Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Specifications
3uroZ015-0031( 3005 SW 141.414ZtkE R.I) MATERIAL HANDLING ENGINEERING FST 19RS SPECIAL PRODUCTS CONVEYORS STORAGE RACKS OTHER SERVICES SHELVING SPECIAL PRODUCTS TANK SUPPORTS TALL SUPPORTS SELECTIVE SEISMIC ANALYSIS METAL SHUTTLES MACHINERY HEADER STEEL DRIVE-IN PERMIT ACQUISITION METAL/WOOD VLM RACKBLDGS SORT PLATFORMS PUSH BACK EGRESS PLANS MOVABLE CAROUSELS SHEDS PICK MODULES FLOW RACK STATE APPROVALS GONDOLAS VRC MEZZANINES ROOF VERIFICATION CANTILEVER PRODUCT TESTING LOCKERS MODULAR OFFICES FOOTINGS CATWALKS FENCES Licensed in all 50 States RECEIVED JAN262016 CITE'OF DGARD BUILDING DIVISION Analysis of Storage Racks for• MEDLINE 1 8005 SW HUNZIKER ROAD, TIGARD, OR 97223 1 Job No. 16-0033 fl. a / •-V ,' E FF Sal : - .E 1/1g4i 161 Atlantic Street * Pomona,CA 91768 * (909)869-0989 * FAX:(909)869-0981 SEIZMIC PROJECT: MEDLINE FOR: Apex Storage_Peter DeH p g �HC SHEET#: 1 CALCULATED BY: tkasparian MATERIAL HANDLING ENGINEERING DATE: 1/12/2016 EST.1985 PROJECT#: 20160112 2 TEL.(909)869-0989 FAX:(909)869-0981 161 ATLANTIC STREET,POMONA,CA 91768 Table of Contents 2 Parameters Components and Specifications 3 Loads and Distributions 10 Basic Load Combinations 11 Longitudinal Analysis 12 Column&Backer Analysis 13 Beam Analysis 19 Beam to Column Analysis 22 Bracing Analysis 23 Anchor Analysis 26 Overturning Analysis 29 Baseplate Analysis 30 Slab and Soil Analysis 31 Scope: This storage system analysis is intended to determine its compliance with appropriate building codes with respect to static and seismic forces. The storage racks are prefabricated and are to be field assembled only,with no field welding. SEIZMIC PROJECT: MEDLINE FOR: Apex Storage_Peter DeH SHEET#: 2 MATERIAL HANDLING'ENGINEI=RING CALCULATED BY: tkasparian EST.1985 DATE: 1/12/2016 PROJECT#: 20160112_2 TEL.(909)869-0989 FAX(909)869-0981 161 ATLANTIC STREET,POMONA,CA 91768 The storage racks consist of several bays,interconnected in one or both directions,with the columns of the vertical frames being comon between adjacent bays. This analysis will focus on a tributary bay to be analyzed in both the longitudinal and transverse direction. Stability in the longitudinal direction is maintained by the beam to column moment resisting connections,while bracing acts in the transverse direction. jl I/ ir Flk \Nj V-A, 1 2 3 CONCEPTUAL DRAWING Some components may not be used or may vary TRIBUTARY AREA Legend 1. Column 2.Base Plate 3.Anchors 4.Bracing 5.Beam TRANSVERSE 6. Connector • LONGITUDINAL NOTE:ACTUAL CONFIGURATION SHOWN ON COMPONENTS&SPECIFICATIONS SHEET EI C" PROJECT: MEDLINE FOR: Apex Storage_Peter DeH SHEET#: 3 CALCULATED BY: tkasparian MATERIAL HANDLING ENGINEERING DATE: 1/12/2016 5511985 PROJECT#: 20160112 2 TEL:(909)869-0989 FAX:(909)869-0981 161 ATLANTIC STREET,POMONA,CA 91768 COMPONENTS AND SPECIFICATIONS Configuration 1:TYPE A3 SP Analysis per section 2208 of the 2014 OSSC S=0.98 F =1.11 I=1 V ng=408 lbs. PsAne =4950 lbs. Levels:3 Panels:6 S1=0.42 f' =1.58 SDC=D I ns=612 lbs. PSes,"w=3393 lbs. 24" Load per Level N T S— 3000 lbs 60" 84" N 3300 lbs 60" 300" 84" 60" S 3300 lbs 42" 84" 42" 138" `I 4 42" 4 FRONT VIEW I SIDE VIEW FRAME BEAM CONNECTOR COLUMN Level 1+ 3 Pin Connector 3 x 2.75-0.102(HA) 4.875 x 2.625-0.060(47D) Stress=68% Steel=55000 psi Steel=55 ksi Max Static Cap.=4172 lb. Stress=40%(level 2) Stress=79% Max stress=68%(level 1) BACKER TO LEVEL 1 Level 3 3 x 2.75-0.102(HA) 4.5 x 2.625-0.060(44D) Steel=55000 psi Steel=55 ksi Max Static Cap.=3562 lb. Stress=25%(level 1) Stress=84% HORIZONTAL BRACE 1.5 x 1.5-0.036(SQ.TUBE) Max stress=84%(level 3) Stress=10% DIAGONAL BRACE 7/8 X 20 GA(PIPE) Stress=13% Base Plate Slab&Soil Anchors Steel=36000 psi Slab=4"x 3500 psi Hilti Kwik Bolt TZ(KB-TZ) ESR-1917 8 in.x 12 in.x 0.5 in. 2 anchors plate. Soil Bearing Pressure= 1000 psf 0.5 in.x 2 in.Min.Embed. Moment=8364 in-lb. Stress=3% Slab Puncture Stress=29% Pullout Capacity=991 lbs. Slab Bending Stress=97% Shear Capacity=1067 lbs. Anchor stress=76% Seizmic Analyzer version 20151202 ©Copyright 1991-2015 Seizmic Inc.All rights reserved SEIZMIC PROJECT: MEDLINE " , FOR: Apex Storage Peter DeH SHEET#: 4 MATERIAL HANDLING ENGINEERING CALCULATED BY: tkasparian HANDLING DATE: 1/12/2016 PROJECT#: 20160112_2 TEL:(909)869-0989 FAX:(909)869-0981 161 ATLANTIC STREET,POMONA,CA 91768 COMPONENTS AND SPECIFICATIONS Configuration 2:TYPE TUNNEL END SP Analysis per section 2208 of the 2014 OSSC S=0.98 F=1.11 I= 1 VLang= 181 lbs. Psrano =2150 lbs. Levels:3 Panels:6 S,=0.42 F= 1.58 SDC=D V. =271 lbs. P . = 1656 lbs. Trans seismic N Load per Level 24 N S 4000 lbs 60" 84" N N S— 4000 lbs 60" 300" N 84" 60" N 42" 84" 42" N N 180" `i. 4 42" FRONT VIEW SIDE VIEW FRAME BEAM CONNECTOR COLUMN 6 x 2.625-0.060(60D) Level 1 3 x 2.75-0.102(HA) Steel=55 ksi Max Static Cap.=4012 lb. 3 Pin Connector Steel=55000 psi Stress=0% Stress=22% Stress=15%(level 3) BACKER TO LEVEL 2 Max stress=95%(level 2) 3 x 2.75-0.102(HA) Level2 Steel=55000 psi 4 Pin Connector Stress=20%(level 1) Stress=31% HORIZONTAL BRACE 1.5 x 1.5-0.036(SQ.TUBE) Max stress=31%(level 2) Stress=4% DIAGONAL BRACE 7/8 X 20 GA(PIPE) Stress=6% Base Plate Slab&Soil Anchors Steel=36000 psi Slab=4"x 3500 psi Hilti Kwik Bolt TZ(KB-TZ) ESR-1917 8 in.x 12 in.x 0.5 in. 2 anchors/plate. Soil Bearing Pressure=1000 psf 0.5 in.x 2 in.Min.Embed. Moment=3710 in-lb. Stress= 1% Slab Puncture Stress= 14% Pullout Capacity=991 lbs. Slab Bending Stress=21% Shear Capacity= 1067 lbs. Anchor stress=39% Seizmic Analyzer version 20151202 ©Copyright 1991-2015 Seizmic Inc.All rights reserved SEiZMiC, PROJECT: MEDLINE FOR: Apex Storage_Peter DeH li+1C SHEET#: 5 CALCULATED BY: tkasparian MATERIAL HANDLING ENGINEERING DATE: 1/12/2016 EST 1985 PROJECT#: 20160112 2 TEL:(909)869-0989 FAX:(909)869-0981 161 ATLANTIC STREET,POMONA,CA 91768 COMPONENTS AND SPECIFICATIONS Configuration 3:TYPE B SP Analysis per section 2208 of the 2014 OSSC Ss=0.98 F =1.11 1=1 V�g=384 lbs. Psa;;c =4550 lbs. Levels:7 Panels:6 I nad tar I ovel S1=0.42 P„=1.58 SDC=D I Tram=575 lbs. P.esm =3124 lbs. N 1200 lbs -4 r 24" 42" 1200 lbs --4 IF 60" 42" 1200 lbs —4 N. 4 42" 1200 lbs N S 60" 0 300" 42"i‘ N 1200 lbs —4 60" W . 42" t S--_ 1200 lbs — 42" 42 111F11111 l' 1200 lbs 1 42" 42 11111 N 'i. 138" `F 4 `ik— 42" 4 FRONT VIEW SIDE VIEW FRAME BEAM CONNECTOR COLUMN 4.5 x 2.625-0.060(44D) 3 Pin Connector 3 x 2.75-0.102(HA) Steel=55 ksi Max Static Cap.=3562 lb. Stress=32% Steel=55000 psi Stress=33% Stress=22%(level 5) Max stress=32%(level 1) BACKER TO LEVEL 2 Max stress=33%(level 1) 3x2.75-0.102(HA) Steel=55000 psi Stress=13%(level 1) HORIZONTAL BRACE 1.5 x 1.5-0.036(SQ.TUBE) Stress=9% DIAGONAL BRACE 7/8 X 20 GA(PIPE) Stress=12% Base Plate Slab&Soil Anchors Steel=36000 psi Slab=4"x 3500 psi Hilti Kwik Bolt TZ(KB-TZ) ESR-1917 8 in.x 12 in.x 0.5 in. 2 anchors plate Soil Bearing Pressure= 1000 psf 0.5 in.x 2 in.Min.Embed. Moment=3840 in-lb. Stress=2% Slab Puncture Stress=29% Pullout Capacity=991 lbs. Slab Bending Stress=94% Shear Capacity=1067 lbs. Anchor stress=80% Seizmic Analyzer version 20151202 ©Copyright 1991-2015 Seizmic Inc.All rights reserved SEIZMIC PROJECT: MEDLINE 1NC FOR: Apex Storage_Peter DeH _.----- SHEET#: 6 " - CALCULATED BY: tkasparian MATERIAL HANDLING'ENGINEERING DATE: 1/12/2016 EST.1985 PROJECT#: 20160112 2 TEL:(909)869-0989 FAX:(909)869-0981 - 161 ATLANTIC STREET,POMONA.CA 91768 COMPONENTS AND SPECIFICATIONS Configuration 4:TYPE C SP Analysis per section 2208 of the 2014 OSSC SS=0.98 F =1.11 I= 1 V� =264 lbs. Pstad =3000 lbs. Levels: 10 Panels:6 SS=0.42 f= 1.58 SDC=D Y =396 lbs. Tra"gm Pseismic=1783 lbs. N - Load per Level - T 500 lbs 24„ 30" --_ 500 lbs 30" 60" 500 lbs -. \ 4 30" 500 lbs --4 30" 60" 500 lbs 300" — 30" \ . 500 lbs 30" 60" 4 500 lbs ---5 N + 30" S-- 500 lbs ---5 42" 30" S 500 lbs V I 30" 42" I"I \ S 500 lbs -S gL r 138" `{. 4 '1,— 42" 4 FRONT VIEW SIDE VIEW FRAME BEAM CONNECTOR COLUMN 2.75 x 2.625-0.060(26D) 3 Pin Connector 3 x 2.75-0.102(HA) Steel=55 ksi Max Static Cap.=1484 lb. Stress=16% Steel=55000 psi Stress=33% Stress= 19%(level 4) Max stress=20%(level 2) BACKER TO LEVEL 3 Max stress=33%(level 1) 3 x 2.75-0.102(HA) Steel=55000 psi Stress=18%(level 3) HORIZONTAL BRACE 1.5 x 1.5-0.036(SQ.TUBE) Stress=6% DIAGONAL BRACE 7/8 X 20 GA(PIPE) Stress=8% Base Plate Slab&Soil Anchors Steel=36000 psi Slab=4"x 3500 psi Hilti Kwik Bolt TZ(KB-TZ) ESR-1917 8 in.x 12 in.x 0.5 in. 2 anchors plate Soil Bearing Pressure=1000 psf 0.5 in.x 2 in.Min.Embed. Moment=396 in-lb. Stress=1% Slab Puncture Stress=18% Pullout Capacity=991 lbs. Slab Bending Stress=39% Shear Capacity= 1067 lbs. Anchor stress=40% Seizmic Analyzer version 20151202 ©Copyright 1991-2015 Seizmic Inc.All rights reserved , IZMC PROJECT: MEDLINE FOR: Apex Storage_Peter DeH IN SHEET#: 7 CALCULATED BY: tkasparian MATERIAL HANDLING ENGINEERING DATE: 1/12/2016 EST.1985 PROJECT#: 20160112_2 TEL:(909)869-0989 FAX:(909)869-0981 161 ATLANTIC STREET,POMONA,CA 91768 COMPONENTS AND SPECIFICATIONS Configuration 5:TYPE F SP Analysis per section 2208 of the 2014 OSSC SS=0.98 F = 1.11 I=1 V,g=398 lbs. P„,,,, =4800 lbs. Levels:4 Panels:6 S,=0.42 F,= 1.58 SDC=D i Trans=597 lbs. PSesm =3294 lbs. Load per Level 24„ 2300 lbs I � 60" 60" N 5--- 23001bs 60" 60" 300" S 2300 lbs N. 60" 60" \ 2300 lbs N 42 Fil 84" i. / 1 42" IHI 138" .• 4' *-- 42" —+ FRONT VIEW SIDE VIEW FRAME BEAM CONNECTOR COLUMN 4.5 x 2.625-0.070(44C) 3 Pin Connector 3 x 2.75-0.102(HA) Steel=55 ksi Max Static Cap.=4060 lb. Stress=56% Steel=55000 psi Stress=56% Stress=30%(level 2) Max stress=56%(level 1) BACKER TO LEVEL 1 Max stress=56%(level 1) 3 x 2.75-0.102(HA) Steel=55000 psi Stress=25%(level 1) HORIZONTAL BRACE 1.5 x 1.5-0.036(SQ.TUBE) Stress=9% DIAGONAL BRACE 7/8 X 20 GA(PIPE) Stress= 13% Base Plate Slab&Soil Anchors Steel=36000 psi Slab=4"x 3500 psi Hilti Kwik Bolt TZ(KB-TZ) ESR-1917 8 in.x 12 in.x 0.5 in. 2 anchors%plate. Soil Bearing Pressure=1000 psf 0.5 in.x 2 in.Min.Embed. Moment=8159 in-lb. Stress=3% Slab Puncture Stress=29% Pullout Capacity=991 lbs. Slab Bending Stress=96% Shear Capacity=1067 lbs. Anchor stress=78% Type F with 96"beam length is OK by simple review. Seizmic Analyzer version 20151202 ©Copyright 1991-2015 Seizmic Inc.All rights reserved 'SELZMIC PROJECT: MEDLINE 1NC FOR: Apex Storage_Peter DeH \ - 'J SHEET#: 8 CALCULATED BY: tkasparian MATERIAL HANDLING ENGINEERING DATE: 1/12/2016 EST,1985 PROJECT#: 20160112_2 TEL:(909)869-0989 FAX:(909)869-0981 161 ATLANTIC STREET,POMONA,CA 91768 COMPONENTS AND SPECIFICATIONS Configuration 6:TYPE G SP Analysis per section 2208 of the 2014 OSSC Ss=0.98 F = 1.11 I= 1 Vn =398 lbs. Psrarm =4800 lbs. Levels:4 Panels:6 S =0.42 P', =1.58 SDC=D I,.a„gs=597 lbs. Pseismic=3352 lbs. Load per Level 24" ` 4Ir 5--- 2300 lbs � y 8 60" N 2300 lbs -4 60" 60" 2300 lbs 300" 72" 60" 2300 lbs N 42" 84" 42" 138" '. 4 42" 4 FRONT VIEW SIDE VIEW FRAME BEAM CONNECTOR COLUMN 4.5 x 2.625-0.070(44C) 3 Pin Connector 3 x 2.75-0.102(HA) Steel=55 ksi Max Static Cap.=4060 lb. Stress=59% Steel=55000 psi Stress=56% Stress=36%(level 2) Max stress=59%(level 1) BACKER TO LEVEL 1 Max stress=56%(level 1) 3 x 2.75-0.102(HA) Steel=55000 psi Stress=25%(level 1) HORIZONTAL BRACE 1.5 x 1.5-0.036(SQ.TUBE) Stress=9% DIAGONAL BRACE 7/8 X 20 GA(PIPE) Stress=13% Base Plate Slab&Soil Anchors Steel=36000 psi Slab=4"x 3500 psi Hilti Kwik Bolt TZ(KB-TZ) ESR-1917 8 in.x 12 in.x 0.5 in. 2 anchors plate Soil Bearing Pressure=1000 psf 0.5 in.x 2 in.Min.Embed. Moment=8159 in-lb. Stress=3% Slab Puncture Stress=30% Pullout Capacity=991 lbs. Slab Bending Stress=99% Shear Capacity=1067 lbs. Anchor stress=81% Type G with 96"beam length is OK by simple review. Seizmic Analyzer version 20151202 ©Copyright 1991-2015 Seizmic Inc.All rights reserved SEIZMIC PROJECT: MEDLINE FOR: Apex Storage_Peter DeH t IbIC -! SHEET#: 9 �'�-�—; CALCULATED BY: tkasparian MATERIAL HANDLING ENGINEERING DATE: 1/12/2016 EST 1985 PROJECT#: 20160112_2 TEL:(909)869-0989 FAX:(909)869-0981 - 161 ATLANTIC STREET,POMONA,CA 91768 COMPONENTS AND SPECIFICATIONS Configuration 7:TYPE H SP Analysis per section 2208 of the 2014 OSSC SS=0.98 F =1.11 1=1 V ng=4141bs. Pson e =49001bs. Levels: 8 Panels:6 Si=0.42 fv= 1.58 SDC=D i ns=621 lbs. Ps.es n.=3201 lbs. N 24" Load per Level 3000 lbs N. s_ - t 60" 84" N 60" 3000 lbs 5--- _ 300" 26" N 500 lbs S -- 26" 500 lbs 60" 26" 500 lbs * S-- 26" 500 lbs 42" 26" T, J 500 lbs —'S 26" 42 500 lbs L N * 138" * 4 42" ---* FRONT VIEW SIDE VIEW FRAME BEAM CONNECTOR COLUMN Level 1+ 3 Pin Connector 3 x 2.75-0.102(HA) 2.75 x 2.625-0.060(26D) Stress= 19% Steel=55000 psi Steel=55 ksi Max Static Cap.=1484 lb. Stress=25%(level 8) Stress=33% Max stress=43%(level 7) BACKER TO LEVEL 4 Level 7+ 3 x 2.75-0.102(HA) 4.5 x 2.625-0.060(44D) Steel=55000 psi Steel=55 ksi Max Static Cap.=3562 lb. Stress=9%(level 2) Stress=84% HORIZONTAL BRACE 1.5 x 1.5-0.036(SQ.TUBE) Max stress=84%(level 7) Stress=10% DIAGONAL BRACE 7/8 X 20 GA(PIPE) Stress=13% Base Plate Slab&Soil Anchors Steel=36000 psi Slab=4"x 3500 psi Hilti Kwik Bolt TZ(KB-TZ) ESR-1917 8 in.x 12 in.x 0.5 in. 2 anchors/place Soil Bearing Pressure= 1000 psf 0.5 in.x 2 in.Min.Embed. Moment=621 in-lb. Stress= 1% Slab Puncture Stress=29% Pullout Capacity=991 lbs. Slab Bending Stress=95% Shear Capacity=1067 lbs. Anchor stress=70% Seizmic Analyzer version 20151202 ©Copyright 1991-2015 Seizmic Inc.All rights reserved SEIZMC PROJECT: MEDLINE INC FOR: Apex Storage_Peter DeH ` � SHEET#: 10 CALCULATED BY: tkasparian MATERIAL HANDLING ENGINEERING DATE: 1/12/2016 EST.1985 PROJECT#: 20160112 2 TEL.(909)869-0989 FAX.(909)869-0981 161 ATLANTIC STREET,POMONA,CA 91768 Loads and Distribution: TYPE A3 El n I FR Determines seismic base shear per Section 2.6 of the RMI&Section 2208,of the 2014 OSSC. #of Levels: 3 SDC: D ELS F5 Rw(L): 6 v nil Pallets Wide: 3 Wpl: 9600 lbs Rw(T): 4 Ele Fa Pallets Deep: 1 Wdl: 300 lbs Fa: 1.108 EL3 3 Pallet Load: 1000 lbs Total frame load: 9900 lbs Ss: 0.98 EL2 F2 Ie: 1 EL s F1 Base Shear: V = ((2/3 •Fa•S•IP•((0.67• WPi)+ WDI))/R.)•0.75.0.67 Longitudinal: VL = ((2/3 • 1.108•0.98• 1 •((0.67•9600 lbs)+300 lbs))/6)•0.75 •0.67 = 408 lbs Transverse: = ((2/3 • 1.108•0.98• 1 •((0.67•9600 lbs)+300 lbs))/4)•0.75•0.67 = 612 lbs WA f — V EWH. Longitudinal Transverse Level hE wx w h f w { x x x w xh x 1 84 3.400 285,600 71.14 3,400 285,600 106.71 2 168 3.400 571,200 142.28 3.400 571,200 213.42 3 252 3,100 781,200 194.58 3.100 781,200 291.88 408 lbs 612 lbs SEIZMIC , PROJECT: MEDLINE FOR: Apex Storage Peter DeH 1------ ... LAIC 1 SHEET#: 11 __. CALCULATED BY: tkasparian MATERIAL HANDLING E ENGINEERING DATE: 1/12/2016 EST.1985 PROJECT#: 20160112_2 TEL:(909)869-0989 FAX:(909)869-0981 _ 161 ATLANTIC STREET,POMONA,CA 91768 BASIC LOAD COMBINATIONS TYPE A3 2014 OSSC& RMI/ANSI Mil 16.1 VT.a„s = 612 lbs YI„g = 408 lbs Sds = .724 PL=Product Load*0.5=4,800 lbs DL=Dead Load/2=150 lbs EL=Seismic Load=5,597 lbs Basic Load Combinations 1:DL = 300/2= 150 lbs 2:DL+PL+LL+(Lr or SL or RL) = 150+4.800+0 = 4,9501bs 3a:(0.6•DL)+(0.75•0.6•PLapp)-(0.75 •WL) = (0.6• 150)-(0.75 •0.6•3216)-(0.75•0) = 1,537 lbs 3b:((0.6-(0.11 •Sds))•DL+(0.75 •(0.6-(0.14• Sds))•PLapp)-(0.75 •0.67•EL) =((0.6-(0.11 • 1))• 150+(0.75 •(0.6-(0.14• 1))•3,216)-(0.75 •0.67•5.597)=-1,531 lbs 4a:DL+(0.75 •PL)+LL+(Lr or SL or RL)+(0.75 •WL) = 150+4.800+0+0 = 3,7501bs 4b:(1+(0.11 •Sds))•DL+(0.75•(1+(0.14•Sds)•PLapp)+(0.75 •0.67•EL) = 1+(0.11 • 1))• 150+(0.75 •(1 +(0.14• 1)•3,216)+(0.75 •0.67•5,597)=5,631 lbs 5:DL+LL+(0.5•(SL or RL))+(0.88•PL)+IL =1500+(0.5•(0)+(0.88•4.800)+ 1,200 = 5,574 lbs SEIZMI PROJECT: MEDLINE FOR: Apex Storage_Peter DeH INC SHEET#: 12 MATERIAL HANDLING'ENGINEERING CALCULATED BY: tkasparian EST leas DATE: 1/12/2016 PROJECT#: 20160112 2 TEL:(909)869-0989 FAX:(909)869-0981 - 161 ATLANTIC STREET,POMONA,CA 91768 LONGITUDINAL ANALYSIS TYPE A3 This analysis is based on the Portal Method,with the point of contra flexure of the columns assumed at mid-height between beams,except for the lowest portion,where the base plate provides only partial fixity and the contra flexure is assumed to occur closer to the base(or at the base for pinned condition,where the base plate cannot carry moment). MConnR = MConnL = MConn Mn-n MConn = ((MUpper+MEower)/2)+MEWS ti M5-5 4�.� Vcol = tiLong l 2 = 204 lbs / 5 1 \ 114-4 PAW Mtase = 8364 in-lbs MEW F4 ) M3-3 F3 113 MLower = ((Vcol'h,)-MBase �/ 2-? :r (204 lbs x 82 in)-8364 in-lbs=8364 in-lbs Moue. P,,,, 1I-1 (' F] hi Mn„- '7:base , ......_ r B T s:ac /,/,/,/,///,.////// FRONT LI:,[V ATION Levels hi fi Axial Load Moment Beam End Conn Moment Moment 1 84 36 4,950 8,364 4.110 11.829 2 84 71 3.250 7,074 4.110 9.690 3 84 97 1,550 4,086 4,343 6.386 PROJECT: MEDLINE 3 FOR: Apex Storage_Peter DeH n SHEET#: 13 "'_- _ CALCULATED BY: tkaspari 6 MATERIAL HANDLING NGINEERING DATE: 1/12/2016 esr, sas'' PROJECT#: 20160112 2 TEL:(909)869-0989 FAX.(909)869-0981 • 161 ATLANTIC STREET,POMONA,CA 91768 COLUMN WITH BACKER ANALYSIS TYPE A3 Analyzed per RMI.AISI 2007(LRFD)and the 2014 OSSC. 3x2.75-0.102 Strength Increase from Cold Work of Forming(Section A7.2) SECTION PROPERTIES Depth 5.5 in. m = 0.192(F,N/Fw) 0.068 (Eq A7.2-4) Width 3 in. 0.192 (65/55)-0.068 = 0.16 t 0.102 in. Radius 0.153 in. B� = 3.69(F„r/Fw) 0.819(Fuv/Fw)2 1.79 (Eq A7.2-3) Area 2.189 in^2 3.69 (65/55) 0.819 (65/55)2 1.79 = 1.43 AreaNet 2.189 in^2 Ix 2.935 in^4 Fv.c = Bc�,w/(R/t)'" Sx 1.956 to^3 1.43 55/(0.15/0.1)^0.16 = 73.59 (Eq A7.2-2) Sx net 1.956 in^3 Rx 1.158 in. Acomer = (11/4)((R+t)z R)z) Iy 6.709 in^4 (3.14/4) ((0 15+0.1)� 0.152 = 0.03 ins Sy 2.439 in^3 Ry 1.751 in. assumed min.4 corner elements J 4.399 in^4 C = 4•Acorner/Agross 4•0.03/2.19 = 0.06 Cw 0.009 in^6 Ix 0.125 in. Fvp = CF +(1 -C)F f<=Fuy (Eq A7.2-1) Xo 0.011 in. 0.06•73.59+(1 0.06) 55 = 56.1 ksi <=65 ksi Kx 1.2 Lx 82 in. F a is Min(Fy p,Fu) Thus F p = 56.1 ksi Kv 1 Lv 42 in. Kt 0.8 Fyv 55 ksi Fuv 65 ksi Image not found Q 1 G 11300 ksi E 29500 ksi Cmx 0.85 Cs -1 Cb 1 Ctf 1 Phib 0.9 Phic 0.85 Image not found BERM PROJECT: MEDLINE !NC_ - FOR: Apex Storage_Peter DeH SH EET#: 14 - MATERIAL HANDLING ENGINEERING CALCULATED BY: tkasparian esr. sas DATE: 1/12/2016 PROJECT#: 20160112_2 TEL:(909)869-0989 FAX:(909)869-0981 • 161 ATLANTIC STREET,POMONA,CA 91768 COLUMN WITH BACKER ANALYSIS TYPE A3 Analyzed per RMI,AISI 2007(LRFD)and the 2014 OSSC. 3x2.75-0.102 Section Subject to Torsional or Flexural-Torsion Buckling(Section SECTION PROPERTIES C4.1.2) Depth 5.5 in. Kx•Lx l Rx 1.2• 82/1.16 = 84.99 Width 3 in. K •L„l R 1 •42/1.75 = 23.99 t 0.102 in. KL/R m� = 84.99 Radius 0.153 in. Area 2.189 in^2 r = (rx2+ 2+x 2)v2 AreaNet 2.189 in^2 (1.162+ 1.752+0.012)1/2 = 2.1 in. (Eq C3.1.2.1-7) Ix 2935 in^4 Sx 1.956 in^3 13 = 1 -(x /r)2 Sx net 1.956 in^3 1 -(0.01/2.1)2 = 1 (Eq C4.1.2-3) Rx 1.158 in. Iy 6.709 in^4 F = F12E/(KL/r) (Eq C4.1.1-1) Sy 2.439 in^3 3.142.29500/84.992 = 40.307 ksi Ry 1.751 in. J 4.399 in^4 F2 = (1 /2R)((aex+0)-40, +0)2-(400,„0�))1i2) (Eq C4.1.2-1) Cw 0.009 in^6 (1/(2• 1)((40.31 +5154.49)-((40.31 +5154.49)2-(4• 1 •40.31 • Jx 0.125 in. 5154.49))I/2) = 40.307 ksi Xo 0.011 in. where, 6� = 112E/(K.L /K)2 Kx 1.2 3.142.29500/84.992 = 40.307 ksi (Eq C3.1.2-11) Lx 82 in. Ky 1 6, = 1/A 02(GI+(112EC,,)l(KL)2) Ly 42 in. 1/2.19•2.12(11300•4.399+(3.142•29500•0.01)/(0.8•42)2) = (Eq C3.1.2-9) Kt 0.8 5154.489 ksi Fyv 55 ksi Fuv 65 ksi Thus,F, = 40.307 ksi Q 1 G 11300 ksi P� = A,f•F (Eq C4.1-1) E 29500 ksi ko = (F/F)1i2 (56.1 /40.307)1/2 = 1.18 (Eq C4.1-4) Cmx 0.85 Cs -1 Since Ao< 1.5, F = (0.658^(? 2))•F1' = 31.331 ksi (Eq C4.1-2) Cb 1 Ctf I Thus P = 68,597 lbs Phib 0.9 F = �'n• = 58,307 Phic 0.85 BEIZM C,' '' PROJECT: MEDLINE FOR: Apex Storage_Peter DeH 1N� SHEET#: 15 -' CALCULATED BY: tkasparian MATERIAL HANDLING ENGINEERING DATE: 1/12/2016 EST.1985" PROJECT#: 20160112 2 TEL:(909)869-0989 FAX:(909)869-0981 - 161 ATLANTIC STREET,POMONA,CA 91768 COLUMN WITH BACKER ANALYSIS TYPE A3 Analyzed per RMI,AISI 2007(LRFD)and the 2014 OSSC. 3x2.75-0.102 Lateral-Torsional Buckling Strength[Resistance](SectionjC3.1.2) SECTION PROPERTIES Pao = P ode 122,833 •0.85 = 104,408 lbs. Depth 5.5 in. Width 3 in. Where Pao = AeFy 2.19•56.1 = 122,833 lbs. t 0.102 in. Radius 0.153 in. (Eq C3.1.2.1-1) Area 2.189 in^2 Mc. = M = S F = Sm nF, AreaNet 2.189 in^2 F = C r A(6 6)1C2/Si= 1070.59 ksi lx 2.935 in^4 e b o ey t Sx 1.956 in^3 Fe = C A6ex(j+CS(2+o2(6e l(5ex))1i2)/(CTPS) = 1064.96 ksi (Eq C3.1.2.1-4) Sx net 1.956 in^3 Rx 1.158 in. F = (CsII2EdIy,)/(St(K Ly)2 = 3113.11 ksi (Eq C3.1.2.1-10) ly 6.709 in^4 F = 1064.96 ksi (Eq C3.1.2.1-14) Sy 2.439 in^3 e.mrn Ry 1.751 in. Since,Fe>=2.78Fu J 4.399 in^4 F = (S /S (Eq C3.1.1-3) Cw 0.009 in^6 e °i.e.Fe = F = 55 ksi Jx 0.125 in. Xo 0.011 in. reduced FC, = 1-((1-Q)12)•(Fu/F)°•Fe = 55 ksi Kx 1.2 M = 107,602 in-lbs M y = 134,120 in-lbs M = Lx 82 in. Vr Ky 1 "mmm (Eq C5.2.2-6) Ly 42 in. M,r4b = 96,842 in-lbs M y0b = 120,708 in-lbsKt 0.8 (Eq C5.2.2-7) Fyv 55 ksi Pa = H2E1/(K Lr)2 = 88249.06 lbs Fuv 65 ksi Q 1 PEy = II2EI l(KyLy)2 = 1107362.141bs (Eq C5.2.2-4) G 11300 ksi E 29500 ksi ax = (1-(4)eP I PeX)) = 0.95 (Eq C5.2.2-5) Cmx 0.85 ay = (1 -(Of/Pu)) = 1 Cs -I (Eq C5.2.2-2) Cb 1 Pa = (1.2+0.2Sds)•D+(0.85+0.2Sds)•P Puapplted = 4975 lbs Ctf t Phib 0.9 Mu = Mr/(0.67•0.75) = 16644 lbs (Eq C5.2.2-1) Phic 0.85 Since,Pu/Pa>0.15 Stressl=P /Pa+M/(45M )+M/(01Ma,) ((4975/58,307)+(16644/96,842)+(1/120,708)) = 25% Stress2=P /P +C M l(4tM a)+C M l(4)bM,a)((4975/103,40§)+(0.85 . 16644/96,842•0.952))+(0.85• 1 /120,708- 0.996))) = 20% ColumnStress=Max(Stressl,Stress2) = 25% SEIZMIC PROJECT: MEDLINE iNC FOR: Apex Storage_Peter DeH SHEET#: 16 MATERIAL HANDLING ENGINEERING CALCULATED BY: tkasparian EST.1985 DATE: 1/12/2016 PROJECT#: 20160112_2 TEL:(909)869-0989 FAX:(909)869-0981 161 ATLANTIC STREET,POMONA,CA 91768 COLUMN ANALYSIS TYPE A3 Analyzed per RMl,AISI 2007(LRFD)and the 2014 OSSC. Strength Increase from Cold Work of Forming(Section A7.2) 3 x 2.75-0.102 SECTION PROPERTIES m = 0.192(F,y/F)-0.068 Depth 2.75 in. 0.192•(65/55)-0.068 = 0.16 (Eq A7.2-4) Width 3 in. 0.102 in. Be = 3.69(F /F)-0.819(Fu„/F,)2- 1.79 Radius 0.153 in. 3.69•(65/55)-0.819•(65/55)2- 1.79 = 1.43 (Eq A7.2-3) Area 1.095 in^2 AreaNet 1.095 in^2 F c = BcF l(R/t)" Ix 1.467 in^4 yv 1.43 •55/(0.15/0.1)^0.16 = 73.59 Sx 0.978 in^3 (Eq A7.2-2) Sx net 0.978 in^3 Acaroer = (II/4)((R+t)2-R)2) Rx 1.158 in. (3.14/4)•((0.15+0.1)2-0.152 = 0.03 ins IY 1.285 in^4 Sy 0.934 in^3 assumed min.4 corner elements Ry 1.083 in. C = 4•A lA 4.0.03/1.09 = 0.12 J 2.2in^4 corner gross Cw 0.004 in^6 Fa = CF a+(1 -C)Ff<=Fv Jx 0.008 in. 0.12•73.59+(1 -0.12)•55 = 57.21 ksi <=65 ksi (Eq A7.2-1) Xo 0.011 in. Kx 1.2 Fa is Min(Fy,a>F)x Thus F a = 57.21 ksi Lx 82 in. Ky 1 Ly 42 in. Kt 0.8 Fyv 55 ksi Image not found Fuv 65 ksi Q 1 G 11300 ksi E 29500 ksi Cmx 0.85 Cs -1 Cb 1 Ctf 1 Phib 0.9 Phic 0.85 .EIZMIC 'Th PROJECT: MEDLINE FOR: Apex Storage_Peter DeH SHEET#: 17 CALCULATED BY: tkasparian MATERIAL HANDLING ENGINEERING DATE: 1/12/2016 EST.1985 PROJECT#: 20160112 2 TEL:(909)869-0989 FAX:(909)869-0981 - 161 ATLANTIC STREET.POMONA,CA 91768 COLUMN ANALYSIS TYPE A3 Analyzed per RMI,AISI 2007(LRFD)and the 2014 OSSC. 3x2.75-0.102 SECTION PROPERTIES Section Subject to Torsional or Flexural-Torsion Buckling(Section Depth 2.75 in. C4.1.2) Width 3 in. K•Lx I Rx 1.2. 82/1.16 = 84.99 t 0.102 in. K„•L1,l R 1 •42/1.08 = 38.77 Radius 0.153 in KL/R max = 84.99 Area 1.095 in^2 AreaNet 1.095 in^2 r = (r2+r2+x2)1/2 (Eq C3.1.2.1-7) Ix 1.467 in^4 (1.162+ 1.082+0.012)1/2 = 1.59 in. Sx 0.978 in^3 Sx net 0.978 in^3 13 = 1 -(x0/r0)2 (Eq C4.1.2-3) Rx 1.158 in. 1 -(0.01/1.59)2 = 1 Iv 1.285 in^4 (Eq C4.1.1-1) Sy 0.934 in^3 Fe1 = 112E/(KL/r)m 2 Ry 1.083 in. 3.142•29500/84.992 = 40.309 ksi J 2.2 in^4 (Eq C4.1.2-1) Cam, 0.004 in^6 Fez = (1/213)((aex+a,)-((ate+at)2-(4Rae,a9)1/2) Jx 0.008 in. (1/(2• 1)((40.31+9030.17)-((40.31+9030.17)2-(4• 1 •40.31 • xo 0.011 in. 9030.17))1/2) = 40.309 ksi Kx 1.2 where, a,x = 112E/(Kx l Rx)2 (Eq C312-11) Lx 82 in. 3.142 . . 29500/84.992 = 40.309 ksi Ky 1 a, = 1/A 02(GJ+(112EC„)l(K,L,)2) Ly 42 in. 1/1.09• 1.592(11300•2.1995+(3.142•29500•0)/(0.8•42)2) = (Eq C3.1.2-9) Kt 0.8 9030.169 ksi Fyv 55 ksi Fuv 65 ksi Thus,FQ = 40.309 ksi Q I G 11300 ksi P„ = Aeff•F„ (Eq C4.1-1) E 29500 ksi Cmx 0.85 7v0 = (F/F)1/2 (57.21 /40.309)1/2 = 1.191 (Eq C4.1-4) Cs -1 Since k<1.5, F = (0.658^(X.02))•F = 31.584 ksi (Eq C4.1-2) Cb 1 Ctf I Thus P = 34,575 lbs Phib 09 PO = F•00 = 29,389 Phic 0.85 SEIZMI ' PROJECT: MEDLINE FOR: Apex Storage_Peter DeH 1N SHEET#: 18 .'" CALCULATED BY: tkasparian MATERIAL HANDLING ENGINEERING p esr.leas DATE: 1/12/2016 PROJECT#: 20160112_2 TEL:(909)869-0989 FAX:(909)869-0981 161 ATLANTIC STREET,POMONA,CA 91768 COLUMN ANALYSIS TYPE A3 Analyzed per RMI,AISI 2007(LRFD)and the 2014 OSSC. 3x2.75-0.102 Lateral-Torsional Buckling Strength[Resistance](SectionjC3.1.2) SECTION PROPERTIES P°° = Pn°(1), 62,624•0.85 = 53,231 lbs. Depth 2.75 in. Width 3 in. Where P,, = A„F„ 1.09•57.21 = 62,624 lbs. t 0.102 in. Radius 0.153 in. M = Mn = S°F = SminF (Eq C3.1.2.1-1) Area 1.095 in^2 AreaNet 1.095 in^2 F = Cbr A(6 ,)1/2/Si = 1070.61 ksi Ix 1.467 in^4 Sx 0.978 in^3 F = C,Aaex(j+C(j2+r 2(aa/6ex))1/2)/(CT !) = 1070.25 ksi (Eq C3.1.2.1-4) Sx net 0.978 in^3 F = (CblhEdl°)/(S/(K L„)2 = 596.21 ksi Rx 1.158 in. (Eq C3.1.2.1-10) Iy 1.285 in^4 Femin = 596.21 ksi (Eq C3.1.2.1-14) Sy 0.934in^3 Ry 1.083 in. Since,F>=2.78E J 2.2 in^4 F° _ (Se l S° (Eq C3.1.1-3) Cw 0.004 in^6 i.e.F = F„ = 55 ksi ix 0.008 in. Xo 0.011 in. reduced Fe1.= 1-((l -Q)I2)•(F/F)°•F = 55ksi Kx 1.2 M x = 53,801 in-lbs M,,, = 51,348 in-lbs M = M „ Lx 82 in. Ky 1 r1I(Pb = 48,421 in-lbs M = 46,213 in-lbs " b (Eq C5.2.2-6) I y 42 in. Kt 0.8 PEx = II2EI l(KrLx)2 = 44124.53 lbs (Eq C5.2.2-7) Fyv 55 ksi P„ = II2EI l(K„Ly)2 = 212076.48 lbs Fuv 65 ksi Q 1 Cc. = (1 -(cb°P/P,r)) = 0.94 (Eq C5.2.2-4) G 11300 ksiCc. E 29500 ksi o y = (1 -(kP/Pey)) = 0.99 (Eq C5.2.2-5) Cmx 0.85 Cs -1 P„ = (1.2+0.2Sds)•D+(0.85+0.2S,)•P P„,applied = 3267 lbs Cb 1 (Eq C5.2.2-2) Ctf I M = Mx/(0.67.0.75) = 14077 lbs Phib 0.9 (Eq C5.2.2-1) Phic 0.85 Since,P„/Pa>0.15 Stress] =P /Pa+M l(45M )+M,l(0 b M,) pi ((3267/29,389)+(14077/48,421)'+(1/46,213)) = 40% Stress2=P„/Pa°+C Ml(cM a)+C M /(08M a,) ((3267/53,231)+(0.R5 • 140�77 7'4 ,421 •'60.437))+R1.15• 1/46,213 • • 0.987))) = 32% ColumnStress=Max(Stressl,Stress2) = 40% PROJECT: MEDLINE � FOR: Apex Storage_Peter DeH �•,� INC ' SHEET#: 19 CALCULATED BY: tkasparian MATERIAL HANDLING ENGINEERING DATE: 1/12/2016 EST.1985 PROJECT#: 20160112_2 TEL:(909)869-0989 FAX:(909)869-0981 161 ATLANTIC STREET,POMONA,CA 91768 BEAM ANALYSIS TYPE A3 Determine allowable bending moment per AISI Check compression flange for local buckling(B2.1) ,� B Effectivewidthw=C-2t-2r = 1.625-(2.0.061)-(2.0.15) = 1.2in. /-C \ , w/t = 1.203/0.061 = 19.72 in. D = (1.052/k1/2)•(w/t)•(F/E)1i2 = (1.052/2)• 19.721 •(55/29500)1/2 = 0.45 A <=0.673:Flange is fully effective. Check web for local buckling(B2.3) f1(comp) = F•(y3/y2) = 55*2.16/2.37 = 50.11 ksi f2(tension) = F•(y,l y2) = 55* 1.92/2.37 = 44.49 ksi 4.5 x 2.625-0.060 = -(f2/f) = 44.49/50.11 = -0.89 Top flange width C= 1.625 in. • Bottom width B= 2.625 in. Buckling coefficient k=4+2•(1 -Y')3+2•(1 - Web depth A= 4.5 in. =4+2(1 --0.89)3+2(1--0.89) = 21.23 Beam thickness t= 0.061 in. Flat Depth w=yl +y3=1.92+2.37 = 4.078 Radius r= 0.15 in. Fy= 55 w/t = 4.078/0.061 = 66.852 w/t<200: OK Fu= 65 = (1.052/kli2)•(w/t)•(f/E)1I2 = (1.052/2)•66.852•(50.11 /29500)1/2 = Y1 = 1.92 Y2= 2.37 0.63 Y3= 2.16 bl =w•(3-LY) = 4•(3--0.89) = 15.86 Ycg= 2.13 b2=w/2=2.04 Ix= 2.17 Sx= 0.89 bl +b2= 15.86+ 15.86 = 17.89 Web is fully effective E= 29500 Determine effect of cold working on steel yield point(FYA)per section A7.2 FBeam F= 300 Beam Length L= 138 Corner cross-sectional area Lc=(II/2)•(r+t/2) = (II/2)•(0.15+0.061/2) = 0.284 Lf= effective width=1.203 C = 2•L„l Lf+2•L„ = 2•0.284/1.203+2•L„ = 0.3204 m = 0.192•(F/F)-0.068 = 0.192•(65/55)-0.068 = 0.1589 B� = 3.69•(F/F-0.819•(Fu/F)2- 1.79 = 3.69•(65/55)-0.819•(65/55)2- 1.79 = 1.43 Fu/Fy=65/55 = 1 <1.2 r/t=0.15/0.061 = 2.459 <=7=0K F„ = B„•F l(r/t)m = 1.43 •55/(2.459)" = 68 F,� op = C•F +(1-C)•F = 0.32.68+(1-0.32)•55 = 59 F_bo#o,n = Fy„,op• Ycg l(A- Y g) = 59•2.13/(4.5-2.13) = 53 SEIZMIC '� PROJECT: MEDLINE INC FOR: Apex Storage_Peter DeH ��1�•`,_ — -J SHEET#: 20 MATERIAL HANDLING ENGINEERING CALCULATED BY: tkasparian EST.1985 DATE: 1/12/2016 PROJECT#: 20160112 2 TEL:(909)869-0989 FAX:(909)869-0981 161 ATLANTIC STREET.POMONA,CA 91768 BEAM ANALYSIS TYPE A3 Check Allowable Tension Stress for Bottom Flange ! B Ln„„g„_b„t = B (2'r) (2 t) = 2.625-(2.0.15)-(2•0.061) = 2.2 �-C Cb„„o,„ = 2'L l(L „Re_bor+2•L) = 2•0.284/(2.2+2•0.284) = 0.205 D F-bottom = Cbottom•F„+(1-Cbottom) F = 0.205 •68+(1 -0.205)•55 = 57.67 A F„ = F,401, = 59.17 Determine Allowable Capacity For Beam Pair(Per Section 5.2 of the RMI.PT II) Check Bending Capacity 4.5 x 2.625-0.060 Mce„„ = 0•M, = W•L•S2•Rml8 Top flange width C= 1.625 in. S2 = LRFD Load Factor = (1.2•DL+1.4•PL+ 1.4•0.125•PL)/PL Bottom width B= 2.625 in. • Web depth A= 4.5 in. For DL =2%of PL: Beam thickness t= 0.061 in. 52 = 1.2•0.02+ 1.4+ 1.4•0.125 = 1.6 Radius r= 0.15 in. R = 1 -((2•F'L)/(6•E•I+3 •F•L)) FY= 55 m Fu= 65 = 1 -((2•300• 138)/(6•29500•2.17+3 •300• 138)) = 0.84 Y1= 1.92 ()•M• = 4•F S = 49.86in. Y2= 2.37 Y3= 2.16 W = (1)•M•8•(#of Beams)/(L•Rm•b2) = 49.86.8.2/138.0.84. 1.6 = 3562 lbs/pair Ycg= 2.13 Ix= 2.17 Sx= 0.89 Check Deflection Capacity E= 29500 FBeam F= 300 A'„„s = ass• Rd Beam Length L= 138 Amax = L/180 Rd = 1 -(4•F•L)/(5•F•L+ 10•E•I) = -(4.300. 138)/(5 .300. 138+ 10.29500.2.17) = 0.8 4ss = (5 • W•L3)/(384•E•I) L/180 = (5 • W•L3•Rd)/(384•E•I•(#ofBeams)) W = (384•E•I.2)/(180.5 •L2•Rd) = (384•29500•2.17•2)/(180•5• 1382.0.8)• 1000 = 35621bs/pair SEIZM#P PROJECT: MEDLINE ti � FOR: Apex Storage_Peter DeH -IN SHEET#: 21 CALCULATED BY: tkasparian MATERIAL HANDLING ENGINEERING DATE: 1/12/2016 EST.1985 PROJECT#: 20160112 2 TEL:(909)869-0989 FAX(909)869-0981 161 ATLANTIC STREET,POMONA,CA 91768 Allowable and Actual Bending Moment at Each Level Msratic_i47/2/8 M(low.sratic=Wauow.srafic.P/8 M�;smm—M�onn M rlow.sersm;c—Sx Fb Level Msmric Maw static' M eismrc �llowse9sm9c Result 1 29,325 35,983 5,915 35.983 Pass 2 29,325 35.983 4,845 35,983 Pass 3 26,703 30,722 3,193 30,722 Pass SEIZMIC PROJECT: MEDLINE FOR: Apex Storage_Peter DeH SHEET#: 22 MATERIAL HANDLING-ENGINEERING CALCULATED BY: tkasparian EST 1985"- - DATE: 1/12/2016 PROJECT#: 20160112 2 TEL:(909)869-0989 FAX:(909)869-0981 • 161 ATLANTIC STREET,POMONA,CA 91768 BEAM TO COLUMN ANALYSIS TYPE A3 1.Shear Capacity of Pin Pi4' Pin Diameter d=0.438 in. F = 55000 psi P2 Ashea, = d2•III 4 = 0.151 in.2 Pshea, = 0.4•F, •Ashe,, = 0.4•55000 psi •0.151 in.2 = 3314 lbs P3 2.Bearing Capacity of Pin 1 Column thickness t=0.1017 in. F = 65000 psi S2 = 2.22 a = 2.22 Fea„ng = a•F•d•t/S2 = 2.22.65000•.438.0.1017/2.22 = 2895 lbs 3.Moment Capacity of Bracket Edge Dist. = 1 in. Pin Spacing=2 in. Tc,p=0.179 in. Schp=0.127 in3 M apa�n = S tip•Fending=0.127 in3•0.66•F = 4610.1 in-lbs M��ry = C•d = 1.667•PI •d d = Edge Dist./2 = 0.5 in. Pap = Mqp„,„y I(1.667•d) = 4610.1 /(1.667•0.5) = 5531 lbs Minimum Value of P1 Governs F = Min(Psnea,,Psea,;„g,Pc„) = 2895 lbs Mco„»_All = (PI•4.5)+(P,•(2.5/4.5)•2.5)+(P1•(0.5/4.5)•0.5) = 17209.17 in-lbs Nile ,, PROJECT: MEDLINE FOR: Apex Storage_Peter DeH INC SHEET#: 23 CALCULATED BY: tkasparian - MATERIAL HANDLINGENGINEERING DATE: 1/12/2016 EST 1985 PROJECT#: 20160112_2 TEL:(909)869-0989 FAX:(909)869-0981 - 161 ATLANTIC STREET,POMONA,CA 91768 BRACE ANALYSIS TYPE A3 Analyzed per RMI,AISI 2007(LRFD)and the 2014 OSSC. 1.5 x 1.5-0.036(SQ. Strength Increase from Cold Work of Forming(Section A7.2) TUBE) SECTION PROPERTIES m = 0.192(F,/F)-0.068 (Eq A7.2-4) Depth 1.5 in. 0.192•(42/36)-0.068 = 0.16 Width 1.5 in. t 0.035 in. B, = 3.69(Fv/F,,,)-0.819(F"v/F„)2- 1.79 (Eq A7.2-3) Radius 0.052 in. 3.69•(42/36)-0.819•(42/36)2- 1.79 = 1.4 Area 0.201 in^2 AreaNet 0.201 in^2 F , = B,F,l(R/ty" Ix 0.071 In^4 1.4•36/(0.05/0.04)^0.16 = 47.39 (Eq A7.2-2) Sx 0.095 in^3 Sx net 0.095 in^3 A,„,,,,„ = (II/4)((R+t)2-R)2) Rx 0.595 in. (3.14/4)•((0.05+0.04)2-0.052 = 0 in2 Iy 0.071 in^4 Sy 0.095 in^3 assumed min.4 corner elements Ry 0.595 in. C = 4•A5a,,t„IAg,oss 4.0/0.2 = 0.08 J 0.112in^4 Cw 0 in^6 F 0 = CF,+(1 -C)F 7.<=F0,, Jx 0 in. 0.08•47.39+(1 -0.08)•36 = 36.87 ksi <=42 ksi (Eq A7.2 1) xo 0 in. Kx 1 F"is Min(F,F) Thus Fa = 36.87 ksi Lx 47 in. Ky 1 Ly 47 in. l'-N'-t� Kt 0.8 Fyv 36 ksi H Fuv 42 ksi Q 1 G 11300 ksi E 29500 ksi Cmx 0.85 Cs -1 Cb 1 Ctf I Phib 0.9 Phic 0.85 SE(ZMI PROJECT: MEDLINE FOR: Apex Storage Peter DeH -- SHEET#: 24 MATERIAL HANDLING ENGINEERING CALCULATED BY: tkasparian . DATE: 1/12/2016 EST lsas PROJECT#: 20160112_2 TEL:(909)869-0989 FAX:(909)869-0981 161 ATLANTIC STREET,POMONA,CA 91768 BRACE ANALYSIS TYPE A3 Analyzed per RMI,AISI 2007(LRFD)and the 2014 OSSC. 1.5 x 1.5-0.036(SQ. Section Subject to Torsional or Flexural-Torsion Buckling(Section TUBE) C4.1.2) SECTION PROPERTIES Depth 1.5 in. lc•Lr/R,_ 1 •47/0.59 = 79.02 Width 1.5 in. K•L./R, 1 •47/0.59 = 79.02 KL/R mQz = 79.02 t 0.0 in. Radius 0.052 52 in. Area 0.201 in^2 ro = (r 2+r 2+x 2)ll2 AreaNet 0.201 in^2 (0.592+0.592+02)1/2 = 0.84 in. (Eq C3.1.2.1-7) Ix 0.071 in^4 P. = 1 -(xo/ro)2 Sx 0.095 in^3 1 -(0/0.84)2 = 1 (Eq C4.1.2-3) Sx net 0.095 in^3 Rx 0.595 in. F t = II2E/(KL/r)max2 (Eq C4.1.1-1) lY 0.071 in^4 Sy 0.095 in^3 3.142•29500/79.022 = 46.63 ksi Ry 0.595 in. F 2 = (1 /2(3)((6, +6)-((6, J +a,)2-(4f3axat))li2) (Eq C4.1.2-1) J 0.112 in^4 (1/(2. 1)((46.63+8895.22)-((46.63+8895.22)2-(4• 1 •46.63 • x 0 in^6 8895.22))1/2) = 46.63 ksi 0 in. Xo 0 in. where, 6, = 112E/(KL l R)2 Kx t 3.142•29500/79.022 = 46.63 ksi (Eq C3.1.2-11) Lx 47 in. CS, = 1 /Ar2(GJ+(II2EC3e)/(K,L,)2) Ky 1 1 /0.2.0.842(11300•0.1119+(3.142•29500•0)/(0.8•47)2) = (Eq C3.1.2-9) Ly 47 in. 8895.22 ksi Kt 0.8 Fyv 36 ksi Thus,Fe = 46.63 ksi Fuv 42 ksi Q 1 1' = Aeff'Fa (EqC4.1-1) G 11300 ksi X = F /F 1 i2 1/2 = (EqC4.1-4 E 29500 ksi c ( y e) (36.87/46.63) 0.889 ) Cmx 0.85 Since X,<1.5, F,, = (0.658^(k2))•F = 26.48 ksi (Eq C4.1-2) Cs -1 Cb 1 Thus P = 5,320 lbs Ctf 1 Pa = Pn•0, = 4,522 Phib 0.9 Phic 0.85 _.w �Mtc sE . PROJECT: MEDLINE 'e•. FOR: Apex Storage_Peter DeH SHEET#: tkasparian BY: tkasparian MATERIAL HANDLING ENGINEERING DATE: 1/12/2016 EST.1985 PROJECT#: 20160112_2 TEL:(909)869-0989 FAX:(909)869-0981 161 ATLANTIC STREET,POMONA,CA 91768 BRACE ANALYSIS TYPE A3 Analyzed per RMI,AISI 2007(LRFD)and the 2014 OSSC. 1.5 x 1.5-0.036(SQ. Lateral-Torsional Buckling Strength[Resistance](SectionjC3.1.2) TUBE) P„o = P„00e 7,406•0.85 = 6,296 lbs. SECTION PROPERTIES Depth 1.5 in. Where P„„ = AeF 0.2.36.87 = 7,406 lbs. Width 1.5 in. t 0.035 in. Radius 0.052 in. M, = M = SF = Sm;„F (Eq C3.1.2.1-1) Area 0.201 in^2 Fe = Cbr A(6),6;)112/Sf= 1148.07 ksi AreaNet 0.201 in^2 Ix 0.071 in^4 Fe = CA6eS(j+CSU2+o2(Ge/6;))1I2)/(CTFS) = 1148.07 ksi (Eq C3.1.2.1-4) Sx 0.095 in^3 Sx net 0.095 in^3 F = (C5II2Edl )/(Sf(K Ly)2 = 148.28 ksi (Eq C3.1.2.1-10) Rx 0.595 in. F = 148.28 ksi (Eq C3.1.2.1-14) Iy 0.071 in^4 e.m,n Sy 0.095 in^3 Since,F >=2.78F Ry 0.595 in. F = (Se I Se e �� (Eq C3.1.1-3) J 0.112 in^4 i.e.Fe = F = 36 ksi Cw 0 in^6 Jx 0 in. reduced F eff= 1 -((1-Q)l 2)•(F l F,)°•F = 36 ksi xo 0 M. M = 3,413 in-lbs M y = 3,413 in-lbs M = M m„ Kx 1 Lx 47 in. MA), = 3,072 in-lbs M y4b = 3,072 in-lbs Ky I (Eq C5.2.2-6) Ly 47 in. PEx = II2EI l(K L)2 = 9371.21 lbs (Eq C5.2.2-7) Kt 0.8 Fyv 36 ksi P . = II2E1/(KLy)2 = 9371.21 lbs Fuv 42 ksi Q 1 Max Pq = 5,320 G 11300 ksi E 29500 ksi VTra„s = 612 lbs Cmx 0.85 L = ((L-6)2+(D-2B)2)112 = 47.89 in. Cs -1 „g Cb 1 VD,ag = (VT,p„s•LD;„g)/D = 697.79 in. Ctf 1 Phib 0.9 Brace Stress=VD;„g/Pa = 13% Phic 0.85 SEIZMIC PROJECT: MEDLINE 1NC FOR: Apex Storage_Peter DeH SHEET#: 26 - MATERIAL HANDLING ENGINEERING CALCULATED BY: tkasparian EST 1985' DATE: 1/12/2016 PROJECT#: 20160112 2 TEL.(909)869-0989 FAX:(909)869-0981 - 161 ATLANTIC STREET,POMONA,CA 91768 POST-INSTALLED ANCHOR ANALYSIS PER ACI 318-11 APPENDIX D Configuration 1 TYPE A3 Assumed cracked concrete application Anchor Type 1/2"dia.2"hef,4"min slab ICC Report Number ESR-1917 1.5 •her = 3 in. Slab Thickness(he) =4 in. C 1 = 12 useC = 3 in. aladj Min. Slab Thickness(hm;) =4 in. C = 12 useC = 3 in. ,,,,2a2adj Concrete Strength(le) = 3500 in. Diameter(d) = 0.5 in. 3 •hef = 6 in. Nominal Embedment(hnon,) = 2.5 in. Effective Embedment(hef) = 2 in. Si = 6 in. uses = 6 in. _ a Number of Anchors(n) =2 SZ = 0 in. useS = 0 in. zad� e'N =6 e'V =0 From ICC ESR Report cal si 1.5he{ r•aMIr A Ase =0.101 sq.in. t n►c 1.5 ler fora = 106000 psi S,n,n =2.75 in. s2 # C,,,n =2.75 in. 4-al ,, , .. # r : Ca, =5.5 in. N, =N/A v/ Aye I� ' cat ha ' e fi f [..____, I1 ,1 ,] 1.5 Cai S1 1.5 Cai 4)sesm,e Adj. Strength ASD Value 1.4 Tension Capacity= 1849 lbs 0.75 1387 lbs 991 lbs Shear Capacity= 3982 lbs 0.75 1493 lbs 1067 lbs SEI MIC PROJECT: MEDLINE rya FOR: Apex Storage_Peter DeH SHEET#: 27 CALCULATED BY: tkasparian MATERIAL HANDLING ENGINEERING DATE: 1/12/2016 EST.1985 PROJECT#: 20160112_2 TEL:(909)869-0989 FAX:(909)869-0981 161 ATLANTIC STREET,POMONA,CA 91768 ANCHOR ANALYSIS - TENSION STRENGTH Configuration 1 TYPE A3 Steel Strength D.5.1 = 0.75 D.4.3.a)i) ON„ = OnA,f,,,p = 0.75 •2•0.101 • 106000 = 8,030 lbs D.2 Concrete Breakout Strength 4)N 6g D.5.2 = 0.65 D.4.3 c)ii)Condition B Category 1 AN, = (Cal +S1„di+1.5hef)•(Ca2ad3+Sz adJ+ 1.5hef) = 72.0 sq.in. ANea = 9hef = 36.0 sq.in. Check if ANea>ANe ANe/AN,„ = 2.0 _ecN 1 D.5.2.4 — = D.5.2.5 �ed.N 1 `Yc N = 1 D.5.2.6 k = 17 D.5.2.2 = 1 N = ke21aO°-5(hel)1.5 = 2,845 lbs D.6 = 1 D.5.2.7 `Ye➢N 4./\cbg = T m (ANC/ANco)(Tec.N)(W edN)(Wc,N)('P N)(Nb) D.5.2.1 0.65 •(72.0/36.0)• 1 • 1 • 1 • 1 •2845 = 3,698 lbs Concrete Breakout Strength 4)Nbg D.5.3 = 0.65 D.5.2 men = 1 D.5.3.6 0N„ = N/A D.5.3.1 Steel Strength(4)N a) = 8,030 lbs Embedment Strength-Concrete Breakout Strength(ON = 3,698 lbs Embedment Strength-Pullout Strength(4Np) = N/A SEIZMIC PROJECT: MEDLINE 1NC FOR: Apex Storage_Peter DeH SHEET#: 28 ' MATERIAL HANDLING ENGINEERING CALCULATED BY: tkasparian EST.1985 DATE: 1/12/2016 PROJECT#: 20160112 2 TEL:(909)869-0989 FAX:(909)869-0981 161 ATLANTIC STREET,POMONA.CA 91768 ANCHOR ANALYSIS - SHEAR STRENGTH Configuration 1 TYPE A3 Steel Strength(01/sa D.6.1 = 0.65 D.4.3.a)ii) OV„ _ On•0.6•A,,fu,p = 0.65•2•0.6•0.101 • 106000 = 8,351 lbs D.28 Concrete Breakout Strength gPc6g D.6.2 = 0.7 D.4.3 c)i)Condition B Aye = (1.5C 1+Sl,od1+ 1.5Ca1)hq = 168 sq.in. AVco = 3C1h, = 144 sq.in. Check if AVco>AVc AVc I AVco = 1.167 • `1'e`.v = 1 D.6.2.5 `1`ea v = 0.9 D.6.2.6 kP°v = 1 D.6.2.7 LPh.v = 2.121 D.6.2.8 d = 0.5 in. D.6.2.2 = 0.5 in. D.3.6 = 1 The smaller of 7(1,1 d)02(d)°5k09°5 p 1.5 and 9.14f)0.5.,1.5 = 13,983 lbs D.33,D.34 'bg = 4(A Vc/A yco)('eav) dv)(1 v) h.v)(Vb) D.5.2.1 0.7•(168/144)• 1 •0.9• 1 •2.121 • 13982.8253291917 = 21,802 lbs Concrete Pryout Strength 41 V,pg D.6.3 = 0.7 D.4.3 c)i)Condition B K`p = 1 D.5.3.6 Nbg = 5,689 lbs D.5.3.1 • I V pg = IKPNbg = 0.7. 1 •5689 = 3,982 lbs D.6.3.1 Steel Strength(4Vth) = 8,351 lbs Embedment Strength-Concrete Breakout Strength(4V bg) = 21,802 lbs Embedment Strength-Pryout Strength(0I cpg) = 3,982 lbs stErz ac - PROJECT: MEDLINE FOR: Apex Storage_Peter DeH 1 SHEET#: 29 ��� -'' � CALCULATED BY: tkasparian MATERIAL HANDLING ENGINEERING DATE: 1/12/2016 EST 1985 PROJECT#: 20160112_2 TEL:(909)869-0989 FAX-(909)869-0981 161 ATLANTIC STREET,POMONA,CA 91768 OVERTURNING ANALYSIS TYPE A3 ANALYSIS OF OVERTURNING WILL BE BASED ON SECTION 2209& 1613 OF THE 2014 OSSC FULLY LOADED 111 Ft' Total Shear = 612 lbs i 1 M,,,,, = VT,..•Ht = 612•233 = 142530 in-lbs III I !F FE v M r = E(Wp,+ Wai)•d12=(9600+300)•42/2 = 207900 in-lbs Pill ' F 5 P„po = 1 •(Mov,-Ms)/d = (142,530-207,900)/42 = -1,556 lbs ffil it F4 I (P„pl,fi<=0) = no uplift i • F3 p = 1 •(M„,+M,)l d = (142,530+207.900)/42 = 8343 lbs I MacDown aii F 2 k. F1 TOP SHELF LOADED . . . . .- • _,.{ Shear = 300 lbs ‘--D—" Puplift i M„„, = V,„p•Ht = 300•(252+((84- 10)/2)) = 86700 in-lbs CROSS AISLE ELEVATION M, = E(Wpi+ Wai)•d/2=(3000+300)•42/2 = 69300 in-lbs P„pl, = 1 •(A/o,,-Ms)/d = (86,700-69,300)/42 = 414 lbs ANCHORS No.of Anchors :2 Pull Out Capacity:991 lbs Shear Capacity: 1067 lbs COMBINED STRESS Fully Loaded = ((0/2)/991)+((612/4))/1067) = 0.14 Top Shelf Loaded = ((414/2)/991)+((300/4))/1067) = 0.28 Seismic UpLift Critical(LC#3) = (((1531/2)/991)+((612/4))/1067))/1.2 = 0.76 SEIZMIC PROJECT: MEDLINE ° FOR: Apex Storage_Peter DeH INC SHEET#: 30 • MATERIAL HANDLING ENGINEERING CALCULATED BY: tkasparian EST.1985 DATE: 1/12/2016 PROJECT#: 20160112_2 TEL:(909)869-0989 FAX:(909)869-0981 161 ATLANTIC STREET,POMONA,CA 91768 BASE PLATE ANALYSIS TYPE A3 The base plate will be analyzed with the rectangular stress resulting from the vertical load P,combined with the triangular stresses resulting from the moment Mb(if any).Three criteria are using in determining Mb: 1.Moment capacity of the base plate 2.Moment capacity of the anchor bolts 3.Vcol *h/2(full fixity) Mb is the smallest value obtained from these three criteria. F, = 36000 psi Pear = 4950 lbs MBQSe = 8364 in-lbs P/A=Pear l(D•B) = 49501bs/(8• 12) = 51.56 psi = MM�e l(D•B2/6) = 8364/(12.82/6) = 65.34 psi ;-- b 1 a t b 1 s fz =f•(2•b1IB) = 65.34•(2.2.5/8) = 40.84psi / y fb =f fbz = 65.34-40.84 psi = 24.5 psi / " *.. Mb = wbl2/2 = (b12/2)•(fa+fbr+0.67•42) _ (2.52/2)•(51.56+24.5+0.67•40.84) = 322.79 in-lbs SBRSe = (B•t2)l 6 = 0.33 sq.in. - i,2 FBas, = 0.75•P, = 27000 psi f/F = Mb/(SBase•FBase) = 322.79/(0.33 •27000) = 0.04 ' - ff�1 b b Plate width B 8 in. Plate depth D 12 in. Plate thickness t 0.5 in. Column width b 3 in. b l 2.5 in. , M"C� PROJECT: MEDLINE FOR: Apex Storage_Peter DeH INC SHEET#: 31 CALCULATED BY: tkasparian MATERIAL HANDLING ENGINEERING DATE: 1/12/2016 EST:1985 PROJECT#: 20160112 2 1 EL:(909)869-0989 FAX:(909)869-0981 161 ATLANTIC STREET,POMONA,CA 91768 SLAB AND SOIL ANALYSIS TYPE A3 The slab will be checked for puncture stress.If no puncture occurs,it will be assumed to distribute the load over a larger area of soil and will act as a footing. Ps = 4950 lbs PSesm = 3393 lbs M, = 142530 in-lbs P = (1.2+0.2•Ss)•DL+(0.85+0.2•Sds)•PL+ 1.0•EL = 10,573 lbs Puncture x=4/3+8/(3 • [3) = 2.78 F,,,“ = Min(x.2.66)•X,•(fc)1/2 = 157.37 psi A „°r = ((B+t)+(W+t))•2t = 224 sq.in. fv l Fv = P.l(A •Puna) = 0.3 t Slab Tension ` f B 4011 = (P,„ • 144)/1.33 •f°;, = 1144 sq.in. L = (A )112 = 33.83in. / L B' = (B• W)112+t = 13.8 in. b = (L-B')/2 = 10.02 in. Base Plate Width B 8 in. M°„c = (wb2)/2 = (1.33 •f°,I•b2)l(144•2) = 463.49 in-lbs Depth W 12 in. S°°„ = t2/6 = 2.67 sq.in. F = 5 •4(fc)112 = 177.48 psi Frame °„ Frame depth d 42 in. fb l Fe = M°°„b l(S°„°'F°°„°) = 0.98 Concrete Thickness t 4 in. fc 3500 psi $ 0.6 1 Soil fsoil 1000 psf