,- 731R- is ,- " i llE • ' 44#"'" ' ' ' 1 r 4. A ..4. ea Vii :, i I I ' --1 1 , ''' . ..:,-"'L ---'': ik-a --- etn=1.....01 - • .,,..,,,. : ,..k .-,:tr,. . s.r. ., .= . ., , .., -.1, , , c,o,. ,.... ___ .. _ , ...., .1% . Ni. . .1. L . i : if,: ;.; f.'1.1. -,.., et i': '.I , .1'• '..- • •.T 1, :l il ! `.*** : ''. "%! 6 ' ''''''.!,` • .%1 : .• ; • .• '.. 1• „ .• ::: - . 4,1 -. * .:;‘,1, - /"..::' , 67.• - ,, t %.r44 .- r•ot, el I,: '''..4. '' •...•.• ,":, ,' lc -ii • '•-. ITCo'diaw, ro l• • - . : 4 !"-• • , ;:iy hfr.- ', i ...-_-, 4 ....• 4 %A ;C 1 :: 1 ::::;:.; ::. ;',. bi i re! . .:: .; i'4,ii,.::; fi'.......!.... Jii:`'r., l'I' 1: ' ' i' ,::-..• %,. .. \ . -,..: 11 ., j t' I - . - '-' k / - " . i s .'.'7 71-4 i t ' 2: 1 11E i i* - 0•1;.• • r,s.int.41 ,..,-4 - f 1 ..., .., I i t,- .,,,,,,, , ,.,1 , ,..,. _, .,, ri ‘....., .,. .,,,,.,,.-,-. , . „ k i i i,,,, , k I 4 1 . :h44 .e. • --. , ' " - ' .1. J,111 ...=...."- _ „!j""'" 'I -1 1 - 14,Tr. • '1 ''.',. 0: "C;111.! ;V.A. g e-t•- 4 ... ) s ,,,,,.. • r :7,1 _ ..;,,.... ,i, 4 ,. , . 1 • ...; , .,!:' , .. ,. , . ::, , , 4, ,, . ...,...._. . -„, ....-,, ,.. -. ,•,- ....,„; _, 7 ' • JIM:1 ••••';41.-...-1-•-. I " L i. - ;. z :V2 . .. 1 . r.i.„4.,11;71,..,%,:.:..Si e; ?ill * llti Ic::? i!.. . : 0- 1 - P . i la ; . f". . ' , ' 5 . 7 4 il. 4'1'4 X. ) . .0.-44 .b.14-p,11:41,1 . ' - .-e ..,.. f4 ,.. . 4 - ,, 4. .. k, -•i- ' I • , . - . , -i ii ii • 111 i • lit j *".‘. • , • %. " -- .. ; 4 - ."..f. 0. L . 'F '! . ill;" . --: si k .i.f.f 1 .7;4 4 it'V t ,i* - : ...!h ti k 1. 10 ... ,!.. tf-Vit itodie. f; . 4 -if) y vi.. :evil: 1.., p -•,' , : ri_i,' c; . - , of 4. . ol 11% i.• 4. -.4 r .. ...,s, • • ... • - • . A-. 61,-,..,-,- N 4 "'"iit • ..*% 1 • ' ° . 1 ' "A, AL Elle "A I 'pi !io 'Aci ' *.;.:. V ... .t '0'; . 1 1../1 . I i Ai . l • 4 ,.. .00 • , '4, ii , :4... , . _. ,. -. _ N 1, . . . . .. IA Ai.. ct , J.,:- .. . 4,., ...,.. ..,:,..,.. , :,,,,,,,, or $!,.i.c,-.. - . . * e 1 .0 14% '41,..--1 • V t . ii ,, .,. i l 4 • . he{ RI 1 ;IA ..41:-., 1 J:14 0, It, I i` - !rA.' -,, . 4 - ...41i 14#1 ,, ,W,C! 1 i ff, , .'fril rt _ , ,„... ...Ail 1,.%,- . ., ,. • .• c. - ,- . IV , •-• ,,,,i ', , ) t . - kit i, .",h'i 6 . .., . , a4MIA.1 . 1% 1 . ri!_,1 ' '' - 'Wr , 4.• v itt' • • , i . ' ‘e.kii 1 : rid -1 IT 11.11: r. 6,-z ;-• .'ir4 4 . S.edbinF ° 1+'* i. :111, '' ' : * 1 ite,.'" . la4.,..„` ' 1., 41 1 11 ,41 . pi 4 a • 1 4tv.* l''. !Ili ',4,,,'Flev. el 1 .;1,11 0 :4 . ,;-: • ... ''ll kit% . . p.,.,;, - tj gig, 4 „ L. I . Os. • ! -- k g1 . 0.. , „;• 0- 407 • ' ; - .... . cr .. ... _ I I 111:ix".4. ' y e. 4 %,... -. • • .-. - " . ' '• .• or • I C *** )1 . "` ; , ., ' ',. . IF 4, Al •A ‘ i• g A r i . i „J .. 1 ' .3 ' r i„,4 :• g X • e .,. . 1,10 , A • A. I - • A • 'Ali.,1:- tir,,h!v. , ,„,,11 t• - ti '' - is e •'}*= ril f rr ;,. ..,... 1 .;:. - 1 .# ', ? -;,' . r. r. t ., i Y -- ..., . ,- . )1 104 0.. r .'- / r k ' "e -"(''`:. L 1/4‘ t ' ' C rI ' 1 g ' - :' I l: "-'.. , ,- 1 . .0 't 'el 11 1110.fi 04 ' .'.'. ',•,.- 1`,,','Ir' , 1 ,. , - , `i ,I,M, .1 !'"; .J qt A e. , . .'7 ! .1. i -;!' ' 1 fikX -F ;.,.‘;". -..'. :....i , i - 4- . te.:, P .i) i '... ,, -.1 '•` ' .'Y,'; , • •• • •.„ir- g 1,, g• „,„ - 1 fe 1 il 1 - 1 4%. ' ' ''' f t4. 1 -n" ";- ' :*,.','- - ' , :'' ' 1, ,Ki ■ .6' i 4 , . - ,. .. .; : - .--, . '. 13 1. \ .. N r.. -, 1 •,..,,,. , i /... ,....,0 - . .....0 ,..,, . , „A../ . i- i psi ' ra m . ....1'. Ftl ;1 7 . ? r ! rr .i r l,1,. k ill. , It I , _ - 1 y fi Or , 04) 1 0 . ,..1 • tt SP, 1 ..j ,„ ,;',,, ; i f ,- '1 i • i ', . ' '1 i' -....:, ilk. i' .1 tt- pi - ' tiro' - - . r , kir- - ..7 ..- *.4.0- i ti‘efl - A,....) iv- i,v4s 1 t . . -_, la' A r ' i ty 1 B1 i 2 .• it N 1 • . i - - -riff, .1;• . - • .4 :,.: ,- • .• , .,:. ,,..,.• v -• 6 , ' ktV.4i. 5 1-ti ' k.! .0 4, . lk_ _ •,- .• .t... d ' . . . •,•-• . „.. .. • •... lio. '..-%:•-• 1 -•'-- '•-•,.• 4 °'''`• 4.-, L. -k- :,,z . ..! ,; ' l . . ' a , .-.- . - . 1 "r1t.No.t.., i , • ' :. " ' ' I 1 _ , . •:, . ..• %.s'i, • . , •.. 1 f, •-• i -- - 1 .i.•-• • , t.,'-k.4 4P,;('mi el ' , .• l e - '..-, 0 411 'Fa ' - '174. • ...,! -- , 01 4.'t -' , b 4 ‘ . , 6 ;7,..i- t.,,-,x• . 'A2.-' ( 1 1-es:•.N '... .1' ' ''' % tg .' 4 1 , . -11 1 _ _ Vati..t.iL 4 1... _ 1 4 , .. vo_ . . ...,... , . ;‘, if . 1 '- ',,ls ' '. ' ''' ' *IP' Ir q. iiii,.. .Jy.,3q 1 iiiii-.10,t_, . 11 .1 1 L _ s.. .1:4. 0 ..• - .-e .. ..z .:.•; . . -- _. • . . - . . LI. •c'e. tV:0. IA ... • • A4. 1p.4.. t ..... i ....-11.g . .1 rid .. . .._... _.., .6 . — . . J.N3t\3 u . I,/ / A - (I , ),3-1 )1 ) 1n. le, ber,ri , • . • ' ' " r... A .-.4; • „.. t , ,. , a. : ..o"Y. Ca...7- 54,7,17 -. : 9,: 1 1 7:7 * P4, 1 1 " - "" -i ' ' 1 4 7 If? - % • • ' • . I - 7 f"- I l . . i',." " . *72 "r•. ' • g .1.- t • * .P. ••'. •- I" iii if i r gg'Ai; 1 .1 ,} ,-.1 I.V ( -:'‘•C I '' mi;f: I I.. -: ' i '' 14,‘:, *•,,, ,;•ti! 1:^' . , • ; tr , • r p :, .7.t■ i :1 ' :.■ 'I ., 1 ( ' e ..;.•-'... .. /.. , ,, t. • .* , : ,.. 1. , +... j p. ,, ,, , Ar t: : 1/4%144 • i 1 1 1.,,a4 11 ' ■ 4.. . , No ,..1 ' .41 #... 9 el ,_ ; ., r i t . • 0 i f , j i .,„ -, p _I .. -' . 1 g.--': ..,;. i -1 r . i i- , . ' 47..'..r • r ri, ,,,,, ..1.;,, ttol .-,, v.1. k f.;.1.; ..1 i • .e.o.. r, I I P.P.% .1.• i Il ! C' .i./ . J t. .}.? .i...,Lig...„....4 1 , .7.: y 4fi, u‘,,,, . i frzi e2.440: ir. .,. 0.4,e4...,.....‘ 1. 3 ' I. 0 il we, 7i.it'eAt 3 ' . '• "Q? 1 .1J .. ' 1 -....!. 14 - ,- L . _..,„ , , .,.. ., 01. " ' ..e! iv „..: . „, , , ,.... - 11,.. ,.... • T • . y , , 01, ,.' y 0,_ ;.,f , • ' f• ;- '4-." ‘4 I ' 417 1 11 * Agfi - ''' t-I,In riii%: 1 1 - iti ", •• L "3` 1 0 i !4 ‘.• e ; •-• "': - - . wiaiiiikx...1 • - • - ::...-.- ,• -- .-"' r •" - ' • • 47_72' 7:: - "'7, " I "' . " r•:\i° I • .° ' ° ''' ' ILI ' % -. /. 1 ' 1 ' 111 *•/ '1' I ll I -• - -. t iA. LIZ . .'11.1 I "I ,, . A t.I.L _ i• _ rj;,. ; 4 ,ii •*` " . a• .- . 71 ,, LT --...,j.,Lg ty 6-0,5 z, . ..tkr; L . 1 E- i ti ,!-:::... ! ,,v_ ::;..-: 17 :prpvicir,r, 't :.0 KISI clIA r7 Fr , $...1.1;q t 7=1-.,--i g F ; .. 1 ,711 - 7, ccitt. - w r / ,.1;..1,4:: e V , • ri :,,-....- y,704Lfini4.. 1701 - ,: i . , 1 .01 0 .,-.;a t v,i r - .t ,kiktak:,. At 4,- i ik21. : ttr tri Ay i . '.., • , , .-..,,,,,•• 4 0 j 4. w i.e."' ,. -; .: ai • J I kti1. g 111 fl .., '0,-,1..eilA 0,,' V.! „ I ..t:.1 Rit I OL 4 4...1 ' t . 1 ' I Cit'' ' 0. i I *•.* .• /1 4 . 1 i -. ' A' ' ' z '• I - ''' i- ' , ' - , i''''ifi . • " "I' 1 II 1 . I' 1 11 ' ' ' •:' : L .i,1,,f,-, .71 1 :. !trip's:ill li iii,......".,..., .% 7, , 4, • t,,,4 i .,..,etie i ,„ r ,J 1 P.,,: t * , .q, 4 4 1 .:' 1 li ,. L.,,,Ff 1 0.,.,. ii:_.;11 7 •1.',..,'1--;:,lizl_ ,I li4f..., ) 1 ; l'■• 'Il r ,4?* k , .i„ . '''.:- • . ., 1 '• 1 J '411 ', ' 7 '1 1 6; 1. r q f i .15;1 1.-•;‘ I •,-,.....", 4., - •,,,---c.:".",......1,L . ., , ,...!*1'10,1iiii44 „ "a•,;11,1 to "It.'" t i, •; • VIA.. 1-i La• 1 ,,•-,;• T ' '1 ' 1 : • j. • - I t i r. ' • li 1 - •„/Li a 1 . It E )+ IL . _ " i ',. : t 0 .: i " 0. :*.0 $0;41.40.'1' - Iliti ra,...y" '''. " • ' ' . • * g ' Y' 1.. , • -- "---__„..-07 4 .- k,.. it 1 „I li ' rl 1 441 1 ;1 J•I't r (• •• - •1:1 r'- r l l Ir.' cs,..f ,. , i • to * 7, • . ,.. ' . . ' - it gti i s- '54 . ? ' f ' •4! ... rig -.? i 011 , ,. .i..r,r k...' P,:fAl i ll .1 :?. 4; 011, f t tEt • . mit .,..,.. 0 $ fl3- 43 ' c ir, ‘ `` - ‘,.,1," • t-j. , ,,,,,r, . ,v 1 .,,„ t , 1 , ,.,,.,...,....., ,, A ,..,., _ . „I !..,,,,,,...:, „ :r h ',,,, I . ,... It ,'• ... , 1 - i' ,, I, CI Ii ... 1'3 ,I, .1 0_ i ', I .t q ; ,•il, LAI t^. g•-: g,..'„ - /, $ "..' ..7 :::....;7.-, , 5 1 ,- . $ r. •:'. Ct * ,t *:,4, ..: 0;14 '44 't..., 1:1 ti 1,. rialN, • 'IL,Wk .. r oart, : kl i r ri l. .,,t' . :c . . r 011ikel - ,. • _''' :rt '..„..4 1.'14 ; /4$1,11 71' k . ,..,- (--J,',„ , . : ' ' -.,-, ' . : • . i 1.. - I" 13 10 i 16E1 1 .0"--T) f 1 i' ';`", itrit4;r041 kri441•A:.',,,i•j k, ;'-:.?. Lit'• 4-- '''. ' '' - . 1 if A'1 Mr'" ' Y ( ifl r RI , , .1, pi tig r r t.' tt: p4,4xF,Ir g", i'-' .-- 7.2•$.7.1 a s .. 1 ft . ...7 . • .r $4.."%-',Vp' i. ' 0. -- .,,,,..,,. ,......,.. 1 k 11 •„1 - 7 . ,; 1' ...444 (1 ; , ; - *j., * , .*,%-, . ": ii k• 1,•:' i g ."':?...! .*,",_•!, i. I I; N 0,,Itt •* g 1- ai:•-• '."•',....:44... A: 0.0, ..,1 1 i . : ..,,,... t e.• ; - ., .,..... 13ril.i , i. T.. - n410 km.. ',, :` ••• ' •• , I, 4 4. • • 1 "Nit' .- 1,', .. -- . '' 'A ". •A.L,' ...i '. ,„ .....1, 1,.......vi•-• i , ,t , p k i 4 .„ h . 1.4 11 0 i i 'I P ^' '' , • •,' • 1 ,r o' ! s .', ,,'••• • 4" G •i i ,1 0V,14 • I.. "' #.... r li* -' -II .1 , 01 .1.4.1 001i-VO *. 1; : . -,- r ' 1 I r j_ 4 ' ' ..*: -; ' .* ",,,C400 *A`m'...,-",-'4,04.) :‘,N J .-a,:rtsq 1: .,. ..i,..- _ . .-.:- ..„ ...„ h ..s., .1 T .:i. , .,i, ,, ; . 1- 2 . - ci• 1 ' I i' fli l i " :2'l ' ' F ri ---0 A ii , '4 I ..- '. L = 4 . 1 "/ r '' IP! i *'."' ,"; I 1:: '11 'It L . :), ,se...27'...,‘ , * . .1 •.. • a 13-, , Ig 4.4%* , .:•'t 0- g ''.- ,-; ,;:, t " ," !„. .0 ...;• • v - .-, i, f; :;•••■,'':' 4, * „F '. 1 i e.,. vii'„-lA tep re.... . erez. ' 9 Tr. :v. 'di .,... ,t 0 1. . ) ..-,$.. , I , . tA;t.r*F-e4,4 -i- . 174c, 1 h - 1 . 1 . ,. , ito.,1_. , i I, , . 1 , . , 14_,,...,:ot , ,..:,,t--.1• , :v2,- ,...r f............p.. ..,i,,,, 4 ) % 4 '0; " * I * - ....,. " . dl.4 VII , - i• a Ng " :•,1,41, .: - ,- r, IV .1 7.,'" ,I l er! V..1 ' l i ° 1■ • 0 ir ' 1 k .• ° • •• , I. ( 044. " pf . 1 ' '' • ' ' ' • ' l ." . j,,,,... ___„,. ...'gr 11 /1 e.rilL' rIn If , 1, ' i :r -tar''' . Pr-tt I , ' 1 ." 7,- , t.' ".°'•• . ° jr ' • I . t, 1 il 0 „ ... '!„ 7 % . .„1,.. 1 .. ,.. ,..r • 0, k yOh I lk,i ii . it f ' 1 ' ' .' - ' ., . 16 * k7=- v7;• " 1 % " * 11 '" ..ir'' • 7 L.I'Ped"dt...0• I L I t 7,. ., ., '-- " • ' .-.8", w": -1 i 1 , i • f I -i l '..7a 1 1•4• , ,Ip_.• . '. I '1, ki ••,,I • .,,, , r-,, E 4 N 0 i. ' %. , , , . , ..,--.04 F7 1 • :pric't L '• 4 1' i ito• on flg 411,1 I V,A•4 1 !.girk; ° 1 1 44 4 , , '...kit ° I. . 1 Ti .Pr , ,,,74 . . . 44 '1 .„ ;..0:, • .. 1 . 0 ja it:, ; _, .. ',4 ';, .- .. 0. • • • '• ' " D • ••• .41 - l ,- Iftil,„„tr 1 e I ) 1 -. r f. F I , • ' a - -e. al 4 L %lir 0,00 fat' :1- titi ..,...:..., : i ,_,...-t. k ,•1,.... . ... ,,..,„ ;:::. 0 - ..:1' . ' "..*.- * k IlL •104,.. •. _at ''. • "`. • Ir °76 ...,,e 1 1 ° 1 0, 1 1 r- , tl if4-il ., -:RitrIton lk- erz, -44 li'l.:. k • -, I! ' a' ,....' 00 -,f•i r ;7 1:"• -1• °.- -7' r- r r.k4 • • : i,- . - . '' .. 0 -1 ." '9 . - ' - ;1 1 e4 , 1,0.... j "M 50 . .1 i I . I .1 1 .'' 0 - 41 41 ".11:Y...t. / .:', o ;:- i 1 II:k!..11 ii Iv? I V.•:•: 1 .'",:i • 1:11 " '..1 : .• , • ' 1 1 ) 7 • :,," 0 114,*„.!P:A if.r..t, 4 - '"' , - ' , i I. ,r ci • * ,, • - g r. ( If '‘, ittfir — •5,1„ ‘ .,„ "...A-V. r 111 .1 e q .., :z e rtn .) fiv ,„, 1 . I f ! ,,,.:,.. L I ..51 14 l>,,,•....... cr Grreidlity, 1,,_ . ,.a.s . , : y.,,,„ „,1 ..„0 .F . „1• . t t ._,..•11 " 0" -.,-- - _ r", i j* ' ' a. ; P t l V 41 . . ..1" ' . I ,," 1.4.".4 '''. frgq ,,..-A. ii._..c. I %. A7.--,...,, 0 0 ig - ,i;4 , 1,4 ,F .4 , •y4' r e . it,r , . • , va,, a, L. :jtk 1 , , . e,• e l', re ..',.. ;It. "I.f,:' .P.4 ci"tr77.?. '1. ,•,„ - I ;1,1kv .- -".i. 1 : 5 1 ,. itimw-• jt ,.,..r* 1 ' 'ilk tfk kt 1 A.A.'S ..et c IA . jc. ... A A tr. 1 *—.;.... !..-...-Ir-, krt-• 0' ,- ,-- • i 4 r ,..- .7,i ..; a .--- "1..... e - 77-* ci •-p . 4 k'''.- --. %...-,5• r- 't 'f •-• ,.. " .; „, p , ..., - -- mr ..... pri... i ., ...„ .c.A..,. ,„,.. _..... „..,,,,.... ..., ,- e .. Li, t II 1,'", ., ...• „. .../ 7 ..7,..., ,,,. 4 ...1"4. ..„ ,... to t A,,,,,,,...... 0 .. !(;f ' it ,,' jz' Mr 12I* r - 4.1- p if ki - i .1.-- A,:f ' .,' '' . ''. ' I l'A'Aff F ., as qi - . 0-r 4 tst. .61` . j l' 4 ,c, , ,17. 0 0 , 454..,„1 kw,. i • i tl 1:i . -1 „'"...:: L itN) () ii:'-;-;•-; 0 ir 'fl'' • - -414 kt--. '4 ' '04. ' I I 6 4" ir vi` Alt% 1' 4 :1a * ..• kV . ' FPO; : 1 , .1.1 C. Ilit-.:41.`....'1 J-41 i "It'-' •P''.' .• t..- :: ti-,%..:: -:': I.:: 0 -,...,-.4 , ., • ,. , 1 qig tee : „..,„„_.,.. 4 lag Lem t ;,+,, t.,..., -; _-: -'246 titi_-. ‘.:41,, ....„-.: .,, ... r,..,.... , ......:. 7 e I •Z'a 1111 14; 'air,-,„ alri 0 I A '4 fi - i R t •V ‘ t• -1 •• I St r - 11% , i i. (( .. r ir - .' ' r,1 i' • ' ', ?1::1 1• 11 11 I 1, i ..' r 1 tilk 1 NI f • it f d 41 ..'•• ; flaittt,V, 4 4.1, iiii,4".•Zio. - - 4-Ni,, „ • - rim ;.-- ...;•..-, , . 0 : „ i i .• - . • . . . .. - - , - - -1 -.- - • '' " - _..i'"` • , - - • • • :414 , , -14 — - i ' - . -.1 ' -t. ' $. .."• i‘ 4. ....,, ig;:r'-r. rc. --.1k....-." e.. i - .- .. , ..14;, ..- . - ..-...., : ,;' '.---4 0 -;:"..' " . . r--`-' ,,goufc.i'X'' ' . . - ' t . , 'ID .i. le . 4.1y,,,, , ,, . t ', ,-, k - .-: 4 , . , ;AP .. -,,, -,, •, . ,..f,,,,-............- .%;,-....,., . r.•,_ b.+ _,- r g . ; . ;.",...„-7..., _ i , 1 ,"46 - F . 4•*.,`g.1 •,-,:. . 2, , 1 ,, , - - ,,, 4 4 „„ 1 , 11 , rt‘ , 4 .. 'rs 1 l k,_ 1 1 '' 101 LW I P , . 'F10.0. .'er ' - -•-. • LI - ' -;' '0 "." t A .„--,....:-.,,, '1 p- .,',' . ,, J. I g:r.v.VPrr 0 . il'i' tri .. A.,4 . ' I. • k„ $ t r -r.- tlk .. ki,•,,4 ' 'h •.‘„ .ithl ,.- 'top. II, . 4.-` ,.....'..,...e' tia...,- ., d . - 1 .,.., - ,•-. •. i 440/1, :, ....:l -.4, -.,:1 .-.?.. • i.,. 0 0: , -i. r , . k ...MS I,.. -' .-.11 -.' * 4 1 ,0 . 0 1 r 4 . 4 .1 . 4....:1,r 1 :1 ' I , ,14". : r1 : VI" il •%. ''' . '2 . •' i' iffp I I ,,,-'-,..... ,,, It ; 1 • k • • ''''' • '' 1 "r i r ''' - ‘.. ' ',',,,,-, .: .' ''• ; ''.'- .....,c .. 1. .11/ 1 • 4 rk.1 . ' 4s.`"'s• te *11„,- re. or c. 4 Li.. ,, v .471...: L ,.. ri ' .!, J ...., q - -„,, •, ( ..,..„,..., _ . 1 ,, • . 1 : 1 ' - 4 . •:Y^ L A t rig l r4) 41 7 - • , .• ' • .".,.: ' ' . if ta l i I - ...',... I /,-, „ .4, 0 _ 15 70 , . . ' al : 1 1 1N/itY - ' -• 1 !r N-i kt.-64ivike,-r- L.L.,.:,-_- -:.;....--,.,„.- .P. P'.. . --• - , '• ' ' -- - -- k -' ...". a• , q ' * A " ' ' 1 7 P L !' !Pt . ** C71 "1 . ; . (n l 'eo i l l : ifl . V6 6 . V I di. %. ' 0 ,, , I. 1 - . '', I lir k 1 I ,r..... ,- .?"... ' ., „, - , ; . r• 4 -. • e.- . ,. I.' L .1: 4 .. j {..1. 1 . i pk ;: ap.2. ' . ' I - I 7 .. L , • 3 7 ' .0 : , i " I' I .1 ni,.. L - , , 10, _f!, l.e - -E"._•' ° •'i. "i' 4 t• t 1 I L '2';',,F t k i ,,,;:.:!:-."/ ' ....OP: ,iii;.! . . ?J.: ',!.....C , y 1. ' 4 . 1.. .,... t .4 . • .8 V„••.- '3 j: . 4 v 0,: 1 y . 1' stio. ! ., ,ra. % 64 10 faTi.sti 'M'' ' ci.I-,... ,'.::,( -j:,ir t 1'4 1 4 1 -61 - NI t II: , 1 Y' i ** , -0 l i - % ' 'If j f lilf.,;24.4 '.-' : & '''--.72-, 4 :-., 1. r gg --- -, ri J i:".' , . t 0.a, ".' ' . , *1°. • .`":::,' .,..ii ..1.1 „fa-vie: ..t.21'.., ..rb. .yr - - .gi 'ph, 4‘.,,,i'i„.■ i - : I. 1 i 11,;:-...A.IL4 -_,1 ; , c , _ 4p :,':':`'.,, r."...: l''; :I 't.,"-,.1d)- Int :Id (0,0000411. 'I)? I 7 I Va.,_ -1. ; • ! .. ..- ' 111i ...r 0,, :,-,-; ' y '' ' ':- . :': • ••• • , :!':. : 07,',",.. :41. ,_'-.°.,Vrilt i '-: f p.4- i , 0! 1,,m f-.. , .. v -- ..-,, 4. , ..., 11 ., .,•k?,f. 1 „.. ",r- • 7, - ' . I ,T!„,„,f,c1,,,. . ; , f. i ...-vr Ai: _ .... `,1, .;„ .- . 1 ....,.':. • • ':,"..4 . . 0 1., ,, 1•,..,1.1' , . 1 tt, ,,F.,..`710 la , . x e ',I Le,41 1 ' t .11.1 k ott id 41 ill I; j ....:-...!_i ,1,..,- ,, I 1 i '!--; '.,,,,.; ..4 I! Nik< • a rf b rl).. , tt ;vt , r .., it V-% .icrr ci ,..,-ftivritate..- _,I ...11.451-0....o.i.NIP:. r-- e -::'-' . . Zer:,;;vs. ..."7.,.,, - - - -,,,,.., . ' '''-''." it ' • * .'" :" - „ .7'%: 1 ' ' ', .• 0 •) 4 i 4 y . r I t '.'. I 'ef'...it. I • ' Ili ...!I Ft .• , -Awl! ll'i ' I. " lai L. 1 ""' 40 fry - -- ....L...---- - -` * si... V.'. --... , , i.,v D, , .p.., „. „,, 1 „prot,a IL -. - ,.. 1 ....7- 1114. • I V., ,..,a ,, ••• - •-••• ••-• " z ,, p- - . .. • . .,,, ,i i . 0, .-71 .. r ;11. 11 , ,,,,,,,, .,.,.. .._, ., .. ... • , P.. •• . de& .. .r .79 , it,,,, A, a 1 .0 . :IP' te, Irprr. , 4.1 .....,...,4 i --' --- .41:901' 1:71 -11.3:1; -. h " j • '-- - • . . . / . ''-' '" ' - •LV 1 IC '74 ..g a. .. D -. igg'...e.,.• •-. yid I .....q 4. .1 'La: et 1 - . ::;."14-•.'s. . iii Ek . V..1 7v..:. rt -1 r • • r .71. 1 l ot :F*1- 4:V ljr . *r "i1 1 :07;.^ .' t 1 - .„' 1 • ."•• • . 1.‘• 4 ,',. • 11 •4 P.• ,i,-/ 1 -.0 7 g ., ; -. --.:.7.4.... .. r.,4-yer.--1 &Am ' g (ro,. wI - 71 L ' AfiL IC $) 4 if r . 1 17,7, . ...i 2 , A •*,. i I, ) " '*" • 4 i - "lot j ,-,-% • :.- ' F,.. *I. A - ' ,,,.. ' - "it'd g•-..), 0 0 ' ' *":" " ' ' , ...,t,114 4.1 ; • p• - . ; ' ,t- '.-...-• a (11 J • I -.; ,.. *"-IFPLE.": ** * i 1 .3 --":11' 'lilt, '.c.A. 1 e . ","•,.. 0 .4..1; - 1 1 1. V rer..1 '• ' 70+ I _ . ! ,0 •••,..,. i .. "VI Mt.,' I . - ■ 11 411:: , i 1 / IN r 'lla : . 16 5 . r .. I •/' r,,I... ..., 0 1 '• ••;‘!•. 5 .Y.1 „ , I . - •P • C.,11. ,' ir.- ii ,ri..7.. • IA -,.. . 1 ? 1 N. ' 1 • --- -, ,':14 - • , ....*:7, - ..... - ",4 . 1 I :',,' .. ' - 1 -&-.. ' "L. d• ,-.. e'7- -1 IA,. ::,;‘, . ,ii . .i. - .... t .,..„ kit . .. ' 1 r 1 1 P - r 714 n I C O I I 1 - I ill '' * 1 • Lg•Ta ... . -1 - ,..: . :;.....p. 1_15 a- it, • . . . , y , , , li . ,.... iir lifi.lul .L/ ..I., % .-. 1. . . a qte . ‘'"/- 1. . kl, ,..°' ■ ', 4114 - ill Li - I i 1 , P:11 ,....: .1:. .e - ' . i .. I- 11 . ...7, ' ' 611 T r• A .. • -.. . ge ... • i , - , .1. .. ,, . , ' ' i... I • . --: .. - ...i 1 . •• 1 *:. - J Os r' . " I *4-.! " .:* 1 1 le:, ./!01, 1 , , ' -agg , ' a:4„ , •:,.. ' "g"": .z. --;"- • - . , , _ ' .• i. . ''':- - - - ' f' . . V\5 3. qi A D 3E EXISTING EXISTING STORM 5P D 7P POST STORAGE S ubcat Reach ' on • Drainage Diagram for A05077 - Mirage Storage CAD Prepared by Afghan Associates, Inc. 6/2/2005 HydroCAD® 7.00 s/n 001638 © 1986-2003 Applied Microcomputer Systems A05077 - Mirage Storage Type IA 24 -hr 2YR Rainfall = 2.40" Prepared by Afghan Associates, Inc. Page 2 HydroCAD® 7.00 s/n 001638 © 1986 - 2003 Applied Microcomputer Systems 6/2/2005 Time span =5.00 -20.00 hrs, dt =0.05 hrs, 301 points Runoff by SBUH method Reach routing by Stor- Ind +Trans method - Pond routing by Stor -Ind method Subcatchment 1E: EXISTING Runoff Area = 25,500 sf Runoff Depth = 0.44" Flow Length =187' Tc =6.2 min CN =74 Runoff =0.04 cfs 0.021 af Subcatchment 5P: POST Runoff Area = 25,500 sf Runoff Depth= 1.58" Tc =5.0 min CN =95 Runoff =0.28 cfs 0.077 af Reach 3E: EXISTING STORM Inflow =0.04 cfs 0.021 af Outflow =0.04 cfs 0.021 af Pond 7P: STORAGE Peak Elev =2.88' Storage =1,358 cf Inflow =0.28 cfs 0.077 af Primary =0.04 cfs 0.048 af Secondary=0.00 cfs 0.000 af Outflow =0.04 cfs 0.048 af Total Runoff Area = 1.171 ac Runoff Volume = 0.098 af Average Runoff Depth =1.01" A05077 - Mirage Storage Type IA 24 -hr 2YR Rainfall = 2.40" Prepared by Afghan Associates, Inc. Page 3 HydroCAD® 7.00 sin 001638 © 1986-2003 Applied Microcomputer Systems 6/2/2005 Subcatchment 1E: EXISTING Runoff = 0.04 cfs @ 8.02 hrs, Volume= 0.021 af, Depth= 0.44" Runoff by SBUH method, Time Span= 5.00 -20.00 hrs, dt= 0.05 hrs Type IA 24 -hr 2YR Rainfall= 2.40" Area (sf) CN Description 25,500 74 >75% Grass cover, Good, HSG C Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 5.8 100 0.0800 0.3 Sheet Flow, EXISTING GROUND Range n= 0.130 P2= 2.40" 0.4 87 0.0700 4.0 Shallow Concentrated Flow, shallow ditch Grassed Waterway Kv= 15.0 fps 6.2 187 Total Subcatchment 1E: EXISTING Hydrograph 0.046 / 0 Runoff 0044- Type cfs 0.044 __IA =24 r=2.YR 0.0384 Rainfall_ =2.40" 0.034 0.036; "�. � ', R- unoff" =2550 sf -- 0.032 -_ "r , 4 0 � p 00.03' ` Runoff Vol ume- 0.02'1 af .' I -,��jj {;, yy ��rr��� • 0.026 " l� Runoff-= Depth = 0,4'4" • 0.024 = � ' c 0.022: d w A r d 0 : /��� i - a' 0.02 -' _ 0.018; 0.016 T =62 r>�in 0.0141 ' .- Ire ;/ 4 - -- 0.012i . 0.01- " 0.008 0.006- 0.0044 ' 0.002 "�f4S�� 5 6 7 8 r 9 10 11 12 r 13 14 r 15 16 17 18 19 20 Time (hours) A05077 - Mirage Storage Type IA 24-hr 2YR Rainfall=2.40" Prepared by Afghan Associates, Inc. Page 4 HydroCAD® 7.00 s/n 001638 © 1986-2003 Applied Microcomputer Systems 6/2/2005 Subcatchment 5P: POST Runoff = 0.28 cfs @ 7.92 hrs, Volume= 0.077 af, Depth= 1.58" Runoff by SBUH method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type IA 24-hr 2YR Rainfall=2.40" Area (sf) CN Description 18,125 98 7,375 86 25,500 95 Weighted Average Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 5.0 Direct Entry, Subcatchment 5P: POST Hydrograph : . [1 Runoff 0.3-E 028 ds 0.28: r Type IA 24-hr 2YR 0.26 . Rainfalt=2:40" 0.247 Runoff Area=25,5001sf 0.27: ° 00 Runoff Volue=0.07Taf--- Runoff Depth=1.58" 0.16 0.14 V Tc=5:0 min - 0.124 " GN=95--- 01- 0.08 E / 0.06 447 " / , . Zejeire 0.02i; 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Time (hours) • A05077 - Mirage Storage Type IA 24 -hr 2YR Rainfall= 2.40" Prepared by Afghan Associates, Inc. Page 5 HydroCAD® 7.00 s/n 001638 © 1986-2003 Applied Microcomputer Systems 6/2/2005 Reach 3E: EXISTING STORM Inflow Area = 0.585 ac, Inflow Depth = 0.44" for 2YR event Inflow = 0.04 cfs @ 8.02 hrs, Volume= 0.021 af Outflow = 0.04 cfs @ 8.02 hrs, Volume= 0.021 af, Atten= 0 %, Lag= 0.0 min Routing by Stor- Ind +Trans method, Time Span= 5.00 -20.00 hrs, dt= 0.05 hrs Reach 3E: EXISTING STORM Hydrograph 0 Inflow 0.046- ' 1 0.04d , r ❑ Outflow 0.0421 " inflow Area=O :585 -ac - 0.04 i ` 0 . 0 3 4 : 0.038: ; ,.•' . (� 1�' ' 0.032; ".' ' §.. �- . 0.03: ' . ,„ 0.028: I� u 0.026: I.- ! s��� c�d►� i�I�"�P i . 0.024: 4 ��i'`L. 7,20 .��%749:0 :0242.6f�. .•P�i+i 0.022 ' • ' ������ i tvxw u- 0.02 = '' *- -- � -6, 0772 /, / "' 11.7/.6 -, zzegy16 -e4e0. 0.018:, 0.016 , 0.014 oil - 0.012' " . • 1 0.01 = 0.008= ' _ 0.006: 0.002 .465. 6:cf". 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Time (hours) • A05077 - Mirage Storage Type IA 24 -hr 2YR Rainfall= 2.40" Prepared by Afghan Associates, Inc. Page 6 HydroCAD® 7.00 s/n 001638 © 1986-2003 Applied Microcomputer Systems 6/2/2005 Pond 7P: STORAGE Inflow Area = 0.585 ac, Inflow Depth = 1.58" for 2YR event Inflow = 0.28 cfs @ 7.92 hrs, Volume= 0.077 af Outflow = 0.04 cfs @ 14.57 hrs, Volume= 0.048 af, Atten= 84 %, Lag= 398.9 min Primary = 0.04 cfs @ 14.57 hrs, Volume= 0.048 af Secondary = 0.00 cfs @ 14.57 hrs, Volume= 0.000 af Routing by Stor -Ind method, Time Span= 5.00 -20.00 hrs, dt= 0.05 hrs Peak Elev= 2.88' @ 14.57 hrs Surf.Area= 502 sf Storage= 1,358 cf Plug -Flow detention time 301.4 min calculated for 0.048 af (62% of inflow) Center -of -Mass det. time 135.9 min ( 800.7 - 664.8 ) # Invert Avail.Storage Storage Description 1 0.00' 1,759 cf 48.0 "D x 140.00'L Horizontal Cylinder # Routing Invert Outlet Devices 1 Primary 0.00' 1.0" Vert. 2yr C= 0.600 2 Secondary 2.88' 2.0" Vert. 10yr C= 0.600 3 Secondary 3.41' 1.0" Vert. 25yr C= 0.600 Primary OutFlow Max =0.04 cfs @ 14.57 hrs HW =2.88' (Free Discharge) t - =2yr (Orifice Controls 0.04 cfs @ 8.1 fps) Secondary OutFlow Max =0.00 cfs @ 14.57 hrs HW =2.88' (Free Discharge) 1 2 =10yr (Orifice Controls 0.00 cfs © 0.2 fps) 3 =25yr ( Controls 0.00 cfs) A05077 - Mirage Storage Type IA 24 -hr 2YR Rainfall = 2.40" Prepared by Afghan Associates, Inc. Page 7 HydroCAD® 7.00 s/n 001638 © 1986-2003 Applied Microcomputer Systems 6/2/2005 Pond 7P: STORAGE Hydrograph Inflow oze as D Outflow Inflow �4rea= 0:585 ac o sew da 0.3: Outflow .' ; Peak EIev=2.88 t l O. 0.26:" 1..1 Stor-age =1,358 cf 0.24= ; 1 0.22= 0.2= Ti 0.18? w 0.16= =" e 014- - -, 0.12: ~�� 4 0.08: , �` ice' d , , 0 - :0 �/e:.'..�.'�/ 0.06: :::', :.: %jam 0.02. O' ��s - -- / � r " iW:.e+. #W..r.``5 �5.2 `, `.s er ...Z. ;_; t.'�i�%. if +i .'+:id er,.. .. 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Time (hours) • A05077 - Mirage Storage Type IA 24 -hr 10yr Rainfall= 3.30" Prepared by Afghan Associates, Inc. Page 8 HydroCAD® 7.00 s/n 001638 © 1986-2003 Applied Microcomputer Systems 6/2/2005 Time span =5.00 -20.00 hrs, dt =0.05 hrs, 301 points Runoff by SBUH method Reach routing by Stor -lnd +Trans method - Pond routing by Stor -Ind method Subcatchment 1E: EXISTING Runoff Area = 25,500 sf Runoff Depth = 0.91" Flow Length =187' Tc =6.2 min CN =74 Runoff =0.12 cfs 0.044 af Subcatchment 5P: POST Runoff Area = 25,500 sf Runoff Depth =2.29" Tc =5.0 min CN =95 Runoff =0.42 cfs 0.112 af Reach 3E: EXISTING STORM Inflow =0.12 cfs 0.044 af Outflow =0.12 cfs 0.044 af Pond 7P: STORAGE Peak Elev =3.41' Storage =1,596 cf Inflow =0.42 cfs 0.112 af Primary=0.05 cfs 0.051 af Secondary=0.07 cfs 0.028 af Outflow =0.12 cfs 0.080 af Total Runoff Area = 1.171 ac Runoff Volume = 0.156 af Average Runoff Depth = 1.60" A05077 - Mirage Storage Type IA 24 -hr 10yr Rainfall= 3.30" Prepared by Afghan Associates, Inc. Page 9 HydroCAD® 7.00 s/n 001638 © 1986-2003 Applied Microcomputer Systems 6/2/2005 Subcatchment 1E: EXISTING Runoff = 0.12 cfs @ 8.00 hrs, Volume= 0.044 af, Depth= 0.91" Runoff by SBUH method, Time Span= 5.00 -20.00 hrs, dt= 0.05 hrs Type IA 24 -hr 10yr Rainfall= 3.30" Area (sf) CN Description 25,500 74 >75% Grass cover, Good, HSG C Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 5.8 100 0.0800 0.3 Sheet Flow, EXISTING GROUND Range n= 0.130 P2= 2.40" 0.4 87 0.0700 4.0 Shallow Concentrated Flow, shallow ditch Grassed Waterway Kv= 15.0 fps 6.2 187 Total Subcatchment 1E: EXISTING Hydrograph ❑ Runoff 0.13- 0.12 cfs 0.12: fP Type IA 24 -hr 10yr 0.11: $4 RainfalE= 3.30" Runo Area =25 sf Rulnoff Volume - 0.044 of 0.09 100 0.08 " Runoff - Depth 0:91 Flow Length -187` o ,. 0.06: " 0.05 i�® TC -62 min 4 / �"5"i ":# 1 .jard 0.03 0.02 ( Ov�S4f��. 7 . , , ( 5 6 7 8 9 10 11 12 13 14 15 16 17 ' 1 ' 8 19 20 Time (hours) A05077 - Mirage Storage Type IA 24 -hr 10yr Rainfall = 3.30" Prepared by Afghan Associates, Inc. Page 10 HydroCAD® 7.00 s/n 001638 © 1986-2003 Applied Microcomputer Systems 6/2/2005 Subcatchment 5P: POST Runoff = 0.42 cfs @ 7.91 hrs, Volume= 0.112 af, Depth= 2.29" Runoff by SBUH method, Time Span= 5.00 -20.00 hrs, dt= 0.05 hrs Type IA 24 -hr 10yr Rainfall= 3.30" Area (sf) CN Description 18,125 98 7,375 86 25,500 95 Weighted Average Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 5.0 Direct Entry, Subcatchment 5P: POST Hydrograph 0.464 / 0 Runoff 0.44 ` " - 0.42 as 0.42_ 0.4= i Type : - lA24- r_- 1 Oyr -- 0.38 0 Rainfal[ =3::30 " - 0.36_ ", 0.344 . : 0.28: ' 0.32= Runoff: Area =25;500: sf - p 84 . Runoff Volume =0.1 12 _af ® . w 0.26= � , r 024 Runoff _ DeptI 2.29 c .22' Tc =50 min 0.18 = ra kt.lM= :.75 : 0.16;' . 0.14 ,, . //� ' 0.12: ' �� /'' 0.06 0.04 . 5 6 7 , 8 ' 9 1 '10 11 12 13 14 , 15 - 16 17 18 19 20 Time (hours) A05077 - Mirage Storage Type IA 24 -hr 10yr Rainfall = 3.30" Prepared by Afghan Associates, Inc. Page 11 HydroCAD® 7.00 s/n 001638 © 1986-2003 Applied Microcomputer Systems 6/2/2005 Reach 3E: EXISTING STORM Inflow Area = 0.585 ac, Inflow Depth = 0.91" for 10yr event Inflow = 0.12 cfs @ 8.00 hrs, Volume= 0.044 af Outflow = 0.12 cfs @ 8.00 hrs, Volume= 0.044 af, Atten= 0 %, Lag= 0.0 min Routing by Stor- Ind +Trans method, Time Span= 5.00 -20.00 hrs, dt= 0.05 hrs Reach 3E: EXISTING STORM Hydrograph f . . . . MILL w oiz as /� n C Q C low 0.13 : MBA Inflow- /'_'area =0.585 ac - 0.12 i il ;3 0.11- L !° 0.09 0.08 = r''';1000.4,0 - 4 : t Ad, ! : c 0.07 _ i VA,' VY LL o.06- ' a"+°� 0.05 = .`. I �4 9 / `-t/. ' ii 0.04 I / /// ` . / / //, / / / / / ///// / / / / / / / / / / /0// / /// 0.03 " $' 0.02- " 0.01 - ii ti�0./� _ j ' ' ' 7 5 6 7 8 9 1 0 11 r 12 13 14 15 16 17 18 19 20 Time (hours) A05077 - Mirage Storage Type IA 24 -hr 10yr Rainfall= 3.30" Prepared by Afghan Associates, Inc. Page 12 HydroCAD® 7.00 s/n 001638 © 1986-2003 Applied Microcomputer Systems 6/2/2005 Pond 7P: STORAGE Inflow Area = 0.585 ac, Inflow Depth = 2.29" for 10yr event Inflow = 0.42 cfs @ 7.91 hrs, Volume= 0.112 af Outflow = 0.12 cfs @ 9.20 hrs, Volume= 0.080 af, Atten= 72 %, Lag= 77.4 min Primary = 0.05 cfs @ 9.20 hrs, Volume= 0.051 af Secondary = 0.07 cfs @ 9.20 hrs, Volume= 0.028 af Routing by Stor -Ind method, Time Span= 5.00 -20.00 hrs, dt= 0.05 hrs Peak Elev= 3.41' @ 9.20 hrs Surf.Area= 398 sf Storage= 1,596 cf Plug -Flow detention time 235.4 min calculated for 0.080 af (71% of inflow) Center -of -Mass det. time 103.0 min ( 760.4 - 657.4 ) # Invert Avail.Storage Storage Description 1 0.00' 1,759 cf 48.0 "D x 140.00'L Horizontal Cylinder # Routing Invert Outlet Devices 1 Primary 0.00' 1.0" Vert. 2yr C= 0.600 2 Secondary 2.88' 2.0" Vert. 10yr C= 0.600 3 Secondary 3.41' 1.0" Vert. 25yr C= 0.600 Primary OutFlow Max =0.05 cfs @ 9.20 hrs HW =3.41' (Free Discharge) L1 =2yr (Orifice Controls 0.05 cfs @ 8.8 fps) Secondary OutFlow Max =0.07 cfs @ 9.20 hrs HW =3.41' (Free Discharge) dL 2 =10yr (Orifice Controls 0.07 cfs @ 3.2 fps) 3 =25yr ( Controls 0.00 cfs) • A05077 - Mirage Storage Type IA 24 -hr 10yr Rainfall= 3.30" Prepared by Afghan Associates, Inc. Page 13 HydroCAD® 7.00 s/n 001638 © 1986-2003 Applied Microcomputer Systems 6/2/2005 Pond 7P: STORAGE Hydrograph • ea Inflo 0.42 as 0 Outflow 0A6-: ry Inflow Area =0:585 ac o Secondary' 0424: : Peak EIev=3: 0.4= r,. 0.38' Storage =1,,596 cf 0.34' ;. • 0.28' s4 u 0.26- 0.24_ ". 4. 0.22 - ` 0 a 0.27 0.18= " � 0. 12ds F , :!�►.r� 0.14 ✓2rjr��' ��� o �e�sP �Fr °s • "' 0.12; ;, ' •..Jt�o ,,A irlir .t 4ire +/Zete 0.08: ",,•',•' i``.�. i� I��. �i` f�f/' �i�` ��1�/' �i�s���� .��i'r��/r� : /Z��I� %//�7 ;57 r 0.06: / :y 0.04 ��!' - %�r% r te ✓ ,. � !' rd Jf e.0.4:`'c�` 0.02= 0 ` f 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Time (hours) • A05077 - Mirage Storage Type IA 24 -hr 25YR Rainfall =3.80" Prepared by Afghan Associates, Inc. Page 14 HydroCAD® 7.00 s/n 001638 © 1986-2003 Applied Microcomputer Systems 6/2/2005 Time span =5.00 -20.00 hrs, dt =0.05 hrs, 301 points Runoff by SBUH method Reach routing by Stor- Ind +Trans method - Pond routing by Stor -ind method Subcatchment 1E: EXISTING Runoff Area = 25,500 sf Runoff Depth= 1.21" Flow Length =187' Tc =6.2 min CN =74 Runoff =0.17 cfs 0.059 af Subcatchment 5P: POST Runoff Area = 25,500 sf Runoff Depth= 2.68" Tc =5.0 min CN =95 Runoff=0.49 cfs 0.131 af Reach 3E: EXISTING STORM Inflow =0.17 cfs 0.059 af Outflow =0.17 cfs 0.059 af Pond 7P: STORAGE Peak Elev =3.90' Storage =1,747 cf Inflow =0.49 cfs 0.131 af Primary=0:05 cfs 0.053 af Secondary=0.12 cfs 0.046 af Outflow =0.17 cfs 0.099 af Total Runoff Area = 1.171 ac Runoff Volume = 0.190 af Average Runoff Depth = 1.95" A05077 - Mirage Storage Type IA 24 -hr 25YR Rainfall = 3.80" Prepared by Afghan Associates, Inc. Page 15 HydroCAD® 7.00 s/n 001638 © 1986-2003 Applied Microcomputer Systems 6/2/2005 Subcatchment 1E: EXISTING Runoff = 0.17 cfs @ 7.99 hrs, Volume= 0.059 af, Depth= 1.21" Runoff by SBUH method, Time Span= 5.00 -20.00 hrs, dt= 0.05 hrs Type IA 24 -hr 25YR Rainfall= 3.80" Area (sf) CN Description 25,500 74 >75% Grass cover, Good, HSG C Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 5.8 100 0.0800 0.3 Sheet Flow, EXISTING GROUND Range n= 0.130 P2= 2.40" 0.4 87 0.0700 4.0 Shallow Concentrated Flow, shallow ditch Grassed Waterway Kv= 15.0 fps 6.2 187 Total Subcatchment 1E: EXISTING Hydrograph 0.19: ❑ Runoff 0.18 0.17 cfs 0.17 _ Type aA 24= IV 25YR • 0.15- �®. Rainfall= 3 - 0.14- r Runoff Area =25 =. sf 0.13i r 0.,2= RunoffVo-lume =-0.059 :af_ 0.11- Runoff. Depth =1:21 .. LL 0.09= -r4e# Flow Length --487' 0.08 _ 0.07: sI V! / �j� Tc =6;2 -.nu n C N =74 0.04 0.03 i" 0.02-7 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Time (hours) A05077 - Mirage Storage Type IA 24 -hr 25YR Rainfall= 3.80" Prepared by Afghan Associates, Inc. Page 16 HydroCAD® 7.00 s/n 001638 © 1986-2003 Applied Microcomputer Systems 6/2/2005 Subcatchment 5P: POST Runoff = 0.49 cfs @ 7.91 hrs, Volume= 0.131 af, Depth= 2.68" Runoff by SBUH method, Time Span= 5.00 -20.00 hrs, dt= 0.05 hrs Type IA 24 -hr 25YR Rainfall= 3.80" Area (sf) CN Description 18,125 98 7,375 86 25,500 95 Weighted Average Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 5.0 Direct Entry, Subcatchment 5P: POST Hydrograph 0 Runoff 0.5 " l 0 49 cfs • Type IA -24 -hr 25YR 0.45=" Rainfalt =_3 80" OA- " Runoff Area =25, 500. sf 0.35- ,:'' 0 Runoff Volume =0.131; of 0.3 = Runoff De th= 2.68" 0 0.25 ® Tc =5 0 min 0.2= , CN=95 0.15 0.05- 5 6 . 7 8 9 10 11 12 13 14 ' 15 ' 16 ' 1 18 19 20 Time (hours) A05077 - Mirage Storage Type IA 24 -hr 25YR Rainfall= 3.80" Prepared by Afghan Associates, Inc. Page 17 HydroCAD® 7.00 s/n 001638 © 1986-2003 Applied Microcomputer Systems 6/2/2005 Reach 3E: EXISTING STORM Inflow Area = 0.585 ac, Inflow Depth = 1.21" for 25YR event Inflow = 0.17 cfs @ 7.99 hrs, Volume= 0.059 af Outflow = 0.17 cfs @ 7.99 hrs, Volume= 0.059 af, Atten= 0 %, Lag= 0.0 min Routing by Stor- Ind +Trans method, Time Span= 5.00 -20.00 hrs, dt= 0.05 hrs Reach 3E: EXISTING STORM Hydrograph ® Inflow 0.191 0.17 Us D Outf low 0 I nfl -owArea =0- .585 -ac 0.171' , If ;. 0.16: 0.15- 0.14 =- 0.13 F.4 � }9,1�� 0.12: ' �►'�� w 0.111 ,- t it,4 O 0.09 =' ' ' 4 P /� ' `° 0.08' .mss 0.07 , -'" �i z.(0 ',d „„ r�, , 0.05- O ' A r '... -,+ro , ..07p z r. 4 /iaoi�r�"`� 0.04= ,:, 0.03_ ” 0.02' ' • 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Time (hours) A05077 - Mirage Storage Type IA 24 -hr 25YR Rainfall= 3.80" Prepared by Afghan Associates, Inc. Page 18 HydroCAD® 7.00 s/n 001638 © 1986-2003 Applied Microcomputer Systems 6/2/2005 Pond 7P: STORAGE Inflow Area = 0.585 ac, Inflow Depth = 2.68" for 25YR event Inflow = 0.49 cfs @ 7.91 hrs, Volume= 0.131 af Outflow = 0.17 cfs @ 8.85 hrs, Volume= 0.099 af, Atten= 65 %, Lag= 56.3 min Primary = 0.05 cfs @ 8.85 hrs, Volume= 0.053 af Secondary = 0.12 cfs @ 8.85 hrs, Volume= 0.046 af Routing by Stor -Ind method, Time Span= 5.00 -20.00 hrs, dt= 0.05 hrs Peak Elev= 3.90' @ 8.85 hrs Surf.Area= 178 sf Storage= 1,747 cf Plug -Flow detention time 210.2 min calculated for 0.098 af (75% of inflow) Center -of -Mass det. time 93.2 min ( 748.1 - 654.9 ) # Invert Avail.Storage Storage Description 1 0.00' 1,759 cf 48.0 "D x 140.00'L Horizontal Cylinder # Routing Invert Outlet Devices 1 Primary 0.00' 1.0" Vert. 2yr C= 0.600 2 Secondary 2.88' 2.0" Vert. 10yr C= 0.600 3 Secondary 3.41' 1.0" Vert. 25yr C= 0.600 Primary OutFlow Max =0.05 cfs @ 8.85 hrs HW =3.90' (Free Discharge) t1 =2yr (Orifice Controls 0.05 cfs @ 9.5 fps) Secondary OutFlow Max =0.12 cfs @ 8.85 hrs HW =3.90' (Free Discharge) 1 2 =10yr (Orifice Controls 0.10 cfs @ 4.7 fps) 3 =25yr (Orifice Controls 0.02 cfs @ 3.2 fps) A05077 - Mirage Storage Type IA 24 -hr 25YR Rainfall= 3.80" Prepared by Afghan Associates, Inc. Page 19 HydroCAD® 7.00 s/n 001638 © 1986 -2003 Applied Microcomputer Systems 6/2/2005 Pond 7P: STORAGE Hydrograph 0 Inflow I clods 0 Outflow y Inflow-Ar-ea 0:585 ac m Secondary ' Peak- Elev=3.90' 0.45- Sto ra - e= l- 747 cf - 0.35 - ▪ 0.3: O 0.25- • d^, 441/7100-J,7 .r.. .v . 12650452 0.15 0.1 ,./X • `, i�iros % i r • '� " / /./cifi�fs%./401697.a �i� �Ati�i .. /ZfiV��� 0.05 0 : fr�.r�. 02437' . 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Time (hours) • 8" 0 OUTLET STUB 0 (SEE NOTE 5) IMF WEIR WALL t (7.-- _II a G G G G \� , Ir ffilli ..111P>ntrA, III i 21 1 f � - � / /i , o IF 4 /I SCUM BAFFLE INLET STUB (OPTIONAL) (SEE NOTE 5) 2 -CART. CATCHBASIN - PLAN VIEW III SCALE: N.T.S. ACCESS COVER (TYP) INLET GRATE i.o,,,,,,, Av. ,. -'- %- 'sus- '.;.;.;.,. ,,,,,.., , io ..ouaaiii..iiiiiii. ,,,,,,, CONCRETE ri ` 4" % � ', % \ COLLAR 4 0 OPENING / (SEE NOTE 6) / l STORMFILTER / CARTRIDGE ./ (TYP) lit UNDERDRA � MANIFOLD � _ __ /NSs08' /HSO I CLEANOUT 8" 0 OUTLET PIPE ACCESS PLUG 04/7:-94 6 (SEE NOTE 5) S /OF 2 -CART. CATCHBASIN - SECTION VIEW 0 SCALE: N. T.S. TILE STORMWATER MANAGEMENT StormFilter • U.S. PATENT No. 5,322,629, No. 5,707,527, No. 6,027,639, No. 5,624,576, AND OTHER U.S. AND FOREIGN PATENTS PENDING >FHEE .TE BY REVISION STEEL CATCHBASIN STORMFILTER aG /oo /oo XXX XXX 1/3 PLAN AND SECTION VIEW y} STANDARD DRAWING - 2- CARTRIDGE UNIT \ e - STORMWATE R DESIGNED BY: DRAWN BY: 1�12�04 XXXX CBSF- 2 —S.DWG (800) 548 -4667 INLET GRATE ACCESS REINFORCING BARS COVER (TYP) - -IP ....,----,...__ t, 4._ 01,x, 6' 7 0 «� (SEE NOTE 6) v z_. 4 , ‹. _. 01, I • - - - - - - — 14:1=121-11: : 1:1 [ [1 1:1 [I _ _ .: 7:::::._::::::. „ ] ) —.-- 2 1 _ _ DD _ D _ DDDDDD _ . STORM WATER ' ! -- - -r- r [I _ :STORM WA TER ' ! NS� OF4 4 - • Y A N =G N E I I A DD Y A N A C - E U E I N C,I 09TH �� 800.-;41:4;;7...:::::.: - . 800 - 548 == _ = = = = = DD = - �= 1 (....__ G a C .G v /A/ ¢' /N F 4' - iN I 00r soF ' 2 -CART. CATCHBASIN — TOP VIEW 0 SCALE: N. T.S. 4" 0 OPENING LIFTING EYE 1 (TYP OF 4) ARMANENT �, - ■ POOL } F ELEVATION I Nine ` II 1 r 2' CARTRIDGE / 3 SUPPORT / r S i 1"11111. 1M1;:;10111 �� I INLET STUB @ L 111=11.1111=1:111 (OPTIONAL) 8" 0 OUTLET STUB (SEE NOTE 5) OUTLET /N PIPE FROM Ss/0 UNDERDRAIN I f .__ 0 OT S 7 5� • 2 —CART. CATCHBASIN — SECTION VIEW iiii 2 —CART. CATCHBASIN — SECTION VIEW 0 SCALE N.T.S. SCALE: N.T.S. THE STORMWATER MANAGEMENT StormFilter • U.S. PATENT No. 5,322,629, No. 5,707,527, No. 6,027,639, No. 5,624,576, AND OTHER U.S. AND FOREIGN PATENTS PENDING SHE. .ATE BY REVISION STEEL CATCHBASIN STORMFILTER oo/oo/oo xxx xxx 2/3 TOP AND SECTION VIEW • gi.1 . --T STANDARD DRAWING — 2— CARTRIDGE UNIT STORMWATER 2 DESIGNED DATE: PROJECT NO.: DRAWING FILE NAME: MANAGEMENT I N C . BY: �a DRAWN BY: 112/04 XXXX CBSF- 2 -S.DWG (800) 548 -4667 GENERAL NOTES 1.) STORMFILTER BY STORMWATER MANAGEMENT INC., PORTLAND, OREGON 800/548 -4667. 2.) FILTERS TO BE SIPHON — ACTUATED AND SELF — CLEANING. 3.) STEEL STRUCTURE TO BE MANUFACTURED OF Y4" STEEL PLATE. 4.) STORMFILTER REQUIRES 2.3' OF DROP FROM RIM TO OUTLET. INLET (IF APPLICABLE) AND OUTLET PIPING TO BE SPECIFIED BY ENGINEER AND PROVIDED BY CONTRACTOR. 5.) CBSF EQUIPPED WITH 4" LONG STUBS FOR INLET (IF APPLICABLE) AND OUTLET PIPING. STANDARD OUTLET STUB IS 8" IN DIAMETER. CONNECTION TO COLLECTION PIPING CAN BE MADE USING FLEXIBLE COUPLING BY CONTRACTOR. 6.) FOR H -20 LOAD RATING, CONCRETE COLLAR IS REQUIRED. CONCRETE COLLAR WITH QUANTITY (2) #4 REINFORCING BARS TO BE PROVIDED BY CONTRACTOR. 7.) ALL STORMFILTERS REQUIRE REGULAR MAINTENANCE. REFER TO OPERATION AND MAINTENANCE GUIDEUNES FOR DETAILS. 8.) STANDARD DETAIL SHOWS MAXIMUM NUMBER OF CARTRIDGES. EXACT NUMBER REQUIRED TO BE SPECIFIED ON SITE PLANS. 2- CARTRIDGE CATCHBASIN STORMFILTER DATA DESIGN WATER QUALITY FLOW RATE (cfs) 0.038cfs PEAK FLOW RATE (cfs) 1.323cfs RETURN PERIOD OF PEAK FLOW (yrs) 25 -year # OF CARTRIDGES REQUIRED 2 CARTRIDGE FLOW RATE (15 GPM STD) 15gpm MEDIA TYPE RIM ELEVATION (CHECK: RIM — 1E—OUT = 2.3') I.E. DIAMETER INLET STUB 221.40 8" OUTLET STUB 221.30 8" CONFIGURATION: OUTLET ono INLET NOTES /SPECIAL REQUIREMENTS: THE STORMIIATER 141NAGEMENT StormFilter U.S. PATENT No. 5,322,629, No. 5,707,527, No. 6,027,639, No. 5,624,576, AND OTHER U.S. AND FOREIGN PATENTS PENDING SHE ATE BY REVISION STEEL CATCHBASIN STORMFILTER oo /oo /oo )0o( XXX 3/3 NOTES AND DATA BLOCK STANDARD DRAWING - 2- CARTRIDGE UNIT STORMWATER DATE: PROJECT NO.: DRAWING FILE NAME: MANAGEMENT INC. DESIGNED BY: rte— DRAWN BY: 1/12/04 XXXX CBSF- 2 —S.DWG (800) 548 -4667 30" ACCESS PORT FOR MAINTENANCE. 48" CORRUGATED PIPE 70' DETENTION DETENTION PIPE #2 PIPE #1 48" CORRUGATED PI 60" CONTR• 12" HEADER MANHOLE MANIFOLD 2 41 OW41W1 15" OUTLET PIP 12" HEADER MANIFOLD 60" CONTROL MANHOLE RIM= 271.00 30" ACCESS PORT STEPS ® INSTALL MANHOLE 8" INLET PIPE 18" O.C. RING AND LID AND IE= 221.30 STEPS @18" O.C. DETENTION -r-1\ **. RIM = FINISH GRADE PIPE #1 4.52' 65.48' 2' 1 ORIFICE j OR ORIFICE 2 -3' SUMP IE= 217.6: IE= 217.40 CONTROL PIPE IE= 217.40 2.0" DIA ORIFICE SHEAR GATE WITH 12" HEADER ( 220.28 CONTROL CHAIN MANIFOLD 1.0" DIA ORIFICE ATTACHED TO TOP IE= 217.40 220.81 STEP. OVERFLOW 221.30 (12 ") C 5 DETENTION AND CONTROL STRUCTURE C4.O NOT TO SCALE 02724-02 Site Address: 11708SW Warner Rd. ' ® Building Division k ;1' ` D eferred Submittal Transmitt . T I,G A R D.� ' I Lette '► TO: DAN NELSON DA f EI I: DEPT: BUILDING DIV S ► FROM: \, COMPANY: PHONE: By RE: 11708 SW WARNER RD. :U -00523 (Site Address) •46' (Pe it/Case Number) MIRAGE STORAGE (Project name or subdivision name and lot n t be Valuation of Deferred Submi tal: $ 2D) C0C) ATTA I HED IS THE FOLLOWING DEFERRED . B r TAL ITEM: �r y.� -n .v` . � ''r ` n r� t f r 5 � 1 c r .un 1 � ^'z ti � r s it 1 f , , .Y, � t a n `. r H t ; 3.- < � '� y v � fi t' ril vi"` r .+c '' .i. -, - r � r F c �, a1'- .. ... f 3.�._., . , , 5 .. a �a . .._. _. �ti �. >�cc.., r1 ,�,...�7 _ 1L�£`m*_'�.CxQtZ.aa a}„. �;,r,.1` �,.. 1..,.., ac. w.��w;1 i � Y r � 3i. 2 I :v '7. • 5 I sG FLAP e_lCI J .._..0 Remarks. P' O i' O INST 1 - i NOTE: Documents for defe ' • sus ittal items shall be submitted to the registered design professional in responsible charge who shall re •-w s em and forward them to the building official with a notation indicating that the deferred submittal documents h. ve seen reviewed and been found to be in general conformance to the design of the building. The deferred submittal it- .1s shall not be installed until the design and submittal documents have been approved by the building official. Oregon Structural Specialty Code Section 106.3.4.2 Routed to Permit Technician: Date: A, C3 ffii!i.,� Fees Due: MUM (►'No Fee Descri . tion: Amoun rt ue: F i : r ,, , Deferred Submittal Fee: $ H r t Additional fee based on valuation: $ 7 Other: _ Total Fees Due: $ Special Instructions: Re.rint Permit .er PE): ❑ Yes I No ❑ Done Applicant Notified: Date: Initials: The fee for processing and reviewing deferred plan submittal shall be an amount equal to 65% of the building based on the valuation of the particular portion or portions of the project with a minimum $200.00 fee. This fee is in addition to the project plan review fee based on the total project value. 1:Building\Forms \Transmittal Letter- DefrdSubmtl.doc 04/04/07 Pc Engineering, Inc. P.O. Box 566 RECEIVE' Newberg, ox 66 . (503) 554-0999 NOV 0 3 2008 CITY OF TIGARD BUILDING DIVISION STAIR SYSTEM MIRAGE STORAGE SW Warner Ave. Tigard, OR 9 oPa _ = City of 'Tigard Ape .ved Plans 4,( ,,/ / By e Date (I7 Terry L. Potter, P.E. Engineer Lic 14539PE OFFICE COPY P C Engineering, Inc. P.O. Box 566, Newberg, OR 97321 Phone 503 - 554-0999 Fax 503 - 554 -0756 4 , 'g. Lo ie4 bi /i✓�;,- La✓5 :.4 � b 1 5 4Ci ' `;,i T`m ,4, i 4 /00 ` » ,441.541. . LIVE c.e -ewe - (/od i .r4 -,)( 114 ;k ;y= 4 L k 57 Z 1 1..e.1040 • 0 ) tb % .P C s - ' ) =I 7 ! �S FYI Z, S 7 - 5E.L 3a4 (k ./r7 = (14 g / b Gr 3 1 u Pi" 4 /6 .s Fc.mt 4 c o 7 5%F/' sr L - 2 3. S /bs 5/,/g/z (/ofr)( = IZ , C I Z /.6 7O7 L S 7 Lo443 = L /v L040 t [1440 L (ZIda lk) 1- 0X2-3..5 lb,) + (21Z lbs)= 3123 s' i s 7'077+ /le► La/1-6 _ (3214 Is)4.-(2l o rbs)*(49eg Is,) 77 72 1 b '2. ,/ v1 C2 ,^ r-c Aj k ci i c D l •f. >�: % 6 + / 6 C� ? 7. / c..cm F V' — c, . 0 t=- : cA;' 3 t 6a /6 o 7.. 7 _ % 5 I.N C L c--cm; l 6 S r_ d -e- ,; r. �. c o 6a. /6 0 > . � / z Co til.�.-r F � c3 � `� v P 0 — Fe & i- P ,q4.) � SCE Ci T 2 f Al C-64._ 44 I4tV SSS - 3/ L - t2o _ 30,0ov ks( 5 0 / r cos(31- ) - /324 Ibs 2 Cl Z x) ()- (Z a 64z 4 %fF /32.4 /% c,T = y /14 _ c.y x j— x 1 (132.4 y �z )(G0)(4 „ ) z_ • _ (lg p40 tg4,N) - l /860 i>1- Z. 1 3s — . PS I S. _ 2-9 doe' (3. �— ~ z13'— • CC Li/ 4vr /v 1461 NG- 7 77 Z l 1 0 s 3113 ibs C oiuM'u 46 4 ll0s 3iZ3i 7772 tbs 3t Z3 r bs 1 PPE►2 CA1.-0.4 N ( 3i23 /bs + 7 7? 2- f = 9333. S (17s s j Z 333 lb ©�v�►a,� Z_ Loo. ff(2, C- oLu"14J [_e A� 3( 3123 z 777z Os) +( 46.7 /5s) = Z 4184• 7 /5 4- 4‘ = 2 /b.s j 5774 ( "1,.p47,,, I COL(JM A/1//1LYSiS C c ( .:evl .) ' K kL/NA Pc � Lr = ?r' z� A 0_4.l 2 A= 3.7.x' ; 4-x 4 x 7'v3, Arc- E = 3o, ooc Ksi r= 11 2 - ,' L = //0. yrAEA. A✓ 4'_ = //a.68 = /92. Z L = 44. 3/ .'., ; La w £2 C.o ACM ti 1 /r - 4 4. 3/ - 7 6. ,57'7 V �r = en') L C 30, ano, 000 L � = 80 / 4 PS/ uppEst z Z) z 2 -33 3 /l'1. _ ZZ. eSr. F 5. _ ..80 )4 = /2. 4 3. 7.5 z Q- CZ L r = C^ 2 (3 0 ; o©C.) o°c Ib % , 2- J = 5 - ° ( PS( a C.° ..fi711/ 7 • 8) c= r. -5 s /380 i° r F 5, - 1" A 3.7 r . , L Z 21. /360 A r4L+ -I ,14 a 4V i Y S/ S Loa a 5' a042 j = F lit = . J 9 ;h C-1444/A16 i .s ., 7o7 PAC !-t`K t E L7 r j - ' - Z °O es/ 14 sec ps - 04500 %L Y. 7o7Y /9 A, Y /. , ) / 9 97.7 /65 PPe rr€H of 4 41EcZ) F/ T VS tit/ G- 4- A./14 V 4L.vE f S. = 3. -_, /9 - 7 = 6' 5 112 s j n wcd-Lls 3 R F S zn—T74itry L-oA0 1'7412 5 77 J bs /�'1 i NI✓n U✓✓t IZ a Gtv+2E sY' 7- t Model name: STEP Study Warne: COSMOSXpressStudy Plot type: Static nodal stress PIot1 {- von Mises -) Deformation scale: 308.337 z r i , _ r _ von Mises (psi 7 _x 9.356e +003 3 8506e +003 4 Z " r 7.656e +003 '''-':;;54- h 6 . ' 806e +003 ��t y es Y "' 5 .956e +003 A 5 105e4-003 r 4.255e +003 �y 3.405e +003 2.555e +003 J 1.705e +003 i X F 8.545e +002 t, 4.308e +000 r - ; r� i , r Yield strength:-5-41-86e4+4044 R n gas or Z`?c 'af y a y .zao sat r _s RAIL Lo At, fA/(r 4mat....- /S► S MAXIMUM LoAl occL,P,S DN /$7 Fi-o0'. L C- POST ( REF 6 WG - 3c ' p_ Aso PLFX 4 Fr)= 2 4S - 161 Z Ntsi, II, s T- `N9.6 1 zac( g. /Z .�-- -- 2 oco (b s FB )( 'z Z x No 40 " G µ,�N,v� I ► /... Fg %zx`` /Zi I (2x 10.6* Z= , 353 *i .1 4 (SEE Ne)er PA - Fog CALL•) N1= ( Z4s (s) 4) ; n) _ q800 Z., (los . r_ L ,..,- IbsY 7 T = 7_08 Z-1_ S psi ( 353 % - g S, ;.- •:7" - 4 a 2:4' = Z.�: > l6‘. FgoM 4/ SL cr = 44 o ,o PS 4-Soo G ell Tv4 /NG C.A LLV��Ti oAJ fo1 MO 6i J IEp Po r . / l oner5AJ'T - ru 3E / sin %/2.Y. V/-2. x '8 - —NSA _►_ ZrS in A % 2 F 3 y Sc � 1= � _ , 005 'Z -, T1- _T; 4- a LIZ ÷ %-(4: zr 8 +Z C.005z zs s ye] = Zr8 /35 . X5 3 1.,¢ Model name: Parti Study name: COSMOSXpressStudy Plot type: Static nodal stress Plot1 (- vonMises -) Deformation scale: 40.0095 von Mises (psi) 2.861 e+004 rYt 4 k a; .._ ` -3. k , ,�,� 2.384e+004 ` "ms s v- 21460+004 ' 1.9080+004 �x ��a 1.6690+004 ;4 �� ?x �y rt 1:4310+004 .s r *•. fi r4 3 � .,. - 1.1930+004 -, :., e �� 9.5460 +003 7.1630+003 a r 4.78p0�e�+/0�/033 7 t .i6 t}. � ,`�` •• 23980+003 Y `, '� s, r1.478 0+001 costi, — sYie strength 549966904 a s ' s 'm c O O C3 !' S r5 : Z ° _ 1. O Z Co A.) S,/- -' ✓ Ai- . ; ✓-E i s 77 Q 1. -; s - _ ��4-G -T ( S - I v l b L C; k= -Ash : f `. ) a r_ r 4 * -7 7.) i 4. S l Lo A L (A/ S 7 •J I -5 ps A is ; 7 • -/^ . L.0 4D , — 6-0 /) S «. ✓'- 7 - : //G yi _— s .?, i" __' r/ f a • I itc1;'. AA i dos =ion Int. I ENGINEERING p4,,.•, , , -....,,,, p , .; I en °CT 9 2007 i 1 , I -13 T- i l l- M:Tr , - " -1. ' -1 RI) II -4 STRUCTURAL CALCULATIONS I I I PROJECT: Mirage Storage PROJECT No.: A07072 I DATE: September 20, 2007 R7ce ciz.)160 1 PERMIT SUBMITTAL City of Tigard 413 92151 Ap. 0 sved Plans Lis I 0.4 PROP B1/1 Date s lag I o iN oo . / 0 14/1,262 # *. Evp 2c0 -Oos-2__ I 1 ( I / b R. t•*c' OFFICE COPY EXPIRES: 12/31/07 I ' I Client: Jivanjee Architects I Contents: Design Criteria 1.1 I Lateral Analysis & Design Foundation design 2.1 — 2.41 3.1 — 3.57 Floor Framing Design 4.1 — 4.22 I Roof Framing Design CFS Wall Design 5.1 — 5.8 6.1 — 6.41 Masonry Wall Design 7.1 — 7.8 I 4875 SW Griffith Drive I Suite 300 I Beaverton, OR I 97005 III 503.620.3030 I tel 503.620.5539 I fax www.aaieng.com I DESIGN STANDARD, LOADS AND CRITERIA PROJECT: Mirage Storage DESIGN STANDARD: 2007 Oregon Structural Specialty Code (OSSC) • FLOOR LIVE LOADS: Light Storage 125 PSF ROOF SNOW LOADS: Typcial Roof: 25 PSF (Minimum) Snow Build -up: Per ASCE 7 -05, Sect. 7 WIND LATERAL LOADS: Per ASCE 7 -05, Section 6.5 Design Speed: 94.5 MPH (3 Second Gust) Design Exposure: B SEISMIC LATERAL LOADS: Seismic Force Resisting System: 3rd Fir, Roof.: Steel Sheet Shear Walls I 2nd FIr: Special Reinf. Masonry Shear Walls Seismic Site Class: D R: 6.5 @ StI Sheet Shr Walls 5.0 @ Spcl Reinf Mas Walls I: 1 Ss: 0.951 S1: 0.341 Sds: 0.71 Sd1: 0.391 ALLOWABLE SOIL BEARING: 2000 PSF (Per WCG geotech report, dated April 11, 2007) f I I a I I ULTIMATE SEISMIC LOADS Per 2006 !BC / ASCE 7 -05 1 PROJECT: Mirage Storage LOCATION: `Tigard, OR 97223 I S s : ;= S hn := _ Seismic Design Coefficients 10.951 1.341 34 ft Brg: Spcl Reinf Conc Shear Wall I Occupancy Category Brg Spcl Reinf Mas Shear Wall _� Brg ;Lt Frrnd =Wood Panel StieaY Wall Iitti;413 Bidgs , UN i' g.K „, ,,. i 1 = 1 Frm. Spcl Sf Concentric Braced Frame R = 6.5 III: Substantial Hazard, Many People e Frm: Ord Stl Concentric Braced Frame IV: Essential Facilities sus = 1 Frm: Spcl Reinf Conc Shear Wall W o = 3 Geotechnical Site Class Fundamental Period Parameters I D •:Stiff- Sollf 4 �.,. n , xys-1, Hard Rock Other Lateral Systems Typ,UNO <; ;< Steel MF x = 0.75 B: Rock Concrete MF C: Very Dense Soil Soft Rock ! Eccenctric Braced St] Frames C = 0.02 E: Soft Soil class = 4 U a F =1.12 F =1.718 I Design Specteral Response Design Parameters S := F S = 1.065 S := 0.667- Sms S ds = 0.71 I Sm1 := FvS1 Sm1 = 0.586 Shc := 0.667•Smi S dl = 0.391 Un Seismic Design Category Based on Sds: ISDCs = "D" Seismic Design Category Based on S1: ISDC1 = "D" I Building Period: T • = C h T = 0.282 Sec T := Shc T = 0.55 Sec S ds I Seismic Response Coefficent Css S ds le C = 0.109 C • : = S hc 1e C = 0.213 R T R Csmin := 0.044• Sds- l e C smin = 0.031 C := if(Cs 1 < C ss , C sl , C C = 0.109 I C s := if(Cs > Csmin,Cs,Csmin) C =.0.109 1 1 C: \TSE Engineering \Projects \TSE 2007- 1/1 006 Mirage Storage Bldg \Engineering\ 9:44 AM 5/21/2007 Mirage Storage EQ Loads.xmcd 1 2,1 I I ULTIMATE SEISMIC LOADS Per 2006 IBC /ASCE 7 -05 I PROJECT: Mirage Storage LOCATION: tngard, OR 97223 1 S 1 = S h := Seismic Design Coefficients 10.951 1.341 134 ft Brg: Spcl Reinf Conc Shear Wall I g' p . . Occupancy Category � Br S cl Rerif Mas7Shear�Wall �, K� „� � „xa Brg. Lt Frmd Wood Panel Shear Wall 1 =11 IWBldgs 0*10;5 , 1 = 1 Frm: Spcl Stl Concentric Braced Frame R = 5 Ill: Substantial Hazard, Many People e Frm: Ord St! Concentric Braced Frame IV: Essential Facilities Frm: Spcl Reinf Conc Shear Wall W = 2'5 sus 1 P ..__...... Geotechnical Site Class Fundamental Period Parameters I D S tiff Soil r ''”` . r ; � Other Lateral T ypUNO .., 6; A: Hard Rock Steel MF x = 0.75 B: Rock Concrete MF C: Very Dense Soil Soft Rock Eccenctric Braced St! Frames C = 0.02 E: Soft Soil class = 4 1 0 F = 1.12 F = 1.718 I Design Specteral Response Design Parameters S := F S S = 1.065 Sd := 0.667• S ms S ds = 0.71 I Sm1 := F v .S 1 Sm1 = 0.586 Sh := 0.667•Sml S dl = 0.391 Seismic Design Category Based on Sds: ISDCs = "D” I Seismic Design Category Based on S1: JSDC1 = "D " I S dl Period: T := COI: T = 0.282 Sec T := s dl T = 0.55 Sec S ds I Seismic Response Coefficent Css.— R S ds 1 e S hc' 1 e C ss = 0.142 C := Ta• R C = 0.278 C smin 0.044 C smin = 0.031 C := if(Cs1 < C ss ,C sl ,Css) C = 0.142 I C s := if (Cs > Csmin,Cs,Csmin) C = 0.142 I I C :\TSE Engineering \Projects \TSE 2007- 1/1 006 Mirage Storage Bldg \Engineering\ 9:44 AM 5/21/2007 Mirage Storage EQ Loads.xmcd I Z. Z/ I Project Name = Mirage Storage, Tigard, OR Date = Mon May 21 09:37:07 PDT 2007 Conterminous 48 States 2003 NEHRP Seismic Design Provisions Latitude = 45.44 Longitude = - 122.76 Spectral Response Accelerations Ss and S1 Ss and S1 = Mapped Spectral Acceleration Values Site Class B- Fa = 1.0 ,Fv = 1.0 Data are based on a 0.05 deg grid spacing Period Sa (sec) (g) 0.2 0.951 Ss, Site Class B 1.0 0.341 S1, Site Class B I 1 1 1 1 1 1 1 1 I 1 Z 75 I I MAIN FRAME WIND LOADS Per ASCE 7 -05, Ch 6, Method 2 I PROJECT: (ra Stor LOCATION: igard, Oregon I Assumptions I -- Structure is Rigid (Period < 1.0 Sec) -- Structure is Enclosed -- Structure is Regular Shaped per ASCE 7, Section 6.2 -- Structure does not have response characterstics or site location per ASCE 7, Section 6.5.1.2 I Design Properties Building Classification Terrain Exposure I 11-11 }Bldgs UNO • _ ...: Exposure B _ { ,„,r y,,. I Low Hazard, Temp. Bldgs Exposure C Ill: Substantial Hazard, Many People Exposure D a – IV: Essential Facilities = 1 z = 1200 z min = 30 V:= h = 94.5 mph (Wind Spd, 3 Second Gust) mr 34 ft (Mean Roof Height) I L bldg 1 h 1 '= 15 ft (Bldg Dimen Parallel to Wind) 1 ft (1st Design Height) I Bbldg = 282 2 ft (2nd Design Height) ft (Bldg Dimen Perp to Wind) I Wind Speed Up Over Hills, etc: H := ft (Height of Hill, Ridge or Escarpment, Figure 6.4)) 1 Lh:, kj k2 k3, ft (Figure 6.4) i' .. I K zt := (1 + k •k2•k3)2 K = 1 (Kzt = 1.0 for H /Lh < 0.2) Gust Effect: G := 0.85 (Section 6.5.8.1) 1 Wind Directionality Factor (Table 6-4) Internal Pressure Coefficient (Fig 6 -5) Main Wind FRS T:,yp , ,,, , Enclo Bjdg _ „„ .,, .,, Nk I quare Chimneys, Tanks, etc Partially Enclosed Bldgs Round Chimneys, Tanks, etc = 0.18 GCN = –0.18 olid Signs K = 0.85 GCP pi I I I ASCE 7 Main Frame Wind Loads.xmcd 1 / 3 / C:1TSE Engineering \Projects \TSE 4:42 PM 5/14/2007 2007 -006 Mirage Storage Bldg \Engineering\ , o- ■ I External Pressure Coefficients: bar := Lbldg bar = 0.45 (Bldg Aspect Ratio) I Bbldg I C p w , := 0.8 (Windward EPC for Wall, Fig. 6 -6) = -0:5 (Leeward EPC for Wall, Fig. 6-6) C PI I Velocity Pressure at Mean Roof Height hmr h = 34 z := h z = 34 z min = 30 I z := if >_ zmin,z °zmin z = 34 2 ® / \a K := 2.01 . z K = 0.726 `zg/ 2 I q := 0.00256•K fK q = 14.11 Velocity Pressure at Height H1 I h 1 = 15 z := h z= 15 z min = 30 I z := if(z ?zmin,z,zmin) z = 30 2 /z \ z a K := 2.01 K = 0.701 \g/ I q z := 0.00256•K q 13.614 Design Wind Loads at Height H1 wi := gz•G•Cpw — g p = 11.797 (Windward Wall, Neg Int Pres) I PL1 := gh•G•C — gh•GCNpi PL1 = —3.457 (Leeward Wall, Neg Int Pres) pW2 := gz•G•Cpw — g pW2 = 6.718 (Windward Wall, Pos Int Pres) pL2 := gh.G.Cpl - g -GCP P L2 = - 8.536 (Leeward Wall, Pos Int Pres) I P1 := pW1 — PL1 p1 = 15.254 (Wind + Lee, Neg Int Pres) I P2 := PW2 — PL2 P2 = 15.254 (Wind + Lee, Pos Int Pres) 1 ASCE 7 Main Frame Wind Loads.xmcd 2 / 3 / C:1TSE Engineering \Projects \TSE 4:42 PM 5/14/2007 2007 -006 Mirage Storage Bldg \Engineering\ I 1 Velocity Pressure at Height H2 h = 34 z •= h2 z = 34 z min = 30 1 z := if(z .. zmin,z,zmin) z = 34 2 /z\a K := 2.01 . — K = 0.726 z g1 1 qz := 0.00256•K q = 14.11 I Design Wind Loads at Height H2 pwl := gz•G•Cpw - g pW = 12.134 (Windward Wall, Neg Int Pres) I Ll := g - gh•GCNpi PL1 = -3.457 (Leeward Wall, Neg Int Pres) i pW2 := g - gh•GCPpi PW2 = 7.055 (Windward Wall, Pos Int Pres) PL2 :- g - gh•GCPpi PL2 = -8.536 (Leeward Wall, Pos Int Pres) I PI := PW1 - PL1 p1 = 15.591 (Wind + Lee, Neg Int Pres) I P2 := PW2 - PL2 p2 = 15.591 (Wind + Lee, Pos Int Pres) I I I I I I 1 I ASCE 7 Main Frame Wind Loads.xmcd 3 / 3 / C: \TSE Engineering \Projects \TSE 4:42 PM 5/14/2007 2007 -006 Mirage Storage Bldg \Engineering\ 1 z,(tO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I COMPONENT WIND LOADS FOR LOW RISE BLDGS (H < 60 FT) Per ASCE 7 -05, Ch 6 1 PROJECT: I irage Storage LOCATION: !Tigard, OR Design Properties I Building Classification Terrain Exposure 11' TYp Bldgs;iUNO; ;. .. 'Exposure `.B §_ ;... : . I: Low Hazard, Temp. Bldgs Exposure C a = 7 I Ill: Substantial Hazard, Many People IV: Essential Facilities = 1 zg = 1200 z min = 30 I V hmr 194.5 mph (Wind Spd, 3 Second Gust) 34 ft (Mean Roof Height) Ae ff :_ 0 r :_ 31 ft (Effective Member Area) 10 deg (Roof Slope) Internal Pressure Coefficient (Fig 6 -5) I Enclose -- _ ,-, :r .,-,- _ ,-- gs „' ; ' , Partially Enclosed Bldgs GCP = 0.18 GCN = - 0.18 I Wind Speed Up Over Hills, etc: H :_ 0 ft (Height of Hill, Ridge or Escarpment, Figure 6.4)) I L h , k k . k : - JV ft (Figure 6.4) 1 2 1 3 1 1 = (Kzt = 1.0 for H /Lh < 0.2 K := 0.85 K �1 +k K 1 ( ) d I la-- GC 1 = —0.951 GC = -1.456 GCp = -1.965 GC = 0.251 I GCp 5 = —1.013 GCp6 = —1.226 GCp = 0.913 I I 1 I Mirage Comp WL.xmcd / C: \TSE 1 / 2 Engineering\Projects \TSE 2007 -006 9:27 AM 5/21/2007 Mirage Storage Bldg \Engineering\ I Z '-1 I 1 Velocity Pressure at Mean Roof Height hmr h = 34 z := h z = 34 z min = 30 1 z := if (z >- zmin,z °zmin z = 34 2 I z J a K h := 2 • K = 0.726 z g I q h := 0.00256•K •1 qh = 14.11 1 Design Wind Loads at Mean Roof Height Roof Elements: 1 1. Main Roof, Neg: PL1 := g - gh•GCNpi PL1 - -10.9 psf 2. Roof Edge, Neg: PL2 := gh•GCp2 - gh•GCNpi PL2 - -18 psf 1 3. Roof Corner, Neg: PL3 := gh.GCp3 - gh•GCNpi pL3 = -25.2 psf 1,2,3. Roof (Pos): pLlp gh•GCp4 - g pup = 6.1 psf I Wall Elements: 1 4. Main Wall, Neg.: PL4 := g - g IPL = 11.8 psf 5. Wall Corner, Neg.: PL5 := gh - gh•GCNpi pL5 = -14.8 Psf 1 4,5. Wall (Pos): PW4p := g - gh•GCNpi PW4p = 15.4 psf __-- I Note: Pressures at roof /wall edges & corners extend a distance "a" (10% of least horizontal dimension, but not less than 3 ft) from the edge or corner. 1 I 1 I I I Mirage Comp WL.xmcd / C: \TSE 2 / 2 Engineering \Projects \TSE 2007 -006 9:27 AM 5/21/2007 Mirage Storage Bldg \Engineering\ I , I T - t - . 2 - TiRck, v.) OD e I -,_ I (, ?31,3) 4-4-- ,4- (121 p CZ , 3 ) = 4- I 1 I t t- or) (-04 F. 1 f- s g-0 rr. 0,x. 1 I I I I I 1 I I I t." AA I y \A. \ Pik-171, Date: 51 I "b/P 7 ENGINEERING afghan associates, inc. B y Project No.: 4875 SW Griffith Dnve I Suite 300 I Beaverton, OR I 97005 I 503 620.3030 I tel 503.620 5539 i fax www.aaieng.com Sheet: Z 1 9 of: I I I 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 MIN M 1111111111 ® ® ® ® ® ® ® IIIIIII ® ® ® ® • ® 11111111 ■ i 1 i I 1 1 I I I 1 I 1 1 I 1 1 1 j I I I I ,.1 i I i j I I 1 tt< I ii i� . - -- 11 t I I i 1 I I - - - - 1 I I i � - -- -- I i 1 L , { . - - - - - - , ;1111 ■ ■IUD ■ r �r - - - _ I 1111■:.■■■.■ -- - == - - - - - ■ MI Ii L91111111111 NM 4 I I � �� I .99861 M2S.D.91 1 I i 1 1 1 I 1 I I I 1 1 1 I 1 1 MI E-- _- •- • - - - - -- EMI _ j -- O 1 I I i 1 I I i EH 0 1 i 1 ' ' l 'a a (a) ' - 10 11 6 ii 13 — i' : _-- - - ---i I I I i j J I i _________> 21 3�p,,; T - =_= _- e-- - - - H I-- I I 1 :1 I i i a al 0 lo ® ® ® ® ® ® M ® ® ® ® ® ® ® ® M I MN MII 1 MIRAGE STORAGE SEISMIC LOADS 1 TYPICAL BUILDING LOADS TYP ROOF DEAD LOAD ROOF SNOW LOAD ITEM UNIT WT NOTES SL 25 PSF ' (PSF) Single Ply Roofing 1 Rigid Insulation 2.5 Mineral Brd 1 24 Ga Mtl Deck 1.5 Z Purlins @ 5' oc 0.8 Misc 0.2 Total 7 FLOOR DEAD LOAD STORAGE LIVE LOAD ITEM UNIT WT NOTES STORAGE 125 PSF (PSF) Slab 43 Deck 2.6 Partitions 2 Headers 0.25 Misc 0.15 Total 48 EXT CMU WALL DEAD LOAD ITEM UNIT WT 1 (PSF) 8" CMU 77 Mtl Furring 1 Insulation 1 5/8" Gyp Bd 2.5 Misc 0.5 Total 82 1 1 C: \TSE Engineering\Projects\TSE 2007 -006 Mirage Storage Bldg \Engineering\ 1 / 2 Mirage Storage EQ Loads.xls 4:05 PM 6/11/2007 Os t 1 1 I MIRAGE STORAGE SEISMIC LOADS EXT CFS BRG WALL DEAD LOAD ITEM UNIT WT (PSF) 24 Ga Panel 1.2 6" CFS Stud @ 30" 1.2 Insul 1 26 Ga Panel 0.9 Misc 0.2 Total 4.5 INT CFS BRG WALL DEAD LOAD (2nd, 3rd Firs) ITEM UNIT WT (PSF) 26 Ga Panel 0.9 4" CFS Stud @ 30" 0.7 26 Ga Panel 0.9 Misc 0 Total 2.5 INT CFS BRG WALL DEAD LOAD (1st FIr) ITEM UNIT WT (PSF) 26 Ga Panel 0.9 6" CFS Stud @ 30" 1.2 26 Ga Panel 0.9 Misc 0 Total 3 1 1 1 C: \TSE Engineering \Projects \TSE 2007 -006 Mirage Storage Bldg \Engineering\ 2 / 2 Mirage Storage EQ Loads.xls 4:05 PM 6/11/2007 1 2,1v I M IRAGE STORAGE I SEISMIC LOADS FOR DESIGN OF 3RD FLR & ROOF TYPICAL BUILDING DEAD LOADS I ITEM LOAD UNITS NOTES Floor 48 PSF Roof 7 PSF I Ext CMU Wall 82 PSF Ext CFS Wall 4.5 PSF Int CFS Wall (2,3) 2.5 PSF Int CFS Wall (1) 3 PSF Storage DL 31.25 PSF I DIAPHRAGM WEIGHTS AREA HEIGHT NUMBER I LEVEL ITEM UNIT WT WIDTH LENGTH TOTAL X Y Xm Ym (PSF/PLF /LB) (SF /FT /FT) (N /FT) (K) (FT) (FT) (FT -K) (FT -K) Second A: Floor 48 80 31.5 ! 121.0 31.25 40 3780 4838 I B: Floor 48 40.5 91.5 177.9 45.6 100 8111 17788 C: Floor 48 50 60 144.0 121.3 105 17467 15120 D: Floor 48 80.25 70.5 271.6 191.3 110 51951 29872 A: Storage DL 31.25 80 31.5 78.8 31.25 40 2461 3150 1 B: Storage DL 31.25 40.5 91.5 115.8 45.6 100 5281 11580 C: Storage DL 31.25 50 60 93.8 121.3 105 11372 9844 D: Storage DL 31.25 80.25 70.5 176.8 191.3 110 33822 19448 A: Ext CFS Wall 4.5 4.8 192 4.1 31.25 40 130 166 Int Wall (2,3) 2.5 4.8 249 3.0 31.25 40 93 120 I A: B: Ext CFS Wall 4.5 4.8 223 4.8 45.6 100 220 482 B: Int Wall (2,3) 2.5 4.8 410 4.9 45.6 100 224 492 C: Ext CFS Wall 4.5 4.8 170 _r_ _`. 3.7 121.3 105 445 386 C. Int Wall (2,3) 2.5 4.8 400 4.8 121.3 105 582 504 I D: Ext CFS Wall 4.5 4.8 300 6.5 191.3 110 1240 713 D: Int Wall (2,3) 2.5 4.8 450 5.4 191.3 110 1033 594 A: Ext CMU Wall 82 4.8 112 44.1 31.25 40 1378 1763 A: Int Wall (1) 3 4.8 - 66 1.0 31.25 40 30 38 B: Ext CMU Wall 82 4.8 223 87.8 45.6 100 4002 8777 I B: Int Wall (1) 3 4.8 410 5.9 45.6 100 269 590 C: Ext CMU Wall 82 4.8 ` 170 66.9 121.3 105 8116 7026 C: Int Wall (1) 3 4.8 400 5.8 121.3 105 699 605 D: Ext CMU Wall 82 4.8 300 118.1 191.3 110 22589 12989 I D: Int Wall (1) 3 4.8 450 6.5 191.3 110 1240 713 A: WF Bms 6 80 31.5 15.1 31.25 40 473 605 FLR TOTAL 1568 177007 148202 I 112.9 94.5 Xcg Ycg Third A: Floor 48 80 31.5 121.0 31.25 40 3780 4838 B: Floor 48 40.5 91.5 177.9 45.6 100 8111 17788 C: Floor 48 50 60 144.0 121.3 105 17467 15120 D: Floor 48 80.25 70.5 271.6 191.3 110 51951 29872 A: Storage DL 31.25 80 31.5 78.8 31.25 40 2461 3150 B: Storage DL 31.25 40.5 91.5 115.8 45.6 100 5281 11580 C: Storage DL 31.25 50 60 93.8 121.3 105 11372 9844 D: Storage DL 31.25 80.25 70.5 176.8 191.3 110 33822 19448 A: Ext CFS Wall 4.5 11.3 192 9.8 31.25 40 305 391 A: Int Wall (2,3) 2.5 11.3 249 7.0 31.25 40 220 281 B: Ext CFS Wall 4.5 11.3 223 11.3 45.6 100 517 1134 I B: Int Wall (2,3) 2.5 11.3 410 11.6 45.6 100 528 1158 C: Ext CFS Wall 4.5 11.3 170 8.6 121.3 105 1049 908 C: Int Wall (2,3) 2.5 11.3 400 11.3 121.3 105 1371 1187 D: Ext CFS Wall 4.5 11.3 300 15.3 191.3 110 2918 1678 I D: Int Wall (2,3) 2.5 11.3 450 12.7 191.3 110 2432 1398 FLR TOTAL 1267 143584 119775 113.3 94.5 Xcg Ycg C: \TSE Engineering\Projects \TSE 2007 -006 Mirage Storage Bldg \Engineering\ 1 / 2 Mirage Storage EQ Loads.xls 5:09 PM 5/21/2007 I Z,l5- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I AREA I HEIGHT NUMBER LEVEL ITEM UNIT WT WIDTH LENGTH TOTAL X Y Xm Ym (PSF /PLF /LB) (SF /FT /FT) (N /FT) (K) (FT) (FT) (FT -K) (FT -K) I Roof A: Roof 7 80 31.5 17.6 31.25 40 551 706 B: Roof 7 40.5 91.5 25.9 45.6 100 1183 2594 C: Roof 7 50 60 21.0 121.3 105 2547 2205 D: Roof 7 80.25 70.5 39.6 191.3 110 7576 4356 A: Ext CFS Wall 4.5 6.5 192 5.6 31.25 40 176 225 A Int Wall (2,3) 2.5 6.5 249 4.0 31.25 40 126 162 B: Ext CFS Wall 4.5 6.5 223 6.5 45.6 100 297 652 B: Int Wall (2,3) 2.5 6.5 410 6.7 45.6 100 304 666 I C: Ext CFS Wall 4.5 6.5 170 5.0 121.3 105 603 522 C: Int Wall (2,3) 2.5 6.5 400 6.5 121.3 105 788 683 D: Ext CFS Wall 4.5 6.5 300 8.8 191.3 110 1679 965 D: Int Wall (2,3) 2.5 6.5 450 7.3 191.3 110 1399 804 I FLR TOTAL 155 17230 14540 111.5 94.1 Xcg Ycg 1 I TOTAL WT: 2990 VERTICAL DISTRIBUTION OF SEISMIC LOADS (ASCE 7 -05, 12.8.31 1 Bldg Period: T = 0:28 Sec k = 1.00 Import. Factor: I = 1 Sds = 0.71 I R = 6.5 (Lt Frm Steel Sheet Brg Wall) Vbase = 2990 X 0.11 .' , = 0,', = Vbase I FLOOR HEIGHT (H) H ^ k WEIGHT (W) W X H^k Cvx Fx (FT) (K) (K) Roof 33.4 33.4 155 5163 0.10 34' I Third 21.4 21.4 1267 27117 0.54 178 , Second 11.4 11.4 1568 17873 0.36 117 TOTAL 2990 50153 1.00 329 I SEISMIC DIAPHRAGM LOADS (ASCE 7 -05, 12.10.1.11 I .FLOOR WEIGHT (W) SUM Fi SUM Fpx Fmin Fmax Fdes (K) W(x,n) (K) Fx(x,n) (K) (K) (K) (K) Roof 155 155 34 34 34 22 44 34 n' I Third 1267 1422 178 212 189 180 360 189 Second 1568 2990 117 329 172 223 445 ; 22 TOTAL 2990 329 I I I I C: \TSE Engineering \Projects \TSE 2007 -006 Mirage Storage Bldg \Engineering\ 2 / 2 Mirage Storage EQ Loads.xls 5:09 PM 5/21/2007 1 I • MIRAGE STORAGE 1 SEISMIC LOADS FOR DESIGN OF 2ND FLR TYPICAL BUILDING DEAD LOADS . I ITEM LOAD UNITS NOTES Floor 48 PSF Roof 7 PSF I Ext CMU Wall 82 PSF Ext CFS Wall 4.5 PSF Int CFS Wall (2,3) 2.5 PSF Int CFS Wall (1) 3 PSF Storage DL 31.25 PSF I DIAPHRAGM WEIGHTS AREA HEIGHT NUMBER I LEVEL ITEM UNIT WT WIDTH LENGTH TOTAL X Y Xm Ym (PSF /PLF /LB) (SF /FT /FT) (N /FT) (K) (FT) (FT) (FT -K) (FT -K) Second A: Floor 48 80 31.5 121.0 31.25 40 3780 4838 I B: Floor 48 40.5 91.5 177.9 45.6 100 8111 17788 C: Floor 48 50 60 144.0 121.3 105 17467 15120 D: Floor 48 80.25 70.5. 271.6 191.3 110 51951 29872 A: Storage DL 31.25 80 31.5 78.8 31.25 40 2461 3150 I B: Storage DL 31.25 40.5 91.5 115.8 45.6 100 5281 11580 • C: Storage DL 31.25 50 60 93.8 121.3 105 11372 9844 D: Storage DL 31.25 80.25 70.5 176.8 191.3 110 33822 19448 A: Ext CFS Wall 4.5 4.8 192 4.1 31.25 40 130 166 Int Wall (2,3) 2.5 4.8 249 3.0 31.25 40 93 120 I A: B: Ext CFS Wall 4.5 4.8 : 223 4.8 45.6 100 220 482 B: Int Wall (2,3) 2.5 4.8 410 4.9 45.6 100 224 492 C: Ext CFS Wall 4.5 4.8 170 3.7 121.3 105 445 386 C: Int Wall (2,3) 2.5 4.8 400 4.8 121.3 105 582 504 I D: Ext CFS Wall 4.5 4.8 300 6 5 191.3 110 1240 713 D: Int Watl (2,3) 2.5 4.8 450 5.4 191.3 110 1033 594 A: Ext CMU Wall 82 4.8 112 44.1 31.25 40 1378 1763 A: Int Wall (1) 3 4.8 66 1.0 31.25 40 30 ' 38 B: Ext CMU Wall 82 4.8 223 87.8 45.6 100 4002 8777 B: Int Wall (1) 3 4.8 410 5.9 45.6 100 269 590 C: Ext CMU Wall 82 4.8 170 66.9 121.3 105 8116 7026 C: Int Wall (1) 3 4.8 400 5.8 121.3 105 699 605 D: Ext CMU Wall 82 4.8 300 118.1 191.3 110 22589 12989 D: Int Wall (1) 3 4.8 450 6.5 191.3 110 1240 713 A: WF Bms 6 80 31.5 15.1 31.25 40 473 605 FLR TOTAL 1568 177007 148202 I 112.9 94.5 Xcg Ycg Third A: Floor 48 80 31.5 121.0 31.25 40 3780 4838 B: Floor 48 40.5 91.5 177.9 45.6 100 8111 17788 I C: Floor 48 50 60 144.0 121.3 105 17467 15120 D: Floor 48 80.25 70.5 271.6 191.3 110 51951 29872 A: Storage DL 31.25 80 • 31.5 78.8 31.25 40 2461 3150 B: Storage DL 31.25 40.5 91.5 115.8 45.6 100 5281 11580 C: Storage DL 31.25 50 60 93.8 121.3 105 11372 9844 D: Storage DL 31.25 80.25 70.5 176.8 191.3 110 33822 19448 A: Ext CFS Wall 4.5 11.3. , 192 9.8 31.25 40 305 391 A: Int Wall (2,3) 2.5 11.3 249 7.0 31.25 40 220 281 II B: Ext CFS Wall 4.5 11.3 223 11.3 45.6 100 517 1134 B: Int Wall (2,3) 2.5 11.3 410 11.6 45.6 100 528 1158 C: Ext CFS Wall 4.5 11.3 170 8.6 121.3 105 1049 908 C: Int Wall (2,3) 2.5 11.3 400 11.3 121.3 105 1371 1187 D: Ext CFS Wall 4.5 11.3 300 15.3 191.3 110 2918 1678 I J D: Int Wall (2,3) 2.5 11.3 450 12.7 191.3 110 2432 1398 FLR TOTAL 1267 143584 119775 113.3 94.5 I Xcg Ycg C:\TSE Engineering \Projects \TSE 2007 -006 Mirage Storage Bldg \Engineering\ 1 / 2 Mirage Storage EQ Loads.xls 5:10 PM 5/21/2007 I 0 -IS goo m Ego s S MIN S- M ® W (_ MN <- I i IME AREA II I HEIGHT NUMBER LEVEL ITEM UNIT WT WIDTH LENGTH TOTAL X Y Xm Ym (PSF /PLF /LB) (SF /FT /FT) (N /FT) (K) (FT) (FT) (FT -K) (FT -K) I Roof A: Roof 7 80 31.5 17.6 31.25 40 551 706 B: Roof 7 40.5: 91.5 25.9 45.6 100 1183 2594 C: Roof 7 50 60 21.0 121.3 105 2547 2205 D: Roof 7 80:25 70.5 39.6 191.3 110 7576 4356 A: Ext CFS Wall 4.5 6.5 192 5.6 31.25 40 176 225 A: Int Wall (2,3) 2.5 6.5 249 4.0 31.25 40 126 162 B: Ext CFS Wall 4.5 6.5 223 6.5 45.6 100 297 652 B: Int Wall (2,3) 2.5 6.5 ' 410 6.7 45.6 100 304 666 C: Ext CFS Wall 4.5 6.5 170 5.0 121.3 105 603 522 I C: Int Wall (2,3) 2.5 6.5 400 6.5 121.3 105 788 683 D: Ext CFS Wall 4.5 6.5 300 8.8 191.3 110 1679 965 D: Int Wall (2,3) 2.5 6.5 450 ' 7.3 191.3 110 1399 804 FLR TOTAL 155 17230 14540 111.5 94.1 Xcg Ycg I ( TOTAL WT: 2990 VERTICAL DISTRIBUTION OF SEISMIC LOADS (ASCE 7 -05, 12.8.31 Bldg Period: T = 0.28. Sec k = 1.00 Import. Factor: I = ". 1 Sds = 0.71 I R.= 5 (Spcl Reinf Mas Brg Wall) Vbase = 2990 X 0.142 = 425 arc + = Vbase 1 FLOOR HEIGHT (H) H A k 'WEIGHT (W) W X HAk Cvx Fx (FT) (K) (K) Roof 33.4 33.4 155 5163 0.10 4 ` I Third 21.4 21.4 1267 27117 0.54 230 Second 11.4 11.4 1568 17873 0.36 151:` I TOTAL 2990 50153 1.00 425 SEISMIC DIAPHRAGM LOADS (ASCE 7 -05, 12.10.1.11 ./ FLOOR WEIGHT (W) SUM Fi SUM Fpx Fmin Fmax Fdes (K) W(x,n) (K) Fx(x,n) (K) (K) (K) (K) Roof 155 155 44 44 44 22 44 44 I Third 1267 1422 230 273 244 180 360 244 Second 1568 2990 151 425 223 223 445 223 TOTAL 2990 425 1 I I . 1 C: \TSE Engineering \Projects \TSE 2007 -006 Mirage Storage Bldg\Engineering\ 2 / 2 Mirage Storage EQ Loads.xls 5:10 PM 5/21/2007 I 2 .1 � MI NM el. Mil 111111 11111 1111 MIZ Mg MEI 111111 OM 4111111 MN MI 111111 NMI MI '11111 I L i i I I I 1 I I I I i I I I i i i i II I �� ,,.,.L 1 I __ i f i I i i j i i i I '��- i lip �,i:, riiiiiiiim - -_- ,-- - -� -_- - rt e,��r I i �� - I f i � =� i1 t. WT4. 'Mil i • . EMI IIIII 1r - E3 1 a �- - i ■. 111111•1111111111t _1: : :1= : :ag_ : : :r.. = 1 ui a ---- - -- --- -. mi —� - D all 41 t I I I I I I I I I 1 I - i I 1 ' MT I I I i I I - ------ - -1 i i S�ta Aj TyP, i i i i { I i 0 (5 (3 8� al 1! 11 12 1 13 3 i 10 -c) rem r• � ' ■ ■U 0 - - - - - -- ;n! - - - -r-® iii , I IN r I a .;, . _, _ I' ' P 17(44-(eiPolgi-\ 1 I0 I F I § 6 16 0 (5 I Title : Mirage Storage Job # A07072 Dsgnr: MT Date: 9:41AM, 12 JUN 07 Description : Scope : Rev 580002 Analysis e 1 User: KW -0607408, Ver 5.8.0 1- Dec -2003 Rigid Diaphragm Torsional Analysis g (c)1983 -2003 ENERCALC Engineering Software mirage storage.ecw:Lateral W I : - W. :. M... ..' m+ 4Zfii`. Wgh4SSF.P..,^ Sz:; STx °-�ff.Y?+we'*.'MW.XSy5{3R'&[Ti. "e TL. - ". l L: Tf: RWMF3Ci9CiM1" Cai ?S.M.S.F'W.X.&M..IMMWMuT::4 +.M.X.4{',. ........ YK'>...._:'..... .......... :. �. Description Roof Diaphragm General Information Y -Y Axis Shear 27.00 k Min. X Axis Ecc 5.00 % X Axis Center of Mass 111.50 ft X -X Axis Shear 27.00 k Min. Y Axis Ecc 5.00 % Y Axis Center of Mass 94.00 ft I ...Shears are applied on each axis separately Max X Dimension 231.30 ft Max Y Dimension 150.50 ft ; { Q i Wall Data _ SLSS3YU..M.W°M R:. *�S"�.. `.!?#^.::tt!:7.MMZi.MMCMW..a.t .._e -s ..a. 1. L• v' I. LVk'1W.L' °.:`LhW.±i"4u'. .&Y.:xn'xRofXM.. . M., M....+ VR YIMM..! ?Y' tL' ?iS L+`.X CMSMWS11...MM..pnx£SvomtG.. Wi tWtK'dt :iC.l*• I Label Thickness Length Height Wall Xcg Wall Ycg Wall Angle Wall End E in ft ft ft ft deg CCW Fixity 1 6.000 31.250 10.000 15.600 0.000 0.0 Fix -Fix 1.0 I 2 6.000 200.000 10.000 131.300 80.000 0.0 Fix -Fix 1.0 3 6.000 - - 91.300 10.000 45.700 120.000 0.0 Fix -Fix 1.0 4 6.000 60.000 10.000 121.300 130.000 0.0 Fix -Fix 1.0 5 6.000 40.000 10.000 171.300 140.000 0.0 Fix Fix 1.0 6 6.000 40.000 10.000 211.300 150.000 0.0 Fix -Fix 1.0 7 6.000 15.000 10.000 7.500 80.000 0.0 Fix -Fix 1.0 8 6.000 10.000 10.000 26.300 80.000 0.0 Fix -Fix 1.0 9 6.000 120.000 10.000 0.000 60.000 90.0 Fix -Fix 1.0 10 6.000 80.000 10.000 31.300 40.000 90.0 Fix -Fix 1.0 11 6.000 60.000 10.000 230.300 110.000 90.0 Fix -Fix 1.0 I 12 6.000 20.000 10.000 31.300 90.000 90.0 Fix -Fix 1.0 13 12.000 10.000 10.000 91.300 105.000 90.0 Fix -Fix 1.0 14 6.000 20.000 10.000 91.300 105.000 90.0 Fix -Fix 1.0 15 12.000 10.000 10.000 151.300 110.000 90.0 Fix -Fix 1.0 16 6.000 30.000 10.000 151.300 110.000 90.0 Fix -Fix 1.0 17 6.000 10.000 10.000 191.300 145.000 90.0 Fix -Fix 1.0 18 6.000 30.000 10.000 191.300 110.000 90.0 Fix -Fix 1.0 19 6.000 10.000 10.000 191.300 85.000 90.0 Fix -Fix 1.0 20 6.000 15.000 10.000 8.000 40.000 0.0 Fix -Fix 1.0 21 6.000 10.000 10.000 26.300 40.000 0.0 Fix -Fix 1.0 I 22 6.000 15.000 10.000 31.300 113.000 90.0 Fix -Fix 1.0 23 6.000 20.000 10.000 71.300 90.000 90.0 Fix -Fix 1.0 24 6.000 15.000 10.000 71.300 113.000 90.0 Fix -Fix 1.0 25 12.000 10.000 10.000 121.300 105.000 90.0 Fix -Fix 1.0 I 26 6.000 20.000 10.000 121.300 105.000 90.0 Fix -Fix 1.0 Calculated Wall Forces Load Location for Maximum Forces Direct Shears k Torsional Shears k Final Max. Label - Wall Shear X ft Y Length Thick Length Thick k 1 0.000 - 10.468 -1.615 0.000 -0.212 -0.001 -1.827 2 0.000 - 10.468 - 10.726 0.000 -0.246 0.004 - 10.972 1 3 0.000 4.582 -4.879 0.000 -0.067 0.001 -4.945 4 0.000 4.582 -3.187 0.000 -0.062 -0.000 -3.250 5 0.000 4.582 -2.098 0.000 -0.054 -0.001 -2.151 I 6 0.000 4.582 -2.098 0.000 -0.066 -0.001 -2.164 7 0.000 10.468 0.689 0.000 0.016 0.001 -0.705 8 0.000 - 10.468 -0.389 0.000 -0.009 -0.000 -0.398 9 12.782 0.000 6.785 0.000 -0.926 -0.003 6.785 I 10 12.782 0.000 4.508 0.000 -0.394 -0.003 4.508 11 35.912 0.000 3.366 0.000 2.120 0.001 5.485 I Title : Mirage Storage Job # A07072 Dsgnr: MT Date: 9:41AM, 12 JUN 07 Description : Scope Rev 580002 User KW- 0607408, Ver58.0, 1- Dec -2003 Rigid Diaphragm Torsional Analysis Page 2 (c)1983-2003 ENERCALC Engineering Software mirage storage .ecw:Lateral j I ' . : .:r.,, , r e.51 7,ZNs:r.« .v _.t a? apex .nezwt+ ems.. _ e.. .',Imws.:n arw..X n.r.'e . . *raa;;d3ida esr :r.Gr. wsarc .ast sR•trOM V2. - • .:.,. - ,_ . =Mk •h Description Roof Diaphragm II 12 12.782 0.000 1.036 0.000 -0.091 -0.000 1.036 13 35.912 0.000 0.822 0.000 0.015 0.001 0.837/z_ 14 35.912 0.000 1.036 0.000 0.019 0.000 1.055 15 35.912 0.000 0.822 0.000 0.232 0.002 1.054 / L I 16 35.912 0.000 1.632 0.000 0.461 0.001 2.092 17 35.912 0.000 0.411 0.000 0.188 0.001 0.600 18 35.912 0.000 1.632 0.000 0.748 0.001 2.380 1 19 35.912 0.000 0.411 0.000 0.188 -0.000 0.600 20 0.000 10.468 -0.689 0.000 -0.053 -0.001 -0.742 21 0.000 - 10.468 -0.389 0.000 -0.030 -0.000 -0.419 I 22 12.782 0.000 0.728 0.000 -0.064 0.000 0.728 23 12.782 0.000 1.036 0.000 0.026 -0.000 1.036 24 12.782 0.000 0.728 0.000 -0.018 0.000 0.728 25 35.912 0.000 0.822 0.000 0.124 0.001 0.946 / li 26 35.912 0.000 1.036 0.000 0.156 0.000 1.191 e >a�aarcckw:;rc� lawts . I X Distance CO Center of Rigidity Y Distance to Center of Rigidity 87.153 ft Controlling Eccentricities & Forces from Applied Y -Y Shear 96.943 ft Xcm + (Min % *MaxX) - X -cr = 35.912 ft Torsion = 969.63 k -ft Xcm - (Min % *MaxX) - X -cr = 12.782 ft Torsion = 345.12 k -ft X Accidental Eccentricity 11.565 ft Controlling Eccentricities & Forces from Applied X -X Shear Y Accidental Eccentricity 7.525 ft Ycm + (Min%*MaxY) - Y -cr = 4.582 ft Torsion = 123.72 k -ft Ycm - (Min%*MaxY) - Y -cr = - 10.468 ft Torsion = - 282.63 k -ft a . 1 I I I I I I 2 . Ci IMP K MI I WS M Mt ON VW Nit ilia M 111111 W - MD 4N11 INN INIII . 1 ( ) 5 T o 8 10 11 12 13 $ I 1 I I i I I 1 I I I I i I j I I I I I I I i 1 0 i I .w� I ; I 1 I i 1 !F ' i - - i i i _ iiiiiii 1 O. • ���' �'.�� ■BI f•I�I�D� is o - - - - -- . - - -J - rIZEMEMZEl_� - - --c MI 0 ' i I f ir; " 9 13 • , =Salo ,i 9 1:-5) I I I e I 1 I I �. i j 1 i .89881 M.ZS.YY.BL i I 1 I I I 1 ii f I I I I I I I 5 16 a l 10 11 12 13 � _ -_ ('7)1 F - - -- -�- / - fi r - - -- /// I be �J - - - -- - - - -� •" P., P 1 3 ft-ie. PAC &im. 1 b o 6 al -,-, I Title : Mirage Storage Job # A07072 Dsgnr: MT Date: 10:37AM, 12 JUN 07 Description : I Scope : i Rev: 580002 User: KW- 0607408. Ver5.8.0, 1- Dec -2003 Rigid Diaphragm Torsional Analysis Page 1 i (c)1983 -2003 ENERCALC Engineering Software mirage storage ecw: Lateral i 11/ ∎.=.. ..,,, .... e.4.. ..niV?ax5 .,.-.'x .MSNS,,..m. :, ... ,,,,,, ,',: s» P".1.kuvv,, awts:^v,,,Htg m..w.ravr. ..r... dp... ,,,,, r !'.v.E..........,,,ix,._R..vmS" . ..,, ,a1 4. Tesd F :'R:%R4re AYi'+ua>t.' avo,).n'...ti Description 3rd Fir Diaphragm . , f-. -)- r,(Y) f-- General Information I,1 { ` ' aSS: lv'n"+K"+ but` ...- k:-'-.%L-- _.. .GiM.A+.Vw.vA -.a� .VLV. - ,,, , s i(3M .S.V. ..r ^*RL'�i'•e?-i ∎+.hYY3.? olrr4*Y9:.3'�` .�"' " Srw'ffp" kfaga'.g.. V.44bRk'blAa'. 'Y- n.ni+..,,f7V4?A Y -Y Axis Shear 152.00 k Min. X Axis Ecc 5.00 % X Axis Center of Mass 113.00 ft X -X Axis Shear 152.00 k Min. Y Axis Ecc 5.00 % Y Axis Center of Mass 94.50 ft IS Shears are applied on each axis separately Max X Dimension 231.30 ft Max Y Dimension 150.50 ft Wall Data 0 �, hi ,.,�r. , ,,,, . ..,St,IW.S -..,. ,,,:x . . ...t. 'E'tAY3i.J ;WIf..* .. -t.V, : , C1,.-R, ,.,. .,v.1,,.tr '..T..wv,.: ,,- == k•:.: , Label Thickness Length Height Wall Xcg Wall Ycg Wall Angle Wall End E in ft ft ft ft deg CCW Fixity 1 6.000 31.000 10.000 15.600 0.000 0.0 Fix -Fix 1.0 I 2 6.000 215.000 10.000 115.600 80.000 0.0 Fix -Fix 1.0 3 6.000 91.250 10.000 45.600 120.000 0.0 Fix -Fix 1.0 4 6.000 60.000 10.000 121.250 130.000 0.0 Fix -Fix 1.0 5 6.000 40.000 10.000 171.300 140.000 0.0 Fix -Fix 1.0 I 6 6.000 40.000 10.000 211.300 150.000 0.0 Fix -Fix 1.0 7 36.000 15.000 10.000 7.500 45.000 0.0 Fix -Fix 1.0 8 6.000 15.000 10.000 7.500 112.000 0.0 Fix -Fix 1.0 I 9 6.000 0.010 10.000 52.500 100.000 0.0 Fix -Fix 1.0 10 6.000 55.000 10.000 118.800 105.000 0.0 Fix -Fix 1.0 11 6.000 60.000 10.000 181.300 110.000 0.0 Fix -Fix 1.0 I 12 30.000 15.000 10.000 223.800 110.000 0.0 Fix -Fix 1.0 13 6.000 120.000 10.000 0.000 60.000 90.0 Fix Fix 1.0 14 6.000 80.000 10.000 31.250 40.000 90.0 Fix -Fix 1.0 15 6.000 70.000 10.000 231.300 115.000 90.0 Fix -Fix 1.0 I 16 6.000 35.000 10.000 31.300 100.000 90.0 Fix Fix 1.0 17 6.000 35.000 10.000 41.300 100.000 90.0 Fix -Fix 1.0 18 6.000 35.000 10.000 51.300 100.000 90.0 Fix -Fix 1.0 19 6.000 35.000 10.000 61.300 100.000 90.0 Fix -Fix 1.0 I 20 6.000 35.000 10.000 71.300 100.000 90.0 Fix -Fix 1.0 21 6.000 35.000 10.000 81.300 100.000 90.0 Fix -Fix 1.0 22 6.000 40.000 10.000 91.300 105.000 90.0 Fix -Fix 1.0 I 23 6.000 40.000 10.000 101.300 105.000 90.0 Fix -Fix 1.0 24 6.000 40.000 10.000 111.300 105.000 90.0 Fix -Fix 1.0 25 6.000 40.000 10.000 121.300 105.000 90.0 Fix -Fix 1.0 I 26 6.000 40.000 10.000 131.300 105.000 90.0 Fix -Fix 1.0 27 6.000 40.000 10.000 141.300 105.000 90.0 Fix -Fix 1.0 28 6.000 50.000 10.000 151.300 110.000. 90.0 Fix -Fix 1.0 29 6.000 50.000 10.000 161.300 110.000 90.0 Fix -Fix 1.0 30 6.000 50.000 10.000 171.300 110.000 90.0 Fix -Fix 1.0 31 6.000 50.000 10.000 181.300 110.000 90.0 Fix -Fix 1.0 32 6.000 60.000 10.000 191.300 115.000 90.0 Fix -Fix 1.0 I 33 6.000 60.000 10.000 201.300 115.000 90.0 Fix -Fix 1.0 34 6.000 30.000 10.000 211.300 115.000 90.0 Fix -Fix 1.0 Calculated Wall Forces } t '-$. FFlik'. Y: ftiT.t r.^. 4.'.($°' w�"S' 3kAiGa�. L%& LF, F: t3r5d' �NTCifP�uT'. eTiT. aTv v' iY) FJ% lR?i'+' vY58: 4FMix' ASPd". YrY. S+.` rtiti..+ W3wfa'..+ x+. u: Y... i ..S4SaFSi #f� '�'.ki.YVVVyrw.PU. '} :3TiL:4tES5S�- "`SSf;J9a'"bRSG?i cu!'S` Load Location for Maximum Forces Direct Shears k Torsional Shears k Final Max. Label Wall Shear X ft Y Length Thick Length Thick k I J 1 0.000 -9.334 -6.062 0.000 -0.607 -0.004 -6.669 I 2 0.000 - 9.334 - 43.667 0.000 -0.740 0.001 -44.407 (49 3 0.000 5.716 - 18.464 0.000 -0.278 0.005 - 18.742 z.Z - • J' Title : Mirage Storage Job # A07072 Dsgnr: MT Date: 10:37AM, 12 JUN 07 Description : I Scope : 1 Rev: 580002 User: KW-0607408. Ver580 1-Dec-2003 Rigid Diaphragm Torsional Analysis Page 2 mirage storage.ecw:Lateral (c)1983 -2003 ENERCALC Engineering Software r, . uvs: au�r;aas= a+ays ^R.? s;s r^�a.a+.msrr: a�a^.sc aura:Fsv::vw-aGSZa ss�w,xat?szvxarsa. uma:,w!:.�rc:€w, ,,.rwa.raau_a �xasrm. ^ c. ��acc� .a.x�a*rawxa•..�x.savnua:w . wkdenah; s�sav +?ar,+r:^rzr. °x %,rassa��:�rarW ;?;xM Description 3rd Fir Diaphragm Q 4 0.000 5.716 -12.069 0.000 -0.259 -0.000 - 12.328 ® 5 0.000 5.716 7.943 0.000 0.221 0.002 -8.163 6 0.000 5.716 -7.943 0.000 -0.271 -0.003 -8.214 7 0.000 -9.334 - 15.658 0.000 -0.835 -0.385 - 16.493 (0 8 0.000 5.716 -2.610 0.000 -0.026 0.001 -2.636 9 0.000 5.716 0.000 0.000 0.000 0.000 0.000 10 0.000 5.716 - 11.041 0.000 -0.061 -0.000 - 11.102 11 0.000 5.716 -12.069 0.000 - 0.105 -0.003 - 12.174 12 0.000 5.716 -13.048 0.000 -0.114 -0.152 - 13.162/$' 13 - 11.564 0.000 16.794 0.000 3.539 0.007 20.333 14 - 11.564 0.000 11.159 0.000 1.701 0.008 12.861 15 11.566 0.000 9.747 0.000 2.151 0.002 11.898 16 - 11.564 0.000 4.764 0.000 0.726 -0.000 ••5.490/ 3 S 17 - 11.564 0.000 4.764 0.000 0.637 -0.000 5.401 I 18 - 11.564 0.000 4.764 0.000 0.548 -0.000 5.312 19 - 11.564 0.000 4.764 0.000 0.459 -0.000 5.223 20 - 11.564 0.000 4.764 0.000 0.370 -0.000 5.134 I 21 - 11.564 0.000 4.764 0.000 0.282 -0.000 5.045 22 - 11.564 0.000 5.483 0.000 0.222 0.001 5.705 i 4o 23 - 11.564 0.000 5.483 0.000 0.120 -0.001 5.602 24 '- 11.564 0.000 5.483 0.000 0.017 -0.001 5.500 I 25 11.566 0.000 5.483 0.000 0.085 0.001 5.568 26 11.566 0.000 5.483 0.000 0.187 0.001 5.670 27 11.566 0.000 5.483 0.000 0.289 0.001 5.772 28 11.566 0.000 6.911 0.000 0.494 0.001 7.405 I so 29 11.566 0.000 6.911 0.000 0.623 0.001 7.534 30 11.566 0.000 6.911 0.000 0.752 0.001 7.663 I 31 11.566 11.566 0.000 6.911 0.000 0.881 0.001 7.792 32 0.000 8.331 0.000 1.217 0.002 ( 9.548 Rep 33 11.566 0.000 8.331 0.000 1.372 0.002 1- 9.704 34 11.566 0.000 4.039 0.000 0.741 0.001 4.7801 / 30 1 Summary X Distance to Center of Rigidity 112.999 ft Controlling Eccentricities & Forces from Applied Y -Y Shear I Y Distance to Center of Rigidity 96.309 ft Xcm + (Min % *MaxX) - X -cr = 11.566 ft Torsion = 1,758.08 k -ft Xcm - (Min % *MaxX) - X -cr = - 11.564 ft Torsion = - 1,757.68 k -ft X Accidental Eccentricity 11.565 ft Controlling Eccentricities & Forces from Applied X -X Shear Y Accidental Eccentricity 7.525 ft Ycm + (Min % *MaxY) - Y -cr = 5.716 ft Torsion = 868.80 k -ft 1 Ycm - (Min % *MaxY) - Y -cr = -9.334 ft Torsion = - 1,418.80 k -ft I . 1 I I 2 ,Z � OS MIN IVA MIN OM NM NM INS Mit elE UM NM 112111 WM MIS MB ellei MSS SIM T - T- T - Y Y Y Y- 10 — ci1 12 13 _ —$ . I I ! I I I I I I I i I 1 j 1 1 j 1 t i i i I ! I 1 1 i i w -. +- ; 9� 1 I I I I 1 I i s, 111;111E , � I I co 1 �4�' I i j 1 j I AZ 1111111:1 g .� = j� ■u..•••uEN = b _______________ ir __ �-__ x - R� ® I -1"----z, i i I I 3) i r� 1,911 I i (4 �� I i I rYP °�, J.o, 11111 E � � L - - - -' E 1 I G �N , tikzrt- I I I NM ! �5 l a a 8 O 10 11 12 13 F ��s -- 1 r"r® I G - -- 1 - -- 110 __ - 1 _ . G j -i� i 1 - . - < -- ,a I 6 1 3 o ,c3 1--'D fc-g- pi Acperw-kt,,pn 1 Title : Mirage Storage Job # A07072 Dsgnr: MT Date: 11:34AM, 12 JUN 07 Description : I Scope : _, Rev. 580002 Page 1 ` User: KW- 0607408..er58.0 1-Dec-2003 Rigid Diaphragm Torsional Analysis Il (c)1983 -2003 ENERCALC Engineering Software mirage storage .ecw:Lateral Description 2nd Fir Diaphragm G eneral Information . .� 5 tt R.r „ s . oxroe F k Y -Y Axis Shear 304.00 k Min. X Axis Ecc 5.00 % X Axis Center of Mass 113.00 ft X -X Axis Shear 304.00 k Min. Y Axis Ecc 5.00 % Y Axis Center of Mass 94.50 ft I ...Shears are applied on each axis separately Max X Dimension 231.30 ft Max Y Dimension 150.50 ft Wall Data fi Wit+S?4.. ...IiiT s 'aa 73^,VR+m!£t .X:' , ek,,I , N , g , ,tt- a�F, SYamT.�' .. 'z.V, m. •g.' ..,'?w`.',Snr", =e» p^.4+ SP'9.ti. A3CT-' i,d+.?f. «••• 'sk."a+i 4 Label Thickness Length Height Wall Xcg Wall Ycg Wall Angle Wall End E in ft ft ft ft deg CCW Fixity j 1 9.630 22.500 10.000 11.250 5.000 0.0 Fix -Pin 1.0 I 2 7.630 55.000 10.000 58.800 80.000 0.0 Fix -Pin 1.0 3 7.630 120.000 10.000 150.000 80.000 0.0 Fix -Pin 1.0 4 7.630 16.000 10.000 223.300 80.000 0.0 Fix -Pin 1.0 I 5 7.630 16.000 10.000 8.000 120.000 0.0 Fix Pin 1.0 6 7.630 65.000 10.000 52.500 120.000 0.0 Fix -Pin 1.0 7 7.630 55.000 10.000 118.800 130.000 0.0 Fix -Pin 1.0 8 7.630 39.000 10.000 170.800 140.000 0.0 Fix -Pin 1.0 I 9 7.630 20.000 10.000 201.300 150.000 0.0 Fix -Pin 1.0 10 9.630 37.670 10.000 31.300 49.330 90.0 Fix -Pin 1.0 11 9.630 8.830 10.000 31.300 75.600 90.0 Fix -Pin 1.0 12 7.630 31.000 10.000 0.000 104.500 90.0 Fix -Pin 1.0 13 7.630 0.010 10.000 0.000 112.000 90.0 Fix -Pin 1.0 14 7.630 10.000 10.000 91.300 85.000 90.0 Fix -Pin 1.0 11 15 7.630 20.000 10.000 91.300 105.000 90.0 Fix -Pin 1.0 16 7.630 10.000 10.000 91.300 125.000 90.0 Fix -Pin 1.0 17 7.630 10.000 10.000 151.300 85.000 90.0 Fix -Pin 1.0 18 7.630 30.000 10.000 151.300 110.000 90.0 Fix -Pin 1.0 I 19 7.630 10.000 10.000 151.300 135.000 90.0 Fix -Pin 1.0 20 7.630 60.000 10.000 231.300 110.000 90.0 Fix -Pin 1.0 21 9.630 9.500 10.000 31.300 4.800 90.0 Fix -Pin 1.0 1 Calculated Wall Forces 4 . Load Location for Maximum Forces Direct Shears k Torsional Shears k F inal Max. 1 Label Wall Shear 1 X ft Y Length Thick Length Thick k j 1 0.000 - 11.597 - 17.533 0.000 -3.619 -0.022 - 21.152 2 0.000 - 11.597 - 42.016 0.000 -1.721 - 0.015 - 43.737 3 0.000 - 11.597 - 95.260 0.000 -3.902 0.020 - 99.162 I 4 0.000 -11.597 -8.063 0.000 -0.330 0.008 -8.393 5 0.000 3.453 -8.063 0.000 -0.113 0.002 -8.176 6 0.000 3.453 - 50.337 0.000 -0.708 0.006 - 51.045 7 0.000 3.453 -42.016 0.000 -0.867 -0.000 -42.883 8 0.000 3.453 28.451 0.000 0.774 -0.003 - 29.225 9 0.000 3.453 -11.636 0.000 -0.393 -0.002 - 12.029 10 - 13.610 0.000 67.731 0.000 7.470 0.021 75.201 11 - 13.610 0.000 5.970 0.000 0.658 0.002 6.629 12 -13.610 0.000 42.221 0.000 6.397 0.001 48.618 13 - 13.610 0.000 0.000 0.000 0.000 -0.000 -0.000 I 14 - 13.610 0.000 6.269 0.000 0.196 0.001 6.465 15 - 13.610 0.000 22.871 0.000 0.715 -0.001 23.586 16 - 13.610 0.000 6.269 0.000 0.196 -0.001 6.465 I Title : Mirage Storage Job # A07072 Dsgnr: MT Date: 11:34AM, 12 JUN 07 Description : I Scope : Rev. 580002 Page 2 (Jser.KW- 0607408.Ver5.80,,- Dec -2003 Rigid Diaphragm Torsional Analysis 9 (c)1983 -2003 ENERCALC Engineering Software mirage storage .ecw:Laterai is I ".7...a... . « ra... yea 3',r.P SN-n anauas.,V4raw,a Ir. :es usu,W,svx. »..4.4,,..5,16%,,,,,,f aa-a ::aaku,.. .;::,15.4.7...1,5 . ..,Vi wu%"ua sn. s4*cu411 x.... Description 2nd Fir Diaphragm I 17 9.520 0.000 6.269 0.000 0.209 -0.001 6.478 18 9.520 0.000 40.485 0.000 1.352 0.001 41.837 19 9.520 0.000 6.269 0.000 0.209 0.001 6.478 20 9.520 0.000 90.781 0.000 9.722 0.003 100.503 I 21 - 13.610 0.000 7.057 0.000 0.778 0.010 7.835 g Summary X Distance to Center of Rigidity 115.045 ft Controlling Eccentricities & Forces from Applied Y -Y Shear Y Distance to Center of Rigidity 98.572 ft Xcm + (Min % *MaxX) - X -cr = 9.520 ft Torsion = 2,893.94 k -ft Xcm - (Min % *MaxX) - X -cr = - 13.610 ft Torsion = - 4,137.58 k -ft X Accidental Eccentricity 11.565 ft Controlling Eccentricities & Forces from Applied X -X Shear Y Accidental Eccentricity 7.525 ft Ycm + (Min%*MaxY) - Y -cr = 3.453 ft Torsion = 1,049.58 k -ft Ycm - (Min %'MaxY) - Y -cr = -11.597 ft Torsion = - 3,525.62 k -ft II I I I I I I I I II I , ZS ii 2J 2 4 c-10 I-\ pc Air +, AG-I 2JO r- - -e— 10_ t 11,5 z !/1 II I #\( Z,az1z -` 2 # D�f ,, c Y i) U 3 ' �C.C) ° �3(o(z) 1.�'i ;n ( z� C.° Sz 5c-) - , , ,-s, I i z ,Z k ( 2(. 4 yi 6-3f, nos 37vc P UN-5 1 I I,S) .& Z.) � N ` E-I 3_ s 4- o4 - ) to T ' I I d lid L1J "T ec,_i ,s( ' Z 0C-- ; 't -6,, ! I \ ,.-v, z- } "S ‘ p.-,.; 5-...1 e _. lac / 1 S oca,l c 1 SO voO hs, ti ______ ,),.. ( _) ,..)._ ( ___ k ) __ I 't I I.S 3 , 11.5 i z o^ o — +- r c 0, 90 � ' ' I So ( ar.1 .) T (\ Zia 20 — I ` afghan associates, inc. By (A T- Date: S J & f° -] V � ` ENGINEERING No -�°"i� 4875 SW Griffith Drive Suite 300 I Beaverton, OR 1 97005 Project No.: I 503.620.3030 I tel 503.620.5539 I fax www.aaieng.com Sheet: Z` of: I I ..A.) iA., I 1-0 - 1 Act- LA) kik14., , 1 ( 7 \,, -4--- 2 9 • °.,°! I 6-1 --, 11 I ''' ri:5 7 7 l ek L L, ktA. F- \ L,, t 0, T - 7 ..7,..) 1 c,o_ii 0 ., 4 - 1 / ri . ,... Zo ' I 76 , I -7 c -- i ) k , 1) , --1. , 1 --e. I i c....., L..... I C.- < (D 5-(.),) • . ..._A- 5i--,,,,o 7 Z- ‘4 0 C I I .. I I Eli AA1 afghan associates, inc. ENGINEERING tilA k - (1 By: Date: 1 I S ) / ,.., i' - 7 Project No: 4875 SW Griffith Drive I Suite 300 I Beaverton, OR i 97005 I 503.620.3030 i tel 503.620.5539 I fax www aaieng.com Sheet: 7-- 7 -1 of: II I ■.,0 irt/t, c)-T1 r,r7 c-e3 .t?,---) ) i e-o Fie I . 1 i w h ?--) L-J ir , i i , :-T- - P P — `---? • I _.-, r- ‘. 1 ,..-e--)/^ ( ) / 1 . ,• -f., ) I 1-- 0 Mkt- L.-kJ 4-1-A --- P-\ I I a 20 1 II I / z-c I - / al r- ZO c A >? 1 - ( `77 -7 2--,) 0 --.4- ';',14 Lot-A-v-4; d )6, vri.. c 4) -7 ''‘ r rif,L. 1 A-0 f,,-.0 A zfrw) - _Pyle(/' II ) 4 -> i - wif.-T-1.,• 1-4- 2-P 0 r-c. ,f. -re) it... I ( --: T 4 ti\ TI.— 4 : -it- .,.- E. c.0 414, c,,, -iY3-1 1,30 .1..-tE r-cAe._ • III !,-, 0 ( c c:,. st__ \ z , z , 3 , ) I e c - - 4 e 4 6 - 1 - 7 ,-.-1-ir-6 , . / t : - . . 7 : 0 L I 6 I II II 1 ,AM AA 1 • t ,A ‘P l'il ' ( afghan associates, inc. V ) : '-- I B : Y Date ENGINEERING PYO'\ tri Project No.: No.: 4875 SW Griffith Drive I Suite 300 I Beaverton, OR I 97005 I 503.620.3030 i tel 503.620.5539 i fax www.aaie ng.com Sheet: 7 ' of: Il . 1 C H& •• Psw 4- d)( - -d G '\-)f-fc- ft,- 64-) V V F- di' s roe- - cr u-9 ,,- (z.-105 9 -- 1 *-, 2 Ue t..t� c�,. , 4- 5 -1 `� >o� 1 ` J I t7 p L l' r) 1 frN 4 y a-,N r z 1 , +3)5 ( d, S) L 1-15 (a ‹,(2-A--> I o + Zo 9 ( 0, S ... ) 1 l � — X 41 ' '^ c 145 I t I Ls �D a r' (DD I . ) &2'D5 (o l,9 T 50 l = S(OJ C2 I s IS I efN.., a 'G' ••0 I z 11S ( ,'1F C 4i 4 , � �� 3 r'a 4 z.c100 ( 14& 4 ' j jp V N" +ns ,., I Au 11 c i ts, L L • l� S �t ?� � ('© Z ) ( 1 "S) Z �, 1 D u u I Q Tea,— C.- 4 1 a - - °, 1 °' I r >( Z sue. (r' L— 6 w q ..„ I w kSA, C, �7 Ca c9 4 w 41,,t, =l Zco A p� S T72 5 V 0 c, c1vc. -co `j 2K Coop ( A, z 1,/o-7 4— I �� bDZ L z • ■ C iz )-(►TZ6) (0,5�� IZt ) - Cno If I ,..1 4 c- , t� 44. 7 Z x d 0, p , 0 Pfe- tlR ra kk ,7 C. * 1 1 afghan associates, inc. t�•. l 1, 1 By: i\-A7 Da te s �� E � ENGINEERING Project No.: AC10 1 Z 4875 SW Griffith Drive I Suite 300 I Beaverton, OR 1 97005 I 503.620.3030 I tel 503.620.5539 I fax ry www.aaieng.com Sheet: 2 'Z C 1 _ Of: . WM HO ON NM M MB 1I0 101 MN 111111 M 011 WM IM NM = - • METAL SHEAR WALL DESIGN Project: Mirage Storage HD End Distance: 0.5 ft Notes: 1. Floor DL includes 25% of Storage LL, consistant with the 25% of LL used Sds: 0:71 for the seismic lateral loads. 2. The reduction of DL due to seismic uplift (0.6 - 0.14 x Sds) is accounted for in the calculation of the resisting moment. Total DL +0.25LL R = 5 Wall No. Top Level Height Length Shear Roof DL Floor DL Wall DL Total DL Shear Mot Mres Mnet. Mnet HD Force ft ft lb lb lb lb lb plf ft -lb ft -lb ft -lb ft -lb lb Long 1 Roof 12 31.3 1850 760 0 1670 2430 59 22200 19038 3162 9822 103 2 12 200 11000 3500 0 10800 14300 55 132000 715858 - 583858 - 544258 -2927 3 12 91 4950 1590 0 4910 6500 54 59400 148052 -88652 -70832 -980 4 12 60 3250 1050 0 3240 4290 54 39000 64427 -25427 -13727 -427 5 12 40 2160 700 0 1080 1780 54 25920 17821 8099 15875 205 6 12 40 2170 700 0 1080 1780 54 26040 17821 8219 16031 208 7 12 15 710 700 0 450 1150 47 8520 4318 4202 6758 290 8 12 10 400 525 0 300 825 40 4800 2065 2735 4175 288 20 12 15 750 700 0 450 1150 50 9000 4318 4682 7382 323 21 12 10 420 525 0 300 825 42 5040 2065 2975 4487 313 Trans 9 Roof 12 120 6790 2100 0 6480 8580 57 81480 257709 -176229 - 151785 -1475 10 12 80 4510 1400 0 4300 5700 56 54120 114137 -60017 -43781 -755 11 12 60 5490 1050 0 3200 4250 92 65880 63827 2054 21818 35 12 12 20 1040 1400 0 600 2000 52 12480 10012 2468 6212 127 13 12 10 420 700 0 300 1000 42 5040 2503 2537 4049 267 14 12 20 1060 1400 0 600 2000 53 12720 10012 2708 6524 139 15 12 10 530 700 0 300 1000 53 6360 2503 3857 5765 406 16 12 30 2100 2100 0 900 3000 70 25200 22527 2673 10233 91 17 12 10 600 175 0 300 475 60 7200 1189 6011 8171 633 18 12 30 2380 2100 0 900 3000 79 28560 22527 6033 14601 205 19 12 10 600 700 0 300 1000 60 7200 2503 4697 6857 494 22 12 15 730 1050 0 450 1500 49 8760 5632 3128 5756 216 23 12 20 1040 1400 0 600 2000 52 12480 10012 2468 6212 127 24 12 15 730 1050 0 450 1500 49 8760 5632 3128 5756 216 25 12 10 475 700 0 300 1000 48 5700 2503 3197 4907 337 26 12 20 1200 1400 0 600 2000 60 14400 10012 4388 8708 225 Vmax = 92 plf 1 - O MB MI 411111 MI MI MN MN NW IIIMI MN WIN MI MI MIN VW liel EIN OM NM METAL SHEAR WALL DESIGN Project: Mirage Storage HD End Distance: 0.5 ft Notes: 1. Floor DL includes 25% of Storage LL, consistant with the 25% of LL used Sds: 0.71 for the seismic lateral loads. 2. The reduction of DL due to seismic uplift (0.6 - 0.14 x Sds) is accounted for in the calculation of the resisting moment. Total DL +0.25LL R = 5 Wall No. Top Level Height Length Shear Roof DL Floor DL Wall DL Total DL Shear Mot Mres Mnet Mnet HD Force ft ft lb lb lb lb lb plf ft-lb ft -lb ft-lb ft -lb lb Long 1 3rd 10 31.3 6670 0 9760 1380 11140 213 66700 87275 -20575 -565 -668 2 10 200 41300 0 42310 9650 51960 207 413000 2601118 - 2188118 - 2064218 -10968 3 10 91 18750 0 17800 4080 21880 206 187500 498367 - 310867 - 254617 -3435 4 10 60 12330 0 11800 2700 14500 206 123300 217761 -94461 -57471 -1588 5 10 40 8170 0 7870 1800 9670 204 81700 96816 -15116 9394 -383 6 10 40 8215 0 7880 1800 9680 205 82150 96916 -14766 9879 -374 7 10 15 2750 0 11800 380 12180 183 27500 45730 -18230 -9980 -1257 8 10 15 2640 0 11800 380 12180 176 26400 45730 -19330 -11410 -1333 9 10 65 0 0 0 0 0 0 0 0 0 0 0 10 10 55 11110 0 21650 1370 23020 202 111100 316905 - 205805 - 172475 -3776 11 10 60 12200 0 23610 1495 25105 203 122000 377027 - 255027 - 218427 -4286 12 10 15 2640 0 11800 380 12180 176 26400 45730 -19330 -11410 -1333 Trans 13 3rd 10 120 20400 0 23600 5400 29000 170 204000 871044 - 667044 - 605844 -5582 14 10 80 12900 0 15740 3600 19340 161 129000 387264 - 258264 - 219564 -3249 15 10 60 11900 0 11800 2700 14500 198 119000 217761 -98761 -63061 -1660 16a -21a 10 20 3150 0 15600 500 16100 158 ' 31500 80597 -49097 -39647 -2518 16b -21b 10 15 2360 0 11700 375 12075 157 23600 45336 -21736 -14656 -1499 22a -27a 10 10 1450 0 7800 250 8050 145 14500 20149 -5649 -1299 -595 22b -27b 10 20 2900 0 15740 500 16240 145 29000 81297 -52297 -43597 -2682 28a -31a 10 10 1560 0 7870 250 8120 156 15600 20324 -4724 -44 -497 28b -31b 10 30 4680 0 23600 750 24350 156 46800 182844 - 136044 - 122004 -4612 32a -33a 10 10 1620 0 7870 250 8120 162 16200 20324 -4124 736 -434 32b -33b 10 20 3240 0 15700 500 16200 162 32400 81097 -48697 -38977 -2497 32c -33c 10 30 4860 0 23600 750 24350 162 , 48600 182844 - 134244 - 119664 -4551 34a 10 10 1600 0 7870 250 8120 160 16000 20324 -4324 476 -455 34b 10 20 3200 0 15750 500 16250 160 32000 81348 -49348 -39748 -2531 I Vmax = 213 plf I N NS MI SE r I MI r® M® NM 1- NI all 1 r. - - NM C: \TSE Engineering\Projects \TSE 2007 -006 Mirage Storage Bldg \Engineering \Mirage SW.xls CMU SHEAR WALL DESIGN Project: Mirage Storage fm = 1500 psi Fb = 495 psi Notes: 1. Floor DL includes 25% of Storage LL, consistant with the 25% of LL used Vfac = 1 E = 1350000 psi for the seismic lateral loads. Sds2 = 0.71 n = 21.5 2. The reduction of DL due to seismic uplift (0.6 - 0.14 x Sds) is accounted for in the calculation of the resisting moment. LC1: DL + LL LC2: DL + 0.75(LL + SL + EQ) LC3: 0.6DL + EQ DL +0.25LL R = 5 R = 5 R = 5 R =5 0.75LL Total 2nd 2nd FIr Roof 3rd Fir Total 2nd & 3rd Wall No. Top Level Height Length Shear Floor DL Wall DL Total DL Mot Mres Mnet Mnet Mnet Mnet 3rd FIr DL Roof DL Floor LL Roof SL ft ft lb lb lb lb ft -lb ft-lb ft-lb ft-lb ft-lb ft-k plf plf plf pif Long 1 2nd 12 22.5 21160 12250 27450 39,700 253,920 223,580 30,340 9,822 -565 40 7473 1103 940 •125 2 12 55 43800 10860 48700 59,560 525,600 819,933 - 294,333 - 157,835 - 598,623 -1051 6625 977 470 63 3 12 120 99200 23700 106260 129,960 1,190,400 3,903,479 - 2,713,079 - 342,883 - 1,300,457 -4356 14457 2133 470 63 4 12 16 8400 3160 14170 17,330 100,800 69,403 31,397 - 43,541 - 165,137 -177 1928 284 470 63 5 12 16 8200 3160 14170 17,330 . 98,400 69,403 28,997 - 14,166 - 50,923 -36 1928 284 940 125 6 12 65 • 51050 12800 57560 70,360 612,600 1,144,722 - 532,122 - 56,666 - 203,694 -792 7808 1152 470 63 7 12 55 42900 10800 48700 59,500 514,800 819,107 - 304,307 - 13,727 - 57,471 -376 6588 972 470 63 8 12 39 29300 7675 34530 42,205 351,600 411,993 - 60,393 15 9,394 -35 , 4682 691 470 63 9 12 20 12100 3940 17700 21,640 145,200 108,330 36,870 16,031 9,879 63 2403 355 470 63 Trans 10 2nd 12 37.67 76000 29800 40180 69,980 912,000 659,827 252,173 - 29,333 - 147,108 76 18178 2682 1880 250 11 12 8.83 6630 7000 9420 16,420 79,560 36,291 43,269 -7,005 - 35,130 1 4270 630 1880 250 12 12 31 48700 0 26250 26,250 584,400 203,682 380,718 - 39,464 - 157,519 184 0 0 470 63 13 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 14 12 10 6500 5930 8855 14,785 78,000 37,007 40,993 4,049 - 1,299 44 3617 534 1875 250 15 12 20 23600 11850 17710 29,560 283,200 147,977 135,223 6,524 - 43,597 98 7229 1067 1875 250 16 12 10 6500 5930 8855 14,785 78,000 37,007 40,993 4,049 - 1,299 44 3617 534 940 125 17 12 10 6500 7900 8855 16,755 78,000 41,938 36,062 5,765 -44 42 4819 711 1875 250 18 12 30 41900 23700 26565 50,265 502,800 377,440 125,360 10,233 - 122,004 14 14457 2133 1875 250 19 12 10 6500 3950 8855 12,805 78,000 32,051 45,949 5,765 -44 52 2410 356 940 125 20 12 60 100550 11850 53130 64,980 1,206,600 975,870 230,730 21,818 - 63,061 189 7229 1067 470 63 21 12 9.5 7900 0 10140 10,140 94,800 24,111 70,689 -7,443 - 37,326 26 0 0 1880 250 N vv 1/4 C: \TSE Engineering \Projects \TSE 2007 -006 Mirage Storage Bldg \Engineering \Mirage SW.xls 12:05 PM 6/12/2007 M - 1111111 r 1111111 N ® .IMO M 111111 N E S WEI 1111111 IIIIII "NIB 1111111 C. \TSE Engineering \Projects \TSE 2007 -006 Mirage Storage Bldg\Engineering \Mirage SW.xls CMU SHEAR WALL DESIGN • Project: Mirage Storage Bending Analysis Total Chord Wall No. Top Level Mnet b d As n x rho k j Mmas Mstl Mcap Bend ft -k in in in "2 ft-k ft-k ft-k Test 1 2nd 40 9.63 243 0.31 0.003 0.073 0.976 831 147 147 Bend OK 2 0 7.63 594 0.31 0.001 0.053 0.982 2878 362 362 Bend OK 3 0 7.63 1296 0.31 0.001 0.036 0.988 9410 794 794 Bend OK 4 0 7.63 173 0.31 0.005 0.096 0.968 435 104 104 Bend OK 5 0 7.63 173 0.31 0.005 0.096 0.968 435 104 104 Bend OK 6 0 7.63 702 0.31 0.001 0.049 0.984 3711 428 428 Bend. OK L-. --------- 7 0 7.63 594 0.31 0.001 0.053 0.982 2878 362 . 362 Bend OK 8 0 •7.63 421 0.31 0.002 0.062 0.979 1704 256 256 Bend OK 9 • 63 7.63 216 0.31 0.004 0.086 0.971 613 130 130 Bend OK 10 2nd 76 9.63 407 0.62 0.003 0.079 0.974 2533 491 491 Bend OK 11 1 9.63 95 0.62 0.015 0.156 0.948 268 112 112 Bend OK 12 184 7.63 335 0.31 0.003 0.070 0.977 1200 203 203 Bend OK 13 0 0 0 0 0.000 0.000 0.000 0 0 0 14 44 7.63 108 0.31 0.008 0.119 0.960 210 64 64 Bend OK 15 98 7.63 216 0.62 0.008 0.119 0.960 641 257 257- Bend OK 16 44 7.63 108 0.62 0.016 _ 0.164 0.945 285 127 127 Bend OK 17 42 7.63 108 0.31 0.008 0.119 0.960 210 64 64 Bend OK 18 14 7.63 324 0.31 0.003 0.071 0.976 1141 196 196 Bend OK 19 52 7.63' 108 0.62 0.016 0.164 0.945 285 127 127 Bend OK 20 189 7.63 648 0.31 0.001 0.051 0.983 3285 395 395 Bend OK 21 26 9.63 103 0.31 0.007 0.110 0.963 221 61 61 Bend OK W 2/4 \r4 C: \TSE Engineering \Projects \TSE 2007 -006 Mirage Storage Bldg \Engineering \Mirage SW.xls 12:05 PM 6/12/2007 NW EN MN ® I I S I NW I ® ON ® NW M ® NIN NW IMO In • 111011 WM NW 11111 111111 Mill 111W 11111 WO Will 11111 111111 WM WM MN WO C:\TSE Engineering \Projects \TSE 2007 -006 Mirage Storage Bldg \Engineering \Mirage SW.xls CMU SHEAR WALL DESIGN Project: Mirage Storage Shear Analysis Wall No. Top Level Shear b 1.5 x fv Fv Shear pit in psi psi Test 1 2nd 940 9.63 12 35 Shear OK 2 796 7.63 13 35 Shear OK 3 827 7.63 14 35 Shear OK 4 525 7.63 9 35 Shear OK 5 513 7.63 8 35 Shear OK 6 785 7.63 13 35 Shear OK 7 780 7.63 13 35 Shear OK 8 751 7.63 12 35 Shear OK 9 605 7.63 10 35 Shear OK 10 2nd 2018 9.63 26 35 Shear OK 11 751 9.63 10 35 Shear OK ' 12 1571 7.63 26 35 Shear OK 13 0 0 0 35 14 650 7.63 11 35 Shear OK 15 1180 7.63 19 35 Shear OK 16 650 7.63 11 35 Shear OK 17 650 7.63 11 35 Shear OK 18 1397 7.63 23 35 Shear OK 19 650 7.63 11 35 Shear OK 20 1676 7.63 27 35 Shear OK 21 832 9.63 11 35 Shear OK I Vmax = 2018 pit I N \N 3/4 C: \TSE Engineering \Projects \TSE 2007 -006 Mirage Storage Bldg \Engineering \Mirage SW.xls 12:05 PM 6/12/2007 MIN ® ® ON UN I MN M ® U ME E ® MO MINI 11111 all ® 1 ® MI all N ® ® I ® ® ® I ® ® MN i S MI C: \TSE Engineering \Projects \TSE 2007 -006 Mirage Storage Bldg \Engineering \Mirage SW.xls CMU SHEAR WALL DESIGN Project: Mirage Storage Combined Axial and Bending Analysis LC No. 1 LC No. 2 LC No. 3 Wall No. Top Level b As /ft DL Floor LL Roof SL Pcap Mm P1 MI Unity (1) P2 M2 Unity (2) P3 M3 Unity (3) in in "2 plf pif plf pif ft-k plf ft-k plf ft-k plf ft -k 1 2nd 9.63 0.0775 2146 940 125 38898 831 3086 0 0.08 2944 190 0.30 1287 254 0.34 2 7.63 0.0775 1221 470 63 28367 2878 1691 0 0.06 1621 394 0.19 733 526 0.21 3 7.63 0.0775 1221 470 63 28367 9410 1691 0 0.06 1621 893 0.15 733 1190 0.15 4 7.63 0.0775 1221 470 63 28367 435 1691 0 0.06 1621 76 0.23 733 101 0.26 5 7.63 0.0775 1221 940 125 28367 435 2161 0 0.08 2020 74 0.24 733 98 0.25 6 7.63 0.0775 1220 470 .63 28367 3711 1690 0 0.06 1620 459 0.18 732 613 0.19 7 7.63 0,0775 1219 470 63 28367 2878 1689 0 0.06 1619 386 0.19 732 515 0.20 8 7.63 0.0775 1220 470 63 28367 1704 1690 0 0.06 1620 264 0.21 732 352 0.23 9 7.63 0.0775 1220 470 63 28367 613 . 1690 0 0.06 1620 109 0.23 732 145 0.26 10 2nd 9.63 0.0775 2411 1880 250 38898 2533 4291 0 0.11 4009 684 0.37 1447 912 0.40 V 11 9.63 0.0775 2414 1880 250 38898 268 4294 0 ' 0.11 4012 60 0.33 1449 80 0.33 12 7.63 0,0775 847 470 63 28367 1200 1317 0 0.05 1247 438 0.41 508 584 0.50 13 0 0.0775 14 7.63 0.0775 1894 1875 250 28367 210 3769 0 0.13 3487 59 0.40 1136 78 0.41 15 7.63 0.0775 1893 1875 250 28367 841 3768 0 0.13 3487 212 0.38 1136 283 0.38 16 7.63 0.0775 1894 940 125 28367 285 2834 0 0.10 2692 59 0.30 1136 78 0.31 17 7.63 0.0775 2229 1875 250 28367 210 4104 0 0.14 3822 59 0.41 1337 78 0.42 18 7.63 0.0775 2229 1875 250 28367 1141 4104 0 0.14 3822 377 0.47 1337 503 0.49 19 7.63 0.0775 1557 940 125 28367 285 2497 0 0.09 2356 59 0.29 934 78 0.31 20 7.63 0.0775 1221 470 63 28367 3285 1691 0 0.06 1621 905 0.33 733 1207 0.39 21 9.63 0.0775 1067 1880 250 38898 221 2947 0 0.08 2665 71 0.39 640 95 0.45 \v 4/4 U N C: \TSE Engineering \Projects \TSE 2007 -006 Mirage Storage Bldg \Engineering \Mirage SW.xls 12:05 PM 6/12/2007 I it ze _ - 5 -© ( Z ) c ) 1 4-61-p va (",°,7) 2tp-0 ft -IE -Dj ?JO ate / f Cn G l Z t r L� 1 S �'1 T Wu lrrd� ep z (Zt07 3 3(1) JZ G 5 p 1 r 213 r\r Z 9S ■ -- vv( : 2-Lo ( — o7 TA G c. 1 1 I A I afghan associates, inc. ENGINEERING W\ \ (Pi1f3'i! By t)7. I Date: s /74 d 7 Project No PS/21401 4875 SW Griffith Drive I Suite 300 I Beaverton, OR 1 97005 I 503.620.3030 tel 503.620.5539 fax www.aaieng.com Sheet: ? 2 CI of: I I T z Z i / I kr z. 1 cr 4-0 i ( ao I ....., cp-z_ a e c Pr niv,4--- z seritto 1 1 - 1 D'fz--ck 'r . )7-- T 7 c'' c9C 1 5 9 rht , . +4 (4-") I TeAlp e 11C2 i -Dtf > I P 2ote- 1:7,4p,4 I _ i 1;9 c ) I 3 . ) ( "I& I ' C- 3 4 1 E ( / . 0 6 20 ) z. I - (...-e I ) • c A , \ L9-50 (1,94,) coo' r.. .7...-- 1 5 'Z.o Lo 4 — I 'f94 - hre 2_,_) .,- (,,, 1 6, i,, 21 / I NO — 0 1 ... ....___—.... ,.., —___... 3 L , 5H ..r- f I ..—*------------ kr I I I .,',11,11 AA I afghan associates, inc. ) o ENGINEERING i q*ili By: 'M Date: ') 7 Project No • 4875 SW Griffith Drive I Suite 300 I Beaverton, OR I 97005 I 503.620.30301 tel 503.620.5539 I fax www.aaieng.com Sheet: ' 31 of: I 2 r- vvt. c i ►,(e , )1'-,4� c O, I (I ) f o , j 4 i '' '9 / / -7 , ,,.") 4 c , t,-( z" Al 7 ), 3i# I C7 17-.tC; 1 : z 2 1 I too (1, Co ) l ) `1v 1 0r" ; 31,zs I '-•' o,SA _ 24-7gno i I,i() O 1f. 5 rA,F 67174,0 A : r 29 7 - 0 ( 1, 5 69) ) 4 = 1 p-f 10- pi l5 .. x F / f,�fr) \ od �( (1 „to) / . " z Z ter, v s'‘'L tit.) w rt g *s l %-T SO- Nfle, w (- \rat g6). D I (_. x(o - - w) - 4- 1, 4- • A- 0, d zi3, Z irr V z o, o7-1 CL# ) ( z I , -o. plr IZ 0/ . , 75' ((, ) 1,3 1, c . ti,, .- 2, \.. \.. ) , ei' J Z 3,c9 v--) > 1 3 '7 J I \I ,� L 2, z e s - 1,31 c.9 .) de-- L--112- {G 1 S�(% i T-,,-) kao-t 7-t o, --, r0 L.-o LN 1� W �t f: 1 2,z� A-- v CG n ) (z) by - �(.57 Z v �' N ��fi3OJ G,ecP5 )04 1S III c. . c CL,o)C,75) rr 0 61 -t2 1 R„ z z,zo _1,1.-) L I Lo C coo )C,75) Fr - I I ' I of han associates, inc. PAW 1_ B : � Date: ! ENGINEERING p - IZ Project No.: 4875 SW Griffith Drive I Suite 300 I Beaverton, OR I 97005 I 503.620.3030 I fel 503.620.5539 I fax www.aaieng.com Sheet: Z' 2 0 of: II , I z7veuJ .,A.c c zoo ms Vu 31, (). - ) c4 - 4. I TA r. 4 - d - 1 = i '- i° 3 - /F - T -. ni"IS((OV)(0.to I V CS 5 I k) t .,z II5 vu )1 S / 69o l iJett -1r_ t� A 0 1 t ; A z .=--> - -> � Z 4 'F I C` 25, x - (),4V , = 1,1 tz-lp I I I I I I .-$;''''. AA I afghan associates, inc. ,M . k( By M) Date: G Z 2-/c7 '7 ENGINEERING 1 ©17 Project No.• 4875 SW Griffith Drive I Suite 300 I Beaverton, OR 1 97005 I 503.620.3030 I tel 503.620.5539I fax G www.aaieng.com Sheet: 2 t � of: 1 1 1 1 1 1 1 I II II 1 1 I I 1 1 I 1 1 I Pi - ) 5-e Pfe A- `577-07 I 6eip I 1 --IL I , 4 --t 0 -4- ) ( I) L ) t 4 -1 K 2, s r- 1 iOk.... 47 IIO i 4. ti (II ) 4- .2 3 0 c- t 1 w I ,, r- `21 0 C_ 1 , 4 ) - e - ( I he z- ., (6 le. i /0 ? 9 (':, '.„,,, :,-,, ) , 4-- .1 I I c ,.., 0, 9 5 , ' A 2- 2 ( ) I 0 ,11 I 0 6 1e I 10 I) 1 - 5 / -z 5 (70 (4 )(.14-) - k 4- q .1—q (, I 1 , 7" - ii_. ,...., ) (-1 ) 4- v I I I I 1 I afghan associates, inc. MitlAint By: v Date: I Z 2. 10 '7 ENGINEERING N. 4875 SW Grsffith Drivel State 300 Beaverton, OR 197005 Project No.: O10 7 I 503.620.30301 tel 503.620.55391 fax www.aaieng.com Sheet: "/ , 4 of: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Tor-12 Peki e„ d v c � 1 09/172 2 i ( + . 4 ) ()1 / 1 ) z ' to XL,S z 4,0 1 177 A . , - ^� r .a.l re G,�T 7•'U ;w� Gtftt.d) F z � ( ta 61 ll7 ) &,`)l/)Z ?f)5Z)z Z���Z•� l n - j 2-7 (4) 1 1 1 1 1 i 1 1 1 AA! afghan associates, inc. M,tfAt;'t By V v ' Date: (/ n ENGINEERING f�, Project No.: ' 1O - ) (0 1 4875 SW Griffith Drive Suite 300 Beaverton, OR 1 97005 503.620.3030 I tel 503.620.5539 I fax www.aaieng.com Sheet: 2 ` ' of: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I -7-1-t 9 le-Tele-7_ 0- P, r_ I "Thip, - ,_) - K -- . (ilz-fri L.,01 , 1 - k----------Hr- • ..\--:--- L... LAJ 40.4._ rc,e- 0,s e--„r- ('7-0 r 4 I Z. ) t'SAc7 4f ( z) Coo I) r i, 0 )7, 5 Z., 1 • z,:, - 7 f C/12 ) c -70 I L . r )2S (.1. ) ( ro ) c ZS 4 I lz- c•-• z - ( ) 0 ) I t(.J%' 0 r) -- 1 ) 5 rt l• e , .._ 3. 'b Go-v 1 , °I .r.._> 0 — c.7 (,-,) Y. 1 •---' c. I ----------,--- (3 ) 44- e I TYP. '--- '--)C '-^-)1 i- 1 (--- - 1 - c' v7 I I u- ) A 1 4--- 4.- r,r , \ rt 4,s,,,,, ( zXz,s )1 I V.,962 7- 7 r x c z,s 7( 7 .- i 9 5 0 S I P ' • -?, - z- ) . -0 &I \-(1) P = 4-q RA + 0 •f (441 i A / z 1 f? 5 F 07- p) -10 ( I S i e 1 s ' & e- ( 1 ct 40 -I )(')5 ( . 7 )/ zi5or " (1,sz) r ) , 4 . 4. r '7 a .- 0 K r- _. - I sa AA P.1) Date: 5 12270;7 I I .,,;,, afghan associates, inc. IM, k ZC t By ENGINEERING 40 e l i9 Project No.: No.: 4875 SW Griffith Drive I Suite 300 I Beaverton, OR I 97005 I 503.620.3030 I tel 503.620.5539 I fax www.aaieng.com Sheet: 7 , I of: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I II Q )) , II V 640 \ 1-6 1,, ia-u- ofo h'l' 11 e \.040 in -_z:p 2.1 co kj kVA, 4- ,c () , > >!22t) 9 -- 1 °i , 1Z-.'F- - r e --¢ C 5') z F I l, Ap >• \ z. (Z - ) (5') z 125 0 II g- 2.5p F C -') z i z s G c).-A-17 Fot 0 I i :3- ' I P 0 4 L • 31'1° 1 J ZoO r, '" 1 ‘.-. II 6 1,I . (7 0,5 ,1 -) z L. 4 -, s C zz') y 99 • --- 3 e' - "l z:, L z, 5 ') x I I --° 7J6' P a r (2,s' ) rt.g_ ) zsl -,z) (z, r) -c (.P Z3 1 1°1a∎ \,M z -/ (i ,� L t I v+� 2 �- dr \C 11- n re-� ,f ,� I I II , : :: ,' I afghan associates, inc. V 1 (�, �/ n � � J I ka :,. ^ B y : I " Date: Z- t ' ) ENGINEERING 1n1 4875 SW Griffith Drive I Suite 300 I Beaverton, OR 1 97005 Project No.: I 503.620.3030 i tel 503.620.5539 I fax 2 www.aaieng.com Sheet: - ' of: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 II I 1 P p C�,.._s l, f 1) c. . 9 4, fp-, (11,$) C ntl. p .cF. i . (t9 ,.....) L , 19 __.4 l t/ 'fit. -g1 c,. y!2 (Z) 6 ‘; 0) - 1 00 0 t II (, 1. fi Z S C Z) (: I O ) Z Sop 1 ZS ('ID') z 2 5 - (2 I - 5 O ¢' V ..7 ,-, %n r. "" .61 " 6119 /Z-4900 '' I c> - '• i fZ - '- V X I'- to 61(�� co �,Z - C,7- Oprc- 9 4-,HM ) 2 U u) '( -`k- c Vc3 (o 0. 2 1 --_> I, CO fi 2 )- - 0()(0) s 91a i _____ to ,1 'F-''F - I (10) 7 0 \-L, 1 vfg- : 1 zsCz) lo) :: 2E I -1= 2= (I 0 ) z , 2„50 d-7z1 el . , Z aw� Il ______ 7___e.2,:_—.4!--2.--f-4:4.._______0- Ft) Ii I ` r • �� I afghan associates, inc. V\ AA ' k(,1,Xt B " 7 Date: G — 12 21 `v "� Y� I v ENGINEERING �1 4875 SW Griffith Drive i Suite 300 i Beaverton, OR 1 97005 Project No.: i 503.620.3030 i tel 503.620.5539 I fax www.aaieng.com Sheet: � of: min mm min tam smi 'ism -- 10111 11_41. 1 'MN AEI 111111 INN BEI SIM 4INN Bag Mil P11111 I 6AP 15 k -P V ) 0 3 L T 1 e.F ( H ') c '3 dlo• o #'/ .,,)(Ar.A.... , \ 5- 4- (z)( Z's ) 24- ---, 4- ,?0 v __ d .°1 AL-r- �s 12s Cz) (a,. c ("2s I 'F-C- 2 (_ z ) x i't >) (NIf- I ui I n z- 1 61 ,°11 )74A,0 1 • US I !_ 3 X 1 '-- o riri rM f J P(. uukt,_ 71 1 Ir S ) z 6r iv 4- j (2 z') = / `l j S "3 ---�, � � 4- ?v C z) ( ) c tPfp -- (0 loop 1 C `(.') z. c L I t, Fa--'? 125 (&) ( / 1 Z 2c) f- /c 2s ( 6') 2017, I 1 i I • s . <;: > A A afghan associates, inc. �Q� By: MT Date: Z ENGINEERING 6210 -1 Z- 4875 SW Griffith Drive I Suite 3001 Beaverton, OR 1 97005 Project NO.: I 503.620.3030 1 tel 503.620.5539 1 fax www.aaieng.com Sheet: 6 of: NW NE V=4 2= I= WI 1111411 AM MN 1111111 MIR 11111111 1.11* MINI din II : 1 >) , ( 1 ) F-T-c-i ce3e.,>"1- I 6 ; •-if) , ... 1 (A.) ie.A..c3,-. a' I r ( - 4- 1; , - 4Pop-s,- ;,.. 2,:co. j(z-) r 2, 4.- 1 - 1 10 p 1 r III ifrit c cr._ r--- el. Zaar, il c?.s0,L)-4.- a a_ 16,_s k m•(' „- _ I . (1(.4_ c I --) A---1 -, • . kL) c- 1, 4- I. CP z ■ 7 -)-- Z 50-'''' 0 - )0 Z._) ' 0# — I 2 , .S:5 ( 5) '") I cr: ( 4 , ,c (..0 —0 ) 1 g 61-6"1- (2 , 5--& t\i' 4 v r,5z-,cit _=> ___-- FT- ... . -7 v I 1 AA 0 afghan associates, inc. t.AA,(12.411/4-6-iit. By: ?" 7 Date: ENGINEERING Project No • N)1 Z. 1 4875 SW I 0 I Ste t u i 300 503.620.5539 fox f OR I 97005 3 C www aaieng com Sheet: , of: OM MIN OP "MIN 11011 JIM 011111 MR AIM AMII MIMI MI Um II SHEAR WALL FOOTING DESIGN Project: Mirage Storage Wall: Grid H, 1 -3 Concrete Data a b Concrete Strength (fc): 3000 psi Xftg Lw Reinf. Yield Strength (fy): 60 ksi < > < >I i I Wall Data i Wall Length (1w): 31.3 ft B Wall Height (hw): 34.6 ft i v Footing Data Width i Ftg B : 2.33 ft < > () L Ftg Length (L): 33.33 ft P2 Ftg Thickness (T): 1 ft P a Lw b I Xftg= 1 ft < > Fallow = 2 ksf Lxa < < Lxb > Service EQ Lateral Loads and Moments l' STORY Vseq H 0.75xMs 0.75xMs (Use 75% of EQ OT @ BASE @ Lvi X per ASCE 7, 9.5.5.6) (K) (FT) (FT -K) (FT -K) I J 0 0 0 Roof 2.8 38 80 0 3rd 4.9 26 96 25 2nd 22.5 16 270 83 Base 0 0 0 445 (Shear heights measured from top of footing.) Total 30.2 445 Service Wind Lateral Loads and Moments STORY Vsw H Ms @ BASE Ms @ Lvl X (K) (FT) (FT -K) (FT -K) Roof 0 0 0 4th 0 0 0 0 3rd 0 0 0 0 2nd 0 0 0 • 0 Base 0 0 0 0 Total 0 0 Total Wall Axial Dead Load at Base ELEMENT LOAD L P Lxa Lxb Mxa Mxb CWa CWb (KLF) (K) (FT) (FT) (FT -K) (FT -K) (FT) (FT) CMU Wall 1.18 31.3 36.9 15.65 15.65 578.0 578.0 Roof DL 0.035 31.3 1.1 15.65 15.65 17.1 17.1 4th Fir DL 0 0 0.0 0 31.3 0.0 0.0 3rd Fir DL 0.24 31.3 7.5 15.65 15.65 117.6 117.6 2nd Fir DL 0.24 31.3 7.5 15.65 15.65 117.6 117.6 Total 1.695 53.1 kip 830.3 830.3 15.65 15.65 31.30 I I C: \TSE Engineering \Projects \TSE 2007 -006 Mirage Storage Bldg \Engineering\ 1 / 4 SW Ftg Design.xls 3:22 PM 6/19/2007 I IP. IMP INN MIN 411111 "SRI IMO INN WNW MEI 1111111 JINN NIP MINI imp ant imp aim Imo I . SHEAR WALL FOOTING DESIGN Project: Mirage Storage Wall: Grid H, 1 -3 Total Wall Axial Live Load at Base I ELEMENT LOAD L P Lxa Lxb Mxa Mxb CWa CWb (KLF) (K) (FT) (FT) (FT -K) (FT -K) (FT) (FT) ` Roof SL 0 0 0.0 0 31.3 0.0 0.0 Omit Snow Load if 30 PSF or less II 4th Fir LL • 0 0 0.0 0 31.3 0.0 0.0 3rd Fir LL 0.625 30 18.8 15.65 15.65 293.4 293.4 2nd Fir LL 0.625 • 30 18.8 15.65 15.65 293.4 293.4 Total 1.25 37.5 kip 586.9 586.9 15.65 15.65 31.30 Additional Loads on Footing 1 ELEMENT LOAD L P Lxpl Lxp2 Mxpl Mxp2 CWp1 CWp2 (KLF) (K) (FT) (FT) (FT -K) (FT -K) (Fr) (FT) Soil 0 0 0 16.67 16.66 0.0 0.0 I Stem Wall 0.37 31.3 11.581 16.67 16.66 193.1 192.9 Slab 0.19 31.3 5.947 16.67 16.66 99.1 99.1 Total 17.5 292.2 292.0 16.67 16.66 33.33 III Footing Bearing Pressure A) Based on EQ Loads Service EQ OT Moment Ms = 476 FT -K (Moment at bottom of footing) Footing Moment of Inertia (I) = 7189 FTA4 I Load Case 1: DL +0.75LL +0,75SL +EQ Total Footing Axial Load at Base ELEMENT LOAD L P Lxpl Lxp2 Mxpl Mxp2 CWp1 CWp2 (KLF) (K) (Fr) (FT) (FT -K) (FT -K) (FT) (FT) Footing 0.35 33.33 11.6 16.665 16.665 194.1 194.1 Addl Ftg Ld 17.5 1 17.5 16.67 16.66 292.2 292.0 DL 53.1 1 53.1 16.65 16.68 883.3 884.9 • LL +SL 37.5 0.75 28.1 16.65 16.68 468.3 469.1 Total 110.4 1837.9 1840.2 16.65 16.68 33.33 I Pnet = 110.4 K U2 = 16.67 CWa - U2 = -0.01 FT Ftg CL Max Pressure at Point P1: M 1 tot = 476.7 FT -K e_1 = 4.32 FT Lf1 = 37.04 FT j P1 Max Bearing Pressure at Point P1: F1 = I 2.56 KSF I i Fallow = 2.66 KSF -.-- Max Pressure at Point P2: F 4 K e �I Pnet M2tot = 474.4 FT -K i WWW e_2 = 4.30 FT f2 = 37.10 FT Max Bearing Pressure at Point P2: F2 = I 2.55 KSF I Fallow = 2.66 KSF ; 1 C: \TSE Engineering \Proje \TSE 2007 -006 Mirage Storage Bldg \Engineering\ 2 / 4 SW Ftg Design.xls 3:22 PM 6/19/2007 I � ,1 I II SHEAR WALL FOOTING DESIGN Project: Mirage Storage Wall: Grid H, 1 -3 Load Case 2: 0.6DL - EQ I Total Footing Axial Load at Base ELEMENT LOAD L P Lxpl Lxp2 Mxpl Mxp2 CWp1 CWp2 (KLF) (K) (FT) (FT) (FT -K) (FT -K) (FT) (FT) I Footing 0.35 33.33 11.6 16.665 16.665 194.1 194.1 Addl Ftg Ld 17.5 1 17.5 16.67 16.66 292.2 292.0 DL 53.1 1 53.1 16.65 16.68 883.3 884.9 Total 82.2 1369.7 1371.1 16.66 16.67 33.33 Pnet = 49.3 K I U2 = 16.67 CWa - U2 = -0.01 FT Max Pressure at Point P1: M1tot = 476.0 FT -K e_1 = 9.65 FT Lfl = 21.05 FT 1 Max Bearing Pressure at Point P1: F1 = Fallow = ( 2.01 KSF I 2.66 KSF Max Pressure at Point P2: M2tot = 475.1 FT -K e_2 = 9.63 FT Lf2 = 21.11 FT 1 Max Bearing Pressure at Point P2: F2 = t 2.01 KSF Fallow = 2.66 KSF I' II 1 II 1 I • I C: \TSE Engineering \Projects \TSE 2007 -006 Mirage Storage Bldg \Engineering\ 3 / 4 I SW Ftg Design.xls 3:22 PM 6/19/2007 I SHEAR WALL FOOTING DESIGN Project: Mirage Storage Wall: Grid H,1 -3 Footing Ultimate Design I Downward Pressure Weq = 2.56 Wueq = 3.58 Wueq /11 = 5.97 . Ww = 1.90 Wuw = 3.03 Wuw /q = 4.04 Wu = 3.58 KSF <Dv = 0.6 I EQ Controls for Shear Upward Pressure Wdl = 0.6758926 KSF Wudl = 0.81107111 KSF Footing Reinforcing Aslb = 0:13 in ^2 /FT Longitudinal Bottom Reinf. Astb = 0.13 inA2 /FT Transverse Bottom Reinf. II Aslt = 0.2 inA2/FT Longitudinal Top Reinf. Astt = 0.2 inA2 /FT Transverse Top Reinf. Asmin = 0.184 in ^2 /FT I Longitundinal - Bottom dlb = 8.5 in Mup1 = 1.79 Mup2 = 1.90 I Mulb = 1.90 FT -K/FT Vup1 = 1.04 Vup2 = 1.15 Vulb = 1.15 K/FT Mtn = 6.70 K/FT Ftng Thickness OK 1 �Mn = 4.90 FT - K/FT ( Long B ot!Reinf OK 1 I Transverse - Bottom dtb = 7.75 in Mutb = 2.43 FT -K/FT I Vutb = 1.86 K/FT Q�Vn = 6.11 K/FT F.tng Thickness OK.' �Mn = 4.46 FT - K/FT Trans Bot Reint OK � Longitundinal - Top dlb = 9.625 in Mup1 = 0.41 Mup2 = 0.43 Mulb = 0.43 FT -K/FT Vup1 = 0.16 Vup2 = 0.18 Vulb = 0.18 K/FT cDVn = 7.59 K/FT Ftng Thickness OK cDMn = 8.49 FT -K/FT ( Long Top Relnf OK' Transverse - Top dtb = 9.25 in Mutb = 0.55 FT -K/FT Vutb = 0.32 K/FT I mVn = 7.30 K/FT Ftng T h i ckness OK �Mn = 8.15 FT -K/FT Trans Top Reinf O I C: \TSE Engineering \Projects \TSE 2007 -006 Mirage Storage Bldg \Engineering\ 4 / 4 SW Ftg Design.xls 3:22 PM 6/19/2007 I � I I . SHEAR WALL FOOTING DESIGN Project: Mirage Storage Wall: Grid 0.5A, 11 -12 Concrete Data a b Concrete Strength (fc): 3000 psi Xftg Lw Reinf. Yield Strength (fy): 60 ksi • i Wail Data I A I • Wall Length (1w): 20 ft B Wall Height (hw): 34.6 ft 1 v Footing Data 1 i Ftg Width (B): 2.25 ft Ftg Length (L): 22 ft L Ftg Thickness (T): 1 ft P1 a P2 Xftg = 1 ft Lw b . II Fallow = 2 ksf Lx3 Lxb I Service EQ Lateral Loads and Moments STORY Vseq H 0.75xMs 0.75xMs (Use 75% of EQ OT III @ BASE @ Lvl X per ASCE 7, 9.5.5.6) (K) . (FT) (FT - K) (FT - K) I I 0 0 0 I Roof 1.5 . 34 38 0 3rd 3 23 52 12 2nd 7.6 • 13 74 46 Base 0 0 . 0 164 (Shear heights measured from top of footing.) i I Total 12.1 164 Service Wind Lateral Loads and Moments STORY Vsw H Ms @ BASE Ms @ Lvl X (K) (FT) (FT -K) (FT -K) I Roof 0 0 0 4th 0 0 0 0 3rd 0 0 0 0 2nd 0 0 0 0 Base 0 0 0 0 (Shear heights measured from top of footing.) i I Total 0 0 Total Wall Axial Dead Load at Base ELEMENT LOAD L P Lxa Lxb Mxa Mxb CWa CWb (KLF) (K) (FT) (FT) (Fr-K) (FT -K) (Fr) (FT) 1 CMU Wall 0.985 20 19.7 10 10 197.0 197.0 Roof DL 0.018 20 0.4 10 10 3.6 3.6 4th Fir DL 0 0 0.0 0 20 0.0 0.0 3rd Fir DL 0.12 20 2.4 10 10 24.0 24.0 I . 2nd Fir DL 0.12 20 2.4 10 10 24.0 24.0 Total 1.243 24.9 kip 248.6 248.6 10.00 10.00 20.00 I I C: \TSE Engineering \Projects \TSE 2007 -006 Mirage Storage Bldg \Engineering\ • 1 / 4 SW Ftg Design.xls 3:23 PM 6/19/2007 I SHEAR WALL FOOTING DESIGN I Project: Mirage Storage Wall: Grid 0.5A, 11 -12 Total Wall Axial Live Load at Base I ELEMENT LOAD L P Lxa Lxb Mxa Mxb CWa CWb (KLF) (K) (FT) (FT) (FT -K) (FT -K) (FT) (FT) I Roof SL 0 0 0.0 0 20 0.0 0.0 Omit Snow Load if 30 PSF or less 4th Fir LL 0 0 0.0 0 20 0.0 0.0 3rd Fir LL 0.313 20 6.3 10 10 62.6 62.6 2nd Fir LL 0.313 20 6.3 10 10 62.6 62.6 Total 0.63 12.5 kip 125.2 125.2 10.00 10.00 20.00 I Additional Loads on Footing ELEMENT LOAD L P Lxpl Lxp2 Mxpl Mxp2 CWp1 CWp2 (KLF) (K) (FT) (FT) (FT -K) (FT -K) (FT) (FT) Soil 0.055 20 1.1 11 11 12.1 12.1 I Stem Wall 0.194 20 3.88 11 11 42.7 42.7 Slab 0.2 20 4 11 11 44.0 44.0 Total 9.0 98.8 98.8 11.00 11.00 22.00 .11 Footing Bearing Pressure A) Based on EQ Loads I Service EQ OT Moment Ms = 176 FT -K (Moment at bottom of footing) Footing Moment of Inertia (I) = 1997 FTA4 I Load Case 1: DL +0.75LL +0.75SL +EQ Total Footing Axial Load at Base ELEMENT LOAD L P Lxpl Lxp2 Mxpl Mxp2 CWp1 CWp2 (KLF) (K) (FT) (FT) (FT -K) (FT -K) (FT) (FT) Footing 0.34 22 7.4 11 11 81.7 81.7 Addl Ftg Ld 9.0 1 9.0 11.00 11.00 98.8 98.8 DL 24.9 1 24.9 11.00 11.00 273.5 273.5 LL +SL 12.5 0.75 9.4 11.00 11.00 103.3 103.3 Total 50.7 557.2 557.2 11.00 11.00 22.00 I Pnet = 50.7 K U2 = 11.00 CWa -L/2= 0.00 FT Ft? CL I Max Pressure at Point P1: M1tot = 176.2 FT -K e_1 = 3.48 FT T1 = 22.56 FT P1 i Max Bearing Pressure at Point P1: Fl = ( 2.00 KSF I i Fallow = 2.66 KSF F Max Pressure at Point P2: i M2tot = 176.2 FT -K iF --�I_ Pnet e2 = 3.48 FT Lf `0 � I Lf2 = 22.56 FT Max Bearing Pressure at Point P2: F2 = I 2.00 KSF I . Fallow = 2.66 KSF I C:\TSE Engineering \Projects\TSE 2007 -006 Mirage Storage Bldg \Engineering\ 2 / 4 SW Ftg Design.xls 3:23 PM 6/19/2007 I SHEAR WALL FOOTING DESIGN Project: Mirage Storage Wall: Grid 0.5A, 11 -12 Load Case 2: 0.6DL - EQ I Total Footing Axial Load at Base ELEMENT LOAD L P Lxpl Lxp2 Mxpl Mxp2 CWp1 CWp2 (KLF) (K) (FT) (FT) (FT -K) (FT -K) (FT) (FT) Footing 0.34 22 7.4 11 11 81.7 81.7 Addl Ftg Ld 9.0 1 9.0 11.00 11.00 98.8 98.8 DL 24.9 1 24.9 11.00 11.00 273.5 273.5 I Total 41.3 453.9 453.9 11.00 11.00 22.00 Pnet = 24.8 K L/2 = 11.00 CWa - U2 = 0.00 FT Max Pressure at Point P1: I M 1 tot = 176.2 FT -K e_1 = 7.12 FT Lf1 = 11.65 FT . I Max Bearing Pressure at Point P1: Fl = Fallow = ( 1.89 KSF I 2.66 KSF Max Pressure at Point P2: I M2tot = 176.2 FT -K e 2= 7.12 FT Lf2 = 11.65 FT Max Bearing Pressure at Point P2: F2 = I 1.89 KSF I Fallow = 2.66 KSF I 1 I I I I 1 I C: \TSE Engineering \Projects \TSE 2007 -006 Mirage Storage Bldg \Engineering\ 3 / 4 I SW Ftg Design.xls 3:23 PM 6/19/2007 3 -1 I SHEAR WALL FOOTING DESIGN I Project: Mirage Storage Wall: Grid 0.5A, 11 -12 Footing Ultimate Design Downward Pressure Weq = 2.00 Wueq = 2.79 Wueq/0 = 4.66 I Ww = 1.36 Wuw = 2.18 Wuw/0 = 2.91 Wu = 2.79 KSF ctv = 0.6 EQ Controls for Shear Upward Pressure Wdl = 0.5581818 KSF Wudl = 0.66981818 KSF Footing Reinforcing Aslb = 0.13 inA2 /FT Longitudinal Bottom Reinf. Astb = 0.13 inA2 /FT Transverse Bottom Reinf. I Ash = 0.2 inA2/FT Longitudinal Top Reinf. Ash = 0.2 inA2 /FT Transverse Top Reinf. Asmin = 0.184 inA2 /FT I Longitundinal - Bottom dlb = 8.5 in I Mup1 = 1.40 Mup2 = 1.40 Mulb = 1.40 FT -K/FT Vup1 = 0.81 Vup2 = 0.81 . Vulb = 0.81 K/FT 0Vn = 6.70 K/FT : OK ; mMn = 4.90 FT - K/FT ( Long BoGReinfOK I Transverse - Bottom dtb = 7.75 in Mutb = 1.77 FT -K/FT I Vutb = 1.34 K/FT mVn = 6.11 K/FT Etng Thickness OK;. mMn = 4.46 FT -K/FT Trans Reinf, I Longitundinal - Top dlb = 9.625 in . Mup1 = 0.33 Mup2 = 0.33 I Mulb = 0.33 FT -K/FT Vup1 = 0.13 Vup2 = 0.13 Vulb = 0.13 K/FT (DVn = 7.59 K/FT Ft)g Thickness OK' DMn = 8.49 FT -K/FT ( lLong°T O p Relnf;O Transverse - Top dtb = 9.25 in Mutb = 0.42 FT -K/FT Vutb = 0.24 K/FT II mVn = 7.30 K/FT Ftng Thickness OK mMn = 8.15 FT -K/FT ( Trans,Top Reinf Oic II C: \TSE Engineering \Projects \TSE 2007 -006 Mirage Storage Bldg \Engineering\ 4 / 4 SW Ftg Design.xls 3:23 PM 6/19/2007 I SHEAR WALL FOOTING DESIGN I Project: Mirage Storage Wall: Grid 3, F -H • Concrete Data a b Concrete Strength (fc): 3000 psi Xftg Lw > I Reinf. Yield Strength (fy): 60 ksi i Wall Data I A II I Wall Length (1w): 72 ft B Wall Height (hw): 34.6 ft i V I i Footing Data i Ftg Width (B): 3 ft < a Lw Ftg Length (L): 74 ft < L I Ftg Thickness (T): 1.25 ft P1 E—> j< Lxb P2 Xftg = 1 ft ,, Fallow = 2 ksf I Service EQ Lateral Loads and Moments I STORY Vseq H 0.75xMs 0.75xMs (Use 75% of EQ A, © BASE @ Lvl X per ASCE 7, 9.5.5.6) (K) (Fr) (FT -K) (FT -K) I 0 0 0 Roof 10 40 300 0 3rd 14 26 273 105 2nd 66 16 792 285 Base 0 0 0 1365 (Shear heights measured from top of footing.) i I Total 90 1365 Service Wind Lateral Loads and Moments STORY Vsw H Ms @ BASE Ms @ Lvl X (K) (FT) (FT - K) (FT -K) Roof 0 0 0 4th 0 0 0 0 3rd 0 0 0 0 2nd 0 0 0 0 Base 0 0 0 0 (Shear heights measured from top of footing.) i I Total 0 0 i Total Wall Axial Dead Load at Base ELEMENT LOAD L P Lxa Lxb Mxa Mxb CWa CWb (KLF) (K) (Fr) (FT) (FT -K) (Fr-K) (FT) (Fr) CMU Wall 1.226 72 88.3 36 36 3177.8 3177.8 Roof DL 0.07 • 72 5.0 36 36 181.4 181.4 Perp. Wall • 0 0 0.0 0 72 0.0 0.0 3rd FIr DL 0.5 72 36.0 36 36 1296.0 1296.0 2nd Fir DL 0.5 72 36.0 36 36 1296.0 1296.0 Total 2.296 165.3 kip 5951.2 5951.2 36.00 36.00 72.00 i . C: \TSE Engineering \Projects \TSE 2007 -006 Mirage Storage Bldg \Engineering\ 1 / 4 • III SW Ftg Design.xls 6:29 PM 6/19/2007 I SHEAR WALL FOOTING DESIGN Project: Mirage Storage Wall: Grid 3, F -H Total Wall Axial Live Load at Base ELEMENT LOAD L P Lxa Lxb Mxa Mxb CWa CWb (KLF) (K) (FT) (FT) (FT -K) (FT -K) (FT) (FT) I Roof SL 0 0 0.0 0 72 0.0 0.0 Omit Snow Load if 30 PSF or less 4th FIr LL 0 0 0.0 0 72 0.0 0.0 3rd FIr LL 1.25 72 90.0 36 36 3240.0 3240.0 2nd Fir LL 1.25 72 90.0 36 36 3240.0 3240.0 I Total 2.50 180.0 kip 6480.0 6480.0 36.00 36.00 72.00 Additional Loads on Footing ELEMENT LOAD L P Lxp1 Lxp2 Mxp1 Mxp2 CWp1 CWp2 (KLF) (K) (FT) (FT) (FT-K) (FT -K) (FT) (FT) I Soil 0.07 72 5.04 37 37 186.5 186.5 Stem Wall 0.48 72 34.56 37 37 1278.7 1278.7 Slab 0.19 72 13.68 37 37 506.2 506.2 Total 53.3 1971.4 1971.4 37.00 37.00 74.00 I Footing Bearing Pressure A) Based on EQ Loads i Service EQ OT Moment Ms = 1478 FT -K (Moment at bottom of footing) Footing Moment of Inertia (I) = 101306 FTA4 Load Case 1: DL +0.75LL +0.75SL +EQ I Total Footing Axial Load at Base ELEMENT LOAD L P Lxp1 Lxp2 Mxp1 Mxp2 CWp1 CWp2 I (KLF) (K) (FT) (FT) (FT -K) (FT -K) (FT) (FT) Footing 0.56 74 41.6 37 37 1540.1 1540.1 Addl Ftg Ld 53.3 1 53.3 37.00 37.00 1971.4 1971.4 DL 165.3 1 165.3 37.00 37.00 6116.5 6116.5 I LL +SL 180.0 0.75 135.0 37.00 37.00 4995.0 4995.0 Total 395.2 14623.0 14623.0 37.00 37.00 74.00 Pnet = 395.2 K U2 = 37.00 CWa -U2= 0.00 FT I Ft? CL Max Pressure at Point P1: M1tot = 1477.5 FT -K e = 3.74 FT I Lf1 = 99.78 FT P1 Max Bearing Pressure at Point P1: Fl = ( 2.64 KSF 1 Fallow = 2.66 KSF i Max Pressure at Point P2: F e4 M2tot = 1477.5 FT -K 1< Pnet i e_2 = 3.74 FT Lf Il Lf2 = 99.78 FT Max Bearing Pressure at Point P2: F2 = I 2.64 KSF I Fallow = 2.66 KSF I C: \TSE Engineering \Projects\TSE 2007 -006 Mirage Storage Bldg \Engineering\ 2 / 4 I SW Ftg Design.xls 6:29 PM 6/19/2007 1 1 1 1 1 1 1 1 1 1 1 1 1 1 II II I SHEAR WALL FOOTING DESIGN Project: Mirage Storage Wall: Grid 3, F -H Load Case 2: 0.6DL - EQ I Total Footing Axial Load at Base ELEMENT LOAD L P Lxp1 Lxp2 Mxpl Mxp2 CWp1 CWp2 (KLF) (K) (FT) (FT) (FT -K) (FT -K) (FT) (FT) I Footing 0.56 74 41.6 37 37 1540.1 1540.1 Addl Ftg Ld 53.3 1 53.3 37.00 37.00 1971.4 1971.4 DL 165.3 1 165.3 37.00 37.00 6116.5 6116.5 I Total 260.2 9628.0 9628.0 37.00 37.00 74.00 Pnet = 156.1 K U2 = 37.00 CWa - U2 = 0.00 FT Max Pressure at Point P1: I M 1 to t = 1477.5 FT -K e_1 = 9.46 FT Lf1 = 82.61 FT II Max Bearing Pressure at Point P1: Fl = Fallow = ( 1.26 KSF 2.66 KSF Max Pressure at Point P2: M2tot = 1477.5 FT -K e_2 = 9.46 FT Lf2 = 82.61 FT Max Bearing Pressure at Point P2: F2 = ( 1.26 KSF I Fallow = 2.66 KSF I I I ii I II • II C: \TSE Engineering \Projects \TSE 2007 -006 Mirage Storage Bldg \Engineering\ 3 / 4 SW Ftg Design.xls 6:29 PM 6/19/2007 II 3•Ite 1 1 1 f 1 I 1 1 1 1 1 1 t 1 1 1 1 II 1 I SHEAR WALL FOOTING DESIGN Project: Mirage Storage Wall: Grid 3, F -H I Footing Ultimate Design Downward Pressure Weq = 2.64 Wueq = 3.70 Wueq /D = 6.16 Ww = 2.37 Wuw = 3.80 Wuw /(1) = 5.06 Wu = 3.80 KSF my = 0.6 EQ Controls for Shear Upward Pressure Wdl = 0.9075 KSF Wudl = 1.089 KSF I Footing Reinforcing Aslb = 0.31 inA2 /FT Longitudinal Bottom Reinf. Astb = 0.13 inA2 /FT Transverse Bottom Reinf. I Aslt = 0.2 inA2 /FT Longitudinal Top Reinf. Astt = 0.13 inA2 /FT Transverse Top Reinf. Asmin = 0.248 inA2 /FT I Lonqitundinal - Bottom dlb = 11.5 in I Mup1 = 1.90 Mup2 = 1.90 Mulb = 1.90 FT -K/FT Vup1 = 0.16 Vup2 = 0.16 Vulb = 0.16 K/FT ri)Vn = 9.07 K/FT F tng Thickness OK (I)Mn = 15.62 FT -K/FT (Long BotReinf'OK 1 Transverse - Bottom dtb = 10.75 in Mutb = 4.27 FT -K/FT I Vutb = 2.29 K/FT mVn = 8.48 K/FT Ftng Th ickness lO K (1)Mn = 6.21 FT -K/FT T ran s Bot ReinMK : I Lonqitundinal - Top dlb = 12.625 in Mup1 = 0.54 Mup2 = 0.54 I Mulb = 0.54 FT -K/FT Vup1 = -0.06 Vup2 = -0.06 Vulb = -0.06 K/FT (Vn = 9.96 K/FT Ftng •Thickness OK (1)Mn = 11.19 FT - K/FT ( Long Topltelnf-'OK Transverse - Top I dtb = 12.25 in Mutb = 1.23 FT -K/FT Vutb = 0.52 K/FT I 4)Vn = 9.66 K/FT Ftn 'Ili i ck ne ss OK . �Mn = 7.09 FT -K/FT ( Trans�To p isinf.O 1 C: \TSE Engineering \Projects \TSE 2007 -006 Mirage Storage Bldg \Engineering\ 4 / 4 SW Ftg Design.xls 6:29 PM 6/19/2007 I � )I7 I SHEAR WALL FOOTING DESIGN I Project: Mirage Storage Wall: Grid 6, B.2 -C.2 Concrete Data I a b Concrete Strength (fc): 3000 psi Xftg Lw Reinf. Yield Strength (fy): 60 ksi < >I< i I Wall Data i Wall Length (1w): 20 ft B Wall Height (hw): 34.6 ft i v I Footing Data i Ftg Width (B): 3 ft L Ftg Length (L): 24 ft P2 I Ftg Thickness (T): 1.17 ft P1 a Xftg = 2 ft Lw Fallow = 2 ksf / 1.33 Lxb Service EQ Lateral Loads and Moments I STORY Vseq H 0.75xMs 0.75xMs (Use 75% of EQ OT @ BASE @ Lvl X per ASCE 7, 9.5.5.6) (K) (FT) (FT -K) (FT -K) I 0 0 0 Roof 4.8 33.5 121 0 3rd 1.6 21.5 26 43 2nd 16.1 11.5 139 91 Base 0 0 0 285 (Shear heights measured from top of footing.) i ( Total 22.5 285 Service Wind Lateral Loads and Moments I STORY Vsw H Ms @ BASE Ms @ Lvl X (K) (FT) (FT -K) (FT -K) Roof 0 0 0 I 4th 0 0 0 0 3rd 0 0 0 0 2nd 0 0 0 0 Base 0 0 0 0 (Shear heights measured from top of footing.) I I Total 0 0 I Total Wall Axial Dead Load at Base ELEMENT LOAD L P Lxa Lxb Mxa Mxb CWa CWb (KLF) (K) (FT) (FT) (FT -K) (FT -K) (FT) (FT) I CMU Wall 0.941 . 20 18.8 10 10 188.2 188.2 Roof DL 0.07 20 1.4 10 10 14.0 14.0 Perp. Wall 0 0 0.0 0 20 0.0 0.0 3rd Fir DL 0.48 20 9.6 10 10 96.0 96.0 I 2nd Fir DL 0.48 20 9.6 10 10 96.0 96.0 Total 1.971 39.4 kip 394.2 394.2 10.00 10.00 20.00 I 1 C: \TSE Engineering \Projects \TSE 2007 -006 Mirage Storage Bldg \Engineering\ 1 / 4 SW Fig Design.xls 3:24 PM 6/19/2007 I •ll. I SHEAR WALL FOOTING DESIGN Project: Mirage Storage Wall: Grid 6, B.2 -C.2 Total Wall Axial Live Load at Base Il ELEMENT LOAD L P Lxa Lxb Mxa Mxb CWa CWb (KLF) (K) (FT) (FT) (FT -K) (FT -K) (FT) (FT) Roof SL 0 0 0.0 0 20 Omit Snow Load if 30 PSF or less 4th Fir LL 0 0 0.0 0 20 0.0 0.0 0.0 3rd Fir LL 1.25 20 25.0 10 10 250.0 0.0 250.0 2nd FIr LL 1.25 20 25.0 10 10 250.0 250.0 I Total 2.50 50.0 kip 500.0 500.0 10.00 10.00 20.00 Additional Loads on Footing ELEMENT LOAD L P Lxpl Lxp2 Mxpl Mxp2 CWp1 CWp2 (KLF) (K) (FT) (FT) (FT -K) (FT -K) (FT) (FT) I Soil 0 0 0 0 24 0.0 0.0 Stem Wall 0 0 0 0 24 0.0 0.0 Slab 0.38 24 9.12 12 12 109.4 109.4 Total 9.1 109.4 109.4 12.00 12.00 24.00 I Footing Bearing Pressure Based on EQ Loads I A) Service EQ OT Moment Ms = 312 FT -K (Moment at bottom of footing) Footing Moment of Inertia (I) = 3456 FTA4 I Load Case 1: DL +0.75LL +0.75SL +EQ Total Footing Axial Load at Base ELEMENT LOAD L P Lxpl Lxp2 Mxpl Mxp2 CWp1 CWp2 (KLF) (K) (FT) (FT) (FT -K) (FT -K) (FT) (FT) Footing 0.53 24 12.6 12 12 151.6 151.6 Addl Ftg Ld 9.1 1 9.1 12.00 12.00 109.4 109.4 DL 39.4 1 39.4 12.00 12.00 473.0 473.0 I LL +SL 50.0 0.75 37.5 12,00 12.00 450.0 450.0 Total 98.7 1184.1 1184.1 12.00 12.00 24.00 Pnet = 98.7 K U2 = 12.00 CWa - L/2 = 0.00 FT I Max Pressure at Point P1: Ft? CL M1tot = 311.6 FT -K e_1 = 3.16 FT I Lfl = 26.53 FT P1 Max Bearing Pressure at Point P1: Fl = I 2.48 KSF I I Fallow = 2.66 KSF F Max Pressure at Point P2: 4 M2tot = 311.6 FT -K I< a Pnet e_2 = 3.16 FT I Lf2 = 26.53 FT Max Bearing Pressure at Point P2: F2 = I 2.48 KSF I Fallow = 2.66 KSF I C: \TSE Engineering\Projects \TSE 2007 -006 Mirage Storage Bidg \Engineering\ 2 / 4 SW Ftg Design.xls 3:24 PM 6/19/2007 I SHEAR WALL FOOTING DESIGN I Project: Mirage Storage Wall: Grid 6, B.2 -C.2 Load Case 2: 0.6DL - EQ I Total Footing Axial Load at Base ELEMENT LOAD L P Lxpl Lxp2 Mxpl Mxp2 CWp1 CWp2 (KLF) (K) (FT) (FT) (FT -K) (FT -K) (FT) (FT) I Footing 0.53 24 12.6 12 12 151.6 151.6 Addl Ftg Ld 9.1 1 9.1 12.00 12.00 109.4 109.4 DL 39.4 1 39.4 12.00 12.00 473.0 473.0 I Total 61.2 734.1 734.1 12.00 12.00 24.00 Pnet = 36.7 K I L/2 = 12.00 CWa - U2 = 0.00 FT Max Pressure at Point P1: I M 1 tot = 311.6 FT -K e_1 = 8.49 FT 1_11 = 10.53 FT I Max Bearing Pressure at Point P1: Fl = I 2.32 KSF I Fallow = 2.66 KSF Max Pressure at Point P2: I M2tot = 311.6 FT -K e_2 = 8.49 FT Lf2 = 10.53 FT I Max Bearing Pressure at Point P2: F2 = KSF Fallow = 2.66 KSF I I I I I I I I C: \TSE Engineering \Projects \TSE 2007 -006 Mirage Storage Bldg\Engineering\ 3 / 4 SW Ftg Design.xls 3:24 PM 6/19/2007 I L LD i 1 e i 1 i I SHEAR WALL FOOTING DESIGN I Project: Mirage Storage Wall: Grid 6, B.2 -C.2 Footing Ultimate Design I Downward Pressure Weq = 2.48 Wueq = 3.47 Wueq /m = 5.79 I Ww = 1.83 Wuw = 2.92 Wuw /cD = 3.90 Wu = 3.47 KSF my = 0.6 I EQ Controls for Shear Upward Pressure Wdl = 0.5555 KSF Wudl = 0.6666 KSF i Footing Reinforcing Aslb = 0.2 inA2 /FT Longitudinal Bottom Reinf. Astb = 0.13 in ^2 /FT Transverse Bottom Reinf. I Aslt = 0.2 in ^2 /FT Longitudinal Top Reinf. Astt = 0.13 inA2 /FT Transverse Top Reinf. Asmin = 0.228 in ^2 /FT I Longitundinal - Bottom dlb = 10.54 in I Mup1 = 6.94 Mup2 = 6.94 Mulb = 6.94 FT -K/FT Vup1 = 3.89 Vup2 = 3.89 I Vulb = 3.89 K/FT cDVn = 8.31 K/FT F Thickness OK �Mn = 9.31 FT - K/FT ( Long:BotReInfOK � I Transverse - Bottom dtb = 9.79 in Mutb = 3.91 FT -K/FT I Vutb = 2.38 K/FT bVn = 7.72 K/FT Ftng Thicknes OK �Mn = 5.65 FT - K/FT Trans ReiaOK:E. I Longitundinal - Top dlb = 11.665 in Mup1 = 1.33 Mup2 = 1.33 I Mulb = 1.33 FT -K/FT Vup1 = 0.69 Vup2 = 0.69 Vulb = 0.69 K/FT I OVn = 9.20 K/FT Ftn Th ickn essO K �Mn = 10.32 FT -K/FT I g To p R ii Transverse - Top I dtb = 11.29 in Mutb = 0.75 FT -K/FT Vutb = 0.37 K/FT I (DVn = 8.90 K/FT F Thickness OK Mn � = 6.53 FT -K/FT ( Trans To p Reinf,QK I C: \TSE Engineering \Projects \TSE 2007 -006 Mirage Storage BldgEngineering\ 4 / 4 SW Ftg Design.xls 3:24 PM 6/19/2007 r J , 1 1 1 II 1 II 1 1 II 1 II 1 1 1 1 1 1 i 1 I SHEAR WALL FOOTING DESIGN I Project: Mirage Storage Wall: Grid 13, A -D Concrete Data II a b Concrete Strength (fc): 3000 psi I Xftg > < Lw > Reinf. Yield Strength (fy): 60 ksi i I Wall Data ! i Wall Length (1w): 60 ft i B Wall Height (hw): 34.6 ft i v I Footing Data ! Ftg Width (B): 2.25 ft < ' > Ftg Length (L): 62 ft L 1 Ftg Thickness (T): 1 ft P1 a P2 Xftg = 1 ft Fallow = 2 ksf < Lw b II > HI< Lxb > 1 v Service EQ Lateral Loads and Moments I STORY Vseq H 0.75xMs 0.75xMs (Use 75% of EQ OT @ BASE @ Lvl X per ASCE 7, 9.5.5.6) (K) (FT) (FT -K) (FT -K) I 0 0 0 Roof 10.3 40 309 • 0 3rd 4.8 27 97 100 2nd 83.9 • 17 1070 214 Base 0 • 0 0 1476 (Shear heights measured from top of footing.) II I Total 99 1476 I Service Wind Lateral Loads and Moments 1 STORY Vsw H Ms @ BASE Ms @ Lvl X (K) (FT) (FT -K) (FT -K) I Roof 0 0 0 4th 0 0 0 0 3rd 0 0 0 0 2nd 0 0 0 0 Base 0 0 0 0 (Shear heights measured from top of footing.) I I Total 0 0 I I Total Wall Axial Dead Load at Base ELEMENT LOAD L P Lxa Lxb Mxa Mxb CWa CWb (KLF1 (K) (FT) (FT) (FT -K) (FT -K) (FT) (FT) CMU Wall 0.985 60 59.1 30 30 1773.0 1773.0 Roof DL 0.018 60 1.1 30 30 32.4 32.4 Perp. Wall 0 1 0.0 0 60 0.0 0.0 3rd FIr DL 0.12 60 7.2 30 30 216.0 216.0 I 2nd Fir DL 0.12 60 7.2 30 30 216.0 216.0 Total 1.243 74.6 kip 2237.4 2237.4 30.00 30.00 60.00 I I C: \TSE Engineering\Projects \TSE 2007 -006 Mirage Storage Bldg \Engineering\ 1 / 4 SW Ftg Design.xls 3:25 PM 6/19/2007 ∎ -Z 1 1 1 1 1 II 1 1 1 II 1 1 1 1 1 1 1 1 1 I SHEAR WALL FOOTING DESIGN I Project: Mirage Storage Wall: Grid 13, A -D • Total Wall Axial Live Load at Base I ELEMENT LOAD L P Lxa Lxb Mxa Mxb CWa CWb (KLF) (K) (FT) (FT) (FT -K) (FT -K) (FT) (FT) Roof SL 0 0 0.0 0 60 0.0 Omit Snow Load if 30 PSF or less 4th Fir LL 0 0 0.0 0 60 0.0 0.0 0.0 3rd FIr LL 0.313 60 18.8 30 30 563.4 563.4 2nd Fir LL 0:313 60 18.8 30 30 563.4 563.4 I Total 0.63 37.6 kip 1126.8 1126.8 30.00 30.00 60.00 Additional Loads on Footing ELEMENT LOAD L P Lxp1 Lxp2 Mxp1 Mxp2 CWp1 CWp2 (KLF) (K) (FT) (FT) (FT -K) (FT -K) (FT) (FT) I Soil 0.055 60 3.3 31 31 102.3 102.3 Stem Wall 0.534 60 32.04 31 31 993.2 993.2 Slab 0.19 60 11.4 31 31 353.4 353.4 Total 46.7 1448.9 1448.9 31.00 31.00 62.00 I Footing Bearing Pressure Based on EQ Loads I A) Service EQ OT Moment Ms = 1575 FT -K (Moment at bottom of footing) Footing Moment of Inertia (I) = 44687 FTA4 I Load Case 1: DL +0.75LL +0.75SL +EQ Total Footing Axial Load at Base ELEMENT LOAD L P Lxpt Lxp2 Mxp1 Mxp2 CWp1 CWp2 (KLF) (K) (FT) (FT) (FT -K) (FT -K) (FT) (FT) I Footing 0.34 62 20.9 31 31 648.7 648.7 Addl Ftg Ld 46.7 1 46.7 31.00 31.00 1448.9 1448.9 DL 74.6 1 74.6 . 31.00 31.00 2312.0 2312.0 I LL +SL 37.6 0.75 28.2 31.00 31.00 873.3 873.3 Total 170.4 5282.9 5282.9 31.00 31.00 62.00 Pnet = 170.4 K f U2 = 31.00 CWa - L/2 = 0.00 FT Ft? CL I Max Pressure at Point P1: M 1 tot = 1574.9 FT -K e_1 = 9.24 FT F1 = 65.27 FT P1 - - Max Bearing Pressure at Point P1: Fl = I 2.32 KSF I Fallow = 2.66 KSF Max Pressure at Point P2: F I M2tot = 1574.9 FT -K i< e �I Pnet e = 9.24 FT I Lf2 = 65.27 FT Max Bearing Pressure at Point P2: F2 = I 2.32 KSF I Fallow = 2.66 KSF I C: \TSE Engineering \Projects \TSE 2007 -006 Mirage Storage Bldg \Engineering\ 2 / 4 SW Ftg Design.xls 3:25 PM 6/19/2007 , Z yJ 1 1 1 1 1 i 1 1 1 i 1 1 1 1 1 1 i 1 1 I SHEAR WALL FOOTING DESIGN I Project: Mirage Storage Wall: Grid 13, A -D Load Case 2: 0.6DL - EQ I Total Footing Axial Load at Base ELEMENT LOAD L P Lxpl Lxp2 Mxpl Mxp2 CWp1 CWp2 (KLF) (K) (FT) (FT) (FT -K) (FT -K) (FT) (FT) I Footing 0.34 62 20.9 31 31 648.7 648.7 Addl Ftg Ld 46.7 1 46.7 31.00 31.00 1448.9 1448.9 DL 74.6 1 74.6 31.00 31.00 2312.0 2312.0 I Total 142.2 4409.6 4409.6 31.00 31.00 62.00 Pnet = 85.3 K 1 U2 = 31.00 CWa - U2 = 0.00 FT Max Pressure at Point P1: I M1tot = 1574.9 FT -K e 1= 18.45 FT Lf1 = 37.64 FT I Max Bearing Pressure at Point P1: Fl = Fallow = I 2.02 KSF 2.66 KSF Max Pressure at Point P2: I M2tot = 1574.9 FT -K e 2= 18.45 FT Lf2 = 37.64 FT I Max Bearing Pressure at Point P2: F2 = ( 2.02 KSF I Fallow = 2.66 KSF I I 1 I 1 I I . 1 C: \TSE Engineering \Projects \TSE 2007 -006 Mirage Storage Bldg \Engineering\ 3 / 4 SW Ftg Design.xls 3:25 PM 6/19/2007 I '27c7-4r I t 1 1 I 1 1 1 1 1 1 1 1 1 1 II SHEAR WALL FOOTING DESIGN I Project: Mirage Storage Wall: Grid 13, A -D Footing Ultimate Design 11 Downward Pressure Weq = 2.32 Wueq = 3.25 Wueq /(D = 5.41 I Ww = 1.63 Wuw = 2.61 Wuw /m = 3.47 Wu = 3.25 KSF (Dv = 0.6 I EQ Controls for Shear Upward Pressure Wdl = 0.903871 KSF Wudl = 1.08464516 KSF I Footing Reinforcing Aslb = 0.13 inA2 /FT Longitudinal Bottom Reinf. Astb = 0.13 inA2 /FT Transverse Bottom Reinf. • I Asit = 0.13 inA2 /FT Longitudinal Top Reinf. Astt = 0.13 inA2 /FT Transverse Top Reinf. Asmin = 0.184 inA2 /FT I Longitundinal - Bottom dlb = 8.5 in I Mup1 = 1.62 Mup2 = 1.62 Mulb = 1.62 FT -K/FT Vup1 = 0.95 Vup2 = 0.95 I Vulb = 0.95 K/FT (DVn = 6.70 K/FT Ftng Thickness.OK mMn = 4.90 FT -K/FT Long Bof±Reinf OK: Transverse - Bottom I dtb = 7.75 in Mutb = 2.06 FT -K/FT I Vutb = 1.56 K/FT mVn = 6.11 K/FT Ftng Thickness OK (1)Mn = 4.46 FT - K/FT Trans Reinf"OK 1 I Longitundinal - Top dlb = 9.625 in Mup1 = 0.54 Mup2 = 0.54 I Mulb = 0.54 FT -K/FT Vup1 = 0.21 Vup2 = 0.21 Vulb = 0.21 K/FT I (Vn = 7.59 K/FT Ftng Th ick n ess OK1 (Mn = 5.56 FT -K/FT I Long OpRelnf;OK Transverse - Top I dtb = 9.25 in Mutb = 0.69 FT -K/FT Vutb = 0.38 K/FT I mVn = 7.30 K/FT Ftng Thickness OK: �Mn = 5.34 FT -K/FT ( Trans Top Rei 1 I C: \TSE Engineering \Projects \TSE 2007 -006 Mirage Storage Bidg\Engineering\ 4 / 4 SW Ftg Design.xls 3:25 PM 6/19/2007 t II II II II II II II 1 1 1 1 1 1 1 1 1 1 II SHEAR WALL FOOTING DESIGN I Project: Mirage Storage Wall: Grid 1, B -D Concrete Data a b Concrete Strength (fc): 3000 psi < Xftg > Lw > Reinf. Yield Strength (fy): 60 ksi i I Wall Data A i Wall Length (1w): 31 ft B Wall Height (hw): 34.6 ft i v I Footing Data Ftg Width (B): 3 ft < I > Ftg Length (L): • 33 ft L P1 P2 I Ftg Thickness (T): 1.17 ft a Lw b Xftg = 1 ft < > Fallow = 2 ksf Hj< Lxb > I Service EQ Lateral Loads and Moments I STORY Vseq H 0.75xMs 0.75xMs (Use 75% of EQ OT @ BASE @ Lvl X per ASCE 7, 9.5.5.6) (K) (FT) (FT - K) (FT I 1 0 0 0 Roof • 3 33.5 75 0 3rd 6 21.5 97 27 2nd 40 11 345 95 Base 0 0 • 0 517 (Shear heights measured from top of footing.) I I Total 49 517 Service Wind Lateral Loads and Moments . I STORY Vsw H Ms @ BASE Ms @ Lvl X (K) (FT) (FT -K) (FT -K) I Roof 0 0 0 4th 0 0 0 0 3rd 0 0 0 0 2nd 0 0 0 0 Base 0 0 0 0 (Shear heights measured from top of footing.) I I Total 0 0 I I Total Wall Axial Dead Load at Base ELEMENT LOAD L P Lxa Lxb Mxa Mxb CWa CWb (KLF) . (K) (FT) (FT) (FT -K) (FT -K) (FT) (FT) I CMU Wall • 0 31 30.5 15.5 15.5 473.3 473.3 Roof DL 0.056 31 1.7 15.5 15.5 26.9 26.9 Perp. Wall 0 0 0.0 0 31 0.0 0.0 3rd Fir DL 0.384 31 11.9 15.5 15.5 184.5 184.5 I 2nd Fir DL 0.384 31 11.9 15.5 15.5 184.5 184.5 Total 1.809 56.1 kip 869.2 869.2 15.50 15.50 31.00 I I C: \TSE Engineering\Projects \TSE 2007 -006 Mirage Storage Bldg \Engineering\ 1 / 4 SW Ftg Design.xls 5:05 PM 6/19/2007 I 3,Zfe f i 1 i e i i 1 i SHEAR WALL FOOTING DESIGN I Project: Mirage Storage Wall: Grid 1, B -D Total Wall Axial Live Load at Base ll ELEMENT LOAD L P Lxa Lxb Mxa Mxb CWb (KLF) (K) (FT) (FT) (FT -K) (FT -K) (FT) CWa (FT) I Roof SL 0 0 0.0 0 31 0.0 0.0 Omit Snow Load if 30 PSF or less 0 0 0.0 0 31 0.0 0.0 rd Hr LL 1 31 31.0 15.5 15.5 480.5 480.5 2nd Fir LL 1 31 31.0 15.5 15.5 480.5 480.5 I Total 2.00 62.0 kip 961.0 961.0 15.50 15.50 31.00 Additional Loads on Footing ELEMENT LOAD L. P Lxp1 Lxp2 Mxp1 Mxp2 CWp1 CWp2 (KLF) (K) (FT) (FT) (FT -K) (FT -K) (FT) (FT) I Soil 0.035 31 1.085 16.5 16.5 17.9 17.9 Stem Wall 0.125 31 3.875 16.5 16.5 63.9 63.9 Slab 0.29 • 31 8.99 16.5 16.5 148.3 148.3 Total 14.0 230.2 230.2 16.50 16.50 33.00 I Footing Bearing Pressure Based on EQ Loads I A) Service EQ OT Moment Ms = 574 FT -K (Moment at bottom of footing) Footing Moment of Inertia (I) = 8984 FTA4 I Load Case 1: DL +0.75LL +0.75SL +EQ Total Footing Axial Load at Base ELEMENT LOAD L P Lxp1 Lxp2 Mxp1 Mxp2 CWp1 CWp2 (KLF) (K) (FT) (FT) (FT -K) (FT -K) (FT) (FT) I Footing 0.53 33 17.4 16.5 16.5 286.7 286.7 Addl Ftg Ld 14.0 1 14.0 16.50 16.50 230.2 230.2 DL 56.1 1 56.1 16.50 16.50 925.3 925.3 I LL +SL 62.0 0.75 46.5 16.50 16.50 767.3 767.3 Total 133.9 2209.4 2209.4 16.50 16.50 33.00 I Pnet = 133.9 K U2 = 16.50 CWa -U2= 0.00 FT Ft? CL I Max Pressure at Point P1: M1tot = 574.5 FT -K e_1 = 4.29 FT l Lfl = 36.63 FT P1 - - Pressure at Point P1: F1 = I 2.44 KSF I Fallow = 2.66 KSF Max Pressure at Point P2: F M2tot = 574.5 FT -K < e >I Pnet "WYY e_2 = 4.29 FT { Lf I Lf2 = 36.63 FT ax earng Pressure at Point P2: F2 = I 2.44 KSF Fallow = 2.66 KSF I C: \TSE Engineering \Projects \TSE 2007 -006 Mirage Storage Bldg \Engineering\ 2 / 4 SW Ftg Design.xls 5:05 PM 6/19/2007 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 a SHEAR WALL FOOTING DESIGN I Project: Mirage Storage Wall: Grid 1, B -D Load Case 2: 0.6DL - EQ fl Total Footing Axial Load at Base ELEMENT LOAD L P Lxpl Lxp2 Mxpl Mxp2 CWp1 CWp2 (KLF) (K) (FT) (FT) (FT -K) (FT -K) (Fr) (FT) fl Footing 0.53 33 17.4 16.5 16.5 286.7 286.7 dl Ftg Ld 14.0 1 14.0 16.50 16.50 230.2 230.2 DL 56.1 1 56.1 16.50 16.50 925.3 925.3 I Total 87.4 1442.2 1442.2 16.50 16.50 33.00 Pnet = 52.4 K I U2= 16.50 CWa -U2= 0.00 FT Max Pressure at Point P1: I M1tot = 574.5 FT -K e_1 = 10.95 FT Lf1 = 16.64 FT I Max Bearing Pressure at Point P1: Fl = Fallow = 2.10 KSF I 2.66 KSF Max Pressure at Point P2: I M2tot = 574.5 FT -K e_2 = 10.95 FT Lf2 = 16.64 FT I Max Bearing Pressure at Point P2: F2 = Fallow = ( 2.10 KSF I 2.66 KSF I I I I 1 I I I C: \TSE Engineering \Projects \TSE 2007 -006 Mirage Storage Bldg \Engineering\ 3 / 4 SW Ftg Design.xls 5:05 PM 6/19/2007 NMI ® OM ® = ® ME ® ® ® ® ® ® M ® M INN MI IINI a SHEAR WALL FOOTING DESIGN I Project: Mirage Storage Wall: Grid 1, B -D Footing Ultimate Design il Downward Pressure Weq = 2.44 Wueq = 3.41 Wueq/c1) = 5.69 III Ww = 1.80 Wuw = 2.89 Wuw /m = 3.85 Wu = 3.41 KSF my = 0.6 I EQ Controls for Shear U pward Pressure Wdl = 0.5982273 KSF Wudl = 0.71787273 KSF I Footing Reinforcing Aslb = 0.13 inA2 /FT Longitudinal Bottom Reinf. Astb = 0.13 inA2 /FT Transverse Bottom Reinf. I Aslt = 0.13 inA2 /FT Longitudinal Top Reinf. Astt = 0.13 inA2 /FT Transverse Top Reinf. Asmin = 0.228 inA2 /FT I Longitundinal - Bottom dlb = 10.54 in I Mup1 = 1.71 Mup2 = 1.71 Mulb = 1.71 FT -K/FT Vup1 = 0.42 Vup2 = 0.42 Vulb = 0.42 K/FT (I)Vn = 8.31 K/FT F tng Thickness OK' mMn = 6.09 FT - K/FT ILong BotiReinf:OK ii Transverse - Bottom I dtb = 9.79 in Mutb = 3.84 FT -K/FT I Vutb = 2.33 K/FT F �Vn = 7.72 K/FT t ngtThK �Mn = 5.65 FT-K/FT ( Trans Bot ickness O Reinf OK'._ I Longitundinal - Top dlb = 11.665 in Mup1 = 0.36 Mup2 = 0.36 I Mulb = 0.36 FT -K/FT Vup1 = 0.02 Vup2 = 0.02 Vulb = 0.02 K/FT I mVn = 9.20 K/FT Ftng Thickness OK Mn m = 6.75 FT -K/FT ILong Top Relrif of Transverse - Top ' dtb = 11.29 in Mutb = 0.81 FT -K/FT Vutb = 0.40. K/FT I OVn = 8.90 K/FT Ftng Thi ckness OK (I)Mn = 6.53 FT -K/FT ( Trans Top Reinf; I C: \TSE Engineering\Projects \TSE 2007 -006 Mirage Storage Bldg \Engineering\ 4 / 4 SW Ftg Design.xls 5:05 PM 6/19/2007 I p ,zl 1 i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 a F _ ' i4- 7Wf- (o1 z--0) ( 'zo ) = Z190 71 O r ' I ZSO III t.v 1? wc—,r• 2. 5 f) ( I, 7—:) (ZZ') 11 4- 1 ZS p-,r . 1 blz. - L- . p L 1 1S., 3 e I Pi. o,1EN, -(,-) P G 19. 2 - U..t.- a y - a xl'- 4- Q7 WI (9) w i 1 „, (tl,Se )L) (1 s dos (L '- S-- SLSO) CI ( z 11500 j ? - t /S.: I W rr C- 7 t 4,5 (2D )C24)4. z.; (. "-E iz.) (Z)CI0) y 24 SO - ra-c, ZCtz_5) c 1,,S / ( zo) s 2,19"7S I 1> t., ,)-t-A- P - 4ce, 1 ` K 1 I I I t ” 1 afghan associates, inc. ukA t `i' By IM I Date: (.44 d 1 AA ENGINEERING 0 -1 Project No.: 4875 SW Griffith Drive I Suite 300 I Beaverton, OR 197005 I 503.620.30301 tel 503.620.55391 tax www.aaieng.com Sheet: J 1 of: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 • 1 Title : Mirage Storage Job # A07072 Dsgnr: MT Date: 10:36PM, 4 JUN 07 Description : I Scope : ' Rev: 580000 ' N User: KW- 0607408, Vet 5.8.0, 1- Dec -2003 Square Footing Design Page 1 i (c)1983 -2003 ENERCALC Engineering Software mirage storage ecw.Calculations iA i a `,,,Jiri,.^....c!,ttt r'MI,A147 . - .1.1. .st ,,,,..,,,,, ,.. ..:I 4 ' - 1..s.mri, .,. i...4., ,,,, , 3. .N.: rtl .. ...75 ..,,,,,,,, A ,S4V.".RW++.' ...1,,i,, a',1 Description Loading Dock Col. Ftg ' G III I General Information Code Ref: ACI 318-02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 it ,6,411 : _ ,.,: „H :* T MAW , .M : ,,R,, ,. 'e:.n . : :,. w t r» 3:,xV •40-..,,,: q(... it Dead Load 35.200 k Footing Dimension 8.000 ft Live Load 78.100 k Thickness 16.00 in I Short Term Load 0.000 k # of Bars 9 Seismic Zone 0 Bar Size 6 Overburden Weight 0.000 psf Rebar Cover 3.250 Concrete Weight 0.00 pcf t'c 3,000.0 psi LL & ST Loads Combine Fy 60,000.0 psi Load Duration Factor 1.000 Column Dimension 8.00 in Allowable Soil Bearing 2,000.00 psf I Note: Load factoring supports 2003 IBC and 2003 NFPA 5000 by virtue of their references to ACI 318 -02 for concrete design. Factoring of entered loads to ultimate loads within this program is according to ACI 318 -02 C.2 Reinforcing .1.7 .. ,i ,,, r ,, .. ,.;', .. . .,, a.as» ear . > .,,,,,,, , : , m . ,wIn .., ;� > ,n , ,. 1 Rebar Requirement Actual Rebar "d" depth used 12.375 in As to USE per foot of Width 0.470 in2 200 /Fy 0.0033 Total As Req'd 3.759 in2 As Req'd by Analysis 0.0024 in2 Min Allow % Reinf 0.0014 I Min. Reinf % to Req'd 0.0032 % 0 Summary g Footing OK I 8.00ft square x 16.0in thick with 9- #6 bars Max. Static Soil Pressure 1,770.31 psf Vu : Actual One -Way 50.48 psi Allow Static Soil Pressure 2,000.00 psf Vn *Phi : Allow One -Way 93.11 psi I Max. Short Term Soil Pressure 1,770.31 psf Vu : Actual Two -Way 172.37 psi Allow Short Term Soil Pressure 2,000.00 psf Vn *Phi : Allow Two -Way 186.23 psi Alternate Rebar Selections... I Mu : Actual 19.12 k -ft / ft 19 # 4's 13 # 5's 9 '# 6's Mn 'Phi : Capacity 26.48 k -ft / ft 7 # 7's 5 # 8's 4 # 9's 3 # 10's I I I I I I Il Title : Mirage Storage Job # A07072 Dsgnr: MT Date: 10:45PM, 4 JUN 07 Description : 11 Scope : Rev: 580000 . y User KW- 0607408, Ver 5.8.0, 1- Dec -2003 Square Footing Design Page 1 III (c)1983-2003 ENERCALC Engineering Software mirage storage ecw Calculations rt .S. ,...,..,.. ^,ri:2 "-.,.<, ,Y . SAL 'e'Kwe . ,..a�.,.. , ..,77f'.1+w4K Mats .XSx,,,,. .,1, 4} ,n a Fn,.d L, XnMM)fxz ... .. , .,..n.. . ,,, ,,,,,,.. as s,, !,as,akret,rw fit, K.a.cte rt r^ Description Loading Dock Col. Ftg at Front 1 1 General Information Code Ref: ACI 318 -02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Dead Load 14.800 k Footing Dimension 5.000 ft q Live Load 31.200 k Thickness 12.00 in I Short Term Load 0.000 k # of Bars 6 Seismic Zone 0 Bar Size 5 Overburden Weight 0.000 psf Rebar Cover 3.250 Concrete Weight 0.00 pcf Pc 3,000.0 psi I LL & ST Loads Combine Fy 60,000.0 psi Load Duration Factor 1.000 Column Dimension 6.00 in Allowable Soil Bearing 2,000.00 psf I Note: Load factoring supports 2003 IBC and 2003 NFPA 5000 by virtue of their references to ACI 318 -02 for concrete design. Factoring of entered loads to ultimate loads within this program is according to ACI 318 -02 C.2 Reinforcing ,.- re..—....4 ",< ESP>a a' r44 -ur xa.r. ww'Px,S.. ,..,.... t: alai.• uroYfi. M. r! ro - r- ....n, 44.,. — . +..c.nr: tae fi4%?Ss...,..o..aS.et. -. ,'NCi 3... <NY, , tNp7,1-,,,..a Ys!': ri :441H4540,11..t.1..=2311x I..,.. /..., A.h tSa ,M1:hT.747i'Y,, .. Rebar Requirement ' . Actual Rebar "d" depth used 8.438 in As to USE per foot of Width 0.268 in2 200 /Fy 0.0033 Total As Req'd 1.339 in2 As Req'd by Analysis 0.0020 in2 Min Allow % Reinf 0.0014 I Min. Reinf % to Req'd 0.0026 % Summary Footing OK I 5.00ft square x 12.0in thick with 6- #5 bars Max. Static Soil Pressure 1,840.00 psf Vu : Actual One -Way 45.08 psi Allow Static Soil Pressure 2,000.00 psf Vn *Phi : Allow One -Way 93.11 psi I Max. Short Term Soil Pressure 1,840.00 psf Vu : Actual Two -Way 142.61 psi Allow Short Term Soil Pressure 2,000.00 psf Vn *Phi : Allow Two -Way 186.23 psi Alternate Rebar Selections... Mu : Actual 7.47 k -ft / ft 7 # 4's 5 # 5's 4 # 6's Mn * Phi : Capacity 13.51 k -ft / ft 3 # 7's 2 # 8's 2 # 9's 2 # 10's I I I I I . I 1 Il 'J 47 ‘r 6A-■ 61 P ce ) 2 - A — r.) ,)6P-f e.7 i 1 — 1 ,, ) II t ) - e.k...: . r-s,-i ,_. , ...x ,-.--) 111 I _____J "H I I 1. . N-_, rt91 7- Lot)4,-- , V\ U Z ' ) 'ES r • A. L [' ire i (9 ' Z - 7Z plr- b 1E, ' ) ' i n,.... I , I L \ , • I I r F . CAA.-,) Liltk 1 1 r ,,,,c ( 11,5 ' ) zz' ) 1 1 p‘r- z 6) 17 \ I ' - 7() , C l z.$ .-. 2 .., I 1 t=7 1 I y . r_r_. 1 z.Sr,F 1 ‘..*„.. . I g c- . • !--t.96' F- , 1 ( 2 2.5 - .. v L, I (7_ ,.. . 9 t_5-::-r1=,, ,,..›G k.....4s eik.,,,-e. I I afghan associates, inc. sau-g ENGIN EERING IP\ \ Pal It By 1 " - T — Date: ,' i ENGIN 4 , 1 4 0 7 P No.. 4875 SW Griffith Drive I Suite 300 I Beaverton, OR I 97005 roject I 503.620.30301 tel 503.620.55391 fax www.aaieng.com Sheet: 9 -' ' 33 of: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 II I 10 0 1 0 05 "Concrete 5_Q 6i." • Lateral Restrain �` ■ ����j���!i!�" li 716.1 # 1 I 8.00005" Conc 'w/ #5 @ 8." ' , . . 9 9' -0" I II 1 1 )0005" Concrete w/ #5 @ 8." I 1-3" I #4@18 in @Toe I 2' -0" I 1 I #0 @0.in r. @ Heel 1 2 ' -0" 8" 2' -10" 1 2' -0" 3' -6" I I 6-6" ►l I 9 t-o p t-) w fi I own EN win ime in -tie no in pm pas mos Ips misa EN as NE um EN 1 Title : Mirage Storage Job # A07072 Dsgnr: MT Date: 2:00PM, 4 JUN 07 Description : I Scope : Code Ref: ACI 318 -02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Rev: 580014 a,, Wall c)19832003 re Restrained Retaining tltlall Design miragestorage.ecw Page & atio 1 I Descripti Restrained Retain Wall at Grids 13, 0.5A & D (H = 9'- 0 ") Criteria i. S oil Data K j Footing S trengths & Dimensions 4. - - ercn:+z.wawcns una.,+susec.aau;: stir •ov°:ru:o+wxwwsrne,, �m. : *++ e. rrsy°; aeexstu-^ .u:o:-anazw"asw;es. xrs+.a : crs?sxsrw.' aar�saxca1,.>. c?rtsaRaarawum._Heaunm,.+wrcaaws: ` Retained Height = 9.00 ft Allow Soil Bearing = 2,000.0 psf fc = 3,000 psi Fy = 60,000 psi Wall height above soil = 0.00ft Equivalent Fluid Pressure Method Min. As % = 0.0014 Total Wall Height = 9.00 ft Heel Active Pressure = 60.0 psf /ft = g Toe Width 2.00 ft I Toe Active Pressure = 0.0 psf /ft Heel Width = 3.50 Top Support Height = 9.00 ft Passive Pressure = 250.0 psf /ft Total Footing Width = 5.50 I Slope Behind Wall = Footing Thickness = 15.00 in 0.00:1 FootingilSoil Friction = 0.400 _ Height of Soil over Toe = 0.00 in Key Width 8.00 in = 110.00 pcf Soil height to ignore = Key Depth 24.00 in Soil Density p for passive pressure 0.00 in Key Distance from Toe = 2.00 ft Wind on Stem = 0.0 psf Cover @ Top = 2.00 in @ Btm.= 3.00 in Surcharge Loads 4 I Uniform Lateral Load Applied to Stem ! Adjacent Footing Load a.1.,.3 ..... .'.i4 31,,,,,......;>uanav ..11,TMe.F ... . ,.,.•.v ,A1 rva ,. -• Rti'.n5 ,,,, vrwR1a 75twaAnth'!'xe i'E. ' ,,,, � Surcharge Over Heel = 125.0 psf Lateral Load = 0.0 #/ft Adjacent Footing Load = 0.0 lbs » >NOT Used To Resist Sliding & Overturn Height to Top 0.00 ft Footing Width = 0.00 ft Surcharge Over Toe 0.0 psf ...Height to Bottom 0.00 ft Eccentricity 0.00 in NOT Used for Sliding &Overturning _ Wall to Ftg CL Dist = 0.00 ft Axial Load Applied to Stem Footing Type Line - Base Above /Below Soil = 0.0 ft Axial Dead Load 1,970.0 lbs at Back of Wall Axial Live Load 1,626.0 Ibs Axial Load Eccentricity = 0.0 in al II Design Summa Concrete Stem Construction Total Bearing Load 8,461 lbs Thickness = 8.00 in Fy = 60,000 psi ...resultant ecc. = 2.66 in Wall Weight = 96.7 pcf fc = 3,000 psi Soil Pressure @ Toe 1,910 psf OK Stem is FIXED to top of footing Soil Pressure @ Heel = 1,167 psf OK Allowable = 2,000 psf M max Between Soil Pressure Less Than Allowable @ Top Support Top & Base @ Base of Wall i ACI Factored @ Toe = 2,784 psf = Stem OK Stem OK Stem OK ACI Factored @ Heel 1,701 psf Design height 9.00 ft 5.13 ft 0.00 ft Footing Shear @ Toe = 18.3 psi OK Rebar Size = # 5 # 5 # 5 Footing Shear @ Heel = 35.2 psi OK Rebar Spacing = 16.00 in 8.00 in J 8.00 in J I Allowable 93.1 psi Rebar Placed at = Center Center Center Reaction at Top = = 716.1 Ibs Rebar Depth 'd' = 4.00 in 04 0 in 4.00 in Reaction at Bottom = 3,134.6 lbs Design Data Sliding Stability Ratio = 1.50 OK fb /FB + fa /Fa = 0.000 0.386 0.827 Sliding Gales Mu....Actual = 0.0 ft-# 2,858.0 ft-# 6,130.9 ft-# Lateral Sliding Force = 3,134.6 lbs less 100% Passive Farce= - 1,320.3 lbs Mn ' Phi Allowable = 3,945.8 ft-# 7,413.2 ft-# 7,413.2 ft-# less 100% Friction Force= - 3,384.5 lbs Shear Force @ this height = 1,217.4 lbs 3,956.8 lbs Added Force Req'd = 0,0 lbs OK Shear Actual = 25.36 psi 82.43 psi ....for 1.5:1 Stability = 0.0 lbs OK Shear Allowable = 93.11 psi 93.11 psi Footin • Desi • n Results 1 Rebar Lap Required = 21.36 in 21.36 in �� � � " "eel Rebar embedment into footing = 6.00 in 1 Factored Pressure = Mu' :Upward 2,784 1,701 psf Other Acceptable Size & Spacings: 5,305 0 ft Toe: # 8t .-tIf' 01S -or- #4@ 12.50 in, #5@ 19.50 in, #6@ 27.50 in, #7@ 37 Mu' : Downward = 525 0 ft-# Heel:# 5 @ 16.00 in -or- #4@ 11.50 in, #5@ 17.75 in, #6@ 25.25 in, #7@ 34 Mu: Design = 4,780 7,229 ft-# Key: 28.75 in, #5@ 44 -or- #4@ 28.75 in, #5@ 44.50 in, #6@ 48. Actual 1 -Way Shear = 18.26 35.15 psi - Allow 1 -Way Shear = 93.11 93.11 psi C* 1.1? K I 3,3 .01 N. ism mos INN Ms simi win lit; Imo {gni INN NE Wm INN Pm J • Title : Mirage Storage Job # A07072 Dsgnr: MT Date: 2:00PM, 4 JUN 07 Description : Scope : Code Ref: ACI 318 -02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Rev: 580014 Page 2 User KW-0607408. Ver5.8.0, 1- Dec -2003 • Restrained Retaining Wall Design I ` (c)1983 -2003 ENERCALC Engineering Software mirage storage.ecw:Calculations Description Restrained Retain Wall at Grids 13, 0.5A & D (H = 9'- 0 ") Summary of Forces on Footing Slab is NOT providing sliding, stem is FIXED at footing Forces acting on footing for sliding & soil pressure.... Sliding Forces Load & Moment Summary For Footing : For Soil Pressure Calcs I Stem Shear @ Top of Footing = - 2,327.5 lbs Moment @ Top of Footing Applied from Stem = -3,606.4 ft -# Heel Active Pressure -807.1 Sliding Force = 3,134.6 lbs Surcharge Over Heel = lbs ft ft-# Axial Dead Load on Stem = 3,596.0 lbs 2.33 ft 8,390.7ft -# Net Moment Used For Soil Pressure Calculations Soil Over Toe lbs ft ft -# 1,872.2 ft-# Surcharge Over Toe lbs ft ft-# Stem Weight = 870.0 lbs 2.33 ft 2,030.0ft-# Soil Over Heel = 2,805.0 lbs 4.08 ft 11,453.8ft-# Footing Weight = 1,190.2 lbs 2.63 ft 3,128.1 ft-# r Total Vertical Force = 8,461.2 lbs Base Moment = 21,396.1 ft-# I I 1 a I • I I I 1 I I 1 Title : Mirage Storage Job # A07072 Dsgnr: MT Date: 2:03PM, 4 JUN 07 Description : ,J Scope : Code Ref: ACI 318 -02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Rev: 580014 User: KW- 0607408. Ver5.8.0. 1- Dec -2003 Cantilevered Retaining Wall Design Page 1 I ` (c)1983 -2003 ENERCALC Engineering Software Description Cant Retain Wall at Grid 13, 0.5A & D (H = 9' - 0 ") mirage storage.ecw:Calculations 1 Criteria Z Soil Data s ! Footing Strengths & Dimensions # .V.Y Y'.'%.0 e�4KYtiRft:'w.tiN�^.F.RTiskH. Y93..:x2Ce: u0.'R`dS @9C:LC S>M'S.Slsi',Ci?uYP3f;a.> .. i:Y At A" ' . t AS 4•.nt t 1' :a: sae . : -a.-. aY 4 '+.+:.urAU4 s..xA:i9% VA, '4' '1 ' 'w!" 1 ........ - Retained Height = 9.00 ft Allow Soil Bearing = 2,000.0 psf f = 3,000 psi Fy = 60,000 psi Wall height above soil = 0.00 ft Equivalent Fluid Pressure Method Min. As % = 0.0014 - Heel Active Pressure = 35.0 psf /ft Toe Width 2.00 ft Slope Behind Wall 0.00:1 Toe Active Pressure 0.0 psf /ft Heel Width 3.50 Height of Soil over Toe = 6.00 in Passive Pressure 250.0 psf /ft Total Footing Width 530 Soil Density = 110.00 pcf Water height over heel = 0.0 ft Footing Thickness = 15.00 in FootingllSoil Friction = 0.300 Key Width = 8.00 in Wind on Stem = 0.0 psf Soil height to ignore = Key Depth = 24.00 in for passive pressure 6.00 in Key Distance from Toe = 2.00 ft Cover @ Top = 2.00 in @ Btm.= 3.00 in I = , To Design Summary Stem Construction Top Stem a a < x e ...w =.c z x... s _atv . »n . r grows , saw ..c..e Stem OK Total Bearing Load 6,127 lbs Design height ft= 0.00 ...resultant ecc. = 0.24 in Wall Material Above "Ht" = Concrete Soil Pressure @ Toe = 1,139 psf OK Thickness = 8.05 Soil Pressure @ Heel 1,089 psf OK Rebar Size # 5 Rebar Spacing .8..00 Allowable = 2,000 psf Rebar Placed at = Center Soil Pressure Less Than Allowable Design Data = I ACI Factored @ Toe 1,305 psf fb /F8 + fa/Fa 0.975 ACI Factored @ Heel 1,249 psf Total Force @ Section lbs 2,409.8 Footing Shear @ Toe = 7.2 psi OK Moment....Actual ft-#= 7,229.3 ii Footing Shear @ Heel = 43.7 psi OK Moment Allowable = 7,413.2 ✓ Allowable = 93.1 psi I Wall Stability Ratios Shear Actual psi = 50.2 Overturning = 3.66 OK Shear Allowable psi = 93.1 Sliding = 1.94 (Vertical Co Bar Develop ABOVE Ht. in = 21.36 1 Sliding Calcs (Vertical Component Used) Bar Lap /Hook BELOW Ht. in = 9.31 Lateral Sliding Force 1,838.6 lbs Wall Weight 96.7 less 100% Passive Force= - 1,726.6 lbs Rebar Depth 'd' in = 4.00 less 100% Friction Force= - 1,838.2 lbs Masonry onry Data psi = Added Force Req'd = 0.0 lbs OK Fs psi = 1; ....for 1.5 : 1 Stability = 0.0 lbs OK Solid Grouting = Footing Design Results Special Inspection = I Modular Ratio 'n' = Toe Heel Short Term Factor Factored Pressure 1 305 1,249 psf Equiv. Solid Thick. Mu' : Upward = 2,597 0 ft Masonry Block Type = Normal Weight Mu' : Downward = 679 11,969 ft-# Concrete Data Mu: Design = 1,918 11,969ft -# fc psi 3,000.0 i Actual 1 -Way Shear = 7.25 43.73 psi Fy psi = 60,000.0 Allow 1 -Way Shear = 93.11 93.11 psi Other Acceptable Sizes & Spacings Toe Reinforcing = # 4 @ 18.00 in Toe: Not req'd, Mu < S * Fr Heel Reinforcing = # 5 @ 12.00 in Heel: #4@ 8.50 in, #5@ 13.00 in, #6@ 18.50 in, #7@ 25.25 in, #8@ 33.00 in, #9@ 41 Key Reinforcing = # 4 @ 18.00 in Key: #4@ 28.75 in, #5@ 44.50 in, #6@ 48.,E -� _1 .'S, ,I I PM NAM NUM OMB OMB MB We lel MIS 11=5 NW MW•%M_ IMIt ME MI I Title : Mirage Storage Job # A07072 Dsgnr: MT Date: 2:03PM, 4 JUN 07 Description : Scope : I. Code Ref: ACI 318 -02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Rev: 580014 User gyp/ KW- 0607408, Ver5.8.0, 1- Dec -2003 Cantilevered Retaining Wall Design Page 2 L(c)1983 -2003 ENERCALC Engineering Software mirage storagemcw:Calculations I Description Cant Retain Wall at Grid 13, 0.5A & D (H = 9' - 0 ") . Summa of Overturnm • & Resistor • Forces &Moments OVERTURNING RESISTING Force Distance Moment Force Distance Moment Item lbs ft ft-# lbs ft ft-# Heel Active Pressure = 1,838.6 3.42 6,281.9 Soil Over Heel 2,805.0 4.08 11,453.8 Toe Active Pressure Sloped Soil Over Heel Surcharge Over Toe = Surcharge Over Heel = I Adjacent Footing Load = Adjacent Footing Load Added Lateral Load Axial Dead Load on Stem = 0.00 Load @Stem Above Soil = Soil Over Toe = 110.0 1.00 110.0 SeismicLoad = Surcharge Over Toe = • Stem Weight(s) = 870.0 2.33 2,030.0 Total = 1,838.6 O.T.M. = 6,281.9 Earth @ Stem Transitions= Resisting /Overturning Ratio = 3.66 Footing Weight = 1,031.2 2.75 2,835.9 Vertical Loads used for Soil Pressure = 6,127.4 lbs Key Weight = 200.0 2.33 466.7 I Vert. Component = 1,111.2 • 5.50 6,111.5 Vertical component of active pressure used for soil pressure Total = 6,127.4 lbs R.M.= 23,007.8 I • I. • $ • I I .._ I I • It II . . . I I . I 3, J(9 II' 1 8.00005 "Concrete_w / #5 16." Lateral Restraint® •���� • - II li 369.4 # I I - 10005 ConcEL411"w/ #5 @ 18." • , 6-0" 6' -0" I 8.00005' Concrete w/ #5 @ 18. 2" • , #0 @0.in' , I i , @Toe V I I #0 @0. in @ Heel ,I -3 ., 8 " 1, -3„ II i 1 I 1' -3" 1' -11" �-4111--- I I Lie 32 I • , I -..5c\ II Title : Mirage Storage Job # A07072 Dsgnr: MT Date: 12:44PM, 4 JUN 07 Description : 4 Scope : Code Ref: ACI 318 -02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 i Rev. 580014 �- User: KW- 0607408. Ver5.8.0, 1- Dec -2003 Restrained Retaining Wall Design Page 1 it 1 (c)1983 -2003 ENERCALC Engineering Software mirage slorage.ecw:Calculations Description Restrained Retain Wall at Grids 13, 0.5A & D (H = 6'- 0 ") Criteria t Soil Data ;Footing Strengths & Dimensions v , Retained Height = 6.00 ft Allow Soil Bearing = 2,000.0 psf fc = 3,000 psi Fy = 60,000 psi Wall height above soil = 0.00 ft Equivalent Fluid Pressure Method Min. As % = 0.0014 I Total Wall Height = 6.00 ft Heel Active Pressure 60.0 psf /ft 9 Toe Width 1.25 ft Toe Active Pressure 0.0 psf /ft Heel. Width 1.92 Top Support Height = 6.00 ft Passive Pressure 250.0 psf /ft Total Footing Width = 3.17 Footing Thickness = 15.00 in - Slope Behind Wall = 0.00:1 FootingllSoil Friction 0.400 - Height of Soil over Toe = 0.00 in Soil height to ignore Key Width 8.00 in Soil Density 110.00 pcf for passive pressure 0.00 in Key Depth _ 12.00 in �- - Key Distance from Toe 1.25 ft Wind on Stem = 0.0 psf Cover @ Top = 2.00 in @ Btm.= 3.00 in Surcharge Loads & j Uniform. Lateral Load Applied to Stem ' i Adjacen F t ooting Load Surcharge Over Heel = 125.0 psf Lateral Load = 0.0 #/ft Adjacent Footing Load = 0.0 lbs 1 » >NOT Used To Resist Sliding & Overturn ... Height to Top = 0.00 ft Footing Width = 0.00 ft Surcharge Over Toe = 0.0 psf ...Height to Bottom 0.00 ft Eccentricity 0.00 in NOT Used for Sliding & Overturning Wall to Ftg CL Dist = 0.00 ft j Axial Load Applied to Stem Footing Type Line I Axial Dead Load = 1,763.0 lbs Base Above /Below Soil -_ - at Back of Wall 0.0 ft Axial Live Load 1,250.0 lbs Axial Load Eccentricity = 0.0 in Design Summary Concrete Stem Construction Total Bearing Load = 5,0 lbs Thickness = 8.00 in Fy = 60,000 psi ...resultant ecc. = 0.98 in Wall Weight = 96.7 pcf fc = 3,000 psi Soil Pressure @Toe = 1,855 psf OK Stem is FIXED to top of footing Soil Pressure @ Heel = 1,357 psf OK Allowable = 2,000 psf Mmax Between Soil Pressure Less Than Allowable @ Top Support Top & Base @ Base of Wall ACI Factored @ Toe = 2,733 psf Stem OK Stem OK Stem OK `il, ACI Factored @ Heel = 2,000 psf Design height = 6.00 ft 3.45 ft 0.00 ft Footing Shear @ Toe = 5.2 psi OK Rebar Size = # 5 # 5 # 5 Footing Shear @ Heel = 11.7 psi OK Rebar Spacing = 16.00 in 18.00 in 18.00 in Allowable 93.1 psi Rebar Placed at = Center Center l enter R eaction at Top 369.4 lbs Rebar Depth 'd' 4.00 in 4.00 in 4.00 in Reaction at Bottom = 1,701.8 lbs Design Data Sliding Stability Ratio = 1.57 OK fb /FB + fa /Fa = 0.000 0.267 0.564 I Sliding Calcs - Mu Actual 0.0 ft 942.7 ft -# 1,990.4 ft -# Lateral Sliding Force 1,701.8 Ibs less 100% Passive Force= - 632.8 lbs Mn 'Phi Allowable 3,945.8 ft -# 3,531.0 ft -# 3,531.0 ft # less 100% Friction Force= - 2,036.6 lbs Shear Force @ this height = 628.0 lbs 1,903.5 lbs I Added Force Req'd = 0.0 lbs OK Shear Actual = 13.08 psi 39.66 psi ....for 1.5 : 1 Stability 0.0 lbs OK Shear Allowable 93.11 psi 93.11 psi Footin • Desi • n Results Rebar Lap Required 21.36 in 21.36 in oe Mr eel Rebar embedment into footing = 6.00 in Factored Pressure = 2,733 2,000 psf Other Acceptable Sizes & Spacings: Mu' : Upward 2,060 0 ft-# Toe: None Spec'd -or- Not req'd, Mu < S * Fr Mu' : Downward = 205 1,069 ft-# Heel: None Spec'd -or- Not req'd, Mu < S * Fr Mu: Design = 1,855 1,069 ft-# (ey: #4@ 28.75 in, #5@ 44 -or- #4@ 28.75 in, #5@ 44.50 in, #6@ 48. 1 Actual 1 -Way Shear = 5.15 11.69 psi Allow 1 -Way Shear 93.11 93.11 psi ) 44 4 -0� 0 __ I Title : Mirage Storage Job # A07072 Dsgnr: MT Date: 12:44PM, 4 JUN 07 Description : I. Scope Code Ref: ACI 318 -02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 ; Rev: 580014 Page 2 i User: KW- 0607408. Ver5.8.0, 1- Dec -2003 Restrained Retaining Wall Design g i 1 (c)1983-2003 ENERCALC EngineeringSoftware ��_ .. „`y' � � y ^ mirage storage ^cwCalculations [� Description Restrained Retain Wall at Grids 13, 0.5A & D (H = 6'- 0 ") s Summary of Forces on Footing Slab is NOT providing sliding, stem is FIXED at footing j Forces acting on footing for sliding & soil pressure.... Sliding Forces Load & Moment Summary For Footing : For Soil Pressure Calcs I Stem Shear @ Top of Footing = lbs -582.1 Moment @ Top of Footing Applied from Stem = - 1,170.8 ft-# Heel Active Pressure = Sliding Force = 1,701.8 lbs Surcharge Over Heel = lbs ft ft-# Axial Dead Load on Stem = 3,013.0 lbs 1.58ft 4,770.6ft -# I Net Moment Used For Soil Pressure Calculations Soil Over Toe lbs ft ft # 416.4 ft-# Surcharge Over Toe lbs ft ft-# Stem Weight = 580.0 lbs 1.58 ft 918.3ft -# Soil Over Heel = 827.2 lbs 2.54 ft 2,103.8ft -# I Footing Weight 671.2 lbs 1.54 ft • 1,031.5ft # Total Vertical Force 5, 091.4 lbs Base Moment = 7,653.5ft -# • I I • .I 1 I a • • I I . II I li ;,41 I Title : Mirage Storage Job # A07072 Dsgnr: MT Date: 12:44PM, 4 JUN 07 Description : I Scope : Code Ref: ACI 318 -02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 I Rev: 580014 User: KW- 0607408, Ver5.8.0, 1- Dec -2003 Cantilevered Retaining Wall Design Page 1 ` (c)1983 -2003 ENERCALC Engineering Software mirage storage.ecw:Calculatiens Description Cant Retain Wall at Grid 13, 0.5A & D (H = 6' - 0 ") C&>ST t.0d{1)5 awl, Criteria ww Soil Data i Footing Strengths & Dimensions I .61 -rzxw.a a. ,1, :vr1 .,,.,,, w•s. Retained Height = 6.00 ft Allow Soil Bearing = 2,000.0 psf fc = 3,000 psi Fy = 60,000 psi Wall height above soil = 0.00 ft Equivalent Fluid Pressure Method Min. As % = 0.0014 Heel Active Pressure = 35.0 psf /ft Toe Width = 1.25 ft Slope Behind Wall 0.00:1 Toe Active Pressure 0.0 psf /ft Heel Width 1.92 Height of Soil over Toe = 6.00 in Passive Pressure 250.0 psf /ft Total Footing Width = 3.1T Soil Density = 110.00 pcf Water height over heel = 0.0 ft Footing Thickness = 15.00 in I - FootingilSoil Friction = 0.300 = 12.00 in Key Width 8.00 in Wind on Stem 0.0 psf Soil height to ignore Key Depth for passive pressure 6.00 in Key Distance from Toe = 1.25 ft Cover @ Top = 2.00 in @ Btm.= 3.00 in Design Summary Stem Construction Top Stem d:, K,: 1;,�._0....A.,•.s y, Stem OK T otal Bearing Load = 2,726 lbs Design height ft = 0.00 ...resultant ecc. = 2.71 in Wall Material Above "Ht" = Concrete Soil Pressure @Toe = 1,228 psf OK Thickness = 8.00 Soil Pressure @ Heel = 492 psf OK Rebar Size # 5 2,000 p Rebar Spacing 1 5.00 Allowable = psf Rebar Placed at = Center Soil Pressure Less Than Allowable Design Data I ACI Factored @ Toe = 1,369 psf /Fg + fa /Fa 0.607 ACI Factored @Heel 548 psf Total Force @ Section lbs = 1,071.0 Footing Shear @ Toe = 2.1 psi OK Moment....Actual ft-#= 2,142.0 Footing Shear @ Heel = 16.2 psi OK Moment Allowable = 3,531.0 Allowable = 93.1 psi Shear Actual psi = 22.3 Wall Stability Ratios Overturning = 2.67 OK Shear Allowable psi = 93.1 Sliding = 1.88 (Vertical Co Bar Develop ABOVE Ht. in = 21.36 1 Sliding Calcs (Vertical Component Used) Bar Lap /Hook BELOW Ht. in = 6.00 Lateral Sliding Force 919.8 lbs Wall Weight 96.7 less 100% Passive Ford - 914.1 lbs Rebar Depth 'd' in = 4.00 less 100% Friction Force= - 817.9 lbs Masonry Data psi = fm Added Force Req'd = 0.0 lbs OK S I. ....for 1.5:1 Stability = 0.0 Ibs OK o psi = Solid Grouting -1222Z 11121: Results Special Inspection • • I _ Modular Ration' Toe Heel Short Term Factor Factored Pressure 1,369 548 psf Equiv. Solid Thick. = Mu' : Upward = 985 0 ft-# Masonry Block Type = Normal Weight Mu' : Downward = 265 2,116 ft-# Concrete Data II Mu: Design = 720 2,116 ft-# fc psi = 3,000.0 Actual 1 -Way Shear = 2.10 16.21 psi Fy psi = 60,000.0 Allow 1 -Way Shear = 93.11 93.11 psi Other Acceptable Sizes & Spacings Toe Reinforcing = None Spec'd Toe: Not req'd, Mu < S * Fr Heel Reinforcing = None Spec'd Heel: Not req'd, Mu < S " Fr Key Reinforcing = None Spec'd Key: #4@ 28.75 in, #5@ 44.50 in, #6@ 48. II' II III 3, use) arm pot :MO ',NI elle 'Ile /Mal SIP 11111P :ON 111111 "INS UN AIN Title : Mirage Storage Job # A07072 Dsgnr: MT Date: 12:44PM, 4 JUN 07 Description : it Scope Code Ref: ACI 318 -02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 i Rev: 580014 Page 2 User: KW- 0607408, Ver5.8.0. 1- Dec -2003 Cantilevered Retaining Wall Design g (c)1983 -2003 ENERCALC Engineering Software mirage storage.ecw:Calculations 1 Description Cant Retain Wall at Grid 13, 0.5A & D (H = 6' - 0 ") 1 Summa of Overturnin • & Resistin • Forces & Moments OVERTURNING RESISTING Force Distance Moment Force Distance Moment Item lbs ft ft-# lbs ft ft-# Heel Active Pressure = 919.8 2.42 2,223.0 Soil Over Heel = 827.2 2.54 2,103.8 Toe Active Pressure Sloped Soil Over Heel Surcharge Over Toe = Surcharge Over Heel = I Adjacent Footing Load = Adjacent Footing Load = Added Lateral Load Axial Dead Load on Stem = 0.00 Load @ Stem Above Soil = Soil Over Toe 68.8 0.63 43.0 SeismicLoad = Surcharge Over Toe = . • 1 Total _ Stem Weight(s) = 580.0 1.58 918.3 919.8 O.T.M. = 2,223.0 Earth @ Stem Transitions= Resisting /Overturning Ratio = 2.67 Footing Weight = 594.4 1.59 942.1 • Vertical Loads used for Soil Pressure = 2,726.2 lbs Key Weight = 100.0 1.58 158.3 I Vert. Component = 555.9 3.17 1,762.3 Vertical component of active pressure used for soil pressure Total = 2,726.2 lbs R.M. = • 5,927.8 • I I • • I I I 1 1 I • • • • • I I I I I I 8.00005iGnncrete_w/ #5 © 16 '' ® L A A ateral Restraint •`;� • 1 130.7# 1 00005" Concrett'-' ? #4 @ 18." 3' -0" 3' -0" 2 8.00005" Concrete w/ Ii4 @ 18." II 1 : ° $ 1.-o- 1 ::,;;,:.:.;:q..:..,::',-1.:-•.:::*,:,,..:,:,.: 3" V I #0@0.in @Toe #0 @O.in .® 1 -4 10-. I I @ Heel 2'-0" r• 1 111 I I I I i GA r t_ e...t. t.,)t ,,,..) ht,i,.. 5 _ 1 i i , (. I I I I 1 II , I I I 1 I c,,. I afghan associates, inc. vfj k J\ fL - By 1A-A D ate: O 1 E NGINEERING - -l�,1 4875 SW Griffith Drive ( Suite 300 I Beaverton, OR i 97005 Project NO.:� I 503.620.3030 I tel 503.620.5539 I fax www.aaieng.com Sheet 3' ' of: i Title : Mirage Storage Job # A07072 Dsgnr: MT Date: 11:42AM, 10 AUG 07 Description : I Scope: Code Ref: ACI 318 -02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Rev. 580014 Page 1 t User: KW- 0607408. Ver5.8.0, 1- Dec -2003 Cantilevered Retaining Wall Design I ' (c)1983-2003 ENERCALC Engineering Software mirage g oundation �k.. �, ....� a- �. v .:r_ ..... . �. s � ��-- r.:... .. --- --. - l ecw:F ....-- ».:.:.,o Description Site Retain Wall (H = 4' -0) I Criteria Soil Data Footing Strengths & Dimensions Retained Height = 4.00 ft Allow Soil Bearing = 2,000.0 psf ft = 3,000 psi Fy = 60,000 psi Wall height above soil = 0.00 ft Equivalent Fluid Pressure Method Min. As % = 0.0014 Heel Active Pressure = 35.0 psf /ft Toe Width = 0,50 ft I Slope Behind Wall = 0.00:1 Toe Active Pressure = 0.0 psf /ft Heel Width = _2.00 Height of Soil over Toe = 6.00 in Passive Pressure 250.0 psf /ft Total Footing Width --- 2: - 50 - Soil Density = 110.00 pcf • Water height over heel = 0.0 ft Footing Thickness = 12.00 in I _ FootingllSoil Friction 0.350 = Key Width 0.00 in 0.00 in Wind on Stem 0.0 psf Soil height to ignore Key Depth for passive pressure 6.00 in Key Distance from Toe = 0.75 ft • Cover @ Top = 2.00 in @ Btm.= 3.00 in I Surcharge Loads j Surcharge Over Heel = 100.0 psf Surcharge Over Toe = 0.0 psf Used To Resist Sliding & Overturning Used for Sliding & Overturning Design Summary Stem Construction * Top Stem aao...11,......4 tt. -1... (...14.40.4.1.ss ..cus+eruw *rcns.:::. +w. - usnrr:.,....n ... -•, - Stem OK Total Bearing Load = 1,767 lbs Design height ft = 0.00 resultant ecc. = 3.83 in Wall Material Above "Ht" = Concrete Soil Pressure @ Toe = 1,248 psf OK Thickness = 6.00 Soil Pressure @ Heel = 165 psf OK Rebar Size = # 4 = 2,000 Rebar Spacing - 18.00 Edge Allowable psf Rebar Placed at Soil Pressure Less Than Allowable Design Data ACI Factored @ Toe = 1,486 psf fb /FB + fa /Fa = 0.432 I ACI Factored @ Heel = 197 psf Total Force @ Section lbs = 692.4 Footing Shear @ Toe = 0.0 psi OK Moment....Actual ft-# = 1,067.4 Footing Shear @ Heel = 17.0 psi OK Moment Allowable = 2,471.3 Allowable = 93.1 psi Shear Actual psi = 13,6 1 Wall Stability Ratios = Shear Allowable psi = 93.1 Overturning 2.46 OK Sliding 1.46 (Vertical Co Bar Develop ABOVE Ht. in = 17.09 Sliding Calcs (Vertical Component Used) Bar Lap /Hook BELOW Ht. in = 6.00 Lateral Sliding Force = 596.6 lbs Wall Weight = 72.5 less 100% Passive Force= - 250.0 lbs Rebar Depth 'd' . in = 4.25 less 100% Friction Force= - 618.4 lbs Masonry Data psi _ -- - - Added Force Req'd = 0.0 lbs OK Fs psi = I ... -for 1.5 : 1 Stability = 26.5 lbs NG Solid Grouting = Footing Design Results Special Inspection = Modular Ratio 'n' Toe Heel Short Term Factor = I Factored Pressure = 1,486 197 psf Equiv. Solid Thick. _ - - Mu' : Upward 175 0 ft -# Masonry Block Type = Normal Weight Mu' : Downward 36 1,761 ft # Concrete Data Mu: Design = 139 1,761 ft-# fc psi = 3,000.0 Actual 1 -Way Shear = 0.00 17.05 psi Fy psi = 60,000.0 I Allow 1 -Way Shear = Toe Reinforcing 93.11 93.11 psi Other Acceptable Sizes & Spacings = None Spec'd Toe: Not req'd, Mu < S * Fr Heel Reinforcing = None Spec'd Heel: Not req'd, Mu < S * Fr Key Reinforcing = # 4 @ 18.00 in Key: No key defined I 11 I 3,41 I Title : Mirage Storage Job # A07072 Dsgnr: MT Date: 11:42AM, 10 PUG 07 Description : I Scope : Code Ref: ACI 318 -02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Rev 58 0014 - - -_ - -- Page 2 User: KW- 0807408. Ver5.8.0, 1- Dec -2003 Cantilevered Retaining Wall Design g I ! (c)1983 -2003 ENERCALC Engineering Software Description Site Retain Wall (H = 4' -0) mirage storage.ecw:Foundation I � Summary of OVe rt U F OVERTURNING RESISTING Force Distance Moment Force Distance Moment Item _ lbs ft ft # _ - lbs ft ft-# Heel Active Pressure 596.6 1.89 1,126.9 Soil Over Heel 660.0 1.75 1,155.0 Toe Active Pressure Sloped Soil Over Heel Surcharge Over Toe = Surcharge Over Heel = 150.0 1.75 262.5 I Adjacent Footing Load = Added Lateral Load Adjacent Footing Load Axial Dead Load on Stem = 0.00 Load @ Stem Above Soil = Soil Over Toe = 27.5 0.25 6.9 SeismicLoad = Surcharge Over Toe = Stem Weight(s) = 290.0 0.75 217.5 = Total 596.6 O.T.M. = 1,126.9 Earth @ Stem Transitions= Resisting /Overturning Ratio = 2.46 Footing Weight = 375.0 1.25 468.7 1 Vert. Component Vertical Loads used for Soil Pressure = 1,766.9 lbs Key Weight = 264.4 2.50 0.75 661.0 Vertical component of active pressure used for soil pressure Total 1,766.9 lbs R.M.= 2,771.6 I I I I. I I I I • I I i • ' 3 ,sv II Title : Mirage Storage Job # A07072 Dsgnr: MT Date: 11:43AM, 10 AUG 07 Description : I Scope : Code Ref: ACI 318 -02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Rev: 580014 Page 1 User: KW- 0607408.Ver 5.8.0, 1- Dec -2003 Cantilevered Retaining Wall Design _ -2003 ENERCALC Engineering Software mirage storage.ecw:Foundation p I D escription Site Retain Wall (H = 6' -0) I Criteria f, Soil Data Footing Strengths & Dimensions L s- n,DR,,u , w � ,0 .. -; k. _, . � : xi s. e4. psf W� +�., �•,� �« .. Retained Height = 6.00 ft Allow Soil Bearing = 2,000.0 fc = 3,000 psi Fy = 60,000 psi Wall height above soil 0.00 ft Equivalent Fluid Pressure Method Min. As % = 0.0014 _ Heel Active Pressure = 35.0 psf /ft Toe Width = 0.75 ft Slope Behind Wall 0.00:1 Toe Active Pressure 0.0 psf /ft Heel Width 3.25 Height of Soil over Toe = 6.00 in Passive Pressure 250.0 psf /ft Total Footing Width 4 -00 Soil Density = 110.00 pcf Water height over heel = 0.0 ft Footing Thickness = 12.00 in = FootingllSoil Friction 0.350 = Key Width 6.00 in 0.00 in Wind on Stem 0.0 psf Soil height to ignore Key Depth for passive pressure 6.00 in Key Distance from Toe = 0.75 ft Cover @ Top = 2.00 in @ Btm.= 3.00 in Surcharge Load Surcharge Over Heel = 100.0 psf Surcharge Over Toe = 0.0 psf Used To Resist Sliding & Overturning • Used for Sliding & Overturning Design Summ Stem Constructio Top Stem Stem OK Total Bearing Load • = 3,684 lbs Design height ft= 0.00 ...resultant ecc. = 3.06 in Wall Material Above "Ht" = Concrete Soil Pressure @ Toe = 1,274 psf OK Thickness = 6.00 Soil Pressure @ Heel = 569 psf OK Rebar Size = # 4 = 2,000 p Rebar Spacing = 12.00 Allowable sf Rebar Placed at Edge Soil Pressure Less Than Allowable Design Data ACI Factored @ Toe = 1,532 psf fb /FB + fa /Fa = 0.854 ACI Factored @ Heel = 684 psf Total Force @ Section lbs = 1,395.5 Footing Shear @ Toe 0.5 psi OK Moment....Actual ft #= 3,115.6 Footing Shear @ Heel 39.2 psi OK Moment Allowable = 3,648.0 Allowable = 93.1 psi Shear Actual psi = 27.4 Wall Stability Ratios _ 3.31 OK Shear Allowable . psi= 93.1 Overturning Sliding 1,43 (Vertical Co Bar Develop ABOVE Ht. in = 17.09 Sliding Calcs (Vertical Component Used) Bar Lap /Hook BELOW Ht. in = 6.50 Lateral Sliding Force = 1,080.2 lbs Wall Weight = 72.5 I less 100% Passive Force= - 250.0 lbs Rebar Depth 'd' in = 4.25 • less 100% Friction Force= - 1,289.6 lbs Masonry Data psi _ fm Added Force Req'd = 0.0 lbs OK Fs psi = ...for 1.5 : 1 Stability = 80.8 lbs NG Solid Grouting Footing Design R esu lt s Special Inspection = ,,, <,. t i r . •- .. _.tis s r. . _ Modular Ratio 'n' Toe Heel Short Term Factor = Factored Pressure = 1,532 684 psf Equiv. Solid Thick. = Mu' : Upward = 416 0 ft-# Masonry Block Type = Normal Weight Mu' : Downward = 81 7,240 ft-# Concrete Data Mu: Design = 335 7,240 -# fc psi= 3,000.0 Actual 1 -Way Shear = 0.51 39.18 psi Fy psi = 60,000.0 II Allow 1 -Way Shear = 93.11 93.11 psi Other Acceptable Sizes & Spacings Toe Reinforcing = None Spec'd Toe: Not req'd, Mu < S * Fr Heel Reinforcing = # 4 @ 10.50 in Heel: Not req'd, Mu < S * Fr Key Reinforcing = # 4 @ 18.00 in Key: No key defined II II , I I. Title : Mirage Storage Job # A07072 Dsgnr: MT Date: 11:43AM, 10 AUG 07 Description : I Scope : • Code Ref: ACI 318 -02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Rev: 580014 User: KW- 0607408, Ver5.8.0, 1- Dec -2003 Cantilevered Retaining Wall Design Page 2 1, 1 (c)1983 -2003 ENERCALC Engineering Software mirage storage ecwFoundation Description Site Retain Wall (H = 6' -O) Summa of Overturnin • & Reslstln • Forces & Moments OVERTURNING RESISTING Force Distance Moment Force Distance Moment Item _ lbs ft ft-# = lbs ft ft4 I Heel Active Pressure 1,080.2 2.57 2,780.4 Soil Over Heel 1,815.0 2.63 4,764.4 Toe Active Pressure Sloped Soil Over Heel Surcharge Over Toe = Surcharge Over Heel = 275.0 2.63 721.9 I Adjacent Footing Load = Added Lateral Load Adjacent Footing Load Axial Dead Load on Stem = 0.00 • Load @ Stem Above Soil = Soil Over Toe = 41.3 0.38 15.5 • SeismicLoad = • Surcharge Over Toe = • - -- Stem Weight(s) = 435.0 1.00 435.0 Total 1,080.2 O.T.M. = 2,780.4 Earth @ Stem Transitions =. Resisting /Overturning Ratio = . 3.31 Footing Weight = 600.0 - 2.00 1,200.0 Vertical Loads used for Soil Pressure = 3,684.5 lbs Key Weight = 1.00 I Vert. Component = 518.2 4.00 2,073.0 Vertical component of active pressure used for soil pressure Total = 3,684.5 lbs R.M. = 9,209.7 • I I • • 1 • I I I 1• I I I • i . . . 3. s3 1 Title : Mirage Storage Job # A07072 Dsgnr: MT Date: 11:43AM, 10 AUG 07 Description : I Scope : Code Ref: ACI 318 -02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Rev: 580014 User KW- 0607408,Ver 5.8.0,1- Dec -2003 Cantilevered Retaining Wall Design Page 1 (c)1983 -2003 ENERCALC Engineering Software mirage storage.ecw:Foundation I Description Site Retain Wall (H = 8' -0) I Criteria p Soil Data Footing Strengths & Dimensions , Retained Height = 8.00 ft Allow Soil Bearing = 2,000.0 psf fc = 3,000 psi Fy = 60,000 psi Wall height above soil = 0.00 ft Equivalent Fluid Pressure Method Min. As % = 0.0014 Heel Active Pressure = 35.0 psf /ft Toe Width = 0.75 ft II Slope Behind Wall = 0.00:1 Toe Active Pressure 0.0 psf /ft Heel Width 4.25 Height of Soil over Toe = 6.00 in Passive Pressure 250.0 psf /ft Total Footing Width 500 Soil Density = 110.00 pcf Water height over heel = 0.0 ft Footing Thickness = 14.00 in _ FootingilSoil Friction 0.350 _ I 6.00 in Wind on Stem 0.0 psf Soil height to ignore Key Depth 8.00 in for passive pressure Key Width 6.00 in Key Distance from Toe = 0.75 ft Cover @ Top = 2.00 in @ Btm.= 3.00 in Surcharge Loads Surcharge Over Heel = 50.0 psf Surcharge Over Toe = 0.0 psf � � M: « �.� Used To Resist Sliding & Overturning Used for Sliding & Overturning Design Summary q Stem Construction t Top Stem a .: »..4,.. :. Stem OK I Total Bearing Load = 5,922 lbs Design height ft = 0.00 resultant ecc. 3.63 in Wall Material Above "Ht" = Concrete • Soil Pressure @ Toe = 1,615 psf OK Thickness = 6.05 Soil Pressure @ Heel = 754 psf OK Rebar Size # 5 = 2,000 p sf Rebar Spacing 9.00 Allowable Rebar Placed at = Edge Soil Pressure Less Than Allowable Design Data ACI Factored @ Toe = 1,921 psf fb /FB + fa /Fa = 0.845 ACI Factored @ Heel = 897 psf Total Force @Section lbs = 2,120.4 II Footing Shear @ Toe 0.0 psi OK Moment....Actual ft -# = 5,942.8 Footing Shear @ Heel 53.4 psi OK Moment Allowable = 7,032.8 Allowable = 93.1 psi Wall Stability Ratios Shear Actual psi = 42.2 Overturning 3.52 OK Shear Allowable psi = 93.1 Sliding = = 1.68 (Vertical Co Bar Develop ABOVE Ht. in = 21.36 Sliding Calcs (Vertical Component Used) Bar Lap /Hook BELOW Ht. in = 7.95 Lateral Sliding Force = 1,616.3 lbs Wall Weight = 72.5 I less 100% Passive Force= - 649.3 lbs Rebar Depth 'd' in = 4.19 Fs less 100% Friction Force= - 2,072.9 lbs Masonry Data fm Added Force Req'd = 0.0 lbs OK psi = ....for 1.5 : 1 Stability = 0.0 lbs OK Fs psi = I Footin Solid Grouting g es Dign Res ult Special Inspection Modular Ration' - Toe Heel Short Term Factor = Factored Pressure = 1,921 897 psf Equiv. Solid Thick. = I Mu' : Upward = 526 0 ft-# Masonry Block Type = Normal Weight Mu' : Downward = 91 16,543 ft-# Concrete Data Mu: Design = 435 16,543 ft-# fc psi = 3,000.0 Actual 1 -Way Shear = 0.00 53.39 psi Fy psi = 60,000.0 i Allow 1 -Way Shear = 93.11 93.11 psi Other Acceptable Sizes & Spacings Toe Reinforcing = None Spec'd Toe: Not req'd, Mu < S * Fr Heel Reinforcing = # 5 @ 8.75 in Heel: Not req'd, Mu < S * Fr Key Reinforcing = # 4 @ 18.00 in Key: No key defined I II II • II . 3 -; 1 Title : Mirage Storage Job # A07072 Dsgnr: MT Date: 11:43AM, 10 AUG 07 Description : I Scope : -- - Code Ref: ACI 318 -02, 1997 UBC, 2003 IBC, 2003 3 N FPA 5000 I Rev' 580014 Page 2 User: KW- 0607408, Ver 5.8.0, 1- Dec -2003 Cantilevered Retaining Wall Design (01983 -2003 ENERCALC Engineering Software mirage storage ecw:Foundation Description Site Retain Wall (H = 8' -0) I Summa of Overturnin • & Reslstin • Forces & Moments OVERTURNING RESISTING Force Distance Moment Force Distance Moment Item lbs ft ft-# lbs ft ft-# I Heel Active Pressure = 1,616.3 3.19 5,161.6 Soil Over Heel 3,300.0 3.13 10,312.5 Toe Active Pressure Sloped Soil Over Heel Surcharge Over Toe = Surcharge Over Heel = 187.5 3.13 585.9 I Adjacent Footing Load = Adjacent Footing Load = Added Lateral Load = Axial Dead Load on Stem = 0.00 Load @ Stem Above Soil = Soil Over Toe 41.3 0.38 15.5 SeismicLoad = Surcharge Over Toe = I Stem Weight(s) = 580.0 1.00 580.0 Total 1,616.3 O.T.M. = 5,161.6 Earth @ Stem Transitions= Resisting /Overturning Ratio . = 3.52 Footing Weight = 875.0 2.50 2,187.5 Vertical Loads used for Soil Pressure = 5,922.5 lbs Key Weight = 50.0 1.00 50.0 I Vert. Component • = 888.7 5.00 4,443.6 Vertical component of active pressure used for soil pressure Total = 5,922.5 lbs R.M.= 18,174.9 I I I I I I 11 II I i I r w p , ; w 5 2, p ,F ( Z- = 5 I -,J --- I �/ 17 °x5 i% - )C...? ,lam 1 IS 1 6 wu�s� .- '(r ^i ASS C 1 , o') c 1 0 I . - _ . - ) Prt z'C t') ( 150) = 300 a , I l \ 1 I 1O,7 MA�c w t, ', 5 1 ZS p (. Z) 0 o) r- Z j 00 criF \o J ) , 3°I Ll,z) k 2.3 _I. c ) 5 "i le-i I z (0 e - -- 11 r-7 te-- 'U S11 (►d.Si - 15/L.00) .- Zc,, 4 - r 1c z 1 35 ,`,) �� Cam) -0s � i 1 ; 4, a�C 14 - ) I oe, v z Tv ( 2.4 )C)4 -) Z 3-c,_ ■/ 2 v, a• 7J — 3 Go. o — ■ , ( ce°L /Z z jt,- ,7S, /L L I .'. J,, > t' -/Z / V wi- rJ• s 'ftg_ , __ s y 4-) u t OLO Z T7 k) L}- Q I°O o G C 0 r9 I 1), -,t,5- - 1 - K -r , j -t - : ro L S, 1 (10.0, ) t � 0e'' 7 I k, z 50 " f'6 L ( // 2) C M,J n, c#Cr,75 )Cc,o) II I F AA I afghan associates, inc. INt I d . )t,7 • II 9 )� By: Date: 1 ENGINEERING Project No.: 1 01Z, 4875 SW Griffith Drive I Suite 300 I Beaverton, OR 1 97005 1 503.620.3030 I tel 503.620.5539 I fax www.aaieng.com Sheet: 3 of: I . A - 125 B -111 I B -112 43 S.F. j 43 S.F. 43 S.F. 43 S Il - - -- - I - - ' - - A 126 I - - - - -- i i I � /I 1 , I , . . , , ti.„ i 1 I i. - -- I -i -- +-- - -- ' _ - L FFE 22 ' f 22$ I I I 1 H 4 1/4 , L, , I I I I I 651) i I Jam �_ SLOPP' UP r� I o J YY+ :' 8' -5'g; �i �) I 3. 3 3 3 w 3.3 226' II pro' _ \ 1 Il FFE 225' I I' - f I I - -- _. H i __ ill I 0 I U 1 3/ 6. ,o `'"---•-..-- 1 _____ u --- 4. '`--) pi, : , a 0 1 rs C 1c ) c. i (9 j I,1Z a�0 So dot) �r7 11.5' • wk--(k/7 2,s fx , %CZz ' ) c- 5 I Iz L Z l w 1 z s L., �, = 1 z so `', . Z,5 175 L�0 z 1 z.,� �1 <1 J L LR-,_.N r_yv) x.e, I L.J, `Z W 1Z X Z Co (L L k S L) 4..15 ) ' t 1- ---- W, I - f ■ 1 Z 7 j `'`) I t,c, y I LS aa-F L' 3.33 ) c- 4-1 lo wz ni.Z 1 p- -F ( ) '/ -I" SCp(Fr tozS 1 11 15 f t-J t Lam_ y 1 z 5 ( lo ) z 1 Z so uv'1; L '' 1Z XZ(o ' g Z 1 I z , to a Z 4.. - 1..v, z _.5- ) L zsc w, � . ,w, w z 1 Z Cs' ) e- Ca Zr f 'I fZ.15� (9,75 1 LL.),,,, = 1 Z5 C La-.4- z €3,5 I vS w)ZC4:1D P II 1 II Il ; ,,�,, 1. ,` 6 t � I afghan associates, inc. 1M,\ �, W� \ 7 `1 � �' � By: Date: ENGINEERING h • 4875 SW Griffith Drive I Suite 300 I Beaverton, OR 1 97005 Project No I 503.620.3030 I tel 503.620.5539 I fax '� www.aaieng.com Sheet: 1 of: I I Zt,f0 'e. 6`-'■ s m--'1 4 - P, P P, to,, L 5 I .47 1-1-1--- ,.. .33-. ? t 1, .1 tv - fat a. - 7 G,- b 7 F zfx z `i , Z t e = Is v yt, t Z)C 71 ?.- I g p In Its (I \.s ) ) c t,o ,5 P_,, z -as C 11,51z_.) 9 - 7,o' I 'o z- tiz,Z U lwjzx 4S iiey AZ a 5( Wz .,33, w, i."""""i "..'�, s e-�- C. („,- f- - ) 354- ' __--_ `A-) I - (ZS _ (I • 7) z °, 3 4 I w zv20%, c1 r > C1v ") + 5.5 f- r- 6,z; 0-..' Z ,,,, z 1 Z$ C. i o) = I Z s to II W 31,K, z 51 � (� -(07) 4- SS 0 4-33 Lk) �, c. z I Z J C t._ to ) L ,a5 Q- III wlZ •453 C., r_. Z t4,- Cso ill III , ' - �• AA I af associates, inc. rti g MI Date: s 2 1° :;max i y: ENGINEERING 4875 SW Griffith Drive I Suite 300 I Beaverton, OR 1 97005 Project No.: I 503.620.3030 I tel 503.620.5539 I fax / www.aaieng.com Sheet: 6 /11 2? of: 1 w ) PSG 5.0e2, ,i o) t ¶Orr ( IC. vJ� z z ') 1 Z 4X ( �.o 4 ) z le) �) I 5 (10 S I I D 0 a II ill n ;Ply +• /� �°"i afghan associates, inc. v1/44A-(7.,t vV \-4 1 -- d 9 ( 71; By: Date: ENGINEERING PA Project No.: 4875 SW Griffith Drive Suite 300 I Beaverton, OR 1 97005 a 503.620.3030 I tel 503.620.5539 I fax www.aaieng.com Sheet: 4 of: I '5\'7' I 2(,- TL, _Q �a � c--(e___ 4 l e ? p I li,)_Vr (z)-} +- ',y -- zgk_ w z )3 1 CZ) t - I4.4- . I Co, s c, iG , s f P 1 j� Q = aM ,..c, 47 1 (I ?Di, e" za'k-- P, = I }, t 4-1 0-4 4-,6. t 44 -I r w o ot , I II sAt- W 1 x C r ? 1 Ii 4, r y 1, S a- II II Il I . 1 <<; afghan associates, inc. (�/1: \( By: Date: AAI a zi ENGINEERING l0`101L 4875 SW Griffith Drive I Suite 300 I Beaverton, OR I 97005 Project No.: I 503.620.3030 I tel 503.620.5539 I fax -� www.aaieng.com Sheet:- of: • I Title : Mirage Storage Job # A07072 Dsgnr: MT Date: 5:22PM, 19 JUN 07 Description : I Scope : Rev: 580006 i User. KW- 0607408, Ver58.0, 1- Dec -2003 Steel Beam Design Page 1 gi ki 1 (c)1983 -2003 ENERCALC Engineering Software mirage storage .ecw Floor g . - Sk _.TC.` ova :samen A't. P.Y!'at'av #tR!],eMJ'v' ]ax ,,,,, -. ? ,,ntxm∎-e?+ID' . ..." txevr!4b r,v r, T-cr m \i.eacr y:set .... `, t,rnt 4govvt.,,s.'....e mrv:ttmtat'i - ,..t,.... :.v .SMV,,M*?[xt ,. v, :` I Description B1 ' 1 General Information Code Ref: AISC 9th ASD, 1997 UBC, 2003 IBC, 2003 NFPA 5000 i .: s t,..nta.k.t.W.,.f Ott.. ,,, < , - ro,V ; , x ; :, «: , ,::,.s<. .{eza . ,<vt, ,t, ;., . VAe.' ,. ..vi .:tiz213...1,1e; Steel Section : W12X26 Fy 50.O0ksi Pinned - Pinned Load Duration Factor 1.00 I Center Span 11.50 ft Bm Wt. Added to Loads Elastic Modulus 29,000.0 ksi Left Cant. 0.00 ft LL & ST Act Together Right Cant 0.00 ft Lu : Unbraced Length 0.00 ft 1 i Distributed Loads Note! Short Term Loads Are WIND Loads. a #1 # 2 #3 #4 #5 #6 #7 DL 1.125 k/ft LL 2.500 k/ft I ST k/ft Start Location ft End Location ft I Summary - Beam OK Static Load Case Governs Stress Using: W12X26 section, Span = 11.50ft, Fy = 50.0ksi End Fixity = Pinned - Pinned, Lu = 0.00ft, LDF = 1.000 Actual Allowable 11 Moment 60.355 k -ft 91.850 k -ft Max. Deflection -0.243 in fb : Bending Stress 21.685 ksi 33.000 ksi Length /DL Defl 1,802.5: 1 fb / Fb 0.657:1 Length /(DL +LL Defl) 568.2 : 1 Shear 20.993 k 56.212 k D fv : Shear Stress 7.469 ksi 20.000 ksi fv ! Fv 0.373: 1 Force & Stress Summary « -- These columns are Dead + Live Load placed as noted -» DL LL LL +ST LL LL +ST Maximum Only as Center Cad Center Coil Cants Coil Cants Il Max. M + 60.36 k -ft 19.03 60.36 k -ft Max. M - k -ft Max. M @ Left k -ft Max. M @ Right k -ft Shear @ Left 20.99 k 6.62 20.99 k I Shear @ Right 20.99 k 6.62 20.99 k Center Defl. - 0.243 in - 0.077 - 0.243 - 0.243 0.000 0.000 in Left Cant Defl 0.000 in 0.000 0.000 0.000 0.000 0.000 in Right Cant Defl 0.000 in 0.000 0.000 0.000 0.000 0.000 in Query Defl @ 0.000 ft 0.000 0.000 0.000 0.000 0.000 in Reaction @ Left 20.99 6.62 20.99 20.99 k Reaction © Rt 20.99 6.62 20.99 20.99 k 111 Fa calc'd per Eq. E2 -1, K'Ur < Cc I Beam Passes Table B5.1, Fb per Eq. F1 -1, Fb = 0.66 Fy II III II 111 4,i' Title : Mirage Storage Job # A07072 Dsgnr: MT Date: 5:22PM, 19 JUN 07 Description : I Scope : Rev: 580006 Pa e 2 i User: KW -0607408, Ver5.8.0.1- Dec -2003 Steel Beam Design g (c)1963 -2003 ENERCALC Engineering Software mirage storage .ecw Floor ft. 1 + Ercumuw+,, +,srs ,.... ...x,10.4 Ktr:«n, >m. ...c,, ,e>.. .....+,n.., aucnas3+,:.. m..1 . F.x.,_...v.xa..wcarx<,V.euw.! eer...,V st:x s...cr. +A6......a . 4....Se-s- ,,,..,r...vrs7..1 _n.Z: Description B1 I I Section Properties W12X26 Depth 12.220 in Weight 25.98 #/ft Web Thick 0.230 in Ixx 204.000 in4 I Width 6.490 in lyy 17.300 in4 Flange Thick 0.380 in Sxx 33.400 in3 Area 7.65 in2 Syy 5.340 in3 Rt 1.720 in R -xx 5.170 in Values for LRFD Design.... R -yy 1.510 in J 0.300 in4 Zx 37.200 in3 I Cw 606.00 in6 Zy 8.170 in3 K 0.680 in 11 II . II D II III III il II D III 4- 1 1 I Title : Mirage Storage Job # A07072 Dsgnr: MT Date: 5:22PM, 19 JUN 07 Description : I Scope : Rev: 580006 I User: KW- 0607408.Ver 5.8.0.1- 0eo-2003 Steel Beam Design Page 1 I (c)1983 -2003 ENERCALC Engineering Software mirage storage ecw Floor Description 62 ' j General Information , Code Ref: AISC 9th ASD, 1997 UBC, 2003 IBC, 2003 NFPA 5000 , �.,.... :.....wcam.,.,,,:.,,.c n- ,c..a+n ., vay.:.haa.ca.. . .- - „,.- wsw. ,.,,,, ,........ w s,, :..: .sraa+w.rmw,+nu. - .,um..,a.....or .n�a ..naa:ro=- ,,,,t. momma a., I,..e, .- *,,,d:.:. Rsn::n «u... _ .ac+ -.m a,,...�.- ...:y„r m.-�a* Steel Section : W12X26 Fy 50.00ksi Pinned - Pinned Load Duration Factor 1.00 I Center Span 19.75 ft Bm Wt. Added to Loads Elastic Modulus 29,000.0 ksi Left Cant. 0.00 ft LL & ST Act Together Right Cant 0.00 ft Lu : Unbraced Length 0.00 ft I Distributed Loads Note! Short Term Loads Are WIND Loads f # 1 #2 #3 #4 #5 #6 #7 DL 0.167 0.625 k/ft LL 0.416 1.250 k/ft I ST k/ft Start Location ft End Location 7.000 ft Summary Beam OK - t Static Load Case Governs Stress Using: W12X26 section, Span = 19.75ft, Fy = 50.0ksi End Fixity = Pinned - Pinned, Lu = 0.00ft, LDF = 1.000 Actual Allowable a Moment 56.898 k -ft 91.850 k -ft Max. Deflection -0.654 in fb 1 fb : Bending Stress 20.442 ksi 33.000 ksi Length /DL Defl 1,116.2 / Fb 0.619: 1 Length /(DL +LL Defl) 362.2 : 1 Shear 16.813 k 56.212 k I fv : Shear Stress 5.982 ksi 20.000 ksi fv / Fv 0.299: 1 r Force & Stress Summary a 'Mr...V Nrttr: c4»A[S't.".. §..tttA:K ?S:X*'(¢ V3, ttNrtV n.:.: ncpS '+WfYRti!a+Ff,V.a.,4�f.,aai:. . ..4Plr.'I.V,.,.}T Ya3r,.V:w:oewcrr. p, irn e, v;. +::MR,PO. ',...C.. IV.'Jx•+z?T7.... ....:.. lx:- TVw9RtR JAr.AV1, W4 f<. «_ These columns are Dead + Live Load placed as noted -» DL LL LL +ST LL LL +ST Maximum Only Ca Center Center alb Cants A Cants Il Max. M + 56.90 k-ft 18.53 56.90 k -ft Max. M - k -ft Max. M @Left k -ft Max. M @ Right k -ft I Shear @ Left 16.81 k 5.51 16.81 k Shear @ Right 8.34 k 2.68 8.34 k Center Defl. -0.654 in -0.212 -0.654 -0.654 0.000 0.000 in Left Cant Defl 0.000 in 0.000 0.000 0.000 0.000 0.000 in I Right Cant Defl Query Defl @ 0.000 in 0.000 0.000 0.000 0.000 0.000 0.000 in 0.000 ft 0.000 0.000 0.000 0.000 in Reaction @ Left 16.81 5.51 16.81 16.81 k Reaction @ Rt 8.34 2.68 8.34 8.34 k II Fa calc'd per Eq. E2 -1, K`Llr < Cc I Beam Passes Table B5.1, Fb per Eq. F1 -1, Fb = 0.66 Fy 1 I II o 4- tav I Title : Mirage Storage Job # A07072 Dsgnr: MT Date: 5:22PM, 19 JUN 07 .. Description : I Scope : nRev 580006 User: KW- 0607408, Ver580 1- Dec -2003 Steel Beam Design Page 2 i (c)1983 -2003 ENERCALC Engineering Software mirage storage .ecw Floor I 4i674.PAY VSntntddF ,,,, , fu.t.ICA 12 vt.r ,Vt....7.AVSearnm aa..iv41!TaaV C'T..aaYSlV.I'4P11..e.T. Xdw Sm5.1 L. C.xe^.ITSJK ^.u}.r#B.,,,, d.,,tr . Abu I,V g.Y.PIRr.rAN:?Vquk'V∎rAk vr<'iC., P.144 Description B2 Section Properties W12X26 k........w.N'1...VvH✓*'t3! .....N04.4 , ^07,.,a..a.WRr`:'..ww' '1...,,,...... .ri`nf..t £w"ci+ , — N?vMtt . i.' a: ?isvxvm .,w.- 1N.P...Ndx:?.MVR,t'Y+i XV 5 .. . N:?H ......i[HYYI N.4KW' V.V'f@R Depth 12.220 in Weight 25.98 #/ft Web Thick 0.230 in boc 204.000 in4 I Width 6.490 in lyy 17.300 in4 Flange Thick 0.380 in Sxx 33.400 in3 Area 7.65 in2 Syy 5.340 in3 Rt 1.720 in R -xx 5.170 in Values for LRFD Design.... R -yy 1.510 in J 0.300 in4 Zx 37.200 in3 I Cw 606.00 in6 Zy 8.170 in3 K 0.680 in I II I I I II 1 Il . 11 II 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I Title : Mirage Storage Job # A07072 Dsgnr: MT Date: 5:22PM, 19 JUN 07 Description : 1 Scope : Rev 580006 User KW-0607408, Ver5.80. 1-Dec-2003 Steel Beam Deign Page 1 II 1 (c)1983 -2003 ENERCALC Engineering Software mirage storage.ecw Floor ssltVt, VSV, -r+r rn;,..,.+.- -,:a .GV47∎r c-s:+a+...'*rc_s. bs 'perur ames: - en.«omw.s .,w..,..8: 'g r.: .a :Cm�2e. F..: I,S,r.,;+..z;:.r : a wa.........11R Esc: uassasaaus.�amxG ._ Description B3 I ! General Information Code Ref: AISC 9th ASD, 1997 UBC, 2003 IBC, 2003 NFPA 5000 9N+Yy5T.l A,'+...... ..V.RI.,:', ...rfl M..Veii3u➢.,IN•"a+c '.rncrnrneW.F.Y,ao. X.ti�'.'r[YW 6S'rt t..V.rsA+ 3cfl1 «£?x'+V A...,.a..FX∎. VAA :iiS ':M∎rSt,, 97N.' = W�knYtN'.e. WV'!C.. it C:?i'A'++...*x: 91 Steel Section : W12X40 Fy 50.00ksi Pinned - Pinned Load Duration Factor 1.00 Center Span 19.75 ft Bm Wt. Added to Loads Elastic Modulus 29,000.0 ksi I Left Cant. 0.00 ft LL & ST Act Together Right Cant 0.00 ft Lu : Unbraced Length 0.00 ft Distributed Loads Note' Short Term Loads Are WIND Loads. 1 s...f.N#nR'.SS. , ...'.e ,,,,,7 a': `X m. +'.0,04.,, VmV.I.n Sr.. 3. ,,,,C91, illIttsr .11Ar .74,1,'. ,,,... ;...'.' 4.1 , ,7..sn^ irtlP,,,,,,+,,,,, .4.1% ,..5ef.4. • v. ...tF.eY F }. ClN:4. 5y.?M52,,,, ,,,, ,, v. "ib #1 # 2 #3 #4 #5 # AlxRS'C 6 # DL 0.250 0.435 k/ft LL 0.625 0.834 k/ft II ST k/ft Start Location 7.000 ft End Location 19.750 ft Summary - Beam OK S tatic Load Case Governs Stress Using: W12X40 section, Span = 19.75ft, Fy = 50.Oksi End Fixity = Pinned - Pinned, Lu = 0.00ft, LDF = 1.000 Actual Allowable II Moment 91.512 k -ft 141.625 k -ft Max. Deflection -0.705 in ,018.3: 1 fb : Bending Stress 21.323 ksi 33.000 ksi Length /DL Defl 1 fb / Fb 0.646: 1 Length /(DL +LL Defl) 336.0: 1 Shear 19.994 k 70.446 k a fv : Shear Stress 5.676 ksi 20.000 ksi fv / Fv 0.284: 1 Force & Stress Summary « -- These columns are Dead + Live Load placed as noted - -» DL LL LL +ST LL LL +ST Maximum Only Ca Center a Center Cants e. Cants I Max. M + 91.51 k -ft 30.22 91.51 k -ft Max. M -0.00 k -ft Max. M @ Left k -ft Max. M @ Right k -ft Shear @ Left 14.26 k 4.65 14.26 k 1 Shear @ Right 19.99 k 6.62 19.99 k Center Defl. -0.705 in -0.233 -0.705 -0.705 0.000 0.000 in Left Cant Defl 0.000 in 0.000 0.000 0.000 0.000 0.000 in m Right Cant Defl Query Defl @ 0.000 in 0.000 0.000 0.000 0.000 0.000 0.000 in 0.000 ft 0.000 0.000 0.000 0.000 in Reaction @ Left 14.26 4.65 14.26 14.26 k Reaction @ Rt 19.99 6.62 19.99 19.99 k 1 Fa calc'd per Eq. E2 -1, K *L/r < Cc I Beam Passes Table B5.1, Fb per Eq. F1 -1, Fb = 0.66 Fy 11 11 11 1 4- ,l 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I Title : Mirage Storage Job # A07072 Dsgnr: MT Date: 5:22PM, 19 JUN 07 Description : 1 Scope : p Rev: 580006 i User: KW- 0607408. Ver5.8.0. 1- Dec -2003 (c)1983 -2003 ENERCALC Engineering Software Steel Beam Design Page n I st.Wels.:: -,,,, ,,,. s . c»c (.. n z:r�a arx :- - 44,MZrt - tm,, x� ^1-Nor s...laarpneva w.cw ,NAv �u• ve... rs wae_ceru .s wet. .zr +rnctam.m x^rsm.:r:., ,,,, aaw @ storage eew x. F ..r.tot t Description B3 I 1 Section Properties W12X40 ; _ . ri ...V... .. 4 f,: ..., .. 21,,.K. .. ,...,:...- s .,::3 M....... :emu. , a,. ./ 0.:: ..,, _ .. z: Depth 11.940 in Weight 40.08 #/ft Web Thick 0.295 in Ixx 307.000 in4 I Width 8.005 in Iyy 44.100 in4 Flange Thick 0.515 in Sxx 51.500 in3 Area 11.80 in2 Syy 11.000 in3 Rt 2.140 in R -xx 5.130 in 1 Values for LRFD Design.... R -yy 1.940 in J 0.950 in4 Zx 57.000 in3 1 Cw 1,440.00 in6 Zy K 16.800 in3 1.020 in 1 11 a 11 111 111 II 1 • 11 11 ill . 111 4,1. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I Title : Mirage Storage Job # A07072 Dsgnr: MT Date: 5:22PM, 19 JUN 07 Description : Scope : Rev 580006 User KW- 0607408, Ver580, 1 -Dec -2003 Steel Beam Design Page 1 w I , (c)1983-2003 ENERCALC Engineering Software mirage storage.ecw Floor 0 ' 11.1 ?hV.'4't +t' V,:7.raT£.F ','16YfiIVS RSA'n':..r,XZ 'SSx1'e,Vm,... EVI.S:YAG 351F1:..P.?F4iSSMY[`V. TA4a.R. V.3t,Vr,.V.,.+ti4 '3 ,Mt.X,V,- -Sw..V A'.X.I!..l?T.i.Va Mfa,=14 ,dPf4Vs,K rr..Y.A. .,',V ,.r1,1<e2 t4.5 Description B4 1 General Information Code Ref: AISC 9th ASD, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Steel Section : W12X79 Fy 50.00ksi Pinned- Pinned Load Duration Factor 1.00 I Center Span 20.00 ft Bm Wt. Added to Loads Elastic Modulus 29,000.0 ksi Left Cant. 0.00 ft LL & ST Act Together Right Cant 0.00 ft Lu : Unbraced Length 0.00 ft • Point Loads Note! Short Term Loads Are WIND Loads. r - s. Y.vr.a aay.tw: x.` setec s^ ..v..aaravetunm caa7.'^a...te.m.Nyz..a a: ek 5wwduc at• 'Faw¢s.":emawg, : .,'v.ve.ava,.au. ..-tua;£daresv.,t..vt.s;X.,n.o to ++ssi,ts -Arwt . .,.4;1 # 1 #2 #3 #4 #5 #6 #7 Dead Load 5.500 7.200 5.500 k Live Load 11.700 15.500 11.700 k J Short Term k Location 6.670 10.000 13.330 ft Summary 1 Beam OK I Static Load Case Governs Stress Using: W12X79 section, Span = 20.00ft, Fy = 50.0ksi End Fixity = Pinned - Pinned, Lu = O.00ft, LDF = 1.000 Actual Allowable Moment 232.164 k -ft 294.250 k -ft Max. Deflection -0.795 in II fb : Bending Stress fb / Fb 26.037 ksi 0.789: 1 33.000 ksi Length /DL Defl 911.2: 1 Length/(DL+LL Defl) 301.9 : 1 Shear 29.338 k 116.372 k fv : Shear Stress 5.042 ksi 20.000 ksi a fv / Fy 0.252: 1 Force & Stress Summary �� 1111 « -- These columns are Dead + Live Load placed as noted - -» DL LL LL +ST LL LL +ST Maximum Only (M Center as Center Cil Cants (M. Cants Max. M + 232.16 k -ft 76.63 232.16 k -ft 1 Max. M - k -ft Max. M @ Left k -ft Max. M @ Right k -ft Shear @ Left 29.34 k 9.89 29.34 k I Shear @ Right 29.34 k 9.89 29.34 k Center Defl. 0.795 in -0.263 -0.795 -0.795 0.000 0.000 in Left Cant Defl 0.000 in 0.000 0.000 0.000 0.000 0.000 in Right Cant Defl 0.000 in 0.000 0.000 0.000 0.000 0.000 in I ...Query Defl @ 0.000 ft 0.000 0.000 0.000 0.000 0.000 in Reaction @Left 29.34 9.89 29.34 29.34 k Reaction @ Rt 29.34 9.89 29.34 29.34 k I Fa calc'd per Eq. E2 -1, K *L/r < Cc I Beam Passes Table B5.1, Fb per Eq. F1 -1, Fb = 0.66 Fy Section Properties W12X79 I Sm✓.NV'.x}.Wa.i.c 1 : REtitdJi.rn. 6PiAYC�":..'W 4+ A+ r.' ux.. a+. icefl. 3f.. Lfa..._'. vv+. +.+..itiica- wb.iaa+t ^xs.VrS'�: : �..<++ i?tuw^ wsSy?. aswt5. Y'.. Nrs. x` kL+ cua+ rti»..= �atw�s. s`. sw: i✓4X!Y«c tan« wz, i-.. i. ?�.,...' wsw: rG.-: Sra'. b' w.. r::» 1tliiM %WXieM.'r# ^tiM1M'.MxalafirRx Depth 12.380 in Weight 78.80 #/ft Web Thick 0.470 in Ixx 662.000 in4 Width 12.080 in lyy 216.000 in4 Flange Thick 0.735 in S)x 107.000 in3 I Area 23.20 in2 3.310 in Syy 35.800 in3 Rt R -xx 5.340 in Values for LRFD Design.... R -yy 3.050 in I J 3.840 in4 Zx 119.000 in3 Cw 7,320.00 in6 Zy 54.300 in3 K 1.330 in 1 4- ) 1 1 1 1 1 1 1 1 i 1 1 1 1 1 1 1 I Title : Mirage Storage Job # A07072 Dsgnr: MT Date: 5:22PM, 19 JUN 07 Description : 1 Scope : Rev 580006 Page 1 j User: KW7408. Ve 5.8.0. Dc 2003 Steel Beam Design (c)1983-2003 - 060 ENERC ALC Engineering Software mirage storage ecw Floor Q , 13 ixd,..t "gNe .SrR+".,,,,,,.,,, A.:'F , 7, 1 .,,,,,^ A.1.+F. ,,,,,,,,,,, 3M+,r.?#"°t',,,,,,,.,,, A.4 ai,,, :,,.,,,,,,,? 71,,1rM," , .Y„%.110 C, Sfl, , ,:`,,,, , hsVS2h,,,,, g17fi:e,,,,A4: Description B5 General Information , Code Ref: AISC 9th ASD, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Steel Section : W12X45 Fy 50.00ksi Pinned - Pinned Load Duration Factor 1.00 Center Span 20.00 ft Bm Wt. Added to Loads Elastic Modulus 29,000.0 ksi Left Cant. 0.00 ft LL & ST Act Together Right Cant 0.00 ft Lu : Unbraced Length 0.00 ft Distributed Loads Note! Short Term Loads Are WIND Loads. ,, . - erm........nW.,... .,,,.^.xxaw*x.ss:-...“,,, ,,,,,-,, Zvi:.:.,%,, >r 2s,,,,, .cav=xrs,nzs^ [m;..ere. .. atrr "rr :.o.,?tgt.,av c.„ e..:w;„,,r, . .v z.ua,- .o.�i�..e.. Aarc.% # 1 #2 #3 #4 # 5 #6 # 7 DL 0.108 k/ft LL k/ft I ST k/ft Start Location ft End Location ft Point Loads Note! Short Term Loads Are WIND Loads. #1 #2 #3 #4 #5 #6 #7 Dead Load 6.500 k Live Load 14.400 k Short Term k I Location 10.000 ft Summary Beam OK Static Load Case Governs Stress I Using: W12X45 section, Span = 20.00ft, Fy = 50.0ksi End Fixity = Pinned - Pinned, Lu = 0.00ft, LDF = 1.000 Actual Allowable Moment 112.142 k -ft 158.675 k -ft Max. Deflection -0.651 in fb : Bending Stress 23.322 ksi 33.000 ksi Length /DL Defl 1,000.0: 1 ib / Fb 0.707: 1 Length /(DL +LL Defl) 368.7 : 1 Shear 11.978 k 80.802 k fv : Shear Stress 2.965 ksi 20.000 ksi fv / Fv 0.148 : 1 t -, I Force & Stress Summary «- These columns are Dead + Live Load placed as noted - -» DL LL LL +ST LL LL +ST Maximum Only t Center Ca Center C ants Ca Cants Max. M + 112.14 k -ft 40.14 112.14 k -ft Max. M - k -ft I Max. M @ Left k -ft Max. M @ Right k-ft Shear @ Left 11.98 k 4.78 11.98 k Shear @ Right 11.98 k 4.78 11.98 k 1 Center Defl. -0.651 in -0.240 -0.651 -0.651 0.000 0.000 in Left Cant Defl 0.000 in 0.000 0.000 0.000 0.000 0.000 in Right Cant Defl 0.000 in 0.000 0.000 0.000 0.000 0.000 in • ...Query Defl @ 0.000 ft 0.000 0.000 0.000 0.000 0.000 in Reaction @ Left 11.98 4.78 11.98 11.98 k Reaction @ Rt 11.98 4.78 11.98 11.98 k Fa calc'd per Eq. E2 -1, K *L/r < Cc I I Beam Passes Table B5.1, Fb per Eq. F1 -1, Fb = 0.66 Fy 1 1 4t) 5 1 _ Title : Mirage Storage Job # A07072 Dsgnr: MT Date: 5:22PM, 19 JUN 07 Description : ,1 Scope : Rev' 580006 User: KW- 0607408, Ver5.8.0, 1- Dec -2003 Steel Beam Design Page 2 r (c)1983 -2003 ENERCALC Engineering Software mirage storage.ecw Floor Gk n., Va h r a.0 +.s..xs sesx v +=:..",, ,,,,,,,, ,MS„xrV.,, m sc ,, V...a',? tx, 4, ,, ,H,,V9,,,,a V.rx rr x r:f... V. "'' a» .e,,,,, +s rtt es Va..V. xxa ;tt ',..1 a .,S ,-Pftmz .i,tr ?* Description B5 Section Properties W12X45 1. Depth 12.060 in Weight 44.84 #/ft Web Thick 0.335 in boc 348.000 in4 Width 8.045 in lyy 50.000 in4 Flange Thick 0.575 in Sxx 57.700 in3 Area 13.20 in2 Syy 12.400 in3 1 Rt 2.150 in R -xx 5.150 in Values for LRFD Design.... R YY 1.950 in J 1.310 in4 Zx 64.200 in3 Cw 1,650.00 in6 Zy 19.000 in3 K 1.080 in M 1 1 I 1 1 1 II 1 INN En Milli MIN 61_111111. MINI ;Fain 'age sis num ipirat mon num gimi Nun RE, lin I. Title : Mirage Storage Job # A07072 Dsgnr: MT Date: 5:22PM, 19 JUN 07 Description : Scope : Rev: 580006 Page 1 " User: KW -0607408, Ver5.8.0, 1- Dec -2003 Steel Beam Design g (c)1983 -2003 ENERCALC Engineering Software mirage storage.ecw Floor S Ill irat, k YLE C..7,1 -, ,,,, V....,,4,MITi r,,, T,C. ...V +r',,M.::1'35..3Mn.",, .,, 4.91,;..19'S.-:;?.i;S41, ,14, , 4 1 4.75, ,,, ,,7411, 5[...-T 7, ti3e..' ,,,,`,,, ,,,,,,,,,,"..: W, ,..F ,,, ....1i Description B6 General Information Code Ref: AISC 9th ASD, 1997 UBC, 2003 IBC, 2003 NFPA 50001 till .4-, :«=,. ,. ,,..-:... .,M17, : .« _.,, :: :., , . ate . : ,.., . ,,, , ,. Steel. Section : W12X53 Fy 50.0 ksi Pinned- Pinned Load Duration Factor 1.00 I Center Span 19.75 ft Bm Wt. Added to Loads Elastic Modulus 29,000.0 ksi Left Cant. 0.00 ft LL & ST Act Together Right Cant 0.00 ft Lu : Unbraced Length 0.00 ft Distributed Loads Note! Short Term Loads Are WIND Loads. F BS? 4N E9:...."1'9. - +.. ., ASP., ,A. e5 -,,, ,, ,,, , .:. . - ,s ,. ,...r AY ,,,,,..M.. ,>,,,,,,,,,%'- -- >Y}iW., ,,,,,,,,- -.'.:. -- 3., , ..,, ,,,, F; ,,,, # 1 #2 #3 #4 #5 #6 #7 DL 0.334 0.625 0.435 k/ft LL 0.834 1.250 0.834 k/ft I, ST k/ft Start Location 7.000 ft End Location 7.000 19.750 ft Summary Beam OK Static Load Case Governs Stress Using: W12X53 section, Span = 19.75ft, Fy = 50.0ksi End Fixity = Pinned - Pinned, Lu = 0.00ft, LDF = 1.000 Actual Allowable Moment 128.943 k -ft 194.150 k -ft Max. Deflection -0.738 in fb : Bending Stress 21.917 ksi 33.000 ksi Length /DL Defl 975.7: 1 fb ! Fb 0.664:1 Length /(DL +LL Defl) 321.1: 1 Shear 28.079 k 83.214 k fv : Shear Stress 6.749 ksi 20.000 ksi fv / Fv 0.337: 1 Force & Stress Summary - s„w.vne;a,:.ucao.:vat ..:�icara aassu»� <n..ti,m,«.r� n .. m: a <ca.z...:auar :,aen?.«s+,.sr. z..:wmxuwn>rw,.:�+; + x„ �w ,,w.•;?- my,�e- rcKV,:�.,.,aaaaut «- These columns are Dead + Live Load placed as noted -» DL LL LL +ST LL LL +ST Maximum Only a Center as Center a Cants as Cants Max. M + 128.94 k -ft 42.44 128.94 1 Max. M k k-ft -ft Max. M @ Left k -ft Max. M @ Right k -ft Shear © Left 28.08 k 9.21 28.08 k Shear @ Right 25.34 k 8.35 25.34 k Center Defl. -0.738 in -0.243 -0.738 -0.738 0.000 0.000 in Left Cant Defl 0.000 in 0.000 0.000 0.000 0.000 0.000 in Right Cant Defl 0.000 in 0.000 0.000 0.000 0.000 0.000 in ...Query Defl @ 0.000 ft 0.000 0.000 0.000 0.000 0.000 in Reaction @ Left 28.08 9.21 28.08 28.08 k Reaction @ Rt 25.34 8.35 25.34 25.34 k I Fa calc'd per Eq. E2 -1, K *Llr< Cc I Beam Passes Table B5.1, Fb per Eq. F1 -1, Fb = 0.66 Fy I 1 1 4,`s FOE MON IP1111 up; 1E11 1111111 OBI MIMI /Nita MIR ..1111111111 1111111 pin foie ipmg mum so I Title : Mirage Storage Job # A07072 Dsgnr: MT Date: 5:22PM, 19 JUN 07 Description : Scope : Rev: 580006 Page 2 y User: KW- 0607408, Ver5.8.0, 1-Dec -2003 Steel Beam Design (c)1983 -2003 ENERCALC Engineering Software mirage storage ecw Floor i ".,,,'t,, i M ..'.,151,VIA.InF., Y.., 1..esP%. 031 -VLa�x.,,,,W.M.`S....:vHelU. W, i. C7Kt Y. V.', I. tideA,- Ntavat.,Nr,:. ..'J, v�. . Y3'if.A h.. A'..'..d2?deO 141�'A Description B6 I i Section Properties W12X53 v.:arrua....V.. n,..I �a Mn,,.r .,VtXi. +... n...e.V.bo,Pr4,r tl .W. - 7,rY. IF•,MP.V116...mw...dan. «.r -a e. -t .>s« .m+_e.. »I.S.'VS,it#9er x. ,IP.us z.4,,.a..,. xu.,.. Depth 12.060 in Weight 52.99 #/ft Web Thick 0.345 in Ixx 425.000 in4 I Width 9.995 in lyy 95.800 in4 Flange Thick 0.575 in Sxx 70.600 in3 Area 15.60 in2 Syy 19.200 in3 Rt 2.710 in R -xx 5.230 in Values for LRFD Design.... R 2.480 in J 1.580 in4 Zx 77.900 in3 Cw 3,160.00 in6 Zy 29.100 in3 K 1.170 in • 1 1 .1 1 ,I . 1 D 1 1 D 4,1 ti, Title : Mirage Storage Job # A07072 Dsgnr: MT Date: 11:57AM, 10 SEP 07 Description : Scope : Rev: 580005 User. KW- 0607408. Ver5.8.0, 1- Dec -2003 Steel Beam Design Page 1 I (c)1983 -2003 ENERCALC Engineering Software mirage storage.ecw Floor - ..,ftwa, ,,, A:...; x.•..,,,,.c ;:tixn),,...s> tt...... w.o avn: +,s.w...r :?,,,,,,,, .. ,vr....,,,,,,,,, ,,,, ., ?2 !: ass tsnx.+ xsa.-........r ,,•(- .44w,' Description B7 Bms at Grid '.;=-7; 'C.5, 1 -2.4 i - General Information Code Ref: AISC 9th ASD, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Steel Section : W12X65 Fy 50.O0ksi Pinned- Pinned Load Duration Factor 1.00 Center Span 20.00 ft Bm Wt. Added to Loads Elastic Modulus 29,000.0 ksi Left Cant. 0.00 ft LL ST Act Together Right Cant 0.00 ft Lu : Unbraced Length 0.00 ft I Distributed Loads Note! Short Term Loads Are WIND Loads. ri .• ,. ., k91 ,.,W , ., - .. .. � , .w: ? w w >:.'� . •rt.15Wit ..., ., A.-. w`..4,nww,.. w :. .4*» - '�i' #1 # 2 #3 #4 #5 #6 #7 DL 1.070 k/ft LL 2.500 k/ft ST k/ft Start Location ft End Location ft g Summary � Beam OK ;�, Static Load Case Governs Stress Using: W12X65 section, Span = 20.00ft, Fy = 50.Oksi End Fixity = Pinned - Pinned, Lu = 0.00ft, LDF = 1.000 Actual Allowable Moment 181.744 k -ft 219.750 k -ft Max. Deflection -0.847 in fb : Bending Stress 24.811 ksi 30.000 ksi Length /DL Defl 908.0: 1 fb / Fb 0.827:1 Length /(DL +LL Defl) 283.5 : 1 Shear 36.349 k 94.536 k fv : Shear Stress 7.690 ksi 20.000 ksi fv / Fv 0.384: 1 • Force & Stress Summary i «- These columns are Dead + Live Load placed as noted - -» DL LL LL +ST LL LL +ST Maximum Only @ Center 0 Center as Cants Cants Max. M + 181.74 k -ft 56.74 181.74 k -ft ,E Max. M - k -ft Max. M @Left k -ft Max. M @ Right k -ft Shear @Left 36.35 k 11.35 36.35 k Shear @ Right 36.35 k 11.35 36.35 k Center Defl. -0.847 in -0.264 -0.847 -0.847 0.000 0.000 in Left Cant Defl 0.000 in 0.000 0.000 0.000 0.000 0.000 in I Right Cant Defl 0.000 in 0.000 0.000 0.000 0.000 0.000 in ...Query Defl @ 0.000 ft 0.000 0.000 0.000 0.000 0.000 in Reaction @ Left 36.35 11.35 36.35 36.35 k Reaction @ Rt 36.35 11.35 36.35 36.35 k 11 Fa calc'd per Eq. E2 -1, K *Llr < Cc I Beam Passes Table B5.1 but Non - Compact, Fb Per Eq. F1-4 , fl' 1 1 1 b( ,,1 awn Ow m — an O lin OM — mew QIN SRI I Title : Mirage Storage Job # A07072 Dsgnr: MT Date: 11:57AM, 10 SEP 07 Description : 1 Scope : Rev. 580006 User. KW- 0607408. Ver580 1- Dec -2003 Steel Beam Design Page 2 t (c)1983 -2003 ENERCALC Engineering Software mirage storage.ecw Floor - N.V ,,,, ars..cr ...: ,..,,-.,, — r..x+s .......I.! MA,. .. ,.....; ea_s aT,^s - ;.. ??W,..,fair .e : . Description B7 Bms at Grid C & C.5, 1 -2.4 II Section Properties W12X65 Depth 12.120 in . Weight 64.88 #/ft Web Thick 0.390 in Ixx 533.000 in4 l Width 12.000 in Iyy 174.000 in4 Flange Thick 0.605 in Sxo( 87.900 in3 Area 19.10 in2 Syy 29.100 in3 Rt 3.280 in R -xx 5.280 in I Values for LRFD Design.... R -yy 3.020 in J 2.180 in4 Zx 96.800 in3 1 Cw 5,770.00 in6 Zy 44.100 in3 K 1.200 in M. 0 a� • 1 iii II 11 ill II 11 ii 1 4.)ro 1 ( &ma y ' ( ' 3e '..., -) i rc-ooe- e c e r --, ti? 1 -� � 1,1 t: --• c ;en . 1 Iv‘ .f 1. E a , Ite 1-- 1 I I' 1 I 1 1 ,1 1 1 1 1 I- u 1 f Co 1 ' ; afghan associates, inc. ENGINEERING j f■J1 t,((Gr lri i i By Date: �t Project No.: 1 CO 4875 SW Griffith Drive 1 Suite 3001 Beaverton, OR 1 97005 I 503.620.30301 tel 503.620.55391 fax www.aaieng.com Sheet: 4., q Z1 of: SRN) OM 111111 nil MIN MIND 11111) 1111•ki Wig '11111111 NMI , 111111116 US 1.11 ,1111110 111111/ MN Nal i , I 0 V7 z iP P f r Ic- ©p , P C 4 )C)31Z) c 2, Iv\ \Z,\ - r -te- 5, )ZlCjz) y �' d, CD (4'6') 1 u 0 OK 4 )0 `/ OK_ t....) 1 o1C) z I- 1. 1 I 1 1 1 1 1 .II 111 _ , .; . AA 1 afghan associates, inc. �,t- (i By: Date: 1 t ri: ENGINEERING Project No.: �"D1 4875 SW Griffith Drive 1 Suite 300 1 Beaverton, OR 1 97005 I 503.620.3030 1 tel 503.620.55391 fax www.aaieng.com Sheet: 1 Z/ of: 11 czao c- 1 11 11 c„. 'z 21 p', ( 5 ) Z S 0'f C-0O 1 v . Typ, 1 L ), Pr N 1� 1 1 1 AA 1 1 . 1 1 1 tf *' _ afghan associates, inc. -� f_ By: Date: / d ENGINEERING Project No.• �o1Q1Z 4875 SW Griffith Drive I Suite 300 1 Beaverton, OR 1 97005 503.620.30301te1 503.620.55391 fax www.aaieng.com Sheet: ✓ 1 of: `' ECONDARYeFRAMING DIMENSIONS AND SECTION PROPERTIES OF STANDARD ZEES 11 )-B1-1 Fy = 55.0 KSI R = 0.125 In WEB I -B2 I Full Section Properties Effective Section Properties (Fully Braced) X -X Axis SIZE Thickness Weight A Ix -x rx Iy -y ry Cw J Ae Ixe . Sxe Max Vay I Web x Flange GA in pif In in in In in ine In in i n 4 in' K -ft Kips 16 0.057 1.926 0.566 1.552 1.665 1.079 1.380 2.543 0.00061 0.381 1.358 0.621 1.704 3.665 4" x 2 14 0.070 2.365 0.696 1.891 1.649 1.334 1.385 3.135 0.00114 0.515 1.704 0.793 2.176 5.367 16 0.057 2.314 0.680 3.910 2.397 1.079 1.259 6.298 0.00074 0.389 3.452 1.06 2.9272.865 6 x 2 14 0.070 2.841 0.836 4.778 2.391 1.334 1.263 7.767 0.00137 0.530 4.327 1.355 3.719 5.331 P 16 0.057 2.701 0.794 7.628 3.099 1.079 1.165 12.000 0.00086 0.393 6.611 1.512 4.150 2.102 8" x 2 14 0.070 3.317 0.976 9.336 3.094 1.334 1.169 14.806 0.00159 0.538 8.509 2.015 5.529 3.907 12 0.105 4.976 1.463 13.876 3.079 2.039 1.180 22.500 0.00538 1.055 13.598 3.354 9.204 12.437 I 8" x 3" 14 0.070 3.555 1.0456 10.437 3.160 2.111 1.420 22.366 0.00170 0.552 9.116 2.106 5.780 3.907 12 0.105 5.333 1.568 15.513 3.145 3.219 1.433 33.920 0.00576 1.0541 14.430 3.447 9.461 12.437 I 8" x 3 14 0.070 3.793 1.116 11.537 3.216 3.139 1.678 31.893 0.00182 0.556 9.610 2.162 5.933 3.907 12 0.105 5.690 1.673 17.149 3.201 4.780 1.690 48.284 0.00615 1.022 14.856 3.408 9.354 12.437 I 9" x 3" 14 0.070 3.793 1.116 13.725 3.508 2.111 1.376 29.162 0.00182 0.554 11.892 2.429 6.665 3.446 12 0.105 5.690 1.673 20.427 3.494 3.219 1.387 44.244 0.00615 1.062 19.032 4.051 11.118 11.728 1 9" x 3 14 0.070 4.031 1.186 15.121 3.571 3.139 1.627 41.662 0.00194 0.559 12.341 2.431 6.671 3.446 12 0.105 6.047 1.778 22.504 3.557 4.780 1.640 63.099 0.00654 1.030 19.582 4.012 11.012 11.728 10" x 2 14 0.070 3.793 1.116 15.846 3.796 1.334 1.094 24.348 0.00182 0.542 14.104 2.625 7.203 3.083 12 0.105 5.690 1.673 23.607 3.756 2.039 1.104 37.031 0.00615 1.070 23.139 4.571 12.545 10.483 1 10 x 3 14 0.070 4.031 1.186 17.571 3.850 2.111 1.334 36.946 0.00194 0.556 14.860 2.681 7.357 3.038 12 0.105 6.047 1.778 26.177 3.837 3.220 1.346 56.074 0.00654 1.068 24.431 4.691 12.874 10.483 1 10 x 3 12 0.105 6.404 1.883 28.748 3.907 4.781 1.593 80.110 0.00692 1.036 25.123 4.653 12.770 10.483 10" x 4" 14 0.070 4.507 1.326 21.022 3.982 4.455 1.833 72.413 0.00217 0.562 15.884 2.686 7.372 3.083 12 0.105 6.761 1.988 31.318 3.969 6.775 1.846 109.55 0.00731 1.102 27.143 4.995 13.708 10.483 - I 12 x 2 12 0.105 6.404 1.883 36.685 4.413 2.039 1.041 55.469 0.00692 1.079 35.980 5.929 16.273 8.646 I 12" x 3" 14 0.070 4.507 1.326 27.077 4.520 2.111 1.262 55.520 0.00217 . 0.559 21.909 3.188 8.750 2.546 12 0.105 6.761 1.988 40.399 4.508 3.220 1.273 84.313 0.00731 1.077 37.833 6.077 16.678 8.646 12 "x3V2" • 12 0.105 7.118 2.093 44.113 4.591 4.781 1.511 120.84 0.00769 1.045 38.860 6.042 16.583 8.646 c Metal Sales Manufacturing Corporation/ Subject to change without notice/ Effective Date 4104 - 17719 I 800.406.7387 (Corporate Office) • www.nalsalea.us.corn 7-3 ..lsai - r3 1 .. do F- 504 - H f - .e i I - 1 -- R. ;,--\t'r •'o t--kkw 1 '0------":0,- F ( ) , Lis e- • �, :s� V t; ©,c` 1 v-A, (a) coop S z o s cl- MG.; ; g s , = ti) i : 7 11g.ff --- ‘-kikare- 0 H ks 1 z 1•cas 1 gl: M - ■+1' rr (- j u 6) c.0 -5cir ( 0 1 ) G z, r Fr- ) 1 knee- ,S- � P- 'hi P P 1 1, l P c_ (- )zs)()1.5.1z)(s l,li?___ I i ti M re 3,5 r- 11 0-, (0) ( szso- 5 1 .1 I ` afghan associates, inc. {ALI _ Y: I E NGINEERING 1� � Date: (p1 1 ) 1 d 1 B l� o Project No.: 4875 SW Griffith Drivel Suite 3001 Beaverton, OR 197005 I 503.620.30301 tel 503.620.55391 fax Z www.aaieng.com Sheet: �'� J of: 1 1 6---t `7 4 1 1/= 4 ,7 Ce,. T P P Pr(_" °Y )( 1.fas � 1 "^1 5, S s yv■ z 1, 1 1L7- tL -r , c®5� I ∎ 0 v--, t.,010 X > Z 1 LI, t. (-7121,,,e_ r..„--, iD --L,s-- , 2- , &... F F - .(` -i zs) ( c',) (I z z, tr, d-' 1 4. I Q r S it t G tl q �`' pots 1 loz Me = ZCr• O 1 — --� uJ ,i - ( t Z s ( \ ) 1) 7 . , 1 -.)e— ) if—. s.- Z- & i t% ''- 1 1 1 1 I �- 6 J 1 afghan associates, inc. t; By: Date: l E NGINEERING Project No.: 4875 SW Griffith Drive 1 Suite 300 1 Beaverton, OR 1 97005 503.620.3030 1 tel 503.620.55391 fax �- I www.aaieng.com Sheet: S, 4 of: mos ion ow woo owl woo limo ono • woo los mow loon ono low tow wo • OMB INN MO � Hea / L Ta 1 Header Load Table Notes 1. Deflection limit is U360. 2. Allowable Toads have not been modified for wind or earthquake loading. 3. Headers are made from two "boxed" or back to back members. 4. Allowable moment, shear and web crippling are based on twice the capacity of a single member. The moment of inertia is based on twice the value of the single member. 5. Bearing length for web crippling = 1° minimum. 6. Values are for unpunched members. 7. Members are assumed adequately braced for bending. 8. Allowable loads are for simply supported headers with uniform bending loads only. i ...___i__. , i • 1 1 Boxed Header Back -to -Back Header Header Allowable Uniform Loads (lbfft) t t 1cleitrispength a,, :T It r .r - { s' ! ,iSPAH J p k v , r f. - r 'ect :' i 3 x r" 4 , r, ,} t., . 5 11 ar 1tt ft 12 6 8 : � x a 5505162-33 33 893 a 670 e i 536 a 374 a 210 a 127 a 73 e :550S162 33 1982e 1232e::r 789e 5470' 5505162 -54 33 2779 a 1563 a 1000 a 694 a 390 a 203 117 5505162 -54 50 .. 3643e 2049 e 1311 a 910 e: ; ` 3 96 e ; 203 . " 117r 550S162 -68 33 3514 a 1976 a 1265 a 878 a 488 a 250 144 5505162 -68 50 5176e 291'1 e , 1863e 1157 a `488 250 14 < oala ata as _ _Y'!riz; ustA KYN3H"A , :v; 3 - .aI . :?,'9r ,ia _ . ..� i .j fi . ,. I �"'., F _ . .5[ 6005137 - 33 816 a 612 a 4 a 373 a 209 a 134 a 80 e 6008162 - 33 816 a 612 a 489 a 408 a 237 a 152 a 80 e 600520033 33 816e 612e 489e 408e 254e 162e 104e 600S13743 33 ? ' r 15.10 e a 1233 a 7899 548 9 '308 a 178e 103 • 6005762 -43 33 1810 a 1357 e ` ' 889 a 617 a 347 g , a 117 6905200.43 33 1810 a 1 357 e : 819 a 638e 359 a 2298 1 e bag -. 33 ` . -.1810e 1357e 967 a 671 e 377e _; 241 e = 155.e 600S137-54 33 2812 a 1581 a 1012 a 703 a 395 e . 220 a 127 6005162 -54 33 3135 a 1763 a 1128 a 783 a 440 a 250 a 144 6008200 54 33 3566 a 2006 a 1283 a 891 a 501 a 290 a 167 6005250 54 33 3392 e 1908 a 1221 e 848 a 477 e 305 a 193 e 600S137 5 ;4 50 = 3610 a 226.9 e i 1452o 1008 a 429 a 220 2 .1277.':. - .: . :.:: 600S162.54 50 3610 a 2313 a 1480 a 1028 9 48 250 /44,:;:,. 6005200 -54 50 3610 a 2 500 1 6009 ' 11.11 a 56 a 290 a 167 6008?,50-Cr.1.. . , 50 ....7.�..,' _ . _3 610 a 26668. ... ,1706 e . f 166 a .. _ .. 641 a .328 a . 190 x :: 600S137-68 33 3562 a 2004 a I 1282 a 890 a 501 0 270 156 6005162-68 33 3968 a 2232 e 1 1428 e 992 e 558 e : 308 178 II 6008200-68 33 4506 e 2534 e ( 1622 a 1126 e 633 a 358 a 207 • 600S250-68 33 4456 a 2506 a 1604 a 1114 a 626 a 401 a 239 600S137.68 50 5274 a 2966 a :4 1898• a 12528 528 a 270 156 6005162 -68 50 5846 a 3288 a �l ' 2104 a 1426'e ' F 601 a 308 178 600 600 S200.68 50 6475 e = 3642 a 233'1 a 16f8 a X00 e r 358 207 52508 50 .,. ' , , . .6. .:5954 p 3349 e.: l , ,. . 2 1;43 a .. : 148a 8 ,' 807 a . . : 413 e - „ 6006137.97 33 5108 a 2873 e 1 1839 a 1277 a 715 366 2 600S162 33 5685 a 3197 a 2046 a 1421 a 799 I 419 242 600520097 33 6443 a 3624 a 2319 a 1610 a 906 a 490 283 6005250-97 33 7229 e 4066 a 2602 e 1807 e .. 1016 a 567 328 600S137 97 50 7526 a 4233o 2708 a 1694 a 715 ' 366 2 t1 . 6 005162 97 50 '8403 a 4727e .: 30 : 1941 a :. 819 419 242: , 6005200.97 50 9560 a 5377 e 344 a 2270 a 958 490 2 . 600S250.97 - 50 • 10277e 57819:; 37008, 2569e `. 1109e 567 3 "e Web stiffeners required at each support i . ,. 37 SSML . s. s 1 1 i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 r -t • 1 : Header Allowable Uniform Loads (lb /ft) SPAN YteW Stren9♦h ,6' 8 ?:'1. ` it 10 ft 12 f! 2eC ,,A++ kst s $ : 4 v 5 tt . e_,. r �. +cs_d... a r,IV.. ,fte.ydr..m3 k ,t. >,... :nV= ,. �...._ «, : «w rr .. ems �s:�.'k ;i_ �. il._ K:'. .n,,.w ..:. v+�'a�u�.'. 303 a �� w+.3 - 227 a 174 a 121 e s9.i:2 :R „�5 -,t .t ,,sU.ew >.... e. 33 606e 454e 363a 227e 1 181 4e 1280 800 -33 606 a 454 a 363 a 30 3 a 181 a 148 e 8005162-33 33 606,e 454 a 363 a e l 303 a 189 e 800520043 806 e- 6728 425 a 272 e 80oS137.43 33 1344:8 1 008 a 80 a •672 0 4768 ; 305 a 21 1 e 1344:,8 1008 8 � 340 e ; 2'3 a :•. 800S -43 ` 33 13 44:0 1008 a 806 a 672 a 5040 .: _ : 240e-. y 800 3 806 a ; 672 a 504.0 r . 1008 e ' ; 33 ''.13448'...-.. ... , � � e . 258 e 8008250 -43 33 2674 a . . . 1541 a 2005 e 1070 e 602 e 385 e 8009137 -54 1604 a 1778 a 663 a 424 a 290 e 8005162-54 33 2674 a 2005 a 1324 e 744 e 476 a 331 e 8005200-54 33 2674 e 2005 8 1 1604 e 1252 a 704 a 451 a 313 e 1604 e 2674 e 2005 a ; a 778 a 446 a 258 e 8 00S 1 37 54 33 1604 e 80051375 :' 50 74 a 2005 8 1337 a 871 er' 501 a 290 e [ 16048 8 -54 50 "p",-,z."..,';.267.4:;0-1;./.-,1„:::-.:•1- 20058 919 e: # . 574 a ...,..:332:8:-,,,.• 2674 a 2005 8 1604e x337 a 608 a 373 e 8005200-54 50 1604;e 1937 a 951 e 26748 2e 7658 4698 3188 8005 68 _:. . 3 3 . 1959 a 1360 e 800S162 -68 33 5397 a 3361 e I 2155 a 1496 a 841 e 1 538 a 358 e 8009700 -68 33 5397 a 3774 e 1 1677 a 943 a 603 a 411 e 8005250 -68 33 5397 a 368 2415 e 8 e 1 2360 a 1639 a 922 e . 590 a 409 e 8005250-68 33 5397 a 3 a 2014 a 1076 a 550 a 318 . r�g7e 404&8 � 2901 ,:800513:74641".,'":: 162 5 397 a 4048 a 3177e :2206 8 : 1210:8 .619 a 358 a :' • 1 800576268: . 3238 a : a 1358e 711 a 411 a .. . 8005200 68: 50 5397 a 404 } 799 a '..4.68:e • 50 5387 e ° 4048 e � 3197 a 2220 a 7249'8 � 707 8 434 B00S 13 7865 a 4424 e I 2 0 1966 a 1106 a 491 8009137 -97 33 8632 a 4856 a 3107 a 2158 a 1214 a 7 e 6 009162 -97 33 9647 e 5426 a 3473 a 2411 e 1356 e { 868 e 566 e 8009200 -97 33 1 0675 a 6005 e i 3843 a 8005237-97 53 2668 a 15018 960 a 646 e 434 `800S13T =B7! 50 11588 a 8518 a .; 4171 _ 2897 .: 146.7: a _ _7 5 7 � . , • 800 &162 -97'- 50 12761 e . 71780 4 8 3190 a 1 a 849 a 491 , 5153 8 3578 e ' 1912 a : 979 e 8005200.97 50 1414 a 8052 a 3803 a 2138 a 11 a 646 50 14832 a 8557 a 5477 a s �r •,_ ; ' ,2 1ea- ' --- i stw . 646 - ti y= 7 33 r„ : z? 1 e 6 41 e a 400 a 320 a 258 e 10005162 -43 1 068 a 801 a 641 a 53 400 e { 320 a 267 e 10005200 -43 33 1069 a 801 e 641 e e 400 e ` 320 a 267 e 10005250 -43 33 1069 a 801 a 641 a 534 a 40 0 e i ....524 26 7 e 1000S162 -54 33 2124 a 1$93 e 1274 e :: 1 8 796 a 54 . 314 e' • 10005200 -54 33 2124 a 1593 0: 12748 1062 e ' 796 a . 1 . 589 e ` :; . 416 e . 10003254 53 ;.2124 e.. s - , : 1 } .... ' 1 e. 1062 4 637 e 474 e 10003162-54 50 2124 a 1593 e l 1274 a 1062 a 796 e 1 637 a 500 e 10005200-54 50 2124 a 1593 a 1274 a 1062 e 10005250 -54 50 2124 e 1593 e 1 1274 e 1062 e e "1170:e1" 6 63 e . ': 520 e. 10005162;68 33 4278.0 ' "321)8 : 1 ' 2567'0• • 10005200 -68 33 ,4278 a 3248'8,11 :-...” 2567 a ,. 2139 a -; 1297 e � e 576 8 50 .10003250 =.68 ... 33 "4278 8, 3208 e , 1 , .2567e , 2139 47._ . ' a 1257 804e - ' • 4278 0 3208 e I 2567 a 2139 a 1537 e I 984 a 623 e 10005162-68 4278 e 3208 e ' 2567 a 2139 a 1604 e , 1095 e 707 e 100052 -68 50 4278 a 3208 e 1 2567 a 2139 a 1604 a 1065 a 740 e 10005250-68 50 .6785:e 1 <,4343 a 3018:8,-.',"'"•!:1-:.::.-1595.:8.•.:,...i:. 1085 6:::-.1 .`.754 0' I i..,100.85180',97-..-.',..,::...;,;::-•••,- 2 33 12049 e 100032 7 33 12049 a 7493 a 4795 8 3330.8; .1.673 •8 11 a 832 e. `. • 10005250^97 . . . .. ` . 33 , .'. 42049 8 8199:0 5247 e - 36448 204 0 131 t e -:. ' : • ail e =_ 1000S162-97 50 12614 e 9460 e 6420 e 4458 e 2507 a 1483 e 858 e 10005200 -97 50 12614 a 9460 e 1 7115 a 4941 e 2779 e 1 1690 a 978 e III 7500 a 5208 a 2929 e` 1875 a 1104 e 10005250 -97 50 12614 a 9460 a _ • e 1040 '1 : Y'�v r 1.7 5�+ ..�3-1 � 6 8 660 8 526 a 427• e • 12009382 4761:e 1321 -e 1456 8 SBO e ' 440 8 • :1200S200 -54 ..1.,"33•••:-.' 1781 a 1321® 1056 a 880 a :::.;1:13643.0.'. 5 28-6 :." ,: :: : • :, 880 a , 660 e. .528 e ( 440 8`. • 12005162.54 50 : 1761 • a 13211: I : : ` •10568t. : 660 e 1 528 a 440 e 12009162 -54 50 1761 a 1321 e � 1056 a 880 e 1761 e 4 50 12005200-54 17 1321 e t 1056 a 880 a 660 a 528 a 440 e 12009250 54 50 1761 a 1321 a 1056 a 88 1328 a 857: e- . 595 e ` :12008200 -68 33 3543 a 2657 e i 2128 e ' 0 a 1777 e • `:,1200.5208 -68 • 33 ?3543 8 : 2657 a 21268 •17710 , ' 1 328 e i 1063 e. 12 S25Eh68 33. - 3543 a .. . 2657'8 2126 a 1771:0, 1328 e . ; ' 1044 e 12005162 -68 50 3543 a 2657 e 1 2126 a 1771 a 1328 e 1 1063 a 818 e ill ,. . 12005200-68 50 3543 a 2657 e 1 2126 e 1771 a 1328 e 1063 a 885 e 12005250 -68 50 3543 a 2657 e t 2126 a 1771 e 1328 e I 1063 e .12005162 97 = 33 10418 a 7814 a 5751 a 39940 2246 e f 1 0 1200 438 .; 998 8 5200=97 33 ' 10418 a : 7814:0 1 6251 : a 4365-0 24558 ! 1571 e _ 1 83 e. 1200 -97 53: ,' 70418 e ;. 7814. e , 6251 a 4733;8 ,2662 8 ( ' 1704 e; 12005162 -97 50 10418 a 7814 e j 6251 a 5209 a 3321 a 2125 a 1364 e II 12003200-97 50 10418 a 7814 e 1 6251 a 5209 a 3643 e I 2331 a 1538 e 12005250-97 50 10418 a 7814 e i 6251 a 5209 a 3815 a 2442 a 1695 e it "e" Web stiffeners required at each support • Sea page 37 `:or Header Load Table Notes 38 SS 1 Il Vim° I 3- 1 v�T- c , , _ Zvp �� �' ti d,4 S32 "105+),v - f,c s )4 9 w , __ _ .__ 1 -r- 4- C i , --4, g,,,, ft,) Z,03 I p, G 11,3 ch-0 z 3)9,F 1 '�°'av WIC L Z$ I'b ( Pr°irr 4,ZS ` 1 1 1 'Wp t f7p,r- LZ,S-') z Vn.j- � ,,, ri2 4Z© (2X )('2,5) z- (- . '(-tr 1 0 y IZS L rZS t> 5-3-1 ,'1. c trl - z),,‘ z 125 L ,zS) / z J 1 icl- , z Co 4- 1- - 4 7A, - 3-5,& , 1 Pi- fi ft_ Pv fi ' S-1,. ": (z- , = 2 d fa 1 1 4 '- I . fjce._ (-c- + a 51- +w ,f- ) : � z Z fe- c 1 4t I , t q ^ -c 7 -34- T`- lb 1 US"- (9(9 tf0 Z -54 STv 2, nL ' { A 1 afghan associates, inc. Y'-A l -A'G- t. (4V w � / ) I\ ) By: � A � Date: ENGINEERING P10107 Z- 4875 SW Griffith Drivel Suite 3001 Beaverton. OR 1 97005 Project No.• I 503.620.3030 1 tel 503.620.5539 1 fax www.aaieng.com Sheet: --- 1 of: 1 1 V -1 - 5-7- 1 CA ri 1 To 40 11 4----- i 4 ___.? R. 2 -- PA Q ---,-rt, c., 00 ,57.. 4 ._.___ I 4 1 s31 u5.1i,_ 400 5,..11‘,z.. , 4- ; :7) a '- fc c--. ----------- ' c .. ,,,,,, 4- I „ . , A tA LL I __ . -.4.- I a (,;,.-F.-)P) -, e, , 7 (5' -.., I / T 9 . -- 4'c' 2 _ (. ,;) .c...; 1 1 .. I 1 1 1 1 1 ra 11: A- A 1 afghan associates, inc. M. ■ tt c- (4 °E: I By Date: ENGINEERING • 4875 SW Griffith Drive 1 Suite 300 Beaverton, OR 1 97005 Project No I 503.620.30301 tel 503.620.5539 fax www.aaieng.com D Sheet: - ' 0 of: 1 ,LF F - "I - S�F�zzS) ,-,s()A-1z)(z,-) c zs5 1 . 4_ 4 ' 0 (---/ z f, / uyt �(ZJO - for, 2cL,;' ,2 c..- (5 ^ote--)-1 ) y z f'/ q ? C 2S CZ,$)C�.5) 1c o w L 1 • () iF LZ,$ 4 I z- ? - 2 Z Co 1 ' - 1 ( 5 - a'--Lo, 7". z 7 �f ( ? )(10') . + 2,5 ( /z)(s')z� 1 v Zs zf (S')L)0') I2-s 0 \A-t/0 w z p - L S `) r Z 'S 1 1 1 t}—) -J S 1 ' (9 )c tA c- Q-or2 z2z 0 t 5 v 1 ,..-,0 1 I : ":: + 1 afghan associates, inc. ;I'V\- \ PVJI \L By !C I Date: CI r: D ■ ENGINEERINGfl7� 4875 SW Griffith Chive' Suite 300 !Beaverton, OR 1 97005 Project No.: I 503.620.3030 1 tel 503.620.55391 fax www.aaieng.com Sheet: (1., I of: 1 1 '- � I;-17 — a (7 EL ( ` ,.pp(5,e- -,-1.,..>(, eve Ono 7 p 1.9L z - 7()%p (` z J f 4-fvs (z z ) c z,S') k) 11 1 + 4.s (I4 )+x,4,3 /L) c c lGlo 9,(iL, 'Y, 25 Z 2 �5.c (s')() +-1ZSp,c (.s') (z) zn0 1 d w z_ Io s LZ,S) c i 11 L ,, �k..._ �� Z)_z Leyz (-1L 1 (it c t, Z, — s�}- .� Z ? V fo D C.r z ` ,S t,F (1 - a- -9,to :' )(Z,$) 2. 4 Z III w z: I W .4-15,P` r ,P (A- z Z )— (o 1 (A 6 r (o to % ! (o 2 - 4,-5 J Z (o v L t 1 P s 1 1 'F 5t 11 / (1r7) -)- 4 ) , ± z, Sp, 0 z 4- , (.0.s / 4 ) (2._c c i (, f ZSpj- (s ) (10) .>.- \ZJp C Z,5 )`) c 437J I 1 w > rb F (2, s c l.; le) \ f 4i v z L, 1 o ' -to 04— L,54.._ 4c ` �Zdc� -,zoo p 2 Il I {{ , = µ: AA 1 afghan associates, inc. tM- q ln, By I Date: / Z --7 J ° , ENGINEERING 1p �z 4875 SW Griffith Drive 1 Suite 300 1 Beaverton, OR 1 97005 Project No.: I 503.620.30301 tel 503.620.5539' fax www.aaieng.com Sheet: (- "/ O' ` 7 -- of: 1 lA C S -c, oc Cot.) � ?T. Z)O- c z � �.5 C 5 ) C1o) 4- 44p.br(z)(Z,E)(►, ro5 P z 2 �P (S) i ) 125p�� ( 2,; )(It) C - S(�s z,S / 1; pt.F a tA r '- D y 1,/z- U c, 9, z so - (o z 11 a 1 1 1 1 1 7 afghan associates, inc. v\A /�� � \ By I Date: Z 2-1t7 7 ENGINEERING ,f_ � - t D�Z� Project No.: ' �' 4875 SW Griffith Drivel Suite 300 1 Beaverton, OR 1 97005 503.620.30301 tel 503.620.55391 fax www.aaieng.com Sheet: r 5 of: II CFS Version 5.0.2 Page 1 Analysis: RF3RD_EXT.anl Mark Temple 11 Rf - 3rd: Ext. Stud AAI Engineering, Inc. Rev. Date: 5/31/2007 4:59:00 PM By: Mark Temple 1 Member Check - 2004 North American Specification - US (ASD) 11 Load Combination: D +0.75(W +L +S) Design Parameters at 7.000 ft, Left side: Lx 14.000 ft Ly 7.000 ft Lt 7.000 ft 11 Kx 1.0000 KY 1.0000 Kt 1.0000 Section: 6005250 68.sct Cbx 1.29 Cby 1.0000 ex 0.0000 in II Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: Bottom Moment Reduction, R: 0.7000 Loads: P Mx Vy My Vx li (k) (k -in) (k) (k -in) (k) Total 0.7325 8.820 0.0000 0.000 0.0000 Applied 0.7325 8.820 0.0000 0.000 0.0000 Strength 8.4768 37.734 5.3503 10.742 5.7315 11 Effective section properties at applied loads: Ae 0.83564 in ^2 Ixe 4.7281 in ^4 Iye 0.6889 in ^4 Sxe(t) 1.5760 in ^3 Sye(1) 0.9090 in ^3 11 Sxe(b) 1.5760 in ^3 Sye(r) 0.3954 in ^3 Interaction Equations NAS Eq. C5.2.1 -1 (P, Mx, My) 0.086 + 0.240 + 0.000 = 0.327 <= 1.0 '--- NAS Eq. C5.2.1 -2 (P, Mx, My) 0.048 + 0.234 + 0.000 = 0.282 <= 1.0 NAS Eq. C3.3.1 -1 (Mx, Vy) Sqrt(0.045 + 0.000)= 0.212 <= 1.0 NAS Eq. C3.3.1 -1 (My, Vx) Sqrt(0.000 + 0.000)= 0.000 <= 1.0 t Section does not meet all requirements of NAS C4.6. Value of x in NAS C4.6 assumed to be 0.5. 1 1 1 1 II 1 1 A (P 4- f , 1 CFS Version 5.0.2 Page 1 Section: 600S250_68.sct Mark Temple I Channel 6x2.5x0.625 -14 Gage AA! Engineering, Inc. Rev. Date: 5/31/2007 4:52:19 PM By: Mark Temple 1 1 1 4- 1 1 1 Section Inputs II Material: A653 SS Grade 50/1 No strength increase from cold work of forming. Modulus of Elasticity, E 29500 ksi 1 Yield Strength, Fy 50 ksi Tensile Strength, Fu 65 ksi Warping Constant Override, Cw 0in ^6 Torsion Constant Override, J 0 in ^4 II Stiffened Channel, Thickness 0.0713 in (14 Gage) Placement of Part from Origin: X to center of gravity 0 in 1 Y to center of gravity 0 in Outside dimensions, Open shape Length Angle Radius Web k Hole Size Distance (in) (deg) (in) Coef. (in) (in) II 1 0.6250 270.000 0.10690 None 0.000 0.0000 0.3125 2 2.5000 180.000 0.10690 Single 0.000 0.0000 1.2500 3 6.0000 90.000 0.10690 Cee 0.000 0.0000 3.0000 4 2.5000 0.000 0.10690 Single 0.000 0.0000 1.2500 II 5 0.6250 - 90.000 0.10690 None 0.000 0.0000 0.3125 Full Section Properties II Area 0.83564 in ^2 Wt. 0.0028412 k /ft Width 11.720 in Ix 4.7281 in ^4 rx 2.3787 in Ixy 0.0000 in ^4 II Sx(t) 1.5760 in ^3 y(t) 3.0000 in a 0.000 deg Sx(b) 1.5760 in ^3 y(b) 3.0000 in Height 6.0000 in Iy 0.6889 in ^4 ry 0.9080 in Xo - 1.8364 in II Sy(1) 0.9090 in ^3 x(1) 0.7578 in Yo 0.0000 in Sy(r) 0.3954 in ^3 x(r) 1.7422 in jx 3.3340 in Width 2.5000 in jy 0.0000 in I1 4.7281 in ^4 rl 2.3787 in II I2 0.6889 in ^4 r2 0.9080 in Ic 5.4170 in ^4 rc 2.5461 in Cw 4.8977 in ^6 Io 8.2350 in ^4 ro 3.1392 in J 0.0014160 in ^4 1 1 CFS Version 5.0.2 Page 1 Analysis: RF3RD_EXT2.anl Mark Temple 1 Rf - 3rd: Ext. Stud (Intermediate) AAI Engineering, Inc. Rev. Date: 5/31/2007 11:49:34 PM By: Mark Temple 1 Member Check - 2004 North American Specification - US (ASD) 1 Load Combination: D +W Design Parameters at 7.000 ft, Left side: Lx 14.000 ft Ly 7.000 ft Lt 7.000 ft 1 Kx 1.0000 Ky 1.0000 Kt 1.0000 Section: 600S162 54.sct Cbx '1.2987 Cby 1.0000 ex 0.0000 in I Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: Bottom Moment Reduction, R: 0.7000 Loads: P Mx Vy My Vx (k) (k -in) (k) (k -in) (k) Total 0.1300 11.760 0.0000 0.000 0.0000 Applied 0.1300 11.760 0.0000 0.000 0.0000 Strength 4.8981 19.343 2.8453 3.738 2.7503 I Effective section properties at applied loads: Ae 0.55409 in ^2 Ixe 2.8405 in ^4 Iye 0.1788 in ^4 Sxe(t) 0.94682 in ^3 Sye(1) 0.43404 in ^3 II Sxe(b) 0.94682 in ^3 Sye(r) 0.14741 in ^3 Interaction Equations II NAS Eq. C5.2.1 -1 (P, Mx, My) 0.027 + 0.613 + 0.000 = 0.639 <= 1.0 NAS Eq. C5.2.1 -2 (P, Mx, My) 0.013 + 0.608 + 0.000 = 0.621 <= 1.0 NAS Eq. C3.3.1 -1 (Mx, Vy) Sqrt(0.181 + 0.000)= 0.426 <= 1.0 NAS Eq. C3.3.1 -1 (My, Vx) Sqrt(0.000 + 0.000)= 0.000 <= 1.0 1 Value of x in NAS C4.6 assumed to be 0.5. 1 1 1 1 1 II 1 1 (o. V II CFS Version 5.0.2 Page 1 Section: 600S162_54.sct Mark Temple I Channel 6x1.625x0.5 -16 Gage AAI Engineering, Inc. Rev. Date: 5/31/2007 11:05:49 PM By: Mark Temple 1 1 1 f 1 1 Section Inputs 1 Material: A653 SS Grade 50/1 No strength increase from cold work of forming. Modulus of Elasticity, E 29500 ksi 1 Yield Strength, Fy 50 ksi Tensile Strength, Fu 65 ksi Warping Constant Override, Cw 0 in ^6 Torsion Constant Override, J 0 in ^4 II Stiffened Channel, Thickness 0.0566 in (16 Gage) Placement of Part from Origin: X to center of gravity 0 in 1 Y to center of gravity 0 in Outside dimensions, Open shape Length Angle Radius Web k Hole Size Distance (in) (deg) (in) Coef. (in) (in) 1 0.5000 270.000 0.10800 None 0.000 0.0000 0.2500 2 1.6250 180.000 0.10800 Single 0.000 0.0000 0.8125 3 6.0000 90.000 0.10800 Cee 0.000 0.0000 3.0000 4 1.6250 0.000 0.10800 Single 0.000 0.0000 0.8125 II 5 0.5000 - 90.000 0.10800 None 0.000 0.0000 0.2500 Full Section Properties I Area 0.55409 in ^2 Wt. 0.0018839 k /ft Width 9.7896 in Ix 2.8405 in ^4 rx 2.2641 in Ixy 0.0000 in ^4 II Sx(t) 0.94682 in ^3 y(t) 3.0000 in a 0.000 deg Sx(b) 0.94682 in ^3 y(b) 3.0000 in Height 6.0000 in Iy 0.1788 in ^4 ry 0.5681 in Xo - 1.0403 in II Sy(1) 0.43404 in ^3 x(1) 0.4120 in Yo 0.0000 in Sy(r) 0.14741 in ^3 x(r) 1.2130 in ix 3.2469 in Width 1.6250 in jy 0.0000 in Il 2.8405 in ^4 rl 2.2641 in I I2 Ic 0.1788 in ^4 r2 0.5681 in 3.0193 in ^4 rc 2.3343 in Cw 1.2545 in ^6 Io 3.6190 in ^4 ro 2.5556 in J 0.0005917 in ^4 1 II (al 1 CFS Version 5.0.2 Page 1 Analysis: RF3RD_INT.anl Mark Temple I Rf - 3rd: Int. Stud AAI Engineering, Inc. Rev. Date: 5/31/2007 5:23:07 PM By: Mark Temple 1 Member Check - 2004 North American Specification - US (ASD) 1 Load Combination: D +0.75(W +L +S) Design Parameters at 7.000 ft, Left side: Lx 14.000 ft Ly 7.000 ft Lt 7.000 ft 1 Kx 1.0000 KY 1.0000 Kt 1.0000 Section: 4005200 54.sct Cbx 1.2987 Cby 1.0000 ex 0.0000 in I Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: Bottom Moment Reduction, R: 0.7000 Loads: P Mx Vy My Vx II (k) (k -in) (k) (k -in) (k) Total 1.3775 5.513 0.0000 0.000 0.0000 Applied 1.3775 5.513 0.0000 0.000 0.0000 Strength 5.5031 15.143 3.3716 4.818 3.6443 I Effective section properties at applied loads: Ae 0.49974 in ^2 Ixe 1.2923 in ^4 lye 0.2874 in ^4 Sxe(t) 0.64617 in ^3 Sye(1) 0.41213 in ^3 1 Sxe(b) 0.64617 in ^3 Sye(r) 0.22063 in ^3 Interaction Equations 1 NAS Eq. C5.2.1 -1 (P, Mx, My) 0.250 + 0.447 + 0.000 = 0.698 <= 1.0 NAS Eq. C5.2.1 -2 (P, Mx, My) 0.134 + 0.364 + 0.000 = 0.498 <= 1.0 NAS Eq. C3.3.1 -1 (Mx, Vy) Sqrt(0.097 + 0.000)= 0.311 <= 1.0 NAS Eq. C3.3.1 -1 (My, Vx) Sqrt(0.000 + 0.000)= 0.000 <• 1.0 II Section does not meet all requirements of NAS C4.6. Value of x in NAS C4.6 assumed to be 0.5. II 1 1 1 1 1 1 II CO,O 1 CFS Version 5.0.2 Page 1 Section: 400S200_54.sct Mark Temple I Channel 4x2x0.625 -16 Gage AAI Engineering, Inc. Rev. Date: 5/31/2007 4:15:47 PM By: Mark Temple 1 1 1 4 l 1 1 Section Inputs II Material: A653 SS Grade 50/1 No strength increase from cold work of forming. Modulus of Elasticity, E 29500 ksi 1 Yield Strength, Fy 50 ksi Tensile Strength, Fu 65 ksi Warping Constant Override, Cw 0 in ^6 Torsion Constant Override, J 0 in ^4 I Stiffened Channel, Thickness 0.0566 in (16 Gage) Placement of Part from Origin: X to center of gravity 0 in 1 Y to center of gravity 0 in Outside dimensions, Open shape Length Angle Radius Web k Hole Size Distance (in) (deg) (in) Coef. (in) (in) II 1 0.6250 270.000 0.084900 None 0.000 0.0000 0.3125 2 2.0000 180.000 0.084900 Single 0.000 0.0000 1.0000 3 4.0000 90.000 0.084900 Cee 0.000 0.0000 2.0000 4 2.0000 0.000 0.084900 Single 0.000 0.0000 1.0000 II 5 0.6250 - 90.000 0.084900 None 0.000 0.0000 0.3125 Full Section Properties II Area 0.49974 in ^2 Wt. 0.0016991 k /ft Width 8.8293 in Ix 1.2923 in ^4 rx 1.6081 in Ixy 0.0000 in ^4 I Sx(t) 0.64617 in ^3 y(t) 2.0000 in a 0.000 deg Sx(b) 0.64617 in ^3 y(b) 2.0000 in Height 4.0000 in Iy 0.2874 in ^4 ry 0.7584 in Xo - 1.6603 in 1 Sy(1) Sy(r) 0.41213 in ^3 x(1) 0.6974 in Yo jx 0.0000 in 0.22063 in ^3 x(r) 1.3027 in 2.4043 in Width 2.0000 in jy 0.0000 in I1 1.2923 in ^4 rl 1.6081 in II I2 0.2874 in ^4 r2 0.7584 in Ic 1.5797 in ^4 rc 1.7780 in Cw 1.0378 in ^6 Io 2.9573 in ^4 ro 2.4326 in J 0.0005336 in ^4 1 • 1 CFS Version 5.0.2 Page 1 Analysis: 3RD2ND_EXT FLR SUP.anl Mark Temple 1 3rd - 2nd Flr: Ext. Stud AAI Engineering, Inc. Rev. Date: 5/31/2007 11:08:36 PM By: Mark Temple 1 Member Check - 2004 North American Specification - US (ASD) 1 Load Combination: D +0.75(W +L +S) Design Parameters at 4.8150 ft, Left side: Lx 9.6300 ft Ly 4.8150 ft Lt 4.8150 ft 1 Kx 1.0000 Ky 1.0000 Kt 1.0000 Section: 6005162 54.sct Cbx 1.2987 Cby 1.0000 ex 0.0000 in 1 Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: Bottom Moment Reduction, R: 0.7000 Loads: P Mx Vy My Vx II (k) (k -in) (k) (k -in) (k) Total 2.6725 4.173 0.0000 0.000 0.0000 Applied 2.6725 4.173 0.0000 0.000 0.0000 Strength 5.4952 24.002 2.8453 4.188 2.7503 II Effective section properties at applied loads: Ae 0.55382 in ^2 Ixe 2.8402 in ^4 Iye 0.1788 in ^4 Sxe(t) 0.94661 in ^3 Sye(1) 0.43375 in ^3 II Sxe(b) 0.94688 in ^3 Sye(r) 0.14740 in ^3 Interaction Equations 1 NAS Eq. C5.2.1 -1 (P, Mx, My) 0.486 + 0.189 + 0.000 = 0.675 <= 1.0 NAS Eq. C5.2.1 -2. (P, Mx, My) 0.273 + 0.174 + 0.000 = 0.447 <= 1.0 NAS Eq. C3.3.1 -1 (Mx, Vy) Sqrt(0.023 + 0.000)= 0.151 <= 1.0 NAS Eq. C3.3.1 -1 (My, Vx) Sqrt(0.000 + 0.000)= 0.000 <= 1.0 1 1 1 1 1 1 1 II 1 (', CFS Version 5.0.2 Page 1 Section: 6005162 54.sct Mark Temple I Channel 6x1.625x0.5 -16 Gage AAI Engineering, Inc. Rev. Date: 5/31/2007 11:05:49 PM By: Mark Temple 1 1 , l 1 + I 1 1 1 Section Inputs 1 Material: A653 SS Grade 50/1 No strength increase from cold work of forming. Modulus of Elasticity, E 29500 ksi 1 Yield Strength, Fy 50 ksi Tensile Strength, Fu 65 ksi Warping Constant Override, Cw 0 in ^6 Torsion Constant Override, J 0 in ^4 I Stiffened Channel, Thickness 0.0566 in (16 Gage) Placement of Part from Origin: X to center of gravity 0 in 1 Y to center of gravity 0 in Outside dimensions, Open +shape Length Angle Radius Web k Hole Size Distance (in) (deg) (in) Coef. (in) (in) I 1 0.5000 270.000 0.10800 None 0.000 0.0000 0.2500 2 1.6250 180.000 0.10800 Single 0.000 0.0000 0.8125 3 6.0000 90.000 0.10800 Cee 0.000 0.0000 3.0000 4 1.6250 0.000 0.10800 Single 0.000 0.0000 0.8125 II 5 0.5000 - 90.000 0.10800 None 0.000 0.0000 0.2500 1 1 1 1 1 1 It 1 CFS Version 5.0.2 Page 1 Section: 600S162_54.sct Mark Temple I Channel 6x1.625x0.5 -16 Gage AAI Engineering, Inc. Rev. Date: 5/31/2007 11:05:49 PM By: Mark Temple 1 Full Section Properties 1 Area 0.55409 in ^2 Wt. 0.0018839 k /ft Width 9.7896 in Ix 2.8405 in ^4 rx 2.2641 in Ixy 0.0000 in ^4 II Sx(t) 0.94682 in ^3 y(t) 3.0000 in a 0.000 deg Sx(b) 0.94682 in ^3 y(b) 3.0000 in Height 6.0000 in Iy 0.1788 in ^4 ry 0.5681 in Xo - 1.0403 in Sy(1) 0.43404 in ^3 x(1) 0.4120 in Yo 0.0000 in Sy(r) 0.14741 in ^3 x(r) 1.2130 in jx 3.2469 in Width 1.6250 in jy 0.0000 in I1 2.8405 in ^4 rl 2.2641 in II I2 0.1788 in ^4 r2 0.5681 in lc 3.0193 in ^4 rc 2.3343 in Cw 1.2545 in ^6 Io 3.6190 in ^4 ro 2.5556 in J 0.0005917 in ^4 1 1 1 1 1 1 1 1 1 1 1 1 1 CFS Version 5.0.2 Page 1 Analysis: 3RD2ND_EXT NO FLR.anl Mark Temple I 3rd - 2nd Flr: Ext. Stud, No Fir Support AAI Engineering, Inc. Rev. Date: 5/31/2007 11:24:32 PM By: Mark Temple 1 Member Check - 2004 North American Specification - US (ASD) I Load Combination: D +W Design Parameters at 4.8150 ft, Left side: Lx 9.6300 ft Ly 4.8150 ft Lt 4.8150 ft 1 Kx 1.0000 Ky 1.0000 Kt 1.0000 Section: 600S162 43.sct Cbx 1.2987 Cby 1.0000 ex 0.0000 in 1 Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: Bottom Moment Reduction, R: 0.7000 Loads: P Mx Vy My Vx I (k) (k -in) (k) (k -in) (k) 00 5.564 0.0000 0.000 0.0000 Applied 0.2200 5.564 0.0000 0.000 0.0000 Strength 3.8970 14.318 1.4154 2.423 1.5542 Effective section properties at applied leads: Ae 0.44688 in ^2 Ixe 2.3160 in ^4 Iye 0.1485 in ^4 1 Sxe(t) 0.77200 in ^3 Sye(1) 0.35879 in ^3 Sxe(b) 0.77200 in ^3 Sye(r) 0.12261 _n ^3 Interaction Equations 1 NAS Eq. C5.2.1 -1 (P, Mx, My) 0.056 + 0.392 + 0.000 = 0.448 <= 1.0 NAS Eq. C5.2.1 -2 (P, Mx, My) 0.041 + 0.389 + 0.000 = 0.430 <= 1.0 NAS Eq. C3.3.1 -1 (Mx, Vy) Sqrt(0.133 + 0.000)= 0.365 <= 1.0 NAS Eq. C3.3.1 -1 (My, Vx) Sqrt(0.000 + 0.000)= 0.000 <= 1.0 II Section does not meet all requirements of NAS C4.6. Value of x in NAS C4.6 assumed to be 0.5. 1 1 1 1 1 1 1 1 (1,1; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 CFS Version 5.0.2 Page 1 Section: 600S162_43.sct Mark Temple I Channel 6x1.625x0.5 -18 Gage AAI Engineering, Inc. Rev. Date: 5/31/2007 11:23:11 PM By: Mark Temple 1 1 1 ♦ i 1 1 ` , Section Inputs 1 Material: A653 SS Grade 33 No strength increase from cold work of forming. Modulus of Elasticity, E 29500 ksi 1 Yield Strength, Fy 33 ksi Tensile Strength, Fu 45 ksi Warping Constant Override, Cw 0 in ^6 Torsion Constant Override, J 0 in ^4 1 Stiffened Channel, Thickness 0.0451 in (18 Gage) Placement of Part from Origin: X to center of gravity 0 in 1 Y to center of gravity 0 in Outside dimensions, Open shape Length Angle Radius Web k Hole Size Distance (in) (deg) (in) Coef. (in) (in) 1 1 0.5000 270.000 0.071200 None 0.000 0.0000 0.2500 2 1.6250 180.000 0.071200 Single 0.000 0.0000 0.8125 3 6.0000 90.000 0.071200 Cee 0.000 0.0000 3.0000 4 1.6250 0.000 0.071200 Single 0.000 0.0000 0.8125 II 5 0.5000 - 90.000 0.071200 None 0.000 0.0000 0.2500 1 1 1 1 1 1 Co, r4- 1 CFS Version 5.0.2 Page 1 Section: 600S162_43.sct Mark Temple I Channel 6x1.625x0.5 -18 Gage AAI Engineering, Inc. Rev. Date: 5/31/2007 11:26:38 PM By: Mark Temple 1 Full Section Properties II Area 0.44688 in ^2 Wt. 0.0015194 k /ft Width 9.9086 in Ix 2.3160 in ^4 rx 2.2765 in Ixy 0.0000 in ^4 I Sx(t) 0.77200 in ^3 y(t) 3.0000 in a 0.000 deg Sx(b) 0.77200 in ^3 y(b) 3.0000 in Height 6.0000 in Iy 0.1485 in ^4 ry 0.5765 in Xo - 1.0575 in II Sy(1) 0.35879 in ^3 x(1) 0.4139 in Yo 0.0000 in Sy(r) 0.12261 in ^3 x(r) 1.2111 in jx 3.2351 in Width 1.6250 in jy 0.0000 in 1 I1 2.3160 in ^4 rl 2.2765 in I2 0.1485 in ^4 r2 0.5765 in Ic 2.4645 in ^4 rc 2.3484 in Cw 1.0506 in ^6 Io 2.9643 in ^4 ro 2.5755 in J 0.0003030 in ^4 1 1 1 1 1 1 . 1 1 1 1 1 1 (n, t 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I CFS Version 5.0.2 Page 1 Analysis: 3RD2ND_INT.anl Mark Temple I 3rd - 2nd Flr: Int. Stud AAI Engineering, Inc. Rev. Date: 6/1/2007 8:49:44 AM By: Mark Temple 1 Member Check - 2004 North American Specification - US (ASD) II Load Combination: D +0.75(W +L +S) Design Parameters at 4.8150 ft, Left side: Lx 9.6300 ft Ly 4.8150 ft Lt 4.8150 ft 1 Kx 1.0000 Ky 1.0000 Kt 1.0000 Section: 400S200 68.sct Cbx 1.2987 "Cby 1.0000 ex 0.0000 in II Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: Bottom Moment Reduction, R: 0.7000 Loads: P Mx Vy My Vx I (k) (k -in) (k) (k -in) (k) Total 5.0450 1.304 0.0000 0.000 0.0000 Applied 5.0450 1.304 0.0000 0.000 0.0000 Strength 7.2346 22.506 4.8710 7.428 4.3946 11 Effective section properties at applied loads: Ae 0.62174 in ^2 Ixe 1.5899 in ^4 Iye 0.3498 in ^4 Sxe(t) 0.79497 in ^3 Sye(1) 0.50265 in ^3 II Sxe(b) 0.79497 in ^3 Sye(r) 0.26822 in ^3 Interaction Equations II NAS Eq. C5.2.1 -1 (P, Mx, My) 0.697 + 0.079 + 0.000 = 0.776 <= 1.0 `.---- NAS Eq. C5.2.1 -2 (P, Mx, My) 0.341 + 0.058 + 0.000 = 0.399 <= 1.0 NAS Eq. C3.3.1 -1 (Mx, Vy) Sqrt(0.003 + 0.000)= 0.056 <= 1.0 NAS Eq. C3.3.1 -1 (My, Vx) Sqrt(0.000 + 0.000)= 0.000 <= 1.0 1 II 1 1 II 1 1 avia EN ems NE mis MEI IMO Mill sot mu tom Ex mum um sr nem im CFS Version 5.0.2 Page 1 Section: 400S200_68.sct Mark Temple I Channel 4x2x0.625 -14 Gage AAI Engineering, Inc. Rev. Date: 6/1/2007 8:48:32 AM By: Mark Temple i 1 1 Section Inputs 1 Material: A653 SS Grade 50/1 No strength increase from cold work of forming. . Modulus of Elasticity, E 29500 ksi II Yield Strength, Fy 50 ksi Tensile Strength, Fu 65 ksi Warping Constant Override, Cw 0 in ^6 Torsion Constant Override, J 0 in ^4 I Stiffened Channel, Thickness 0.0713 in (14 Gage) Placement of Part from Origin: X to center of gravity 0 in II Y to center of gravity 0 in Outside dimensions, Open shape Length Angle Radius Web k Hole Size Distance (in) (deg) (in) Coef. (in) (in) 1 0.6250 270.000 0.10690 None 0.000 0.0000 0.3125 2 2.0000 180.000 0.10690 Single 0.000 0.0000 1.0000 3 4.0000 90.000 0.10690 Cee 0.000 0.0000 2.0000 4 2.0000 0.000 0.10690 Single 0.000 0.0000 1.0000 il 5 0.6250 - 90.000 0.10690 None 0.000 0.0000 0.3125 1 11 11 II 11 II (0 11 MEI N ismi — a mop o limn Nom Inim del Elm` ass NE MIMI JINN EMI CFS Version 5.0.2 Page 1 Section: 400S200_68.sct Mark Temple • 1 Channel 4x2x0.625 -14 Gage AAI Engineering, Inc. Rev. Date: 6/1/2007 8:48:32 AM By: Mark Temple 1 Full Section Properties 1 Area 0.62174 in ^2 Wt. 0.0021139 k /ft Width 8.7201 in Ix 1.5899 in ^4 rx 1.5991 in Ixy 0.0000 in ^4 II Sx(t) 0.79497 in ^3 y(t) 2.0000 in a 0.000 deg Sx(b) 0.79497 in ^3 y(b) 2.0000 in Height 4.0000 in Iy 0.3498 in ^4 ry 0.7501 in Xo - 1.6407 in II Sy(1) 0.50265 in ^3 x(1) 0.6959 in Yo 0.0000 in Sy(r) 0.26822 in ^3 x(r) 1.3041 in jx 2.3910 in Width 2.0000 in jy 0.0000 in I1 1.5899 in ^4 rl 1.5991 in II I2 0.3498 in ^4 r2 0.7501 in Ic 1.9397 in ^4 rc 1.7663 in Cw 1.2461 in ^6 Io 3.6134 in ^4 ro 2.4107 in J 0.0010536 in ^4 1 1 1 1 II 11 I I 1 . 1 1 ' (o , 1'd i 1 1 1 1 1 f 1 1 1 1 1 1 1 I CFS Version 5.0.2 Page 1 Analysis: 2ND1ST_INT.anl Mark Temple 1 2nd - 1st Flr: Int. Stud AAI Engineering, Inc. Rev. Date: 5/31/2007 11:39:45 PM By: Mark Temple 1 Member Check - 2004 North American Specification - US (ASD) II Load Combination: D +L Design Parameters at 0.000 ft, Right side: Lx 11.000 ft Ly 5.500 ft Lt 5.500 ft D Kx 1.0000 KY 1.0000 Kt 1.0000 Section: 600S250 68.sct Cbx 1.0000 Cby 1.0000 ex 0.0000 in II Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: Bottom Moment Reduction, R: 0.7000 Loads: P Mx Vy My Vx (k) (k -in) (k) (k -in) (k) Total 9.220 0.000 0.000 0.000 0.000 Applied 9.220 0.000 0.000 -0.328 0.000 Strength 10.468 41.626 5.350 11.277 5.731 il Effective section properties at applied loads: Ae 0.78585 in ^2 Ixe 4.7260 in ^4 Iye 0.6613 in ^4 Sxe(t) 1.5753 in ^3 Sye(1) 0.8229 in ^3 Sxe(b) 1.5753 in ^3 Sye(r) 0.3898 in ^3 Interaction Equations II NAS Eq. C5.2.1 -1 (P, Mx, My) 0.881 + 0.000 + 0.029 = 0.910 <= 1.0 ✓ NAS Eq. C5.2.1 -2 (P, Mx, My) 0.605 + 0.000 + 0.029 = 0.634 <= 1.0 NAS Eq. C3.3.1 -1 (Mx, Vy) Sqrt(0.000 + 0.000)= 0.000 < =.1.0 NAS Eq. C3.3.1 -1 (My, Vx) Sqrt(0.001 + 0.000)= 0.029 <= 1.0 11 11 li 11 11 11. 11 1 11 CFS Version 5.0.2 Page 1 Section: 600S250_68.sct Mark Temple I Channel 6x2.5x0.625 -14 Gage AAI Engineering, Inc. Rev. Date: 5/31/2007 4:52:19 PM By: Mark Temple 11 1 11 ♦ + 11 II , Section Inputs 11 Material: A653 SS Grade 50/1 No strength increase from cold work of forming. Modulus of Elasticity, E 29500 ksi II Yield Strength, Fy 50 ksi Tensile Strength, Fu 65 ksi Warping Constant Override, Cw 0 in ^6 Torsion Constant Override, J 0 in ^4 II Stiffened Channel, Thickness 0.0713 in (14 Gage) Placement of Part from Origin: X to center of gravity 0 in 11 Y to center of gravity 0 in Outside dimensions, Open shape Length Angle Radius Web k Hole Size Distance (in) (deg) (in) Coef. (in) (in) 1 0.6250 270.000 0.10690 None 0.000 0.0000 0.3125 2 2.5000 180.000 0.10690 Single 0.000 0.0000 1.2500 3 6.0000 90.000 0.10690 Cee 0.000 0.0000 3.0000 4 2.5000 0.000 0.10690 Single 0.000 0.0000 1.2500 q 5 0.6250 - 90.000 0.10690 None 0.000 0.0000 0.3125 11 11 I I 1 II CFS Version 5.0.2 Page 1 Section: 600S250_68.sct Mark Temple I Channel 6x2.5x0.625 -14 Gage AA! Engineering, Inc. Rev. Date: 5/31/2007 4:52:19 PM By: Mark Temple Full Section Properties 11 Area 0.83564 in ^2 Wt. 0.0028412 k /ft Width 11.720 in Ix 4.7281 in ^4 rx 2.3787 in Ixy 0.0000 in ^4 II Sx(t) 1.5760 in ^3 y(t) 3.0000 in a 0.000 deg Sx(b) 1.5760 in ^3 y(b) 3.0000 in Height 6.0000 in Iy 0.6889 in ^4 ry 0.9080 in Xo - 1.8364 in il Sy(1) 0.9090 in ^3 x(1) 0.7578 in Yo 0.0000 in Sy(r) 0.3954 in ^3 x(r) 1.7422 in jx 3.3340 in Width 2.5000 in jy 0.0000 in I1 4.7281 in ^4 rl 2.3787 in I2 0.6889 in ^4 r2 0.9080 in Ic 5.4170 in ^4 rc 2.5461 in Cw 4.8977 in ^6 Io 8.2350 in ^4 ro 3.1392 in J 0.0014160 in ^4 11 1 1 11 II 11 . 1 il a 1 1 ' I') C.7 1 -() - 1.7 — ;,- ' 7-1_,Y '?9-V{°'1 _� CO >� P 0 f � nr I ■ L `1 e- 5- C s (15 ) p c- 110 7 '3- toc/v --) y 2 ? , 1.- 2 (7f4 C 1 ZD }4 1 1 �j ' t,00ce ZS-1 i t L ) ac ,C-- L ) CZ-5, y 31 z5_ $: L - 2-,,, ,, 0 r-c- - \ 0 \ it PA..,_ p . 1 Z-rta -- i e) ‘ ∎ (,t.-- 4 ; 125 1 u 5 (.. 2) 4 t;' 57012 — Lif.52 C .,)e..) ?t - (...) (..„ , 1 ve (> co ov ,.25-d —( r `.-,r- der ) 11 11 11 11 111 0 AA afghan (" � r le') � °7 i i�� afghan associates, inc. By: Date ENGINEERING P Z- Project No.: 4875 SW Griffith Orive ( Suite 300 [ Beaverton, OR( 97005 I 503.620.30301 tel 503.620.55391 fax www.aaieng.com Sheet: �r /-L �/ " of: CFS Version 5.0.2 Page 1 Analysis: Analysis 1.anl Mark Temple II 3rd -2nd Int Col below HSS Rf Cols AAI Engineering, Inc. Rev. Date: 6/20/2007 5:02:27 PM By: Mark Temple 1 Member Check - 2004 North American Specification - US (ASD) II Load Combination: D +0.75(W +L +S) Design Parameters at 5.0000 ft, Left side: Lx 10.0000 ft Ly 5.0000 ft Lt 5.0000 ft Kx 1.0000 Ky 1.0000 Kt 1.0000 11 Section: 400S200 68.sct Cbx 1.2987 Cby 1.0000 ex 0.0000 in 1 Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: Bottom Moment Reduction, R: 0.7000 Loads: P Mx Vy My Vx II (k) (k -in) (k) (k -in) (k) Total 3.2275 -0.703 0.0000 0.000 0.0000 Applied 3.2275 - 0.703 0.0000 0.000 0.0000 Strength 6.9648 23.363 4.8710 7.322 4.3946 II Effective section properties at applied loads: Ae 0.62174 in ^2 Ixe 1.5899 in ^4 Iye 0.3498 in ^4 II Sxe(t) 0.79497 in ^3 Sye(1) 0.50265 in ^3 Sxe(b) 0.79497 in ^3 Sye(r) 0.26822 in ^3 Interaction Equations I NAS Eq. C5.2.1 -1 (P, Mx, My) 0.463 + 0.037 + 0.000 = 0.500 <= 1.0 NAS Eq. C5.2.1 -2 (P, Mx, My) 0.218 + 0.030 + 0.000 = 0.248' < = 1.0 NAS Eq. C3.3.1 -1 (Mx, Vy) Sqrt(0.001 + 0.000)= 0.030 <= 1.0 NAS Eq. C3.3.1 -1 (My, Vx) Sqrt(0.000 + 0.000)= 0.000 <= 1.0 1 Section does not meet all requirements of NAS C4.6. Value of x in NAS C4.6 assumed to be 0.5. 1 1 1 1 1 11 11 11 (p Z 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 CFS Version 5.0.2 Page 1 Analysis: 2ND1ST_INT AT HSS COLS.anl Mark Temple I 1 st -2nd Int Col below HSS Rf Cols AAI Engineering, Inc. Rev. Date: 6/20/2007 5:10:30 PM By: Mark Temple 1 Member Check - 2004 North American Specification - US (ASD) II Load Combination: D +0.75(W +L +S) Design Parameters at 5.500 ft, Left side: Lx 11.000 ft Ly 5.500 ft Lt 5.500 ft I Kx 1.0000 Ky 1.0000 Kt 1.0000 Section: 600S250 68.sct Cbx 1.2987 Cby 1.0000 ex 0.0000 in II Cmx 1.0000 Cray 1.0000 ey 0.0000 in Braced Flange: Bottom Moment Reduction, R: 0.7000 Loads: P Mx Vy My Vx I (k) (k -in) (k) (k -in) (k) Total 5.005 -0.851 0.000 0.000 0.000 Applied 5.005 -0.851 0.000 0.000 0.000 Strength 10.468 41.626 5.350 11.626 5.731 I Effective section properties at applied loads: Ae 0.83564 in ^2 Ixe 4.7281 in ^4 Iye 0.6889 in ^4 Sxe(t) 1.5760 in ^3 Sye(1) 0.9090 in ^3 II Sxe(b) 1.5760 in ^3 Sye(r) 0.3954 in ^3 Interaction Equations II NAS Eq. C5.2.1 -1 (P, Mx, My) 0.478 + 0.023 + 0.000 = 0.501 <= 1.0 NAS Eq. C5.2.1 -2 (P, Mx, My) 0.329 + 0.020 + 0.000 = 0.349 <= 1.0 NAS Eq. C3.3.1 -1 (Mx, Vy) Sqrt(0.000 + 0.000)= 0.020 <= 1.0 NAS Eq. C3.3.1 -1 (My, Vx) Sqrt(0.000 + 0.000)= 0.000 <= 1.0 II II II II 1 1 II II e 1 1 C fig' ` . , hoc z- . � � ) 1 7 1 2,5 ,0),29 ,o� )CZ,s� X/Z rZsic r 3:g-0 Art-e.... 1 t� f�L (')(1/2 / z� ( W �� (►� /� ) toz5 v e t7 . ?51O — 5 - 4— 1 Jam, . . P� I -� G p , r ( I ,9) ( v s4 C S) 5 Z s ( 10, ) Yi\ • z 1 Z :0!5 C Z,�) C)�� 10,1: tit S ? -7 40V --(,` AA 1 1 afghan associates, inc. t A174 By: M Date: 5-12 Z 1°7 ENGINEERING �`��7 Project No.: 4875 SW Griffith Drivel Suite 3 00 1 Beaverton, OR 1 97005 503.620.3030 I tel 503.620.55391 fax /'� www.aaieng.com Sheet: (2 ZS of: 1 TE-5 . r()k' f' (fD c 99S 4 Z7$0? � G 2 t M wOr 3,�� ( ( J ) ) ,,, Lc- 111 U Cod 't` 5".< -- 9 - 7 1 1 1 1 1 1 1 1 1 1 • 1 AA 1 afghan associates, inc. wLi ((Z .) (, By: � Date: Z Z ENGINEERING ? p�� Project No.: • 4875 SW Griffith Drive 1 Suite 300 ' Beaverton, OR 1 97005 503.620.3030 1 tel 503.620.55391 fax �p www.aaieng.com Sheet: �'V" of: CFS Version 5.0.2 Page 1 Analysis: RF TOP TRK EXT.anl Mark Temple II Roof Top Track Ext. Wall AA! Engineering, Inc. Rev. Date: 6/1/2007 2:24:00 PM By: Mark Temple 1 Member Check - 2004 North American Specification - US (ASD) II Load Combination: D +S Design Parameters at 1.2500 ft: Lx 2.5000 ft Ly 2.5000 ft Lt 2.5000 ft 11 Kx 1.0000 Ky 1.0000 Kt 1.0000 Section: 600T200 54.sct Cbx 1.1364 Cby 1.0000 ex 0.0000 in II Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: Left Moment Reduction, R: 0.0000 Loads: P Mx Vy My Vx I (k) (k -in) (k) (k -in) (k) Total 0.0000 0.018 0.0000 -0.750 0.0000 Applied 0.0000 0.018 0.0000 -0.750 0.0000 Strength 6.0075 20.448 2.8223 3.648 3.9447 II Effective section propert -es at applied loads: Ae 0.55409 in ^2 Ixe 2.9123 in ^4 Iye 0.2019 in ^4 Sxe(t) 0.97078 in ^3 Sye(1) 0.47442 in ^3 I Sxe(b) 0.97078 in ^3 Sye(r) 0.12823 in ^3 Interaction Equations II NAS Eq. C5.2.1 -1 (P, Mx, My) 0.000 + 0.001 + 0.206 = 0.206 <= 1.0 .. ---- NAS Eq. C5.2.1 -2 (P, Mx, My) 0.000 + 0.001 + 0.206 = 0.206 <- l.ZT' NAS Eq. C3.3.1 -1 (Mx, Vy) Sgrt(0.000 + 0.000)= 0.001 <= 1.0 NAS Eq. C3.3.1 -1 (My, Vx) Sgrt(0.042 + 0.000)= 0.206 <= 1.0 1 II 1 1 1 1 1 1 II CP, Z1 CFS Version 5.0.2 Page 1 Section: 600T200_54.sct Mark Temple I Channel 6x2 -16 Gage AAI Engineering, Inc. Rev. Date: 6/1/2007 10:16:06 AM By: Mark Temple 1 1 1 . ♦ I 1 1 Section Inputs 1 Material: A653 SS Grade 33 No strength increase from cold work of forming. Modulus of Elasticity, E 29500 ksi 1 Yield Strength, Fy 33 ksi Tensile Strength, Fu 45 ksi Warping Constant Override, Cw 0 in ^6 Torsion Constant Override, J 0 in ^4 II Channel, Thickness 0.0566 in (16 Gage) Placement of Part from Origin: X to center of gravity 0 in II Y to center of gravity 0 in Outside dimensions, Open shape Length Angle Radius Web k Hole Size Distance (in) (deg) (in) Coef. (in) (in) I 1 2.0000 180.000 0.084900 Single 0.000 0.0000 1.0000 2 6.0000 90.000 0.084900 Cee 0.000 0.0000 3.0000 3 2.0000 0.000 0.084900 Single 0.000 0.0000 1.0000 1 Full Section Properties Area 0.55409 in ^2 Wt. 0.0018839 k /ft Width 9.7896 in II Ix 2.9123 in ^4 rx 2.2926 in Ixy 0.0000 in ^4 Sx(t) 0.97078 in ^3 y(t) 3.0000 in a 0.000 deg Sx(b) 0.97078 in ^3 y(b) 3.0000 in II Height 6.0000 in Iy 0.2019 in ^4 ry 0.6036 in Xo - 1.0636 in Sy(1) 0.47442 in ^3 x(1) 0.4255 in Yo 0.0000 in Sy(r) 0.12823 in ^3 x(r) 1.5745 in jx 3.3898 in Width 2.0000 in jy 0.0000 in I1 2.9123 in ^4 rl 2.2926 in I2 0.2019 in ^4 r2 0.6036 in Ic 3.1142 in ^4 rc 2.3707 in Cw 1.2541 in ^6 Io 3.7410 in ^4 ro 2.5984 in J 0.0005917 in ^4 1 1 (et ZS II CFS Version 5.0.2 Page 1 Analysis: 3RD FLR EXT TRACK.anl Mark Temple 1 3rd Fir Top Track Ext. Wall AAI Engineering, Inc. Rev. Date: 6/1/2007 2:26:27 PM By: Mark Temple I Member Check - 2004 North American Specification - US (ASD) 1 Load Combination: D +L Design Parameters at 1.2500 ft: Lx 2.5000 ft Ly 2.5000 ft Lt 2.5000 ft II Kx 1.0000 Ky 1.0000 Kt 1.0000 Section: 600T350 54.sct Cbx 1.1364 Cby 1.0000 ex 0.0000 in I Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: Left Moment Reduction, R: 0.0000 Loads: P Mx Vy My Vx II (k) (k -in) (k) (k -in) (k) Total 0.0000 0.023 0.0000 - 8.109. 0.0000 Applied 0.0000 0.023 0.0000 -8.109 0.0000 II Strength 6.6032 20.711 2.8223 10.105 6.7431 Effective section properties at applied loads: Ae 0.66070 in ^2 Ixe 4.4053 in ^4 Iye 0.8744 in ^4 Sxe(t) 1.4683 in ^3 Sye(1) 0.8242 in ^3 Sxe(b) 1.4686 in ^3 Sye(r) 0.3585 in ^3 Interaction Equations II NAS Eq. C5.2.1 -1 (P, Mx, My) 0.000 + 0.001 + 0.802 = 0.804 <= 1.0 NAS Eq. C5.2.1 -2 (P, Mx, My) 0.000 + 0.001 + 0.802 = 0.804 <= 1.0 NAS Eq.. C3.3.1 -1 (Mx, Vy) Sqrt(0.000 + 0.000)= 0.001 <= 1.0 NAS Eq. C3.3.1 -1 (My, Vx) Sqrt(0.644 + 0.000)= 0.802 <= 1.0 1 1 1 1 1 1 1 CFS Version 5.0.2 Page 1 Section: 600T350_54.sct Mark Temple I Channel 6x3.5-16 AAI Engineering, Inc. Rev. Date: 6/1/2007 9:53:05 AM By: Mark Temple 1 1 1 + f 1 1 , Section Inputs II Material: A653 SS Grade 50/1 ` No strength increase from cold work of forming. Modulus of Elasticity, E 29500 ksi I Yield Strength, Fy 50 ksi Tensile Strength, Fu 65 ksi Warping Constant Override, Cw 0 in ^6 Torsion Constant Override, J 0 in ^4 11 Channel, Thickness 0.0566 in (16 Gage) Placement of Part from Origin: X to center of gravity 0 in 1 Y to center of gravity 0 in Outside dimensions, Open shape Length Angle Radius Web k Hole Size Distance (in) (deg) (in) Coef. (in) (in) II 1 3.5000 180.000 0.084900 Single 0.000 0.0000 1.7500 2 6.0000 90.000 0.084900 Cee 0.000 0.0000 3.0000 3 3.5000 0.000 0.084900 Single 0.000 0.0000 1.7500 1 1 1 1 1 1 1 (.e,o CFS Paget Section: 600T350_54.sct Mark Temple 1 Channel 6x3.5-16 AAI Engineering, Inc. Rev. Date: 6/1/2007 9:53:05 AM By: Mark Temple I Full Section Properties II Area 0.72389 in ^2 Wt. 0.0024612 k /ft Width 12.790 in Ix 4.4119 in ^4 rx 2.4687 in Ixy 0.0000 in ^4 I Sx(t) 1.4706 in ^3 y(t) 3.0000 in a 0.000 deg Sx(b) 1.4706 in ^3 y(b) 3.0000 in Height 6.0000 in Iy 0.9360 in ^4 ry 1.1371 in Xo - 2.3068 in II Sy(1) 0.9641 in ^3 x(1) 0.9708 in Yo 0.0000 in Sy(r) 0.3701 in ^3 x(r) 2.5292 in jx 3.7629 in Width 3.5000 in jy 0.0000 in I1 4.4119 in ^4 rl 2.4687 in II I2 0.9360 in ^4 r2 1.1371 in Ic 5.3479 in ^4 rc 2.7180 in Cw 5.7093 in ^6 Io 9.1999 in ^4 ro 3.5650 in J 0.0007730 in ^4 II Full Section Properties 1 Area 0.72389 in ^2 Wt. 0.0024612 k /ft Widt 12.790 in Ix 4.4119 in ^4 rx 2.4687 in Ixy 0.0000 in ^4 II Sx(t) 1.4706 in ^3 y(t) 3.000: in a 0.000 deg Sx(b) 1.4706 in ^3 y(b) .0000 in Height 6.0000 in Iy 0.9360 in ^4 ry 1.1371 in Xo - 2.3068 in II Sy(1) 0.9641 in ^3 •(1) 0.9708 in Yo 0.0000 in Sy(r) 0.3701 in^ x(r) 2.5292 in jx 3.7629 in Width 3.5000 in jy 0.0000 in I1 4.A 9 in ^4 rl 2.4687 in II I2 1.9360 in ^4 r2 1.1371 in Ic 5.3479 in ^4 rc 2.7180 in Cw 5.7093 in ^6 Io 9.1999 in ^4 ro 3.5650 in J 0.0007730 in ^4 1 1 1 1 1 1 1 (or3I 1 CFS Version 5.0.2 Page 1 Analysis: 3RD FLR INT TRACK.anl Mark Temple 1 3rd Fir Top Track Int. Wall AAI Engineering, Inc. Rev. Date: 6/1/2007 2:34:14 PM By: Mark Temple I Member Check - 2004 North American Specification - US (ASD) 1 Load Combination: D +L Design Parameters at 1.2500 ft: Lx 2.5000 ft Ly 2.5000 ft Lt 2.5000 ft 1 Kx 1.0000 Ky 1.0000 Kt 1.0000 Section: 400T400 68.sct Cbx 1.1364 Cby 1.0000 ex 0.0000 in 1 Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: Left Moment Reduction, R: 0.0000 Loads: P Mx Vy My Vx II (k) (k -in) (k) (k -in) (k) Total 0.000 0.027 0.000 - 16.547 0.000 Applied 0.000 0.027 0.000 - 16.547 0.000 Strength 9.892 17.102 4.871 16.377 10.219 Effective section properties at applied loads: Ae 0.83671 in ^2 Ixe 2.5077 in ^4 Iye 1.4606 in ^4 Sxe(t) 1.2538 in ^3 Sye(1) 1.0622 in ^3 Sxe(b) 1.2538 in ^3 Sye(r) 0.5564 in ^3 Interaction Equations II NAS Eq. C5.2.1 -1 (P, Mx, My) 0.000 + 0.002 + 1.010 = X 1.012 > 1.0 0E NAS Eq. C5.2.1 -2 (P, Mx, My) 0.000 + 0.002 + 1.010 = 1.012 > 1.0 NAS Eq. C3.3.1 -1 (Mx, Vy) Sqrt(0.000 + 0.000)= 0.002 <= 1.0 NAS Eq. C3.3.1 -1 (My, Vx) Sqrt(1.021 + 0.000)= 1.010 > 1.0 1 1 1 1 1 1 1 1 1 . 1 CFS Version 5.0.2 Page 1 Section: 400T400_68.sct Mark Temple I Channel 4x4 -14 Gage AAI Engineering, Inc. Rev. Date: 6/1/2007 9:52:53 AM By: Mark Temple 1 1 1 + { 1 1 Section Inputs 1 Material: A653 SS Grade 50/1 No strength increase from cold work of forming. Modulus of Elasticity, E 29500 ksi 1 Yield Strength, Fy 50 ksi Tensile Strength, Fu 65 ksi Warping Constant Override, Cw 0 in ^6 Torsion Constant Override, J 0 in ^4 1 Channel, Thickness 0.0713 in (14 Gage) Placement of Part from Origin: X to center of gravity 0 in 1 Y to center of gravity 0 in Outside dimensions, Open shape Length Angle Radius Web k Hole Size Distance (in) (deg) (in) Coef. (in) (in) II 1 4.0000 180.000 0.10690 Single 0.000 0.0000 2.0000 2 4.0000 90.000 0.10690 Cee 0.000 0.0000 2.0000 3 4.0000 0.000 0.10690 Single 0.000 0.0000 2.0000 1 Full Section Properties Area 0.83671 in ^2 Wt. 0.0028448 k /ft Width 11.735 in I Ix 2.508 in ^4 rx 1.7312 in Ixy 0.000 in ^4 Sx(t) 1.2538 in ^3 y(t) 2.0000 in a 0.000 deg Sx(b) 1.2538 in ^3 y(b) 2.0000 in II Height 4.0000 in Iy 1.461 in ^4 ry 1.3212 in Xo - 3.0605 in Sy(1) 1.0622 in ^3 x(1) 1.3751 in Yc 0.0000 in Sy(r) 0.5564 in ^3 x(r) 2.6249 in jx 3.7081 in II T1 Width 4.0000 in jy 0.0000 in 2.508 in ^4 rl 1.7312 in I2 1.461 in ^4 r2 1.3212 in Ic 3.968 in ^4 rc 2.1778 in Cw 3.9630 in ^6 1 Io 11.805 in ^4 ro 3.7562 in J 0.0014179 in ^4 1 1 i � 1 CFS Version 5.0.2 Page 1 Analysis: 2ND FLR INT TRACK.anl Mark Temple 1 2nd Fir Top Track Int. Wall AAI Engineering, Inc. Rev. Date: 6/1/2007 3:11:35 PM By: Mark Temple 111 Member Check - 2004 North American Specification - US (ASD) 1 Load Combination: D +L Design Parameters at 1.2500 ft: Lx 2.5000 ft Ly 2.5000 ft Lt 2.5000 ft 1 Kx 1.0000 Ky 1.0000 Kt 1.0000 Section: 600T500 97.sct Cbx 1.1364 Cby 1.0000 ex 0.0000 in 1 Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: None Moment Reduction, R: 0.0000 Loads: P Mx Vy My Vx II (k) (k -in) (k) (k -in) (k) Total 0.000 0.051 0.000 - 32.813 0.000 Applied 0.000 0.051 0.000 - 32.813 0.000 1 Strength 19.474 52.330 10.472 37.518 18.099 Effective section properties at applied loads: Ae 1.58876 in ^2 Ixe 10.338 in ^4 Iye 4.313 in ^4 II Sxe(t) 3.4462 in ^3 Sye(1) 2.6636 in ^3 Sxe(b) 3.4462 ir. ^3 Sye(r) 1.2755 in ^3 Interaction Equations 1 NAS Eq. C5.2.1 -1 (P, Mx, My) 0.000 + 0.001 + 0.875 0.876 <= 1.0 ✓ NAS Eq. C5.2.1 -2 (P, Mx, My) 0.000 + 0.001 + 0.875 = 0.876 <= 1.0 NAS Eq. C3.3.1 -1 (Mx, Vy) Sqrt(0.000 + 0.000)- 0.001 <= 1.0 NAS Eq. C3.3.1 -1 (My, Vx) Sqrt(0.765 + 0.000)= 0.875 <= 1.0 1 1 1 1 1 1 1 1 1 t,722- 1 CFS Version 5.0.2 Page 1 Section: 600T450_97.sct Mark Temple 1 Channel 6x4.5-12 AAI Engineering, Inc. Rev. Date: 6/1/2007 9:52:43 AM By: Mark Temple 1 1 r 1 1 1 Section Inputs II Material: A653 SS Grade 50/1 No strength increase from cold work of forming. Modulus of Elasticity, E 29500 ksi 1 Yield Strength, Fy 50 ksi Tensile Strength, Fu 65 ksi Warping Constant Override, Cw 0 in ^6 Torsion Constant Override, J 0 in ^4 1 Channel, Thickness 0.1017 in (12 Gage) Placement of Part from Origin: X to center of gravity 0 in 1 Y to center of gravity 0 in Outside dimensions, Open shape Length Angle Radius Web k Hole Size Distance (in) (deg) (in) Coef. (in) (in) 1 1 4.5000 6.0000 180.000 0.15250 Single 0.000 0.0000 2.2500 2 90.000 0.15250 Cee 0.000 0.0000 3.0000 3 4.5000 0.000 0.15250 Single 0.000 0.0000 2.2500 1 1 1 1 1 1 1 1 CFS Version 5.0.2 Page 1 Section: 600T500_97.sct Mark Temple I Channel 6x5 -12 Gage AAI Engineering, Inc. Rev. Date: 6/1/2007 3:11:35 PM By: Mark Temple 1 Full Section Properties II Area 1.5888 in ^2 Wt. 0.0054018 k /ft Width 15.622 in Ix 10.338 in ^4 rx 2.5509 in Ixy 0.000 in ^4 I Sx(t) 3.4462 in ^3 y(t) 3.0000 in a 0.000 deg Sx(b) 3.4462 in ^3 y(b) 3.0000 in Height 6.0000 in Iy 4.313 in ^4 ry 1.6475 in Xo - 3.6596 in I Sy(1) Sy(r) 2.6636 in ^3 x(1) 1.6190 in Yo jx 0.0000 in 1.2755 in ^3 x(r) 3.3810 in 4.7670 in Width 5.0000 in jy 0.0000 in 1 I1 10.338 in ^4 rl 2.5509 in I2 4.313 in ^4 r2 1.6475 in Ic 14.651 in ^9 rc 3.0367 in Cw 26.011 in ^6 Io 35.929 in ^4 ro 4.7555 in J 0.005477 in ^4 1 1 1 1 1 1 1 1 1 1 1 1 6A0' 1 1 C0 To P Tr c..-e 1 0 r_ rl e_ ! ki L, I , s ° t C F - ` - T® LA.) \.....-- 1 i i G Wz ►(9 .F- L14 1 I v) 1 10 L S- C , +I 2.) Cao)� 111 z 24 U 3 - Z 7 Z. 1 1 1 1 1 1 1 1 1 1 ► r r d`� 1 (o I t' 4 • x � ,: Ir � � � P 1 afghan associates, inc. W. ���4�i By: Date: 1 ENGINEERING Project No.: v 1 7_ 4875 SW Griffith Drive 1 Suite 300 1 Beaverton, OR 1 97005 I 503.620.30301 tel 503.620.5539 1 fax / 7 www.aaieng.com Sheet: ' 9 ( of: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 CFS Version 5.0.2 Page 1 Analysis: RF TOP TRK LATL.anl Mark Temple I Roof Top Track w/ Lat'I Wind AAI Engineering, Inc. Rev. Date: 6/1/2007 10:37:38 AM By: Mark Temple 1 1 1 4 '0- "0- '0- 1 1 Analysis Inputs 1 Members Section File Revision Date and Time 1 600T200 54.sct 6/1/2007 10:20:19 AM 1 Start Loc. End Loc. Braced R ex ey (ft) (ft) Flange (in) (in) 1 0.0000 10.0000 None 0.0000 0.0000 0.0000 1 Supports Type Location Bearing Fastened K (ft) (in) 1 1 XYT 0.0000 2.000 No 1.0000 2 XT 2.5000 1.000 No 1.0000 3 XT 5.0000 1.000 No 1.0000 4 XT 7.5000 1.000 No 1.0000 I 5 XYT 10.0000 2.000 No 1.0000 Loading: Wind Load Type Angle Start Loc. End Loc. Start End I (deg) (ft) 0.0000 (ft) Magnitude Magnitude 0.000 10.0000 0.11200 0.11200 k /ft Load Combination: D +W II Specification: 2004 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Dead Load 1.0000 II 2 Wind Load 1.0000 1 1 1 II Ler d 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I CFS Version 5.0.2 Page 1 Analysis: RF TOP TRK LATL.anl Mark Temple I Roof Top Track w/ Lat'I Wind AAI Engineering, Inc. Rev. Date: 6/1/2007 10:37:38 AM By: Mark Temple 1 Member Check - 2004 North American Specification - US (ASD) II Load Combination: D +W Design Parameters at 5.0000 ft: Lx 10.0000 ft Ly 2.5000 ft Lt 2.5000 ft I Kx 1.0000 Ky 1.0000 Kt 1.0000 Section: 600T200 54.sct Cbx 1.0610 Cby 1.0000 ex 0.0000 in I Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: None Moment Reduction, R: 0.0000 Loads: P Mx Vy My Vx I (k) (k -in) (k) (k -in) (k) 000 - 16.800 0.0000 0.000 0.0000 Applied 0.0000 - 16.800 0.0000 0.000 0.0000 Strength 5.6761 20.448 2.8223 0.483 3.9447 II Effective section properties at applied loads: Ae 0.51131 in ^2 Ixe 2.5029 in ^4 Iye 0.1335 in ^4 II Sxe(t) 0.90970 in ^3 Sye(1) 0.41015 in ^3 Sxe(b) 0.77044 in ^3 Sye(r) 0.07971 in ^3 Interaction Equations I NAS Eq. C5.2.1 -1 (P, Mx, My) 0.000 + 0.822 + 0.000 0.822 <= 1.0 NAS Eq. C5.2.1 -2 (P, Mx, My) 0.000 + 0.822 + 0.000 = 0.822 <= 1.0 NAS Eq. C3.3.1 -1 (Mx, Vy) Sgrt(0.675 + 0.000)= 0.822 <= 1.0 NAS Eq. C3.3.1 -1 (My, Vx) Sgrt(0.000 + 0.000)= 0.000 <= 1.0 1 II I 1 II II II II II (0- (;1 1 1 1 1 1 1 1 1 1 1 i 1 1 1 1 1 1 1 1 6.--.7 -/ , 1 Ff5�f 3_, l9, C ; �.$) c ) I of 0 , 5 . jo l7.00—∎a°O t t n. L CS 1') r ) �" �'�u CIO \ (Z $ Zta� _ _ _ t—+� 15S� e! - -',, . '__I- \ F, 2 s p -,+ C $ 2 ) 4- 1 S) 0) (z , s) 0 1 ✓ ' y 0iZ of 4. 1 to ( 1y 7 • PJL 1 --- - - - -�- ■ 0 o .c L,(, C o, 6 ) )65 . ,0 � � L G O L - 4. N D f= $o =-2-=- L 1. ( p; ' � fl � la s I, 1 o j (x) K 4 0 , 70 14- fS�tn /0,yo(. z) - Y,OSb (0)( )i kz)) .. 5, II s'A 7 62`,49 I C A � u , ``' c0T5Oc - a '- 1 1 07, 0 \�E i tf? C, 0, r, cQOt 7 zs5 2 - ( , - 0 fp Z 1 ( . 5 ) ( 1 ° ).- 4Cz) CI °)( ,5--) C Z s Pvk,, Z" Z •- (s).») 4 ` ,ZSL)0 - 1� 0∎ & o COv£1 • 1Z '' r_ - ov-1„ t- t 1 d )1 C _ -J, it II 0, 2.. 4 � L / '+ C ' , 0 1 1 r lZ (2,“J' r L- 6 5c,, (z) 4 , (9-7rs) ( (,-ci,,;) 4- z -( Z)) c '1),1 jrk L > FCO de._ 1 -V-, y )S, ,0,? I II, ) 1 3 do o7 (o r 95-0- 17 1 ; : � ,_. P1 A I afghan associates, inc. 1 '�1/ By �. _ V ) Date: Z. Z/d 1 ^ ENGINEERING Project No.: 11 07 Z. 4875 SW Griffith Drive I Suite 300 1 Beaverton, OR 1 97005 I 503.620.3030 I ter 503.620.55391 fax � www.aaieng.com Sheet: ` / of: 1 o`� -- % 0C-1 ?120 7 -- - 7 9 (—I -(e._ 1 I BS , Z,(12—) ( I c2. (.0( 7,40 .) 2. 7: r ,5 , fzp E s t.- L � (o Y - 1r9' 1 1 1 1 1 1 r 1 AA' of afghan asso inc. rZ , g Date: " � �7 f `u? 9 y: � t ENGINEERING Project No.: 4875 SW Griffith Drive 1 Suite 300 1 Beaverton, OR 1 97005 503.620.3030 1 tel 503.620.5539i fax www.aaieng.com Sheet:— of: 1 1 v V!^.J t _&) * tt _ , , 52- ,- r - S-9 o !G I v , p ra-{rt cp., r„) 1 7 WaV, _J 1 n4 V 2 1 11 w z 0,4 C o,l (77 [9=. ) = 1 ps, 1.4- 1 I r ) F-� fc-e -c 442(2.,,F c_ s /La> 4" \ i( -t.. 4-,Spz,- (_21.9 L ° (tom 1 w ,..1 fa-t-t.. 11 e(F C '_s ) c .4-43, z 1 t2s 4- 9)* 1 . c 7 ,, c., s . ZS� ,z 'P0 Zc.�� t �t l Z--S 1 9 h -r(z) ,) G )0_ 50 I I 37C - nt'F 1 4C- 50 0 4 )-2' ' o w ' *' Cz> W - )-1 4 °9" oc c __9 - 1 ----- - or- v, c 01-1 , „.70,3 1 , • .?- z 1 b p'f () t -� /z) L ` Z- P +.'F 1 z 4- ooC,i1 )(.,) w 2 0 4 "eir 4.— 1 AIL -,,-- , >,...o c. S w 1 4 vi 6eitz. retc-T7 (.9J 1 V f u y c? r- o # (I +) e- t2,4- k-I c tt 121-,) r- 0 , 4/t2‘15 z 0, Ol `7 t ,ILlrr z- z- 4 2 di- 0 C. C(od)(n,b 1 1 ,. , :_ AA 1 afghan associates, inc. NA r_, By: - Date: s ) ))° 7 ENGINEERING �1�� 4875 SW Griffith Drive 1 Suite 300 Beaverton, OR! 97005 Project No.: I 503.620.3030 1 tel 503.620.5539 fax 1 www.aaieng.com Sheet: ti . of: 1 Title : Job # Dsgnr: Date: 11:14AM, 21 MAY 07 Description : 1 Scope : 1 Rev 580002 User KW- 0607408.Ver580 1-Dec-2003 Masonry Wall Design Page 1 (c)1983 -2003 ENERCALC Engineering Software mirage storage.ecw:Calculations - aew,cvsn.a,. . cmca ±maurma,Qr r . .r z . ,��- o.mr, m...m w�nns . ns ,c- nw: : -,,- �r ,,r ,,. tn.r - a.. . , aa..,t , rep.:rs.,..o-zcs.,.a..nn. r.. - , ,,, 16.14 m ,41•A 4.c., v n _1, Description Typ$MU Wall d N d General Information . code Ref: ACI 530 -02 ., Wall Height 11.50 ft Seismic Factor 0.2000 fm 1,500.0 psi Parapet Height 0.00 ft Calc of Em = fm * 900.00 Fs 24,000.0 psi I Duration Factor 1.330 Special Inspection Thickness 8.0 in Wall Wt Mult. 1.000 Solid Grouted Rebar Size 5 Medium Weight Block Rebar Spacing 48 in Equivalent Depth to Rebar 3.810 in @ Center Solid Thickness 7.600 in 1 LLoads Uniform Load Concentric Axial Load Wind Load 20.000 psf Dead Load 611.000 #/ft Dead Load 0.000 #/ft I Live Load 1,375.000 # /ft Live Load 0.000 #/ft Load Eccentricity 0.000 in Roof Load Floor Load Design Values ' I i..80 hdd....eTMM.dr ,,...1........a..a......,C..... , C44F.t t....,d +1YA.17...2. •a+ ,, m ,... ..41. .., ,W,...., ,. .1_ ,, ,, , ,,,,t '. n. ..+Sd n, , ea',.:+YQN..aWxY.�F! o v0 .. ,, ,, , .,1 ' P E 1,350,000 psi Rebar Area 0.078 in2 np 0.03641 j 0.92137 n : Es / Em 21.481 Radius of Gyration 2.205 in k 0.23590 2 / kj 9.20187 Wall Weight 78.000 psf Moment of Inertia 443.320 in4 I Max Allow Axial Stress = 0.25 fm (1- (h /140r) ^2) * Spinsp 300.04 psi Allow Masonry Bending Stress = 0.33 fm * Spinsp = 495.00 psi Allow Steel Bending Stress = 24,000.00 psi Load Combination & Stress Details Summary Axial Bending Stresses Axial if Moment Load Steel Masonry Compression Top of Wall in-# Ibs psi psi psi DL+ LL 0.0 1,986.0 0.0 0.0 21.78 DL + LL + Wind 0.0 1,986.0 0.0 0.0 21.78 DL + LL + Seismic 0.0 1,986.0 0.0 0.0 21.78 Between Base & Top of Wall I DL + LL 2,434.5 26.69 0.0 DL + LL + Wind 3,967.5 2,434.5 14,583.3 209.6 26.69 DL + LL + Seismic 3,094.7 2,434.5 11,375.0 163.5 26.69 I } Summary 11.50ft high wall with O.00ft parapet, Med Wt Block w/ 8.00in wall w/ #5 bars at 48.00ino.c. at center 1 Max. Bending Compressive Stress 236.28 OK Allowable 658.35 OK I Max. Axial Only Compressive Stress 26.69 psi Allowable 300.04 OK I Max Steel Bending Stress 14,583.34 psi Allowable 31,920.00 OK • 1 1 • Title : Job # Dsgnr: Date: 11:14AM, 21 MAY 07 Description : 1 Scope : ' Rev: 580002 Masonry Page 2 p: User: KW- 0607408. Ver5.8.0. 1- Dec -2003 Masonry Wall Design g (c)1983 2003 ENERCALC Engineering Software mirage storage ecw Calculations vx:iH.._i^'^YS_ , ..HF.SYK:.nt'f'3t �II84. ,,vy:xYAC:.vi!wryYS:Y _. .:StY.+.xSti:'es491tiM1.AifAl:.. acv' �1- i�eaz..v.:s'.v+..�`N1u:M: wsn?.txiw+ayhF'a✓.cs ..x ?U:tiRwS ftF xw. yYteY. y.. 4JY. tryssavaY.....+ hU' i�.......< 9RS.: cvY. ik* a' x2NHH:: �A3 /Yab.zLtih.aY ^ssRtiutftrt Description Typ CMU Wall 1 ; Final Loads & Moments Wail Weight moment @ Mid Ht 448.50 Ibs Wind Moment @ Mid Ht 3,967.50 in-# Seismic Moment @ Mid Ht 3,094.65 in-# Dead Load Moment @ Top of Wall 0.00 in -# Dead Load Moment © Mid Ht 0.00 in-# Total Dead Load 611.00 Ibs Total Live Load 1,375.00 Ibs Live Load Moment @ Top of Wall 0.00 in-# LiveLoad Moment @ Mid Ht 0.00 in-# Maximum Allow Moment for Applied Axial Load = 6,529.37 in -# Maximum Allow Axial Load for Applied Moment = 27,363.94 Ibs 1 1 1 1 1 1 1 1 1 1 1 1 1 �- ✓ 1 G (tiMi t_,ti v� � V (∎ 014 k i � o .k_ ✓ ' 1 0 ° L 4 ■7 P to •••• m 9.(...;:i - 5 )4, r 2," '1- [ra: z 1 1 I r„ = zsr-,, 3I z5lz.)( 3.9le- l tA.)--„) LA), -c- i S , S" p4- vig.a z- '‘°op4(0- 4 )(,'1 I)i 2.0 p-', 1 1 1 -. \ ( (-.oy 4 Z.1 1 LG '. D } 0.75 _(--.L } ) F z &, L ' 3,0 � nt S �� � Iv � $� Z 111 II v�1 y 20 ) vb z 3° r-r 1Lp/ Li u 4. LIa 4 ) + I f 5 4-, , I 1 ,—c.),), I nu Gw`A Pr 1 iv u 1 1 1 1 1 :,, A ! afghan associates, inc. t/w�\12- t.1Y, By: � pate: �'0 t�7 ENGINEERING 1Ip101 Project No.: 4875 SW Goth Drive 1 Suite 300 1 Beaverton, OR 1 97005 I 503.620.30301 tel 503.620.5539 1 fax —7 www.aaieng.com Sheet: 1 , /� 4 Of: I Title : Mirage Storage Job # A07072 Dsgnr: MT Date: 7:54AM, 31 MAY 07 Description : 1 Scope : Rev. 560002 Page 1 User. KW -0607408, Ver5.8.0. 1-Dec-2003 Masonry Wall Design 1 I (c)1983 -2003 ENERCALC Engineering Software mirage slorage.ecw Calculations -s. a _ u. r. .m. ,, -K ..... ..,,,,, .„,,,+.n -•ez.- w,....rn g e.,reu*rn .... sma.. ea+.,cmmPw.,, -,, , car ,,.n,nx c., ii'*. tfl..- Description 10" CMU Wall at Loading Dock 1 General Information Code Ref: ACI 530-02 k Wall Height 11.00 ft Seismic Factor 0.2000 fm 1,500.0 psi Parapet Height 0.00 ft Calc of Em = fm * 900.00 Fs 24,000.0 psi I Duration Factor 1.000 Special Inspection Thickness 10.0 in Wall Wt Mult. 1.000 Solid Grouted Rebar Size 5 Medium Weight Block Rebar Spacing 16 in Equivalent Depth to Rebar 4.750 in @ Center Solid Thickness 9.620 in 1 Loads Uniform Load Concentric Axial Load Wind Load 16.000 psf Dead Load 2,100.000 #/ft Dead Load 0.000 #/ft I Live Load 4,000.000 #/ft Live Load 0.000 #/ft Load Eccentricity 2.300 in Roof Load Roof Load I i Design Values E 1,350,000 psi Rebar Area 0.233 in2 np 0.08762 j 0.88664 n : Es / Em 21.481 Radius of Gyration 2.779 in k 0.34007 2 / kj 6.63302 Wall Weight 98.000 psf Moment of Inertia 891.670 in4 I Max Allow Axial Stress = 0.25 fm (1- (h/140r) ^2) * Spinsp 331.84 psi Allow Masonry Bending Stress = 0.33 fm * Spinsp = 495.00 psi Allow Bending Stress = 24,000.00 psi I Load Combination & Stress Details Summary j Axial Bending Stresses Axial Moment Load Steel Masonry Compression Top of Wall in-# Ibs psi psi psi I DL + LL 14,030.0 6,100.0 14,328.2 343.7 52.84 DL + LL +Wind 4,830.0 2,100.0 4,932.7 118.3 18.19 DL + LL + Seismic 4,830.0 2,100.0 4,932.7 118.3 18.19 Between Base & Top of Wall I DL + LL 7,015.0 6,639.0 7,164.1 171.9 57.51 DL + LL + Wind 5,821.1 2,639.0 5,944.8 142.6 22.86 DL + LL + Seismic 6,382.1 2,639.0 6,517.8 156.4 22.86 I 1 Sum 11.00ft high wall with 0.00ft parapet, Med Wt Block w/ 10.00in wall w/ #5 bars at 16.00ino.c. at center 1 Max. Bending Compressive Stress 396.56 OK Allowable 495.00 OK I Max. Axial Only Compressive Stress 57.51 psi Allowable 331.84 OK I Max Steel Bending Stress 14,328.22 psi Allowable 24,000.00 OK 1 1 1 -1,C 1 Title : Mirage Storage Job # A07072 Dsgnr: MT Date: 7:54AM, 31 MAY 07 Description : 1 Scope Rev: 580002 pp {p� User: KW- 0607408. Ver5.8.0. 1- Dec -2003 Masonry Wall Design Page 2 I (c)1983-2003 ENERCALC Engineering Software mirage storage ecw Calculations :++. -s.. .r...acna_ k- ,«rx.eueM . -vasm,s�xa.;�m, �- ..;:r,�:•Hrrme x...„..�� -v, �...mee. 9' v- �. �.,.. usu.... ;*r,i...rcrw- s:,�.m.r4*rsr-. =+:._as..:rzat., acs. �n-.+. uama.,: scx ..- ..cac...�.mss.V°«+x;.:�iu:� t. Description 10" CMU Wall at Loading Dock I Final Loads & Moments Wall Weight moment @ Mid Ht 539.00 Ibs Wind Moment @ Mid Ht 2,904.00 in-# Seismic Moment @ Mid Ht 3,557.40 in-# Dead Load Moment @ Top of Wall 4,830.00 in -# Dead Load Moment @Mid Ht 2,415.00 in-# Total Dead Load 2,100.00 Ibs Total Live Load 4,000.00 Ibs • Live Load Moment @ Top of Wall 9,200.00 in4 LiveLoad Moment © Mid Ht 4,600.00 in-# 20,205.15 in-# Maximum Allow Moment for Applied Axial Load = Maximum Allow Axial Load for Applied Moment = 38,307.68 Ibs 1 1 1 1 1 1 1 1 1 1 1 1 1 7,(40 1 1 1 ,e2 - 1 .-7•,,,, , r) ,, 9 0 e ( ) II \ • I . (.,0 ,L) *.• %. :2 ) / , 7 7 - 1- - p;'r C. ,- ) c I a t C2- 1 .-- ^- . \ FL- le— rc ( S 1 ) .-- ! Le 7:7 1 1 p4A c 5 f9 Lco re7 1 fu "r- F c- 7 . . A , r p '' r.e ,, 4 ■ z° C 1 , -1) , ) , 1 c Y-,,) 7 - -D ..., i 1 ' - r 7, L., .7;, c.- Z4 Z- ■ 3 4 1- I -c u.., c; c „: 0 (c.... I f 1 I...kJ ' . `--.-Ai t. ■.A..) ,--"\ --- F--.g--- rso-Hz_s)( E. 1 I At 1 ato , — I `1 e b 0 r 1 F i' --, 1:::1-- '7 9 L,c9 ri I A c r,-. 5 : ct z.- -5(07-0( (.5 -) , - 1 . 7, ,'.) / --;> 7/ - i (- f ., ) ti v562 • 1 T-,‘, .__ 1 afg rw AAII assoc In 1 h 7, )'°7 ghan associates, inc. VkA t Mh. Vt/ By: P 1 Date: 1 ; ENGIN EERING Project No.: 7-`0-1 i 4875 SW Griffith Drive I Suite 300 1 Beaverton, OR 1 97005 III 503.620.3030 1 tel 503.620.55391 fax www aaien g.com Sheet: 11 of: 1 1 f—) k_Au - 1--- Five.) yo,...?714-4- ■-) u rt. Te") t..- Ac...k_ t rt-ig 1 A._..o . 1 ---- A / \ 0 ) ( , ) 2 7_ r6z 1 01 ) z 1 . ,-. 1 = IS pi r I --,...,.f ) 4 c 0 ( . 1 r(2K I., z, I ` ) I (I) k/ , 1 r-----, :) vA- A 1 1 C • 4- i 1 ' Z-- 2- 4-- o'r-- I 1 1 r .. 1 1 1 1 lie 71 1 afghan associates, inc. tkA ,Iltk,i, By: IN" Date: 1 ) z e ) " ) ENGINEERING 11- 017 4875 SW Griffith Drive 1 Suite 300 1 Beaverton, OR 1 97005 Project No.: 1 503.620.3030 1 tel 503.620.5539 1 fax www.aaieng.com Sheet: " 0 Of ....