Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Specifications (5)
0FFICe c°Psi RECEIVED 2022 CITY OF TIGARD BUILDING DIVISION #3U E20 22-001 4 t1 725v Du q-IAM Structurai Engineering pE Design , Inc 1815 Wright Ave La Verne, CA 91750 Phone:909.5301351 Fax: 909.590.71800 PR op ,,, GIN i FF S 02 Project Nome : JONES SPORTS a 98752 PE 7r ORE ON Project Number : 22-0419-6 AMBER�5' Ex�aES: &AO z ' Dote : 04/21/22 Street Address: 7250 SW DURHAM RD SUITE 100 E N H AO Digitally signed by ENHAO City/State : TIGARD, OR 97224 ZHANG ZHANG Date:2022.05.03 Scope of Work : STORAGE RACK 11:18:18-07'00' Structural Engineering & Design Inc. k _ 1815 Wright Ave La Verne. CA 91750 Tel:909.596.1351 Fax:909.596.7'j88 By: Bob S Project: Jones Sports Project#:22-0419-6 TABLE OF CONTENTS ii is Title Page 1 Table of Contents 2 Design Data and Definition of Components 3 Critical Configuration 4 Seismic Loads 5 to 6 Column 7 Beam and Connector 8 to 9 Bracing 10 Anchors 11 Base Plate 12 Slab on Grade 13 Other Configurations 14 }io type A select-Jones.xls Page 2, of L Se 4/20/2022 Structural Engineering & Design Inc. 1815 Wright Ave La Verne,CA 91750 Tel:909.596,1351 Fax:909.596.7186 By: Bob S Project: Jones Sports Project#:22-0419-6 Design Data 1)The analyses herein conforms to the requirements of the: 2018 IBC Section 2209 2019 CBC Section 2209 ANSI Mil 16.1-2012 Specifications for the Design of Industrial Steel Storage Racks"2012 RMI Rack Design Manual" ASCE7-16,section 15.5.3 2)Transverse braced frame steel conforms to ASTM A570,Gr.55,with minimum strength,Fy=55 ksi Longitudinal frame beam and connector steel conforms to ASTM A570,Gr.55,with minimum yield,Fy=55 ksi All other steel conforms to ASTM A36,Gr.36 with minimum yield, Fy=36 ksi 3)Anchor bolts shall be provided by installer per ICC reference on plans and calculations herein. 4)All welds shall conform to AWS procedures,utilizing E70xx electrodes or similar.All such welds shall be performed in shop,with no field welding allowed other than those supervised by a licensed deputy inspector. 5)The existing slab on grade Is 6"thick with minimum 3500 psi compressive strength,Allowable Soil bearing capacity is 750 psf. The design of the existing slab is by others. 6)Load combinations for rack components correspond to 2012 RMI Section 2.1 for ASD level load criteria Definition of Components A Cana /r— Basra I Hor Ismael i Remo MN Baia Spacing I ;fie lie and Anchors magi Fri 4,1 Depth Front View Down l s$ Section At aces Aisle Lam trodna Fame f Transverse D Frame type A select-Jones.xls Page �u of f,10 4/20/2022 Structural cup Engineering & Design Inc. 1815 Wright Ave La Verne.CA 91750 Tel:909.596,1351 Fax: 909,596.7186 ___„ _ By: Bob S Project: Jones Sports Project#:22-0419-6 Configuration&Summary:TYPE A SELECTIVE RACK is --- **RACK COLUMN REACTIONS li �` ASD LOADS 74" AXIAL DL= 75/b 70 AXIAL LL= 2,200/b SEISMIC AXIAL Ps=+/- 1,210 lb BASE MOMENT— ,000 in-lb 192" .. 192" 52" 70„ 52" -4 96" — -.I` 42" --V Seismic Criteria #Bm Lvls Frame Depth Frame Height #Diagonals Beam Length Frame Type Ss=0.851, Fa=1.2 2 42 in 192.0 in 3 96 in Single Row Component Description STRESS Column Fy=55 ksi INTLK LU70/3x3x14ga P=2275 lb, M=9085 in-lb 0.35-OK Column&Backer None None None N/A Beam Fy=55 ksi Intik 30E 3.041Hx2Wx0.059"Thk Lu=96 in Capacity: 2314 lb/pr 0.95-OK Beam Connector Fy=55 ksi Lvi 1: 3 pin OK Mconn=6916 in-lb Mcap=12691 in-lb 0.54-OK Brace-Horizontal Fy=55 ksi Intlk 1-1/2x1-1/2x14ga 0.06-OK Brace-Diagonal Fy=55 ksi Intlk 1-1/2x1-1/2x14ga 0.26-OK Base Plate Fy=36 ksi 8x5x0.375 Fixity= 8000 in-Ib—_ 0.53-OK Anchor 2 per Base 0.5"x 3.25"Embed HILTI KWIKBOLT TZ ESR 1917 Inspection Reqd(Net Seismic Uplift=606 lb) 0.158-OK Slab&Soil 6"thk x 3500 psi slab on grade.750 psf Soil Bearing Pressure 0.15-OK ` Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg Brace Transv Longit. Axial Moment Moment Connector 1 2,200 Pb 70.0 in 52.0 in 176 lb 170 lb 2,275 lb 9,085 "# 6,916 "# 3 pin OK 2 2,200 lb 70.0 in 52.0 in 351 lb 340 lb 1,138 lb 5,950 "# 3,737 "# 3 pin OK 74.0 in x.oad defined as product weight per pair of beams Total: 527 lb 510 lb Notes I type A select-Jones.xls Page 1 of 1(o 4/20/2022 Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel:909.596,1351 Fax:909.596. 186 _ By: Bob S Project: Jones Sports Project#:22-0419••6 Seismic Forces Configuration:TYPE A SELECTIVE RACK _ Seismic Lateral analysis Is performed with regard to the requirements of the 2012 RMI ANSI MH 16.1-2012 Sec 2.6&ASCE 7-16 sec 15.5.3 SS. 0.851 Transverse(Cross Aisle)Seismic Load S1= 0.390 V= Cs*Ip*Ws=Cs*Ip*(0.67*P*Prf+D) Vt Fa= 1.200 Cs1= Sds/R Fv= 1.900 = 0.1702 Cs-max*Ip= 0.1702 Sds=2/3*Ss*Fa= 0.681 Cs2= 0.044*Sds Vmin= 0.015 Sd1=2/3*S1*Fv= 0.494 = 0.0300 Eff Base Shear=Cs= 0.1702 Ttlpsvarsa Elevation Ca=0.4*2/3*Ss*Fa= 0.2723 Cs3= 0.5*S1/R WS= (0.67*PLRFi*PL)+DL(RMI 2.6.2) (Transverse,Braced Frame Dir.)R= 4.0 = 0.0488 = 3,098 lb Ip= 1.0 Cs-max= 0.1702 Vtransv=Vt= 0.1702*(150 lb+2948 lb) PRra= 1,- " Base Shear Coeff=Cs 0.1702 Etransverse= 527 lb Pallet Height=hp= 48.0 In Limit States Level Transverse seismic.shear per upright DL per Beam LvI= 75 lb Level PRODUCT LOAD P P*0.67*PRF1 DL hi wi*hi Fi Fi* hi+hp/2) 1 2,200 lb 1,474 lb 75 lb 70 in 108,430 175.7 lb 16,5164 2 2,200 lb 1,474 lb 75 lb 140 in 216,860 351.3 lb 57,6134 sum: P=4400 lb 2,948 lb 150 lb W=3098 lb 325,290 527 lb 1=74,129 Longitudinal(Downaisle)Seismic Load Similarly for longitudinal seismic loads,using R=6.0 WS= (0.67*PLRF2*P)+DL PRF2= 1.0 ''•,•_. ,',•,• "." Cs1=Shc/(T*R)= 0.1647 = 3,098 lb (Longitudinal,Unbraced Dir.)R. 6.0 tl Cs2= 0.0300 Cs=Cs-max*Ip= 0.1647 r= 0.50 sec �`„'`) r` }"ti Cs3= 0.0325 Vlong= 0.1647*(150 lb+2948 lb) I,.'I I,._,,i ] 771 Cs-max= 0.1647 Elongitudlnal= 510 lb Limit States ieveli.rngit.seismic shear per upright Level PRODUC LOAD P P*0.67*PRF2 DL hi wi*hi Fi Front View 1 2,200 lb 1,474 lb 75 lb 70 in 108,430 170.0 lb I 2 2,200 lb 1,474 lb 75 lb 140 in 216,860 340.0 lb sum:_ 2,948 lb 150 lb W=3098 lb 325,290 510 lb type A select-Jones.xls Page SrOf l 4/20/2022 Structural Engineering & Design Inc. 1815 Wright Ave La Verne.CA 91750 Tel:909.596.1351 Fax:909.596.7186 By: Bob S Project: Jones Sports Project#:22-0419-6 Downaisle Seismic Loads Configuration:TYPE A SELECTIVE RACK Determine the story moments by applying portal analysis.The base plate is assumed to provide partial fixity. Seismic Story Forces Typical frame made _aa Vlong= 510 lb Tributary area oftwocoiumns Vcol=Vlong/2= 255 lb ofrackbaine� Fi= 170 lb `�� -►1 ry"c 1' i 1 - i , Typical Frame made F2= 340 lb �— i O of two columns F3= 0 lb .1.' t�- �E3 't�- 1 I 0 r /. - _• L..r....J E ]11......ad ©i® Fir in 1_ •. i v PrrAll Top Vier 14— 96' - Fran+View Side View Seismic Story Moments Canceatuat system COL Mbase-max= 8,000 in-lb <__=Default capacity hl-eff= h1-beam clip height/2 Mbase-v= (Vcol*hleff)/2 = 67 in Vcol ��.�.,.�.� = 8,543 In-lb <===Moment going to baseto f Mbase-eff= Minimum of Mbase-max and Mbase-v h2 = 8,000 In-lb M 14. [Vcol*hleff] Mbase eff M 2-2= [Vcol-(F1)/2]*h2 r ss.A _ (255 lb*67 in)-8000 in-lb = [255 lb-170 Ib]*70 in/2 Ir = 9,085 in-lb = 5,950 in-lb h1 hleff Mseis= (Mupper-l-Mlower)/2 Beam to Column Mseis(1-1)= (9085 in-lb+5950 In-lb)/2 Mseis(2-2)= (5950 in-lb+0 in-lb)/2 Elevation = 7,518 in-lb = 2,975 in-lb rho= 1.0000 L Summary of Forces LEVEL hi Axial Load Column Moment** Mseismic** Mend-fixity Mconn** Beam Connector 1 70 in 2,275 lb 9,085 in-lb 7,518 in-lb 2,363 in-lb 6,916 in-lb 3 pin 0K 2 70 in 1,138 lb 5,950 In-lb 2,975 in-lb 2,363 in-lb 3,737 in-lb 3 pin OK Mconn= (Mseismic+ Mend-fixity)*0.70*rho Mconn-allow(3 Pin)= 12,691 in-lb **all moments based on limit states level loading type A select-Jones.xls Fade to of tt,e, 4/20/2O22 Structural Engineering & Design Inc. 1815 Wright Ave La Verne.CA 91750 Tel:909.596,1351 Fax:909.596.7186 By: Bob S Project: Jones Sports Project#:22-0419--6 Column(Longitudinal Loads) Configuration:TYPE A SELECTIVE RACK Section Properties Section: INTLK LU70/3x3x14ga 3.000 in_a, Aeff= 0.643 In^2 Iy= 0.749 in^4 Kx= 1.7 x Ix= 1.130 in^4 Sy= 0.493 In^3 Lx= 68.5 in Sx= 0.753 in^3 ry= 1.080 in Ky= 1.0 3.000 in rx= 1.326 in Fy= 55 ksi Ly= 52.0 in j0.075 in Qf= 1.67 Cmx= 0.85 Cb= 1.0 E= 29,500 ksi 4-0.75 in Loads Considers loads at level 1 COLUMN DL= 75 lb Critical load cases are:RMI Sec 2.1 COLUMN PL= 2,200 lb Load Case 5::(1+0.105*Sds)D+0.75*(1.4+0.145ds)*B*P a-0.75*(0.7*rho*E)<=1.0,ASD Method Mcol= 9,085 In-lb axial load coeff.• 0.7850388*P seismic moment coeff 0.5625*Mcoi Sds= 0.6808 Load Case 6::(1+0.14*Sds)D+(0.85+0.14Sds)*B*P+(0.7*rho*E)<=1.0,ASD Method 1+0.105*Sds= 1.0715 axial load weft': 0.66172 seismic moment coeff.• 0.7*Mcol 1.4+0,14Sds= 1.4953 By analysis, Load case 5 governs utilizing loads as such 1+0.14Sds= 1.0953 0.85+0.14*Sds= 0.9453 Axial Load=Pax= 1.071484*75 lb+0.75*1.495312*0.7*2200 lb Moment=Mx= 0.75*0.7*rho*Mcol B= 0.7000 = 1,807 lb = 0.525*9085 In-lb rho= 1.0000 = 4,770 in-lb Axial Analysis KxLx/rx= 1.7*68.4795"11.326" KyLy/ry= 1*52"/1.08" Fe > Fy/2 = 87.8 = 48.1 Fn= Fy(1-Fy/4Fe) = 55 ksi*[1-55 ksl/(4*37.8 ksi)] Fe= n^2E/(KL/r)max^2 Fy/2= 27.5 ksi = 35.0 ksi = 37.8ksi Pa= Pn/Qc Pn= Aeff*Fn Qc= 1.92 = 22492 lb/1.92 22,492 lb = 11,714 lb P/Pa= 0.15 > 0.15 Bending Analysis Check: Pax/Pa+(Cmx*Mx)/(Max*px)<_ 1.0 P/Pao+ Mx/Max_< 1.0 Pno= Ae*Fy Pao= Pno/Sic Myield=My= Sx*Fy = 0.643 in^2*55000 psi = 353651b/1.92 = 0.753 In^3*55000 psi = 35,365 lb = 18,419 lb = 41,415 in-lb Max= My/Of Pcr= n^2EI/(KL)max^2 = 41415 in-lb/1.67 = n^2*29500 ksi/(1.7*68.4795 in)^2 = 24,799 in-lb = 24,276 lb px= {1/[1-(Sic*P/Pcr)]}^-1 = {1/[1-(1.92*1807 lb/242761b)]}^-1 = 0.86 Combined Stresses (1807 lb/11714 lb)+(0.85*4770 in-lb)/(24799 in-lb*0.86) = 0.35 < 1.0,OK (EQ C5-1) (1807 lb/18419 lb)+(4770 In-lb/24799 in-lb)= 0.29 < 1.0,OK (EQ C5-2) **For comparison,total column stress computed for load case 6 Is: 34.0% no loads 1537.92888 lb Axial and M= 6359 In-lb type A 5elect-Jones.xI5 Page 1 of l ,a 4/20/2022 Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel:909.596.1351 Fax:909.596.7186 By: Bob S Project: Jones Sports Project#: 22-0419-6 BEAM Configuration:TYPE A SELECTIVE RACK DETERMINE ALLOWABLE MOMENT CAPACITY 2.00 in A)Check compression flange for local buckling(B2.1) 1.75 In ,I w= c-2*t-2*r = 1.75 In-2*0.059 in-2*0.059 in = 1.514 in w/t= 25.66 1.625 in I I=lambda= [1.052/(k)^0.5] *(w/t)*(Fy/E)A0.5 Eq. B2.1-4 = [1.052/(4)^0.5]*25.66*(55/29500)^0.5 3.041 in = 0.583 <0.673, Flange is fully effective Eq. B2.1-1 + 1 0.059 in check web for local bucklingper section b2.3 f1(comp)= Fy*(y3/y2)= 48.72 ksi f2(tension)= Fy*(y1/y2)= 100.49 ksi Y= f2/11 Eq. B2.3-5 Beam= Intik 30E 3.04iH1x2WxQ.059"Thk _ -2.063 Ix= 0.665 in^4 k= 4+2*(1-Y)^3 +2*(1-Y) Eq. B2.3-4 Sx= 0.413 in^3 = 67.60 Ycg= 2.007 in flat depth=w= y1+y3 t= 0.059 in = 2.805 in w/t=47.54237288 OK Bend Radius=r= 0.059 in I=lambda= [1.052/(k)^0.5]*(w/t)*(f1/E)^0.5 Fy=Fyv= 55.00 ksi = [1.052/(67.6)A0.5] *2.805*(48.72/29500)^0.5 Fu=Fuv= 65.00 ksi = 0.247 <0.673 E= 29500 ksi be=w= 2.805 in b2= be/2 Eq 82.3-2 top flange=b= 1.750 in bl= be(3-Y) = 1.40 in bottom flange= 2.000 in = 0.554 Web depth= i, n bl+b2= 1.954 in >0.91594 In,Web is fully effective t(comp) Determine effect of cold working on steel yield point(Fya)per section A7.2 Fya= C*Fyc+(1-C)*Fy (EQ A7.2-1) - - - Lcorner=Lc= (p12)*(r+t/2) ` 1 0.139 in C= 2*Lc/(Lf+2*Lc) r2 Lflange-top=Lf= 1.514 in = 0.155 in y3 rn= 0.192*(Fu/Fy)-0.068 (EQ A7.2-4) depth = 0.1590 Bc= 3.69*(Fu/Fy)-0.819*(Fu/Fy)^2- 1.79 (EQ A7.2-3) = 1.427 since fu/Fv= 1.18 < 1.2 Ycg v1 and r/t= 1 <7 OK t2(tenston) then Fyc= Bc* Fy/(R/t)Am (EQ A7.2-2) --- - = 78.485 ksi Thus, Fya-top= 58.64 ksi (tension stress at top) Fya-bottom= Fya*Ycg/(depth-Ycg) y1= Ycg-t-r= 1.889 in = 113.84 ksi (tension stress at bottom) y2= depth-Ycg= 1.034 In Check allowable tension stress for bottom flange y3= y2-t-r= 0.916 in Lflange-bot=Lfb= Lbottom-2*r*-2*t = 1.764 in Cbottom=Cb= 2*Lc/(Lfb+2*Lc) = 0.136 Fy-bottom=Fyb= Cb*Fyc+(1-Cb)*Fyf = 58.20 ksi Fya= (Fya-top)*(Fyb/Fya-bottom) = 29.98 ksi if F= 0,95 Then F*Mn=F*Fya*Sx= 11.76 in-k S tructural Engineering & Design Inc. 1815 Writ Ave La Verne. CA 91750 Tel: 909,,596.1351 Fax: 909.596.7186 • By: Bob S Project: Jones Sports Project#: 22-0419-6 BEAM Configuration:TYPE A SELECTIVE RACK RMT Section 5.2, PT II Section Beam= Intik 30E 3.041Hx2Wx0.059"Thk Ix=1b= 0.665 in^4 2.00 in Sx= 0.413 in^3 t= 0.059 in E= 29500 ksi 1.75 in Fy=Fyv= 55 ksi F= 150.0 4. Fu=Fuv= 65 ksi L= 96 in Fya= 58.6 ksi Beam Level= 1 1.625 in P=Product Load= 2,200 lb/pair D=Dead Load= 75 lb/pair 3.041 in • J� 0.059 in 1.Check Bending Stress Allowable Loads Mcenter=F*Mn= W*L*W*Rm/8 W—LRFD Load Factor= 1.2*D + 1.4*P+1.4*(0.125)*P RMi22,item 8 FOR DLL 2Wo of PL, W= 1.599 Rm= 1 -[(2*F*L)/(6*E*Ib+3*F*L)] - b� J. - (2*150*96 in)/[(6*29500 ksi*0.665 in^3)+(3*150*96 in)] -- -= 0.821 If F= 0.95 : P oa.=t Then F*Mn=F*Fya*Sx= 23.01 in-k . • Thus, allowable load per beam pair=W= F*Mn*8*(#of beams)/(L*Rm*W) Seam = 23.01 in-k*8*2/(96in*0.821* 1.599) Length = 2,922 lb/pair allowable load based on bending stress Mend= W*L*(1-Rm)/8 = (2922 lb/2)*96 in *(1-0.821)/8 = 3,138 in-lb ©2922 lb max allowable load = 2,363 in-lb ©2200 lb imposed product load 2.Check Deflection Stress Allowable Loads Dmax= Dss*Rd Rd= 1 -(4*F*L)/(5*F*L+ 10*E*Ib) Allowable Deflection= L/1.80 = 1 -(4*150*96 in)/[(5*150*96 in)+(10*29500 ksi*0.665 in^4)] = 0.533 in = 0.785 in Deflection at imposed Load= 0.507 in if Dmax= L/180 Based on L/180 Deflection Criteria and Dss= 5*W*LA3/(384*E*Ib) L/180= 5*W*LA3*Rd/(384*E*Ib*#of beams) solving for W yields, W= 384*E*I*2/(180*5*LA2*Rd) = 384*0.665 in^4*2/[180*5*(96 in)^2*0.785) = 2,314 lb/pair allowable load based on deflection limits Thus,based on the least capacity of item 1 and 2 above: Allowable load= 2,314 lb/pair Imposed Product Load= 2,200 lb/pair Beam Stress= 0.95 Beam at Level 1 c. 2- Structural Engineering & Design Inc. 1815 Wright Ave I a Verne` CA 91750 Tel'909 596 1351 Fax 90c)596 7188 By: Bob S Project: Jones Sports Project#: 22-0419-6 3 Pin Beam to Column Connection TYPE A SELECTIVE RACK I he beam end moments SE-own herein show the result of the maximum Induced fixed end monents form seismic+static loads and the code mandated minimum value of 1.50/o(DL+PL) Mconn max= (Mseismic+Mend-fixity)*0.70*Rho O P1 1 rho= 1,0000 = 6,916 in-lb Load at level 1 2" O P2 . 0 P3 1/2" rT C 12" Connector Type= 3 Pin Shear Capacity of Pin Pin Diam= 0.44 in Fy= 55,000 psi Ashear= (0.438 in)A2*PI/4 = 0,1507lnA2 Pshear= 0.4*Fy*Ashear = 0.4*55000 psi*0.15071nA2 = 3,315 lb Bearing Capacity of Pin tcol= 0.075 in Fu= 65,000 psi Omega= 2.22 a= 2.22 Pbearing= alpha*Fu*diam*tcol/Omega = 2,22*65000 psi*0.438 In*0.075 in/2.22 = 2,135 lb < 3315 lb Moment Capacity of Bracket Edge Distance=E= 1.00 in Pin Spacing= 2.0 in Fy= 55,000 psi C= P1+P2+P3 tclip= 0.18 in Sclip= 0.127 inA3 = P1+P1*(2.574.5")+P1*(0.574.5") = 1,667*P1 Mcap= Sclip*Fbending C*d= Mcap= 1.667 d= E/2 = 0.127 inA3*0.66*Fy = 0.50 In = 4,610 in-lb Pclip= Mcap/(1.667*d) = 4610.1 in-lb/(1.667*0.5 in) Thus,P1= 2,135 lb = 5,531 lb Mconn-allow= [P1*4.5"+P1*(2.5"/4.5")*2.5"+P1*(0.5"/4.5")*0.5"] = 2135 LB*[4.5"+(2.5"/4.5")*2.5"+(0.5"/4.5")*0.51 = 12,691 in-lb > Mconn max, OK type A select-Jones.xis Page 9 of 00 4/20/2022 Structural Engineering & Design Inc. 1815 Wright Ave La Verne,CA 91750 Tel:909.526.1351 Fax: 909,596.7186 ti By: Bob S Project: Jones Sports Project#:22-0419-6 Transverse Brace Configuration:TYPE A SELECTIVE RACK Section Properties Diagonal Member= Intik 1-1/2x1-1/2x14ga Horizontal Member= Intik 1-1/2x1-1/2x14ga Area= 0.315 inA2 -.1.500 inI Area= 0.315 inA2 r min= 0.488 in r min= 0.488 in -.-1•500 --o. Fy= 55,000 psi Fy= 55,000 psi K= 1.0 11.500 in K= 1.0 1.500 Qc= 1.92 .. `J 4 -D. —0.000 in 0.000 Frame Dimensions Bottom Panel Height=H= 74.0 in Clear Depth=D-B*2= 36.0 in Frame Depth=D= 42.0 in X Brace= NO Column Width=B= 3.0 in rho= 1.00 Diagonal Member 0 Load Case 6;:(1 FlL1A4 0.85+0 *P+j0.7*rho*EJ<=1.0,AD Method 14 I n ---� Vtransverse= 527 lb Vb ' Vb=Vtransv*0.7*rho= 527 lb* 0.7* 1 (kl/r)= (k* Ldiag)/r min = 369 lb = (1 x 76.9 in/0.488 in) Ldiag= [(D-B*2)A2+(H-6")A2]A1/2 = 157.6 in Laiag = 76.9 in Fe= pi^2*E/(kl/r)A2 Pmax= V*(Ldiag/D)* 0.75 = 11,722 psi Amax = 507 lb axial load on diagonal brace member Since Fe<Fy/2, 3°tYP Pn= AREA*Fn Fn= Fe / N -- B V A * _ - 0.315 m 2 11722 si _ p 11,722 psi Typical Panel = 3,692 lb CgnagUrat(pil Pallow= Pn/Q Check End Weld = 3692 lb/1.92 Lweld= 3.0 in = 1,923 lb Fu= 65 ksi tmin= 0.075 In Pn/Pallow= 0.26 <= 1.0 OK Weld Capacity= 0.75*tmin* L* Fu/2.5 = 4�388 lb OK Horizontal brace Vb=Vtransv*0.7*rho= 369 lb (kl/r)= (k*Lhoriz)/r min Fe= piA2*E/(kl/r)A2 Fy/2= 27,500 psi _ (1 x 42 in)/0.488 in = 39,275 psi = 86.1 in Since Fe>Fy/2, Fn=Fy*(1-fy/4fe) Pn= AREA*Fn Pallow= Pn/Qc = 35,745 psi = 0.315inA2*35745 psi = 11260 lb/1.92 = 11,260 lb = 5,864 lb Pn/Pallow= 0.06 <= 1.0 OK type A select-Jones.xls Page (0 of ((.e 4/20/2022 Structural Engineering & Design Inc. 1815 Wright Ave La Verne.CA 91750 Tel: 909,596.1351 Fax:909.596.7186 By: Bob S Project: Jones Sports Project#:22-0419-6 Single Row Frame Overturning Configuration:TYPE A SELECTIVE RACK _ M LoadsY Critical Load case(s): A 1)RMI Sec 2.2,item 7:(0.9-0.2Sds)D+(0.9-0.20Sds)*B*Papp-E*rho hp 0 A r i Sds= 0.6808 V Vtrans=V=E=Qe= 527 lb (0.9-0.2Sds)= 0.7638 DEAD LOAD PER UPRIGHT=D= 150 lb (0.9-0.2Sds)= 0.7638 PRODUCT LOAD PER UPRIGHT=P= 4,400 lb B= 1,0000 M h Papp=P*0.67= 2,948 lb rho= 1.0000 Wst LC1=Wst1=(0.76384*D+0.76384*Papp*1)= 2,366 lb Frame Depth=Df= 42.0 in Product Load Top Level, Ptop= 2,200 lb Htop-Iv1=H= 140.0 in DL/Lvi= 75 lb #Levels= 2 1.4-Dr II Seismic Ovt based on E,E(Fi*hl)= 50,851 In-lb #Anchors/Base= 2 I height/depth ratio= 3.3 in hp= 48.0 in SIDE ELEVATION A)Fully Loaded Rack h=H+hp/2= 164.0 In Load case 1: Movt= E(Fi*hl)*E*rho Mst= Wstl * Df/2 T= (Movt-Mst)/Df = 50,851 in-lb = 2366 lb*42 in/2 = (50851 in-lb-49686 in-lb)/42 in = 49,686 in-lb = 28 lb Net Uplift per Column Net Seismic Uplift= 28 lb B)Top Level Loaded Only Load case 1: 0 V1=Vtop= Cs*Ip*Ptop>=350 lb for H/D>6.0 Movt= [V1*h+V2*H/2J*rho 0.1702*2200 lb = 63,195 in-lb = 374 lb T= (Movt-Mst)/Df Vieff= 374 lb Critical Level= 2 = (63195 in-lb-37696 in-lb)/42 in V2=VDL= Cs*Ip*D Cs*Ip= 0.1702 = 607 lb Net Uplift per Column = 26 lb Mst= (0.76384*D+0.76384*Ptop*1)*42 in/2 = 37,696 in-lb Net Seismic Uplift= 607 lb Anchor Check(2)0.5"x 3.25" Embed HILTI KWIKBOLT TZ anchor(s)per base plate. Special inspection is required per ESR 1917. Pullout Capacity=Tcap= 1,961 lb L.A.City Jurisdiction? NO Tcap*Phi= 1,961 Ib Shear Capacity=Vcap= 2,517 lb Phi= 1 Vcap*Phi= 2,517 lb Fully Loaded: (14 Ib/1961 Ib)^1 + (131 Ib/25171b)^1 = 0.06 <= 1.2 OK Top Level Loaded: (303 Ib/1961 Ib)^1 +(93 Ib/2517 Ib)^1 = 0.19 <= 1.2 OK type A select-Jones.xis Page of to 4/20/2022. Structural Engineering & Design Inc. 1815 Wright Ave La Verne.CA 91750 Tel:909.596.1351 Fax:909.596.7186 By: Bob S Project: Jones Sports Project#:22-0419-6 Base Plate Configuration:TYPE A SELECTIVE RACK Section 4— a —► P Baseplate= 8x5x0.375 Eff Width=W= 8.00 in a= 3.00 in Mb Eff Depth=D= 5,00 in Anchor c.c.=2*a=d= 6.00 in Column Width=b= 3.00 In N=#Anchor/Base= 2 r b I,4-- L . km_ Column Depth=dc= 3.00 in Fy= 36,000 psi I w •° L= 2.50 in Plate Thickness=t= 0.375 in Downaisle Elevation Down Aisle Loads Load Case 5::(1+0.105*Sds)D+0.751(1.4+0.14Sds)*B*P+0.75*[0.7*rho*EJ<=1.0,ASD Method COLUMN DL= 75 lb Axial=P= 1.071484* 75 lb+ 0.75* (1.495312*0.7* 2200 lb) COLUMN PL= 2,200 lb = 1,807 lb Base Moment= 8,000 In-lb Mb= Base Moment*0.75*0.7*rho 1+0.105*Sds= 1.0715 = 8000 in-lb*0.75*0.7*rho 1.4+0.14Sds= 1.4953 = 4,200 in-lb Efft B= 10 r Axial Load P= 1,807 lb Mbase=Mb= 4,200 in-lb Effe Axial stress=fa= P/A= P/(D*W) M1= wL^2/2=fa*L^2/2 = 45 psi = 141 in-lb Moment Stress=fb= M/S=6*Mb/[(D*B^2] Moment Stress=fb2= 2*fb*L/W = 78.8 psi = 49.2 psi Moment Stress=fbl = fb-fb2 M2= fb1*L^2)/2 [ = 29.5 psi = 92 in-lb M3 = (1/2)*fb2*L*(2/3)*L= (1/3)*fb2*LA2 Mtotal= M1+M2+M3 = 103 In-lb = 336 in-lb/In S-plate= (1)(tA2)/6 Fb= 0.75*Fy = 0.023 in^3/in = 27,000 psi fb/Fb= Mtotal/[(S-plate)(Fb)] F'p= 0.7*F'c 0.53 OK = 2,450 psi OK Tanchor= (Mb-(PLapp*0.75*0.46)(a))/[(d)*N/2] Tallow= 1,961 lb OK = -483 lb No Tension Cross Aisle Loads Critical bad case RMI Sec l.i,Item 4:(1+0.!!SdsJDt+(1+0.145RS)PL*0.75i•E2*0.75t=1.0,ASDMethod Check uplift load on Baseplate Check uplift forces on baseplate with 2 or more anchors per RMI 7.2.2. Pstatic= 1,807 lb When the base plate configuration consists of two anchor bolts located on either side .f the column and a net uplift force exists,the minimum base plate thickness Movt*0.75*0.7*rho= 26,697 In-lb Pseismic= Movt/Frame Depth .hall be determined based on a design bending moment In the plate equal Frame Depth= 42.0 in = 636 lb to the uplift force on one anchor times 1/2 the distance from ' P=Pstatic+Pseismic= 2,443 lb e centerline of the anchor to the nearest edge of the rack column" b=Column Depth= 3.00 in T I4— ci L=Base Plate Depth-Col Depth= 2.50 in Ta Mu a fa = P/A= P/(D*W) M= wL^2/2=fa*L^2/2 I-0 I b I �' = 61 psi = 191 in-lb/in Elevation Uplift per Column= 606 lb Sbase/in = (1)(t^2)/6 Fbase= 0.75*Fy Qty Anchor per BP= 2 = 0.023 in^3/in = 27,000 psi Net Tension per anchor=Ta= 303 lb c= 2.50 in . fb/Fb = M/[(S-plate)(Fb)] Mu=Moment on Baseplate due to uplift= Ta*c/2 0.30 OK = 379 in-lb Splate= 0.117 in^3 fb Fb*0,75= 0.09 OK type A select-Jorles.xls Page (2- of k 4/20/2022 Structural ctu al Engineering & Design Inc. n 9 9 esi9 1815 Wright Ave La Verne. CA 91750 Tel:909.596.1351_Fax:909.59Q,J186 By: Bob S Project: Jones Sports Project#:22-0419-6 Slab on Grade Configuration:TYPE A SELECTIVE RACK P slab a Concrete a fc 3,500 psi D' r b e slab t t I tslab=t= 6.0 in Cross teff= 6.0 in ---- ----' phi1= tJ.6 c Aisle r o I x -►1 ( . . Soil y B t : ' fsoil= 750 psf a L ► ;•Down Aisle Movt= 61,408 in-lb SLAB ELEVATIOr' Frame depth= 42.0 in Base late Plan View Sds= 0.681 Base Plate 0.2*Sds= 0.136 Effec.Baseplate width=B=8.00 in width=a= 3.00 in 7s 0.6p0 Effec.Baseplate Depth=D= 5.00 In depth=b= 3.00 in I3=B/D= 1.600 midway dist face of column to edge of plate=c= 5.50 in F'cA0.5= 59.20 psi Column Loads midway dist face of column to edge of plate=e= 4.00 in DEAD LOAD=D= 75 lb per column Load Case 1) (1.2+0.2Sds)D+(1.2+0.2Sds)*B*P+rho*E RMI SEC 2.2 EQTN 5 unfactored ASO load = 1.33616*75 lb+ 1.33616*0.7*2200 lb+ 1* 1462 lb PRODUCT LOAD=P= 2,200 lb per column = 3,620 lb unfactored ASD load Load Case 2) (0.9-0.2Sds)D+(0.9-0.2Sds)*B*Papp+rho*E RMI SEC 2.2 EQTN 7 Papp= 1,474 lb per column = 0.76384*75 lb+0,76384*0.7*1474 lb+ 1*1462 lb P-seismic=E= (Movt/Frame depth) = 2,307 lb = 1,462 lb per column Load Case 3) 1.2*D+ 1.4*P RMI SEC 2.2 EQTN 1,2 unfectored Limit State load = 1.2*75 lb+ 1.4*2200 lb B=O,7000 = 3,170 lb rho= 1`0000 Load Case 4) 1.2*D+ 1.0*P+ 1.0E AO 318-14 Sec 5.3.1 Sds= 0.6808 = 3,752 lb Eqtn 5.3.1e 1.2+0.2*Sds= 1.3362 Effective Column Load=Pu= 3,752 lb per column 0.9-0.20Sds= 0.7638 Puncture Apunct= [(c+t)+(e+t)]*2*t = 258.0 in^2 Fpunctl= [(4/3+8/(3*(3)] * *(Pc^0.5) fv/Fv= Pu/(Apunct*Fpunct) = 106.6 psi = 0.154 < 1 OK Fpunct2= 2.66* *(F'c^0.5) = 94.5 psi Fpunct eff= 94.5 psi Slab Bending Pse=DL+PL+E= 3,752 lb Asoil= (Pse*144)/(fsoil) L= (Asoil)^0.5 y= (c*e)^0.5+2*t = 720 In^2 = 26.83 in = 16.7 in x= (L-y)/2 M= w*x^2/2 S-slab= 1*teff^2/6 = 5.1 in = (fsoll*x^2)/(144*2) = 6.0 in^3 Fb= 5*(phi)*(fc)^0.5 = 67.0 in-lb fb/Fb= M/(S-slab*Fb) = 177.48 psi = 0.063 < 1,OK type A select-Jones,xls Page t N of t 4/20/2022 Structural • Engineering & Design Inc. . i 1815 Wright Ave La Verne. CA 91 Z50 Tel:909.596,1351 Fa ;909.596.7186 il By: Bob S Project: Jones Sports Project#:22-0419-6 G Configuration&Summary:TYPE B SELECTIVE RACK I. _**RACK COLUMN REACTIONS ASV LOADS 74" AXIAL DL= 75/b 70" AXIAL IL= 2,500/b SEISMIC AXIAL Ps=•i-/- 1,365 lb BASE MOMENT= 8,000 in-lb 192" , 192" 52" N, 70" 52" .1 144" .I' ' 42" --f Seismic Criteria #Bm Lvls Frame Depth Frame Height #Diagonals Beam Length Frame Type Ss=0.851, Fa=1.2 2 42 in 192.0 in 3 144 in Single Row Component Description STRESS Column Fy=55 ksi INTLK LU70/3x3x14ga P=2575 lb,M=11296 in-lb 0.41-0K _ Column&Backer None None None N/A Beam Fy=55 ksi Intik 45E 4.5Hx2.75Wx0.059"Thk Lu=144 in Capacity: 3060 lb/pr 0.82-OK Beam Connector Fy=55 ksi Lvl 1:3 pin OK l Mconn=7786 in-lb Mcap=12691 in-lb 0.61-OK 1 Brace-Horizontal Fy=55 ksi Intik 1-1/2x1-1/2x14ga 0.07-OK Brace-Diagonal Fy=55 ksi Intik 1-1/2x1-1/2x14ga 0.3-OK Base Plate Fy=36 ksi 8x5x0.375 Fixity=8000 in-lb 0.56-OK Anchor 2 per Base 0.5"x 3.25"Embed HILTI KWIKBOLT TZ ESR 1917 Inspection (Net Seismic U lift=692 Ib P Reqd p ) 0.183-OK Slab&Soil 6"thk x 3500 psi slab on grade.750 psf Soil Bearing Pressure 0.17-OK Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg Brace Transv Longit. Axial Moment Moment Connector 1 2,500 lb 70.0 in 52.0 in 199 lb 192 lb 2,575 lb 11,296 "# 7,786 "# 3 pin OK 2 2,500 lb 70.0 in 52.0 in 397 lb 384 lb 1,288 lb 6,720 "# 3,833 "# 3 pin OK 74.0 in Load defined as product weight per pair of beams Total: 596 lb 576 lb Notes I type 15 select-Jones.xls Page /Cl of (Sn 4/20/2022 . Structural Engineering & Design Inc. 1815 Wright Ave La Verne.CA 91750 Tel:909.596.1351 Fax: 909.596.7186 By: Bob S Project: Jones Sports Project#:22-0419-6 Configuration&Summary:TYPE C SELECTIVE RACK **RACK COLUMN REACTIONS 1 ASD LOADS 74" AXIAL DL= 75/b 70" AXIAL LL= 1,8751b ,- SEISMIC AXIAL Ps=+/- 1,105 lb I BASE MOMENT= 8,000 In-lb 192" 192" 52" 7 N. f Q" 52" -f- 144" -I' 42" ---"" Seismic Criteria #Bm Lvls Frame Depth Frame Height #Diagonals Beam Length Frame Type Ss=0.851, Fa=1.2 2 42 in 192.0 in 3 144 in Single Row Component Description STRESS - Column Fy=55 ksi INTLK LU70/3x3x14ga P=1950 Ib,M=7354 in-lb 0.28-OK Column&Backer None None None N/A Beam Fy=55 ksi Intik 45E 4.5Hx2.75Wx0.059"Thk Lu=144 in Capacity: 3060 lb/pr 0.82-OK Beam Connector Fy=55 ksi Lvl 2: 3 pin OK Mconn=3613 in-lb Mcap=12691 in-lb 0.28-OK Brace-Horizontal Fy=55 ksi Intik 1-1/2x1-1/2x14ga 0.05-OK Brace-Diagonal Fy=55 ksi Intik 1-1/2x1-1/2x14ga 0.23-OK Base Plate Fy=36 ksi 8x5x0.375 Fixity= 7353 in-lb 0.5-OK Anchor 2 per Base 0.5"x 3.25"Embed HILTI KWIKBOLT TZ ESR 1917 Inspection Reqd(Net Seismic Uplift=692 Ib) 0.183-OK �_ Slab&Soil 6"thk x 3500 psi slab on grade.750 psf Soil Bearing Pressure 0.15-OK Level Load** Story Force Story Force Column Column Conn, Beam Per Level Beam Spcg Brace Transv Longit. Axial Moment Moment Connector 2 lb 2,500 ,. 70.0 in 52.0 in 359 lb 348 lb 1,288 lb 6,094 "# 3,613 "# 3 pin OK 74.0 in J **Load defined as product weight per pair of beams Total: 453 lb 439 lb Notes • • + type C select-Jones.xis , Page /,Sof ((0 4/1 9/2022 Structural Engineering & Design Inc. , 1615 Wriaht Ave La Verne, CA 91750 Tel:909.596.1351 Fax:909.596.7186 By: Bob S Project: Jones Sports Project#:22-0419-6 Configuration&Summary:TYPE D SELECTIVE RACK 1 / **RALK COLUMN REACTIONS ASD LOADS 74" AXIAL DL= 751b 70" AXIAL LL= 1,650 lb SEISMIC AXIAL Ps=+/- 984/b BASE MOMENT== 8,000 in-lb 192" 192" 52" 70" 52" ,1' 96" -I- '1— 42" 4 Seismic Criteria #Bm Lvls Frame Depth Frame Height #Diagonals Beam Length Frame Type Ss-0.851, Fa=1.2 2 42 in 192.0 in 3 96 in Single Row Component Description STRESS_ Column Fy=55 ksi INTLK LU70/3x3x14ga P=1725 lb,M=6516 in-lb 0.25-OK Column&Backer None None None N/A Beam Fy=55 ksi Intik 30E 3.041Hx2Wx0.059"Thk Lu=96 in Capacity: 2314 lb/pr 0.95-OK Beam Connector Fy=55 ksi _ Lvl 2: 3 pin OK I Mconn=3542 in-lb Mcap=12691 in-lb 0.28-OK Brace-Horizontal Fy=55 ksi Intik 1-1/2x1-1/2x14ga 0,05-OK Brace-Diagonal Fy=55 ksi Intik 1-1/2x1-1/2x14ga 0.2-OK Base Plate Fy=36 ksi 8x5x0.375 Fixity=6516 in-lb 0.48-OK Anchor 2 per Base 0,5"x 3.25"Embed HILTI KWIKBOLT TZ ESR 1917 Inspection Reqd(Net Seismic Uplift=606 lb) 0.158-OK Slab&Soil 6"thk x 3500 psi slab on grade.750 psf Soil Bearing Pressure 0.13-OK Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg Brace Transv Longit. Axial Moment Moment Connector 2 2,200 lb 70.0 in 52.0 in 319 lb 308 lb 1,138 lb 5,394 "# 3,542 "# 3 pin OK 74.0 in • **Load defined as product weight per pair of beams Total: 402 lb 389 lb Notes m., type D select;-Jones.xis Page of � 9 �(O � O 4/1.9/2022