Loading...
Specifications )P22Z!a6 15600 2',vcr Ie N RECEIVED OCT -6 ?P?7 CITY OF TIGARD 22175 S.Highway 99E,Canby,Oregon 97013 RlilLll>•1O DPwIfCN Phone: (503)263-6953 Fax: (503)266-7102 POST FRAME BUILDING STRUCTURAL CALCULATION (This structure has been analyzed and designed for structural adequacy only.) PROJECT No. MW22138 OWNER: P&c Const for Tigard School District 15727 SW Taylor Lane Tigard, OR 97224 ENGINEER: .<61s`p PROFFS,S ��,�`' ��GINfF� ��� /�Z2- 864PE OREGON 4-%,(e..tc7. 14 n S C. LOVG EXPIRES:k a l 3jl[? 1 1 5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15112.xmcd 1 POST FRAME BUILDING REFERENCES: 1. 2018 Edition of the International Building Code 2. ASCE 7-16- Minimum Design Loads and Associated Criteria for Buildings and Other Structures,Provisions American Society of Civil Engineers,2017 3. 2018 Edition, National Design Specification(NDS)For Wood Construction with 2018 Edition NDS Supplement,American Wood Council,2018 4. ASABE EP486.2-Shallow Post and Pier Foundation Design American Society of Agricultural and Biological Engineers,2012 1 5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12.xmcd 2 DESIGN INPUT VALUES: Building Dimensions HbldgL = 12.00 ft Low Eave Height of Building Whldg:= 16•ft Width of Building Lbidg:= 30.ft Length of Building HbidgH= 15.00 ft High Eave Height of Building Apro„y := 0-ft Wall apron below low eave roof line Apro„H:= 0-ft Wall apron below high eave roof line Apro„G:= 0•ft Wall apron below gable roof line Roth= 2.25/12 Roof pitch 'Rafters :`vI. Primary roof framing OyerhangL:= 18-in Length of Low Eave Overhang COveri,an8= 18•m Length of Gable Overhang OverhangH:= 18•in Length of High Eave Overhang Bay:= 10-ft Greatest nominal spacing between eave wall posts Design Loads for Building Risk_Category Fir Wind Design Values: Wind Speed: Wind Exposure: Vwind= 97 mph Exposure Seismic Design Values: Site class := Ss:= 0.842 Mapped spectral acceleration for short period SI := 0.396 Mapped spectral acceleration for 1 second period Ra:= 1.5 Response modification factor Roof Load Design Values: pg:= 25•psf Ground snow load pd= 5 psf Roof dead load Roof type is= "metal sheathing" pr r= 20 psf Roof live load Pa2:= 0•psf Additional truss bottom chord dead load(if applicable) 5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12'.xmcd 3 DESIGN INPUT VALUES (Continued): Structural Members for Building. Low Eave Post Properties:(Solid rough-sawn post unless otherwise specified) SP ust := Post Species := Post Grade :_ I6x6 ti'l 12 v Hiah Eave Post Properties:(Solid rough-sawn post unless otherwise specified) Spose := Post Species2 := Post Grade2 6x6 v IHem-Fir Zvi it v. Purlin Prrrties: Spurlui ISx26 j Purlinspecies P1SR v Purlingrade 11650_1.5E:v Purlinspa,i„g:= 24•in Post Hole and Footing Design Values: := 1500-psf Assumed soil vertical bearing capacity Ssoir = 100 psf Assumed soil lateral bearing capacity dig footir .:= 20.in Low eave post footing diameter dig foot• := 20-in High eave post footing diameter Slab and backfill information Concrete slab := INa Backfill_type :_ IConcrete VI Main eave post hole backfill (GO TO LAST PAGE FOR SUMMARY OF RESULTS) 5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12'.xmcd 4 SNOW LOAD ANALYSIS: pg= 25 psf Ground Snow Load(from above) Rye = 10.62 deg Angle of roof Ce= 1.00 Exposure factor C,= 1.20 Thermal Factor Cs= 1.00 Roof slope factor Is = 1.00 Importance factor 1. Determine Roof Snow Loads: pm:= max(I3.pg,20.psf) Equation 1 pn = 25.0 psf Minimum snow load for low sloped roofs; Roof slope< I 5deg Pr 0.7•Ce•CL Is•pg Equation 2 pf= 21 psf Flat roof snow load; Roof slope<5deg Ps Cs Pf Equation 3 ps = 21 psf Sloped roof(balanced)snow load 2. Determine final snow load,psu Psu= 25psf Final roof snow load 5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x16_12'.xmcd 5 WIND ANALYSIS: Vwind= 97 mph Wind Speed kd= 0.85 Wind Directionality Factor k,l= 1.0 Topographic Factor k,= 0.849 Wind Exposure Factor(MWFRS) kZ Ce= 0.849 Wind Exposure Factor(Components&Cladding) Iw= 1.00 Importance factor 0.00256•k k k V 2 0.00256.k 2 qz:= z' zl' d' wind gz cc�= z ckc' n'k d'V wind qZ= 17.38 psf Velocity Pressure qZ ee= 17.38 psf Velocity Pressure (MWFRS) (Components&Cladding) Calculated Wind Pressures: Roof Wind: Roof Uplift: lroorE giG'CNrtiv quplift: gz'G.CNuplift qro m = 19.26 psf quoin= -19.08 psf Windward Eave Wall: Leeward Eave Wall: gwwe qi G•Cpwwe glove qz G'Cplwe gwwe= 11.82 psf giwe= -7.39 psf Windward Gable Wall: Leeward Gable Wall: gwwg qi G'Cpwwg giwg:= gz'G.Cplwg gwwg= 11.82 psf qiwg = -4.80 psf Wall Elements: Roof Elements: gwe gz_cc'GCPfw qr qz cc'G'CNre qwe= -17.79 psf qr= -27.57 psf Internal Wind Pressure(+l-): qi qz cc-GCpi = 0.00psf , r 5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12'.xmcd 6 SEISMIC CALCULATIONS: Ss= 0.842 Mapped spectral acceleration for short periods(from above) Si = 0.396 Mapped spectral acceleration for 1-second period(from above) Ie= 1.0 Importance factor Ra= 1.50 Response modification factor(from above) 1.Determine the Seismic Design Category a.Calculate SDs and SDI For SDs: For SD1: For ss= 0.842 For Sl = 0.396 Fa= 1.200 F"= 1.608 SMs S,.Fa SM1 `Si•Fv SMs= 1.010 SM1 = 0.637 SDs (-).SMs SDI 3 J'SM1 SDs= 0.674 SDI = 0.425 Seismic_Design_Category = "I)" 2.Determine the building parameters Building dead load weight,W: Wall Load Design Values: pf := if(pf>30-psf,pf,0) pfs= 0.00psf pp,= 3.00psf Wall dead load Hroof= 3.00 ft Height of roof 2.Determine the building parameters Building dead load weight,Wt: 2 AHeavewalls = 0 ftArea of high eave walls Agablewalls= 80 ft Area of gable walls ALea„ewaIls= 0 ft Area of low eave walls Wt [(Wbldg'Lbldg)'[(pt_s"0.2) + Pa+ Pd2 + (0.25•pLa)] +[(Agablewalls + AHeavewalls + ALeavewalls)'PDW] Wt= 26401b Building area,Ab: 2 Ab Lbldg'Wb1dg Ab= 480 ft 5/252022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12'.xmcd 7 3. Determine the shear force to be applied a. Determine the fundamental period,T C„= 1.40 sec Coefficient for Upper Limit on Calculated Period 0.75 Hm dgll Ta:= 0.02- Ts= 0.152 sec ft / T:= if(Ta>Cu,C,,,Ta) T = 0.15 sec Fundamental period b.Determine the Seismic Response Coefficient,Cs: TL= 6.00 Long-period transition period CS is calculated as: but CS need not exceed: SDS SDI 8D1'TL Csl Rs Cs2 if T < TL, „ > 2 (Ra� Csl= 0.449 T- — V T ' j Cs2= 1.857 e _ eJ e/_ and CS shall not be less than: 0.55•S1 Ca3:= ma max(0.044•Sim.le,0.01),if S1 >_0.6, (R \ ,0 a Cs3 = 0.03 \Ie/ Cs i(Cs1 > Cs2,Cs2,1t(Cs1 <Cs3,Cs3,Cs1)) Cs= 0.449 Seismic Response Coefficient to used in determination of seismic base shear c. Determine the Seismic Base Shear abase shear Cs'Wt Vbase shear= 1186 lb 4. Determine the seismic load on the building: Since Seismic_Design_Category = "D" , p= 1.00 S20:= I.5 Overstrength Factor E:= max(p,c2o).Vbase_shear E= 1778 lb Seismic load on building 5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12'.xmcd 8 BUILDING MODEL: a = 120.00 inBay spacing in inches Hroof= 3.00 ft Roof height O = 10.62 deg Roof angle from hor¢ontal CALCULATE WIND LOADS: Apply wind loads to the roof to determine moments and fiber stresses in the posts Eave Wind Calculations: Calculate the eave wind load on the roof in each bay. groofE = 19.3 psf Roof wind pressure Proof wind Hroo£•B ay'gmotE Proof wind = 578 lb Calculate the eave wind load on the eave wall aprons qe= 19.2 psf Eave wall wind pressure Peave_apron:= ApronL'Bay.q, Peaveapron= 0 lb Peave_wind:= (Proof wind+ Peave_apron) Peave_wind= 578 lb Calculate equivalent post system stiffness(use 2 posts in the frame system) Eave post on low eave Eave post on high eave wall Hbldgl = 12.0 ft Hb1d = 15.0 ft Hb1dgL Hb1dgH 1'pustlx in L = 144.0 in 1'postzx• L 180.0 in postlx in post2x= lxpost lxpost2 Kix:= K2x 1 postlx3 Kix = 0.000036 1-post2x3 K2x= 0.000019 Klux:= Kix+ Kyx Kton = 0.000055 Now determine the bending moment and fiber stress in each post Mpost (Peave_wind'Lpostlx) Mpost = 83220 in•1b Kix K2x Mwindlx Mposf— Mwindlx:= Mpost' Ktotx Ktotx Mwindlx= 55040 in-lb Mwind2x= 28180 in.lb Mwindlx Mwindlx fbwindlx:= fbwind2x:= Sxpost Sxpast2 fbwindlx= 1529 psi fbwind2x= 783 psi 5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12'.xmcd 9 Gable Wind Calculations: Calculate the total gable roof/wall load qg= 16.6 psf Gable wall wind pressure 20 Agable Wbldg'Hroof'0.5 Name= 24.0 ft Pgable wind qgablc'qg Ngablc wind= 399 lb Calculate equivalent post system stiffness(use 2 posts in the frame system) Eave post on low eave Eave post on high eave wall HbmgL= 12.0 ft Hbldgx= 15.0 ft Hbldgi. Hb1dglI • Lpoatly • inLpostly = 144.0 in 1' �' in Lpost2y = 180.0 in lypost 1ypost2 Kly:= K2y:_ Lpostly3 Kty= 0.000036 Lpost2y3 Key= 0.000019 Ktoty := Kly.+ K2y Ktoty = 0.000055 Determine the bending moment and fiber stress in each post frames= 4.0 Total number of frames Pgable wind \ Kly Pgable wind K2y Mwindly `frames+ 2 Lpostly/'Ktoty Mwndzy frames+ 2 Lpostzy/'Ktoty Mwindly= 18994 in-lb Mwind2y = 12156 in-lb Mwindly Mwind2y fbwindly fbwind2y Sypost 3ypost2 fbwindty= 528 psi tbwind2y= 338psi 5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12'.xmcd 10 Calculate seismic loads on posts: H = 1778lb Seismic load on building(from above) frames= 4 E Klx K Mseismiclx Lpostlx E Zx frames / Ktotx Mseismic2x •Lie st2xj'- frames Kto, Mseism;clx= 38812 in1b Mseismic2x= 25291 in-lb Mseismiclx Mseismic2x fbseismiclx fbseismiclx Sxpost Sxpost2 fbseismiclx = 1078 psi fbseismiclx= 703 psi E Kly yeK Mseismicly 'l-postlx E zY frames Ktoty Mseismic2y:= `frames Lpost2y/'Katy Mseismiciy= 38812 in-lb Mseismic2y = 26270 in-lb Mseismic ly Mseismic2y fbseismic ly•— fbseismicly Sypost sypost2 fbseismicly= 1078 Psi fbseismicly= 730psi 5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12'.xmcd 11 MAIN LOW EAVE POST DESIGN: (Loads applied parallel to frame) Calculate allowable unit compression stress, Fcc. Fel= 575 psi Fe Fc1.CMcpost'Cipost'CFcposf Cipost'CdASCE Fe= 690 psi Allowable compression stress including load factors Lxpost_bndgL= 132 in Bending length of post dpost= 6.00 in Minimum unbraced dimension of post Ke:= 1.2 c := 0.8 Emin wood= 400000 psi Frain` Emin_wood'CMEpost'CtpostE'CipostE le Ke'l xpostbndgl = 158.4 in Emit, = 400000.00psi 0.822.F'ttun Load duration factors(CD): FeE FcE= 472 psi 1 2 CDconst= 1.25 CDwind= 1.60 ‘dpost) CDsnow= 1.15 CDseismic= 1.60 Calculate Column Stability Factor,Cp: CDtive= 1.00 FcE\ r FcE 2 FcE 1 + — 1 + - — Fe Fc Fe Cp_Lr= 0.47 Cp L= 0.55 Cp:= 2•c \ 2.c j c Cps = 0.5 Cp WorE = 0.38 FeeL= Fc'CP_L Fcc_L= 379 psi FeC_Lr:= Fc•Cp_Lr Fee Lr= 321 psi Allowable compression stress on the post; load case 2 Fees Fc Cp_s F0G s= 343 psi Allowable compression stress on the post; load case 3b& 4b FccworE FC Cp_wOFE Fcc_worE= 263 psi Allowable compression stress on the post; all load cases except as note above Pdeadpost = 475 lb Axial loading per post due to roof dead load Pti,epogt= 0 lb Axial loading per post due to live load PLroofpost = 1900 lb Axial loading per post due to live roof load Psnowpos,= 2375 lb Axial loading per post due to roof snow load(load case 3b&4b) Psnowpost_fs = 1995 lb Axial loading per post due to roof snow load(load cases except as noted above) Fbi = 575.00 psi Fb:= Fbl'CDwind'CMbpost'Ctpost'CLxpost'CFbposf C fupost'Cipost CdASCE Fb= 1100 psi Allowable bending stress per post including load factors 5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x16_12'.xmcd 12 Check Eave Load Cases: Load Case 1:Dead Load Pdeadpost fc:= fc= 13 psi Actual compression stress per post Apost fc CCFALII :_ — CCFALII = 0.03 `Fcc_L1 Load Case 2:Dead Load+Live Load Pdeadpost + Plivepost fc:= fc= 13 psi Actual compression stress per post Apost l fo CCFALI2 := — Fcc L CCFALI2 = 0.03 Load Case 3a: Dead Load+Live Roof Load Pdeadpost + PLroofpost := fc= 66 psi Actual compression stress per post Apost CCFALI3a f c:_ Fcc_Lr CCFALI3a= 0.21 Load Case 3b: Dead Load+Snow Load Pdeadpost+ Psnowpost := fc= 79 psi Actual compression stress per post Apost f CCFALI3b := c "FCC_s� CCFALI3b = 0.23 Load Case 4a: Dead Load+0.75*Live load+0.75*Live Roof Load Pdeadpost+ 0.75-Plivepost + 0.75'PLroofpost fc:= fc= 53 psi Actual compression stress per post Apost CCFALI4a:= — Pcc_Lri CCFALI4a= 0.16 Load Case 4b: Dead Load+0.75*Live load+0.75*Snow Load Pdeadpost+ 0.75•Plivepost + 0.75•Psnowpost fc:= fc= 63 psi Actual compression stress per post Apost f CCFALI4b := c .Fcc s� CCFALI4b = 0.18 5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15112'.xmcd 13 Check Eave Load Cs.%Ps-cont'd: Load Case 5:Dead Load+0.6*Wind Load fbl := 0.6•fbwindlx fbi = 917 psi Actual bending stress on post Pdeadpost := fc= 13 psi Actual compression stress per post `4post / z _ CCFALI5 := fe ` + fbl cc_WorE) fc \ Fb. 1 — — FcE/_ CCFALI5 = 0.86 Load Case 6a: Dead Load+0.75*Live Load+0.75*(0.6*Wind Load)+0.75*Live Roof Load fb1 := 0.75•(0.6.fbwindlx) fbl = 688 psi Actual bending stress on post Pdeadpost+ 0.75-Pbvepost+ 0.75•131 roofpost fc:= fe= 53 psi Actual compression stress per post Apost / 2 CCFALI6a:= fc + fb1 \•Fcc_WorE Fb- 1 CCFALI6a= 0.74 F`E) Load Case 6a: Dead Load+0.75*Live Load+0.75*(0.6*Wind Load)+0.75*Snow Load fbl := 0.75•(0.6•fbwindlx) fbl = 688 psi Actual bending stress on post Pdeadpost + 0.75'Plivepost + 0.75.Psnowpost_fs fc:= tb= 55 psi Actual compression stress per post Apsst 2 1 CCFALI6b :_ / re. N.2 fbl Fcc_WorE1 fc \ Ft; 1 — — FoE� CCFALI6b = 0.75 Load Case 7:0.6*Dead Load+0.6*Wind Load fbi := 0.6•fbwindlx fbl = 917 psi Actual bending stress on post O.6•Pdeadpost fc:_ Apos f,= 8 psi Actual compression stress per post - 2 - CCFALI7:= f` l + fbf FccWorE1 / fc Fb• 1 F`E� CCFALI7 = 0.85 - 5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12'.xmcd 14 Check Eave Load Cases-cont'd: Evpost 0.2.SOs•Pdeadpost rwpost= 64 lb Vertical seismic load Load Case 8:Dead Load+0.7*Vertical Seismic Load+0.7*Horizontal Seismic Load fb1 := 0.7•fbseismicix fb1 = 755 psi Actual bending stress on post fc Pdeadpost+ O.TEvpost fc= 14 psi Actual compression stress per post Apost 2 CCFALIS := I fc I + fbl (Fee WorE ( fc t'6 1 — - FcE CCFALI8 = 0.71 Load Case 9:Dead Load+0.525*Vertical Seismic Load+0.525*Horizontal Seismic Load+ 0.75*Live Load+0.75*Snow Load fb1 := 0.525•fbseismictx tbt = 566psi Actual bending stress on post Pdeadpost + 0.525•E„post + 0.75•Plivcpost+ 0.75•Psnowpost_fs fc:_ Apost Z fc= 56 psi Actual compression stress per post CCFALI9:= fc + fbt ( ,1 cc_WorE1 fc Fb. 1 — — FcEj CCFALI9 = 0.63 Load Case 10:Dead Load-0.7*Vertical Seismic Load+0.7*Horizontal Seismic Load fb1:= 0.7'fbseismiclx fb1 = 755 psi Actual bending stress on post Pdeadpost— 0.7•Evpost fc:= Apost fc= 12 psi Actual compression stress per post / fc \2 tb1 CCFALIIO := + ,Fcc_WorE/ fc Fb• 1 — - FcEj• CCFALI10 = 0.71 CCFALIeaveL= 0.86 Less than or equal to 1.00 thus OK 5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12'.xmcd 15 MAIN LOW EAVE POST DESIGN: (Loads applied perpendicular to frame) Calculate albwable unit compression stress, FCC. Fel= 575 psi Fe•= Fcl'CMcpost Ctpost*CFcposI Cipost'CdASCE Fe— 690 psi Allowable compression stress induding load factors Lypost bndgL= 138.5 il$ending length of post dpos,= 6.00 in Minimum unbraced dimension of post Ke:= 1.2 c:= 0.8 Emin_wood= 400000 psi E'nun= Emin_wood'CMEpost'CtpostE CipostE Ie Ke'Lypost_bndgL Ie= 166.2 in E'm n= 400000 psi Load duration factors(CD): 0.822.E' n FCE = 429 psi CDconst= 1.25 CDwind= 1.60 2 Ie CDsnow= 1.15 CDseismic= 1.60 ripest) Calculate Column Stability Factor,Cp: CDbve= 1.00 2 I 1 + FcE 1 + Fa: FcE C .Lr= 0.43 CpL= 0.51 Fc'CD Fe CD Fe.CD Cp:= — 2-c ., , 2.c c Cps = 0.46 Cp WorE= 0.35 FCC_L:= CpL FCC L= 354 psi Allowable compression stress on the post; load case 1 Fee Lr:= Cp Lr Fee Lt= 298 psi Allowable compression stress on the post;load case 2 FCC s:= Fc•Cp s FCC s= 318 psi Allowable compression stress on the post; load case 3b& 4b FCC WorE:= Fe-Cp WorE FCC WorE = 242 psi Allowable compression stress on the post;all load cases except as note above Pdeadpost= 475 lb Axial loading per post due to roof dead load PbVepost= 0 lb Axial loading per post due to live load PLroot;,os, = 1900 lb Axial loading per post due to live roof load • Psnowpost= 2375 lb Axial loading per post due to roof snow load(load case 3b&4b) Psnowpost fs= 1995 lb Axial loading per post due to roof snow load(load cases except as noted above) Fbt = 575.00 psi Fb Fbl•CDwind'CMbpost•Ctpost•CLypos CFbposf Cfupost.Cipos{CdASCE Fb= 1100 psi Allowable bending stress per post including load factors 5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15112'.xmcd 16 Check Gable Load Cases: Load Case 1:Dead Load fe:= Pdeadpost fe= 13 psi Actual compression stress per post Apost i f \ CCP'ALII := o CCFALII = 0.04 ccL/ Load Case 2:Dead Load+Live Load Pdeadpost + Plivepost fc:= fe= 13 psi Actual compression stress per post Apost f v c CCFALI2 := CCFALI2 = 0.04 Load Case 3a: Dead Load+Live Roof Load fe Pdeadpost +PLroofpost fe= 66 psi Actual compression stress per post Apost / fc CCFALI3a:_ — \F Lr CCFALI3a = 0.22 cc_ / Load Case 3b: Dead Load+Snow Load tc Pdeadpost + Panowpoat fe= 79 psi Actual compression stress per post Apost / fe CCFALI3b:= — CCFALI3b = 0.25 \Fce_S/ Load Case 4a: Dead Load+0.75*Live load+0.75*Live Roof Load Pdeadpost + ().75 PGvepost + 0.75'PLroofpost fe:= fc- 53 psi Actual compression stress per post Apost / fc CCFALI4a:_ CCFALI4a = 0.18 Fee_Lr/ Load Case 4b: Dead Load+0.75*Live load+0.75*Snow Load Pdeadpost+ 0.75 Pllvepost+ 0.75-Psnowpost fc:= fe— 63 psi Actual compression stress per post Apost • f \ e CCPALI4b:_ - CCFALI4b = 0.20 \Fcc_5) 5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15112'.xmcd 17 Check Gable Load Cases-confd: . Load Case 5:Dead Load+0.6*Wind Load fb1 0.6'fbwindly fbl - 317 psi Actual bending stress on post fe Pdeadpost fe= 13 psi Actual compression stress per post p post \2 CCFALI5 := fc + fbl r[FCC WorE; fc 1 Fb- 1 — — FcEj CCFALI5 = 0.30 Load Case 6a: Dead Load+0.75*Live Load+0.75*(0.6*Wind Load)+0.75*Live Roof Load fbl := 0.75.(0.6.fbwindiy) fb1 = 237 psi Actual bending stress on post Pdeadpost+ 0.75.Plivepost + 0.75•PLroofpost fe fc= 53 psi Actual compression stress per post Apost 2 f CCFALI6a / fc \ + b1 1 \,Fcc_WorEJ fc \ Fb. 1 - - FcE1 CCFALI6a = 0.29 Load Case 6a: Dead Load+0.75*Live Load+0.75*(0.6*Wind Load)+0.75*Snow Load fb1 := 0.75•(0.6.fbwindly) fbi = 237 psi Actual bending stress on post Pdeadpost + 0.75•Plivepost + 0.75•Psnowpost_fs fc:- fc= 55 psi Actual compression stress per post p -post -N2 CCFALI6b := fc + fnl Fee_Work/ fc Fb. 1 — — F GB, CCFALI6b = 0.30 Load Case 7:0.6*Dead Load+0.6*Wind Load fbl 0-6.fbwindly fb1 = 317 psi Actual bending stress on post 0.6.Pdeadpost fc:_ Apost fc= 8 psi Actual compression stress per post 2 CCFALI7 = + l ,Fcc_WorE / fe Fb- 1 - - FcE CCFALI7=0.29 5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12'.xmcd 18 Check Gable Load Cases-cont'd: Evpost:= 0.2•SDS'Pdeadpost l-post= 641b Vertical seismic load Load Case 8:Dead Load+0.7'Vertical Seismic Load+0.7*Horizontal Seismic Load fb1:= 0.7•fbseismicty fbi = 755 psi Actual bending stress on post f — Pdeadpost + 0 7'f vpost fe- 14 psi Actual compression stress per post — Apost - - fc 2 fbi CCFALI8:= + Fce_WorE/ lc Fb. 1 - - F EI CCFALI8= 0.71 Load Case 9:Dead Load+0.525*Vertical Seismic Load+0.525` Horizontal Seismic Load+ 0.75*Live Load+0.75`Snow Load 0.525 fbseismiciy fbi = 566psi Actual bending stress on post Pdeadpost+ 0.525-Fvpost + 0.75 Privepost+ 0.75•Psnowpost_Is fe Apost fe= 56 psi Actual compression stress per post / fe \2 fbi CCFALI9:= + �\Fcc_WorE) C fc �J Fb 1 JI CCFA1,19 = 0.64 hcE Load Case 10: Dead Load-0.7*Vertical Seismic Load+0.7*Horizontal Seismic Load 0.7 fbseismicly fbi = 755 psi Actual bending stress on post bl �= Pdeadpost— 0.7.Evpost fe Apost fe= 12 psi Actual compression stress per post rr .„2 CCFALI10 :— fe + fbl L F /1 fe Fee Work) b \ FcEi CCFALIIO = 0.71 CCFALIgabieL= 0.71 Less than or equal to 1.00 thus OK 5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12'.xmcd 19 EMBEDMENT FOR LOW EAVE POST: Calculate the minimum required post embedment depth for lateral loading for the low eave posts. Post_is= "not constrained by a concrete slab" Va= 382 lb Lateral shear load at the ground line Ma= 4587 ft-lb Moment at the ground line dia_foot•. = 1.7 ft Main low eave post footing diameter Ssoa = 100 psf Lateral capacity of soil Trial depth=1.5 ft.-The starting depth of the post hole depth.The final post hole depth is determined by aerating to a final depth. depth post = 3.16 ft This is the minimum required post embedment depth for lateral loading FOOTING DESIGN FOR LOW EAVE POST: Determine the footing size and depth for vertical bearing for the low eave posts. q,,,il = 1500psf Soil bearing capacity for footing dia food= 1.67 ft Footing diameter 2� dia_footingI Afooting �'' 4 , Afooting = 2.18 ft2 Footing area Post_depaf = 4.0 ft Minimum required post embedment depth Pfooting>, nfooting gsnit dfactor PfootingL= 5563 lb End bearing capacity of footing PsnowL= 2850 lb Total low eave footing load Note that the end bearing capacity(P ,gL)is greater than the snow load(Ps L). This is OK. Check uplift: PuIL W n cis + Overt.angL 'Bay'I quptil PuiL= 1813 lb This is the uplift on one eave wall post Z Assume a total weight of roof to be 0.6*Dead Weight(pd). The area of the roof that will tend to keep the post in the ground will be as follows: 2 Wt p 150 cf P n dia_Luvt ngL AP L ost_hole p Dist d the Dist Wt 1159lb Weight of concrete ` 4 / Lpnsl_hole= in post hole Wutrf,:= 2Wt� + °verhangi. 'Bay'(0.6'pd) + WtLpost_hole+ PskinLEV Wulrr.= 20981b Total uplift resistance Note that the total uplift resistance(Wtg L)is greater than the uplift load(Puir). This is OK. 5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12'.xmcd 20 MAIN HIGH EAVE POST DESIGN: Calculate allowable unit compression stress, F„. Fc2= 575 psi Fc Fc2.CMepost*Ctpost2•CFcpost2'Cipost2•CdASCE Fe= 690 psi Allowable compression stress including load factors 1.post bmign= 168 in Bending length of post dpost= 6.00in Minimum unbraced dimension of post Ke:= 1.2 c:= 0.8 Emin wood2= 400000 psi E'm;n Enun_wood2'CMEpost2•CtpostE2'CipostE2 Te Ke'LpostbndgH Ie= 201.6 in E'en= 400000.00 psi 0.822•E'min Load duration factors(CD): FcE:= FcE= 291 psi Load duration factors(CD): i 1 2 e CDconst= 1.25 CDwind= 1.60 dpost/ Calculate Column Stability Factor,CP: CDsnow= 1.15 Cl3seism c= 1.60 2 CDlive= 1.00 / FcE\ ( i'cE\ FcE 1 + — 1 + - — Fe Fc Fe Cp 2-c 2-c c Cp_Lr = 0.31 Cp L= 0.38 Cps = 0.33 Cp_WOTP.= 0.25 FccL= Fe.CpL Fcc_L= 260 psi Fee Lr Cp Lr FeC Lr= 214 psi Allowable compression stress on the post;load case 2 Fcc s= Foi Cp_s Fee s= 230 psi Allowable compression stress on the post;load case 3b& 4b Fcc worE Fc Cpwort Fcc_worE= 171 psi Allowable compression stress on the post;all load cases except as note above Pdeadpost= 475 lb Axial loading per post due to roof dead load Pi;vepost= 0 lb Axial loading per post due to live load PLroofpost= 1900 lb Axial loading per post due to live roof load • Psnowpost= 2375 lb Axial loading per post due to roof snow load(load case 3b&4b) Psnowpost fs= 1995 lb Axial loading per post due to roof snow load(load cases except as noted above) Fb Fb2'CDwind'CMbpost2'Ctpost2•CLpost2'CFbpost2'Cfupost2.Cipost2.CdASCE Fb= 1104psi Allowable bending stress per post including load factors 5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12'.xmcd 21 Check Eave Load Cases: Load Case 1:Dead Load Pdeadpost fe fe = 13 psi Actual compression stress per post Apost2 / fe CCFALII := — CCFALI1 = 0.05 �cc L� j Load Case 2: Dead Load+Live Load Pdeadpost + Plivepost fe:= fe= 13 psi Actual compression stress per post Apost2 0" fe \ CCFALI2:= — �Fee L� CCFALI2 = 0.05 Load Case 3a: Dead Load+Live Roof Load Pdeadpost + PLroofpost fe:= fe= 66 psi Actual compression stress per post Apost2 / fc \ CCFALI3a:_ — ,,Fcc Lr," CCFALI3a= 0.31 Load Case 3b: Dead Load+Snow Load Pdeadpost + Psnowpost fe:= fe= 79 psi Actual compression stress per post Apost2 fe \ CCFALI3b := Fee s CCFALI3b = 0.34 Load Case 4a: Dead Load+0.75*Live load+0.75*Live Roof Load Pdeadpost + 0.75•Plivepost+ 0.75'PLroofpost fe:= fe= 53 psi Actual compression stress per post Apost2 / fc CCFALI4a :_ — \Fee Lr CCFALI4a= 0.25 • Load Case 4b:Dead Load+0.75*Live load+0.75*Snow Load Pdeadpost + 0.75"Plivepost+ 0.75•Psnowpost fe.- k- 63 psi Actual compression stress per post Apost2 f CCFALI4b := c �Fcc_s/ CCFALI4b = 0.27 5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12'.xmcd 22 Check Eave Load Cases-cont'd: . Load Case 5:Dead Load+0.6*Wind Load fbi := 0.6.fbwindzx fbi = 470 psi Actual bending stress on post Pdcadpost fe= fc= 13 psi Actual compression stress per post Apost2 fc 2 fb1 1 CCFALIS := + Fcc_WorE fc Fb. 1 — — FcE CCFALIS = 0.45 Load Case 6a: Dead Load+0.75*Live Load+0.75*(0.6*Wind Load)+0.75*Live Roof Load fbt := 0.75•(0.6.fbwind2x) fb1 = 352 psi Actual bending stress on post Pdcadpost + 0.75•Puvepost + 0.75•PLroofpost fc= fe= 53 psi Actual compression stress per post Apost2 r fc 2 fbl 1 CCFALI6a:_ + \Fcc_WorE fc Fb. 1 — — Fcg1 CCFALI6a= 0.49 Load Case 6a: Dead Load+0.75*Live Load+0.75*(0.6*Wind Load)+0.75*Snow Load fb1 := 0.75-(0.6.fbwind2x) fbi = 352 psi Actual bending stress on post Pdcadpost + 0.75'P1ivepost + 0.75•Psnowpost_fs fc:- fc= 55 psi Actual compression stress per post p post2 2 fbl 1 CCFALI6b :_ / fc \ + �Fcc_worEi fc Fb. 1 — — PeEi CCFALI6b = 0.50 Load Case 7:0.6*Dead Load+0.6*Wind Load • fb1 := 0.6-fbwind2x fin = 470 psi Actual bending stress on post 0.6'Pdeadpost fc:_ Apost2 fc= 8 psi Actual compression stress per post 2 CCFALI7:= fc 1 + fbi Fcc_WorE Fb. 1 — fc FcE CCFALI7 = 0.44 5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12'.xmcd 23 Check Eave Load Cases-cont'd: Evpost:= 0.2.SDS'Pdeadpost Est = 64 lb Vertical seismic load Load Case 8:Dead Load+0.7*Vertical Sesmic Load+0.7*Horizontal Seismic Load fb1:= 0.74bseismic2x fbt = 492 psi Actual bending stress on post fc:= Pdeadpost + 0.TEvpost fc= 14 psi Actual compression stress per post f post2 \2 _ CCFALI8:= fc +( fbl Fcc_WorEj ' lc Fb 1 CCFALIS = 0.48 FcE/- Load Case 9:Dead Load+0.525*Vertical Seismic Load+0.525*Horizontal Seismic Load+ 0.75*Live Load+0.75*Snow Load fbl:= 0.525•fbseismic2x fbi = 369 psi Actual bending stress on post Pdeadpost+ 0.525•Evpost+ 0.75•Piivepost+ 0.75"Psnowpost_fs re ._ t2 fc= 56 psi Actual compression stress per post - fc 2 fb1 CCFALI9:= + �Fcc_worE, fc Fb• 1 — FcE CCFALI9 = 0.52 Load Case 10:Dead Load-0.7*Vertical Seismic Load+0.7*Horizontal Sesmic Load fb1 := 0.7.fbseismic2x fbi = 492 psi Actual bending stress on post Pdeadpost— 0.7-Evpost fc:_ Apost2 fc= 12 psi Actual compression stress per post • r fc \2 fbl CCFALI10 := + . �Fcc_worEi fc Fb• 1 --..) CCFALI10= 0.47 CCFALIeaveH= 0.52 Less than or equal to 1.00 thus OK 5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15_12'.xmcd 24 MAIN HIGH EAVE POST DESIGN: (Loads applied perpendicular to frame) Calculate allowable unit compression stress, FCe. hc2= 575 psi Fc:= Fc2'Cn4cpost2.Ctpost2'CFcpost2•Cipost2•CdASCE Fc= 690 psi Allowable compression stress induding load factors Lypost_bndgD= 174.5 in Bending length of post dpost= 6.00 in Minimum unbraced dimension of post Ke:= 1.2 c := 0.8 Ervin wood2 = 400000 psi E'min Emirs_wood2.CMEpostTCtpostE2'CipostE2 le Ke'Lypost_bndgn Ie= 209.4 in = 400000psi Load duration factors(CD): 0.822•E'n,i, FeE:= FeE= 270 psi CDconst= 1.25 CDwind= I.60 Ie 2 CDsnow= 1.15 CDseismic= 1.60 dpost Calculate Column Stability Factor,Ci,: CDlive = 1.00 2 1 + FeE 1 + FeE FcE Cp_Lr= 0.29 Cp L= 0.35 Fe.CD Fe-CD Fe•CD Cp 2-c j 2-c c Cp_s = 0.31 Cp wn<E= 0.23 Fcc_L:= Fc Cp_L Fec_L= 243 psi Allowable compression stress on the post; load case 1 Fcc Lr:= Fe-Cp Lr F„ Lt= 200 psi Allowable compression stress on the post;load case 2 Fees:= Fe Cp s Fee s= 215 psi Allowable compression stress on the post; load case 3b& 4b Fcc_worE Fe Cp_worE Fee_worE= 159 psi Allowable compression stress on the post; all load cases except as note above Pdeadpost= 475 lb Axial loading per post due to roof dead load PLrepost = 0 lb Axial loading per post due to live load PLroofpost = 19(X)lb Axial loading per post due to live roof load Psnowpost= 2375 lb Axial loading per post due to roof snow load(load case 3b&4b) Psnowpost_fs = 1995lb Axial loading per post due to roof snow load(load cases except as noted above) Fb2= 575.00 psi Fb Fb2-CDwind•C'vfbpost2'Ctpost2'CLypost2.CFbpost2.Cfuposi2.Cipost2.CdASCE Fb= 1099 psi Allowable bending stress per post including load factors 5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12'.xmcd 25 Check Gable Load Cases: Load Case 1:Dead Load Pdeadpost fc:= fe= 13 psi Actual compression stress per post Apost2 / fc \ CCFALII := — CCFAI.11 = 0.05 \Fcc_L1 Load Case 2: Dead Load+Live Load Pdeadpost+ Plivepost fc:= fe= 13 psi Actual compression stress per post Apost2 / fc \ CCFALI2 :_ CCFALI2 = 0.05 Fcc_L Load Case 3a: Dead Load+Live Roof Load Pdeadpost + PLroofpost fe:= fc= 66 psi Actual compression stress per post Apost2 fe CCFALI3a:_ Fcc_Lr- CCFALI3a = 0.33 Load Case 3b: Dead Load+Snow Load Pdeadpost+ Panowpost fe:_ f,= 79 psi Actual compression stress per post Apost2 / fc CCFALI3b :_ — ee s) CCFALI3b = 0.37 Load Case 4a: Dead Load+0.75*Live load+0.75*Live Roof Load Pdeadpost+ °•75'Plivepost + 0.75'PLroofpost fe:= fc= 53 psi Actual compression stress per post Apost2 / fc CCFALI4a:= F CCFALI4a = 0.26 cc_Lr) Load Case 4b: Dead Load+0.75*Live load+0.75*Snow Load Pdeadpost + 0.75'Plivepost + 0.75•Psnowpost fc:= fe= 63 psi Actual compression stress per post Apost2 i fc \ CCFALI411 := - \Fcc_s/ CCFALI4b = 0.29 5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15112'.xmcd 26 Check Gable Load Cases-cont'd: Load Case 5:Dead Load+0.6*Wind Load fb1:= 0.64aind2y fbt = 203 psi Actual bending stress on post Pdeadpost fc fe= 13 psi Actual compression stress per post /*pose 2 CCFALIS �/ fe \ + fbl Fcc WorEj Fb. ] - FcE) CCFALI5 = 0.20 Load Case 6a: Dead Load+0.75*Live Load+0.75*(0.6*Wind Load)+0.75*Live Roof Load fb1 := 0.75•(0.6-fbw;nd2y) fbl = 152 psi Actual bending stress on post Pdeadpost+ 0.75•P&vepost+ 0.75.PLroofpost fc fe= 53 psi Actual compression stress per post Apost2 / fe 12 fbt _ CCFALI6a + \Fcc_WorEJ fc Fb• 1 — — FcE/ CCFALI6a= 0.28 Load Case 6a: Dead Load+0.75*Live Load+0.75*(0.6*Wind Load)+0.75*Snow Load fbl := 0.75•(0.6.fbw;nd20 fb1 = 152 psi Actual bending stress on post Pdeadpost + 0.754Plivepost+ O.75•Psnowpost_t fe fe= 55 psi Actual compression stress per post Apost2 2 CCFALI6b :- fe + tbt — (F0WEJ / fc Fb• I — — \ FeF CCFALI6b = 0.29 Load Case 7:0.6*Dead Load+0.6*Wind Load • fbt 0.6-fbwind2y fbt = 203 psi Actual bending stress on post 0.6.Pdeadpost fc:= Apost2 fe= 8 psi Actual compression stress per post 2 CCFALI7:= fe I + flat �Fcc_WorE JI fc Fb• 1 — — CCFALI7 = 0.19 FeE/— 5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15112'.xmcd 27 Check Gable Load Cases-cont'd: • lwpost 0.2SDs'Pdeadpost Evpost = 641b Vertical seismic load Load Case 8:Dead Load+0.7*Vertical Seismic Load+0.7*Horizontal Seismic Load fbf:= 0.74bseismiczy fbf = 511 psi Actual bending stress on post fc Pdeadpost + 0.7 E pit fc= 14 psi Actual compression stress per post Apost2 _ 1 fc v 2 4,1 CCFALI8 := + \Fcc_WorEj ( fc Fb• I _ F`E/J CCFALI8 = 0.50 _ \ Load Case 9:Dead Load+0.525*Vertical Seismic Load+0.525*Horizontal Seismic Load+ 0.75*Live Load+0.75*Snow Load fbf := 0.525•fbseismic2y fbl = 383 psi Actual bending stress on post Pdeadpost+ 0.525•Evpost+ 0-75•Piivepost+ 0.75"Psnowpost_fs fc:_ Apost2 fc= 56 psi Actual compression stress per post 2 CCFALI9:= / fc \ + fbi fe \Fcc_WorEi \ FcE Fb 1 CCFALI9 = 0.56 Load Case 10:Dead Load-0.7*Vertical Seismic Load+0.7*Horizontal Seismic Load fbi 0 7.fbscismic2y fbl = 511 psi Actual bending stress on post Pdeadpost- U-7"•-pp vpost fe p "post2 fc= 12 psi Actual compression stress per post 2 fc fist CCFALIIO := + Fcc_ FWorE.1 fc b• 1 FcE CCFALI IO = 0.49 CCFALIgableH- 0.56 Less than or equal to 1.00 thus OK 7 5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12'.xmcd 28 EMBEDMENT FOR HIGH EAVE POST: Calculate the minimum required post embedment depth for lateral loading for the high eave posts. Post is = "not constrained by a concrete slab" Va= 196 lb Lateral shear load at the ground line Ma= 2348ft•lb Moment at the ground line dia foot-ngH= 1.67 ft Main high eave post footing diameter Sao 1 = 100 psf Lateral capacity of soil Trial depth=1.5 ft.-The starting depth of the post hole depth.The final post hole depth is determined by iterating to a final depth. depth_post= 2.66 ft This is the minimum required post embedment depth for lateral loading FOOTING DESIGN FOR HIGH EAVE POST: Determine the footing size and depth for vertical bearing for the high eave posts. 4soii = 1500psf Soil bearing capacity for footing dia_footingH= 1.67 ft Footing diameter 2\ dia_footingH 4 Afooting= 2.18 ft2 Footing area P„t depthil= 4.0 ft Minimum required post embedment depth PfootingH= A£ooting'(heir dfactor PfootingH= 5563 lb End bearing capacity of footing PsnowH= 2850 lb Total low eave footing load Note that the end bearing capacity(Pf fl9H)is greater than the snow load(PsmwH). This is OK. Check uplift: Wbmg + Overhang; 'Bay'Ic luplifl I P 1813 lb This is the uplift on one eave wall post ulH= 2 Assume a total weight of roof to be 0.6*Dead Weight(pa). The area of the roof that will tend to keep the post in the ground will be as follows: 2 dia footingH • WtHpost hole= 150 pcf'Post deptt.T-rw rc• 4 Apost2 WtHpost_hole= 1159 lb Weight of concrete }B .(0.6.P ) in post hole WulrH Wbldg + Overhang/ + WtHpost_hole+ PskinHp.H WwtH= 2098 lb Total uplift resistance Note that the total uplift resistance(Waal)is greater than the uplift load(Pules). This is OK • 5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12'.xmcd 29 PURLIN DESIGN: The purlins simply span between pairs of trusses or rafters. Determine the adequacy of the purlins. Purlin= "2x6" TIC pacing= 24 in O.C. Lpudin_span = 115.5 in wp„rlin = 4.91 pli Maximum combined distributed roof load along top edge of purlin 2 M µpnrl;n ipurlin_span = 8195 in•lb Bending moment in the purlin pudin�= 8 purfin f Mpnrl;n f 1084 psi Bendingstress applied to the purlin bpurlin�— bpurlin= pp Spurlin Determine the allowable member stress including load factors Fbpurlin = 1650 psi CDsmw= 1.15 CMbpurlin= 1.00 Clprrbn= 1.00 CLpnrlin= 1.00 CFpurlin= 1.00 Cfupurlin= 1.00 Crpudin= 1.15 Fbpurlin Fbpurlin'CDsnow'CMbpurlin'Ctpurlin'CLpudin'CFpurlin'Cfupurlin'Crpurlin Fbpudin= 2182psi > fbpurlin This is OK 5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12'.xmcd 30 RAFTER DESIGN: Determine the required section for intermediate building or shed rafters. The rafters will simple span between posts. It will be assumed that both ends are pinned. Rafter_style := Srafter := Raftergrade 'Double 2-Plyv1 I2x12 v 12 sr Rafterspecies IDoug-Fir j Lrafter_span= 195.3 in Wrafter= 25p1i Maximum combined distributed roof load along top edge of rafter 2 Wrafter'Lrafter_span Mrafter:= 8 Mrafter= 119250in•lb Bending moment in the rafter Mrafter fb` ef Sxrafter Rafterqty ftrrafter= 942 psi Bending stress applied to the rafter Determine the allowable member stress including load factors FbRafter= 900.00psi CD,„,= 1.15 CMbrafter= 1.00 Ctratler= 1.00 CLrafter= 0.97 CFrafter= 1.00 Cfurafter= 1.00 Crrafter= 1.00 Fbrafter:= FbRafter'CDsnow•CMbrafter.•Ctraftet••CLrafter CFraftef Cfuraftef Crrafter Fbraft„= 1007 psi > fbrafler. This Is OK 5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15_12'.xmcd 31 MAIN POST CORBEL BLOCK DESIGN: Determine the required number and size of bolts required in the main post corbel block. Allowable fastener shear capacities Z1 It 58 = 15401b Shear capacity for 5/8"dia. bolts zTbou 34= 21901b Shear capacity for 3/4"dia. bolts z3bott 10 = 36001b Shear capacity for 1"dia.bolts ZTnad 16d= 122 lb Shear capacity for 16d nails zTnad god= 147 lb Shear capacity for 20d nails PLEcorbel = 2850 lb Combined snow, or live roof,and dead loads on corbels PHEcorbel = 2850 lb Combined snow or live roof,and dead loads on corbels If 5/8 dia.bolts are used: NLEbous58 = 1.6 Number of 5/8"dia. bolts required in the low eave corbel block,if used. NHEbolts58 = 1.6 Number of 5/8"dia.bolts required in the high eave corbel block,if used. If 3/4 dia.bolts are used: NLEbolts34= 1.1 Number of 3/4"dia.bolts required in the low eave corbel block,if used. NHEbolts34 = 1.1 Number of 3/4"dia.bolts required in the high eave corbel block,if used. If 1 dia.bolts are used: NLEboits10= 0.7 Number of 1"dia.bolts required in the low eave corbel block, if used. NHEbolts10= 0.7 Number of 1"dia. bolts required in the high eave corbel block, if used. If 20d nails are to be used: NLEnails2od= 8.4 Number of 20d nails required in each low eave corbel block,if used. • NHE.nails20d= 8.4 Number of 20d nails required in each high eave corbel block, if used. • If 16d nails are to be used: NLEnailsind= 10.2 Number of 16d nails required in each low eave corbel block,if used. NI1Enads16d= 10.2 Number of 16d nails required in each high eave corbel block,if used. 5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12'.xmcd 32 • SUMMARY OF RESULTS: Building Dimensions Building Design Loads Wbmdg= 16 ft Width of Building Ground_snow load = 25 psf Lbldg = 30 ft Length of Building Roof dead_load= 5 psf Hbldgr,= 12 ft Low Eave Height of Building Wind speed= 97 mph HbtdgH= 15 ft High Eave Height of Building Wind_exposure = "C" Rpltoh= 2.3 /12 Roof pitch Seismic_Design_Category = "D" °verhangL= 18 in Length of Low Eave Overhang werhangx = 18 in Length of High Eave Overhang Low Eave Post Details Footing Details for Low Eave Post: Post_size= "6x6" Post_is = "not constrained by a concrete slab" Post_grade = "#2 Hem-Fir" PostdcpthL= 4.0 ft Design Post Depth Post_usageL = 86 % Combined stress usage di, foot• = 1.7ft Design Footing Diameter of low eave post FootingusageL= 51 % Stress usage of footing High Eave Post Details Footing Details for High Eave Post: Post_size2 = "6x6" Post_is = "not constrained by a concrete slab" Post_grade2 = "#2 Hem-Fir" PostdepthH= 4.0 ft Design Post Depth Post_usageIi= 56 % Combined stress usage dia footingx = 1.7 ft Design Footing Diameter of high eave post Footingusagerr= 51 % Stress usage of footing Purlin Details: Purlin_usage= 50 % Stress usage of roof purlin Rafter Details: Rafter_usage = 94 % Stress usage of roof rafters SPECIAL NOTE: The drawings attendant to this calculation shall not be modified by the builder unless authored in writing by the engineer. No special inspections are required. No structural observation by the design engineer is required.