Specifications (27) �`
SforogeROC $iR ! D,, ,,
CITY OF TIGARD
BUILDING DIVISION
ti'4j y(
E
"1 t.
kt.;� iY
4 Ozy C,
0
4S
, A '. 0 z 'Aw'
_- ineering ,
-it;
i
u
Inca
23142 Arroyo Vista Rancho Santa Margarita, CA 92688
Tel: 949.888.8850 Fax: 949.888.8851
Ali Abolhassani, P.E. President & Engineer of Record
email: mail@storagerackengineering.comSigned:AN 3113
� RO
wwweos
.storagerackengineering.com Pfs
`I 7254• 'E t"
i
Project Name : BMW OF TIGARD y� �, t
y d .,,, .5`�P
�i//Ok* PAC} ETfOR:
iiiiiProject Number : 23-0410-2 s: ���ykk "` ' R0
J p SHELVING PER WARGtJCiHS
�+v PROJECT#3208-A
SRE INC PROJECT#23.0.$ 2
R Star.pe fuck EttytnearPtrp Inc
Date : 04/13/23 rrd,P.E.AnA oIh.ssa
Engineer of Record !
23142 Arroyo Visa ,
Street Address : �875 SW CASCADE AVE. +`ho$4414*0,49.88k$050 PAL 1
af .tor.#.r.ckertgd n.erlag.com
eom
City/State : TIGARD, OR 9
7223 . t�kek, .
Corporation 013E0f 548
Scope of Work : SHELVING PER BORROUGHS PROJECT #3206 A
BUILDING SUMMARY OF. BMW OF TIGARD
ADDRESS. 9875 SOUTH WEST CASCADE AVENUE I TIGARD,OR 97223 •• De*En Soedfxalsons'
OCCUPANCY TYPE TBD ?) ,,,T I
x 1)Code:2021 IBC,2022 OSSC and ASC 7-16 AND Af1SIJ14H16:2012 RMI
CONSTRUCTION TYPE TBD `
SLAB' StMOO.:R x A\ th 2)Seismic Zone Coeff:Ss=O 863,S1=0.397,Fa=1.20,Fv=i.803,
TBD ✓A+e s^,cce+; a ., Sds=0.69 Seismic ,Sd1=0.477.Site Class:D,Oec.Catag II,
z8 Design Catagary B,Ip 1:0(No Public Access)
ui
4 3)Design Loads: UGHS
B 3002 N BURDICK STREET
�' a level S KALAMAZOO,MI99003-3983
R h�Fg
Type A,B,C,0,E G,U,V&W:200 b per Sher level INDUSTRIAL SHELVING
Type F:70 b per shelf level
VI`S1L'zk�;SC level Rivet Shelving: THIS DRAWING AND ALLINFORMATION THE IXPRESSED
C9f 5033vPrt1Ael 'e # Type H&Q:150 lb per shelf level PROPERTY OF BORROUGHS.DO NOT
Type!:500 b per shelf level USE OR COPY WITHOUT WRITTEN
PERMISSION FROM BORROUGHS
K Type 2:200 b Per clef level DRAWING IS SUBJECT TO RETURN ON
Type K&T:170 b per shelf DaDEMAND.lf'
•� Type L,R&N:250 per Shelf level THE BILL OF MATERIAL IS
°,, 3y^. � it SUBJECT TO CHANGE DUE TO P.E.
Type 0:120 b Per shelf level CALCULATION OR LOCAL ORDINANCE.
VICINITY MAP Grade level Rivet Shelving: CHANGES THAT REQUIRE ADDmONAL
ILL BE THE
Type M&L:500 lb per shelf level OOF THEW �CAMERRESPONS[Biun
SCOPE OF WORK SPECIAL NOTE(FOR REFERENCE ONLY) 4)Slab on Grade and soil:Existing 6'neck x 2,500 psi N.W.
1 TO PROVIDE SHELF SUPPORTED WORK PLATFORM,BORROUGHS 1.ALL FASTENERS TO BE INSTALLED AND TIGHTENED. Concrete slab on grade with 1000 psf alowable sof bearing pressure
, CLIP-TYPE. or better,designed by others
(STAIR,HANDRAIL,CALCULATIONS ARE PROVIDED BY FCP,SHOWN 2 USE SPECIFIED FASTENERS FOR ALL CONNECTIONS ONLY.
FOR CLARIFICATION.) 5)Anchor for lints on Concrete Slab an Grade:
3.PLUM LEVEL TOLERANCE TO BE±.25"50120"INCHES. Shelving:
2.SHELF LOAD(SEE UNIT SUMMARY 6 CAPACITIES)
4 ALL PLAN DEVIATIONS MUST BE APPROVED BY BORROUGHS 3/8 diem x 2.5"non.Embedment Typical
3.BORROUGHS CALCULATIONS AND STAMPS BY AND IN WRITING. Hilti KWIebO1t T22 Wedge Per ICC ESRR4266
ALI ABOLHASSANI,P.E.OF RECORD 65'Minimum distance from edge of SlabfconstnKtion joint to anchor
STORAGE RACK ENGINEERING,INC. Special Inspection Is Required Outing Instalation of Anchors
23142 ARROYO VISTA (2)Anchor per footplate
RANCHO SANTA MARGARITA,CA 92688 REV. DATE DESCRIPTION
PHONE 949.888 8850 I FAX.949.888.8851 6)Steel:ASTM A36,Grade 36,Fy=36 kN typical A 02/09 APPROVAL DRAWINGS
UNIT SUMMARY 8 CAPACITIES:(see elevations) INDEX OF DRAWINGS' 3206-A Engineer of Record:
UNIT LBS.PER LEVEL TYPE COLOR QUANTITY SHEET SHEET NAME Storage Rack Engineering,Inc
A SEE NOTES CLIP-TYPE 161 12 0.0 COVER PAGE Al Abolhassani,P.E.
B SEE NOTES CLIP-TYPE 161 16 1.0 SITE MAP OR Civil PE License#72544PE
C SEE NOTES CLIP-TYPE 161 63 1.1 BUILDING LAYOUT 23142 Arroyo Vista
D SEE NOTES CLIP-TYPE 161 19 1.2 GEOUND LEVEL SHELVING Rancho Santa Margarita,CA 92688
E SEE NOTES CLIP-TYPE 161 67 1.3 DECK SUPPORT Tel'949,888.8850
F SEE NOTES CLIP-TYPE_ W
161 1 1.4 UPPER LEVEL SHELVING Ww.storagerackengiteerng,com
G SEE NOTES CLIP-TYPE 161 9 2.0 STANDARD ELEVATION
H SEE NOTES RIVET-SPAN 161 17 2.1 STANDARD ELEVATION
I SEE NOTES RIVET-SPAN 161 6 2.2 STANDARD ELEVATION
J SEE NOTES RIVET-SPAN 161 4 3.0 STANDARD DETAIL
K SEE NOTES RIVET-SPAN 161 9 3.1 STANDARD DETAIL
L SEE NOTES RIVET-SPAN 161 21
M SEE NOTES RIVET-SPAN 161 7
N SEE NOTES RIVET-SPAN 161 2
Q SEE NOTES RIVET-SPAN 161 4
R SEE NOTES RIVET-SPAN 161 5
S SEE NOTES RIVET-SPAN 161 _ 1
T SEE NOTES RIVET-SPAN 161 1 BMW OF TIGARD
U SEE NOTES CLIP-TYPE 161 1 9875 S.W CASCADE AVE
✓ SEE NOTES CLIP-TYPE 161 3 TIGARD,OR 97223
W SEE NOTES CLIP-TYPE 161 2
COVER PAGE
SCALE: N S
DRAWN BY: NJ
CHECKED BY: GS
N DEPT.MANAGER: LA
• PROJECT MANAGER: GS
" LAST REVISEION D: 02.09.23
i�'53•
REVIS LEVEL: A
0.0
• sq L7
10,i •• \ �� \ \ \\ _ RORRWGHS
' : °,• r• ':c,.,II \ 3002 N.BUROICK STREET
ED
;�.. •'\ AAA.
MI 490043A83
\\\\;.. \;:,• �\\_ INWSIRIAL SHELVING
4'�j / \ �\ 11115 gUWMG AND ALL
�� a �� \ \ GROPERT/nOF BORROWRHSW NOT
DEMAND SN9>EC(TO RETURN ON
PY
ti
•• THE BILL OF MAIRGL LS
.• . \ DRAWING N FROM BORROUGHS
•
:\trjr;; •.^.tea.. ;;•.. 'l!� i�I:. I
• \ SIlH1ERTO GRANGE DUETO G.E.
�i• ,,, CALCULATION OR LOCAL RDINANCE.
;3;;,•'\ %`\\� ? .\r•\••,•;\ ••'\\ . A'„ CHANGES TNATREQUIREAWIiIONOL
COST WILL BE 1HE RESPONSIBILITY
D i.; • \ OF THE CUSTOMER.
. ; \\\•r• ,•\ir •,,,,,, :„.: :,� fir..,. •~:.gym, • ,�n. :Z\
ir
\� `far. „,\\ h \� �\ .:. s n\ \\\': \ \ . \\` \C\ t\ ,\ ��• REV. DATE DESCRIPRON
EI, \ A 02/09 AGMiOVAL DRAWINGS
So r„'r,.r.. W
•
•
• • • � ��� I�l�$C@��'FgESrr_F.
-a,
.. • • i'i v
C.
4 p p ® ® ® Ny„ BMW Oii, co
F TIGARD
9875 S.W.CASCADE AVE.
� � .� a Of('
TIGARD,OR 97223
A.
• �_� SITE MAP
. scuE: Nrs
PROPER,LIRE SO'Rmw..", DRAWN BY: ]C]
CHECKED BY: GS
DEW..MANAGER: LR
GROm MANnMU GS
\y%�� LASTREVLSFD: 02.09.23
���5�� REVISION LEVEL: A
1.0
I
D1 1 11
�/'I�� m„ ________________ _—_—-I BOROUGHS
\/ - - u}i .���.��7. I }._____ —0 3K STREET
KAIAMAZ00002 N. M[C99004.W83
`+L I - - _ _ _ INDUSTRIAL SHELVING
—�/ (-/ -�(/ ems. 1
'�A= �� � � � ��� ' L� L f ® THISDRAWfNAWDALL
:1, _i PROPERTY OF BORROUGINFORMATION THE HS DO NOT
u• j �� -1= __ -1J =J =J =1 =J =J =1J =J =-� s USE OR COPY WITHOUT WN
ION FROM BORROUGHS
wu+11lF-� I 1 _ -_-- � DRAWING DEMAND.IS SUBJECT TO RENRN ON
J�,�Jj`''� TIE BILL OF MATERIAL IS
0 1-1 ! SUEUECA TO CHANGE DUE TO P.E.
ORDINANCE.CALCULATION OR LOCAL I—* 11 I CHANGES THAT REQUIRE ADO ONAL
I
COST WILL BE THE RESPONSIBILITY
ILL OF THE CUSTOMER.
• • -) C C C C [ ] C J C \C C C = -
=J =J J =J J =J =J 1 1 1 REV. DATE DESCRIPTION
A 02/09 APPROVAL DRAWINGS
�— II yyI
IL I
I
Y_1R_'P' 1-I
I 1 ' I
r 1„
mw;
�P� ...11
_.o v
J
• +-� I I- 1 � I 1
'CIF- -.. - :•
... IIIII� 000 �, I a �.
I
-��� ft €I€IH 1 .{-'1` €I€I€1< . .. N. r r.Q. "°"i
commma mapL,I
IIII[II •� � dm• LII m� �� it ,„„ L?��"" 1 1 I 1
....-. !+' l r �.z _ BMW OF TIGARD
71
- ro.��. "�'', ..1 �v�- _. _ F._ ...... � 9875 GA CASCADE 3AVE
s '�^' = TIGA R 97223
\,(- 41
o \ RD,O
:=EN ill, 4
III
0 • \ ���R. •" . . "" Q BUILDING LAYOUT
1 1 I 1 1 1 1 1 NS
DRAWN BY: JC]
CHECKED BY: (S
I N DEPT.MANAGE(: U_.
BORROUGHS SCOPE OF WORK , PROJECT MANAGER: 6
P,E%:. UST REVISED: 0209.z,
\1'4�• REVISION LEVEL: 1'1 A
I—
I 1
L14
,_0s.A.s."
D
TIRE CHANGING r- --- --I r - 2A BOW NBURDICK BORROUCSTREEC
14SD a 150 r �` TECH.ADVISORS
a RALAMuoo,MI avoac34eB
--.. L 1. J L_ J 52 tp A INDUSTRIAL SHELVING
TIRE C ROUSELS �/\\
49 ] I M o M -.-.. / - THIS DRAWING AND ALL
INFORMATION THE IXPRESSED
M M r __-I UPROPERTY SE OR COPY WITHOUT WRIITE OF BORROUGHS.DO NOT
PERMISSION FROM BORROUGHS
11
I W061 .3'—W064 DRAWING IS SUMER TO RETURN ON
DEMAND.
- -- THE BILL OF MATERIAL IS
SUBJECT TO CHANGE DUE TO P.E.
5.� £ CALCULATION OR LOCAL ORDINANCE.
CHANCES THAT REQUIRE ADDmONAL
— • B B B COST WILL BE THE RESPONSIBILITY
—AS— 4B— 4e— —4848 —� �I _ THE CUSTOMER.
_ C C— C c IIIIIE E E E B - B A J A A W030 SPECIAL TO A D
�51 --- FAST PARTS -
- I I IDF
C C PIS
D _HG - 179
D—4a— G_iiiG E E _ E _ E _-49_- _E _ E _ E _ B._ B _—^e _ -—A-—A- A F C—46 1 "."
r-- - - D G G E E E E E E E B B C C C C C �I !,.-1,
■ _�,DI ' PARTSIIIWO60 ■ I!
— D ■D—4e— c e e C c e —4<— e [ e e c —44— e C e C eELEC • 1 W034
_ C C C C C C C C C C 4 C C C C C C -4.- A B—4B_D D_45 182-j
REV. DATE DESCRIPTION
4
AL DRAWINGS
-
D 49 J A B ■ I� 'W034 M�—
E 1 E E E E E —44— E E E E E E —HR— C C C C C I G ■ '• ===
D E E E E E E E E E E E E E E E E 4e A B— ■ 5171 - • W034 __—
I—. I I 6-C"SLIDE GATE �
4 43 4s RTS MANAGER ■ 1,1• ��
L A 11f I 158 I ■V MEN
D D D ( C 1 I D [ D < C t 9 G G W064 W084 ' W034 � 164J
�--g E E E E E E E E D D `� W034
° - paF�++ I ,I, - ............................... 7 .................,,.......■ JANITOR 165
II
M ■
—W181 - W121 W121 E W061._— ■ W034
--- ■ i _.. .... WOMEN
as . ' W030 • ■ a
R I 166 I \iil
STORAGE EV BATTERYEPIIIII � STAGING OR
1184 1 I 154. I ME 1 156 n --i-- �
W121 _ a!34
E PARTS SALES ■ [�' W034
E E 1 159 _ --_ TIGARD, 97223
`"- 154BJ PARTS REC. w
[ 157 F I e0- W064 GROUND LEVEL SHELVING
•
DRAWN BY: JO
CHECKED BY: 6
LR
SCALE: NTS
41.. LAST REVISED:
OO \ h ___ • A1 ���3 REVISION LEVEL A
1.2
I I Rom•RHO
/ =MI IMil
SERVICE RM�R��Ra
DEPART ENT I °°".K°"
3002 N.BURDICK STREET
KALAMAZOO,MI 49001-3483
DECK SUPPORT LOUTION
I INDUSTRIAL SHELVING
DFCKIHGio RUN NORTH ANo SDUIH
� /� 0 I-_--- ---= THIS DRAWING AND
PROPERTY OF RROU
___ INFORMATION THE EXPRESSED
PRE OR COPY WIIHOUHWRR�N NOT
PERMISSION FROM BORROWHS
• -- T DRAWING IS S000SCETO RFNRN ON
I ‘ _ T_ EIMND.
TIRE CHANGING . '�2A 0 SUEIBSI O CHANGE DUE TO P.E.
___ - _ _-I THE BRL OF MATERIAL IE
�d$D �S� I TECH. DVISORS �- �a cacuunoNORLocooxDlxaxcE.
�- TIRE CAROUSELS ! M I - --- --. L ___ _ l 152 _... ■ I A COST NELL BE THE RESPONSIBILITY
�j149 D M - - L' �� OF THE CUSTOMER.
I I M M R� I ■ I
■ M M FQ�
I I ■ L
■ W061 -W064 I
i m _
,53
ss— 4e- 46- _ _,�_ _qB_ _,B_ B B B
C C C C C C-4s E E E E E E B -" B B -42 BS A A A C �� SPECIAL TOOLS I
! 11 L _ - �-I� _ W030 162_
- - - - __ F�ST PARTS
TT y s
a 1
is
1_1533 I
SS • N IDF REV. DATE DESCRIPTION
— LO — — — _ �� CO [ 179 W064 A 02/09 APPROVAL DRAWINGS
-" G 111 G --E E E E --4+--E E E B B -4. A _-A- A- -A- - -B - +s� .�
D G G E E E E E E E B B C C C C C C
a wauur:.a„:ac::..v
IN111 .e ! WO60 � ... .M,,..,...r
D98 ,a PARTS I I I v
r151-f 0 ral ---
D—99— C C C C C C —44— C C C C c` c -+4- c c c c c ELEC W t I
V I 034
T
c j c c c c c C c c c c c c c c c C -. III D a s_ 3 182-- :T E
_ _ _ �- - D D .r.r W064 W034
D-49J - E E E E E -90- E E E E 1H E -94 C C C C •
` a 0 H
D E E E E E E E E E E E B E E E E MI� ---'7 • W034--
- I — — ` — — — P.OX SLOE GATE —
+A 43 49 •RTS MANAGER g 1 MEN 'm
I A
D D o I c I _ I C [ _ c — � _ G • w 4 [�5� 1i W03a I1sa 1
_ W064 V -W034 I
E E E E E E E E D D
C C C C
- —�- I Pia 1
tO
im - J `- - ... / - -'I, "-' -s- -- - ___— __-__ .._ _— JANITOR - - 9 S S W OCASCADE A
Z W034 87 VE.
W18.3.0 W121 W121 M E W061- P34
TIGARD,OR 97223
g WOMEN..
EV BATTERY / W030 �66]
STORAGE ������y +� STAGING I���,m - IRE RISE••
! L184� L_15� MOM '` L_19� i II'" -_- - - FI80� DECK SUPPPORT
W121-. �II� s 034 Is
— DRAWN BY: 3C3
CHECKED BY.
PART SALES n W034--- . xIi DEPLAST.MANAGER:
eG: o.Ds.z3
< E E r- PO• (r PROJECTMANAGER: CS
E k ) I 1 REVISION LEVEL: A
2 - - - I - _ - —� 1■■1 1.3
x�
1a 1
I I 1
NOTE:
/ FOR STAIR,HANDRAIL AND GATE DETAIL SEE
FCP DRAWING SET.
_ - 1 "
•• •:
TIRE CHANGING I ---/--- /---\ I 52A 3002N ROARSICK
148D_ 150 I / I TECH.dDVISORS 9 RAIA010Z00,MI 490043983
L_ _- J L_ -. _ _J - 52 ■ ! INDUSTRIAL SHELVING
TIRE CAROUSELS - ■ i
449 o J 9 9 MI■ ------ ■ THIS DRAWING AND ALL
- 1 - -- ■ 1 INFORMATION THE IXPRESSED
■ PROPERTY OF BORROUGHS.00 NOT
• — ---._._ F USE OR COPY WITHOUT WRITTEN
■ PERMISSION FROM BORROUGHS
■ ■ W061 C__-W064 D IS SURIECT TO RETURN ON
■
■ 1 THE BILL OF MATERIAL IS
• SMELT TO CHANGE DUE TO P.E.
r , r , • CALCULATION OR LOCAL ORDINANCE.
,� ■ _--_-- -__. '53 0 CHANGES THAT BE REQUIRE RESPONSIBILITY
. __iP .. .. __ .. .. .7 - . .. .. k—... .& m ? cost WILL BE THE RESPONSIBILIT
' OF THE CUSTOMER.
Ar ��-� W030 SPECIAL TOC
151ireror
T " �1s2
. Apr AI / 4101._JI Ar AI A Al _7 _ allo P179-
iI r r 401 elf fe AP V jyrr ... ixt, IDF
a
_.
v.
Ar A .-.34r, ArAr rr Ar Ar f '
A� I Aor Ar ,ELEC ■ W034 =-�(
W� , III I T 182 - : � REV. Dare DESCRIPTION
. —- <A 02/09 APPROVAL DRAWINGS
' -_�. W064 W034 � -
-
1007 7 1
A I A. • A s-P•OLIVE GATE
"4RTS MANAGER MEN
4r,.� 4 �58_f VJ034 .----v
VArlakiro
r 164
co
� -_._._-/ / / .r= _// / VV064
156 JANITOR 15
Les _ -W034-
°- ■• W161 --W121 W121 C W061 W034
• C _ _ WOMEN co
■ STORAGE RETURNS W030- 166
EV BATTERY STAGING m _ ---- _ O 'FIRE
■ 184 [ 154 155 x �56� D
W121 04
C ■■ BMW OF TIGARD
PART SALES _•. ?$W034 0, 9875 S.W.CASCADE AVE.
L 59 FD -__ TIGARD,OR 97223
w
•
R -
1 54BJ PARTS REC. _ ' �m I.. _
-� ,•
157 d_57,5iI - ate- W064 UPPER LEVEL SHELVING
SCALE: NIS
•
DRAWN BY: ICI
CHECKED ED BY: IA
1 e — — PROJECT MANAGER: S
iv
F �i
Q Q ..,. LAST REVISED: 02.09.23
co h A � 1.4
� �1:'.%' REVISION LEVEL. a
N
D
BORROUGHS
3002 N.BURDICK STREET
KAIAMAZOO,MI 9%09-3403
INDUSTRIAL SHELVING
THIS DRAWING AND ALL
INFORMATION THE EXPRESSED
PROPERTY OF BORROUGHS.DO NOT
USE OR COPY WITHOUT WRITTEN
PERMISSION FROM BORROUGHS
DRAWING IS SOLVER TO RETURN ON
DEMAND.
- -- THE BILL OF MATERIAL IS
'FA — --+ - +9i--...-_ 24- ._+�L - +4_-. --_ L SUBIECT TO CHANGE DUE TOP.E.
CALCULATION
R LOCAL
CE.
L..._. I ,`..,.,�.s --- ` cam' ` 4 - --..__ CHANGESTTHATOREQUIREADDCII0NNAL
xa� xx 1 v4 1 4 m COST WILL BE THE RESPONSIBILITY
.._ y I ■: OF THE CUSTOMER.
Ell
^
Ew11
4 DRAWER I
1111
UNITA UNIT B ) UNIT
46k29k87" 48k24ke2' 96,1855875 REV. DATE DESCRIPTION
5 SHELVES 5 SHELVES 7 SHELVES
A 02/09 APPROVAL DRAWINGS
9 DRAWERS 6 DRAWERS
la T Mil 6
•
}_o,
mo _ —
UNIT CI UNITE UNRF
3659185982" 48k24k87' 49k12"487
Z SHELVES Z SHELVES Z SHELVES
BMW OF TIGARD
9875 S.W.CASCADE AVE.
TIGARD,OR 97223
STANDARD ELEVATION
SCALE: NTS
DRAWN BY: JC3
CHECKED BY: GS
DEPT.MANAGER: LR
PROJECT MANAGER: GS
O
LAST REVISED: 02.09.23
REVISION LEVEL: A
2.0
I I
D
D
BORROUGHS
3002 N.BURDICK STREET
KALAMAZOO,MI 990043483
INDUSTRIAL SHELVING
THIS DRAWING AND ALL
INFORMATION THE EXPRESSED
PROPERTY OF BORROUGHS.DO NOT
USE OR COPY WITHOUT WRITTEN
PERMISSION FROM BORROUGHS
DRAWING IS SUBJECT TO RETURN ON
DEMAND.
1 THE BILL OF MATERIAL IS
3 S SUBJECT TO CHANGE DUE TO P.E.
CALCULATION OR LOCAL ORDINANCE.
? - - - - -.- CHANGES
UNDDITI
COST
ETERESPO RESPONSIBILITY
OF THE CUSTOMER.
Oj
{ __ .. ma
l' .. . i_
j
4-1
88,7
as } ..
UNIT G UNIT M
36"x24"xB2" 60'515N72" UNITI
7 SHELVES 3 SHELVES %,y�..xJ2. REV. DATE DESCRIPTION
25HELVFS A 02/09 APPROVAL DRAWINGS
964 1 r
IM111111,1..',p — '--- T-
.r..E w - .
a !
+,taa<RAILRAILnsmnMv -�
a s K u. 1
12
21
92
A.
98"x22N22.. UNIT K BMW OF TIGARD
2 SHELVES 96"x36"x72"
3 SHELVES 9875 S.W.CASCADE AVE.
TIGARD,OR 97223
STANDARD ELEVATION
SCALE: NTS
•
DRAWN BY: ICJ
CHECKED BY: GS
N DEPT.MANAGER: IR
• PROJECT MANAGER: CS
N:%y LAST REVISED: 02.09.23
AA� REVISION LEVEL: A
2.1
A L
L
Ni C 1 D
-1 ,— _ F _
Hi si BDRROUGHS
5y 3002 N.ITURDICK STREET
4 — _ I f _ �, mu H. r • - I KALAMAZOO,M[490043983
_ _ I N{7 - �. INDUSTRIAL SHELVING
Pi 'IU. sst lOIS DRAWING AND ALL
J^� r ` INFORMATION THE EXPRESSED
Y. 4 PROPERTY OF BORROUGRS.DO NOT
.{ . i i 4 4 .4 USE OR COPY WITHOUT WRITTEN
_ _ L^ -_, PERMISSION FROM BDRROUGHS
1 �. �) hi 1 1 a 1 1 mart sz.
I DEMAND.DRAWING IS SUBJECT RRETURN ON
sox
UNIT UNITM l UNIT NJ THE BILL OFMAIERGL IS
96"936"522' 22"x36^x72. 72UNDE N 2" SUBJECT TO CHANGE DUE TO P.E.
5 SHELVES *SHELVES 5 SHELVES CALCULATION OR LOCAL ORDINANCE.
CHANGES THAT REQUIRE ADDITIONAL
COST WILL BE THE RESPONSIBILITY
OF THE CUSTOMER.
».� 1 �z4� - _'sdi_ 1 -.w}-� 1 '�'- --._ k 1--- I.k 4.1
1 rzk
•
w v M u rs
•
r — 1
1_..... "'^ '
_ _ "'°` i �' ->— ` w�
" 4 j` REV. DATE DESCRIPTIONDRAWINGS 0 t I I '� • - A 02/09 APPROVAL DRAWINGS
4 A ui 414 I
4 _ a 4 • 4
_ { •
-16
UNIT Q UNIT R UNIT 5 UNIT
96k24122" 60506'02" 725283x22" 495341)2"
5 SHELVES 5 SHELVES 2 SHELVES 5 SHELVES
•
Qt3 ~ems___--1 4 16
I
'__ � ! o ,
4
7 II
` , i R
i 1 { i
'� , .1 e BMW OF TIGARD
L 9 Y I 9 9875 S.W.CASCADE AVE.
fi( uNtru f ,"- �r �� ii ,,., „o„ 7 .._ TIGARD,OR 97223
42UNIT U]" NITV MIT
36i12k6>' x32185'
2 SHELVES 2 SHELVES 2 SHELVES
STANDARD ELEVATION
SCALE: NTS
DRAWN BY: IC)
CHECKED BY: GS
N DEFT.MANAGER: LR
PROJECT MANAGER: GS
�1�16. LAST REVISED: 02.09.23
�1j53x REVISION LEVEL: A
2.2
.. m w awunm .x : DNKDRe EB�D,—.. aH�DWwa�I�N Q�l
R�A® AD�DDW KE mE Na:4' , —
T, IX RSA
_nN- IPTPIATOF FOOPIATE Ili AVAILABLE 1 , a.,
P ���,.
t J Itil„.,,,_ 0 'xAo17
Q U °V /I JII•-
^L .. _ I• 4. I 3002 NIURDICK STREET
44.44. I( ® Q 4P11,1:140:,,,,
KMAMAZOO,MI 490043983
C a _ Try ��.�.� �� •rxv w.r wnw.re
m T a INDUSTRIAL SHELVING
�.[ m '^ ,•'" N \V/) THIS MAI NGANOALL
,. _ na / `YY INFORMATION THE EXPRESSED
liiiii „,,, '� .ws PROPERTY OF BORROWHS.DO NOT
r ',jar— USE OR COPY WITHOUT WRITTEN
1102G-00 HD FOOTPLATE FRONT 2 BOLT O 11029 .F00TPUTE 2 BOLT BK TO BK --;,1
FOOTPUTE.ANCHOR W/PFADFO POST O FOOTPLATE FRONT W/BFAOED POST O FOOTPLATE W Y/ PERMISSION SUED,TO RETURN
1 4, y., 5 ,,,/PNGIE POST DMWING155ROMBORROUGH ON
raamartl mnrrl Slit :pq�. +�( 9y] DEMAND.
razes<2 Po-NE01515- zi CASK 4M0E5 2.15.Ew Ga.5 SS ib TW � ,„, .L THE BILL OF MATERIAL IS
iT/ M SUBJECT TO CHANGE DUE TO P.E.
CALCULATION OR LOCAL ORDINANCE.
DTwao xEns xVP1 Mr xrrz Kurmz z._„..r
wRz wru wow.o luV rzuuwzn
onazm msrnrtsW ,
Ill
zs x+x�uomz -zq '..., , ww— �.# •. re *� K. .; CHANCES THAT REQUIRE ADDITIONAL
wsrwraeD -
�� mP. COST WILL BE THE RESPONSIBILITY
.! wsranmeu
0 } A 1 OF THE CUSTOMER.
l \
xr ww� O srnm \ xrtml.m �...���, � �� ,.,"".. � KO]-
, 4K Li Y O fix" , lip•J 9 e
...<V>. G 40 ..„„..yi., ,de.
'$\ 4!
O FOOTPLATE SWGLE W/ANGLE POST OWfRED O FOOTPLATEBK TO BK W/ANGIF POST O HO BASE STRB BEADED POST umz Vaz"'Fro: s� O9 BEADED POST SHFIF BRAIXET(CUP TYPE) 10 BO%EDGE PLUS SHELF
v., �. rn REV. DATE DESCRIPTION
m azAeouxortux nzr D r"`m /''' a Ixl°°Ea A 02/09 APPROVAL DRAWINGS
vwxmras 1.c:c•rsw Wz',.. , • ora0.1 lriraNWl RwzzxzwOPP01.r.00.113.51 o. Ixorwov¢en rl - / �� ) zwwmlKx xsinW zms/eoxACEs
41111k-F`'L-7
0 Amu POST ANEE Q. 0 O .o. inoCl--- ®. 6® I
cGGC.CIC ic.c ICI p0LCDC.CECLC— O 0 i :' il' E -� ® a— — 0 .. 6L � ®�
1 BACK TO BACK `� _ (P/
m m I�� o " r
NOTE,
Ilm,-7,-----',..f F
I, Bpa�1E.Iu )SOULOUnow
,,ow
g g o P t �rtrr..-w12.D�.
.
z. puwx¢m�Ez�rzsr�uUim"orxE I. 0.I.0.1 -1.U.I.U.U.U.U. p-ANCHORING LOCATIONTYP. }Z.E,.E.E.E .wy2 .. .77 .{
Of 0116E POST �SLOTTEDAND.SH,CE 1
INSIDE
OBACK PANEL BOLT PATTERN TYPICAL O
CLOSED S DE BEADED POST O ANCHORING LOCATION TYPICAL O SLOTTED L01011 DECK SUPPORT O SLOTTED DECK SUPPORT(SIDE)
�\ t WOOD DECK
-DECK
✓� BMW
/- / I---CUT TO FIT I—2"— 8875 5.W OCASCADE AVE-
�'� / •
�T j� '� TIGARU,OR 91223
\ PRI€S\ I�
Y t E
- 5 3/8 r-
,STANDARD DETAIL
11%�2ocA. \ Nils •
NIHDr,to; MTOITIAOASA DRAl RAWN BY: 353
1-... 13/4 CHC{KE IA LA
12 GAUGEGS
ri DEPT.MANAGER: LR
PROJECT MANAGER: GS
O BDECK W/WOOO DECK 11 C5K2K12GA DECK SUPPORT O GEBERIC01 O GENERICO GEBE \it...::.',.\ o LASTREVD: 02.09.23
"`� REVLS[ON ISFLEVEL: A
3.0
.52
I=;M; PI�aw N�,x,N�Pxx x� ..2 x ja.,,I ,,x �. re V,. we w,wH' iiIIE w r,=.
AP�N xw
(• TT1 32
1T.m2 LEYL.wFELD520 ws. 0 0 �NwHNnx.P,xMs. o p n p
00 p p 0
I,� 0 p p/--.m , / T,�, p TAT
O p p p
Q®.
. 0 mwroa.R�_ O p O p p
,. - �o.mb.w. K3002 N.BURDICK
83
•
MIMBUM ENT.i, 0�x � it-
® ,�' F EMBEDMENT °' '
—� o,.}1 _ s5 f a 0 e ♦ r nm INDUSTRIAL SHELVING
.i...mwaw,vas, x IOOB3OO
,Ln : -.T ; �xr,aEo xmP reronrAs- _ �r THIS DRAWING AND ALL
E INFORMATION THE I.PRESSED
LEE. NN• PROPERTY OF BORROWHS.DO NOT
� w Halo n mnEu. USE OR COPY WITHOUT WRITTEN
• 0 0103-DOS RIVET SPAN ND FOOTPLATE TYMGL O RIVET SPAN FOOTPLATE ANCHORING O RIVET-SPAN FOOTPLATE ROW END O RIVET SPAN FOOTPLATE INTERMEDIATE O RIVET SPAN F0OTMATE W/T-POST PERMISSION FROM BORROUGHS
zr �`"' p�U JyUry FR St
Vy DRAWING IS SUBJECT TO RETURN ON
xu.----.. -;K ri �������w}.F _ LYDISDDOBS I91.I 1<Crl OEAIAND.
REF.,. ranxnaw,rt 'K^ 1' THE BILL OF MATERIAL IS
umxuo. mumnxcsaxo.xozma SUBJECT TO CHANGE DUE TO P.E.
u cIS REF mMww rAzcL _
1 1 DSBB
u cues wJ-mPl ®� �_ �« F� CALCULATION OR LOCAL ORDINANCE.
v aucE Losx J.w•1 1� _ 0.75 b ® m ° I I CCOOSSTT WILLHANGES E THEE RESPPONNSIBIILLm
--Fr1 A 1 O
�, 40
, .imps m� _ _ u.x µme_ x.xs OF THE CUSTOMER.
YYYY 2.65 r 2.56 ®� ®'L x�L'UMW_lio/. JRITTII
I
.1s00 R 2.500 �` -rn °PMI
M B TIE SUPPORT O TIRE BEAM TET SPAN O TIE WALL,.RIVET SPAN
- v ws
REV. DATE DESCRIPTION
.n.'. WI
A 02/09 APPROVAL DRAWINGS
375
®.®JL7 1 ® LI Q
0.2320 -/ .«..�.,.
7N.
Ili 0.4270 0.1360 I„ _ 7.-•ry��"�
0.1020
I- A a
OTIE BACK TO BACK RIVET SPAN 33 RIVET TYPICAL O 10066-00011E PLATE/RIVET SPAN O ANCHOR TWI,,GL UPPER RIVET-SPAN O GENERIC
BMW OF TIGARD
9875 SW.CASCADE AVE.
TIGARD,OR 97223
STANDARD DETAIL I
SCALE: NTS
DRAWN BY: 30
CHECKED BY: GS !
Ifi DER.MANAGER: LR
O GENE O GENERIC 'M, O GENE ENEGENERICPROJECT MANAGER: l3
O GENERIC,. O irr7P LAST REVISED: 02.09.23
1
A Srr REVISION LEVEL: A •
3.1
R£O`
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:alfrDstoragerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Design Data Configuration:Type A Clip Shelving: 87.375"H x 48"W x 24.5"D
1) The analyses of the light duty storage fixtures conforms to the requirements of the 2021 IBC,2022 OSSC and ASC 7-16
2) All steel conforms to ASTM A36,Gr.36 with minimum yield, Fy=36 ksi unless otherwise noted on the plans or analysis herein.
3) Anchor bolts shall be provided by installer per ICC reference on the calculations herein.
4) All welds shall conform to AWS procedures,utilizing E70xx electrodes or similar.All such welds shall be performed
in shop,with no field welding allowed other than those supervised by a licensed deputy inspector.
5) The slab on grade is assumed to be 6"thick with minimum 2500 psi compressive strength. Soil bearing capacity is 1000 psf.
6) All Hardawre shall conform to Grade 5 properties or better,installed to snug tight fit.
1 >al...n'screr n it
b 12 " b
tali 4 PI
18 i Pa
1t Pi
4.
18 4.5" DRAWER
P 4.5- QRAVO 4 uyT.i
a 4.5' DRAWER Gj. 87
1.... 4.5" DRAWER 4
18 44
6' DRAWER
s
6» DRAWER
8" DRAWER a
18 t 6" DRAWER 41
s ' PiI
� 6N DRAWER
J 3
PROM 818)/
3.0.
UNIT
AyY�
4[8"�x�j24"(x8[7"
5 SHELVES
9 DRAWERS
BMW OF TIGARD 32O6-A 23-04 10-2 CLIP SHELVING Page of 4/13/2023
ci
rtn
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:al(rD.storagerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Summary of Results Configuration:Type A Clip Shelving:87.375"H x 48"W x 24.5"D
Shelf Configuration
I #of Levels= 13
D= 24.5 in
H= 87.4 in
44 '-74i-~ I L= 48.0 in I
/4 ® Location Elevation Load
i # i ,., _ I hl= 4.50 in 200 lb I
,$ i h2= 6.00 in 200 lb
S #1oi
h3= 6.00 in
6.00 in 200 lb
h4= 200 lb
'A V ¢'5-DRAWER s E h5= 6.00 in 200 lb
1 4 5 DRAWER q
a "ORkwER 4 687 h6= 6.00 in 200 lb
4.5'DRAWERix 49,1 �6 DRAWER 4.50 in 200 lb
° 5'[RAwElr h8= 4.50 in 200 lb
6° RArreR h9= 4.50 in 200 lb
is ` 6"DRAWER ' h10= 4.50 in 200 lb
DRAWER hll= 10.50 in 200 lb
—
i-# 4-t ` h12= 10.50 in 200 lb
UHITA h13= 15.50 in 1,212 lb
48"x24"x87"
5 SHELVES
9 DRAWERS
Notes
Axial column DL= 104 lb
Axial column LL= 1,806 lb
Axial column seismic load=+/- 1,290 lb
Net Seismic Uplift per footplate= 561 lb
Seismic Coeff: Ss= 0.863 Steel Fy= 36,000 psi
S1= 0.397 Product Load= 200 lb per shelf level
Fa= 1.200
Fv= 1.803
Component Summary
Column Borroughs Clip Shelving Dbl Angle"T"Post 13ga&14ga Beaded Front Post 0.37 OK
Shelf P1 22ga Box Edge Shelf Beam 0.44 OK
Steel Panel 22 ga Back Panel with(1)0.25 in diam bolt at 36 in o.c.,22 ga Side Panel with weld at 12 in o.c. 0.83 OK
Anchor (2)3/8"Diam x 2.5"Embed Hilti Kwikbolt TZ2 anchor(s)per footplate Special inspection is required per ICC ESR 4266. 0.48 OK
Base Plate Footplate 5 in*4 in*0.25 in Thk(with(2)1/4"Diam Gr5 M.B.to Post) 0.76 OK
Slab 6 in thick x 2500 psi slab/1000 psf soil 0.17 OK
Notes
SIDE PANEL WELDED EVERY 12"
6.5"MIN. DISTANCE FROM EDGE OF SLAB/CONSTRUCTION JOINT TO ANCHOR
BMW OP TIGARD 320G-A 23-04 I 0-2 CLIP SHELVING Page of 4/1 3/2023
t-#
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackenqineering.com,email:ale.storagerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Seismic Forces Configuration:Type A Clip Shelving:87.375"H x 48"W x 24.5"D
V1= Sps*W/R
V2= [0.4*ap*Sps*Ws*(1+2*z/h)/(Rp/Ip)] #Shelf Levels= 13
V3= 0.044*Sds Ss= 0.863
V4= 0.5*S1/R Vminimum= 0,015 S1= 0.397
V1= 0.1726 W= DL+LL*0.67 Fa= 1.200
V2= 0.1726 = 2,622 lb Fv= 1.803
V3= 0.0304 Sds= 0.690
V4= 0.0000 Sd1= 0.477
Seismic Coeff=Cs= 0.1726 V= Cs*W Rp= 4.0
(Either Direction) = 453 lb ap= 2.5
Cs*Ip= 0.1726 Ip= 1.00
Transverse Distribution R=Rp= 4.00
Level LL DL hi wi*hi Fi Fi*hi z/h= 0.00
1 200 lb 16 lb 3 in 648 1.4 lb 4 in-lb Grod Floor/nstall
2 200 lb 16 lb 11 in 2,268 5.1 lb 53 in-lb Depth=D= 24.5 in
3 200 lb 16 lb 17 in 3,564 8.0 lb 131 in-lb
4 200 lb 16 lb 23 in 4,860 10.8 lb 244 in-lb
5 200 lb 16 lb 29 in 6,156 13.7 lb 392 in-lb
6 200 lb 16 lb 35 in 7,452 16.6 lb 574 in-lb
7 200 lb 16 lb 39 in 8,424 18.8 lb 733 in-lb
8 200 lb 16 lb 44 in 9,396 21.0 lb 912 in-lb
9 200 lb 16 lb 48 in 10,368 23.1 lb 1,111 in-lb
10 200 lb 16 lb 53 in 11,340 25.3 lb 1,329 in-lb
11 200 lb 16 lb 63 in 13,608 30.4 lb 1,914 in-lb
12 200 lb 16 lb 74 in 15,876 35.4 lb 2,605 in-lb
13 1,212 lb 10 lb 89 in 108,780 242.8 lb 21,613 in-lb
Sum: 3,612 lb 202 lb 202,740 453 lb 31,616 in-# = Movt
Transverse Column Loads All lateral loads taken by the closed steel panels or X bracing
Axial DL per post= 101 lb Pseismic= Movt/D
Axial LL per post= 1,806 lb Movt= 31,616 in-lb = 1,290 lb
BMW OF TIGARD 320G-A 23-0410-2 CLIP SHELVING Page of 4/13/2023
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineerinq.com,email:al(castoragerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Rear Double"T"Post Configuration:Type A Clip Shelving:87.375"H x 48"W x 24.5"D
Net Section Properties
Column= Dbl Angle'T"Post 13ga
Aeff= 0.326 inA2 S2f= 1.67
Ix(downaisle) inA42"
= 0.046 E= 29,500 ksi H
1°-..
Sx(downaisle)= 0.046 in^3 Cb= 1.0
rx(downaisle)= 0.377 in Cmx= 0.85
Iy(crossaisle)= 0.237 in^4 Kx= 1.0
Sy(crossaisle)= 0.162 in^3 Lx= 15.5 in
ry(crossaisle)= 0.852 in Ky= 1.0 13GA
Fy= 36 ksi Ly= 15.5 in 2 1/4"
Axial DL= 101 lb
Axial LL= 1,806 lb
Pseismic= L
Loads Loadoad Case:(Fully Loaded)
Axial=P= DL+0.75LL+0.75*0.7*Pseismic Borrouohs 13oa'T'Post
= 2,133 lb Moment=My= 0 in-lb
Axial Analysis
KxLx/rx= 1*15.570.377" KyLy/ry= 1*15.570.852" Fe > Fy/2
= 41.1 = 18.2 Fn= Fy(1-Fy/4Fe)
= 36 ksi*[1-36 ksi/(4*172.2 ksi)]
Fe= n^2E/(KL/r)max^2 Fy/2= 18.0 ksi = 34.1 ksi
= 172.2ksi
Pn= Aeff*Fn Qc= 1.92 Pa= Pn/4c
= 11,106 lb = 11106 lb/1.92
= 5,784 lb
P/Pa= 0.37 > 0.15
Bending Analysis
Check: P/Pa+(Cmy*My)/(May*p) <_ 1.0
P/Pao+ My/May<_ 1.0
Pno= Ae*Fy Pao= Pno/Qc
= 0.326 in^2*36000 psi = 117181b/1.92
= 11,718 lb = 6,103 lb
May= My/Qf Pcr= n^2EI/(KL)max^2
= 5832 in-lb/1.67 = n^2*29500000 psi/(1*15.5 in)^2
= 3,492 in-lb = 55,746 lb
Myield=My= Sy*Fy
p= {1/[1-(Qc*P/Pcr)]}^-1 = 0.162 in^3*36000 psi
= {1/[1-(1.92*2133 lb/55746 Ib)]}^-1 = 5,832 in-lb
= 0.93
Combined Stresses
(2133 lb/5784 lb)+(0.85*0 in-lb)/(3492 in-Ib*0.93)= 0.37 < 1.0,OK
(2133 lb/6103 lb)+(0 in-lb/3492 in-lb)= 0.35 < 1.0,OK
BMW OF TIGARD 32O6-A 23-0410-2 CLIP SHELVING Page of 4/1 3/2023
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:al(rD_storagerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Front Box Post Configuration:Type A Clip Shelving:87.375"H x 48"W x 24.5"D
Net Section Properties
Column= 14ga Beaded Front Post
Aeff= 0.402 inA2 52f= 1.67 -.1 1 1/32"f
Ix(downaisle)= 0.023 inA4 E= 29,500 ks
Sx(downaisle)= 0.046 inA3 Cb= 1.0
rx(downaisle)= 0.239 in Cmx= 0.85 5/8"
Iy(crossaisle)= 0.303 inA4 Kx= 1.0
Sy(crossaisle)= 0.201 inA3 Lx= 12.0 in
ry(crossaisle)= 0.9 in Ky= 1.0 2 3'4„ 14ga
Fy= 36 ksi Ly= 15.5 in 1
Axial DL= 101 lb
Axial LL= 1,806 lb
Pseismic= 1,290 lb
Loads Load Case: (Fully Loaded)
Axial=P= DL+0.75LL+0.75*0.7*Pseismic 5/16' -►
2,133 lb Moment=Mx= 0 in-lb Borroughs 14ga Beaded
Post
Axial Analysis
KxLx/rx= 1*12"/0.239" KyLy/ry= 1*15.570.897" Fe > Fy/2
= 50.2 = 17.3 Fn= Fy(1-Fy/4Fe)
= 36 ksi*[1-36 ksi/(4*115.5 ksi)]
Fe= nA2E/(KL/r)maxA2 Fy/2= 18.0 ksi = 33.2 ksi
= 115.5ksi
Pn= Aeff*Fn Qc= 1.92 Pa= Pn/Qc
= 13,354 lb = 13354 lb/1.92
= 6,955 lb
P/Pa= 0.31 > 0.15
Bending Analysis
Check: P/Pa+(Cmy*My)/(May*p) <_ 1.0
P/Pao+My/May<_ 1.0
Pno= Ae*Fy Pao= Pno/Qc
= 0.402 inA2*36000 psi = 144831b/1.92
= 14,483 lb = 7,543 lb
May= My/Qf Pcr= nA2EI/(KL)maxA2
= 1656 in-lb/1.67 = nA2*29500000 psi/(1*15.5 in)A2
= 992 in-lb = 367,199 lb
Myield=My= Sx*Fy
p= {1/[1-(52c*P/Pcr)]}A-1 = 0.046 inA3*36000 psi
= {1/[1-(1.92*2133 Ib/367199 Ib)]}A-1 = 1,656 in-lb
= 0.99
Combined Stresses
(2133 lb/6955 lb)+(0.85*0 in-lb)/(992 in-lb*0.99)= 0.31 < 1.0,OK (EQ C5-1)
(2133 lb/7543 lb)+(0 in-lb/992 in-lb)= 0.28 < 1.0,OK (EQ C5-2)
BMW OF TIGARD 32O6-A 23-04 I 0-2 CLIP SHELVING Page of 4/13/2023
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:al(rD_storagerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Shelf Configuration:Type A Clip Shelving:87.375"H x 48"W x 24.5"D
It is assumed that the downaisle lips will carry 2/3 of the total shelf load,with the remainder carried by the transverse lips
w
Beam Type= P1 22ga Box Edge Shelf Beam Illlllllllllllllllllllllllllliiiiiiiiiiiillllllllllllllllllllll
Ix= 0.0300 in^4 - --o
Sx= 0.042 in^3 •---------------------
Fy-beam= 36,000 psi I L ►
Shelf Span=L= 48 in E—� 0.75"
Max Shelf LL= 200 lb Beam Diagram
Load=w=LL*(2/3)/(2*L)= 16.5 plf Shelf Beam
Check Beam Bending Check Beam Deflection
M= w*LA2/8 E= 29,500,000 psi
= 396 in-lb D= 5*w*LA4/(384*E*Ix)
= 0.1109 in
fb= M/Sy Dallow= L/180
= 9,504 psi = 0.27 in OK
Fb= 0.6*Fy
21,600 psi
fb/Fb= 0.44 OK
BMW OF TIGARD 320G-A 23-0410-2 CLIP SHELVING Page of 4/1 3/2023
9i
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:aI(rDstoragerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Closed Back Panel
The closed back and side panels will act as a steel diaphragm transferring the lateral loads to the floor.
Shear per Frame=V= 453 lb � 22 ga Steel
L= 48.0 in V Panel
Height= 87.4 in
Movt= E(Fi*hi)*1.15*0.7
= 29,269 in-#
Omega= 2.0
Bolt Frequency= 36 in o.c.
#Bolt/Post=N= 4 Movt
Seismic Load per bolt=Vb= (Movt/D)/N
= 152 lb
Check Bolt Vw
Fv= 28,000 psi
Fu= 65,000 psi
Bolt Diam= 0.25 in
tmin= 0.0300 in
Bolt Shear Capacity= Bolt Area*Fv/Omega
= 687 lb OK f— L
Bolt Bearing Capacity= 1.2*Bolt Diam*train*Fu/Omega
= 293 lb OK Front Elevation
Bolt Stress= 0.52 OK
Closed Side Panel
The closed back and side panels will act as a steel diaphragm transferring the lateral loads to the floor.
Shear per Frame=V= 453 lb
Frame Depth=d= 24.5 in9 22 ga Steel
Height= 87.4 in V Panel
Movt= 29,269 in-#
Omega= 2.0
Weld Frequency= 12 in a.c.
#Bolt/Post=N= 8
Seismic Load per bolt=Vb= (Movt/D)/N
= 149 lb
Movt
Check Weld on Formed Steel
Lweld= 0.250 in Vw
Fu= 65 ksi
tmin= 0.030 in
Weld Capacity= [1-(0.01*L/t)]*L*Fu* 1.0/2.5
= 1791b d
Weld Stress= 0.83 OK Side Elevation
BMW OF TIGARD 320G-A 23-0410-2 CLIP SHELVING Page of 4/13/2023
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:al@storagerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
CHECK SLOTTED ANGLE DECK SUPPORTS FOR IMPOSED POINT LOADS FROM DECK MOUNTED SHELVING
Check beam member for point load at center span
Section Properties 3.5"
Beam Member= C12X3.5X12GA
Beam at Level= 1 P 12"
Beam Type= Step .- L/2 -►�
Ix= 39.417 in^4 O i d
Sx= 6.569 in^3 4 L ►
Length=L= 144.0 in 12ga
Lu= 144.0 in
Fy= 50,000 psi
Defl Criteria-L/ 240
Impact Factor(a)=(1-25%/2)= 1.000
P= DL+0.75LL+0.75E
= 3800 lb
WORST CASE LOADS FROM TYPED DECK MOUNTED SHELVING,DL=18 LB,LL=350 LB,Pseismic=664 LB
Loads
0/0 End Fixity= 0% O= 0.0
Mcenter= Mcenter(simple ends)
= P*L/4
Fb= 0.6*Fy
= 30,000 psi
Fb-eff= 30,000 psi
Mcenter= P*L/4 Mends= 0 in-lb
= 136,800 in-lb
Bending
M= 136,800 in-lb
fb= (M/Sx)/a fb/Fb= 20824 psi/30000 psi
= 20,824 psi = 0.69 <= 1.0,OK
Deflection
Defl-allow= L/240 Defl= [PL^3/(48EI)]
= 0.600 in = 0.207 in <=0.6 in,OK
Connection
Shear= 1,900 lb
Bolt Diam= 0.3125 in Shear Capacity= Bolt Area*N*Fv* 1.0
#Bolt=N= 2 = 3,221 lb OK
Fv= 21,000 psi
Fu-steel= 58,000 psi Bearing Capacity= Bolt Diam*t-min* 1.2*Fu* 1.0
t-min= 0.075 in = 3,263 lb OK
Page of
rin
23142 Arroyo Msto Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackenglneering.com,email:algstoragerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Catwalk Deck Support CHECK UNIFORM +POINT LOADS
Section Properties
2"
Beam Member= Borroughs C5.75x2x12ga
Thickness= 0.105 5.75 12g
Ix= 4.710 in^4
Sx= 1.640 inA3
Length=L= 48.0 in
Lu= 48.0 in LL= 125 psf P P
Fy= 36,000 psi DL= 10 psf
L/�--4--3/4 L-�
„ 1>IIIIIIIIIIIIIIIIIIIIIII�IIIIIIIIIIQ
Defl Criteria-L/ 240 Trib width= 0.4 ft
P= 850 11) ' L
Loads
0/0 End Fixity= 0% 0= 0.0
Dist Load=w= 4.2 lb/in
Mcenter= Mcenter(simple ends)
= wL^2/8+PL/4+3/4 PL
Fb= 0.6*Fy
= 21,600 psi
Fb-eff= 21,600 psi
Mcenter= wLA2/8+PL/4+3/4 I Mends= 0 in-lb
= 21,610 in-lb
Bending
M= 21,610 in-lb
fb= (M/Sx)/a fb/Fb= 13177 psi/21600 psi
= 13,177 psi = 0.61 <= 1.0,OK
Deflection
Defl-allow= L/240 Defl= [5wL^4/(384*E*Ix)]+[PL^3/(48EI)]
= 0.200 in = [5*4.2 Ib/in*(48 in)^4/(384*29.5x10^6 psi*4.71 in^4)]*1+[PL^3/(48EI)]
Connection = 0.030 in <=0.2 in,OK
Shear= 951 lb
Bolt Diam= 0.25 in Shear Capacity= Bolt Area*N*Fv*1.0
#Bolt=N= 2 = 2,062 lb OK
Fv= 21,000 psi
Fu-steel= 58,000 psi Bearing Capacity= Bolt Diam*t-min* 1.2*Fu*1.0
t-min= 0.075 in = 2,610 lb OK
Page of
- :age
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:al@storagerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
CHECK SLOTTED ANGLE DECK SUPPORTS FOR IMPOSED POINT LOADS FROM DECK MOUNTED SHELVING
Check beam member for point load at center span
Section Properties op—
Beam Member= Borroughs L3.12x1.61x12ga 1,61
Beam at Level= 1 P
Beam Type= Step • L/2 —1.1
3.12
Ix= 0.500 inA4 }
O A
Sx= 0.461 inA3
L -i
Length=L= 56.0 in
Lu= 56.0 in
Fy= 50,000 psi
Defl Criteria-L/ 240
Impact Factor(a)=(1-25%/2)= 1.000
P= DL+0.75LL+0.75E
= 900 lb
WORST CASE LOADS FROM TYPED DECK MOUNTED SHELVING,DL=18 LB,LL=350 LB,Pseismic=664 LB
Loads
%End Fixity= 0% 0= 0.0
Mcenter= Mcenter(simple ends)
= P*L/4
Fb= 0.6*Fy
= 30,000 psi
Fb-eff= 30,000 psi
Mcenter= P*L/4 Mends= 0 in-lb
= 12,600 in-lb
Bending
M= 12,600 in-lb
fb= (M/Sx)/a fb/Fb= 27330 psi/30000 psi
= 27,330 psi = 0.91 <= 1.0,OK
Deflection
Defl-allow= L/240 Defl= [PL^3/(48EI)]
= 0.233 in = 0.227 in <=0.233 in,OK
Connection
Shear= 450 lb
Bolt Diam= 0.3125 in Shear Capacity= Bolt Area*N*Fv*1.0
#Bolt=N= 2 = 3,221 lb OK
Fv= 21,000 psi
Fu-steel= 58,000 psi Bearing Capacity= Bolt Diam*t-min* 1.2*Fu*1.0
t-min= 0.075 in = 3,263 lb OK
Page of
- __
r"f.._.
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:al@storagerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Catwalk Deck Support
Section Properties
Beam Member= Borroughs L3.12x1.61x12ga
Thickness= 0.075 in
Ix= 0.500 inA4
Sx= 0.461 in^3 3. 2"
Length=L= 48.0 in
Lu= 48.0 in LL= 125 psf
Fy= 50,000 psi DL= 10 psf
Defl Criteria-L/ 240 Trib width= 3.0 ft
Loads
%End Fixity= 0% 0= 0.0
Dist Load=w= 33.8 lb/in
Mcenter= Mcenter(simple ends)
= wL^2/8
Fb= 0.6*Fy
= 30,000 psi
Fb-eff= 30,000 psi
Mcenter= wL^2/8 Mends= 0 in-lb
= 9,734 in-lb
Bending
M= 9,734 in-lb
fb= (M/Sx)/a fb/Fb= 21114 psi/30000 psi
= 21,114 psi = 0.70 <= 1.0,OK
Deflection
Defl-allow= L/240 Defl= [5wLA4/(384*E*Ix)]
= 0.200 in = [5*33.8 lb/in*(48 in)^4/(384*29.5x10^6 psi*0.5002 in^4)]*1
0.158 in <=0.2 in,OK
Connection
Shear= 811 lb
Bolt Diam= 0.25 in Shear Capacity= Bolt Area*N*Fv*1.0
#Bolt=N= 2 = 2,062 lb OK
Fv= 21,000 psi
Fu-steel= 58,000 psi Bearing Capacity= Bolt Diam*t-min* 1.2*Fu* 1.0
t-min= 0.075 in = 2,610 lb OK
Page of
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:al@storagerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Catwalk Deck Support
Section Properties
Beam Member=Borroughs Del T3.12x1.61x12ga '- 1.61" t 1.61"
11
Thickness= 0.075 in
Ix= 1.000 in^4j 12ga 3.12"
Sx= 0.492 in^3 1 Length=L=48.0 in ��
Lu= 48.0 in LL= 125 psf
Fy= 50,000 psi DL= 10 psf
Defl Criteria-L/ 240 Trib width= 4.3 ft
Loads
%End Fixity= 0% O= 0.0
Dist Load=w= 48.7 lb/in
Mcenter= Mcenter(simple ends)
= wL^2/8
Fb= 0.6*Fy
= 30,000 psi
Fb-eff= 30,000 psi
Mcenter= wL^2/8 Mends= 0 in-lb
= 14,026 in-lb
Bending
M= 14,026 in-lb
fb= (M/Sx)/a fb/Fb= 28507 psi/30000 psi
= 28,507 psi = 0.95 <= 1.0,OK
Deflection
Defl-allow= L/240 Defl= [5wL^4/(384*E*Ix)]
= 0.200 in = [5*48.7 lb/in*(48 in)^4/(384*29.5x10^6 psi* 1 inA4)]*1
= 0.114 in <=0.2 in,OK
Connection
Shear= 1,169 lb
Bolt Diam= 0.25 in Shear Capacity= Bolt Area*N*Fv* 1.0
#Bolt=N= 2 = 2,062 lb OK
Fv= 21,000 psi
Fu-steel= 58,000 psi Bearing Capacity= Bolt Diam*t-min*1.2*Fu* 1.0
t-min= 0.075 in = 2,610 lb OK
Page of
s"age
4
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:al@storagerackengineering.com
By: A.A. Project BMW OF TIGARD Project#: 23-0410-2
1-1/2"B-Deck
Section Properties
Thickness= 20 gar 1-1/2"
v
Ix/ft= 0.220 in^4
Sx/ft= 0.235 in^3
Length=L= 56.0 in
Lu= 56.0 in LL= 125 psf
Fy= 38,000 psi DL= 10 psf
DL+LL Defl Criteria-L/ 240
LL only Defl Criteria-L/ 240
Loads
2 span condition exists
M= 0.1167*w*L^2
= (0.1167)*(135 plf/12)*56 in^2
= 4,117 in-lb
Fb= 0.6*Fy
= 22,800 psi
Bending
M= 4,117 in-lb
fb= M/Sx
= 17,520 psi
fb/Fb= (17520 psi/22800 psi)
= 0.77 <= 1.0,OK
Attach w/#12 Tek @ 12"o.c.
Allowable shear 310 plf
Deflection
DL+LL Defl-allow= L/240 Defl= 0.0092*w*L^4/(E*I)
= 0.233 in = 0.0092* 135 plf/12*(56 in)^4/(29500000 psi*0.22 in^4)
= 0.157 In <=0.233 in,OK
LL Defl=L/360= 0.160 in
LL Defl= 0.145 in <=0.16 in,OK
Page of
1
e
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:al@storagerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Baseplate 5"x 4"
Check uplift loads on baseplate to determine maximum uplift load carried by anchors
Section
T
Width=W= 5.00 in Bolt Edge Dist=e= 1.00 in
Depth=D= 4.00 in La= 3.00 in
Column Width=b= 3.00 in N=#Anchor/Base= 4
Column Depth=d = 3.00 in Fy= 36,000 psi
L= 1.00 in I b&d 14— L
Plate Thickness=t= 0.250 in B or D —�
Uplift Forces
I•-- B --1*I
•
Splate= D*t"2/6 0 0 I
= 0.042 in^3
D d La
Fb= 0.75*Fy
= 27,000 psi O b'I O —
Mallowable=Ma= Splate*Fb/0.75 Plan
= 1,500 in-lb
♦T
If M= T*La/4
NJ
Then Tmax= Ma*4/La I M I
= 2,000 lb ASD .keriidIIIIiIIIIIIIIhu, S.
= 2,800 lb WORKING STRESS 4.1
ANCHORS MAYBE DESIGNED FOR THIS UPLIFT LOAD
La —►I
Elevation
1
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineerinq.com,email:aI(ci)storagerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Anchors Configuration:Type A Clip Shelving:87.375"H x 48"W x 24.5"D
Loads
Check load case: 0.9-0.2*Sds*(D+0.67LL)+/-E
Vtrans=V= 453 lb
► V
DL/Frame= 202 lb
LL/Frame= 3,612 lb Frame Depth=D= 24.5 in
Wst=phi*(DL+0.67LL)total= 1,998 lb Htop-Iv1=Ht= 89.0 in
LL @ TOP= 1,212 lb #Levels= 13
DL/Lvl= 16 lb #Anchors per column= 2
DL*phi= 12 lb 0.9-0.2Sds=phi= 0.762 T A
Lateral Ovt Forces=E(Fi*hi)*1.15=E= 36,358 in-lb
D�
SIDE ELEVATION
Fully Loaded rack
Vtrans= 453 lb
Movt= l(Fi*hi) Mst= Wst*D/2 Uplift=T= (Movt-Mst)/D
= 36,358 in-lb = 1998 lb*24.5 in/2 = (36358 in-lb-24476 in-lb)/24.5 in
= 24,476 in-lb = 485 lb
Top Level Loaded Only
Critical Level= 13 Hgt @ Lvl 13= 89.0 in
Vtop=V1= 0.1726*(1212.25 lb+ 16 lb) Movt= Vtop*Htop*1.15+V2*Ht/2
= 212 lb = 23,211 in-lb
VDL=V2= 34 lb
Mst= phi*(DL-total +LL-top)*D/2 Uplift=T= (Movt-Mst)/D
= (1212.25 lb*0.67*phi+16 Ib*phi)*24.5 in/2 = (23211 in-lb-9467 in-lb)/24.5 in
= 9,467 in-lb = 561 lb
Anchor
(2)3/8"Diam x 2.5"Embed Hilti Kwikbolt TZ2 anchor(s)per footplate
Special inspection is required per ICC ESR 4266.
Check Attachment of Post to Base Plate
Bolt Diam= 0.25 in Bolt shear=uplift*o.525= 295 lb Shear Capacity= Bolt Area* N*Fv
#Bolt=N= 2 = 2,062 lb OK
Fv= 21,000 psi Bearing Capacity= Bolt Diam*t-min* 1.2*Fu
Fu-steel= 58,000 psi = 5,220 lb OK
t-min= 0.150 in Bolt stress= 0.14 OK
BMW OP TIGARD 320G-A 23-0410-2 CLIP SHELVING Page of 4/13/2023
Hilti PROFIS Engineering 3.0.84
www.hilti.com
Company: Page: 1
Address: Specifier: Al
Phone I Fax: I E-Mail:
Design: 5x4BP TYPE A BORROUGHS HD Date: 4/13/2023
Fastening point:
Specifier's comments:
1 Input data
Anchor type and diameter: Kwik Bolt TZ2-CS 3/8(2 1/2)hnom3
Item number: 2210238 KB-TZ2 3/8x3 3/4
Effective embedment depth: het,act=2.500 in.,h om=3.000 in.
Material: Carbon Steel
Evaluation Service Report: ESR-4266
Issued I Valid: 12/17/2021 1 12/1/2023
Proof: Design Method ACI 318-14/Mech
Stand-off installation: eb=0.000 in.(no stand-off);t=0.250 in.
Anchor plateR: Ix x ly x t=4.000 in.x 5.000 in.x 0.250 in.;(Recommended plate thickness:not calculated)
Profile: Square HSS(AISC),HSS1-1/4X1-1/4X.125;(L x W x T)=1.250 in.x 1.250 in.x 0.125 in.
Base material: cracked concrete,2500,fc'=2,500 psi;h=6.000 in.
Installation: hammer drilled hole,Installation condition:Dry
Reinforcement: tension:condition A,shear:condition A;no supplemental splitting reinforcement present
edge reinforcement:none or<No.4 bar
Seismic loads(cat.C,D,E,or F) Tension load:yes(17.2.3.4.3(d))
Shear load:yes(17.2.3.5.3(c))
R-The anchor calculation is based on a rigid anchor plate assumption.
Geometry[in.]&Loading[lb,in.lb]
0
x
Input data and results must be checked for conformity with the existing conditions and for plausibility!
PROFIS Engineering(c)2003-2023 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan
1
Hilti PROFIS Engineering 3.0.84
www.hilti.com
Company: Page: 2
Address: Specifier: Al
Phone I Fax: I E-Mail:
Design: 5x4BP TYPE A BORROUGHS HD Date: 4/13/2023
Fastening point:
1.1 Design results
Case Description Forces[Ib]/Moments[in.lb] Seismic Max.Util.Anchor[%]
1 Load case:Design loads N= 1,122;Vx=0;Vy=-453; yes 38
Mx=0;My=0;Mz=0;
2 Load case/Resulting anchor forces •y
Anchor reactions[Ib]
0 2
Tension force:(+Tension,-Compression)
Anchor Tension force Shear force Shear force x Shear force y
1 561 226 0 -226
2 561 226 0 -226 frx
Tension
max.concrete compressive strain: -[%o]
max.concrete compressive stress: -[psi]
resulting tension force in(x/y)=(0.000/0.000): 1,122[Ib]
resulting compression force in(x/y)=(0.000/0.000):0[Ib]
01
Anchor forces are calculated based on the assumption of a rigid anchor plate.
3 Tension load
Load N.[Ib] Capacity• Nn[Ib] Utilization RN=N18/. Nn Status
Steel Strength* 561 4,869 12 OK
Pullout Strength* N/A N/A N/A N/A
Concrete Breakout Failure"' 1,122 3,030 38 OK
"highest loaded anchor **anchor group(anchors in tension)
Input data and results must be checked for conformity with the existing conditions and for plausibility!
PROFIS Engineering(c)2003-2023 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan
2
Hilti PROFIS Engineering 3.0.84
www.hilti.com
Company: Page: 3
Address: Specifier: Al
Phone I Fax: I E-Mail:
Design: 5x4BP TYPE A BORROUGHS HD Date: 4/13/2023
Fastening point:
3.1 Steel Strength
Nsa =ESR value refer to ICC-ES ESR-4266
Nsa>Nua ACI 318-14 Table 17.3.1.1
Variables
Ase,N[In.2] futa[psi]
0.05 126,204
Calculations
Nsa[Ib]
6,493
Results
Nsa[lb] 4,steel 4,nonductiie 4, Nsa[Ib] Nua[Ib]
6,493 0.750 1.000 4,869 561
Input data and results must be checked for conformity with the existing conditions and for plausibility!
PROFIS Engineering(c)2003-2023 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan
3
Hilti PROFIS Engineering 3.0.84
www.hilti.com
Company: Page: 4
Address: Specifier: Al
Phone I Fax: I E-Mail:
Design: 5x4BP TYPE A BORROUGHS HD Date: 4/13/2023
Fastening point:
3.2 Concrete Breakout Failure
Ncb9 — `ANco/ W ec,N Wed,N Wc,N Wcp,N Nb ACI 318-14 Eq.(17.4.2.1b)
Ncb9 >Nua ACI 318-14 Table 17.3.1.1
AN, see ACI 318-14,Section 17.4.2.1,Fig.R 17.4.2.1(b)
ANco =9 het ACI 318-14 Eq.(17.4.2.1c)
1
WecN = (1 +2eN) <1.0 ACI 318-14 Eq.(17.4.2.4)
3 hef
W ed.N =0.7+0.3 (15hca,min <1.0 ACI 318-14 Eq.(17.4.2.5b)
ef
W cp N =MAX(ca—min 15hetl <1.0 ACI 318-14 Eq.(17.4.2.7b)
�C�ac Cac f
Nb =kc X a Vfc hef5 ACI 318-14 Eq.(17.4.2.2a)
Variables
het[in.] ec1.N[in.] ec2,N[in.] Ca min[in.] W c,N
2.500 0.000 0.000 6.500 1.000
ca.[in.] kc X a tc[psi]
5.500 17 1.000 2,500
Calculations
AN,[in.2] ANco Un 2] W ecl,N Wec2,N Wed,N Wcp,N Nb[lb]
90.19 56.25 1.000 1.000 1.000 1.000 3,360
Results
Ncb9[lb] w concrete seismic wnonductile 4, Ncb9[lb] Nua[lb]
5,387 0.750 0.750 1.000 3,030 1,122
Input data and results must be checked for conformity with the existing conditions and for plausibility'
PROFIS Engineering(c)2003-2023 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan
4
NMIII
Hilti PROFIS Engineering 3.0.84
www.hilti.com
Company:
Address: Page: 5
Specifier: Al
Phone I Fax: I E-Mail:
Design: 5x4BP TYPE A BORROUGHS HD Date: 4/13/2023
Fastening point:
4 Shear load
Load Vua[Ib] Capacity Vn[Ib] Utilization/Iv=Vua/• Vn Status
Steel Strength* 226 2,201 11 OK
Steel failure(with lever arm)* N/A N/A N/A N/A
Pryout Strength** 453 7,542 7 OK
Concrete edge failure in direction y** 453 2,291 20 OK
*highest loaded anchor **anchor group(relevant anchors)
4.1 Steel Strength
Vsa,eq =ESR value refer to ICC-ES ESR-4266
Vsteel?Vua ACI 318-14 Table 17.3.1.1
Variables
Aso/[in•z] futa[psi] aV,seis
0.05 126,204 1.000
Calculations
Vsa,eq[lb]
3,386
Results
Vsa,eq[lb] 4)steel 4nonductile Vsa,eq[Ib] Vua[lb]
3,386 0.650 1.000 2,201 226
Input data and results must be checked for conformity with the existing conditions and for plausibility!
PROFIS Engineering(c)2003-2023 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan
5
Mita
Hilti PROFIS Engineering 3.0.84
www.hilti.com
Company: Page: 6
Address: Specifier: Al
Phone I Fax: I E-Mail:
Design: 5x4BP TYPE A BORROUGHS HD Date: 4/13/2023
Fastening point:
4.2 Pryout Strength
Vcpg =kcp [(A NNrAa) '.Ifec,N Wed,N Wc,N Wcp,N Nb ] ACI 318-14 Eq.(17.5.3.1 b)
Vcpg >Vua ACI 318-14 Table 17.3.1.1
ANc see ACI 318-14,Section 17.4.2.1,Fig.R 17.4.2.1(b)
ANOO =9 h2er ACI 318-14 Eq.(17.4.2.1c)
1
WecN = \1 +2eN/ <1.0 ACI 318-14 Eq.(17.4.2.4)
3 hef
W ed,N =0.7+0.3 (15hefca,min) <1.0 ACI 318-14 Eq.(17.4.2.5b)
W cp,N =MAX(C=min 1.5hef) <1.0 ACI 318-14 Eq.(17.4.2.7b)
cac cac
Nb =Ica k a c hef ACI 318-14 Eq.(17.4.2.2a)
Variables
kcp hef[in.] ect,N[in.] ec2.N[in.] ca,min[in]
2 2.500 0.000 0.000 6.500
W c.N Cac[in.] kc X a fc[psi]
1.000 5.500 17 1.000 2,500
Calculations)
ANc[in•2] ANCO[In.2] W ecl,N Wec2,N Wed,N Wcp,N Nb[Ib]
90.19 56.25 1.000 1.000 1.000 1.000 3,360
Results
Vcpg[Ib] concrete (1)seismic wnonductile 4, Vcpg[Ib] Vua[Ib]
10,774 0.700 1.000 1.000 7,542 453
Input data and results must be checked for conformity with the existing conditions and for plausibility!
PROFIS Engineering(c)2003-2023 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan
6
- Hilti PROFIS Engineering 3.0.84
www.hilti.com
Company: Page: 7
Address: Specifier: Al
Phone I Fax: I E-Mail:
Design: 5x4BP TYPE A BORROUGHS HD Date: 4/13/2023
Fastening point:
4.3 Concrete edge failure in direction y-
Vcb = (AVc0) W ed,V Wc,V Wh,V Wparallel,V Vb ACI 318-14 Eq.(17.5.2.1 a)
'`Vc
4) Vcb >V a ACI 318-14 Table 17.3.1.1
Avc see ACI 318-14,Section 17.5.2.1,Fig.R 17.5.2.1(b)
Avco =4.5 cat ACI 318-14 Eq.(17.5.2.1 c)
Ni ed,V =0.7+0.3(1 Scat) 1.0 ACI 318-14 Eq.(17.5.2.6b)
1.5Cat
W h,v = h >1.0 ACI 318-14 Eq.(17.5.2.8)
a
�C�
Vb = (7(d)o.z ) X a Vfc oat ACI 318-14 Eq.(17.5.2.2a)
a
Variables
cat[in.] cat[in.] W c,v ha[in.] la[in.]
6.500 6.500 1.000 6.000 2.500
k a da[in.] fc[psi] W parallel,V
1.000 0.375 2,500 1.000
Calculations
Avc[in.2] Avco[in•2] W ed,V Wh,v Vb[Ib]
97.50 190.13 0.900 1.275 5,191
Results
Vcb[lb] concrete +seismic 4)nonductile 4) Vcb[Ib] Vua[Ib]
3,054 0.750 1.000 1.000 2,291 453
5 Combined tension and shear loads
ON Rv Utilization No,[%] Status
0.370 0.198 5/3 26 OK
RNV=QN+[3V<=1
Input data and results must be checked for conformity with the existing conditions and for plausibility!
PROFIS Engineering(c)2003-2023 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan
7
Hilti PROFIS Engineering 3.0.84
www.hilti.com
Company: Page: 8
Address: Specifier: Al
Phone I Fax: I E-Mail:
Design: 5x4BP TYPE A BORROUGHS HD Date: 4/13/2023
Fastening point:
6 Warnings
• The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations(AS 5216:2021,ETAG 001/Annex C,
EOTA TR029 etc.).This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered-the
anchor plate is assumed to be sufficiently stiff,in order not to be deformed when subjected to the design loading.PROFIS Engineering calculates
the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above.The
proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for
agreement with the existing conditions and for plausibility!
• Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential
concrete failure prism into the structural member.Condition B applies where such supplementary reinforcement is not provided,or where pullout
or pryout strength governs.
• Refer to the manufacturer's product literature for cleaning and installation instructions.
• For additional information about ACI 318 strength design provisions,please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
• An anchor design approach for structures assigned to Seismic Design Category C,D,E or F is given in ACI 318-14,Chapter 17,Section
17.2.3.4.3(a)that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure. If this is NOT the
case,the connection design(tension)shall satisfy the provisions of Section 17.2.3.4.3(b),Section 17.2.3.4.3(c),or Section 17.2.3.4.3(d).The
connection design(shear)shall satisfy the provisions of Section 17.2.3.5.3(a),Section 17.2.3.5.3(b),or Section 17.2.3.5.3(c).
• Section 17.2.3.4.3(b)/Section 17.2.3.5.3(a)require the attachment the anchors are connecting to the structure be designed to undergo ductile
yielding at a load level corresponding to anchor forces no greater than the controlling design strength.Section 17.2.3.4.3(c)/Section 17.2.3.5.3
(b)waive the ductility requirements and require the anchors to be designed for the maximum tension/shear that can be transmitted to the
anchors by a non-yielding attachment.Section 17.2.3.4.3(d)/Section 17.2.3.5.3(c)waive the ductility requirements and require the design
strength of the anchors to equal or exceed the maximum tension/shear obtained from design load combinations that include E,with E increased
by coo.
• Hilti post-installed anchors shall be installed in accordance with the Hilti Manufacturer's Printed Installation Instructions(MPH).Reference ACI
318-14,Section 17.8.1.
Fastening meets the design criteria!
Input data and results must be checked for conformity with the existing conditions and for plausibility!
PROFIS Engineering(c)2003-2023 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan
8
Ems
Hilti PROFIS Engineering 3.0.84
www.hilti.com
Company: Page: 9
Address: Specifier: Al
Phone I Fax: I E-Mail:
Design: 5x4BP TYPE A BORROUGHS HD Date: 4/13/2023
Fastening point:
7 Installation data
Anchor type and diameter:Kwik Bolt TZ2-CS 3/8(2 1/2)
hnom3
Profile:Square HSS(AISC),HSS1-1/4X1-1/4X.125;(L x W x T)=1.250 in.x Item number:2210238 KB-TZ2 3/8x3 3/4
1.250 in.x 0.125 in.
Hole diameter in the fixture:df=0.438 in. Maximum installation torque:361 in.lb
Plate thickness(input):0.250 in. Hole diameter in the base material:0.375 in.
Recommended plate thickness:not calculated Hole depth in the base material:3.250 in.
Drilling method:Hammer drilled Minimum thickness of the base material:5.000 in.
Cleaning:Manual cleaning of the drilled hole according to instructions for use is
required.
Hilti KB-TZ2 stud anchor with 3 in embedment,3/8(2 1/2)hnom3,Carbon steel,installation per ESR-4266
7.1 Recommended accessories
Drilling Cleaning Setting
• Suitable Rotary Hammer • Manual blow-out pump • Torque controlled cordless impact tool
• Properly sized drill bit • Torque wrench
• Hammer
y
2.000 2.000
L.
N
■ O
M X
N
0.875 2.250 0.875
Coordinates Anchor[in.]
Anchor x y c_x c,x c_ c,y
1 -1.125 -1.625 6.500 - 6.500 -
2 1.125 1.625 8.750 - 9.750 -
Input data and results must be checked for conformity with the existing conditions and for plausibility!
PROFIS Engineering(c)2003-2023 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan
9
Hilti PROFIS Engineering 3.0.84
www.hilti.com
Company: Page: 10
Address: Specifier: Al
Phone I Fax: I E-Mail:
Design: 5x4BP TYPE A BORROUGHS HD Date: 4/13/2023
Fastening point:
8 Remarks; Your Cooperation Duties
• Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles,formulas and
security regulations in accordance with Hilti's technical directions and operating,mounting and assembly instructions,etc.,that must be strictly
complied with by the user.All figures contained therein are average figures,and therefore use-specific tests are to be conducted prior to using
the relevant Hilti product.The results of the calculations carried out by means of the Software are based essentially on the data you put in.
Therefore,you bear the sole responsibility for the absence of errors,the completeness and the relevance of the data to be put in by you.
Moreover,you bear sole responsibility for having the results of the calculation checked and cleared by an expert,particularly with regard to
compliance with applicable norms and permits,prior to using them for your specific facility.The Software serves only as an aid to interpret norms
and permits without any guarantee as to the absence of errors,the correctness and the relevance of the results or suitability for a specific
application.
• You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular,you must arrange for the
regular backup of programs and data and,if applicable,carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
the AutoUpdate function of the Software,you must ensure that you are using the current and thus up-to-date version of the Software in each
case by carrying out manual updates via the Hilti Website.Hilti will not be liable for consequences,such as the recovery of lost or damaged data
or programs,arising from a culpable breach of duty by you.
Input data and results must be checked for conformity with the existing conditions and for plausibility!
PROFIS Engineering(c)2003-2023 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan
10
Ede
tin
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackenyineering.com,email:al(d storagerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Base Plate Configuration:Type A Clip Shelving: 87.375"H x 48"W x 24.5"D
Section
Actual base plate size is 5 in x 4 in x 0.25 in thk
w
Eff Width=W= 5.00 in Column Width=b= 1.000 in
Eff Depth=D= 4.00 in Column depth=b= 2.250 in
Plate Thickness=t= 0.250 in L= 2.00 in D •
Et Mb
Fy= 36,000 psi
•
b I�—L
Base Plate Plan f—w
Cross Aisle Loads
Axial DL= 101 lb DL+0.75LL+0.75*0.7*Pseismic= 2,133 lb
Axial L= 1,806 lb
Pseismic= 1,290 lb
L= Base Plate Depth-Col Depth
= 2.00 in
fa= P/A= P/(D*W) M= wL^2/2=fa*L^2/2
= 107 psi = 213 in-lb/in
Sbase/in= (1)(t^2)/6 Fbase= 0.75*Fy
= 0.01 in^3/in = 27,000 psi
fb/Fb= M/[(S-plate)(Fb)]
0.76 OK
_i-
C
15,4 ,.�
v Yt}
a:54
a.1.
116ii-YY. azFr
t60
BMW OP TIGARD 3206-A 23-0410-2 CLIP SHELVING Page of 4/13/2023
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:al(a storagerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Slab on Grade Configuration:Type A Clip Shelving:87.375"H x 48"W x 24.5"D
P •'•'�slab
"ill
a j Concrete
:•'I' : r° fc= 2,500 psi
•••D b e tslab=t= 6.0 in
slab T I phi=0= 0.65
: Cross
---- - Aisle
1~ ° _ Soil
X - a y -� B •.:•• • fsoil= 1,000 psf
'• Down Aisle '
• Movt= 31,616 in-lb
Frame depth= 24.5 in
SLAB ELEVATION
Baserlate Plan View
Base Plate
B= 5.00 in width=a= 2.00 in eff. baseplate width=c= 3.50 in
D= 4.00 in depth=b= 2.25 in eff. baseplate depth=e= 3.13 in
Load Case 1:Product+Seismic
Product DL= 208 lb P-seismic=E= (Movt/Frame depth) (Strength Design Loads)
Product LL= 1,806 lb = 1,290 lb
Puncture I
Pu= 1.2DL+ LOLL+ 1.0*E Fpunct= 2.66*sgrt(fc)*phi
= 3,346 lb 15 PSI = 86.5 psi
Apunct= [(c+t)+(e+t)]*2*t fv/Fv= Pu/(Apunct*Fpunct)
= 223.50 inA2 = 0.17 < 1.0 OK
Slab Bending I
Asoil= (P*144)/(fsoil) L= (Asoil)^0.5 y= (c*e)^0.5+t*2
= 482 inA2 = 21.95 in = 15.3 in
x= (L-y)/2 M= w*x^2/2 S-slab= 1*t^2/6
= 3.3 in = (fsoil*x^2)/(144*2) = 6.0 in^3
Fb= 5*(phi)*(fc)^0.5 = 38 in-lb fb/Fb= M/(S-slab*Fb)
= 162.5 psi = 0.04 < 1.0 OK
Load Case 2:Static Loads WHAT IS 5*SQRT(fc) ?
MODULUS OF RUPTURE?
PDL= 208 lb PLL= 1,806 lb
Puncture
Pu= 1.2*PDL+ 1.6*PLL Fpunct= 2.66*sgrt(fc)*phi
= 3,139 lb = 86.5 psi
Apunct= [(c+t)+(e+t)]*2*t fv/Fv= Pu/(Apunct*Fpunct)
= 224 inA2 = 0.16 < 1.0 OK
Slab Bending
Asoil= (Pu*144)/(fsoil) L= (Asoil)^0.5 y= (c*e)^0.5+t*2
= 452 inA2 = 21.26 in = 15.3 in
x= (L-y)/2 M= w*x^2/2 S-slab= 1*t^2/6
= 3.0 in = (fsoil*x^2)/(144*2) = 6.0 in^3
Fb= 5*(phi)*(fc)^0.5 = 31 in-lb fb/Fb= M/(S-slab*Fb)
= 162.5 psi = 0.03 < 1.0,OK
BMW OF TIGARD 320G-A 23-04 I 0-2 CLIP SHELVING Page of 4/1 3/2023
f r �
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:al@storagerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Design Data Configuration:Grade Level Unit M Rivetspan Shelving:72"H x 72.5"W x 36.5"D
1) The analyses of the light duty storage fixtures conforms to the requirements of the 2021 IBC,2022 OSSC and ASC 7-16
2) Steel minimum yield, Fy=36 ksi unless otherwise noted on the plans or analysis herein.
3) Anchor bolts shall be provided by installer per ICC reference on the calculations herein.
4) All welds shall conform to AWS procedures,utilizing E70xx electrodes or similar.All such welds shall be performed
in shop,with no field welding allowed other than those supervised by a licensed deputy inspector.
5) Slab on grade is 6 in thick concrete with fc=2500 psi on deck
72 . 361
WIRE
WOO
221 22
WIRE
} 7216
2
WIRE
eme
i ii
�
4 ' 4
tJ 2
WIRE
WOW COM
410
22 FRONT SIDE
lz-16 .1 316
UNIT M
77"x36"x72"
4 SHELVES
1
- €e'
t-I,
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:al@storagerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Summary of Results Configuration:Grade Level Unit M Rivetspan Shelving:72"H x 72.5"W x 36.5"D
72i 361
Mar
Shelf Configuration
I I #of Levels= 4
2211 2,1 Depth= 36.5 in
t wane Height= 72.0 in
A* «+ I Width= 72.5 in I
72 6
274zz� Location Elevation Load
I h1= 4.5 in 500 lb I
WIRE
""° Woe i h2= 22.5 in 500 lb
h3= 22.5 in 500 lb
24 24 h4= 22.5 in 500 lb
wIRF i
w
4119% FRONT sire
16 31 -.0
UNIT M
72"x36"x72"
4 SHELVES
Seismic Coeff:
Ss= 0.863 Product Load/Lvl= 0 lb
S1= 0.397
Fa= 1.200
Fv= 1.803
Steel Fy= 36,000 psi
I I
Total Height= 72.0 in
Component Summary
Column Dbl Angle T Post 14ga 0.38 OK
Beam DRAB Dbl Rivet Beam 0.06 OK
Beam Rivet 1/4"Diam Rivet x 1-1/2"Spacing 0.40 OK
Anchor** (2)3/8"X 2.5"Embedment KWIK BOLT TZ2 per footplate(ICC ESR#4266)Inspection Required.Net Uplift=189 lb 0.22 OK
Footplate 4"x 2"x 14 GA Footplates Typical 0.06 OK
Slab on Grade 6 in thick concrete with fc=2500 psi on deck 0.06 OK
(Notes
1
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:al@storagerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Seismic Forces Configuration:Grade Level Unit M Rivetspan Shelving:72"H x 72.5"W x 36.5"D
V1= SDs*W/R
Ss= 0.86
V2= [0.4*ap*SDs*Ws*(1+2*z/h)/(RP/IP)l : S1= 0.40
V3= 0.044*Sds Fa= 1.20
V4= 0.5*S1/R I- Fv= 1.80
vIIM Sds= 0.690
V1= 0.1726 hb Sd1= 0.477
V2= 0.1726 - R=Rp= 4.00
V3= 0.0304 M Ip= 1.00
•
V4= 0.0000 " i ap= 2.5
Vminimum= 0.015 z/h= 0.00
Elevation
#of levels= 4
Seismic Coeff=Cs= 0.1726 Depth= 36.5 in
(Either Direction) Product LL/Shlf= 500 lb
Cs*Ip= 0.1726 DL/Shlf= 27 lb
Down Aisle Seismic Shear(Longitudinal) Cross Aisle Seismic Shear(Transverse)
Wlong= E(LL*0.67+DL) Wtransv= E(LL*0.67+DL)
= 1,113 lb = 1,113 lb
Vlong=VL= 0.1726* 1113 lb Vtransverse=VT= 0.1726* 1113 lb
= 192 lb = 192 lb VT/col= 96 lb
V/2= 96 lb
Transverse Distribution Transverse Moment Resisting Dbl Rivet Beams
Level LL DL hi wi*hi Fi Fi*hi Vn hb Mn Mconn
1 0 lb 27 lb 5 in 122 0.3 lb 1 in-lb 96.00 lb 5 in 432 in-lb 621 in-lb
2 500 lb 27 lb 27 in 14,229 34.9 lb 942 in-lb 72.00 lb 23 in 810 in-lb 675 in-lb
3 500 lb 27 lb 50 in 26,087 63.9 lb 3,163 in-lb 48.00 lb 23 in 540 in-lb 405 in-lb
4 500 lb 27 lb 72 in 37,944 92.9 lb 6,689 in-lb 24.00 lb 23 in 270 in-lb 135 in-lb
Sum: 1,500 lb 108 lb W=1608 lb 78,381 192 lb Movt=10795.5 in-lb Smilarly, Mlong= 810 in-lb
Mconn-long= 675 in-lb
Transverse Column Loads Longitudinal Column Loads
Movt= 10,796 in-lb
Pstatic DL= 54 lb Pseismic= Movt/D Pstatic= E(LL+DL) Mlong= MT.VJVT
Pstatic LL= 750 lb = 296 lb = 804 lb = 810 in-lb
Mconn= 2,241 in-lb 4ltransv=MT= 810 in-lb
1
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:al@storagerackengineering.com
storagerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Transverse Column Loads(Weak Axis Bending) Configuration:Grade Level Unit M Rivetspan Shelving:72"H x 72.5"W x 36.5
Net Section Properties
Column= Dbl Angle T Post 14ga
Aeff= 0.471 in^2 4f= 1.67
Ix(downaisle)= 0.297 in^4 E= 29,500 ksi
Sx(downaisle)= 0.158 inA3 Cb= 1.0 1 9/16"
rx(downaisle)= 0.794 in Cmx= 1.00
Iy(crossaisle)= 0.177 in^4 Kx= 1.0
Sy(crossaisle)= 0.129 in^3 Lx= 22.5 in
ry(crossaisle)= 0.614 in Ky= 1.01 9/1 6" 1 9/1 6"
Fy= 36 ksi Ly= 22.5 in
Axial DL= 54 lb
Axial LL= 750 lb
Pseismic= 296 lb
Loads Load Case: (Fully Loaded)
Axial=P= DL+0.75LL+0.75*0.7*Pseismic
= 772 lb Moment=My= 810 in-lb
Axial Analysis
KxLx/rx= 1*22.570.7942" KyLy/ry= 1*22.5"/0.6139" Fe > Fy/2
= 28.3 = 36.7 Fn= Fy(1-Fy/4Fe)
= 36 ksi*[1-36 ksi/(4*216.7 ksi)]
Fe= n^2E/(KL/r)max^2 Fy/2= 18.0 ksi = 34.5 ksi
= 216.7ksi
Pn= Aeff*Fn Qc= 1.92 Pa= Pn/4c
= 16,238 lb = 16238 lb/1.92
= 8,457 lb
P/Pa= 0.09 < 0.15
Bending Analysis
Check: P/Pa+My/May 5 1.0
Pno= Ae*Fy Pao= Pno/Qc Myield=My= Sy*Fy
= 0.471 in^2*36000 psi = 169421b/1.92 = 0.129 in^3*36000 psi
= 16,942 lb = 8,824 lb = 4,658 in-lb
May= My/Qf Pcr= n^2EI/(KL)max^2
= 4658 in-lb/1.67 = nA2*29500000 psi/(1*22.5 in)^2
= 2,789 in-lb = 170,752 lb
p= {1/[1-(4c*P/Pcr)]}^-1
= {1/[1-(1.92*772 lb/170752 Ib)]}^-1
= 0.99
Combined Stresses
(772 lb/8457 lb)+(810 in-lb/2789 in-lb)= 0.38 < 1.0,OK (EQ C5-3)
1
ut `
r-
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:al@storagerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Longitudinal Column Loads(Strong Axis Bending) Configuration:Grade Level Unit M Rivetspan Shelving:72"H x 72.5"W x 36.5
Net Section Properties
Column= Dbl Angle T Post 14ga
Aeff= 0.471 inA2 S2f= 1.67
Ix(downaisle)= 0.297 inA4 E= 29,500 ksi
Sx(downaisle)= 0.158 in^3 Cb= 1.0 1 9/16"
rx(downaisle)= 0.794 in Cmx= 1.00
Iy(crossaisle)= 0.177 inA4 Kx= 1.0
Sy(crossaisle)= 0.129 in^3 Lx= 22.5 in
ry(crossaisle)= 0.614 in Ky= 1.0 1 9/16" 7r 1 9/16"
Jr
Fy= 36 ksi Ly= 22.5 in
Axial DL= 54 lb
Axial LL= 750 lb
Pseismic= 0 lb
Loads Load Case: (Fully Loaded)
Axial=P= DL+0.75LL+0.75*0.7*Pseismic
= 617 lb Moment=Mx= 810 in-lb
Axial Analysis
KxLx/rx= 1*22.5"/0.7942" KyLy/ry= 1*22.570.6139" Fe > Fy/2
= 28.3 = 36.7 Fn= Fy(1-Fy/4Fe)
= 36 ksi*[1-36 ksi/(4*216.7 ksi)]
Fe= n^2E/(KL/r)max^2 Fy/2= 18.0 ksi = 34.5 ksi
= 216.7ksi
Pn= Aeff*Fn Qc= 1.92 Pa= Pn/Qc
= 16,238 lb = 16238 lb/1.92
= 8,457 lb
P/Pa= 0.07 < 0.15
Bending Analysis
Check: P/Pa+My/May<_ 1.0
Pno= Ae*Fy Pao= Pno/Qc Myield=My= Sx*Fy
= 0.471 in^2*36000 psi = 169421b/1.92 = 0.158 in^3*36000 psi
= 16,942 lb = 8,824 lb = 5,699 in-lb
May= My/Qf Pcr= n^2EI/(KL)max^2
= 5699 in-lb/1.67 = nA2*29500000 psi/(1*22.5 in)^2
= 3,412 in-lb = 170,752 lb
p= {1/[1-(Qc*P/Pcr)]}^-1
= {1/[1-(1.92*617 lb/170752 Ib)]}^-1
= 0.99
Combined Stresses
(617 lb/8457 lb)+(810 in-lb/3412 in-lb)= 0.31 < 1.0,OK (EQ C5-3)
1
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:al@storagerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Double Rivet Beam Configuration:Grade Level Unit M Rivetspan Shelving:72"H x 72.5"W x 36.5"D
0.745" I c
Downa isle beam
Beam Type= DRAB Dbl Rivet Beam
Ix= 0.1850 in^4 I t=14 9A A A AA AA A
Sx= 0.115 inA3
Fy-beam= 36,000 psi N
Shelf Span=L= 72 in V V V VV V V V
N j
Downaisle beam
It
L ,
Shelf Plan View
DR OH Rivet Beam
Check Beam Bending Check Beam Deflection
Shelf DL= 27 lb
Shelf LL= lb E= 29,500,000 psi
Shelf LL+DL= 27 lb
Load=w=LL*0.67/(2*L)= 3.0 plf D= 5*w*LA4/(384*E*Ix)
= 0.0161 in
M= w*LA2/8
= 160 in-lb Dallow= L/140
= 0.51 in OK
fb= M/Sx
= 1,389 psi
>—
Fb= 0.6*Fy �
7454"
21,600 psi 0 / , 0 R
2.6530" 0 0 1.5" 2.5I60"
tb/Fb= 0.06 OK 0 0
Check DRB Beam Rivets For Static+Seismic Loads
Check load case: DL+0.75LL+0.75*0.7*Mseismic
Rivet Spacing=d= 1.5 in tmin= 0.075 in
Rivet diameter= 0.25 in Fu= 58,000 psi Column
Fy-rivet= 36,000 psi Rivet
M*0.7*0.75= 425 in-lb W= (LL*0.75+DL)/4 Beam
C= M/d = 71b
= 2841b
a
Shear Capacity= Rivet Area*0.4*Fy-rivet
= [(0.25 in)^2*pi/4]*0.4*36000 psi
= 707 lb
w
Bearing Capacity= Rivet Diam*tmin*Fu* 1.2
= 1,305 lb Beam to Column
Effective Shear= [(W/2)^2+C^2]^0.5
= 2841b OK
1
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:algostoragerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Anchors Configuration:Grade Level Unit M Rivetspan Shelving:72"H x 72.5"W x 36.5"D
Check load case: 0.9-0.2*Sds*(D+0.67LL)+/-E
Loads
Vtrans=V= 192 lb
v
DL/Frame= 108 lb
LL/Frame= 1,500 lb Frame Depth=D= 36.5 in
Wst=phi*(DL+0.67LL)total= 848 lb Htop-Iv1=Ht= 72.0 in
LL @ TOP= 500 lb #Levels= 4
DL/Lvl= 27 lb #Anchors/footplate= 2
DL*phi= 21 lb 0.9-0.2Sds=phi= 0.762 T /
Lateral Ovt Forces=E(Fi*hi)*1.15= 12,415 in-lb
D�
SIDE ELEVATION
Fully Loaded rack
Vtrans= 192 lb
Movt= F(Fi*hi) Mst= Wst*D/2 Uplift=T= (Movt-Mst)/D
= 12,415 in-lb = 848 lb*36.5 in/2 = (12415 in-lb-15476 in-lb)/36.5 in
= 15,476 in-lb = -84 lb No Uplift
Top Level Loaded Only
Critical Level= 4 Hgt @ Lvl 4= 72.0 in
Vtop= Cs*LLtop
Vtop=vl= 0.173*500 lb Movt= Vtop*Htop*1.15+V2*Ht/2
= 86 lb = 12,377 in-lb
VDL=V2= 146 lb
Mst= 0.6*(LL-top)*D/2 Uplift=T= (Movt-Mst)/D
= (500 Ib*0.6)*36.5 in/2 = (12377 in-lb-5475 in-lb)/36.5 in
= 5,475 in-lb = 189 lb
Anchor I Net Seismic Max Uplift=1189 LB
Check(2)3/8"X 2.5"Embedment KWIK BOLT TZ2 anchor(s)per footplate**
Special inspection is required per ICC ESR#4266.
1
Hilti PROFIS Engineering 3.0.84
www.hilti.com
Company: Page: 1
Address: Specifier: Al
Phone I Fax: I E-Mail:
Design: 4X2BP TYP M BORROUGHS RIVETSPAN 2 ANCH Date: 4/13/2023
Fastening point:
Specifier's comments:
1 Input data
Anchor type and diameter: Kwik Bolt TZ2-CS 3/8(2 1/2)hnom3
Item number: 2210238 KB-TZ2 3/8x3 3/4
Effective embedment depth: hef,act=2.500 in.,hnom=3.000 in.
Material: Carbon Steel
Evaluation Service Report: ESR-4266
Issued I Valid: 12/17/2021 112/1/2023
Proof: Design Method ACI 318-14/Mech
Stand-off installation: eb=0.000 in.(no stand-off);t=0.188 in.
Anchor plateR: Ix x ly x t=2.000 in.x 4.000 in.x 0.188 in.;(Recommended plate thickness:not calculated)
Profile: no profile
Base material: cracked concrete,2500,fb'=2,500 psi;h=6.000 in.
Installation: hammer drilled hole,Installation condition:Dry
Reinforcement: tension:condition B,shear:condition B;no supplemental splitting reinforcement present
edge reinforcement:none or<No.4 bar
Seismic loads(cat.C,D,E,or F) Tension load:yes(17.2.3.4.3(d))
Shear load:yes(17.2.3.5.3(c))
R-The anchor calculation is based on a rigid anchor plate assumption.
Geometry[in.]&Loading[lb,in.lb]
I
%
Y 6\ o
H
X
Input data and results must be checked for conformity with the existing conditions and for plausibility!
PROFIS Engineering(c)2003-2023 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan
1
wan
Hilti PROFIS Engineering 3.0.84
www.hilti.com
Company: Page: 2
Address: Specifier: Al
Phone I Fax: I E-Mail:
Design: 4X2BP TYP M BORROUGHS RIVETSPAN 2 ANCH Date: 4/13/2023
Fastening point:
1.1 Design results
Case Description Forces[Ib]/Moments[in.lb] Seismic Max.Util.Anchor[%]
1 Load case:Design loads N=378;Vx=0;Vy=-192; yes 55
Mx=0;My=0;Mz=0;
2 Load case/Resulting anchor forces Y
Anchor reactions[Ib] O
Tension force:(+Tension,-Compression)
Anchor Tension force Shear force Shear force x Shear force y
1 620 124 79 -96 Co '`, -ssion
•
2 620 124 -79 -96 A ,
Tension
max.concrete compressive strain: 0.35 M.]
max.concrete compressive stress: 1,502[psi]
resulting tension force in(x/y)=(0.365/0.000): 1,240[Ib]
resulting compression force in(x/y)=(0.904/0.000):862[Ib]
Anchor forces are calculated based on the assumption of a rigid anchor plate. O
3 Tension load
Load Nua[Ib] Capacity 4) N„[Ib] Utilization PN=Nua/. N„ Status
Steel Strength* 620 4,869 13 OK
Pullout Strength* N/A N/A N/A N/A
Concrete Breakout Failure" 1,240 2,293 55 OK
*highest loaded anchor **anchor group(anchors in tension)
Input data and results must be checked for conformity with the existing conditions and for plausibility!
PROFIS Engineering(c)2003-2023 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan
2
Hilti PROFIS Engineering 3.0.84
www.hilti.com
Company:
Page: 3
Address: Specifier: Al
Phone I Fax: I E-Mail:
Design: 4X2BP TYP M BORROUGHS RIVETSPAN 2 ANCH Date: 4/13/2023
Fastening point:
3.1 Steel Strength
Nsa =ESR value refer to ICC-ES ESR-4266
4 Nsa >_Nua ACI 318-14 Table 17.3.1.1
Variables
Ase,N[in.2] futa[psi]
0.05 126,204
Calculations
Nsa[lb]
6,493
Results
Nsa[Ib] steel Wnonductile 4) Nsa[Ib] Nua[Ib]
6,493 0.750 1.000 4,869 620
Input data and results must be checked for conformity with the existing conditions and for plausibility!
PROFIS Engineering(c)2003-2023 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan
3
em
- Hilti PROFIS Engineering 3.0.84
www.hilti.com
Company: Page: 4
Address: Specifier: Al
Phone I Fax: I E-Mail:
Design: 4X2BP TYP M BORROUGHS RIVETSPAN 2 ANCH Date: 4/13/2023
Fastening point:
3.2 Concrete Breakout Failure
Ncbg = (Atticc0) W ec,N Wed,N Wc,N Wcp,N Nb ACI 318-14 Eq.(17.4.2.1 b)
'`N
4) Ncbg >_Nua ACI 318-14 Table 17.3.1.1
AN. see ACI 318-14,Section 17.4.2.1,Fig.R 17.4.2.1(b)
ANco =9 h2ef ACI 318-14 Eq.(17.4.2.1c)
1
W ec,N = (1 +2 he)/ <1.0 ACI 318-14 Eq.(17.4.2.4)
3 hef
W ed,N =0.7+0.3(Ca,min) <1.0 ACI 318-14 Eq.(17.4.2.5b)
1.5hef
W cp,N =MAX(ca_min 1.5hef) <1.0 ACI 318-14 Eq.(17.4.2.7b)
C�ac ' cac
Nb =Ice A a \'tc hef5 ACI 318-14 Eq.(17.4.2.2a)
Variables
het[in.] eci,N[in.] ec2,N[in] Ca,win[in.] W c,N
2.500 0.000 0.000 4.000 1.000
Cac[in.] kc X a fc[psi]
5.500 17 1.000 2,500
Calculations
ANc[in.2] AN [in.2] W ecl,N Wec2,N Wed,N Wcp,N Nb FIb]
78.75 56.25 1.000 1.000 1.000 1.000 3,360
Results
Ncbg[lb] 41 concrete +seismic 4)nonductile 4 Ncbg[lb] N.[lb]
4,704 0.650 0.750 1.000 2,293 1,240
Input data and results must be checked for conformity with the existing conditions and for plausibility!
PROFIS Engineering(c)2003-2023 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan
4
Hilti PROFIS Engineering 3.0.84
www.hilti.com
Company: Page: 5
Address: Specifier: Al
Phone I Fax: I E-Mail:
Design: 4X2BP TYP M BORROUGHS RIVETSPAN 2 ANCH Date: 4/13/2023
Fastening point:
4 Shear load
Load Vua[Ib] Capacity• Vn[Ib] Utilization Pv=Vua/+ Vn Status
Steel Strength* 124 2,201 6 OK
Steel failure(with lever arm)* N/A N/A N/A N/A
Pryout Strength* 124 3,293 4 OK
Concrete edge failure in direction y-** 208 1,316 16 OK
*highest loaded anchor **anchor group(relevant anchors)
4.1 Steel Strength
Vsa,eq =ESR value refer to ICC-ES ESR-4266
4) Vsteel>Vua ACI 318-14 Table 17.3.1.1
Variables
Ase,v[In.z] fora[psi] 0V,seis
0.05 126,204 1.000
Calculations
Vsaeq[Ib]
3,386
Results
Vsa eq[Ib] 4)steel 4)nonductile Vsa eq[Ib] V.[Ib]
3,386 0.650 1.000 2,201 124
Input data and results must be checked for conformity with the existing conditions and for plausibility!
PROFIS Engineering(c)2003-2023 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan
5
Esst
Hilti PROFIS Engineering 3.0.84
www.hilti.com
Company: Page: 6
Address: Specifier: Al
Phone I Fax: I E-Mail:
Design: 4X2BP TYP M BORROUGHS RIVETSPAN 2 ANCH Date: 4/13/2023
Fastening point:
4.2 Pryout Strength
Vcp =
kcp "ANco W ed,N Wc,N NJ cp,N Nb l ACI 318-14 Eq.(17.5.3.1a)
4 Vcp >Vua ACI 318-14 Table 17.3.1.1
ANc see ACI 318-14,Section 17.4.2.1,Fig.R 17.4.2.1(b)
ANco =9 het ACI 318-14 Eq.(17.4.2.1 c)
1
W ec,N = (1 +2 eN <1.0 ACI 318-14 Eq.(17.4.2.4)
3 het
W ed,N =0.7+0.3 (Ca,min1.5hef) <1.0 ACI 318-14 Eq.(17.4.2.5b)
W cp,N =MAX(C=min 1.5hef) <1.0 ACI 318-14 Eq.(17.4.2.7b)
�Crac Cac
Nb =kc X a yfc hef5 ACI 318-14 Eq.(17.4.2.2a)
Variables
kcp hef[in.] ec1,N[in.] ecz N[in.] c [in.]
Ca
2 2.500 0.000 0.000 4.000
W c,N Cac[in.] Ica )`.a tc[psi]
1.000 5.500 17 1.000 2,500
Calculations
ANc[In.2] ANco[in.2] V ecl,N Vec2,N Ved,N wcp,N Nb[Ib]
39.38 56.25 1.000 1.000 1.000 1.000 3,360
Results
Vcp[Ib] 4)concrete +seismic wnonductile 4) Vcp[Ib] Vua[Ib]
4,704 0.700 1.000 1.000 3,293 124
Input data and results must be checked for conformity with the existing conditions and for plausibility'
PROFIS Engineering(c)2003-2023 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan
6
Hilti PROFIS Engineering 3.0.84
www.hilti.com
Company: Page: 7
Address: Specifier: Al
Phone I Fax: 1 E-Mail:
Design: 4X2BP TYP M BORROUGHS RIVETSPAN 2 ANCH Date: 4/13/2023
Fastening point:
4.3 Concrete edge failure in direction y-
Vcb = `Auto/ W ed,V Wc,v Wh,V Wparallel,V Vb ACI 318-14 Eq.(17.5.2.1a)
4) Vcb >Vea ACI 318-14 Table 17.3.1.1
Av. see ACI 318-14,Section 17.5.2.1,Fig.R 17.5.2.1(b)
Avco =4.5 cat ACI 318-14 Eq.(17.5.2.1 c)
w ed,v =0.7+0.3(1 5Caf/ <1.0 ACI 318-14 Eq.(17.5.2.6b)
h,v = .ha
>1.0 ACI 318-14 Eq.(17.5.2.8)
1 5cat
Vb = (7 (d)0.2 ') a,a Vfc Ca� ACI 318-14 Eq.(17.5.2.2a)
a
Variables
cal[in.] ca2[in.] W c,v ha[in.] I.[in.]
4.000 4.000 1.000 6.000 2.500
a da[in.] lc[Psi] W parallel,V
1.000 0.375 2,500 1.000
Calculations
Av.[in.2] Avco[in.2] W ed,V Wh,V Vb[Ib]
60.00 72.00 0.900 1.000 2,506
Results
Vcb[Ib] concrete +seismic wnonductile 4) Vcb[Ib] Vua[Ib]
1,879 0.700 1.000 1.000 1,316 208
5 Combined tension and shear loads
RN I V Utilization RN,v[%] Status
0.541 0.158 5/3 41 OK
p R Rv
Input data and results must be checked for conformity with the existing conditions and for plausibility!
PROFIS Engineering(c)2003-2023 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan
7
Hilti PROFIS Engineering 3.0.84
www.hilti.com
Company: Page: 8
Address: Specifier: Al
Phone I Fax: I E-Mail:
Design: 4X2BP TYP M BORROUGHS RIVETSPAN 2 ANCH Date: 4/13/2023
Fastening point:
6 Warnings
• The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations(AS 5216:2021,ETAG 001/Annex C,
EOTA TR029 etc.).This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered-the
anchor plate is assumed to be sufficiently stiff,in order not to be deformed when subjected to the design loading.PROFIS Engineering calculates
the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above.The
proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for
agreement with the existing conditions and for plausibility!
• Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential
concrete failure prism into the structural member.Condition B applies where such supplementary reinforcement is not provided,or where pullout
or pryout strength governs.
• Refer to the manufacturer's product literature for cleaning and installation instructions.
• For additional information about ACI 318 strength design provisions,please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
• An anchor design approach for structures assigned to Seismic Design Category C,D,E or F is given in ACI 318-14,Chapter 17,Section
17.2.3.4.3(a)that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure.If this is NOT the
case,the connection design(tension)shall satisfy the provisions of Section 17.2.3.4.3(b),Section 17.2.3.4.3(c),or Section 17.2.3.4.3(d).The
connection design(shear)shall satisfy the provisions of Section 17.2.3.5.3(a),Section 17.2.3.5.3(b),or Section 17.2.3.5.3(c).
• Section 17.2.3.4.3(b)/Section 17.2.3.5.3(a)require the attachment the anchors are connecting to the structure be designed to undergo ductile
yielding at a load level corresponding to anchor forces no greater than the controlling design strength.Section 17.2.3.4.3(c)/Section 17.2.3.5.3
(b)waive the ductility requirements and require the anchors to be designed for the maximum tension/shear that can be transmitted to the
anchors by a non-yielding attachment.Section 17.2.3.4.3(d)/Section 17.2.3.5.3(c)waive the ductility requirements and require the design
strength of the anchors to equal or exceed the maximum tension/shear obtained from design load combinations that include E,with E increased
by wo.
• Hilti post-installed anchors shall be installed in accordance with the Hilti Manufacturer's Printed Installation Instructions(MPH).Reference ACI
318-14,Section 17.8.1.
Fastening meets the design criteria!
Input data and results must be checked for conformity with the existing conditions and for plausibility!
PROFIS Engineering(c)2003-2023 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan
8
loss
Hilti PROFIS Engineering 3.0.84
www.hilti.com
Company: Page: 9
Address: Specifier: Al
Phone I Fax: I E-Mail:
Design: 4X2BP TYP M BORROUGHS RIVETSPAN 2 ANCH Date: 4/13/2023
Fastening point:
7 Installation data
Anchor type and diameter:Kwik Bolt TZ2-CS 3/8(2 1/2)
hnom3
Profile:no profile Item number:2210238 KB-TZ2 3/8x3 3/4
Hole diameter in the fixture:df=0.438 in. Maximum installation torque:361 in.lb
Plate thickness(input):0.188 in. Hole diameter in the base material:0.375 in.
Recommended plate thickness:not calculated Hole depth in the base material:3.250 in.
Drilling method:Hammer drilled Minimum thickness of the base material:5.000 in.
Cleaning:Manual cleaning of the drilled hole according to instructions for use is
required.
Hilti KB-TZ2 stud anchor with 3 in embedment,3/8(2 1/2)hnom3,Carbon steel,installation per ESR-4266
7.1 Recommended accessories
Drilling Cleaning Setting
• Suitable Rotary Hammer • Manual blow-out pump • Torque controlled cordless impact tool
• Properly sized drill bit • Torque wrench
• Hammer
-0.865
y
1.000 1.000
i: .
X
O
O
N
1.365 0.635
Coordinates Anchor[in.]
Anchor x y c-x c+x c c+y
1 0.365 -1.500 4.000 - 4.000 -
2 0.365 1.500 4.000 - 7.000 -
Input data and results must be checked for conformity with the existing conditions and for plausibility!
PROFIS Engineering(c)2003-2023 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan
9
Hilti PROFIS Engineering 3.0.84
www.hilti.com
Company: Page: 10
Address: Specifier: Al
Phone I Fax: I E-Mail:
Design: 4X2BP TYP M BORROUGHS RIVETSPAN 2 ANCH Date: 4/13/2023
Fastening point:
8 Remarks; Your Cooperation Duties
• Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles,formulas and
security regulations in accordance with Hilti's technical directions and operating,mounting and assembly instructions,etc.,that must be strictly
complied with by the user.All figures contained therein are average figures,and therefore use-specific tests are to be conducted prior to using
the relevant Hilti product.The results of the calculations carried out by means of the Software are based essentially on the data you put in.
Therefore,you bear the sole responsibility for the absence of errors,the completeness and the relevance of the data to be put in by you.
Moreover,you bear sole responsibility for having the results of the calculation checked and cleared by an expert,particularly with regard to
compliance with applicable norms and permits,prior to using them for your specific facility.The Software serves only as an aid to interpret norms
and permits without any guarantee as to the absence of errors,the correctness and the relevance of the results or suitability for a specific
application.
• You must take all necessary and reasonable steps to prevent or limit damage caused by the Software.In particular,you must arrange for the
regular backup of programs and data and,if applicable,carry out the updates of the Software offered by Hilti on a regular basis.If you do not use
the AutoUpdate function of the Software,you must ensure that you are using the current and thus up-to-date version of the Software in each
case by carrying out manual updates via the Hilti Website.Hilti will not be liable for consequences,such as the recovery of lost or damaged data
or programs,arising from a culpable breach of duty by you.
Input data and results must be checked for conformity with the existing conditions and for plausibility!
PROFIS Engineering(c)2003-2023 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan
10
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:al@storagerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Base Plate Configuration:Grade Level Unit M Rivetspan Shelving:72"H x 72.5"W x 36.5"D
Section
Actual base plate for T Post is 3.969 in x 2 in x 14 ga,but a smaller area is considered to be effective due to the rigidity limitations of the baseplate
P
Width=B= 3.97 in Column Width=b= 3.125 in
Depth=D= 2.00 in Column depth=b= 1.563 in I,
Plate Thickness=t= 0.188 in 0.44 in a Mb
Fy= 36,000 psi •—�
b r--L
Cross Aisle Loads
~-W—►
Axial DL= 54 lb
Axial L= 750 lb DL+0.75LL+0.75*0.7*Pseismic= 772 lb
Pseismic= 296 lb
L= Base Plate Depth-Col Depth
= 0.44 in
fa= P/A=P/(D*B) M= wL^2/2=fa*L^2/2
= 97 psi = 9 in-lb/in
Sbase/in = (1)(t^2)/6 Fbase= 0.75*Fy
= 0.006 in^3/in = 27,000 psi
fb/Fb= M/[(S-plate)(Fb)] 1.250 1,625
0.06 OK ,
500
3,969 2,000
1
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:al@storagerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Slab on Grade Configuration:Grade Level Unit M Rivetspan Shelving:72"IH x 72.5"W x 36.5"D
1 P ..,••.f slab
•
a ir
aD b e • • • • tslab=t= 6.0 in
•
slab . I ; phi=0= 0.65
--- c - -- Aisle
i • Cross
•
'�. Soil
x �IN f- c ---� � fsoil= 1,0 00 psfyL . • .....:.:.:•.•....
Movt= 10,796 in-lb
Down Aisle •
SLAB ELEVATION Frame depth= 36.5 in
Baseolate Plan View
Base Plate
B= 3.97 in width=a= 3.13 in eff. baseplate width=c= 3.97 in
D= 2.00 in depth=b= 1.56 in eff. baseplate depth=e= 2.00 in
Load Case 1:Product+Seismic
Product DL= 54 lb P-seismic=E= Movt/Frame depth (Strength Design Loads)
Product LL= 750 lb = 296 lb
Puncture I
Pu= 1.2DL+ LOLL+ 1.0*E Fpunct= 2.66*phi*sgrt(fc)
= 1,066 lb = 86.5 psi
Apunct= [(c+t)+(e+t)]*2*t fv/Fv= Pu/(Apunct*Fpunct)
= 215.64 in^2 = 0.06 < 1.0 OK
Slab Bending I
Asoil= (P*144)/(fsoil) L= (Asoil)^0.5 y= (c*e)^0.5+t*2
= 154 in^2 = 12.41 in = 14.8 in
x= (L-y)/2 M= w*x^2/2 S-slab= 1*t^2/6
= 0.0 in = (fsoil*x^2)/(144*2) = 6.0 in^3
Fb= 5*(phi)*(fc)^0.5 = 0 in-lb fb/Fb= M/(S-slab*Fb)
= 162.5 psi = 0.00 < 1.0 OK
Load Case 2:Static Loads I I
DL= 54 lb LL= 750 lb
Puncture :
Pu= 1.2*DL+ 1.6*LL Fpunct= 2.66*phi*sgrt(fc)
= 1,160 lb = 86.5 psi
Apunct= [(c+t)+(e+t)]*2*t fv/Fv= Pu/(Apunct*Fpunct)
= 216 in^2 = 0.06 < 1.0 OK
Slab Bending
Asoil= (Pu*144)/(fsoil) L= (Asoil)^0.5 y= (c*e)^0.5+t*2
= 167 in^2 = 12.92 in = 14.8 in
x= (L-y)/2 M= w*x^2/2 S-slab= 1*t^2/6
= 0.0 in = (fsoil*x^2)/(144*2) = 6.0 in^3
Fb= 5*(phi)*(fc)^0.5 = 0 in-lb fb/Fb= M/(S-slab*Fb)
= 162.5 psi = 0.00 < 1.0,OK
1
, , r..I
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:al@storagerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Design Data Configuration:Deck Level Unit H Rivetspan Shelving:72"H x 60.5"W x 15.5"D
1) The analyses of the light duty storage fixtures conforms to the requirements of the 2021 IBC,2022 OSSC and ASC 7-16
2) Steel minimum yield, Fy=36 ksi unless otherwise noted on the plans or analysis herein.
3) Anchor bolts shall be provided by installer per ICC reference on the calculations herein.
4) All welds shall conform to AWS procedures, utilizing E70)oc electrodes or similar.All such welds shall be performed
in shop,with no field welding allowed other than those supervised by a licensed deputy inspector.
5) Above grade floor designed by others for 125 psf LL
60 .15
r z
I TIRE
30 ; 30
TIRE 72 6DOM
A
1 I
30 30
e
e
TIRE a
i ewe
j .1 , re
I I
316 J FRONT SIDE gr 7 ,
"16
UNIT H
60"x15"x72"
3 SHELVES
1
rip
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:al@storagerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Summary of Results Configuration:Deck Level Unit H Rivetspan Shelving:72"H x 60.5"W x 15.5"D
601- +-15
Shelf Configuration
I#of Levels= 3
TIRE oNe
Depth= 15.5 in
Height= 72.0 in
30 30 I Width= 60.5 in
Location Elevation Load
ORE 7216 „ ma I hl= 3.0 in 150 lb
h2= 30.0 in 150 lb
h3= 30.0 in 150 lb
30
30
11
TIRE
3 J FRONT SIDE j
16 UNIT H
60"x15"x72"
3 SHELVES
Seismic Coeff:
Ss= 0.863 Product Load/Lvl= 0 lb
S1= 0.397
Fa= 1.200
Fv= 1.803
Steel Fy= 36,000 psi
I I
Total Height= 63.0 in
Component Summary
Column Dbl Angle T Post 14ga 0.25 OK
Beam Tire Support Beam 0.02 OK
Beam Rivet 1/4"Diam Rivet x 1-1/2"Spacing 0.29 OK
Anchor** (2)3/8"x 4.5"OAL GR 5 BOLT Grade 5 Bolts per footplate(ICC)No Inspection Required.Net Uplift=502 lb 0.47 OK
Footplate 4"x 2"x 14 GA Footplates Typical 0.03 OK
Slab on Grade Above grade floor designed by others for 125 psf LL
I Notes
II Column Reactions:
Axial column DL= 14 lb
Axial column LL= 225 lb
Axial column seismic load=+/- 502 lb
Uniform load to floor= (DL+LL)*Shelf Levels/(Width*Depth)
= 39 psf
Flat Deck Platform is Designed for 125 psf LL to accommodate storage loads
1
-
_
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:al@storagerackengineering.com
storagerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Seismic Forces Configuration: Deck Level Unit H Rivetspan Shelving:72"H x 60.5"W x 15.5"D
V1= Sps*W/R Ss= 0.86
V2= [0.4*ap*S,*Ws*(1+2*z/h)/(Rp/Ip)] '---1
S1= 0.40
V3= 0.044*Sds A Fa= 1.20
V4= 0.5*Sl/R rin=- Fv= 1.80
V1= 0.1726 v Sds= 0.690
hb Sd1= 0.477
V2= 0.5178 R=Rp= 4.00
V3= 0.0304
V4= 0.0000 M , Ip= 1.00
Vminimum= 0.015 /h= 2.5
Elevation z = 1.00
#of levels= 3
Seismic Coeff=Cs= 0.5178 Depth= 15.5 in
(Either Direction) Product LL/Shlf= 150 lb
Cs*Ip= 0.5178 DL/Shlf= 9 lb
Down Aisle Seismic Shear(Longitudinal) Cross Aisle Seismic Shear(Transverse)
Wlong= E(LL*0.67+DL) Wtransv= E(LL*0.67+DL)
= 228 lb = 228 lb
Vlong=VL= 0.5178*228 lb Vtransverse=VT= 0.5178*228 lb
= 118 lb = 118 lb VT/col= 59 lb
Vt/2= 59 lb
Transverse Distribution Transverse Moment Resisting Dbl Rivet Beams
Level LL DL hi wi*hi Fi Fi*hi Vn hb Mn Mconn
1 0 lb 9 lb 3 in 27 0.2 lb 1 in-lb 59.00 lb 3 in 177 in-lb 384 in-lb
2 150 lb 9 lb 33 in 5,247 40.5 lb 1,337 in-lb 39.33 lb 30 in 590 in-lb 443 in-lb
3 150 lb 9 lb 63 in 10,017 77.3 lb 4,870 in-lb 19.67 lb 30 in 295 in-lb 148 in-lb
Sum: 300 lb 27 lb W=327 lb 15,291 118 lb Movt=6207 in-lb Smilarly,Mlong= 590 in-lb
Mconn-long= 443 in-lb
Transverse Column Loads Longitudinal Column Loads
Movt= 6,207 in-lb
Pstatic DL= 14 lb Pseismic= Movt/D Pstatic= E(LL+DL) Mlong= Mr �t/�r
Pstatic LL= 150 lb = 400 lb = 164 lb = 590 in-Ib
Mconn= 1,269 in-lb Itransv=MT= 590 in-lb
1
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:aI@storagerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Transverse Column Loads(Weak Axis Bending) Configuration: Deck Level Unit H Rivetspan Shelving:72"H x 60.5"W x 15.5"
Net Section Properties
Column= Dbl Angle T Post 14ga
Aeff= 0.471 inA2 52f= 1.67
Ix(downaisle)= 0.297 in^4 E= 29,500 ksi
Sx(downaisle)= 0.158 in^3 Cb= 1.0
rx(downaisle)= 0.794 in Cmx= 1.00 1 9/16"
Iy(crossaisle)= 0.177 inA4 Kx= 1.0
Sy(crossaisle)= 0.129 in^3 Lx= 30.0 in
ry(crossaisle)= 0.614 in Ky= 1.0 /-1 9/1 X 1 9/1 6��Fy= 36 ksi Ly= 30.0 in /
Axial DL= 14 lb
Axial LL= 150 lb
Pseismic= 400 lb
Loads Load Case: (Fully Loaded)
Axial=P= DL+0.75LL+0.75*0.7*Pseismic
= 336 lb Moment=My= 590 in-lb
Axial Analysis
KxLx/rx= 1*30'/0.7942" KyLy/ry= 1*3070.6139" Fe > Fy/2
= 37.8 = 48.9 Fn= Fy(1-Fy/4Fe)
= 36 ksi*[1-36 ksi/(4*121.9 ksi)]
Fe= n^2E/(KL/r)max^2 Fy/2= 18.0 ksi = 33.3 ksi
= 121.9ksi
Pn= Aeff*Fn Qc= 1.92 Pa= Pn/52c
= 15,691 lb = 15691 lb/1.92
= 8,172 lb
P/Pa= 0.04 < 0.15
Bending Analysis
Check: P/Pa+My/May 5 1.0
Pno= Ae*Fy Pao= Pno/Qc Myield=My= Sy*Fy
= 0.471 in^2*36000 psi = 169421b/1.92 = 0.129 in^3*36000 psi
= 16,942 lb = 8,824 lb = 4,658 in-lb
May= My/52f Pcr= n^2EI/(KL)max^2
= 4658 in-lb/1.67 = n^2*29500000 psi/(1*30 in)^2
= 2,789 in-lb = 96,048 lb
p= {1/[1-(52c*P/Pcr)]}^-1
= {1/[1-(1.92*336 lb/96048 lb)]}^-1
= 0.99
Combined Stresses
(336 lb/8172 lb)+(590 in-lb/2789 in-lb)= 0.25 < 1.0,OK (EQ C5-3)
1
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:al@storagerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Longitudinal Column Loads(Strong Axis Bending) Configuration:Deck Level Unit H Rivetspan Shelving:72"H x 60.5"W x 15.5"
Net Section Properties
Column= Dbl Angle T Post 14ga
Aeff= 0.471 in^2 Qf= 1.67 h
Ix(downaisle)= 0.297 in^4 E= 29,500 ksi
Sx(downaisle)= 0.158 in^3 Cb= 1.0 1 9/16„
rx(downaisle)= 0.794 in Cmx= 1.00
Iy(crossaisle)= 0.177 in^4 Kx= 1.0
Sy(crossaisle)= 0.129 in^3 Lx= 30.0 in
ry(crossaisle)= 0.614 in Ky= 1.0
Fy= 36 ksi Ly= 30.0 in 1 9/16" 1 9/16"
Axial DL= 14 lb
Axial LL= 150 lb
Pseismic= 0 lb
Loads Load Case: (Fully Loaded)
Axial=P= DL+0.75LL+0.75*0.7*Pseismic
= 126 lb Moment=Mx= 590 in-lb
Axial Analysis
KxLx/rx= 1*3070.7942" KyLy/ry= 1*3070.6139" Fe > Fy/2
= 37.8 = 48.9 Fn= Fy(1-Fy/4Fe)
= 36 ksi*[1-36 ksi/(4*121.9 ksi)]
Fe= n^2E/(KL/r)max^2 Fy/2= 18.0 ksi = 33.3 ksi
= 121.9ksi
Pn= Aeff*Fn 52c= 1.92 Pa= Pn/Qc
= 15,691 lb = 15691 Ib/1.92
= 8,172 lb
P/Pa= 0.02 < 0.15
Bending Analysis
Check: P/Pa+My/May<_ 1.0
Pno= Ae*Fy Pao= Pno/52c Myield=My= Sx*Fy
= 0.471 in^2*36000 psi = 169421b/1.92 = 0.158 in^3*36000 psi
= 16,942 lb = 8,824 lb = 5,699 in-lb
May= My/52f Pcr= n^2EI/(KL)max^2
= 5699 in-lb/1.67 = nA2*29500000 psi/(1*30 in)^2
= 3,412 in-lb = 96,048 lb
p= {1/[1-(52c*P/Pcr)]}^-1
= {1/[1-(1.92*126 Ib/96048 Ib)]}^-1
= 1.00
Combined Stresses
(126 lb/8172 lb)+(590 in-Ib/3412 in-lb)= 0.19 < 1.0,OK (EQ C5-3)
1
+r =
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:al@storagerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Double Rivet Beam Configuration:Deck Level Unit H Rivetspan Shelving:72"H x 60.5"W x 15.5"D
1'961-7' Downaisle beam
Beam Type= Tire Support Beam
Ix= 0.1200 inA4 .969 \ A A A A A AA A
Sx= 0.085 in^3
Fy-beam= 36,000 psi I
Shelf Span=L= 60 in I ilk V V V VY V V V
. 28
Downa isle beam
60°
Shelf Plan View
Check Beam Bending Check Beam Deflection
Shelf DL= 9 lb
Shelf LL= lb E= 29,500,000 psi
Shelf LL+DL= 9 lb
Load=w=LL*0.67/(2*L)= 1.2 plf D= 5*w*LA4/(384*E*Ix)
= 0.0048 in
M= w*LA2/8
= 44 in-lb Dallow= L/140
0.43 in OK
fb= M/Sx
= 521 psi
Fb= 0.6*Fy .7454
21,600 psi
2.6530 0 G 1.5" 2.560"
fb/Fb= 0.02 OK
Check DRB Beam Rivets For Static+Seismic Loads
Check load case: DL+0.75LL+0.75*0.7*Mseismic
Rivet Spacing=d= 1.5 in tmin= 0.075 in
Rivet diameter= 0.25 in Fu= 58,000 psi Column
Fy-rivet= 36,000 psi Rivet
M*0.7*0.75= 310 in-lb W= (LL*0.75+DL)/4 Beam
C= M/d = 2 1b
= 207 lb — c
d
Shear Capacity= Rivet Area*0.4*Fy-rivet
= [(0.25 in)^2*pi/4]*0.4*36000 psi
= 707 lb
Bearing Capacity= Rivet Diam*tmin*Fu* 1.2
= 1,305 lb Beam to Column
Effective Shear= [(W/2)^2+C^2]^0.5
= 2071b OK
1
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:al@storagerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Lao Screw Uplift Capacity
Check uplift capacity of tek screw per chapter E4 of the 1996 AISI Cold Formed Manual
Pullout Cap= 0.85*tc*d*Fu2/52
= 0.85*0.075 in*0.375 in*68000 psi/3
= 542 lb tc= 0.075 in
d=screw diam= 0,375 in
Pull-over Cap= 1.5*tl*dw*Fu1/S2 Fu2= 68,000 psi
= 1.5*0.03 in*0.5 in*68000 psi/3
= 510 lb tl=deck thickness= 0.030 in
dw=washer diam= 0.5000 in
Fu1=Fu for deck= 68,000 psi
52=3
Tek Screw Shear Capacity
Check shear capacity of tek screw per chapter E4 of the 1996 AISI Cold Formed Manual t T
V
52= 3 1"1
Shear is the least of the following: 'r
Pns= 4.2*(t2^3*d)^0.5*Fu2
= 4.2*[(0.03 in)^3*0.375 in]^0.5*68000 psi
= 909 lb
tl=t-top plate= 0.075 in
Pns= 2.7*tl*d*Fu1 t2=bottom plate= 0.030 in
= 2.7*0.075 in*0.375 in*68000 psi Fu1=Fu of top plate= 68,000 psi
= 5,164 lb Fu2=Fu of bottom plate= 68,000 psi
d=screw diam= 0.375 in
Pns= 2.7*t2*d*Fu2
= 2.7*0.03 in*0.375 in*68000 psi
= 2,066 lb
Pns-eff/S2= 909 lb/3
= 303 lb
Tallow= 510 lb
Vallow= 303 lb
1
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:al@storagerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Anchors Configuration:Deck Level Unit H Rivetspan Shelving:72"H x 60.5"W x 15.5"D
Check load case: 0.9-0.2*Sds*(D+0.67LL)+/-E
Loads
Vtrans=V= 118 lb
► V
DL/Frame= 27 lb
LL/Frame= 300 lb Frame Depth=D= 15.5 in
Wst=phi*(DL+0.67LL)total= 174 lb Htop-Iv1=Ht= 63.0 in
LL @ TOP= 150 lb #Levels= 3
DL/Lvl= 9 lb #Anchors/footplate= 2
DL*phi= 7 lb 0.9-0.2Sds=phi= 0.762 T /
Lateral Ovt Forces=E(Fi*hi)*1.15= 7,138 in-lb
D-01
SIDE ELEVATION
Fully Loaded rack
Vtrans= 118 lb
Movt= 2(Fi*hi) Mst= Wst*D/2 Uplift=T= (Movt-Mst)/D
= 7,138 in-lb = 174 lb* 15.5 in/2 = (7138 in-lb-1349 in-lb)/15.5 in
= 1,349 in-lb = 373 lb
Top Level Loaded Only
Critical Level= 3 Hgt @ Lvl 3= 63.0 in
Vtop= Cs*LLtop
Vtop=vl= 0.518*150 lb Movt= Vtop*Htop*1.15+V2*Ht/2
= 78 lb = 8,486 in-lb
VDL=V2= 90 lb
Mst= 0.6*(LL-top)*D/2 Uplift=T= (Movt-Mst)/D
= (150 Ib*0.6)* 15.5 in/2 = (8486 in-lb-698 in-lb)/15.5 in
= 698 in-lb = 502 lb
Anchor I Net Seismic Max Uplift=1502 LB
Check(2)3/8"x 4.5"OAL GR 5 BOLT Grade 5 Bolts anchor(s)per footplate**
Pullout Capacity=Tcap= 510 lb -�
Shear Capacity=Vcap= 303 lb Phi= 1.00
Tcap*Phi= 510 lb
Vcap*Phi= 303 lb
Fully Loaded: �,_, •
(187Ib/5101b)^1 +(30 lb/303 Ib)^1 = 0.47 <= 1.2 OK
Top Level Loaded:
(251 lb/510 lb)^1+(20 lb/303 lb)^1 = 0.56 <= 1.2 OK
1
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:al@storagerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Base Plate Configuration:Deck Level Unit H Rivetspan Shelving:72"H x 60.5"W x 15.5"D
Section
Actual base plate for T Post is 3.969 in x 2 in x 14 ga,but a smaller area is considered to be effective due to the rigidity limitations of the baseplate
Width=B= 3.97 in Column Width=b= 3.125 in
Depth=D= 2.00 in Column depth=b= 1.563 in 14
Plate Thickness=t= 0.188 in 0.44 in a Mb
Fy= 36,000 psi
b14—L
Cross Aisle Loads
— w
Axial DL= 14 lb
Axial L= 150 lb DL+0.75LL+0.75*0.7*Pseismic= 336 lb
Pseismic= 400 lb
L= Base Plate Depth-Col Depth
= 0.44in
fa= P/A=P/(D*B) M= wL^2/2=fa*L^2/2
= 42 psi = 4 in-lb/in
Sbase/in = (1)(t^2)/6 Fbase= 0.75*Fy
= 0.006 in^3/in = 27,000 psi
fb/Fb= M/[(S-plate)(Fb)] 1.250 1 1.625
0.03 OK
3.969 2.000
.50s0.
1
rin'
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:al(aastoragerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Summary of Results Configuration:Type B Clip Shelving:89.375"H x 48"W x 24.5"D
Shelf Configuration
#of Levels= 11
1----4-- D= 24.5 in
H= 89.4 in
;..._._ s:x- ::,-,.. :._.
s a L= 48.0 in
Location Elevation Load
: I h1= 4.50 in 200 lb
h2= 9.00 in 200 lb
s �� h3= 9.00 in 200 lb
i°DRAWER h4= 9.00 in 200 lb
m5
44 PRkWER h5= 9.00 in 200 lb
a°c weR h6= 6.00 in 200 lb
1$
h7= 6.00 in 200 lb
h8= 1.50 in 200 lb
A h9= 10.50 in 200 lb
``22 ems. h10= 10.50 in 200 lb
*8N.24" r° h11= 14.00 in 746 lb
5 SHELVES
$DRAwER5
Notes
Axial column DL= 88 lb
Axial column LL= 1,373 lb
Axial column seismic load=+/- 1,061 lb
Net Seismic Uplift per footplate= 397 lb
Seismic Coeff: Ss= 0.863 Steel Fy= 36,000 psi
S1= 0.397 Product Load= 200 lb per shelf level
Fa= 1.200
Fv= 1.803
Component Summary
Column Borroughs Clip Shelving Dbl Angle"T"Post 13ga&14ga Beaded Front Post 0.30 OK
Shelf P1 22ga Box Edge Shelf Beam 0.44 OK
Steel Panel 22 ga Back Panel with(1)0.25 in diam bolt at 36 in o.c.,22 ga Side Panel with weld at 12 in o.c. 0.69 OK
Anchor (2)3/8"Diam x 2.5"Embed Hilti Kwikbolt T22 anchor(s)per footplate Special inspection is required per ICC ESR 4266. 0.38 OK
Base Plate Footplate 5 in*4 in*0.25 in Thk(with(2)1/4"Diam Gr5 M.B.to Post) 0.62 OK
Slab 6 in thick x 2500 psi slab/1000 psf soil 0.14 OK
Notes
SIDE PANEL WELDED EVERY 12"
6.5"MIN. DISTANCE FROM EDGE OF SLAB/CONSTRUCTION JOINT TO ANCHOR
BMW OP TIGARD 320G-A 23-0410-2 CLIP SHELVING Page of 4/13/2023
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:alc storagerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Summary of Results Configuration:Type C Clip Shelving:89.375"H x 48"W x 18.5"D
Shelf Configuration
#of Levels= 7 I
D= 18.5 in
4 H= 89.4 in
i ..-r -,' _- .4 _____r I L= 48.0 in I
54
j Location Elevation Load
n; aj I hl= 4.50 in 200 lb I
I °° 0 1 h2= 13.50 in 200 lb
L h3= 13.50 in 200 lb
-_ ~_ _^....._. g h4= 13.50 in 200 lb
__ a
h5= 13.50 in 200 lb
as I -*'Af h6= 13.50 in 200 lb
s h7= 17.00 in 1,306 lb
Is 1.34
t::ff' 0
too
48"x16"xe7"
f%4EINES
Notes
Axial column DL= 42 lb
Axial column LL= 1,253 lb
Axial column seismic load=+/- 1,510 lb
Net Seismic Uplift per footplate= 963 lb
Seismic Coeff: Ss= 0.863 Steel Fy= 36,000 psi
S1= 0.397 Product Load= 200 lb per shelf level
Fa= 1.200
Fv= 1.803
Component Summary
Column Borroughs Clip Shelving Dbl Angle"T"Post 13ga&14ga Beaded Front Post 0.33 OK
Shelf P1 22ga Box Edge Shelf Beam 0.44 OK
Steel Panel 22 ga Back Panel with(1)0.25 in diam bolt at 36 in o.c.,22 ga Side Panel with weld at 12 in o.c. 0.98 OK
Anchor (2)3/8"Diam x 2.5"Embed Hilti Kwikbolt T22 anchor(s)per footplate Special inspection is required per ICC ESR 4266. 0.75 OK
Base Plate Footplate 5 in*4 in*0.25 in Thk(with(2)1/4"Diam Gr5 M.B.to Post) 0.68 OK
Slab 6 in thick x 2500 psi slab/1000 psf soil 0.15 OK
Notes
SIDE PANEL WELDED EVERY 12"
6.5"MIN. DISTANCE FROM EDGE OF SLAB/CONSTRUCTION JOINT TO ANCHOR
BMW OF TIGARD 320G-A 23-0410-2 CLIP SHELVING Page of 4/13/2023
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:al(adstoragerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Summary of Results Configuration:Type D Clip Shelving:89.375"H x 36"W x 18.5"D
Shelf Configuration
#of Levels= 7
- 3616 - D= 18.5 in
H= 89.4 in
L= 36.0 in
`2 Location Elevation Load
'a I hl= 4.50 in 200 lb
h2= 13.50 in 200 lb
as ?i y h3= 13.50 in 200 lb
h4= 13.50 in 200 lb
132 g h5= 13.50 in 200 lb
h6= 13.50 in 200 lb
h7= 17.00 in 1,142 lb
,1
za x
1 P2
g
UNIT 4
36"x18"x87"
7 SHELVES
Notes
Axial column DL= 32 lb
Axial column LL= 1,171 lb
Axial column seismic load=+/- 1,374 lb
Net Seismic Uplift per footplate= 868 lb
Seismic Coeff: Ss= 0.863 Steel Fy= 36,000 psi
S1= 0.397 Product Load= 200 lb per shelf level
Fa= 1.200
Fv= 1.803
Component Summary
Column ! Borroughs Clip Shelving Dbl Angle"T"Post 13ga&14ga Beaded Front Post 0.31 OK
Shelf P1 22ga Box Edge Shelf Beam 0.33 OK
Steel Panel 22 ga Back Panel with(1)0.25 in diam bolt at 36 in o.c.,22 ga Side Panel with weld at 12 in o.c. 0.89 OK
Anchor (2)3/8"Diam x 2.5"Embed Hilti Kwikbolt TZ2 anchor(s)per footplate Special inspection is required per ICC ESR 4266. 0.68 OK
Base Plate Footplate 5 in*4 in*0.25 in Thk(with(2)1/4"Diam Gr5 M.B.to Post) 0.62 OK
Slab 6 in thick x 2500 psi slab/1000 psf soil 0.14 OK
Notes
SIDE PANEL WELDED EVERY 12"
6.5"MIN. DISTANCE FROM EDGE OF SLAB/CONSTRUCTION JOINT TO ANCHOR
BMW OP TIGARD 320G-A 23-04 I0-2 CLIP SHELVING Page of 4/1 3/2023
/irill
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:al(castoragerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Summary of Results Configuration:Type E Clip Shelving:89.375"H x 48"W x 24.5"D
Shelf Configuration
I #of Levels= 7
D= 24.5 in
--.i
H= 89.4 in
�i "- I L= 48.0 in I
1j fl
1 j Location Elevation Load
sa .4 al I hl= 4.50 in 200 lb
h2= 13.50 in 200 lb
h3= 13.50 in 200 lb
z
h4= 13.50 in 200 lb
h5= 13.50 in 200 lb
h6= 13.50 in 200 lb
h7= 17.00 in 1,135 lb
s 1.4
iw
a4to .
UNIT E
7 SHELVES
Notes
Axial column DL= 56 lb
Axial column LL= 1,167 lb
Axial column seismic load=+/- 1,053 lb
Net Seismic Uplift per footplate= 518 lb
Seismic Coeff: Ss= 0.863 Steel Fy= 36,000 psi
S1= 0.397 Product Load= 200 lb per shelf level
Fa= 1.200
Fv= 1.803
Component Summary
Column Borroughs Clip Shelving Dbl Angle"T"Post 13ga&14ga Beaded Front Post 0.28 OK
Shelf P1 22ga Box Edge Shelf Beam 0.44 OK
Steel Panel 22 ga Back Panel with(1)0.25 in diam bolt at 36 in o.c.,22 ga Side Panel with weld at 12 in o.c. 0.68 OK
Anchor (2)3/8"Diam x 2.5"Embed Hilti Kwikbolt TZ2 anchor(s)per footplate Special inspection is required per ICC ESR 4266. 0.43 OK
Base Plate Footplate 5 in*4 in*0.25 in Thk(with(2)1/4"Diam Gr5 M.B.to Post) 0.57 OK
Slab 6 in thick x 2500 psi slab/1000 psf soil 0.12 OK
Notes
SIDE PANEL WELDED EVERY 12"
6.5"MIN. DISTANCE FROM EDGE OF SLAB/CONSTRUCTION JOINT TO ANCHOR
BMW OF TIGARD 320G-A 23-0410-2 CLIP SHELVING Page of 4/13/2023
1-
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:al(Mstoragerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Summary of Results Configuration:Type F Clip Shelving:89.375"H x 48"W x 12.5"D
Shelf Configuration
#of Levels= 7
44 1 *14 D= 12.5 in
# _ H= 89.4 in
- r I L= 48.0in I
Ili
i { . Location Elevation Load
18 14 I hl= 4.50 in 70 lb
4 „°' -„ h2= 13.50 in 70 lb
18 13 h3= 13.50 in 70 lb
1 i 87 h4= 13.50 in 70 lb
° h5= 13.50 in 70 lb
18 .,°' ~ h6= 13.50 in 70 lb
13 h7= 17.00 in 1,131 lb
•
18 14
i
i-1 BALK FFtIXdF qM
UNIT F
48"x12"x87"
7 SHELVES
Notes
Axial column DL= 28 lb
Axial column LL= 775 lb
Axial column seismic load=+/- 1,548 lb
Net Seismic Uplift per footplate= 1,392 lb
Seismic Coeff: Ss= 0.863 Steel Fy= 36,000 psi
S1= 0.397 Product Load= 70 lb per shelf level
Fa= 1.200
Fv= 1.803
Component Summary
Column Borroughs Clip Shelving Dbl Angle"T"Post 13ga&14ga Beaded Front Post 0.27 OK
Shelf P2 20ga Box Edge Shelf Beam 0.12 OK
Steel Panel 22 ga Back Panel with(1)0.25 in diam bolt at 36 in o.c.,22 ga Side Panel with weld at 12 in o.c. 1.00 OK
Anchor (2)3/8"Diam x 2.5"Embed Hilo Kwikbolt TZ2 anchor(s)per footplate Special inspection is required per ICC ESR 4266. 0.98 OK
Base Plate Footplate 5 in*4 in*0.25 in Thk(with(2)1/4"Diam Gr5 M.B.to Post) 0.55 OK
Slab 6 in thick x 2500 psi slab/1000 psf soil 0.12 OK
Notes
SIDE PANEL WELDED EVERY 12"
6.5"MIN. DISTANCE FROM EDGE OF SLAB/CONSTRUCTION JOINT TO ANCHOR
BMW OP TIGARD 3206-A 23-0410-2 CLIP SHELVING Page of 4/13/2023
oes. ow
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:alc storagerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Summary of Results Configuration:Type G Clip Shelving:89.375"H x 36"W x 24.5"D
Shelf Configuration
#of Levels= 7 I
D= 24.5 in
H= 89.4 in
.. _� z , .3.. . " "'7 w I L= 36.0 in
ES
T i ... 4 - Location Elevation Load
to F I h1= 4.50 in 200 lb I
t& i _ h2= 13.50 in 200 lb
y h3= 13.50 in 200 lb
A
,, 6 f h4= 13.50 in 200 lb
h5= 13.50 in 200 lb
as z 8 I h6= 13.50 in 200 lb
w h7= 17.00 in 699 lb
is
—. '. ..
1- *j
UNITS
7 SHELVES
Notes
Axial column DL= 42 lb
Axial column LL= 950 lb
Axial column seismic load=+/- 787 lb
Net Seismic Uplift per footplate= 336 lb
Seismic Coeff: Ss= 0.863 Steel Fy= 36,000 psi
S1= 0.397 Product Load= 200 lb per shelf level
Fa= 1.200
Fv= 1.803
Component Summary
Column Borroughs Clip Shelving Dbl Angle"T"Post 13ga&14ga Beaded Front Post 0.22 OK
Shelf P2 20ga Box Edge Shelf Beam 0.27 OK
Steel Panel 22 ga Back Panel with(1)0.25 in diam bolt at 36 in o.c.,22 ga Side Panel with weld at 12 in o.c. 0.51 OK
Anchor (2)3/8"Diam x 2.5"Embed Hilti Kwikbolt TZ2 anchor(s)per footplate Special inspection is required per ICC ESR 4266. 0.31 OK
Base Plate Footplate 5 in*4 in*0.25 in Thk(with(2)1/4"Diam Gr5 M.B.to Post) 0.44 OK
Slab 6 in thick x 2500 psi slab/1000 psf soil 0.10 OK
Notes
SIDE PANEL WELDED EVERY 12"
6.5"MIN. DISTANCE FROM EDGE OF SLAB/CONSTRUCTION JOINT TO ANCHOR
BMW OP TIGARD 320G-A 23-04 10-2 CLIP SHELVING Page of 4/13/2023
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineerinq.com,email:al(tDstoragerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Summary of Results Configuration:Type V Clip Shelving:89.375"H x 42"W x 12.5"D
Shelf Configuration
I #of Levels= 7
12.5 in
H= 89.4 in
j I L= 42.0 in
I44
I i A. I Location Elevation Load
hl= 4.50 in 200 lb I
h2= 13.50 in 200 lb
I F h3= 13.50 in 200 lb
F& 6 h4= 13.50 in 200 lb
g i frx
— , $7 h5= 13.50 in 200 lb
h6= 13.50 in 200 lb
t
h7= 17.00 in 408 lb
1 t Pt
UNIT v
36^z z^ a^
7 SHELVES
Notes
Axial column DL= 25 lb
Axial column LL= 804 lb
Axial column seismic load=+/- 1,168 lb
Net Seismic Uplift per footplate= 883 lb
Seismic Coeff: Ss= 0.863 Steel Fy= 36,000 psi
S1= 0.397 Product Load= 200 lb per shelf level
Fa= 1.200
Fv= 1.803
Component Summary
Column Borroughs Clip Shelving Dbl Angle"T"Post 13ga&14ga Beaded Front Post 0.22 OK
Shelf P1 22ga Box Edge Shelf Beam 0.37 OK
Steel Panel 22 ga Back Panel with(1)0.25 in diam bolt at 36 in o.c.,22 ga Side Panel with weld at 12 in o.c. 0.75 OK
Anchor (2)3/8"Diam x 2.5"Embed Hilti Kwikbolt TZ2 anchor(s)per footplate Special inspection is required per ICC ESR 4266. 0.65 OK
Base Plate Footplate 5 in*4 in*0.25 in Thk(with(2)1/4"Diam Gr5 M.B.to Post) 0.46 OK
Slab 6 in thick x 2500 psi slab/1000 psf soil 0.11 OK
Notes
SIDE PANEL WELDED EVERY 12"
6.5"MIN. DISTANCE FROM EDGE OF SLAB/CONSTRUCTION JOINT TO ANCHOR
BMW OF TIGARD 320G-A 23-041 O-2 CLIP SHELVING Page of 4/13/2023
rigs
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:alastoragerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Summary of Results Configuration:Type W Clip Shelving:89.375"H x 24"W x 12.5"D
Shelf Configuration
2416-- 24 121--1 I #of Levels= 7
D= 12.5 in
_i - •--- H= 89.4 in
r..
1 I
15 L= 24.0 in I
;,'
t I i ,, `'___ Location Elevation Load
18 hl= 4.50 in 200 lb I
13i
h2= 13.50 in 200 lb
h3= 13.50 in 200 lb
13 h4= 13.50 in 200 lb
,. 87 h5= 13.50 in 200 lb
1 0
h6= 13.50 in 200 lb
132
j I ' h7= 17.00 in 571 lb
18 T i bI .r
131
i 18
132
I' —rI
1 SACK 'l FRONT 11 3$—' SIDE
UNIT W
24"x12"x87"
7 SHELVES
Notes
Axial column DL= 14 lb
Axial column LL= 886 lb
Axial column seismic load=+/- 1,349 lb
Net Seismic Uplift per footplate= 1,043 lb
Seismic Coeff: Ss= 0.863 Steel Fy= 36,000 psi
S1= 0.397 Product Load= 200 lb per shelf level
Fa= 1.200
Fv= 1.803
Component Summary
Column Borroughs Clip Shelving Dbl Angle"T"Post 13ga&14ga Beaded Front Post 0.25 OK
Shelf P1 22ga Box Edge Shelf Beam 0.21 OK
Steel Panel 22 ga Back Panel with(1)0.25 in diam bolt at 36 in o.c.,22 ga Side Panel with weld at 12 in o.c. 0.87 OK
Anchor (2)3/8"Diam x 2.5"Embed Hilti Kwikbolt TZ2 anchor(s)per footplate Special inspection is required per ICC ESR 4266. 0.77 OK
Base Plate Footplate 5 in*4 in*0.25 in Thk(with(2)1/4"Diam Gr5 M.B.to Post) 0.51 OK
Slab 6 in thick x 2500 psi slab/1000 psf soil 0.12 OK
Notes
SIDE PANEL WELDED EVERY 12"
6.5"MIN. DISTANCE FROM EDGE OF SLAB/CONSTRUCTION JOINT TO ANCHOR
BMW OF TIGARD 32OG-A 23-0410-2 CLIP SHELVING Page of 4/13/2023
-ir'ei
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:al@storagerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Summary of Results Configuration:Grade Level Unit L Rivetspan Shelving:72"H x 72.5"W x 36.5"D
m I
5s., is € Shelf Configuration
I . I #of Levels= 5
Depth= 36.5 in
zf,
' Height= 72.0 in
,,, �j. I Width= 72.5 in
14
Location Elevation Load
«. -- I hl= 4.5 in 500 lb
h2= 16.5 in 500 lb
-As ,". « __ h3= 16.5 in 500 lb
I h4= 16.5 in 500 lb
_, '.1 h5= 18.0 in 500 lb
UNIT L.
96"x36'x72"
SHELVES
Seismic Coeff:
Ss= 0.863 Product Load/Lvl= 0 lb
S1= 0.397
Fa= 1.200
Fv= 1.803
Steel Fy= 36,000 psi
Total Height= 72.0 in
Component Summary
Column Dbl Angle T Post 14ga 0.42 OK
Beam DRAB Dbl Rivet Beam 0.06 OK
Beam Rivet 1/4"Diam Rivet x 1-1/2"Spacing 0.42 OK
Anchor** (2)3/8"X 2.5"Embedment KWIK BOLT TZ2 per footplate(ICC ESR#4266)Inspection Required.Net Uplift=236 lb 0.25 OK
Footplate 4"x 2"x 14 GA Footplates Typical 0.08 OK
Slab on Grade 6 in thick concrete with fc=2500 psi on deck 0.08 OK
'Notes
1
e'
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:al@storagerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Summary of Results Configuration: Deck Level Unit I Rivetspan Shelving:72"H x 48.5"W x 60.5"D
T 4 Shelf Configuration
1x 12 I #of Levels= 2 I
1 Depth= 60.5 in
lz
�•_L. Height= 72.0 in
-. '` Width= 48.5 in
_*. - Location Elevation Load
hl= 3.0 in 500 lb I
4 h2= 36.0 in 500 lb
i ,r }
'lir
l3NTr I
48540Vr
a SHELVES
Seismic Coeff:
Ss= 0.863 Product Load/Lvl= 0 lb
S1= 0.397
Fa= 1.200
Fv= 1.803
Steel Fy= 36,000 psi
Total Height= 39.0 in
Component Summary
Column Dbl Angle T Post 14ga 0.37 OK
Beam DRAB Dbl Rivet Beam 0.05 OK
Beam Rivet 1/4"Diam Rivet x 1-1/2"Spacing 0.46 OK
Anchor** (2)3/8"x 4.5"OAL GR 5 BOLT Grade 5 Bolts per footplate(ICC)No Inspection Required.Net Uplift=92 lb 0.25 OK
Footplate 4"x 2"x 14 GA Footplates Typical 0.02 OK
Slab on Grade Above grade floor designed by others for 125 psf LL
I Notes
Column Reactions:
Axial column DL= 30 lb
Axial column LL= 500 lb
Axial column seismic load=+/- 92 lb
Uniform load to floor= (DL+LL)*Shelf Levels/(Width*Depth)
= 20 psf
Flat Deck Platform is Designed for 125 psf LL to accommodate storage loads
1
k
rill,.. .
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:al@storagerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Summary of Results Configuration:Deck Level Unit)Rivetspan Shelving:72"H x 48.5"W x 72.5"D
... 7 _. 44 .....__......., ........ ... Shelf Configuration
#of Levels= 3
.. -a`=---vas- .,." Depth= 72.5 in
ti Height= 72.0 in
r I Width= 48.5 in I
[x ' aLocation Elevation Load
4'-�- I,I; n. 'at- 1tii ef s— h1= 3.0 in 200 1b
h2= 57.0 in 200 lb
as ,,, xJr€r;mar a h3= 12.0 in 200 lb
s
r
x� f
urea
4"z72 x72"
2 SHELVES
Seismic Coeff:
Ss= 0.863 Product Load/Lvl= 0 lb
S1= 0.397
Fa= 1.200
Fv= 1.803
Steel Fy= 36,000 psi
I I
Total Height= 72.0 in
Component Summary
Column Dbl Angle T Post 14ga 0.73 OK
Beam DRAB Dbl Rivet Beam 0.06 OK
Beam Rivet 1/4"Diam Rivet x 1-1/2"Spacing 0.92 OK
Anchor** (2)3/8"x 4.5"OAL GR 5 BOLT Grade 5 Bolts per footplate(ICC)No Inspection Required.Net Uplift=132 lb 0.18 OK
Footplate 4"x 2"x 14 GA Footplates Typical 0.02 OK
Slab on Grade Above grade floor designed by others for 125 psf LL
I Notes
Column Reactions:
Axial column DL= 54 lb
Axial column LL= 300 lb
Axial column seismic load=+/- 132 lb
Uniform load to floor= (DL+LL)*Shelf Levels/(Width*Depth)
= 15 psf
Flat Deck Platform is Designed for 125 psf LL to accommodate storage loads
1
"' 3
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:al@storagerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Summary of Results Configuration:Deck Level Unit K Rivetspan Shelving:72"H x 96.5"W x 36.5"D
Shelf Configuration
#of Levels= 4
Depth= 36.5 in
r i
- " T. I Height= 72.0 in
Width= 96.5 in I
2d^a ,.., ,fir, e„ •t
. t Il MILUL f T l t >rrrrvl LI LLI,LL� �° x I Location Elevation Load
hl= 4.5 in 170 lb I
- 1 I h2= 42.0 in 170 lb
h3= 12.0 in 170 Ib
" l h4= 13.5 in 170 lb
MIT K
3 HELM
Seismic Coeff:
Ss= 0.863 Product Load/Lvl= 0 lb
S1= 0.397
Fa= 1.200
Fv= 1.803
Steel Fy= 36,000 psi
I I
Total Height= 72.0 in
Component Summary
Column Dbl Angle T Post 14ga 0.79 OK
Beam DRAB Dbl Rivet Beam 0.12 OK
Beam Rivet 1/4"Diam Rivet x 1-1/2"Spacing 0.98 OK
Anchor** (2)3/8"x 4.5"OAL GR 5 BOLT Grade 5 Bolts per footplate(ICC)No Inspection Required.Net Uplift=337 lb 0.42 OK
Footplate 4"x 2"x 14 GA Footplates Typical 0.04 OK
Slab on Grade Above grade floor designed by others for 125 psf LL
I Notes
Column Reactions:
Axial column DL= 72 lb
Axial column LL= 340 lb
Axial column seismic load=+/- 337 lb
Uniform load to floor= (DL+LL)*Shelf Levels/(Width*Depth)
= 23 psf
Flat Deck Platform is Designed for 125 psf LL to accommodate storage loads
1
r .�
'
r^iri
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:al@storagerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Summary of Results Configuration:Deck Level Unit L Rivetspan Shelving:72"H x 96.5"W x 36.5"D
..
361-1
I ,, f Shelf Configuration
t I#of Levels= 5
as is Depth= 36.5 in
�� Height= 72.0 in
ic
$ I Width= 96.5 in I
"" 4 1
Location Elevation Load
1.61 I hl= 4.5 in 250 lb
I , _ ,.. h2= 16.5 in 250 lb
ate m h3= 16.5 in 250 lb
} _ . h4= 16.5 in 250 lb
- h5= 18.0 in 250 lb
RCAT SIX
UNIT I.
96'x72'
5 SHELVES
Seismic Coeff:
Ss= 0.863 Product Load/Lvl= 0 lb
S1= 0.397
Fa= 1.200
Fv= 1.803
Steel Fy= 36,000 psi
I I
Total Height= 72.0 in
Component Summary
Column Dbl Angle T Post 14ga 0.62 OK
Beam DRAB Dbl Rivet Beam 0.12 OK
Beam Rivet 1/4"Diam Rivet x 1-1/2"Spacing 0.72 OK
Anchor** (2)3/8"x 4.5"OAL GR 5 BOLT Grade 5 Bolts per footplate(ICC)No Inspection Required.Net Uplift=548 lb 0.65 OK
Footplate 4"x 2"x 14 GA Footplates Typical 0.06 OK
Slab on Grade Above grade floor designed by others for 125 psf LL
'Notes
Column Reactions:
Axial column DL= 90 lb
Axial column LL= 625 lb
Axial column seismic load=+/- 548 lb
Uniform load to floor= (DL+LL)*Shelf Levels/(Width*Depth)
= 41 psf
Flat Deck Platform is Designed for 125 psf LL to accommodate storage loads
1
.e,
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:al@storagerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Summary of Results Configuration:Deck Level Unit N Rivetspan Shelving:72"H x 72.5"W x 36.5"D
Shelf Configuration
18 18 I #of Levels= 5 I
Depth= 36.5 in
Height= 72.0 in
14
/ I Width= 72.5 in
i , Location Elevation Load
4 I h1= 4.5 in 250 Ib
`" `"* h2= 16.5 in 250 lb
1.61 1 h3= 16.5 in 250 lb
i Veat _ L h4= 16.5 in 250 lb
► t; h5= 18.0 in 250 lb
14xtri
7
316 UNIT N 3 6
72"x36"x72"
5 SHELVES
Seismic Coeff:
Ss= 0.863 Product Load/Lvl= 0 lb
S1= 0.397
Fa= 1.200
Fv= 1.803
Steel Fy= 36,000 psi
I I
Total Height= 72.0 in
Component Summary
Column Dbl Angle T Post 14ga 0.59 OK
Beam DRAB Dbl Rivet Beam 0.06 OK
Beam Rivet 1/4"Diam Rivet x 1-1/2"Spacing 0.68 OK
Anchor** (2)3/8"x 4.5"OAL GR 5 BOLT Grade 5 Bolts per footplate(ICC)No Inspection Required.Net Uplift=530 lb 0.62 OK
Footplate 4"x 2"x 14 GA Footplates Typical 0.06 OK
Slab on Grade Above grade floor designed by others for 125 psf LL
'Notes
Column Reactions:
Axial column DL= 68 lb
Axial column LL= 625 lb
Axial column seismic load=+/- 530 lb
Uniform load to floor= (DL+LL)*Shelf Levels/(Width*Depth)
= 49 psf
Flat Deck Platform is Designed for 125 psfLL to accommodate storage loads
1
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:al@storagerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Summary of Results Configuration: Deck Level Unit Q Rivetspan Shelving:72"H x 96.5"W x 24.5"D
96 I 24,---...
wiR€
I ;#;#;# 1 1 Shelf Configuration
1$ Is I#of Levels= 5
MIRE °` i
Depth= 24.5 in
"` Height= 72.0 in
asg I 7'11_ I Width= 96.5 in I
0
i y WIRE
Ir O` Location Elevation Load
1 lei I hl= 4.5 in 150 lb I
ih2= 16.5 in 150 lb
h3= 16.5 in 150 lb
h4= 16.5 in 150 lb
a WIRE h5= 18.0 in 150 lb
E. v y a
FRONT SIDE
SIDE
3�� 3.1 3i6'-'
UNIT Q
96"x24"x72"
5 SHELVES
Seismic Coeff:
Ss= 0.863 Product Load/Lvl= 0 lb
S1= 0.397
Fa= 1.200
Fv= 1.803
Steel Fy= 36,000 psi
I I
Total Height= 72.0 in
Component Summary
Column Dbl Angle T Post 14ga 0.39 OK
Beam DRAB Dbl Rivet Beam 0.08 OK
Beam Rivet 1/4"Diam Rivet x 1-1/2"Spacing 0.44 OK
Anchor** (2)3/8"x 4.5"OAL GR 5 BOLT Grade 5 Bolts per footplate(ICC)No Inspection Required.Net Uplift=521 lb 0.58 OK
Footplate 4"x 2"x 14 GA Footplates Typical 0.05 OK
Slab on Grade Above grade floor designed by others for 125 psf LL
I Notes
Column Reactions:
Axial column DL= 60 lb
Axial column LL= 375 lb
Axial column seismic load=+/- 521 lb
Uniform load to floor= (DL+LL)*Shelf Levels/(Width*Depth)
= 37 psf
Flat Deck Platform is Designed for 125 psf LL to accommodate storage loads
1
' `
i.
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:al@storagerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Summary of Results Configuration:Deck Level Unit R Rivetspan Shelving:72"H x 60.5"W x 36.5"D
1...____64______„i
[m-34—I
I
1 WIREM.
wr Shelf= 5 Configuration
I#of Levels
1$ 18
Depth= 36.5 in
v
I. a,,, Height= 72.0 in
ark 1 I Width= 60.5 in I
1.62
T , oiNE _ 7
I ... w Location Elevation Load
1t I hl= 4.5 in 250 lb I
14 h2= 16.5 in 250 lb
" ow ,,,
15 16 t h3= 16.5 in 250 lb
tt h4= 16.5 in 250 lb
h5= 18.0 in 250 lb
� FRONT SIDE
"16
UNIT R
60"x36"x72"
5 SHELVES
Seismic Coeff:
Ss= 0.863 Product Load/Lvl= 0 lb
S1= 0.397
Fa= 1.200
Fv= 1.803
Steel Fy= 36,000 psi
I I
Total Height= 72.0 in
Component Summary
Column Dbl Angle T Post 14ga 0.57 OK
Beam DRAB Dbl Rivet Beam 0.05 OK
Beam Rivet 1/4"Diam Rivet x 1-1/2"Spacing 0.66 OK
Anchor** (2)3/8"x 4.5"OAL GR 5 BOLT Grade 5 Bolts per footplate(ICC)No Inspection Required.Net Uplift=522 lb 0.60 OK
Footplate 4"x 2"x 14 GA Footplates Typical 0.06 OK
Slab on Grade Above grade floor designed by others for 125 psf LL
!Notes
Column Reactions:
Axial column DL= 58 lb
Axial column LL= 625 lb
Axial column seismic load=+/- 522 lb
Uniform load to floor= (DL+LL)*Shelf Levels/(Width*Depth)
= 56 psf
Flat Deck Platform is Designed for 125 psf LL to accommodate storage loads
1
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:al@storagerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Summary of Results Configuration: Deck Level Unit S Rivetspan Shelving:72"H x 72.5"W x 24.5"D
721 24}
WtRE
,f Shelf Configuration
} WIRE .
j I #of Levels= 7
Depth= 24.5 in
x Height= 72.0 in
WIRE a» log 76 I Width= 72.5 in
3i t,.
"'RE J Location Elevation Load
45 .44
1 w
I hl= 4.5 in 120 lb
WIRE
°"" h2= 10.5 in 120 lb
WIRE h3= 10.5 in 120 lb
4 h4= 10.5 in 120 lb
FRONT sloe h5= 10.5 in 120 lb
h6= 10.5 in 120 lb
UNITS h7= 15.0 in 120 lb
72"x24"x72"
7 SHELVES
Seismic Coeff:
Ss= 0.863 Product Load/Lvl= 0 lb
S1= 0.397
Fa= 1.200
Fv= 1.803
Steel Fy= 36,000 psi
Total Height= 72.0 in
Component Summary
Column Dbl Angle T Post 14ga 0.33 OK
Beam DRAB Dbl Rivet Beam 0.04 OK
Beam Rivet 1/4"Diam Rivet x 1-1/2"Spacing 0.35 OK
Anchor** (2)3/8"x 4.5"OAL GR 5 BOLT Grade 5 Bolts per footplate(ICC)No Inspection Required.Net Uplift=526 lb 0.64 OK
Footplate 4"x 2"x 14 GA Footplates Typical 0.05 OK
Slab on Grade Above grade floor designed by others for 125 psf LL
I Notes
Column Reactions:
Axial column DL= 63 lb
Axial column LL= 420 lb
Axial column seismic load=+/- 526 lb
Uniform load to floor= (DL+LL)*Shelf Levels/(Width*Depth)
= 55 psf
Flat Deck Platform is Designed for 125 psf LL to accommodate storage loads
1
_
��y
rill
23142 Arroyo Vista Rancho Santa Margarita,CA 92688 Tel:949.888.8850 Fax:949.888.8851
Website:www.storagerackengineering.com,email:al@storagerackengineering.com
By: A.A. Project: BMW OF TIGARD Project#: 23-0410-2
Summary of Results Configuration: Deck Level Unit T Rivetspan Shelving:72"H x 48.5"W x 24.5"D
491--1 zap
WIRE
} Shelf Configuration
t I #of Levels= 5 I
18 i 18
Depth= 24.5 in
way Height= 72.0 in
no i ...
I Width= 48.5 in
1r 162
f . V`" 1
°n" # 72116Location Elevation Load
T 'in
Ci I hl= 4.5 in 170 lb I
14 12 h2= 16.5 in 170 lb
h3= 16.5 in 170 lb
# h4= 16.5 in 170 lb
161 iti h5= 18.0 in 170 lb
__ "" 3 1
of
i
FRONT 31 sage
31'is
7
UNIT T
48"x24"x72"
5 SHELVES
Seismic Coeff:
Ss= 0.863 Product Load/Lvl= 0 lb
S1= 0.397
Fa= 1.200
Fv= 1.803
Steel Fy= 36,000 psi
I I
Total Height= 72.0 in
Component Summary
Column Dbl Angle T Post 14ga 0.39 OK
Beam DRAB Dbl Rivet Beam 0.02 OK
Beam Rivet 1/4"Diam Rivet x 1-1/2"Spacing 0.44 OK
Anchor** (2)3/8"x 4.5"OAL GR 5 BOLT Grade 5 Bolts per footplate(ICC)No Inspection Required.Net Uplift=545 lb 0.58 OK
Footplate 4"x 2"x 14 GA Footplates Typical
0.05 OK
Slab on Grade Above grade floor designed by others for 125 psf LL
I Notes
Column Reactions:
Axial column DL= 30 lb
Axial column LL= 425 lb
Axial column seismic load=+/- 545 lb
Uniform load to floor= (DL+LL)*Shelf Levels/(Width*Depth)
= 65 psf
Flat Deck Platform is Designed for 125 psf LL to accommodate storage loads
1
4/10/23,2:47 PM U.S.Seismic Design Maps
� OSHPD
, imi
9875 SW Cascade Ave, Tigard, OR 97223, USA
Latitude, Longitude: 45.4495825, -122.786136
' acy s
il
tit
Washington Square
z
'" TA Pathology Auntie Anne's 71
I Pr iin Aircraft E ,
Solutions in ` tt g YW
Map data 02023
Date 4/10/2023,2:47:23 PM
Design Code Reference Document ASCE7-16 I
Risk Category II
Site Class D-Default(See Section 11.4.3)
Type Value Description 1
Ss 0.863 MCER ground motion.(for 0.2 second period)
Si 0.397 MCER ground motion.(for 1.0s period)
I SMS 1.035 Site-modified spectral acceleration value
i
SM1 null-See Section 11.4.8 Site-modified spectral acceleration value
SDS 0.69 Numeric seismic design value at 0.2 second SA
SDI null-See Section 11.4.8 Numeric seismic design value at 1.0 second SA
Type Value
Description __.�..._ ... ...___... ...__..
SDC null-See Section 11.4.8 Seismic design category
Fa 1.2 Site amplification factor at 0.2 second
F, null-See Section 11.4.8 Site amplification factor at 1.0 second
PGA 0.393 MCEG peak ground acceleration
s
FPGA 1.207 Site amplification factor at PGA
PGAM 0.474 Site modified peak ground acceleration
TL 16 Long-period transition period in seconds i
i
SsRT 0.863 Probabilistic risk-targeted ground motion.(0.2 second)
1
SsUH 0.975 Factored uniform-hazard(2%probability of exceedance in 50 years)spectral acceleration
SsD 1.5 Factored deterministic acceleration value.(0.2 second)
?' S1RT 0.397 Probabilistic risk-targeted ground motion.(1.0 second)
1 S1UH 0.458 Factored uniform-hazard(2%probability of exceedance in 50 years)spectral acceleration.
S1 D 0.6 Factored deterministic acceleration value.(1.0 second)
PGAd 0.5 Factored deterministic acceleration value.(Peak Ground Acceleration)
PGAOH 0.393 Uniform-hazard(2%probability of exceedance in 50 years)Peak Ground Acceleration
CRS 0.885 Mapped value of the risk coefficient at short periods
https://www.seismicmaps.org 1/3
4/10/23,2:47 PM U.S.Seismic Design Maps
' Type Value Description i
CR1 0.867 Mapped value of the risk coefficient at a period of 1 s
Dv 1.231 Vertical coefficient
https://www.seismicmaps.org 2/3
DAVE POLAND ENGINEERING, LLC
333 East Avenue
Quincy, IL 62301
Phone: 217-242-4605
email: davep.engineering@outlook.com
Project Name
BMW of Tigard
9875 SW Cascade Ave
Portland, OR
Stairs
and Guardrail
Project Number
DP022302
2/13/2023
These calculations review the structure being installed for structural capability.
The sealing of the drawings used in conjunction with these calculations is for the structural review
only.Other information is not reviewed,nor approved.
gEO PROFESS.
� �t�GINEE 4
C
90. = PE i
IS A p
0
:ER�.ti Z�l
Engineering Seal Data:
State Number Exp Date
OR 90687PE 12/31/2024
__ COVER SHEET INFO
BMW of Tigard
Building Code 2021 IBC
Seismic Data
Risk Category II
le 1
Ss 0.863
S1 0.397
Site Class D
Sds 0.690
Sd1 0.503
SDC D
Seismic Force Resisting System: Analysis Procedure Used:
Cold-Formed Steel-Special Bolted Moment Equivalent Lateral Force Procedure
Frame(Table 12.2-1, Item C.12)
V N/A Kips
Cs 0.197
R 3.5
Design Loads
Floor Covering 3.5 psf
Steel Deck 1.7 psf
Steel Joist 2.0 psf
Steel Beams/Columns 3.0 psf
Misc. 1.8 psf
MEP 0.0 psf
Total Dead Load 12 psf
Live Load 125 psf
INDEX
Description Page Number
Design Data 1
Framing Plan 2
Seismic Criteria 3 - 5
Misc Beam Check 6
Column Check 7
Base Plate Analysis, Slab on Grade Analysis 8 - 10
Stair & Guardrail 11 - 14
•
•
•
•
A, 1s-s• SW1Z.1 r, 6-e•
b
TI
I,
7
b. ._...,.......
! (f)8'r S. 'COLUMNS ��
711
bl
t i
S".R SLIDE GATE � �
.
IIIIIIIC 118 r-� 0-1 otP
iki
3'-9Y' I 15-,' ....—. -- Yld s'.11Y.. .A A !10 A !--' 3 F i
YY MAX.STAIR RUN.TR A r
-vv
w ry
CEILING__
STAIR,GUARDRAIL,GATE,&STAIR LAYOUT -
j x -
2-RAIL STEEL GUARDRAIL SYSTEM:Snr POSTS U / •~T
ElFE O.C.MA%..4T TO TOP RAIL.LESS THAN 7:
�I :1'BETWEEN RAIL3.ANDYKCKPATE MP) APPROVED FOR ENGINEERING W I
ill
PLEASE VERIFY THE FOLLOWING:1 ` i Y L
_ (CM.—.s 0 H0s)
AS NOTED: DATE:
Location of mi.
O eSnr aSNruNIomMhia NO CHANGES: RATE
. S Eaa-P door amblers, nay above UO ..Sal a%dlnnN.mWn,lo, bealb,nd Retina r +mow
ENNbsI aim* an .StorB arM drro.M raaa4.d Mai As OM store.adOS-S .
cO I OMMnbn: may to Incunsd and.le aka.*roam.. S
0 Ora.DbnnWnti
❑Top a£O H.pta - •
.w
FINISH SCHEDULE ❑anwHa e / _ 0CURRTT000do
COMPONENT F-jN 8L11: 0 9dd LwL6m(s) ,/ sn s923 m•e C
Flann: G.Mnba DGwnkaiLonaan NOTE:DRAWING FOR ENGINEERING ONLY
`r"`n'E�"""�p\,VIEW Cabana
OsIHIntuul Pa»a.Cost Gray 0 ma(.) NOT FOR CONSTRUCTION. SHEET NUMBER. xx
SMn : GaMnbdPLEASE NOTE:.V.a1yN u
SCALE:Yi'=1'-0" Tmds: G.bne.d Imm.d4nnbn b£4S g
Hand. Galvanized
opahVgbm.
\ u
SHEET A OF % •
Platform Design Data BMW of Tigard 2/13/2023
Codes and Specifications
*Model Building Code: IBC
*American Iron and Steel Institute(AISI)2016
*American Institute of Steel Construction(AISC)
*American Welding Institute(AWS)
Materials Used in Construction
Cold-Formed Structural Steel:ASTM A653,Grade 55,Fy=55 ksi,G60 Galvanized
Structural Steel Tube:ASTM A500,Grade C,Fy=50 ksi
Structural Steel Plates:ASTM A36,Fy=36 ksi
Bolts:Grade 5,Shear Connections.Inspection not required.
Concrete Strength Structure Size
Slab: F'c= 2500 psi Approx.
Slab thickness= 6 inches Width.. 0.00 Feet
Soil Strength Length 0.00 Feet
Qs= 1500 psf Height to First Level 8.50 Feet
Footers Req'd No Height First to Second Level... 0 Feet
Total Height ......... 8.50 Feet
Design Loads Approximate Area 0 Feet2
Dead Load: Covering 3.5
Steel Deck 1.7 Number of Levels 1
Steel Joist 2.0
Steel Beams/columns.. 3.0 Actual Total Area 0 Ft2
Misc 1.8
Partitions...... 0.0 Design Check—Load Cases
Mechanical Eqmt 0.0 Based on LRFD
Total 12 psf 1.4D
1.2D+1.6L
Live Load: Live Load 125.0 (1.2+.2Sds)D+pQe+L
Partitions 0.0 (0.9-.2Sds)D+pQe
Misc. 0.0 Area= 0.001 ft`
Total 125.0 psf D+L= 137.0 psf
Single Story LL Ratio= 0.912
Dead Load: Covering/Deck 0.0 DL Ratio= 0.088
Steel Joist..... 0.0
Steel Beams/columns 0.0
Misc. 0.0
0 psf Stairs
Live Load: 0 psf Ws=D
Seismic Design Conditions
Ss 0.863 Sds= 0.690
Si 0.397 Sd1 = 0.503
SDC D
Importance Factor 1
Response R 3.5 CFS-SBMF-Special Bolted Moment Frame-AISI S400-15
Soil Profile D Stairs
Base Shear Ratio Cs 0.197 W Ws=D
3
A This is a beta release of the new ATC Hazards by Location website,Please contact us with feedback.
0 The ATC Hazards by Location website will nut be updated to support ASCE 7 22. Find out why_
r r c Hazards by Location
Search Information rn���, � ����
Address: 9875 SW Cascade Ave,Tigard,OR 97223, USA ., -' "' .� ' ° er.
' 199ft a° '-
Coordinates: 45.4495825,-122.786136 q '; � � ® "
Elevation: 199 ft R fi#BSb 4
Timestamp: 2023-02-13T17:30:51.941 Z � ,,, ,�
Hazard Type: Seismic o ,. t�� '
Reference ASCE7-16 � �. � � *.
Document: r Map data®2023Google
Risk Category: II
Site Class: D-default
Basic Parameters
Name Value Description
SS 0.863 MCER ground motion(period=0.2s)
Si 0.397 MCER ground motion(period=1.0s)
SAS 1.035 Site-modified spectral acceleration value
SM1 *_pul(0' Site-modified spectral acceleration value
SDs 0.69 Numeric seismic design value at 0.2s SA
05- 3
SDI *�adl� Numeric seismic design value at LOs SA
w See Section 11.4.8
•Additional Information
Name Value Description
SDC `�atl' Seismic design category
Fa 1.2 Site amplification factor
F� * Site amplification factor atat 1.0s0.2s
CRs 0.885 Coefficient of risk(0.2s)
CRC 0.867 Coefficient of risk(1.0$)
PGA 0.393 MCEc peak ground acceleration
FpGA 1.207 Site amplification factor at PGA
PGAM 0.474 Site modified peak 9round acceleration
TL 16 Long-period transition period(s)
SsRT 0.863 Probabilistic risk-targeted ground motion(0.2s)
SsUH 0.975 Factored uniform-hazard spectral acceleration(2%probability of
exceedance in 50 years)
SsD 1.5 Factored deterministic acceleration value(0.2s)
S1 RT 0.397 Probabilistic risk-targeted ground motion(1.0s)
S1 UH 0.458 Factored uniform-hazard spectral acceleration(2%probability of
exceedance in 50 years)
S1 D 0.6 Factored deterministic acceleration value(1.0s)
PGAd 0,5 Factored deterministic acceleration value(PGA)
*See Section 11.4.8
The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code
adoption process.Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.
Please note that the ATC Hazards by Location website will not be updated to support ASCE 7-22.Find out why
Disclaimer
Hazard loads are provided by the U.S.Geological Survey Seismic Design Web Services.
While the information presented on this website is believed to be correct,ATC and its sponsors and contributors assume no responsibility or liability
for its accuracy.The material presented in the report should not be used or relied upon for any specific application without competent examination
and verification of its accuracy,suitability and applicability by engineers or other licensed professionals.ATC does not intend that the use of this
information replace the sound judgment of such competent professionals,having experience and knowledge in the field of practice,nor to substitute
for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the
information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing
building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the
report.
Seismic Design
Classification of Structure for Importance Factor-Use Group II
Seismic Importance Factor 1
Soil Site Class D Default
Spectral Response Coefficients Ss= 0.863 Si= 0.397
Fa= 1.20 Fv= 1.90
https://hazards.atcouncil.org/#/ Sds= 0.690 Sd,= 0.503
SDC= D
Seismic Force-Resisting System CFS-SBMF-Special Bolted Moment Frame-AISI S400-15
Design Base Shear V= 0.197 W
Analysis Procedure Equivalent Lateral Force Procedure
Design uses a flexible diaphragm for transfer of shear forces to vertical elements.
Base Shear Analysis
Height
V=CsW Number of stories 1 8.50 ft
From Figure 22-14 Long period le= 1
TL= 16 sec R= 3.5 Cd= 3.5
From Table 12.8-1 S2= 3
Cu= 1.40 T= 0.000 sec Ta= CuCtHn"
G= 0.028
x= 0.8
Ta= 0.217 sec
Cs= Sds/(R/I) Cs= 0.197
Cs= Sd1/T(RA) Cs= 640.721 Need not exceed
Cs= SD1TL/T2(R/I) Cs= 0 Does not apply,
Cs= .044Sds/(R/I) Cs= 0.010 min.
Cs= .5St/(R/I) Cs= 0.009 min.when S1=>0.6
Fa= 1.2 F„= 1.9
Sms= 1.036 Sm1= 0.754
Cs= 0.197 Wi Fx= 0.197 WI
LRFD ASD
0.2Sds= 0.138 1+0.14Sds= 1.097
1.2+0.2Sds= 1.338 1+0.105Sds= 1.072
0.9-0.2Sds= 0.762 0.6-0.14Sds= 0.503
Miscellaneous Beam
Loading
Live
1.2 Dead
Framing System 1.6 Loading
2016 AISI
Single Section
Bending Moment Strength-- (1)Mn/Section
Ix= 42.00 InA4
Se= 7.52 InA3
12 E= 29500 Ksi
�b= 0.9 Cold Working Sec A3.3.2 AISI S100
Fy= 55 Ksi Ry= 1.090
cl)Mn= 405.82 In-Kips = 33.8 kip-ft
t= 0.105 inches hft= 110.86 Ok
C12x3.5x12 Joist Spacing ... 2.500 Feet 30.00 Inches
Joist
Qty of.... 1 Loading 125 Psf-Live Load
ID.No. Typ. Floor 10 Psf-Dead Load
727 135 Total
LRFD Method of Analysis Joist Span. 15.5 Feet
Load Factors
1.2D+1.6L Factored W= 530.00 plf
Floor Joist
factored
Net R= 4.11 Kips
183 Inches R= 2.62 kips
4
R Span unfactored
Bendinn Moment for the Simple Beam Fixed End Moment
0 0.00 0
Mb=W L2/8-Fixed End Moment In-Kips Ft-Kips Ft-Lbs
See Page
Mb= 15916.6 Ft-Wounds Ratio
Mb= 191.0 In-kips 405.82 Ok 0.471
15.9 ft-kips
Deflection Check for Simple Span Beam
Delta=5 W L4/384 El Delta Limit 240
W= 26.04 Pounds/Inch
Delta= 0.307 Inches Dli= 0.763 Inches Ok
7
Tubular Column Desiun Check
Member No. Max Column Description: Column Wall Tk. Sect.
Gravity Load 6x6x1/4 0.250 6x6x1/4
Factored Pu= 4.2 Kips E= 29500
Expected Moment Seismic Q value aisi
AISI S400 E4.3 Me= 0 Ft-Kips Loading Combination
Demand Mmax= 5.00 Ft-Kips 1.2D+1.6L
Mmax= 5.00 Ft-Kips Mu= 45.00 In-Kips
M„o= 0 I Ft-Kips Yield Fr 50.00 Ksi
Ag= 5.225
A net= 5.225 Kx= 1.7
Ix= 28.534 Ky= 1.7
Sx= 9.511
Face X-axis -•-• Rx= 2.337 Lx= 120.00
6.00 j Metal Tk Ly= 120.00
0.250 ly= 28.534 10.00
Sy= 9.511 wit= 21.81
Ry= 2.337 1.4 E/Fy 34.0
I Y-axis Zx= 21.419 Ok
Section Wgt/Ft
17.765 Depth 14 6.00
LRFD Design
Cross Section AISC 360-16
Eq.E3-4 Fe=1r4E/(KL/R)2 KxLx/Rx= 87.29
Fe= 38.21 Ksi KyLy/Ry= 87.29
Fy/Fe= 1.144
Eq.E3-1 4hc=0.90 pn=AeFcr
Eq.E3-2 if Fy/Fe<2.25 then Fcr=Fy*0.658^(Fy/Fe)
Eq.E3-3 if Fy/Fe>2.25 then Fcr=0.877'Fe
Fcr= 28.91 Ksi
b=.9
Plastic Section Strength Mp= 1070.95 In-Kips
Eq.E3-1 Pn= 151.06 Kips Mn= 475.57 In-Kips
4 cPn= 135.96 Kips 4)bMn= 428.01 In-Kips
35.7 ft-kips
Design Check for both Axial Load And Combined Axial+Seismic
Orthogonal Section 12.5
CMe Kips-Factored
Effects 0.00 kip-inches Eq.H1-la
8/9(Mry/Mcy)= 0.000 Pr/Pc + 8/9(Mrx/Mcx) <=1.03
Kips-Factored Pr/Pc= 0.031
In-Kips Factored 8/9(Mrx/Mcx)= 0.093
Design Ratio= 0.124 Ok
Dead+Live Load Only Design Check
Pr/Pc= 0.031 Ok
S
Column Base Plate Design
Drake-Elkin Paper-Engineering Journal 1st Qtr.1999 Node
Load Comb. 1.2D+1.6L Max
Limit State Design Fc'= 2.5 ksi
Plate width N= 12 inches
f Phu Plate depth B= 12 inches
14 �! E ! Mu Member width d= 6 inches
Member depth b= 6 inches
Factored Pu= 5 kips Limit State
Factored Mu= 0 ft-kips Limit St.
d Factored Mu= 0 in-kips
ill ir
i , No.of Tension bolts= 2
' Vs= 2 kips Limit state
, ,X7/ . r l''1 /' e= 0.00 inches
' ! N/6= 2.00
1.5--1, 4— f= 4.5 inches
' Q Area of steel
A2/A1 = 4.00
Tu ! plate on grout A2/A1 =1
Y plate directly on concrete A2/A1 =4
N
q=.51Fc'B v A2/A1 < 1.02 Fc'B
c= 3 30.6
N= 12 q= 30.60 kips/in
q= 30.60 kips/in
Check Plate Bending f+ N/2= 10.5 inches /
If Tubular columns use.95 in f+E= 4.50 inches Y=(f+N/2)+1L(f+N/2)^2-2Pu(f+E)/q
equations for m and n
Y= 0.07 inches
Tubular Tu=qY-Pu Tu= -2.85 kips
No bolt tension
m=(N-.95d)/2 Tb= -1.42 kips factored
m= 3.00 inches Tbuf= -0.86 kips ASD/bolt
x=f-d/2+tf/2 tf= 0.25 in.flgthk.
x= 1.63 inches
n=(B-.95bf) /2 bf= 6 in.flg.width
n= 3.00 inches
Base Plate Thickness
For all cases Tu= -2.85 kips
Fy= 36 ksi
tp= 2.11 VTux/BFy Ry= 1.5
tp= 0.0000 inches 54 ksi
AISC Sec 14 Equa A controls
Equa.A tp= 1.49c yru/(BNFy) tp= 0.139 inches
Plate front to back When base subjected to axial loads only
Use 0.5 inches
Equa.B tp= 2.11 VPu(m-y/2)/(BFy) tp= 0.000 inches
When base subjected to axial&moment loads
f
Use of Slab on Grade for Mezzanine Support
ACI 318-14, section 14.3.2—Footings, states that the thickness of plain concrete footings shall
not be less than 8 inches. In my opinion, this section of the code does not apply literally to a
slab on grade situation, but rather an individual footing. With an existing building, the use of the
slab on grade is applicable when the analysis indicates adequate strength.
The existing floor slab has been analyzed for the column loadings based on research that was
done by Longmei Shentu. He studied this and performed various analyses to prove that slabs
on grade are considerably stronger than engineers had assumed in the past. He then backed
up the analysis with actual testing of various slabs on grade. The test results turned out to be
very close to the analysis. His research and results were published in an article entitled "Load
Carrying Capacity for Concrete Slabs on Grade"in the Journal of Structural Engineering in
January 1997. This publication is well respected in the structural engineering community.
This method of analyzing slabs on grade is the industry standard in the storage rack industry as
well. The loads imposed on slabs from storage rack systems can be fairly large along with
having smaller base plates than our mezzanine systems have.
Many jurisdictions throughout the United States have accepted this as an appropriate method to
determine the load carrying capacity of existing slabs on grade.
Based on the reasons stated above, we conclude the method outlined by Shentu is a valid
approach to analyzing the existing slab on grade for the mezzanine support.
A copy of this report is available upon request.
(0
Load-Carrying Capacity for Concrete Slabs on Grade
1997 Journal of Structural Engineering Article
Shentu,Jiang&Hsu
. Effective slab development for load support
l I
•
Base Plate �.1 Slab on grade
Soil description
Soil type
Earth,dry,loose
4
Target Soil
Qs= 1500 psf
Width Depth Concrete
Plate Size 12 12 Fc'= 2500 psi concrete
The radius R1 is based on the average equivalent square plate. we= 144 Ib/ft3 concrete
Ec= 2851 ksi concrete
Determine slab capacity when the slab thickness is given
Eq.34 Pu=1.72x(k2Rl/Ecx104+3.6)ftd2
Rt= 6.00 Inches
D= 6 Inches Slab thickness
k2= 76 pci Sub-grade modulus
Ec= 2851 ksi Modulus of elasticity
Ft= 375 psi Tensile strength of concrete
FS 4= 2 clo Factor
Calculated
ultimate Pu= 120.7 Kips
Pa=41.Pu Pa=Pu/f2
Pa= 60.36 Kips Maximum allowable column loading
Pactual= 3.19 kips
0.053 Ok
Determine the slab thickness when the load is given Check Slab for Shear
Shear Perimeter= 43.2 inches
v= 0.012 ksi
Eq.35 d= (Pu/FS)/(1.72(k2 R1/Ec x 10^4+3.6)f t Vc= 0.133 ksi
OK
Design Loading
Pu= 3.19496269 Kips
d= 1.38 Inches Slab thickness to support column loading
4 ( 1
Stair Tread Design
Formed C 1P
L LL w
Tread
2.125
12
4 36
Tk 0.105 Inch
Sy 0.279 In3
ly 0.504 In4 P= 0.3 Kips
W = 0.1 Klf
Fb= 50 Ksi
Simple Span Bending Moments
Concentrated Load.... M=PU4 Ma=SyFb M=WL2/8 Ma=SyFB
Tread Pa=4SyFb/L W=8SyFb/L2
Span Concentrate Loading
30 Pa= 1.86 Kips Max W= 1.487 KIf Ok
32 Pa= 1.74 Kips Max W= 1.307 Klf Ok
34 Pa= 1.64 Kips Max W= 1.157 Klf Ok
36 Pa= 1.55 Kips Max W= 1.032 KIf Ok
38 Pa= 1.47 Kips Max W= 0.927 Klf Ok
40 Pa= 1.39 Kips Max W= 0.836 KIf Ok
44 Pa= 1.27 Kips Max W= 0.691 Klf Ok
48 Pa= 1.16 Kips Max W= 0.581 KIf Ok
54 Pa= 1.03 Kips Max W= 0.459 Klf Ok
56 Pa= 1.00 Kips Max W= 0.427 KIf Ok
58 Pa= 0.96 Kips Max W= 0.398 KIf Ok
60 Pa= 0.93 Kips Max W= 0.372 KIf Ok
62 Pa= 0.90 Kips Max W= 0.348 KIf Ok
64 Pa= 0.87 Kips Max W= 0.327 KIf Ok
66 Pa= 0.84 Kips Max W= 0.307 KIt Ok
68 Pa= 0.82 Kips Max W= 0.289 KIf Ok
70 Pa= 0.80 Kips Max W= 0.273 KIt Ok
72 Pa= 0.77 Kips Max W= 0.258 KIf Ok
74 Pa= 0.75 Kips Max W= 0.244 Klf Ok
76 Pa= 0.73 Kips Max W= 0.232 Klf Ok
s ( Z
i
Stair Stringer Design
2.5► 4
153.96 inches
►
12.83 ' I
•
Feet x I
_ _ _
10
TAop of Landing ( � •
Ga= 12
7-11 stair Stringer
Ra Type C10x2.5x12
1.06 Sx= 4.98 InA3
Ix= 24.89 I04
-1 8.42
Fy= 55000 Psi
Rb
Side View of Stairs 1.06
Design Loading
Ms=WLA2/8 Ma=SxFb
Ws= 110 Psf Fb=.6Fy
W=(8Sx.6Fy/LA2)*2 f Stringers
Stair Width Width Tread Maximum Stringer
Inches Feet Act. Loading Span Span
30 2.50 275.0 338.73 Inches 28.23 Feet Ok
34 2.83 311.7 318.18 Inches 26.52 Feet Ok
36 3.00 330.0 309.22 Inches 25.77 Feet Ok
38 3.17 348.3 300.97 Inches 25.08 Feet Ok
40 3.33 366.7 293.35 Inches 24.45 Feet Ok
42 3.50 385.0 286.28 Inches 23.86 Feet Ok
44 3.67 403.3 279.70 Inches 23.31 Feet Ok
46 3.83 421.7 273.55 Inches 22.80 Feet Ok
48 4.00 440.0 267.79 Inches 22.32 Feet Ok
50 4.17 458.3 262.38 Inches 21.87 Feet Ok
54 4.50 495.0 252.48 Inches 21.04 Feet Ok
60 5.00 550.0 239.52 Inches 19.96 Feet Ok
66 5.50 605.0 228.37 Inches 19.03 Feet Ok
72 6.00 660.0 218.65 Inches 18.22 Feet Ok
78 6.50 715.0 210.07 Inches 17.51 Feet Ok
84 7.00 770.0 202.43 Inches 16.87 Feet Ok
03
_..
Guardrail Design
IBC
W= 50 Plf
P= 200 Pounds
Top Rail Analysis-Design
Top Rail 1 5/8-16
6 Uniform Loading Review
M=WL`/8 f2= 1.67
Span Eq.F8-1 Ma=ZFy/f2
Zx= 0.158 In3
Fy= 40 Fb= 24 Ksi
Ma= 3791.0 In-Pounds Ok M= 2700.0 In-Pounds
lx= 0.097 A= 0.51 inches
Concentrated Rail Loading Review
M=PU4
Ma=Zfy/O.
Ma= 3791.0 In-Pounds Ok M= 3600 In-Pounds
4= 0.543
Mid Rail Analysis-Design
P= 50 Pounds Vertical Rail Spacing 19 Inches
Post Spacing 6 Foot
Fy= 40 ksi W= 9.50 Ft2
Mid Rail... 1 5/8-16 Zx= 0.158 In3 Wt= 475.0 Pounds
M=PLl4 M= 900 In-Pounds
Eq.F8-1 Ma=ZFy/0 Ma= 3791 In-Pounds Ok
Rail Post Analysis-Design
0= 1.67
Fp Ma;=PH; Fy= 50 ksi
300 Pounds * M;= 12600 In-Pounds
M;= 12.60 In-Kips
H= 42 inches
42 Tk= 0.109 inches
Post 2 sq-12 2 x 2 x 12ga tube
Ma=ZFy/U
v Zx= 0.585 Ina
Ma= 17524 In-Pounds
Ok 71.9%
` i4
t;
Stairway Guardrail Design
IBC
Resulting
iiiiit..2..... Wh= 50 Plf Wr
Wv= 0 Pounds 50.0
38 Top Rail Analysis-Design
Top Rail 2 sq-12
Uniform Loading Review
6 , M=WL2/8 R= 150.0
Span Eq.F8-1 Ma=ZFy/0
Railing System for Stairs 12= 1.67
Zx= 0.585 Ina
Fy= 50.0
Ma= 17524 In-Pounds Ok M= 2700.0 In-Pounds
Mid Rail Analysis-Design
P= 50 Pounds Vertical Rail Spacing ... 17 Inches
Post Spacing 6 Foot
W= 8.50 Ft2
Mid Rail... 1 5/8-16 Zx= 0.158 Ina Wt= 425.00 Pounds
M=PU4 M= 900 In-Pounds
Eq.F8-1 Ma=ZFy/0 Ma= 4739 In-Pounds Ok
Rail Post Analysis-Design
Fp
200 Pounds M=PH
M= 7600 In-Pounds
M= 7.60 In-Kips
38 H Post........ 2 sq-12 2 x 2 x 12ga tube
Eq.F8-1 Ma=ZFy/0
♦ Fy= 50.0 ksi
Zx= 0.585 Ina
Ma= 17524.1 In-Pounds
Ok