Loading...
Specifications (27) �` SforogeROC $iR ! D,, ,, CITY OF TIGARD BUILDING DIVISION ti'4j y( E "1 t. kt.;� iY 4 Ozy C, 0 4S , A '. 0 z 'Aw' _- ineering , -it; i u Inca 23142 Arroyo Vista Rancho Santa Margarita, CA 92688 Tel: 949.888.8850 Fax: 949.888.8851 Ali Abolhassani, P.E. President & Engineer of Record email: mail@storagerackengineering.comSigned:AN 3113 � RO wwweos .storagerackengineering.com Pfs `I 7254• 'E t" i Project Name : BMW OF TIGARD y� �, t y d .,,, .5`�P �i//Ok* PAC} ETfOR: iiiiiProject Number : 23-0410-2 s: ���ykk "` ' R0 J p SHELVING PER WARGtJCiHS �+v PROJECT#3208-A SRE INC PROJECT#23.0.$ 2 R Star.pe fuck EttytnearPtrp Inc Date : 04/13/23 rrd,P.E.AnA oIh.ssa Engineer of Record ! 23142 Arroyo Visa , Street Address : �875 SW CASCADE AVE. +`ho$4414*0,49.88k$050 PAL 1 af .tor.#.r.ckertgd n.erlag.com eom City/State : TIGARD, OR 9 7223 . t�kek, . Corporation 013E0f 548 Scope of Work : SHELVING PER BORROUGHS PROJECT #3206 A BUILDING SUMMARY OF. BMW OF TIGARD ADDRESS. 9875 SOUTH WEST CASCADE AVENUE I TIGARD,OR 97223 •• De*En Soedfxalsons' OCCUPANCY TYPE TBD ?) ,,,T I x 1)Code:2021 IBC,2022 OSSC and ASC 7-16 AND Af1SIJ14H16:2012 RMI CONSTRUCTION TYPE TBD ` SLAB' StMOO.:R x A\ th 2)Seismic Zone Coeff:Ss=O 863,S1=0.397,Fa=1.20,Fv=i.803, TBD ✓A+e s^,cce+; a ., Sds=0.69 Seismic ,Sd1=0.477.Site Class:D,Oec.Catag II, z8 Design Catagary B,Ip 1:0(No Public Access) ui 4 3)Design Loads: UGHS B 3002 N BURDICK STREET �' a level S KALAMAZOO,MI99003-3983 R h�Fg Type A,B,C,0,E G,U,V&W:200 b per Sher level INDUSTRIAL SHELVING Type F:70 b per shelf level VI`S1L'zk�;SC level Rivet Shelving: THIS DRAWING AND ALLINFORMATION THE IXPRESSED C9f 5033vPrt1Ael 'e # Type H&Q:150 lb per shelf level PROPERTY OF BORROUGHS.DO NOT Type!:500 b per shelf level USE OR COPY WITHOUT WRITTEN PERMISSION FROM BORROUGHS K Type 2:200 b Per clef level DRAWING IS SUBJECT TO RETURN ON Type K&T:170 b per shelf DaDEMAND.lf' •� Type L,R&N:250 per Shelf level THE BILL OF MATERIAL IS °,, 3y^. � it SUBJECT TO CHANGE DUE TO P.E. Type 0:120 b Per shelf level CALCULATION OR LOCAL ORDINANCE. VICINITY MAP Grade level Rivet Shelving: CHANGES THAT REQUIRE ADDmONAL ILL BE THE Type M&L:500 lb per shelf level OOF THEW �CAMERRESPONS[Biun SCOPE OF WORK SPECIAL NOTE(FOR REFERENCE ONLY) 4)Slab on Grade and soil:Existing 6'neck x 2,500 psi N.W. 1 TO PROVIDE SHELF SUPPORTED WORK PLATFORM,BORROUGHS 1.ALL FASTENERS TO BE INSTALLED AND TIGHTENED. Concrete slab on grade with 1000 psf alowable sof bearing pressure , CLIP-TYPE. or better,designed by others (STAIR,HANDRAIL,CALCULATIONS ARE PROVIDED BY FCP,SHOWN 2 USE SPECIFIED FASTENERS FOR ALL CONNECTIONS ONLY. FOR CLARIFICATION.) 5)Anchor for lints on Concrete Slab an Grade: 3.PLUM LEVEL TOLERANCE TO BE±.25"50120"INCHES. Shelving: 2.SHELF LOAD(SEE UNIT SUMMARY 6 CAPACITIES) 4 ALL PLAN DEVIATIONS MUST BE APPROVED BY BORROUGHS 3/8 diem x 2.5"non.Embedment Typical 3.BORROUGHS CALCULATIONS AND STAMPS BY AND IN WRITING. Hilti KWIebO1t T22 Wedge Per ICC ESRR4266 ALI ABOLHASSANI,P.E.OF RECORD 65'Minimum distance from edge of SlabfconstnKtion joint to anchor STORAGE RACK ENGINEERING,INC. Special Inspection Is Required Outing Instalation of Anchors 23142 ARROYO VISTA (2)Anchor per footplate RANCHO SANTA MARGARITA,CA 92688 REV. DATE DESCRIPTION PHONE 949.888 8850 I FAX.949.888.8851 6)Steel:ASTM A36,Grade 36,Fy=36 kN typical A 02/09 APPROVAL DRAWINGS UNIT SUMMARY 8 CAPACITIES:(see elevations) INDEX OF DRAWINGS' 3206-A Engineer of Record: UNIT LBS.PER LEVEL TYPE COLOR QUANTITY SHEET SHEET NAME Storage Rack Engineering,Inc A SEE NOTES CLIP-TYPE 161 12 0.0 COVER PAGE Al Abolhassani,P.E. B SEE NOTES CLIP-TYPE 161 16 1.0 SITE MAP OR Civil PE License#72544PE C SEE NOTES CLIP-TYPE 161 63 1.1 BUILDING LAYOUT 23142 Arroyo Vista D SEE NOTES CLIP-TYPE 161 19 1.2 GEOUND LEVEL SHELVING Rancho Santa Margarita,CA 92688 E SEE NOTES CLIP-TYPE 161 67 1.3 DECK SUPPORT Tel'949,888.8850 F SEE NOTES CLIP-TYPE_ W 161 1 1.4 UPPER LEVEL SHELVING Ww.storagerackengiteerng,com G SEE NOTES CLIP-TYPE 161 9 2.0 STANDARD ELEVATION H SEE NOTES RIVET-SPAN 161 17 2.1 STANDARD ELEVATION I SEE NOTES RIVET-SPAN 161 6 2.2 STANDARD ELEVATION J SEE NOTES RIVET-SPAN 161 4 3.0 STANDARD DETAIL K SEE NOTES RIVET-SPAN 161 9 3.1 STANDARD DETAIL L SEE NOTES RIVET-SPAN 161 21 M SEE NOTES RIVET-SPAN 161 7 N SEE NOTES RIVET-SPAN 161 2 Q SEE NOTES RIVET-SPAN 161 4 R SEE NOTES RIVET-SPAN 161 5 S SEE NOTES RIVET-SPAN 161 _ 1 T SEE NOTES RIVET-SPAN 161 1 BMW OF TIGARD U SEE NOTES CLIP-TYPE 161 1 9875 S.W CASCADE AVE ✓ SEE NOTES CLIP-TYPE 161 3 TIGARD,OR 97223 W SEE NOTES CLIP-TYPE 161 2 COVER PAGE SCALE: N S DRAWN BY: NJ CHECKED BY: GS N DEPT.MANAGER: LA • PROJECT MANAGER: GS " LAST REVISEION D: 02.09.23 i�'53• REVIS LEVEL: A 0.0 • sq L7 10,i •• \ �� \ \ \\ _ RORRWGHS ' : °,• r• ':c,.,II \ 3002 N.BUROICK STREET ED ;�.. •'\ AAA. MI 490043A83 \\\\;.. \;:,• �\\_ INWSIRIAL SHELVING 4'�j / \ �\ 11115 gUWMG AND ALL �� a �� \ \ GROPERT/nOF BORROWRHSW NOT DEMAND SN9>EC(TO RETURN ON PY ti •• THE BILL OF MAIRGL LS .• . \ DRAWING N FROM BORROUGHS • :\trjr;; •.^.tea.. ;;•.. 'l!� i�I:. I • \ SIlH1ERTO GRANGE DUETO G.E. �i• ,,, CALCULATION OR LOCAL RDINANCE. ;3;;,•'\ %`\\� ? .\r•\••,•;\ ••'\\ . A'„ CHANGES TNATREQUIREAWIiIONOL COST WILL BE 1HE RESPONSIBILITY D i.; • \ OF THE CUSTOMER. . ; \\\•r• ,•\ir •,,,,,, :„.: :,� fir..,. •~:.gym, • ,�n. :Z\ ir \� `far. „,\\ h \� �\ .:. s n\ \\\': \ \ . \\` \C\ t\ ,\ ��• REV. DATE DESCRIPRON EI, \ A 02/09 AGMiOVAL DRAWINGS So r„'r,.r.. W • • • • • � ��� I�l�$C@��'FgESrr_F. -a, .. • • i'i v C. 4 p p ® ® ® Ny„ BMW Oii, co F TIGARD 9875 S.W.CASCADE AVE. � � .� a Of(' TIGARD,OR 97223 A. • �_� SITE MAP . scuE: Nrs PROPER,LIRE SO'Rmw..", DRAWN BY: ]C] CHECKED BY: GS DEW..MANAGER: LR GROm MANnMU GS \y%�� LASTREVLSFD: 02.09.23 ���5�� REVISION LEVEL: A 1.0 I D1 1 11 �/'I�� m„ ________________ _—_—-I BOROUGHS \/ - - u}i .���.��7. I }._____ —0 3K STREET KAIAMAZ00002 N. M[C99004.W83 `+L I - - _ _ _ INDUSTRIAL SHELVING —�/ (-/ -�(/ ems. 1 '�A= �� � � � ��� ' L� L f ® THISDRAWfNAWDALL :1, _i PROPERTY OF BORROUGINFORMATION THE HS DO NOT u• j �� -1= __ -1J =J =J =1 =J =J =1J =J =-� s USE OR COPY WITHOUT WN ION FROM BORROUGHS wu+11lF-� I 1 _ -_-- � DRAWING DEMAND.IS SUBJECT TO RENRN ON J�,�Jj`''� TIE BILL OF MATERIAL IS 0 1-1 ! SUEUECA TO CHANGE DUE TO P.E. ORDINANCE.CALCULATION OR LOCAL I—* 11 I CHANGES THAT REQUIRE ADO ONAL I COST WILL BE THE RESPONSIBILITY ILL OF THE CUSTOMER. • • -) C C C C [ ] C J C \C C C = - =J =J J =J J =J =J 1 1 1 REV. DATE DESCRIPTION A 02/09 APPROVAL DRAWINGS �— II yyI IL I I Y_1R_'P' 1-I I 1 ' I r 1„ mw; �P� ...11 _.o v J • +-� I I- 1 � I 1 'CIF- -.. - :• ... IIIII� 000 �, I a �. I -��� ft €I€IH 1 .{-'1` €I€I€1< . .. N. r r.Q. "°"i commma mapL,I IIII[II •� � dm• LII m� �� it ,„„ L?��"" 1 1 I 1 ....-. !+' l r �.z _ BMW OF TIGARD 71 - ro.��. "�'', ..1 �v�- _. _ F._ ...... � 9875 GA CASCADE 3AVE s '�^' = TIGA R 97223 \,(- 41 o \ RD,O :=EN ill, 4 III 0 • \ ���R. •" . . "" Q BUILDING LAYOUT 1 1 I 1 1 1 1 1 NS DRAWN BY: JC] CHECKED BY: (S I N DEPT.MANAGE(: U_. BORROUGHS SCOPE OF WORK , PROJECT MANAGER: 6 P,E%:. UST REVISED: 0209.z, \1'4�• REVISION LEVEL: 1'1 A I— I 1 L14 ,_0s.A.s." D TIRE CHANGING r- --- --I r - 2A BOW NBURDICK BORROUCSTREEC 14SD a 150 r �` TECH.ADVISORS a RALAMuoo,MI avoac34eB --.. L 1. J L_ J 52 tp A INDUSTRIAL SHELVING TIRE C ROUSELS �/\\ 49 ] I M o M -.-.. / - THIS DRAWING AND ALL INFORMATION THE IXPRESSED M M r __-I UPROPERTY SE OR COPY WITHOUT WRIITE OF BORROUGHS.DO NOT PERMISSION FROM BORROUGHS 11 I W061 .3'—W064 DRAWING IS SUMER TO RETURN ON DEMAND. - -- THE BILL OF MATERIAL IS SUBJECT TO CHANGE DUE TO P.E. 5.� £ CALCULATION OR LOCAL ORDINANCE. CHANCES THAT REQUIRE ADDmONAL — • B B B COST WILL BE THE RESPONSIBILITY —AS— 4B— 4e— —4848 —� �I _ THE CUSTOMER. _ C C— C c IIIIIE E E E B - B A J A A W030 SPECIAL TO A D �51 --- FAST PARTS - - I I IDF C C PIS D _HG - 179 D—4a— G_iiiG E E _ E _ E _-49_- _E _ E _ E _ B._ B _—^e _ -—A-—A- A F C—46 1 "." r-- - - D G G E E E E E E E B B C C C C C �I !,.-1, ■ _�,DI ' PARTSIIIWO60 ■ I! — D ■D—4e— c e e C c e —4<— e [ e e c —44— e C e C eELEC • 1 W034 _ C C C C C C C C C C 4 C C C C C C -4.- A B—4B_D D_45 182-j REV. DATE DESCRIPTION 4 AL DRAWINGS - D 49 J A B ■ I� 'W034 M�— E 1 E E E E E —44— E E E E E E —HR— C C C C C I G ■ '• === D E E E E E E E E E E E E E E E E 4e A B— ■ 5171 - • W034 __— I—. I I 6-C"SLIDE GATE � 4 43 4s RTS MANAGER ■ 1,1• �� L A 11f I 158 I ■V MEN D D D ( C 1 I D [ D < C t 9 G G W064 W084 ' W034 � 164J �--g E E E E E E E E D D `� W034 ° - paF�++ I ,I, - ............................... 7 .................,,.......■ JANITOR 165 II M ■ —W181 - W121 W121 E W061._— ■ W034 --- ■ i _.. .... WOMEN as . ' W030 • ■ a R I 166 I \iil STORAGE EV BATTERYEPIIIII � STAGING OR 1184 1 I 154. I ME 1 156 n --i-- � W121 _ a!34 E PARTS SALES ■ [�' W034 E E 1 159 _ --_ TIGARD, 97223 `"- 154BJ PARTS REC. w [ 157 F I e0- W064 GROUND LEVEL SHELVING • DRAWN BY: JO CHECKED BY: 6 LR SCALE: NTS 41.. LAST REVISED: OO \ h ___ • A1 ���3 REVISION LEVEL A 1.2 I I Rom•RHO / =MI IMil SERVICE RM�R��Ra DEPART ENT I °°".K°" 3002 N.BURDICK STREET KALAMAZOO,MI 49001-3483 DECK SUPPORT LOUTION I INDUSTRIAL SHELVING DFCKIHGio RUN NORTH ANo SDUIH � /� 0 I-_--- ---= THIS DRAWING AND PROPERTY OF RROU ___ INFORMATION THE EXPRESSED PRE OR COPY WIIHOUHWRR�N NOT PERMISSION FROM BORROWHS • -- T DRAWING IS S000SCETO RFNRN ON I ‘ _ T_ EIMND. TIRE CHANGING . '�2A 0 SUEIBSI O CHANGE DUE TO P.E. ___ - _ _-I THE BRL OF MATERIAL IE �d$D �S� I TECH. DVISORS �- �a cacuunoNORLocooxDlxaxcE. �- TIRE CAROUSELS ! M I - --- --. L ___ _ l 152 _... ■ I A COST NELL BE THE RESPONSIBILITY �j149 D M - - L' �� OF THE CUSTOMER. I I M M R� I ■ I ■ M M FQ� I I ■ L ■ W061 -W064 I i m _ ,53 ss— 4e- 46- _ _,�_ _qB_ _,B_ B B B C C C C C C-4s E E E E E E B -" B B -42 BS A A A C �� SPECIAL TOOLS I ! 11 L _ - �-I� _ W030 162_ - - - - __ F�ST PARTS TT y s a 1 is 1_1533 I SS • N IDF REV. DATE DESCRIPTION — LO — — — _ �� CO [ 179 W064 A 02/09 APPROVAL DRAWINGS -" G 111 G --E E E E --4+--E E E B B -4. A _-A- A- -A- - -B - +s� .� D G G E E E E E E E B B C C C C C C a wauur:.a„:ac::..v IN111 .e ! WO60 � ... .M,,..,...r D98 ,a PARTS I I I v r151-f 0 ral --- D—99— C C C C C C —44— C C C C c` c -+4- c c c c c ELEC W t I V I 034 T c j c c c c c C c c c c c c c c c C -. III D a s_ 3 182-- :T E _ _ _ �- - D D .r.r W064 W034 D-49J - E E E E E -90- E E E E 1H E -94 C C C C • ` a 0 H D E E E E E E E E E E E B E E E E MI� ---'7 • W034-- - I — — ` — — — P.OX SLOE GATE — +A 43 49 •RTS MANAGER g 1 MEN 'm I A D D o I c I _ I C [ _ c — � _ G • w 4 [�5� 1i W03a I1sa 1 _ W064 V -W034 I E E E E E E E E D D C C C C - —�- I Pia 1 tO im - J `- - ... / - -'I, "-' -s- -- - ___— __-__ .._ _— JANITOR - - 9 S S W OCASCADE A Z W034 87 VE. W18.3.0 W121 W121 M E W061- P34 TIGARD,OR 97223 g WOMEN.. EV BATTERY / W030 �66] STORAGE ������y +� STAGING I���,m - IRE RISE•• ! L184� L_15� MOM '` L_19� i II'" -_- - - FI80� DECK SUPPPORT W121-. �II� s 034 Is — DRAWN BY: 3C3 CHECKED BY. PART SALES n W034--- . xIi DEPLAST.MANAGER: eG: o.Ds.z3 < E E r- PO• (r PROJECTMANAGER: CS E k ) I 1 REVISION LEVEL: A 2 - - - I - _ - —� 1■■1 1.3 x� 1a 1 I I 1 NOTE: / FOR STAIR,HANDRAIL AND GATE DETAIL SEE FCP DRAWING SET. _ - 1 " •• •: TIRE CHANGING I ---/--- /---\ I 52A 3002N ROARSICK 148D_ 150 I / I TECH.dDVISORS 9 RAIA010Z00,MI 490043983 L_ _- J L_ -. _ _J - 52 ■ ! INDUSTRIAL SHELVING TIRE CAROUSELS - ■ i 449 o J 9 9 MI■ ------ ■ THIS DRAWING AND ALL - 1 - -- ■ 1 INFORMATION THE IXPRESSED ■ PROPERTY OF BORROUGHS.00 NOT • — ---._._ F USE OR COPY WITHOUT WRITTEN ■ PERMISSION FROM BORROUGHS ■ ■ W061 C__-W064 D IS SURIECT TO RETURN ON ■ ■ 1 THE BILL OF MATERIAL IS • SMELT TO CHANGE DUE TO P.E. r , r , • CALCULATION OR LOCAL ORDINANCE. ,� ■ _--_-- -__. '53 0 CHANGES THAT BE REQUIRE RESPONSIBILITY . __iP .. .. __ .. .. .7 - . .. .. k—... .& m ? cost WILL BE THE RESPONSIBILIT ' OF THE CUSTOMER. Ar ��-� W030 SPECIAL TOC 151ireror T " �1s2 . Apr AI / 4101._JI Ar AI A Al _7 _ allo P179- iI r r 401 elf fe AP V jyrr ... ixt, IDF a _. v. Ar A .-.34r, ArAr rr Ar Ar f ' A� I Aor Ar ,ELEC ■ W034 =-�( W� , III I T 182 - : � REV. Dare DESCRIPTION . —- <A 02/09 APPROVAL DRAWINGS ' -_�. W064 W034 � - - 1007 7 1 A I A. • A s-P•OLIVE GATE "4RTS MANAGER MEN 4r,.� 4 �58_f VJ034 .----v VArlakiro r 164 co � -_._._-/ / / .r= _// / VV064 156 JANITOR 15 Les _ -W034- °- ■• W161 --W121 W121 C W061 W034 • C _ _ WOMEN co ■ STORAGE RETURNS W030- 166 EV BATTERY STAGING m _ ---- _ O 'FIRE ■ 184 [ 154 155 x �56� D W121 04 C ■■ BMW OF TIGARD PART SALES _•. ?$W034 0, 9875 S.W.CASCADE AVE. L 59 FD -__ TIGARD,OR 97223 w • R - 1 54BJ PARTS REC. _ ' �m I.. _ -� ,• 157 d_57,5iI - ate- W064 UPPER LEVEL SHELVING SCALE: NIS • DRAWN BY: ICI CHECKED ED BY: IA 1 e — — PROJECT MANAGER: S iv F �i Q Q ..,. LAST REVISED: 02.09.23 co h A � 1.4 � �1:'.%' REVISION LEVEL. a N D BORROUGHS 3002 N.BURDICK STREET KAIAMAZOO,MI 9%09-3403 INDUSTRIAL SHELVING THIS DRAWING AND ALL INFORMATION THE EXPRESSED PROPERTY OF BORROUGHS.DO NOT USE OR COPY WITHOUT WRITTEN PERMISSION FROM BORROUGHS DRAWING IS SOLVER TO RETURN ON DEMAND. - -- THE BILL OF MATERIAL IS 'FA — --+ - +9i--...-_ 24- ._+�L - +4_-. --_ L SUBIECT TO CHANGE DUE TOP.E. CALCULATION R LOCAL CE. L..._. I ,`..,.,�.s --- ` cam' ` 4 - --..__ CHANGESTTHATOREQUIREADDCII0NNAL xa� xx 1 v4 1 4 m COST WILL BE THE RESPONSIBILITY .._ y I ■: OF THE CUSTOMER. Ell ^ Ew11 4 DRAWER I 1111 UNITA UNIT B ) UNIT 46k29k87" 48k24ke2' 96,1855875 REV. DATE DESCRIPTION 5 SHELVES 5 SHELVES 7 SHELVES A 02/09 APPROVAL DRAWINGS 9 DRAWERS 6 DRAWERS la T Mil 6 • }_o, mo _ — UNIT CI UNITE UNRF 3659185982" 48k24k87' 49k12"487 Z SHELVES Z SHELVES Z SHELVES BMW OF TIGARD 9875 S.W.CASCADE AVE. TIGARD,OR 97223 STANDARD ELEVATION SCALE: NTS DRAWN BY: JC3 CHECKED BY: GS DEPT.MANAGER: LR PROJECT MANAGER: GS O LAST REVISED: 02.09.23 REVISION LEVEL: A 2.0 I I D D BORROUGHS 3002 N.BURDICK STREET KALAMAZOO,MI 990043483 INDUSTRIAL SHELVING THIS DRAWING AND ALL INFORMATION THE EXPRESSED PROPERTY OF BORROUGHS.DO NOT USE OR COPY WITHOUT WRITTEN PERMISSION FROM BORROUGHS DRAWING IS SUBJECT TO RETURN ON DEMAND. 1 THE BILL OF MATERIAL IS 3 S SUBJECT TO CHANGE DUE TO P.E. CALCULATION OR LOCAL ORDINANCE. ? - - - - -.- CHANGES UNDDITI COST ETERESPO RESPONSIBILITY OF THE CUSTOMER. Oj { __ .. ma l' .. . i_ j 4-1 88,7 as } .. UNIT G UNIT M 36"x24"xB2" 60'515N72" UNITI 7 SHELVES 3 SHELVES %,y�..xJ2. REV. DATE DESCRIPTION 25HELVFS A 02/09 APPROVAL DRAWINGS 964 1 r IM111111,1..',p — '--- T- .r..E w - . a ! +,taa<RAILRAILnsmnMv -� a s K u. 1 12 21 92 A. 98"x22N22.. UNIT K BMW OF TIGARD 2 SHELVES 96"x36"x72" 3 SHELVES 9875 S.W.CASCADE AVE. TIGARD,OR 97223 STANDARD ELEVATION SCALE: NTS • DRAWN BY: ICJ CHECKED BY: GS N DEPT.MANAGER: IR • PROJECT MANAGER: CS N:%y LAST REVISED: 02.09.23 AA� REVISION LEVEL: A 2.1 A L L Ni C 1 D -1 ,— _ F _ Hi si BDRROUGHS 5y 3002 N.ITURDICK STREET 4 — _ I f _ �, mu H. r • - I KALAMAZOO,M[490043983 _ _ I N{7 - �. INDUSTRIAL SHELVING Pi 'IU. sst lOIS DRAWING AND ALL J^� r ` INFORMATION THE EXPRESSED Y. 4 PROPERTY OF BORROUGRS.DO NOT .{ . i i 4 4 .4 USE OR COPY WITHOUT WRITTEN _ _ L^ -_, PERMISSION FROM BDRROUGHS 1 �. �) hi 1 1 a 1 1 mart sz. I DEMAND.DRAWING IS SUBJECT RRETURN ON sox UNIT UNITM l UNIT NJ THE BILL OFMAIERGL IS 96"936"522' 22"x36^x72. 72UNDE N 2" SUBJECT TO CHANGE DUE TO P.E. 5 SHELVES *SHELVES 5 SHELVES CALCULATION OR LOCAL ORDINANCE. CHANGES THAT REQUIRE ADDITIONAL COST WILL BE THE RESPONSIBILITY OF THE CUSTOMER. ».� 1 �z4� - _'sdi_ 1 -.w}-� 1 '�'- --._ k 1--- I.k 4.1 1 rzk • w v M u rs • r — 1 1_..... "'^ ' _ _ "'°` i �' ->— ` w� " 4 j` REV. DATE DESCRIPTIONDRAWINGS 0 t I I '� • - A 02/09 APPROVAL DRAWINGS 4 A ui 414 I 4 _ a 4 • 4 _ { • -16 UNIT Q UNIT R UNIT 5 UNIT 96k24122" 60506'02" 725283x22" 495341)2" 5 SHELVES 5 SHELVES 2 SHELVES 5 SHELVES • Qt3 ~ems___--1 4 16 I '__ � ! o , 4 7 II ` , i R i 1 { i '� , .1 e BMW OF TIGARD L 9 Y I 9 9875 S.W.CASCADE AVE. fi( uNtru f ,"- �r �� ii ,,., „o„ 7 .._ TIGARD,OR 97223 42UNIT U]" NITV MIT 36i12k6>' x32185' 2 SHELVES 2 SHELVES 2 SHELVES STANDARD ELEVATION SCALE: NTS DRAWN BY: IC) CHECKED BY: GS N DEFT.MANAGER: LR PROJECT MANAGER: GS �1�16. LAST REVISED: 02.09.23 �1j53x REVISION LEVEL: A 2.2 .. m w awunm .x : DNKDRe EB�D,—.. aH�DWwa�I�N Q�l R�A® AD�DDW KE mE Na:4' , — T, IX RSA _nN- IPTPIATOF FOOPIATE Ili AVAILABLE 1 , a., P ���,. t J Itil„.,,,_ 0 'xAo17 Q U °V /I JII•- ^L .. _ I• 4. I 3002 NIURDICK STREET 44.44. I( ® Q 4P11,1:140:,,,, KMAMAZOO,MI 490043983 C a _ Try ��.�.� �� •rxv w.r wnw.re m T a INDUSTRIAL SHELVING �.[ m '^ ,•'" N \V/) THIS MAI NGANOALL ,. _ na / `YY INFORMATION THE EXPRESSED liiiii „,,, '� .ws PROPERTY OF BORROWHS.DO NOT r ',jar— USE OR COPY WITHOUT WRITTEN 1102G-00 HD FOOTPLATE FRONT 2 BOLT O 11029 .F00TPUTE 2 BOLT BK TO BK --;,1 FOOTPUTE.ANCHOR W/PFADFO POST O FOOTPLATE FRONT W/BFAOED POST O FOOTPLATE W Y/ PERMISSION SUED,TO RETURN 1 4, y., 5 ,,,/PNGIE POST DMWING155ROMBORROUGH ON raamartl mnrrl Slit :pq�. +�( 9y] DEMAND. razes<2 Po-NE01515- zi CASK 4M0E5 2.15.Ew Ga.5 SS ib TW � ,„, .L THE BILL OF MATERIAL IS iT/ M SUBJECT TO CHANGE DUE TO P.E. CALCULATION OR LOCAL ORDINANCE. DTwao xEns xVP1 Mr xrrz Kurmz z._„..r wRz wru wow.o luV rzuuwzn onazm msrnrtsW , Ill zs x+x�uomz -zq '..., , ww— �.# •. re *� K. .; CHANCES THAT REQUIRE ADDITIONAL wsrwraeD - �� mP. COST WILL BE THE RESPONSIBILITY .! wsranmeu 0 } A 1 OF THE CUSTOMER. l \ xr ww� O srnm \ xrtml.m �...���, � �� ,.,"".. � KO]- , 4K Li Y O fix" , lip•J 9 e ...<V>. G 40 ..„„..yi., ,de. '$\ 4! O FOOTPLATE SWGLE W/ANGLE POST OWfRED O FOOTPLATEBK TO BK W/ANGIF POST O HO BASE STRB BEADED POST umz Vaz"'Fro: s� O9 BEADED POST SHFIF BRAIXET(CUP TYPE) 10 BO%EDGE PLUS SHELF v., �. rn REV. DATE DESCRIPTION m azAeouxortux nzr D r"`m /''' a Ixl°°Ea A 02/09 APPROVAL DRAWINGS vwxmras 1.c:c•rsw Wz',.. , • ora0.1 lriraNWl RwzzxzwOPP01.r.00.113.51 o. Ixorwov¢en rl - / �� ) zwwmlKx xsinW zms/eoxACEs 41111k-F`'L-7 0 Amu POST ANEE Q. 0 O .o. inoCl--- ®. 6® I cGGC.CIC ic.c ICI p0LCDC.CECLC— O 0 i :' il' E -� ® a— — 0 .. 6L � ®� 1 BACK TO BACK `� _ (P/ m m I�� o " r NOTE, Ilm,-7,-----',..f F I, Bpa�1E.Iu )SOULOUnow ,,ow g g o P t �rtrr..-w12.D�. . z. puwx¢m�Ez�rzsr�uUim"orxE I. 0.I.0.1 -1.U.I.U.U.U.U. p-ANCHORING LOCATIONTYP. }Z.E,.E.E.E .wy2 .. .77 .{ Of 0116E POST �SLOTTEDAND.SH,CE 1 INSIDE OBACK PANEL BOLT PATTERN TYPICAL O CLOSED S DE BEADED POST O ANCHORING LOCATION TYPICAL O SLOTTED L01011 DECK SUPPORT O SLOTTED DECK SUPPORT(SIDE) �\ t WOOD DECK -DECK ✓� BMW /- / I---CUT TO FIT I—2"— 8875 5.W OCASCADE AVE- �'� / • �T j� '� TIGARU,OR 91223 \ PRI€S\ I� Y t E - 5 3/8 r- ,STANDARD DETAIL 11%�2ocA. \ Nils • NIHDr,to; MTOITIAOASA DRAl RAWN BY: 353 1-... 13/4 CHC{KE IA LA 12 GAUGEGS ri DEPT.MANAGER: LR PROJECT MANAGER: GS O BDECK W/WOOO DECK 11 C5K2K12GA DECK SUPPORT O GEBERIC01 O GENERICO GEBE \it...::.',.\ o LASTREVD: 02.09.23 "`� REVLS[ON ISFLEVEL: A 3.0 .52 I=;M; PI�aw N�,x,N�Pxx x� ..2 x ja.,,I ,,x �. re V,. we w,wH' iiIIE w r,=. AP�N xw (• TT1 32 1T.m2 LEYL.wFELD520 ws. 0 0 �NwHNnx.P,xMs. o p n p 00 p p 0 I,� 0 p p/--.m , / T,�, p TAT O p p p Q®. . 0 mwroa.R�_ O p O p p ,. - �o.mb.w. K3002 N.BURDICK 83 • MIMBUM ENT.i, 0�x � it- ® ,�' F EMBEDMENT °' ' —� o,.}1 _ s5 f a 0 e ♦ r nm INDUSTRIAL SHELVING .i...mwaw,vas, x IOOB3OO ,Ln : -.T ; �xr,aEo xmP reronrAs- _ �r THIS DRAWING AND ALL E INFORMATION THE I.PRESSED LEE. NN• PROPERTY OF BORROWHS.DO NOT � w Halo n mnEu. USE OR COPY WITHOUT WRITTEN • 0 0103-DOS RIVET SPAN ND FOOTPLATE TYMGL O RIVET SPAN FOOTPLATE ANCHORING O RIVET-SPAN FOOTPLATE ROW END O RIVET SPAN FOOTPLATE INTERMEDIATE O RIVET SPAN F0OTMATE W/T-POST PERMISSION FROM BORROUGHS zr �`"' p�U JyUry FR St Vy DRAWING IS SUBJECT TO RETURN ON xu.----.. -;K ri �������w}.F _ LYDISDDOBS I91.I 1<Crl OEAIAND. REF.,. ranxnaw,rt 'K^ 1' THE BILL OF MATERIAL IS umxuo. mumnxcsaxo.xozma SUBJECT TO CHANGE DUE TO P.E. u cIS REF mMww rAzcL _ 1 1 DSBB u cues wJ-mPl ®� �_ �« F� CALCULATION OR LOCAL ORDINANCE. v aucE Losx J.w•1 1� _ 0.75 b ® m ° I I CCOOSSTT WILLHANGES E THEE RESPPONNSIBIILLm --Fr1 A 1 O �, 40 , .imps m� _ _ u.x µme_ x.xs OF THE CUSTOMER. YYYY 2.65 r 2.56 ®� ®'L x�L'UMW_lio/. JRITTII I .1s00 R 2.500 �` -rn °PMI M B TIE SUPPORT O TIRE BEAM TET SPAN O TIE WALL,.RIVET SPAN - v ws REV. DATE DESCRIPTION .n.'. WI A 02/09 APPROVAL DRAWINGS 375 ®.®JL7 1 ® LI Q 0.2320 -/ .«..�.,. 7N. Ili 0.4270 0.1360 I„ _ 7.-•ry��"� 0.1020 I- A a OTIE BACK TO BACK RIVET SPAN 33 RIVET TYPICAL O 10066-00011E PLATE/RIVET SPAN O ANCHOR TWI,,GL UPPER RIVET-SPAN O GENERIC BMW OF TIGARD 9875 SW.CASCADE AVE. TIGARD,OR 97223 STANDARD DETAIL I SCALE: NTS DRAWN BY: 30 CHECKED BY: GS ! Ifi DER.MANAGER: LR O GENE O GENERIC 'M, O GENE ENEGENERICPROJECT MANAGER: l3 O GENERIC,. O irr7P LAST REVISED: 02.09.23 1 A Srr REVISION LEVEL: A • 3.1 R£O` 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:alfrDstoragerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Design Data Configuration:Type A Clip Shelving: 87.375"H x 48"W x 24.5"D 1) The analyses of the light duty storage fixtures conforms to the requirements of the 2021 IBC,2022 OSSC and ASC 7-16 2) All steel conforms to ASTM A36,Gr.36 with minimum yield, Fy=36 ksi unless otherwise noted on the plans or analysis herein. 3) Anchor bolts shall be provided by installer per ICC reference on the calculations herein. 4) All welds shall conform to AWS procedures,utilizing E70xx electrodes or similar.All such welds shall be performed in shop,with no field welding allowed other than those supervised by a licensed deputy inspector. 5) The slab on grade is assumed to be 6"thick with minimum 2500 psi compressive strength. Soil bearing capacity is 1000 psf. 6) All Hardawre shall conform to Grade 5 properties or better,installed to snug tight fit. 1 >al...n'screr n it b 12 " b tali 4 PI 18 i Pa 1t Pi 4. 18 4.5" DRAWER P 4.5- QRAVO 4 uyT.i a 4.5' DRAWER Gj. 87 1.... 4.5" DRAWER 4 18 44 6' DRAWER s 6» DRAWER 8" DRAWER a 18 t 6" DRAWER 41 s ' PiI � 6N DRAWER J 3 PROM 818)/ 3.0. UNIT AyY� 4[8"�x�j24"(x8[7" 5 SHELVES 9 DRAWERS BMW OF TIGARD 32O6-A 23-04 10-2 CLIP SHELVING Page of 4/13/2023 ci rtn 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:al(rD.storagerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Summary of Results Configuration:Type A Clip Shelving:87.375"H x 48"W x 24.5"D Shelf Configuration I #of Levels= 13 D= 24.5 in H= 87.4 in 44 '-74i-~ I L= 48.0 in I /4 ® Location Elevation Load i # i ,., _ I hl= 4.50 in 200 lb I ,$ i h2= 6.00 in 200 lb S #1oi h3= 6.00 in 6.00 in 200 lb h4= 200 lb 'A V ¢'5-DRAWER s E h5= 6.00 in 200 lb 1 4 5 DRAWER q a "ORkwER 4 687 h6= 6.00 in 200 lb 4.5'DRAWERix 49,1 �6 DRAWER 4.50 in 200 lb ° 5'[RAwElr h8= 4.50 in 200 lb 6° RArreR h9= 4.50 in 200 lb is ` 6"DRAWER ' h10= 4.50 in 200 lb DRAWER hll= 10.50 in 200 lb — i-# 4-t ` h12= 10.50 in 200 lb UHITA h13= 15.50 in 1,212 lb 48"x24"x87" 5 SHELVES 9 DRAWERS Notes Axial column DL= 104 lb Axial column LL= 1,806 lb Axial column seismic load=+/- 1,290 lb Net Seismic Uplift per footplate= 561 lb Seismic Coeff: Ss= 0.863 Steel Fy= 36,000 psi S1= 0.397 Product Load= 200 lb per shelf level Fa= 1.200 Fv= 1.803 Component Summary Column Borroughs Clip Shelving Dbl Angle"T"Post 13ga&14ga Beaded Front Post 0.37 OK Shelf P1 22ga Box Edge Shelf Beam 0.44 OK Steel Panel 22 ga Back Panel with(1)0.25 in diam bolt at 36 in o.c.,22 ga Side Panel with weld at 12 in o.c. 0.83 OK Anchor (2)3/8"Diam x 2.5"Embed Hilti Kwikbolt TZ2 anchor(s)per footplate Special inspection is required per ICC ESR 4266. 0.48 OK Base Plate Footplate 5 in*4 in*0.25 in Thk(with(2)1/4"Diam Gr5 M.B.to Post) 0.76 OK Slab 6 in thick x 2500 psi slab/1000 psf soil 0.17 OK Notes SIDE PANEL WELDED EVERY 12" 6.5"MIN. DISTANCE FROM EDGE OF SLAB/CONSTRUCTION JOINT TO ANCHOR BMW OP TIGARD 320G-A 23-04 I 0-2 CLIP SHELVING Page of 4/1 3/2023 t-# 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackenqineering.com,email:ale.storagerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Seismic Forces Configuration:Type A Clip Shelving:87.375"H x 48"W x 24.5"D V1= Sps*W/R V2= [0.4*ap*Sps*Ws*(1+2*z/h)/(Rp/Ip)] #Shelf Levels= 13 V3= 0.044*Sds Ss= 0.863 V4= 0.5*S1/R Vminimum= 0,015 S1= 0.397 V1= 0.1726 W= DL+LL*0.67 Fa= 1.200 V2= 0.1726 = 2,622 lb Fv= 1.803 V3= 0.0304 Sds= 0.690 V4= 0.0000 Sd1= 0.477 Seismic Coeff=Cs= 0.1726 V= Cs*W Rp= 4.0 (Either Direction) = 453 lb ap= 2.5 Cs*Ip= 0.1726 Ip= 1.00 Transverse Distribution R=Rp= 4.00 Level LL DL hi wi*hi Fi Fi*hi z/h= 0.00 1 200 lb 16 lb 3 in 648 1.4 lb 4 in-lb Grod Floor/nstall 2 200 lb 16 lb 11 in 2,268 5.1 lb 53 in-lb Depth=D= 24.5 in 3 200 lb 16 lb 17 in 3,564 8.0 lb 131 in-lb 4 200 lb 16 lb 23 in 4,860 10.8 lb 244 in-lb 5 200 lb 16 lb 29 in 6,156 13.7 lb 392 in-lb 6 200 lb 16 lb 35 in 7,452 16.6 lb 574 in-lb 7 200 lb 16 lb 39 in 8,424 18.8 lb 733 in-lb 8 200 lb 16 lb 44 in 9,396 21.0 lb 912 in-lb 9 200 lb 16 lb 48 in 10,368 23.1 lb 1,111 in-lb 10 200 lb 16 lb 53 in 11,340 25.3 lb 1,329 in-lb 11 200 lb 16 lb 63 in 13,608 30.4 lb 1,914 in-lb 12 200 lb 16 lb 74 in 15,876 35.4 lb 2,605 in-lb 13 1,212 lb 10 lb 89 in 108,780 242.8 lb 21,613 in-lb Sum: 3,612 lb 202 lb 202,740 453 lb 31,616 in-# = Movt Transverse Column Loads All lateral loads taken by the closed steel panels or X bracing Axial DL per post= 101 lb Pseismic= Movt/D Axial LL per post= 1,806 lb Movt= 31,616 in-lb = 1,290 lb BMW OF TIGARD 320G-A 23-0410-2 CLIP SHELVING Page of 4/13/2023 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineerinq.com,email:al(castoragerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Rear Double"T"Post Configuration:Type A Clip Shelving:87.375"H x 48"W x 24.5"D Net Section Properties Column= Dbl Angle'T"Post 13ga Aeff= 0.326 inA2 S2f= 1.67 Ix(downaisle) inA42" = 0.046 E= 29,500 ksi H 1°-.. Sx(downaisle)= 0.046 in^3 Cb= 1.0 rx(downaisle)= 0.377 in Cmx= 0.85 Iy(crossaisle)= 0.237 in^4 Kx= 1.0 Sy(crossaisle)= 0.162 in^3 Lx= 15.5 in ry(crossaisle)= 0.852 in Ky= 1.0 13GA Fy= 36 ksi Ly= 15.5 in 2 1/4" Axial DL= 101 lb Axial LL= 1,806 lb Pseismic= L Loads Loadoad Case:(Fully Loaded) Axial=P= DL+0.75LL+0.75*0.7*Pseismic Borrouohs 13oa'T'Post = 2,133 lb Moment=My= 0 in-lb Axial Analysis KxLx/rx= 1*15.570.377" KyLy/ry= 1*15.570.852" Fe > Fy/2 = 41.1 = 18.2 Fn= Fy(1-Fy/4Fe) = 36 ksi*[1-36 ksi/(4*172.2 ksi)] Fe= n^2E/(KL/r)max^2 Fy/2= 18.0 ksi = 34.1 ksi = 172.2ksi Pn= Aeff*Fn Qc= 1.92 Pa= Pn/4c = 11,106 lb = 11106 lb/1.92 = 5,784 lb P/Pa= 0.37 > 0.15 Bending Analysis Check: P/Pa+(Cmy*My)/(May*p) <_ 1.0 P/Pao+ My/May<_ 1.0 Pno= Ae*Fy Pao= Pno/Qc = 0.326 in^2*36000 psi = 117181b/1.92 = 11,718 lb = 6,103 lb May= My/Qf Pcr= n^2EI/(KL)max^2 = 5832 in-lb/1.67 = n^2*29500000 psi/(1*15.5 in)^2 = 3,492 in-lb = 55,746 lb Myield=My= Sy*Fy p= {1/[1-(Qc*P/Pcr)]}^-1 = 0.162 in^3*36000 psi = {1/[1-(1.92*2133 lb/55746 Ib)]}^-1 = 5,832 in-lb = 0.93 Combined Stresses (2133 lb/5784 lb)+(0.85*0 in-lb)/(3492 in-Ib*0.93)= 0.37 < 1.0,OK (2133 lb/6103 lb)+(0 in-lb/3492 in-lb)= 0.35 < 1.0,OK BMW OF TIGARD 32O6-A 23-0410-2 CLIP SHELVING Page of 4/1 3/2023 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:al(rD_storagerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Front Box Post Configuration:Type A Clip Shelving:87.375"H x 48"W x 24.5"D Net Section Properties Column= 14ga Beaded Front Post Aeff= 0.402 inA2 52f= 1.67 -.1 1 1/32"f Ix(downaisle)= 0.023 inA4 E= 29,500 ks Sx(downaisle)= 0.046 inA3 Cb= 1.0 rx(downaisle)= 0.239 in Cmx= 0.85 5/8" Iy(crossaisle)= 0.303 inA4 Kx= 1.0 Sy(crossaisle)= 0.201 inA3 Lx= 12.0 in ry(crossaisle)= 0.9 in Ky= 1.0 2 3'4„ 14ga Fy= 36 ksi Ly= 15.5 in 1 Axial DL= 101 lb Axial LL= 1,806 lb Pseismic= 1,290 lb Loads Load Case: (Fully Loaded) Axial=P= DL+0.75LL+0.75*0.7*Pseismic 5/16' -► 2,133 lb Moment=Mx= 0 in-lb Borroughs 14ga Beaded Post Axial Analysis KxLx/rx= 1*12"/0.239" KyLy/ry= 1*15.570.897" Fe > Fy/2 = 50.2 = 17.3 Fn= Fy(1-Fy/4Fe) = 36 ksi*[1-36 ksi/(4*115.5 ksi)] Fe= nA2E/(KL/r)maxA2 Fy/2= 18.0 ksi = 33.2 ksi = 115.5ksi Pn= Aeff*Fn Qc= 1.92 Pa= Pn/Qc = 13,354 lb = 13354 lb/1.92 = 6,955 lb P/Pa= 0.31 > 0.15 Bending Analysis Check: P/Pa+(Cmy*My)/(May*p) <_ 1.0 P/Pao+My/May<_ 1.0 Pno= Ae*Fy Pao= Pno/Qc = 0.402 inA2*36000 psi = 144831b/1.92 = 14,483 lb = 7,543 lb May= My/Qf Pcr= nA2EI/(KL)maxA2 = 1656 in-lb/1.67 = nA2*29500000 psi/(1*15.5 in)A2 = 992 in-lb = 367,199 lb Myield=My= Sx*Fy p= {1/[1-(52c*P/Pcr)]}A-1 = 0.046 inA3*36000 psi = {1/[1-(1.92*2133 Ib/367199 Ib)]}A-1 = 1,656 in-lb = 0.99 Combined Stresses (2133 lb/6955 lb)+(0.85*0 in-lb)/(992 in-lb*0.99)= 0.31 < 1.0,OK (EQ C5-1) (2133 lb/7543 lb)+(0 in-lb/992 in-lb)= 0.28 < 1.0,OK (EQ C5-2) BMW OF TIGARD 32O6-A 23-04 I 0-2 CLIP SHELVING Page of 4/13/2023 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:al(rD_storagerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Shelf Configuration:Type A Clip Shelving:87.375"H x 48"W x 24.5"D It is assumed that the downaisle lips will carry 2/3 of the total shelf load,with the remainder carried by the transverse lips w Beam Type= P1 22ga Box Edge Shelf Beam Illlllllllllllllllllllllllllliiiiiiiiiiiillllllllllllllllllllll Ix= 0.0300 in^4 - --o Sx= 0.042 in^3 •--------------------- Fy-beam= 36,000 psi I L ► Shelf Span=L= 48 in E—� 0.75" Max Shelf LL= 200 lb Beam Diagram Load=w=LL*(2/3)/(2*L)= 16.5 plf Shelf Beam Check Beam Bending Check Beam Deflection M= w*LA2/8 E= 29,500,000 psi = 396 in-lb D= 5*w*LA4/(384*E*Ix) = 0.1109 in fb= M/Sy Dallow= L/180 = 9,504 psi = 0.27 in OK Fb= 0.6*Fy 21,600 psi fb/Fb= 0.44 OK BMW OF TIGARD 320G-A 23-0410-2 CLIP SHELVING Page of 4/1 3/2023 9i 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:aI(rDstoragerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Closed Back Panel The closed back and side panels will act as a steel diaphragm transferring the lateral loads to the floor. Shear per Frame=V= 453 lb � 22 ga Steel L= 48.0 in V Panel Height= 87.4 in Movt= E(Fi*hi)*1.15*0.7 = 29,269 in-# Omega= 2.0 Bolt Frequency= 36 in o.c. #Bolt/Post=N= 4 Movt Seismic Load per bolt=Vb= (Movt/D)/N = 152 lb Check Bolt Vw Fv= 28,000 psi Fu= 65,000 psi Bolt Diam= 0.25 in tmin= 0.0300 in Bolt Shear Capacity= Bolt Area*Fv/Omega = 687 lb OK f— L Bolt Bearing Capacity= 1.2*Bolt Diam*train*Fu/Omega = 293 lb OK Front Elevation Bolt Stress= 0.52 OK Closed Side Panel The closed back and side panels will act as a steel diaphragm transferring the lateral loads to the floor. Shear per Frame=V= 453 lb Frame Depth=d= 24.5 in9 22 ga Steel Height= 87.4 in V Panel Movt= 29,269 in-# Omega= 2.0 Weld Frequency= 12 in a.c. #Bolt/Post=N= 8 Seismic Load per bolt=Vb= (Movt/D)/N = 149 lb Movt Check Weld on Formed Steel Lweld= 0.250 in Vw Fu= 65 ksi tmin= 0.030 in Weld Capacity= [1-(0.01*L/t)]*L*Fu* 1.0/2.5 = 1791b d Weld Stress= 0.83 OK Side Elevation BMW OF TIGARD 320G-A 23-0410-2 CLIP SHELVING Page of 4/13/2023 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:al@storagerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 CHECK SLOTTED ANGLE DECK SUPPORTS FOR IMPOSED POINT LOADS FROM DECK MOUNTED SHELVING Check beam member for point load at center span Section Properties 3.5" Beam Member= C12X3.5X12GA Beam at Level= 1 P 12" Beam Type= Step .- L/2 -►� Ix= 39.417 in^4 O i d Sx= 6.569 in^3 4 L ► Length=L= 144.0 in 12ga Lu= 144.0 in Fy= 50,000 psi Defl Criteria-L/ 240 Impact Factor(a)=(1-25%/2)= 1.000 P= DL+0.75LL+0.75E = 3800 lb WORST CASE LOADS FROM TYPED DECK MOUNTED SHELVING,DL=18 LB,LL=350 LB,Pseismic=664 LB Loads 0/0 End Fixity= 0% O= 0.0 Mcenter= Mcenter(simple ends) = P*L/4 Fb= 0.6*Fy = 30,000 psi Fb-eff= 30,000 psi Mcenter= P*L/4 Mends= 0 in-lb = 136,800 in-lb Bending M= 136,800 in-lb fb= (M/Sx)/a fb/Fb= 20824 psi/30000 psi = 20,824 psi = 0.69 <= 1.0,OK Deflection Defl-allow= L/240 Defl= [PL^3/(48EI)] = 0.600 in = 0.207 in <=0.6 in,OK Connection Shear= 1,900 lb Bolt Diam= 0.3125 in Shear Capacity= Bolt Area*N*Fv* 1.0 #Bolt=N= 2 = 3,221 lb OK Fv= 21,000 psi Fu-steel= 58,000 psi Bearing Capacity= Bolt Diam*t-min* 1.2*Fu* 1.0 t-min= 0.075 in = 3,263 lb OK Page of rin 23142 Arroyo Msto Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackenglneering.com,email:algstoragerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Catwalk Deck Support CHECK UNIFORM +POINT LOADS Section Properties 2" Beam Member= Borroughs C5.75x2x12ga Thickness= 0.105 5.75 12g Ix= 4.710 in^4 Sx= 1.640 inA3 Length=L= 48.0 in Lu= 48.0 in LL= 125 psf P P Fy= 36,000 psi DL= 10 psf L/�--4--3/4 L-� „ 1>IIIIIIIIIIIIIIIIIIIIIII�IIIIIIIIIIQ Defl Criteria-L/ 240 Trib width= 0.4 ft P= 850 11) ' L Loads 0/0 End Fixity= 0% 0= 0.0 Dist Load=w= 4.2 lb/in Mcenter= Mcenter(simple ends) = wL^2/8+PL/4+3/4 PL Fb= 0.6*Fy = 21,600 psi Fb-eff= 21,600 psi Mcenter= wLA2/8+PL/4+3/4 I Mends= 0 in-lb = 21,610 in-lb Bending M= 21,610 in-lb fb= (M/Sx)/a fb/Fb= 13177 psi/21600 psi = 13,177 psi = 0.61 <= 1.0,OK Deflection Defl-allow= L/240 Defl= [5wL^4/(384*E*Ix)]+[PL^3/(48EI)] = 0.200 in = [5*4.2 Ib/in*(48 in)^4/(384*29.5x10^6 psi*4.71 in^4)]*1+[PL^3/(48EI)] Connection = 0.030 in <=0.2 in,OK Shear= 951 lb Bolt Diam= 0.25 in Shear Capacity= Bolt Area*N*Fv*1.0 #Bolt=N= 2 = 2,062 lb OK Fv= 21,000 psi Fu-steel= 58,000 psi Bearing Capacity= Bolt Diam*t-min* 1.2*Fu*1.0 t-min= 0.075 in = 2,610 lb OK Page of - :age 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:al@storagerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 CHECK SLOTTED ANGLE DECK SUPPORTS FOR IMPOSED POINT LOADS FROM DECK MOUNTED SHELVING Check beam member for point load at center span Section Properties op— Beam Member= Borroughs L3.12x1.61x12ga 1,61 Beam at Level= 1 P Beam Type= Step • L/2 —1.1 3.12 Ix= 0.500 inA4 } O A Sx= 0.461 inA3 L -i Length=L= 56.0 in Lu= 56.0 in Fy= 50,000 psi Defl Criteria-L/ 240 Impact Factor(a)=(1-25%/2)= 1.000 P= DL+0.75LL+0.75E = 900 lb WORST CASE LOADS FROM TYPED DECK MOUNTED SHELVING,DL=18 LB,LL=350 LB,Pseismic=664 LB Loads %End Fixity= 0% 0= 0.0 Mcenter= Mcenter(simple ends) = P*L/4 Fb= 0.6*Fy = 30,000 psi Fb-eff= 30,000 psi Mcenter= P*L/4 Mends= 0 in-lb = 12,600 in-lb Bending M= 12,600 in-lb fb= (M/Sx)/a fb/Fb= 27330 psi/30000 psi = 27,330 psi = 0.91 <= 1.0,OK Deflection Defl-allow= L/240 Defl= [PL^3/(48EI)] = 0.233 in = 0.227 in <=0.233 in,OK Connection Shear= 450 lb Bolt Diam= 0.3125 in Shear Capacity= Bolt Area*N*Fv*1.0 #Bolt=N= 2 = 3,221 lb OK Fv= 21,000 psi Fu-steel= 58,000 psi Bearing Capacity= Bolt Diam*t-min* 1.2*Fu*1.0 t-min= 0.075 in = 3,263 lb OK Page of - __ r"f.._. 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:al@storagerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Catwalk Deck Support Section Properties Beam Member= Borroughs L3.12x1.61x12ga Thickness= 0.075 in Ix= 0.500 inA4 Sx= 0.461 in^3 3. 2" Length=L= 48.0 in Lu= 48.0 in LL= 125 psf Fy= 50,000 psi DL= 10 psf Defl Criteria-L/ 240 Trib width= 3.0 ft Loads %End Fixity= 0% 0= 0.0 Dist Load=w= 33.8 lb/in Mcenter= Mcenter(simple ends) = wL^2/8 Fb= 0.6*Fy = 30,000 psi Fb-eff= 30,000 psi Mcenter= wL^2/8 Mends= 0 in-lb = 9,734 in-lb Bending M= 9,734 in-lb fb= (M/Sx)/a fb/Fb= 21114 psi/30000 psi = 21,114 psi = 0.70 <= 1.0,OK Deflection Defl-allow= L/240 Defl= [5wLA4/(384*E*Ix)] = 0.200 in = [5*33.8 lb/in*(48 in)^4/(384*29.5x10^6 psi*0.5002 in^4)]*1 0.158 in <=0.2 in,OK Connection Shear= 811 lb Bolt Diam= 0.25 in Shear Capacity= Bolt Area*N*Fv*1.0 #Bolt=N= 2 = 2,062 lb OK Fv= 21,000 psi Fu-steel= 58,000 psi Bearing Capacity= Bolt Diam*t-min* 1.2*Fu* 1.0 t-min= 0.075 in = 2,610 lb OK Page of 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:al@storagerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Catwalk Deck Support Section Properties Beam Member=Borroughs Del T3.12x1.61x12ga '- 1.61" t 1.61" 11 Thickness= 0.075 in Ix= 1.000 in^4j 12ga 3.12" Sx= 0.492 in^3 1 Length=L=48.0 in �� Lu= 48.0 in LL= 125 psf Fy= 50,000 psi DL= 10 psf Defl Criteria-L/ 240 Trib width= 4.3 ft Loads %End Fixity= 0% O= 0.0 Dist Load=w= 48.7 lb/in Mcenter= Mcenter(simple ends) = wL^2/8 Fb= 0.6*Fy = 30,000 psi Fb-eff= 30,000 psi Mcenter= wL^2/8 Mends= 0 in-lb = 14,026 in-lb Bending M= 14,026 in-lb fb= (M/Sx)/a fb/Fb= 28507 psi/30000 psi = 28,507 psi = 0.95 <= 1.0,OK Deflection Defl-allow= L/240 Defl= [5wL^4/(384*E*Ix)] = 0.200 in = [5*48.7 lb/in*(48 in)^4/(384*29.5x10^6 psi* 1 inA4)]*1 = 0.114 in <=0.2 in,OK Connection Shear= 1,169 lb Bolt Diam= 0.25 in Shear Capacity= Bolt Area*N*Fv* 1.0 #Bolt=N= 2 = 2,062 lb OK Fv= 21,000 psi Fu-steel= 58,000 psi Bearing Capacity= Bolt Diam*t-min*1.2*Fu* 1.0 t-min= 0.075 in = 2,610 lb OK Page of s"age 4 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:al@storagerackengineering.com By: A.A. Project BMW OF TIGARD Project#: 23-0410-2 1-1/2"B-Deck Section Properties Thickness= 20 gar 1-1/2" v Ix/ft= 0.220 in^4 Sx/ft= 0.235 in^3 Length=L= 56.0 in Lu= 56.0 in LL= 125 psf Fy= 38,000 psi DL= 10 psf DL+LL Defl Criteria-L/ 240 LL only Defl Criteria-L/ 240 Loads 2 span condition exists M= 0.1167*w*L^2 = (0.1167)*(135 plf/12)*56 in^2 = 4,117 in-lb Fb= 0.6*Fy = 22,800 psi Bending M= 4,117 in-lb fb= M/Sx = 17,520 psi fb/Fb= (17520 psi/22800 psi) = 0.77 <= 1.0,OK Attach w/#12 Tek @ 12"o.c. Allowable shear 310 plf Deflection DL+LL Defl-allow= L/240 Defl= 0.0092*w*L^4/(E*I) = 0.233 in = 0.0092* 135 plf/12*(56 in)^4/(29500000 psi*0.22 in^4) = 0.157 In <=0.233 in,OK LL Defl=L/360= 0.160 in LL Defl= 0.145 in <=0.16 in,OK Page of 1 e 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:al@storagerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Baseplate 5"x 4" Check uplift loads on baseplate to determine maximum uplift load carried by anchors Section T Width=W= 5.00 in Bolt Edge Dist=e= 1.00 in Depth=D= 4.00 in La= 3.00 in Column Width=b= 3.00 in N=#Anchor/Base= 4 Column Depth=d = 3.00 in Fy= 36,000 psi L= 1.00 in I b&d 14— L Plate Thickness=t= 0.250 in B or D —� Uplift Forces I•-- B --1*I • Splate= D*t"2/6 0 0 I = 0.042 in^3 D d La Fb= 0.75*Fy = 27,000 psi O b'I O — Mallowable=Ma= Splate*Fb/0.75 Plan = 1,500 in-lb ♦T If M= T*La/4 NJ Then Tmax= Ma*4/La I M I = 2,000 lb ASD .keriidIIIIiIIIIIIIIhu, S. = 2,800 lb WORKING STRESS 4.1 ANCHORS MAYBE DESIGNED FOR THIS UPLIFT LOAD La —►I Elevation 1 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineerinq.com,email:aI(ci)storagerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Anchors Configuration:Type A Clip Shelving:87.375"H x 48"W x 24.5"D Loads Check load case: 0.9-0.2*Sds*(D+0.67LL)+/-E Vtrans=V= 453 lb ► V DL/Frame= 202 lb LL/Frame= 3,612 lb Frame Depth=D= 24.5 in Wst=phi*(DL+0.67LL)total= 1,998 lb Htop-Iv1=Ht= 89.0 in LL @ TOP= 1,212 lb #Levels= 13 DL/Lvl= 16 lb #Anchors per column= 2 DL*phi= 12 lb 0.9-0.2Sds=phi= 0.762 T A Lateral Ovt Forces=E(Fi*hi)*1.15=E= 36,358 in-lb D� SIDE ELEVATION Fully Loaded rack Vtrans= 453 lb Movt= l(Fi*hi) Mst= Wst*D/2 Uplift=T= (Movt-Mst)/D = 36,358 in-lb = 1998 lb*24.5 in/2 = (36358 in-lb-24476 in-lb)/24.5 in = 24,476 in-lb = 485 lb Top Level Loaded Only Critical Level= 13 Hgt @ Lvl 13= 89.0 in Vtop=V1= 0.1726*(1212.25 lb+ 16 lb) Movt= Vtop*Htop*1.15+V2*Ht/2 = 212 lb = 23,211 in-lb VDL=V2= 34 lb Mst= phi*(DL-total +LL-top)*D/2 Uplift=T= (Movt-Mst)/D = (1212.25 lb*0.67*phi+16 Ib*phi)*24.5 in/2 = (23211 in-lb-9467 in-lb)/24.5 in = 9,467 in-lb = 561 lb Anchor (2)3/8"Diam x 2.5"Embed Hilti Kwikbolt TZ2 anchor(s)per footplate Special inspection is required per ICC ESR 4266. Check Attachment of Post to Base Plate Bolt Diam= 0.25 in Bolt shear=uplift*o.525= 295 lb Shear Capacity= Bolt Area* N*Fv #Bolt=N= 2 = 2,062 lb OK Fv= 21,000 psi Bearing Capacity= Bolt Diam*t-min* 1.2*Fu Fu-steel= 58,000 psi = 5,220 lb OK t-min= 0.150 in Bolt stress= 0.14 OK BMW OP TIGARD 320G-A 23-0410-2 CLIP SHELVING Page of 4/13/2023 Hilti PROFIS Engineering 3.0.84 www.hilti.com Company: Page: 1 Address: Specifier: Al Phone I Fax: I E-Mail: Design: 5x4BP TYPE A BORROUGHS HD Date: 4/13/2023 Fastening point: Specifier's comments: 1 Input data Anchor type and diameter: Kwik Bolt TZ2-CS 3/8(2 1/2)hnom3 Item number: 2210238 KB-TZ2 3/8x3 3/4 Effective embedment depth: het,act=2.500 in.,h om=3.000 in. Material: Carbon Steel Evaluation Service Report: ESR-4266 Issued I Valid: 12/17/2021 1 12/1/2023 Proof: Design Method ACI 318-14/Mech Stand-off installation: eb=0.000 in.(no stand-off);t=0.250 in. Anchor plateR: Ix x ly x t=4.000 in.x 5.000 in.x 0.250 in.;(Recommended plate thickness:not calculated) Profile: Square HSS(AISC),HSS1-1/4X1-1/4X.125;(L x W x T)=1.250 in.x 1.250 in.x 0.125 in. Base material: cracked concrete,2500,fc'=2,500 psi;h=6.000 in. Installation: hammer drilled hole,Installation condition:Dry Reinforcement: tension:condition A,shear:condition A;no supplemental splitting reinforcement present edge reinforcement:none or<No.4 bar Seismic loads(cat.C,D,E,or F) Tension load:yes(17.2.3.4.3(d)) Shear load:yes(17.2.3.5.3(c)) R-The anchor calculation is based on a rigid anchor plate assumption. Geometry[in.]&Loading[lb,in.lb] 0 x Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering(c)2003-2023 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan 1 Hilti PROFIS Engineering 3.0.84 www.hilti.com Company: Page: 2 Address: Specifier: Al Phone I Fax: I E-Mail: Design: 5x4BP TYPE A BORROUGHS HD Date: 4/13/2023 Fastening point: 1.1 Design results Case Description Forces[Ib]/Moments[in.lb] Seismic Max.Util.Anchor[%] 1 Load case:Design loads N= 1,122;Vx=0;Vy=-453; yes 38 Mx=0;My=0;Mz=0; 2 Load case/Resulting anchor forces •y Anchor reactions[Ib] 0 2 Tension force:(+Tension,-Compression) Anchor Tension force Shear force Shear force x Shear force y 1 561 226 0 -226 2 561 226 0 -226 frx Tension max.concrete compressive strain: -[%o] max.concrete compressive stress: -[psi] resulting tension force in(x/y)=(0.000/0.000): 1,122[Ib] resulting compression force in(x/y)=(0.000/0.000):0[Ib] 01 Anchor forces are calculated based on the assumption of a rigid anchor plate. 3 Tension load Load N.[Ib] Capacity• Nn[Ib] Utilization RN=N18/. Nn Status Steel Strength* 561 4,869 12 OK Pullout Strength* N/A N/A N/A N/A Concrete Breakout Failure"' 1,122 3,030 38 OK "highest loaded anchor **anchor group(anchors in tension) Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering(c)2003-2023 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan 2 Hilti PROFIS Engineering 3.0.84 www.hilti.com Company: Page: 3 Address: Specifier: Al Phone I Fax: I E-Mail: Design: 5x4BP TYPE A BORROUGHS HD Date: 4/13/2023 Fastening point: 3.1 Steel Strength Nsa =ESR value refer to ICC-ES ESR-4266 Nsa>Nua ACI 318-14 Table 17.3.1.1 Variables Ase,N[In.2] futa[psi] 0.05 126,204 Calculations Nsa[Ib] 6,493 Results Nsa[lb] 4,steel 4,nonductiie 4, Nsa[Ib] Nua[Ib] 6,493 0.750 1.000 4,869 561 Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering(c)2003-2023 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan 3 Hilti PROFIS Engineering 3.0.84 www.hilti.com Company: Page: 4 Address: Specifier: Al Phone I Fax: I E-Mail: Design: 5x4BP TYPE A BORROUGHS HD Date: 4/13/2023 Fastening point: 3.2 Concrete Breakout Failure Ncb9 — `ANco/ W ec,N Wed,N Wc,N Wcp,N Nb ACI 318-14 Eq.(17.4.2.1b) Ncb9 >Nua ACI 318-14 Table 17.3.1.1 AN, see ACI 318-14,Section 17.4.2.1,Fig.R 17.4.2.1(b) ANco =9 het ACI 318-14 Eq.(17.4.2.1c) 1 WecN = (1 +2eN) <1.0 ACI 318-14 Eq.(17.4.2.4) 3 hef W ed.N =0.7+0.3 (15hca,min <1.0 ACI 318-14 Eq.(17.4.2.5b) ef W cp N =MAX(ca—min 15hetl <1.0 ACI 318-14 Eq.(17.4.2.7b) �C�ac Cac f Nb =kc X a Vfc hef5 ACI 318-14 Eq.(17.4.2.2a) Variables het[in.] ec1.N[in.] ec2,N[in.] Ca min[in.] W c,N 2.500 0.000 0.000 6.500 1.000 ca.[in.] kc X a tc[psi] 5.500 17 1.000 2,500 Calculations AN,[in.2] ANco Un 2] W ecl,N Wec2,N Wed,N Wcp,N Nb[lb] 90.19 56.25 1.000 1.000 1.000 1.000 3,360 Results Ncb9[lb] w concrete seismic wnonductile 4, Ncb9[lb] Nua[lb] 5,387 0.750 0.750 1.000 3,030 1,122 Input data and results must be checked for conformity with the existing conditions and for plausibility' PROFIS Engineering(c)2003-2023 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan 4 NMIII Hilti PROFIS Engineering 3.0.84 www.hilti.com Company: Address: Page: 5 Specifier: Al Phone I Fax: I E-Mail: Design: 5x4BP TYPE A BORROUGHS HD Date: 4/13/2023 Fastening point: 4 Shear load Load Vua[Ib] Capacity Vn[Ib] Utilization/Iv=Vua/• Vn Status Steel Strength* 226 2,201 11 OK Steel failure(with lever arm)* N/A N/A N/A N/A Pryout Strength** 453 7,542 7 OK Concrete edge failure in direction y** 453 2,291 20 OK *highest loaded anchor **anchor group(relevant anchors) 4.1 Steel Strength Vsa,eq =ESR value refer to ICC-ES ESR-4266 Vsteel?Vua ACI 318-14 Table 17.3.1.1 Variables Aso/[in•z] futa[psi] aV,seis 0.05 126,204 1.000 Calculations Vsa,eq[lb] 3,386 Results Vsa,eq[lb] 4)steel 4nonductile Vsa,eq[Ib] Vua[lb] 3,386 0.650 1.000 2,201 226 Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering(c)2003-2023 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan 5 Mita Hilti PROFIS Engineering 3.0.84 www.hilti.com Company: Page: 6 Address: Specifier: Al Phone I Fax: I E-Mail: Design: 5x4BP TYPE A BORROUGHS HD Date: 4/13/2023 Fastening point: 4.2 Pryout Strength Vcpg =kcp [(A NNrAa) '.Ifec,N Wed,N Wc,N Wcp,N Nb ] ACI 318-14 Eq.(17.5.3.1 b) Vcpg >Vua ACI 318-14 Table 17.3.1.1 ANc see ACI 318-14,Section 17.4.2.1,Fig.R 17.4.2.1(b) ANOO =9 h2er ACI 318-14 Eq.(17.4.2.1c) 1 WecN = \1 +2eN/ <1.0 ACI 318-14 Eq.(17.4.2.4) 3 hef W ed,N =0.7+0.3 (15hefca,min) <1.0 ACI 318-14 Eq.(17.4.2.5b) W cp,N =MAX(C=min 1.5hef) <1.0 ACI 318-14 Eq.(17.4.2.7b) cac cac Nb =Ica k a c hef ACI 318-14 Eq.(17.4.2.2a) Variables kcp hef[in.] ect,N[in.] ec2.N[in.] ca,min[in] 2 2.500 0.000 0.000 6.500 W c.N Cac[in.] kc X a fc[psi] 1.000 5.500 17 1.000 2,500 Calculations) ANc[in•2] ANCO[In.2] W ecl,N Wec2,N Wed,N Wcp,N Nb[Ib] 90.19 56.25 1.000 1.000 1.000 1.000 3,360 Results Vcpg[Ib] concrete (1)seismic wnonductile 4, Vcpg[Ib] Vua[Ib] 10,774 0.700 1.000 1.000 7,542 453 Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering(c)2003-2023 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan 6 - Hilti PROFIS Engineering 3.0.84 www.hilti.com Company: Page: 7 Address: Specifier: Al Phone I Fax: I E-Mail: Design: 5x4BP TYPE A BORROUGHS HD Date: 4/13/2023 Fastening point: 4.3 Concrete edge failure in direction y- Vcb = (AVc0) W ed,V Wc,V Wh,V Wparallel,V Vb ACI 318-14 Eq.(17.5.2.1 a) '`Vc 4) Vcb >V a ACI 318-14 Table 17.3.1.1 Avc see ACI 318-14,Section 17.5.2.1,Fig.R 17.5.2.1(b) Avco =4.5 cat ACI 318-14 Eq.(17.5.2.1 c) Ni ed,V =0.7+0.3(1 Scat) 1.0 ACI 318-14 Eq.(17.5.2.6b) 1.5Cat W h,v = h >1.0 ACI 318-14 Eq.(17.5.2.8) a �C� Vb = (7(d)o.z ) X a Vfc oat ACI 318-14 Eq.(17.5.2.2a) a Variables cat[in.] cat[in.] W c,v ha[in.] la[in.] 6.500 6.500 1.000 6.000 2.500 k a da[in.] fc[psi] W parallel,V 1.000 0.375 2,500 1.000 Calculations Avc[in.2] Avco[in•2] W ed,V Wh,v Vb[Ib] 97.50 190.13 0.900 1.275 5,191 Results Vcb[lb] concrete +seismic 4)nonductile 4) Vcb[Ib] Vua[Ib] 3,054 0.750 1.000 1.000 2,291 453 5 Combined tension and shear loads ON Rv Utilization No,[%] Status 0.370 0.198 5/3 26 OK RNV=QN+[3V<=1 Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering(c)2003-2023 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan 7 Hilti PROFIS Engineering 3.0.84 www.hilti.com Company: Page: 8 Address: Specifier: Al Phone I Fax: I E-Mail: Design: 5x4BP TYPE A BORROUGHS HD Date: 4/13/2023 Fastening point: 6 Warnings • The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations(AS 5216:2021,ETAG 001/Annex C, EOTA TR029 etc.).This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered-the anchor plate is assumed to be sufficiently stiff,in order not to be deformed when subjected to the design loading.PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above.The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility! • Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member.Condition B applies where such supplementary reinforcement is not provided,or where pullout or pryout strength governs. • Refer to the manufacturer's product literature for cleaning and installation instructions. • For additional information about ACI 318 strength design provisions,please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/ • An anchor design approach for structures assigned to Seismic Design Category C,D,E or F is given in ACI 318-14,Chapter 17,Section 17.2.3.4.3(a)that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure. If this is NOT the case,the connection design(tension)shall satisfy the provisions of Section 17.2.3.4.3(b),Section 17.2.3.4.3(c),or Section 17.2.3.4.3(d).The connection design(shear)shall satisfy the provisions of Section 17.2.3.5.3(a),Section 17.2.3.5.3(b),or Section 17.2.3.5.3(c). • Section 17.2.3.4.3(b)/Section 17.2.3.5.3(a)require the attachment the anchors are connecting to the structure be designed to undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength.Section 17.2.3.4.3(c)/Section 17.2.3.5.3 (b)waive the ductility requirements and require the anchors to be designed for the maximum tension/shear that can be transmitted to the anchors by a non-yielding attachment.Section 17.2.3.4.3(d)/Section 17.2.3.5.3(c)waive the ductility requirements and require the design strength of the anchors to equal or exceed the maximum tension/shear obtained from design load combinations that include E,with E increased by coo. • Hilti post-installed anchors shall be installed in accordance with the Hilti Manufacturer's Printed Installation Instructions(MPH).Reference ACI 318-14,Section 17.8.1. Fastening meets the design criteria! Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering(c)2003-2023 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan 8 Ems Hilti PROFIS Engineering 3.0.84 www.hilti.com Company: Page: 9 Address: Specifier: Al Phone I Fax: I E-Mail: Design: 5x4BP TYPE A BORROUGHS HD Date: 4/13/2023 Fastening point: 7 Installation data Anchor type and diameter:Kwik Bolt TZ2-CS 3/8(2 1/2) hnom3 Profile:Square HSS(AISC),HSS1-1/4X1-1/4X.125;(L x W x T)=1.250 in.x Item number:2210238 KB-TZ2 3/8x3 3/4 1.250 in.x 0.125 in. Hole diameter in the fixture:df=0.438 in. Maximum installation torque:361 in.lb Plate thickness(input):0.250 in. Hole diameter in the base material:0.375 in. Recommended plate thickness:not calculated Hole depth in the base material:3.250 in. Drilling method:Hammer drilled Minimum thickness of the base material:5.000 in. Cleaning:Manual cleaning of the drilled hole according to instructions for use is required. Hilti KB-TZ2 stud anchor with 3 in embedment,3/8(2 1/2)hnom3,Carbon steel,installation per ESR-4266 7.1 Recommended accessories Drilling Cleaning Setting • Suitable Rotary Hammer • Manual blow-out pump • Torque controlled cordless impact tool • Properly sized drill bit • Torque wrench • Hammer y 2.000 2.000 L. N ■ O M X N 0.875 2.250 0.875 Coordinates Anchor[in.] Anchor x y c_x c,x c_ c,y 1 -1.125 -1.625 6.500 - 6.500 - 2 1.125 1.625 8.750 - 9.750 - Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering(c)2003-2023 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan 9 Hilti PROFIS Engineering 3.0.84 www.hilti.com Company: Page: 10 Address: Specifier: Al Phone I Fax: I E-Mail: Design: 5x4BP TYPE A BORROUGHS HD Date: 4/13/2023 Fastening point: 8 Remarks; Your Cooperation Duties • Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles,formulas and security regulations in accordance with Hilti's technical directions and operating,mounting and assembly instructions,etc.,that must be strictly complied with by the user.All figures contained therein are average figures,and therefore use-specific tests are to be conducted prior to using the relevant Hilti product.The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore,you bear the sole responsibility for the absence of errors,the completeness and the relevance of the data to be put in by you. Moreover,you bear sole responsibility for having the results of the calculation checked and cleared by an expert,particularly with regard to compliance with applicable norms and permits,prior to using them for your specific facility.The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors,the correctness and the relevance of the results or suitability for a specific application. • You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular,you must arrange for the regular backup of programs and data and,if applicable,carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software,you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website.Hilti will not be liable for consequences,such as the recovery of lost or damaged data or programs,arising from a culpable breach of duty by you. Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering(c)2003-2023 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan 10 Ede tin 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackenyineering.com,email:al(d storagerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Base Plate Configuration:Type A Clip Shelving: 87.375"H x 48"W x 24.5"D Section Actual base plate size is 5 in x 4 in x 0.25 in thk w Eff Width=W= 5.00 in Column Width=b= 1.000 in Eff Depth=D= 4.00 in Column depth=b= 2.250 in Plate Thickness=t= 0.250 in L= 2.00 in D • Et Mb Fy= 36,000 psi • b I�—L Base Plate Plan f—w Cross Aisle Loads Axial DL= 101 lb DL+0.75LL+0.75*0.7*Pseismic= 2,133 lb Axial L= 1,806 lb Pseismic= 1,290 lb L= Base Plate Depth-Col Depth = 2.00 in fa= P/A= P/(D*W) M= wL^2/2=fa*L^2/2 = 107 psi = 213 in-lb/in Sbase/in= (1)(t^2)/6 Fbase= 0.75*Fy = 0.01 in^3/in = 27,000 psi fb/Fb= M/[(S-plate)(Fb)] 0.76 OK _i- C 15,4 ,.� v Yt} a:54 a.1. 116ii-YY. azFr t60 BMW OP TIGARD 3206-A 23-0410-2 CLIP SHELVING Page of 4/13/2023 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:al(a storagerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Slab on Grade Configuration:Type A Clip Shelving:87.375"H x 48"W x 24.5"D P •'•'�slab "ill a j Concrete :•'I' : r° fc= 2,500 psi •••D b e tslab=t= 6.0 in slab T I phi=0= 0.65 : Cross ---- - Aisle 1~ ° _ Soil X - a y -� B •.:•• • fsoil= 1,000 psf '• Down Aisle ' • Movt= 31,616 in-lb Frame depth= 24.5 in SLAB ELEVATION Baserlate Plan View Base Plate B= 5.00 in width=a= 2.00 in eff. baseplate width=c= 3.50 in D= 4.00 in depth=b= 2.25 in eff. baseplate depth=e= 3.13 in Load Case 1:Product+Seismic Product DL= 208 lb P-seismic=E= (Movt/Frame depth) (Strength Design Loads) Product LL= 1,806 lb = 1,290 lb Puncture I Pu= 1.2DL+ LOLL+ 1.0*E Fpunct= 2.66*sgrt(fc)*phi = 3,346 lb 15 PSI = 86.5 psi Apunct= [(c+t)+(e+t)]*2*t fv/Fv= Pu/(Apunct*Fpunct) = 223.50 inA2 = 0.17 < 1.0 OK Slab Bending I Asoil= (P*144)/(fsoil) L= (Asoil)^0.5 y= (c*e)^0.5+t*2 = 482 inA2 = 21.95 in = 15.3 in x= (L-y)/2 M= w*x^2/2 S-slab= 1*t^2/6 = 3.3 in = (fsoil*x^2)/(144*2) = 6.0 in^3 Fb= 5*(phi)*(fc)^0.5 = 38 in-lb fb/Fb= M/(S-slab*Fb) = 162.5 psi = 0.04 < 1.0 OK Load Case 2:Static Loads WHAT IS 5*SQRT(fc) ? MODULUS OF RUPTURE? PDL= 208 lb PLL= 1,806 lb Puncture Pu= 1.2*PDL+ 1.6*PLL Fpunct= 2.66*sgrt(fc)*phi = 3,139 lb = 86.5 psi Apunct= [(c+t)+(e+t)]*2*t fv/Fv= Pu/(Apunct*Fpunct) = 224 inA2 = 0.16 < 1.0 OK Slab Bending Asoil= (Pu*144)/(fsoil) L= (Asoil)^0.5 y= (c*e)^0.5+t*2 = 452 inA2 = 21.26 in = 15.3 in x= (L-y)/2 M= w*x^2/2 S-slab= 1*t^2/6 = 3.0 in = (fsoil*x^2)/(144*2) = 6.0 in^3 Fb= 5*(phi)*(fc)^0.5 = 31 in-lb fb/Fb= M/(S-slab*Fb) = 162.5 psi = 0.03 < 1.0,OK BMW OF TIGARD 320G-A 23-04 I 0-2 CLIP SHELVING Page of 4/1 3/2023 f r � 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:al@storagerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Design Data Configuration:Grade Level Unit M Rivetspan Shelving:72"H x 72.5"W x 36.5"D 1) The analyses of the light duty storage fixtures conforms to the requirements of the 2021 IBC,2022 OSSC and ASC 7-16 2) Steel minimum yield, Fy=36 ksi unless otherwise noted on the plans or analysis herein. 3) Anchor bolts shall be provided by installer per ICC reference on the calculations herein. 4) All welds shall conform to AWS procedures,utilizing E70xx electrodes or similar.All such welds shall be performed in shop,with no field welding allowed other than those supervised by a licensed deputy inspector. 5) Slab on grade is 6 in thick concrete with fc=2500 psi on deck 72 . 361 WIRE WOO 221 22 WIRE } 7216 2 WIRE eme i ii � 4 ' 4 tJ 2 WIRE WOW COM 410 22 FRONT SIDE lz-16 .1 316 UNIT M 77"x36"x72" 4 SHELVES 1 - €e' t-I, 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:al@storagerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Summary of Results Configuration:Grade Level Unit M Rivetspan Shelving:72"H x 72.5"W x 36.5"D 72i 361 Mar Shelf Configuration I I #of Levels= 4 2211 2,1 Depth= 36.5 in t wane Height= 72.0 in A* «+ I Width= 72.5 in I 72 6 274zz� Location Elevation Load I h1= 4.5 in 500 lb I WIRE ""° Woe i h2= 22.5 in 500 lb h3= 22.5 in 500 lb 24 24 h4= 22.5 in 500 lb wIRF i w 4119% FRONT sire 16 31 -.0 UNIT M 72"x36"x72" 4 SHELVES Seismic Coeff: Ss= 0.863 Product Load/Lvl= 0 lb S1= 0.397 Fa= 1.200 Fv= 1.803 Steel Fy= 36,000 psi I I Total Height= 72.0 in Component Summary Column Dbl Angle T Post 14ga 0.38 OK Beam DRAB Dbl Rivet Beam 0.06 OK Beam Rivet 1/4"Diam Rivet x 1-1/2"Spacing 0.40 OK Anchor** (2)3/8"X 2.5"Embedment KWIK BOLT TZ2 per footplate(ICC ESR#4266)Inspection Required.Net Uplift=189 lb 0.22 OK Footplate 4"x 2"x 14 GA Footplates Typical 0.06 OK Slab on Grade 6 in thick concrete with fc=2500 psi on deck 0.06 OK (Notes 1 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:al@storagerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Seismic Forces Configuration:Grade Level Unit M Rivetspan Shelving:72"H x 72.5"W x 36.5"D V1= SDs*W/R Ss= 0.86 V2= [0.4*ap*SDs*Ws*(1+2*z/h)/(RP/IP)l : S1= 0.40 V3= 0.044*Sds Fa= 1.20 V4= 0.5*S1/R I- Fv= 1.80 vIIM Sds= 0.690 V1= 0.1726 hb Sd1= 0.477 V2= 0.1726 - R=Rp= 4.00 V3= 0.0304 M Ip= 1.00 • V4= 0.0000 " i ap= 2.5 Vminimum= 0.015 z/h= 0.00 Elevation #of levels= 4 Seismic Coeff=Cs= 0.1726 Depth= 36.5 in (Either Direction) Product LL/Shlf= 500 lb Cs*Ip= 0.1726 DL/Shlf= 27 lb Down Aisle Seismic Shear(Longitudinal) Cross Aisle Seismic Shear(Transverse) Wlong= E(LL*0.67+DL) Wtransv= E(LL*0.67+DL) = 1,113 lb = 1,113 lb Vlong=VL= 0.1726* 1113 lb Vtransverse=VT= 0.1726* 1113 lb = 192 lb = 192 lb VT/col= 96 lb V/2= 96 lb Transverse Distribution Transverse Moment Resisting Dbl Rivet Beams Level LL DL hi wi*hi Fi Fi*hi Vn hb Mn Mconn 1 0 lb 27 lb 5 in 122 0.3 lb 1 in-lb 96.00 lb 5 in 432 in-lb 621 in-lb 2 500 lb 27 lb 27 in 14,229 34.9 lb 942 in-lb 72.00 lb 23 in 810 in-lb 675 in-lb 3 500 lb 27 lb 50 in 26,087 63.9 lb 3,163 in-lb 48.00 lb 23 in 540 in-lb 405 in-lb 4 500 lb 27 lb 72 in 37,944 92.9 lb 6,689 in-lb 24.00 lb 23 in 270 in-lb 135 in-lb Sum: 1,500 lb 108 lb W=1608 lb 78,381 192 lb Movt=10795.5 in-lb Smilarly, Mlong= 810 in-lb Mconn-long= 675 in-lb Transverse Column Loads Longitudinal Column Loads Movt= 10,796 in-lb Pstatic DL= 54 lb Pseismic= Movt/D Pstatic= E(LL+DL) Mlong= MT.VJVT Pstatic LL= 750 lb = 296 lb = 804 lb = 810 in-lb Mconn= 2,241 in-lb 4ltransv=MT= 810 in-lb 1 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:al@storagerackengineering.com storagerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Transverse Column Loads(Weak Axis Bending) Configuration:Grade Level Unit M Rivetspan Shelving:72"H x 72.5"W x 36.5 Net Section Properties Column= Dbl Angle T Post 14ga Aeff= 0.471 in^2 4f= 1.67 Ix(downaisle)= 0.297 in^4 E= 29,500 ksi Sx(downaisle)= 0.158 inA3 Cb= 1.0 1 9/16" rx(downaisle)= 0.794 in Cmx= 1.00 Iy(crossaisle)= 0.177 in^4 Kx= 1.0 Sy(crossaisle)= 0.129 in^3 Lx= 22.5 in ry(crossaisle)= 0.614 in Ky= 1.01 9/1 6" 1 9/1 6" Fy= 36 ksi Ly= 22.5 in Axial DL= 54 lb Axial LL= 750 lb Pseismic= 296 lb Loads Load Case: (Fully Loaded) Axial=P= DL+0.75LL+0.75*0.7*Pseismic = 772 lb Moment=My= 810 in-lb Axial Analysis KxLx/rx= 1*22.570.7942" KyLy/ry= 1*22.5"/0.6139" Fe > Fy/2 = 28.3 = 36.7 Fn= Fy(1-Fy/4Fe) = 36 ksi*[1-36 ksi/(4*216.7 ksi)] Fe= n^2E/(KL/r)max^2 Fy/2= 18.0 ksi = 34.5 ksi = 216.7ksi Pn= Aeff*Fn Qc= 1.92 Pa= Pn/4c = 16,238 lb = 16238 lb/1.92 = 8,457 lb P/Pa= 0.09 < 0.15 Bending Analysis Check: P/Pa+My/May 5 1.0 Pno= Ae*Fy Pao= Pno/Qc Myield=My= Sy*Fy = 0.471 in^2*36000 psi = 169421b/1.92 = 0.129 in^3*36000 psi = 16,942 lb = 8,824 lb = 4,658 in-lb May= My/Qf Pcr= n^2EI/(KL)max^2 = 4658 in-lb/1.67 = nA2*29500000 psi/(1*22.5 in)^2 = 2,789 in-lb = 170,752 lb p= {1/[1-(4c*P/Pcr)]}^-1 = {1/[1-(1.92*772 lb/170752 Ib)]}^-1 = 0.99 Combined Stresses (772 lb/8457 lb)+(810 in-lb/2789 in-lb)= 0.38 < 1.0,OK (EQ C5-3) 1 ut ` r- 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:al@storagerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Longitudinal Column Loads(Strong Axis Bending) Configuration:Grade Level Unit M Rivetspan Shelving:72"H x 72.5"W x 36.5 Net Section Properties Column= Dbl Angle T Post 14ga Aeff= 0.471 inA2 S2f= 1.67 Ix(downaisle)= 0.297 inA4 E= 29,500 ksi Sx(downaisle)= 0.158 in^3 Cb= 1.0 1 9/16" rx(downaisle)= 0.794 in Cmx= 1.00 Iy(crossaisle)= 0.177 inA4 Kx= 1.0 Sy(crossaisle)= 0.129 in^3 Lx= 22.5 in ry(crossaisle)= 0.614 in Ky= 1.0 1 9/16" 7r 1 9/16" Jr Fy= 36 ksi Ly= 22.5 in Axial DL= 54 lb Axial LL= 750 lb Pseismic= 0 lb Loads Load Case: (Fully Loaded) Axial=P= DL+0.75LL+0.75*0.7*Pseismic = 617 lb Moment=Mx= 810 in-lb Axial Analysis KxLx/rx= 1*22.5"/0.7942" KyLy/ry= 1*22.570.6139" Fe > Fy/2 = 28.3 = 36.7 Fn= Fy(1-Fy/4Fe) = 36 ksi*[1-36 ksi/(4*216.7 ksi)] Fe= n^2E/(KL/r)max^2 Fy/2= 18.0 ksi = 34.5 ksi = 216.7ksi Pn= Aeff*Fn Qc= 1.92 Pa= Pn/Qc = 16,238 lb = 16238 lb/1.92 = 8,457 lb P/Pa= 0.07 < 0.15 Bending Analysis Check: P/Pa+My/May<_ 1.0 Pno= Ae*Fy Pao= Pno/Qc Myield=My= Sx*Fy = 0.471 in^2*36000 psi = 169421b/1.92 = 0.158 in^3*36000 psi = 16,942 lb = 8,824 lb = 5,699 in-lb May= My/Qf Pcr= n^2EI/(KL)max^2 = 5699 in-lb/1.67 = nA2*29500000 psi/(1*22.5 in)^2 = 3,412 in-lb = 170,752 lb p= {1/[1-(Qc*P/Pcr)]}^-1 = {1/[1-(1.92*617 lb/170752 Ib)]}^-1 = 0.99 Combined Stresses (617 lb/8457 lb)+(810 in-lb/3412 in-lb)= 0.31 < 1.0,OK (EQ C5-3) 1 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:al@storagerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Double Rivet Beam Configuration:Grade Level Unit M Rivetspan Shelving:72"H x 72.5"W x 36.5"D 0.745" I c Downa isle beam Beam Type= DRAB Dbl Rivet Beam Ix= 0.1850 in^4 I t=14 9A A A AA AA A Sx= 0.115 inA3 Fy-beam= 36,000 psi N Shelf Span=L= 72 in V V V VV V V V N j Downaisle beam It L , Shelf Plan View DR OH Rivet Beam Check Beam Bending Check Beam Deflection Shelf DL= 27 lb Shelf LL= lb E= 29,500,000 psi Shelf LL+DL= 27 lb Load=w=LL*0.67/(2*L)= 3.0 plf D= 5*w*LA4/(384*E*Ix) = 0.0161 in M= w*LA2/8 = 160 in-lb Dallow= L/140 = 0.51 in OK fb= M/Sx = 1,389 psi >— Fb= 0.6*Fy � 7454" 21,600 psi 0 / , 0 R 2.6530" 0 0 1.5" 2.5I60" tb/Fb= 0.06 OK 0 0 Check DRB Beam Rivets For Static+Seismic Loads Check load case: DL+0.75LL+0.75*0.7*Mseismic Rivet Spacing=d= 1.5 in tmin= 0.075 in Rivet diameter= 0.25 in Fu= 58,000 psi Column Fy-rivet= 36,000 psi Rivet M*0.7*0.75= 425 in-lb W= (LL*0.75+DL)/4 Beam C= M/d = 71b = 2841b a Shear Capacity= Rivet Area*0.4*Fy-rivet = [(0.25 in)^2*pi/4]*0.4*36000 psi = 707 lb w Bearing Capacity= Rivet Diam*tmin*Fu* 1.2 = 1,305 lb Beam to Column Effective Shear= [(W/2)^2+C^2]^0.5 = 2841b OK 1 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:algostoragerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Anchors Configuration:Grade Level Unit M Rivetspan Shelving:72"H x 72.5"W x 36.5"D Check load case: 0.9-0.2*Sds*(D+0.67LL)+/-E Loads Vtrans=V= 192 lb v DL/Frame= 108 lb LL/Frame= 1,500 lb Frame Depth=D= 36.5 in Wst=phi*(DL+0.67LL)total= 848 lb Htop-Iv1=Ht= 72.0 in LL @ TOP= 500 lb #Levels= 4 DL/Lvl= 27 lb #Anchors/footplate= 2 DL*phi= 21 lb 0.9-0.2Sds=phi= 0.762 T / Lateral Ovt Forces=E(Fi*hi)*1.15= 12,415 in-lb D� SIDE ELEVATION Fully Loaded rack Vtrans= 192 lb Movt= F(Fi*hi) Mst= Wst*D/2 Uplift=T= (Movt-Mst)/D = 12,415 in-lb = 848 lb*36.5 in/2 = (12415 in-lb-15476 in-lb)/36.5 in = 15,476 in-lb = -84 lb No Uplift Top Level Loaded Only Critical Level= 4 Hgt @ Lvl 4= 72.0 in Vtop= Cs*LLtop Vtop=vl= 0.173*500 lb Movt= Vtop*Htop*1.15+V2*Ht/2 = 86 lb = 12,377 in-lb VDL=V2= 146 lb Mst= 0.6*(LL-top)*D/2 Uplift=T= (Movt-Mst)/D = (500 Ib*0.6)*36.5 in/2 = (12377 in-lb-5475 in-lb)/36.5 in = 5,475 in-lb = 189 lb Anchor I Net Seismic Max Uplift=1189 LB Check(2)3/8"X 2.5"Embedment KWIK BOLT TZ2 anchor(s)per footplate** Special inspection is required per ICC ESR#4266. 1 Hilti PROFIS Engineering 3.0.84 www.hilti.com Company: Page: 1 Address: Specifier: Al Phone I Fax: I E-Mail: Design: 4X2BP TYP M BORROUGHS RIVETSPAN 2 ANCH Date: 4/13/2023 Fastening point: Specifier's comments: 1 Input data Anchor type and diameter: Kwik Bolt TZ2-CS 3/8(2 1/2)hnom3 Item number: 2210238 KB-TZ2 3/8x3 3/4 Effective embedment depth: hef,act=2.500 in.,hnom=3.000 in. Material: Carbon Steel Evaluation Service Report: ESR-4266 Issued I Valid: 12/17/2021 112/1/2023 Proof: Design Method ACI 318-14/Mech Stand-off installation: eb=0.000 in.(no stand-off);t=0.188 in. Anchor plateR: Ix x ly x t=2.000 in.x 4.000 in.x 0.188 in.;(Recommended plate thickness:not calculated) Profile: no profile Base material: cracked concrete,2500,fb'=2,500 psi;h=6.000 in. Installation: hammer drilled hole,Installation condition:Dry Reinforcement: tension:condition B,shear:condition B;no supplemental splitting reinforcement present edge reinforcement:none or<No.4 bar Seismic loads(cat.C,D,E,or F) Tension load:yes(17.2.3.4.3(d)) Shear load:yes(17.2.3.5.3(c)) R-The anchor calculation is based on a rigid anchor plate assumption. Geometry[in.]&Loading[lb,in.lb] I % Y 6\ o H X Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering(c)2003-2023 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan 1 wan Hilti PROFIS Engineering 3.0.84 www.hilti.com Company: Page: 2 Address: Specifier: Al Phone I Fax: I E-Mail: Design: 4X2BP TYP M BORROUGHS RIVETSPAN 2 ANCH Date: 4/13/2023 Fastening point: 1.1 Design results Case Description Forces[Ib]/Moments[in.lb] Seismic Max.Util.Anchor[%] 1 Load case:Design loads N=378;Vx=0;Vy=-192; yes 55 Mx=0;My=0;Mz=0; 2 Load case/Resulting anchor forces Y Anchor reactions[Ib] O Tension force:(+Tension,-Compression) Anchor Tension force Shear force Shear force x Shear force y 1 620 124 79 -96 Co '`, -ssion • 2 620 124 -79 -96 A , Tension max.concrete compressive strain: 0.35 M.] max.concrete compressive stress: 1,502[psi] resulting tension force in(x/y)=(0.365/0.000): 1,240[Ib] resulting compression force in(x/y)=(0.904/0.000):862[Ib] Anchor forces are calculated based on the assumption of a rigid anchor plate. O 3 Tension load Load Nua[Ib] Capacity 4) N„[Ib] Utilization PN=Nua/. N„ Status Steel Strength* 620 4,869 13 OK Pullout Strength* N/A N/A N/A N/A Concrete Breakout Failure" 1,240 2,293 55 OK *highest loaded anchor **anchor group(anchors in tension) Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering(c)2003-2023 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan 2 Hilti PROFIS Engineering 3.0.84 www.hilti.com Company: Page: 3 Address: Specifier: Al Phone I Fax: I E-Mail: Design: 4X2BP TYP M BORROUGHS RIVETSPAN 2 ANCH Date: 4/13/2023 Fastening point: 3.1 Steel Strength Nsa =ESR value refer to ICC-ES ESR-4266 4 Nsa >_Nua ACI 318-14 Table 17.3.1.1 Variables Ase,N[in.2] futa[psi] 0.05 126,204 Calculations Nsa[lb] 6,493 Results Nsa[Ib] steel Wnonductile 4) Nsa[Ib] Nua[Ib] 6,493 0.750 1.000 4,869 620 Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering(c)2003-2023 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan 3 em - Hilti PROFIS Engineering 3.0.84 www.hilti.com Company: Page: 4 Address: Specifier: Al Phone I Fax: I E-Mail: Design: 4X2BP TYP M BORROUGHS RIVETSPAN 2 ANCH Date: 4/13/2023 Fastening point: 3.2 Concrete Breakout Failure Ncbg = (Atticc0) W ec,N Wed,N Wc,N Wcp,N Nb ACI 318-14 Eq.(17.4.2.1 b) '`N 4) Ncbg >_Nua ACI 318-14 Table 17.3.1.1 AN. see ACI 318-14,Section 17.4.2.1,Fig.R 17.4.2.1(b) ANco =9 h2ef ACI 318-14 Eq.(17.4.2.1c) 1 W ec,N = (1 +2 he)/ <1.0 ACI 318-14 Eq.(17.4.2.4) 3 hef W ed,N =0.7+0.3(Ca,min) <1.0 ACI 318-14 Eq.(17.4.2.5b) 1.5hef W cp,N =MAX(ca_min 1.5hef) <1.0 ACI 318-14 Eq.(17.4.2.7b) C�ac ' cac Nb =Ice A a \'tc hef5 ACI 318-14 Eq.(17.4.2.2a) Variables het[in.] eci,N[in.] ec2,N[in] Ca,win[in.] W c,N 2.500 0.000 0.000 4.000 1.000 Cac[in.] kc X a fc[psi] 5.500 17 1.000 2,500 Calculations ANc[in.2] AN [in.2] W ecl,N Wec2,N Wed,N Wcp,N Nb FIb] 78.75 56.25 1.000 1.000 1.000 1.000 3,360 Results Ncbg[lb] 41 concrete +seismic 4)nonductile 4 Ncbg[lb] N.[lb] 4,704 0.650 0.750 1.000 2,293 1,240 Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering(c)2003-2023 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan 4 Hilti PROFIS Engineering 3.0.84 www.hilti.com Company: Page: 5 Address: Specifier: Al Phone I Fax: I E-Mail: Design: 4X2BP TYP M BORROUGHS RIVETSPAN 2 ANCH Date: 4/13/2023 Fastening point: 4 Shear load Load Vua[Ib] Capacity• Vn[Ib] Utilization Pv=Vua/+ Vn Status Steel Strength* 124 2,201 6 OK Steel failure(with lever arm)* N/A N/A N/A N/A Pryout Strength* 124 3,293 4 OK Concrete edge failure in direction y-** 208 1,316 16 OK *highest loaded anchor **anchor group(relevant anchors) 4.1 Steel Strength Vsa,eq =ESR value refer to ICC-ES ESR-4266 4) Vsteel>Vua ACI 318-14 Table 17.3.1.1 Variables Ase,v[In.z] fora[psi] 0V,seis 0.05 126,204 1.000 Calculations Vsaeq[Ib] 3,386 Results Vsa eq[Ib] 4)steel 4)nonductile Vsa eq[Ib] V.[Ib] 3,386 0.650 1.000 2,201 124 Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering(c)2003-2023 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan 5 Esst Hilti PROFIS Engineering 3.0.84 www.hilti.com Company: Page: 6 Address: Specifier: Al Phone I Fax: I E-Mail: Design: 4X2BP TYP M BORROUGHS RIVETSPAN 2 ANCH Date: 4/13/2023 Fastening point: 4.2 Pryout Strength Vcp = kcp "ANco W ed,N Wc,N NJ cp,N Nb l ACI 318-14 Eq.(17.5.3.1a) 4 Vcp >Vua ACI 318-14 Table 17.3.1.1 ANc see ACI 318-14,Section 17.4.2.1,Fig.R 17.4.2.1(b) ANco =9 het ACI 318-14 Eq.(17.4.2.1 c) 1 W ec,N = (1 +2 eN <1.0 ACI 318-14 Eq.(17.4.2.4) 3 het W ed,N =0.7+0.3 (Ca,min1.5hef) <1.0 ACI 318-14 Eq.(17.4.2.5b) W cp,N =MAX(C=min 1.5hef) <1.0 ACI 318-14 Eq.(17.4.2.7b) �Crac Cac Nb =kc X a yfc hef5 ACI 318-14 Eq.(17.4.2.2a) Variables kcp hef[in.] ec1,N[in.] ecz N[in.] c [in.] Ca 2 2.500 0.000 0.000 4.000 W c,N Cac[in.] Ica )`.a tc[psi] 1.000 5.500 17 1.000 2,500 Calculations ANc[In.2] ANco[in.2] V ecl,N Vec2,N Ved,N wcp,N Nb[Ib] 39.38 56.25 1.000 1.000 1.000 1.000 3,360 Results Vcp[Ib] 4)concrete +seismic wnonductile 4) Vcp[Ib] Vua[Ib] 4,704 0.700 1.000 1.000 3,293 124 Input data and results must be checked for conformity with the existing conditions and for plausibility' PROFIS Engineering(c)2003-2023 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan 6 Hilti PROFIS Engineering 3.0.84 www.hilti.com Company: Page: 7 Address: Specifier: Al Phone I Fax: 1 E-Mail: Design: 4X2BP TYP M BORROUGHS RIVETSPAN 2 ANCH Date: 4/13/2023 Fastening point: 4.3 Concrete edge failure in direction y- Vcb = `Auto/ W ed,V Wc,v Wh,V Wparallel,V Vb ACI 318-14 Eq.(17.5.2.1a) 4) Vcb >Vea ACI 318-14 Table 17.3.1.1 Av. see ACI 318-14,Section 17.5.2.1,Fig.R 17.5.2.1(b) Avco =4.5 cat ACI 318-14 Eq.(17.5.2.1 c) w ed,v =0.7+0.3(1 5Caf/ <1.0 ACI 318-14 Eq.(17.5.2.6b) h,v = .ha >1.0 ACI 318-14 Eq.(17.5.2.8) 1 5cat Vb = (7 (d)0.2 ') a,a Vfc Ca� ACI 318-14 Eq.(17.5.2.2a) a Variables cal[in.] ca2[in.] W c,v ha[in.] I.[in.] 4.000 4.000 1.000 6.000 2.500 a da[in.] lc[Psi] W parallel,V 1.000 0.375 2,500 1.000 Calculations Av.[in.2] Avco[in.2] W ed,V Wh,V Vb[Ib] 60.00 72.00 0.900 1.000 2,506 Results Vcb[Ib] concrete +seismic wnonductile 4) Vcb[Ib] Vua[Ib] 1,879 0.700 1.000 1.000 1,316 208 5 Combined tension and shear loads RN I V Utilization RN,v[%] Status 0.541 0.158 5/3 41 OK p R Rv Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering(c)2003-2023 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan 7 Hilti PROFIS Engineering 3.0.84 www.hilti.com Company: Page: 8 Address: Specifier: Al Phone I Fax: I E-Mail: Design: 4X2BP TYP M BORROUGHS RIVETSPAN 2 ANCH Date: 4/13/2023 Fastening point: 6 Warnings • The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations(AS 5216:2021,ETAG 001/Annex C, EOTA TR029 etc.).This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered-the anchor plate is assumed to be sufficiently stiff,in order not to be deformed when subjected to the design loading.PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above.The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility! • Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member.Condition B applies where such supplementary reinforcement is not provided,or where pullout or pryout strength governs. • Refer to the manufacturer's product literature for cleaning and installation instructions. • For additional information about ACI 318 strength design provisions,please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/ • An anchor design approach for structures assigned to Seismic Design Category C,D,E or F is given in ACI 318-14,Chapter 17,Section 17.2.3.4.3(a)that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure.If this is NOT the case,the connection design(tension)shall satisfy the provisions of Section 17.2.3.4.3(b),Section 17.2.3.4.3(c),or Section 17.2.3.4.3(d).The connection design(shear)shall satisfy the provisions of Section 17.2.3.5.3(a),Section 17.2.3.5.3(b),or Section 17.2.3.5.3(c). • Section 17.2.3.4.3(b)/Section 17.2.3.5.3(a)require the attachment the anchors are connecting to the structure be designed to undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength.Section 17.2.3.4.3(c)/Section 17.2.3.5.3 (b)waive the ductility requirements and require the anchors to be designed for the maximum tension/shear that can be transmitted to the anchors by a non-yielding attachment.Section 17.2.3.4.3(d)/Section 17.2.3.5.3(c)waive the ductility requirements and require the design strength of the anchors to equal or exceed the maximum tension/shear obtained from design load combinations that include E,with E increased by wo. • Hilti post-installed anchors shall be installed in accordance with the Hilti Manufacturer's Printed Installation Instructions(MPH).Reference ACI 318-14,Section 17.8.1. Fastening meets the design criteria! Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering(c)2003-2023 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan 8 loss Hilti PROFIS Engineering 3.0.84 www.hilti.com Company: Page: 9 Address: Specifier: Al Phone I Fax: I E-Mail: Design: 4X2BP TYP M BORROUGHS RIVETSPAN 2 ANCH Date: 4/13/2023 Fastening point: 7 Installation data Anchor type and diameter:Kwik Bolt TZ2-CS 3/8(2 1/2) hnom3 Profile:no profile Item number:2210238 KB-TZ2 3/8x3 3/4 Hole diameter in the fixture:df=0.438 in. Maximum installation torque:361 in.lb Plate thickness(input):0.188 in. Hole diameter in the base material:0.375 in. Recommended plate thickness:not calculated Hole depth in the base material:3.250 in. Drilling method:Hammer drilled Minimum thickness of the base material:5.000 in. Cleaning:Manual cleaning of the drilled hole according to instructions for use is required. Hilti KB-TZ2 stud anchor with 3 in embedment,3/8(2 1/2)hnom3,Carbon steel,installation per ESR-4266 7.1 Recommended accessories Drilling Cleaning Setting • Suitable Rotary Hammer • Manual blow-out pump • Torque controlled cordless impact tool • Properly sized drill bit • Torque wrench • Hammer -0.865 y 1.000 1.000 i: . X O O N 1.365 0.635 Coordinates Anchor[in.] Anchor x y c-x c+x c c+y 1 0.365 -1.500 4.000 - 4.000 - 2 0.365 1.500 4.000 - 7.000 - Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering(c)2003-2023 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan 9 Hilti PROFIS Engineering 3.0.84 www.hilti.com Company: Page: 10 Address: Specifier: Al Phone I Fax: I E-Mail: Design: 4X2BP TYP M BORROUGHS RIVETSPAN 2 ANCH Date: 4/13/2023 Fastening point: 8 Remarks; Your Cooperation Duties • Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles,formulas and security regulations in accordance with Hilti's technical directions and operating,mounting and assembly instructions,etc.,that must be strictly complied with by the user.All figures contained therein are average figures,and therefore use-specific tests are to be conducted prior to using the relevant Hilti product.The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore,you bear the sole responsibility for the absence of errors,the completeness and the relevance of the data to be put in by you. Moreover,you bear sole responsibility for having the results of the calculation checked and cleared by an expert,particularly with regard to compliance with applicable norms and permits,prior to using them for your specific facility.The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors,the correctness and the relevance of the results or suitability for a specific application. • You must take all necessary and reasonable steps to prevent or limit damage caused by the Software.In particular,you must arrange for the regular backup of programs and data and,if applicable,carry out the updates of the Software offered by Hilti on a regular basis.If you do not use the AutoUpdate function of the Software,you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website.Hilti will not be liable for consequences,such as the recovery of lost or damaged data or programs,arising from a culpable breach of duty by you. Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering(c)2003-2023 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan 10 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:al@storagerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Base Plate Configuration:Grade Level Unit M Rivetspan Shelving:72"H x 72.5"W x 36.5"D Section Actual base plate for T Post is 3.969 in x 2 in x 14 ga,but a smaller area is considered to be effective due to the rigidity limitations of the baseplate P Width=B= 3.97 in Column Width=b= 3.125 in Depth=D= 2.00 in Column depth=b= 1.563 in I, Plate Thickness=t= 0.188 in 0.44 in a Mb Fy= 36,000 psi •—� b r--L Cross Aisle Loads ~-W—► Axial DL= 54 lb Axial L= 750 lb DL+0.75LL+0.75*0.7*Pseismic= 772 lb Pseismic= 296 lb L= Base Plate Depth-Col Depth = 0.44 in fa= P/A=P/(D*B) M= wL^2/2=fa*L^2/2 = 97 psi = 9 in-lb/in Sbase/in = (1)(t^2)/6 Fbase= 0.75*Fy = 0.006 in^3/in = 27,000 psi fb/Fb= M/[(S-plate)(Fb)] 1.250 1,625 0.06 OK , 500 3,969 2,000 1 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:al@storagerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Slab on Grade Configuration:Grade Level Unit M Rivetspan Shelving:72"IH x 72.5"W x 36.5"D 1 P ..,••.f slab • a ir aD b e • • • • tslab=t= 6.0 in • slab . I ; phi=0= 0.65 --- c - -- Aisle i • Cross • '�. Soil x �IN f- c ---� � fsoil= 1,0 00 psfyL . • .....:.:.:•.•.... Movt= 10,796 in-lb Down Aisle • SLAB ELEVATION Frame depth= 36.5 in Baseolate Plan View Base Plate B= 3.97 in width=a= 3.13 in eff. baseplate width=c= 3.97 in D= 2.00 in depth=b= 1.56 in eff. baseplate depth=e= 2.00 in Load Case 1:Product+Seismic Product DL= 54 lb P-seismic=E= Movt/Frame depth (Strength Design Loads) Product LL= 750 lb = 296 lb Puncture I Pu= 1.2DL+ LOLL+ 1.0*E Fpunct= 2.66*phi*sgrt(fc) = 1,066 lb = 86.5 psi Apunct= [(c+t)+(e+t)]*2*t fv/Fv= Pu/(Apunct*Fpunct) = 215.64 in^2 = 0.06 < 1.0 OK Slab Bending I Asoil= (P*144)/(fsoil) L= (Asoil)^0.5 y= (c*e)^0.5+t*2 = 154 in^2 = 12.41 in = 14.8 in x= (L-y)/2 M= w*x^2/2 S-slab= 1*t^2/6 = 0.0 in = (fsoil*x^2)/(144*2) = 6.0 in^3 Fb= 5*(phi)*(fc)^0.5 = 0 in-lb fb/Fb= M/(S-slab*Fb) = 162.5 psi = 0.00 < 1.0 OK Load Case 2:Static Loads I I DL= 54 lb LL= 750 lb Puncture : Pu= 1.2*DL+ 1.6*LL Fpunct= 2.66*phi*sgrt(fc) = 1,160 lb = 86.5 psi Apunct= [(c+t)+(e+t)]*2*t fv/Fv= Pu/(Apunct*Fpunct) = 216 in^2 = 0.06 < 1.0 OK Slab Bending Asoil= (Pu*144)/(fsoil) L= (Asoil)^0.5 y= (c*e)^0.5+t*2 = 167 in^2 = 12.92 in = 14.8 in x= (L-y)/2 M= w*x^2/2 S-slab= 1*t^2/6 = 0.0 in = (fsoil*x^2)/(144*2) = 6.0 in^3 Fb= 5*(phi)*(fc)^0.5 = 0 in-lb fb/Fb= M/(S-slab*Fb) = 162.5 psi = 0.00 < 1.0,OK 1 , , r..I 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:al@storagerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Design Data Configuration:Deck Level Unit H Rivetspan Shelving:72"H x 60.5"W x 15.5"D 1) The analyses of the light duty storage fixtures conforms to the requirements of the 2021 IBC,2022 OSSC and ASC 7-16 2) Steel minimum yield, Fy=36 ksi unless otherwise noted on the plans or analysis herein. 3) Anchor bolts shall be provided by installer per ICC reference on the calculations herein. 4) All welds shall conform to AWS procedures, utilizing E70)oc electrodes or similar.All such welds shall be performed in shop,with no field welding allowed other than those supervised by a licensed deputy inspector. 5) Above grade floor designed by others for 125 psf LL 60 .15 r z I TIRE 30 ; 30 TIRE 72 6DOM A 1 I 30 30 e e TIRE a i ewe j .1 , re I I 316 J FRONT SIDE gr 7 , "16 UNIT H 60"x15"x72" 3 SHELVES 1 rip 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:al@storagerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Summary of Results Configuration:Deck Level Unit H Rivetspan Shelving:72"H x 60.5"W x 15.5"D 601- +-15 Shelf Configuration I#of Levels= 3 TIRE oNe Depth= 15.5 in Height= 72.0 in 30 30 I Width= 60.5 in Location Elevation Load ORE 7216 „ ma I hl= 3.0 in 150 lb h2= 30.0 in 150 lb h3= 30.0 in 150 lb 30 30 11 TIRE 3 J FRONT SIDE j 16 UNIT H 60"x15"x72" 3 SHELVES Seismic Coeff: Ss= 0.863 Product Load/Lvl= 0 lb S1= 0.397 Fa= 1.200 Fv= 1.803 Steel Fy= 36,000 psi I I Total Height= 63.0 in Component Summary Column Dbl Angle T Post 14ga 0.25 OK Beam Tire Support Beam 0.02 OK Beam Rivet 1/4"Diam Rivet x 1-1/2"Spacing 0.29 OK Anchor** (2)3/8"x 4.5"OAL GR 5 BOLT Grade 5 Bolts per footplate(ICC)No Inspection Required.Net Uplift=502 lb 0.47 OK Footplate 4"x 2"x 14 GA Footplates Typical 0.03 OK Slab on Grade Above grade floor designed by others for 125 psf LL I Notes II Column Reactions: Axial column DL= 14 lb Axial column LL= 225 lb Axial column seismic load=+/- 502 lb Uniform load to floor= (DL+LL)*Shelf Levels/(Width*Depth) = 39 psf Flat Deck Platform is Designed for 125 psf LL to accommodate storage loads 1 - _ 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:al@storagerackengineering.com storagerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Seismic Forces Configuration: Deck Level Unit H Rivetspan Shelving:72"H x 60.5"W x 15.5"D V1= Sps*W/R Ss= 0.86 V2= [0.4*ap*S,*Ws*(1+2*z/h)/(Rp/Ip)] '---1 S1= 0.40 V3= 0.044*Sds A Fa= 1.20 V4= 0.5*Sl/R rin=- Fv= 1.80 V1= 0.1726 v Sds= 0.690 hb Sd1= 0.477 V2= 0.5178 R=Rp= 4.00 V3= 0.0304 V4= 0.0000 M , Ip= 1.00 Vminimum= 0.015 /h= 2.5 Elevation z = 1.00 #of levels= 3 Seismic Coeff=Cs= 0.5178 Depth= 15.5 in (Either Direction) Product LL/Shlf= 150 lb Cs*Ip= 0.5178 DL/Shlf= 9 lb Down Aisle Seismic Shear(Longitudinal) Cross Aisle Seismic Shear(Transverse) Wlong= E(LL*0.67+DL) Wtransv= E(LL*0.67+DL) = 228 lb = 228 lb Vlong=VL= 0.5178*228 lb Vtransverse=VT= 0.5178*228 lb = 118 lb = 118 lb VT/col= 59 lb Vt/2= 59 lb Transverse Distribution Transverse Moment Resisting Dbl Rivet Beams Level LL DL hi wi*hi Fi Fi*hi Vn hb Mn Mconn 1 0 lb 9 lb 3 in 27 0.2 lb 1 in-lb 59.00 lb 3 in 177 in-lb 384 in-lb 2 150 lb 9 lb 33 in 5,247 40.5 lb 1,337 in-lb 39.33 lb 30 in 590 in-lb 443 in-lb 3 150 lb 9 lb 63 in 10,017 77.3 lb 4,870 in-lb 19.67 lb 30 in 295 in-lb 148 in-lb Sum: 300 lb 27 lb W=327 lb 15,291 118 lb Movt=6207 in-lb Smilarly,Mlong= 590 in-lb Mconn-long= 443 in-lb Transverse Column Loads Longitudinal Column Loads Movt= 6,207 in-lb Pstatic DL= 14 lb Pseismic= Movt/D Pstatic= E(LL+DL) Mlong= Mr �t/�r Pstatic LL= 150 lb = 400 lb = 164 lb = 590 in-Ib Mconn= 1,269 in-lb Itransv=MT= 590 in-lb 1 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:aI@storagerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Transverse Column Loads(Weak Axis Bending) Configuration: Deck Level Unit H Rivetspan Shelving:72"H x 60.5"W x 15.5" Net Section Properties Column= Dbl Angle T Post 14ga Aeff= 0.471 inA2 52f= 1.67 Ix(downaisle)= 0.297 in^4 E= 29,500 ksi Sx(downaisle)= 0.158 in^3 Cb= 1.0 rx(downaisle)= 0.794 in Cmx= 1.00 1 9/16" Iy(crossaisle)= 0.177 inA4 Kx= 1.0 Sy(crossaisle)= 0.129 in^3 Lx= 30.0 in ry(crossaisle)= 0.614 in Ky= 1.0 /-1 9/1 X 1 9/1 6��Fy= 36 ksi Ly= 30.0 in / Axial DL= 14 lb Axial LL= 150 lb Pseismic= 400 lb Loads Load Case: (Fully Loaded) Axial=P= DL+0.75LL+0.75*0.7*Pseismic = 336 lb Moment=My= 590 in-lb Axial Analysis KxLx/rx= 1*30'/0.7942" KyLy/ry= 1*3070.6139" Fe > Fy/2 = 37.8 = 48.9 Fn= Fy(1-Fy/4Fe) = 36 ksi*[1-36 ksi/(4*121.9 ksi)] Fe= n^2E/(KL/r)max^2 Fy/2= 18.0 ksi = 33.3 ksi = 121.9ksi Pn= Aeff*Fn Qc= 1.92 Pa= Pn/52c = 15,691 lb = 15691 lb/1.92 = 8,172 lb P/Pa= 0.04 < 0.15 Bending Analysis Check: P/Pa+My/May 5 1.0 Pno= Ae*Fy Pao= Pno/Qc Myield=My= Sy*Fy = 0.471 in^2*36000 psi = 169421b/1.92 = 0.129 in^3*36000 psi = 16,942 lb = 8,824 lb = 4,658 in-lb May= My/52f Pcr= n^2EI/(KL)max^2 = 4658 in-lb/1.67 = n^2*29500000 psi/(1*30 in)^2 = 2,789 in-lb = 96,048 lb p= {1/[1-(52c*P/Pcr)]}^-1 = {1/[1-(1.92*336 lb/96048 lb)]}^-1 = 0.99 Combined Stresses (336 lb/8172 lb)+(590 in-lb/2789 in-lb)= 0.25 < 1.0,OK (EQ C5-3) 1 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:al@storagerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Longitudinal Column Loads(Strong Axis Bending) Configuration:Deck Level Unit H Rivetspan Shelving:72"H x 60.5"W x 15.5" Net Section Properties Column= Dbl Angle T Post 14ga Aeff= 0.471 in^2 Qf= 1.67 h Ix(downaisle)= 0.297 in^4 E= 29,500 ksi Sx(downaisle)= 0.158 in^3 Cb= 1.0 1 9/16„ rx(downaisle)= 0.794 in Cmx= 1.00 Iy(crossaisle)= 0.177 in^4 Kx= 1.0 Sy(crossaisle)= 0.129 in^3 Lx= 30.0 in ry(crossaisle)= 0.614 in Ky= 1.0 Fy= 36 ksi Ly= 30.0 in 1 9/16" 1 9/16" Axial DL= 14 lb Axial LL= 150 lb Pseismic= 0 lb Loads Load Case: (Fully Loaded) Axial=P= DL+0.75LL+0.75*0.7*Pseismic = 126 lb Moment=Mx= 590 in-lb Axial Analysis KxLx/rx= 1*3070.7942" KyLy/ry= 1*3070.6139" Fe > Fy/2 = 37.8 = 48.9 Fn= Fy(1-Fy/4Fe) = 36 ksi*[1-36 ksi/(4*121.9 ksi)] Fe= n^2E/(KL/r)max^2 Fy/2= 18.0 ksi = 33.3 ksi = 121.9ksi Pn= Aeff*Fn 52c= 1.92 Pa= Pn/Qc = 15,691 lb = 15691 Ib/1.92 = 8,172 lb P/Pa= 0.02 < 0.15 Bending Analysis Check: P/Pa+My/May<_ 1.0 Pno= Ae*Fy Pao= Pno/52c Myield=My= Sx*Fy = 0.471 in^2*36000 psi = 169421b/1.92 = 0.158 in^3*36000 psi = 16,942 lb = 8,824 lb = 5,699 in-lb May= My/52f Pcr= n^2EI/(KL)max^2 = 5699 in-lb/1.67 = nA2*29500000 psi/(1*30 in)^2 = 3,412 in-lb = 96,048 lb p= {1/[1-(52c*P/Pcr)]}^-1 = {1/[1-(1.92*126 Ib/96048 Ib)]}^-1 = 1.00 Combined Stresses (126 lb/8172 lb)+(590 in-Ib/3412 in-lb)= 0.19 < 1.0,OK (EQ C5-3) 1 +r = 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:al@storagerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Double Rivet Beam Configuration:Deck Level Unit H Rivetspan Shelving:72"H x 60.5"W x 15.5"D 1'961-7' Downaisle beam Beam Type= Tire Support Beam Ix= 0.1200 inA4 .969 \ A A A A A AA A Sx= 0.085 in^3 Fy-beam= 36,000 psi I Shelf Span=L= 60 in I ilk V V V VY V V V . 28 Downa isle beam 60° Shelf Plan View Check Beam Bending Check Beam Deflection Shelf DL= 9 lb Shelf LL= lb E= 29,500,000 psi Shelf LL+DL= 9 lb Load=w=LL*0.67/(2*L)= 1.2 plf D= 5*w*LA4/(384*E*Ix) = 0.0048 in M= w*LA2/8 = 44 in-lb Dallow= L/140 0.43 in OK fb= M/Sx = 521 psi Fb= 0.6*Fy .7454 21,600 psi 2.6530 0 G 1.5" 2.560" fb/Fb= 0.02 OK Check DRB Beam Rivets For Static+Seismic Loads Check load case: DL+0.75LL+0.75*0.7*Mseismic Rivet Spacing=d= 1.5 in tmin= 0.075 in Rivet diameter= 0.25 in Fu= 58,000 psi Column Fy-rivet= 36,000 psi Rivet M*0.7*0.75= 310 in-lb W= (LL*0.75+DL)/4 Beam C= M/d = 2 1b = 207 lb — c d Shear Capacity= Rivet Area*0.4*Fy-rivet = [(0.25 in)^2*pi/4]*0.4*36000 psi = 707 lb Bearing Capacity= Rivet Diam*tmin*Fu* 1.2 = 1,305 lb Beam to Column Effective Shear= [(W/2)^2+C^2]^0.5 = 2071b OK 1 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:al@storagerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Lao Screw Uplift Capacity Check uplift capacity of tek screw per chapter E4 of the 1996 AISI Cold Formed Manual Pullout Cap= 0.85*tc*d*Fu2/52 = 0.85*0.075 in*0.375 in*68000 psi/3 = 542 lb tc= 0.075 in d=screw diam= 0,375 in Pull-over Cap= 1.5*tl*dw*Fu1/S2 Fu2= 68,000 psi = 1.5*0.03 in*0.5 in*68000 psi/3 = 510 lb tl=deck thickness= 0.030 in dw=washer diam= 0.5000 in Fu1=Fu for deck= 68,000 psi 52=3 Tek Screw Shear Capacity Check shear capacity of tek screw per chapter E4 of the 1996 AISI Cold Formed Manual t T V 52= 3 1"1 Shear is the least of the following: 'r Pns= 4.2*(t2^3*d)^0.5*Fu2 = 4.2*[(0.03 in)^3*0.375 in]^0.5*68000 psi = 909 lb tl=t-top plate= 0.075 in Pns= 2.7*tl*d*Fu1 t2=bottom plate= 0.030 in = 2.7*0.075 in*0.375 in*68000 psi Fu1=Fu of top plate= 68,000 psi = 5,164 lb Fu2=Fu of bottom plate= 68,000 psi d=screw diam= 0.375 in Pns= 2.7*t2*d*Fu2 = 2.7*0.03 in*0.375 in*68000 psi = 2,066 lb Pns-eff/S2= 909 lb/3 = 303 lb Tallow= 510 lb Vallow= 303 lb 1 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:al@storagerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Anchors Configuration:Deck Level Unit H Rivetspan Shelving:72"H x 60.5"W x 15.5"D Check load case: 0.9-0.2*Sds*(D+0.67LL)+/-E Loads Vtrans=V= 118 lb ► V DL/Frame= 27 lb LL/Frame= 300 lb Frame Depth=D= 15.5 in Wst=phi*(DL+0.67LL)total= 174 lb Htop-Iv1=Ht= 63.0 in LL @ TOP= 150 lb #Levels= 3 DL/Lvl= 9 lb #Anchors/footplate= 2 DL*phi= 7 lb 0.9-0.2Sds=phi= 0.762 T / Lateral Ovt Forces=E(Fi*hi)*1.15= 7,138 in-lb D-01 SIDE ELEVATION Fully Loaded rack Vtrans= 118 lb Movt= 2(Fi*hi) Mst= Wst*D/2 Uplift=T= (Movt-Mst)/D = 7,138 in-lb = 174 lb* 15.5 in/2 = (7138 in-lb-1349 in-lb)/15.5 in = 1,349 in-lb = 373 lb Top Level Loaded Only Critical Level= 3 Hgt @ Lvl 3= 63.0 in Vtop= Cs*LLtop Vtop=vl= 0.518*150 lb Movt= Vtop*Htop*1.15+V2*Ht/2 = 78 lb = 8,486 in-lb VDL=V2= 90 lb Mst= 0.6*(LL-top)*D/2 Uplift=T= (Movt-Mst)/D = (150 Ib*0.6)* 15.5 in/2 = (8486 in-lb-698 in-lb)/15.5 in = 698 in-lb = 502 lb Anchor I Net Seismic Max Uplift=1502 LB Check(2)3/8"x 4.5"OAL GR 5 BOLT Grade 5 Bolts anchor(s)per footplate** Pullout Capacity=Tcap= 510 lb -� Shear Capacity=Vcap= 303 lb Phi= 1.00 Tcap*Phi= 510 lb Vcap*Phi= 303 lb Fully Loaded: �,_, • (187Ib/5101b)^1 +(30 lb/303 Ib)^1 = 0.47 <= 1.2 OK Top Level Loaded: (251 lb/510 lb)^1+(20 lb/303 lb)^1 = 0.56 <= 1.2 OK 1 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:al@storagerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Base Plate Configuration:Deck Level Unit H Rivetspan Shelving:72"H x 60.5"W x 15.5"D Section Actual base plate for T Post is 3.969 in x 2 in x 14 ga,but a smaller area is considered to be effective due to the rigidity limitations of the baseplate Width=B= 3.97 in Column Width=b= 3.125 in Depth=D= 2.00 in Column depth=b= 1.563 in 14 Plate Thickness=t= 0.188 in 0.44 in a Mb Fy= 36,000 psi b14—L Cross Aisle Loads — w Axial DL= 14 lb Axial L= 150 lb DL+0.75LL+0.75*0.7*Pseismic= 336 lb Pseismic= 400 lb L= Base Plate Depth-Col Depth = 0.44in fa= P/A=P/(D*B) M= wL^2/2=fa*L^2/2 = 42 psi = 4 in-lb/in Sbase/in = (1)(t^2)/6 Fbase= 0.75*Fy = 0.006 in^3/in = 27,000 psi fb/Fb= M/[(S-plate)(Fb)] 1.250 1 1.625 0.03 OK 3.969 2.000 .50s0. 1 rin' 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:al(aastoragerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Summary of Results Configuration:Type B Clip Shelving:89.375"H x 48"W x 24.5"D Shelf Configuration #of Levels= 11 1----4-- D= 24.5 in H= 89.4 in ;..._._ s:x- ::,-,.. :._. s a L= 48.0 in Location Elevation Load : I h1= 4.50 in 200 lb h2= 9.00 in 200 lb s �� h3= 9.00 in 200 lb i°DRAWER h4= 9.00 in 200 lb m5 44 PRkWER h5= 9.00 in 200 lb a°c weR h6= 6.00 in 200 lb 1$ h7= 6.00 in 200 lb h8= 1.50 in 200 lb A h9= 10.50 in 200 lb ``22 ems. h10= 10.50 in 200 lb *8N.24" r° h11= 14.00 in 746 lb 5 SHELVES $DRAwER5 Notes Axial column DL= 88 lb Axial column LL= 1,373 lb Axial column seismic load=+/- 1,061 lb Net Seismic Uplift per footplate= 397 lb Seismic Coeff: Ss= 0.863 Steel Fy= 36,000 psi S1= 0.397 Product Load= 200 lb per shelf level Fa= 1.200 Fv= 1.803 Component Summary Column Borroughs Clip Shelving Dbl Angle"T"Post 13ga&14ga Beaded Front Post 0.30 OK Shelf P1 22ga Box Edge Shelf Beam 0.44 OK Steel Panel 22 ga Back Panel with(1)0.25 in diam bolt at 36 in o.c.,22 ga Side Panel with weld at 12 in o.c. 0.69 OK Anchor (2)3/8"Diam x 2.5"Embed Hilti Kwikbolt T22 anchor(s)per footplate Special inspection is required per ICC ESR 4266. 0.38 OK Base Plate Footplate 5 in*4 in*0.25 in Thk(with(2)1/4"Diam Gr5 M.B.to Post) 0.62 OK Slab 6 in thick x 2500 psi slab/1000 psf soil 0.14 OK Notes SIDE PANEL WELDED EVERY 12" 6.5"MIN. DISTANCE FROM EDGE OF SLAB/CONSTRUCTION JOINT TO ANCHOR BMW OP TIGARD 320G-A 23-0410-2 CLIP SHELVING Page of 4/13/2023 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:alc storagerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Summary of Results Configuration:Type C Clip Shelving:89.375"H x 48"W x 18.5"D Shelf Configuration #of Levels= 7 I D= 18.5 in 4 H= 89.4 in i ..-r -,' _- .4 _____r I L= 48.0 in I 54 j Location Elevation Load n; aj I hl= 4.50 in 200 lb I I °° 0 1 h2= 13.50 in 200 lb L h3= 13.50 in 200 lb -_ ~_ _^....._. g h4= 13.50 in 200 lb __ a h5= 13.50 in 200 lb as I -*'Af h6= 13.50 in 200 lb s h7= 17.00 in 1,306 lb Is 1.34 t::ff' 0 too 48"x16"xe7" f%4EINES Notes Axial column DL= 42 lb Axial column LL= 1,253 lb Axial column seismic load=+/- 1,510 lb Net Seismic Uplift per footplate= 963 lb Seismic Coeff: Ss= 0.863 Steel Fy= 36,000 psi S1= 0.397 Product Load= 200 lb per shelf level Fa= 1.200 Fv= 1.803 Component Summary Column Borroughs Clip Shelving Dbl Angle"T"Post 13ga&14ga Beaded Front Post 0.33 OK Shelf P1 22ga Box Edge Shelf Beam 0.44 OK Steel Panel 22 ga Back Panel with(1)0.25 in diam bolt at 36 in o.c.,22 ga Side Panel with weld at 12 in o.c. 0.98 OK Anchor (2)3/8"Diam x 2.5"Embed Hilti Kwikbolt T22 anchor(s)per footplate Special inspection is required per ICC ESR 4266. 0.75 OK Base Plate Footplate 5 in*4 in*0.25 in Thk(with(2)1/4"Diam Gr5 M.B.to Post) 0.68 OK Slab 6 in thick x 2500 psi slab/1000 psf soil 0.15 OK Notes SIDE PANEL WELDED EVERY 12" 6.5"MIN. DISTANCE FROM EDGE OF SLAB/CONSTRUCTION JOINT TO ANCHOR BMW OF TIGARD 320G-A 23-0410-2 CLIP SHELVING Page of 4/13/2023 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:al(adstoragerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Summary of Results Configuration:Type D Clip Shelving:89.375"H x 36"W x 18.5"D Shelf Configuration #of Levels= 7 - 3616 - D= 18.5 in H= 89.4 in L= 36.0 in `2 Location Elevation Load 'a I hl= 4.50 in 200 lb h2= 13.50 in 200 lb as ?i y h3= 13.50 in 200 lb h4= 13.50 in 200 lb 132 g h5= 13.50 in 200 lb h6= 13.50 in 200 lb h7= 17.00 in 1,142 lb ,1 za x 1 P2 g UNIT 4 36"x18"x87" 7 SHELVES Notes Axial column DL= 32 lb Axial column LL= 1,171 lb Axial column seismic load=+/- 1,374 lb Net Seismic Uplift per footplate= 868 lb Seismic Coeff: Ss= 0.863 Steel Fy= 36,000 psi S1= 0.397 Product Load= 200 lb per shelf level Fa= 1.200 Fv= 1.803 Component Summary Column ! Borroughs Clip Shelving Dbl Angle"T"Post 13ga&14ga Beaded Front Post 0.31 OK Shelf P1 22ga Box Edge Shelf Beam 0.33 OK Steel Panel 22 ga Back Panel with(1)0.25 in diam bolt at 36 in o.c.,22 ga Side Panel with weld at 12 in o.c. 0.89 OK Anchor (2)3/8"Diam x 2.5"Embed Hilti Kwikbolt TZ2 anchor(s)per footplate Special inspection is required per ICC ESR 4266. 0.68 OK Base Plate Footplate 5 in*4 in*0.25 in Thk(with(2)1/4"Diam Gr5 M.B.to Post) 0.62 OK Slab 6 in thick x 2500 psi slab/1000 psf soil 0.14 OK Notes SIDE PANEL WELDED EVERY 12" 6.5"MIN. DISTANCE FROM EDGE OF SLAB/CONSTRUCTION JOINT TO ANCHOR BMW OP TIGARD 320G-A 23-04 I0-2 CLIP SHELVING Page of 4/1 3/2023 /irill 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:al(castoragerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Summary of Results Configuration:Type E Clip Shelving:89.375"H x 48"W x 24.5"D Shelf Configuration I #of Levels= 7 D= 24.5 in --.i H= 89.4 in �i "- I L= 48.0 in I 1j fl 1 j Location Elevation Load sa .4 al I hl= 4.50 in 200 lb h2= 13.50 in 200 lb h3= 13.50 in 200 lb z h4= 13.50 in 200 lb h5= 13.50 in 200 lb h6= 13.50 in 200 lb h7= 17.00 in 1,135 lb s 1.4 iw a4to . UNIT E 7 SHELVES Notes Axial column DL= 56 lb Axial column LL= 1,167 lb Axial column seismic load=+/- 1,053 lb Net Seismic Uplift per footplate= 518 lb Seismic Coeff: Ss= 0.863 Steel Fy= 36,000 psi S1= 0.397 Product Load= 200 lb per shelf level Fa= 1.200 Fv= 1.803 Component Summary Column Borroughs Clip Shelving Dbl Angle"T"Post 13ga&14ga Beaded Front Post 0.28 OK Shelf P1 22ga Box Edge Shelf Beam 0.44 OK Steel Panel 22 ga Back Panel with(1)0.25 in diam bolt at 36 in o.c.,22 ga Side Panel with weld at 12 in o.c. 0.68 OK Anchor (2)3/8"Diam x 2.5"Embed Hilti Kwikbolt TZ2 anchor(s)per footplate Special inspection is required per ICC ESR 4266. 0.43 OK Base Plate Footplate 5 in*4 in*0.25 in Thk(with(2)1/4"Diam Gr5 M.B.to Post) 0.57 OK Slab 6 in thick x 2500 psi slab/1000 psf soil 0.12 OK Notes SIDE PANEL WELDED EVERY 12" 6.5"MIN. DISTANCE FROM EDGE OF SLAB/CONSTRUCTION JOINT TO ANCHOR BMW OF TIGARD 320G-A 23-0410-2 CLIP SHELVING Page of 4/13/2023 1- 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:al(Mstoragerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Summary of Results Configuration:Type F Clip Shelving:89.375"H x 48"W x 12.5"D Shelf Configuration #of Levels= 7 44 1 *14 D= 12.5 in # _ H= 89.4 in - r I L= 48.0in I Ili i { . Location Elevation Load 18 14 I hl= 4.50 in 70 lb 4 „°' -„ h2= 13.50 in 70 lb 18 13 h3= 13.50 in 70 lb 1 i 87 h4= 13.50 in 70 lb ° h5= 13.50 in 70 lb 18 .,°' ~ h6= 13.50 in 70 lb 13 h7= 17.00 in 1,131 lb • 18 14 i i-1 BALK FFtIXdF qM UNIT F 48"x12"x87" 7 SHELVES Notes Axial column DL= 28 lb Axial column LL= 775 lb Axial column seismic load=+/- 1,548 lb Net Seismic Uplift per footplate= 1,392 lb Seismic Coeff: Ss= 0.863 Steel Fy= 36,000 psi S1= 0.397 Product Load= 70 lb per shelf level Fa= 1.200 Fv= 1.803 Component Summary Column Borroughs Clip Shelving Dbl Angle"T"Post 13ga&14ga Beaded Front Post 0.27 OK Shelf P2 20ga Box Edge Shelf Beam 0.12 OK Steel Panel 22 ga Back Panel with(1)0.25 in diam bolt at 36 in o.c.,22 ga Side Panel with weld at 12 in o.c. 1.00 OK Anchor (2)3/8"Diam x 2.5"Embed Hilo Kwikbolt TZ2 anchor(s)per footplate Special inspection is required per ICC ESR 4266. 0.98 OK Base Plate Footplate 5 in*4 in*0.25 in Thk(with(2)1/4"Diam Gr5 M.B.to Post) 0.55 OK Slab 6 in thick x 2500 psi slab/1000 psf soil 0.12 OK Notes SIDE PANEL WELDED EVERY 12" 6.5"MIN. DISTANCE FROM EDGE OF SLAB/CONSTRUCTION JOINT TO ANCHOR BMW OP TIGARD 3206-A 23-0410-2 CLIP SHELVING Page of 4/13/2023 oes. ow 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:alc storagerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Summary of Results Configuration:Type G Clip Shelving:89.375"H x 36"W x 24.5"D Shelf Configuration #of Levels= 7 I D= 24.5 in H= 89.4 in .. _� z , .3.. . " "'7 w I L= 36.0 in ES T i ... 4 - Location Elevation Load to F I h1= 4.50 in 200 lb I t& i _ h2= 13.50 in 200 lb y h3= 13.50 in 200 lb A ,, 6 f h4= 13.50 in 200 lb h5= 13.50 in 200 lb as z 8 I h6= 13.50 in 200 lb w h7= 17.00 in 699 lb is —. '. .. 1- *j UNITS 7 SHELVES Notes Axial column DL= 42 lb Axial column LL= 950 lb Axial column seismic load=+/- 787 lb Net Seismic Uplift per footplate= 336 lb Seismic Coeff: Ss= 0.863 Steel Fy= 36,000 psi S1= 0.397 Product Load= 200 lb per shelf level Fa= 1.200 Fv= 1.803 Component Summary Column Borroughs Clip Shelving Dbl Angle"T"Post 13ga&14ga Beaded Front Post 0.22 OK Shelf P2 20ga Box Edge Shelf Beam 0.27 OK Steel Panel 22 ga Back Panel with(1)0.25 in diam bolt at 36 in o.c.,22 ga Side Panel with weld at 12 in o.c. 0.51 OK Anchor (2)3/8"Diam x 2.5"Embed Hilti Kwikbolt TZ2 anchor(s)per footplate Special inspection is required per ICC ESR 4266. 0.31 OK Base Plate Footplate 5 in*4 in*0.25 in Thk(with(2)1/4"Diam Gr5 M.B.to Post) 0.44 OK Slab 6 in thick x 2500 psi slab/1000 psf soil 0.10 OK Notes SIDE PANEL WELDED EVERY 12" 6.5"MIN. DISTANCE FROM EDGE OF SLAB/CONSTRUCTION JOINT TO ANCHOR BMW OP TIGARD 320G-A 23-04 10-2 CLIP SHELVING Page of 4/13/2023 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineerinq.com,email:al(tDstoragerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Summary of Results Configuration:Type V Clip Shelving:89.375"H x 42"W x 12.5"D Shelf Configuration I #of Levels= 7 12.5 in H= 89.4 in j I L= 42.0 in I44 I i A. I Location Elevation Load hl= 4.50 in 200 lb I h2= 13.50 in 200 lb I F h3= 13.50 in 200 lb F& 6 h4= 13.50 in 200 lb g i frx — , $7 h5= 13.50 in 200 lb h6= 13.50 in 200 lb t h7= 17.00 in 408 lb 1 t Pt UNIT v 36^z z^ a^ 7 SHELVES Notes Axial column DL= 25 lb Axial column LL= 804 lb Axial column seismic load=+/- 1,168 lb Net Seismic Uplift per footplate= 883 lb Seismic Coeff: Ss= 0.863 Steel Fy= 36,000 psi S1= 0.397 Product Load= 200 lb per shelf level Fa= 1.200 Fv= 1.803 Component Summary Column Borroughs Clip Shelving Dbl Angle"T"Post 13ga&14ga Beaded Front Post 0.22 OK Shelf P1 22ga Box Edge Shelf Beam 0.37 OK Steel Panel 22 ga Back Panel with(1)0.25 in diam bolt at 36 in o.c.,22 ga Side Panel with weld at 12 in o.c. 0.75 OK Anchor (2)3/8"Diam x 2.5"Embed Hilti Kwikbolt TZ2 anchor(s)per footplate Special inspection is required per ICC ESR 4266. 0.65 OK Base Plate Footplate 5 in*4 in*0.25 in Thk(with(2)1/4"Diam Gr5 M.B.to Post) 0.46 OK Slab 6 in thick x 2500 psi slab/1000 psf soil 0.11 OK Notes SIDE PANEL WELDED EVERY 12" 6.5"MIN. DISTANCE FROM EDGE OF SLAB/CONSTRUCTION JOINT TO ANCHOR BMW OF TIGARD 320G-A 23-041 O-2 CLIP SHELVING Page of 4/13/2023 rigs 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:alastoragerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Summary of Results Configuration:Type W Clip Shelving:89.375"H x 24"W x 12.5"D Shelf Configuration 2416-- 24 121--1 I #of Levels= 7 D= 12.5 in _i - •--- H= 89.4 in r.. 1 I 15 L= 24.0 in I ;,' t I i ,, `'___ Location Elevation Load 18 hl= 4.50 in 200 lb I 13i h2= 13.50 in 200 lb h3= 13.50 in 200 lb 13 h4= 13.50 in 200 lb ,. 87 h5= 13.50 in 200 lb 1 0 h6= 13.50 in 200 lb 132 j I ' h7= 17.00 in 571 lb 18 T i bI .r 131 i 18 132 I' —rI 1 SACK 'l FRONT 11 3$—' SIDE UNIT W 24"x12"x87" 7 SHELVES Notes Axial column DL= 14 lb Axial column LL= 886 lb Axial column seismic load=+/- 1,349 lb Net Seismic Uplift per footplate= 1,043 lb Seismic Coeff: Ss= 0.863 Steel Fy= 36,000 psi S1= 0.397 Product Load= 200 lb per shelf level Fa= 1.200 Fv= 1.803 Component Summary Column Borroughs Clip Shelving Dbl Angle"T"Post 13ga&14ga Beaded Front Post 0.25 OK Shelf P1 22ga Box Edge Shelf Beam 0.21 OK Steel Panel 22 ga Back Panel with(1)0.25 in diam bolt at 36 in o.c.,22 ga Side Panel with weld at 12 in o.c. 0.87 OK Anchor (2)3/8"Diam x 2.5"Embed Hilti Kwikbolt TZ2 anchor(s)per footplate Special inspection is required per ICC ESR 4266. 0.77 OK Base Plate Footplate 5 in*4 in*0.25 in Thk(with(2)1/4"Diam Gr5 M.B.to Post) 0.51 OK Slab 6 in thick x 2500 psi slab/1000 psf soil 0.12 OK Notes SIDE PANEL WELDED EVERY 12" 6.5"MIN. DISTANCE FROM EDGE OF SLAB/CONSTRUCTION JOINT TO ANCHOR BMW OF TIGARD 32OG-A 23-0410-2 CLIP SHELVING Page of 4/13/2023 -ir'ei 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:al@storagerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Summary of Results Configuration:Grade Level Unit L Rivetspan Shelving:72"H x 72.5"W x 36.5"D m I 5s., is € Shelf Configuration I . I #of Levels= 5 Depth= 36.5 in zf, ' Height= 72.0 in ,,, �j. I Width= 72.5 in 14 Location Elevation Load «. -- I hl= 4.5 in 500 lb h2= 16.5 in 500 lb -As ,". « __ h3= 16.5 in 500 lb I h4= 16.5 in 500 lb _, '.1 h5= 18.0 in 500 lb UNIT L. 96"x36'x72" SHELVES Seismic Coeff: Ss= 0.863 Product Load/Lvl= 0 lb S1= 0.397 Fa= 1.200 Fv= 1.803 Steel Fy= 36,000 psi Total Height= 72.0 in Component Summary Column Dbl Angle T Post 14ga 0.42 OK Beam DRAB Dbl Rivet Beam 0.06 OK Beam Rivet 1/4"Diam Rivet x 1-1/2"Spacing 0.42 OK Anchor** (2)3/8"X 2.5"Embedment KWIK BOLT TZ2 per footplate(ICC ESR#4266)Inspection Required.Net Uplift=236 lb 0.25 OK Footplate 4"x 2"x 14 GA Footplates Typical 0.08 OK Slab on Grade 6 in thick concrete with fc=2500 psi on deck 0.08 OK 'Notes 1 e' 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:al@storagerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Summary of Results Configuration: Deck Level Unit I Rivetspan Shelving:72"H x 48.5"W x 60.5"D T 4 Shelf Configuration 1x 12 I #of Levels= 2 I 1 Depth= 60.5 in lz �•_L. Height= 72.0 in -. '` Width= 48.5 in _*. - Location Elevation Load hl= 3.0 in 500 lb I 4 h2= 36.0 in 500 lb i ,r } 'lir l3NTr I 48540Vr a SHELVES Seismic Coeff: Ss= 0.863 Product Load/Lvl= 0 lb S1= 0.397 Fa= 1.200 Fv= 1.803 Steel Fy= 36,000 psi Total Height= 39.0 in Component Summary Column Dbl Angle T Post 14ga 0.37 OK Beam DRAB Dbl Rivet Beam 0.05 OK Beam Rivet 1/4"Diam Rivet x 1-1/2"Spacing 0.46 OK Anchor** (2)3/8"x 4.5"OAL GR 5 BOLT Grade 5 Bolts per footplate(ICC)No Inspection Required.Net Uplift=92 lb 0.25 OK Footplate 4"x 2"x 14 GA Footplates Typical 0.02 OK Slab on Grade Above grade floor designed by others for 125 psf LL I Notes Column Reactions: Axial column DL= 30 lb Axial column LL= 500 lb Axial column seismic load=+/- 92 lb Uniform load to floor= (DL+LL)*Shelf Levels/(Width*Depth) = 20 psf Flat Deck Platform is Designed for 125 psf LL to accommodate storage loads 1 k rill,.. . 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:al@storagerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Summary of Results Configuration:Deck Level Unit)Rivetspan Shelving:72"H x 48.5"W x 72.5"D ... 7 _. 44 .....__......., ........ ... Shelf Configuration #of Levels= 3 .. -a`=---vas- .,." Depth= 72.5 in ti Height= 72.0 in r I Width= 48.5 in I [x ' aLocation Elevation Load 4'-�- I,I; n. 'at- 1tii ef s— h1= 3.0 in 200 1b h2= 57.0 in 200 lb as ,,, xJr€r;mar a h3= 12.0 in 200 lb s r x� f urea 4"z72 x72" 2 SHELVES Seismic Coeff: Ss= 0.863 Product Load/Lvl= 0 lb S1= 0.397 Fa= 1.200 Fv= 1.803 Steel Fy= 36,000 psi I I Total Height= 72.0 in Component Summary Column Dbl Angle T Post 14ga 0.73 OK Beam DRAB Dbl Rivet Beam 0.06 OK Beam Rivet 1/4"Diam Rivet x 1-1/2"Spacing 0.92 OK Anchor** (2)3/8"x 4.5"OAL GR 5 BOLT Grade 5 Bolts per footplate(ICC)No Inspection Required.Net Uplift=132 lb 0.18 OK Footplate 4"x 2"x 14 GA Footplates Typical 0.02 OK Slab on Grade Above grade floor designed by others for 125 psf LL I Notes Column Reactions: Axial column DL= 54 lb Axial column LL= 300 lb Axial column seismic load=+/- 132 lb Uniform load to floor= (DL+LL)*Shelf Levels/(Width*Depth) = 15 psf Flat Deck Platform is Designed for 125 psf LL to accommodate storage loads 1 "' 3 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:al@storagerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Summary of Results Configuration:Deck Level Unit K Rivetspan Shelving:72"H x 96.5"W x 36.5"D Shelf Configuration #of Levels= 4 Depth= 36.5 in r i - " T. I Height= 72.0 in Width= 96.5 in I 2d^a ,.., ,fir, e„ •t . t Il MILUL f T l t >rrrrvl LI LLI,LL� �° x I Location Elevation Load hl= 4.5 in 170 lb I - 1 I h2= 42.0 in 170 lb h3= 12.0 in 170 Ib " l h4= 13.5 in 170 lb MIT K 3 HELM Seismic Coeff: Ss= 0.863 Product Load/Lvl= 0 lb S1= 0.397 Fa= 1.200 Fv= 1.803 Steel Fy= 36,000 psi I I Total Height= 72.0 in Component Summary Column Dbl Angle T Post 14ga 0.79 OK Beam DRAB Dbl Rivet Beam 0.12 OK Beam Rivet 1/4"Diam Rivet x 1-1/2"Spacing 0.98 OK Anchor** (2)3/8"x 4.5"OAL GR 5 BOLT Grade 5 Bolts per footplate(ICC)No Inspection Required.Net Uplift=337 lb 0.42 OK Footplate 4"x 2"x 14 GA Footplates Typical 0.04 OK Slab on Grade Above grade floor designed by others for 125 psf LL I Notes Column Reactions: Axial column DL= 72 lb Axial column LL= 340 lb Axial column seismic load=+/- 337 lb Uniform load to floor= (DL+LL)*Shelf Levels/(Width*Depth) = 23 psf Flat Deck Platform is Designed for 125 psf LL to accommodate storage loads 1 r .� ' r^iri 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:al@storagerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Summary of Results Configuration:Deck Level Unit L Rivetspan Shelving:72"H x 96.5"W x 36.5"D .. 361-1 I ,, f Shelf Configuration t I#of Levels= 5 as is Depth= 36.5 in �� Height= 72.0 in ic $ I Width= 96.5 in I "" 4 1 Location Elevation Load 1.61 I hl= 4.5 in 250 lb I , _ ,.. h2= 16.5 in 250 lb ate m h3= 16.5 in 250 lb } _ . h4= 16.5 in 250 lb - h5= 18.0 in 250 lb RCAT SIX UNIT I. 96'x72' 5 SHELVES Seismic Coeff: Ss= 0.863 Product Load/Lvl= 0 lb S1= 0.397 Fa= 1.200 Fv= 1.803 Steel Fy= 36,000 psi I I Total Height= 72.0 in Component Summary Column Dbl Angle T Post 14ga 0.62 OK Beam DRAB Dbl Rivet Beam 0.12 OK Beam Rivet 1/4"Diam Rivet x 1-1/2"Spacing 0.72 OK Anchor** (2)3/8"x 4.5"OAL GR 5 BOLT Grade 5 Bolts per footplate(ICC)No Inspection Required.Net Uplift=548 lb 0.65 OK Footplate 4"x 2"x 14 GA Footplates Typical 0.06 OK Slab on Grade Above grade floor designed by others for 125 psf LL 'Notes Column Reactions: Axial column DL= 90 lb Axial column LL= 625 lb Axial column seismic load=+/- 548 lb Uniform load to floor= (DL+LL)*Shelf Levels/(Width*Depth) = 41 psf Flat Deck Platform is Designed for 125 psf LL to accommodate storage loads 1 .e, 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:al@storagerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Summary of Results Configuration:Deck Level Unit N Rivetspan Shelving:72"H x 72.5"W x 36.5"D Shelf Configuration 18 18 I #of Levels= 5 I Depth= 36.5 in Height= 72.0 in 14 / I Width= 72.5 in i , Location Elevation Load 4 I h1= 4.5 in 250 Ib `" `"* h2= 16.5 in 250 lb 1.61 1 h3= 16.5 in 250 lb i Veat _ L h4= 16.5 in 250 lb ► t; h5= 18.0 in 250 lb 14xtri 7 316 UNIT N 3 6 72"x36"x72" 5 SHELVES Seismic Coeff: Ss= 0.863 Product Load/Lvl= 0 lb S1= 0.397 Fa= 1.200 Fv= 1.803 Steel Fy= 36,000 psi I I Total Height= 72.0 in Component Summary Column Dbl Angle T Post 14ga 0.59 OK Beam DRAB Dbl Rivet Beam 0.06 OK Beam Rivet 1/4"Diam Rivet x 1-1/2"Spacing 0.68 OK Anchor** (2)3/8"x 4.5"OAL GR 5 BOLT Grade 5 Bolts per footplate(ICC)No Inspection Required.Net Uplift=530 lb 0.62 OK Footplate 4"x 2"x 14 GA Footplates Typical 0.06 OK Slab on Grade Above grade floor designed by others for 125 psf LL 'Notes Column Reactions: Axial column DL= 68 lb Axial column LL= 625 lb Axial column seismic load=+/- 530 lb Uniform load to floor= (DL+LL)*Shelf Levels/(Width*Depth) = 49 psf Flat Deck Platform is Designed for 125 psfLL to accommodate storage loads 1 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:al@storagerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Summary of Results Configuration: Deck Level Unit Q Rivetspan Shelving:72"H x 96.5"W x 24.5"D 96 I 24,---... wiR€ I ;#;#;# 1 1 Shelf Configuration 1$ Is I#of Levels= 5 MIRE °` i Depth= 24.5 in "` Height= 72.0 in asg I 7'11_ I Width= 96.5 in I 0 i y WIRE Ir O` Location Elevation Load 1 lei I hl= 4.5 in 150 lb I ih2= 16.5 in 150 lb h3= 16.5 in 150 lb h4= 16.5 in 150 lb a WIRE h5= 18.0 in 150 lb E. v y a FRONT SIDE SIDE 3�� 3.1 3i6'-' UNIT Q 96"x24"x72" 5 SHELVES Seismic Coeff: Ss= 0.863 Product Load/Lvl= 0 lb S1= 0.397 Fa= 1.200 Fv= 1.803 Steel Fy= 36,000 psi I I Total Height= 72.0 in Component Summary Column Dbl Angle T Post 14ga 0.39 OK Beam DRAB Dbl Rivet Beam 0.08 OK Beam Rivet 1/4"Diam Rivet x 1-1/2"Spacing 0.44 OK Anchor** (2)3/8"x 4.5"OAL GR 5 BOLT Grade 5 Bolts per footplate(ICC)No Inspection Required.Net Uplift=521 lb 0.58 OK Footplate 4"x 2"x 14 GA Footplates Typical 0.05 OK Slab on Grade Above grade floor designed by others for 125 psf LL I Notes Column Reactions: Axial column DL= 60 lb Axial column LL= 375 lb Axial column seismic load=+/- 521 lb Uniform load to floor= (DL+LL)*Shelf Levels/(Width*Depth) = 37 psf Flat Deck Platform is Designed for 125 psf LL to accommodate storage loads 1 ' ` i. 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:al@storagerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Summary of Results Configuration:Deck Level Unit R Rivetspan Shelving:72"H x 60.5"W x 36.5"D 1...____64______„i [m-34—I I 1 WIREM. wr Shelf= 5 Configuration I#of Levels 1$ 18 Depth= 36.5 in v I. a,,, Height= 72.0 in ark 1 I Width= 60.5 in I 1.62 T , oiNE _ 7 I ... w Location Elevation Load 1t I hl= 4.5 in 250 lb I 14 h2= 16.5 in 250 lb " ow ,,, 15 16 t h3= 16.5 in 250 lb tt h4= 16.5 in 250 lb h5= 18.0 in 250 lb � FRONT SIDE "16 UNIT R 60"x36"x72" 5 SHELVES Seismic Coeff: Ss= 0.863 Product Load/Lvl= 0 lb S1= 0.397 Fa= 1.200 Fv= 1.803 Steel Fy= 36,000 psi I I Total Height= 72.0 in Component Summary Column Dbl Angle T Post 14ga 0.57 OK Beam DRAB Dbl Rivet Beam 0.05 OK Beam Rivet 1/4"Diam Rivet x 1-1/2"Spacing 0.66 OK Anchor** (2)3/8"x 4.5"OAL GR 5 BOLT Grade 5 Bolts per footplate(ICC)No Inspection Required.Net Uplift=522 lb 0.60 OK Footplate 4"x 2"x 14 GA Footplates Typical 0.06 OK Slab on Grade Above grade floor designed by others for 125 psf LL !Notes Column Reactions: Axial column DL= 58 lb Axial column LL= 625 lb Axial column seismic load=+/- 522 lb Uniform load to floor= (DL+LL)*Shelf Levels/(Width*Depth) = 56 psf Flat Deck Platform is Designed for 125 psf LL to accommodate storage loads 1 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:al@storagerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Summary of Results Configuration: Deck Level Unit S Rivetspan Shelving:72"H x 72.5"W x 24.5"D 721 24} WtRE ,f Shelf Configuration } WIRE . j I #of Levels= 7 Depth= 24.5 in x Height= 72.0 in WIRE a» log 76 I Width= 72.5 in 3i t,. "'RE J Location Elevation Load 45 .44 1 w I hl= 4.5 in 120 lb WIRE °"" h2= 10.5 in 120 lb WIRE h3= 10.5 in 120 lb 4 h4= 10.5 in 120 lb FRONT sloe h5= 10.5 in 120 lb h6= 10.5 in 120 lb UNITS h7= 15.0 in 120 lb 72"x24"x72" 7 SHELVES Seismic Coeff: Ss= 0.863 Product Load/Lvl= 0 lb S1= 0.397 Fa= 1.200 Fv= 1.803 Steel Fy= 36,000 psi Total Height= 72.0 in Component Summary Column Dbl Angle T Post 14ga 0.33 OK Beam DRAB Dbl Rivet Beam 0.04 OK Beam Rivet 1/4"Diam Rivet x 1-1/2"Spacing 0.35 OK Anchor** (2)3/8"x 4.5"OAL GR 5 BOLT Grade 5 Bolts per footplate(ICC)No Inspection Required.Net Uplift=526 lb 0.64 OK Footplate 4"x 2"x 14 GA Footplates Typical 0.05 OK Slab on Grade Above grade floor designed by others for 125 psf LL I Notes Column Reactions: Axial column DL= 63 lb Axial column LL= 420 lb Axial column seismic load=+/- 526 lb Uniform load to floor= (DL+LL)*Shelf Levels/(Width*Depth) = 55 psf Flat Deck Platform is Designed for 125 psf LL to accommodate storage loads 1 _ ��y rill 23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851 Website:www.storagerackengineering.com,email:al@storagerackengineering.com By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2 Summary of Results Configuration: Deck Level Unit T Rivetspan Shelving:72"H x 48.5"W x 24.5"D 491--1 zap WIRE } Shelf Configuration t I #of Levels= 5 I 18 i 18 Depth= 24.5 in way Height= 72.0 in no i ... I Width= 48.5 in 1r 162 f . V`" 1 °n" # 72116Location Elevation Load T 'in Ci I hl= 4.5 in 170 lb I 14 12 h2= 16.5 in 170 lb h3= 16.5 in 170 lb # h4= 16.5 in 170 lb 161 iti h5= 18.0 in 170 lb __ "" 3 1 of i FRONT 31 sage 31'is 7 UNIT T 48"x24"x72" 5 SHELVES Seismic Coeff: Ss= 0.863 Product Load/Lvl= 0 lb S1= 0.397 Fa= 1.200 Fv= 1.803 Steel Fy= 36,000 psi I I Total Height= 72.0 in Component Summary Column Dbl Angle T Post 14ga 0.39 OK Beam DRAB Dbl Rivet Beam 0.02 OK Beam Rivet 1/4"Diam Rivet x 1-1/2"Spacing 0.44 OK Anchor** (2)3/8"x 4.5"OAL GR 5 BOLT Grade 5 Bolts per footplate(ICC)No Inspection Required.Net Uplift=545 lb 0.58 OK Footplate 4"x 2"x 14 GA Footplates Typical 0.05 OK Slab on Grade Above grade floor designed by others for 125 psf LL I Notes Column Reactions: Axial column DL= 30 lb Axial column LL= 425 lb Axial column seismic load=+/- 545 lb Uniform load to floor= (DL+LL)*Shelf Levels/(Width*Depth) = 65 psf Flat Deck Platform is Designed for 125 psf LL to accommodate storage loads 1 4/10/23,2:47 PM U.S.Seismic Design Maps � OSHPD , imi 9875 SW Cascade Ave, Tigard, OR 97223, USA Latitude, Longitude: 45.4495825, -122.786136 ' acy s il tit Washington Square z '" TA Pathology Auntie Anne's 71 I Pr iin Aircraft E , Solutions in ` tt g YW Map data 02023 Date 4/10/2023,2:47:23 PM Design Code Reference Document ASCE7-16 I Risk Category II Site Class D-Default(See Section 11.4.3) Type Value Description 1 Ss 0.863 MCER ground motion.(for 0.2 second period) Si 0.397 MCER ground motion.(for 1.0s period) I SMS 1.035 Site-modified spectral acceleration value i SM1 null-See Section 11.4.8 Site-modified spectral acceleration value SDS 0.69 Numeric seismic design value at 0.2 second SA SDI null-See Section 11.4.8 Numeric seismic design value at 1.0 second SA Type Value Description __.�..._ ... ...___... ...__.. SDC null-See Section 11.4.8 Seismic design category Fa 1.2 Site amplification factor at 0.2 second F, null-See Section 11.4.8 Site amplification factor at 1.0 second PGA 0.393 MCEG peak ground acceleration s FPGA 1.207 Site amplification factor at PGA PGAM 0.474 Site modified peak ground acceleration TL 16 Long-period transition period in seconds i i SsRT 0.863 Probabilistic risk-targeted ground motion.(0.2 second) 1 SsUH 0.975 Factored uniform-hazard(2%probability of exceedance in 50 years)spectral acceleration SsD 1.5 Factored deterministic acceleration value.(0.2 second) ?' S1RT 0.397 Probabilistic risk-targeted ground motion.(1.0 second) 1 S1UH 0.458 Factored uniform-hazard(2%probability of exceedance in 50 years)spectral acceleration. S1 D 0.6 Factored deterministic acceleration value.(1.0 second) PGAd 0.5 Factored deterministic acceleration value.(Peak Ground Acceleration) PGAOH 0.393 Uniform-hazard(2%probability of exceedance in 50 years)Peak Ground Acceleration CRS 0.885 Mapped value of the risk coefficient at short periods https://www.seismicmaps.org 1/3 4/10/23,2:47 PM U.S.Seismic Design Maps ' Type Value Description i CR1 0.867 Mapped value of the risk coefficient at a period of 1 s Dv 1.231 Vertical coefficient https://www.seismicmaps.org 2/3 DAVE POLAND ENGINEERING, LLC 333 East Avenue Quincy, IL 62301 Phone: 217-242-4605 email: davep.engineering@outlook.com Project Name BMW of Tigard 9875 SW Cascade Ave Portland, OR Stairs and Guardrail Project Number DP022302 2/13/2023 These calculations review the structure being installed for structural capability. The sealing of the drawings used in conjunction with these calculations is for the structural review only.Other information is not reviewed,nor approved. gEO PROFESS. � �t�GINEE 4 C 90. = PE i IS A p 0 :ER�.ti Z�l Engineering Seal Data: State Number Exp Date OR 90687PE 12/31/2024 __ COVER SHEET INFO BMW of Tigard Building Code 2021 IBC Seismic Data Risk Category II le 1 Ss 0.863 S1 0.397 Site Class D Sds 0.690 Sd1 0.503 SDC D Seismic Force Resisting System: Analysis Procedure Used: Cold-Formed Steel-Special Bolted Moment Equivalent Lateral Force Procedure Frame(Table 12.2-1, Item C.12) V N/A Kips Cs 0.197 R 3.5 Design Loads Floor Covering 3.5 psf Steel Deck 1.7 psf Steel Joist 2.0 psf Steel Beams/Columns 3.0 psf Misc. 1.8 psf MEP 0.0 psf Total Dead Load 12 psf Live Load 125 psf INDEX Description Page Number Design Data 1 Framing Plan 2 Seismic Criteria 3 - 5 Misc Beam Check 6 Column Check 7 Base Plate Analysis, Slab on Grade Analysis 8 - 10 Stair & Guardrail 11 - 14 • • • • A, 1s-s• SW1Z.1 r, 6-e• b TI I, 7 b. ._...,....... ! (f)8'r S. 'COLUMNS �� 711 bl t i S".R SLIDE GATE � � . IIIIIIIC 118 r-� 0-1 otP iki 3'-9Y' I 15-,' ....—. -- Yld s'.11Y.. .A A !10 A !--' 3 F i YY MAX.STAIR RUN.TR A r -vv w ry CEILING__ STAIR,GUARDRAIL,GATE,&STAIR LAYOUT - j x - 2-RAIL STEEL GUARDRAIL SYSTEM:Snr POSTS U / •~T ElFE O.C.MA%..4T TO TOP RAIL.LESS THAN 7: �I :1'BETWEEN RAIL3.ANDYKCKPATE MP) APPROVED FOR ENGINEERING W I ill PLEASE VERIFY THE FOLLOWING:1 ` i Y L _ (CM.—.s 0 H0s) AS NOTED: DATE: Location of mi. O eSnr aSNruNIomMhia NO CHANGES: RATE . S Eaa-P door amblers, nay above UO ..Sal a%dlnnN.mWn,lo, bealb,nd Retina r +mow ENNbsI aim* an .StorB arM drro.M raaa4.d Mai As OM store.adOS-S . cO I OMMnbn: may to Incunsd and.le aka.*roam.. S 0 Ora.DbnnWnti ❑Top a£O H.pta - • .w FINISH SCHEDULE ❑anwHa e / _ 0CURRTT000do COMPONENT F-jN 8L11: 0 9dd LwL6m(s) ,/ sn s923 m•e C Flann: G.Mnba DGwnkaiLonaan NOTE:DRAWING FOR ENGINEERING ONLY `r"`n'E�"""�p\,VIEW Cabana OsIHIntuul Pa»a.Cost Gray 0 ma(.) NOT FOR CONSTRUCTION. SHEET NUMBER. xx SMn : GaMnbdPLEASE NOTE:.V.a1yN u SCALE:Yi'=1'-0" Tmds: G.bne.d Imm.d4nnbn b£4S g Hand. Galvanized opahVgbm. \ u SHEET A OF % • Platform Design Data BMW of Tigard 2/13/2023 Codes and Specifications *Model Building Code: IBC *American Iron and Steel Institute(AISI)2016 *American Institute of Steel Construction(AISC) *American Welding Institute(AWS) Materials Used in Construction Cold-Formed Structural Steel:ASTM A653,Grade 55,Fy=55 ksi,G60 Galvanized Structural Steel Tube:ASTM A500,Grade C,Fy=50 ksi Structural Steel Plates:ASTM A36,Fy=36 ksi Bolts:Grade 5,Shear Connections.Inspection not required. Concrete Strength Structure Size Slab: F'c= 2500 psi Approx. Slab thickness= 6 inches Width.. 0.00 Feet Soil Strength Length 0.00 Feet Qs= 1500 psf Height to First Level 8.50 Feet Footers Req'd No Height First to Second Level... 0 Feet Total Height ......... 8.50 Feet Design Loads Approximate Area 0 Feet2 Dead Load: Covering 3.5 Steel Deck 1.7 Number of Levels 1 Steel Joist 2.0 Steel Beams/columns.. 3.0 Actual Total Area 0 Ft2 Misc 1.8 Partitions...... 0.0 Design Check—Load Cases Mechanical Eqmt 0.0 Based on LRFD Total 12 psf 1.4D 1.2D+1.6L Live Load: Live Load 125.0 (1.2+.2Sds)D+pQe+L Partitions 0.0 (0.9-.2Sds)D+pQe Misc. 0.0 Area= 0.001 ft` Total 125.0 psf D+L= 137.0 psf Single Story LL Ratio= 0.912 Dead Load: Covering/Deck 0.0 DL Ratio= 0.088 Steel Joist..... 0.0 Steel Beams/columns 0.0 Misc. 0.0 0 psf Stairs Live Load: 0 psf Ws=D Seismic Design Conditions Ss 0.863 Sds= 0.690 Si 0.397 Sd1 = 0.503 SDC D Importance Factor 1 Response R 3.5 CFS-SBMF-Special Bolted Moment Frame-AISI S400-15 Soil Profile D Stairs Base Shear Ratio Cs 0.197 W Ws=D 3 A This is a beta release of the new ATC Hazards by Location website,Please contact us with feedback. 0 The ATC Hazards by Location website will nut be updated to support ASCE 7 22. Find out why_ r r c Hazards by Location Search Information rn���, � ���� Address: 9875 SW Cascade Ave,Tigard,OR 97223, USA ., -' "' .� ' ° er. ' 199ft a° '- Coordinates: 45.4495825,-122.786136 q '; � � ® " Elevation: 199 ft R fi#BSb 4 Timestamp: 2023-02-13T17:30:51.941 Z � ,,, ,� Hazard Type: Seismic o ,. t�� ' Reference ASCE7-16 � �. � � *. Document: r Map data®2023Google Risk Category: II Site Class: D-default Basic Parameters Name Value Description SS 0.863 MCER ground motion(period=0.2s) Si 0.397 MCER ground motion(period=1.0s) SAS 1.035 Site-modified spectral acceleration value SM1 *_pul(0' Site-modified spectral acceleration value SDs 0.69 Numeric seismic design value at 0.2s SA 05- 3 SDI *�adl� Numeric seismic design value at LOs SA w See Section 11.4.8 •Additional Information Name Value Description SDC `�atl' Seismic design category Fa 1.2 Site amplification factor F� * Site amplification factor atat 1.0s0.2s CRs 0.885 Coefficient of risk(0.2s) CRC 0.867 Coefficient of risk(1.0$) PGA 0.393 MCEc peak ground acceleration FpGA 1.207 Site amplification factor at PGA PGAM 0.474 Site modified peak 9round acceleration TL 16 Long-period transition period(s) SsRT 0.863 Probabilistic risk-targeted ground motion(0.2s) SsUH 0.975 Factored uniform-hazard spectral acceleration(2%probability of exceedance in 50 years) SsD 1.5 Factored deterministic acceleration value(0.2s) S1 RT 0.397 Probabilistic risk-targeted ground motion(1.0s) S1 UH 0.458 Factored uniform-hazard spectral acceleration(2%probability of exceedance in 50 years) S1 D 0.6 Factored deterministic acceleration value(1.0s) PGAd 0,5 Factored deterministic acceleration value(PGA) *See Section 11.4.8 The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process.Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design. Please note that the ATC Hazards by Location website will not be updated to support ASCE 7-22.Find out why Disclaimer Hazard loads are provided by the U.S.Geological Survey Seismic Design Web Services. While the information presented on this website is believed to be correct,ATC and its sponsors and contributors assume no responsibility or liability for its accuracy.The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy,suitability and applicability by engineers or other licensed professionals.ATC does not intend that the use of this information replace the sound judgment of such competent professionals,having experience and knowledge in the field of practice,nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report. Seismic Design Classification of Structure for Importance Factor-Use Group II Seismic Importance Factor 1 Soil Site Class D Default Spectral Response Coefficients Ss= 0.863 Si= 0.397 Fa= 1.20 Fv= 1.90 https://hazards.atcouncil.org/#/ Sds= 0.690 Sd,= 0.503 SDC= D Seismic Force-Resisting System CFS-SBMF-Special Bolted Moment Frame-AISI S400-15 Design Base Shear V= 0.197 W Analysis Procedure Equivalent Lateral Force Procedure Design uses a flexible diaphragm for transfer of shear forces to vertical elements. Base Shear Analysis Height V=CsW Number of stories 1 8.50 ft From Figure 22-14 Long period le= 1 TL= 16 sec R= 3.5 Cd= 3.5 From Table 12.8-1 S2= 3 Cu= 1.40 T= 0.000 sec Ta= CuCtHn" G= 0.028 x= 0.8 Ta= 0.217 sec Cs= Sds/(R/I) Cs= 0.197 Cs= Sd1/T(RA) Cs= 640.721 Need not exceed Cs= SD1TL/T2(R/I) Cs= 0 Does not apply, Cs= .044Sds/(R/I) Cs= 0.010 min. Cs= .5St/(R/I) Cs= 0.009 min.when S1=>0.6 Fa= 1.2 F„= 1.9 Sms= 1.036 Sm1= 0.754 Cs= 0.197 Wi Fx= 0.197 WI LRFD ASD 0.2Sds= 0.138 1+0.14Sds= 1.097 1.2+0.2Sds= 1.338 1+0.105Sds= 1.072 0.9-0.2Sds= 0.762 0.6-0.14Sds= 0.503 Miscellaneous Beam Loading Live 1.2 Dead Framing System 1.6 Loading 2016 AISI Single Section Bending Moment Strength-- (1)Mn/Section Ix= 42.00 InA4 Se= 7.52 InA3 12 E= 29500 Ksi �b= 0.9 Cold Working Sec A3.3.2 AISI S100 Fy= 55 Ksi Ry= 1.090 cl)Mn= 405.82 In-Kips = 33.8 kip-ft t= 0.105 inches hft= 110.86 Ok C12x3.5x12 Joist Spacing ... 2.500 Feet 30.00 Inches Joist Qty of.... 1 Loading 125 Psf-Live Load ID.No. Typ. Floor 10 Psf-Dead Load 727 135 Total LRFD Method of Analysis Joist Span. 15.5 Feet Load Factors 1.2D+1.6L Factored W= 530.00 plf Floor Joist factored Net R= 4.11 Kips 183 Inches R= 2.62 kips 4 R Span unfactored Bendinn Moment for the Simple Beam Fixed End Moment 0 0.00 0 Mb=W L2/8-Fixed End Moment In-Kips Ft-Kips Ft-Lbs See Page Mb= 15916.6 Ft-Wounds Ratio Mb= 191.0 In-kips 405.82 Ok 0.471 15.9 ft-kips Deflection Check for Simple Span Beam Delta=5 W L4/384 El Delta Limit 240 W= 26.04 Pounds/Inch Delta= 0.307 Inches Dli= 0.763 Inches Ok 7 Tubular Column Desiun Check Member No. Max Column Description: Column Wall Tk. Sect. Gravity Load 6x6x1/4 0.250 6x6x1/4 Factored Pu= 4.2 Kips E= 29500 Expected Moment Seismic Q value aisi AISI S400 E4.3 Me= 0 Ft-Kips Loading Combination Demand Mmax= 5.00 Ft-Kips 1.2D+1.6L Mmax= 5.00 Ft-Kips Mu= 45.00 In-Kips M„o= 0 I Ft-Kips Yield Fr 50.00 Ksi Ag= 5.225 A net= 5.225 Kx= 1.7 Ix= 28.534 Ky= 1.7 Sx= 9.511 Face X-axis -•-• Rx= 2.337 Lx= 120.00 6.00 j Metal Tk Ly= 120.00 0.250 ly= 28.534 10.00 Sy= 9.511 wit= 21.81 Ry= 2.337 1.4 E/Fy 34.0 I Y-axis Zx= 21.419 Ok Section Wgt/Ft 17.765 Depth 14 6.00 LRFD Design Cross Section AISC 360-16 Eq.E3-4 Fe=1r4E/(KL/R)2 KxLx/Rx= 87.29 Fe= 38.21 Ksi KyLy/Ry= 87.29 Fy/Fe= 1.144 Eq.E3-1 4hc=0.90 pn=AeFcr Eq.E3-2 if Fy/Fe<2.25 then Fcr=Fy*0.658^(Fy/Fe) Eq.E3-3 if Fy/Fe>2.25 then Fcr=0.877'Fe Fcr= 28.91 Ksi b=.9 Plastic Section Strength Mp= 1070.95 In-Kips Eq.E3-1 Pn= 151.06 Kips Mn= 475.57 In-Kips 4 cPn= 135.96 Kips 4)bMn= 428.01 In-Kips 35.7 ft-kips Design Check for both Axial Load And Combined Axial+Seismic Orthogonal Section 12.5 CMe Kips-Factored Effects 0.00 kip-inches Eq.H1-la 8/9(Mry/Mcy)= 0.000 Pr/Pc + 8/9(Mrx/Mcx) <=1.03 Kips-Factored Pr/Pc= 0.031 In-Kips Factored 8/9(Mrx/Mcx)= 0.093 Design Ratio= 0.124 Ok Dead+Live Load Only Design Check Pr/Pc= 0.031 Ok S Column Base Plate Design Drake-Elkin Paper-Engineering Journal 1st Qtr.1999 Node Load Comb. 1.2D+1.6L Max Limit State Design Fc'= 2.5 ksi Plate width N= 12 inches f Phu Plate depth B= 12 inches 14 �! E ! Mu Member width d= 6 inches Member depth b= 6 inches Factored Pu= 5 kips Limit State Factored Mu= 0 ft-kips Limit St. d Factored Mu= 0 in-kips ill ir i , No.of Tension bolts= 2 ' Vs= 2 kips Limit state , ,X7/ . r l''1 /' e= 0.00 inches ' ! N/6= 2.00 1.5--1, 4— f= 4.5 inches ' Q Area of steel A2/A1 = 4.00 Tu ! plate on grout A2/A1 =1 Y plate directly on concrete A2/A1 =4 N q=.51Fc'B v A2/A1 < 1.02 Fc'B c= 3 30.6 N= 12 q= 30.60 kips/in q= 30.60 kips/in Check Plate Bending f+ N/2= 10.5 inches / If Tubular columns use.95 in f+E= 4.50 inches Y=(f+N/2)+1L(f+N/2)^2-2Pu(f+E)/q equations for m and n Y= 0.07 inches Tubular Tu=qY-Pu Tu= -2.85 kips No bolt tension m=(N-.95d)/2 Tb= -1.42 kips factored m= 3.00 inches Tbuf= -0.86 kips ASD/bolt x=f-d/2+tf/2 tf= 0.25 in.flgthk. x= 1.63 inches n=(B-.95bf) /2 bf= 6 in.flg.width n= 3.00 inches Base Plate Thickness For all cases Tu= -2.85 kips Fy= 36 ksi tp= 2.11 VTux/BFy Ry= 1.5 tp= 0.0000 inches 54 ksi AISC Sec 14 Equa A controls Equa.A tp= 1.49c yru/(BNFy) tp= 0.139 inches Plate front to back When base subjected to axial loads only Use 0.5 inches Equa.B tp= 2.11 VPu(m-y/2)/(BFy) tp= 0.000 inches When base subjected to axial&moment loads f Use of Slab on Grade for Mezzanine Support ACI 318-14, section 14.3.2—Footings, states that the thickness of plain concrete footings shall not be less than 8 inches. In my opinion, this section of the code does not apply literally to a slab on grade situation, but rather an individual footing. With an existing building, the use of the slab on grade is applicable when the analysis indicates adequate strength. The existing floor slab has been analyzed for the column loadings based on research that was done by Longmei Shentu. He studied this and performed various analyses to prove that slabs on grade are considerably stronger than engineers had assumed in the past. He then backed up the analysis with actual testing of various slabs on grade. The test results turned out to be very close to the analysis. His research and results were published in an article entitled "Load Carrying Capacity for Concrete Slabs on Grade"in the Journal of Structural Engineering in January 1997. This publication is well respected in the structural engineering community. This method of analyzing slabs on grade is the industry standard in the storage rack industry as well. The loads imposed on slabs from storage rack systems can be fairly large along with having smaller base plates than our mezzanine systems have. Many jurisdictions throughout the United States have accepted this as an appropriate method to determine the load carrying capacity of existing slabs on grade. Based on the reasons stated above, we conclude the method outlined by Shentu is a valid approach to analyzing the existing slab on grade for the mezzanine support. A copy of this report is available upon request. (0 Load-Carrying Capacity for Concrete Slabs on Grade 1997 Journal of Structural Engineering Article Shentu,Jiang&Hsu . Effective slab development for load support l I • Base Plate �.1 Slab on grade Soil description Soil type Earth,dry,loose 4 Target Soil Qs= 1500 psf Width Depth Concrete Plate Size 12 12 Fc'= 2500 psi concrete The radius R1 is based on the average equivalent square plate. we= 144 Ib/ft3 concrete Ec= 2851 ksi concrete Determine slab capacity when the slab thickness is given Eq.34 Pu=1.72x(k2Rl/Ecx104+3.6)ftd2 Rt= 6.00 Inches D= 6 Inches Slab thickness k2= 76 pci Sub-grade modulus Ec= 2851 ksi Modulus of elasticity Ft= 375 psi Tensile strength of concrete FS 4= 2 clo Factor Calculated ultimate Pu= 120.7 Kips Pa=41.Pu Pa=Pu/f2 Pa= 60.36 Kips Maximum allowable column loading Pactual= 3.19 kips 0.053 Ok Determine the slab thickness when the load is given Check Slab for Shear Shear Perimeter= 43.2 inches v= 0.012 ksi Eq.35 d= (Pu/FS)/(1.72(k2 R1/Ec x 10^4+3.6)f t Vc= 0.133 ksi OK Design Loading Pu= 3.19496269 Kips d= 1.38 Inches Slab thickness to support column loading 4 ( 1 Stair Tread Design Formed C 1P L LL w Tread 2.125 12 4 36 Tk 0.105 Inch Sy 0.279 In3 ly 0.504 In4 P= 0.3 Kips W = 0.1 Klf Fb= 50 Ksi Simple Span Bending Moments Concentrated Load.... M=PU4 Ma=SyFb M=WL2/8 Ma=SyFB Tread Pa=4SyFb/L W=8SyFb/L2 Span Concentrate Loading 30 Pa= 1.86 Kips Max W= 1.487 KIf Ok 32 Pa= 1.74 Kips Max W= 1.307 Klf Ok 34 Pa= 1.64 Kips Max W= 1.157 Klf Ok 36 Pa= 1.55 Kips Max W= 1.032 KIf Ok 38 Pa= 1.47 Kips Max W= 0.927 Klf Ok 40 Pa= 1.39 Kips Max W= 0.836 KIf Ok 44 Pa= 1.27 Kips Max W= 0.691 Klf Ok 48 Pa= 1.16 Kips Max W= 0.581 KIf Ok 54 Pa= 1.03 Kips Max W= 0.459 Klf Ok 56 Pa= 1.00 Kips Max W= 0.427 KIf Ok 58 Pa= 0.96 Kips Max W= 0.398 KIf Ok 60 Pa= 0.93 Kips Max W= 0.372 KIf Ok 62 Pa= 0.90 Kips Max W= 0.348 KIf Ok 64 Pa= 0.87 Kips Max W= 0.327 KIf Ok 66 Pa= 0.84 Kips Max W= 0.307 KIt Ok 68 Pa= 0.82 Kips Max W= 0.289 KIf Ok 70 Pa= 0.80 Kips Max W= 0.273 KIt Ok 72 Pa= 0.77 Kips Max W= 0.258 KIf Ok 74 Pa= 0.75 Kips Max W= 0.244 Klf Ok 76 Pa= 0.73 Kips Max W= 0.232 Klf Ok s ( Z i Stair Stringer Design 2.5► 4 153.96 inches ► 12.83 ' I • Feet x I _ _ _ 10 TAop of Landing ( � • Ga= 12 7-11 stair Stringer Ra Type C10x2.5x12 1.06 Sx= 4.98 InA3 Ix= 24.89 I04 -1 8.42 Fy= 55000 Psi Rb Side View of Stairs 1.06 Design Loading Ms=WLA2/8 Ma=SxFb Ws= 110 Psf Fb=.6Fy W=(8Sx.6Fy/LA2)*2 f Stringers Stair Width Width Tread Maximum Stringer Inches Feet Act. Loading Span Span 30 2.50 275.0 338.73 Inches 28.23 Feet Ok 34 2.83 311.7 318.18 Inches 26.52 Feet Ok 36 3.00 330.0 309.22 Inches 25.77 Feet Ok 38 3.17 348.3 300.97 Inches 25.08 Feet Ok 40 3.33 366.7 293.35 Inches 24.45 Feet Ok 42 3.50 385.0 286.28 Inches 23.86 Feet Ok 44 3.67 403.3 279.70 Inches 23.31 Feet Ok 46 3.83 421.7 273.55 Inches 22.80 Feet Ok 48 4.00 440.0 267.79 Inches 22.32 Feet Ok 50 4.17 458.3 262.38 Inches 21.87 Feet Ok 54 4.50 495.0 252.48 Inches 21.04 Feet Ok 60 5.00 550.0 239.52 Inches 19.96 Feet Ok 66 5.50 605.0 228.37 Inches 19.03 Feet Ok 72 6.00 660.0 218.65 Inches 18.22 Feet Ok 78 6.50 715.0 210.07 Inches 17.51 Feet Ok 84 7.00 770.0 202.43 Inches 16.87 Feet Ok 03 _.. Guardrail Design IBC W= 50 Plf P= 200 Pounds Top Rail Analysis-Design Top Rail 1 5/8-16 6 Uniform Loading Review M=WL`/8 f2= 1.67 Span Eq.F8-1 Ma=ZFy/f2 Zx= 0.158 In3 Fy= 40 Fb= 24 Ksi Ma= 3791.0 In-Pounds Ok M= 2700.0 In-Pounds lx= 0.097 A= 0.51 inches Concentrated Rail Loading Review M=PU4 Ma=Zfy/O. Ma= 3791.0 In-Pounds Ok M= 3600 In-Pounds 4= 0.543 Mid Rail Analysis-Design P= 50 Pounds Vertical Rail Spacing 19 Inches Post Spacing 6 Foot Fy= 40 ksi W= 9.50 Ft2 Mid Rail... 1 5/8-16 Zx= 0.158 In3 Wt= 475.0 Pounds M=PLl4 M= 900 In-Pounds Eq.F8-1 Ma=ZFy/0 Ma= 3791 In-Pounds Ok Rail Post Analysis-Design 0= 1.67 Fp Ma;=PH; Fy= 50 ksi 300 Pounds * M;= 12600 In-Pounds M;= 12.60 In-Kips H= 42 inches 42 Tk= 0.109 inches Post 2 sq-12 2 x 2 x 12ga tube Ma=ZFy/U v Zx= 0.585 Ina Ma= 17524 In-Pounds Ok 71.9% ` i4 t; Stairway Guardrail Design IBC Resulting iiiiit..2..... Wh= 50 Plf Wr Wv= 0 Pounds 50.0 38 Top Rail Analysis-Design Top Rail 2 sq-12 Uniform Loading Review 6 , M=WL2/8 R= 150.0 Span Eq.F8-1 Ma=ZFy/0 Railing System for Stairs 12= 1.67 Zx= 0.585 Ina Fy= 50.0 Ma= 17524 In-Pounds Ok M= 2700.0 In-Pounds Mid Rail Analysis-Design P= 50 Pounds Vertical Rail Spacing ... 17 Inches Post Spacing 6 Foot W= 8.50 Ft2 Mid Rail... 1 5/8-16 Zx= 0.158 Ina Wt= 425.00 Pounds M=PU4 M= 900 In-Pounds Eq.F8-1 Ma=ZFy/0 Ma= 4739 In-Pounds Ok Rail Post Analysis-Design Fp 200 Pounds M=PH M= 7600 In-Pounds M= 7.60 In-Kips 38 H Post........ 2 sq-12 2 x 2 x 12ga tube Eq.F8-1 Ma=ZFy/0 ♦ Fy= 50.0 ksi Zx= 0.585 Ina Ma= 17524.1 In-Pounds Ok