Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Specifications (3)
, fp SW 12 RECEIVED py3 8 2023 CITY OF TIGARD BUILDING DIVISION Strucrurai EngIneering 1:) esign , Inc . 1815 Wright Ave Lc Verne, CA 91750 Phone:009.596.1.51 Fax: 909.596.718e Protect Name : STOUT TANKS AND KETTLES ' RE�RR�FF �/'l/�/Ca l N fFR`PiQy Protect Number: 23-0804-3 p/ 9g752 PE ,v ORE ON 4,vi y ORE ON • Dote : 08/07/23 NN 6ER t5 AO ZNP Street Address: 1044 SW 72ND AVE Enhao eyEnh";o'„a �ate:2023.08.08 City/State : TIGARD, OR 97224 Zhang ,3:2a:�-o�oo Scope of Work : STORAGE RACK Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel 909.596.1351 Fax: 909.596.7186 By: Bob S Project: Stout Tanks and Kettles Project#:23-0804-3 TABLE OF CONTENTS Title Page 1 Table of Contents 2 Design Data and Definition of Components 3 Critical Configuration 4 Seismic Loads 5 to 6 Column 7 Beam and Connector 8 to 9 Bracing 10 Anchors 11 Base Plate 12 Slab on Grade 13 • • type I select-Stout.xls Page of t3 8/7/2023 Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596,7186 By: Bob S Project: Stout Tanks and Kettles Project#:23-08043 Design Data 1)The analyses herein conforms to the requirements of the: 2021 IBC Section 2209 2022 CBC Section 2209 ANSI MN 16.1-2012 Specifications for the Design of Industrial Steel Storage Racks '2012 RMI Rack Design Manual" ASCE7-16;section 15.5.3 2)Transverse braced frame steel conforms to ASTM A570,Gr.55,with minimum strength,Fy=55 ksi Longitudinal frame beam and connector steel conforms to ASTM A570,Gr.55,with minimum yield,Fy=55 ksi All other steel conforms to ASTM A36,Gr.36 with minimum yield, Fy=36 ksi 3)Anchor bolts shall be provided by installer per ICC reference on plans and calculations herein. 4)All welds shall conform to AWS procedures,utilizing E70xx electrodes or similar.All such welds shall be performed in shop,with no field welding allowed other than those supervised by a licensed deputy Inspector. 5)The existing slab on grade is 6"thick with minimum 2500 psi compressive strength.Allowable Soil bearing capacity is 750 psf. The design of the existing slab Is by others. 6)Load combinations for rack components correspond to 2012 RMI Section 2.1 for ASD level load criteria Definition of Components A Cation B IM sue,w cbkere t flagotel Pram Fea:eae 1{eir t Mate and T Rtmei I 1 1 - _ 14.Rama 6 `I Dept Front View Down Ash d`eare A:Cross Aisle fLon :tdirrait►Frame (Transverse type I select-Stout.xls Page 3 of 13. 8/7/2023 r Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Bob S Project: Stout Tanks and Kettles Project#:23-0804-3 ' Configuration&Summary:Type 1 Selective , N' **RACK COLUMN REACTIONS t ASD LOADS gp 48„ AXIAL DL= 60/b t I, AXIAL LL= 6,7501b SEISMICAXIAL Ps-+/- 4,2751b BASE MOMENT= 9,000 In-lb 180" 60" 180" t 36" 60" 36" N. 'c N. I' - 'f 96" . 4- 42" —1` Seismic Criteria #Bm Lvls Frame Depth Frame Height #Diagonals Beam Length Frame Type Ss=0.886,Fa=1.2 3 42 in 180,0 In 4 96 in Component Description STRESS Column Fy=55 ksi Hannibal IF30143x3x14ga P=6810 lb,M=16194in-lb 0.86-OK Column&Backer None None None N/A Beam Fy=55 ksi HMH 44160/4.5"Face x 0.057"thk Lu=96 in Capacity: 5655 lb/pr 0.8-OK Beam Connector Fy=55 ksl Lvl 1:3 pin OK I Mconn=11993 in-lb Mcap=12691 in-lb 0.95-0K Brace-Horizontal Fy=55 ksi Hannibal 1-1/2x1-1/2x16ga 0.22-OK Brace-Diagonal Fy=55 ksi Hannibal 1-1/2x1-1/2x16ga 0.34-0K Base Plate Fy=36 ksi 8x5x3/8 Fixity=9000 in-lb 0.78-OK Anchor 2 per Base 0.5"x 3.25"Embed Hilti TZ2 ESR 4266 Inspection Reqd(Net Seismic Uplift=2166 lb) . 0.525-OK Slab&Soil 6"thk x 2500 psi slab on grade.750 psf Soil Bearing Pressure 0.64-OK Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg Brace Transv Longit. Axial Moment Moment Connector 1 4,500 lb 60.0 in 36.0 in 271 lb 147 lb 6,810 lb 16,194 "# 11,993 "# 3 pin OK 2 4,500 lb 60.0 in 36.0 in 541 lb 295 lb 4,540 lb 11,051 "# 8,645 "# 3 pin OK 3 4,500 lb 60.0 in 48.0 in 812 lb 442 lb 2,270 lb 6,630 "# 4,778 "# 3 pin OK 48.0 in **Load defined as product weight per pair of beams Total: 1,624 lb 884 lb Notes type I select-Stout.xls Page '4:k of I,3 b/7/2023 • Structural Engineering &. Design Inc. 1815 Wright Ave La Verne,CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Bob S Project Stout Tanks and Kettles Project#:23-0804-3 Seismic Forces' Configuration:Type 1 Selective Lateral analysis Is performed with regard to the requirements of the 2012 RMI ANSI MH 16,1-2012 Sea 2.6&ASCE 2.16 sea 15.5.3 Ss= 0.886 Transverse(Cross Aisle)Seismic Load S1= 0.383 V= Cs*ip*Ws=Cs*Ip*(0.67*P*Prf+D) vt Fa= 1.200 Cs1= Sds/R Fv= 1.925 = 0.1772 Cs-max*Ip= 0.1772 Sds=2/3*Ss*Fa= 0.709 Cs2= 0.044*Sds Vny„= 0.015 Sd1=2/3*S1*Fv= 0.492 = 0.0312 Eff Base Shear=Cs= 0.1772 transverse elevation Ca=0.4*2/3*Ss*Fa= 0.2835 Cs3= 0,5*S1/R Ws= (0.67*PLRr1*PL)+DL(RMI 2.6.2) (Transverse,Braced Frame Dir.)R= 4.0 = 0.0479 = 9,165 lb Ip 1.0 Cs-max= 0.1772 Vtransv=Vt= 0,1772*(120 lb+9045 Ib) PRr1 i�iltrffil t' Base Shear Coeff=Cs= 0.1772 Etransverse= 1,624 lb Pallet Height=hp= 48.0 in Limit States Level Transverse seismic shear per upright DL per Beam Lvl= 40 lb Level PRODUCT LOAD P P*0.67*PRr1 DL hi wl*hl Fi Fi*(hi+hp/2) 1 4,500 lb 3,015 lb 40 lb 601n 183,300 270.7 lb 22,7394 2 4,500 lb _ 3,015 lb 40 lb 120 In 366,600 541.3 lb 77,947-# 3 4,500 lb 3,015 lb 40 lb 180 in 549,900 812.0 lb 165,6484 .1, .. I . sum: P=13500 lb - 9,045 lb 120 iq,,,, -. ,, W=9165 lb 1,099,800 1,624 lb 2=266,334 Longitudinal(Downaisle)Seismic Load , - Similarly for longitudinal seismic loads,using R=6.0 . WS= (0.67*PL.2* P)+•DL s 1.'i t; PRF2= 1.0 i -j L:..1 .' NM Cs1=Sd1/(T*R)= 0.0964 . = 9,165 lb (Longitudinal,UUnbraced Dir.)R= 6.0 Ir Cs2= 0.0312 Cs=Cs-max*Ip= 0.0964, T 0,85 sec I J k:;x:. ;:: i 1 I Cs3= 0,0319 Vlon• g=,L0.0964* (120lb,4,9045 Ib) I.,'„',I , .I h :x,J V=1 Cs-max= 0.0964 Elongflvdinal=884Ib:' limit States LevalLongit seismic shear par upright Level PRODUC LOAD P P*0.67*Pnn DL hi wi*hi Fl front View 1 4,500 lb 3,015 lb 40 lb 60 in 183,300 147.3 lb I 2 4,500 lb 3,015 lb 40 lb 120 in 366,600 294.7 lb 3 4,500 lb 3,015 lb 40 lb 180 in 549,900 442.0 lb sum: 9,045 lb 120 lb W=9165lb 1,099,800 884 lb • type 1 Select-Stout.xls' Page of ,5 8/7/2023 Structural Engineering & Design Inc. 1815 Wright Ave La Verne,'CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Bob S Project: Stout Tanks and Kettles Project#:23-0804-3 Downaisle Seismic.Loads Configuration:Type 1 Selective • Determine the story moments by applying portal analysis.The base plate is assumed to provide partial fixity. seismic Story Forces Typlenl Faroe initle Vlong= 884 lb tiibutaryarca of two columns • Vco1=VIong/2= 442 lb of rack Paine\ F1= 147 lb ""r MI „•'"4'I Typical Frame made r k,� F2= 295 lb wocolumm F3= 442 lb '-w ' ':::. i~ ,.. >, .'..p3. ` . I . i r , i 0i i 0C 1� r (, f., — P.T1111111 Tnp View 14- 96" Front View Slcl€Vlaw Seismic Story Moments Conceptual SY9tsn1 COt Mbase-max= 9,000 in-lb <===Default capacity hl-eff= hi-beam clip height/2 11141.111/1 Mbase-v= (Vcol*hieff)/2 = 57 In Vcol oin=m....1 = 12,597 In-lb <__=Moment going to base Mbase-eff= Minimum of Mbase-max and Mbase-v h2 = 9,000 in-lb M 1-1= [Vcol*hleff]-Mbase-eff M 2-2= [Vcol-(F1)/2] *h2 Al = (442 lb*57 in)-9000 in-lb = [442 lb- 147.4 lb]*60 In/2 i f = 16,194 In-lb . = 11,051 In-lb hi Illeff 7 t Mseis= (Mupper+Mlower)/2 Beam to Column Elevation Msels(1-1)= (16194 In-lb+ 11051 in-lb)/2 Msels(2-2)= (11051 In-lb+6630 in-lb)/2 = 13,622 In-lb = 8,840 in-lb rho= 1.0000 Summary of Forces i LEVEL hi Axial Load Column Moment** Mseismic** Mend-fixity Mconn** Beam Connector 1 60 in 6,810 lb 16,194 in-lb 13,622 In-lb 3,510 in-lb 11,993 in-lb 3 pin OK 1 2 60 in 4,540 lb 11,051 in-lb 8,840 In-lb 3,510 in-lb 8,645 in-lb 3 pin OK 3 60 in 2,270 lb 6,630 In-lb 3,315 in-lb 3,510 in-lb 4,77SIn-lb 3 pin OK 1 Mconn= (Mseismic+ Mend-fixity)*0.70*rho - Mconn-allow(3 Pin)... 12,691 In-lb **all moments based on limit states level loading ,• d . type I select"-Stout,xle . . Page efo• of 13 8/7/2023 AO i Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Bob S Project: Stout Tanks and Kettles Project#:23-0804-3 Column (Longitudinal Loads) Configuration: Type 1 Selective Section Properties Section: Hannibal IF3014-3x3x14ga 3.000 In rl Aeff= 0.643 inA2 Iy= 0.749 inA4 Kx= 1.7 x __ Ix= 1.130 in^4 Sy= 0.493 in^3 Lx= 57.8 in Sx= 0.7531n^3 ry= 1.0801n Ky= 1.0 y_._.j._• yI 3.000In rx= 1.326 in Fy= 55 ksl Ly= 36.0 In 41 10.075 in J. Qf= 1.67 Cmx=0.85 Cb= 1.0 Y E= 29,500 ksl 0.75 In Loads Considers loads at level 1 COLUMN DL= 60 lb Critical load cases are:RMI Sec 2.1 COLUMN PL= 6,750 lb Load Case;.:(1+0.105*Sds)D+0.75*(1.4+0.14Sds)*B*P+0,75*(0.7*rbo*E)<=1.0,ASP Method Mcol= 16,194 in-lb axial load coeff: 0.7870968*P seismic moment coeff:• 0.5625*Mcal Sds= 0.7088 Load Case 6;:(1+0,14*Sds)D+(0.85+0,145ds)*8*P+(0.7*rho*E)<=1.0,ASO Method 1+0.105*Sds= 1.0744 axial load coeff:• 0.66446 seismic moment coeffii 0.7 Mcol 1.4+0.14Sds= 1.4992 By analysis,Load case 6 governs utilizing loads as such 1+0.14Sds= 1.0992 0.85+0.14*Sds= 0.9492 Axial Load=Pax= 1.099232*60 lb+0.949232*0.7*6750 lb Moment=Mx= 0.7*rho*Mcol B= 0.7000 = 4,551 lb = 0.7* 16194 in-lb rho= 1.0000 = 11,336 in-lb Axial.Analysis KxLx/rx= 1.7*57.75'/1,326" KyLy/ry= 1*3671.08" Fe > Fy/2 _;74,0 = 33.3 Fn= Fy(1-Fy/4Fe) = 55 ksi*[1-55 ksi/(4*53.1 ksl)] Fe= n^2E/(KL/r)max^2 Fy/2= 27,5 ksi = 40.8 ksi = 53.1ksi Pa= Pn/fIc Pn= Aeff*Fn Qc= 1.92 = 26210 lb/1.92 26,210 lb = 13,651 lb P/Pa= 0,33 > 0.15 Bending Analysis Check: Pax/Pa + (Cmx*Mx)/(Max*px)5 1.0 P/Pao+Mx/Max 5 1.0 Pno= Ae*Fy Pao= Pno/S2c Myield=My= Sx*Fy = 0.643102*55000 psi = 353651b/1.92 = 0.753 inA3*55000 psi =35,365 lb = 18,419 lb = 41,415 in-lb Max= My/4f Pcr= n^2EI/(KL)max^2 41415 in-lb/1.67 = n^2*29500 ksI/(1,7*57,75 in)^2 =24,799 in-lb = 34,135 lb px= {1/[1-(52c*P/Pcr)]}^-1 = {1/[1-(1,92*4551lb/34135lb)]}^-1 = 0.74 Combined Stresses (4551 lb/13651 lb) +(0.85*11336 in-Ib)/(24799 In-Ib*0.74)= 0.86 < 1.0,OK (EQ C5-1) (4551 Ib/18419lb)+(11336 in-lb/24799 in-lb)= 0.70 < 1.0,OK (EQ C5-2) **For comparison,total column stress computed for load case 51S: 81.0% yng loads 5377.36884lb Axial and M= 8501 In-lb type I select-Stout.xls Page "7 of 1 3 6/7/2023 Structural Engineering & Design I nc. 1815 Wright Ave La Verne, CA 91750 Tel; 909.596.1351 Fax: 909.596.7186 By: Bob S Project: Stout Tanks and Kettles Project#: 23-0804-3 BEAM Configuration:Type 1 Selective DETERMINE ALLOWABLE MOMENT CAPACITY 2,75 In A) Check compression flange for local buckling(B2.1) 1.75 In w= c-2*t-2*r _ _ = 1.75 in-2*0.057 in- 2*0.057 In f = 1.5221n 1.625In w/t= 26.7 1=lambda= [1.052/(k)^0.5] *(w/t)*(Fy/E)^0,5 Eq.B2.1-4 • = [1.052/(4)^0.5]*26,7* (55/29500)^0.5 4.500 In 0.057 in = 0.606 <0.673, Flange Is fully effective Eq. B2.1-1 B)check web for local buckling per section b2.3 f1(comp)= Fy*(y3/y2)= 50.90 ksi f2(tension)= Fy*(y1/y2)= 102.67 ksi Y= f2/f1 Eq.B2.3-5 Beam= HMH 44160/4.5"Face x 0.057"Mk _ -2.017 Ix= 2.009 in^4 k= 4+2*(1-Y)^3+2*(1-Y) Eq.B2.3-4 Sx= 0.849ln^3 = 64,96 Ycg= 2.970 In flat depth=w= y1+y3 t= 0.057 In = 4.272 in w/t= 74.94736842 OK Bend Radius=r= 0.057 In l=lambda= [1.052/(k)^0.5]* (w/t)*(fl/E)^0.5 Fy=Fyv= 55.00 ksi = [1.052/(64.96)^0.5] *4.272*(50.9/29500)^0,5 Fu=Fuv= 65.00 ksl = 0.406 < 0.673 E= 29500 ksi be=w= 4.272 In b2= be/2 Eq B2.3-2 top flange=b= 1.750 in bl= be(3-Y) = 2.14 in bottom flange= 2.750 in = 0,852 Web depth= 4.5nS n FY -_ bl+b2= 2.992 in > 1.416 in,Web is fully effective Determine effect of cold working on steel yield point(Fva)per section A7.2 nccamal Fya C*Fyc +(1-C)*Fy (EQ A7.2-1) Lcorner=Lc=(p/2) *(r+t/2) y2 I 0.134 in C= 2*Lc/(Lf+2*Lc) Lflange-top=Lf= 1.522 in = 0.150 in Y3 m= 0.192*(Fu/Fy)-0.068 (EQ A7.2-4) depth = 0.1590 Bc= 3.69*(Fu/Fy)-0.819*(Fu/Fy)^2- 1.79 (EQ A7.2-3) = 1.427 since fu/Fv= 1.18 < 1,2 g and r/t= 1 < 7 OK then Fyc= Bc*Fy/(R/t)^m (EQ A7.2-2) rzna eiopl = 78.485 ksi Thus, Fya-top= 58.52 ksi (tension stress at top) Fya-bottom= Fya*Ycg/(depth-Ycg) yl= Ycg-t-r= 2.856 In = 113,59 ksl (tension stress at bottom) y2= depth-Ycg= 1.530 In Check allowable tension stress for bottom flange . y3= y2-t-r= 1.416 In Lflange-bot=Lfb= Lbottom-2*r*-2*t = 2.522 in Cbottom=Cb= 2*Lc/(Lfb+2*Lc) =0.096 • Fy-bottom=Fyb=Cb*Fyc+(1-Cb)*Fyf = 57.26 ksi Fya= (Fya-top)*(Fyb/Fya-bottom) • = 29,50 ksi if F= 0.95 Then F*Mn=F*Fya*Sx= 23.79 in-k Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Bob S Project: Stout Tanks and Kettles Project#: 23-0804-3 • BEAM Configuration:Type 1 Selective RMI Section 5.2,PT II Section • Beam= HMH 44160/4.5"Face x 0.057"thk Ix=Ib= 2.009 in^4 2,75In Sx= 0.849 in^3 t= 0.057 in E= 29500 ksi 1.75 in 3 Fy=Fyv= 55 ksi F= 300.0 Fu=Fuv= 65 ksi L= 96 in r�,-1� Fya= 58.5 ksi Beam Level= 1 I 1.625 In P=Product Load= 4,500 lb/pair p Ii D=Dead Load= 40 lb/pair 9,500 in "i T I 0,0571n 1.Check Bending Stress Allowable Loads Mcenter=F*Mn= W*L*W*Rm/8 • W=LRFD Load Factor= 1.2*D+ 1.4*P+1.4*(0.125)*P RMI2.2,item 8 FOR DL=2%of PL, W= 1.599 11111111111111111111111111111111111111111111111111111111 Rm= 1-[(2*F*L)/(6*E*Ib+3*F*L)] = 1• I 1-(2*300*96 in)/[(6*29500 ksI*2.009 in^3)+(3*300*96 in)] = 0.87 if F= 0.95 Then F*Mn=F*Fya*Sx= 47.20 In-k Thus,allowable load - I----- - --per beam pair=W= F*Mn*8*(#of beams)/(L*Rm*W) = 47.2 in-k*8*2/(961n*0.87* 1.599) ineEl = 5,655 lb/pair allowable load based on bending stress • Mend= W*L*(1-Rm)/8 = (5655 ib/2)*96 in*(1-0.87)/8 • = 4,411 in-lb ©5655 lb max allowable load = 3,510 in-lb @ 4500 lb imposed product load 2.Check Deflection Stress Allowable Loads Dmax= Dss*Rd Rd= 1-(4*F*L)/(5*F*L+ 10*E*Ib) Allowable Deflection= L/180 = 1-(4*300*96 in)/[(5*300*96 in)+(10*29500 ksi*2.009 In^4)] = 0.533 In = 0.844 in Deflection at imposed Load= 0,424 in if Dmax= L/180 Based on 41180 Deflection Criteria and Dss= 5*W*L^3/(384*E*Ib) L/180= 5*W*L^3*Rd/(384*E*Ib*#of beams) solving for W yields, W= 384*E*I*2/(180*5*L^2*Rd) = 384*2.009In^4*2/[180*5*(96in)^2*0.844) = 6,502 lb/pair allowable load based on deflection limits Thus,based on the least capacity of item 1 and 2 above: Allowable load= 5,655 lb/pair Imposed Product Load= 4,500 lb/pair 'Beam Stress= 0.8 Beam at Level I P. a_ Structural Engineering & Design Inc, 1815 Wright Ave La Verne_ CA 91750 Tel; 909.596.1351 Fax; 909.596.7186 By: Bob S Project: Stout Tanks and Kettles Project#: 23-0804-3 3 Pin Beam to Column Connection Type 1 Selective I he beam end moments shown herein snow the result of the maximum Induced tixed end monents Corm seismic+static loads and the code mandated minimum value of 1.5%(DL+PL) Mconn max= (Mseismic+ Mend-fixity)*0.70*Rho Pi r rho = ` = 11,993 in-lb Load at level 1 Ie '> P2 IF z„ 1/z^ 12„ Connector Type= 3 Pin Shear Capacity of Pin Pin Diam= 0.44 In Fy= 55,000 psi Ashear= (0.438 In)^2*PI/4 = 0.1507 in^2 Pshear= 0,4*Fy*Ashear = 0.4*55000 psi*0,1507in^2 = 3,315 lb Bearing Capacity of Pin tcol= 0.075 in Fu= 65,000 psi Omega= 2.22 a= 2.22 Pbearing= alpha*Fu*diem*tcol/Omega • = 2.22*65000 psi*0.438 in *0.075 in/2.22 = 2,135 lb <3315 lb Moment Capacity of Bracket Edge Distance=E= 1.00 in Pin Spacing= 2.0 in Fy= 55,000 psi C= P1+P2+P3 tdip= 0.18 in Sclip= 0.127 In^3 = P1+P1*(2.574.5")+P1*(0.574.5") = 1,667*P1 Mcap= Sclip*Fbending C*d= Mcap= 1.667 d= E/2 = 0.127in^3*0.66*Fy = 0.50 In = 4,610 in-lb Pclip= Mcap/(1.667*d) = 4610.1 In-lb/(1.667*0.5 in) Thus,P1= 2,135 lb = 5,531 lb Mconn-allow= [P1*4.5"+P1*(2.574.572.5"+P1*(0.5"/4.5")*0.51 = 2135 LB*[4.5"+(2.5"/4.5")*2.5"+(0.5"/4.5")*0.5"1 • = 12,691 in-lb > Mconn max, OK type I select-Stout.xls Page ' of \3. 8/7/2023 Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Bob S Project: Stout Tanks and Kettles Project#:23-0804-3 Transverse Brace Configuration:Type 1 Selective Section Properties Diagonal Member= Hannibal 1-1/2x1-1/2x16ga Horizontal Member= Hannibal 1-1/2x1-1/2x16ga Area= 0.273 in^2 I L5o0 in Area= 0.273 in^2 r min= 0.496 in I r min= 0.496 in i.boo a Fy= 55,000 psi I "—"�'j Fy= 55,000 psi K= 1.0 11.500 in K= 1.0 Dc= 1.92 II 11.500 -[� k-0.250 In Frame Dimensions 0.250 Bottom Panel Height=H= 48.0 in Clear Depth=D-B*2= 36.0 in Frame Depth=D= 42.0 in X Brace= NO Column Wldth=B= 3.0 in rho= 1.00 Diagonal Member 0 I Load Case 6': (1+ . 5+0145ds)*E11, [0.7*fio*E]<=1.0,ASO Method I D Vtransverse= 1,624 lb Vb I Vb=Vtransv*0.7*rho= 1624 lb *0.7* 1 (kl/r)= (k*Ldiag)/r min = 1,137 lb = (1 x 55,3 In/0.496 in) Ldiag= [(D-B*2)^2+(H-6")^21"1/2 = 111.5 in Wag = 55.3In Fe= pi^2*E/(kl/r)^2 /fir H Pmax= V*(Ldiag/D)*0.75 = 23,419 psi it Pmax = 1,123 lb ' I axial load on diagonal brace member Since Fe<Fy/2, 3"tyyp 11111,1111111111111 II Pn= AREA*Fn Fn= Fe e = 0.273 in^2*23419 psi = 23,419 psi Typical Panel = 6,393 lb Con6aurabon Pallow= Pn/51 Check End Weld = 6393 lb/1.92 Lweld= 3.0 in = 3,330 lb Fu= 65 ksi tmin= 0.060 in Pn/Pallow= 0.34 <= 1.0 OK Weld Capacity= 0.75 *tmin* L*Fu/2.5 =3,510 lb OK Horizontal brace Vb=Vtransv*0.7*rho= 1,137 lb (kl/r)= (k*Lhoriz)/r min Fe= pi^2*E/(kl/r)^2 Fy/2= 27,500 psi _ (1 x 42 in)/0.496 in = 40,584 psi = 84.7 in Since Fe>Fy/2,Fn=Fy*(1-fy/4fe) Pn= AREA*Fn Pallow= Pn/4c = 36,366 psi = 0.273inA2*36366 psi = 9928 lb/1.92 = 9,928 lb = 5,171 lb Pn/Pallow= 0.22 <= 1.0 OK type I select-Stout.xlc rage (0 of ,J 8/7/2023 • Structural Engineering & Design Inc. • 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7188 By: Bob S Project: Stout Tanks and Kettles Project#:23-0804-3 • Single Row Frame Overturning Configuration:Type 1 Selective ' Loads Critical Load case(s): • 1)RMI Sec 2.2, item 7: (0.9-0.2Sds)D+(0.9-0,20Sds)*B*Papp-E*rho hp• r Sds= 0.7088 v Vtrans=V=E=Qe= 1,624 lb (0,9-0.2Sds)= 0.7582 • DEAD LOAD PER UPRIGHT=D= 120 lb (0.9-0.2Sds) 0:7582 PRODUCT LOAD PER UPRIGHT=P= 13,500 lb 8 w (}i ,sp `" H h i�nrMs�,x'r.s Papp=P*0.67= 9,045 lb rho= 1.0000 • WstLC1=Wst1=(0.75824*D+0.75824*Papp*1)= 6,949 lb Frame Depth=Df= 42.0 in T i Product Load Top Level, Ptop= 4,500 lb Htop-Iv1=H= 180.0 in v DL/Lvl= 40 lb #Levels= 3 I•41-of-Awl Seismic Ovt based on E,E(FI*hI)= 179,580 In-lb # Anchors/Base= 2 height/depth ratio= 4.3 in hp= 48.0 in SIDE ELEVATION A)Fully Loaded Rack h=H+hp/2= 204.0 in Load case 1: Movt= E(Fi*hi)*E*rho Mst= Wstl*Df/2 T= (Movt-Mst)/Df = 179,580 In-lb = 6949 lb*42 in/2 = (179580 in-lb-145929ln-Ib)/42 in = 145,929 in-lb = 801 lb Net Uplift per Column Net Seismic Uplift= 801 lb B)Top Level Loaded Only Load case 1: 0 V1=Vtop= Cs*Ip*Ptop>=350 lb for HID>6.0 Movt= [V1*h+V2*H/2]*rho = 0.1772*4500 lb = 164,583 in-lb = 797 lb T= (Movt-Mst)/Df Vieff= 797 lb Critical Level= 3 = (164583 in-lb-73564 in-lb)/42 In V2=VDL= Cs*Ip*D Cs*Ip= 0.1772 = 2,167 lb Net Uplift per Column = 21 lb Mst= (0.75824*D+0,75824*Ptop*1)*42 in/2 = 73,564 in-lb Net Seismic Uplift= 2,167 lb Anchor Check(2)0.5"x 3.25"Embed Hilti TZ2 anchor(s)per base plate. Special inspection is required per ESR 4266. Pullout Capacity=Tcap= 1,961 lb L.A. City Jurisdiction? NO Tcap*Phi= 1,961 Ib Shear Capacity=Vcap= 2,517 lb Phi= 1 Vcap*Phi= 2,517 lb • Fully Loaded: (400 lb/1961 Ib)^1 +(406 Ib/2517 Ib)^1 = 0.37 <= 1.2 OK Top Level Loaded: (10831b/1961 Ib)^1 +(199lb/25171b)^1 = 0.63 <= 1.2 OK type I select-Stout xis Page 1` of 8/7/2023 Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Bob S Project: Stout Tanks and Kettles Project#:23-0804-3 Base Plate Configuration:Type 1 Selective P Section .4-- a --s. Baseplate= 8x5x3/8 v Eff Width=W= 7.00 In a= 2.50 in Mb Eff Depth=D= 5.00 In Anchor c.c. =2*a=d = 5.00 in iiiimi=11 Column Width=b= 3.00 in N=#Anchor/Base= 2 I b h-- L Column Depth=dc= 3.00 In Fy= 36,000 psi —1— w —► L= 2.00 in Plate Thickness=t= 0,375 in Downalsle Elevation Down Aisle Loads Load Case 5::(1#0.105*Sds)D+0.751(1.4+0.14Sds)*B47)#0.75*/0.7*rho*E/<=1.0,ASD Method COLUMN DL= 60 lb Axial=P= 1.074424* 60 lb+ 0.75* (1.499232*0.7* 6750 lb) COLUMN PL= 6,750 lb = 5,377 lb Base Moment= 9,000 In-lb Mb= Base Moment*0.75*0.7*rho 1+0,105*Sds= 1.0744 = 9000 in-lb *0.75*0.7*rho 1.4+0.14Sds= 1.4992 = 4,725 in-lb Hi( B= f,r"s a 'T'k Axial Load P = 5,377 lb Mbase=Mb= 4,725 in-lb Fffe Axial stress=fa = P/A= P/(D*W) MI= wLA2/2=fa*LA2/2 154 psi = 307 in-lb Moment Stress=fb= M/S=6*Mb/[(D*BA2] Moment Stress=fb2= 2*fb*L/W = 115.7 psi = 66.1 psi Moment Stress=fb1 = fb-fb2 M2= fbl*LA2)/2 I = 49.6 psi = 99 In-lb M3= (1/2)*fb2*L*(2/3)*L= (1/3)*fb2*LA2 Mtotal= M1+M2+M3 = 88 in-lb = 495 in-lb/in 5-plate= (1)(tA2)/6 Fb= 0.75*Fy = 0.023 inA3/in = 27,000 psi fb/Fb = Mtotai/[(S-plate)(Fb)] Fp= 0,7*F'c = 0.78 OK = 1,750 psi OK Tanchor= (Mb-(PLapp*0,75*0.46)(a))/[(d)*N/2] Tallow= 1,961 lb 0K = -2,530 lb No Tension Cross Aisle Loads CntWl bad caps RMlSec2.1,Aar 1(1M.1LSda)!X+(1+0.145D5)P4'0.75+alt7S<=1.0,ASP Method Check uplift load on Baseplate Check uplift forces on baseplate with 2 or more anchors per RMI 7,2.2. Pstatic= 5,377 lb 'When the base plate configuration consists of two anchor bolts located on either side of the column and a net uplift force exists,the minimum base plate thickness Movt*0.75*0,7*rho= 94,280 in-lb Pseismic= Movt/Frame Depth shall be deteimined based on a design bending moment in the plate equal Frame Depth= 42.0 in = 2,245 lb to the uplift force on one anchor times 1/2 the distance from P=Pstatic+Pseismic= 7,622 lb the centerline of the anchor to the nearest edge of the rack column" b=Column Depth= 3.00 in T I~ c * a L=Base Plate Depth-Col Depth= 2.00.in Takill Mu lllll .ii..emenmegmi.. fa = P/A=P/(D*W) M= wLA2/2=fa*LA2/2 I- r I b I r I = 218 psi = 436 In-lb/In Elevation Uplift per Column= 2,166 lb Sbase/ln= (1)(tA2)/6 Fbase= 0.75*Fy Qty Anchor per BP= 2 = 0.023 inA3/in = 27,000 psi Net Tension per anchor=Ta= 1,083 lb c= 2.00 In fb/Fb= M/[(S-plate)(Fb)] Mu=Moment on Baseplate due to uplift= Ta*c/2 • = 0.69 OK = 1,083 In-lb Splate= 0.117 inA3 [fb/Fb1*0.75= 0.257 OK type I select-5tout.xls Page t1-- of l3 8/7/2023 Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Bob S Project: Stout Tanks and Kettles Project#:23-0804-3 • Slob on Grade I Configuration:Type 1 Selective T P ;: slab •a "IConcrete • ra fc= 2,500psi • �� D ' I b e "` tslab=t= 6.0 In } t j ' cross teff 6 0 nr r t IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIliillllllllllllllllllllllllllllllllllllll' ` �" soiii1 r' .-- y B �qf11I fsoil= 750 psf Movt= 179,580 in-lb SLAB ELEVATION Frame depth. 42.0 in paseplate Plan View Sds= 0,709 Base Plate 0,2*Sds= 0.142 ' ' Effec.Baseplate width=B= 7.00 in width=a= 3.00 in j ..,.0 '� �.._....,_._ +ram.. �'�.,;°I¢I :, Effec.Baseplate Depth=D= 5.00 in depth=b= 3.00 in p=B/D= 1.400 midway dist face of column to edge of plate=c= 5.00 In F'c^0.5= 50.00 psi Column Loads midway dist face of column to edge of plate=e= 4.00 In DEAD LOAD=D= 60 lb per column Load Case 1) (1.2+0.25ds)D+(1.2+0.2Sds)*B*P+rho*E RMI SEC 2,2 EQrN s unfactoredASDload = 1.34176*60 lb+ 1.34176*0.7*6750 lb+ 1*4275 lb PRODUCT LOAD=P= 6,750 lb per column = 10,695 lb unfactotedASD load Load Case 2) (0.9-0,2Sds)D+(0.9-0.2Sds)*B*Papp+rho*E RMI SEC 2.2 EQTN 7 Papp= 4,523 lb per column = 0.75824*60 lb+0.75824*0.7*4522.5 lb+ 1 *4275 lb P-seismic=E= (Movt/Frame depth) = 6,721 lb = 4,275 lb per column Load Case 3) 1,2*D+ 1.4*P RMI SEC 2.2 EQTN 1,2 unfactored Limit State load = 1,2*60 lb + 1,4*6750 lb B= 11'. +1 = 9,522 lb rho a ___•-: .1i.1 i Load Case 4) 1,2*D+ 1,0*P+ 1.0E AC1318-14 sec 5.3.1 44 Sds= 0.7088 = 11,097 lb Eqtn 5.3.1e • 1.2+0.2*Sds= 1.3418 Effective Column Load=Pu= 11,097 lb per column 0.9-0.20Sds= 0,7582 Puncture • Apunct= [(c+t)+(e+t)]*2*t = 252.0In^2 Fpunctl= [(4/3+8/(3*(3)]*A*(F'c^0.5) fv/Fv= Pu/(Apunct*Fpunct) = 97.1 psi = 0.552 <1 OK Fpunct2= 2.66*A*(F'c^0.5) = 79.8 psi Fpunct eff= 79.8 psi Slab Bending Pse=DL+PL+E= 11,097 lb Asoll= (Pse*144)/(fsoll) L= (Asoil)^0.5 y= (c*e)^0.5.+ 2*t = 2,131 in^2 = 46.16 in = 16.5 in x= (L-y)/2 M= w*x^2/2 S-slab= 1*teff^2/6 = 14.81n = (fsoil*x^2)/(144*2) = 6.0 in^3 Fb= 5*(phi)*(fc)^0.5 = 573.9 In-lb fb/Fb= M/(S-slab*Fb) - = 150,psi = 0.638 < 1,OK type I Select-Stout.xis Page I 3 of l....b 8/7/2023 BTF Installations LU E® 23150 S Viola Welch Rd Beavercreek OR 97004 AUG 8 2023 971-371-6183 CITY OF TIGARD BUILDING DIVISION Regarding Stout tanks and Kettles 1644 SW 72 Ave They will be storing class I — III steel tanks and grains barley Fire extinguishers will be installed every 75' of travel The aisles will be 8' or greater. All the racks will have open decking and no solid decking. The product will not be encapsulated The product/ piles are stable The materials will be stored to 20' high top of product. There is approximately 3' or greater between the top of product and the sprinkler system There are single and double row racks with no multiple rows of racks The heads are at 286 degrees Per NFPA 16.2.1.3.2 (C) Class IV not encapsulated curve c requires .23 GPM / 3000 SQFT at 20' high storage The existing sprinkler system is at ..35GPM /4500 SQFT and will meet the NFPA requirements. Please call with any questions. Thank You Brian Ferrick 971-371-6183 Copyright 2017 National Fire Protection Association iNFPA).t.icertsed.by agreement-for an iv dy3l ase and tlrxmioad on 04i96v2017 to Brian Ferric*to designated user Brian Ferric*.No otter reproduction or transmission in v' any form permitted without written pefritissirn et WFPA.Fur a Wuines or to report unauthorized usn contact hneas'n rnipa.og. PROTECTION OF RACK STORAGE OF CLASS I THROUGH CLASS W COMMODmES 13-175 • i Ceiling sprinkler density(elm/min) Qum 6.1 82 10.2 122 14.3 16-3 18.3 20.4 legend Curve Legend 0 4000 370 c A-8ft(2.4 m)aisles with C-4 ft(1.2 m)aisles with nigh-temperature ceiling high-temperature ceiling m $. _ sprinklers and ordinary- sprinklers and ordinary- • 3000 A - B C--D o temperature in-rack temperature in-rack Y __ 280 m sprinklers sprinklers .` c B-8 ft(2.4 m)aisles with 0-4 ft(1.2 m)aisles with y 2000 n. ordinary-temperature ordinary-temperature 186 a ceiling sprinklers and ceiling sprinklers and a 6 ordinary-temperature ordlna to ry- mperature m in-rack sprinklers in-rack sprinklers 1000 m 93 Q 0.15 0.20 0-25 0.30 0-35 0-40 0.45 0.50 r. rn Ceiling sprinkler density(gpmi(t2) p0 FIGURE 16.2.1.3.2(1) Single-or Double-Row Racks-20 ft(6.1 m)High Rack Storage- Sprinkler System Design Curves-Class III Encapsulated Commodities-Conventional Pallets. Ceiling sprinkler density(mm/min) 465 E Curve Legend Curve Legend c 0 10.2 12.2 14.3 16.3 18-3 20.4 22-4 24.5 o A-8 ft(2.4 m)aisles with C-4 n(1.2 m)aisles with F m 4000 - 370 ;� high-temperature ceiling high-temperature ceiling a m spreaders and ordinary- sprinklers and ordinary- 0 $ temperature in-rack temperature In-rack Y 30� B - C D I - m sprinklers sprinklers ' N` 280 B-8 tt(2-4 m)aisles with D-4 ft(12 m)aisles with m `. ortSnary-temperature ordinary-temperature 0 2000 �►`s 111 o ceiling sprinklers and ceiling sprinklers and as m - _ . 186 ordinary-temperature ordinary-temperature to I.D. in-rack sprinklers in-rack sprinklers c - m m 1000 - f m 93 m 0 0-25 0.30 0.35 0.40 0.45 0.50 055 0-60 Ceiling sprinkler density(gpm/t2) FIGURE 16.2.1.3.2(g) Single-or Double-Row Racks-20 ft(6.1 ut)High Rack Storage- Sprinkler System Design Curves-Class IV Encapsulated Commodities-Conventional Pallets. Table 16.2.1.3.2 Single-or Double-Row Racks-Storage Height Over 12 ft(3.7 m)Up to and Including 25 ft(7.6 m) Ceiling Sprinkler Water Demand Aisles* With In-Rack Sprinklers Without In Rack Sprinklers ApPlY Sprinklers Commodity Mandatory figure dory Figure 16.2.1.3-4-1 Height Gass Encapsulated I ft in ln-Ra r Figure Causes 1162.1.3.4.1 Figure Curses 4 1.2 No 8 e No 162.1.3.2(a) CandD 162]S.2(a) FandH Yes1 4 A and I E and G Yes 4 1.2 C and D 162.132(e) G and H No 162.132(e) 8 2.4 A and 0 EandF Yes 4 12 C and D No No 16.2.1.3.2(b) 16.2.1.3.2(b) CandH Yes II 8 2.4 Aand8 EandF Over 12 ft 4 1.2 C and D (3.i m)up Yes 8 2.9 No 162.1-32(e) AandB 16.2.1.3.2(e) GandH Yes to and Yes E and F including 4 12 C and D G and H 20R(6.1 m) No No 16.2.1.3.2(c) 16.2.1.3.21c Yes III 8 2A AandBandl 4 1.2 C and D Yes - bevel 162.1.32(fl - - 8 2-4 A and 8 4 1.2 CandD GandH No 8 2.4, No 162.1.3.2(d) AandB 16.2.1.8.2(d) Yes 1V E and F 4 12 C and D Yes 1leel 162.L32(g) 8 2-4 A and B - - (continues) 2016 Edition copyright 2017 National Fire Pictectian Assocwlrat tNFPA).Licensed,by agreement.for askridual any form perinr&ad without attllen use and download on treport urea to iirizn Fend for designated user Brian Ferrick.Na other�,f peonassion or NF A.For inquiries or to report unauThorted use.contact UcensmgtOotpa mg. reproduction or transmission m PROTECTION OF RACK STORAGE OF CLASS I THROUGH CLASS 1V COMMODITIES 13-173 Curve Legend Curve Legend A-Single-or double-row racks E-Single-Or double-row racks with 611(2.4 m)aisles with 8 ft(2.4 m)aisles Wi h high-temperature and high-temperature • ceiling sprinklers and ceiling sprinklers Ceiling sprinkler ordinary-temperature F-Single-or double-row racks density( min) in-rack sprinklers with 8ft(2.4 m)aisles 4.1 8.1 8.1 102 122 14.3 16-3 /8.3 20-4 8-Single or double row racks and ordinary-temperature 4000 370 a oiler 8 ft(2.4 m)aisles ceiling eprinklera with ordinary-temperature 0-Single-or double-row racks o A B_ I ceNing spnrlMers and with 4 ft(12 m)aisles 3000 E-F-.I." ordinary-temperature high-temperature c • _ '■ 280 m in-rack sprinklers ceiling sprinklers \!�y ■ s C-Single-or double-row decide H-Sin le-or double-row racks • m 2000 d Q with 4 tt(i.2 m)aisles wdh 4 0(1.2 m)aisles `0 1 .._- C 1 G 1� m or nudtiple-row racks with and ordinary-temperature Single pam 3 high-temperature ceiling ceiling sprinklers ��' design Sr sprinklers and ordinary- r-Multiple-row racks with 1000 i ka temperature in-rack B ft(2.4 m)or wider ` 93 c sprinklers 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0-45 0.50 rn p__ aisles and high- . y Single-or double-row racks temperature Ceiing sprinkler density(gpryft2)al o with 4 tt(1.2 m)aisles sprinklers re ceiling or multiple-row racks J-Multiple-row racks with r with ordinary-temperature 1000 ceiling sprinklers and 8 ft(s.a ni) r wide- ordinary-temperaaue tomes and o ceilingg- in-rack sprinklers temperature sprinklers FIGURE 16.2.1.3-2(b) Sprinkler System Design Curves - 20 ft (6.1 m) I-Tigh Rack Storage Class II Nonencapsulated Commodities-Conventional Pallets. - Curve Legend Curve Legend Coifing sprinkler density(rerdfrtirr) N A-Si ngle-or double-row racks E-Single-or double-row racks c 6.1 8.2 10.2 122 14.3 16.3 18.3 20.4 with 8 h(2.4 m aisles 4000 I l III �� 3� ° ) with S ft m)aisles c wi h high-temperature andhigh-temperature H. II I it i I 2 ceiling sprinklers and ceilin prinlers ° A - 8---pp E ---F J r S- ordinary-temperature sWittkiersoB F-Single-or double-row racks Y Y- ''"r 7. ���►Aa�' f. .� �fe nr 2i.30 az° in-rack with 8 ft(2.4 m)aisles m . - i , 3 8-Single-a double-row racks and ordinary-temperature n with 8 ft(2.4 m)aisles ceiling sprinklers 2000 r r n with ordinary-temperature G-Single-or double-row racks 15 P-•,t 1 -, 186 °' ceiling sprinklers and with 4 ft a C G Single ° ordinary-temperature and hi high-temperature pe aisles { g point mrcY-temperatureg mperature t design only 2 in-rack spriniders ceiling sprinklers 'm c 1 q00 ( r r r ,t e C-Single-or double-row racks H-Single-or double-row racks 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 m with 4 ft(1.2 m)aisles with 4 ft(1.2 m)aisles w • o Ceiling sprinider density(gpm/ft2) g multiple-row peratu ceiling and ordinary-temperature sprinklers and ordinary- ceiling sprinklers temperature le-radk t-Multiple-row racks with sprinklers a a(2.4 m)orwider D-Single-or double-row racks aislestem and eice- with 4 ft(1.2 m)aisles sprinklers ceiling or multiple-raw racks with sprinklers ordinary-temperature J- 8 ft(2.4 row raids with ceiling sprinklers and aft(s.a m)or ordinary- ordinary-temperature temperature and ordinary- in-rack sprinklers nklersceiling sprinklers FIGURE 16.2.1.3.2(c) Sprinkler System Design Curves-20 ft(6-I m)High Rack Storage- Class III Nonencapsulated Commodities-Conventional Pallets. 2016 Edition STOUT TANKS AND KETTLES N 1644 SW 72ND AVE m TIGARD, OR 97224 N �, RECEIVED ILI .Zb x .96 .Z4 X .96 .Zb X.96 .Zb x.96 .Zb X.96 .Zb X.96 .717 X.96 24 X.96 AUG 8 2023 Y ' CITY OF TIGARD nnQ BUILDING DIVISION U. 0 a 217 X.96 .Zb X.96 .Zb X.96 .Zb X.96 217 X.96 .Zb X.96 ry. is AED {I r Li _ _ ,�Zb X II 96 ,�Z1 x„96 .Zb X.96 „Zb X.96 2b x.96 ,�Zb x.96 U Laa� Q D N . Q U U o - Z J Z J W _ ZV) a- 0 Q_ ,.:,. W z ,,,,__ J u) . _ 1.-- H O Y L _ c� o E Y Ce a a la aga RorEs CO R 4 �G Ne 4. F$\ Or ¢ 98752 PE ; N ,,- -','RO ,44,,. W \ORE N ......_''c ' Z �,`^,eER�5' G <,.,,,,. NHAD ZIA /A v, W CO 4 N Diy'ilally 5iyneJ lf) Q Enhao cr:onaarnao9 n oats 2oz370 oa O �` Zhangoo 2 N-CN r co W (1) 2 re s �vr O omL