Loading...
Specifications (4) Project Title: Engineer: Project ID: Project Descr: . . WOOd Beam Project File:21013 enercalc-5th-4th beams-headers.ec6 LIC#:KW-06014171,Build:20.22.3.31 HAYDEN CONSULTING ENGINEERSS E(c)ENERCALC INC 1983-2022 DESCRIPTION: B14 CODE REFERENCES Calculations per NDS 2018, IBC 2018, CBC 2019,ASCE 7-16 Load Combination Set:ASCE 7-10 Material Properties Analysis Method: Allowable Stress Design Fb+ 2400 psi E:Modulus of Elasticity Load Combination:ASCE 7-10 Fb- 2400 psi Ebend-xx 1800 ksi Fc-Prll 1650 psi Eminbend-xx 950 ksi Wood Species : SP/SP Fc-Perp 740 psi Ebend-yy 1600 ksi Wood Grade : 24F-V8 Fv 300 psi Eminbend-yy 850 ksi Ft 1150 psi Density 34.33 pcf Beam Bracing : Beam is Fully Braced against lateral-torsional buckling _ 32S P3,713t 5.5x13.5 Span=14.0 ft Applied Loads Service loads entered.Load Factors will be applied for calculations. Beam self weight NOT internally calculated and added Uniform Load : D=0.3260, L=0.7130, Tributary Width= 1.0 ft DESIGN SUMMARY Ilasign OK Maximum Bending Stress Ratio = 0.762'1 Maximum Shear Stress Ratio = 0.411 : 1 Section used for this span 5.5x13.5 Section used for this span 5.5x13.5 fb:Actual = 1,828.45 psi fv:Actual = 123.33 psi Fb:Allowable - 2,400.00psi Fv:Allowable = 300.00 psi Load Combination +D+L Load Combination +D+L Location of maximum on span = 7.000ft Location of maximum on span = 12.876ft Span#where maximum occurs - Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward Transient Deflection 0.305 in Ratio= 550>=360 Span. 1 :L Only Max Upward Transient Deflection 0 in Ratio= 0<360 n/a Max Downward Total Deflection 0.445 in Ratio= 377>=180 Span. 1 :+D+L Max Upward Total Deflection 0 in Ratio= 0<180 n/a Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Moment Values ��ar Values Segment Length Span# M V Cd CFN C i Cr Cm C t CL M fb F'b V fv F'v D Only 0.00 0.00 0.00 0.00 Length=14.0 ft 1 0.266 0.143 0.90 ".000 1.00 1.00 1.00 1.00 1.00 7.99 573.70 2160.00 1.92 38.70 270.00 +D+L 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=14.0 ft 1 0.762 0.411 1.00 1.000 1.00 1.00 1.00 1.00 1.00 25.46 1,828.45 2400.00 6.11 123.33 300.00 +D+0.750L 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0-00 0.00 Length=14.0 ft 1 0.505 0.272 1.25 1.000 1.00 1.00 1.00 1.00 1.00 21.09 1,514.77 3000.00 5.06 102.18 375.00 +0.60D 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=14.0 ft 1 0.090 0.048 1.60 1.000 1.00 1.00 1.00 1.00 1.00 4.79 344.22 3840.00 1.15 23.22 480.00 Overall Maximum Deflections Load Combination Span Max."-"Defl Location in Span Load Combination Max."+"Defl Location in Span 0.4450 7.051 0.0000 0.000 2/166 Project Title: Engineer: Project ID: Project Descr. Wood Beam Pr ye :Fife _'xx.a_.e._tarce..iz- L'W1S uis� �,.,, ,r,C, 7""_Scs 2._;-21HAYDEN:_C4.SU.aih.b.ENGINFe€vS ... END:. S EC-2' DESCRIPTION: B14 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 7.273 7.273 Overall MINimum 4.991 4.991 D Only 2.282 2.282 +D+L 7.273 7.273 +D+0.750L 6.025 6.025 +0.60D 1.369 1.369 L Only 4.991 4.991 3/166 Project Title: Engineer: Project ID: Project Descr: G Wood Beam Project File:21013 plan check cafes 4-20-2022.ec6 ^; «=., NAYb6.N O"wS'JvTiNa EvuW:.:':z.6 (r.,)-NERtAL0 INC 1983-2022 DESCRIPTION: B17-4th and 5th floor framing CODE REFERENCES Calculations per NDS 2018, IBC 2018, CBC 2019,ASCE 7-16 Load Combination Set:ASCE 7-10 Material Properties Analysis Method: Allowable Stress Design Fb+ 900.0 psi E:Modulus of Elasticity Load Combination:ASCE 7-10 Fb- 900.0 psi Ebend-xx 1,600.0ksi Fc-Prll 1,350.0 psi Eminbend-xx 580.0ksi Wood Species : Douglas Fir-Larch Fc-Perp 625.0 psi Wood Grade : No.2 Fv 180.0 psi Ft 575.0 psi Density 31.210pcf Beam Bracing : Completely Unbraced a . x • • 4x8 Span=3.0 ft Applied Loads Service loads entered.Load Factors will be applied for calculations, Beam self weight NOT internally calculated and added Uniform Load : D=0.660, L=0.880 , Tributary Width= 1.0 ft DESIGN SUMMARY Design:OK Maximum Bending Stress Ratio = 0.582 1 Maximum Shear Stress Ratio = 0.454 : 1 Section used for this span 4x8 Section used for this span 4x8 fb:Actual = 678.05psi fv:Actual = 81.73 psi Fb:Allowable = 1,165.38psi Fv:Allowable = 180.00 psi Load Combination +D+L Load Combination +D+L Location of maximum on span = 1.500ft Location of maximum on span = 0.000 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward Transient Deflection 0.009 in Ratio= 3968>=360 Span: 1 L Only Max Upward Transient Deflection 0 in Ratio= 0<360 n/a Max Downward Total Deflection 0.016 in Ratio= 2267>=180 Span: 1 :+D+L Max Upward Total Deflection 0 in Ratio= 0<180 n/a Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span# M V Cd CFN C i Cr Cm C t CL M fb F'b V lv F'v D Only 0.00 0.00 0.00 0.00 Length=3.0 ft 1 0.277 0.216 0.90 1.300 1.00 1.00 1.00 1.00 1.00 0.74 290.59 1049.28 0.59 35.03 162.00 +D+L 1.300 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=3.0 ft 1 0.582 0.454 1.00 1.300 1.00 1.00 1.00 1.00 1.00 1.73 678.05 1165.38 1.38 81.73 180.00 +D+0.750L 1.300 1.00 1,00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=3.0 ft 1 0.399 0.311 1.25 1.300 1.00 1.00 1.00 1.00 0.99 1.49 581.19 1455.15 1.19 70.06 225.00 +0.60D 1.300 1.00 1.00 1.00 1.00 0.99 0.00 0.00 0.00 0.00 Length=3.0 ft 1 0.094 0.073 1.60 1.300 1.00 1.00 1.00 1.00 0.99 0.45 174.36 1859.65 0.36 21.02 288.00 Overall Maximum Deflections Load Combination Span Max."-"Defl Location in Span Load Combination Max."+"Defl Location in Span +D+L 0.0159 1.511 0.0000 0.000 4/166 Project Title: Engineer. Project ID: Project Descr. Wood Beam Piplect File.21013 man check calm4-20,10224a h 1 rJti , 7 ,Oi3 c.1v 22 3.1 ,A+e DEN _.a�3_;',Y_E NG (C}£ERCALC INC i9834622 DESCRIPTION: B17-4th and 5th floor framing Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 2.310 2.310 Overall MINimum 1.320 1.320 D Only 0.990 0.990 +D+L 2.310 2.310 +D+0.750L 1.980 1.980 +0.60D 0.594 0.594 L Only 1.320 1.320 5/166 Project Title: Engineer: Project ID: Project Descr: 5 Wood Beam Project File:21013 plan check calcs 4-20-2022.ec6 LIC#:KW-06014171,Build 20 22.3.31 HAYDEN CONSULTING ENGINEERS (c)ENERCALC INC 1983-2022 DESCRIPTION: 3rd floor framing-H10 CODE REFERENCES Calculations per NDS 2018, IBC 2018, CB.,.-... C2019,ASCE7-16 Load Combination Set:ASCE 7-10 Material Properties Analysis Method: Allowable Stress Design Fb+ 900.0 psi E:Modulus of Elasticity Load Combination:ASCE 7-10 Fb- 900.0 psi Ebend-xx 1,600.0ksi Fc-Prll 1,350.0 psi Eminbend-xx 580.0ksi Wood Species : Douglas Fir-Larch Fc-Perp 625.0 psi Wood Grade : No.2 Fv 180.0 psi Ft 575.0 psi Density 31.210pcf Beam Bracing : Completely Unbraced I ! 4x12 Span=30ft Applied Loads Service loads entered.Load Factors will be applied for calculations. Beam self weight NOT internally calculated and added Uniform Load: D=1.855, L=2.10, Tributary Width= 1.0 ft DESIGN SUMMARY Design OK Maximum Bending Stress Ratio = 0.734 1 Maximum Shear Stress Ratio = 0.477 : 1 Section used for this span 4x12 Section used for this span 4x12 fb:Actual = 723.20 psi fv:Actual = 85.78 psi Fb:Allowable = 984.75psi Fv:Allowable = 180.00 psi Load Combination +D+L Load Combination +D+L Location of maximum on span = 1.500ft Location of maximum on span = 0.000 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward Transient Deflection 0.006 in Ratio= 6213>=360 Span:1 L Only Max Upward Transient Deflection 0 in Ratio= 0<360 n/a Max Downward Total Deflection 0.011 in Ratio= 3299>=180 Span: 1 +D+L Max Upward Total Deflection 0 in Ratio= 0<180 n/a Maximum Forces &Stresses for Load Combinations Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span# M V Cd CFN CI Cr Cm C t CL M fb Ft V fv F'v D Only 0.00 0.00 0.00 0,00 Length=3.0 ft 1 0.383 0.248 0.90 1.100 1.00 1.00 1.00 1,00 1.00 2.09 339.20 886.79 1.06 40.23 162.00 +D+L 1.100 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=3.0 ft 1 0.734 0.477 1.00 1.100 1.00 1.00 1.00 1.00 0.99 4.45 723.20 984.75 2.25 85.78 180.00 +D+0.750L 1.100 1.00 1.00 1.00 1.00 0.99 0.00 0.00 0.00 0.00 Length=3.0 ft 1 0.510 0.331 1.25 1.100 1.00 1.00 1.00 1.00 0.99 3.86 627.20 1229.10 1.95 74.39 225.00 +0.60D 1.100 1.00 1.00 1.00 1.00 0.99 0.00 0.00 0.00 0.00 Length=3.0 ft 1 0.130 0.084 1.60 1.100 1.00 1.00 1.00 1.00 0.99 1.25 203.52 1569-76 0.63 24.14 288.00 Overall Maximum Deflections Load Combination Span Max."-"Defl Location in Span Load Combination Max."+"Defl Location in Span +D+L 1 0.0109 1.511 0.0000 0.000 6/166 Project Title: Engineer: Project ID: Project Descr. Wood Beam P c:,,,Gt F i.. 2 1013 pian check ca'i s$-2O-2O22.ec5 I^.... GS .4 t l',Su, 1O 22 3.33 HAYDEN CONS'U;lNG ENGiNEERS E FRCAi C INC 9 3 2O 2 DESCRIPTION: 3rd floor framing-H10 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 5.933 5.933 Overall MINimum 3.150 3.150 D Only 2.783 2.783 +D+L 5.933 5.933 +D+0.750L 5.145 5.145 +0.60D 1.670 1.670 L Only 3.150 3.150 7/166 Project Title: Engineer: Project ID: Project Descr: Wood Beam Project File:21013 enercalc-3rd floor beams-headers.ec6 LIC#:KW-06014171,Build:20.22.3.31 HAYDEN CONSULTING ENGINEERS (c)ENERCALC INC 1983-2022 DESCRIPTION: H11 CODE REFERENCES Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set:ASCE 7-10 Material Properties Analysis Method: Allowable Stress Design Fb+ 875.0 psi E:Modulus of Elasticity Load Combination:ASCE 7-10 Fb- 875.0 psi Ebend-xx 1,300.0 ksi Fc-PrIl 600.0 psi Eminbend-xx 470.0ksi Wood Species : Douglas Fir-Larch Fc-Perp 625.0 psi Wood Grade : No.2 Fv 170„0 psi Ft 425.0psi Density 31.210pcf Beam Bracing : Beam is Fully Braced against lateral-torsional buckling D(1 368)L(3 258) DO L(3.381 6x12 ib.. Applied Loads Service loads entered.Load Factors will be applied for calculations. Beam self weight NOT internally calculated and added Load for Span Number 1 Uniform Load: D=0.510, L= 1.250 k/ft, Extent=0.0-->> 1.50 ft, Tributary Width= 1.0 ft Uniform Load : D= 1.810, L=3.750 k/ft, Extent= 1.50-->>3.0 ft, Tributary Width= 1.0 ft Point Load : D= 1.368, L=3.258 k @ 1.50 ft DESIGN SUMMARY . Design OK Maximum Bending Stress Ratio = 0.858 1 Maximum Shear Stress Ratio 0,656 : 1 Section used for this span 6x12 Section used for this span 6x12 fb:Actual = 751.01 psi fv:Actual = 111.50 psi Fb:Allowable = 875.00 psi Fv:Allowable = 170.00 psi l Load Combination +D+L Load Combination +D+L Location of maximum on span = 1.500ft Location of maximum on span = 0.000 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward Transient Deflection 0.009 in Ratio= 4198>=360 Span:1 :L Only Max Upward Transient Deflection 0 in Ratio= 0<360 n/a Max Downward Total Deflection 0.012 in Ratio= 2903>=180 Span:1 :+D+L Max Upward Total Deflection 0 in Ratio= 0<180 n/a Maximum Forces &Stresses for Load Combinations Load Combination Max Stress Ratios Moment VaTues Shear Values Segment Length Span# M V Cd CFN C i Cr Cm C t CL M fb F'b V fv F'v D Only 0.00 0.00 0.00 0.00 Length=3.D ft 1 0.293 0.225 0.90 1.000 1.00 1.00 1.00 1.00 1.00 2.33 230.74 787.50 1.45 34.40 153.00 +D+L 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=3.0 ft 1 0.858 0.656 1.00 1.000 1.00 1.00 1.00 1.00 1.00 7.59 751.01 875.00 4.70 111.50 170.00 +D+0.750L 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=3.0 ft 1 0.568 0.434 1.25 1.000 1.00 1.00 1.00 1.00 1.00 6.27 620.94 1093.75 3.89 92.22 212.50 +0.60D 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=3.0 ft 1 0.099 0.076 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.40 138.44 1400.00 0.87 20.64 272.00 8/166 Project Title: Engineer: Project ID: Project Descr. Wood Beam Pttseet,F .21013 enerciiic 3fd fi0Or bams-headets Sc6 VSL,LT NG ENGINEERS ENERCALC INC 1982-2022 DESCRIPTION: H11 Overall Maximum Deflections Load Combination Span Max."-"Defi Location in Span Load Combination Max."+"Defl Location in Span +D+L 1 0.0124 1.544 0.0000 0.000 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overaii MAXimum 6.378 9.228 Overall MINimum 4.442 6.317 D Only 1.937 2.912 +D+L 6.378 9.228 +D+0.750L 5.268 7.649 +0.60D 1.162 1.747 L Only 4.442 6.317 9/166 Project Title: Engineer: Project ID: Project Descr: Wood Beam Project File:21013 enercalc-3rd floor beams-headers.ec6 Bwid.2`�1<2 3,31 HAYDEN CON&21 TR,. cNt.= E : >~ .R'. .1.0 INC s 6..w;v'22 DESCRIPTION: H12 CODE REFERENCES Calculations per NDS 2018, IBC 2018,CSC 2019,ASCE 7-16 Load Combination Set:ASCE 7-10 Material Properties Analysis Method: Allowable Stress Design Fb+ 2,600.0 psi E:Modulus of Elasticity Load Combination:ASCE 7-10 Fb- 2,600.0 psi Ebend-xx 2,000.0 ksi Fc-Prll 2,510.0 psi Eminbend-xx 1.016.54ksi Wood Species : iLevel Truss Joist Fc-Perp 750.0 psi Wood Grade : MicroLam LVL 2.0 E Fv 285.0 psi Ft 1,555.0 psi Density 42.010pcf Beam Bracing : Beam is Fully Braced against lateral-torsional buckling P58 US 29) .. ,`J. )Lf649 3-1 75x16 Span-9.0 ft Applied Loads Service loads entered.Load Factors will be applied for calculations. Beam self weight NOT internally calculated and added Load for Span Number 1 Uniform Load: D=0.3450, L=0.460 k/ft,Extent=0.0-->> 1.50 ft, Tributary Width=1.0 ft Uniform Load : D=0.450, L=0.60 k/ft, Extent= 1.50->>9.0 ft, Tributary Width=1.0 ft Point Load : D=3.968, L=5.290 k @ 1.50 ft DESIGN SUMMARY Design OK Maximum Bending Stress Ratio = 0.397 1 Maximum Shear Stress Ratio = 0.692 : 1 Section used for this span 3-1.75x16 Section used for this span 3-1.75x16 fb:Actual = 992.47 psi fv:Actual - 197.24 psi Fb:Allowable - 2,500.24 psi Fv:Allowable 285.00 psi Load Combination +D+L Load Combination +D+L Location of maximum on span - 3.055ft Location of maximum on span 0.000ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward Transient Deflection 0.043 in Ratio= 2486>=360 Span:1 :L Only Max Upward Transient Deflection 0 in Ratio= 0<360 n/a Max Downward Total Deflection 0.076 in Ratio= 1420>=180 Span: 1 :+D+L Max Upward Total Deflection 0 in Ratio= 0<180 n/a Maximum Forces &Stresses for Load Combinations Load Combination earVaa Max Stress Ratios Moment Values Shlues- Segment Length Span# M V Cd CFN Ci Cr Cm C t CL M fb F`b V fv F'v D Only 0.00 0.00 0.00 0.00 Length=9.0 ft 1 0.189 0.330 0.90 0.962 1.00 1.00 1.00 1.00 1.00 7.94 425.36 2250.22 4.73 84.54 256.50 +D+L 0.962 1.00 1,00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=9.0 ft 1 0.397 0.692 1.00 0.962 1.00 1,00 1.00 1.00 1.00 18.53 992.47 2500.24 11.05 197.24 285.00 +D+0.750L 0.962 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=9.0 ft 1 0.272 0.475 1.25 0.962 1.00 1.00 1.00 1.00 1.00 15.88 850.69 3125.30 9.47 169.06 356.25 +0.60D 0.962 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=9.0 ft 1 0.064 0.111 1.60 0.962 1.00 1.00 1.00 1.00 1.00 4 76 255.22 4000.38 2.84 50.72 456.00 10/166 Project Title: Engineer. Project ID: Project Descr. Wood Beam Project Fite:21 13 ener lc_;mod floor d ams-he ders.ec6 uc ,Kip Cie & ".F; c:20 G. .°<. HAYDEN CGN ....L.r1NG ENGiN_E S Gj..''NER„ALc Ih7 1 a3 2022 DESCRIPTION: H12 Overall Maximum Deflections Load Combination Span Max.""Defl Location in Span Load Combination Max."+"Defl Location in Span +D+L 1 0.0760 4.270 0.0000 0.000 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 12.103 6.237 Overall MINimum 6.916 3.564 D Only 5.187 2.673 +D+L 12.103 6.237 +D+0.750L 10.374 5.346 +0.60D 3.112 1.604 L Only 6.916 3.564 11/166 Project Title: Engineer: Project ID: Project Descr: Wood Beam Project File:21013 enercalc-3rd floor beams-headers.ec6 ;„;C KW- 6T14;?1<Bat,�'-:2 _'M2,3s1 1i'aitF1 COhSt,4' ,..E.v?:N afire E.,ECALC NC 1983-2022 DESCRIPTION: H13 CODE REFERENCES Calculations per NDS 2018, IBC 2018, CBC 2019,ASCE 7-16 Load Combination Set:ASCE 7-10 Material Properties Analysis Method: Allowable Stress Design Fb+ 2,600.0 psi E:Modulus of Elasticity Load Combination:ASCE 7-10 Fb- 2,600.0 psi Ebend-xx 2,000.0 ksi Fc-PrIl 2,510.0 psi Eminbend-xx 1,016.54ksi Wood Species : iLevel Truss Joist Fc-Perp 750.0 psi Wood Grade MicroLam LVL 2.0 E Fv 285.0 psi Ft 1,555.0 psi Density 42.010 pcf Beam Bracing : Beam is Fully Braced against lateral-torsional buckling 3-1 75x16 Span=7.0 ft Applied Loads Service loads entered.Load Factors will be applied for calculations. Beam self weight NOT internally calculated and added Uniform Load : D=0.3450, L=0.460 , Tributary Width=1.0 ft DESIGN SUMMARY ;Maximum Bending Stress Ratio = 0.10e 1 Maximum Shear Stress Ratio = 0.110 : 1 Section used for this span 3-1.75x16 Section used for this span 3-1.75x16 fb:Actual = 264.14psi fv:Actual - 31.22 psi Fb:Allowable = 2,500.24 psi Fv:Allowable 285.00 psi Load Combination +D+L Load Combination +D+L Location of maximum on span = 3.500ft Location of maximum on span - 5.672ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward Transient Deflection 0.007 in Ratio= 12044>=360 Span:1 :L Only Max Upward Transient Deflection 0 in Ratio= 0<360 n/a Max Downward Total Deflection 0.012 in Ratio= 6882>=180 Span:1 :+D+L Max Upward Total Deflection 0 in Ratio= 0<180 n/a Maximum Forces &Stresses for Load Combinations Load Combination Max Stress Ratios Moment Values SheaTV -uesa1 Segment Length Span# M V Cd CFN C i Cr Cm C t CL M fb F'b V fv F'v D Only 0.00 0.00 0.00 0.00 Length=7.0 ft 1 0.050 0.052 0.90 0.962 1.00 1.00 1.00 1.00 1.00 2.11 113.20 2250.22 0.75 13.38 256.50 +D+L 0.962 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=7.0 ft 1 0.106 0.110 1.00 0.962 1.00 1.00 1.00 1.00 1.00 4.93 264.14 2500.24 1.75 31.22 285.00 +D+0.750L 0.962 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=7.0 ft 1 0.072 0.075 1.25 0.962 1.00 1.00 1.00 1.00 1.00 4.23 226.41 3125,30 1.50 26.76 356.25 +0.60D 0.962 1.00 1,00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=7.0 ft 1 0.017 0.018 1.60 0.962 1.00 1.00 1.00 1.00 1.00 1.27 67.92 4000.38 0.45 8.03 456.00 Overall Maximum Deflections Load Combination Span Max."-"Defl Location in Span Load Combination Max."+"Defl Location in Span +D+L 1 0.0122 3.526 0.0000 0.000 12/166 Project Title: Engineer Project ID: Project Descr. Wood Beam Ftorc*Fth, 21013 ener,%-il, Ims-neaders,eQ6 'a 20 22 31 ,,,ALE N CONSL—* 1983-2(b2 DESCRIPTION: H13 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 2.818 2.818 Overall MINimum 1.610 1 610 D Only 1.208 1.208 +D+L 2.818 2.818 +D+0.750L 2.415 2.415 +0.60D 0.725 0.725 L Only 1.610 1.610 13/166 • Project Title: Engineer: Project ID: Project Descr: Sil el Beam Project File-21013enercalc.ec6' i>rico Kv :060i4171, rdd.20,22. ,31 N vdtk-dC1 d L7i4G ENGINEERS ici ENERL -C t*. 19 232< DESCRIPTION: Al CODE REFERENCES Calculations per AISC 360-16, IBC 2018, CBC 2019,ASCE 7-16 Load Combination Set:ASCE 7-10 Material Properties Analysis Method Allowable Strength Design Fy:Steel Yield: 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending ..... D(976)L(3.520) m.. �e. W24x76 Span=23.0 ft Applied Loads Service loads entered.Load Factors will be applied for calculations. Beam self weight NOT internally calculated and added Uniform Load: D=2.976, L=3.520 k/ft, Tributary Width= 1.0 ft DESIGN SUMMARY pis Maximum Bending Stress Ratio = 0.861: 1 Maximum Shear Stress Ratio= 0.355 : 1 Section used for this span W24x76 Section used for this span W24x76 Ma:Applied 429.548 k-ft Va:Applied 74.704 k Mn/Omega:Allowable 499.002 k-ft Vn/Omega:Allowable 210.320 k Load Combination +D+L Load Combination +D+L Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.366 in Ratio= 754 >=360 Max Upward Transient Deflection 0.000 in Ratio= 0 <360 Span:1 :L Only Max Downward Total Deflection 0.675 in Ratio= 409 >=180 Span:1 :+D+L Max Upward Total Deflection 0.000 in Ratio= 0 <180 Maximum Forces 8, Stresses for Load Combinations Load Combination Max Stress RR0-tios - Summary of Moment Values "Summary of Shear Values Segment Length Span# M V Mmax+ Mmax Ma Max Mnx Mnx/Omega Cb Rm Va Max VnxVnx/Omega D Only Dsgn.L= 23.00 ft 1 0.394 0.163 196.79 196.79 833.33 499.00 1.00 1.00 34.22 315.48 210.32 +D+L Dsgn.L= 23.00 ft 1 0.861 0.355 429.55 429.55 833.33 499.00 1.00 1.00 74.70 315.48 210.32 +D+0.750L Dsgn.L= 23.00 ft 1 0.744 0.307 371.36 371.36 833.33 499.00 1.00 1.00 64.58 315.48 210.32 +0.60D Dsgn.L= 23.00 ft 1 0.237 0.098 118.07 118.07 833.33 499.00 1.00 1.00 20.53 315.48 210.32 Overall Maximum Deflections Load Combination Span Max. -'Defl Location in Span Load Combination Max."+"Deft Location in Span +D+L 1 0.6747... 11.566..,.. 0.0000 0.000 Vertical Reactions Support notation:Far left is#' Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 74.704 74.704 Overall MINimum 20.534 20.534 D Only 34.224 34.224 +D+L 74,704 74.704 +D+0 750L 64.584 64.584 +0.60D 20.534 20.534 1 nn non Ark non 14/166 • Project Title: Engineer: Project ID: Project Descr: Steel Beam Project File:21013 ene,rcalc•ec6 LC CS KW-i 1417t:`t U :201,22. .31 'HA.� N CONSULTINti i € .l fe) �E ALC the 1 s DESCRIPTION: A3- 16ft CODE REFERENCES Calculations per AISC 360-16, IBC 2018, CBC 2019,ASCE 7-16 Load Combination Set:ASCE 7-10 Material Properties Analysis Method Allowable Strength Design Fy:Steel Yield 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending D(8.80)Lt17C14(0)t 220)L(40 480) �.. ..__ctr.7 ' 2� to7rszo W24x76 Span=16,0 ft .w �.._....: ....,_. ... , Applied Loads Service loads entered.Load Factors will be applied for calculations„ Beam self weight NOT internally calculated and added Uniform Load : D=0.7880, L=0.1070, S=0.40 k/ft, Tributary Width= 1.0 ft Point Load : D=34.220, L=40.480 k @ 10.50 ft Point Load : D=8.80, L= 17.60 k @ 8.0 ft DESIGN SUMMARY Maximum Bending Stress Ratio = 0.737: 1 Maximum Shear Stress Ratio= 0.330 : 1 Section used for this span W24x76 Section used for this span W24x76 Ma:Applied 367.741 k-ft Vs Applied 69,382 k Mn/Omega:Allowable 499.002 k-ft VniOmega:Allowable 210,320 k Load Combination +D+L Load Combination +D+L Location of maximum on span 16.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.131 in Ratio= 1,461 >=360 Max Upward Transient Deflection 0.000 in Ratio= 0 <360 Span: 1 :L Only Max Downward Total Deflection 0.245 in Ratio= 785 >=180 Span: 1 :+D+L Max Upward Total Deflection 0.000 in Ratio= 0 <180 Maximum Forces &Stresses for Load Combinations Load Combination Max Stress Ratios Summary of Moment Values Summary of Sheaf'Va-Tues Segment Length Span# M V Mmax+ Mmax- Ma Max Mnx Mnx/Omega Cb Rm Va Max VnxVnx/Omega D Only Dsgn.L= 16.00 ft 1 0.341 0.158 170.30 170.30 833.33 499.00 1.00 1.00 33.16 315.48 210.32 +D+L Dsgn.L= 16.00 ft 1 0.737 0.330 367.74 367.74 833.33 499.00 1.00 1.00 69.38 315.48 210.32 +D+S Dsgn.L= 16.00 ft 1 0.364 0.173 181.88 181.88 833.33 499.00 1.00 1.00 36.36 315.48 210.32 +D+0.750L Dsgn.L= 16.00 ft 1 0.638 0.287 318.38 318.38 833.33 499.00 1.00 1.00 60.33 315.48 210.32 +D+0.750L+0.750S Dsgn.L= 16.00 ft 1 0.655 0.298 327.07 327.07 833.33 499.00 1.00 1.00 62.73 315.48 210.32 +0 60D Dsgn.L= 16.00 ft 1 0.205 0.095 102.18 102.18 833.33 499.00 1.00 1.00 19.90 315.48 210.32 Overall Maximum Deflections Load Combination Span Max."-"Defl Location in Span Load Combination Max."+"Defl Location in Span +D+L 0.2446 8.457 0.0000 0.000 15/166 Project Title: Engineer: Project ID Project Descr: Steel Beam Project Ate:21011 enercatc eck ,K 2,C 223 3° 4-,ANDEN.AVECONSUL v..._ENG;N_E:S Rwi ENERCA C 1tt�ac 13-222 DESCRIPTION: A3- 16ft Vertical Reactions Support notation:Far left is It Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 46.038 69.381 Overall MINimum 3.200 3.200 D Only 22.467 33.161 +D+L 46.038 69.382 +D+S 25.667 36.361 +D+0.750L 40.145 60.327 +D+0.750L+0.750S 42.545 62.727 +0.60D 13.480 19.897 L Only 23.571 36.221 S Only 3.200 3.200 16/166 Project Title: Engineer: Project ID: Project Descr: Steel Beam Project File:21013 enercalc.ec6 LIC#:KW-06014171,Build:20 22.3 31 HAYDEN CONSULTING ENGINEERS (c)ENERCALC INC 1983-2022 DESCRIPTION: A3-22ft max p CODE REFERENCES Calculations per AISC 360-16, IBC 2018, CBC 2019,ASCE 7-16 � � ._ .. Load Combination Set:ASCE 7-10 Material Properties Analysis Method Allowable Strength Design Fy:Steel Yield 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E: Modulus 29,000.0 ksi Bending Axis: Major Axis Bending ? r°ao:m61 c 10.7ss trg2197 s1§o,4°} W24x76 Span=22.0ft Applied Loads Service loads entered.Load Factors will be applied for calculations. Beam self weight NOT internally calculated and added Uniform Load: D=0.7880, L=0.1070, S=0.40 k/ft, Tributary Width= 1.0 ft Point Load: D=34.220, L=40.480 k @ 0.0 ft Point Load : D=8.80, L= 17.60 k @ 0.0 ft DESIGN SUMMARY ,.,,. Maximum Bending Stress Ratio = 0.144: 1 Maximum Shear Stress Ratio= 0.062 :1 Section used for this span W24x76 Section used for this span W24x76 Ma:Applied 71.874 k-ft Va:Applied 13.068 k Mn/Omega:Allowable 499.002 k-ft Vn/Omega:Allowable 210.320 k Load Combination +D+S Load Combination +D+S Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.035 in Ratio= 7,591 >=360 Max Upward Transient Deflection 0.000 in Ratio= 0 <360 Span:1 :S Only Max Downward Total Deflection 0.103 in Ratio= 2556 >=180 Span:1 :+D+S Max Upward Total Deflection 0.000 in Ratio= 0 <180 Maximum Forces &Stresses for Load Combinations Max Stress Ratios Summary Of omiul enf Vanes Summary of Shear a ues Load Combination ,., ..__ ...._. _.. rY Segment Length Span# M V Mmax+ Mmax- Ma Max Mnx Mnx/Omega Cb Rm Va Max VnxVnx/Omega D Only _� ,.._ _...... Dsgn.L= 22.00 ft 1 0.096 0.041 47.67 47.67 833.33 499.00 1.00 1.00 8.67 315.48 210.32 +D+L Dsgn.L= 22.00 ft 1 0.109 0.047 54.15 54.15 833.33 499.00 1.00 1.00 9.85 315.48 210.32 +D+S Dsgn.L= 22.00 ft 1 0.144 0.062 71.87 71.87 833.33 499.00 1.00 1.00 13.07 315.48 210.32 +D+0.750L Dsgn.L= 22.00 ft 1 0.105 0.045 52.53 52.53 833.33 499.00 1.00 1.00 9.55 315.48 210.32 +D+0.750L+0.750S Dsgn.L= 22.00 ft 1 0.142 0.061 70.68 70.68 833.33 499.00 1,00 1.00 12.85 315.48 210.32 +0.60D Dsgn.L= 22.00 ft 1 0.057 0.025 28.60 28.60 833.33 499.00 1.00 1.00 5.20 315.48 210.32 Overall Maximum Deflections Load Combination Span Max.""Defl Location in Span Load Combination Max."+"Defl Location in Span +D+S 1 01033 11.063 0.0000 0.000 17/166 Project Title: Engineer: Project ID: Project Descr. Steel Beam r c 214313 r at 7C a � r,.022 3.31 HAYDEN CONStJ T:NG ENGINEER ?bE CA a 983 s[ DESCRIPTION: A3-22ft max p Vertical Reactions Support notation:Far left is#- Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 110.945 _..._ 13.068 Overall MINimum 4.400 1.177 D Only 51.688 8.668 +D+L 110.945 9.845 4D+S 56.088 13.068 +D+0.750L 96.131 9.551 +D+0.750L+0.750S 99.431 12.851 +0.60D 31.013 5.201 L Only 59.257 1.177 S Only 4.400 4.400 18/166 Project Title: Engineer: Project ID: Project Descr: Steel Beam Project File:21013 enercalc.ec6 LIC#E:Kw-06014171,Build:20.22.3.31 HAYDEN CONSULTING ENGINEERS DESCRIPTION: A3-22ft CODE REFERENCES Calculations per AISC 360-16, IBC 2018, CBC 2019,ASCE 7-16 Load Combination Set:ASCE 7-10 Material Properties Analysis Method Allowable Strength Design Fy:Steel Yield: 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending D(34.220),L(40.480) D(8 80)L.(17.60) D .7880)Lfo io7cs, s act W24x76 '< Span=22.Oft Applied Loads Service loads entered.Load Factors will be applied for calculations. Beam self weight NOT internally calculated and added Uniform Load: D=0,7880, L=0.1070, S=0.40 k/ft, Tributary Width= 1.0 ft Point Load: D=34.220, L=40.480 k @ 5.50 ft Point Load: D=8.80, L= 17.60 k @ 11.0 ft DESIGN SUMMARY >'' . Maximum Bending Stress Ratio = 0.844 1 Maximum Shear Stress Ratio= 0.376 : 1 Section used for this span W24x76 Section used for this span W24x76 Ma:Applied 421.330 k-ft Va:Applied 79.070 k Mn/Omega:Allowable 499.002 k-ft Vn/Omega:Allowable 210.320 k Load Combination +D+L Load Combination +D+L Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.298 in Ratio= 885 >=360 Max Upward Transient Deflection 0.000 in Ratio= 0 <360 Span: 1 :L Only Max Downward Total Deflection 0.573 in Ratio= 461 >=180 Span: 1 :+D+L Max Upward Total Deflection 0.000 in Ratio= 0 <180 Maximum Forces &Stresses for Load Combinations Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span# M V Mmax+ Mmax- Ma Max Mnx Mnx/Omega Cb Rm Va Max VnxVnx/Omega D Only Dsgn.L= 22.00 ft 1 0.403 0.184 201.13 201.13 833.33 499.00 1.00 1.00 38.73 315.48 210.32 +D+L Dsgn.L= 22.00 ft 1 0.844 0.376 421.33 421.33 833.33 499.00 1.00 1.00 79.07 315.48 210.32 +D+S Dsgn.L= 22.00 ft 1 0.444 0.205 221.64 221.64 833.33 499.00 1.00 1.00 43.13 315.48 210.32 +D+0.750L Dsgn.L= 22.00 ft 1 0.734 0.328 366.28 366.28 833.33 499.00 1.00 1.00 68.99 315.48 210.32 +D+0.750L+0 750S Dsgn.L= 22.00 ft 1 0.763 0.344 380.60 380.60 833.33 499.00 1.00 1.00 72.29 315.48 210.32 +0 60D Dsgn.L= 22.00 ft 1 0.242 0.110 120.68 120.68 833.33 499.00 1.00 1.00 23.24 315.48 210.32 Overall Maximum Deflections Load Combination Span Max."-"Defl Location in Span Load Combination Max„"+"Defl Location in Span +D+L t 0.5725 10.309 0.0000 0.000 19/166 • Project Title: Engineer: Project ID: Project Descr. Steel Beam ". 22 3 31 HAYDEN CONSULTNG ENGNEERS ENER.:ALC ftC DESCRIPTION: A3-22ft Vertical Reactions Support notation:Far left is#- Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 79.070 41.720 Overall MINimum 4.400 4.400 D Only 38.733 21.623 +D+L 79.070 41.720 +D+S 43.133 26.023 +D+0.750L 68.986 36.696 +D+0.750L+0.7505 72.286 39.996 +0.60D 23.240 12.974 L Only 40.337 20.097 S Only 4.400 4.400 20/1 66 , ,•k .v‹., \\ • ,,t1- , „." .______.„... --_ , • -1-'' , l: / sv <'.: 4.0k es,< <‘' t i... .8,25k Ca') -. 1),..\. Lw.-- , , ' ('5) Z)<C0'. 7,1, 10/ $c < 12.5k ( ,t4 i,/140 (45 ? :, Pc:-1, #G v.' < 16.75k I i , i i f --'7, 1 .' 2- - - f' ?'Q iss) ,_,,t ,,,,N, , ...' f '144 i V 4 ) 2 7 pr)F'• ,11. k:, '2 • -? . , „,•••- ',,,,,„ .._.,„_. .„,',- ',- ...,.: BY Ct'N DATE 'CI :1071--''' ENGINEERS REV DATE ,- JOB NO 7 01 1.) (503) 968-9994 p (503) 968-8444 f - SHEET OF _ 21/166 Project Title: Engineer: Project ID: Project Descr: Wood Column Project File'21013 studs and posts.ec6 Kw-0601417i,Duild:20.22.3.31 HAYDEN CONSULTING ENGINEERS _,N.„, .,C iN 022 DESCRIPTION: 5th floor- (4)cripple stud Code References Calculations per NDS 2018, IBC 2018, CBC 2019,ASCE 7-16 Load Combinations Used :ASCE 7-10 General Information Analysis Method Allowable Stress Design Wood Section Name 4-2x6 End Fixities Top&Bottom Pinned Wood Grading/Manuf. Graded Lumber Overall Column Height 12.5 ft Wood Member Type Sawn Used.o ,on-sie:? £rralruia;krs Exact Width in Allow Stress Modification Factors Wood Species Douglas Fir-Larch 6.0 Wood Grade No.2 Exact Depth 5.50 in Cf or Cv for Bending 1.30 Area 33.0 inA2 Cf or Cv for Compressiol 1.10 Fb+ 900.0 psi Fv 180.0 psi lx 83.188 inA4 Cf or Cv for Tension 1.30 Fb 900.0 psi Ft 575.0 psi ly 99.0 inA4 Cm:Wet Use Factor 1.0 Fc-PM 1,350.0 psi Density 31.210 pcf Ct:Temperature Fact 1.0 Fc-Perp 625.0 psi E:Modulus of Elasticity... x-x Bending y-y Bending Axial Cfu:Flat Use Factor 1.0 Kf:Built-up columns 1.0 NDS 15,3 2 Basic 1,600.0 1,600.0 1,600.0 ksi Use Cr:Repetitive? No Minimum 580.0 580,0 Brace condition for deflection(buckling)along columns: X-X(width)axis: Fully braced against buckling ABOUT Y-Y Axis Y-Y(depth)axis: Unbraced Length for buckling ABOUT X-X Axis=1; Applied Loads Service loads entered.Load Factors will be applied for calculations Column self weight included :89.404 Ibs*Dead Load Factor AXIAL LOADS. . . Axial Load at 12.50 ft,D= 16.750 k DESIGN SUMMARY Bending&Shear Check Results PASS Max.Axial+Bending Stress Ratio = 0.9110:1 Maximum SERVICE Lateral Load Reactions.. Load Combination D Only Top along Y-1, 0.0 k Bottom along Y-Y 0.0 k Governing NDS Forumla Comp Only,fc/Fc' Top along X-x 0.0 k Bottom along X-X 0.0 k Location of max.above base 0.0 ft Maximum SERVICE Load Lateral Deflections... At maximum location values are. Along Y-Y 0.0 in at 0.0 ft above base Applied Axial 16.839 k for load combination: n/a Applied Mx 0.0 k-ft Applied My 0.0 k-ft Along X-X 0.0 in at 0.0 ft above base Fc:Allowable 560.15 psi for load combination:n/a Other Factors used to calculate allowable stresses... PASS Maximum Shear Stress Ratio= 0.0:1 Bending Compression Tension Load Combination +0.60D Location of max.above base 12.50 ft Applied Design Shear 0.0 psi Allowable Shear 288.0 psi Load Combination Results Maximum Axial+Bending Stress Ratios M xi um atios Load Combination C D C p Stress Ratio Status Location Stress Ratio Status Location D Only 0.900 0.419 0.9110 PASS 0.0 ft 0.0 PASS 12.50 ft +0.60D 1.600 0.253 0.510 PASS 0.0ft 0.0 PASS 12.50ft Maximum Reactions Note:Only no-zero reactions are listed, X-X Axis Reaction k Y-Y Axis Reaction Axial Reaction My-End Moments k-ft Mx-End Moments Load Combination @ Base @ Top @ Base @ Top @ Base @ Base @ Top @ Base @ Top D Only 16.839 +0.60D 10.104 22/166 • Project Title: Engineer: Project ID: Project Descr. Wood Column Project��F�S� �701studs�arr ts ccS 71 =31i'd 02:! ..°, ,?� 'EIv�.�"<`'i-SULT, €�E+k7;.3INS17,'S (A)efl ALtI&d DESCRIPTION: 5th floor- (4)cripple stud Maximum Deflections for Load Combinations Load Combination Max X-X Deflection Distance Max.Y-Y Deflection Distance D Only 0.0000 in 0.000ft 0.000 in 0.000ft +0.60D 0.0000 in 0.000ft 0.000 in 0.000ft Sketches Load +X 4 4.2x 5.0 in 23/166 Project Title: Engineer: Project ID: Project Descr: Wood ColumnProject File:21013 studs and posts.ec6 . ,1. «_ ": a HAY:Etv ENE . i DESCRIPTION: 5th floor- (3)cripple stud Code References Calculations per NDS 2018, IBC 2018,CBC 2019,ASCE 7-16 Load Combinations Used :ASCE 7-10 General Information Analysis Method Allowable Stress Design Wood Section Name 3-2x6 End Fixities Top&Bottom Pinned Wood Grading/Manuf. Graded Lumber Overall Column Height 12.5 ft Wood Member Type Sawn Used fo,noo-sieridc-rcaicalar:ons j Exact Width 4.50 in Allow Stress Modification Factors Wood Species Douglas Fir-Larch Exact Depth 5.50 in Cf or Cv for Bending 1.30 Wood Grade No.2 p Area 24.750 in^2 Cf or Cv for Compressioi 1.10 Fb+ 900.0 psi Fv 180.0 psi lx 62.391 in^4 Cf or Cv for Tension 1.30 Fb- 900.0 psi Ft 575.0 psi Fc-Prllly 41.766 inA4 Cm:Wet Use Factor 1.0 1,350.0 psi Density 31.210 pcf Fc-Perp 625.0 psi Ct:Temperature Fact 1.0 Cfu:Flat Use Factor 1.0 E Modulus of Elasticity... x-x Bending y-y Bending Axial Kf:Built-up columns 1.0 NDS 15.3.2 Basic 1,600.0 1,600.0 1,600.0 ksi Use Cr:Repetitive? No Minimum 580.0 580.0 Brace condition for deflection(buckling)along columns: X-X(width)axis: Fully braced against buckling ABOUT Y-Y Axis Y-Y(depth)axis: Unbraced Length for buckling ABOUT X-X Axis=11. Applied Loads Service loads entered.Load Factors will be applied for calculations. 67.053 Column self weight included: D lbs*Dead Load Load Factor AXIAL LOADS. . . Axial Load at 12.50 ft, D= 12.50 k DESIGN SUMMARY Bending&Shear Check Results PASS Max_Axial+Bending Stress Ratio = 0.9065:1 Maximum SERVICE Lateral Load Reactions.. Load Combination D Only Top along Y-N 0.0 k Bottom along Y-Y 0.0 k Governing NDS Fonlmla Comp Only,fc/Fc' Top along X-)i 0.0 k Bottom along X-X 0.0 k Location of max.above base 0.0 ft Maximum SERVICE Load Lateral Deflections... At maximum location values are. Along Y-Y 0.0 in at 0.0 ft above base Applied Axial 12.567 k for load combination: n/a Applied Mx 0.0 k-ft Applied My 0.0 k-ft Along X-X 0.0 in at 0.0 ft above base Fc:Allowable 560.15 psi for load combination:n/a Other Factors used to calculate allowable stresses... PASS Maximum Shear Stress Ratio= 0.0:1 Bending Compression Tension Load Combination +0.60D Location of max.above base 12.50 ft Applied Design Shear 0.0 psi Allowable Shear 288.0 psi Load Combination Results Maximum Axial+Bending Stress Ratios Maximum Shear Ratios Load Combination C D C p Stress Ratio Status Location Stress Ratio Status Location D Only 0.900 0.419 0.9065 PASS 0.oft 0.0 PASS 12.50 ft +0.60D 1.600 0.253 0.5074 PASS 0.0ft 0.0 PASS 12.50 ft Maximum Reactions Note:Only non-zero reactions are listed. X-X Axis Reaction k Y-Y Axis Reaction Axial Reaction My-End Moments k-ft Mx-End Moments Load Combination @ Base @ Top @ Base @ Top @ Base @ Base @ Top @ Base @ Top D Only 12.567 +0.60D 7.540 24/166 • Project Title: Engineer: Project ID: Project Descr. Wood Ct)turtin Prefect 21013 studs and pcsts,ect3 7' BJ22 22 3- '•A c)ENERt...,t1t. DESCRIPTION: 5th floor (3)cripple stud Maximum Deflections for Load Combinations Load Combination Max.X-X Deflection Distance Max.Y-Y Deflection Distance D Only 0.0000 in 0.000ft 0.000 in 0.000ft +0.60D 0.0000 in 0.000ft 0.000 in 0.000ft Sketches +X Load 1 1 3-2x6 4.50 in 25/166 Project Title: Engineer: Project ID: Project Descr: Wood Column Project File:21013 studs and posts.ec6 LUC#:KW-06014171,Build20.22.3.31 HAYDEN CONS9LNG ENGINEERS (c)ENERCALC INC 1983-2022 DESCRIPTION: 5th floor- (2)cripple stud Code References Calculations per NDS 2018, IBC 2018,CBC 2019,ASCE 7-16 Load Combinations Used :ASCE 7-10 General Information Analysis Method Allowable Stress Design Wood Section Name 2-2x6 End Fixities Top&Bottom Pinned Wood Grading/Manuf. Graded Lumber Overall Column Height 12.5 ft Wood Member Type Sawn (Used fornoa-sien:;es calcularions) Exact Width 3.0 in Allow Stress Modification Factors Wood Species Douglas Fir-Larch Exact Depth P 5.50 in Cf or Cv for Bending 1.30 Wood Grade No.2 Area 16.50 inA2 Cf or Cv for Compressioi 1.10 Fb+ 900.0 psi Fv 180.0 psi Ix 41.594 in^4 Cf or Cv for Tension 1.30 Fb- 900.0 psi Ft 575.0 psi ly 12.375 in^4 Cm:Wet Use Factor 1.0 Fc-Prll 1,350.0 psi Density 31.210 pcf Ct:Temperature Fact 1.0 Fc-Perp 625.0 psi Cfu:Flat Use Factor 1.0 1 E:Modulus of Elasticity... x-x Bending y-y Bending Axial Kf:Built-up columns 1.0 NOS 15 3.2 Basic 1,600.0 1,600.0 1,600.0 ksi Use Cr:Repetitive? No Minimum 580.0 580.0 for deflection(buckling)alongcolumns: Brace condition X-X(width)axis Fully braced against buckling ABOUT Y-Y Axis Y-Y(depth)axis: Unbraced Length for buckling ABOUT X-X Axis=1; Applied Loads Service loads entered.Load Factors will be applied for calculations. . ......__ . _gym ,....... ,.� _....,..H.._. _.._. .,.. __. �...,,., ..... Column self weight included :44.702 lbs Dead Load Factor AXIAL LOADS . . . Axial Load at 12.50 ft,D=8.250 k DESIGN SUMMARY Bending&Shear Check Results PASS Max.Axial+Bending Stress Ratio = 0.8975:1 Maximum SERVICE Lateral Load Reactions.. Load Combination D Only Top along Y-Y 0.0 k Bottom along Y-Y 0.0 k Governing NDS Forumla Comp Only,fc/Fc' Top along X-)i 0.0 k Bottom along X-X 0.0 k Location of max.above base 0.0 ft Maximum SERVICE Load Lateral Deflections... At maximum location values are. Along Y-Y 0.0 in at 0.0 ft above base Applied Axial 8.295 k for load combination: n/a Applied Mx 0.0 k-ft Applied My 0.0 k-ft Along X-X 0.0 in at 0.0 ft above base Fc:Allowable 560.15 psi for load combination:n/a Other Factors used to calculate allowable stresses... PASS Maximum Shear Stress Ratio= 0.0:1 Bending Compression Tension Load Combination +0.60D Location of max.above base 12.50 ft Applied Design Shear 0.0 psi Allowable Shear 288.0 psi Load Combination Results Maximum Axial+Bending Stress Ratios Maximum Shear Ratios C D OpStress Ratio Status Location Stress Ratio Status Location Load Combination D Only 0.900 0.419 0.8975 PASS 0.0 ft 0.0 PASS 12.50 ft +0.60D 1.600 0.253 0.5024 PASS 0.0 ft 0,0 PASS 12.50ft Maximum Reactions Note:Only non-zero reactions are listed. X-X Axis Reaction k Y-Y Axis Reaction Axial Reaction My-End Moments k-ft Mx-End Moments Load Combination @ Base @ Top @ Base @ Top @ Base @ Base @ Top @ Base @ Top D Only 8.295 +0.60D 4.977 26/166 Project Title: Engineer. Project ID: Project Descr: Wood Column P=c1,:,-ci Foe.21013$tthiS:nnd postsAc6 = Vic: ... €`!u_:: NEER c NE eCnv£ INC t w f}2 DESCRIPTION: 5th floor- (2)cripple stud Maximum Deflections for Load Combinations Load Combination Max.X-X Deflection Distance Max.Y-Y Deflection Distance D Only 0.0000 in 0.000ft 0.000 in 0.000ft +0.60D 0.00001n 0.000ft 0.009in 0.000ft Sketches +X Load I • � � l 2-2x6 3.0 in 27/166 ' . , Project Title: Engineer: Project ID: Project Descr: Wood Column Project File:21013 studs and posts.ec6 LIC#:KW-06014171,Build:20 22.3.31 HAYDEN CONSULTING ENGINEERS (c)ENERCALC INC 1983-2022 DESCRIPTION: 5th floor- (1)cripple stud Code References Calculations per NDS 2018, IBC 2018, CBC 2019,ASCE 7-16 Load Combinations Used:ASCE 7-10 General Information Analysis Method Allowable Stress Design Wood Section Name 2x6 End Fixities Top&Bottom Pinned Wood Grading/Manuf. Graded Lumber Overall Column Height 12.5 ft Wood Member Type Sawn (Used of tiar-SiCr er'a/CUiariOns) Exact Width 1.50 in Allow Stress Modification Factors Wood Species Douglas Fir-Larch Exact Depth 5.50 in Cf or Cv for Bending 1.30 Wood Grade No.2 p Area 8.250 inA2 Cf or Cv for Compressioi 1.10 Fb+ 900.0 psi Fv 180,0 psi lx 20.797 in 4 Cf or Cv for Tension 1.30 Fb- 900.0 psi Ft 575.0 psi ly 1.547 inA4 Cm:Wet Use Factor 1.0 Fc-Pill 1,350.0 psi Density 31.210 pcf Ct:Temperature Fact 1.0 Fc-Perp 625.0 psi Cfu:Flat Use Factor 1.0 E:Modulus of Elasticity... x-x Bending y-y Bending Axial Kf:Built-up columns 1.0 NOS 15.3.2 Basic 1,600.0 1,600.0 1,600.0 ksi Use Cr:Repetitive? No Minimum 580.0 580.0 Brace condition for deflection(buckling)along columns: X-X(width)axis: Fully braced against buckling ABOUT Y-Y Axis Y-Y(depth)axis: Unbraced Length for buckling ABOUT X-X Axis=1: Applied Loads Service loads entered Load Factors will be applied for calculations. Column self weight included:22.351 lbs*Dead Load Factor AXIAL LOADS. . . Axial Load at 12.50 ft, D=4.0 k DESIGN SUMMARY Bending&Shear Check Results PASS Max.Axial+Bending Stress Ratio = 0.8704:1 Maximum SERVICE Lateral Load Reactions.. Load Combination D Only Top along Y-Y 0.0 k Bottom along Y-Y 0.0 k Governing NDS Forumla Comp Only,fc/Fc' Top along X-X 0.0 k Bottom along X-X 0.0 k Location of max.above base 0.0 ft Maximum SERVICE Load Lateral Deflections... At maximum location values are. Along Y-Y 0.0 in at 0.0 ft above base Applied Axial 4.022 k for load combination: n/a Applied Mx 0.0 k-ft Applied My 0.0 k-ft Along X-X 0.0 in at 0.0 ft above base Fc:Allowable 560.15 psi for load combination:n/a Other Factors used to calculate allowable stresses... PASS Maximum Shear Stress Ratio= 0.0:1 Bending Compression Tension Load Combination +0.60D Location of max.above base 12.50 ft Applied Design Shear 0.0 psi Allowable Shear 288.0 psi Load Combination Results Maximum Axial+Bending Stress Ratios Maximum Shear Ratios Load Combination C D C p Stress Ratio Status Location Stress Ratio Status Location D Only 0.900 0.419 0.8704 PASS 0.0 ft 0.0 PASS 12.50 ft +0.60D 1.600 0.253 0.4873 PASS 0.0ft 0.0 PASS 12.50ft Maximum Reactions Note:Only non-zero reactions are listed, X-X Axis Reaction k Y-Y Axis Reaction Axial Reaction My-End Moments k-ft Mx-End Moments Load Combination @ Base @ Top @ Base @ Top @ Base @ Base @ Top @ Base @ Top D Only 4.022 +0.60D 2.413 28/166 Project Title: Engineer: Project ID: Project Descr: Wood Column Project Ftle 210+3 s:trs and pasts ec6 V,1- 6u Z , wt 31 NAYDEN CCNSLLLT. G NG BEER s ,c? NERCC1=C SNC 1 3-2uzz DESCRIPTION: 5th floor-(1)cripple stud Maximum Deflections for Load Combinations Load Combination Max.X-X Deflection Distance Max.Y-Y Deflection Distance D Only 0.0000 in 0.000ft 0.000 in 0.000ft +0.600 0.0000in 0.000ft 0.000in 0.000ft Sketches +X Load 1 in 1.50 in 29/166 Project Title: Engineer: Project ID: Project Descr: Wood Column Project File:21013 studs and posts.ec6 - - -- --- LIC#:KW-06014171,Bwld.20.22.3.31 HAYDEN CONSULTING ENGINEERS (c)ENERCALC INC 1983-2022 DESCRIPTION: 5th floor-king studs-4.17ft trib-corner Code References Calculations per NDS 2018, IBC 2018, CBC 2019,ASCE 7-16 Load Combinations Used :ASCE 7-10 1 General Information Analysis Method Allowable Stress Design Wood Section Name 2-2x6 End Fixities Top&Bottom Pinned Wood Grading/Manuf. Graded Lumber Overall Column Height 12.5 ft Wood Member Type Sawn U ,.,,rof bon-skim-kg ,;;;,taa,,; Exact Width 3.0 in Allow Stress Modification Factors Wood Species Douglas Fir-Larch Exact Depth 5.50 in Cf or Cv for Bending 1.30 Wood Grade Not Area 16.50 inA2 Cf or Cv for Compressioi 1.10 Fb+ 900,0 psi Fv 180.0 psi lx 41.594 inn4 Cf or Cv for Tension 1.30 Fb- 900.0 psi Ft 575.0 psi ly 12.375 in^4 Cm:Wet Use Factor 1.0 Fc-Prll 1,350.0 psi Density 31.210 pcf Ct:Temperature Fact 1.0 Fc-Perp 625.0 psi Cfu:Flat Use Factor 1.0 E:Modulus of Elasticity... x-x Bending y-y Bending Axial Kf:Built-up columns 1.0 NOS 15,3 2 Basic 1,600.0 1,600.0 1,600.0 ksi Use Cr:Repetitive? No Minimum 580.0 580.0 Brace condition for deflection(buckling)along columns: X-X(width)axis: Fully braced against buckling ABOUT Y-Y Axis Y-Y(depth)axis: Unbraced Length for buckling ABOUT X-X Axis=1; Applied Loads Service loads entered.Load Factors will be applied for calculations. ...... . GP Column self weight included :44.702 lbs*Dead Load Factor BENDING LOADS. . . Lat. Uniform Load creating Mx-x,W=0.1510 k/ft DESIGN SUMMARY Bending&Shear Check Results PASS Max.Axial+Bending Stress Ratio = 0.7531 :1 Maximum SERVICE Lateral Load Reactions.. Load Combination +D+0.60W Top along Y-1• 0.9438 k Bottom along Y-Y 0.9438 k Governing NDS Forun11131Comp+Mxx,NDS Eq.3.9-3 Top along X-k 0.0 k Bottom along X-X 0.0 k Location of max.above base 6.208 ft Maximum SERVICE Load Lateral Deflections... At maximum location values are. Along Y-Y 0.5291 in at 6.292 ft above base Applied Axial 0.04470 k for load combination: +D+0.420W Applied Mx 1.769 k-ft Applied My 0.0 k-ft Along X-X 0.0 in at 0.0 ft above base Fc:Allowable 600.38 psi for load combination:n/a Other Factors used to calculate allowable stresses... PASS Maximum Shear Stress Ratio= 0.1787:1 Bending Compression Tension Load Combination +D+0.60W Location of max.above base 12.50 ft Applied Design Shear 51.477 psi Allowable Shear 288.0 psi Load Combination Results Maximum Axial+Bending Stress Ratios Maximum Shear Ratios D P Load Combination C C Stress Ratio Status Location Stress Ratio Status Location D Only 0,900 0.419 0.004837 PASS 0.0ft 0.0 PASS 12.50 ft +D+0.60W 1,600 0.253 0.7531 PASS 6.208ft 0.1787 PASS 12.50ft +D+0.450W 1,600 0.253 0.5649 PASS 6.208ft 0.1341 PASS 12.50ft +0.60D+0.60W 1,600 0.253 0.7518 PASS 6.208ft 0.1787 PASS 12.50ft +0.60D 1,600 0.253 0.002707 PASS 0.0 ft 0.0 PASS 12.50 ft Maximum Reactions Note:Only non-zero reactions are listed. X-X Axis Reaction k Y-Y Axis Reaction Axial Reaction My-End Moments k-ft Mx-End Moments Load Combination @ Base @ Top @ Base @ Top @ Base @ Base @ Top @ Base @ Top D Only 0.045 +D+0.60W 0.566 0.566 0.045 30/166 Project Title: Engineer: Project ID: Project Descr: Wood Column t r ij ct Ede-2 ett13 stU=cis and p:lnata enS ''AV.,'E£ f3ULTt3° dEi°dif4t RS ENERCA INC . E3.2O22 DESCRIPTION: 5th floor-king studs-4.17ft trib-corner Maximum Reactions Note:Or1' non-zero reactions are listed. X-X Axis Reaction k Y-Y Axis Reaction Axial Reaction My-End Moments k-ft Mx-End Moments Load Combination @ Base @ Top @ Base @ Top @ Base @ Base @ Top @ Base @ Top +D+0.450W 0.425 0.425 0.045 +0.60D+0.60W 0.566 0.566 0.027 +0.60D 0.027 W Only 0.944 0.944 Maximum Deflections for Load Combinations Load Combination Max.X-X Deflection Distance Max.Y-Y Deflection Distance D Only 0.0000 in 0.000ft 0.000 in 0.000n +D+0.420W 0.0000 in 0.000ft 0.529 in 6.292ft +D+0.3150W 0.0000 in 0.000ft 0.397 in 6.292ft +0.60D+0.420W 0.0000 in 0.000ft 0.529 in 6.292ft +0.60D 0.0000 in 0.000ft 0.000 in 0.000ft Sketches +X o u� 3 � � j 2...... -2)(6 3.0 in 31/166 •i Project Title: Engineer: Project ID: Project Descr: Wood Column Project File:21013 studs and posts.ec6 I,t .KWC6G,4171 . 6d20- 3.31 iAYbEfE LSNrU N etAt- .- E NEi. f.._' .", ._ __ .� DESCRIPTION: 5th floor-king studs-7.17ft trib corner Code References Calculations per NDS 2018, IBC 2018, CBC 2019,ASCE 7-16 Load Combinations Used :ASCE 7-10 General Information Analysis Method Allowable Stress Design Wood Section Name 3-2x6 End Fixities Top&Bottom Pinned Wood Grading/Manuf. Graded Lumber Overall Column Height 12.5 ft Wood Member Type Sawn Used ibr'r.;z-stFnreercatcallr,:io,^s Exact Width 4.50 in Allow Stress Modification Factors Wood Species Douglas Fir-Larch Exact Depth 5.50 in Cf or Cv for Bending 1.30 Wood Grade No.2 p Area 24.750 in^2 Cf or Cv for Compressioi 1.10 Fb+ 900.0 psi Fv 180.0 psi lx 62.391 inA4 Cf or Cv for Tension 1.30 Fb- 900.0 psi Ft 575.0 psi l Cm:Wet Use Factor 1.0 Fc-Pill 1,350.0 psi Density 31.210 pcf y 41.766 inn 4 Ct:Temperature Fact 1.0 Fc-Perp 625.0 psi Cfu:Flat Use Factor 1.0 E:Modulus of Elasticity... x-x Bending y-y Bending Axial Kf: Built-up columns 1.0 NOS 15 3 2 Basic 1,600.0 1,600.0 1,600.0 ksi Use Cr:Repetitive? No Minimum 580.0 580.0 Brace condition for deflection(buckling)along columns: X-X(width)axis Fully braced against buckling ABOUT Y-Y Axis Y-Y(depth)axis: Unbraced Length for buckling ABOUT X-X Axis=1; Applied Loads Service loads entered.Load Factors will be applied for calculations. Column self weight included:67.053 lbs*Dead Load Factor BENDING LOADS . . . Lat. Uniform Load creating Mx-x,W=0.2590 k/ft DESIGN SUMMARY Bending&Shear Check Results PASS Max.Axial+Bending Stress Ratio = 0.8612:1 Maximum SERVICE Lateral Load Reactions. Load Combination +D+0.60W Top along Y-t 1.619 k Bottom along Y-Y 1.619 k Governing NDS Forurtltt31Comp+Mxx,NDS Eq.3.9-3 Top along X-X 0.0 k Bottom along X-X 0.0 k Location of max.above base 6.208 ft Maximum SERVICE Load Lateral Deflections... At maximum location values are. Along Y-Y 0.6051 in at 6.292 ft above base Applied Axial 0.06705 k for load combination: +D+0.420W Applied Mx 3.035 k-ft Applied My 0.,0 k-ft Along X-X 0.0 in at 0.0 ft above base Fc:Allowable 600.38 psi for load combination:n/a Other Factors used to calculate allowable stresses... PASS Maximum Shear Stress Ratio= 0.2044:1 Bending Compression Tension Load Combination +D+0.60W Location of max.above base 12.50 ft Applied Design Shear 58.864 psi Allowable Shear 288.0 psi Load Combination Results Maximum Axial+Bending Stress Ratios Maximum Shear Ratios Load Combination C D C p Stress Ratio Status Location Stress Ratio Status Location D Only 0.900 0.419 0.004837 PASS 0.oft 0.0 PASS 12.50 ft +D+0.60W 1.600 0.253 0.8612 PASS 6.208 ft 0.2044 PASS 12.50 ft +D+0.450W 1.600 0.253 0.6459 PASS 6.292 ft 0.1533 PASS 12.50 ft +0.60D+0.60W 1.600 0.253 0.8597 PASS 6.208 ft 0.2044 PASS 12.50 ft +0.60D 1.600 0.253 0.002707 PASS 0.0 ft 0.0 PASS 12.50 ft Maximum Reactions Note:Only non-zero reactions are listed X-X Axis Reaction k Y-Y Axis Reaction Axial Reaction My-End Moments k-ft Mx-End Moments Load Combination @ Base @ Top @ Base @ Top @ Base @ Base @ Top @ Base @ Top D Only 0.067 +D+0 60W 0.971 0.971 0.067 32/166 Project Title: Engineer. Project ID: Project Descr: Wood Co[Limn p.ojert f-le,21 11 st �s and{aost .;:�6 . .,°. 13.r J.30.22.3 3' naYDE14 CC31,4SULTNGt'4, .4 _ EVER " L,„1% DESCRIPTION: 5th floor-king studs-7.17ft trib-corner Maximum Reactions Note:Orly non-zero reactions are listed. X-X Axis Reaction k Y-Y Axis Reaction Axial Reaction My-End Moments k-ft Mx-End Moments Load Combination @ Base @ Top @ Base @ Top @ Base @ Base @ Top @ Base @ Top +D+0.450W 0.728 0.728 0.067 +0.60D+0.60W 0.971 0.971 0.040 +0.60D 0.040 W Only 1.619 1.619 Maximum Deflections for Load Combinations Load Combination Max.X-X Deflection Distance Max.Y-Y Deflection Distance D Only 0.0000 in 0.000ft 0.000 in 0.000ft +D+0.420W 0.0000 in 0.000ft 0.605 in 6.292 ft +D+0.3150W 0.0000 in 0.000ft 0.454 in 6.292 ft +0.600+0.420W 0.0000 in 0.000ft 0.605 in 6.292ft +0.60D 0.0000 in 0.000ft 0.000 in 0.000ft Sketches +X 3-2x6 Z.. S f F 4.50 in e�x 33/166 ,a Project Title: Engineer: Project ID: Project Descr: Wood Column Project File:21013 studs and posts ec6 LIC# KW-06014171,Build:20.±2.3.31 HAYDEN CONSULTING ENGINEERS (c)ENERCALC INC 1983-2022 DESCRIPTION: 5th floor-king studs-7.67ft trib-corner Code References Calculations per NDS 2018, IBC 2018, CBC 2019,ASCE 7-16 Load Combinations Used :ASCE 7-10 General Information Analysis Allowable._ Anal y Stress Design Wood Section Name 3-2x6 End Fixities Top&Bottom Pinned Wood Grading/Manuf. Graded Lumber Overall Column Height 12.5 ft Wood Member Type Sawn (.1scd;or nor-.'lendercalculatons) Exact Width 4.50 in Allow Stress Modification Factors Wood Species Douglas Fir-Larch Exact Depth 5.50 in Cf or Cv for Bending 1.30 Wood Grade No.2 Cf or Cv for Com ressia 1.10 Fb+ 900.0psi Fv 180.0 psi Area 24.750 inA2 P lx 62.391 in^4 Cf or Cv for Tension 1.30 Fb- 900.0 psi Ft 575.0 psi ly 41.766 in 4 Cm:Wet Use Factor 1.0 Fc-Prll 1,350-0 psi Density 31.210 pcf Ct:Temperature Fad 1.0 Fc-Perp 625.0 psi Cfu Flat Use Factor 1.0 E:Modulus of Elasticity... x-x Bending y-y Bending Axial Kf:Built-up columns 1.0 NOS 15.3,2 Basic 1,600.0 1,600.0 1,600.0 ksi Use Cr:Repetitive? No Minimum 580.0 580.0 Brace condition for deflection(buckling)along columns: X-X(width)axis: Fully braced against buckling ABOUT Y-Y Axis Y-Y(depth)axis: Unbraced Length for buckling ABOUT X-X Axis=1; • Applied Loads Service loads entered.Load Factors will be applied for calculations. Column self weight included : 67.053 lbs*Dead Load Factor BENDING LOADS. . . Lat. Uniform Load creating Mx-x,W=0.2770 k/ft DESIGN SUMMARY Bending&Shear Check Results PASS Max.Axial+Bending Stress Ratio = 0.9210:1 Maximum SERVICE Lateral Load Reactions.. Load Combination +D+0.60W Top along Y-1 1.731 k Bottom along Y-Y 1.731 k Governing NDS Forurrittg Comp+Mxx,NDS Eq.3.9-3 Top along X-x 0.0 k Bottom along X-X 0.0 k Location of max.above base 6.208 ft Maximum SERVICE Load Lateral Deflections... At maximum location values are. Along Y-Y 0.6471 in at 6.292 ft above base Applied Axial 0.06705 k for load combination: +D+0.420W Applied Mx 3.246 k-ft Applied My 0.0 k-ft Along X-X 0.0 in at 0.0 ft above base Fc:Allowable 600.38 psi for load combination:n/a Other Factors used to calculate allowable stresses... PASS Maximum Shear Stress Ratio= 0.2186:1 Bending Compression Tension Load Combination +D+0.60W Location of max.above base 12.50 ft Applied Design Shear 62.955 psi Allowable Shear 288.0 psi Load Combination Results Maximum Axial+Bending Stress Ratios Maximum Shear Ratios Load Combination C D C p Stress Ratio Status Location Stress Ratio Status Location D Only 0.900 0.419 0.004837 PASS 0.0 ft 0.0 PASS 12.50 ft +D+0.60W 1.600 0.253 0.9210 PASS 6.208 ft 0.2186 PASS 12.50 ft +D+0.450W 1.600 0.253 0.6908 PASS 6.208 ft 0.1639 PASS 12.50 ft +0.60D+0.60W 1.600 0.253 0.9195 PASS 6.208 ft 0.2186 PASS 12.50 ft +0.60D 1.600 0.253 0.002707 PASS 0.oft 0.0 PASS 12-50ft Maximum Reactions Note:Only non-zero reactions are listed X-X Axis Reaction k Y-Y Axis Reaction Axial Reaction My-End Moments k-ft Mx-End Moments Load Combination @ Base @ Top @ Base @ Top @ Base @ Base @ Top @ Base ©Top D Only 0.067 +D+0.60W 1.039 1.039 0.067 34/166 Project Title: Engineer: Project ID: Project Descr: Wood COht.117111 PrcjCi 21013 st.,ds and r',0s(s cep. HAY D CONNSULTING EN ENE_R DESCRIPTION: 5th floor-king studs-7.67ft trib-corner Maximum Reactions Note: S=`.i,non-zero reactions are listed. X-X Axis Reaction k Y-Y Axis Reaction Axial Reaction My-End Moments k-ft Mx-End Moments Load Combination @ Base @ Top @ Base @ Top @ Base @ Base @ Top @ Base @ Top +0+0.4508Ai 0.779 0.779 0.067 +0.600+0.60W 1.039 1.039 0.040 +0.60D 0.040 W Only 1.731 1.731 Maximum Deflections for Load Combinations Load Combination Max X-X Deflection Distance Max.Y-Y Deflection Distance D Only 0.0000 in 0.000f2 0.000 in 0.000ft +0+0.420W 0.0000 in 0.000ft 0.647 in 6.292ft +D+0.3150W 0.0000 in 0.000ft 0.485 in 6.292ft +0.600+0.420W 0.0000 in 0.000ft 0.647 in 6.292ft +0.60D 0.0000 in 0.000ft 0.000 in 0.000ft Sketches +X c' to tri - x6 4.50 in 35/166 Project Title: Engineer: Project ID: Project Descr: Wood Column Project File:21013 studs and posts.ec6 LIC#t:KW-06014171,ButId:20.22.3.31 HAYDEN CONSULTING ENGINEERS (c)ENERCALC INC 1983-2022 DESCRIPTION: 5th floor- king studs-4.17ft trib Code References Calculations per NDS 2018, IBC 2018, CBC 2019,ASCE 7-16 Load Combinations Used ASCE 7-10 General Information Analysis Method Allowable Stress Design Wood Section Name 2x6 End Fixities Top&Bottom Pinned Wood Grading/Manuf. Graded Lumber Overall Column Height 12.5 ft Wood Member Type Sawn Used fbi non-sic -a'calculario its) Exact Width 1.50 in Allow Stress Modification Factors Wood Species Douglas Fir-Larch Exact Depth 5.50 in Cf or Cv for Bending 1.30 Wood Grade No.2 Area 8.250 in"2 Cf or Cv for Compressioi 1.10 Fb+ 900.0 psi Fv 180.0 psi lx 20.797 in"4 Cf or Cv for Tension 1.30 Fb- 900.0 psi Ft 575.0 psi ly 1.547 inA4 Fc-Pr!! 1,350.0 psi Density 31.210 pcf 4 Cm:Wet Use Factor 1.0 Ct:Temperature Fact 1.0 Fc-Perp 625.0 psi Cfu:Flat Use Factor 1.0 E:Modulus of Elasticity... x-x Bending y-y Bending Axial Kf:Built-up columns 1.0 NDS 15.3 2 Basic 1,600.0 1,600.0 1,600.0 ksi Use Cr:Repetitive? No Minimum 580.0 580.0 Brace condition for deflection(buckling)along columns: X-X(width)axis: Fully braced against buckling ABOUT Y-Y Axis Y-Y(depth)axis: Unbraced Length for buckling ABOUT X-X Axis=1 Applied Loads Service loads entered Load Factors will be applied for calculations. Column self weight included:22.351 lbs*Dead Load Factor BENDING LOADS . . . Lat.Uniform Load creating Mx-x,W=0.0820 k/ft DESIGN SUMMARY Bending&Shear Check Results PASS Max.Axial+Bending Stress Ratio = 0.8180:1 Maximum SERVICE Lateral Load Reactions.. Load Combination +D+0.60W Top along Y-1. 0.5125 k Bottom along Y-Y 0.5125 k Governing NDS Foruntll3lComp+Mxx,NDS Eq.3.9-3 Top along X-)i 0.0 k Bottom along X-X 0.0 k Location of max.above base 6.208 ft Maximum SERVICE Load Lateral Deflections... At maximum location values are. Along Y-Y 0.5747 in at 6.292 ft above base Applied Axial 0.02235 k for load combination: +D+0.420W Applied Mx 0.9609 k-ft Applied My 0.0 k-ft Along X-X 0.0 in at 0.0 ft above base Fc:Allowable 600.38 psi for load combination:n/a Other Factors used to calculate allowable stresses... PASS Maximum Shear Stress Ratio= 0.1941 :1 Bending Compression Tension Load Combination +D+0.60W Location of max.above base 12.50 ft Applied Design Shear 55.909 psi Allowable Shear 288.0 psi Load Combination Results Maximum Axial+Bending Stress Ratios Maximum Shear Ratios Load Combination C D C P Stress Ratio Status Location Stress Ratio Status Location D Only 0,900 0.419 0.004837 PASS 0.0 ft 0.0 PASS 12.50-ft +D+0.60 W 1.600 0.253 0.8180 PASS 6.208 ft 0.1941 PASS 12.50 ft +D+0.450W 1.600 0.253 0.6135 PASS 6.208 ft 0.1456 PASS 0.0 ft +0.60D+0.60W 1.600 0.253 0.8166 PASS 6.208 ft 0.1941 PASS 12.50 ft +0.60D 1.600 0.253 0.002707 PASS 0.0 ft 0.0 PASS 12.50 ft Maximum Reactions Note:Only non-zero reactions are listed. X-X Axis Reaction k Y-Y Axis Reaction Axial Reaction My-End Moments k-ft Mx-End Moments Load Combination @ Base @ Top @ Base @ Top @ Base @ Base @ Top @ Base @ Top D Only 0.022 +D+0.60W 0.308 0.308 0.022 36/166 Project Title: Engineer: Project ID: Project Descr. Wood Column Prqdat F3n 21013 studs and VOStS ect, <V,06014171 B ."3L 2:20 -4',DEN CONSULTING ENG'NEE',S (c)ENERCALC/NO 192'3-202'2 DESCRIPTION: 5th floor- king studs-4.17ft trib Maximum Reactions Note:Cj non-zero reactions are listed. X-X Axis Reaction k Y-Y Axis Reaction Axial Reaction My-End Moments k-ft Mx-End Moments Load Combination @ Base @ Top @ Base @ Top @ Base @ Base @ Top @ Base @ Top +D+0.450W 0.231 0.231 0.022 +0.60D+0.60W 0.308 0.308 0.013 +0.60D 0.013 W Only 0.513 0.513 Maximum Deflections for Load Combinations Load Combination Max.X-X Deflection Distance Max.Y-Y Deflection Distance D Only 0.0000 in 0.000ft 0.000 in 0.000ft +D+0.420W 0.0000 in 0.000ft 0.575 in 6.292ft +D+0.3150W 0.0000 in 0.000ft 0.431 in 6.292ft +0.60D+0.420W 0.0000 in 0.000ft 0.575 in 6.292ft +0.60D 0.0000 in 0.000ft 0.000 in 0.000ft Sketches +X 2.)-6 1.50 in 0 ODA 37/166 Project Title: Engineer: Project ID: Project Descr: Wood Column ProjectFite:21013 studs and _ERs (c)ENERCALC INC 1983-2 DESCRIPTION: 5th floor- king studs-7.17ft trib Code References Calculations per NDS 2018, IBC 2018,CBC 2019,ASCE 7-16 Load Combinations Used :ASCE 7-10 General Information Analysis Method Allowable Stress Design Wood Section Name 2-2x6 End Fixities Top&Bottom Pinned Wood Grading/Manuf. Graded Lumber Overall Column Height 12.5 ft Wood Member Type Sawn (Used for non-sic:n;i<,rc,alc;uia;;ws Exact Width 3.0 in Allow Stress Modification Factors Wood Species Douglas Fir-Larch .50 WoodExact Depth 550 in Cf or Cv for Bending 1.30 Grade No.2 Area 16.50 in^2 Cf or Cv for Compressioi 1.10 Fb+ 900,0 psi Fv 180.0 psi lx 41.594 in^4 Cf or Cv for Tension 1.30 Fb- 900.0 psi Ft 575.0 psi Fc-PrIl 1,350.0 psi Density 31.210 pcf ly 12.375 in 4 Cm:Wet Use Factor 1.0 Fc-Perp 625.0 psi Ct:Temperature Fact 1.0 Cfu:Flat Use Factor 1.0 E:Modulus of Elasticity... x-x Bending y-y Bending Axial Kf:Built-up columns 1.0 NOS 15.3.2. Basic 1,600.0 1,600.0 1,600.0 ksi Use Cr:Repetitive? No Minimum 580.0 580.0 Brace condition for deflection(buckling)along columns: X-X(width)axis: Fully braced against buckling ABOUT Y-Y Axis Y-Y(depth)axis: Unbraced Length for buckling ABOUT X-X Axis=1; Applied Loads Service loads entered.Load Factors will be applied for calculations. Column self weight included :44.702 lbs*Dead Load Factor BENDING LOADS . . . Lat. Uniform Load creating Mx-x,W=0.1410 k/ft DESIGN SUMMARY Bending&Shear Check Results PASS Max.Axial+Bending Stress Ratio = 0.7033:1 Maximum SERVICE Lateral Load Reactions.. Load Combination +D+0.60W Top along Y-1 0.8813 k Bottom along Y-Y 0.8813 k Governing NDS ForurrilbtComp+Mxx,NDS Eq.3.9-3 Top along X-X 0.0 k Bottom along X-X 0.0 k Location of max.above base 6.208 ft Maximum SERVICE Load Lateral Deflections... At maximum location values are. Along Y-Y 0.4941 in at 6.292 ft above base Applied Axial 0.04470 k for load combination: +D+0.420W Applied Mx 1.652 k-ft Applied My 0.0 k-ft Along X-X 0.0 in at 0.0 ft above base Fc:Allowable 600.38 psi for load combination:n!a Other Factors used to calculate allowable stresses... PASS Maximum Shear Stress Ratio= 0.1669:1 Bending Compression Tension Load Combination +D+0.60W Location of max.above base 12.50 ft Applied Design Shear 48.068 psi Allowable Shear 288.0 psi Load Combination Results Maximum Axial+Bending Stress Ratios Maximum Shear Ratios Load Combination C D C p Stress Ratio Status Location Stress Ratio Status Location D Only 0.900 0.419 4 0.004837 PASS 0.0 ft 0.0 PASS 12.50 ft +D+0.60W 1.600 0.253 0.7033 PASS 6.208 ft 0.1669 PASS 12.50 ft +D+0.450W 1.600 0.253 0.5274 PASS 6.208ft 0.1252 PASS 12.50ft +0.60D+0.60W 1.600 0.253 0.7021 PASS 6.208ft 0.1669 PASS 12.50ft +0.60D 1.600 0.253 0.002707 PASS 0.0 ft 0.0 PASS 12.50 ft Maximum Reactions Note:Only non-zero reactions are listed. X-X Axis Reaction k Y-Y Axis Reaction Axial Reaction My-End Moments k-ft Mx-End Moments Load Combination @ Base @ Top @ Base @ Top @ Base @ Base @ Top @ Base @ Top D Only 0.045 +D+0.60W 0.529 0.529 0.045 38/166 • Project Title: Engineer: Project ID: Project Descr. Wood Column Prnject Eau:21013 studs and postss.ec6 ESCCI3 _ 953 2022 DESCRIPTION: 5th floor-king studs-7.17ft trib Maximum Reactions Note: ni non-zero reactions are listed. X-X Axis Reaction k Y-Y Axis Reaction Axial Reaction My-End Moments k-ft Mx-End Moments Load Combination @ Base @ Top @ Base @ Top @ Base @ Base @ Top @ Base @ Top +0+0.450W 0.397 0.397 0.045 +0.600+0.60W 0.529 0.529 0.027 +0.60D 0.027 W Only 0.881 0.881 Maximum Deflections for Load Combinations Load Combination Max.X-X Deflection Distance Max.Y-Y Deflection Distance D Only 0.0000 in 0.000ft 0.000 in 0.000 ft +D+0.420W 0.0000 in 0.000ft 0.494 in 6.292ft +D+0.3150W 0.0000in 0.000ft 0.371 in 6.292ft +0.60D+0.420W 0.0000 in 0.000ft 0.494 in 6.292ft +0.60D 0.0000 in 0.000ft 0.000 in 0.000ft Sketches +X r • is f 2-2x6 3.0 in 39/166 Project Title: Engineer: Project ID: Project Descr: Wood Column Project File:21013 studs and posts.ec6 LIC4:KW-06014171,Build:20.22.3.31 HAYDEN CONSULTING ENGINEERS (c)ENERCALC 1NC 1983-2022 DESCRIPTION: 5th floor- king studs-7.67ft trib Code References Calculations per NDS 2018, IBC 2018, CBC 2019,ASCE 7-16 Load Combinations Used:ASCE 7-10 General Information - Analysis sis Method Allowable Stress Design Wood Section Name 2-2x6 End Fixities Top&Bottom Pinned Wood Grading/Manuf. Graded Lumber Overall Column Height 12.5 ft Wood Member Type Sawn Used for non-slender calculations) Exact Width 3.0 in Allow Stress Modification Factors Wood Species Douglas Fir-Larch Exact Depth 5.50 in Cf or Cv for Bending 1.30 Wood Grade No.2 psi Area 16.50 inA2 Cf or Cv for Compressiol 1.10 Fb+ 9000psi Fv 180.0 p p lx 41.594 in^4 Cf or Cv for Tension 1.30 Fb- 900.0 psi Ft 575.0 psi I n Cm:Wet Use Factor 1.0 Fc-PrIl 1,350.0 psi Density 31.210 pcf y 12.375 in 4 Ct:Temperature Fad 1.0 Fc-Perp 625.0 psi Cfu:Flat Use Factor 1.0 E:Modulus of Elasticity... x-x Bending y-y Bending Axial Kf:Built-up columns 1.0 NOS 115,3,2 Basic 1,600.0 1,600.0 1,600.0 ksi Use Cr:Repetitive? No Minimum 580.0 580.0 Brace condition for deflection(buckling)along columns: X-X(width)axis: Fully braced against buckling ABOUT Y-Y Axis Y-Y(depth)axis: Unbraced Length for buckling ABOUT X-X Axis=1' Applied Loads Service loads entered.Load Factors will be applied for calculations. Column self weight . �_ included:44.702 lbs*Dead Load Factor BENDING LOADS. . . Lat. Uniform Load creating Mx-x,W=0.1510 k/ft DESIGN SUMMARY Bending&Shear Check Results PASS Max.Axial+Bending Stress Ratio = 0.7531 :1 Maximum SERVICE Lateral Load Reactions.. Load Combination +D+0.60W Top along Y-\ 0.9438 k Bottom along Y-Y 0.9438 k Governing NDS Forun111AComp+Mxx,NDS Eq.3.9-3 Top along X-X 0.0 k Bottom along X-X 0.0 k Location of max.above base 6.208 ft Maximum SERVICE Load Lateral Deflections... At maximum location values are. Along Y-Y 0.5291 in at 6.292 ft above base Applied Axial 0.04470 k for load combination: +D+0.420W Applied Mx 1.769 k-ft Applied My 0.0 k-ft Along X-X 0.0 in at 0.0 ft above base Fc:Allowable 600-38 psi for load combination:n/a Other Factors used to calculate allowable stresses... PASS Maximum Shear Stress Ratio= 0.1787:1 Bending Compression Tension Load Combination +D+0.60W Location of max.above base 12.50 ft Applied Design Shear 51.477 psi Allowable Shear 288.0 psi Load Combination Results Maximum Axial+Bending Stress Ratios Maximum Shear Ratios. p Load Combination D C CStress Ratio Status Location Stress Ratio Status Location D Only 0.900 0.419 0.004837 PASS 0.0 f1 0.0 PASS 12.50 ft +D+0.60W 1.600 0.253 0.7531 PASS 6.208 ft 0.1787 PASS 12.50 ft +D+0.450W 1.600 0.253 0.5649 PASS 6.208ft 0.1341 PASS 12.50ft +0.600+0.60W 1.600 0.253 0.7518 PASS 6.208ft 0.1787 PASS 12.50ft +0.60D 1.600 0.253 0.002707 PASS 0.0ft 0.0 PASS 12.50ft Maximum Reactions Note:Only non-zero reactions are listed. X-X Axis Reaction k Y-Y Axis Reaction Axial Reaction My-End Moments k-ft Mx-End Moments Load Combination @ Base @ Top @ Base @ Top @ Base @ Base @ Top @ Base @ Top D Only 0.045 +D+0.60W 0.566 0.566 0.045 40/166 •, • • Project Title: Engineer: Project ID: Project Descr. Wood Column HAYDEN CONSULTING ENGIAt.1.,to. rNC. DESCRIPTION: 5th floor- king studs-7.67ft trib Maximum Reactions Note:Only non-zero reactions are listed. X-X Axis Reaction k Y-Y Axis Reaction Axial Reaction My-End Moments k-ft Mx-End Moments Load Combination @ Base @ Top @ Base @ Top @ Base @ Base @ Top @ Base @ Top +D+0.450W 0.425 0.425 0.045 +0.60D+0.60W 0.566 0.566 0.027 +0.60D 0.027 W Only 0.944 0.944 Maximum Deflections for Load Combinations Load Combination Max.X-X Deflection Distance Max.Y-Y Deflection Distance D Only 0.0000 in 0.000ft 0.000 in 0.000ft +D+0.420W 0.0000 in 0.000ft 0.529 in 6.292 ft +D+0.3150W 0.0000 in 0.000ft 0.397 in 6.292ft +0.60D+0.420W 0.0000 in 0.000ft 0.529 in 6.292ft +0 60D 0.0000 in 0.000ft 0.000 in 0.000 ft Sketches 0 L0 2 ' • 2-2x6 3.0 in 41/166 • v `, Z4- #. ' . m- Iiilii,''ff,Tr;j:r1' 77.1,1!HL-Hlic:'--......i...,.':.'„,:r:71.:7)T.'s'I!LI!... . I kill ! FITT7'1.i wiiimil 11,1i .10.1" , ill 11[:::.:,,:,„.,..„:..„:.,:,,:,,,,....g.:,... .J, . i , 11,11 hi,iwli,:ihi,,,Iii....,,:, „.i . „1„,.,___71111r1 11.0 10..,.:.:...:,_,,..,,,,.-„.......,:„.=.,,,34,,: i. .,,, 01 .1„,..,ffilio, 1,:„_-,..:il , -„:„Iiillii , ., , „„ , „,„ , II hot. .„,1„,tE„:,„:„,:.„,.„...,,.. .„.,.. . , i! ! : „„ii ll , ,„,,, ......��,, � ` ri �? � €s ., ,,r rl Fi £ ' ; ; €§€ ` : It _ t i . ,[: . t „, . • i .£.111 1' £ € 11E ,1.l€ I hl= , m1= k E 1 3§ `S ? €` L 1_ i I. l -i §4 • ;�_ :rill!! Pt! mum a '§ r y.. # 1E Il to N it ) ( i � i st ' §3 1 - 'il,,p, ad£ , 3 se _dl €i II3i :r I£ "` 1 ll III II f H l I I B ) .,_ .�ems. `» -motf, Z a.£. I'„ £ :. a o ....�"'"" t t rj '` I . '" j cs 1 C ' €s`�. ____... I. £.•.s: :l( ( § ISI;$ j i tLt #. fief#'` i; Oww"' }...q ,I 'l l a ((.1 .l 3 yr f m £ i WfWQ III F ¢£ E.' g?3 t� eh' f i Q i ii,,,H i Friil ... 111.414ii-i-i, o-,:to:r if:Prf.,11. 1::::::.:.,,,--..-....-,-..,:-.::,:-..-,---:::--1- #r lE1l ' £j p 7:1x#11 - i mil Qi i S +a A 3 c . W t9 * _ E— C �S ijj J Q ££ r r BY DATE ENGINEERS REV DATE JOB NO (503)968-9994 p (503)968-8444 f SHEET OF 42/166 s I ,, i ti1 ? C' IA F ,',. - z w , ^,, F- - �' ! ____..-',--4 1.1,:.,. Lg s f'' _ ' 1 my a 3 F �q r i _ BY DATE.....__ _. ENGINEERS �� — __���.._ _ REv...._,_.. .. - STRUCTURAL I CIVIC �... . ..o __ JOB NO (503) 968-9994 p (503) 968-8444 f ___.._ ____... ..__. .........__ _ ......_ _ _ ._...__ SHEET OF.,._._... _._... .d3I1'66 . " ' 3 l' , 2 a e b. a� t. 2 fir.. �� M. , ,, rc- NAY 0 BY _._ DATE 3 ... ` ENGINEERS .. . _ REV DATE_._ • STRUCTURAL I CIVIL ---- .,. --- .___....____.._......_._.._,_._.. ... .__._...._......._.... ..._ JOB NO (503) 968-9994 p (503) 968-8444 f ___.....__ ....._.__ ___... _�_..... SHEET _ of 4) .6.. tc t c (° ! /47 per. -,..; r€ 1(Is w } e4 y .„- HAYDE _ BY DATE E33( ENGINEERS REV DATE STRUCTURAL I CIVIL JOB NO._.,._._..,,. ,,....._-.........,.,... ...._.. (503) 968-9994 p (503) 968-8444 f SHEET of .._._.. 456 ?tka3F b'" A $ z .._..m woe 0 red CL'� ,_ Pro\ TO LL 4 , HAYD BY DATE__ ENGINEERS REV _ DATE STRUCTURAL I CIVIL — __....._..e_.__... ......_...e.,e,. _ _,.,__ JOB NO (503) 968-9994 p (503) 968-8444 f �,,.,,, ._.. __w�..._......... ....... SHEET OF_._..._...___..__..._.6./166 • t`h . tag c e-_ _ err c46 �. g . " •IT t 5`-A, `1.,:..) .. . 't i'.\£ - A j .nr., ,.,. �... ..--r a� ._ __ ._._. _......._ 1 .... ..............E GM" ;tig 0 p 3s. � f� �+" {,/`F13 \�l'•£l.M tea.N°'itt iM '°'moo" - t , ,: El( HAYD _ _ __ BY DATE, ENGINEERS REV DATE �.._ STRUCTURAL I CIVIL — - .. .._...._._....._......M._.._._._. _ JOB NO (503) 968-9994 p (503) 968-8444 f __ SHEET OF____ 471166 • irk 4 19,3 . 8 ). � •- reN HAYDE BY DATE ENGINEERS __..._.___ _. _._..._ ._ Rev DATE STRUCTURALI CIVIL ----.._..._..._._,._. ....m........„.. ___. ....�....,,_._.a, �..r. .._._._..__. _ ...,. JOB NO_ ..._.................. _ .. .._.._. ...___._.._ (503) 968-9994 p (503) 968-8444 f SHEET OF _._._._. 48/166 Project Title: • Engineer: Project ID: Project Descr: Concrete Beam r,.)ec:;Fie :21€ t €?a w i w _v 22.e 5 .' EN .R€rf._C t tC �5E3.. 2 DESCRIPTION: slab span off footing-item 30 CODE REFERENCES Calculations per ACI 318-14, IBC 2018,CBC 2019,ASCE 7-16 Load Combination Set:ASCE 7-10 Material Properties fc = 4.0 ksi Phi Values Flexure: 0.90 fr= fc/2 '7.50 = 474.342 psi Shear: 0.750 . y, Density = 150.0 pcf (3 t = 0.850 a LtWt Factor = 1.0 Elastic Modulus- 3,122.0 ksi Fy Stirrups 40.0ksi fy-Main Rebar= 60.0 ksi Strrrt cs' = 29,000.0 ksi • E-Main Rebar = 29,000.0 ksi Stirrup Bar Size# 3 Number of Resisting Legs Per Stirrup= 2 6.50 ft G"2--rrx Cross Section &Reinforcing Details Rectangular Section, Width= 12.0 in, Height=4.0 in Span#1 Reinforcing.... 1-#4 at 2.0 in from Top,from 0.0 to 6.50 ft in this span Beam self weight calculated and added to loads DESIGN SUMMARY u Be .dnc Stress Ratio 0.887 Section used for this span Typical Section Mu:Applied -1.479 k-ft Mn*Phi:Allowable 1.668 k-ft Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.000 in Ratio= 0 <360.0 Max Upward Transient Deflection 0.000 in Ratio= 0 <360.0 Max Downward Total Deflection 0.096 in Ratio= 1616 >=180.0 Span:1 :D Only Max Upward Total Deflection 0.000 in Ratio= 0 <180.0 Span:1 :D Only Vertical Reactions Support notation:Far left is#1 Load Combination Support 1 Support 2 p. Overall MINimum 0.195 D Only 0.325 +0.60D 0.195 Detailed Shear Information Span Distance 'd' Vu (k) Mu d*Vu/Mu Phi"Vc Comment Phi*Vs Phi*Vn Spacing(in) Load Combination Number (ft) (in) Actual Design (k-ft) (k) (k) (k) Req'5uggest +1.40D 1 0.00 2.00 0.45 0.45 1.48 0.05 2.18 Vu<PhiVc/2 )t Reqd 9.E 2.2 0.0 0.0 +1.40D 1 0.07 2.00 0.45 0.45 1.45 0.05 2.18 Vu<PhiVc/2 >t Regd 9.E 2.2 0.0 0.0 49/166 Project Title: Engineer: Project ID: Project Descr: Concrete Beam Project File:21013 plan check cans 4-20-2022.ec6 LIC#'kW-06014171,Build:2022.3.31 HAYDEN CONSULTING ENGINEERS (c)ENERCALC INC 1983-2022 DESCRIPTION: slab span off footing- item 30 Detailed Shear Information Span Distance 'd' Vu (k) Mu d*Vu/Mu Phi*Vc Comment Phi*Vs Phi*Vn Spacing(in) Load Combination Number (ft) (in) Actual Design (k-ft) (k) (k) (k) Req'd;uggest +1.40D 'I 0.14 2.00 0.45 0.45 1.41 0.05 2.18 .._.Vu<PhiVc/2 rt Reqd 9.E 2.2 0.0 0. +1.40D 1 0.21 2.00 0.44 0.44 1.38 0.05 2.18 Vu<PhiVc/2 At Reqd 9.E 2.2 0.0 0.0 +1.40D 1 0.28 2.00 0.44 0.44 1.35 0.05 2.18 Vu<PhiVc/2 rt Reqd 9.E 2.2 0.0 0.0 +1.40D 1 0.36 2.00 0,43 0.43 1.32 0.05 2.18 Vu<PhiVc/2 At Reqd 9.E 2.2 0.0 0.0 +1.40D 1 0.43 2.00 0,43 0.43 1.29 0.05 2.18 Vu<PhiVc/2 rt Reqd 9.E 2.2 0.0 0.0 +1.40D 1 0,50 2.00 0.42 0.42 1.26 0.06 2,18 Vu<PhiVc/2 >t Reqd 9,E 2.2 0.0 0.0 +1.40D 1 0.57 2.00 0.42 0.42 1.23 0.06 2.18 Vu<PhiVc/2 At Reqd 9.E 2.2 0.0 0.0 +1.40D 1 0.64 2.00 0.41 0.41 1.20 0.06 2.18 Vu<PhiVc/2 >t Reqd 9.E 2.2 0.0 0.0 +1.40D 1 0.71 2.00 0.41 0.41 1.17 0.06 2.18 Vu<PhiVc/2 >t Reqd 9.E 2.2 0.0 0.0 +1.40D 1 0.78 2.00 0.40 0.40 1.14 0.06 2.18 Vu<PhiVc/2 At Reqd 9.E 2.2 0.0 0.0 +1.40D 1 0.85 2.00 0.40 0.40 1.12 0.06 2.19 Vu<PhiVc/2 At Reqd 9.E 2.2 0.0 0.0 +1.40D 1 0.92 2.00 0.39 0.39 1.09 0.06 2.19 Vu<PhiVc/2 zt Reqd 9.E 2.2 0.0 0.0 +1.40D 1 0.99 2.00 0.39 0.39 1.06 0.06 2.19 Vu<PhiVc/2 At Reqd 9.E 2.2 0.0 0.0 +1.40D 1 1.07 2.00 0.38 0.38 1.03 0.06 2.19 Vu<PhiVc/2 >t Reqd 9.E 2.2 0.0 0.0 +1.40D 1 1.14 2.00 0.38 0.38 1.01 0.06 2.19 Vu<PhiVc/2 A Reqd 9.E 2.2 0.0 0.0 +1.40D 1 1.21 2.00 0.37 0.37 0.98 0.06 2.19 Vu<PhiVc/2 At Reqd 9.E 2.2 0.0 0.0 +1.40D 1 1.28 2.00 0.37 0.37 0.95 0.06 2.19 Vu<PhiVc/2 At Reqd 9.E 2.2 0.0 0.0 +1.40D 1 1.35 2.00 0.36 0.36 0.93 0.06 2.19 Vu<PhiVc/2 A Reqd 9.E 2.2 0.0 0.0 +1.40D 1 1.42 2.00 0.36 0.36 0.90 0.07 2.19 Vu<PhiVc/2 At Reqd 9.E 2.2 0.0 0.0 +1.40D 1 1.49 2.00 0.35 0.35 0.88 0.07 2.19 Vu<PhiVc/2 A Reqd 9.E 2,2 0.0 0.0 +1.40D 1 1.56 2.00 0.35 0.35 0.85 0.07 2.19 Vu<PhiVc/2 At Reqd 9.E 2.2 0.0 0.0 +1.40D 1 1.63 2.00 0.34 0.34 0.83 0.07 2.19 Vu<PhiVc/2 >t Reqd 9.E 2,2 0.0 0.0 +1.40D 1 1.70 2.00 0.34 0.34 0.80 0.07 2.19 Vu<PhiVc/2 rt Reqd 9.E 2.2 0.0 0.0 +1.40D 1 1.78 2.00 0.33 0.33 0.78 0.07 2.19 Vu<PhiVc/2 A Reqd 9.E 2.2 0.0 0.0 +1.40D 1 1.85 2.00 0.33 0.33 0.76 0.07 2.19 Vu<PhiVc/2 A Reqd 9.E 2.2 0.0 0.0 +1,40D 1 1.92 2.00 0.32 0.32 0.73 0.07 2.19 Vu<PhiVc/2 A Reqd 9.E 2.2 0.0 0.0 +1.40D 1 1.99 2.00 0.32 0.32 0.71 0.07 2.19 Vu<PhiVc/2 A Reqd 9.E 2.2 0.0 0.0 +1.40D 1 2.06 2.00 0.31 0.31 0.69 0.08 2.19 Vu<PhiVc/2 At Reqd 9.E 2.2 0.0 0.0 +1.40D 1 2.13 2.00 0.31 0.31 0.67 0.08 2.19 Vu<PhiVc/2 At Reqd 9.E 2.2 0.0 0.0 +1.40D 1 2.20 2.00 0.30 0.30 0.65 0.08 2.19 Vu<PhiVc/2 rt Reqd 9.E 2.2 0.0 0.0 +1.40D 1 2.27 2.00 0.30 0.30 0.63 0.08 2.19 Vu<PhiVc/2 At Reqd 9.E 2.2 0.0 0.0 +1.40D 1 2.34 2.00 0.29 0.29 0.60 0.08 2.19 Vu<PhiVc/2 At Reqd 9.E 2,2 0.0 0.0 +1.40D 1 2.42 2.00 0,29 0.29 0.58 0.08 2.19 Vu<PhiVc/2 At Reqd 9.E 22 0.0 0.0 +1.40D 1 2.49 2.00 0.28 0.28 0.56 0.08 2.19 Vu<PhiVc/2 rt Reqd 9,E 2.2 0.0 0.0 +1.40D 1 2.56 2.00 0.28 0.28 0.54 0.08 2.19 Vu<PhiVc/2 At Reqd 9.E 2.2 0.0 0.0 +1.40D 1 2.63 2.00 0,27 0.27 0.52 0.09 2.20 Vu<PhiVc/2 t Reqd 9.E 2,2 0.0 0.0 +1.40D 1 2.70 2.00 0.27 0.27 0.51 0.09 2.20 Vu<PhiVc/2 At Reqd 9.E 2.2 0.0 0.0 +1.40D 1 2.77 2,00 0,26 0.26 0.49 0.09 2.20 Vu<PhiVc/2 rt Reqd 9.E 2,2 0.0 0.0 +1.40D 1 2.84 2.00 0,26 0.26 0.47 0.09 2.20 Vu<PhiVc/2 >t Reqd 9.E 2,2 0.0 0.0 +1.40D 1 2.91 2.00 0.25 0.25 0.45 0.09 2.20 Vu<PhiVc/2 At Reqd 9.E 2.2 0.0 0.0 +1.40D 1 2.98 2.00 025 0.25 0.43 0.09 220 Vu<PhiVc/2 >t Reqd 9.E 2.2 0.0 0.0 +1,40D 1 3.05 2.00 0..24 0.24 0.42 0.10 2.20 Vu<PhiVc/2 At Reqd 9.E 2.2 0.0 0.0 +1 40D 1 3.13 2.00 0.24 0.24 0.40 0.10 2.20 Vu<PhiVc/2 rt Reqd 9.E 2.2 0.0 0.0 +1 40D 1 3.20 2.00 0.23 0.23 0.38 0.10 2.20 Vu<PhiVc/2 rt Reqd 9.E 2.2 0.0 0.0 +1 40D 1 3.27 2.00 0.23 0.23 0.37 0.10 2.20 Vu<PhiVd2 t Reqd 9.E 2.2 0.0 0.0 +1 40D 1 3.34 2.00 0.22 0.22 0.35 0.11 2.20 Vu<PhiVc/2 At Reqd 9.E 2.2 0.0 0.0 +1.40D 1 3.41 2.00 0,22 0.22 0,33 0.11 2.20 Vu<PhiVc/2 At Reqd 9.E 2.2 0.0 0.0 +1.40D 1 3.48 2.00 0.21 0.21 0.32 0.11 2.20 Vu<PhiVc/2 At Reqd 9.E 2.2 0.0 0.0 +1.40D 1 3.55 2,00 0.21 0.21 0.30 0.11 2.21 Vu<PhiVc/2 At Reqd 9.E 2.2 0.0 0.0 +1.40D 1 3.62 2,00 0.20 0.20 0.29 0.12 2.21 Vu<PhiVc/2 A Reqd 9.E 2.2 0.0 0.0 +1.40D 1 3.69 2.00 0,20 0.20 0.28 0.12 2.21 Vu<PhiVc/2 At Reqd 9.E 2.2 0.0 0.0 +1.40D 1 3.77 2.00 0,19 0.19 0.26 0.12 2.21 Vu<PhiVc/2 At Reqd 9.E 2.2 0.0 0.0 +1,40D 1 3.84 2.00 0,19 0.19 0.25 0.13 2.21 Vu<PhiVc/2 At Reqd 9.E 2.2 0.0 0.0 +1.40D 1 3.91 2.00 0,18 0.18 0.24 0.13 2.21 Vu<PhiVc/2 rt Reqd 9.E 2.2 0.0 0.0 +1.40D 1 3.98 2.00 0.18 0.18 0.22 0.13 2.21 Vu<PhiVc/2 At Reqd 9.E 2.2 0.0 0.0 +1.40D 1 4.05 2.00 0,17 0.17 0.21 0.14 2.21 Vu<PhiVc/2 At Reqd 9.E 2.2 0.0 0.0 +1.40D 1 4.12 2.00 017 0.17 0.20 0.14 2.22 Vu<PhiVc/2 Jt Reqd 9.E 2.2 0.0 0.0 50/166 • Project Title: Engineer: Project ID: Project Descr: Concrete Beam Project File:21013 plan check calcs 4-20-2022.ec6 LIC# KW-06014171,Build:20.22 3 31 HAYDEN CONSULTING ENGINEERS (c)ENERCALC INC 1983-2022 DESCRIPTION: slab span off footing-item 30 Detailed Shear Information Span Distance 'd' Vu (k) Mu d*Vu/Mu Phi*Vc Comment Phi*Vs Phi*Vn Spacing(in) Load Combination Number (ft) (in) Actual Design (k-ft) (k) (k) (k) Req'duggest +1,40D 1 4,19 2.00 0.16 0.16 0.19 0.14 2.22 Vu<PhiVc/2 A Reqd 9.E 2.2 0.0 0.0 +1,40D 1 4.26 2.00 0.16 0.16 0.18 0.15 2.22 Vu<PhiVc/2 At Reqd 9.E 2.2 0.0 0.0 +1,40D 1 4.33 2.00 0.15 0.15 0.16 0.15 2.22 Vu<PhiVc/2 At Reqd 9.E 2.2 0.0 0.0 +1,40D 1 4.40 2.00 0.15 0.15 0.15 0.16 2.22 Vu<PhiVc/2 A Reqd 9.E 2.2 0.0 0.0 +1.40D 1 4.48 2.00 0.14 0.14 0.14 0.16 2.22 Vu<PhiVc/2 At Reqd 9.E 2,2 0.0 0.0 +1.40D 1 4.55 2.00 0.14 0.14 0.13 0.17 2.23 Vu<PhiVc/2 rt Reqd 9.E 2.2 0.0 0.0 +1.40D 1 4.62 2.00 0.13 0.13 0.12 0.18 2.23 Vu<PhiVc/2 1t Reqd 9.E 2.2 0.0 0.0 +1.40D 1 4.69 2.00 0.13 0.13 0.11 0.18 2.23 Vu<PhiVc/2 1t Reqd 9.E 2.2 0.0 0.0 +1.40D 1 4.76 2.00 0.12 0.12 0.11 0.19 2.23 Vu<PhiVc/2 At Reqd 9.E 2.2 0.0 0.0 +1,40D 1 4.83 2.00 0.12 0.12 0.10 0.20 2.24 Vu<PhiVc/2 At Reqd 9.E 2.2 0.0 0.0 +1.40D 1 4.90 2.00 0.11 0.11 0.09 0.21 2.24 Vu<PhiVc/2 t Reqd 9.E 2.2 0.0 0.0 +1,40D 1 4.97 2.00 0.11 0.11 0..08 0.22 2.24 Vu<PhiVc/2 1t Reqd 9.E 2.2 0.0 0.0 +1.40D 1 5.04 2.00 0.10 0.10 0.07 0.23 2.25 Vu<PhiVc/2 At Reqd 9.E 2.2 0.0 0.0 +1,40D 1 5.11 2.00 0,10 0.10 0.07 0.24 2.25 Vu<PhiVc/2 rt Reqd 9.E 2.3 0.0 0.0 +1,40D 1 5.19 2.00 0.09 0.09 0.06 0.25 2.26 Vu<PhiVc/2 At Reqd 9.E 2.3 0.0 0.0 +1.40D 1 5.26 2.00 0.09 0.09 0.05 0.27 2.26 Vu<PhiVc/2 >t Reqd 9.E 2.3 0.0 0.0 +1,40D 1 5.33 2.00 0.08 0.08 0.05 0.28 2.27 Vu<PhiVc/2 >t Reqd 9.E 2.3 0.0 0.0 +1,40D 1 5.40 2.00 0.08 0.08 0,04 0.30 2.28 Vu<PhiVc/2 rt Reqd 9.E 2.3 0.0 0.0 +1.40D 1 5.47 2.00 0.07 0.07 0.04 0.32 2.28 Vu<PhiVc/2 rt Reqd 9.E 2.3 0.0 0.0 +1.40D 1 5.54 2.00 0.07 0.07 0.03 0.35 2.29 Vu<PhiVc/2 >t Reqd 9.E 2.3 0.0 0.0 +1.40D 1 5.61 2.00 0.06 0.06 0,03 0.38 2.30 Vu<PhiVc/2 >t Reqd 9.E 2.3 0.0 0.0 +1.40D 1 5.68 2.00 0.06 0.06 0.02 0.41 2.32 Vu<PhiVc/2 rt Reqd 9.E 2.3 0.0 0.0 +1.40D 1 5.75 2.00 0.05 0.05 0,02 0.45 2.33 Vu<PhiVc/2 >t Reqd 9:E 2.3 0.0 0.0 +1.40D 1 5.83 2.00 0.05 0.05 0,02 0.49 2.35 Vu<PhiVc/2 >t Reqd 9.E 2.3 0.0 0.0 +1.40D 1 5.90 2.00 0.04 0.04 0.01 0,55 2.37 Vu<PhiVc/2 >t Reqd 9.E 2.4 0.0 0.0 +1.40D 1 5.97 2.00 0.04 0.04 0.01 0.63 2.40 Vu<PhiVc/2 A Reqd 9.E 2.4 0.0 0.0 +1.40D 1 6.04 2.00 0.03 0.03 0.01 0.72 2.43 Vu<PhiVc/2 At Reqd 9.E 2.4 0.0 0.0 +1.40D 1 6.11 2.00 0.03 0.03 0.01 0.85 2.48 Vu<PhiVc/2 At Reqd 9.E 2.5 0.0 0.0 +1.40D 1 6.18 2.00 0.02 0.02 0.00 1.00 2.54 Vu<PhiVc/2 At Reqd 9.E 2.5 0.0 0.0 +1.40D 1 6.25 2.00 0.02 0.02 0.00 1.00 2.54 Vu<PhiVc/2 >t Reqd 9.E 2.5 0.0 0.0 +1 40D 1 6.32 2.00 0.01 0.01 0.00 1.00 2.54 Vu<PhiVc/2 A Reqd 9.E 2.5 0.0 0.0 +1.40D 1 6,39 2.00 0.01 0.01 0.00 1.00 2.54 Vu<PhiVc/2 rt Reqd 9.E 2.5 0.0 0.0 +1.40D 1 6.46 2.00 0.00 0.00 0.00 1.00 2.54 Vu<PhiVc/2 >t Reqd 9.E 2.5 0.0 0.0 Maximum Forces &Stresses for Load Combinations Load Combination Location(ft) Bending Stress Results (k-ft) Segment Span# along Beam Mu Max Phi*Mnx Stress Ratio MAXimum BENDING Envelope Span#1 1 6.500 -1.48 1.67 0.89 +1.40D Span#1 1 6.500 -1.48 1.67 0,89 +1.20D Span#1 6.500 -1.27 1.67 0.76 +0.90D Span#1 1 6.500 -0.95 1.67 0.57 Overall Maximum Deflections Load Combination Span Max.""Defl (in).ocation in Span (ft Load Combination Max."+"Defl (in.ocation in Span (ft D Only 1 0.0965 6.500 0.0000 0.000 51/166 • Project Title: Engineer: Project ID: Project Descr: Concrete Beam Ptojeet ile,2301 i p`an check �_�5 2;J2 .eh6 HAYDEN CONSULTING ENGINEERS _.._.._..,. ENER:J-_., N. e83 2v DESCRIPTION: footing along grid 11 -item 30 CODE REFERENCES Calculations per ACI 318-14, IBC 2018,CBC 2019,ASCE 7-16 Load Combination Set:ASCE 7-10 Material Properties fc = 2.50 ksi (b Phi Values Flexure: 0.90 fr= fc 2 '7.50 = 375.0 psi Shear: 0.750 tV Density = 150.0 pcf R 1 = 0.850 LtWt Factor = 1.0 Elastic Modulus= 3,122.0 ksi Fy-Stirrups 40.0 ksi E-Stirrups = 29,000.0 ksi • f fy-Main Rebar= 60.0 ksi Stirrup Bar Size# 3 E-Main Rebar = 29,000.0 ksi Number of Resisting Legs Per Stirrup= 2 ._. ,t .. 10.70 ft 48"w x 24"h Cross Section &Reinforcing Details Rectangular Section, Width=48.0 in, Height=24.0 in Span#1 Reinforcing.... 5-#5 at 3.0 in from Top,from 0.0 to 10.70 ft in this span 5-#5 at 3.0 in from Bottom,from 0.0 to 10.70 ft in this si Beam self weight calculated and added to loads Load for Span Number 1 Uniform Load: D=0.650 k/ft, Tributary Width=1.0 ft DESIGN SUMMARY tVbeck Maximum Bending Stress Ratio = 0.970 I Section used for this span Typical Section Mu:Applied -148.265 k-ft Mn*Phi:Allowable 152.925 k-ft Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.000 in Ratio= 0 <360.0 Max Upward Transient Deflection 0.000 in Ratio= 0 <360.0 Max Downward Total Deflection 0.030 in Ratio= 8462 >=180.0 Span:1 :D Only Max Upward Total Deflection 0.000 in Ratio= 0 <180.0 Span:1 :D Only Vertical Reactions Support notation:Far left is#1 Load Combination Support 1 Support 2 Ovr ,"k3AXInum Overall MINimum 11.877 D Only 19.795 +0.60D 11.877 52/166 • Project Title: Engineer: Project ID: Project Descr: Concrete Beam Project File:21013 plan check calcs 4-20-2022.ec6 1. LIC#:KW-06014171,BuiId:20.22.3.31 HAYDEN CONSULTING ENGINEERS (c)ENERCALC INC 1983-2022 DESCRIPTION: footing along grid 11 -item 30 Detailed Shear Information Span Distance 'd' Vu (k) Mu d*Vu/Mu Phi*Vc Comment Phi*Vs Phi*Vn Spacing(in) Load Combination Number (ft) (in) Actual Design (k-ft) (k) (k) (k) Req'Suggest +1.40D °( d.00 21.00 27.71 27.71 148.26 0.33 72.77 Vu<PhiVc/2 At Reqd 9.E 72.8 00 0.0 +1.40D 1 0,12 21.00 27.41 27.41 145.04 0.33 72.78 Vu<PhiVc/2 A Reqd 9.E 72.8 0.0 0.0 +1.40D 1 0.23 21.00 27.11 27.11 141.85 0.33 72.79 Vu<PhiVc/2 At Reqd 9.E 72.8 0.0 0.0 +1.40D 1 0,35 21.00 26.80 26.80 138.70 0.34 72.80 Vu<PhiVc/2 At Reqd 9,E 72.8 0.0 0.0 +1.40D 1 0,47 21.00 26.50 26.50 135.58 0.34 72.81 Vu<PhiVc/2 At Reqd 9.E 72.8 0.0 0.0 +1.40D 1 0.58 21.00 26.20 26.20 132.50 0.35 72,83 Vu<PhiVc/2 At Reqd 9.E 72,8 0.0 0.0 +1.40D 1 0.70 21.00 25.90 25.90 129.46 0.35 72.84 Vu<PhiVc/2 A Reqd 9.E 72.8 0.0 0.0 +1.40D 1 0.82 21.00 25.59 25.59 126.45 0.35 72.85 Vu<PhiVc/2 >t Reqd 9.E 72.8 0.0 0.0 +1.40D 1 0.94 21.00 25.29 25.29 123.47 0.36 72.86 Vu<PhiVc/2 At Reqd 9.E 72.9 0.0 0.0 +1.40D 1 1.05 21.00 24,99 24.99 120.53 0.36 72.87 Vu<PhiVc/2 >t Reqd 9.E 72.9 0.0 0.0 +1.40D 1 1.17 21.00 24.68 24.68 117.63 0.37 72.89 Vu<PhiVc/2 At Reqd 9.E 72.9 0,0 0.0 +1.40D 1 1.29 21.00 24.38 24.38 114.76 0,37 72.90 Vu<PhiVc/2 rt Reqd 9.E 72.9 0,0 0.0 +1.40D 1 1.40 21.00 24.08 24.08 111.93 0.38 72.91 Vu<PhiVc/2 At Reqd 9.E 72.9 0.0 0.0 +1.40D 1 1.52 21.00 23.78 23.78 109.13 0.38 72.93 Vu<PhiVc/2 A Reqd 9.E 72.9 0.0 0.0 +1.40D 1 1.64 21.00 23.47 23.47 106.36 0.39 72.94 Vu<PhiVc/2 A Reqd 9.E 72.9 0.0 0.0 +1.40D 1 1.75 21.00 23.17 23.17 103.64 0.39 72.96 Vu<PhiVc/2 At Reqd 9.E 73.0 0.0 0.0 +1.40D 1 1.87 21.00 22.87 22.87 100.95 0.40 72.97 Vu<PhiVc/2 At Reqd 9.E 73.0 00 0,0 +1.400 1 1.99 21.00 22.56 22.56 98.29 0.40 72.99 Vu<PhiVc/2 ft Reqd 9.E 73.0 0.0 0,0 +1.40D 1 2.10 21.00 22.26 22.26 95.67 0.41 73.00 Vu<PhiVc/2 A Reqd 9.E 73.0 0,0 0,0 +1.40D 1 2.22 21.00 21.96 21.96 93.08 0.41 73.02 Vu<PhiVc/2 A Reqd 9.E 73.0 0,0 0„0 +1.40D 1 2.34 21.00 21.66 21.66 90.53 0.42 73.04 Vu<PhiVc/2 rt Reqd 9.E 73.0 0.0 0.0 +1.40D 1 2.46 21.00 21.35 21.35 88.02 0.42 73.05 Vu<PhiVc/2 At Reqd 9.E 73.1 0,0 0,0 +1.40D 1 2.57 21.00 21.05 21.05 85.54 0.43 73.07 Vu<PhiVc/2 At Reqd 9.E 73.1 0.0 0.0 +1.40D 1 2.69 21.00 20.75 20.75 83.10 0.44 73.09 Vu<PhiVc/2 t Reqd 9.E 73.1 0.0 0.0 +1,40D 1 2.81 21.00 20.44 20.44 80.69 0.44 73.11 Vu<PhiVc/2 t Reqd 9,E 73.1 0.0 0,0 +1.40D 1 2.92 21.00 20.14 20.14 78.31 0.45 73.13 Vu<PhiVc/2 >t Reqd 9.E 73.1 0.0 0.0 +1.40D 1 3.04 21.00 19.84 19.84 75.98 0.46 73.15 Vu<PhiVc/2 rt Reqd 9.E 73.1 0.0 0.0 +1.40D 1 3.16 21.00 19.54 19.54 73.67 0.46 73.17 Vu<PhiVc/2 >t Reqd 9.E 73.2 0.0 0.0 +1.40D 1 3.27 21.00 19.23 19.23 71.41 0.47 73.19 Vu<PhiVc/2 A Reqd 9.E 73.2 0.0 0.0 +1.40D 1 3.39 21.00 18.93 18.93 69.18 0.48 73.21 Vu<PhiVc/2 At Reqd 9.E 73.2 0.0 0.0 +1,40D 1 3.51 21.00 18.63 18.63 66.98 0.49 73.23 Vu<PhiVc/2 At Reqd 9.E 73.2 0.0 0.0 +1.40D 1 3.63 21.00 18.32 18.32 64.82 0.49 73.26 Vu<PhiVc/2 A Reqd 9.E 73.3 0.0 0.0 +1.40D 1 3.74 21.00 18.02 18.02 62.69 0.50 73.28 Vu<PhiVc/2 rt Reqd 9,E 73,3 0.0 0.0 +1.40D 1 3.86 21.00 17.72 17.72 60.60 0.51 73.31 Vu<PhiVc/2 >t Reqd 9.E 73,3 0.0 0.0 +1.40D 1 3.98 21.00 17.42 17.42 58.55 0.52 73.33 Vu<PhiVc/2 rt Reqd 9.E 73.3 0.0 0.0 +1.40D 1 4.09 21.00 17.11 17.11 56.53 0.53 73.36 Vu<PhiVc/2 At Reqd 9.E 73.4 0.0 0.0 +1.40D 1 4.21 21.00 16.81 16.81 54.55 0.54 73.39 Vu<PhiVc/2 >t Reqd 9.E 73.4 0.0 0.0 +1.40D 1 4.33 21.00 16.51 16.51 52.60 0.55 73.42 Vu<PhiVc/2 >t Reqd 9.E 73.4 0,0 0.0 +1 A0D 1 4.44 21.00 16.20 16.20 50.69 0.56 73.45 Vu<PhiVc/2 >t Reqd 9.E 73.4 0.0 0.0 +1.400 1 4.56 21.00 15.90 15.90 48.81 0.57 73.48 Vu<PhiVc/2 At Reqd 9.E 73.5 0.0 0.0 +1.40D 1 4.68 21.00 15.60 15.60 46.97 0.58 73.51 Vu<PhiVc/2 A Reqd 9.E 73.5 0.0 0.0 +1.40D 1 4.79 21.00 15.30 15.30 45.16 0.59 73.54 Vu<PhiVc/2 At Reqd 9.E 73.5 0.0 0.0 +1.40D 1 4.91 21.00 14.99 14.99 43.39 0.60 73.58 Vu<PhiVc/2 At Reqd 9.E 73.6 0.0 0.0 +1.40D 1 5.03 21.00 14.69 14.69 41.66 0,62 73.61 Vu<PhiVc/2 A Reqd 9.E 73.6 0.0 0.0 +1.40D 1 5.15 21.00 14.39 14.39 39.96 0.63 73.65 Vu<PhiVc/2 A Reqd 9.E 73.7 0.0 0.0 +1.40D 1 5.26 21.00 14.08 14.08 38.29 0.64 73.69 Vu<PhiVc/2 At Reqd 9.E 73.7 0,0 0.0 +1.40D 1 5.38 21.00 13.78 13.78 36.66 0.66 73.73 Vu<PhiVc/2 A Reqd 9,E 73.7 0.0 0.0 +1.40D 1 5.50 21.00 13.48 13.48 35.07 0.67 73.77 Vu<PhiVc/2 A Reqd 9,E 73.8 0.0 0.0 +1.40D 1 5.61 21.00 13.18 13.18 33.51 0.69 73.82 Vu<PhiVc/2 rt Reqd 9.E 73.8 0.0 0.0 +1.40D 1 5.73 21.00 12.87 12.87 31.99 0,70 73.87 Vu<PhiVc/2 At Reqd 9.E 73.9 0.0 0.0 +1.40D 1 5.85 21.00 12.57 12.57 30.50 0.72 73.92 Vu<PhiVc/2 At Reqd 9.E 73.9 0.0 0.0 +1.40D 1 5.96 21.00 12.27 12.27 29,05 0.74 73.97 Vu<PhiVc/2 rt Reqd 9.E 74,0 0.0 0.0 +1.40D 1 6.08 21.00 11.96 11.96 27,63 0.76 74.02 Vu<PhiVc/2 >t Reqd 9.E 74.0 0.0 0.0 +1.40D 1 6,20 21.00 11.66 11.66 26.25 0.78 74.08 Vu<PhiVc/2 A Reqd 9.E 74.1 0 0 0.0 +1.40D 1 6.31 21.00 11,36 11.36 24.90 0.80 74.14 Vu<PhiVc/2 YE Reqd 9.E 74.1 0.0 0.0 +1.400 1 6.43 21.00 11.05 11.05 23.59 0.82 74.20 Vu<PhiVc/2 >t Reqd 9.E 74.2 0.0 0.0 +1.40D 1 6.55 21.00 10.75 10.75 22.32 0.84 74.27 Vu<PhiVc/2 A Reqd 9.E 74,3 0.0 0.0 53/166 • • Project Title: Engineer: Project ID: Project Descr: Concrete Beam Project File:21013 plan check calcs 4-20-2022.ec6 LIC#:KW-06014171,Budd:20.22.3.31 HAYDEN CONSULTING ENGINEERS (c)ENERCALC INC 1983-2022 DESCRIPTION: footing along grid 11 -item 30 Detailed Shear Information Span Distance 'd' Vu (k) Mu d*Vu/Mu Phi*Vc Comm Comment Phi*Vs Phi*Vn Spacing(in) Load Combination Number (ft) (in) Actual Design (k-ft) (k) (k) (k) Req'c9;uggest +1.40D 1 6.67 21.00 10.45 10.45 21.08 0.87 74.34 Vu<PhiVc/2 At Reqd 9.E 74.3 0.0 0-.0 +1.40D 1 6.78 21.00 10.15 10.15 19.87 0.89 74.42 Vu<PhiVc/2 t Reqd 9,E 74.4 0.0 0.0 +1.40D 1 6.90 21.00 9.84 9.84 18.71 0.92 74.50 Vu<PhiVc/2 >t Reqd 9.E 74.5 0.0 0.0 +1.40D 1 7.02 21.00 9.54 9.54 17.57 0.95 74.58 Vu<PhiVc/2 At Reqd 9.E 74.6 0.0 0.0 +1.40D 1 7.13 21.00 9.24 9.24 16.47 0.98 74.67 Vu<PhiVc/2 At Reqd 9.E 74.7 0.0 0.0 +1.40D 1 7.25 21.00 8.93 8.93 15.41 1.00 74.73 Vu<PhiVc/2 At Reqd 9.E 74.7 0.0 0.0 +1.40D 1 7.37 21.00 8.63 8.63 14.38 1.00 74.73 Vu<PhiVc/2 t Reqd 9.E 74.7 0.0 0.0 +1.40D 1 7.48 21.00 8.33 8.33 13.39 1.00 74.73 Vu<PhiVc/2 )tRegd 9.E 74.7 0.0 0.0 +1.40D 1 7.60 21.00 8.03 8.03 12.44 1.00 74.73 Vu<PhiVc/2 At Reqd 9.E 74.7 0.0 0.0 +1.40D 1 7.72 21.00 7.72 7.72 11.52 1.00 74.73 Vu<PhiVc/2 >t Reqd 9.E 74.7 0.0 0.0 +1.40D 1 7.83 21.00 7.42 7.42 10.63 1.00 74.73 Vu<PhiVc/2 st Reqd 9.E 74.7 0.0 0.0 +1,40D 1 7.95 21.00 7.12 7.12 9.78 1.00 74.73 Vu<PhiVc/2 A Reqd 9.E 74.7 0.0 0.0 +1,40D 1 8-07 21.00 6.81 6.81 8.97 1.00 74.73 Vu<PhiVc/2 rt Reqd 9.E 74.7 0.0 0.0 +1,40D 1 8.19 21.00 6.51 6.51 8.19 1.00 74.73 Vu<PhiVc/2 At Reqd 9.E 74.7 0.0 0.0 +1,40D 1 8.30 21.00 6.21 6.21 7.44 1.00 74.73 Vu<PhiVc/2 At Reqd 9.E 74.7 0.0 0.0 +1.40D 1 8.42 21.00 5.91 5.91 6.73 1.00 74.73 Vu<PhiVc/2 At Reqd 9.E 74.7 0.0 0.0 +1.40D 1 8.54 21.00 5.60 5.60 6.06 1,00 74.73 Vu<PhiVc/2 A Reqd 9.E 74.7 0.0 0.0 +1,40D 1 8.65 21.00 5.30 5.30 5.42 1.00 74.73 Vu<PhiVc/2 rt Reqd 9.E 74.7 0.0 0.0 +1.40D 1 8.77 21.00 5.00 5.00 4.82 1.00 74.73 Vu<PhiVc/2 At Reqd 9.E 74.7 0.0 0.0 +1,40D 1 8.89 21.00 4.69 4.69 4.25 1.00 74.73 Vu<PhiVc/2 At Reqd 9.E 74.7 0.0 0.0 +1,40D 1 9.00 21.00 4.39 4.39 3.72 1.00 74.73 Vu<PhiVc/2 At Reqd 9.E 74.7 0.0 0.0 +1.40D 1 9.12 21.00 4.09 4.09 3.23 1.00 74.73 Vu<PhiVc/2 At Reqd 9.E 74.7 0.0 0.0 +1.40D 1 9.24 21.00 3.79 3.79 2.77 1.00 74.73 Vu<PhiVc/2 A Reqd 9.E 74.7 0.0 0.0 +1.40D 1 9.36 21.00 3.48 3.48 2.34 1.00 74.73 Vu<PhiVc/2 rt Reqd 9.E 74.7 0.0 0.0 +1.40D 1 9.47 21.00 3.18 3.18 1.95 1.00 74.73 Vu<PhiVc/2 rt Reqd 9.E 74.7 0.0 0.0 +1.40D 1 9.59 21.00 2.88 2.88 1.60 1.00 74.73 Vu<PhiVc/2 >t Reqd 9.E 74.7 0.0 0.0 +1.40D 1 9.71 21.00 2.57 2.57 1.28 1.00 74.73 Vu<PhiVc/2 At Reqd 9.E 74.7 0.0 0.0 +1.40D 1 9.82 21.00 2.27 2.27 1.00 1.00 74.73 Vu<PhiVc/2 At Reqd 9.E 74.7 0.0 0.0 +1.40D 1 9.94 21.00 1.97 1.97 0.75 1.00 74.73 Vu<PhiVc/2 At Reqd 9.E 74.7 0.0 0.0 +1.40D 1 10.06 21.00 1.67 1.67 0.54 1.00 74.73 Vu<PhiVc/2 A Reqd 9.E 74.7 0.0 0.0 +1.40D 1 10.17 21.00 1.36 1.36 0.36 1,00 74.73 Vu<PhiVc/2 A Reqd 9.E 74.7 0.0 0.0 +1.40D 1 10.29 21.00 1.06 1.06 0.22 1.00 74.73 Vu<PhiVc/2 A Reqd 9.E 74.7 0.0 0.0 +1.40D 1 10.41 21.00 0.76 0.76 0.11 1.00 74.73 Vu<PhiVc/2 >t Reqd 9.E 74.7 0.0 0.0 +1.40D 1 10,52 21.00 0.45 0.45 0.04 1.00 74.73 Vu<PhiVc/2 At Reqd 9.E 74.7 0.0 0.0 +1.40D 1 10.64 21.00 0.15 0.15 0.00 1.00 74.73 Vu<PhiVc/2 A Reqd 9,E 74.7 0.0 0.0 Maximum Forces&Stressesfor Load Combinations ..... ..-__ .�...... _...... ....... a ___ -....-._. .- o.. Location(ft) BendingStress Results k-ft) Load Combination ( Segment Span# along Beam Mu .Max Phi*Mnx Stress Ratio MAXimum BENDING Envelope Span#1 1 10-700 -148.26 152.92 0.97 +1.40D Span#1 1 10.700 -148-26 152.92 0.97 +1.20D Span#1 1 10.700 -127.08 152.92 0.83 +0.90D Span#1 1 10.700 -95.31 152.92 0.62 Overall Maximum Deflections Load Combination Span Max. "Deft (in).ocation in Span (ft Load Combination Max."+"Defl (in.ocation in Span (ft D Only 1 0.0303 10.70E 0.0000 0.00E 54/166 Project Title: Engineer: Project ID: Project Descr: Concrete Beam Project File.21013 i m r,i : 1 2 -2022.er:€ DESCRIPTION: footing along grid I-item 30 CODE REFERENCES Calculations per ACI 318-14, IBC 2018, CBC 2019,ASCE 7-16 Load Combination Set:ASCE 7-10 Material Properties fc = 2.50 ksi Phi Values Flexure: 0.90 — — a fr= fc�2 '7.50 = 375.0 psi Shear: 0.750 1V Density = 150.0 pcf 131 = 0.850 X LtWt Factor = 1.0 Elastic Modulus= 3,122.0 ksi Fy-Stirrups 40.0 ksi fy-Main Rebar= 60.0 ksi E-Stirrups = 29,000.0 ksi E-Main Rebar = 29,000.0 ksi Stirrup Bar Size# 3 Number of Resisting Legs Per Stirrup= 2 D(1.370) . 3_o ft 24^wxy2^h Cross Section &Reinforcing Details Rectangular Section, Width=24.0 in, Height=12.0 in Span#1 Reinforcing.... 2-#4 at 3.0 in from Top,from 0.0 to 3.0 ft in this span 2-#4 at 3.0 in from Bottom,from 0.0 to 3.0 ft in this spai Beam self weight calculated and added to loads Load for Span Number 1 Uniform Load : D=1.378 k/ft, Tributary Width=1.0 ft 1 t DESIGN SUMMARY � �.��••h,„,•, � 1 Maximum Bend;rng Stress Ratio = 0.531 : 1 Section used for this span Typical Section Mu:Applied -10.571 k-ft Mn*Phi:Allowable 19.906 k-ft Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.000 in Ratio= 0 <360.0 Max Upward Transient Deflection 0.000 in Ratio= 0 <360.0 Max Downward Total Deflection 0.003 in Ratio= 26460 >=180.0 Span:1 :D Only Max Upward Total Deflection 0.000 in Ratio= 0 <180.0 Span:1 :D Only Vertical Reactions Support notation:Far left is#1 Load Combination Support 1 Support 2 Overall MAXimum 5.034 Overall MINimum 3.020 D Only 5.034 +0.60D 3.020 55/166 Project Title: Engineer: Project ID: Project Descr: Concrete Beam Project File:21013 plan check calcs 4-20-2022.ec6 d 20,22`31 E 2 K E�°-060_M�i`1 �a't�ln E . �.>Sa a<_L...I ..v-,,�u�...2v�4,s':��vEw�^i� fie,_a:.�..`t���.f�i. E� -2�i.�Q.:: DESCRIPTION: footing along grid l-item 30 Detailed Shear Information Span Distance 'd' Vu (k) Mu d*Vu/Mu Phi*Vc Comment Phi*Vs Phi*Vn Spacing(in) Load Combination Number (ft) (in) Actual Design (k-ft) (k) (k) (k) Req'8'iuggest 0.00 9.00 7.05 7.05 10.57 0.50 15.76 Vu<PhiVc/2 At Reqd 9.E 15.8 0.0 0.0 +1.40D 1 0.03 9.00 6,97 6.97 10.34 0.51 15.77 Vu<PhiVc/2 >t Reqd 9.E 15.8 0.0 0.0 +1.40D 1 0.07 9.00 6.89 6.89 10.11 0.51 15.77 Vu<PhiVc/2 At Reqd 9.E 15.8 0.0 0.0 +1,40D 1 0.10 9.00 6.82 6.82 9.89 0.52 15.78 Vu<PhiVd2 At Reqd 9.E 15.8 0.0 0.0 +1.40D 1 0.13 9.00 6.74 6.74 9.67 0.52 15.78 Vu<PhiVc/2 >t Reqd 9.E 15.8 0.0 0.0 +1.40D 1 0..16 9.00 6.66 6.66 9.45 0.53 15.79 Vu<PhiVc/2 rt Reqd 9.E 15.8 0.0 0.0 +1.40D 1 0.20 9.00 6.59 6.59 9.23 0.54 15.79 Vu<PhiVc/2 At Reqd 9.E 15.8 0.0 0.0 +1.40D 1 0.23 9.00 6.51 6.51 9.02 0.54 15.80 Vu<PhiVc/2 At Reqd 9.E 15.8 0.0 0.0 +1.40D 1 0.26 9.00 6.43 6.43 8.80 0.55 15.80 Vu<PhiVc/2 At Reqd 9.E 15.8 0.0 0.0 +1,40D 1 0.30 9.00 6.35 6.35 8,59 0.55 15.81 Vu<PhiVc/2 At Reqd 9.E 15.8 0.0 0.0 +1.40D 1 0.33 9.00 6.28 6.28 8.39 0.56 15.81 Vu<PhiVc/2 At Reqd 9.E 15.8 0.0 0.0 +1.40D 1 0.36 9.00 6.20 6.20 8.18 0.57 15.82 Vu<PhiVc/2 At Reqd 9,E 15.8 0.0 0.0 +1.40D 1 0.39 9.00 6.12 6.12 7.98 0.58 15.82 Vu<PhiVd2 rt Reqd 9.E 15.8 0.0 0.0 +1.40D 1 0.43 9.00 6.05 6.05 7.78 0.58 15.83 Vu<PhiVc/2 }t Reqd 9,E 15.8 0.0 0.0 +1.40D 1 0.46 9.00 5.97 5.97 7.58 0.59 15.83 Vu<PhiVc/2 At Reqd 9.E 15.8 0.0 0.0 +1.40D 1 0.49 9.00 5.89 5.89 7.39 0.60 15.84 Vu<PhiVc/2 >t Reqd 9.E 15.8 0.0 0.0 +1.40D 1 0.52 9.00 5.82 5.82 7.20 0.61 15.84 Vu<PhiVc/2 At Reqd 9.E 15,8 0.0 0.0 +1.40D 1 0.56 9.00 5.74 5.74 7.01 0.61 15.85 Vu<PhiVc/2 At Reqd 9.E 15.9 0.0 0.0 +1.40D 1 0.59 9.00 5.66 5.66 6.82 0.62 15.86 Vu<PhiVc/2 At Reqd 9.E 15.9 0.0 0.0 +1.40D 1 0.62 9.00 5.58 5.58 6.64 0.63 15.86 Vu<PhiVd2 At Reqd 9.E 15.9 0.0 0.0 +1.40D 1 0.66 9.00 5.51 5.51 6.46 0.64 15.87 Vu<PhiVc/2 rt Reqd 9.E 15.9 0.0 0.0 +1.40D 1 0.69 9.00 5.43 5.43 6.28 0.65 15.88 Vu<PhiVc/2 At Reqd 9.E 15.9 0.0 0.0 +1.40D 1 0.72 9.00 5.35 5.35 6.10 0.66 15.88 Vu<PhiVc/2 t Reqd 9.E 15.9 0.0 0.0 +1.40D 1 0,75 9.00 5.28 5.28 5.92 0.67 15.89 Vu<PhiVc/2 At Reqd 9.E 15.9 0.0 0.0 +1.40D 1 0.79 9.00 5.20 5.20 5.75 0.68 15.90 Vu<PhiVc/2 rt Reqd 9.E 15.9 0.0 0.0 +1.40D 1 0.82 9.00 5.12 5.12 5.58 0.69 15.91 Vu<PhiVd2 rt Reqd 9.E 15.9 0.0 0.0 +1.40D 1 0.85 9.00 5.05 5.05 5.42 0.70 15.91 Vu<PhiVc/2 t Reqd 9.E 15.9 0.0 0.0 +1,40D 1 0.89 9.00 4.97 4.97 5.25 0.71 15.92 Vu<PhiVc/2 >t Reqd 9.E 15.9 0.0 0.0 +1.40D 1 0.92 9.00 4.89 4.89 5.09 0.72 15.93 Vu<PhiVd2 t Reqd 9.E 15.9 0,0 0.0 +1.40D 1 0.95 9.00 4.81 4.81 4.93 0.73 15.94 Vu<PhiVc/2 At Reqd 9.E 15.9 0.0 0.0 +1,40D 1 0.98 9.00 4.74 4.74 4.78 0.74 15.95 Vu<PhiVc/2 rt Reqd 9.E 15.9 0.0 0.0 +1.40D 1 1.02 9.00 4.66 4.66 4.62 0.76 15.96 Vu<PhiVc/2 At Reqd 9.E 16.0 OM 0.0 +1 40D 1 1.05 9.00 4.58 4.58 4.47 0.77 15.97 Vu<PhiVc/2 >t Reqd 9.E 16.0 0.0 0.0 +1,40D 1 1.08 9.00 4.51 4.51 4.32 0,78 15.98 Vu<PhiVc/2 >t Reqd 9.E 16.0 0,0 0.0 +1.40D 1 1.11 9.00 4.43 4.43 4.17 0.80 15.99 Vu<PhiVc/2 >t Reqd 9.E 16.0 0.0 0.0 +1.40D 1 1.15 9.00 4.35 4.35 4.03 0.81 16.00 Vu<PhiVc/2 At Reqd 9.E 16.0 0,0 0.0 +1.40D 1 1.18 9.00 4.27 4.27 3.89 0.82 16.01 Vu<PhiVc/2 >t Reqd 9.E 16.0 0.0 0.0 +1.40D 1 121 9.00 4.20 4.20 3.75 0.84 16.02 Vu<PhiVc/2 At Reqd 9.E 16.0 0,0 0.0 +1.40D 1 1.25 9.00 4.12 4.12 3,61 0,.86 16.03 Vu<PhiVc/2 >t Reqd 9.E 16.0 0,0 0.0 +1.40D 1 1.28 9.00 4.04 4.04 3,48 0.87 16.04 Vu<PhiVc/2 rt Reqd 9.E 16.0 0.0 0.0 +1.40D 1 1.31 9.00 3.97 3.97 3,35 0.89 16.06 Vu<PhiVc/2 rt Reqd 9.E 16.1 0.0 0.0 +1.40D 1 1.34 9.00 3.89 3.89 3.22 0.91 16.07 Vu<PhiVc/2 At Reqd 9.E 16.1 0.0 0.0 +1.40D 1 1.38 9.00 3.81 3.81 3.09 0.92 16.08 Vu<PhiVd2 it Reqd 9.E 16.1 0:0 0.0 +1.40D 1 1.41 9.00 3.74 3.74 2.97 0.94 16.10 Vu<PhiVd2 At Reqd 9.E 16.1 0.0 0.0 +1.40D 1 1.44 9.00 3.66 3.66 2.85 0.96 16.11 Vu<PhiVc/2 >t Reqd 9.E 16.1 0.0 0.0 +1.40D 1 1.48 9.00 3.58 3.58 2.73 0.98 16.13 Vu<PhiVc/2 t Reqd 9.E 16.1 0.0 0.0 +1.40D 1 1.51 9.00 3.50 3.50 2.61 1.00 16.14 Vu<PhiVc/2 At Reqd 9.E 16.1 0.0 0.0 +1.40D 1 1.54 9.00 3.43 3.43 2.50 1.00 16.14 Vu<PhiVc/2 At Reqd 9.E 16.1 0.0 0.0 +1.400 1 1.57 9.00 3.35 3.35 2.39 1.00 16.14 Vu<PhiVc/2 A Reqd 9.E 16.1 0.0 0.0 +1.40D 1 1.61 9.00 3.27 3.27 2.28 1.00 16.14 Vu<PhiVc/2 At Reqd 9.E 16.1 0.0 0.0 +1,40D 1 1.64 9.00 3.20 3.20 2.17 1.00 16.14 Vu<PhiVc/2 At Reqd 9.E 16.1 0.0 0.0 +1 40D 1 1.67 9.00 3.12 3.12 2.07 1.00 16.14 Vu<PhiVc/2 At Reqd 9.E 16.1 0.0 0.0 +1.40D 1 1.70 900 3.04 3.04 1.97 1.00 16.14 Vu<PhiVc/2 At Reqd 9.E 16,1 0,0 0.0 +1.40D 1 1.74 9.00 2.97 2.97 1.87 1.00 16.14 Vu<PhiVc/2 rt Reqd 9.E 16.1 0.0 0.0 +1.40D 1 1.77 9.00 2.89 2.89 1.78 1.00 16.14 Vu<PhiVc/2 it Reqd 9.E 16.1 0.0 0.0 +1 40D 1 1.80 9.00 2.81 2.81 1.68 1 00 16.14 Vu<PhiVc/2 at Reqd 9.E 16.1 0.0 0.0 +1.40D 1 1.84 9.00 2.73 2.73 1.59 1.00 16.14 Vu<PhiVc/2 At Reqd 9.E 16.1 0.0 0.0 56/166 Project Title: Engineer: Project ID: Project Descr: Concrete Beam Project File:21013 plan check calcs 4-20-2022.ec6 2 LIC#.KlN-06014171,E3UTd:20.ZZ.3.31 riA YfJEiv i:ii�i5iii i AL; c�=R ,sw�i.`� 3 ..a -<�« DESCRIPTION: footing along grid I-item 30 Detailed Shear Information Span Distance 'd' Vu (k) Mu d*Vu/Mu Phi*Vc Comment Phi*Vs Phi*Vn Spacing(in) Load Combination Number (ft) (in) Actual Design (k-ft) (k) (k) (k) Req'd;uggest +1.40D 1 1.87 9.00 2.66 2.66 1.50 1.00 16.14 Vu<PhiVc/2 At Reqd 9.E 16.1 0.0 0.0 +1.40D 1 1.90 9.00 2.58 2.58 1.42 1.00 16.14 Vu<PhiVcl2 At Reqd 9.E 16.1 0.0 0.0 +1,40D 1 1.93 9.00 2,50 2.50 1.33 1.00 16.14 Vu<PhiVc/2 At Reqd 9.E 16.1 0.0 0.0 +1,40D 1 1.97 9.00 2.43 2.43 1.25 1.00 16.14 Vu<PhiVc/2 )t Reqd 9.E 16.1 0.0 0.0 +1.40D 1 2.00 9.00 2.35 2.35 1.17 1.00 16.14 Vu<PhiVc/2 At Reqd 9.E 16,1 0.0 0.0 +1.40D 1 2.03 9.00 2.27 2.27 1.10 1.00 16.14 Vu<PhiVc/2 ARegd 9.E 16.1 0.0 0.0 +1.40D 1 2.07 9.00 2.20 2.20 1.03 1.00 16.14 Vu<PhiVc/2 At Reqd 9.E 16.1 0.0 0.0 +1.40D 1 2.10 9.00 2.12 2.12 0.95 1.00 16.14 Vu<PhiVcl2 rt Reqd 9.E 16.1 0.0 0.0 +1.40D 1 2.13 9.00 2.04 2.04 0.89 1.00 16.14 Vu<PhiVc/2 )t Reqd 9.E 16.1 0.0 0.0 +1.40D 1 2.16 9.00 1.96 1.96 0.82 1.00 16.14 Vu<PhiVc/2 )t Reqd 9.E 16.1 0.0 0.0 +1.40D 1 2.20 9.00 1.89 1.89 0.76 1.00 16.14 Vu<PhiVc/2 >t Reqd 9.E 16.1 0.0 0.0 +1.40D 1 2.23 9.00 1.81 1.81 0.70 1.00 16.14 Vu<PhiVc/2 t Reqd 9.E 16.1 0.0 0.0 +1.40D 1 2.26 9.00 1.73 1.73 0.64 1.00 16.14 Vu<PhiVc/2 >t Reqd 9.E 16.1 0.0 0.0 +1.40D 1 2.30 9.00 1.66 1.66 0.58 1.00 16.14 Vu<PhiVc/2 At Reqd 9.E 16.1 0.0 0.0 +1.40D 1 2.33 9.00 1.58 1.58 0.53 1.00 16.14 Vu<PhiVc/2 )t Reqd 9.E 16.1 0.0 0.0 +1.40D 1 2.36 9.00 1.50 1.50 0.48 1.00 16.14 Vu<PhiVc/2 At Reqd 9.E 16.1 0.0 0.0 +1.40D 1 2.39 9.00 1,42 1.42 043 1.00 16.14 Vu<PhiVc/2 )t Reqd 9.E 16.1 0.0 0.0 +1.40D 1 2.43 9.00 1.35 1.35 0.39 1.00 16.14 Vu<PhiVc/2 1t Reqd 9.E 16.1 0.0 0.0 +1.40D 1 2.46 9.00 1.27 1.27 0.34 1.00 16.14 Vu<PhiVc/2 At Reqd 9.E 16.1 0.0 0.0 +1.40D 1 2.49 9.00 1.19 1.19 0.30 1.00 16.14 Vu<PhiVc/2 _At Reqd 9.E 16.1 0.0 0.0 +1.40D 1 2.52 9.00 1.12 1.12 0.27 1.00 16.14 Vu<PhiVc/2 At Reqd 9.E 16.1 0.0 0.0 +1.40D 1 2.56 9.00 1.04 1.04 0.23 1.00 16.14 Vu<PhiVc/2 At Reqd 9.E 16.1 0.0 0.0 +1.40D 1 2.59 9.00 0.96 0.96 0.20 1.00 16.14 Vu<PhiVc/2 At Reqd 9.E 16.1 0.0 0.0 +1.40D 1 2.62 9.00 0.89 0.89 0.17 1.00 16.14 Vu<PhiVc/2 At Reqd 9.E 16.1 0.0 0.0 +1.40D 1 2.66 9.00 0.81 0.81 0.14 1.00 16.14 Vu<PhiVcl2 At Reqd 9.E 16.1 0.0 0.0 +1.40D 1 2.69 9,00 0.73 0.73 0.11 1.00 16.14 Vu<PhiVc/2 }t Reqd 9.E 16.1 0.0 0.0 +1.40D 1 2,72 9.00 0.65 0.65 0.09 1.00 16.14 Vu<PhiVc/2 At Reqd 9.E 16.1 0.0 0.0 +1.40D 1 2.75 9.00 0.58 0.58 0.07 1.00 16.14 Vu<PhiVc/2 >t Reqd 9.E 16.1 0.0 0.0 +1.40D 1 2.79 9.00 0.50 0.50 0.05 1.00 16.14 Vu<PhiVc/2 At Reqd 9.E 16.1 0.0 0.0 +1.40D 1 2.82 9.00 0.42 0.42 0.04 1.00 16.14 Vu<PhiVc/2 At Reqd 9.E 16.1 0.0 0.0 +1.40D 1 2.85 9.00 0.35 0.35 0.03 1.00 16.14 Vu<PhiVc/2 At Reqd 9.E 16.1 0.0 0.0 +1.40D 1 2.89 9.00 0.27 0.27 0.02 1.00 16.14 Vu<PhiVc/2 rt Reqd 9.E 16.1 0.0 0.0 +1.40D 1 2.92 9.00 0.19 0.19 0.01 1.00 16.14 Vu<PhiVc/2 rt Reqd 9.E 16.1 0.0 0.0 +1.40D 1 2.95 9.00 0.12 0.12 0.00 1.00 16.14 Vu<PhiVc/2 >t Reqd 9.E 16.1 0,0 0.0 +1.40D 1 2.98 9.00 0.04 0.04 0.00 1.00 16.14 Vu<PhiVc/2 At Reqd 91 16.1 0.0 0.0 Maximum Forces&Stresses for Load Combinations Load Combination Location(ft) Bending Stress Results (k-ft) Segment Span# along Beam Mu Max Phi*Mnx Stress Ratio MAXimum BENDING Envelope Span 11 1 3.000 -10.57 19.91 0.53 +1.40D Span#1 1 3,000 -10.57 19.91 0.53 +1.20D Span#1 1 3.000 -9.06 19.91 0.46 +0.90D Span#1 1 3.000 -6.80 19.91 0.34 Overall Maximum Deflections Load Combination Span Max."-"Defl (in)_ocation in Span (ft Load Combination Max."+"Defl (in.ocation in Span (ft D Only 1 0.0027 3.000 0.0000 0.000 57/166 •' Project Title: q Engineer: * rip Project ID: Project Descr: Steel Beam Project File:21013 enercalc-roof headers-beams.ec6 1.1 10/•b 11a17,Bixid- .22„3 31 1 u f DESCRIPTION: hoist beam CODE REFERENCES Calculations per AISC 360-16, IBC 2018,CBC 2019,ASCE 7-16 Load Combination Set:ASCE 7-10 Material Properties Analysis Method Allowable Strength Design Fy:Steel Yield: 50.0 ksi Beam Bracing: Completely Unbraced E:Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending k 4 big ryr:.. W8x13.. . Span=9,0 ft Applied Loads Service loads entered.Load Factors will be applied for calculations. Beam self weight NOT internally calculated and added Load(s)for Span Number 1 Point Load : L=5.0 k @ 4.50 ft DESIGN SUMMARY .' eSId Maximum Bending Stress Ratio = 0.480: 1 Maximum Shear Stress Ratio= 0.068 : 1 Section used for this span W8x13 Section used for this span W8x13 Ma:Applied 11.250k-ft Va:Applied 2.50 k Mn/Omega:Allowable 23.458 k-ft Vn/Omega:Allowable 36.754 k Load Combination L Only Load Combination L Only Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.000 in Ratio= 0 <360 Max Upward Transient Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.115 in Ratio= 941 >=180 Span:1 :L Only Max Upward Total Deflection 0.000 in Ratio= 0 <180 Maximum Forces&Stresses for Load Combinations Max Stress Ratios Summa ofonit u „ Summaryof Shear Values Load Combination �..„, ?� en Values�... . - _ ,......... - �.. Segment Length Span rr M V Mmax+ Mmax- Ma Max Mnx Mnx/Omega Cb Rm Va Max VnxVnx/Omega Dsgn.L= 9.00 ft 1 0.000 29.77 17.83 1.00 1.00 -0.00 55.13 36.75 L Only Dsgn.L= 9.00 ft 1 0.480 0.068 11.25 11.25 39.18 23.46 1.32 1.00 2.50 55.13 36.75 +0.750L Dsgn.L= 9.00 ft 1 0.360 0.051 8.44 8.44 39.18 23.46 1.32 1.00 1.88 55.13 36.75 Overall Maximum Deflections Load Combination Span Max.""Defl Location in Span Load Combination Max."+"Defl Location in Span L Only 1 0.1148 4.500 0.0000 0.000 Vertical Reactions Support notation:Far left is#- Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 2.500 2.500 Overall MINimum 1.875 1.875 L Only 2.500 2.500 +0.750L 1.875 1.875 58/166 • 1. `r, 44=14 . .5 �_:. .� ..,, .... ., r___. .= a , ._ 11-4 • • _ , 47 BY DATE ___.___.._..__.. YOE ENGINEERS __..-----......_...._ .______ _ _ REV DATE STRUCTURALI CIVIL _...----....._._.....-.__-... ................�....._,,,__._ _�.__.........._._._. .__ . JOB NO .__ ...,..,_,..__._....,_.. (503) 968-9994 p (503) 968-8444 f _______..__._.__ ___._.___..._...._._............_.__........___________..__..._____ SHEET OF _. -59J fi 66 a 1. -1x k g i ') r•hk, • • -Lf(le. ) ‘,...-1.'":::,,,-,,_ ,,- 3 r I f . ..-. 9.1..E .� � � V L HAYD _ __ _f BY -__ DATE ENGINEERS ._ REV DATE STRUCTURAL I CIVIL JOB NO_. __....._._............�.,. _._._._. (503) 968-9994 p (503) 968-8444 f SHEET OF 60p1-66 Project Title: Engineer: Project ID: Project Descr: Steel Base Plate Project File:21013 plan check ca€cs 4-2 2022.ec6 L �:g KIA. ...._?. ,.:.:,„^tW_: _M' HAYDEN CONSULTING ENGINEERS c ENERCALC INC 19t3-2022 DESCRIPTION: HSS 5x5-9x9. Code Reference: Calculations per RISC Design Guide#1, IBC 2018,CBC 2019,ASCE 7-16,AISC 360-16 Load Combination Set:ASCE 7-10 General Information Material Properties AISC Design Method Allowable Strength Design Steel Plate Fy = 36 ksi Concrete Support fc = 4.0 ksi c, c :ASD Safety Facto 2.31 Assumed Bearing Are all Bearing Nominal Bearing Fp per J8 4.533 ksi Column &Plate #- Column Properties Steel Section HSS5x5x3/8 Depth 5 in Area 6.18 in'2 Width 5 in lxx 39.5 in^4 Flange Thickness 0.349 in lyy 39.5 in"4 ° Web Thicknes in 1 s 4:` Plate Dimensions Support Dimensions N:Length 9.0 in Width along"X" 12 in 4 x A B:Width 9.0 in Length along"Z' 12 in Thickness 1.0 in 4 Column assumed welded to base plat( t 0 Applied Loads P-Y V-Z M-X , / ' 4 D:Dead Load 45.40 k k k-ft +X L:Live 46.30 k k k-ft , Lr: Roof Live k k k-ft 7, S:Snow 810k k k-ftf W:Wind k k k-ft v .- -,,„ . E:Earthquake k k k-it '- H: Lateral Earth k k k-ft „---- '`" '" .-• "P"=Gravity load,"+"sign is downwgrr" Moments create higher soil pressure at+Z ec "+" Shears push plate towards+Z edge Anchor Bolts = Anchor Bolt or Rod Description 1 1/2" Max of Tension or Pullout Capacity k _.. . __. Shear Capacity k Edge distance: bolt to plate 1.50 in — : Number of Bolts in each Row 2.0 Number of Bolt Rows. .. ,.. 1 . �.• . s 61/166 ' Project Title: Engineer: Project ID: Project Descr: Steel Base Plate Project File:21013 plan check calcs 4-20-2022.ec6 LIC#:KW-06014171,Build:20 22 3 31 HAYDEN CONSULTING ENGINEERS (c)ENERCALC INC 1983-2022 DESCRIPTION: HSS 5x5- 9x9. GOVERNING DESIGN LOAD CASE SUMMARY Ma:Max. Moment ....., .,,. . .. 2.556 k-in Plate Design Summary fb:Max.Bending Stress 10.224 ksi Design Method Allowable Strength Design Fb:Allowable: 21.557 ksi Governing Load Combinat +D+L Fy/Omega Governing Load Case Typ Axial Load Only Bending Stress Rati 0.474 Governing STRESS RATI( 0.5769 Bending Stress OK Design Plate Size 9"x 9"x 1" fu :Max.Plate Bearing Stress.... 1.132 ksi Pa:Axial Load.... 0.000 k Fp:Allowable: 1.962 ksi Ma:Moment 0.000 k-ft Bearing Stress Rati 0.577 Bearing Stress OK Load Comb.:D Only Axial Load Only, No Moment Loading Bearing Stresses Pa :Axial Load 45.400 k Fp:Allowable ...,,.„....... .... .. 1.962 ksi Design Plate Height 9.000 in fa:Max.Bearing Pressure 0.560 ksi Design Plate Width 9.000 in Stress Ratio .................. 0.286 Will be different from entry if partial bearing used. Plate Bending Stresses Al Plate Area 81.000 inA2 Mmax=Fu*LA2/2.e................ 1.265 k-in on 1"strip A2:Support Area.. ... 144.000 inA2 fb:Actual 5.062 ksi sqrt(A2/A1 ) 1.333 Fb:Allowable ... ,_.. 21.557 ksi Stress Ratio..................,,.. 0.235 Distance for Moment Calctlatin "m PP2.125 in 2.125in X, 0.000 inA2 Lambda„...................... 0.000 n' .... ,... 0.000 in n' Lambda 0.000 in L=max(m, n, n")..•._ . 2.125 in Load Comb.:+D+L Axial Load Only,� ..... No Moment Loading Bearing Stresses Pa:Axial Load.... 91.700 k FP:Allowable 1.962 ksi Design Plate Height 9.000 in fa:Max. Bearing Pressure 1.132 ksi Design Plate Width 9.000 in Stress Ratio,.....,.4.........:... 0.577 Will be different from entry if partial bearing used. Plate Bending Stresses Al :Plate Area 81.000 inA2 Mmax=Fu*LA2/2 2.556 k-in on 1"strip A2:Support Area 144.000 inA2 fb:Actual................._.,_..,......__, 10.224 ksi sgrt(A2/Al ) 1.333 Fb:Allowable._:_ 21.557 ksi Stress Ratio 0.474 Distance for Moment Calculation m"......<:.,.._:_.,.: 2.125 in 2.125 in X: 0.000 inA2 Lambda...................... 0.000 n3 0.000 in j 0.000 in L=max(m, n, n')........................... 2.125 in 62/166 Project Title: Engineer: Project ID: • Project Descr: Steel Base Plate Project File:21013 plan check calcs 4-20-2022.ec6 LIC# KW-06014171- B,Build 20,22.3,31 HAYDEN CONSULTING ENGINEERS (c)ENERCALC INC 1963-2022 DESCRIPTION: HSS 5x5-9x9. Load Comb.:+D+S Axial Load Only, No Moment Loading Bearing Stresses Pa:Axial Load.... 53.500 k Fp:Allowable _., 1.962 ksi Design Plate Height 9.000 in fa:Max. Bearing Pressure 0.660 ksi Design Plate Width......., 9.000 in Stress Ratio 0.337 Will be different from entry if partial bearing used. Plate Bending Stresses Al : Plate Area 81.000 in^2 Mmax=Fu*L^2/2„........,».n,... 1.491 k-in on 1"strip A2:Support Area._ 144.000 inA2 fb:Actual.................. 5.965 ksi sgrt(A2/Al ) 1.333 Fb:Allowable ._...... ....,. 21.557 ksi Stress Ratio. 0.277 Distance for Moment Calculation 2.125 in n .. 2.125 in X...,..,..,.9;,.,��..,,.._..,. 0.000 inA2 Lambda...........,,..._.,... 0.000 n' ,...;a..... 0.000 in n'*Lambda.................................. 0.000 in L=max(m,n,n").. ..,...,........... 2.125 in Load Comb. +D+0.750L Axial Load � N_ .....��_�_. Only, No Moment Loading Bearing Stresses Pa:Axial Load.... 80.125 k Fp:Allowable ..,.,..., 1.962 ksi Design Plate Height 9.000 in fa:Max. Bearing Pressure 0.989 ksi Design Plate Width 9.000 in Stress Ratio.. 0.504 Will be different from entry if partial bearing used. Plate Bending Stresses Al : Plate Area 81.000 inA2 Mmax=Fu*L^2/2 2.233 k-in on 1"strip A2:Support Area.. 144.000 inA2 fb:Actual....... 8.934 ksi sgrt(A2/A1 ) 1.333 Fb:Allowable ......., 21.557 ksi Stress Ratio.. ».«..,.......: 0.414 Distance for Moment Calculation 2.125 in n".................... 2.125 in X. 0.000 inA2 Lambda...................... 0.000 n'::.,<_.,,,.__._�..:............:........ 0.000 in n'*Lambda_ 0.000 in L=max(m,n,n")....,. 2.125 in Load Comb.:+D+0.750L+0.750S Axial Load Only, No Moment Loading Bearing Stresses Pa:Axial Load.... 86.200 k Fp:Allowable 1.962 ksi Design Plate Height 9.000 in fa:Max.Bearing Pressure 1.064 ksi Design Plate Width 9.000 in Stress Ratio 0.542 Will be different from entry if partial bearing used. Plate Bending Stresses Al :Plate Area 81.000 inA2 Mmax=Fu*LA2/2.................... 2.403 k-in on 1"strip A2:Support Area 144.000 inA2 fb:Actual.............:.................. 9.611 ksi sgrt(A2/A1 ) 1.333 Fb:Allowable...._.,........................ 21.557 ksi Stress Ratio 0.446 Distance for Moment Calculation "m'....____ 2.125 in 2.125 in X............................. 0.000 inA2 Lambda....:.......:........ 0.000 n .... 0.000 in n'*Lambda _ 0.000 in L=max(m,n,n"),.,..... 2.125 in 63/166 Project Title: Engineer: Project ID: Project Descr: ' Pfolecf Fite_2101 w plan cneck pains 4- 0-2022. c Steel BaseK.. ,_ ._ =7 HAYDEN CONSULTINd ENGINEERS :PI ENERCALC,NC; 202. DESCRIPTION: HSS 5x5-9x9. Load Comb.:+0.60D Axial Load Only, No Moment Loading Bearing Stresses Pa:Axial Load.... 27.240 k Fp:Allowable , . ... 1.962 ksi Design Plate Height 9.000 in fa:Max.Bearing Pressure 0.336 ksi Design Plate Width 9.000 in Stress Ratio 0.171 Will be different from entry if partial bearing used. Plate Bending Stresses Al :Plate Area 81.000 inA2 ?Amax=Fu*LA2/2 0.759 k-in on 1"strip A2:Support Area 144.000 inA2 fb:Actual ._ 3.037 ksi sqrt(A2lA1 ) 1.333 Fb:Allowable............................... 21.557 ksi Stress Ratio 0.141 Distance for Moment Calculation m 2.125 in n' 2.125 in 0.000 inA2 Lambda... 0.000 0.000 in n'*Lambda 0.000 in L=max(m,n,n") 2.125 in 64/166 • Project Title: Engineer: Project ID: Project Descr: Steel Base Plate Project File:21013 plat check cafes 4420-2022,ec$ �W. LiCg u4,r C:, :W: Bu!O 20 2<:_}., HAYDEN ONSULtING t GiNEE ._.._.' (6) . ss;i-a� � 11v�i0 DESCRIPTION: HSS 5x5-5 1/2 x 12 Code Reference: Calculations per AISC Design Guide#1, IBC 2018,CBC 2019,ASCE 7-16,AISC 360-16 Load Combination Set:ASCE 7-10 General Information Material Properties AISC Design Method Allowable Strength Design Steel Plate Fy = 36 ksi Concrete Support f c = 4.0 ksi S2 c :ASD Safety Facto 2.31 Assumed Bearing AreUll Bearing Nominal Bearing Fp per J8 3.40 ksi Column &Plate 5-1/2" Column Properties Z Steel Section HSS5x5x3/8 Depth 5 in Area 6.18 in"2 ELF Width 5 in Ixx 21.7 in"4 Flange Thickness 0.349 in lyy 21.7 inA4 3 ' Web Thicknes in Plate Dimensions Support Dimensions % N: Length 12.0 in Width along"X" 12 in ° 'y B:Width 5.50 in Length along"Z' 12 in Thickness 1.375 in -;" Column assumed welded to base plate ,• n , 1. 1' ,. 1 Applied Loads r l P-Y V-Z M-X ,s D: Dead Load 45.40 k k k-ft 5 Z* ,, L: Live 46.30 k k k-ft Lr: Roof Live k k k-ft € * r S :Snow 8 10 k k k-ft . ' 4ti //" W:Wind k k k-ft Z_ ,,.1 `1 E: Earthquake k k k-ft r ' t a y H: Lateral Earth k k k-ft ' "P"=Gravity load, '+' sign is downwaN-" Moments create higher soil pressure at+Z e< ,. "+" Shears push plate towards+Z edge Anchor Bolts s " Anchor Bolt or Rod Description 1 1/2" • Max of Tension or Pullout Capacity k Shear Capacity k Edge distance: bolt to plate 1.50 in x . x Number of Bolts in each Row 2.0 Number of Bolt Rows............... 1 ? • • • -L.. . 65/166 �• Project Title: Engineer: Project ID: Project Descr: Steel Base Plate Project File:21013 plan check calcs 4-20-2022.ec6 LIC#:KW-06014171,Build 20.22.3.31 HAYDEN CONSULTING ENGINEERS (c)ENERCALC INC 1983-2022 DESCRIPTION: HSS 5x5 -5 1/2 x 12 GOVERNING DESIGN LOAD CASE SUMMARY Ma:Max.Moment 9.129 k-in Plate Design Summary fb:Max. Bending Stress 19.314 ksi Design Method Allowable Strength Design Fb:Allowable: 21.557 ksi Governing Load Combinat +D+L Fy/Omega Governing Load Case Typ Axial Load Only Bending Stress Rati 0.896 Governing STRESS RATI( 0.9440 Bending Stress OK Design Plate Size 1'-0"x 5-1/2"xl -3/8" fu:Max. Plate Bearing Stress.... 1.389 ksi Pa:Axial Load.... 0.000 k Fp:Allowable: 1.472 ksi Ma Moment 0.000 k-ft Bearing Stress Ratic 0.944 Bearing Stress OK Load Comb.:D Only Axial Load Only, No Moment Loading Bearing Stresses Pa:Axial Load 45.400 k Fp:Allowable 1.472 ksi Design Plate Height 12.000 in fa:Max.Bearing Pressure 0.688 ksi Design Plate Width 5.500 in Stress Ratio... .........:. ... 0.467 Will be different from entry if partial bearing used. Plate Bending Stresses Al :Plate Area 66.000 inA2 Mmax=Fu*L^2/2,...:..,.:<..:.... 4.520 k-in on 1"strip A2:Support Area 66.000 inA2 fb:Actual„.,. 9.562 ksi sqrt(A2/A1 ) 1.000 Fb:Allowable 21.557 ksi Stress Ratio 0.444 Distance for Moment Calculation "m"....:.........:....... 3.625 in n ..,.....,, 0.375 in X 0.000 inA2 Lambda..✓. 0.000 0.000 in n'*{Lambda............. 0.000 in L=max(m,n, n")... a,.,,... 3.625 in Load Comb. +D+L Axial Load Only, No Moment Loading Bearing Stresses Pa:Axial Load.... 91.700 k Fp:Allowable ............:..................0 1.472 ksi Design Plate Height 12.000 in fa:Max.Bearing Pressure 1.389 ksi Design Plate Width 5.500 in Stress Ratio_..................... 0.944 Will be different from entry if partial bearing used. Plate Bending Stresses Al :Plate Area 66.000 inA2 Mmax=Fu*LA2/2.......:....:....:, 9.129 k-in on 1"strip A2:Support Area 66.000 inA2 fb:Actual................................ 19.314 ksi sort(A2/A1 ) 1.000 Fb:Allowable...:.......................... 21.557 ksi Stress Ratio.......,o...,....... 0.896 Distance for Moment Calculation 3.625 in 0.375 in 0.000 inA2 Lambda 0.000 n'.....,:.... 0.000 in n'*Lambda...._..._........................ 0.000 in L=max(m,n, n")......... .............. 3.625 in 66/166 Project Title: Engineer: Project ID: Project Descr: Steel Base Plate Project File:21013 plan check calcs 4-20-2022.ec6 Lic#:kW-06014171,Build:20.22.3.31 HAYDEN CONSULTING ENGINEERS (c)ENERCALC INC 1983-2022 DESCRIPTION: HSS 5x5 -5 1/2 x 12 Load Comb.: +D+S Axial Load Only, No Moment Loading Bearing Stresses Pa:Axial Load.... 53.500 k Fp:Allowable ;.,.,.,.::,.,,... 1.472 ksi Design Plate Height., ,. 12.000 in fa:Max.Bearing Pressure 0.811 ksi Design Plate Width 5.500 in Stress Ratio 0.551 Will be different from entry if partial bearing used. Plate Bending Stresses Al :Plate Area 66.000 inA2 Mmax=Fu"LA2/2 5.326 k-in on 1"strip A2:Support Area 66.000 inA2 fb:Actual:;. 11.268 ksi sgrt(A2/Al ) 1.000 Fb:Allowable 21.557 ksi Stress Ratio 0.523 Distance for Moment Calculation m.......... .......... 3.625 in d,n'"_._. 0.375 in X 0.000 inA2 Lambda ..................... 0.000 n'................. 0.000 in Lambda 0.000 in L=max(m, n,n") 3.625 in Load Comb. +D+0.750L Axial Load Only, No Moment Loading Bearing Stresses Pa:Axial Load..., 80.125 k Fp:Allowable ,.... .., 1.472 ksi Design Plate Height 12.000 in fa:Max. Bearing Pressure 1.214 ksi Design Plate Width 5.500 in Stress Ratio 0.825 Will be different from entry if partial bearing used. Plate Bending Stresses Al : Plate Area 66.000 inA2 Mmax=Fu"LA2/2_______ 7.976 k-in on 1"strip A2:Support Area.. ...._,:,_._ 66.000 inA2 fb:Actual 16.876 ksi sgrt(A2/A1 ) 1.000 Fb:Allowable.............................. 21.557 ksi Stress Ratio.................... 0.783 Distance for Moment Calculation m., 3.625 in n ......... 0.375 in X.,.:.:........:......._..., 0.000 inA2 Lambda 0.000 n'......_,.._.._.............:............ 0.000 in n'*Lambda . ..._..: 0.000 in L=max(m, n,n") 3.625 in Load Comb.:+D+0.750L+0.750S Axial Load Only, No Moment Loading Bearing Stresses Pa:Axial Load.... 86.200 k Fp:Allowable ..............._. 1.472 ksi Design Plate Height 12.000 in fa:Max.Bearing Pressure 1.306 ksi Design Plate Width 5.500 in Stress Ratio.......:............. 0.887 Will be different from entry if partial bearing used. Plate Bending Stresses Al : Plate Area 66.000 inA2 Mmax=Fu*LA2/2.........,.<....... 8.581 k-in on 1"strip A2:Support Area,. ..._.. . 66.000 inA2 fb:Actual,.. 18.155 ksi sqrt(A2/A1 ) 1.000 Fb:Allowable.................._..,.,.,__o. 21.557 ksi Stress Ratio..................... 0.842 Distance for Moment Calculation "m" 3.625 in �.n a....................< 0.375 in X 0.000 inA2 0.000 n' 0.000 in 0.000 in L=max(m,n, n"). 3.625 in 67/166 • Project Title: Engineer: • ' Project ID: Project Descr: Steel Base Plate P:o;ect Ffie 210131.1an check call 4-20-2022 ec6 `32.3 31 11,1-3311EN CONSVL TING ENGINES RS ENERCALC,NO 19e3-2:22 DESCRIPTION: HSS 5x5-5 1/2 x 12 Load Comb. :+0.600 Axial Load Only, No Moment Loading Bearing Stresses Pa:Axial Load.... 27.240 k Fp:Allowable . 1.472 ksi Design Plate Height 12_000 in fa:Max. Bearing Pressure 0.413 ksi Design Plate Width 5_500 in Stress Ratio 0.280 Will be different from entry if partial bearing used. Plate Bending Stresses Al :Plate Area 66.000 inA2 Mmax=Fu*LA2/2 2.712 k-in on 1"strip A2:Support Area 66.000 inA2 fb:Actual 5.737 ksi sqrt(A2/A1 ) 1.000 Fb:Allowable 21.557 ksi Stress Ratio 0.266 Distance for Moment Calculation 3.625 in "n" 0.375 in X 0.000 inA2 Lambda 0.000 n' 0.000 in n *Lambda 0.000 in L=max(m,n, n") „ 3.625 in 68/166 • 1/4.),,-,F• 3„2.*' I (4) 31i' A3 Ls -4 4 2 4).A 4t 1:7;". 4 a.to XJT (C") k V 4- 4' re Fiv 4 .77 74.1'4 („. f (d0 BY DATE ENGINEERS REV DATE STRUCTURAL I CIVIL JOB NO (503) 968-9994 p (503) 968-8444 f SHEET OF 69/166 y � i etA { BY DATE 3 ._...._"._ ._ �. _._ REV DATE ! NG1NEEFS JOB NO (503) 968-9994 p (503) 968-8444 f �_ , SHEET.__� OF_.__._, . • 4 4, • ,.• : V Jam: ` • g c = 7 F l " S" t BY DATE I ENGINEERS __......."._ _ __ REV DATE STRUCTURAL i CIVIL JOB NO ---- . (503) 968-9994 p (503) 968-8444 f SHEET -___ OF_ fiyT66 7 L 4_ BY__.....___ DATE__...,_..,,...._.._._._.___.._.. �€F ENGINEERS m._ _. REV DATE c PU „a4; ; JOB NO (503) 968-9994 p (503) 968-8444 f .._ ....._.._ SHEET OF 66 Project Title: Engineer: Project ID: Project Descr: Concrete Beam T,IrojentFite: t 13 r 7 - 02 LICA.Ks.-_ L. _�` . .. <„ 4� �1��t ON""'€ *yLs DESCRIPTION: O-K conc.wall horiz. at soil CODE REFERENCES Calculations per ACI 318-14, IBC 2018,CBC 2019,ASCE 7-16 Load Combination Set:ASCE 7-10 Material Properties fc 1/2 4.0 ksi Phi Values Flexure: 0.90 fr= fc `7.50 = 474.342 psi Shear: 0.750 yf Density = 145.0 pcf = 0.850 X LtWt Factor = 1.0 Elastic Modulus= 3,122.0 ksi Fy-Stirrups 40.0 ksi E-Stirrups = 29,000.0 ksi fy-Main Rebar= 60.0 ksi Stirrup Bar Size# 3 E-Main Rebar = 29,000.0 ksi Number of Resisting Legs Per Stirrup= 2 I 12-w x 10-h _.... _.... Cross Section&Reinforcing Details Rectangular Section, Width=12.0 in. Height=10.0 in Span#1 Reinforcing.... 1-#6 at 1.50 in from Bottom,from 0.0 to 12.0 ft in this span 1-#6 at 1.50 in from Top,from 0.0 to 12.0 ft in this span Load for Span Number 1 Uniform Load : W=0.370, E=0.340, H=0.3240 k/ft, Tributary Width= 1.0 ft DESIGN SUMMARY 5" .r�. Maximum Bending Stress Ratio = 0.949 : 1 Section used for this span Typical Section 7- Mu:Applied 15.991 k-ft Mn*Phi:Allowable 16.853 k-ft Location of maximum on span 5.989 ft Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.055 in Ratio= 2605 >=360.0 E Only Max Upward Transient Deflection 0.000 in Ratio= 0 <360.0 W Only Max Downward Total Deflection 0.133 in Ratio= 1084 >=180.0 Span: 1 :+0.70E+H Max Upward Total Deflection 0.000 in Ratio= 0 <180.0 Span:1 :+0.70E+H Vertical Reactions Support notation:Far left is#1 Load Combination Support 1 Support 2 Overall MAXimum 3.372 3.372 ............ Overall MiNimum 1.944 1.944 H Only 1.944 1.944 +0.60W+H 3.276 3.276 +0.70E+H 3.372 3.372 +0.450W+H 2.943 2.943 +0.5250E+H 3.015 3.015 +0.60W+0.60H 2.498 2.498 73/166 Project Title: Engineer: Project ID: Project Descr: Concrete Beam Project File:21013 plan check calcs 4-20-2022.ec6 LIC#:KW-06014171,Build:20.22.3.31 HAYDEN CONSULTING ENGINEERS (c)ENERCALC INC 1983-2022 DESCRIPTION: 0-K conc. wall horiz. at soil Vertical Reactions Support notation:Far left is#1 Load Combination Support 1 Support 2 +0.70E+0.60H 2.594 2.594 W Only 2.220 2.220 E Only 2.040 2.040 Detailed Shear Information Span Distance 'd' Vu (k) Mu d'Vu/Mu Phi*Vc Comment Phi'Vs Phi*Vn Spacing(in) Load Combination Number (ft) (in) Actual Design (k-ft) (k) (k) (k) Req's$uggest +W+1.60H I 0.00 8:56 W.... 5.33 6.33 :.:_ 0.00 _ 1.00._..,10.02 PhiVc/2<Vu<-<- - 10 ,t�ot i0.0 i3.0 0.0� +W+1.60H 1 0.13 8.50 5.21 5.21 0.69 1.00 10.02 PhiVc/2<Vu<=<=10",'Not 10.0 0.0 0.0 +W+1.60H 1 0-26 8.50 5.10 5.10 1.37 1.00 10.02 PhiVc/2<Vu<=<=10",Not 10.0 0.0 0.0 +W+1.60H 1 0.39 8.50 4.98 4.98 2.03 1.00 10.02 Vu<PhiVc/2 >t Reqd 9.E 10.0 0.0 0.0 +W+1.60H 1 0.52 8.50 4.86 4.86 2.67 1.00 10.02 Vu<PhiVc/2 >t Reqd 9.E 10.0 0.0 0.0 +W+1.60H 1 0.66 8.50 4,75 4.75 3.30 1.00 10.02 Vu<PhiVc/2 rt Reqd 9.E 10.0 0.0 0.0 +W+1.60H 1 0.79 8.50 4.63 4.63 3.92 0.84 9.88 Vu<PhiVc/2 At Reqd 9.E 9.9 0.0 0.0 +W+1.60H 1 0.92 8.50 4.51 4.51 4.52 0.71 9.78 Vu<PhiVc/2 At Reqd 9.E 9.8 0.0 0.0 +W+1.60H 1 1.05 8.50 4.40 4.40 5.10 0.61 9.70 Vu<PhiVc/2 At Reqd 9.E 9.7 0.0 0.0 +W+1.60H 1 1.18 8.50 4.28 4.28 5.67 0.53 9.63 Vu<PhiVc/2 At Reqd 9.E 9.6 0.0 0.0 +W+1.60H 1 1.31 8.50 4.17 4.17 6.23 0A7 9.58 Vu<PhiVc/2 At Reqd 9.E 9.6 0.0 0.0 +W+1.60H 1 1.44 8.50 4.05 4.05 6.77 0.42 9.54 Vu<PhiVc/2 At Reqd 9.E 9.5 0,0 0.0 +W+1.60H 1 1.57 8.50 3.93 3.93 7.29 0.38 9.51 Vu<PhiVc/2 rt Reqd 9.E 9.5 0.0 0.0 +W+1.60H 1 1.70 8.50 3.82 3.82 7.80 0.35 9.48 Vu<PhiVc/2 At Reqd 9.E 9.5 0.0 0.0 +W+1.60H 1 1.84 8.50 3.70 3.70 8.29 0.32 9.45 Vu<PhiVc/2 A Reqd 9.E 9.5 0,0 0.0 +W+1.60H 1 1.97 8.50 3.58 3.58 8.77 0.29 9.43 Vu<PhiVc/2 At Reqd 9.E 9.4 0.0 0.0 +W+1.60H 1 2.10 8.50 3.47 3.47 9.23 0.27 9.41 Vu<PhiVc/2 rt Reqd 9.E 9.4 0.0 0„0 +W+1.60H 1 2.23 8.50 3.35 3.35 9.68 0.25 9.40 Vu<PhiVc/2 At Reqd 9.E 9.4 0,0 0.0 +W+1.60H 1 2.36 8.50 3.23 3.23 10.11 0.23 9.38 Vu<PhiVc/2 At Reqd 9.E 9.4 0.0 0„0 +W+1.60H 1 2.49 8.50 3.12 3.12 10.52 0.21 9.37 Vu<PhiVc/2 rt Reqd 9.E 9.4 0.0 0.0 +W+1.60H 1 2.62 8.50 3.00 3.00 10.93 0.19 9.35 Vu<PhiVc/2 At Reqd 9.E 9.4 0.0 0„0 +W+1.60H 1 2.75 8.50 2.88 2.88 11.31 0.18 9.34 Vu<PhiVc/2 At Reqd 9.E 9.3 0,0 0.0 +W+1,60H 1 2.89 8.50 2.77 2.77 11.68 0.17 9.33 Vu<PhiVc/2 At Reqd 9.E 9.3 0.0 0.0 +W+1.60H 1 3.02 8.50 2,65 2.65 12.04 0.16 9.32 Vu<PhiVc/2 rt Reqd 9.E 9.3 0,0 0.0 +W+1,60H 1 3.15 8.50 2.53 2.53 12.38 0.15 9.31 Vu<PhiVc/2 At Reqd 9.E 9.3 0.0 0.0 +W+1.60H 1 3.28 8.50 2.42 2.42 12.70 0.13 9.30 Vu<PhiVc/2 rt Reqd 9.E 9.3 0,0 0.0 +W+1,60H 1 3.41 8.50 2.30 2.30 13.01 0.13 9.30 Vu<PhiVc/2 At Reqd 9.E 9.3 0.0 0.0 +W+1.60H 1 3.54 8.50 2.18 2.18 13.31 0.12 9.29 Vu<PhiVc/2 At Reqd 9.E 9.3 0,0 0.0 +W+1.60H 1 3.67 8.50 2.07 2.07 13.58 0.11 9.28 Vu<PhiVc/2 rt Reqd 9.E 9.3 0.0 0.0 +W+1.60H 1 3.80 8.50 1.95 1.95 13.85 0.10 9.28 Vu<PhiVc/2 At Reqd 9.E 9.3 0.0 0.0 +W+1.60H 1 3.93 8.50 1.84 1.84 14.10 0.09 9.27 Vu<PhiVc/2 At Reqd 9.E 9.3 0,0 0.0 +W+1.60H 1 4.07 8.50 1.72 1.72 14.33 0.08 9.26 Vu<PhiVc/2 At Reqd 9.E 9.3 0.0 0.0 +W+1.60H 1 4.20 8.50 1.60 1.60 14.55 0.08 9.26 Vu<PhiVc/2 A Reqd 9.E 9.3 0.0 0.0 +W+1.60H 1 4.33 8.50 1.49 1.49 14.75 0.07 9.25 Vu<PhiVc/2 At Reqd 9.E 9.3 0.0 0.0 +W+1.60H 1 4.46 8.50 1.37 1.37 14.94 0.06 9.25 Vu<PhiVc/2 At Reqd 9.E 9.2 0,0 0.0 +W+1.60H 1 4.59 8.50 1.25 1.25 15.11 0.06 9.24 Vu<PhiVc/2 At Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 4.72 8.50 1.14 1.14 15.26 0.05 9.24 Vu<PhiVc/2 rt Reqd 9.E 9.2 0,0 0.0 +W+1 60H 1 4.85 8.50 1.02 1.02 15.41 0.05 9.23 Vu<PhiVc/2 rt Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 4.98 8.50 0.90 0.90 15.53 0.04 9.23 Vu<PhiVc/2 At Reqd 9.E 9.2 0,0 0.0 +W+1.60H 1 5.11 8.50 0.79 0.79 15.64 0.04 9.22 Vu<PhiVc/2 At Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 5.25 8.50 0.67 0.67 15.74 0.03 9.22 Vu<PhiVc/2 At Reqd 9.E 9.2 0.0 0.0 +W+1,60H 1 5.38 8.50 0.55 0.55 15.82 0.02 9.21 Vu<PhiVc/2 At Reqd 9.E 9.2 0.0 0.0 +W+1,60H 1 5.51 8.50 0,44 0.44 15.88 0.02 9.21 Vu<PhiVci2 At Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 5.64 8.50 0,32 0.32 15.93 0.01 9.20 Vu<PhiVc/2 A Reqd 9.E 9,2 0.0 0.0 +W+1,60H 1 5.77 8.50 0.20 0.20 15.97 0.01 9,20 Vu<PhiVc/2 >t Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 5.90 8.50 0.09 0.09 15.99 0.00 9.20 Vu<PhiVc/2 At Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 6.03 8.50 -0.03 0.03 15.99 0.00 9.19 Vu<PhiVc/2 rt Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 6.16 8.50 -0.15 0.15 15.98 0.01 9,20 Vu<PhiVc/2 At Reqd 9.E 9.2 0,0 0.0 +W+1.60H 1 6.30 8,50 -0 26 0.26 15.95 0.01 9 20 Vu<PhiVc/2 At Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 6.43 8.50 -0.38 0.38 15.91 0,02 9.21 Vu<PhiVc/2 >t Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 6.56 8.50 -0.50 0.50 15.85 0.02 9.21 Vu<PhiVc/2 At Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 6.69 8.50 -0.61 0.61 15 78 0.03 9.22 Vu<PhiVc/2 At Reqd 9.E 9.2 0.0 0.0 74/166 • Project Title: Engineer: Project ID: Project Descr: Concrete Beam Project File:21013 plan check calcs 4-20-2022.ec6 Esc., Kw 6314171,Buitd10,22:.`3.31 I-IAYBEN CONSULTING ENGINE k ... ENERCA,3 ih,; t,,t. DESCRIPTION: O-K conc. wall horiz. at soil Detailed Shear Information Span Distance �d' Vu (k) Vu/Mu ...._.._. . .A Mu d*V u/Mu Comment Phi*Vs Phi*Vn Spacing(in) Load Combination Number (ft) (in) Actual Design (k-ft) (k) (k) (k) Req'Suggest +W+1.60H 1 6.82 8.50 -0.73 0.73 15.69 0.03 9.22 Vu<PhiVc/2 rt Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 6.95 8.50 -0.84 0.84 15.59 0.04 9.22 Vu<PhiVc/2 t Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 7.08 8.50 -0.96 0.96 15.47 0.04 9.23 Vu<PhiVc/2 At Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 7.21 8.50 -1.08 1.08 15.34 0.05 9.23 Vu<PhiVc/2 >t Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 7.34 8.50 -1.19 1.19 15.19 0.06 9.24 Vu<PhiVc/2 >t Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 7.48 8.50 -1.31 1.31 15.02 0.06 9.24 Vu<PhiVc/2 At Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 7.61 8.50 -1.43 1.43 14.84 0.07 9.25 Vu<PhiVc/2 >t Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 7.74 8.50 -1.54 1.54 14.65 0.07 9.25 Vu<PhiVc/2 At Reqd 9.E 9.3 0.0 0.0 +W+1.60H 1 7.87 8.50 -1.66 1.66 14.44 0.08 9.26 Vu<PhiVc/2 A Reqd 9.€ 9.3 0.0 0.0 +W+1.60H 1 8.00 8.50 -1.78 1.78 14.21 0.09 9.27 Vu<PhiVc/2 >t'Reqd 9.E 9.3 0.0 0.0 +W+1.60H 1 8.13 8.50 -1.89 1.89 13.97 0.10 9.27 Vu<PhiVc/2 A Reqd 9.E 9.3 0.0 0.0 +W+1.60H 1 8.26 8.50 -2.01 2.01 13.72 0.10 9.28 Vu<PhiVc/2 At Reqd 9.E 9.3 0.0 0.0 +W+1.60H 1 8.39 8.50 -2.13 2.13 13.45 0.11 9.29 Vu<PhiVc/2 At Reqd 9.E 9.3 0.0 0.0 +W+1.60H 1 8.52 8.50 -2.24 2.24 13,16 0.12 9.29 Vu<PhiVc/2 At Reqd 9.E 9.3 0.0 0.0 +W+1.60H 1 8.66 8.50 -2.36 2.36 12.86 0.13 9.30 Vu<PhiVc/2 AtReqd 9.E 9.3 0.0 0.0 +W+1.60H 1 8.79 8.50 -2.48 2.48 12.54 0.14 9.31 Vu<PhiVc/2 >t Reqd 9.E 9.3 0.0 0.0 +W+1.60H 1 8.92 8.50 -2.59 2.59 12.21 0.15 9.32 Vu<PhiVc/2 At Reqd'9.E 9.3 0.0 0.0 +W+1.60H 1 9.05 8.50 -2.71 2.71 11.86 0.16 9.33 Vu<PhiVc/2 At Reqd 9.E 9.3 0.0 0.0 +W+1.60H 1 9.18 8.50 -2.83 2.83 11.50 0.17 9.34 Vu<PhiVc/2 rt Reqd 9.E 9.3 0.0 0.0 +W+1.60H 1 9.31 8,50 -2.94 2.94 11.12 0.19 9.35 Vu<PhiVc/2 >t Reqd 9.E 9.3 0.0 0.0 +W+1.60H 1 9.44 8.50 -3.06 3.06 10.73 0.20 9.36 Vu<PhiVc/2 At Reqd 9.E 9.4 0.0 0.0 +W+1.60H 1 9.57 8.50 -3.17 3.17 10.32 0.22 9.37 Vu<PhiVc/2 >t Reqd 9.E 9.4 0.0 0.0 +W+1.60H 1 9.70 8.50 -3.29 3.29 9.89 0.24 9.39 Vu<PhiVc/2 At Reqd 9.E 9.4 0.0 0.0 +W+1.60H 1 9.84 8.50 -3.41 3.41 9.45 0.26 9.40 Vu<PhiVc/2 At Reqd 9.E 9.4 0.0 0.0 +W+1.60H 1 9.97 8.50 -3.52 3.52 9.00 0.28 9.42 Vu<PhiVc/2 At Reqd 9.€ 9.4 0.0 0.0 +W+1.60H 1 10.10 8-50 -3.64 3.64 8.53 0.30 9.44 Vu<PhiVc/2 rt Reqd 9.E 9.4 0.0 0.0 +W+1.60H 1 10.23 8.50 -3.76 3.76 8.05 0.33 9.47 Vu<PhiVc/2 At Reqd 9.E 9.5 0.0 0.0 +W+1.6DH 1 10.36 8.50 -3.87 3.87 7.54 0.36 9.49 Vu<PhiVc/2 A Reqd 9.E 9.5 0.0 0.0 +W+1.60H 1 10.49 8.50 -3.99 3.99 7.03 0.40 9.52 Vu<PhiVc/2 At Reqd 9.E 9.5 0.0 0.0 +W+1.60H 1 10.62 8.50 -4.11 4.11 6.50 0.45 9.56 Vu<PhiVc/2 >t Reqd 9.E 9.6 0.0 0.0 +W+1.60H 1 10.75 8.50 -4.22 4.22 5.95 0.50 9.61 Vu<PhiVc/2 At Reqd 9.€ 9.6 0.0 0.0 +W+1.60H 1 10.89 8.50 -4.34 4.34 5.39 0.57 9.66 Vu<PhiVc/2 At Reqd 9.E 9.7 0.0 0.0 +W+1.60H 1 11.02 8.50 -4.46 4.46 4.81 0.66 9.73 Vu<PhiVc/2 At Reqd 9.E 9.7 0.0 0.0 +W+1.60H 1 11.15 8.50 -4.57 4.57 4.22 0.77 9.83 Vu<PhiVc/2 >t Reqd 9.E 9.8 0.0 0.0 +W+1.60H 1 11.28 8.50 -4.69 4.69 3.61 0.92 9.95 Vu<PhiVc/2 rt Reqd 9.E 10.0 0.0 0.0 +W+1.60H 1 11.41 8,50 -4.81 4.81 2.99 1.00 10.02 Vu<PhiVc/2 >t Reqd 9.E 10.0 0.0 0.0 +W+1.60H 1 11.54 8.50 -4.92 4.92 2.35 1.00 10.02 Vu<PhiVc/2 >t Reqd 9,E 10.0 0.0 0.0 +W+1.60H 1 11.67 8.50 -5.04 5.04 1.70 1.00 10.02 PhiVc/2<Vu<=<=10",Not 10.0 0.0 0.0 +W+1-60H 1 11.80 8.50 -5.16 5.16 1.03 1.00 10.02 PhiVc/2<Vu<=<=10",Not 10.0 0.0 0.0 +W+1.60H 1 11.93 8.50 -5.27 5.27 0.35 1.00 10.02 PhiVc/2<Vu<=<=10",Not 10.0 0.0 0.0 Maximum Forces& Stresses for Load Combinations Load Combination Location(ft) Bending Stress Results (k-#t) Segment Span# along seam Mu:Max Phi*Mnx Stress Ratio MAXimum BENDING Envelope Span#1 1 12.000 15.99 16.85 0.95 +1.60H Span#1 1 12.000 9.33 16.85 0.55 +0.50W+1.60H Span#1 1 12.000 12.66 16.85 0.75 +W+1.60H Span#1 1 12.000 15.99 16,85 0.95 +E+1.60H Span#1 1 12.000 15.45 16.85 0.92 +W+0.90H Span#1 1 12.000 11.91 16.85 0.71 +E+0,90H Span#1 1 12.000 11.37 16.85 0.67 75/166 ' Project Title: Engineer: Project ID: Project Descr: Concrete Beam P , e. .__ i0,,, K DFiii i417" s I: :' vDEi CONSULT,'�JG ENG,I EEf.`"s check w.-c.....r�,LC ePr.� `9°63- ri tL1 �,a Cr� J b DESCRIPTION: O-K conc.wall horiz. at soil Overall Maximum Deflections Load Combination Span Max""Detl (in).ocation in Span (ft Load Combination Max."+"Dell (m;ocation in Span (ft +C. : + { 1 0.1328 6..000 0,0000 .. .... W. 0,000 76/166 • Project Title: Engineer: Project ID: Project Descr: oncrete Beam Project F81O,21013Orincheckeli,:s4-20-2022..ec Bu.;;2t 22 3 _.1...,�.`•. ..,a.r 1;UL,3NG( ,S.. EER 4a ....-..- 0.2) 'En+CALL INC ; 3-2022;. DESCRIPTION: O-K conc. piers CODE REFERENCES Calculations per ACI 318-14, IBC 2018, CBC 2019,ASCE 7-16 Load Combination Set:ASCE 7-10 Material Properties fc = 4.0 ksi Phi Values Flexure: 0.90 fr= fc!2 7.50 = 474.342 psi Shear: 0.750 W Density = 145.0 pcf R 1 = 0.850 LtWt Factor = 1.0 Elastic Modulus= 3,122.0 ksi Fy-Stirrups 40.0 ksi t fy-Main Rebar= 60.0 ksi E-Stirrups = 29,000.0 ksi - E-Main Rebar = 29,000.0 ksi Stirrup Bar Size# 3 • c Number of Resisting Legs Per Stirrup2 = 46, .:. 20.50 ft 42"wx10"h Cross Section&Reinforcing Details Rectangular Section, Width=42.0 in, Height=10,0 in Span#1 Reinforcing.... 7-#6 at 1.50 in from Bottom,from 0.0 to 20.50 ft in this span 7-#6 at 1.50 in from Top,from 0.0 to 20.50 ft in this spa Load for Span Number 1 Uniform Load : W =0.3480, E=0.3260 k/ft, Tributary Width= 1.0 ft Varying Uniform Load : H=0.0->3.078 k/ft, Extent= 14.50->>20.50 ft, Trib Width=1.0 ft DESIGN SUMMARY Ma:ir-nurn Bending Stress Ratio = 0.331 Section used for this span Typical Section Mu:Applied 36.040 k-ft Mn*Phi:Allowable 108.816 k-ft Location of maximum on span 14.376 ft Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.127 in Ratio= 1944 >=360.0 E Only Max Upward Transient Deflection 0.000 in Ratio= 0 <360.0 W Only Max Downward Total Deflection 0.158 in Ratio= 1559 >=180.0 Span:1 :+0.70E+H Max Upward Total Deflection 0.000 in Ratio= 0 <180.0 Span:1 :W Only Vertical Reactions Support notation:Far left is#1 Load Combination Support 1 Support 2 Overall MAXimum 3.567 10.672 Overall MiNimum 0.901 3.342 H Only 0.901 8.333 +0.60W+H 3.041 10.473 +0.70E+H 3.240 10.672 +0.450W+H 2.506 9.938 +0.5250E+H 2.655 10.087 77/166 Project Title: Engineer: Project ID: Project Descr: Concrete Beam Projeot 21013 pion Check call 4-20-20224 3 NE:ERs (c)ENERCALC INC 3- 3'202 DESCRIPTION: O-K conc. piers Vertical Reactions Support notation:Far left is#1 Load Combination Support 1 Support 2 +0.60W+0.60H 2.681 7.140 +0.70E+0.60H 2.880 7.339 W Only 3.567 3.567 E Only 3.342 3.342 Detailed Shear Information Span Distance 'd' Vu (k) Mu d*Vu/Mu Phi*Vc Comment Phi*Vs Phi*Vn Spacing(in) Load Combination Number (ft) (in) Actual Design (k-ft) (k) (k) (k) Req'Suggest +W+1.60H 1.. 0.00 8.50 5.01 5.01 _... 0.00 ... 1.00 ... 37.05. E 37.9 Vu<PhiVc/2 rt'Regtl 9.E 37.9 0.0 0.0 +W+1.60H 1 0.22 8.50 4.93 4.93 1.11 1.00 37.95 Vu<PhiVc/2 >t Reqd 9.E 37.9 0.0 0.0 +W+1.60H 1 0.45 8.50 4.85 4.85 2.21 1.00 37.95 Vu<PhiVc/2 At Reqd 9.E 37.9 0.0 0.0 +W+1.60H 1 0.67 8,50 4,77 4.77 3.29 1.00 37.95 Vu<PhiVc/2 rt Reqd 9.E 37.9 0.0 0.0 +W+1.60H 1 0.90 8.50 4,70 4.70 4.35 0.76 36.59 Vu<PhiVc/2 At Reqd 9.E 36.6 0.0 0.0 +W+1.60H 1 1.12 8.50 4.62 4.62 5.39 0.61 35.68 Vu<PhiVc/2 At Reqd 9.E 35.7 0.0 0.0 +W+1.60H 1 1.34 8.50 4.54 4.54 6.42 0.50 35.07 Vu<PhiVc/2 At Reqd 9.E 35.1 0.0 0.0 +W+1.60H 1 1.57 8.50 4.46 4.46 7,43 0.43 34.63 Vu<PhiVc/2 At Reqd 9.E 34.6 0.0 0.0 +W+1.60H 1 1.79 8.50 4.38 4.38 8.42 0..37 34.31 Vu<PhiVc/2 At Reqd 9.E 34.3 0.0 0.0 +W+1.60H 1 2.02 8.50 4.31 4.31 9,39 0.32 34.05 Vu<PhiVc/2 At Reqd 9.E 34.1 0.0 0.0 +W+1,60H 1 2.24 8.50 4.23 4.23 10.35 0,29 33.85 Vu<PhiVc/2 At Reqd 9.E 33.8 0.0 0.0 +W+1:60H 1 2.46 8.50 4.15 4.15 11.29 0.26 33.68 Vu<PhiVc/2 >t Reqd 9.E 33.7 0.0 0.0 +W+1.60H 1 2.69 8.50 4.07 4.07 12.21 0.24 33.54 Vu<PhiVc/2 At Reqd 9.E 33.5 0.0 0.0 +W+1.60H 1 2.91 8.50 3.99 3.99 13.11 0.22 33.42 Vu<PhiVc/2 At Reqd 9.E 33.4 0.0 0.0 +W+1.60H 1 3.14 8.50 3.92 3.92 14.00 0.20 33.32 Vu<PhiVc/2 >t Reqd 9.E 33.3 0.0 0.0 +W+1.60H 1 3.36 8.50 3.84 3.84 14.87 0.18 33.23 Vu<PhiVc/2 At Reqd 9.E 33.2 0.0 0.0 +W+1.60H 1 3.58 8.50 3.76 3.76 15.72 0.17 33.15 Vu<PhiVc/2 At Reqd 9.E 33.2 0.0 0.0 +W+1.60H 1 3.81 8.50 3.68 3.68 16.55 0.16 33.08 Vu<PhiVc/2 rt Reqd 9.E 33.1 0.0 0.0 +W+1.60H 1 4.03 8.50 3.60 3.60 17.37 0.15 33.02 Vu<PhiVc/2 rt Reqd 9.E 33.0 0.0 0.0 +W+1.60H 1 4.26 8.50 3.53 3.53 18.17 0.14 32.97 Vu<PhiVc/2 At Reqd 9.E 33.0 0.0 0.0 +W+1.60H 1 4.48 8.50 3.45 3.45 18.95 0.13 32.92 Vu<PhiVc/2 t Reqd 9.E 32.9 0.0 0.0 +W+1.60H 1 4.70 8.50 3.37 3.37 19.71 0.12 32.87 Vu<PhiVc/2 rt Reqd 9.E 32.9 0.0 0.0 +W+1.60H 1 4.93 8.50 3.29 3.29 20.46 0.11 32.83 Vu<PhiVc/2 >t Reqd 9.E 32.8 0.0 0.0 +W+1.60H 1 5.15 8.50 3.22 3.22 21.19 0.11 32.80 Vu<PhiVc/2 rt Reqd 9.E 32.8 0.0 0.0 +W+1.60H 1 5.38 8.50 3.14 3.14 21.90 0.10 32.76 Vu<PhiVc/2 >t Reqd 9.E 32.8 0.0 0.0 +W+1.60H 1 5.60 8.50 3.06 3.06 22.59 0.10 32.73 Vu<PhiVc/2 >t Reqd 9.E 32.7 0.0 0.0 +W+1.60H 1 5.83 8.50 2.98 2.98 23.27 0,09 32.70 Vu<PhiVc/2 At Reqd 9.E 32.7 0.0 0.0 +W+1.60H 1 6.05 8.50 2.90 2.90 23.93 0,09 32.67 Vu<PhiVc/2 At Reqd 9.E 32.7 0.0 0.0 +W+1.60H 1 6,27 8.50 2.83 2.83 24.57 0.08 32.64 Vu<PhiVc/2 At Reqd 9,E 32.6 0.0 0.0 +W+1.60H 1 6.50 8.50 2.75 2.75 25.20 0.08 32.62 Vu<PhiVc/2 At Reqd 9.E 32.6 0.0 0.0 +W+1.60H 1 6.72 8.50 2.67 2.67 25.80 0.07 32.60 Vu<PhiVc/2 At Reqd 9.E 32.6 0.0 0.0 +W+1.60H 1 6.95 8.50 2.59 2.59 26.39 0.07 32.58 Vu<PhiVc/2 rt Reqd 9.E 32.6 0.0 0.0 +W+1.60H 1 7.17 8.50 2.51 2.51 26.96 0.07 32.56 Vu<PhiVc/2 >t Reqd 9.E 32.6 0.0 0.0 +W+1.60H 1 7.39 8.50 2.44 2.44 27.52 0.06 32.54 Vu<PhiVc/2 At Reqd 9.E 32.5 0.0 0.0 +W+1.60H 1 7.62 8.50 2.36 2.36 28.05 0.06 32.52 Vu<PhiVcl2 At Reqd 9.E 32.5 0.0 0.0 +W+1.60H 1 7.84 8.50 2.28 2.28 28.57 0.06 32.50 Vu<PhiVc/2 At Reqd 9.E 32.5 0.0 0.0 +W+1.60H 1 8.07 8.50 2.20 2.20 29.08 0.05 32.48 Vu<PhiVc/2 At Reqd 9.E 32.5 0.0 0.0 +W+1.60H 1 8.29 8.50 2.12 2.12 29.56 0.05 32.47 Vu<PhiVc/2 rt Reqd 9.E 32.5 0.0 0.0 +W+1.60H 1 8.51 8.50 2.05 2.05 30.03 0.05 32.45 Vu<PhiVc/2 At Reqd 9,E 32.5 0.0 0.0 +W+1.60H 1 8.74 8.50 1.97 1.97 30.48 0.05 32.44 Vu<PhiVc/2 A Reqd 9,E 32.4 0.0 0.0 +W+1.60H 1 8.96 8.50 1.89 1.89 30.91 0.04 32.42 Vu<PhiVc/2 rt Reqd 9.E 32.4 0.0 0.0 +W+1.60H 1 9.19 8.50 1.81 1.81 31.32 0,04 32.41 Vu<PhiVc/2 >t Reqd 9.E 32.4 0.0 0.0 +W+1.60H 1 9.41 8.50 1.73 1.73 31.72 0,04 32.40 Vu<PhiVc/2 At Reqd 9.E 32 4 0.0 0.0 +W+1.60H 1 9.63 8.50 1,66 1.66 32.10 0.04 32.39 Vu<PhiVc/2 At Reqd 9.E 32.4 0.0 0.0 +W+1.60H 1 9,86 8.50 1.58 1.58 32,46 0,03 32.37 Vu<PhiVc/2 At Reqd 9.E 32.4 0.0 0.0 +W+1,60H 1 10.08 8.50 1.50 1.50 32.81 0.03 32.36 Vu<PhiVc/2 At Reqd 9.E 32.4 0.0 0.0 +1.60H 1 10.31 8.50 1.44 1.44 14.86 0.07 32.57 Vu<PhiVc/2 At Reqd 9.E 32.6 0.0 0.0 +1 60H 1 10.53 8.50 1.44 1.44 15.18 0.07 32.56 Vu<PhiVc/2 At Reqd 9.E 32.6 0.0 0.0 +1 60H 1 10.75 8.50 1.44 1.44 15.50 0.07 32.55 Vu<PhiVc/2 >t Reqd 9.E 32.6 0.0 0.0 +1,60H 1 10.98 8,50 1.44 1.44 15.82 0.06 32.55 Vu<PhiVc/2 At Reqd 9 E 32.5 0.0 0.0 +1,60H 1 11.20 8.50 1.44 1.44 16.15 0.06 32.54 Vu<PhiVc/2 Jt Reqd 9.E 32 5 0.0 0.0 78/166 Project Title: Engineer: Project ID: Project Descr Concrete Beam Project Foe:21013 plan check calcs 4-20-2022.ec6 >t kY,' 014171ttaEd:ZfJ2'3>31 ; ER EN;.=v: ..,,_11.z DESCRIPTION: O-K conc. piers Detailed Shear Information Span Distance 'd' Vu (k) Mu d*Vu/Mu Phi*Vc Comment Phi*Vs Phi*Vn Spacing(in) Load Combination Number (ft) (in) Actual Design (k-ft) (k) (k) (k) Req'Suggest +1.601 I 1 11.43 8.50 1.44 1.44 16.47 0.06 32.53 Vu<PhiVc/2 it Reqd 9.E 32.5 0.0 0.0 +1.60H 1 11,65 8.50 1.44 1.44 16,79 0.06 32.53 Vu<PhiVc/2 At Reqd 9.E 32.5 0.0 0.0 +1.60H 1 11.87 8.50 1,44 1.44 17.12 0.06 32.52 Vu<PhiVc/2 rt Reqd 9.E 32.5 0.0 0.0 +1.60H 1 12,10 8.50 1.44 1.44 17.44 0.06 32.51 Vu<PhiVc/2 At Reqd 9.E 32.5 0.0 0.0 +1.60H 1 12,32 8.50 1.44 1.44 17.76 0.06 32.51 Vu<PhiVc/2 At Reqd 9.E 32.5 0.0 0.0 +1.60H 1 12.55 8.50 1.44 1.44 18.08 0.06 32.50 Vu<PhiVc/2 A Reqd 9.E 32.5 0.0 0.0 +1.60H 1 12.77 8.50 1.44 1.44 18.41 0.06 32.49 Vu<PhiVc/2 At Reqd 9.E 32.5 0.0 0.0 +1.60H 1 12.99 8.50 1.44 1.44 18.73 0.05 32.49 Vu<PhiVc/2 At Reqd 9.E 32.5 0.0 0.0 +1.60H 1 13.22 8.50 1.44 1.44 19.05 0.05 32.48 Vu<PhiVc/2 rt Reqd 9.E 32.5 0.0 0.0 +1.60H 1 13.44 8.50 1.44 1.44 19.38 0.05 32.48 Vu<PhiVc/2 At Reqd 9.E 32.5 0.0 0.0 +1.60H 1 13.67 8.50 1.44 1.44 19.70 0.05 32.47 Vu<PhiVc/2 At Reqd 9.E 32.5 0.0 0.0 +1.60H 1 13.89 8.50 1.44 1.44 20.02 0.05 32.47 Vu<PhiVc/2 >t Reqd 9.E 32.5 0.0 0.0 +1.60H 1 14.11 8.50 1.44 1.44 20.35 0.05 32.46 Vu<PhiVc/2 >t Reqd 9.E 32.5 0.0 0.0 +1.60H 1 14.34 8.50 1.44 1.44 20.67 0.05 32.46 Vu<PhiVc/2 >t Reqd 9.E 32.5 0.0 0.0 +1.60H 1 14.56 8.50 1.44 1.44 20.99 0.05 32.46 Vu<PhiVc/2 At Reqd 9.E 32.5 0.0 0.0 +1.60H 1 14.79 8.50 1.41 1.41 21.31 0.05 32.44 Vu<PhiVc/2 rt Reqd 9.E 32.4 0.0 0.0 +1.60H 1 15.01 8.50 1.33 1.33 21.62 0.04 32.43 Vu<PhiVc/2 At Reqd 9.E 32.4 0.0 0.0 +1.60H 1 15.23 8.50 1.22 1.22 21.91 0.04 32.40 Vu<PhiVc/2 rt Reqd 9.E 32.4 0.0 0.0 +W+0.90H 1 15.46 8.50 -1.21 1.21 26.03 0.03 32.37 Vu<PhiVc/2 At Reqd 9.E 32.4 0.0 0.0 +W+0.90H 1 15.68 8.50 -1.40 1.40 25.73 0.04 32.40 Vu<PhiVc/2 At Reqd 9.E 32.4 0.0 0.0 +W+0.90H 1 15.91 8.50 -1.61 1.61 25.40 0.05 32.43 Vu<PhiVc/2 At Reqd 9.E 32.4 0.0 0.0 +W+0.90H 1 16.13 8.50 -1.85 1.85 25.01 0.05 32.48 Vu<PhiVc/2 At Reqd 9.E 32.5 0.0 0.0 +W+0.90H 1 16.36 8.50 -2.11 2.11 24.56 0.06 32.53 Vu<PhiVc/2 At Reqd 9.E 32.5 0.0 0.0 +W+1.60H 1 16.58 8.50 -2.54 2.54 33.98 0.05 32.48 Vu<PhiVc/2 At Reqd 9,E 32.5 0.0 0.0 +W+1.60H 1 16.80 8.50 -3.02 3.02 33.36 0.06 32.54 Vu<PhiVc/2 At Reqd 9.E 32.5 0.0 0.0 +W+1.60H 1 17.03 8.50 -3.54 3.54 32.62 0.08 32.62 Vu<PhiVc/2 rt Reqd 9,E 32.6 0.0 0.0 +W+1.60H 1 17.25 8.50 -4.10 4.10 31.77 0.09 32.70 Vu<PhiVc/2 rt Reqd 9.E 32.7 0.0 0.0 +W+1.60H 1 17.48 8.50 -4.71 4.71 30.78 0.11 32.80 Vu<PhiVc/2 rt Reqd 9.E 32.8 0.0 0.0 +W+1.60H 1 17.70 8.50 -5.35 5.35 29.66 0.13 32.91 Vu<PhiVc/2 At Reqd 9.E 32.9 0.0 0.0 +W+1.60H 1 17.92 8.50 -6.04 6.04 28.38 0.15 33.05 Vu<PhiVc/2 At Reqd 9.E 33.0 0.0 0.0 +W+1.60H 1 18.15 8.50 -6.77 6.77 26.95 0.18 33.20 Vu<PhiVc/2 rt Reqd 9.E 33.2 0.0 0.0 +W+1.60H 1 18.37 8.50 -7.54 7.54 25.35 0.21 33.39 Vu<PhiVc/2 At Reqd 9.E 33.4 0.0 0.0 +W+1.60H € 18.60 8.50 -8.35 8.35 23.57 0.25 33.62 Vu<PhiVc/2 At Reqd 9.E 33.6 0.0 0.0 +W+1.60H 1 18.82 8.50 -9.20 9.20 21.60 0.30 33.92 Vu<PhiVc/2 rt Reqd 9.E 33.9 0.0 0.0 +W+1.60H 1 19.04 8.50 -10.09 10.09 19.44 0.37 34.30 Vu<PhiVc/2 rt Reqd 9.E 34.3 0.0 0.0 +W+1.60H 1 19.27 8.50 -11.03 11.03 17.08 0.46 34.82 Vu<PhiVc/2 rt Reqd 9.E 34.8 0.0 0.0 +W+1,60H 1 19.49 8.50 -12.00 12.00 14.50 0.59 35.56 Vu<PhiVc/2 >t Reqd 9.E 35.6 0.0 0.0 +W+1.60H 1 19.72 8.50 -13.02 13.02 11.70 0.79 36.73 Vu<PhiVc/2 >t Reqd 9.E 36.7 0.0 0.0 +W+1;60H 1 19.94 8.50 -14.08 14.08 8.66 1.00 37.95 Vu<PhiVc/2 rt Reqd 9.E 37.9 0.0 0.0 +W+1.60H 1 20.16 8.50 -15.17 15.17 5.39 1.00 37.95 Vu<PhiVc/2 >t Reqd 9.E 37.9 0 0 0.0 +W+1,60H 1 20.39 8.50 -16.31 16.31 1.86 1.00 37.95 Vu<PhiVc/2 >t Reqd 9.E 37.9 0.0 0.0 Maximum Forces&Stresses for Load Combinations Load Combination Location(ft) Bending Stress Results (k-ft) Segment Span# along Beam Mu:Max Phi*Mnx Stress Ratio MAXimum BENDING Envelope Span#1 1 20.500 36.04 108.82 0.33 +1.60H Span#1 1 20.500 22.70 108.82 0.21 +0.50W+1.60H Span#1 1 20.500 28.95 108.82 0.27 +W+1.60H Span#1 '! 20.500 36.04 108.82 0,.33 +E+1.60H Span#1 1 20.500 35.09 108.82 0.32 +W+0.90H Span#1 1 20.500 27.54 108.82 0.25 +E+0.90H Span#1 1 20.500 26.44 108.82 0.24 79/166 Project Title: Engineer: Project ID: Project Descr: Concrete Beam Project File:21013 plan check calcs 4-20-2022.ec6 LIC# KW-06014171.Bui'd:20 22 3.31 HAYDEN CONSULTING ENGINEERS (c)ENE zCALo iNC 1983-2022 DESCRIPTION: O-K conc. piers Overall Maximum Deflections Load Combination Span Max."-"Defl (in).ocation in Span (ft Load Combination biax."+"Defl (in_ocation in Span (ft +0.70E+H 1 01578 10.922 0.0000 0.000 80/166 eve 2 t • ° . ., HAYDE _ �_ BY_ _____ DATE ENGINEERS _._._.._. �_„<.,�. __„_.,_ REV DATE STRUCTURAL i CIVIL __._.___..._....._.___ JOB NO (503) 968-9994 p (503) 968-8444 f _ SHEET of____._... ..�_�_ Project Title: Engineer: Project ID: Project Descr: Concrete Beam Pnec.t.F„:.21'0133 plan check ca=cs$-2O-2022, E . .. 10.. Kw CJ 4 , d ,.A s EN CJ Ya.1-,ING ENGINEERS (t)ENERn�C 1483-2a22 DESCRIPTION: K-H conc.wall horiz.at soil CODE REFERENCES Calculations per ACI 318-14, IBC 2018,CBC 2019,ASCE 7-16 Load Combination Set:ASCE 7-10 Material Properties f c = 4.0 ksi Phi Values Flexure: 0.90 fr= f c/2 .7.50 = 474.342 psi Shear: 0.750 1 tV Density = 145.0 pcf 1 = 0.850 LtWt Factor = 1.0 Elastic Modulus= 3,122.0 ksi Fy-Stirrups 40.0 ksi -StaTups = 29,000,0 ksi fy-Main Rebar= 60.0 ksi , E-Main Rebar = 29,000.0 ksi att rup Bar Size# 3 Number of Resisting Legs Per Stirrup= 2 .... . 12.0 it Cross Section&Reinforcing Details Rectangular Section, Width=12.0 in, Height=10.0 in Span#1 Reinforcing.... 1-#4 at 1.50 in from Bottom,from 0.0 to 12.0 ft in this span 1-#4 at 1.50 in from Top,from 0.0 to 12.0 ft in this span Load for Span Number 1 Uniform Load : W=0.370, E=0.340, H=0.0540 kilt, Tributary Width=1.0 ft DESIGN SUMMARY Bending Stress R;t:O = 0.970 :1 Section used for this span Typical Section Mu:Applied 8.215 k-ft Mn*Phi:Allowable 8.471 k-ft Location of maximum on span 5.989 ft Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.055 in Ratio= 2605 >=360.0 E Only Max Upward Transient Deflection 0.000 in Ratio= 0 <360.0 Overall MAXimum Envelope Max Downward Total Deflection 0.055 in Ratio= 2605 >=180.0 Span: 1 :W Only Max Upward Total Deflection 0.000 in Ratio= 0 <180.0 Span: 1 :W Only Vertical Reactions Support notation:Far left is#1 Load Combination Support 1 Support 2 Overall M ,jmum 2.220 2.220 Overall MINimum 0.324 0.324 H Only 0.324 0.324 +0.60W+H 1.656 1.656 +0.70E+11 1.752 1.752 +0.450W+H 1.323 1.323 +0.5250E+H 1.395 1.395 +0.60W+0.60H 1.526 1.526 82/166 Project Title: Engineer: Project ID: Project Descr: Concrete Beam Project Ale:21013 plan check calcs 4-20-2022.ec6 LIC#:KW-06014171,Budd:20.22.3.31 HAYDEN CONSULTING ENGINEERS (c)ENERCALC INC 1983-2022 DESCRIPTION: K-H conc.wall horiz. at soil Vertical Reactions Support notation:Far left is#1 Load Combination Support 1 Support 2 +0.70E+0.60H a-...__ _... 1.622- 1.622 W Only 2.220 2.220 E Only 2.040 2.040 Detailed Shear Information Span Distance 'd' Vu (k) Mu d*Vu/Mu Phi*Vc Comment Phi*Vs Phi*Vn Spacing(in) Load Combination Number (ft) (in) Actual Design (k-ft) (k) (k) (k) Req'Suggest +w+1.60H 1 0.00 8.50 2.74 2.74 0.00 1.00 9.57 Vu<PhiVc/2 A Reqd 9.E E 9.6 0.0 0.0` +W+1.60H 1 0.13 8.50 2.68 2.68 0.36 1.00 9.57 Vu<PhiVc/2 rt Reqd 9.E 9.6 0.0 0.0 +W+1.60H 1 0.26 8.50 2.62 2.62 0.70 1.00 9.57 Vu<PhiVc/2 At Reqd 9.E 9.6 0.0 0.0 +W+1,60H 1 0.39 8.50 2.56 2.56 1.04 1.00 9.57 Vu<PhiVc/2 At Reqd 91 9.6 0.0 0.0 +W+1.60H 1 0.52 8.50 2.50 2.50 1.37 1.00 9.57 Vu<PhiVc12 >t Reqd 9.E 9.6 0.0 0.0 +W+1.60H 1 0.66 8.50 2.44 2.44 1.70 1.00 9.57 Vu<PhiVd2 >t Reqd 9.E 9.6 0.0 0.0 +W+1.60H 1 0.79 8.50 2.38 2.38 2.01 0.84 9.51 Vu<PhiVd2 At Reqd 91 9.5 0.0 0.0 +W+1.60H 1 0.92 8.50 2.32 2.32 2.32 0.71 9.46 Vu<PhiVc/2 At Reqd 9.E 9.5 0.0 0.0 +W+1.60H 1 1.05 8.50 2.26 2.26 2.62 0.61 9.42 Vu<PhiVc/2 At Reqd 9.E 9.4 0.0 0.0 +W+1.60H 1 1.18 8.50 2.20 2.20 2.91 0.53 9.39 Vu<PhiVc/2 At Reqd 9.E 9.4 0.0 0.0 +W+1.60H 1 1.31 8.50 2.14 2.14 3.20 0.47 9.37 Vu<PhiVc/2 >t Reqd 9.E 9.4 0.0 0.0 +W+1.60H 1 1.44 8.50 2,08 2.08 3.48 0.42 9.35 Vu<PhiVd2 At Reqd 9.E 9,4 0,0 0.0 +W+1.60H 1 1.57 8.50 2.02 2.02 3.74 0.38 9.34 Vu<PhiVc/2 1 Reqd 9.E 9.3 0.0 0.0 +W+1.60H 1 1.70 8.50 1.96 1.96 4.01 0.35 9.32 Vu<PhiVc/2 rt Reqd 9.E 9.3 0.0 0.0 +W+1.60H 1 1.84 8.50 1.90 1.90 4.26 0.32 9.31 Vu<PhiVc/2 A Reqd 9.E 9.3 0.0 0.0 +W+1.60H 1 1.97 8.50 1.84 1.84 4.50 0.29 9.30 Vu<PhiVc/2 rt Reqd 9.E 9.3 0.0 0.0 +W+1.60H 1 2.10 8.50 1.78 1.78 4.74 0.27 9.29 Vu<PhiVc/2 rt Reqd 9,E 9.3 0.0 0.0 +W+1.60H 1 2.23 8.50 1.72 1.72 4,97 0.25 9.28 Vu<PhiVc/2 rt Reqd 9.E 9.3 0.0 0.0 +W+1.60H 1 2.36 8.50 1.66 1.66 5.19 0.23 9.28 Vu<PhiVd2 At Reqd 9.E 9.3 0.0 0.0 +W+1.60H 1 2.49 8.50 1.60 1.60 5.41 0.21 9.27 Vu<PhiVd2 At Reqd 9.E 9.3 0.0 0.0 +W+1.60H 1 2.62 8.50 1.54 1.54 5.61 0.19 9.27 Vu<PhiVc/2 At Reqd 9.E 9.3 0.0 0.0 +W+1.60H 1 2.75 8.50 1.48 1.48 5.81 0.18 9.26 Vu<PhiVc/2 At Reqd 9.E 9.3 0,0 0.0 +W+1.60H 1 2.89 8.50 1.42 1.42 6.00 0.17 9.26 Vu<PhiVc/2 At Reqd 9.E 9.3 0,0 0.0 +W+1.60H 1 3.02 8.50 1,36 1.36 6.18 0.16 9.25 Vu<PhiVc/2 At Reqd 9.E 9.3 0.0 0.0 +W+1.60H 1 3.15 8.50 1.30 1.30 6.36 0.15 9.25 Vu<PhiVc/2 At Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 3.28 8.50 1.24 1.24 6.53 0.13 9.24 Vu<PhiVc/2 At Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 3.41 8.50 1.18 1.18 6.68 0.13 9.24 Vu<PhiVc/2 t Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 3.54 8.50 1.12 1.12 6.84 0.12 9.24 Vu<PhiVc/2 At Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 3.67 8.50 1.06 1.06 6.98 0.11 9.23 Vu<PhiVc/2 At Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 3.80 8.50 1.00 1.00 7.11 0.10 9.23 Vu<PhiVc/2 rt Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 3.93 8.50 0.94 0.94 7.24 0.09 9.23 Vu<PhiVc/2 At Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 4.07 8.50 0.88 0.88 7.36 0.08 9.22 Vu<PhiVc/2 At Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 4.20 8.50 0.82 0.82 7.47 0.08 9.22 Vu<PhiVd2 At Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 4.33 8.50 0.76 0.76 7.58 0.07 9.22 Vu<PhiVc/2 At Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 4.46 8,50 0.70 0.70 7.67 0.06 9.22 Vu<PhiVc/2 At Reqd 9.E 9.2 0,0 0.0 +W+1.60H 1 4.59 8.50 0.64 0.64 7.76 0.06 9.21 Vu<PhiVd2 At Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 4.72 8.50 0.58 0.58 7.84 0.05 9.21 Vu<PhiVc/2 At Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 4.85 8.50 0.52 0.52 7.91 0.05 9.21 Vu<PhiVc/2 At Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 4.98 8.50 0.46 0.46 7.98 0.04 9.21 Vu<PhiVc/2 >t Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 5.11 8.50 0.40 0.40 8.04 0.04 9.21 Vu<PhiVc/2 At Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 5.25 8.50 0.34 0.34 8.09 0.03 9.20 Vu<PhiVc/2 rt Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 5.38 8.50 0.28 0.28 8.13 0.02 9.20 Vu<PhiVc/2 At Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 5.51 8,50 0.22 0.22 8.16 0.02 9.20 Vu<PhiVc/2 At Reqd 9,E 9.2 0.0 0.0 +W+1.60H 1 5.64 8.50 0.16 0.16 8.19 0.01 9.20 Vu<PhiVc/2 t Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 5.77 8.50 0.10 0.10 8.20 0.01 9.20 Vu<PhiVc/2 rt Reqd 91 9.2 0.0 0.0 +W+1 60H 1 5.90 8.50 0.04 0.04 8.21 0.00 9.19 Vu<PhiVc/2 At Reqd 9.E 9.2 0.0 0.0 +W+1 60H 1 6.03 8.50 -0.01 0.01 8.21 0.00 9.19 Vu<PhiVc/2 t Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 6.16 8.50 -0.07 0.07 8.21 0.01 9.20 Vu<PhiVc/2 >t Reqd 9.E 9.2 0.0 0.0 +W+1 60H 1 6.30 8.50 -0.13 0.13 8.20 0.01 9.20 Vu<PhiVc/2 At Reqd 9.E 9.2 0.0 0.0 +W+1,60H 1 6.43 8.50 -0.19 0.19 8.17 0.02 9 20 Vu<PhiVc/2 A Reqd 9_E 9.2 0.0 0.0 +W+1.60H 1 6.56 8.50 -0.25 0.25 8.14 0.02 9.20 Vu<PhiVc/2 At Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 6 69 8.50 -0.31 0.31 8.11 0.03 9.20 Vu<PhiVc/2 rt Reqd 9.E 9.2 0.0 0.0 83/166 Project Title: Engineer: Project ID: Project Descr: Concrete Beam Project File:21013 plan check calcs 4-20-2022.ec6 LIC#:KW-06014171.Build:20.22.3.31 HAYDEN CONSULTING ENGINEERS (c)ENERCAL.0 INC 1983-2022 DESCRIPTION: K-H conc.wall horiz.at soil Detailed Shear Information Span Distance 'd' Vu (k) Mu d*Vu/Mu Phi*Vc Comment Phi*Vs Phi*Vn Spacing(in) Load Combination Number (ft) (in) Actual Design (k-ft) (k) (k) (k) Req'd;uggest +W+1.60H 1.... 6.82 8.50 -0.37 0.37 8.06 0.03 -.-9.21 Vu<PhiVc/2 >t Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 6,95 8.50 -0.43 0.43 8.01 0.04 9.21 Vu<PhiVc/2 rt Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 7.08 8.50 -0.49 0.49 7.95 0.04 9-21 Vu<PhiVc/2 At Reqd 9.€ 9.2 0.0 0.0 +W+1.60H 1 7.21 8.50 -0.55 0.55 7.88 0.05 9.21 Vu<PhiVc/2 >t Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 7.34 8.50 -0.61 0.61 7.80 0.06 9.21 Vu<PhiVc/2 At Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 7.48 8.50 -0.67 0.67 7.72 0.06 9.22 Vu<PhiVc/2 >t Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 7.61 8.50 -0.73 0.73 7.63 0.07 9.22 Vu<PhiVc/2 A Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 7.74 8.50 -0.79 0.79 7.53 0.07 9.22 Vu<PhiVc/2 At Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 7.87 8.50 -0.85 0.85 7.42 0.08 9.22 Vu<PhiVc/2 At Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 8.00 8.50 -0.91 0.91 7.30 0.09 9.23 Vu<PhiVc/2 At Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 8.13 8.50 -0.97 0.97 7.18 0.10 9.23 Vu<PhiVc/2 At Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 8.26 8.50 -1.03 1.03 7.05 0.10 9.23 Vu<PhiVc/2 At Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 8.39 8.50 -1.09 1.09 6.91 0.11 9.23 Vu<PhiVc/2 A Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 8.52 8.50 -1.15 1.15 6.76 0.12 9.24 Vu<PhiVc/2 A Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 8.66 8.50 -1.21 1.21 6.61 0.13 9.24 Vu<PhiVc/2 A Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 8.79 8.50 -1.27 1.27 6.44 0.14 9.25 Vu<PhiVc/2 At Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 8.92 8.50 -1.33 1.33 6.27 0.15 9.25 Vu<PhiVc/2 A Reqd 9.E 9.2 0.0 0.0 +W+1.60H 1 9.05 8.50 -1.39 1.39 6.09 0.16 9.25 Vu<PhiVc/2 A Reqd 9.€ 9.3 0.0 0.0 +W+1.60H 1 9.18 8.50 -1.45 1.45 5.91 0.17 9.26 Vu<PhiVc/2 At Reqd 9.E 9.3 0.0 0.0 +W+1.60H 1 9.31 8.50 -1.51 1.51 5.71 0.19 9.26 Vu<PhiVc/2 At Reqd 9.E 9.3 0.0 0.0 +W+1.60H 1 9.44 8.50 -1.57 1.57 5.51 0.20 9.27 Vu<PhiVc/2 At Reqd 9.E 9.3 0.0 0.0 +W+1.60H 1 9.57 8.50 -1.63 1.63 5.30 0.22 9.27 Vu<PhiVc/2 At Reqd 9.E 9.3 0.0 0.0 +W+1,60H 1 9.70 8.50 -1.69 1.69 5-08 0.24 9.28 Vu<PhiVc/2 A Reqd 9.E 9.3 0.0 0.0 +W+1,60H 1 9.84 8.50 -1.75 1.75 4.86 0.26 9.29 Vu<PhiVc/2 A Reqd 9.E 9.3 0.0 0.0 +W+1.60H 1 9.97 8.50 -1.81 1.81 4.62 028 9.30 Vu<PhiVc/2 t Reqd 9.E 9.3 0.0 0-0 +W+1.60H 1 10.10 8.50 -1.87 1.87 4.38 0.30 9.31 Vu<PhiVc/2 At Reqd 9.E 9.3 0.0 0.0 +W+1.60H 1 10.23 8.50 -1.93 1.93 4.13 0.33 9.32 Vu<PhiVc/2 A Reqd 9.E 9.3 0.0 0.0 +W+1.60H 1 10.36 8.50 -1.99 1.99 3.88 0.36 9.33 Vu<PhiVc/2 A Reqd 9.E 9.3 0.0 0.0 +W+1.60H 1 10.49 8.50 -2.05 2.05 3.61 0.40 9.34 Vu<PhiVc/2 At Reqd 9.E 9.3 0.0 0.0 +W+1.60H 1 10.62 8.50 -2.11 2.11 3.34 0.45 9.36 Vu<PhiVc/2 At Reqd 9.E 9.4 0.0 0.0 +W+1.60H 1 10.75 8.50 -2.17 2.17 3.06 0.50 9.38 Vu<PhiVc/2 At Reqd 9.E 9.4 0.0 0.0 +W+1.60H 1 10.89 8.50 -2.23 2.23 2.77 0.57 9.41 Vu<PhiVc/2 At Reqd 9.E 9.4 0.0 0.0 +W+1.60H 1 11.02 8.50 -2.29 2.29 2.47 0.66 9.44 Vu<PhiVc/2 A Reqd 9.€ 9.4 0.0 0.0 +W+1.60H 1 11.15 8.50 -2.35 2.35 2.17 0.77 9.48 Vu<PhiVc/2 A Reqd 9.E 9.5 0.0 0.0 +W+1.60H 1 11.28 8.50 -2.41 2.41 1.86 0.92 9.54 Vu<PhiVc/2 A Reqd 9.E 9.5 0.0 0.0 +W+1.60H 1 11.41 8.50 -2.47 2.47 1.54 1.00 9.57 Vu<PhiVc/2 At Reqd 9.E 9.6 0.0 0.0 +W+1.60H 1 11.54 8.50 -2.53 2.53 1.21 1.00 9.57 Vu<PhiVc/2 A Reqd 9.E 9.6 0.0 0.0 +W+1.60H 1 11.67 8.50 -2-59 2.59 0.87 1.00 9.57 Vu<PhiVc/2 A Reqd 9.E 9.6 0.0 0.0 +W+1.60H 1 11.80 8:50 -2.65 2.65 0.53 1.00 9.57 Vu<PhiVc/2 A Reqd 9.E 9.6 0.0 0.0 +W+1.60H 1 11.93 8.50 -2.71 2.71 0.18 1.00 9.57 Vu<PhiVc/2 A Reqd 9.E 9.6 0.0 0.0 Maximum Forces & Stresses for Load Combinations Load Combination Location(ft) Bending Stress Results (k-ft) Segment Span# along Beam Mu:Max Phi*Mnx Stress Ratio S'=X.r-k,r,BENDING Envelope Span#1 1 12.000 8-22 8.47 0.97 +1.60H Span#1 1 12.000 1.56 8.47 0.18 +0.50W+1.60H Span#1 12.000 4.89 8-47 0.58 +W+1.60H Span 4 1 1 12.000 8.22 8.47 0.97 +E+1.60H Span 4 1 1 12.000 7.68 8.47 0.91 +W+0.90H Span 4 1 12.000 7.53 8.47 0.89 +E+0.90H Span 4 1 1 12.000 6.99 8.47 0.83 84/166 Project Title: Engineer: Project ID: Project Descr: Concrete Beam Prolet.t F lei 2101 p'u:r _s. w 2C,2022. c6 E '' f'"NCO'''saUL?`INGENGNw_r^-.S, _.:. --- W._rr._..3 -'S..•- *9.�,..�... DESCRIPTION: K-H conc.wall horiz. at soil Overall Maximum Deflections Load Combination Span Max"-"Defl (in)_ocation in Span (ft Load Combination Max."+"Defl (in_ocation in Span (ft phi Oniy 1 0.0553 6.000 0.0000 0.000 85/166 • Project Title: Engineer: Project ID: Project Descr: Concrete Been) irsvq.''Fitt- 2101';plan i.l,esr ssii_ ....? f,22.ec.,a .. LIB S __ ._. � 4..,: 1�� 2NCPN._ERS Et-ILK:At. a3-20:2.. DESCRIPTION: K-H cone. piers CODE REFERENCES Calculations per ACI 318-14, IBC 2018,CBC 2019,ASCE 7-16 Load Combination Set:ASCE 7-10 Material Properties fc 4.0 ksi Phi Values Flexure 0.90 fr= fc/2 '7.50 = 474.342 psi Shear: 0.750 ""'"""" • y,Density = 145.0 Pcf l31 = 0.850 X LtWt Factor = 1.0 Elastic Modulus= 3,122.0 ksi Fy Stirrups 40.0 ksi fy-Main Rebar= 60.0 ksi SE ri =s = 29,000.0 ksi E-Main Rebar = 29,000.0 ksi tirruf Size# 3 Number of Resisting Legs Per Stimip= 2 • c — aM tz r ...._. ,,,emu - ..._.........,_.... .«t: <. .,..�,�, .,.:.. ., 20.50 ft 24-wx10-h Cross Section&Reinforcing Details Rectangular Section, Width=24.0 in, Height= 10.0 in Span#1 Reinforcing.... 4-#6 at 1.50 in from Bottom,from 0.0 to 20.50 ft in this span 4-#6 at 1.50 in from Top,from 0.0 to 20.50 ft in this spa Load for Span Number 1 Uniform Load: W=0.2930, E=0.2740 k/ft, Tributary Width=1.0 ft DESIGN SUMMARY Maximum Bending Stress Ratio = 0.248 . Section used for this span Typical Section Mu:Applied 15.392 k-ft Mn*Phi:Allowable 62.181 k-ft Location of maximum on span 10.269 ft Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.186 in Ratio= 1319 >=360.0 E Only Max Upward Transient Deflection 0.000 in Ratio= 0 <360.0 Overall MAXimum Envelope Max Downward Total Deflection 0.186 in Ratio= 1319 >=180.0 Span:1 :W Only Max Upward Total Deflection 0.000 in Ratio= 0 <180.0 Span:1 :W Only Vertical Reactions Support notation:Far left is#1 Load Combination Support 1 Support 2 Overall MAXimi„m 3.003 3.003 Overall MINimum 1.351 1.351 +0.60W 1.802 1.802 E Only'0.70 1.966 1.966 +0.450W 1.351 1.351 E Only*0.5250 1.474 1.474 W Only 3.003 3.003 E Only 2.808 2.809 86/166 Project Title: Engineer: Project ID: Project Descr: Concrete Beam Project File:21013 plan check calcs 4-20-2022.ec6 LIC# K'A-06014171,Build:20 223.31 HAYDEN CONSULTING ENGINEEi'S c)E"Er<;ALC INC 1983-2022' DESCRIPTION: K-H conc. piers Detailed Shear Information • Span Distance 'd' Vu (k) Mu d'Vu/Mu Phi*Vc Comment Phi*Vs Phi*Vn Spacing(in) Load Combination Number (ft) (in) Actual Design (k-ft) (k) (k) (k) Req'Suggest W Only 1 0.00 8.50 3.00 ..s3.00 0.00 1.00 -21.69 ....Vu<PhiVc/2 ARegd 9.E 21.7 _0..0. ..,b.0. W Only 1 0.22 8.50 2.94 2.94 0.67 1.00 21.69 Vu<PhiVc/2 At Reqd 9.E 21.7 0.0 0.0 W Only 1 0.45 8.50 2.87 2.87 1.32 1,00 21.69 Vu<PhiVc/2 A Reqd 9.E 21.7 0.0 0.0 W Only 1 0.67 8.50 2.81 2.81 1.95 1.00 21.69 Vu<PhiVc/2 At Reqd 9.E 21.7 0.0 0.0 W Only 1 0.90 8.50 2.74 2.74 2.57 0.75 20.87 Vu<PhiVc/2 At Reqd 9.E 20.9 0.0 0.0 W Only 1 1.12 8.50 2.68 2.68 3.18 0.60 20.35 Vu<PhiVc/2 it Reqd 9.E 20.4 0.0 0.0 W Only 1 1.34 8.50 2.61 2.61 3.77 0.49 20.00 Vu<PhiVc/2 At Reqd 9.E 20.0 0.0 0.0 W Only 1 1.57 8.50 2.54 2.54 4.35 0.41 19.75 Vu<PhiVc/2 At Reqd 9.E 19.8 0.0 0.0 W Only 1 1.79 8.50 2.48 2.48 4.91 0.36 19.56 Vu<PhiVc/2 At Reqd 9.E 19.6 0.0 0.0 W Only 1 2.02 8.50 2.41 2.41 5.46 0.31 19.42 Vu<PhiVc/2 it Reqd 9E 19.4 0.0 0.0 W Only 1 2.24 8.50 2.35 2.35 5.99 0.28 19.30 Vu<PhiVc/2 it Reqd 9.E 19.3 0.0 0.0 W Only 1 2.46 8.50 2.28 2.28 6.51 0.25 19.20 Vu<PhiVc/2 At Reqd 9.E 19.2 0.0 0.0 W Only 1 2.69 8.50 2.22 2.22 7.02 0.22 19.12 Vu<PhiVc/2 At Reqd 9.E 19.1 0.0 0.0 W Only 1 2.91 8.50 2.15 2.15 7.50 0.20 19.06 Vu<PhiVc/2 At Reqd 9.E 19.1 0.0 0.0 W Only 1 3.14 8.50 2.08 2.08 7.98 0.19 19.00 Vu<PhiVc/2 At Reqd 9.E 19.0 0.0 0.0 W Only 1 3.36 8.50 2.02 2.02 8.44 0.17 18.94 Vu<PhiVc/2 >t Reqd 9.E 18.9 0.0 0.0 W Only 1 3.58 8.50 1.95 1.95 8.88 0.16 18.90 Vu<PhiVc/2 >t Reqd 9.E 18.9 0.0 0.0 W Only 1 3.81 8.50 1.89 1.89 9.31 0.14 18.86 Vu<PhiVc/2 At Reqd 9.E 18.9 0.0 0.0 W Only 1 4.03 8.50 1.82 1.82 9.73 0.13 18.82 Vu<PhiVc/2 At Reqd 9.E 18.8 0.0 0.0 W Only 1 4.26 8.50 1.76 1.76 10.13 0.12 18.79 Vu<PhiVc/2 At Reqd 9.E 18.8 0.0 0.0 W Only 1 4.48 8.50 1.69 1.69 10.52 0.11 18.76 Vu<PhiVc/2 t Reqd 9.E 18.8 0.0 0.0 W Only 1 4.70 8.50 1.62 1.62 10.89 0.11 18.73 Vu<PhiVc/2 >t Reqd 9,E 18.7 0.0 0.0 W Only 1 4.93 8.50 1.56 1.56 11.24 0.10 18.71 Vu<PhiVc/2 A Reqd 9.E 18.7 0.0 0.0 W Only 1 5.15 8.50 1.49 1.49 11.59 0.09 18.69 Vu<PhiVc/2 A Reqd 9.E 18.7 0.0 0.0 W Only 1 5.38 8.50 1.43 1.43 11.91 0.08 18.67 Vu<PhiVc/2 it Reqd 9.E 18.7 0.0 0.0 W Only 1 5.60 8,50 1.36 1.36 12.23 0.08 18.65 Vu<PhiVc/2 it Reqd 9.E 18.6 0.0 0.0 W Only 1 5.83 8.50 1.30 1.30 12.52 0.07 18.63 Vu<PhiVc/2 it Reqd 9.E 18.6 0.0 0.0 W Only 1 6.05 8.50 1.23 1.23 12,81 0.07 18.61 Vu<PhiVc/2 >t Reqd 9.E 18.6 0.0 0.0 W Only 1 6.27 8.50 1.17 1.17 13.07 0.06 18.59 Vu<PhiVc/2 >t Reqd 9.E 18.6 0.0 0.0 W Only 1 6.50 8.50 1.10 1.10 13.33 0.06 18.58 Vu<PhiVc/2 >t Reqd 9.E 18.6 0.0 0.0 W Only 1 6.72 8.50 1.03 1.03 13.57 0.05 18.56 Vu<PhiVc/2 }t Reqd 9.E 18.6 0.0 0.0 W Only 1 6.95 8.50 0.97 0.97 13.79 0.05 18.55 Vu<PhiVc/2 >t Reqd 9.E 18.5 0.0 0.0 W Only 1 7.17 8.50 0.90 0.90 14.00 0.05 18.54 Vu<PhiVc/2 it Reqd 9.E 18.5 0.0 0.0 W Only 1 7.39 8.50 0.84 0.84 14.20 0.04 18.52 Vu<PhiVc/2 A Reqd 9.E 18.5 0.0 0.0 W Only 1 7.62 8.50 0.77 0.77 14.38 0.04 18.51 Vu<PhiVc/2 A Reqd 9.E 18.5 0.0 0.0 W Only 1 7.84 8.50 0.71 0.71 14.54 0.03 18.50 Vu<PhiVc/2 >t Reqd 9.E 18.5 0.0 0.0 W Only 1 8.07 8.50 0.64 0.64 14.69 0.03 18.49 Vu<PhiVc/2 it Reqd 9.E 18.5 0.0 0.0 W Only 1 8.29 8.50 0.57 0.57 14.83 0.03 18.48 Vu<PhiVc/2 A Reqd 9.E 18.5 0.0 0.0 W Only 1 8.51 8.50 0.51 0.51 14.95 0.02 18.47 Vu<PhiVc/2 A Reqd 9.E 18.5 0.0 0.0 W Only 1 8.74 8.50 0.44 0.44 15.06 0.02 18.45 Vu<PhiVc/2 At Reqd 9.E 18.5 0.0 0.0 W Only 1 8.96 8.50 0.38 0.38 15.15 0.02 18.44 Vu<PhiVc/2 A Reqd 9.E 18.4 0.0 0.0 W Only 1 9.19 8.50 0.31 0.31 15.23 0,01 18.43 Vu<PhiVc/2 A Reqd 9.E 18.4 0.0 0.0 W Only 1 9.41 8.50 0.25 0.25 15.29 0.01 18.42 Vu<PhiVc/2 At Reqd 9.E 18.4 0.0 0.0 W Only 1 9.63 8.50 0.18 0.18 15.34 0.01 18.41 Vu<PhiVc/2 At Reqd 9.E 18.4 0.0 0.0 W Only 1 9.86 8.50 0.11 0.11 15.37 0.01 18.40 Vu<PhiVc/2 At Reqd 9.E 18.4 0.0 0.0 W Only 1 10.08 8.50 0.05 0.05 15.39 0.00 18.39 Vu<PhiVc/2 A Reqd 9.E 18.4 0.0 0.0 W Only 1 10.31 8,50 -0.02 0.02 15.39 0.00 18.39 Vu<PhiVc/2 1t Reqd 9.E 18.4 0.0 0.0 W Only 1 10.53 8.50 -0.08 0.08 15.38 0.00 18.40 Vu<PhiVc/2 At Reqd 9.E 18.4 0.0 0.0 W Only 1 10.75 8.50 -0.15 0.15 15.35 0.01 18.41 Vu<PhiVc/2 At Reqd 9.E 18.4 0.0 0.0 W Only 1 10.98 8.50 -0.21 0.21 15.31 0.01 18.42 Vu<PhiVc/2 At Reqd 9.E 18.4 0.0 0.0 W Only 1 11.20 8.50 -0.28 0.28 15.26 0.01 18.43 Vu<PhiVc/2 1t Reqd 9.E 18.4 0.0 0.0 W Only 1 11.43 8.50 -0.34 0.34 15.19 0,02 18.44 Vu<PhiVc/2 At Reqd 9.E 18.4 0.0 0.0 W Only 1 11.65 8.50 -0.41 0.41 15.10 0.02 18.45 Vu<PhiVc/2 )t Reqd 9.E 18.4 0.0 0.0 W Only 1 11.87 8.50 -0.48 0.48 15.01 0.02 18.46 Vu<PhiVc/2 A Reqd 9.E 18.5 0.0 0.0 W Only 1 12.10 8.50 -0.54 0.54 14.89 0,03 18.47 Vu<PhiVc/2 At Reqd 9.E 18.5 0.0 0.0 W Only 12.32 8.50 -0.61 0.61 14.76 0.03 18.48 Vu<PhiVc/2 >t Reqd 9.E 18.5 0.0 0.0 W Only 1 12.55 8.50 -0.67 0.67 14.62 0.03 18.49 Vu<PhiVc/2 >t Reqd 9.E 18 5 0.0 0.0 87/166 Project Title: Engineer: Project ID: Project Descr: Concrete 0 Pro ,:._ ._ fan check€ ic, 4-20-2022, n'= .,...tia f,'k,.. EIti E?'s w,.aLl. .981'2'01iF DESCRIPTION: K-H conc. piers Detailed Shear Information Span Distance 'd' Vu (k) Mu d*Vu/Mu Phi*Vc Comment Phi*Vs Phi*Vn Spacing(in) Load Combination Number (ft) (in) Actual Design (k-ft) (k) (k) (k) Req'd;uggest W Only 1 12.77 8.50 0.74 0.74 14.46 0.04 18.50 ...VU<PhiVc/2 )t Reqd 9.E 18.5 _0.0 0.0 W Only 1 12.99 8.50 -0.80 0.80 14.29 0.04 18.52 Vu<PhiVc/2 rt Reqd 9.E 18.5 0.0 0.0 W Only 1 13.22 8.50 -0.87 0.87 14.10 0.04 18.53 Vu<PhiVc/2 At Reqd 9.E 18.5 0.0 0.0 W Only 1 13.44 8.50 -0.94 0.94 13.90 0.05 18.54 Vu<PhiVc/2 ft Reqd 9.E 18.5 0.0 0.0 W Only 1 13.67 8.50 -1.00 1.00 13.68 0.05 18.56 Vu<PhiVc/2 rt Reqd 9.E 18.6 0.0 0.0 W Only 1 13.89 8.50 -1.07 1.07 13.45 0.06 18.57 Vu<PhiVc/2 rt Reqd 9.E 18.6 0.0 0.0 W Only 1 14.11 8.50 -1.13 1.13 13.20 0.06 18.59 Vu<PhiVc/2 >t Reqd 9.E 18.6 0.0 0.0 W Only 1 14.34 8.50 -1.20 1.20 12.94 0.07 18.60 Vu<PhiVc/2 At Reqd 9.E 18.6 0.0 0.0 W Only 1 14.56 8.50 -1.26 1.26 12.67 0.07 18.62 Vu<PhiVc/2 At Reqd 9.E 18.6 0.0 0.0 W Only 1 14.79 8.50 -1.33 1.33 12.38 0.08 18.64 Vu<PhiVc/2 At Reqd 9.E 18.6 0.0 0.0 W Only 1 15.01 8.50 -1.39 1.39 12.07 0.08 18.66 Vu<PhiVc/2 At Reqd 9.E 18.7 0.0 0.0 W Only 1 15.23 8.50 -1.46 1.46 11.75 0.09 18.68 Vu<PhiVc/2 At Reqd 9.E 18.7 0.0 0.0 W Only 1 15.46 8.50 -1.53 1.53 11.42 0.09 18.70 Vu<PhiVc/2 At Reqd 9.E 18.7 0.0 0.0 W Only 1 15.68 8.50 -1.59 1.59 11.07 0.10 18.72 Vu<PhiVc/2 At Reqd 9.E 18.7 0.0 0.0 W Only 1 15.91 8.50 -1.66 1.66 10.70 0.11 18.75 Vu<PhiVc/2 At Reqd 9.E 18.7 0.0 0.0 W Only 1 16.13 8.50 -1.72 1.72 10.32 0.12 18.78 Vu<PhiVc/2 rt Reqd 9.E 18.8 0.0 0.0 W Only 1 16.36 8.50 -1.79 1.79 9.93 0.13 18.81 Vu<PhiVc/2 >t Reqd 9.E 18.8 0.0 0.0 W Only 1 16.58 8.50 -1.85 1.85 9.52 0.14 18.84 Vu<PhiVc/2 rt Reqd 9.E 18.8 0.0 0.0 W Only 1 16.80 8,50 -1.92 1.92 9.10 0.15 18.88 Vu<PhiVc/2 At Reqd 9.E 18.9 0.0 0.0 W Only 1 17.03 8.50 -1.99 1.99 8.66 0.16 18.92 Vu<PhiVc/2 At Reqd 9.E 18.9 0.0 0.0 W Only 1 17.25 8.50 -2.05 2.05 8.21 0.18 18.97 Vu<PhiVc/2 rt Reqd 9.E 19,0 0.0 0.0 W Only 1 17.48 8.50 -2.12 2.12 7.74 0.19 19.02 Vu<PhiVc/2 rt Reqd 9.E 19.0 0.0 0.0 W Only 1 17.70 8.50 -2.18 2.18 7.26 0.21 19.09 Vu<PhiVc/2 >t Reqd 9.E 19.1 0.0 0.0 W Only 1 17,92 8.50 -2.25 2.25 6.77 0.24 19.16 Vu<PhiVc/2 rt Reqd 9.E 19.2 0,0 0.0 W Only 1 18.15 8.50 -2.31 2.31 6.25 0.26 19.25 Vu<PhiVc/2 >t Reqd 9.E 19.3 0.0 0.0 W Only 1 18.37 8.50 -2.38 2.38 5.73 0.29 19.36 Vu<PhiVc/2 >t Reqd 9.E 19.4 0,0 0.0 W Only 1 18.60 8.50 -2.45 2.45 5.19 0.33 19.49 Vu<PhiVc/2 >t Reqd 9.E 19.5 0.0 0.0 W Only 1 18.82 8.50 -2.51 2.51 4.63 0.38 19.65 Vu<PhiVc/2 At Reqd 9.E 19.7 0.0 0.0 W Only 1 19.04 8.50 -2.58 2.58 4.06 0.45 19.87 Vu<PhiVc/2 At Reqd 9.E 19.9 0.0 0.0 W Only 1 19.27 8.50 -2.64 2.64 3.48 0.54 20.16 Vu<PhiVc/2 >t Reqd 9.E 20.2 0.0 0.0 W Only 1 19.49 8.50 -2.71 2.71 2.88 0.67 20.58 Vu<PhiVc/2 >t Reqd 9.E 20.6 0.0 0.0 W Only 1 19.72 8.50 -2.77 2.77 2.26 0.87 21.25 Vu<PhiVc/2 A Reqd 9.E 21.2 0.0 0.0 W Only 1 19.94 8.50 -2.84 2.84 1.64 1.00 21.69 Vu<PhiVc/2 At Reqd 9.E 21.7 0.0 0.0 W Only 1 20.16 8.50 -2.90 2.90 0.99 1.00 21.69 Vu<PhiVc/2 At Reqd 9.E 21.7 0.0 0.0 W Only 1 20.39 8.50 -2.97 2.97 0.33 1.00 21.69 Vu<PhiVc/2 rt Reqd 9.E 21.7 0.0 0.0 Maximum Forces&Stresses for Load Combinations Load Combination Location(ft) Bending Stress Results k-ft Segment Span# along Beam Mu:Max Phi*Mnx Stress Ratio MAXimum BENDING Envelope Span#1 1 20.500 15.39 62.18 0.25 Span#1 1 20.500 15.39 62.18 0.25 +0.50W Span#1 1 20.500 7.70 62.18 0.12 W Only Span#1 1 20.500 15.39 62.18 0.25 E Only Span#1 1 20.500 14.39 62.18 0.23 Overall Maximum Deflections Load Combination Span Max."-"Defl (in)_ocation in Span (ft Load Combination \lax."+"Defl (in.ocation in Span (ft W Only 1 0.1864 10.250 0.0000 0.000 88/166 AL\ ti‘g ` } ) , °r - --4& • L. . tr HAYDE BY ENGINEERS - _ ___ REV DATE STRUCTURAL I CIVIL JOB NO...._._............_...__._. _. (503) 968-9994 p (503) 968-8444 f __,,,, _. __.__......._.....__.....___.._. SHEET ....._._.._..._................. OF_................._........._$9'11.6.6 Project Title: Engineer: Project ID: Project Descr: Concrete Beam Project Fite:.21013 plan heck u, 20 2 2k.ed6 c NSL,Y i*d*. ENSW:'ERS::. (f S .. -t a ,722 DESCRIPTION: C-A conc. piers CODE REFERENCES Calculations per ACI 318-14, IBC 2018,CBC 2019,ASCE 7-16 Load Combination Set:ASCE 7-10 Material Properties fc 4.0 ksi (I) Phi Values Flexure: 0.90 fr= fc I2 "7.50 = 474.342 psi Shear: 0.750 Ir Density = 145.0 pcf 131 = 0.850 X, LtWt Factor = 1.0 Elastic Modulus= 3,122.0 ksi Fy-Stirrups 40.0 ksi fy Main Rebar= 60.0 ksi E"Stornips = 29,000.0 ksi Stirrup Bar Size# 3 E-Main Rebar = 29,000.0 ksi Number of Resisting Legs Per Stirrup= 2 .�. ,...ti'.E O..?4 22.50 ft 24"wx1O"h Cross Section&Reinforcing Details Rectangular Section, Width=24.0 in, Height= 10.0 in Span#1 Reinforcing.... 4-#6 at 1.50 in from Bottom,from 0.0 to 22.50 ft in this span 4-#6 at 1.50 in from Top,from 0.0 to 22.50 ft in this spa Load for Span Number 1 Uniform Load : W=0.2930, E=0.2740 k/ft, Tributary Width=1.0 ft DESIGN SUMMARY raxi r€ Beating Stress Ratio 0.298 : 1 Section used for this span Typical Section Mu:Applied 18.541 k-ft Mn*Phi:Allowable 62.181 k-ft Location of maximum on span 11.230 ft Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.330 in Ratio= 817 >=360.0 E Only Max Upward Transient Deflection 0.000 in Ratio= 0 <360.0 Overall MAXimum Envelope Max Downward Total Deflection 0.330 in Ratio= 817 >=180.0 Span:1 :W Only Max Upward Total Deflection 0.000 in Ratio= 0 <180.0 Span: 1 :W Only Vertical Reactions Support notation:Far left is#1 Load Combination Support 1 Support 2 ',MAX ...... __.3.296 3.296.. Overall MINimum 1.483 1.483 +0.60W 1.978 1.978 E Only*0.70 2.158 2.158 +0.450W 1.483 1.483 E Only*0.5250 1.618 1.618 W Only 3.296 3.296 E Only 3.082 3.083 90/166 Project Title: Engineer: Project ID: Project Descr: Concrete Beam Project File:21013 plan check calcs 4-20-2022.ec6 L( a:KW-06014111 Bun � a:20.22.3 37 ,„,„ i%3C2)'`, „ eivEv ,ALC iNC 1983-2022 DESCRIPTION: C-A conc. piers Detailed Shear Information Span Distance 'd' Vu (k) Mu d*Vu/Mu Phi*Vc Comment Phi*Vs Phi*Vn Spacing(in) Load Combination Number (ft) (in) Actual Design (k-ft) (k) (k) (k) Req'Suggest W Only 1 0.00 8.50 3.30 3.30 0.00 1.00 21.69 ..,Vu<PhiVc/2 st Reqd 9.E 21.7 0.0 0.0 W Only 1 0.25 8.50 3.22 3.22 0.80 1.00 21.69 Vu<PhiVc/2 At Reqd 9.E 21.7 0.0 0.0 W Only 1 0.49 8.50 3.15 3.15 1.59 1.00 21.69 Vu<PhiVc/2 At Reqd 9.E 21.7 0.0 0.0 W Only 1 0.74 8.50 3.08 3.08 2.35 0.93 21.45 Vu<PhiVc/2 rt Reqd 9.E 21.4 0.0 0.0 W Only 1 0.98 8.50 3.01 3.01 3.10 0.69 20.65 Vu<PhiVcJ2 At Reqd 9.E 20.7 0.0 0.0 W Only 1 1.23 8.50 2.94 2.94 3.83 0.54 20.18 Vu<PhiVc/2 At Reqd 9.E 20.2 0.0 0.0 W Only 1 1.48 8.50 2.86 2.86 4.54 0.45 19.86 Vu<PhiVc/2 At Reqd 9.E 19.9 0.0 0.0 W Only 1 1.72 8.50 2.79 2.79 5.24 0.38 19.63 Vu<PhiVc/2 ri Reqd 9.E 19.6 0.0 0.0 W Only 1 1.97 8.50 2.72 2.72 5.92 0.33 19.46 Vu<PhiVc/2 At Reqd 9.E 19.5 0.0 0.0 W Only 1 2.21 8.50 2.65 2.65 6.58 0.29 19.33 Vu<PhiVc/2 At Reqd 9.E 19.3 0.0 0.0 W Only 1 2.46 8.50 2.58 2.58 7.22 0.25 19.22 Vu<PhiVc/2 At Reqd 9_E 19.2 0.0 0.0 W Only 1 2.70 8.50 2.50 2.50 7.84 0,23 19.13 Vu<PhiVc/2 At Reqd 9.E 19.1 0.0 0.0 W Only 1 2.95 8.50 2.43 2.43 8.45 0.20 19.06 Vu<PhiVc/2 At Reqd 9.E 19,1 0.0 0.0 W Only 1 3.20 8.50 2.36 2.36 9.04 0.18 19.00 Vu<PhiVc/2 A Reqd 9.E 19.0 0.0 0.0 W Only 1 3.44 8.50 2.29 2.29 9.61 0.17 18.94 Vu<PhiVc/2 At Reqd 9.E 18.9 0.0 0.0 W Only 1 3.69 8.50 2.22 2.22 10.17 0.15 18.89 Vu<PhiVc/2 rt Reqd 9.E 18.9 0.0 0.0 W Only 1 3.93 8.50 2.14 2.14 10.70 0.14 18.85 Vu<PhiVc/2 At Reqd 9,E 18.9 0.0 0.0 W Only 1 4.18 8.50 2.07 2.07 11.22 0.13 18.82 Vu<PhiVc/2 rt Reqd 9.E 18.8 0.0 0.0 W Only 1 4.43 8.50 2.00 2.00 11.72 0.12 18.78 Vu<PhiVc/2 At Reqd 9.E 18.8 0.0 0.0 W Only 1 4.67 8.50 1.93 1.93 12.20 0.11 18.75 Vu<PhiVc/2 At Reqd 9.E 18.8 0.0 0.0 W Only 1 4.92 8.50 1.86 1.86 12.67 0.10 18.73 Vu<PhiVc/2 At Reqd 9.E 18.7 0.0 0.0 W Only 1 5.16 8.50 1.78 1.78 13.12 0.10 18.70 Vu<PhiVc/2 At Reqd 9.E 18.7 0.0 0.0 W Only 1 5.41 8.50 1.71 1.71 13.54 0.09 18.68 Vu<PhiVc/2 At Reqd 9.E 18.7 0.0 0.0 W Only 1 5.66 8.50 1.64 1.64 13.96 0.08 18.66 Vu<PhiVc/2 At Reqd 9.E 18.7 0.0 0.0 W Only 11, 5.90 8.50 1.57 1.57 14.35 0.08 18.64 Vu<PhiVc/2 rt Reqd 9.E 18.6 0.0 0.0 W Only 1 6.15 8.50 1.50 1.50 14.73 0.07 18.62 Vu<PhiVc/2 At Reqd 9.E 18.6 0.0 0.0 W Only 1 6.39 8.50 1.42 1.42 15.09 0.07 18.61 Vu<PhiVc/2 At Reqd 9.E 18.6 0.0 0.0 W Only 1 6.64 8.50 1.35 1.35 15.43 0.06 18.59 Vu<PhiVc/2 >t Reqd 9.E 18.6 0.0 0.0 W Only 1 6.89 8.50 1.28 1.28 15.75 0.06 18.58 Vu<PhiVc/2 At Reqd 9.E 18.6 0.0 0.0 W Only 1 7,13 8.50 1.21 1.21 16.06 0.05 18.56 Vu<PhiVc/2 At Reqd 9.E 18.6 0.0 0.0 W Only 1 7.38 8.50 1,13 1.13 16.34 0.05 18.55 Vu<PhiVc/2 At Reqd 9.E 18.5 0.0 0.0 W Only 1 7.62 8.50 1.06 1.06 16.61 0.05 18.54 Vu<PhiVc/2 At Reqd 9.E 18.5 0.0 0.0 W Only 1 7.87 8.50 0.99 0.99 16.87 0.04 18.52 Vu<PhiVc/2 At Reqd 9.E 18.5 0.0 0.0 W Only 1 8,11 8.50 0.92 0.92 17.10 0.04 18.51 Vu<PhiVc/2 rt Reqd 9,E 18.5 0.0 0.0 W Only 1 8.36 8.50 0.85 0.85 17.32 0.03 18.50 Vu<PhiVc/2 rt Reqd 9.E 18.5 0.0 0.0 W Only 1 8.61 8.50 0.77 0.77 17.52 0.03 18.49 Vu<PhiVc/2 At Reqd 9.E 18.5 0.0 0.0 W Only 1 8.85 8.50 0.70 0.70 17.70 0.03 18.48 Vu<PhiVc/2 At Reqd 9.E 18.5 0.0 0.0 W Only 1 9.10 8.50 0.63 0.63 17.86 0.02 18.47 Vu<PhiVc/2 A Reqd 9.E 18,5 0.0 0.0 W Only 1 9.34 8.50 0.56 0.56 18.01 0.02 18.46 Vu<PhiVc/2 At Reqd 9.E 18.5 0.0 0.0 W Only 1 9.59 8.50 0.49 0.49 18.14 0.02 18.45 Vu<PhiVc/2 At Reqd 9.E 18.4 0.0 0.0 W Only 1 9.84 8.50 0.41 0.41 18,25 0.02 18.44 Vu<PhiVc/2 rt Reqd 9.E 18.4 0.0 0.0 W Only 1 10.08 8.50 0.34 0.34 18.34 0.01 18.43 Vu<PhiVc/2 >t Reqd 9.E 18.4 0.0 0.0 W Only 1 10.33 8.50 0.27 0.27 18.42 0.01 18.42 Vu<PhiVc/2 At Reqd 9.E 18.4 0.0 0.0 W Only 1 10.57 8.50 0.20 0.20 18.47 0.01 18.41 Vu<PhiVc/2 rt Reqd 9.E 18.4 0.0 0.0 W Only 1 10.82 8.50 0.13 0.13 18,51 0.00 18.40 Vu<PhiVc/2 rt Reqd 9.E 18.4 0.0 0.0 W Only 1 11.07 8.50 0.05 0.05 18.54 0.00 18.39 Vu<PhiVc/2 At Reqd 9.E 18.4 0.0 0.0 W Only 1 11.31 8.50 -0.02 0.02 18.54 0.00 18.39 Vu<PhiVc/2 t Reqd 9.E 18.4 0.0 0.0 W Only 1 11.56 8.50 -0.09 0.09 18.53 0.00 18.40 Vu<PhiVc/2 rt Reqd 9.E 18.4 0.0 0.0 W Only 1 11.80 8.50 -0.16 0.16 18.50 0.01 18.41 Vu<PhiVc/2 At Reqd 9.E 18.4 0.0 0.0 W Only 1 12,05 8.50 -0.23 0.23 18.45 0.01 18.42 Vu<PhiVc/2 >t Reqd 9.E 18.4 0.0 0.0 W Only 1 12,30 8.50 -0.31 0.31 18.38 0.01 18.42 Vu<PhiVc/2 >t Reqd 9.E 18.4 0.0 0.0 W Only 1 12.54 8,50 -0.38 0.38 18,30 0.01 18.43 Vu<PhiVc/2 >t Reqd 9.E 18.4 0.0 0.0 W Only 1 12,79 8.50 -0.45 0.45 18.20 0.02 18.44 Vu<PhiVc/2 >t Reqd 9,E 18.4 0.0 0.0 W Only 1 13,03 8.50 -0.52 0.52 18.08 0.02 18.45 Vu<PhiVc/2 rt Reqd 9 E 18.5 0.0 0.0 W Only 1 13.28 8.50 -0.59 0.59 17.94 0.02 18.46 Vu<PhiVc/2 At Reqd 9.E 18.5 0.0 0.0 W Only 1 13..52 8.50 -0.67 0.67 17.78 0 03 18.47 Vu<PhiVc/2 At Reqd 9.E 18.5 0.0 0.0 W Only 1 13,77 8.50 -0 74 0.74 17.61 0 03 18.48 Vu<PhiVc/2 >t Reqd 9.E 18.5 0.0 0.0 91/166 Project Title: Engineer: Project ID: Project Descr: Concrete Beam Project File:21013 plan check calcs 4-20-2022.ec6 LIC :KW-06014171,Build:20.22.3.31 HAYDEN CONSULTING ENGINEERS (c)ENERCALC INC 1983-2022 DESCRIPTION: C-A conc. piers Detailed Shear Information Span Distance 'd' Vu (k) Mu d*Vu/Mu Phi*Vc Comment Phi*Vs Phi*Vn Spacing(in) Load Combination Number (ft) (in) Actual Design (k-ft) (k) (k) (k) Req'Suggest W Only 1 14.02 8,50 -0.81 0.81 17.42 0.03 18.49 -Vu<PhiVc/2 ,t Regd 9.E 18.5 0.0 0.0 W Only 1 14.26 8.50 -0.88 0.88 17.21 0.04 18.51 Vu<PhiVc/2 A Reqd 9.E 18.5 0.0 0.0 W Only 1 14.51 8.50 -0.95 0.95 16,99 0.04 18.52 Vu<PhiVc/2 >t Reqd 9,E 18.5 0.0 0.0 W Only 1 14.75 8.50 -1.03 1.03 16.74 0.04 18.53 Vu<PhiVc/2 rt Reqd 9.E 18.5 0.0 0.0 W Only 1 15.00 8.50 -1.10 1.10 16.48 0.05 18.54 Vu<PhiVc/2 >t Reqd 9.E 18.5 0.0 0.0 W Only 1 15.25 8.50 -1.17 1.17 16.20 0..05 18.55 Vu<PhiVc/2 >t Reqd 9.E 18.6 0.0 0.0 W Only 1 15.49 8.50 -1.24 1.24 15.91 0.06 18.57 Vu<PhiVc/2 A Reqd 9.E 18.6 0.0 0.0 W Only 1 15.74 8.50 -1.31 1.31 15.59 0.06 18.58 Vu<PhiVc/2 t Reqd 9.E 18.6 0.0 0.0 W Only 1 15.98 8.50 -1.39 1.39 15.26 0.06 18.60 Vu<PhiVc/2 A Reqd 9.E 18.6 0.0 0.0 W Only 1 16.23 8.50 -1.46 1.46 14.91 0.07 18.61 Vu<PhiVc/2 >t Reqd 9.E 18.6 0.0 0.0 W Only 1 16.48 8.50 -1.53 1.53 14.54 0.07 18.63 Vu<PhiVc/2 >t Reqd 9.E 18.6 0.0 0.0 W Only 1 16.72 8.50 -1.60 1.60 14.16 0.08 18.65 Vu<PhiVc/2 rt Reqd 9.E 18.7 0.0 0.0 W Only 1 16.97 8.50 -1.68 1.68 13.75 0.09 18.67 Vu<PhiVc/2 >t Reqd 9.E 18.7 0.0 0.0 W Only 1 17.21 8.50 -1.75 1.75 13.33 0.09 18.69 Vu<PhiVc/2 >t Regd,9.E 18.7 0.0 0.0 W Only 1 17.46 8.50 -1.82 1.82 12.89 0.10 18.72 Vu<PhiVd2' >t Reqd 9.E 18.7 0.0 0.0 W Only 1 17.70 8.50 -1.89 1.89 12.44 0.11 18.74 Vu<PhiVc/2 rt Reqd 9.E 18.7 0.0 0.0 W Only 1 17.95 8.50 -1.96 1.96 11.96 0.12 18.77 Vu<PhiVc/2 rt Reqd 9.E 18.8 0.0 0.0 W Only 1 18.20 8,50 -2.04 2.04 11.47 0.13 18.80 Vu<PhiVc/2 ?t Reqd 9.E 18.8 0.0 0.0 W Only 1 18.44 8.50 -2.11 2.11 10.96 0.14 18.83 Vu<PhiVc/2 >t Reqd 9.E 18.8 0.0 0.0 W Only 1 18.69 8.50 -2.18 2.18 10.44 0.15 18.87 Vu<PhiVcl2 rt Reqd 9.E 18.9 0.0 0.0 W Only 1 18.93 8.50 -2.25 2.25 9.89 0.16 18.92 Vu<PhiVc/2 >t Reqd 9.E 18.9 0.0 0.0 W Only 1 19.18 8.50 -2.32 2.32 9.33 0.18 18.97 Vu<PhiVc/2 >t Reqd 9.E, 19.0 0.0 0.0 W Only 1 19.43 8.50 -2.40 2.40 8.75 0.19 19.03 Vu<PhiVc/2 >t Reqd 9.E 19.0 0.0 0.0 W Only 1 19.67 8.50 -2.47 2.47 8.15 0.21 19.09 Vu<PhiVc/2 >t Reqd 9.E 19.1 0.0 0.0 W Only 1 19.92 8.50 -2.54 2.54 7.53 0.24 19.17 Vu<PhiVc/2 >t Reqd 9.E 19.2 0,0 0.0 W Only 1 20.16 8.50 -2.61 2.61 6.90 0.27 19.27 Vu<PhiVc/2 >t Reqd 9.E 19.3 0.0 0.0 W Only 1 20.41 8.50 -2.68 2.68 6.25 0.30 19.39 Vu<PhiVc/2 >t Reqd 9.E 19.4 0.0 0.0 W Only 1 20.66 8.50 -2.76 2.76 5.58 0.35 19.54 Vu<PhiVc/2 >t Reqd 9.E 19.5 0.0 0.0 W Only 1 20.90 8.50 -2.83 2.83 4.89 0.41 19.74 Vu<PhiVc/2 >t Reqd 9.E 19.7 0.0 0.0 W Only 1 21.15 8.50 -2.90 2.90 4.19 0.49 20.00 Vu<PhiVc/2 >t Reqd 9.E 20.0 0.0 0.0 W Only 1 21.39 8.50 -2.97 2.97 3.47 0.61 20.39 Vu<PhiVc/2 >t Reqd 9.E 20.4 0.0 0.0 W Only 1 21.64 8.50 -3.04 3.04 2.73 0.79 20.99 Vu<PhiVc/2 >t Reqd 9.E 21.0 0.0 0.0 W Only 1 21.89 8.50 -3.12 3.12 1.97 1.00 21.69 Vu<PhiVc/2 >t Reqd 9.E 21.7 0.0 0.0 W Only 1 22.13 8.50 -3.19 3.19 1.20 1.00 21.69 Vu<PhiVc/2 >t Reqd 9.E 21.7 0.0 0.0 W Only 1 22.38 8.50 -3.26 3.26 0.40 1.00 21.69 Vu<PhiVc/2 >t Reqd 9.E 21.7 0.0 0.0 Maximum Forces&Stresses for Load Combinations . - Load Combination Location(ft) Bending Stress Results (k-ft) Segment Span# along Beam Mu Max Phi*Mnx Stress Ratio MAXimum BENDING Envelope Span#1 1 22.500 18.54 62.18 0.30 Span#1 1 22.500 18.54 62.18 0.30 +0.50W Span#1 1 22.500 9.27 62.18 0.15 W Only Span#1 1 22.500 18.54 62.18 0.30 E Only Span#1 1 22.500 17.34 62.18 0.28 Overall Maximum Deflections Load Combination Span Max -"Defl (in).ocation in Span (ft Load Combination Max."+"Defl (in.ocation in Span (ft W Only 1 0.3301 11.250 0.0000 0.000 92/166 p� ate^ yp gi "a dire L 1 .x x' h�- 3 I p. F. .T' A jr ? t tAit.tf . C m BY DATE.._. z ( F REV— DATEEN __ _� - �;ta JOB NO (503) 968-9994 p (503) 968-8444 f SHEET_ ._... ... OF 93C1-66 ( 14. , awF � 41/ BY__-.__. DATE_ ._... 1 EN ENGINEERS REV DATE STRUCTURAL 1 CIVIL JOB NO (503) 968-9994 p (503) 968-8444 f ._.........._.. �� �____ _SHEET oF.___ _-- 941166 Project Title: Engineer: Project ID: Project Descr: Concrete Beam Pr jest Fit :2101 a plan check ca cs -20-202;.ec% .cg Vim'9c -1.. E.,,.20 22 3'," HAYDEN CONSPLING ENGIN E1 ... ui ENErzc ALC INC .983-2t5 DESCRIPTION: conc wall -west elevation-header CODE REFERENCES Calculations per ACI 318-14, IBC 2018, CBC 2019,ASCE 7-16 Load Combination Set:ASCE 7-10 Material Properties fc = 4.0 ksi stb Phi Values Flexure: 0.90 fr= fc tz 7.50 = 474.342 psi Shear: 0.750 Alf Density = 145.0 pcf R 1 = 0.850 2,, LtWt Factor = 1.0 a Elastic Modulus= 3,122.0 ksi Fy-Stirrups 40.0 ksi s fy-Main Rebar= 60.0 ksi E-Stirrups = 29,000.0 ksi k E-Main Rebar = 29,000.0 ksi Stirrup Bar Size# 3 Number of Resisting Legs Per Stirrup= 2 €4 w s1 ,,, ,tom., i A [ 120ft 10.5"wx48"h�-• • Cross Section & Reinforcing Details , Rectangular Section, Width= 10.50 in, Height=48.0 in Span#1 Reinforcing.... 2-#6 at 1.50 in from Bottom,from 0.0 to 12.0 ft in this span 2-#6 at 1.50 in from Top,from 0.0 to 12.0 ft in this span Load for Span Number 1 Uniform Load : D= 1.490, L= 1.280 k/ft, Tributary Width= 1.0 ft DESIGN SUMMARY Maximum Bending Stress Ratio = 0.381 : i Section used for this span Typical Section Mu:Applied 69.048 k-ft Mn*Phi:Allowable 181.184 k-ft Location of maximum on span 5.989 ft Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.002 in Ratio= 72870 >=360.0 L Only Max Upward Transient Deflection 0.000 in Ratio= 0 <360.0 L Only Max Downward Total Deflection 0.004 in Ratio= 33672 >=180.0 Span:1 :+D+L Max Upward Total Deflection 0.000 in Ratio= 0 <180.0 Span: 1 :+D+L Vertical Reactions Support notation:Far left is#1 Load Combination Support 1 Support 2 Overall MAXimum 16.620 16.620 Overall MINimum 5.364 5.364 D Only 8.940 8.940 +D+L 16.620 16.620 +D+0.750L 14.700 14.700 +0.60D 5.364 5.364 L Only 7.680 7.680 95/166 Project Title: Engineer: Project ID: Project Descr: Concrete Beam Project File:21013 plan check calcs 4-20-2022.ec6 LIC#:KW-06014171,Build 2022.3.31 HAYDEN CONSULTING ENGINEERS (c)ENERCALC INC 1983-2022 DESCRIPTION: conc wall-west elevation-header Detailed Shear Information Span Distance 'd' Vu (k) Mu d'Vu/Mu Phi*Vc Comment Phi*Vs Phi*Vn Spacing(in) Load Combination Number (ft) (in) Actual Design (k-ft) (k) (k) (k) Req'Suggest +1.20D+1.60L 1 0.00 46.50 23.02 23.02 0.00 1.00 45.65 PhiVc/2<Vu<=Ain 11.5.6.: 64.8 16.8 16,0 +1.20D+1.60L 1 0.13 46.50 22.51 22.51 2.99 1.00 45.65 Vu<PhiVc/2 At Reqd 9.E 45.7 0.0 0.0 +1.20D+1.60L 1 0.26 46.50 22.01 22.01 5.91 1.00 45.65 Vu<PhiVc/2 1t Reqd 9.€ 45.7 0.0 0.0 +1.20D+1.60L 1 0.39 46.50 21.51 21.51 8.76 1.00 45.65 Vu<PhiVc/2 At Reqd 9.E 45.7 0.0 0.0 +1.20D+1.60L 1 0.52 46.50 21.00 21.00 11.55 1.00 45.65 Vu<PhiVc/2 A Reqd 9.E 45.7 0.0 0.0 +1.20D+1.60L 1 0.66 46.50 20.50 20.50 14.27 1.00 45.65 Vu<PhiVc/2 At Reqd 9.E 45.7 0.0 0.0 +1.20D+1.60L 1 0.79 46.50 20.00 20.00 16.92 1.00 45.65 Vu<PhiVc/2 >t Reqd 9.E 45.7 0.0 0.0 +1.20D+1.60L 1 0.92 46.50 19.49 19.49 19.51 1.00 45.65 Vu<PhiVc/2 A Reqd 9.€ 45.7 0.0 0.0 +1.20D+1.60L 1 1.05 46.50 18.99 18.99 22.04 1.00 45.65 Vu<PhiVc/2 >t Reqd 9.E 45.7 0.0 0.0 +1.20D+1.60L 1 1.18 46.50 18.49 18.49 24.49 1,00 45.65 Vu<PhiVc/2 1t Reqd 9.E 45.7 0.0 0.0 +1.20D+1.60L 1 1.31 46.50 17.99 17.99 26.89 1.00 45.65 Vu<PhiVc/2 At Reqd 9.E 45.7 0,0 0.0 +1.20D+1.60L 1 1.44 46.50 17,48 17.48 29.21 1,00 45.65 Vu<PhiVc/2 >t Reqd 9.E 45.7 0.0 0.0 +1.20D+1.60L 1 1.57 46.50 16,98 16.98 31.47 1.00 45.65 Vu<PhiVc/2 1t Reqd 9.E 45.7 0.0 0.0 +1,20D+1.60L 1 1.70 46.50 16.48 16.48 33.67 1.00 45.65 Vu<PhiVc/2 A Reqd 9.E 45.7 0,0 0.0 +1,20D+1.60L 1 1.84 46.50 15.97 15.97 35.79 1.00 45.65 Vu<PhiVc/2 1t Reqd 9.E 45.7 0,0 0.0 +1.20D+1.60L 1 1.97 46.50 15.47 15.47 37.85 1.00 45.65 Vu<PhiVc/2 A Reqd 9.E 45.7 0,0 0,0 +1.20D+1.60L 1 2.10 46.50 14.97 14.97 39.85 1.00 45.65 Vu<PhiVc/2 A Reqd 9.E 45,7 0.0 0.0 +1.20D+1.60L 1 2,23 46.50 14.46 14.46 41.78 1.00 45.65 Vu<PhiVc/2 At Reqd 9.E 45.7 0.0 0,0 +1.20D+1.60L 1 2.36 46.50 13.96 13.96 43.64 1.00 45.65 Vu<PhiVc/2 A Reqd 9.E 45.7 0.0 0.0 +1.20D+1.60L 1 2.49 46.50 13.46 13.46 45.44 1.00 45.65 Vu<PhiVc/2 A Reqd 9.E 45.7 0.0 0.0 +1.20D+1.60L 1 2.62 46.50 12.95 12.95 47.17 1.00 45.65 Vu<PhiVc/2 A Reqd 9.E 45.7 0.0 0.0 +1.20D+1.60L 1 2.75 46.50 12.45 12.45 48.84 0.99 45.63 Vu<PhiVc/2 1t Reqd 9.E 45.6 0.0 0.0 +1.20D+1.60L 1 2.89 46.50 11.95 11.95 50.44 0.92 45.52 Vu<PhiVc/2 At Reqd 9.E 45.5 0.0 0.0 +1.20D+1.60L 1 3.02 46.50 11.45 11.45 51.97 0.85 45.41 Vu<PhiVc/2 A Reqd 9.E 45.4 0,0 0.0 +1.20D+1.60L 1 3,15 46.50 10.94 10.94 53.44 0.79 45.31 Vu<PhiVc/2 At Reqd 9.E 45.3 0,0 0.0 +1.20D+1.60L 1 3.28 46.50 10.44 10.44 54.84 0.74 45.22 Vu<PhiVc/2 >t Reqd 9.E 45.2 0.0 0.0 +1.20D+1.60L 1 3.41 46.50 9.94 9.94 56.18 0.69 45.13 Vu<PhiVc/2 At Reqd 9.E 45.1 0.0 0.0 +1.20D+1.60L 1 3.54 46.50 9.43 9.43 57.45 0.64 45.05 Vu<PhiVc/2 A Reqd 9.E 45.1 0.0 0.0 +1.20D+1.60L 1 3.67 46.50 8.93 8.93 58.65 0.59 44.98 Vu<PhiVc/2 A Reqd 9.E 45.0 0.0 0.0 +1.20D+1.60L 1 3.80 46.50 8,43 8.43 59.79 0.55 44.90 Vu<PhiVc/2 1t Reqd 9.E 44.9 0,0 0.0 +1.20D+1.60L 1 3.93 46.50 7,92 7.92 60.86 0.50 44.84 Vu<PhiVc/2 At Reqd 9.E 44.8 0.0 0.0 +1.20D+1.60L 1 4.07 46.50 7.42 7.42 61.87 0.46 44.77 Vu<PhiVc/2 At Reqd 9.E 44.8 0.0 0.0 +1.20D+1.60L 1 4.20 46.50 6.92 6.92 62.81 0.43 44.71 Vu<PhiVc/2 t Reqd 9.E 44.7 0.0 0.0 +1.20D+1.60L 1 4.33 46.50 6.41 6.41 63.69 0.39 44.65 Vu<PhiVc/2 1t Reqd 9.E 44.6 0.0 0.0 +1.20D+1.60L 1 4.46 46.50 5.91 5.91 64.49 0.36 44.59 Vu<PhiVc/2 >t Reqd 9.E 44.6 0.0 0.0 +1.20D+1.60L 1 4.59 46.50 5.41 5.41 65.24 0.32 44.53 Vu<PhiVc/2 A Reqd 9.E 44.5 0,0 0.0 +1.20D+1.60L 1 4.72 46.50 4,91 4.91 65.91 0.29 44.48 Vu<PhiVc/2 >t Reqd 9.E 44.5 0.0 0.0 +1.20D+1.60L 1 4.85 46.50 4.40 4.40 66.52 0.26 44.43 Vu<PhiVc/2 >t Reqd 9.E 44.4 0,0 0.0 +1.20D+1.60L 1 4.98 46.50 3.90 3.90 67.07 0.23 44.38 Vu<PhiVc/2 >t Reqd 9.E 44.4 00 0.0 +1.20D+1.60L 1 5.11 46.50 3.40 3.40 67.54 0.19 44.32 Vu<PhiVc/2 >t Reqd 9.E 44.3 0,0 0.0 +1.20D+1.60L 1 5.25 46.50 2.89 2.89 67.96 0.16 44.28 Vu<PhiVc/2 >t Reqd 9.E 44.3 0.0 0.0 +1.20D+1.60L 1 5.38 46.50 2,39 2.39 68.30 0.14 44.23 Vu<PhiVc/2 At Reqd 9.E 44.2 0.0 0.0 +1,20D+1.60L 1 5.51 46.50 1.89 1.89 68.58 0.11 44.18 Vu<PhiVc/2 At Reqd 9.E 44.2 0,0 0.0 +1,20D+1.60L 1 5.64 46.50 1.38 1.38 68.80 0.08 44.13 Vu<PhiVc/2 >t Reqd 9.E 44.1 0.0 0.0 +1.20D+1.60L 1 5.77 46.50 0.88 0.88 68.95 0.05 44.09 Vu<PhiVc/2 At Reqd 9.E 44.1 0.0 0.0 +1.20D+1.60L 1 5.90 46.50 0 38 0.38 69.03 0.02 44.04 Vu<PhiVc/2 >t Reqd 9,E 44.0 0.0 0.0 +1,20D+1.60L 1 6.03 46.50 -0.13 0.13 69.05 0.01 44.02 Vu<PhiVc/2 >t Reqd 9.E 44.0 0.0 0.0 +1.20D+1.60L 1 6.16 46.50 -0.63 0.63 69.00 0.04 44.06 Vu<PhiVc/2 >t Reqd 9.E 44.1 0.0 0.0 +1.20D+1.60L 1 6.30 46.50 -1.13 1.13 68.88 0.06 44.11 Vu<PhiVc/2 A Reqd 9.E 44.1 0.0 0.0 +1.20D+1.60L 1 6.43 46.50 -1.64 1.64 68.70 0.09 44.16 Vu<PhiVc/2 A Reqd 9.E 44.2 0.0 0.0 +1.20D+1.60L 1 6.56 46.50 -2,14 2.14 68.45 0.12 44.20 Vu<PhiVc/2 A Reqd 9.E 44:2 0.0 0.0 +1.20D+1.60L 1 6.69 46.50 -2,64 2.64 68.14 0.15 44.25 Vu<PhiVc/2 At Reqd 9.E 44,3 0.0 0.0 +1.20D+1.60L 1 6.82 46.50 -3,14 3.14 67.76 0.18 44.30 Vu<PhiVc/2 A Reqd 9.E 44.3 00 0.0 +1.20D+1.60L 1 6.95 46.50 -3,65 3.65 67.31 0,21 44.35 Vu<PhiVc/2 A Reqd 9.E 44.3 0.0 0.0 +1.20D+1.60L 1 7.08 46.50 -4.15 4.15 66.80 0.24 44.40 Vu<PhiVc/2 rt Reqd 9.E 44.4 0.0 0.0 +1.20D+1.60L 1 7.21 46.50 -4.65 4.65 66.23 0.27 44.45 Vu<PhiVc/2 3t Reqd 9.E 44.5 0.0 0.0 +1.20D+1.60L 1 7.34 46.50 -5.16 5.16 65.58 0.30 44.51 Vu<PhiVc/2 At Reqd 9 E 44.5 0.0 0.0 96/166 Project Title: Engineer: Project ID: Project Descr: Cons' B BeamProject Pilo:21013 plan check dos 4=20-20 2e ,..,(.C Rm b 13:'171, 4AVi9EN CORTSI LTiNG't*I�8;1 ER (c)ENERCALC INC 1983:2f DESCRIPTION: cone wall-west elevation-header Detailed Shear Information ....._... ... Span Distance 'd' Vu (k) Mu d*Vu/Mu Phi*Vc Comment Phi*Vs Phi*Vn Spacing(in) Load Combination Number (ft) (in) Actual Design (k-ft) (k) (k) (k) Req'c$uggest +1,20D+1'.60L 1 7.48 46.50 5.66_..- 5.66.. .64.87 0.34 44.56 Vu<PhiVc/2 1t Reqd 9.E 44.6 - 0.13 0.0 +1.20D+1.60L 1 7.61 46.50 -6.16 6.16 64.10 0.37 44.62 Vu<PhiVc/2 )t Reqd 9.E 44.6 0.0 0.0 +1.20D+1.60L 1 7.74 46.50 -6.67 6.67 63.26 0.41 44.68 Vu<PhiVc/2 At Reqd 9.E 44.7 0.0 0.0 +1.20D+1.60L 1 7.87 46.50 -7.17 7.17 62.35 0.45 44.74 Vu<PhiVc/2 At Reqd 9,E 44.7 0.0 0.0 +1.20D+1.60L 1 8.00 46.50 -7.67 7.67 61.38 0.48 44.80 Vu<PhiVc/2 At Reqd 9.E 44.8 0.0 0.0 +1.20D+1.60L 1 8.13 46.50 -8.18 8.18 60.34 0.53 44.87 Vu<PhiVc/2 it Reqd 9.E 44.9 0.0 0.0 +1.20D+1.60L 1 8.26 46.50 -8.68 8.68 59.23 0.57 44.94 Vu<PhiVc/2 At Reqd 9.E 44.9 0.0 0.0 +1.20D+1.60L 1 8.39 46.50 -9.18 9.18 58.06 0.61 45.01 Vu<PhiVc/2 1t Reqd 9.E 45.0 0.0 0.0 +1.20D+1.60L 1 8.52 46.50 -9.68 9.68 56.82 0.66 45.09 Vu<PhiVc/2 At Reqd 9.E 45.1 0.0 0.0 +1.20D+1.60L 1 8.66 46.50 -10.19 10.19 55.52 0.71 45.18 Vu<PhiVc/2 At Reqd 9.E 45.2 0.0 0.0 +1.20D+1.60L 1 8.79 46.50 -10.69 10.69 54.15 0.76 45.27 Vu<PhiVc/2 it Reqd 9.E 45.3 0.0 0.0 +1,20D+1.60L 1 8.92 46.50 -11.19 11.19 52.72 0.82 45.36 Vu<PhiVc/2 At Reqd 9.E 45.4 0.0 0.0 +1 20D+1.60L 1 9.05 46.50 -11.70 11.70 51.22 0.88 45.46 Vu<PhiVc/2 it Reqd 9.E 45.5 0.0 0.0 +1.20D+1.60L 1 9.18 46.50 -12.20 12.20 49.65 0.95 45.57 Vu<PhiVc/2 At Reqd 9.E 45.6 0.0 0.0 +1.20D+1.60L 1 9.31 46.50 -12.70 12.70 48.02 1.00 45.65 Vu<PhiVc/2 At Reqd 9.E 45.7 0.0 0.0 +1.20D+1.60L 1 9.44 46.50 -13.21 13.21 46.32 1.00 45.65 Vu<PhiVc/2 At Reqd 9.E 45.7 0.0 0.0 +1.20D+1.60L 1 9.57 46.50 -13.71 13.71 44.55 1.00 45.65 Vu<PhiVc/2 A Reqd 9.E 45.7 0.0 0.0 +1.20D+1.60L 1 9.70 46.50 -14.21 14.21 42.72 1.00 45.65 Vu<PhiVc/2 t Reqd 9.E 45.7 0.0 0.0 +1.20D+1.60L 1 9.84 46.50 -14.72 14.72 40.82 1.00 45.65 Vu<PhiVc/2 )t Reqd 9.E 45.7 0.0 0.0 +1.20D+1.60L 1 9.97 46.50 -15.22 15.22 38.86 1.00 45.65 Vu<PhiVc/2 At Reqd 9.E 45.7 0.0 0.0 +1.20D+1.60L 1 10.10 46.50 -15.72 15.72 36.83 1.00 45.65 Vu<PhiVc/2 it Reqd 9.E 45.7 0.0 0.0 +1.20D+1.60L 1 10.23 46.50 -16.22 16.22 34.74 1.00 45.65 Vu<PhiVc/2 it Reqd 9.E 45.7 0.0 0.0 +1.20D+1.60L 1 10.36 46.50 -16.73 16.73 32.58 1.00 45.65 Vu<PhiVc/2 At Reqd 9.E 45.7 0.0 0.0 +1.20D+1.60L 1 10.49 46.50 -17.23 17.23 30.35 1.00 45.65 Vu<PhiVc/2 At Reqd 9.E 45.7 0.0 0.0 +1.20D+1.60L 1 10.62 46.50 -17.73 17.73 28.06 1.00 45.65 Vu<PhiVc/2 >t Reqd 9.E 45.7 0.0 0.0 +1.20D+1.60L 1 10.75 46.50 -18.24 18.24 25.70 1.00 45.65 Vu<PhiVc/2 it Reqd 9.E 45.7 0.0 0.0 +1.20D+1.60L 1 10.89 46.50 -18.74 18.74 23.27 1.00 45.65 Vu<PhiVc/2 At Reqd 9.E 45.7 0.0 0.0 +120D+1.60L 1 11.02 46.50 -19.24 19.24 20.78 1.00 45.65 Vu<PhiVc/2 At Reqd 9.E 45.7 0.0 0.0 +1.20D+1.60L 1 11.15 46.50 -19.75 19.75 18.23 1.00 45.65 Vu<PhiVc/2 At Reqd 9.E 45.7 0.0 0.0 +1.20D+1.60L 1 11.28 46.50 -20.25 20.25 15.60 1.00 45.65 Vu<PhiVc/2 At Reqd 9.E 45.7 0.0 0.0 +1.20D+1.60L 1 11.41 46.50 -20.75 20.75 12.92 1.00 45.65 Vu<PhiVc/2 A Reqd 9.E 45.7 0.0 0.0 +1.20D+1.60L 1 11.54 46.50 -21.26 21.26 10.16 1.00 45.65 Vu<PhiVc/2 At Reqd 9.E 45.7 0.0 0.0 +1.20D+1.60L 1 11.67 46.50 -21.76 21.76 7.34 1.00 45.65 Vu<PhiVc/2 A Reqd 9.E 45.7 0.0 0.0 +1.20D+1.60L 1 11.80 46.50 -22.26 22.26 4.45 1.00 45.65 Vu<PhiVc/2 At Reqd 9.E 45.7 0.0 0.0 +1.20D+1.60L 1 11.93 46.50 -22.76 22.76 1.50 1.00 45.65 Vu<PhiVc/2 At Reqd 9.E 45.7 0.0 0.0 Maximum Forces&Stresses for Load Combinations Load Combination Location(ft) Bending Stress Results (k-ft) Segment Span# along Beam Mu:Max Phi*Mnx Stress Ratio MAXimum BENDING Envelope Span#1 1 12.000 69.05 181,18 0.38 +1.40D Span#1 1 12.000 37.55 181.18 0.21 +1.20D+1.60L Span#1 1 12.000 69.05 181.18 0.38 +1.20D+0.50L Span#1 12.000 43.70 181.18 0.24 +1.20D Span#1 1 12.000 32.18 181.18 0.18 +0.90D Span#1 1 12.000 24.14 181.18 0.13 Overall Maximum Deflections Load Combination Span Max. "Dell (in).ovation in Span (ft Load Combination 14ax."+"Defl (in.ocation in Span (ft +D+L 1 0.0043 6.000 0.0000 0.000 97/166 Project Title: Engineer: Project ID: Project Descr: Concrete Slender W r ; tFile,21013 plan'check h c C ..I $ .e ��a _ ate. �, ,, , Hey__, NSJ,. ,-N ENG NEE s ,�NERcAi.0 iN; Cz DESCRIPTION: conc wall -west elevation-strip 1 Code References Calculations per ACl 318-14 Sec 11.8, IBC 2018,CBC 2019,ASCE 7-16 Load Combinations Used :ASCE 7-10 ci 6, General Information fc:Concrete 28 day streng = 4 ksi Wall Thickness 10 in Temp Diff across thickness = deg F Fy:Rebar Yield = 60.0 ksi Rebar at each face Min Allow Out of-Plane Defl Ratio= 0.0 Ec:Concrete Elastic Modu = 3,122.0 ksi Rebar"d"distance 1.50 in A :Lt Wt Conc Fact = 1.0 Lower Level Rebar Min allow As/bd 0A020 Fr:Rupture Modulus = 316.228 psi Bar Size # 6 Using Stiff.Reduction Factor per= ACI 318-142 Max Allow As/bd = 0.01806 Bar Spacing 6 to Section 11.8.3 Max Pu/Ag=fc* = 0.060 Concrete Density = 150 pcf Width of Design Strip = 33 in One-Story Wall Dimensions A Clear Height = 22.5 ft a B Parapet height = ft B Wall Support ConditionTop&Bottom Pinned r a Iito 1E ,;:iii, Vertical Loads Vertical Concentrated Loads..(Applied to full"Strip Width") DL:Dead Lr:Roof Live L`:Fiocr Live s:Snow Vv_Wind Beam Load#1 Eccentricity 2 in 13 11.2 k Dist.from Base 22.5 ft Lateral Loads Wind Loads: Seismic Loads Full area WIND load 0 psf Wall Weight Seismic Load Input Method:Direct entry of Lateral Wall Weight Seismic Wall Lateral Load 0 psf Fp 1.0 = 0.0 psf (Applied to full"STRIP Width") D Lr L E W Endpoints from Base top bottom Distributed Lateral Load 3 322 k/ft 22.5 0 ft 98/166 Project Title: Engineer: Project ID: Project Descr: Concrete Slender Wall Pro' €i.s.2:ji? D.a<:P,re.F.f .... 20. ..ec';3 .it= K V-0t0141 r 1 Susid,2022.3.31 HAYDENC itiSULa lade Pd IN ER a +,, DESCRIPTION: conc wall-west elevation-strip 1 �� �� � DESIGN SUMMARY Results reported for"Strip Width"of 33.0 in Governing Load Combination.,. Actual Values.., Allowable Values„.. :... . .......... PASS Moment Capacity Check Maximum Bending Stress Rato.2699 +1.20D+0,50L+W Max Mu 23.284 k-ft Phi*Mn 86.277 k-ft PASS Service Deflection Check Actual Defl.Ratio L/ 515 Allowable Defl.Ratio 150.0 W Only Max.Deflection 0.5239 in PASS Axial Load Check Max Pu I Ag 78.305 psi Max.Allow.Defl. 1.80 in +1.20D+0.50L+W Location 11.625 ft 0,06*fc 240.0 psi PASS Reinforcing Limit Check OK per ACI 318 Section 11.7 Actual As/bd 0.008627 Max Allow As/bd 0.01806 Maximum Reactions for Load Combination... Top Horizontal W Only 3.623 k Base Horizontal W Only 3.623 k Vertical Reaction +D+L 31.934 k Design Maximum Combinations-Moments Results reported for"Strip Width"=12 in. Axial Load Moment Values 0.6 Load Combination Pu 0.06`fc*b*t . Mcr Mu Phi Phi Mn As As Ratio rho bal Bar k �,.._.., k k-ft k k-ft in"2. +1.40D at 20.25 to 21.00 7.012 28.800 5.27 1.02 0.90 31.43 0.880 0.0086 0.0181 8,50 +1.20D+1.60L at 20.25 to 21.00 12.527 28.800 5.27 1.87 0.90 31.32 0,880 0.0086 0.0181 8.50 +1.20D+0.50L at 20.25 to 21.00 8.047 28.800 5.27 1.18 0.90 31_40 0.880 0.0086 0.0181 8.50 +1.200+0.50W at 11.25 to 12.00 7.360 28.800 5.27 4.28 0.90 31.42 0.880 0.0086 0.0181 8.50 +1.20D+0.50L+W at 11.25 to 12.00 9.397 28.800 5.27 8.47 0.90 31.37 0.880 0.0086 0.0181 8.50 +1.200+0.50L+E at 11.25 to 12.00 9.397 28.800 5.27 7.93 0,90 31.37 0.880 0.0086 0.0181 8,50 +0.90D+W at 11.25 to 12.00 5.520 28.800 5.27 7.99 0.90 31.46 0.880 0.0086 0.0181 8.50 +0.90D+E at 11.25 to 12.00 5.520 28.800 5.27 7.47 0.90 31.46 0.880 0.0086 0.0181 8.50 Design Maximum Combinations-Deflections Results reported for"Strip Width"=12 in. Axial Load Moment Values Stiffness Deflections Load Combination Pu Mcr Mactual I gross I cracked I effective Deflection Defl.Ratio k k-ft k-ft in/4 in^4 in^4 in D Only at 12.75 to 13.50 5,946 5.27 0.47 1,000.00 402.20 750.000 0.019 14,148.4 +D+L at 12.75 to 13.50 10.019 5.27 0.88 1,000.00 415.67 750,000 0.036 7,512.5 +D+0.750L at 12.75 to 13.50 9.001 5.27 0.78 1,000.00 412.33 750.000 0.032 8,520.3 +0+0,60W at 11.25 to 12.00 6.134 5.27 4.94 1,000.00 402.86 750.000 0.195 1,386.9 +D+0.70E at 11.25 to 12,00 6.134 5.27 5.34 1,000.00 402.86 722.875 0.226 1,194.8 +D+0.750L+0.450W at 11.25 to 12.00 9.188 5.27 4.12 1,000.00 412.99 750.000 0.164 1,642.7 +D+0.750L+0.5250E at 11.25 to 12.00 9.188 5.27 4.41 1,000.00 412.99 750.000 0.176 1,534.6 +0.60D+0.60W at 11.25 to 12.00 3.680 5.27 4.73 1,000.00 394.63 750.000 0.186 1,453.5 +0.600+0.70E at 11.25 to 12.00 3.680 5.27 5.12 1,000.00 394.63 750.000 0.201 1,343.7 L Only at 12.75 to 13.50 4.073 5.27 0.40 1,000.00 395.94 750.000 0.016 16,515.4 W Only at 11.25 to 12.00 0.000 5.27 7.39 1,000.00 382.14 417.785 0.524 515.3 E Only at 11.25 to 12.00 0.000 5.27 6.89 1,000.00 382.14 449.035 0.473 571.0 Reactions-Vertical &Horizontal Load Combination Base Horizontal Top Horizontal Vertical @ Wall Base D Only 0.1 k 0.10 k 20.734 +D+L 0.2 k 0.18 k 31.934 k +D+0.750L 0.2 k 0.16 k 29.134 k +D+0.60W 2.3 :c 2.08 k 20,734 99/166 Project Title: Engineer: Project ID: Project Descr: Concrete Slender Wall Pt oleoFile:21013 F,.Oon_}.,.(k cats»20-2022.ac6 . �ivR��..<7:.,.>,Y, �•���s.�.=.GG.;,,:'-' __... w> t'-M" CONSUL.', ,,,s_,+,Ls"1w?rE.'.�,S. :,FENERi.A_C'stkw 9832C22 DESCRIPTION: conc wall-west elevation-strip 1 +D+0.70E 2.5 k 2.27 k 20.734 k +D+0.750L+0.450W 1.8 k 1.48 k 29.134 k +D+0.750L+0.5250E 1.9 k 1.62 k 29.134 k +0.60D+0.60W 2.2 k 2.12 k 12.441 k Reactions-Vertical& Horizontal Load Combination Base Horizontal Top Horizontal Vertical C Wall Base +0.60D+0.70E 2.4 k 2.31 k 12.441 k L Only 0.1 k 0.08 k 11.200 k W Only 3.6 k 3.62 k 0.000 k E Only 3.4 k 3.37 k 0.000 k 100/166 s. Project Title: Engineer: Project ID: Project Descr: : :: .... .... t l s*2$ 022.rc;e t File: 1 fac on c s k_'yCv: N . it`,�e 222 Concrete jrtt 2ffP ./ LDk..ESS. �.C: RI':P TI�O75N,»:.rcos'newacll-west elevation-stripJ2. ,. .� 3., v,,.ENs :_:i t Code References Calculations per ACI 318-14 Sec 11.8, IBC 2018,CBC 2019,ASCE 7-16 Load Combinations Used :ASCE 7-10 General Information fc:Concrete 28 day streng = 4.0 ksi Wall Thickness 10.0 in Temp Duff across thickness = deg F Fy:Rebar Yield = 60.0 ksi Rebar at each face Min Allow Out-of-Plane Defl Ratio= 0.0 Ec:Concrete Elastic Modu = 3,122.0 ksi Rebar"d"distance 1.50 in a :Lt Wt Conc Fact = 1.0 Lower Level Rebar Min allow As = 0.0020 Fr:Rupture Modulus = 316.228 psi Bar Size # 6 Using Stiff.Reduction Factor per ACI 318 14 Max Allow As/bd = 0.01806 Bar Spacing 6.0 in Section 11.8.3 Max Pu/Ag=fc* = 0.060 Concrete Density = 150.0 pcf Width of Design Strip = 45 in One-Stry Wall Dimensions A Clear Height = 20.5 ft ,,:,,,:;„,,, B Parapet height = ft a �� Wall Support ConditionTop&Bottom Pinned \ " Z ' f A ` i r i"*\a N',f ..�'x in• 1i 'rt'f�g -a Vertical Loads Vertical Concentrated Loads. EApplied to full"Stop Width"J ILL:Dead Lr:Roof Live Lf.Floor Live S.Snow ).Wind Beam Load#1 Eccentricity 2 in 23.5 20.2 k Dist.from Base 20.5 ft Lateral Loads Wind Loads: Seismic Loads Full area WIND load 0 psf Wall Weight Seismic Load Input Method:Direct entry of Lateral Wall Weight Seismic Wall Lateral Load 0 psf Fp 1.0 = 0.0 psf W {Applied to full STRIP Width") Endpoints top frombottom Base D Lr L E Distributed Lateral Load 541 58k/ft 20.5 Oft 101/166 Project Title: Engineer: Project ID: Project Descr: Concrete Slender Wall Project File:21013 plan check calcs 4-20-2022.ec6 LIC#:KW-06014171,Build20.22.3.31 HAYDEN CO\t..LTING ENGINEERS (c)ENERCAL.0 INC 1983-2022 DESCRIPTION: cone wall-west elevation-strip 2 DESIGN SUMMARY Results reported for"Strip Width"of 45.0 in Governing Load Combination Actual Values Allowable Values... PASS Moment Capacity Check Maximum Bending Stress Rato.3o20 +1.20D+0.50L+W Max Mu 35.478 k-ft Phi*Mn 117.494 k-ft PASS Service Deflection Check Actual Defl.Ratio L/ 503 Allowable Defl.Ratio 150.0 W Only Max.Deflection 0.4889 in PASS Axial Load Check Max Pu I Ag 97.924 psi Max,Allow.Defl. 1.640 in +1.20D+0.50L+W Location 10.592 ft 0.06*fc 240.0 psi PASS Reinforcing Limit Check OK perACl 318 Section 11.7 Actual As/bd 0.008627 Max Allow As/bd 0.01806 Maximum Reactions for Load Combination... Top Horizontal W Only 5.945 k Base Horizontal W Only 5.945 k Vertical Reaction +D+L 53.309 k Design Maximum Combinations-Moments Results reported for"Strip Width"=12 in. Axial Load Moment Values 0.6* Load Combination Pu 0.06*fc*b*t Mcr Mu Phi Phi Mn As As Ratio rho bal Bar k k k-ft k-ft k-ft in"2 +1.40D at 18.45 to 19.13 9.132 28.800 5.27 1.35 0.90 31.38 0.880 0.0086 0.0181 8.50 +1.20D+1.60L at 18.45 to 19.13 16.446 28.800 5.27 2.48 0.90 31.28 0.880 0.0086 0.0181 8.50 +1.200+0.50L at 18.45 to 19.13 10.521 28.800 5.27 1.57 0.90 31.35 0.880 0.0086 0.0181 8.50 +1.200+0.50W at 10.93 to 11.62 8.955 28.800 5.27 4.82 0.90 31.38 0.880 0.0086 0.0181 8.50 +1.20D+0.50L+W at 10.25 to 10.93 11.751 28.800 5.27 9.46 0.90 31.33 0.880 0.0086 0.0181 8.50 +1.20D+0.50L+E at 10.25 to 10.93 11.751 28.800 5.27 8.88 0.90 31.33 0.880 0.0086 0.0181 8.50 +0.90D+W at 10.25 to 10.93 6.793 28.800 5.27 8.85 0.90 31.43 0.880 0.0086 0.0181 8.50 +0.90D+E at 10.25 to 10.93 6.793 28.800 5.27 8.29 0.90 31.43 0.880 0.0086 0.0181 8.50 Design Maximum Combinations-Deflections Results reported for"Strip Width"=12 in. Axial Load Moment Values Stiffness Deflections Load Combination Pu Mcr Mactual I gross I cracked 1 effective Deflection Defl.Ratio k k-ft k-ft in^4 in^4 in^4 in D Only at 11.62 to 12.30 7.377 5.27 0.62 1,000.00 406.97 750.000 0.021 11,709.3 +D+L at 11.62 to 12.30 12.764 5.27 1.17 1,000.00 424.72 750.000 0.040 6,216.9 +D+0.750L at 11.62 to 12.30 11.417 5.27 1.03 1,000.00 420.26 750.000 0.035 7,051,7 +D+0.60W at 10.25 to 10.93 7.548 5.27 5.54 1,000.00 407.52 658.740 0.230 1,069.4 +D+0.70E at 10.25 to 10.93 7.548 5.27 6.01 1,000.00 407.52 561.058 0.301 818.1 +D+0.750L+0.450W at 10.25 to 10.93 11.588 5.27 4.68 1,000.00 420.88 750.000 0.156 1,579.8 +D+0.750L+0.5250E at 10.25 to 10.93 11.588 5.27 5.01 1,000.00 420.88 750.000 0.166 1,478.2 +0.600+0.60W at 10.25 to 10.93 4.529 5.27 5.25 1,000.00 397.46 750.000 0.171 1,436.5 +0.60D+0.70E at 10.25 to 10.93 4.529 5.27 5.71 1,000.00 397.46 612.289 0.262 938.6 L Only at 11.62 to 12.30 5.387 5.27 0.53 1,000.00 400.36 750.000 0.018 13,689.7 W Only at 10.25 to 10.93 0.000 5.27 8.11 1,000.00 382.14 387.903 0.489 503.2 E Only at 10.25 to 10.93 0.000 5.27 7.56 1,000.00 382.14 409.525 0 447 550.9 Reactions -Vertical &Horizontal Load Combination Base Horizontal Top Horizontal Vertical @ Wall Base D Only 0.2 k 0.19 k 33.109 k +D+L 0.4 k 0.35 k 53.309 k +D+0.750L 0.3 k 0.31 < 48.259 k +D+0.60W 3.8 k 3.38 k 33.109:, 102/166 • Project Title: Engineer: Project ID: Project Descr: Concrete Slender Wail Project Fe 21013 p,art ctfixk rates 1-20-2023tec6 K . E...,"d 22.3,11 hA`e DEN 1Ni3 c)ENERC,LC DESCRIPTION: conc wall-west elevation-strip 2 +D+0.70E 4.1 k 3.70 k 33.109 k ÷D+0.750L+0.450W 3.0 k 2.37 k 48.259 k +D+0.750L+0.5250E 3.2 k 2.60 k 48.259 k +0.60D+0.60W 3.7 k 3.46 k 19.866 k Reactions-Vertical &Horizontal Load Combination Base Horizontal Top Horizontal Vertical Wall Base +0.60D+0.70E 4.0 k 3-77 k 19.866 k L Only 0.2 k 0.16 k 20.200 k W Only 5.9 k 5.94 k 0.000 k E Only 5.5 k 5.55 k 0.000 k 103/166 Project Title: Engineer: Project ID: Project Descr: Concrete Slender Wall r_jec1 F DESCRIPTION: conc wall-west elevation-strip 3 Code References Calculations per ACI 318-14 Sec 11.8,IBC 2018, CBC 2019,ASCE 7-16 Load Combinations Used :ASCE 7-10 General Information f c:Concrete 28 day streng = 4.0 ksi Wail Thickness 10.0 in Temp Diff across thickness = deg F Fy:Rebar Yield = 60.0 ksi Rebar at each face Min Allow Out-of-Plane Defl Ratio= 0.0 Ec:Concrete Elastic Modu = 3,122.0 ksi Rebar"d"distance 1.50 in X :Lt Wt Conc Fact = 1.0 Lower Level Rebar Min allow As/bd = 0.0020 Fr:Rupture Modulus = 316.228 psi Bar Size # 6 Using Stiff.Reduction Factor per ACI 318-14 Max Allow As/bd = 0.01806 Bar Spacing 6.0 in Section 11.8.3 Max Pu/Ag=fc* = 0.060 Concrete Density = 150.0 pcf Width of Design Strip = 22 in One-Story Wall Dimensions A Clear Height 20.50 ft B Parapet height = ft B t Wall Support ConditionTop&Bottom Pinned • pi t 4 A i r a f Vertical Loads Vertical Concentrated Loads..(.4pplied to full"Strip Width') DL:Dead Lr:Roof Live Lf Floor Live _8:Snow W:Wind Beam Load#1 Eccentricity 2.0 in 11.6 10 k Dist.from Base 20.50 ft Lateral Loads Wind Loads: Seismic Loads: Full area WIND load psf Wall Weight Seismic Load Input Method:Direct entry of Lateral Wall Weight Seismic Wall Lateral Load psf Fp 1.0 - 0.0 psf (Applied to full"STRIP Width") D Lr L E W Endpoints from Base top bottom Distributed Lateral Load .267 .287 k/ft 20.50 ft 104/166 Project Title: Engineer: Project ID: Project Descr: Concrete Slender Wall Project File:21013 plan check calcs 4-20-2022.ec6 LIC#:KW-06014171;Build:20.22.3.31 HAYDEN CONSULTING ENGINEERS (c)ENERCALC INC 1983-2022 DESCRIPTION: cone wall-west elevation-strip 3 DESIGN SUMMARY Results reported for"Strip Width"of 22.0 in Governing Load Combination,., Actual Values Allowable Values.,. PASS Moment Capacity Check Maximum Bending Stress Rat 0.3057 +1.20D+0.50L+W Max Mu 17.561 k-ft Phi'Mn 57.439 k-ft PASS Service Deflection Check Actual Defl.Ratio L/ 496 Allowable Defl.Ratio 150.0 W Only Max Deflection 0.4958 in PASS Axial Load Check Max Pu/Ag 98.813 psi Max Allow.Defl. 1.640 in +1.20D+0.50L+W Location 10.592 ft 0.06*fc 240.0 psi PASS Reinforcing Limit Check OK per ACI 318 Section 11.7 Actual As/bd 0,008627 Max Allow As/bd 0.01806 Maximum Reactions for Load Combination... Top Horizontal W Only 2.942 k Base Horizontal W Only 2.942 k Vertical Reaction +D+L 26.298 k Design Maximum Combinations -Moments Results reported for"Strip Width"=12 in. Axial Load Moment Values 0.6' Load Combination Pu 0.06*fc*b`t I Mcr Mu Phi Phi Mn As As Ratio rho bal Bar .._ k. .,.�kft .�, k-ft .,. k-ft in^ +1.40D at 18.45 to 19.13 9.217 28.800 5.27 1.36 0.90 31.38 0.880 0.0086 0.0181 8.50 +1.20D+1.60L at 18.45 to 19.13 16.628 28.800 5.27 2.51 0.90 31.27 0.880 0.0086 0.0181 8.50 +1.200+0.50L at 18.45 to 19.13 10.628 28,800 5.27 1.58 0.90 31.35 0,880 0.0086 0.0181 8.50 +1.200+0.50W at 10.93 to 11.62 9.028 28.800 5.27 4.88 0.90 31.38 0,880 0.0086 0.0181 8.50 +1.20D+0.50L+W at 10.25 to 10.93 11.858 28.800 5.27 9.58 0.90 31.33 0.880 0.0086 0.0181 8.50 +1.20D+0.50L+E at 10.25 to 10.93 11.858 28.800 5.27 8.97 0.90 31.33 0.880 0.0086 0.0181 8.50 +0.90D+W at 10.25 to 10.93 6.848 28.800 5.27 8.96 0.90 31.43 0.880 0.0086 0.0181 8.50 +0.900+E at 10.25 to 10.93 6.848 28,800 5.27 8.37 0.90 31.43 0.880 0.0086 0.0181 8.50 Design Maximum Combinations -Deflections Results reported for"Strip Width"=12 in. Axial Load Moment Values Stiffness Deflections Load Combination Pu Mcr Mactual I gross I cracked I effective Deflection Defl.Ratio k k-ft k-ft in^4 in% in^4 in D Only at 11.62 to 12.30 7.438 5.27 0.63 1,000.00 407.19 750.000 0.021 11,595.5 +D+L at 11.62 to 12.30 12.892 5.27 1.18 1,000.00 425.09 750.000 0.040 6,147,2 +D+0.750L at 11.62 to 12.30 11.529 5.27 1.04 1,000.00 420.67 750.000 0.035 6,974.4 +D+0.60W at 10.25 to 10.93 7.609 5.27 5.61 1,000.00 407.74 639.582 0.244 1,009.8 +D+0.70E at 10,25 to 10.93 7.609 5:27 6.07 1,000.00 407.74 552.084 0.306 803.4 +D+0.750L+0.450W at 10.25 to 10.93 11.699 5.27 4.73 1,000.00 421.21 750.000 0.158 1,560.8 +D+0.750L+0.5250E at 10.25 to 10.93 11.699 5.27 5.06 1,000.00 421.21 750.000 0.168 1,463.5 +O.60D+0.60W at 10.25 to 10.93 4.565 5.27 5.32 1,000.00 397.61 730.962 0.184 1,339.4 +0.600+0.70E at 10.25 to 10.93 4.565 5.27 5.77 1,000.00 397.61 599,808 0.272 905.7 L Only at 11.62 to 12.30 5.455 5.27 0.54 1,000.00 400.60 750.000 0.018 13,517.2 W Only at 10.25 to 10.93 0.000 5.27 8.21 1,000.00 382.14 384.659 0.496 496.2 E Only at 10.25 to 10.93 0.000 5.27 7.63 1,000.00 382.14 406.263 0.451 544.9 Reactions -Vertical & Horizontal Load Combination Base Horizontal Top Horizontal Vertical @ Wall Base D Only 0.1 k 0.09 k 16.298< +D+L 0.2 k 0.17 k 26.298 k +D+0.750L 0.2 k 0.15 h 23.798 k +D+0.60W 1.9 k 1.67 k 16.298,, 105/l66 Project Title: Engineer: Project ID: Project Descr: Concrete Slender Waif Proph..1FAe,21 13 plan chef,:k catc -4_2t$i22.ec6 t KV, r%_ 7' l d 4a 23.3 ,,,AY:::TN is ,S:_ <P,.61 EN,C,Ni"ERm... (e,ENEtRCALC IP% 3 3.'022 DESCRIPTION: conc wall-west elevation-strip 3 +D+0.70E 2.0 k 1.83 k 16.298 k +D+0.750L+0.450W 1.5 k 1.17 k 23.798 k +D+0.750L+0.5250E 1.6 k 1.29 k 23.798 k +0.60D+0.60W 1.8 k 1.71 k 9.779 k Reactions-Vertical &Horizontal Load Combination Base Horizontal Too Horizontal Vertical 22 Wall Base +0.60D+0.70E 2.0 k 1.86 k 9.779 k L Only 0.1 k 0.08 k 10.000 k W Only 2.9 k 2.94 k 0.000 k E Only 2.7 k 2.74 k 0.000 k 106/166 ✓ { 18 Ay.3 3 ,- e° i - c ; "ia^-) ` " >4,re.„._ . Y LQ:;€ .. . . r . ;t C'.,,. i �,. SAS 9 .'S y.'w^". a., `Gy�' ; ,... •..•..•....A•.,.,.-..,,.".` _.. } 3AY �---,._ _� �_. .�,_ ___ DATE E N G I N E E a S _, REV.. DATE___ ._....._ STRUCTURAL l CIVIL JOB NO__.__.__ . (503) 968-9994 p (503) 968-8444 f __ I A . �x G . . ;. AVrit r*.‘� � t; 13 HA D _ _ �._ BY_ DATE i .._w..�. ._ ENGINEERS REV .__ __. DATE STRUCTURAL I CIVIL JOB NO _ (503) 968-9994 p (503) 968-8444 f �� __.._..._._.__ ..___..._ ��.. ___. SHEET OF �._. _TO8fl66 1 F 5 p - 5 a.,. p CIA f' e° . t AYD ....._ _.,_ _ e BY DATE. ENGINEERS �_�.. _ __.. REV DATE. STRUCTURAL l CIVIL JOB NO .-_...e.,..,,_.,,,,_,�„e......._.._...._ .... .._.._. (503) 968-9994 p (503)968-8444 f _ �..,. SHEET Of 109/1 b =.� � .. �( l -;F m • HAYD �__ �.. BY.__.. - DATE__._r �_. ENGINEERS ---._ _.__._..._.......____�._ __._ REV DATE STRUCTURAL I CIVIL _....._ ... _.._ -.........._..,..w ._._. ....®....._....-_._.... _ JOB NO (503) 968-9994 p (503) 968-8444 f �..,. __.__ .... �___ SHEET _ _ OF 10t Project Title: Engineer: Project ID: Project Descr: Concrete Column r,=lu= t Ee:22101.., ..: ,he k cc:,4-20-2022406 17 .tau,a2 2." HAVDNCONLNEEE a (c) ER ALC INC 198 2022 DESCRIPTION: Columns at grid N Code References Calculations per ACI 318-14, IBC 2018, CBC 2019,ASCE 7-16 Load Combinations Used:ASCE 7-10 General Information f c:Concrete 28 day strenc = 4.0 ksi Overall Column Height = 10 ft E= - 3122 ksi End Fixity Top&Bottom Pinned Density = 150 pcf Brace condition for deflection(buckling)along colun Q 0.850 X-X(width)axis: fy-Main Rebar - 60 ksi Fully braced against buckling ABOUT Y-Y Axis E-Main Rebar = 29000 ksi Y-Y(depth)axis: Allow.Reinforcing Limits ASTMA615 Bars Used Fully braced against buckling ABOUT X-X Axis Min.Reinf. 1 % Max.Reinf. - 8% Column Cross Section Column Dimensions: 12.0in high x 24.0in Wide, Column Edge to Rebar Edge Cover= 1.50in Column Reinforcing 4-#5 £ bars corners„ 2 Applied Loads Entered loads are factored per load combinations specified user. Column self weight included:3,000.0 lbs*Dead Load Factor AXIAL LOADS . . Axial Load at 10.0 ft above base,Xecc= 12.0in, D=45.0, L=41.20, S=7.60 k DESIGN SUMMARY Load Combination +1.20D+1.60L+0.50S Maximum SERVICE Load Reactions. Location of max.above base 9.933 ft Top along Y-Y 8.620 k Bottom along Y-Y 8.620 k Maximum Stress Ratio 0.490:1 Top along X-X 0.0 k Bottom along X-X 0.0 k Ratio=(Pu^2+Mu^2)^.5 I(PhiPn^2+PhiMn^2)^.5 Pu= 127.320 k cP*Pn= 261.353 k Mu-x= 0.0 k-ft Maximum SERVICE Load Deflections.. �P*Mn-x= 0.0 k-ft Along Y-Y 0.0 in at 0.0 ft above base Mu-y= -122.890 k-ft (P*Mn-y= 250.171 k-ft for load combination: Mu Angle= 270.0 deg Along X-X -0.02233in at 5.839ft above base viu at Angle= 122.890 k-ft clyln at Angle= 250.819 k-ft for load combination:+D+L Pn&Mn values located at Pu-Mu vector intersection with capacity curve General Section Informatio = 0.650 =0.850 0.80 Column Capacities e - Pnmax:Nominal Max.Compressive Axial Capaci 1,154.66 k p :%Reinforcing 1.076 % Rebar /°Ok Pnmin:Nominal Min.Tension Axial Capacity k Reinforcing Area 3.10 inA2 CP Pn,max:Usable Compressive Axial Capacity 600.42 k Concrete Area 288.0 in^2 co Pn,min:Usable Tension Axial Capacity k Governing Load Combination Results Governing Load iCombinat Combination Moment Dist.from Axial Load Bending Analysis k-ft X-X Y-Y base ft Pu N 'Pn g x gx*Mux g y gy*Muy Alpha (deg) 6 Mu (,) t,n Ratic- +1.40D Actual 9.93 67 20 265.37 1 000 62 58 270.000 62.58 248.22 0.252 +1.20D+1.60L Actual 9.93 123.52 261.35 1.000 -119.12 270.000 119.12 250,82 0.475 +1.200+1.60L+0.50S Actual 9.93 127.32 261.35 1.000 -122.89 270 000 122.89 250.82 0.490 111/166 Project Title: Engineer: Project ID: Project Descr: Concrete Column Project File:21013 plan check ca`;.: 4-20-2022.ec6 . ,. «s �.-_..�,e_2: ,, -< _ tag DE%cf� NEEziS c::. ENERCA.,CIPvt`. .83-2074 DESCRIPTION: Columns at grid N Governing Load Combination Results GoverningFactored , T Lo #' Sing Ana&yss `-- Moment Dot,from k Ut4izatiOrt Load Combination Y-y hose ft Pu Pe sx sx*Mux s y €ay"htiq Alpt-,a vd-O? 6 Mu y Mn Ratio i ••+120D+0.50L ..: Actual 9.93 78.20 263.36 X,Li -74 12 z7 000 74.10 249.53 0.297 +1.20D Actual 9.93 57.60 265.37 1.000 -53.64 270.000 53.64 248.22 0.216 +1.200+0.50L+1.60S Actual 9.93 90.36 261.35 1.000 -86.18 270.000 86.18 250.82 0.344 +1.20D+1.60S Actual 9.93 69.76 263.36 1.000 -65.72 270.000 65.72 249.53 0.263 +1.200+0.50L+0.505 Actual 9.93 82.00 263.36 1.000 -77.87 270.000 77.87 249.53 0.312 +1.200+0.50L+0.20S Actual 9.93 79.72 263.36 1.000 -75.61 270.000 75.61 249,53 0.303 +0.90D Actual 9.93 43.20 265.37 1.000 -40.23 270.000 40.23 248.22 0.162 Maximum Reactions Note:Only non-zero reactions are listed X-X Axis Reaction k Y-Y Axis Reaction Axial Reaction My End Moments k-ft Mx-End Moments Load Combination @ Base @ Top @ Base @ Top @ Base @ Base @ Top @ Base @ Top D Only.__ 4.500 _._4.500 48.000 +D+L 8.620 8.620 89.200 +D+S 5.260 5.260 55.600 +D+0.750L 7.590 7.590 78.900 +D+0.750L+0.750S 8.160 8.160 84.600 +0.60D 2.700 2.700 28.800 L Only 4.120 4.120 41.200 S Only 0.760 0.760 7.600 Maximum Moment Reactions Note:Only non-zero reactions are listed. Moment About X-X Axis Moment About Y-Y Axis Load Combination @ Base @ Top @ Base @ Top D Only k-ft k-ft +D+L k-ft k-ft +D+S k-ft k-ft +D+0.750L k-ft k-ft +D+0.750L+0.750S k-ft k-ft +0.60D k-ft k-ft L Only k-ft k-ft S Only k-ft k-ft Maximum Deflections for Load Combinations Load Combination Max.X-X Deflection Distance Max.Y-Y Deflection Distance D Only -0.0117 in 5 839 ft 0.000 in 0.000 ft +D+L -0.0223 in 5.839 ft 0.000 in 0.000 ft +D+S -0.0136 in 5.839 ft 0.000 in 0.000 ft +D+0.750L -0.0197 in 5.839 ft 0.000 in 0.000 ft +D+0.750L+0.750S -0.0211 in 5.839 ft 0.000 in 0.000 ft +0.60D -0.0070 in 5.839 ft 0.000 in 0.000 ft L Only -0.0107 in 5.839 ft 0.000 in 0.000 ft S Only -0.0020 in 5.839 ft 0.000 in 0.000 ft 112/166 • Project Title: Engineer Project ID: Project Descr: Concrete Column Project Fite:21°13 plan cned(Ca,Ca 4-20-2022 eco 2, 2,2 3 ' FnG'Is,EERS -(6)tNERCALC INC 148'3-2022 DESCRIPTION: Columns at grid N Sketches = t w., Interaction Diagrams 113/166 • ' Project Title: Engineer: Project ID: Project Descr: Concrete Column Pn)ject Ftte:21013 plan ch.:(;:k cs 4-20-2022,ec6 HAYDEN CCNSULTING ENG4,,E1E ENERCALC INC 1g332i.v22 DESCRIPTION: Columns at grid N Concrete Column P-M Interaction Diagram Phi*Mn @ Alpha (k-ft) 675.0' 607.5 540.0 472.5 405.0 H 337.5 a. 270.0 N. 202.5 135.0 j .- 67.5 at— 2et —57: 441 172 20177- 2:10, 2514288-2 Av.=re.Din 672e 62 114/166 s• s Project Title: Engineer: Project ID: Project Descr: Concrete Column Project Fqe,210,3 pqao f,heck c- ucg 6C 2S22 —A DEN o, %SULN ENG NEEF,==$ E E,--=CALC:NC 1S83.2022 DESCRIPTION: Columns at grid N Concrete Column P-M Interaction Diagram 675.0 Phi*Mn @ Alpha (k-ft) 607.5 j 540.0 472.5 405.0 337.5 o_ a_ 270.0 202.5 j .7- 135.0 67.5 07.0- —57:1 sera -115,3 1-44i t72-Pr, —201-.7 230 e-- --25'9 —28'8:2 270.1 SOL A10..i.ZTO kri9 -23 119'2i 115/166 Project Title: Engineer Project ID: Project Descr: Concrete Column Project 2;012 cç c6 E. 4.... .;\.,DEN L ..,17 NC:ENC.NEERS E ER7;A-L( DESCRIPTION: Columns at grid N Concrete Column P-M Interaction Diagram Phi*Mn @ Alpha (k-ft) 675.0 607.5 540.0 472.5 405.0 337,5 a. 0_ 270.0 1 202.5 135.0 67.5 0-0- 28,8- 86 5- -115-2-- 14-41 t 721— 201'. -288'2 0 L.,coft--,200,60,0:15 #403=270 0*1127 +22 D9) 116/166 Project Title: Engineer: Project ID: Project Descr: Concrete Column , , f G u ._ s ,. _r _ .., 2)2, 22 � � .� _���..� dam wG DESCRIPTION: Columns at grid N Concrete Column P-M Interaction Diagram Phi*Mn @ Alpha (k-ft) 675.0 607.5 540.0 472.5 405.0 337.5 :E d 270.0 '. 202.5 :E ... / 135.0 67.5 3 , ---- - 57.E f .. _-1 1 — 2 .__.20 #__ 230.6 _....2514----288:2 i�i Load Cans=-t 290+•U SOL w?,a=770 06e9 R6 N?l+G) l i 117/166 Project Title: Engineer: Project ID: Project Descr: Concrete Column Project Fite 2101.3 ciao%-hock(talcs 4-20-2022ecO Cu Ktrt.'088i4 e.J,Jr20 3 tit ,,-3-Dj9A Ci,333t,L-PN37E8 NEERS CENEALC INC'988-2022 DESCRIPTION: Columns at grid N Concrete Column P-M Interaction Diagram Phi*Mn @ Alpha (k-ft) 675.0 607.5 -1 — 540.0 472.5 405.0 337.5 a_ n_ 270.0 202.5 4 135.0 I 67.5 -865 '11571 1-441 t72.9. 2011—--230 Z5282 0 Lproc Com TIZO Non.271,Odag 67 W SZ, 118/166 Project Title: Engineer: Project ID: Project Descr: Concrete Column .„ DESCRIPTION: Columns at grid N Concrete Column P-M Interaction Diagram Phi*Mn @ Alpha (k-ft) 675.0 607.5 j 540.0 _I 472.5 405.0 337.5 n_ 270.0 202.5 135.0 67.5 II 57-6 -86,5 115-.ta—14,t,f 1721 lard Calm- 50 EDS -2/G ".PE 119/166 • Project Title: Engineer: Project ID: Project Descr: Concrete Column r : 2 % vri chet.1, owe _ rz w 1iC. '... .?... 41., E ..< ���� .__...:. �. .._..3`;,, _ � i.r aF,�1LG �.+"ti. EriGc DESCRIPTION: Columns at grid N Concrete Column P-M Interaction Diagram Phi*Mn @ Alpha (k-fE) 675.0 607.5 540.0 ml 472.5 ..1 ' 405.0 337.5 270.0_ 202.5 135.0 67.5 e . ..,_.-1 4:`i 172-9-- .7__. :H 253.4 Cora='MOO5C5/cyu'2:C,dey.ON ffi/21 120/166 Project Title: Engineer: Project ID: Project Descr: Concrete Column Pro,e =Fat,:. '1013 plan check c ,r.s , 20-2022.ac6 • a `. b _NG NEER K_, t � q-LG 2 DESCRIPTION: Columns at grid N Concrete Column P-M Interaction Diagram Phi*Mn @ Alpha (k-ft) 675.0 607.5 1 540.0 T' N .ate 472.5 405.0 337.5 a_ 0. 270.0 202.5 1 1 135.0 // 67.5 1 Load Cartab=-12'0E4,S(l.O SOS NCiu=270 Wag .00 77 5?) 121/166 Project Title: Engineer: Project ID: Project Descr: Concrete Column Fi 21,11"J che0,, s 42 . :71B 3 3' L-A,:::.11% ENG NEt=s;:„ DESCRIPTION: Columns at grid N Concrete Column P-M Interaction Diagram 675.0 Phi*Mn©Alpha (k-ft) 607.5 540.0 472.5 N 405.0 '.2 337.5 a_ a_ 270.0 202.5 135.0 67.5 0°0 j53 44-2.1-1-72 9 2011--139:6---254-----2: LdCm --,2on.:sci.-0 )40.-2700*(73 72 7E611 122/166 Project Title: Engineer: Project ID: Project Descr: Co re e ColumnPr C Fae "2"111.3,la :h k l 4 20a-2 2:ecv 171 c' .w 2022.:3.3-, .—.: ENG:3 EE t -_. �1 ENE,R ,ALC aNG DESCRIPTION: Columns at grid N Concrete Column P-M Interaction Diagram Phi*Mn @ Alpha (k-ft) 675.0 607.5 540.0 472.5 i 405.0 337.5 r a_ 270.0 202.5 ;{ 135.0 -.k 67.5 c 0 2 8: 571 86,5r; _ 44 r .� 0 ..-7. _-2n . 59:4_.—288-.2 0 lasdwma=-O 54:0.Vpa=27V Odog 1432C,4231 123/166 Project Title: Engineer. Project ID: Project Descr: Concrete Beam Projeu File'2101,E :-n check li 4.20-2O -,ece Cr, K Chi 4 .<: <.F, 2. =,:1 E N,v ENGUJEE,. M'j E'1ER_A,,.0 INC ca 22.. DESCRIPTION: N column M-weak CODE REFERENCES Calculations per ACI 318-14, IBC 2018,CBC 2019,ASCE 7-16 Load Combination Set:ASCE 7-10 Material Properties Pc = 4.0 ksi Phi Values Flexure: 0.90 fr= fc/2 '7.50 = 474.342 psi Shear: 0.750 yr Density = 145.0 Pcf1 = 0.850 LtWt Factor = 1.0 Elastic Modulus= 3,122.0 ksi Fy-Stirrups 40.0 ksi E Stmes = 29,000.0 ksi fy-Main Rebar= 75.0 ksi 'ztirrLo Bar Size# 3 E-Main Rebar = 29,000.0 ksi Number of Resisting Legs Per Stirrup= 2 10.0 ft _24",,w x 1 2 9 e Cross Section&Reinforcing Details Rectangular Section, Width=24.0 in, Height=12.0 in Span#1 Reinforcing.... 4-#5 at 1.50 in from Bottom,from 0.0 to 10.0 ft in this span 2-#5 at 6.0 in from Top,from 0.0 to 10.0 ft in this span 4-#5 at 1.50 in from Top,from 0.0 to 10.0 ft in this span Beam self weight calculated and added to loads DESIGN SUMMARY Maximum Bending Stress Ratio = 0.059 : 1 Section used for this span Typical Section Mu:Applied 5.075 k-ft Mn*Phi:Allowable 85.353 k-ft Location of maximum on span 4.991 ft Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.000 in Ratio= 0 <360.0 Max Upward Transient Deflection 0.000 in Ratio= 0 <360.0 Max Downward Total Deflection 0.006 in Ratio= 19849 >=180.0 Span:1 :D Only Max Upward Total Deflection 0.000 in Ratio= 0 <180.0 Span: 1 ;D Only Vertical Reactions Support notation:Far left is#1 Load Combination Support 1 Support 2 Overall MA':i3mum 1.45 1.450 Overall MINimum 0.870 0.870 D Only 1.450 1.450 +0.60D 0.870 0.870 Detailed Shear Information Span Distance 'd' Vu (k) Mu d*Vu/Mu Phi*Vc Comment Phi*Vs Phi*Vn Spacing(in) Load Combination Number (ft) (in) Actual Design (k-ft) (k) (k) (k) Req'Suggest +1.400 1 0.00 10.50 2.03 2.03 0.00 1.00 26.20 Vu<PhiVc/2 rt Reqd 9.E 26.2 0.0 0.0 124/166 Project Title: Engineer: Project ID: Project Descr: Concrete Beam Project File:21013 plan check calcs 4 20-2022.ec6 LIC#.KW-06014171,Build:20.22.3.31 HAYDEN CONSULTING ENGINEERS (c)ENERCALC INC 1983-2022 DESCRIPTION: N column M-weak Detailed Shear Information Span Distance 'd' Vu (k) Mu d*Vu/Mu Phi*Vc Comment Phi*Vs Phi*Vn Spacing(in) Load Combination Number (ft) (in) Actual Design (k-ft) (k) (k) (k) Req'd;uggest +1.40D 1 . 0.11'...10.50 ..,..,___1:99 1.99 0.22 ---1.00 2630'-----_ Vu<PhiVc/2 A Reqd 9.E 26.2 0.0 0.0 +1.40D+1.40D 1 0.22 10.50 1.94 1.94 0.43 1,00 26.20 Vu<PhiVc/2 A Reqd 9.E 26.2 0.0 0.0 +1.40D 1 0.33 10.50 1.90 1.90 0.64 1,00 26.20 Vu<PhiVc/2 At Reqd 9.E 26.2 0.0 0.0 +1.40D 1 0.44 10.50 1.85 1.85 0.85 1.00 26.20 Vu<PhiVc/2 A Reqd 9.E 26.2 0.0 0.0 +1.40D 1 0.55 10.50 1.81 1.81 1.05 1.00 26.20 Vu<PhiVc/2 A Reqd 9.E 26.2 0.0 0.0 +1„40D 1 0.66 10.50 1.76 1.76 1.24 1.00 26.20 Vu<PhiVc/2 Tt Reqd 9.E 26.2 0.0 0.0 +1.40D 1 0.77 10.50 1.72 1.72 1.43 1.00 26.20 Vu<PhiVc/2 A Reqd 9.E 26.2 0.0 0.0 +1,40D 1 0.87 10.50 1.68 1.68 1.62 0.90 25.87 Vu<PhiVc/2 A Reqd 9.E 25.9 0.0 0.0 +1.40D 1 0.98 10.50 1.63 1.63 1.80 0.79 25.48 Vu<PhiVc/2 At Reqd 9.E 25.5 0.0 0.0 +1.40D 1 1.09 10.50 1.59 1.59 1.98 0.70 25.16 Vu<PhiVc/2 At Reqd 9.E 25.2 0.0 0.0 +1.40D 1 1.20 10.50 1.54 1.54 2.15 0.63 24.90 Vu<PhiVc/2 >t Reqd 9.E 24.9 0.0 0.0 +1.40D 1 1.31 10.50 1.50 1.50 2.31 0.57 24.69 Vu<PhiVc/2 >t Reqd 9.E 24.7 0.0 0.0 +1.40D 1 1.42 10.50 1.45 1.45 2.47 0.51 24.50 Vu<PhiVc/2 At Reqd 9.E 24,5 0.0 0.0 +1.40D 1 1.53 10.50 1.41 1.41 2.63 0.47 24.35 Vu<PhiVc/2 >t Reqd 9.E 24.3 0.0 0.0 +1.40D 1 1.64 10.50 1.36 1.36 2.78 0.43 24.21 Vu<PhiVc/2 >t Reqd 9.E 24.2 0.0 0.0 +1.40D 1 1.75 10.50 1.32 1.32 2.93 0.39 24.09 Vu<PhiVc/2 >t Reqd 9.E 24.1 0.0 0.0 +1.40D 1 1.86 10.50 1.28 1.28 3.07 0.36 23.98 Vu<PhiVc/2 >t Reqd 9.E 24.0 0.0 0.0 +1.40D 1 1.97 10.50 1.23 1.23 3.21 0.34 23.88 Vu<PhiVc/2 A Reqd 9.E 23.9 0,0 0.0 +1.40D 1 2.08 10.50 1.19 1.19 3,34 0.31 23.80 Vu<PhiVc/2 At Reqd 9.E 23.8 0,0 0.0 +1.40D 1 2,19 10.50 1.14 1.14 3.47 0.29 23.72 Vu<PhiVc/2 At Reqd 9.E 23.7 0.0 0.0 +1.40D 1 2.30 10.50 1.10 1.10 3.59 0.27 23.65 Vu<PhiVc/2 At Reqd 9.E 23.6 0.0 0.0 +1.40D 1 2.40 10.50 1.05 1.05 3.71 0,25 23.58 Vu<PhiVc/2 A Reqd 9.E 23.6 0.0 0.0 +1.40D 1 2.51 10.50 1.01 1.01 3.82 0.23 23.52 Vu<PhiVc/2 At Reqd 9.€ 23.5 0.0 0.0 +1.40D 1 2-62 10.50 0.97 0.97 3.93 0.21 23.46 Vu<PhiVc/2 A Reqd 9.E 23.5 0.0 0.0 +1.40D 1 2.73 10.50 0.92 0.92 4.03 0.20 23.41 Vu<PhiVc/2 At Reqd 9.E 23.4 00 0.0 +1.40D 1 2.84 10.50 0.88 0.88 4.13 0.19 23.36 Vu<PhiVc/2 At Reqd 9.E 23.4 0.0 0.0 +1.40D 1 2.95 10.50 0.83 0.83 4.22 0.17 23.31 Vu<PhiVc/2 >t Reqd 9.E 23.3 0.0 0.0 +1.40D 1 3.06 10.50 0.79 0.79 4.31 0.16 23.27 Vu<PhiVc/2 >t Reqd 9.E 23.3 0.0 0.0 +1.40D 1 3.17 10.50 0.74 0.74 4.39 0.15 23.23 Vu<PhiVc/2 rt Reqd 9.E 23.2 0.0 0.0 +1.40D 1 3.28 10.50 0.70 0.70 4.47 0.14 23.19 Vu<PhiVc/2 >t Reqd 9.E 23.2 0.0 0.0 +1.40D 1 3.39 10.50 0.65 0.65 4.55 0.13 23.15 Vu<PhiVc/2 At Reqd 9.E 23.2 0.0 0.0 +1.40D 1 3.50 10.50 0.61 0.61 4.62 0.12 23.11 Vu<PhiVc/2 A Reqd 9.E 23.1 0.0 0.0 +1.40D 1 3.61 10.50 0.57 0.57 4.68 0.11 23.08 Vu<PhiVc/2 A Reqd 9.E 23.1 0.0 0.0 +1.40D 1 3.72 10.50 0.52 0.52 4.74 0.10 23.05 Vu<PhiVc/2 At Reqd 9.E 23.0 0.0 0.0 +1.40D 1 3.83 10.50 0.48 0.48 4.79 0.09 23.02 Vu<PhiVc/2 A Reqd 9.E 23.0 0.0 0.0 +1.40D 1 3.93 10.50 0.43 0.43 4.84 0.08 22.98 Vu<PhiVc/2 At Reqd 9.E 23.0 0.0 0.0 +1.40D 1 4.04 10.50 0.39 0.39 4.89 0.07 22.95 Vu<PhiVc/2 A Reqd 9.E 23.0 0.0 0.0 +1.400 1 4.15 10.50 0.34 0.34 4.93 0 06 22-92 Vu<PhiVc/2 A Reqd 9.E 22.9 0.0 0.0 +1.40D 1 4.26 10.50 0.30 0.30 4.96 0.05 22.90 Vu<PhiVc/2 >t Reqd 9.€ 22.9 0.0 0.0 +1.40D 1 4.37 10.50 0.26 0.26 4.99 0-04 22.87 Vu<PhiVc/2 }t Reqd 9.E 22.9 0.0 0.0 +1.40D 1 4.48 10.50 0.21 0.21 5.02 0.04 22.84 Vu<PhiVc/2 >t Reqd 9.E 22.8 0.0 0.0 +1.40D 1 4.59 10.50 0.17 0.17 5.04 0.03 22.81 Vu<PhiVc/2 A Reqd 9.E 22.8 0.0 0.0 +1.40D 1 4.70 10.50 0.12 0.12 5.06 0.02 22.79 Vu<PhiVc/2 At Reqd 9.E 22.8 0.0 0.0 +1.40D 1 4.81 10.50 0..08 0.08 5-07 0.01 22.76 Vu<PhiVc/2 At Reqd 9.E 22.8 0.0 0.0 +1.40D 1 4.92 10.50 0.03 0.03 5.07 0.01 22.73 Vu<PhiVc/2 At Reqd 9.E 22.7 0.0 0.0 +1.40D 1 5.03 10.50 -0.01 0.01 5-07 0.00 22.72 Vu<PhiVc/2 At Reqd 9.E 22.7 0.0 0.0 +1.40D 1 5.14 10.50 -0.06 0.06 5,07 0.01 22.74 Vu<PhiVc/2 At Reqd 9.E 22.7 0.0 0.0 +1.40D 1 5.25 10.50 -0.10 0.10 5.06 0.02 22.77 Vu<PhiVc/2 A Reqd 9.E 22.8 0.0 0.0 +1,40D 1 5.36 10.50 -0.14 0.14 5.05 0.02 22.80 Vu<PhiVc/2 At Reqd 9.E 22.8 0.0 0.0 +1.40D 1 5.46 10.50 -0.19 0.19 5.03 0.03 22.83 Vu<PhiVc/2 At Reqd 9.E 22.8 0.0 0.0 +1.40D 1 5.57 10.50 -0.23 0.23 5.01 0.04 22.85 Vu<PhiVc/2 A Reqd 9.E 22.9 0.0 0.0 +1.40D 1 5,68 10.50 -0.28 0.28 4.98 0,05 22.88 Vu<PhiVc/2 At Reqd 9.E 22.9 0-0 0.0 +1.40D 1 5.79 10.50 -0.32 0.32 4.95 0.06 22.91 Vu<PhiVc/2 >t Reqd 9.E 22.9 0-0 0.0 +1.40D 1 5.90 10.50 -0.37 0.37 4.91 0.07 22.94 Vu<PhiVc/2 At Reqd 9.E 22.9 0.0 0.0 +1.40D 1 6.01 10.50 -0.41 0.41 4.87 0.07 22.97 Vu<PhiVc/2 A Reqd 9.E 23.0 0.0 0.0 +1.40D 1 6.12 10.50 -0.45 0.45 4.82 0.08 23.00 Vu<PhiVc/2 At Reqd 9.E 23.0 0.0 0.0 +1.40D 1 6,23 10.50 -0.50 0.50 4.77 0.09 23.03 Vu<PhiVc/2 >t Reqd 9.E 23.0 0.0 0.0 125/166 Project Title: Engineer: Project ID: Project Descr: Concrete Beam Project File:21013 plan check calcs 4-20-2022.ec6 LIC#:KW-06014171,Build:20,22.3.31 HAYDEN CONSULTING ENGINEERS (c)ENERCALC INC 1983-2022 DESCRIPTION: N column M -weak Detailed Shear Information Span Distance 'd' Vu (k) Mu d*Vu/Mu Phi*Vc Comment Phi*Vs Phi*Vn Spacing(in) Load Combination Number (ft) (in) Actual Design (k-ft) (k) (k) (k) Req'Suggest +1.40D 1.. 6.34 10.50 0.54 0.54 4.71 0.10 23.06 Vu<PhiVc/2 A Reqd 9.E 23.1 0.0 0.0 +1.40D 1 6.45 10.50 -0.59 0.59 4.65 0.11 23.10 Vu<PhiVc/2 At Reqd 9.E 23.1 0.0 0.0 +1.40D 1 6.56 10.50 -0.63 0.63 4.58 0.12 23.13 Vu<PhiVc/2 At Reqd 9.E 23.1 0.0 0.0 +1.40D 1 6.67 10.50 -0.68 0.68 4.51 0.13 23.17 Vu<PhiVc/2 A Reqd 9.E 23.2 0.0 0.0 +1.40D 1 6.78 10.50 -0.72 0.72 4.43 0.14 23.21 Vu<PhiVc/2 At Reqd 9.E 23.2 0.0 0.0 +1.40D 1 6.89 10.50 -0.77 0.77 4.35 0,15 23.25 Vu<PhiVc/2 At Reqd 9.E 23,2 0.0 0.0 +1.40D 1 6.99 10.50 -0.81 0.81 4.27 0.17 23.29 Vu<PhiVc/2 >t Reqd 9.E 23.3 0.0 0.0 +1.40D 1 7.10 10.50 -0.85 0.85 4.18 0.18 23.34 Vu<PhiVc/2 At Reqd 9.E 23.3 0.0 0.0 +1.40D 1 7.21 10.50 -0.90 0.90 4.08 0.19 23.38 Vu<PhiVd2 At Reqd 9.E 23.4 0.0 0.0 +1.40D 1 7.32 10.50 -0.94 0.94 3.98 0.21 23.43 Vu<PhiVc/2 )t Reqd 9.E 23.4 0.0 0.0 +1,40D 1 7.43 10.50 -0.99 0.99 3..87 0.22 23.49 Vu<PhiVc/2 At Reqd 9.E 23.5 0.0 0.0 +1.40D 1 7,54 10.50 -1,03 1.03 3.76 0.24 23.55 Vu<PhiVc/2 A Reqd 9.E 23.5 0.0 0.0 +1..40D 1 7.65 10.50 -1,08 1.08 3.65 0.26 23.61 Vu<PhiVc/2 At Reqd 9.E 23.6 0.0 0.0 +1.40D 1 7.76 10.50 -1.12 1.12 3.53 0.28 23.68 Vu<PhiVc/2 >t Reqd 9.E 23.7 0.0 0.0 +1.40D 1 7.87 10.50 -1.16 1.16 3.40 0.30 23.76 Vu<PhiVc/2 A Reqd 9.E 23.8 0.0 0.0 +1.40D 1 7.98 10.50 -1.21 1.21 3.27 0.32 23.84 Vu<PhiVc/2 A Reqd 9.E 23.8 0.0 0.0 +1.40D 1 8,09 10.50 -1.25 1.25 3.14 0.35 23.93 Vu<PhiVc/2 A Reqd 91 23.9 0.0 0.0 +1.40D 1 8.20 10.50 -1.30 1.30 3.00 0.38 24.03 Vu<PhiVc/2 A Reqd 9.E 24.0 0.0 0.0 +1.40D 1 8,31 10.50 -1.34 1.34 2.86 0.41 24.15 Vu<PhiVc/2 At Reqd 9.E 24.1 0.0 0.0 +1.40D 1 8.42 10.50 -1.39 1.39 2.71 0.45 24.27 Vu<PhiVc/2 At Reqd 9.E 24.3 0..0 0.0 +1.40D 1 8.52 10.50 -1.43 1.43 2.55 0.49 24.42 Vu<PhiVc/2 >t Reqd 9.E 24.4 0.0 0.0 +1.40D 1 8.63 10.50 -1.48 1.48 2.39 0.54 24.59 Vu<PhiVc/2 A Reqd 9.E 24.6 0.0 0.0 +1.40D 1 8.74 10.50 -1.52 1.52 2.23 0.60 24.79 Vu<PhiVc/2 >t Reqd 9.E 24.8 0.0 0.0 +1.40D 1 8.85 10.50 -1.56 1.56 2.06 0.66 25.03 Vu<PhiVc/2 At Reqd 9.E 25.0 0.0 0.0 +1.40D 1 8.96 10.50 -1.61 1.61 1.89 0.75 25.31 Vu<PhiVc/2 A Reqd 9,E 25.3 0.0 0.0 +1 40D 1 9.07 10.50 -1.65 1.65 1.71 0.85 25.66 Vu<PhiVc/2 At Reqd 9.E 25.7 0.0 0.0 +1.40D 1 9.18 10.50 -1.70 1.70 1.53 0.97 26.10 Vu<PhiVc/2 At Reqd 9.E 26.1 0.0 0.0 +1.40D 1 9.29 10.50 -1.74 1.74 1.34 1.00 26.20 Vu<PhiVc/2 A Reqd 9.E 26.2 0.0 0.0 +1.40D 1 9.40 10.50 -1.79 1.79 1.15 1.00 26.20 Vu<PhiVc/2 At Reqd 9.E 26.2 0.0 0.0 +1.40D 1 9.51 10.50 -1.83 1.83 0.95 1.00 26.20 Vu<PhiVc/2 >t Reqd 9.E 26.2 0.0 0.0 +1.40D 1 9.62 10.50 -1.87 1.87 0.75 1.00 26.20 Vu<PhiVc/2 t Reqd 9.E 26.2 0.0 0.0 +1.40D 1 9.73 10.50 -1.92 1.92 0.54 1.00 26.20 Vu<PhiVc/2 At Reqd 9.E 26.2 0.0 0.0 +1,40D 1 9.84 10.50 -1.96 1.96 0.33 1.00 26.20 Vu<PhiVc/2 >t Reqd 9.E 26.2 0.0 0.0 +1.40D 1 9.95 10.50 -2.01 2.01 0.11 1.00 26.20 Vu<PhiVc/2 >t Reqd 9.E 26.2 0.0 0.0 Maximum Forces&Stresses for Load Combinations Load Combination Location(ft) Bending Stress Results (k-ft) Segment Span# along Beam Mu:Max Phi*Mnx Stress Ratio MAXimum BENDING Envelope Span#1 1 10.000 5.07 85.35 0.06 +1.40D Span#1 1 10.000 5.07 85.35 0.06 +1.20D Span#1 1 10.000 4.35 85.35 0.05 +0.90D Span#1 1 10.000 3.26 85.35 0.04 Overall Maximum Deflections Load Combination Span Max."-"Defl (in).ocation in Span (ft Load Combination Max."+"Defl (in.ocation in Span (ft D Only 1 0.0060 5.000 0.0000 0.000 126/166 12 L. tee° Ptc • r'4 `t = = ap 0 N; - 13) ,. I. z a44 .,. . BY DATE ENGINEERS __ __ REV DATE_ S T A T UR A : - — JOB NO_......�__..._._.._.— (503) 968-9994 p (503) 968-8444 f .,, �_.w.. __.__ — _.__.._ SHEET —._ti. OF-___. — r2 /L&6 Oregon Snow Loading The design ground snow of any location in the state of Oregon may be determined by entering the latitude and longitude of your site into the boxes below. The tool provides the design ground snow load (pg in ASCE7*) for your site. The design ground snow load val- ues can also be viewed on the online map. Users are strongly recommended to review the Map Usage Notes. Ground snow loads are very sensitive to geographic location, and particularly sensitive to elevation. It is recommended that the lati- tude and longitude values be entered with a precision of 0.001 (about 105 yards). *ASCE Standard(ASCE/SEI 7-10)Minimum Design Loads for Buildings and Other Structures published by the American Society of Civil Engineers. Latitude - Longitude Lookup Results Latitude: 45.4306729 Longitude: -122.753186 Snow Load: 10.0 psf Modeled Elevation: 206 ft Site Elevation versus Modeled Grid Elevation Site elevation refers to the elevation (above sea level,in feet) of the location for which the snow load is required. The modeled grid elevation is the average elevation of the 4 km (about 2-1/2 miles) grid cell that was used in the snow load modeling. In rela- tively flat terrain, the two elevations will likely be the same or very similar. In sloped or mountainous terrain, the two elevations may be quite different. The design ground snow load may be underreported for some locations where the site elevation is higher than the modeled grid elevation. Consult the Map Usage Notes if your site elevation is more than 100 ft. above the modeled grid elevation shown, or if your site is at or near the top of a hill. Oregon Design Ground Snow Load Look Up Results It is important that the user of this tool understand the principals and limitations of the modeling used to create it. Ground snow loads can vary dramatically over short distances due to changes in precipitation and elevation. It is critical to use good engineer- ing judgment when interpreting and using the results reported by this tool. The user is recommended to review the online map, to gain a better understanding of the variations and range of magnitudes of the ground snow loads in the vicinity of the site location. In remote regions at high elevation, reliable snow data was not available during the creation of the map. A site-specific case study is required to determine the design ground snow load in these areas. The ground snow load values on the map are based on ex- trapolation, and are not recommended for design. See the Map Usage Notes for the regions that require a site-specific case study. It is recommended that the local building official having jurisdiction at the site be consulted for minimum design ground snow or roof snow loads. The reported design ground snow loads must be adjusted as required by Chapter 7 of ASCE7* for site exposure, roof slope, roof configuration, etc. Only the properly adjusted loads can be used to design roof structural elements. Oregon requires a minimum roof snow load of 20 psf(pm in ASCE7*) for all roofs, plus a 5 psf rain-on-snow surcharge for many roof types, resulting in a 25 psf minimum roof design load for most roofs. See the Map Usage Notes or Snow Load Analysis for Oregon, Part II for further information. *ASCE Standard(ASCE/SEI 7-10)Minimum Design Loads for Buildings and Other Structures published by the American Society of Civil Engineers. ©Copyright 2010-2013 seao.org All rights reserved. 128/166 Project Title: Engineer: Project ID: Project Descr: ASCE -16 Snow Loads Pr"-;,ie Y 5 9ta 2101k p ;t,�-,.it , ;s ti_s 2.. 2.et: _ x„se>'. 3. art._n 223.31 HAYDEN CONa.C'NG.z F.:0"N....,t'a E%v dc L*..,k;.,, 0,;w 20 22 DESCRIPTION: —None-- Flat Roof Snow Loads Description per ASCE 7-16,Chapter 7 Ground Snow Load, per Fig 7.2 10.00 psf Roof Slope,Sec.7.3.4 3.00 Terrain Category B(see ASCE 7-16 Section 26.7) Roof Configuration Monoslope Exposure of Roof Fully Exposed Ce:Exposure Factor, Table 7.3- 0.90 Ct:Thermal Factd,i nheated and open air structures pm, Minimum required io.00 psf Risk Category,per Table 1.5- 11 pf,Calculated Snow Load per Equatio 7.56 psf Importance Factor,Is,Table 1.5-2 . 1.00 pf, Design Snow Load Max(pm min, pf cal( 10.00 psf Snow Drifts on Lower Roofs Description . per ASCE 7-16,Chapter 7 Balanced Snow l_ act 10.00 psf hd:leeward 1.56 ft Ground Snow Load 10.00 psf hd:windward 0.73ft lu-upper 38.00 ft hd Max 1.56 ft lu-lower 6.00 ft hd:Design 1.56 ft Height of Roof Step 62_00 ft pd:Max Drift Only 23.83 psf Snow Density 15.30 pcf pd+Balanced 33.83 psf hb:Balanced 0.65 ft W:Drift Width 6.23 ft he:Step Height-hb 61.35 ft he/hb 93.86 Total Snow Load @ End of Drift 10.00 psf Importance Factor 1.00 129/166 ,,, )4 TT -~ 0. � ` ? t (s4( ,, A - � _ fir` `" � -;4' , Aft bz ?) 1 1 . 4 4 w _._. BY_._ DATE _ 13 ENGINEERS REV_._ .._.___._.. DATE-...___...._.. STRUCTURAL I CIVIL - JOB NO...,,..,,._.__.._. (503) 968-9994 p (503) 968-8444 f SHEET OF 13E1t66 Project Title: Engineer: Project ID: Project Descr: Steel Beam Project File:21013 plan check calcs 4-20-2022.ec6 LIC#:KW-06014171,Huila 20 22 3 31 HAYDEN CONSULTING ENGINEERS (c)ENERCALC INC 1983-2022 DESCRIPTION: canopy front HSS CODE REFERENCES Calculations per AISC 360-16, IBC 2018, CBC 2019,ASCE 7-16 Load Combination Set:ASCE 7-10 Material Properties Analysis Method Allowable Strength Design Fy:Steel Yield 46.0 ksi Beam Bracing: Completely Unbraced E:Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending HSS4x3x1/4 Span=16.0 ft Applied Loads Service loads entered.Load Factors will be applied for calculations, Beam self weight NOT internally calculated and added Load for Span Number 1 Uniform Load : D=0.030, S=0.0750, W=0.0550 k/ft, Extent=0.0-->> 16.0 ft, Tributary Width= 1.0 ft DESIGN SUMMARY Design OK Maximum Bending Stress Ratio = 0.406: 1 Maximum Shear Stress Ratio= 0.035: 1 Section used for this span HSS4x3x1/4 Section used for this span HSS4X3x1/4 Ma:Applied ' 3.552 k-ft Va:Applied 0.8880 k Mn/Omega:Allowable 8.746 k-ft Vn/Omega:Allowable 25.423 k Load Combination +D+0.750S+0.450W Load Combination +D+0.750S+0.450W Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.622 in Ratio= 308 >=240. Max Upward Transient Deflection 0.000 in Ratio= 0 <240.0 Span: 1 S Only Max Downward Total Deflection 0.922 in Ratio= 208 >=180 Span: 1 :+D+0.7505+0.450W Max Upward Total Deflection 0.000 in Ratio= 0 <180 Maximum Forces & Stresses for Load Combinations Load Combination lvTax Stress Ratios Summary of MomenfValues -Summary of Shear VaTues Segment Length Span# M V Mmax+ Mmax- Ma Max Mnx Mnx/Omega Cb Rm Va Max VnxVnx/Omega D Only Dsgn. L= 16.00 ft 1 0.110 0,009 0.96 0.96 14.61 8.75 1.14 1.00 0.24 42.46 25.42 +D+S Dsgn. L= 16.00 ft 1 0.384 0.033 3.36 3.36 14.61 8.75 1.14 1.00 0.84 42.46 25.42 +D+0.750S Dsgn. L= 16.00 ft 1 0.316 0,027 2.76 2.76 14.61 8.75 1.14 1.00 0 69 42.46 25.42 +D+0 60W Dsgn. L= 16.00 ft 1 0.231 0,020 2.02 2.02 14.61 8.75 1.14 1.00 0.50 42,46 25.42 +D+0.450W Dsgn, L= 16.00 ft 1 0.200 0,017 1.75 1.75 14.61 8.75 1.14 1.00 0.44 42.46 25.42 +D+0.750S+0.450W Dsgn, L= 16.00 ft 1 0.406 0.035 3.55 3.55 14.61 8.75 1,14 1 00 0.89 42.46 25 42 +0.60D+0.60W Dsgn. L= 16.00 ft 1 0,187 0.016 1.63 1.63 14.61 8.75 1.14 1,00 0.41 42.46 25.42 +060D Dsgn. L= 16 00 ft 1 0.066 0.006 0.58 0.58 14.61 8.75 1.14 1 00 0.14 42.46 25.42 Overall Maximum Deflections Load Combination Span Max."-"Defl Location in Span Load Combination Max."+"Defl Location in Span +D+0 750S+0.450W 1 0.9219 8 046 0.0000 0.000 131/166 Project Title: Engineer: Project ID: Project Descr: Steel Beam 1 toje 1 1@e:21013 pin check ca1cs 4-20-2022,e1c6 X.. P,1 P..>c.2.:`, HAYDEN O,.NSUL11N INGINEERS -1- 63.2 ®...o DESCRIPTION: canopy front HSS Vertical Reactions Support notation:Far left is#- Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 0_666 0.886 Overall MiNimum 0.144 0.144 D Only 0.240 0240 +D+S 0.840 0.840 +D+0.750S 0.690 0.690 +D+0.60W 0.504 0.504 +0+0.450W 0.438 0.438 +0+0.750S+0.450W 0.888 0.888 +0.600+0.60W 0.408 0.408 +0.60D 0.144 0.144 S Only 0.600 0.600 W Only 0.440 0.440 132/166 Project Title: Engineer: Project ID: Project Descr: Steel Beam Project File:21013 plan check calcs 4-20-2022.ec6 LIC#;KW-06014171,BuiId:20,22.3<31 HAYDEN CONSULTING ENGINEERS (c)ENERCALC INC 1963-2022 DESCRIPTION: canopy back channel CODE REFERENCES Calculations per AISC 360-16, IBC 2018, CBC 2019,ASCE 7-16 Load Combination Set:ASCE 7-10 Material Properties Analysis Method-Allowable Strength Design Fy:Steel Yield A 36.0 yg g ksi Beam Bracing: Completely Unbraced E:Modulus 29,000.0 ksi Bending Axis: Major Axis Bending „ ,03m,Sy)._ C10x15 3 Span= 16.0 ft Applied Loads Service loads entered.Load Factors will be applied for calculations. Beam self weight NOT internally calculated and added Load for Span Number 1 Uniform Load : D=0.030, S=0.0780, W=0.0550 k/ft, Extent=0.0->>16.0 ft, Tributary Width = 1.0 ft DESIGN SUMMARY Design OK Maximum Bending Stress Ratio = 0.302 1 Maximum Shear Stress Ratio = 0.029 : 1 1 Section used for this span C10x15.3 Section used for this span C10x15.3 Ma:Applied 3.624 k-ft Va:Applied 0.9060 k Mn/Omega:Allowable 11.988 k-ft Vn/Omega:Allowable 31.042 k Load Combination +D+0.7505+0,450W Load Combination +D+0.7505+0.450W Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.059 in Ratio= 3,243 >=240. Max Upward Transient Deflection 0.000 in Ratio= 0 <240.0 Span: 1 :S Only Max Downward Total Deflection 0.086 in Ratio= 2234 >=180 Span:1 :+D+0.750S+0.450W Max Upward Total Deflection 0.000 in Ratio= 0 <180 Maximum Forces & Stresses for Load Combinations lVfax Stress Ratios -Summary of MomenfVlues -Summaryof SfiearValues Load Combination -,, _ Segment Length Span# M V Mmax+ Mmax- Ma Max Mnx Mnx/Omega Cb Rm Va Max VnxVnx/Omega D Only Dsgn. L= 16.00 ft 1 0.080 0.008 0,96 0.96 20.02 11.99 1 14 1.00 0.24 51.84 31.04 +D+S Dsgn. L= 16.00 ft 1 0.288 0.028 3.46 3,46 20.02 11.99 1,14 1.00 0.86 51.84 31.04 +D+0.750S Dsgn.L= 16.00 ft 1 0.236 0.023 2.83 2.83 20,02 11.99 1.14 1.00 0.71 51.84 31.04 +D+0,60W Dsgn.L= 16.00 ft 1 0.168 0,016 2.02 2.02 20.02 11.99 1.14 1.00 0.50 51,84 31,04 +D+0.450W Dsgn. L= 16.00 ft 1 0.146 0.014 1.75 1.75 20.02 11.99 1,14 1.00 0.44 51.84 31.04 +D+0.750S+0.450W Dsgn,L= 16.00 ft 1 0.302 0.029 3.62 3.62 20.02 11.99 1.14 1.00 0.91 51.84 31.04 +0.60D+0,60W Dsgn.L= 16.00 ft 1 0.136 0.013 1.63 1.63 20.02 11.99 1,14 1.00 0.41 51.84 31.04 +0 60D Dsgn. L= 16.00 ft 1 0.048 0.005 0.58 0.58 20.02 11,99 1,14 1.00 0.14 51.84 31 04 Overall Maximum Deflections Load Combination Span Max "-"Defl Location in Span Load Combination Max."+"Defl Location in Span +D+0.750S+0 450W 1 0 0860 8.046 0.0000 0.000 133/166 Project Title: Engineer: Project ID: Project Descr: Steel Beam Project FOt-,- 2101z•-• check catcs-4-20-2022,ece LiCg. HAYDEN CONSuLT,NG ENG°NL-ERS ENERCALC wc.1SE:3-2C22 DESCRIPTION: canopy back channel Vertical Reactions Support notation Far left is ff. Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 0.906 0.906 Overall MINimum 0.144 0.144 D Only 0.240 0.240 +D+S 0.864 0.864 +D+0 750S 0.708 0.708 +D+0.60W 0.504 0.504 +D+0.450W 0.438 0.438 +D+0.7505+0.450W 0.906 0.906 +0 60D+0.60W 0.408 0.408 +0.60D 0.144 0.144 S Only 0.624 0.624 W Only 0.440 0.440 134/166 Project Title: ti , Engineer: Project ID: Project Descr: Steel Beam Project File:21013 plan check calcs 4-20-2022.ec6 LIC# KW-06014171,Build 20 22 3,31 HAYDEN CONSULTING ENGINEERS (c)ENERCALC INC 1983-2022 DESCRIPTION: canopy side HSS CODE REFERENCES Calculations per AISC 360-16, IBC 2018, CBC 2019,ASCE 7-16 Load Combination Set:ASCE 7-10 Material Properties Analysis Method Allowable Strength Design Fy:Steel Yield: 46,0 ksi Beam Bracing: Completely Unbraced E:Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending 0(0 240)S(0,6 )W(0,440) 0 0 240)S(0 60)W(0 440) 2 � HSS10x2x3/16 HSS10x2x3/16 Span=4.50 ft Span=1.50 ft Applied Loads Service loads entered. applied A pp Load d Factors will be a applied for calculations. Beam self weight NOT internally calculated and added Load(s)for Span Number 1 Point Load : D=0.240, S=0.60, W=0.440 k @ 0.0 ft Load(s)for Span Number 2 Point Load : D=0.240, S=0.60, W=0.440 k @ 1.50 ft DESIGN SUMMARY Design OK Maximum Bending Stress Ratio = 0.052: 1 Maximum Shear Stress Ratio= 0.016 : 1 Section used for this span HSS10x2x3/16 Section used for this span HSS10x2x3I16 Ma:Applied 1.332 k-ft Va:Applied 0_8880 k Mn/Omega:Allowable 25.479 k-ft Vn/Omega:Allowable 54.512 k Load Combination +D+0.750S+0.450W Load Combination +D+0.750S+0.450W Location of maximum on span 4.500 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.004 in Ratio= 9,181 >=240. Span:2:S Only Max Upward Transient Deflection -0.002 in Ratio= 31,616 >=240. Span:2:S Only Max Downward Total Deflection 0.006 in Ratio= 6204 >=180 Span:2:+D+0.750S+0.450W Max Upward Total Deflection -0.003 in Ratio= 21363 >=180 Span:2:+D+0.750S+0.450W Maximum Forces &Stresses for Load Combinations Load Combination Max StressStress-Rdtios Summary oPMV enfValues Summary of-S earYalues Segment Length Span# M V Mmax+ Mmax- Ma Max Mnx Mnx/Omega Cb Rm Va Max VnxVnx/Omega D Only Dsgn.L= 4.50 ft 1 0.014 0.004 -0.36 0.36 42.55 25.48 1.67 1.00 0.24 91.03 54.51 Dsgn. L= 1.50 ft 2 0.014 0.004 -0.36 0.36 42.55 25.48 1.00 1.00 0.24 91.03 54.51 +D+S Dsgn.L= 4.50 ft 1 0.049 0.015 -1.26 1.26 42.55 25.48 1.67 1.00 0.84 91.03 54.51 Dsgn. L= 1.50 ft 2 0.049 0.015 -1,26 1.26 42.55 25,48 1.00 1.00 0.84 91.03 54.51 +D+0.7505 Dsgn.L= 4,50 ft 1 0.041 0.013 -1.04 1.04 42.55 25,48 1.67 1.00 0.69 91.03 54.51 Dsgn. L= 1,50 ft 2 0,041 0.013 -1.04 1.04 42.55 25,48 1,00 1,00 0.69 91.03 54.51 +D+0 60 W Dsgn. L= 4.50 ft 1 0,030 0.009 -0.76 0.76 42.55 25.48 1.67 1..00 0.50 91.03 54.51 Dsgn. L= 1.50 ft 2 0,030 0.009 -0.76 0.76 42.55 25.48 1.00 1.00 0.50 91.03 54.51 +D+0.450W Dsgn. L= 4.50 ft 1 0.026 0.008 -0.66 0.66 42,55 25.48 1.67 1.00 0.44 91,03 54.51 Dsgn. L= 1.50 ft 2 0.026 0 008 -0.66 0.66 42 55 25.48 1.00 1.00 0.44 91.03 54.51 +D+0 750S+0.450W Dsgn.L= 4 50 ft 1 0.052 0.016 -1.33 1,33 42 55 25.48 1.67 1.00 0.89 91.03 54.51 Dsgn. L= 1.50 ft 2 0 052 0.016 -1 33 1.33 42.55 25.48 1.00 1 00 0.89 91.03 54.51 135/166 Project Title: Engineer: . Project ID: Project Descr: Steel Beam Project Pile,21013 plan check tcs eck n_ Kv< .:.,o 34 II 1 6 u,3v EC»...:CI HAYDEN CONSULTING E E c ENERCALC INC we DESCRIPTION: canopy side HSS Maximum Forces &Stresses for Load Combinations Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span# M V Mmax+ Mmax- Ma Max Mnx Mnx/Omega Cb Rm Va Max VnxVnx/Omega +0.60D+0.60W Dsgn.L= 4.50 ft 1 0.024 0.007 -0.61 0.61 42.55 25.48 1.67 1.00 0.41 91.03 54.51 Dsgn. L= 1.50 ft 2 0.024 0.007 -0.61 0.61 42.55 25.48 1.00 1.00 0.41 91.03 54.51 +0.60D Dsgn.L= 4.50 ft 1 0.008 0.003 -0.22 0.22 42.55 25.48 1.67 1.00 0.14 91.03 54.51 Dsgn. L= 1.50 ft 2 0.008 0.003 -0.22 0.22 42.55 25.48 1.00 1.00W 0.14 91.03 54.51 Overall Maximum Deflections Load Combination Span Max."2 Defl Location in Span Load Combination Max."+"Defl Location in Span 1 0.0000 0.000 +D+0.750S+0.450W -0.0025 2.610 +D+0.750S+0.450W 2 0.0058 1.500 0.0000 2.610 Vertical Reactions Support notation:Far left is#- Values in KIPS Load Combination Support 1 Support 2 Support 3 Overall MAXimum 0.592 1.184 Overall MINimum 0.096 0.192 D Only 0.160 0.320 +D+S 0.560 1.120 +D+0.750S 0.460 0.920 +D+0.60W 0.336 0.672 +D+0.450W 0.292 0.584 +D+0.750S+0.450W 0.592 1.184 +0.600+0.60W 0.272 0.544 +0.60D 0.096 0.192 S Only 0.400 0.800 W Only 0.293 0.587 136/166 . , gg 1' `7 HAYDEN _ _ BY ___ DATE ENGINEERS REV STRUCTURAL I CIVIL JOB NO (503)968-9994 p (503) 968-8 M f _ _...___..._...._.____._......_.._.___ _ .____ .___ SHEET OF 166 Project Title: Engineer: • Project ID: Project Descr: Steel Column Project File:21013 clan c.e : a :- .r 2_22 ec,, LIC#:KW-06014171,Build 20 22,3 31 HAYDEN CONSULTING ENGINEERS EN_RCAL M lC .ws3-2022 DESCRIPTION: --None-- Code References Calculations per AISC 360-16, IBC 2018, CBC 2019,ASCE 7-16 Load Combinations Used :ASCE 7-10 General Information Steel Section Name : Pipe1STD Overall Column Height 8,5 ft Analysis Method: Allowable Strength Top&Bottom Fixity Top&Bottom Pinned Steel Stress Grade Brace condition for deflection(buckling)along columns: Fy:Steel Yield 35.0 ksi X-X(width)axis: E: Elastic Bending Modulus 29,000.0 ksi Unbraced Length for buckling ABOUT Y-Y Axis=8.5 ft,K=1.0 Y-Y(depth)axis: Unbraced Length for buckling ABOUT X-X Axis=8.5 ft,K=1.0 Applied Loads Service loads entered, Load Factors will be applied for calculations. Column self weight included : 14.280 lbs*Dead Load Factor AXIAL LOADS . . . Axial Load at 8.50 ft, W=0.3820 k DESIGN SUMMARY Bending&Shear Check Results PASS Max.Axial+Bending Stress Ratio = 0.2008 : 1 Maximum Load Reactions.., Load Combination +D+0.60W Top along X-X 0.0 k Location of max.above base 0,0 ft Bottom along X-X 0.0 k At maximum location values are. .. Top along Y-Y 0.0 k Pa:Axial 0.2435 k Bottom along Y-Y 0.0 k Pn/Omega:Allowably 1.212 k Ma-x:Applied 0.0 k-ft Maximum Load Deflections... Mn-x/Omega:Allowable 0.3091 k-ft Along Y-Y 0.0 in at 0.oft above base for load combination: Ma-y:Applied 0.0 k-ft Mn-y/Omega :Allowable 0,3091 k-ft Along X-X 0.0 in at 0.0ft above base for load combination: PASS Maximum Shear Stress Rath 0.0 : 1 Load Combination 0.0 Location of max.above base 0.0 ft X-X &Y-Y kl/r> 200 At maximum location values are Va:Applied 0.0 k Vn/Omega:Allowable 0.0 k Load Combination Results Maximum Axial+Bending Stress Ratios Maximum Shear Ratios Load Combination Stress Ratio Status Location Cbx Cby KxLx/Ry KyLy/Rx Stress Ratio Status Location D Only 0.012 PASS 0 00 ft 1.00 1.00 241.13 0.00 0.000 PASS 0.00 ft +D+0.60W 0.201 PASS 0.00 ft 1,00 1.00 241.13 0.00 0.000 PASS 0.00 ft +D+0.450W 0.154 PASS 0.00 ft 1,00 1.00 241.13 0.00 0.000 PASS 0.00 ft +0.60D+0.60W 0.196 PASS 0..00 ft 1.00 1.00 241.13 0.00 0.000 PASS 0.00 ft +0.60D 0,007 PASS 0,00 ft 1.00 1.00 241.13 0,00 0.000 PASS 0,00 ft Maximum Reactions Note:Only non-zero reactions are listed. Axial Reaction X-X Axis Reaction k Y-Y Axis Reaction Mx-End Moments k-ft My-End Moments Load Combination @ Base @ Base @ Top @ Base @ Top @ Base @ Top @ Base @ Top D Only 0.014 ... +D+0.60W 0.243 +D+0 450W 0.186 +0.60D+0,60W 0.238 +0,60D 0,009 W Only 0.382 138/166 Project Title: Engineer: • Project ID: Project Descr: Steel Column Project Eile.21013 plan check cake 4-2w-2022. c6 L0 KW �C1 v . f -� .:.. ,..2.,_, t1.�4'f�E h .��aSFiL`,_';N ENGINEERS ilkEF�„7 � .��:'0_. DESCRIPTION: -None- Extreme Reactions Axial Reaction X-X Axis Reaction k Y-Y Axis Reaction Mx-End Moments k-ft My-End Moments Item Extreme Value @ Base @ Base @ Top @ Base @ Top @ Base @ Top @ Base @ Top Axial @ Base Maximum 0.382 " Minimum 0.009 Reaction, X-X Axis Base Maximum 0.014 Minimum 0.014 Reaction, Y-Y Axis Base Maximum 0.014 Minimum 0.014 Reaction, X-X Axis Top Maximum 0.014 Minimum 0.014 Reaction, Y-Y Axis Top Maximum 0.014 Minimum 0.014 Moment, X-X Axis Base Maximum 0.014 Minimum 0.014 Moment, Y-Y Axis Base Maximum 0.014 Minimum 0.014 Moment, X-X Axis Top Maximum 0.014 Minimum 0.014 Moment, Y-Y Axis Top Maximum 0.014 Minimum 0.014 Maximum Deflections for Load Combinations Load Combination Max.X-X Deflection Distance Max.Y-Y Deflection Distance D Only 0.0000 in 0.000 ft 0.000 in 0.000 ft +D+0.60W 0.0000 in 0.000 ft 0.000 in 0.000 ft +D+0.450W 0.0000 in 0.000 ft 0.000 in 0.000 ft +0.60D+0.60W 0.0000 in 0.000 ft 0.000 in 0.000 ft +0.60D 0.0000 in 0.000 ft 0.000 in 0.000 ft W Only 0.0000 in 0.000 ft 0.000 in 0.000 ft Steel Section Properties : Pipe1STD Depth = 1.315 in I xx 0.08 in^4 J = 0.166 in^4 S xx = 0.13 inA3 Diameter = 1.315 in R xx = 0.423 in Wall Thick = 0.133 in Zx = 0.177 inA3 Area = 0.469 inA2 I yy = 0.083 inA4 Weight = 1.680 plf S yy = 0.126 inA3 R yy = 0.423 in Ycg - 0.000 in 139/166 Project Title: Engineer: Project ID: Project Descr: Steel Column Project File:21013 plan check calcs 4-20-2022.ec6 LIC#:KW-06014171,Build 20 22 3.31 HAYDEN CONSULTING ENGINEERS (c)ENERCALC INC 1983-2022 DESCRIPTION: --None-- Sketches 4U21:- Y +X Load 1 R < is m a . 1.32in 140/166 t • 4' 3 C. , -,7 13 . *') ' gr a rr O ° Ak w _.._ _ BY ENGINEERS .__„ REV DATE _ u 3° u. _.__� _ JOB NO (503) 968-9994 p (503) 968-8444 f SHEET OF ... m-_I4 I66 r - �. vs..„,› { II t __. _ ___ _ BY DATE ENGINEERS _._ . REV DATE JOBNO____.____..................._ (503) 968-9994 p (503) 968-8444 f -__._ ........................._.._ •421T66 SIMPSO1 Anchor �OSIgf81TM Company: Date: 4/27/2022 Engineer: ( Page: 1/6 Software Project: Version 3.0.7947.0 Address: Phone: E-mail: 1.Project information Customer company: Project description: Customer contact name: Location: Customer e-mail: Fastening description: Comment: 2,Input Data&Anchor Parameters General Base Material Design method:ACI 318-14 Concrete:Normal-weight Units:Imperial units Concrete thickness,h(inch):10.00 State:Cracked Anchor information: Compressive strength,f' (psi):4000 Anchor type:Cast-in-place 4r�,v: 1.0 Material:AWS Type A Reinforcement condition:B tension,B shear Diameter(inch):0.750 Supplemental reinforcement:Not applicable Effective Embedment depth,her(inch):6.000 Reinforcement provided at corners:No Anchor category:- Ignore concrete breakout in tension:No Anchor ductility:Yes Ignore concrete breakout in shear No hm',(inch):7.50 Ignore Edo requirement:No Cmin(inch):1.38 Build-up grout pad:No Smin(inch):3.00 Base Plate Length x Width x Thickness(inch):12.00 x 12.00 x 0.25 Recommended Anchor Anchor Name:Headed Stud-3/4"0 AWS Type A Headed Stud Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925:847.3871 www.strongtie.com 143/166 SIMIrWill,: Anchor DesignerTM company: Date: 2/27/2022 Engineer: Pa.e: 2/6 Software Pro'ect: Version 3.0.7947.0 Address: Phone: 6MM Load and Geometry Load factor source:ACI 318 Section 5.3 Load combination:not set Seismic design:No Anchors subjected to sustained tension:Not applicable Apply entire shear load at front row:No Anchors only resisting wind and/or seismic loads:No Strength level loads: N.[Ib]:1898 Vuax[Ib]:1898 Vuay[lb]:0 M.[ft-lb]:0 M.Y[ft-lb]: 1265 M.[ft-lb]:0 <Figure 1> 1898 lb z gs •. ►' it-lb ,i9tt,441t, y • • 1898 lb off• �: Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com 144/166 Date: 4/27/2022 SIMPSON Anchor DesignerTM Company: Engineer: Page: 3/6 Software Project: Version 3.0.7947.0 Address: Phone: E-mail: <Figure 2> 030 0.50 :: v atM oI , „a 44:0- i F' Oi 'rrIV i:' 3 r IS7 a O d.50 Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com 145/166 SIMPSON Anchor Designer company Date: 4/27/2022 I Engineer Page: 1 4/6 Software Project: 2Pao , "„y,, Version 3.0.7947.0 Address: I Phone: E-mail: 3.Resulting Anchor Forces Anchor Tension load, Shear load x, Shear load y, Shear load/�� combined, N.(lb) V..(Ib) Vuay(lb) J(Vua4 f(Voy)2(lb) 1 0.0 474.5 0.0 474.5 2 0.0 474.5 0.0 474.5 3 1282.4 474.5 0.0 474.5 4 1282.4 474.5 0.0 474.5 Sum 2564.7 1898.0 0.0 1898.0 Maximum concrete compression strain(%o):0.02 <Figure 3> Maximum concrete compression stress(psi):67 0 4 0 3 Resultant tension force(lb):2565 Resultant compression force(Ib):667 Eccentricity of resultant tension forces in x-axis,e'r (inch):0.00 Eccentricity of resultant tension forces in y-axis,e'rry(inch):0.00 Eccentricity of resultant shear forces in x-axis,eve(inch):0.00 Eccentricity of resultant shear forces in y-axis,e'vy(inch):0.00 XV , 21 4.Steel Strength of Anchor in Tension(Sec.17.4.11 N.(Ib) l ON.(Ib) 26950 0.75 20213 5.Concrete Breakout Strength of Anchor in Tension(Sec.17.4.21 Nb=kcla-f cherl s(Eq.17.4.2.2a) kc Aa f c(psi) her(in) Nb(Ib) 24.0 1.00 4000 6.000 22308 0Ncbg=0(ANc/ANco)'F'ec,NY'ce,NY'yNY'rv,NNb(Sec.17.3.1&Eq.17.4.2.1b) ANc(in2) ANco(in2) ca,ntin(in) Pec,N Wed,N Wc,N Pep,N Nb(lb) 0 ¢N±g(Ib) 351.00 324.00 1.50 1.000 0.750 1.00 1.000 22308 0.70 12688 6.Pullout Strength of Anchor in Tension(Sec.17.4.3) 95No„=¢FF'cpNp=OnP8Awgfc(Sec. 17.3.1,Eq.17.4.3.1 &17.4.3.4) Tc.r' Atxg(in2) f'o(psi) 0 0Np„(Ib) 1.0 0.79 4000 0.70 17584 Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com 146/166 SIMPSON , Anchor Desi nerTM tcompany: Date: 4/27/2022 [Engineer: l Page: 1 5/6 ,ice # Soft are Project: - Version 3.0.7947.0 Address: .Phone: E-mail 7.Side-Face Blowout Strength of Anchor in Tension(Sec.17.4.4} t6Nsb=0((1+ca2/c0)/4}(160caiabry)24Pc(Sec. 17.3.1 &Eq.17.4.4.1) cat(in) ca2(in) Abe(in2) A. t'c(psi) 0 ON..(lb) 1.50 99999.00 0.79 1.00 4000 0.70 9414 8.Steel Strength of Anchor in Shear(Sec.17.5.1) Vsa(Ib) flgrout 0 /6groutOVsa(lb) 26950 1.0 0.65 17518 9.Concrete Breakout Strength of Anchor in Shear(Sec.17.5.2) Shear parallel to edge in y-direction: Vbx=minl7(la/da)9.2 ida2ait'ccall-5;92a11t'.call_51(Eq.17.5.2.2a&Eq. 17.5.2.2b) le(in) da(in) A. f' (psi) cal(in) Vbx(Ib) 6.00 0.750 1.00 4000 1.50 1046 0Vctgy=0(2)(Avc/Avca)Vea,VV'ed,VV.VV'h,VVby(Sec. 17.3.1,17.5.2.1(c)&Eq.17.52.1b) Avc(in2) Avca(in2) V'ec,v Ped,v V'c.v Why Vt.(Ib) 0 OVcbgy(lb) 20.25 10.13 1.000 1.000 1.000 1.000 1046 0.70 2928 10.Concrete Pryout Strength of Anchor in Shear(Sec.17.5.3) 0Vcpg=0kcpN Div=0kcp(ANc/AN,)Vec,N`Yed,N W,NWcp,NNb(Sec. 17.3.1 &Eq.17.5.3.1 b) kcp ANc(in2) AN.(in2) V ec.N Ped.N V c,N V'cp,N ND(Ib) fb OVcpg(lb) 2.0 526.50 324.00 1.000 0.750 1.000 1.000 22308 0.70 38064 11.Results Interaction of Tensile and Shear Forces(Sec.17.6.) Tension Factored Load,Nua(Ib) Design Strength,eN (Ib) Ratio Status Steel 1282 20213 0.06 Pass Concrete breakout 2565 12688 0.20 Pass(Governs) Pullout 1282 17584 0.07 Pass Side-face blowout 1282 9414 0.14 Pass Shear Factored Load,V„a(lb) Design Strength,oVn(Ib) Ratio Status Steel 475 17518 0.03 Pass 11 Concrete breakout y+ 949 2928 0.32 Pass(Governs) Pryout 1898 38064 0.05 Pass Interaction check Nua/ONn Vua/0Va Combined Ratio Permissible Status Sec. 17.6..2 0.00 0.32 32.4% 1.0 Pass 3/4"0 AWS Type A Headed Stud with hef=6.000 inch meets the selected design criteria. Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Sr.;eg-Tie Company inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com 147/166 • Company: Date: 4/27/2022 IMPSO Anchor DesignerTM r Engineer: Page: 6/6 Software Project: Version 3.0.7947.0 Address: Phone: E-mail: 12.Warnings -Designer must exercise own judgement to determine if this design is suitable. Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com 148/166 ( �= d , ® , ,,",_,t 7. ',„- w vi,',1� ,f - f' `'^, } .�. .....;.;„,d ,„,,,,J. v F s es" ^ ° 1.C.. f.`, BY_.,.. ___. DATE .....__ ENGINEERS _ �..__ ____......_. _. __..�_. REV DATE STRUCTURAL I CIVIL JOB NO.. (503) 968-9994 p (503) 968-8444 f �. SHEET OF 149/-1-66 Project Title: Engineer: Project ID: Project Descr: ood Beam Project File:21013 plan check calcs 4-20-2022.ec6 h DESCRIPTION: stair stringers CODE REFERENCES Calculations per NDS 2018, IBC 2018, CBC 2019,ASCE 7-16 Load Combination Set:ASCE 7-10 Material Properties Analysis Method: Allowable Stress Design Fb+ 900 psi E:Modulus of Elasticity Load Combination ASCE 7-10 Fb- 900 psi Ebend-xx 1600ksi Fc-Prll 1350 psi Eminbend-xx 580ksi Wood Species : Douglas Fir-Larch Fc-Pero 625 psi Wood Grade : No,2 Fv 180 psi Ft 575 psi Density 31.21 pcf Beam Bracing : Beam is Fully Braced against lateral-torsional buckling 3-2x6 Span=8.750 ft Applied Loads Service loads entered.Load Factors will be applied for calculations, Beam self weight NOT internally calculated and added Uniform Load: D=0.030, L=0.10 ksf, Tributary Width=1.330 ft DESIGN SUMMARY ;Maximum Bending Stress Ratio = 0.748 1 Maximum Shear Stress Ratio = 0.229 :1 ' Section used for this span 3-2x6 Section used for this span 3-2x6 fb:Actual 875.22psi fv:Actual = 41.16 psi Fb:Allowable _ 1,170.00psi Fv:Allowable = 180.00 psi Load Combination +D+L Load Combination +D+L Location of maximum on span 4.375ft Location of maximum on span - 0.000 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward Transient Deflection 0.177 in Ratio= 594>=360 Span:1 :L Only Max Upward Transient Deflection 0 in Ratio= 0<360 n/a Max Downward Total Deflection 0.230 in Ratio= 456>=180 Span:1 :+D+L Max Upward Total Deflection 0 in Ratio= 0<180 n/a Maximum s Forces &Stresses for Load Combinations Load Combination ax ....... MS f esRa iShe-al-Values Moment Values ` Segment Length Span# M V Cd CFN Ci Cr Cm C t CL M fb F'b V fv F'v D Only 0.00 0.00 0.00 0.00 Length=8.750 ft 1 0.192 0.059 0.90 1,300 1.00 1.00 1.00 1.00 1.00 0.38 201.97 1053.00 0.16 9.50 162.00 +D+L 1,300 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=8.750 ft 1 0.748 0.229 1.00 1.300 1.00 1.00 1.00 1.00 1,00 1.65 875.22 1170.00 0.68 41.16 180.00 +D+0.750L 1.300 1.00 1.00 1.00 1.00 1,00 0.00 0.00 0.00 0.00 Length=8.750 ft 1 0.483 0.148 1,25 1.300 1.00 1.00 1.00 1.00 1,00 1.34 706.91 1462.50 0.55 33.24 225.00 +0.60D 1.300 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=8.750 ft 1 0.065 0.020 1.60 1.300 1.00 1.00 1.00 1.00 1.00 0.23 121.18 1872.00 0.09 5.70 288.00 Overall Maximum Deflections Load Combination Span Max.'-'Defl Location in Span Load Combination Max."+"Defl Location in Span +D+L 1 0.2298 4.407 0.0000 0.000 150/166 • Project Title: Engineer. Project ID: Project Descr: Wood I I ProjectF11e:2101 _«rth_-k :.., .s =-2D-2°22.ee€ 2 2,1 1YDENtdNSULTING ENGINEERS DESCRIPTION: stair stringers Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAximum 0.756 0.756 Overall MINimum 0.582 0.582 D Only 0.175 0.175 +D+L 0.756 0.756 +D+0.750L 0.611 0.611 +0.60D 0.105 0.105 L Only 0.582 0.582 151/166 Project Title: Engineer: Project ID: Project Descr: Wood Beam Project File:21013 plan check calcs 4-20-2022.ec6 L .two-pso14171Buii0 20 22.3.31 DEN NJ ENG+NEE : ,_ .,__1 E DESCRIPTION: Landing Beams CODE REFERENCES Calculations per NDS 2018, IBC 2018,CBC 2019,ASCE 7-16 Load Combination Set:ASCE 7-10 Material Properties Analysis Method: Allowable Stress Design Fb+ 2600 psi E:Modulus of Elasticity Load Combination ASCE 7-10 Fb- 2600 psi Ebend-xx 1900 ksi Fc-Fri! 2510 psi Eminbend-xx 965.71 ksi Wood Species : iLevel Truss Joist Fc-Perp 750 psi Wood Grade : MicroLam LVL 1.9 E Fv 285 psi Ft 1555 psi Density 42.01 pcf Beam Bracing : Beam is Fully Braced against lateral-torsional buckling .__._ ..._ to:L 1030i 44, 2-1,75x16 Span=.8.50ft. Applied Loads Service loads entered.Load Factors will be applied for calculations. Beam self weight NOT internally calculated and added Uniform Load : D=0.1910, L=0.6380, Tributary Width= 1.0 ft DESIGN SUMMARY e Maximum Bending Stress Ratio = 0.231: 1 Maximum Shear Stress Ratio = 0.230 :1 Section used for this span 2-1.75x16 Section used for this span 2-1.75x16 fb:Actual = 601.63 psi fv:Actual 65.44 psi Fb:Allowable = 2,600.00 psi Fv:Allowable 285.00 psi Load Combination +D+L Load Combination +D+L Location of maximum on span = 4.250ft Location of maximum on span = 0.000ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward Transient Deflection 0.033 in Ratio= 3071>=360 Span: 1 :L Only Max Upward Transient Deflection 0 in Ratio= 0<360 n/a Max Downward Total Deflection 0.043 in Ratio= 2364>=180 Span: 1 +D+L Max Upward Total Deflection 0 in Ratio= 0<180 n/a Maximum Forces&Stresses for Load Combinations Load Combination Max Stress Ratios Moment Values Shear Values __ Segment Length Span# M V..__ Cd CFN CI Cr Cm C t CL M fb F'b V fv F'v._ D Only 0.00 0.00 0.00 0.00 Length=8.50 ft 1 0.059 0.059 0.90 1.000 1.00 1.00 1,00 1.00 1.00 1.72 138.61 2340.00 0.56 15.08 256.50 +D+L 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=8.50 ft 1 0.231 0.230 1.00 1.000 1.00 1.00 1.00 1.00 1.00 7.49 601.63 2600.00 2.44 65.44 285.00 +D+0.750L 1.000 1.00 1.00 1,00 1.00 1.00 0.00 0.00 0.00 0.00 Length=8.50 ft 1 0.149 0.148 1.25 1.000 1.00 1.00 1.00 1.00 1.00 6.05 485.87 3250.00 1.97 52.85 356.25 +0.60D 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=8.50 ft 1 0.020 0.020 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.03 83.17 4160.00 0.34 9.05 456.00 Overall Maximum Deflections Load Combination Span Max.""Defl Location in Span Load Combination Max."+"Defl Location in Span +D+L 1 0.0431 4.281 0.0000 0.000 152/166 Project Title: Engineer: Project ID: Project Descr: Wood Beam Prc'ecl File_21013 clan checkchefA calcs4 20-2022,ec0 2,722-.33' i...iPrOLs:: E%C"s,NtEtu.... ilv0'9E32G22;: DESCRIPTION: Landing Beams Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2,. Overalll\AA)Cimum 3.523 3.523 Overall MINimum 2.712 2.712 D Only 0.812 0.812 +D+L 3.523 3.523 +D+0.750L 2.845 2.845 +0.60D 0.487 0.487 L Only 2.712 2.712 153/166 wpm 4`,..3 c,. t 4, r „, i a �, ''kz4, 3 i , sa • :a. BY DATE,...__ ENGINEERS _ _ REV DATE,,,,..____,,,,„.,...„__ STROCTURALICIVIL -___.. ...__.__-..__w_._.. ...,.._—___....._.--.--_..-..._-._-----...........-....__.-.................__-.._-.........____. JOB NO (503) 968-9994 p (503) 968-8444 f _ .. ..._._-- _--_____._ _ ____ __ ___. __ __ _ _ SHEET OF 15116b 4/26/22,'11:54 AM Connection Calculator 41 Design Method Allowable Stress Design (ASD) v [ Connection Type! Lateral loading v Fastener Type!! Bolt v Loading Scenario Single Shear- Concrete Main Member v Main Member Type Concrete v I Bolt Embedment Depth in1 6 in. v Concrete'l , E 1 Main Member:Angle of k0 Load to Grain! ---- ! Side Member Type; Hem-Fir v Side Member Thickness 3.5 in. v ' Side Member:Angle off' 90 Load to Grain 1 Fastener Diameter; 5/8 in. v ' ' Load Duration Factor C D = 1.0 v I Wet Service Factor C_M = 1.0 Temperature Factor] z = 1.0 v , Connection Yield Modes Im 1 5625 lbs. 1I Is 1984 lbs. II i 16091bs. IIIm 11834lbs. Ills 1624 lbs. IV 1 704 lbs. ii Adjusted ASD Capacity 1624 lbs. 1 • Bolt bending yield strength of 45,000 psi is assumed. • The Adjusted ASD Capacity is only applicable for bolts with adequate end distance, edge distance and spacing per NDS chapter 11. While every effort has been made to insure the accuracy of the information presented,and special effort has been made to assure that the information reflects the state-of-the-art, neither the American Wood Council nor its members assume any responsibility for any particular design prepared from this on-line Connection Calculator.Those using this on-line Connection Calculator assume all liability from its use. The Connection Calculator was designed and created by Cameron Knudson,Michael Dodson and David Pollock at Washington State University. Support for development of the Connection Calculator was provided by American Wood Council. https://calc.awc.org/connection/ccstyle.asp?design_method=ASD&connection_type=Lateral+loading&fastener_types=Bolt&loading_scenario=Single+...15 1/1 66 �,;zf. - M 7-55 1 yam•. 10.0 AYDE BY ..... DATE.. ENGINEERS �.___.._ ___ _ ..... _ _ __ REV_.._ DAB__.-- STRUCTURAL I CIVIL JOB NO._. (503) 968-9994 p (503) 968-8444 f 4/26/2.N 1:16 PM Connection Calculator Design Method ; Allowable Stress Design (ASD) Connection Tape, Lateral loading v� Fastener Type Nail v Loading Scenario Single Shear v Main Member Type I Douglas Far'-Lard v fl - Main Member Thickness 1 1.5 in. Side Member Type Douglas Fir-Larch Side Member Thickness 1.5 in, v Nail Typei[ Common Wire Nail Sizei 10d (D = 0.148 in.; L= 3 in.) Load Duration Factor C D = 1.33 v 1 Wet Service Factor C,M = 1.0 v End Grain Factor, C_eg = 1,0 Temperature Factor 1.0 Diaphragm Factor]; C di = 1.0 v Connection Yield Modes Im (624 lbs. Is I624lbs. II 2581bs. IIIm 227 lbs. IIIs 227lbs. IV 156 lbs. Adjusted ASD Capacity 156 lbs. • Nail bending yield strength of 90000 psi is assumed. • The Adjusted ASD Capacity does not apply for toe-nails installed in wood members. • Length of tapered tip is assumed to be two times the nail diameter for calculating dowel bearing length in the main member. • The Adjusted ASD Capacity only applies for nails that have been driven flush with the side member surface.It does not apply for nails that have been overdriven into the side member. While every effort has been made to insure the accuracy of the information presented,and special effort has been made to assure that the information reflects the state-of-the-art, neither the American Wood Council nor its members assume any responsibility for any particular design prepared from this on-line Connection Calculator.Those using this on-line Connection Calculator assume all liability from its use. The Connection Calculator was designed and created by Cameron Knudson,Michael Dodson and David Pollock at Washington State University. Support for development of the Connection Calculator was provided by American Wood Council. https://calc.awc.org/connection/ccstyle.asp?design_method=ASD&connection_type=Lateral+loading&fastenertypes=Nail&loading_scenario=Single+..• 15P166 t > -7-5 C' „ 4 1 � w ,AN,3 (1 ft. 11 s- HAYD - ___________ .-------- _..___._._-_._..____- BY DATE -- ENGINEERS REV DATE STRUCTURAL I CIVIL - - _... ......._...._a___._.,,,,_........_.. _ _.�.. JOB NO. (503) 968-9994 p (503) 968-8444 f __ _._...._...._........._......__......_..___..._____._......_.__......._._..___.._....._..._....._._.............__......___.._ SHEET OFt58/166 Project Name/Number:21013 retaini RetainPro(c)1557-2019, Build 11,20.03,39 License:KW-06058 3 Cantilevered Retaining Wall Code: IBC 2018,ACI 318-14,TMS 402-16 License To:HAYDEN CONSULTING ENGINEERS Criteria i Soil DataI r Retained Height = 4.00 ft Allow Soil Bearing = 3,500.0 psf Equivalent Fluid Pressure Method Wall height above soil = 0.50 ft Active Heel Pressure = 35.0 psf/ft Slope Behind Wall = 0.50 Height of Soil over Toe = 6.00 in = Water height over heel = 0.0 ft Passive Pressure = 390.0 psf/ft Soil Density,Heel = 110.00 pcf Soil Density,Toe = 0.00 pcf FootingflSoil Friction = 0.500 Soil height to ignore for passive pressure = 12.00 in Surcharge Loads Lateral Load Applied to Stem I Adjacent Footing Load Surcharge Over Heel = 0.0 psf Lateral Load = 0.0#/ft Adjacent Eoct'na Load _ O.8 ins Used To Resist Sliding&Overturning ...Height to Toc = 0.00 ft Footing Width = 0.00 ft Surcharge Over Toe = 0.0 ...Height to Bottom = 0.00 ft Eccentricity = 0.00 in Used for Sliding&Overturning Wall to Ftg CL Dist = 0.00 ft Load Type = Wind(W) Axial Load Applied to Stem (Service Level) Footing Type Line Load Base Above/Below Soil 0.0 ft Axial Dead Load = 0.0 lbs Wind on Exposed Stern= 0.0 psf at Back of Wall Axial Live Load = 0.0 lbs (Service Level) Poisson's Ratio = 0.300 Axial Load Eccentricity = 0.0 in Design Summary Stem Construction I Bottom Stem OK Design Height Above Ftc ft= 0.00 Wall Stability Ratios Wall Material Above"Ht" = Concrete Overturning 2.24 OK Design Method = LRFD Sliding = 1.66 OK Thickness = 8.00 Rebar Size = # 4 Total Bearing Load .- 961 lbs Rebar Spacing = 13.75 ...resultant ecc. = 0.27 in Rebar Placed at = Center Soil Pressure @ Toe = 329 psf OK Design Data /FB+fa/Fa = 0.200 Soil Pressure @ Heel = 372 psf OK Allowable = 3,500 psf Total Force @ Section Soil Pressure Less Than Allowable Service Level lbs= ACI Factored @ Toe = 460 psf Strength Level lbs= 448.0 ACI Factored @ Heel = 520 psf Moment Actual Footing Shear @ Toe = 1.7 psi OK Service Level ftk= Footing Shear @ Heel = 5.9 psi OK Strength Level ftt= 597.3 Allowable = 75.0 psi Moment Allowable = 2,980.0 Sliding Calcs Shear Actual Lateral Sliding Force = 437.5 lbs Service Level psi= less 100%Passive Force= - 243.8 lbs Strength Level psi= 9.3 less 100%Friction Force = - 480.7 lbs Shear Allowable psi= 75.0 Added Force Req'd = 0.0 lbs OK Anet(Masonry) in2= ....for 1.5 Stability = 0.0 lbs OK Rebar Depth 'd' in= 4.00 Masonry Data fm psi= Fs psi= Vertical component of active lateral soil pressure IS Solid Grouting considered in the calculation of soil bearing pressures. Modular Ratio'n' _ Wall Weight psf= 100.0 Load Factors - Short Term Factor Building Code IBC 2018,ACI Equiv.Solid Thick. Dead Load 1.200 Masonry Block Type = Medium Weight Live Load 1.600 Masonry Design Method = ASD Earth, H 1.600 Concrete Data Wind,W 1.000 fc psi= 2,500.0 Seismic, E 1.000 Fy psi= 60,000.0 159/166 1 Project Name/Number: 21013 retaini RetainPro(c)1987.2019, Btsld 11,20.03,31 License:KW-06058638 Cantilevered Retaining Wall Code: IBC 2018,ACI 318-14,TMS 402-16 License To:HAYDEN CONSULTING ENGINEERS Concrete Stem Rebar Area Details Bottom Stem Vertical Reinforcing Horizontal Reinforcing As(based on applied moment) 0.0361 in2/ft (4/3)*As: 0.0481 in2/ft Min Stem T&S Reinf Area 0.864 in2 200bd/fy:200(12)(4)/60000: 0.16 in2/ft Min Stem T&S Reinf Area per ft of stem Height:0.192 in2/ft 0.0018bh:0.0018(12)(8): 0.1728 in2/ft Horizontal Reinforcing Options: ============ One layer of: Two layers of: Required Area: 0.1728 in2/ft #4@ 12.50 in #4@ 25.00 in Provided Area 0.1745 in2/ft #5@ 19.38 in #5@ 38.75 in Maximum Area 0.5419 in2/ft #6@ 27.50 in #6@ 55.00 in Footing Data I Footing Design Results Toe Width = 1.58 ft Toe Heel Heel Width = 0.67 Factored Pressure = 460 520 psf Total Footing Width = 2.25 Mu':Upward = 7,107 0 ft-# Footing Thickness = 12.00 in Mu':Downward = 3,685 0 ft-# Mu: Design = 285 0 ft-# Key Width = 12.00 in Actual 1-Way Shear = 1.74 5.90 psi Key Depth = 0.00 in Allow 1-Way Shear = 75.00 40.00 psi Key Distance from Toe = 2.00 ft Toe Reinforcing = #4 @ 9.25 in fc = 2,500 psi Fy = 60,000 psi Heel Reinforcing = None Spec'd Footing Concrete Density = 150.00 pcf Key Reinforcing = None Spec'd Min.As% = 0.0018 Footing Torsion,Tu = 0.00 ft-lbs Cover @ Top 2.00 @ Btm. 3.00 in Footing Allow.Torsion, phi Tu _ 0.00 ft-lbs If torsion exceeds allowable,provide supplemental design for footing torsion. Other Acceptable Sizes&Spacings Toe: #4@ 9.25 in,#5@ 14.35 in,#6@ 20.37 in,#7@ 27.77 in,#8@ 36.57 in,#9@ 46 Heel:phiMn=phi'5'lambda'sgrt(fc)'Sm Key: No key defined Min footing T&S reinf Area 0.58 in2 Min footing T&S reinf Area per foot 0.26 in2 rit If one layer of horizontal bars: If two layers of horizontal bars: #4@ 9.26 in #4@ 18.52 in #5@ 14.35 in #5@ 28.70 in #6@ 20.37 in #6@ 40.74 in 160/166 "` Project Name/Number: 21013 retaini RetainPro(c)1987-2019, Build 11.20.03.31 License:KW-06058636 Cantilevered Retaining Wall Code: IBC 2018,ACI 318-14,TMS 402-16 License To:HAYDEN CONSULTING ENGINEERS Summary of Overturning & Resisting Forces & Moments OVERTURNING RESISTING Force Distance Moment Force Distance Moment Item lbs ft ft-# lbs ft ft-# HL Act Pres(ab water tbl) 437.5 1.67 729.2 Soil Over HL (ab.water tbl) -0.0 2.25 -0.0 HL Act Pres(be water tbl) Soil Over HL (bel.water tbl) 2.25 -0.0 Hydrostatic Force Watre Table Buoyant Force = Sloped Soil Over Heel = 2.25 Surcharge over Heel = Surcharge Over Heel = Surcharge Over Toe = Adjacent Footing Load = Adjacent Footing Load = Axial Dead Load on Stem= Added Lateral Load = *Axial Live Load on Stem = Load @ Stem Above Soil = Soil Over Toe = 0.79 = Surcharge Over Toe = Stem Weight(s) = 450.0 1.91 861.0 Earth @ Stem Transitions= Total = 437.5 O.T.M. = 729.2 Footing Weight = 337.0 1.12 378.6 Key Weight = 2.50 Resisting/Overturning Ratio = 2.24 Vert.Component = 174.3 2.25 391.7 Vertical Loads used for Soil Pressure= 961.3 lbs Total= 961.3 lbs R.M.= 1,631.3 *Axial live load NOT included in total displayed,or used for overturning resistance, but is included for soil pressure calculation. Vertical component of active lateral soil pressure IS considered in the calculation of Sliding Resistance. Vertical component of active lateral soil pressure IS considered in the calculation of Overturning Resistance. Tilt Horizontal Deflection at Top of Wall due to settlement of soil (Deflection due to wall bending not considered) Soil Spring Reaction Modulus 115.0 pci Horizontal Defl @ Top of Wall(approximate only) 0.071 in The above calculationis not',aid if the heel still bearingsressure e.cee s that of the toe.: because the wall would then tend to rotate into the retained soil. 161/166 r' Project Name/Number: 21013 retaini , RetainPro(c)1987-201$, Build 11.20.03.31 License:KW.06058636 Cantilevered Retaining Wall Code: IBC 2018,AC1 318-14,TMS 402-16 License To:HAYDEN CONSULTING ENGINEERS Criteria I Soil DataI , a Retained Height = 4.00 ft Allow Soil Bearing = 3,500.0 psf Wall height above soil = 0.50 ft Equivalent Fluid Pressure Method ,, E r Active Heel Pressure = 35.0 psf/ft �,, Slope Behind Wall = 0.50 Height of Soil over Toe = 6.00 in = Water height over heel = 0.0 ft Passive Pressure = 390.0 psf/ft Soil Density,Heel = 110.00 pcf Soil Density,Toe = 0.00 pcf '1],' FootingllSoil Friction = 0.500 Soil height to ignore -w for passive pressure = 12.00 in __, Surcharge Loads ; i Lateral Load Applied to Stem I Adjacent Footing Load Surcharge Over Heel = 0.0 PSI Lateral Load = 0.0#/ft Adjacent Footin; Load = 0.0 Ids Used To Resist Sliding&Overturning ...Height to Top = 0.00 ft Footing Width _ 0.00 ft Surcharge Over Toe = 0.0 ...Height to Bottom = 0.00 ft Eccentricity = 0.00 in Used for Sliding&Overturning Wall to Ftg CL Dist = 0.00 ft Load Type = Wind(W) Axial Load Applied to Stern (Service Level) Footing Type Line Load Base Above/Below Soil 0.0 ft Axial Dead Load = 0.0 lbs Wind on Exposed Stem= 0.0 psf at Back of Wall Axial Live Load = 0.0 lbs (Service Level) Poisson's Ratio = 0.300 Axial Load Eccentricity = 0.0 in Earth Pressure Seismic Load Method :Uniform Uniform Seismic Force = 25.000 Multiplier Used - 5.000 Total Seismic Force = 125.000 (Multiplier used on soil density) Design Summary I Stem Construction Bottom Stem OK Design Height Above Ftc ft= 0.00 Wall Stability Ratios Wall Material Above"Ht" = Concrete Overturning = 1.72 OK OK r-ci2-e Sliding = 1.38 Ratio<1,51hickness = 8.00 GCL Ly ��{ Rebar Size = # 5 Total Bearing Load = 961 lbs Rebar Spacing = 12.00 ...resultant ecc. - 3.06 in Rebar Placed at = Center Design Data Soil Pressure @ Toe = 589 psf OK fb/FB+fa/Fa = 0.157 Soil Pressure @ Heel = 112 psf OK Total Force @ Section Allowable = 3,500 psf Soil Pressure Less Than Allowable Service Level lbs= ACI Factored @ Toe = 824 psf Strength Level lbs= 548.0 ACI Factored @ Heel = 156 psf Moment....Actual Footing Shear @ Toe = 3.6 psi OK Service Level ft-#_ Footing Shear @ Heel = 5.9 psi OK Strength Level ft-#= 797.3 Allowable = 75.0 psi Moment Allowable = 5,069.7 Sliding Caics Shear Actual Lateral Sliding Force = 525.0 lbs Service Level psi= less 100%Passive Force= - 243.8 lbs Strength Level psi= 11.4 less 100%Friction Force = - 480.7 lbs Shear Allowable psi= 75.0 Added Force Req'd = 0.0 lbs OK Anet(Masonry) in2= ....for 1.5 Stability = 63..1 ibs NC Rebar Depth 'd' in= 4.00 , ,,- ..-- Masonry Data a fin psi= Fs psi= Vertical component of active lateral soil pressure IS Solid Grouting = considered in the calculation of soil bearing pressures. Modular Ratio'n' = Wall Weight psf= 100.0 Load Factors Short Term Factor = Building Code IBC 2018,ACI Equiv.Solid Thick. = Dead Load 1.200 Masonry Block Type = Medium Weight Live Load 1.600 Masonry Design Method = ASD Earth, H 1.600 Concrete Data Wind,W 1.000 fc psi= 2,500.0 Seismic,E 1.000 Fy psi= 60,000.0 162/166 Project Name/Number:21013 retaini • RetainPro(c)1987-2019, Build 11.20.03.31 License:KW-06058636 Cantilevered Retaining Wall Code: IBC 2018,ACI 318-14,TMS 402-16 License To:HAYDEN CONSULTING ENGINEERS Concrete Stem Rebar Area Details Bottom Stern Vertical Reinforcing Horizontal Reinforcing As(based on applied moment) 0.0481 in2/ft (4/3)*As: 0.0642 in2/ft Min Stem T&S Reinf Area 0.864 in2 200bd/fy:200(12)(4)/60000: 0.16 in2/ft Min Stem T&S Reinf Area per ft of stem Height:0.192 in2/ft 0.0018bh:0.0018(12)(8): 0.1728 in2/ft Horizontal Reinforcing Options: ========== One layer of: Two layers of: Required Area: 0.1728 in2/ft #4@ 12.50 in #4@ 25.00 in Provided Area : 0.31 in2/ft #5@ 19.38 in #5@ 38.75 in Maximum Area 0.5419 in2/ft #6@ 27.50 in #6@ 55.00 in Footing Data I Footing Design Results Toe Width = 1.58 ft Toe Heel Heel Width = 0.67 Factored Pressure = 824 156 psf Total Footing Width = 2.25 Mu':Upward = 10,003 0 ft-# Footing Thickness = 12.00 in Mu':Downward = 3,685 0 ft-# Mu: Design = 527 0 ft4t Key Width = 12.00 in Actual 1-Way Shear = 3.65 5.90 psi Key Depth = 0.00 in Allow 1-Way Shear = 75.00 40.00 psi Key Distance from Toe = 2.00 ft Toe Reinforcing = #4 @ 9.25 in fc = 2,500 psi Fy = 60,000 psi Heel Reinforcing = None Spec'd Footing Concrete Density = 150.00 pcf Key Reinforcing = None Spec'd Min.As% = 0.0018 Footing Torsion,Tu = 0.00 ft-lbs Cover @ Top 2.00 @ Btm. 3.00 in Footing Allow.Torsion,phi Tu = 0.00 ft-lbs If torsion exceeds allowable,provide supplemental design for footing torsion. Other Acceptable Sizes&Spacings Toe: #4@ 9.25 in,#5@ 14.35 in,#6@ 20.37 in,#7@ 27.77 in,#8@ 36.57 in,#9@ 46 Heel: phiMn=phi'5'lambda'sgrt(fc)'Sm Key: No key defined Min footing T&S reinf Area 0.58 in2 Min footing T&S reinf Area per foot 0.26 in2 fit If one layer of horizontal bars: If two layers of horizontal bars: #4@ 9.26 in #4@ 18.52 in #5@ 14.35 in #5@ 28.70 in #S@ 20.37 in #6@ 40.74 in 163/166 A t Project Name/Number:21013 retaini RetainPro(c)1987-2019, Build 11.20.03.31 License:KW-06058636 Cantilevered Retaining Wall Code: IBC 2018,ACl 318-14,TMS 402-16 License To: HAYDEN CONSULTING ENGINEERS SUMMary of Overturning& Resisting Forces & Moments OVERTURNING..,.. RESISTING Force Distance Moment Force Distance Moment Item lbs ft ft-# lbs ft ft-# HL Act Pres(ab water tbl) 437.5 1.67 729.2 Soil Over HL (ab.water tbl) HL Act Pres(be water tbl) Soil Over HL (bel.water tbl) Hydrostatic Force Watre Table Buoyant Force = Sloped Soil Over Heel = 2.25 Surcharge over Heel = Surcharge Over Heel = Surcharge Over Toe = Adjacent Footing Load = Adjacent Footing Load = Axial Dead Load on Stem= Added Lateral Load = `Axial Live Load on Stem = Load @ Stem Above Soil = Soil Over Toe = 0.79 Seismic Earth Load = 87.5 2.50 218.8 Surcharge Over Toe = _ Stem Weight(s) = 450.0 1.91 861.0 Earth @ Stem Transitions= Total = 525.0 O.T.M. = 947.9 Footing Weigh = 337.0 1.12 378.6 Key Weight = 2.50 Resisting/Overturning Ratio = 1.72 Vert.Component = 174.3 2.25 391.7 Vertical Loads used for Soil Pressure= 961.3 lbs Total= 961.3 lbs R.M.= 1,631.3 *Axial live load NOT included in total displayed,or used for overturning If seismic is included,the OTM and sliding ratios resistance,but is included for soil pressure calculation. may be 1.1 per section 1807.2.3 of IBC. Vertical component of active lateral soil pressure IS considered in the calculation of Sliding Resistance. Vertical component of active lateral soil pressure IS considered in the calculation of Overturning Resistance. Tilt Horizontal Deflection at Top of Wall due to settlement of soil (Deflection due to wall bending not considered) Soil Spring Reaction Modulus 115.0 pci Horizontal Defl @ Top of Wall(approximate only) 0.071 in The,above calculaationis not valid if the hell Soil be nngpress e exceeds that of the tide,. because the wall would then tend to rotate into the retained soil. 164/166 i GM 1:el if \. Mc.v*Ii., Level Total Shear(tbs)(EQ)(ASD) Total Shear(Ibs)(Wind)(ASD) unit shear(EQ) unit shear(wind) 5th 4335 2710 175 109 S U .+ 4th 10406 6395 420 rn • 3rd 15144 9212 2nd 18268 12028 738 4 oe 1st 19917 15874 805 641 r , 1 C3''e - C, level segment `' h OTM(windasd) OTM(eq-asd) Wall DL Wall RM Floor/Roof DI_ Floor/Roof Trib Floor/roof RM T(wind-asd) T(eq-asd) Sum T(wind-asd) Sum T zt:, 5th 24.75 0,6"F(X 12 32521 52021 8 29403 18 2 11026 334 632 334 0.00 > 12 0 0 8 0 18 2 0 #DIV/01 #DIV/0! #0IV/0! #DIV/0! 4th 24.75 d 9.2 58831 95739 8 22542 30 2 18377 1385 2380 1719 3012 0.00 / 9.2 0, 0 8 0 30 2 0 #DIV/ol #DIV/0! #DIV/0! i `. #DIV/0! 3rd 24.75 9.2 84746 139327 t? 22542 30 2 18377 2432 4141 4151 i ' w.=7153 0.00 9.2 0 0 0 30 2 0 #DIV/0! #DIV/0! #DIV/0I I #DIV/01 2nd 24.75 9.2 110661 168062 8 22542 30 2 18377 3479 5302 7630 ! ,, 2456 0.00 9.2 0 0 8 0 30 2 0 #DIV/0! #DIV(0! #DIV/01 ' ? r-#DIV/01 a ; 1st 24.75 9.2 146043 183237 6 22542 30 2 18377 4909 5916 12539 ! 8371 0.00 9.2 6 0 8 0 30 2 0 #DIV/01 #DIV/0! #DIV/0! ' :`t\--7.(5z,, .__ .CMS `f 1 I• F 4 S.C. 333 f. I 1c' ,lea g' P tee.. 3 _ a .,�� ._,_�.__ ___._ BY _ DATE Ih3Etr0" _..._.. __�^. _...e _ .�,...._..._ .... ..__�_.. �..e._.. ..___ � REV... __._ DATE__ 58e5ea t'� ,e = s9�ali. JOB NO (503) 968-9994 p (503) 968-8444 f SHEET . — OF 166/166 12480 SW 68th Ave. ENGINEERS Tigard, Oregon 97223 OFFICE COP` ` Phone: 503 968 9994 STRUCTURAL I CIVIL Fax: 503-968-8444 Rick LaRosa June 1, 2022 Axiotecture 12620 SW Farmington Rd. � � Beaverton, Oregon 97005 • 0,14 E022 Re: Structural Checksheet n Hermoso Mixed-Use V CITY OF CIUABG 7460 SW Hermoso Way /Q� BUILDING DIVISION. Tigard, Oregon 97223 Q HCE Project #: 21013 This letter is in response to the structural checksheet issued by Tom Rogers, PE. on May 27th, 2022. Please see following comments in regard to the checksheet item numbers: 1-8. N/A 9. Detail 4/S4.2 was added for a WF beam splice and noted for the required locations. A note has been added to the plans on S2.2 at grid C/18-19 for the wood beam splice. 10. N/A 11 . The Enercalc calculations for A4-A24 are attached. 12-36. N/A 37. The detail callout out at grid 5.5/K has been corrected to reference sheet S4.2. 38-39. N/A 5-cRUCTURA4 If you have any questions, please do not hesitate to call. \5�3.�'PROFFJ�,/O Sincerely, �' 18,525 • g. fit/ Hayden Consulting Engineers, Inc. n OREGON Oy7�`�r i o, ti°�" `` 0� R .By: By: NP EXPIRES: 06/30/23 Curtis McFeron, P.E. Darron R. Hayden, P.E., S.E. Principal Hayden Consulting Engineers, Inc. : .0-)— 7 T s£ 4V s t ", 11 a , W —. _ sL _ , �p I ....4 w I } , • 1 • (i7.,,c,]).1.4<•:'') \ ( C • 4 4,"2 2 ••• 1,21<1,1 4 ' \N) 4 .,"f• ' - • 12 -1 , 14 4, 4 1( 02 7 . '1‘ f , } z 4 (:) EN BY °/NA DATE Jill ENGINEERS Ala.,as REV DATE 5;F,ucTIJAA1 JOB NO 210,11 (503) 968-9994 p (503) 968-8444 f SHEET OF 2/46 1 z.0 (1)511-Z4*,-)( / ) 5/, _}(30.y4 yi'.?,1 )(4 i; 11112.?)14 07011',4- 1;4,, (,) vtt t I I hr-P• f ; 1'1, ‘''- „,, 4 t (21: lt1l,c) 1 t'* SO 111( „4 fkl; 219i1v" + 3)11° LIA-4 4 f,-;?4:6 ("J? ‘r-76 -0— E6) A, 5iVie )1rfl:r°: -4 mit) y,/ BY c/.1\ DATE• y ENGINEERS v4 eptinc a REV DATE JOB NO 2\o‘S (503) 968-9994 p (503) 968-8444 f _ SHEET _ OF 3/46 ,107141,+ 66ei r 111-1t,-, z f A-1(12 ts R IQ 245" tp)i? 4 s 4 1'1:2°' (A) 17 t BY f'1\ DATE , y ENGINEERS F44reoltlx,k REV DATE IL iq,14;tfaiki CIVIt JOB NO (503)968-9994 p (503) 968-8444 f • SHEET OF 4/46 ..,r i' ...- . ? - 11 1 kt,, 'IC, p, (14,1,,HoA) 1.: I' '1 J 4" -;,/ f-''''-/ ' 1•'' t 5 4 I.) /) , ! : I , i ,...1:,.).3-,;,t 1 , tp,t, -,,-4--,14'( ,.............„,... _ BY ''`''\ DATE - . i.7.:, ' 0,,,.5- ;•,." ': 4 'I, ',....4: 1. , ENGINEERS O/F1040N REV DATE :4,P.::' JOB NO Z?°t C)%1,, (503) 968-9994 p (503) 968-8444 f SHEET OF 5/46 • 1 v < 2) t (33,i rit.) ( -1/Z)(-S flooRs <4 z so4ie . A 11100 4, 9 24-N ‘)X ('1,4-44 1,1 ".7flk C, 0')41- ,H4 4 ) k kb: 1.0 BY A"\ DATE i• E ‘4•NA),elca REV DATE NGINE: ERS en,,e,tnAL JOB NO (503) 968-9994 p (503) 968-8444 f SHEET 6/46 • .K4 .5(AA At )&41‘;', 4 fp--51A To Ail : 47-39 cf,s(t, 4 4 (-) ° C-7,7 ?)36 10 4- .2 I 2 /,'2' -3- 119 › .4. e I"; ,„ tic'e 4 gk-144t, If t -t Z4c811 4- 23D, 1(:)14, 14,i‘a Akt) ,qk I f%-eo BY DATE ENGINEERS REV DATE • VriMe CIVIL JOB NO ...eZ1,- a (503) 968-9994 p (503) 968-8444 f SHEET OF 7/46 I: = 4 _ ( t4 4 .44 7 4- 1 5 S t 4 441, t, At ) a 4 ) I t4 ') A ft 44-:* k 4 BY DATE AY .0'E IF ENGINEERS REV DATE STRUCTURAL I CIVIL JOB NO (503) 968-9994 p (503) 968-8444 f SHEET OF 8/46 (110 41 i4 4)\) N 05e BY DATE .y • - ENGINEERS REV DATE cltiotTLIK61„, OrVa, JOB NO (503) 968-9994 p (503) 968-8444 f SHEET OF __ 9/46 L= 3,S a G.*\Z t\\w 3.zs' z (�7 2 90 2 4 )3e 12= Z S/'' k 50-1)'' } l� � W12t��Z i 2 BY DATE ENG INE ERS REV DATE ... STRUCT4711t1" I civic JOB NO (503) 968-9994 p (503) 968-8444 f SHEET OF 10/46 I Me Block Line 1 r You can change this area • ENGINEERS using the"Settings"menu item and then using the"Printing& STRUCTURAL I CIVIL Title Block"selection. Title Block Line 6 Steel Beam Software 21013 enercalc.ec6 _ Software e ENERCALC INC 1983 2020 Budd 12.20 8:17 € aa'i e e >.. �' .; trr ° r "re s is DESCRIPTION: Al CODE REFERENCES Calculations per AISC 360-10, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set :ASCE 7-10 Material Properties Analysis Method: Allowable Strength Design Fy:Steel Yield; 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E.Modulus; 29,000.0 ksi Bending Axis: Major Axis Bending t7 97s t.(3 52) W24x76 � span=23.0ft Applied Loads Service loads entered. Load Factors will be applied for calculations, Beam self weight NOT internally calculated and added Uniform Load: D=2.976, L=3.520 kilt, Tributary Width=1.0 ft DESIGN SUMMARY Dell ra OK Maximum Bending Stress Ratio = 0861: 1 Maximum Shear Stress Ratio= 0.355 : t Section used for this span W24x76 Section used for this span W24x76 Ma:Applied 429.548 k-ft Va:Applied 74.704 k Mn/Omega:Allowable 499.002 k-ft Vn/Omega :Allowable 210.320 k Load Combination +D+L Load Combination +D+L Location of maximum on span 11.500 ft Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.366 in Ratio= 754>=360 Max Upward Transient Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.675 in Ratio= 409>=180 Max Upward Total Deflection 0.000 in Ratio= 0<180 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXin um 74.704 74.704 Overall MINimure 20.534 20.534 O Only 34.224 34.224 L 74.704 74.704 +01,0.750L 64.584 64.584 1,0.600 20.534 20.534 L Only 40.480 40.480 1 1/46 Project Title: Engineer: Project ID: Project Descr: Steel Beam Project File:21013 enercalc.ec6 LIC#:KW-06014171,Build:20 22 5,16 HAYDEN CONSULTING ENGINEERS (c)ENERCALC INC 1983-2022 DESCRIPTION: A2 CODE REFERENCES Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set:ASCE 7-10 Material Properties Analysis Method Allowable Strength Design Fy:Steel Yield: 50,0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000,0 ksi Bending Axis: Major Axis Bending oti t€r40,0 /.tr W24x76 ' Span 17 250 ft Applied Loads Service loads entered.Load Factors will be applied for calculations. Beam self weight NOT internally calculated and added Uniform Load : D= 1.740, L= 1.760 k/ft, Tributary Width = 1.0 ft DESIGN SUMMARY Design OK Maximum Bending Stress Ratio = 0.261 :I Maximum Shear Stress Ratio= 0.144 : 1 Section used for this span W24x76 Section used for this span W24x76 Ma:Applied 130.184 k-ft Va:Applied 30.188 k • Mn/Omega:Allowable 499.002 k-ft Vn/Omega:Allowable 210.320 k . • Load Combination +D+L Load Combination +D+L Location of maximum on span 0.000 ft • Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.058 in Ratio= 3,578 >=360 Max Upward Transient Deflection 0.000 in Ratio= 0 <360 Span: 1 :L Only Max Downward Total Deflection 0.115 in Ratio= 1800 >=180 Span: 1 +D+L Max Upward Total Deflection 0.000 in Ratio= 0 <180 Maximum Forces &Stresses for Load Combinations Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span# M V Mmax+ Mmax- Ma Max Mnx Mnx/Omega Cb Rm Va Max VnxVnx/Omega D Only Dsgn. L= 17,25 ft 1 0,130 0.071 64.72 64.72 833.33 499.00 1.00 1,00 15.01 315.48 210.32 +D+L Dsgn,L= 17.25 ft 1 0.261 0.144 130.18 130.18 833.33 499.00 1.00 1.00 30.19 315,48 210.32 +D+0.750L Dsgn. L= 17,25 ft 1 0.228 0.125 113.82 113.82 833.33 499.00 1,00 1.00 26.39 315.48 210,32 +0.60D Dsgn.L= 17,25 ft 1 0.078 0.043 38.83 38.83 833.33 499.00 1.00 1.00 9.00 315.48 210.32 Overall Maximum Deflections Load Combination Span Max.""Defl Location in Span Load Combination Max, "+"Deft Location in Span +D+L 1 0.1150 8.674 0.0000 0.000 Vertical Reactions Support notation: Far left is# Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 30.188 30.188 Overall MINimum 9,005 9.005 D Only 15.008 15.008 +D+L 30 188 30.188 +D+0.750L 26.393 26,393 +0,60D 9.005 9.005 L Only 15.180 15.180 12/46 itle Block Line 1 D You can change this area • ENGINEERS using the"Settings"menu item and then using the Printing& STRUCTURAL I CIVIL Title Block"selection. 'title Block Line 6 alCeC6 Steel Beam Software wor Itc" L INC 1983-2020.Buid:12208.17 4U' ,.fi n ; e' • eF�{ DESCRIPTION: A3-16ft CODE REFERENCES Calculations per AISC 360-10, IBC 2012, CBC 2013,ASCE 7-10 Load Combination Set:ASCE 7-10 Material Properties Analysis Method: Allowable Strength Design Fy:Steel Yield: 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending D(8.:8)1...(17,:H)(34-22)L(40 48) D(0.788)9_(Q 07)SO 1) • • W24x76 Span= 16.0 ft Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight NOT internally calculated and added Uniform Load: D=0.7880, L=0,1070, S=0.40 k/ft, Tributary Width=1.0 ft Point Load: D=34.220, L=40.480 k @ 10.50 ft Point Load: D=8,80, L=17.60 k @ 8.0 ft DESIGN SUMMARY Desi>F n OK Maximum Bending Stress Ratio = 0.737: 1 Maximum Shear Stress Ratio= 0.330 : 1 Section used for this span W24x76 Section used for this span W24x76 Ma:Applied 367.741 k-ft Va :Applied 69.382 k Mn/Omega:Allowable 499.002 k-ft Vn/Omega:Allowable 210.320 k Load Combination +D+L Load Combination +D+L Location of maximum on span 10.469 ft Location of maximum on span 16.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection • Max Downward Transient Deflection 0.131 in Ratio= 1,461>=360 Max Upward Transient Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.245 in Ratio= 785>=180 Max Upward Total Deflection 0.000 in Ratio= 0 <180 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 46.038 69.382 Overall MINimum 3.200 3.200 D Only 22.467 33.161 +D+L 46.038 69.382 +D+S 25.667 36.361 +D+0.750L 40.145 60.327 +D+0.750L+0.750S 42.545 62.727 +0.60D 13.480 19.897 L Only 23.571 36.221 S Only 3.200 3.200 13/46 tie Block Line 1 You can change this area ENGINEERS using the"Settings"menu item and then using the"Printing& STRUCTURAL i civIL Title Block"selection. Title Block Line 6 File:2101 3e enercalc.ec6 c.ec6Stet) Beam Software INC 70f 12 203 Km <.. b� : r:,j DESCRIPTION: A3-22ft CODE REFERENCES Calculations per AISC 360-10, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set:ASCE 7-10 Material Properties Analysis Method: Allowable Strength Design Fy:Steel Yield. 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending D(34.22),L(40,48) D(8.8))$17;6) p,(p 7sar� W24x76 Span=22,0 ft Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight NOT internally calculated and added Uniform Load: D=0.7880, L=0.1070, S=0.40 k(ft, Tributary Width=1.0 ft Point Load: D=34.220, L=40.480 k @ 5.50 ft Point Load: D=8.80, L=17.60 k @ 11.0 ft DESIGN SUMMARY Desi s n OK Maximum Bending Stress Ratio 0.844: 1 Maximum Shear Stress Ratio= 0.376 : 1 Section used for this span W24x76 Section used for this span W24x76 Ma:Applied 421.330 k-ft Va:Applied 79.070 k Mn/Omega :Allowable 499.002 k-ft Vn/Omega:Allowable 210.320 k Load Combination +D+L Load Combination +D+L Location of maximum on span 5.531 ft Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.298 in Ratio= 885>=360 Max Upward Transient Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.573 in Ratio= 461 >=180 Max Upward Total Deflection 0.000 in Ratio= 0<180 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 79.070 41.720 Overall MINimum 4.400 4.400 D Only 38.733 21.623 +D+L 79.070 41.720 +D+S 43.133 26.023 +D+0.750L 68.986 36.696 +0+0.750L+0.750S 72.286 39.996 +0.60D 23.240 12.974 L Only 40.337 20.097 S Only 4.400 4.400 14/46 Project Title: • Engineer: Project ID: Project Descr: Steel Beam Project File: 21013 enercalc.ec LIC#:KW-06014171,Build:20 22 3 31 HAYDEN CONSULTING ENGINEERS (c)ENERCALC INC 1983-20'; DESCRIPTION: A3 - 22ft max p CODE REFERENCES Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set : ASCE 7-10 Material Properties Analysis Method Allowable Strength Design Fy:Steel Yield: 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E: Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending t (0 7&ao)L(O 107O)S(tt 40) W24x76 Atts Span=22.Oft Applied Loads Service loads entered, Load Factors will be applied for calculatio Beam self weight NOT internally calculated and added Uniform Load : D = 0.7880, L= 0.1070, S = 0.40 k/ft, Tributary Width = 1.0 ft Point Load : D = 34.220, L= 40.480 k @ 0.0 ft Point Load : D = 8.80, L= 17.60 k @ 0.0 ft DESIGN SUMMARY Desi n OK Maximum Bending Stress Ratio = 0.144: 1 Maximum Shear Stress Ratio= 0.062: 1 Section used for this span W24x76 Section used for this span W24x76 Ma:Applied 71.874k-ft Va:Applied 13.068 k Mn I Omega:Allowable 499.002k-ft Vn/Omega:Allowable 210.320 k Load Combination +D+S Load Combination +D+S Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.035 in Ratio= 7,591 >=360 Max Upward Transient Deflection 0.000 in Ratio= 0 <360 Span: 1 :S Only Max Downward Total Deflection 0.103 in Ratio= 2556 >=180 Span: 1 : +D+S Max Upward Total Deflection 0.000 in Ratio= 0 <180 Maximum Forces &Stresses for Load Combinations Load Combination Max Stress Ratios Summary of Moment Value; Summary of Shear Value: Segment Length Span# M V Mmax+ Mmax- Ma Ma) Mnx Mnx/Omega Cb Rm Va Ma) VnxVnx/Omegz D Only Dsgn. L= 22.00 ft 1 0.096 0.041 47.67 47.67 833,33 499.00 1.00 1,00 8.67 315.48 210.32 +D+L Dsgn, L= 22.00 ft 1 0.109 0.047 54.15 54.15 833.33 499.00 1.00 1.00 9.85 315.48 210.32 +D+S Dsgn, L= 22.00 ft 1 0.144 0.062 71.87 71.87 833.33 499.00 1.00 1.00 13,07 315.48 210.32 +D+0.750L Dsgn. L= 22.00 ft 1 0.105 0.045 52,53 52.53 833.33 499.00 1.001.00 9.55 315,48 210.32 +D+0.750L+0.7505 Dsgn. L= 22.00 ft 1 0.142 0.061 70.68 70.68 833.33 499.00 1.001.00 12.85 315.48 210,32 +0.60D Dsgn L= 22.00 ft 1 0.057 0.025 28.60 28.60 833.33 499.00 1.00 1.00 5.20 315.48 210.32 Overall Maximum Deflections Load Combination Span Max. "-"Defl Location in Span Load Combination Max."+"Defl Location in Span 15/46 Project Title: Engineer: Project ID: Project Descr: Steel Beams Projej 1,l 101*tl, [kmic t IG: VV r)(u,"1 4' 1 £},Di N ONt.FRS (c)EI 0 Rt,At_ jNi; 198.3 ) DESCRIPTION: A3 - 22ft max p Vertical Reactions Support notation : Far left is 4 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 110.945 13.068 Overall MINimum 4.400 1.177 D Only 51.688 8.668 +D+L 110.945 9.845 +D+S 56.088 13.068 +D+0.750L 96.131 9.551 +D+0.750L+0.750S 99.431 12.851 +0.60D 31.013 5.201 L Only 59.257 1.177 S Only 4.400 4.400 16/46 Block Line 1 I 1 You can change this area using the"Settings"menu item ENGINEERS and then using the"Printing& STRUCTURAL 1 civIL Title Block"selection, Title Block Line 6 Steel Beam File.21013 enercalc.ec6 h1„E� Software copyn rRcAL.i .h«; 19812020 20 BLI4 d 17 20.f.117 DESCRIPTION: A4 CODE REFERENCES Calculations per AISC 360-10, IBC 2012, CBC 2013,ASCE 7-10 Load Combination Set:ASCE 7-10 Material Properties Analysis Method: Allowable Strength Design Fy:Steel Yield': 50,0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending ......._.. . C1y1 1.03.)1 Y 10 ).h(O(161) W16x36 Span=200ft Applied Loads Service loads entered,Load Factors will be applied for calculations. Beam self weight NOT internally calculated and added Uniform Load: D=1.193, L=1.107, S=0.6630 k/ft, Tributary Width=1.0 ft DESIGN SUMMARY Desi!ri D . Maximum Bending Stress Ratio = 0.789: 1 Maximum Shear Stress Ratio= 0.269 : 1 Section used for this span W16x36 Section used for this span W16x36 • Ma :Applied 126.025 k-ft Va:Applied 25.205 k Mn/Omega:Allowable 159.681 k-ft Vn/Omega:Allowable 93.810 k Load Combination +D+0.750L+0.750S Load Combination +D+0.750L+0.7505 Location of maximum on span 10.000 ft Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.308 in Ratio= 778>=360 Max Upward Transient Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.702 in Ratio= 342 >=180 Max Upward Total Deflection 0.000 in Ratio= 0 <180 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 25.205 25.205 Overall MINimum 6.630 6.630 D Only 11.930 11.930 +D+L 23.000 23.000 +D+S 18.560 18.560 +D+0.750L 20.233 20.233 +D+0.750L+0.750S 25.205 25.205 +0.60D 7,158 7.158 L Only 11.070 11.070 S Only 6.630 6.630 17/46 1 itie Block Line 1 I+' You can change this area • usin the"Settings"menu item ENGINEERS and hen using the"Printing& STRUCTURAL I CIVIL Title Block"selection. Title Block Line 6 Steel Beam File:21013 enercalc.ec6 Software coprr ,1 ENERCALC,INC 1983 2020,Build:12 20 8,17 4.140800$5413x DESCRIPTION: A5 CODE REFERENCES Calculations per AISC 360-10, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set:ASCE 7-10 Material Properties Analysis Method: Allowable Strength Design Fy:Steel Yield; 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending D(47.73)3.(54..04)S(13 07) _....... ._.... ___. _.... ra(0 04)t::(0.:133)....._.. l tvr ,'tir �6_r 2) W24x76 Span=140ft Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight NOT internally calculated and added Load for Span Number 1 Uniform Load: D 0.7030, L=0.820 k/ft,Extent=5.50--»14,0 ft, Tributary Width=1.0 ft Uniform Load: D=0.040, L=0.1330 k/ft,Extent=0.0--»5.50 ft, Tributary Width=1.0 ft Point Load: D=47.730, L=54,040, S=13.070 k @ 5,50 ft DESIGN SUMMARY Desi n OK Maximum Bending Stress Ratio = 0.726: 1 Maximum Shear Stress Ratio= 0.316 : 1 Section used for this span W24x76 Section used for this span W24x76 Ma:Applied 362.317 k-ft Va :Applied 66.483 k Mn/Omega:Allowable 499.002 k-ft Vn/Omega:Allowable 210.320 k Load Combination +D+L Load Combination +D+L Location of maximum on span 5.520 ft Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.091 in Ratio= 1,842>=360 Max Upward Transient Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.171 in Ratio= 981 >=180 Max Upward Total Deflection 0.000 in Ratio= 0<180 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1_. Support 2 Overall MAXimum 66.483 49.184 Overall MINimum 7.935 5.135 D Only 30.970 22.956 +D+L 66.483 49.184 +D+S 38.905 28.090 +0+0.750L 57.605 42.627 +D+0.750L+0.750S 63.557 46.478 +0.60D 18.582 13.773 L Only 35.514 26.228 S Only 7.935 5.135 18/46 {Itle Block Line 1 I You can change this area ENGINEERS using the"Settings"menu item and then using the"Printing& STRUCTURAL I c i v i L Title Block"selection. Title Block Line 6 Steel Beam r r r INC ,21013 2O! i ft t)8 DESCRIPTION: A5A CODE REFERENCES Calculations per AISC 360-10, IBC 2012, CBC 2013,ASCE 7-10 Load Combination Set :ASCE 7-10 Material Properties Analysis Method: Allowable Strength Design Fy:Steel Yield: 0.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus 29,000,0 ksi Bending Axis: Major Axis Bending irate 703,?Lto.s2 W24x76 Span— 140ft Applied Loads Service loads entered.Load Factors will be applied for calculations, Beam self weight NOT internally calculated and added Uniform Load: D=0,7030, L=0.820 k/ft, Tributary Width=1.0 ft DESIGN SUMMARY Desi, rt OK i Maximum Bending Stress Ratio - 0.075: 1 Maximum Shear Stress Ratio= 0.051 : 1 Section used for this span W24x76 Section used for this span W24x76 Ma:Applied 37.314 k-ft Va:Applied 10.661 k Mn/Omega:Allowable 499.002 k-ft Vn/Omega:Allowable 210.320 k Load Combination +D+L Load Combination +D+L Location of maximum on span 7.000 ft Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.012 in Ratio= 14,369>=360 Max Upward Transient Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.022 in Ratio= 7737 >=180 Max Upward Total Deflection 0.000 in Ratio= 0<180 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 10.661 10.661 Overall MINimum 2.953 2.953 D Only 4.921 4.921 +D+L 10.661 10.661 +D+0.750L 9.226 9.226 +0.60D 2.953 2.953 L Only 5.740 5.740 19/46 1 itle Block Line 1 You can change this area ENGINEER - using the"Settings"menu item and then using the"Printing& ' - STRUCTURAL I CIVIL Title Block"selection. Title Block Line 6 File:21013 enercalc,ec6 Wood Beam ;t-� ,zt ta'2 ENERCALC,INC 1983-2020,Build 12 20 8 17 I , 77171, .r •...Wig,. a.: : •v. \ • m , \ "Q ', ..,;,: DESCRIPTION: A6 CODE REFERENCES Calculations per NDS 2012, IBC 2012, CBC 2013,ASCE 7-10 Load Combination Set :ASCE 7-10 Material Properties Analysis Method: Allowable Stress Design Fb+ 875 psi E:Modulus of Elasticity Load Combination ASCE 7-10 Fb- 875 ps Ebend-xx 1300ksi Fc-Pill 600 psi Eminbend-xx 470ksi Wood Species : Douglas Fir-Larch Fc-Perp 625 psi Wood Grade : No.2 Fv 170 psi Ft 425 psi Density 31.21 pcf Beam Bracing : Beam is Fully Braced against lateral-torsional buckling # t_._ i..1 6x12 Span=4.50 ft t Applied Loads Service loads entered.Load Factors wit be applied for calculations. Uniform Load: D=1.193, L=1.107, S=0.6630 Tributary Width=1.0 ft DESIGN SUMMARY :• Design OK 'Maximum Bending Stress Ratio 0.659 1 Maximum Shear Stress Ratio = 0.416 : 1 Section used for this span 6x12 Section used for this span 6x12 fb:Actual 576.28psi fv:Actual = 70.77 psi Fb:Allowable 875.00psi Fv:Allowable = 170.00 psi Load Combination +D+L Load Combination +D+L Location of maximum on span = 2.250 ft Location of maximum on span = 3.547 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward Transient Deflection 0.011 in Ratio= 4763>=360 Max Upward Transient Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.026 in Ratio= 2092>=180 Max Upward Total Deflection 0.000 in Ratio= 0<180 Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span# M V Cd C EN C i C r Cm C t C L M fb F'b V fv F,v D Only 0.00 0.00 0.00 0.00 Length=4.50 ft 1 0.380 0.240 0.90 1.000 1.00 1.00 1.00 1.00 1.00 3.02 298.92 787.50 1.55 36.71 153.00 +D+L 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=4.50 ft 1 0.659 0.416 1.00 1.000 1.00 1.00 1.00 1,00 1.00 5.82 576.28 875.00 2.98 70.77 170.00 +D+S 1.000 1.00 1.00 1.00 1.00 1,00 0.00 0.00 0.00 0.00 Length=4.50 ft 1 0.462 0.292 1.15 1.000 1.00 1.00 1.00 1.00 1.00 4,70 465.04 1006.25 2.41 57.11 195.50 +D+0.750L 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=4.50 ft 1 0.463 0.293 1.25 1.000 1.00 1.00 1.00 1.00 1.00 5.12 506.94 1093.75 2.63 62.25 212.50 +D+0.750L+0.750S 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=4.50 ft 1 0.628 0.397 1.15 1.000 1.00 1,00 1.00 1.00 1.00 6.38 631.53 1006.25 3.27 77.55 195.50 +0.60D 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=4.50 ft 1 0.128 0.081 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.81 179.35 1400.00 0.93 22.02 272.00 20/46 ?itle Block Line 1 You can change this area using the"Settings"menu item ENGINEERS and then using the"Printing& STRUCTURAL ! CI V L Title Block selection. rifle Block Line 6 Wood Beam File:21013 enercalc.ec6 Software P r r ENERCALC,INC 1983 2020 Build 12 20 817 tea... .� DESCRIPTION: A6 Overall Maximum Deflections Load Combination Span Max.""Defl Location in Span Load Combination Max."+"Dell Location in Span +D+0.750L+0.750S 1 0.0258 2.266 0.0000 0.000 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall M,VIm n 5.671 5.671 Overall MINimum 1.492 1.492 D Only 2.684 2.684 +D+L 5.175 5.175 +D+S 4.176 4.176 +D+0.750L 4.552 4.552 +D+0.750L+0.750S 5.671 5.671 +0.60D 1.611 1.611 L Only 2.491 2.491 S Only 1.492 1.492 21/46 title Block Line 1 ri You can change this area ENGINEERS using the"Settings"menu item and then using the"Printing& STRUCTURAL I c1VIL Title Block"selection. Title Block Line 6 Wood Beam s 2d12 rcac.ec6 File: ne Software ��n,,?�t 1�i1,°�?z",1NC 1 P 1 DESCRIPTION: A7 CODE REFERENCES Calculations per NDS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set:ASCE 7-10 Material Properties Analysis Method: Allowable Stress Design Fb+ 900 psi E:Modulus of Elasticity Load Combination ASCE 7-10 Fb- 900 psi Ebend-xx 1600ksi Fc Prll 1350 psi Eminbend-xx 580 ksi Wood Species : Douglas Fir-Larch Fc-Perp 625 psi Wood Grade :No.2 Fv 180 psi Ft 575 psi Density 31.21 pcf Beam Bracing : Beam is Fully Braced against lateral-torsional buckling t>(1:_1 3)LC.1.1M iµ �3 . 1 3 t'3 4x1 • 0 Span=3.0 ft Applied Loads Service loads entered.Load Factors will be applied for calculations. Uniform Load: D=1.193, L=1.107, S=0.6630, Tributary Width=1.0 ft DESIGN SUMMARY Design OK .Maximum Bending Stress Ratio = 0.576 1 Maximum Shear Stress Ratio = 0.434 : 1 Section used for this span 4x10 Section used for this span 4x10 fb:Actual = 622.10psi fv:Actual = 78.17 psi Fb:Allowable = 1,080.00psi Fv:Allowable = 180.00 psi Load Combination +D+L Load Combination +D+L • Location of maximum on span = 1.500 ft Location of maximum on span = 0.000 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward Transient Deflection 0.005 in Ratio= 6552>=360 Max Upward Transient Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0,013 in Ratio= 2877>=180 Max Upward Total Deflection 0.000 in Ratio= 0<180 Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span# M V Cd C FN C i Cr Cm C t C L M ib Pb, V fy F'v D Only 0.00 0.00 0.00 0.00 Length=3.0 ft 1 0.332 0.250 0.90 1.200 1.00 1.00 1.00 1.00 1.00 1.34 322.68 972.00 0.88 40.55 162.00 +D+L 1.200 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=3.0 ft 1 0.576 0.434 1.00 1.200 1.00 1.00 1.00 1.00 1.00 2.59 622.10 1080.00 1.69 78.17 180.00 +0+3 1.200 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=3.0 ft 1 0.404 0.305 1.15 1.200 1.00 1.00 1.00 1.00 1.00 2.09 502.01 1242.00 1.36 63.08 207.00 +D+0.750L 1.200 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=3.0 ft 1 0.405 0.306 1.25 1.200 1.00 1.00 1.00 1.00 1.00 2.28 547.25 1350.00 1.48 68.77 225.00 +D+0.750L+0.750S 1.200 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=3.0 ft 1 0.549 0.414 1.15 1.200 1.00 1.00 1.00 1.00 1.00 2.84 681.74 1242.00 1.85 85.67 207.00 +0.60D 1.200 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=3.0 ft 1 0.112 0.084 1.60 1.200 1.00 1.00 1.00 1.00 1.00 0.81 193.61 1728.00 0.53 24.33 288.00 22/46 title Block Line 1 � You can change this area ENGINEERS using the"Settings"menu item and then using the"Printing& STRUCTURAL I C V IL Title Block selection. Title Block Line 6 Wood Beam File:21013 enercalc.ec6 Software room ENERCALC,INC ?21 G.Build:12.208,17 DESCRIPTION: A7 Overall Maximum Deflections Load Combination Span Max.""Defl Location in Span Load Combination Max."+"Defl Location in Span +D+0.750L+0,750S 1 0.0125 1.511 0.0000 0.000 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 3,781 3.781 Overall MINimum 0.995 0.995 D Only 1.790 1,790 +D+L 3.450 3.450 +0+,S 2.784 2.784 +0+0.750L 3.035 3.035 +0+0.750L+0.7505 3.781 3.781 +0.60D 1.074 1.074 L Only 1.661 1.661 S Only 0.995 0.995 23/46 °itle Block Line 1 You can change this area E N G I N E E R S using the"Settings"menu item and then using the"Printing& s T R U C T U R A L I C I V I L Title Block"selection. I itle Block Line 6 File:21013 enercalc ec6 Wood Beam Software t r = ENERCALC INC 1983-2020,Build 12 20 817 t A t, DESCRIPTION: A7 with pload CODE REFERENCES Calculations per NDS 2012, IBC 2012, CBC 2013,ASCE 7-10 Load Combination Set:ASCE 7-10 Material Properties Analysis Method: Allowable Stress Design Fb+ 900.0 psi E:Modulus of Elasticity Load Combination ASCE 7-10 Fb- 900.0 psi Ebend-xx 1,600.0 ksi Fc-Prll 1,350.0 psi Eminbend-xx 580.0ksi Wood Species : Douglas Fir-Larch Fc-Perp 625.0 psi Wood Grade : No.2 Fv 180.0 psi Ft 575.0 psi Density 31.210 pcf Beam Bracing : Beam is Fully Braced against lateral-torsional buckling D(1 79)L(1661)S(0.995) 1 1 '1.193)Lt€ 'f1 ')S(0.663) 1 1 i v .. _ 4x12 ... Span- .0.ft... _.____ Applied Loads Service loads entered.Load Factors will be applied for calculations. Uniform Load: D=1.193, L=1.107, S=0.6630, Tributary Width=1.0 ft Point Load: D=1.790, L=1.661, S=0.9950 k @ 1.50 ft DESIGN SUMMARY Design OK Maximum Bending Stress Ratio 0.85U 1 Maximum Shear Stress Ratio 0.642 : 1 Section used for this span 4x12 Section used for this span 4x12 fb:Actual _ 841.26psi fv:Actual 115.62 psi Fb:Allowable = 990.00psi Fv:Allowable 180.00 psi Load Combination +D+L Load Combination +D+L Location of maximum on span 1.500 ft Location of maximum on span -- 0.000 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward Transient Deflection 0.005 in Ratio= 6548>=360 Max Upward Transient Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.013 in Ratio= 2876>=180 Max Upward Total Deflection 0.000 in Ratio= 0<180 Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span# V Cd C N C i Cr' C nt C t C L M tb Pb V fv F'v D Only 0.00 0.00 0.00 0.00 Length=3.0 ft 1 0.490 0.370 0.90 1,.100 1.00 1.00 1.00 1.00 1.00 2.68 436,36 891.00 1.57 59,97 162.00 +D+L 1.100 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=3.0 ft 1 0.850 0.642 1.00 1.100 1.00 1.00 1.00 1.00 1.00 5.18 841.26 990.00 3.03 115.62 180.00 +D+S 1,100 1.00 1,00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=3.0 ft 1 0.596 0.451 1.15 1,100 1.00 1.00 1.00 1.00 1.00 4.18 678.89 1138.50 2.45 93.30 207.00 +D+0.750L 1.100 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=3.0 ft 1 0.598 0.452 1.25 1.100 1.00 1.00 1.00 1.00 1.00 4.55 740.04 1237.50 2.67 101.71 225.00 +D+0.750L+0.7505 1.100 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=3.0 ft 1 0,810 0.612 1,15 1.100 1.00 1.00 1.00 1.00 1.00 5.67 921.94 1138.50 3.33 126.71 207.00 +0.60D 1.100 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=3.0 ft 1 0.165 0.125 1.60 1.100 1.00 1.00 1.00 1.00 1.00 1.61 261.81 1584.00 0.94 35.98 288.00 24/46 • Title Block Line 1 EYou can change this area ENGINEERS using the"Settings"menu item and then using the"Printing& STRUCTURAL I CIVIL Title Block"selection. Title Block Line 6 File:21013 enercalc.ec6 Wood Beam Software. yra�l 1.71,I C INC.1983-2020,Out ,.,o-",';7 1404,lax�@�m. • � ..... .� .. you -- 14n2.. `)&ii,Zti DESCRIPTION: A7 with pload Overall Maximum Deflections Load Combination Span Max."-"Dell Location in Span Load Combination Max."+"Deft Location in Span +D+0.750L+0.750S 1 0.0125 1.511 0.0000 0.000 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXI um 5.672 5.672 Overall MINimum 1.492 1.492 D Only 2.685 2.685 +D+L 5.176 5.176 +D+S 4.177 4.177 +D+0.750L 4.553 4.553 +0+0.750L+0.750S 5.672 5.672 +0.60D 1.611 1.611 L Only 2.491 2.491 S Only 1.492 1.492 25/46 • Title Block Line 1 H You can change this area ENGINEERS using the"Settings"menu item and then using the"Printing& STRUCTURAL I CIVIL Title Block"selection. Title Block Line 6 Steel Q@at11 :N File:21013 enercalc.ec6 Software- �rpr ,;i}NC .aley, Y 19 ,2020,Build:12.20.817 DESCRIPTION: A8 CODE REFERENCES Calculations per AISC 360-10, IBC 2012, CBC 2013,ASCE 7-10 Load Combination Set:ASCE 7-10 Material Properties Analysis Method: Allowable Strength Design Fy:Steel Yield: 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending _ D(1,366)L(1 373) ¢ b 8 _ o W12x26 r Span= 15.O ft Applied Loads Service loads entered,Load Factors will be applied for calculations. Beam self weight NOT internally calculated and added Uniform Load: D=1.366, L=1.373 k/ft, Tributary Width=1.0 ft DESIGN SUMMARY Desi.`n Olt Maximum Bending Stress Ratio = 0.830: 1 Maximum Shear Stress Ratio= 0.366 : 1 Section used for this span W12x26 Section used for this span W12x26 Ma :Applied 77.034 k-ft Va:Applied 20.543 k Mn/Omega :Allowable 92.814 k-ft Vn/Omega:Allowable 56.120 k Load Combination +D+L Load Combination +D+L Location of maximum on span 7.500 ft Location of maximum on span 0.000 ft • Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.266 In Ratio= 677>=360 Max Upward Transient Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.530 in Ratio= 340 >=180 Max Upward Total Deflection 0.000 in Ratio= 0 <180 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 20.543 20.543 Overall MINimum 6.147 6.147 D Only 10.245 10.245 +D+L 20.543 20.543 +D+0.750L 17.968 17.968 +0.60D 6.147 6.147 L Only 10.298 10.298 26/46 Title Block Line 1 You can change this area ENGINEERS using the"Settings"menu item and then using the"Printing& g sTRucruRAL I civil_Title Block"selection. Title Block Line 6 Steel BeamFile:21013enercalcec6 Software=, >r ,�l ENERCALC,INC 1983-2020,Build:12 20 8-17 DESCRIPTION: A10 CODE REFERENCES Calculations per AISC 360-10, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set:ASCE 7-10 Material Properties Analysis Method: Allowable Strength Design Fy Steel Yield: 50,0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000.0 ksi Bending Axis Major Axis Bending D(21,5)L(23.7) 0(0 42) {O 5) D(0.345)L(O. E6) b W18x50 • a�Ab AN Span= 15Oft Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight NOT internally calculated and added Load for Span Number 1 Uniform Load: D=0.3450, L=0.460 k/ft,Extent=0.0-->>9.50 ft, Tributary Width=1.0 ft Uniform Load: D=0.420, L=0.560 klft,Extent=9.50--»15.0 ft, Tributary Width=1.0 ft Point Load: D=21.50, L=23.70k@5.50ft DESIGN SUMMARY Oesi b n OK Maximum Bending Stress Ratio = 0.710: 1 Maximum Shear Stress Ratio= 0.273 :1 Section used for this span WI8x50 Section used for this span WI8x50 Ma:Applied 179.025 k-ft Va:Applied 34.841 k Mn/Omega:Allowable 251.996 k-ft Vn/Omega:Allowable 127.80 k Load Combination +D+L Load Combination +D+L Location of maximum on span 5.529 ft Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.137 in Ratio= 1,310>=360 Max Upward Transient Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.258 in Ratio= 697 >=180 Max Upward Total Deflection 0.000 in Ratio= 0 <180 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 34.841 23.397 Overall MINimum 9.768 6.485 D Only 16.280 10.808 +0+L 34.841 23.397 +D+0.750L 30.200 20.250 +0.60D 9.768 6.485 L Only 18.561 12.589 27/46 Title Block Line 1 You can change this area ENGINEERS using the"Settings"menu item and then using the"Printing& STRUCTURAL I civiL Title Block"selection, Title Block Line 6 File:21013 enercalc.ec6 Steel Beam 5ef.vaeio"i€7h2ENERCALC INC 1aa202 Build 1220817 DESCRIPTION: All CODE REFERENCES Calculations per AISC 360-10, IBC 2012, CBC 2013,ASCE 7-10 Load Combination Set: ASCE 7-10 Material Properties Analysis Method: Allowable Strength Design Fy:Steel Yield 50,0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending D(24 38)L(28 81). 0)(0 4)L,((3 72) W18x50 Span=16.750 ft Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight NOT internally calculated and added Uniform Load: D=0.540, L=0.720 k/ft, Tributary Width=1.0 ft Point Load: D=24.380, L=28.810 k @ 2.750 ft DESIGN SUMMARY_ 2 l OK x„ Maximum Bending Stress Ratio = 0.581 : 1 Maximum Shear Stress Ratio= 0.430 . 1 Section used for this span W18x50 Section used for this span W18x50 Ma :Applied 146.470 k-ft Va:Applied 55.010 k Mn/Omega:Allowable 251.996 k-ft Vn/Omega :Allowable 127.80 k Load Combination +D+L Load Combination +D+L Location of maximum on span 2.776 ft Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.157 in Ratio= 1,280>=360 Max Upward Transient Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.285 in Ratio= 706>=180 Max Upward Total Deflection 0.000 in Ratio= 0<180 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimatn 55.010 19.285 Overall MINimum 14.940 5.115 D Only 24.900 8.525 +D+L 55.010 19.285 +D+0.750L 47.482 16.595 +0.60D 14.940 5.115 L Only 30.110 10.760 28/46 Title Block Line 1 You can change this area ENGINEERS using the"Settings"menu item and then using the"Printing& STRUCTURAL I CIVIL Title Block"selection. Title Block Line 6 Steel Beam File:21013 enercalcec6 Software t 7 N ENERCALC,INC 1983.2020,BuiId.12 20 8.17 `- 32 .. ire a, 4 ;Y . DESCRIPTION: Al2 CODE REFERENCES Calculations per AISC 360-10, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set:ASCE 7-10 Material Properties Analysis Method: Allowable Strength Design Fy:Steel Yield: 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending D(4.374),SM 084).. ..... 0(0 3 71.4f€, Y W16x26 Span= 150ft Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight NOT internally calculated and added Uniform Load: D=1.290, L=1,160 k/ft, Tributary Width=1.0 ft Uniform Load: D=0.3240, S=0.450 k/ft,Extent=10.0-->>15.0 ft, Tributary Width=1.0 ft Point Load: D=4.374, S=6.084k@ 10.0 ft DESIGN SUMMARY Des,.n bit Maximum Bending Stress Ratio = 0.817: 1 Maximum Shear Stress Ratio= 0.353 :1 Section used for this span W16x26 Section used for this span W16x26 Ma:Applied 90.112 k-ft Va :Applied 24.914 k Mn/Omega:Allowable 110.279 k-ft Vn/Omega:Allowable 70.509 k Load Combination +D+0.750L+0.750S Load Combination +D+0,750L+0.7505 Location of maximum on span 9.129 ft Location of maximum on span 15.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.152 in Ratio= 1,183>=360 Max Upward Transient Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.411 in Ratio= 438 >=180 Max Upward Total Deflection 0.000 in Ratio= 0 <180 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 20.103 24.914 Overall MINimum 2.403 5.931 D Only 11.403 13.941 +D+L 20.103 22.641 +D+S 13.806 19.872 +D+0.750L 17.928 20.466 +D+0.750L+0,7505 19.730 24.914 +0.60D 6.842 8.365 L Only 8.700 8.700 S Only 2.403 5.931 29/46 itle Block Line 1 f 8, You can change this area ENGINEERS using the*Settings"menu item and then using the"Printing& STRUCTURAL I c I v I L Title Block"selection. Title Block Line 6 e21013 enercal c Beam Software htC,INC.INC1983-2020,Build: 220 8.17'r'�f.``u/ ,.�. ,. ..�x :.��,.�, ,+a:Ar a � >,-.a$. : ,- _� _..,d�71_ DESCRIPTION: A13 CODE REFERENCES Calculations per AISC 360-10, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set:ASCE 7-10 Material Properties Analysis Method: Allowable Strength Design Fy:Steel Yield; 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000 ksi Bending Axis: Major Axis Bending D(11.4)Lf 7)8(2 4) D(0.2rb))1.(0 361) 0(0.5).L(0107)..__ _._. b 4 ofk W18x46 W18x46 Span=9.Oft Span=8Oc Applied Loads Service loads entered.Load Factors will be applied for calculations. Beam self weight NOT internally calculated and added Load for Span Number 1 Uniform Load: D=0,2750, L=0.3670 k/ft, Tributary Width=1.0 ft Load for Span Number 2 Uniform Load: D=0.50, L=0.1070 k/ft, Tributary Width=1.0 ft Point Load: D=11.40, L=8.70, S=2.40 k @ 8.0 ft DESIGN SUMMARY Desi n OK Maximum Bending Stress Ratio _ 0.796: 1 Maximum Shear Stress Ratio= 0.191 : 1 Section used for this span W18x46 Section used for this span W18x46 Ma:Applied 180.224 k-ft Va:Applied 24.956 k Mn/Omega:Allowable 226.297 k-ft Vn/Omega:Allowable 130.320 k Load Combination +D+L Load Combination +D+L Location of maximum on span 9.000 ft Location of maximum on span 9.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.268 in Ratio= 717>=360 Max Upward Transient Deflection -0.029 in Ratio= 3,678 >=360 Max Downward Total Deflection 0.661 in Ratio= 290>=180 Max Upward Total Deflection -0.074 in Ratio= 1454>=180 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Support 3 Overall MAXimum -17.136 47.870 Overall MINimum -2.133 4.533 D Only -10.674 28.549 +D+L -17.136 47.870 +D+S -12.807 33.082 +D+0.750L -15.520 43.040 +0+0.750L+0,750S -17.120 46.440 +0.60D -6.404 17.129 L Only -6.462 19.321 S Only -2.133 4.533 30/46 Title Block Line 1 � You can change this area ENGINEERS using the"Settings"menu item and then using the"Printing& STRUCTURAL I ciViLTitle Block"selection. Title Block Line 6 Steel Beam Software€x( ht ENERCALC ii 1 21013 220.e�, ,� i,Q.,s4r4;Waa-WilrrAiKt VASISIUI :M. 'ENGINE DESCRIPTION: A14 CODE REFERENCES Calculations per AISC 360-10, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set:ASCE 7-10 Material Properties Analysis Method:Allowable Strength Design Fy:Steel Yield 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending D(4.2 9) L(5 643) (1.6 41 L(1 74) D(2.496)L(2 88) D , 9c)1_t2. ) Dt 1.641 t, 1 74 ) W18x50 W 18x50 W18x50 Span=5.750 ft Span= 16,750 ft span =2.750 ft Applied Loads Service loads entered. Load Factors will be applied for calculatio Beam self weight NOT internally calculated and added Load for Span Number 1 Uniform Load: D=2.496, L=2.880 k/ft,Extent=0.0-->>5.750 ft, Tributary Width=1.0 ft Load for Span Number 2 Uniform Load: D=2.496, L=2.880 k/ft,Extent=0.0-->>9.250 ft, Tributary Width=1.0 ft Uniform Load: D=1.641, L=1.740 k/ft,Extent=9.250-->>16.750 ft, Tributary Width=1.0 ft Point Load: D=4.239, L=5.643 k @ 9.250 ft Load for Span Number 3 Uniform Load: D= 1.641, L=1.740 k/ft, Tributary Width=1.0 ft DESIGN SUMMARY nest+tit OK Maximum Bending Stress Ratio = 0.693: 1 Maximum Shear Stress Ratio= 0.399 : 1 Section used for this span W18x50 Section used for this span W18x50 Ma :Applied 174.738k-ft Va :Applied 51.034 k Mn/Omega:Allowable 251.996k-ft Vn/Omega :Allowable 127.80 k Load Combination +D+L+H,LL Comb Run(*L*) Load Combination +D+L+H,LL Comb Run(LL*) Location of maximum on span 8.933 ft Location of maximum on span 5.750 ft Span#where maximum occurs Span#2 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.226 in Ratio= 887>=360 Max Upward Transient Deflection -0.247 in Ratio= 557>=360 Max Downward Total Deflection 0.359 in Ratio= 559>=180 Max Upward Total Deflection -0.182 in Ratio= 363>=180 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Support 3 Support 4 Overall MAXimum 81.946 46.466 Overall MINimum -0.393 2.335 +D+H 37.811 20.688 +D+L+H,LL Comb Run("'L) 37.419 25.866 +D+L+H,LL Comb Run("L") 62.544 41.288 +04.41,LL Comb Run("LL) 62.151 46.466 +D+L+H,LL Comb Run(L"") 57.214 17.845 , .,, 31/46 Title Block Line 1 4 You can change this area ENGINEERS using the"Settings"menu item and then using the"Printing& '. STRUCTURAL I CIVIL Title Block"selection. Title Block LInr ( Steel Beam File:21013 enercalc .ec6 Software ltaENERCALC INC1'Y Butld:1220811 v , • � r 'FISTTINItu c<.1 get DESCRIPTION: A14 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Support 3 Support 4 +D+Lr+H,LL Comb Run(**L) 37.811 20.688 +D+Lr+H,LL Comb Run CO 37.811 20.688 +D+Lr+H,LL Comb Run(*LL) 37.811 20.688 +D+Lr+H,LL Comb Run(L**) 37.811 20.688 +D+Lr+H,LL Comb Run(L*L) 37.811 20.688 +D+Lr+H,LL Comb Run(LL*) 37.811 20.688 +D+Lr+H,LL Comb Run(LLL) 37.811 20.688 +D+S+H 37.811 20.688 +D+0.750Lr+0.750L+H,LL Comb Run I 37.517 24.571 +D+0.750Lr+0.750L+H,LL Comb Run I 56.361 36.138 +D+0.750Lr+0.750L+H,LL Comb Run I 56.066 40.022 +D+0.750Lr+0.750L+H,LL Comb Run I 52.363 18.556 +D+0.750Lr+0.750L+H,LL Comb Run I 52.069 22.439 +D+0.750Lr+0.750L+H,LL Comb Run I 70.913 34.006 +D+0.750Lr+0.750L+H,LL Comb Run i 70.618 37.890 +D+0,750L+0.750S+H,LL Comb Run( 37.517 24.571 +D+0,750L+0.750S+H,LL Comb Run( 56.361 36.138 +D+0.750L+0.750S+H,LL Comb Run( 56.066 40.022 +D+0.750L+0.750S+H,LL Comb Run( 52.363 18.556 +D+0.750L+0.750S+H,LL Comb Run( 52.069 22.439 +D+0.750L+0.750S+H,LL Comb Run( 70.913 34.006 +D+0.750L+0.750S+H,LL Comb Run( 70.618 37.890 +D+0.60W+H 37.811 20.688 +D+0.70E+H 37.811 20.688 +D+0.750Lr+0.750L+0.450W+H,LL Co 37.517 24,571 +D+0.750Lr+0.750L+0.450W+1-1,LL Co 56.361 36.138 +D+0.750Lr+0.750L+0.450W+H,LL Co 56.066 40.022 +D+0.750Lr+0.750L+0.450W+H,LL Co 52.363 18.556 +D+0.750Lr+0,750L+0.450W+H,LL Co 52.069 22.439 +D+0.750Lr+0,750L+0.450W+H,LL Co 70.913 34.006 +D+0.750Lr+0.750L+0.450W+H,LL Co 70.618 37.890 +D+0.750L+0.750S+0.450W+H,LL Cot 37.517 24.571 +D+0.750L+0.750S+0.450W+H,LL Cot 56.361 36.138 +D+0.750L+0.7505+0.450W+H,LL Cot 56,066 40.022 +D+0.750L+0.750S+0.450W+H,LL Cot 52.363 18.556 +D+0.750L+0.750S+0.450W+H,LL Cot 52.069 22.439 +0+0.750L+0.750S+0.450W+H,LL Cot 70.913 34.006 +D+0.750L+0.750S+0.450W+H,LL Cot 70.618 37.890 +D+0.750L+0.750S+0.5250E+H,LL Cc 37.517 24.571 +D+0.750L+0.750S+0.5250E+H,LL Cc 56.361 36.138 +D+0.750L+0.750S+0.5250E+H,LL Cc 56.066 40.022 +D+0.750L+0.750S+0.5250E+H,LL Cc 52.363 18.556 +D+0.750L+0.750S+0.5250E+H,LL Cc 52.069 22.439 +D+0.750L+0.750S+0.5250E+H,LL Cc 70.913 34.006 +D+0.750L+0.750S+0.5250E+H,LL Cc 70.618 37.890 +0,60D+0.60W+0.60H 22.687 12.413 +0.60D+0.70E+0.60H 22.687 12.413 D Only 37.811 20.688 L Only,LL Comb Run(**L) -0.393 5.178 L Only,LL Comb Run(*L*) 24.733 20.600 L Only,LL Comb Run(*LL) 24.340 25.778 L Only,LL Comb Run(L**) 19.402 -2.842 L Only,LL Comb Run(L*L) 19.010 2.335 L Only,LL Comb Run(LL*) 44.135 17.758 L Only,LL Comb Run(LLL) 43.742 22.936 H Only 32/46 Title Block Line 1 You can change this area E N G ( N E E R S using the"Settings"menu item and then using the"Printing& STRUCTURAL I CIVIL Title Block"selection. Title Block Line 6 Steel Beam File:21013enercalc,ec6 s oftwat +_,'„ENERCALC,INC 190 Icit,Build:12 20 8,17 DESCRIPTION: A14-alt ' /S\5 51,M cC. S c7U.,. CODE REFERENCES Calculations per AISC 360-10, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set:ASCE 7-10 Material Properties Analysis Method: Allowable Strength Design Fy:Steel Yield 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending 0)(4239)r.(5 643) 0(1..�6414 ...1 74.) 0(.2!96)..:L(;e.as C7:(_.t-a,641)141.74), g W 18x50 W 18x5O Span= 16.750 ft Span=2.750 ft Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight NOT internally calculated and added Load for Span Number 1 Uniform Load; D=2.496, L=2.880 k/ft,Extent=0.0--»9.250 ft, Tributary Width=1.0 ft Uniform Load: D=1.641, L=1.740 k/ft,Extent=9.250-->>16.750 ft, Tributary Width=1.0 ft Point Load: D=4.239, L=5.643 k @ 9.250 ft Load for Span Number 2 Uniform Load: D=1.641, L=1.740 klit, Tributary Width=1.0 ft DESIGN SUMMARY Desi n OK Maximum Bending Stress Ratio = 0.772: 1 Maximum Shear Stress Ratio= 0.358 :1 Section used for this span WI8x50 Section used for this span WI8x50 Ma:Applied 194.484 k-ft Va:Applied 45.729 k Mn/Omega:Allowable 251.996 k-ft Vn/Omega:Allowable 127.80 k Load Combination +D+L+H,LL Comb Run(L*) Load Combination +D+L+H,LL Comb Run(L*) Location of maximum on span 8.509 ft Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.225 in Ratio= 891 >=360 Max Upward Transient Deflection -0.114 in Ratio= 578 >=360 Max Downward Total Deflection 0.412 in Ratio= 487 >=180 Max Upward Total Deflection -0.205 in Ratio= 321 >=180 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Support 3 Overall MAXimum 45.729 48.930 Overall MINimum -0.393 5.178 +D+H 20.996 23.151 +D+L+H,LL Comb Run('L) 20.603 28.329 +D+L+H,LL Comb Run(L') 45.729 43.752 +D+L+H,LL Comb Run(LL) 45.336 48.930 +D+Lr+H,LL Comb Run(*L) 20.996 23.151 +D+Lr+H,LL Comb Run(L*) 20.996 23.151 +D+Lr+H,LL Comb Run(LL) 20.996 23.151 +D+S+H 20.996 23.151 +D+0.750Lr+0.750L+H,LL Comb Run('20.701 27.035 +D+0.750Lr+0.750L+H,LL Comb Run(L39.545 38.602 +0+0.750Lr+0 750L+H,LL Comb Run(L39.251 42.485 33/46 1 itle Block Line 1 ' You can change this area ENGINEERS using the"Settings"menu item and then using the"Printing& STRUCTURAL I CIVIL Title Block"selection. Title Block Line 6 File: Steel BeaBeamSoftware dr-rirsla RC Aim F Bu.d:2. enercalc.ec6 177 DESCRIPTION: A14-alt Vertical Reactions Support notation Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Support 3 +D+0.750L+0.750S+H,LL Comb Run(*120.701 27.035 +D+0.750L+0.750S+H,LL Comb Run(L'39.545 38.602 +D+0.750L+0.750S+H,LL Comb Run(LI39.251 42.485 +D+0.60W+H 20.996 23.151 +D+0.70E+1-1 20.996 23.151 +D+0.750Lr+0.750L+0.450W+H,LL Corr20.701 27.035 +D+0.750Lr+0.750L+0.450W+H,LL Con39.545 38.602 +0+0.750Lr+0.750L+0.450W+H,LL Con 39.251 42.485 +D+0.750L+0.750S+0.450W+H,LL Corn 20.701 27.035 +D+0.750L+0.750S+0.450W+H,LL Com 39.545 38.602 +0+0.750L+0.750S+0.450W+H,LL Corn 39.251 42.485 +0+0.750L+0.750S+0.5250E+H,LL Con20.701 27.035 +0+0,750L+0.750S+0.5250E+H,LL Con39.545 38.602 +0+0,750L+0.750S+0.5250E+H,LL Con39.251 42.485 +0.60D+0.60W+0.60H 12.598 13.891 +0.60D+0.70E+0.60H 12.598 13.891 D Only 20.996 23.151 L Only,LL Comb Run CO -0.393 5.178 L Only,LL Comb Run(L*) 24.733 20.600 L Only,LL Comb Run(LL) 24.340 25.778 H Only 34/46 Title Block Line 1 You can change this area usingthe"Settings"menu item ENGINEERS and en using t Printing& • - ' s T R u c T U R A L t C I V I L Title Block"selection. Title Block Line 6 File:21013 Wood Beam Softwareyr t %I ?1.44.0 INC.19832020,Bu d:122081ceIC.ec6 7 ' "tsv ,- �" :� s 's' 'eve rn .'"5.s"� c€"i'""»'•.7 :""vr �....a..N .�4 � -_..'xz� �� �:��3.M .mow .<,a.. -,�_ DESCRIPTION: A17 CODE REFERENCES Calculations per NDS 2012, IBC 2012, CBC 2013,ASCE 7-la Load Combination Set :ASCE 7-10 Material Properties Analysis Method: Allowable Stress Design Fb+ 900.0 psi E:Modulus of Elasticity Load Combination ASCE 7-10 Fb- 900.0 psi Ebend-xx 1,600.Oksi Fc-Prll 1,350.0 psi Eminbend-xx 580.0ksi Wood Species : Douglas Fir-Larch Fc-Perp 625.0 psi Wood Grade : No.2 Fv 180.0 psi Ft 575.0 psi Density 31.210pcf Beam Bracing : Beam is Fully Braced against lateral-torsional buckling D(0 085)Lf0 053)810 751 1 3 f { 4x10 Span=9.0 ft Applied Loads Service loads entered.Load Factors will be applied for calculations, Uniform Load: D=0.0850, L=0,0530, S=0.3750, Tributary Width=1.0 ft DESIGN SUMMARY Design OK Maximum Bending Stress Ratio = 0.902 1 Maximum Shear Stress Ratio 0.386 : 1 Section used for this span 4x10 Section used for this span 4x10 fb:Actual = 1,119.78psi fv:Actual = 79.81 psi Fb:Allowable = 1,242.00psi Fv:Allowable = 207.00 psi Load Combination +D+S Load Combination +D+S Location of maximum on span = 4.500 ft Location of maximum on span = 8.245 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward Transient Deflection 0.151 in Ratio= 716>=360 Max Upward Transient Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.185 in Ratio= 584>=180 Max Upward Total Deflection 0,000 in Ratio= 0<180 Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span# M V Cd C FN C i Cr Cm C t CL M ib F'b V fir F'y D Only 0.00 0.00 0.00 0.00 Length=9.0 ft 1 0.213 0.091 0.90 1.200 1.00 1.00 1.00 1.00 1.00 0.86 206.92 972.00 0.32 14.75 162.00 +D+L 1.200 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=9.0 ft 1 0.311 0.133 1.00 1.200 1.00 1.00 1.00 1.00 1.00 1.40 335.93 1080.00 0.52 23.94 180.00 +D+S 1.200 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=9.0 ft 1 0,902 0.386 1.15 1.200 1.00 1.00 1.00 1.00 1.00 4.66 1,119.78 1242.00 1.72 79.81 207.00 +D+0.750L 1.200 1.00 1.00 1.00 1.00 1.00 0.00 0,00 0,00 0.00 Length=9.0 ft 1 0.225 0.096 1.25 1.200 1.00 1.00 1.00 1.00 1.00 1.26 303.68 1350.00 0.47 21.64 225.00 +D+0.750L+0.750S 1.200 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=9.0 ft 1 0.796 0.340 1.15 1.200 1.00 1.00 1,00 1.00 1.00 4.11 988.33 1242.00 1.52 70.44 207.00 +0.60D 1.200 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=9.0 ft 1 0.072 0.031 1.60 1,200 1.00 1.00 1.00 1.00 1.00 0.52 124.15 1728.00 0.19 8.85 288.00 35/46 title Block Line 1 You can change this area ENGINEERS using the"Settings"menu item and then using the"Printing& STRUCTURAL I c i v i L Title Block"selection, Title Block Line 6 21013 Wood Beam Software r,7 c ENERCALC,INC 1983-2020,Bu d2 2p 81r7aIc.eC6 DESCRIPTION: A17 Overall Maximum Deflections Load Combination Span Max.""Deft Location in Span Load Combination Max."+"Defl Location in Span +0+5 1 0.1849 4.533 0.0000 0.000 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 2.070 2.070 Overall MINimum 1.688 1.688 D Only 0.383 0.383 +D+L 0.621 0.621 +D+S 2.070 2.070 +D+0.750L 0.561 0.561 +D+0.750L+0.750S 1.827 1.827 +O.60D 0.230 0.230 L Only 0.239 0.239 S Only 1.688 1.688 36/46 Project Title: Engineer: Project ID: Project Descr: Steel Beam Project File:21013 enercalc.ec6 LIC#:KW-06014171,Build 20 22.5 16 HAYDEN CONSULTING ENGINEERS (c)ENERCALC INC 1983,2022 DESCRIPTION: A18 CODE REFERENCES Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set:ASCE 7-10 Material Properties Analysis Method Allowable Strength Design Fy:Steel Yield;; 46.0 ksi Beam Bracing : Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending D(s� ao)Lt'3 .�xf x fi 1:, 10)S(2 610) i QJ. .)MO 053"?1. {c :7,9}-_.. ,. , , HSS12x4x5/6 Span=6.0ft i Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight NOT internally calculated and added Uniform Load : D =0,0850, L=0.0530, S=0.3750 klft, Tributary Width= 1.0 ft Point Load : D=9.020, L= 15.510, S =2.610 k @ 3.250 ft Point Load : D=34.10, L=32.10, S = 1.240 k @ 2.0 ft DESIGN SUMMARY Desi 0 r1 Olt Maximum Bending Stress Ratio = 0.873: 1 Maximum Shear Stress Ratio = 0.283: 1 Section used for this span HSS12x4x5/8 Section used for this span HSS12x4x5/8 Ma:Applied 111.243 k-ft Va:Applied 55.790 k Mn/Omega:Allowable 127.395 k-ft Vn/Omega :Allowable 196.979 k Load Combination +D+L Load Combination +D+L Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection • Max Downward Transient Deflection 0.047 in Ratio= 1,522 >=360 Max Upward Transient Deflection 0.000 in Ratio= 0 <360 Span: 1 : L Only Max Downward Total Deflection 0.090 in Ratio= 804 >=180 Span: 1 :+D+L Max Upward Total Deflection 0.000 in Ratio= 0 <180 Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span# M V Mmax+ Mmax- Ma Max Mnx Mnx/Omega Cb Rm Va Max VnxVnx/Omega D Only.... Dsgn.L= 6,00 ft 1 0.424 0.138 54.03 54.03 212,75 127.40 1.00 1.00 27.12 328.95 196.98 +D+L Dsgn. L= 6 00 ft 1 0.873 0.283 111.24 111.24 212.75 127.40 1.00 1.00 55,79 328.95 196.98 +D+S Dsgn, L= 6,00 ft 1 0.468 0.154 59,59 59.59 212.75 127,40 1.00 1.00 30.27 328.95 196.98 +D+0.750L Dsgn L= 6,00 ft 1 0.761 0.247 96,94 96,94 212.75 127,40 1.00 1.00 48,62 328.95 196.98 +D+0.750L+0.750S Dsgn. L= 6.00 ft 1 0.794 0.259 101 11 101.11 212.75 127.40 1.00 1.00 50,98 328.95 196,98 +0.60D Dsgn. L= 6,00 ft 1 0.254 0.083 32.42 32 42 212.75 127.40 1.00 1.00 16,27 328.95 196.98 Overall Maximum Deflections Load Combination Span Max "-"Defl Location in Span Load Combination Max."+"Defl Location in Span +D+L 1 0.0896 2.846 0.0000 0.000 37/46 Project Title: Engineer: Project ID: Project Descr: Steel Bearti },rt;ltt,it ;,. :'1613 :tte“:iicoc6 1 _v fit,.sr,.,.t.,v t 10:d ,,.I i s HAYDEN C:..uN.`atrt 11E16 E_wazEPd!t,r'0. E P1t=f CAI€;1 C 1 A8:I•2o22 DESCRIPTION: A18 Vertical Reactions Support notation : Far left is# Values in KIPS Load Combination Support 1 Support 2 vc raIi MAXunurn 55.790 766 Overall MINimum 3.148 2.952 D Only 27.123 16.508 +D+L 55.790 35.768 +D+S 30.270 19.460 +D+0.750L 48.623 30.953 +D+0.750L+0.7505 50.984 33.167 +0.60D 16.274 9.905 L Only 28.668 19.260 S Only 3.148 2.952 38/46 Project Title: Engineer: Project ID: Project Descr: Steel Beam Project File:21013 enercalc.ec6 LIC#:KW-06014171,Build:20.22.5 16 HAYDEN CONSULTING ENGINEERS (c)ENERCALC INC 1983-2022 DESCRIPTION: A19 CODE REFERENCES Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set:ASCE 7-10 Material Properties Analysis Method Allowable Strength Design Fy:Steel Yield: 46.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E: Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending 0(9,020)HON 00`y ail,n0 MO 6(2 610)E(38.0) 0(0 08501 tAg o,b3O)::;(0 37.60 HSS12x4x5/8 F Span=9 ft Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight NOT internally calculated and added Uniform Load : D=0.0850, L=0.0530, S =0.3750 k/ft, Tributary Width = 1.0 ft Point Load : D=9.020, L= 15.510, S =2.610 k @ 0.750 ft Point Load : D=9.020, L= 15.510, S=2.610, E= 38.0 k @ 2.0 ft DESIGN SUMMARY Design OK Maximum Bending Stress Ratio = 0.645: 1 Maximum Shear Stress Ratio= 0.283 : 1 Section used for this span HSS12x4x5/8 Section used for this span HSS12x4x5/8 Ma:Applied 82.177k-ft Va :Applied 55.655 k Mn/Omega:Allowable 127.395 k-ft Vn/Omega:Allowable 196.979 k Load Combination +D+0,750L+0.7505+0.5250E Load Combination +D+0.750L+0.750S+0.5250E Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.089 in Ratio= 1,206 >=360 Max Upward Transient Deflection 0.000 in Ratio= 0 <360 Span: 1 : E Only Max Downward Total Deflection 0.130 in Ratio= 831 >=180 Span: 1 :+D+0,750L+0.750S+0.5250E Max Upward Total Deflection 0.000 in Ratio= 0 <180 Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Summary of Moment Values Summaryof Shear Values ..:. Segment Length Span# M V Mmax+ Mmax- Ma Max Mnx Mnx/Omega Cb Rm Va Max VnxVnx/Omega D Only Dsgn. L= 9.00 ft 1 0.156 0.080 19.87 19.87 212.75 127.40 1.00 1.00 15.67 328.95 196.98 +D+L Dsgn.L= 9.00 ft 1 0.419 0.214 53.39 53.39 212.75 127.40 1,00 1.00 42.19 328.95 196.98 +D+S Dsgn.L= 9.00 ft 1 0.220 0.111 28.08 28.08 212..75 127.40 1.00 1.00 21.78 328.95 196.98 +D+0.750L Dsgn.L= 9.00 ft 1 0.353 0.181 45.01 45.01 212.75 127.40 1,00 1.00 35.56 328.95 196.98 +D+0.750L+0.750S Dsgn.L= 9.00 ft 1 0.402 0.204 51.17 51.17 212.75 127.40 1,00 1,00 40.14 328.95 196.98 +D+0.70E Dsgn.L= 9.00 ft 1 0.481 0.185 61.22 61.22 212.75 127.40 1.00 1.00 36.36 328 95 196.98 +D+0.750L+0.750S+0.5250 E Dsgn. L= 9,00 ft 1 0.645 0.283 82 18 82.18 212.75 127 40 1.00 1.00 55.66 328.95 196.98 +0.60D Dsgn. L= 9.00 ft 1 0.094 0,048 11 92 11,92 212.75 127.40 1.00 1.00 9.40 328.95 196.98 +0>60D+0.70E 39/46 Project Title: Engineer: Project ID: Project Descr: Steel Beam i rrrle'sc t l Alt"-1013 inerr al(.,. �, €uo 4171 ilAYEIFN tNC)rd:Mt 11W;E#i;+lt l,l.I , NI k utki I; IN( 1,:;, DESCRIPTION: A19 Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Summary of Moment Values faun°tma sy f NII(°nt Values Segment Length Span# M V Mmax+ Mmax- Ma Max Mnx Mnx/Omega Cb Rm Va Max VnxVnx/Omega Dsgn. L= 9.00 ft 1 0.418 0.153 53.27 53.27 212.75 127.40 1.00 1.00 30.09 328.95 196.98 Overall Maximum Deflections Load Combination Span Max."-"Defl Location in Span Load Combination Max."+"Defl Location in Span +D+0.750L+0.750S+0.5250E 1 0.1299 3.960 0.0000 0.000 Vertical Reactions Support notation : Far left is#- Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 55.655 13.169 Overall MINimum 6.110 1.883 D Only 15.666 3.139 +D+L 42.186 8.116 +D+S 21.776 5.624 +D+0.750L 35.556 6.872 +D+0.750L+0.750S 40.138 8.736 +D+0.70E 36.355 9.050 +D+0.750L+0.750S+0.5250E 55.655 13.169 +0.60D 9.400 1.883 +0.60D+0.70E 30.089 7.794 L Only 26.519 4.978 S Only 6.110 2.485 E Only 29.556 8.444 40/46 • Project Title: Engineer: Project ID: Project Descr: Wood Beam Project File:21013 enercalc.ec6 LIC#:KW-06014171,Build 20,22,5,16 HAYDEN CONSULTING ENGINEERS (c)ENERCALC INC 1983-2022 DESCRIPTION: A22 CODE REFERENCES Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set:ASCE 7-10 Material Properties Analysis Method: Allowable Stress Design Fb+ 875 psi E:Modulus of Elasticity Load Combination ASCE 7-10 Fb- 875 psi Ebend-xx 1300ksi Fc-Prll 600 psi Eminbend-xx 470 ksi Wood Species : Douglas Fir-Larch Fc-Perp 625 psi Wood Grade : No.2 Fv 170 psi Ft 425 psi Density 31.21 pcf Beam Bracing : Beam is Fully Braced against lateral-torsional buckling t D. 6x12 Span=3-50 ft Applied Loads Service loads entered. Load Factors will be applied for calculations, Beam self weight NOT internally calculated and added Uniform Load : D=2.090, L=3.240 , Tributary Width = 1.0 ft DESIGN SUMMARY Deal=n OK Maximum Bending Stress Ratio = 0.923 1 Maximum Shear Stress Ratio -- 0.589 : 1 Section used for this span 6x12 Section used for this span 6x12 fb:Actual = 807.88 psi fv:Actual -- 100.11 psi Fb:Allowable = 875.00 psi Fv:Allowable = 170.00 psi Load Combination +D+L Load Combination +D+L Location of maximum on span = 1.750ft Location of maximum on span = 2.542 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward Transient Deflection 0.012 in Ratio= 3458>=360 Span: 1 : L Only Max Upward Transient Deflection 0 in Ratio= 0<360 nia Max Downward Total Deflection 0.020 in Ratio= 2102>=180 Span: 1 :+D+L Max Upward Total Deflection 0 in Ratio= 0<180 nia Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Moment Values - - Sha>�7atues-...- Segment Length Span# M V Cd CFN C i Cr Cm C t CL M fb F'b V fv F'v D Only 0.00 0.00 0.00 0.00 Length=3.50 ft 1 0.402 0.257 0.90 1.000 1.00 1.00 1.00 1.00 1.00 3.20 316.79 787.50 1.66 39.25 153.00 +D+L 1.000 1,00 1.00 1,00 1,00 1.00 0.00 0.00 0.00 0.00 Length=3.50 ft 1 0.923 0.589 1.00 1.000 1,00 1.00 1.00 100 1.00 8.16 807.88 875.00 4.22 100.11 170.00 +D+0.750L 1.000 1.00 1.00 1,00 1.00 1.00 0.00 0.00 0.00 0.00 Length=3.50 ft 1 0.626 0.400 1.25 1.000 1.00 1.00 1.00 1.00 1.00 6.92 685.11 1093.75 3.58 84.89 212.50 +0.60D 1.000 1,00 1,00 1.00 100 1,00 0.00 0.00 0.00 0.00 Length=3.50 ft 1 0.136 0.087 1,60 1.000 1,00 1.00 1,00 1,00 1.00 192 190.07 1400.00 0,99 23.55 272.00 Overall Maximum Deflections Load Combination Span Max."-"Defl Location in Span Load Combination Max."+"Defl Location in Span +D+L 1 0.0200 1.763 0.0000 0.000 41/46 Project Title: Engineer: Project ID: Project Descr: Wood Beam Project FA., 21013 citorcatc.oth tICir KW-06014111,'Build 20 22 5 16 HAYDEN CONSUL TING ENGINEERS I NF I INC 1983-2022 DESCRIPTION: A22 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 9.328 9.328 Overall MINimum 5.670 5.670 D Only 3.658 3.658 +D+L 9.328 9.328 +D+0.750L 7.910 7.910 +0.60D 2.195 2.195 L Only 5.670 5.670 42/46 Project Title: Engineer: Project ID: Project Descr: Steel Beam Project File: 21013 enercalc.ec6 LIC#:KW-06014171,Build,2022 5 16 HAYDEN CONSULTING ENGINEERS (c)ENERCALC INC 1983-2022 DESCRIPTION: A23 CODE REFERENCES Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set : ASCE 7-10 Material Properties Analysis Method Allowable Strength Design Fy: Steel Yield 50.0 ksi Beam Bracing : Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending D(2 402)I..(3;12 1,)S(1 755) a D(1.1a58)L(0.9810)S(0a650) 11(0 2250 I(0 i 0) W12x22 Span=8.50 ft Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight NOT internally calculated and added Uniform Load : D =0.2250, L=0.750 k/ft, Tributary Width = 1.0 ft Uniform Load : D= 1.158, L=0.9810, S=0.650 k/ft, Extent=0.0-->>3.250 ft, Tributary Width = 1.0 ft Point Load : D =2.402, L=3.324, S= 1.755 k @ 3.250 ft DESIGN SUMMARY deal:*d 3K Maximum Bending Stress Ratio = 0.369 1 Maximum Shear Stress Ratio= 0.210 : 1 Section used for this span W12x22 Section used for this span W12x22 Ma :Applied 26.941 k-ft Va :Applied 13.443 k Mn/Omega :Allowable 73.104 k-ft Vn/Omega:Allowable 63.960 k Load Combination +D+0.750L+0.750S Load Combination +D+0.750L+0.750S Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.043 in Ratio= 2,380 >=360 Max Upward Transient Deflection 0.000 in Ratio= 0 <360 Span: 1 : L Only Max Downward Total Deflection 0.069 in Ratio= 1471 >=180 Span: 1 : +D+L Max Upward Total Deflection 0.000 in Ratio= 0 <180 Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span# M V Mmax+ Mmax- Ma Max Mnx Mnx/Omega Cb Rm Va Max VnxVnx/Omega D Only Dsgn. L= 8.50 ft 1 0.144 0.086 10,51 10.51 122.08 73.10 1.00 1.00 5.48 95.94 63.96 +D+L Dsgn. L= 8.50 ft 1 0 366 0.208 26.78 26.78 122.08 73.10 1.00 1.00 13.30 95.94 63.96 +D+S Dsgn. L= 8.50 ft 1 0 221 0,129 16.15 16.15 122.08 73.10 1.00 1.00 8.28 95.94 63.96 +D+0.750L Dsgn. L= 8.50 ft 1 0.311 0.177 22.71 22.71 122.08 73,10 1.00 1.00 11.35 95.94 63.96 +D+0.750L+0.750S Dson. L= 8 50 ft 1 0.369 0.210 26.94 26.94 122.08 73.10 1.00 1.00 13.44 95.94 63.96 +0.60D Dsgn. L= 8.50 ft 1 0.086 0.051 6.31 6.31 122.08 73.10 1.00 1.00 3.29 95.94 63.96 Overall Maximum Deflections Load Combination Span Max."-"Defl Location in Span Load Combination Max. "+"Defl Location in Span +D+L 1 0.0693 4.031 0.0000 0.000 43/46 • Project Title: Engineer: • Project ID: Project Descr: Steel Beam Prolu t File 21013 e€3:rca:olc ec€3 Y. )'.,';t.t,o1.t1'71,t3w14o:20 22.E-lei 11AV01 PN c 141T;01.111,8 # N411N1 (144'1 . 1 E Ntrfif,Al.0 INC 1083?022 DESCRIPTION: A23 Vertical Reactions Support notation : Far left is# Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 13.443 7.662 Overall MINimum 2.793 1.075 D Only 5.484 2.594 +D+L 13.303 7.662 +D+S 8.276 3.669 +D+0.750L 11.348 6.395 +D+0.750L+0.750S 13.443 7.201 +0.60D 3.290 1.556 L Only 7.819 5.068 S Only 2.793 1.075 44/46 Project Title: Engineer: Project ID: Project Descr: Wood Beam Project File:21013 enercalc.ec6 LIC#:KW-06014171,Build:20 22 5 16 HAYDEN CONSULTING ENGINEERS (c)ENERCALC INC 1983-2022 DESCRIPTION: A24 CODE REFERENCES ` Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set:ASCE 7-10 Material Properties Analysis Method: Allowable Stress Design Fb+ 875.0 psi E:Modulus of Elasticity Load Combination ASCE 7-10 Fb- 875.0 psi Ebend-xx 1,300.0 ksi Fc-Prll 600.0 psi Eminbend-xx 470.0 ksi Wood Species : Douglas Fir-Larch Fc-Perp 625.0 psi Wood Grade : No.2 Fv 170.0 psi Ft 425.0 psi Density 31.210pcf Beam Bracing : Beam is Fully Braced against lateral-torsional buckling _„., op 31)LL(2-£t) Zy """�- _ 6x12 Span=3.50ft Applied Loads Service loads entered.Load Factors will be applied for calculations. Beam self weight NOT internally calculated and added Uniform Load : D= 1.310, L=2.80 , Tributary Width = 1.0 ft DESIGN SUMMARY Desi n OK Maximum Bending Stress Ratio = 0.712 1 Maximum Shear Stress Ratio = 0.454 : 1 Section used for this span 6x12 Section used for this span 6x12 fb:Actual = 622.96psi fv:Actual = 77.19 psi Fb:Allowable = 875.00psi Fv:Allowable = 170.00 psi Load Combination +D+L Load Combination +D+L Location of maximum on span = 1 750ft Location of maximum on span = 2.542 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward Transient Deflection 0.010 in Ratio= 4002>=360 Span. 1 : L Only Max Upward Transient Deflection 0 in Ratio= 0<360 n/a Max Downward Total Deflection 0.015 in Ratio= 2726>=180 Span' 1 :+D+L Max Upward Total Deflection 0 in Ratio= 0<180 n/a Maximum Combination Forces & Stresses for Load Combinations Load Co Max' tress Ratios Momen-tValues Shear Values Segment Length Span# M V Cd CFN Ci Cr Cm C t CL M fb F'b V fv F'v D Only 0.00 0.00 0.00 0.00 Length=3.50 ft 1 0.252 0,161 0.90 1.000 1.00 1.00 1.00 1,00 1.00 2.01 198.56 787.50 1.04 24.60 153.00 +D+L 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=3,50 ft 1 0.712 0.454 1.00 1.000 1.00 1.00 1.00 1.00 1.00 6.29 622.96 875.00 3.26 77.19 170.00 +D+0.750L 1,000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0,00 Length=3.50 ft 1 0.473 0.301 1.25 1.000 1.00 1.00 1.00 1.00 1.00 5.22 516,86 1093,75 2.70 64.05 212.50 +0,60D 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0,00 0.00 0.00 Length=3.50 ft 1 0.085 0.054 1,60 1.000 1,00 1.00 1.00 1.00 1.00 1.20 119,14 1400.00 0.62 14.76 272.00 Overall Maximum Deflections Load Combination Span Max. "-"Defl Location in Span Load Combination Max."+"Defl Location in Span +D+L 1 0.0154 1.763 0.0000 0.000 45/46 • Project Title: Engineer: Project ID: Project Descr: Wood Beam oi(,Gt FOe' 2 1 0 enercalc.ec6 Kw-Oool4 tiodd CONSUL TIN“UNGINEE RS (c)rm. 1MG lo63-:?(»? DESCRIPTION: A24 Vertical Reactions Support notation: Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 7.193 7.193 Overall MINimum 4.900 4.900 D Only 2.293 2.293 +D+L 7.193 7.193 +D+0.750L 5.968 5.968 +0.60D 1.376 1.376 L Only 4.900 4.900 46/46