Specifications )P22Z!a6
15600 2',vcr Ie N
RECEIVED
OCT -6 ?P?7
CITY OF TIGARD
22175 S.Highway 99E,Canby,Oregon 97013 RlilLll>•1O DPwIfCN
Phone: (503)263-6953 Fax: (503)266-7102
POST FRAME BUILDING
STRUCTURAL CALCULATION
(This structure has been analyzed and designed for structural adequacy only.)
PROJECT No.
MW22138
OWNER:
P&c Const for Tigard School District
15727 SW Taylor Lane
Tigard, OR 97224
ENGINEER:
.<61s`p PROFFS,S
��,�`' ��GINfF� ��� /�Z2-
864PE
OREGON
4-%,(e..tc7. 14 n
S C. LOVG
EXPIRES:k a l 3jl[?
1 1
5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15112.xmcd 1
POST FRAME BUILDING
REFERENCES:
1. 2018 Edition of the International Building Code
2. ASCE 7-16- Minimum Design Loads and Associated Criteria for Buildings
and Other Structures,Provisions
American Society of Civil Engineers,2017
3. 2018 Edition, National Design Specification(NDS)For Wood
Construction with 2018 Edition NDS Supplement,American Wood Council,2018
4. ASABE EP486.2-Shallow Post and Pier Foundation Design
American Society of Agricultural and Biological Engineers,2012
1
5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12.xmcd 2
DESIGN INPUT VALUES:
Building Dimensions
HbldgL = 12.00 ft Low Eave Height of Building
Whldg:= 16•ft Width of Building
Lbidg:= 30.ft Length of Building HbidgH= 15.00 ft High Eave Height of Building
Apro„y := 0-ft Wall apron below low eave roof line
Apro„H:= 0-ft Wall apron below high eave roof line
Apro„G:= 0•ft Wall apron below gable roof line
Roth= 2.25/12 Roof pitch 'Rafters :`vI. Primary roof framing
OyerhangL:= 18-in Length of Low Eave Overhang COveri,an8= 18•m Length of Gable Overhang
OverhangH:= 18•in Length of High Eave Overhang
Bay:= 10-ft Greatest nominal spacing between eave wall posts
Design Loads for Building
Risk_Category
Fir
Wind Design Values:
Wind Speed: Wind Exposure:
Vwind= 97 mph Exposure
Seismic Design Values:
Site class :=
Ss:= 0.842 Mapped spectral acceleration for short period
SI := 0.396 Mapped spectral acceleration for 1 second period
Ra:= 1.5 Response modification factor
Roof Load Design Values:
pg:= 25•psf Ground snow load
pd= 5 psf Roof dead load Roof type is= "metal sheathing"
pr r= 20 psf Roof live load
Pa2:= 0•psf Additional truss bottom chord dead load(if applicable)
5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12'.xmcd 3
DESIGN INPUT VALUES (Continued):
Structural Members for Building.
Low Eave Post Properties:(Solid rough-sawn post unless otherwise specified)
SP ust := Post Species := Post Grade :_
I6x6 ti'l 12 v
Hiah Eave Post Properties:(Solid rough-sawn post unless otherwise specified)
Spose := Post Species2 := Post Grade2
6x6 v IHem-Fir Zvi it v.
Purlin Prrrties:
Spurlui
ISx26 j
Purlinspecies
P1SR v
Purlingrade
11650_1.5E:v Purlinspa,i„g:= 24•in
Post Hole and Footing Design Values:
:= 1500-psf Assumed soil vertical bearing capacity
Ssoir = 100 psf Assumed soil lateral bearing capacity
dig footir .:= 20.in Low eave post footing diameter
dig foot• := 20-in High eave post footing diameter
Slab and backfill information
Concrete slab :=
INa
Backfill_type :_
IConcrete VI Main eave post hole backfill
(GO TO LAST PAGE FOR SUMMARY OF RESULTS)
5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12'.xmcd 4
SNOW LOAD ANALYSIS:
pg= 25 psf Ground Snow Load(from above)
Rye = 10.62 deg Angle of roof
Ce= 1.00 Exposure factor
C,= 1.20 Thermal Factor
Cs= 1.00 Roof slope factor
Is = 1.00 Importance factor
1. Determine Roof Snow Loads:
pm:= max(I3.pg,20.psf) Equation 1
pn = 25.0 psf Minimum snow load for low sloped roofs; Roof slope< I 5deg
Pr 0.7•Ce•CL Is•pg Equation 2
pf= 21 psf Flat roof snow load; Roof slope<5deg
Ps Cs Pf Equation 3
ps = 21 psf Sloped roof(balanced)snow load
2. Determine final snow load,psu
Psu= 25psf Final roof snow load
5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x16_12'.xmcd 5
WIND ANALYSIS:
Vwind= 97 mph Wind Speed
kd= 0.85 Wind Directionality Factor
k,l= 1.0 Topographic Factor
k,= 0.849 Wind Exposure Factor(MWFRS)
kZ Ce= 0.849 Wind Exposure Factor(Components&Cladding)
Iw= 1.00 Importance factor
0.00256•k k k V 2 0.00256.k 2
qz:= z' zl' d' wind gz cc�= z ckc' n'k d'V wind
qZ= 17.38 psf Velocity Pressure qZ ee= 17.38 psf Velocity Pressure
(MWFRS) (Components&Cladding)
Calculated Wind Pressures:
Roof Wind: Roof Uplift:
lroorE giG'CNrtiv quplift: gz'G.CNuplift
qro m = 19.26 psf quoin= -19.08 psf
Windward Eave Wall: Leeward Eave Wall:
gwwe qi G•Cpwwe glove qz G'Cplwe
gwwe= 11.82 psf giwe= -7.39 psf
Windward Gable Wall: Leeward Gable Wall:
gwwg qi G'Cpwwg giwg:= gz'G.Cplwg
gwwg= 11.82 psf qiwg = -4.80 psf
Wall Elements: Roof Elements:
gwe gz_cc'GCPfw qr qz cc'G'CNre
qwe= -17.79 psf qr= -27.57 psf
Internal Wind Pressure(+l-):
qi qz cc-GCpi
= 0.00psf
, r
5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12'.xmcd 6
SEISMIC CALCULATIONS:
Ss= 0.842 Mapped spectral acceleration for short periods(from above)
Si = 0.396 Mapped spectral acceleration for 1-second period(from above)
Ie= 1.0 Importance factor
Ra= 1.50 Response modification factor(from above)
1.Determine the Seismic Design Category
a.Calculate SDs and SDI
For SDs: For SD1:
For ss= 0.842 For Sl = 0.396
Fa= 1.200 F"= 1.608
SMs S,.Fa SM1 `Si•Fv
SMs= 1.010 SM1 = 0.637
SDs (-).SMs SDI 3 J'SM1
SDs= 0.674 SDI = 0.425
Seismic_Design_Category = "I)"
2.Determine the building parameters
Building dead load weight,W: Wall Load Design Values:
pf := if(pf>30-psf,pf,0) pfs= 0.00psf pp,= 3.00psf Wall dead load
Hroof= 3.00 ft Height of roof
2.Determine the building parameters
Building dead load weight,Wt:
2 AHeavewalls = 0 ftArea of high eave walls
Agablewalls= 80 ft Area of gable walls
ALea„ewaIls= 0 ft Area of low eave walls
Wt [(Wbldg'Lbldg)'[(pt_s"0.2) + Pa+ Pd2 + (0.25•pLa)] +[(Agablewalls + AHeavewalls + ALeavewalls)'PDW]
Wt= 26401b
Building area,Ab:
2
Ab Lbldg'Wb1dg Ab= 480 ft
5/252022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12'.xmcd 7
3. Determine the shear force to be applied
a. Determine the fundamental period,T
C„= 1.40 sec Coefficient for Upper Limit on Calculated Period
0.75
Hm dgll
Ta:= 0.02- Ts= 0.152 sec
ft /
T:= if(Ta>Cu,C,,,Ta) T = 0.15 sec Fundamental period
b.Determine the Seismic Response Coefficient,Cs:
TL= 6.00 Long-period transition period
CS is calculated as: but CS need not exceed:
SDS SDI 8D1'TL
Csl Rs Cs2 if T < TL, „ > 2 (Ra�
Csl= 0.449 T- — V T ' j Cs2= 1.857
e _ eJ e/_
and CS shall not be less than:
0.55•S1
Ca3:= ma max(0.044•Sim.le,0.01),if S1 >_0.6, (R \ ,0
a
Cs3 = 0.03
\Ie/
Cs i(Cs1 > Cs2,Cs2,1t(Cs1 <Cs3,Cs3,Cs1))
Cs= 0.449 Seismic Response Coefficient to used in determination of seismic base shear
c. Determine the Seismic Base Shear
abase shear Cs'Wt Vbase shear= 1186 lb
4. Determine the seismic load on the building:
Since Seismic_Design_Category = "D" , p= 1.00 S20:= I.5 Overstrength Factor
E:= max(p,c2o).Vbase_shear E= 1778 lb Seismic load on building
5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12'.xmcd 8
BUILDING MODEL:
a = 120.00 inBay spacing in inches Hroof= 3.00 ft Roof height
O = 10.62 deg Roof angle from hor¢ontal
CALCULATE WIND LOADS:
Apply wind loads to the roof to determine moments and fiber stresses in the posts
Eave Wind Calculations:
Calculate the eave wind load on the roof in each bay.
groofE = 19.3 psf Roof wind pressure
Proof wind Hroo£•B ay'gmotE Proof wind = 578 lb
Calculate the eave wind load on the eave wall aprons
qe= 19.2 psf Eave wall wind pressure
Peave_apron:= ApronL'Bay.q, Peaveapron= 0 lb
Peave_wind:= (Proof wind+ Peave_apron) Peave_wind= 578 lb
Calculate equivalent post system stiffness(use 2 posts in the frame system)
Eave post on low eave Eave post on high eave wall
Hbldgl = 12.0 ft Hb1d = 15.0 ft
Hb1dgL Hb1dgH
1'pustlx in L = 144.0 in 1'postzx• L 180.0 in
postlx in post2x=
lxpost lxpost2
Kix:= K2x
1 postlx3 Kix = 0.000036 1-post2x3 K2x= 0.000019
Klux:= Kix+ Kyx Kton = 0.000055
Now determine the bending moment and fiber stress in each post
Mpost (Peave_wind'Lpostlx) Mpost = 83220 in•1b
Kix K2x
Mwindlx Mposf— Mwindlx:= Mpost'
Ktotx Ktotx
Mwindlx= 55040 in-lb Mwind2x= 28180 in.lb
Mwindlx Mwindlx
fbwindlx:= fbwind2x:=
Sxpost Sxpast2
fbwindlx= 1529 psi fbwind2x= 783 psi
5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12'.xmcd 9
Gable Wind Calculations:
Calculate the total gable roof/wall load
qg= 16.6 psf Gable wall wind pressure
20
Agable Wbldg'Hroof'0.5 Name= 24.0 ft
Pgable wind qgablc'qg Ngablc wind= 399 lb
Calculate equivalent post system stiffness(use 2 posts in the frame system)
Eave post on low eave Eave post on high eave wall
HbmgL= 12.0 ft Hbldgx= 15.0 ft
Hbldgi. Hb1dglI
•
Lpoatly •
inLpostly = 144.0 in 1' �' in Lpost2y = 180.0 in
lypost 1ypost2
Kly:= K2y:_
Lpostly3 Kty= 0.000036 Lpost2y3 Key= 0.000019
Ktoty := Kly.+ K2y Ktoty = 0.000055
Determine the bending moment and fiber stress in each post
frames= 4.0 Total number of frames
Pgable wind \ Kly Pgable wind K2y
Mwindly `frames+ 2 Lpostly/'Ktoty Mwndzy frames+ 2 Lpostzy/'Ktoty
Mwindly= 18994 in-lb Mwind2y = 12156 in-lb
Mwindly Mwind2y
fbwindly fbwind2y
Sypost 3ypost2
fbwindty= 528 psi tbwind2y= 338psi
5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12'.xmcd 10
Calculate seismic loads on posts:
H = 1778lb Seismic load on building(from above) frames= 4
E Klx K
Mseismiclx Lpostlx E Zx
frames / Ktotx Mseismic2x •Lie st2xj'-
frames Kto,
Mseism;clx= 38812 in1b
Mseismic2x= 25291 in-lb
Mseismiclx Mseismic2x
fbseismiclx fbseismiclx
Sxpost Sxpost2
fbseismiclx = 1078 psi fbseismiclx= 703 psi
E Kly yeK
Mseismicly 'l-postlx E zY
frames Ktoty Mseismic2y:= `frames Lpost2y/'Katy
Mseismiciy= 38812 in-lb
Mseismic2y = 26270 in-lb
Mseismic ly Mseismic2y
fbseismic ly•— fbseismicly
Sypost sypost2
fbseismicly= 1078 Psi fbseismicly= 730psi
5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12'.xmcd 11
MAIN LOW EAVE POST DESIGN: (Loads applied parallel to frame)
Calculate allowable unit compression stress, Fcc.
Fel= 575 psi Fe Fc1.CMcpost'Cipost'CFcposf Cipost'CdASCE
Fe= 690 psi Allowable compression stress including load factors
Lxpost_bndgL= 132 in Bending length of post
dpost= 6.00 in Minimum unbraced dimension of post
Ke:= 1.2 c := 0.8 Emin wood= 400000 psi Frain` Emin_wood'CMEpost'CtpostE'CipostE
le Ke'l xpostbndgl = 158.4 in Emit, = 400000.00psi
0.822.F'ttun Load duration factors(CD):
FeE FcE= 472 psi
1 2 CDconst= 1.25 CDwind= 1.60
‘dpost) CDsnow= 1.15 CDseismic= 1.60
Calculate Column Stability Factor,Cp: CDtive= 1.00
FcE\ r FcE 2 FcE
1 + — 1 + - —
Fe Fc Fe Cp_Lr= 0.47 Cp L= 0.55
Cp:=
2•c \ 2.c j c Cps = 0.5 Cp WorE = 0.38
FeeL= Fc'CP_L Fcc_L= 379 psi
FeC_Lr:= Fc•Cp_Lr Fee Lr= 321 psi Allowable compression stress on the post; load case 2
Fees Fc Cp_s F0G s= 343 psi Allowable compression stress on the post; load case 3b&
4b
FccworE FC Cp_wOFE Fcc_worE= 263 psi Allowable compression stress on the post; all load cases
except as note above
Pdeadpost = 475 lb Axial loading per post due to roof dead load
Pti,epogt= 0 lb Axial loading per post due to live load
PLroofpost = 1900 lb Axial loading per post due to live roof load
Psnowpos,= 2375 lb Axial loading per post due to roof snow load(load case 3b&4b)
Psnowpost_fs = 1995 lb Axial loading per post due to roof snow load(load cases except as noted above)
Fbi = 575.00 psi Fb:= Fbl'CDwind'CMbpost'Ctpost'CLxpost'CFbposf C fupost'Cipost CdASCE
Fb= 1100 psi Allowable bending stress per post including load factors
5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x16_12'.xmcd 12
Check Eave Load Cases:
Load Case 1:Dead Load
Pdeadpost
fc:= fc= 13 psi Actual compression stress per post
Apost
fc
CCFALII :_ — CCFALII = 0.03
`Fcc_L1
Load Case 2:Dead Load+Live Load
Pdeadpost + Plivepost
fc:= fc= 13 psi Actual compression stress per post
Apost
l fo
CCFALI2 := —
Fcc L CCFALI2 = 0.03
Load Case 3a: Dead Load+Live Roof Load
Pdeadpost + PLroofpost
:= fc= 66 psi Actual compression stress per post
Apost
CCFALI3a f c:_
Fcc_Lr CCFALI3a= 0.21
Load Case 3b: Dead Load+Snow Load
Pdeadpost+ Psnowpost
:= fc= 79 psi Actual compression stress per post
Apost
f
CCFALI3b := c
"FCC_s� CCFALI3b = 0.23
Load Case 4a: Dead Load+0.75*Live load+0.75*Live Roof Load
Pdeadpost+ 0.75-Plivepost + 0.75'PLroofpost
fc:= fc= 53 psi Actual compression stress per post
Apost
CCFALI4a:= —
Pcc_Lri CCFALI4a= 0.16
Load Case 4b: Dead Load+0.75*Live load+0.75*Snow Load
Pdeadpost+ 0.75•Plivepost + 0.75•Psnowpost
fc:= fc= 63 psi Actual compression stress per post
Apost
f
CCFALI4b := c
.Fcc s� CCFALI4b = 0.18
5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15112'.xmcd 13
Check Eave Load Cs.%Ps-cont'd:
Load Case 5:Dead Load+0.6*Wind Load
fbl := 0.6•fbwindlx fbi = 917 psi Actual bending stress on post
Pdeadpost
:= fc= 13 psi Actual compression stress per post
`4post
/ z _
CCFALI5 := fe ` + fbl
cc_WorE) fc \
Fb. 1 — —
FcE/_ CCFALI5 = 0.86
Load Case 6a: Dead Load+0.75*Live Load+0.75*(0.6*Wind Load)+0.75*Live Roof Load
fb1 := 0.75•(0.6.fbwindlx) fbl = 688 psi Actual bending stress on post
Pdeadpost+ 0.75-Pbvepost+ 0.75•131 roofpost
fc:= fe= 53 psi Actual compression stress per post
Apost
/ 2
CCFALI6a:= fc + fb1
\•Fcc_WorE
Fb- 1 CCFALI6a= 0.74
F`E)
Load Case 6a: Dead Load+0.75*Live Load+0.75*(0.6*Wind Load)+0.75*Snow Load
fbl := 0.75•(0.6•fbwindlx) fbl = 688 psi Actual bending stress on post
Pdeadpost + 0.75'Plivepost + 0.75.Psnowpost_fs
fc:= tb= 55 psi Actual compression stress per post
Apsst
2 1
CCFALI6b :_ / re. N.2
fbl
Fcc_WorE1 fc \
Ft; 1 — —
FoE� CCFALI6b = 0.75
Load Case 7:0.6*Dead Load+0.6*Wind Load
fbi := 0.6•fbwindlx
fbl = 917 psi Actual bending stress on post
O.6•Pdeadpost
fc:_
Apos f,= 8 psi Actual compression stress per post
- 2 -
CCFALI7:= f` l + fbf
FccWorE1 / fc
Fb•
1
F`E� CCFALI7 = 0.85
-
5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12'.xmcd 14
Check Eave Load Cases-cont'd:
Evpost 0.2.SOs•Pdeadpost rwpost= 64 lb Vertical seismic load
Load Case 8:Dead Load+0.7*Vertical Seismic Load+0.7*Horizontal Seismic Load
fb1 := 0.7•fbseismicix fb1 = 755 psi Actual bending stress on post
fc Pdeadpost+ O.TEvpost fc= 14 psi Actual compression stress per post
Apost
2
CCFALIS := I fc I + fbl
(Fee WorE ( fc
t'6 1 — -
FcE CCFALI8 = 0.71
Load Case 9:Dead Load+0.525*Vertical Seismic Load+0.525*Horizontal Seismic Load+
0.75*Live Load+0.75*Snow Load
fb1 := 0.525•fbseismictx tbt = 566psi Actual bending stress on post
Pdeadpost + 0.525•E„post + 0.75•Plivcpost+ 0.75•Psnowpost_fs
fc:_
Apost
Z
fc= 56 psi Actual compression stress per post
CCFALI9:= fc + fbt
(
,1 cc_WorE1 fc
Fb. 1 — —
FcEj CCFALI9 = 0.63
Load Case 10:Dead Load-0.7*Vertical Seismic Load+0.7*Horizontal Seismic Load
fb1:= 0.7'fbseismiclx fb1 = 755 psi Actual bending stress on post
Pdeadpost— 0.7•Evpost
fc:=
Apost
fc= 12 psi Actual compression stress per post
/ fc \2 tb1
CCFALIIO := +
,Fcc_WorE/ fc
Fb• 1 — -
FcEj• CCFALI10 = 0.71
CCFALIeaveL= 0.86 Less than or equal to 1.00 thus OK
5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12'.xmcd 15
MAIN LOW EAVE POST DESIGN: (Loads applied perpendicular to frame)
Calculate albwable unit compression stress, FCC.
Fel= 575 psi Fe•= Fcl'CMcpost Ctpost*CFcposI Cipost'CdASCE
Fe— 690 psi Allowable compression stress induding load factors
Lypost bndgL= 138.5 il$ending length of post
dpos,= 6.00 in Minimum unbraced dimension of post
Ke:= 1.2 c:= 0.8 Emin_wood= 400000 psi E'nun= Emin_wood'CMEpost'CtpostE CipostE
Ie Ke'Lypost_bndgL Ie= 166.2 in E'm n= 400000 psi
Load duration factors(CD):
0.822.E' n
FCE = 429 psi CDconst= 1.25 CDwind= 1.60
2
Ie
CDsnow= 1.15 CDseismic= 1.60
ripest)
Calculate Column Stability Factor,Cp: CDbve= 1.00
2
I
1 + FcE 1 + Fa: FcE C .Lr= 0.43 CpL= 0.51
Fc'CD Fe CD Fe.CD
Cp:= —
2-c ., , 2.c c Cps = 0.46 Cp WorE= 0.35
FCC_L:= CpL FCC L= 354 psi Allowable compression stress on the post; load case 1
Fee Lr:= Cp Lr Fee Lt= 298 psi Allowable compression stress on the post;load case 2
FCC s:= Fc•Cp s FCC s= 318 psi Allowable compression stress on the post; load case 3b&
4b
FCC WorE:= Fe-Cp WorE FCC WorE = 242 psi Allowable compression stress on the post;all load cases
except as note above
Pdeadpost= 475 lb Axial loading per post due to roof dead load
PbVepost= 0 lb Axial loading per post due to live load
PLroot;,os, = 1900 lb Axial loading per post due to live roof load
• Psnowpost= 2375 lb Axial loading per post due to roof snow load(load case 3b&4b)
Psnowpost fs= 1995 lb Axial loading per post due to roof snow load(load cases except as noted above)
Fbt = 575.00 psi Fb Fbl•CDwind'CMbpost•Ctpost•CLypos CFbposf Cfupost.Cipos{CdASCE
Fb= 1100 psi Allowable bending stress per post including load factors
5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15112'.xmcd 16
Check Gable Load Cases:
Load Case 1:Dead Load
fe:= Pdeadpost fe= 13 psi Actual compression stress per post
Apost
i f \
CCP'ALII := o CCFALII = 0.04
ccL/
Load Case 2:Dead Load+Live Load
Pdeadpost + Plivepost
fc:= fe= 13 psi Actual compression stress per post
Apost
f v
c
CCFALI2 := CCFALI2 = 0.04
Load Case 3a: Dead Load+Live Roof Load
fe Pdeadpost +PLroofpost fe= 66 psi Actual compression stress per post
Apost
/ fc
CCFALI3a:_ —
\F Lr CCFALI3a = 0.22 cc_ /
Load Case 3b: Dead Load+Snow Load
tc Pdeadpost + Panowpoat fe= 79 psi Actual compression stress per post
Apost
/ fe
CCFALI3b:= —
CCFALI3b = 0.25
\Fce_S/
Load Case 4a: Dead Load+0.75*Live load+0.75*Live Roof Load
Pdeadpost + ().75 PGvepost + 0.75'PLroofpost
fe:= fc- 53 psi Actual compression stress per post
Apost
/ fc
CCFALI4a:_ CCFALI4a = 0.18
Fee_Lr/
Load Case 4b: Dead Load+0.75*Live load+0.75*Snow Load
Pdeadpost+ 0.75 Pllvepost+ 0.75-Psnowpost
fc:= fe— 63 psi Actual compression stress per post
Apost
• f \
e
CCPALI4b:_ - CCFALI4b = 0.20
\Fcc_5)
5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15112'.xmcd 17
Check Gable Load Cases-confd:
. Load Case 5:Dead Load+0.6*Wind Load
fb1 0.6'fbwindly fbl - 317 psi Actual bending stress on post
fe Pdeadpost fe= 13 psi Actual compression stress per post
p
post
\2
CCFALI5 := fc + fbl
r[FCC WorE; fc 1
Fb- 1 — —
FcEj CCFALI5 = 0.30
Load Case 6a: Dead Load+0.75*Live Load+0.75*(0.6*Wind Load)+0.75*Live Roof Load
fbl := 0.75.(0.6.fbwindiy) fb1 = 237 psi Actual bending stress on post
Pdeadpost+ 0.75.Plivepost + 0.75•PLroofpost
fe fc= 53 psi Actual compression stress per post
Apost
2 f
CCFALI6a / fc \ + b1 1
\,Fcc_WorEJ fc \
Fb. 1 - -
FcE1 CCFALI6a = 0.29
Load Case 6a: Dead Load+0.75*Live Load+0.75*(0.6*Wind Load)+0.75*Snow Load
fb1 := 0.75•(0.6.fbwindly) fbi = 237 psi Actual bending stress on post
Pdeadpost + 0.75•Plivepost + 0.75•Psnowpost_fs
fc:- fc= 55 psi Actual compression stress per post
p
-post
-N2
CCFALI6b := fc + fnl
Fee_Work/ fc
Fb. 1 — —
F GB, CCFALI6b = 0.30
Load Case 7:0.6*Dead Load+0.6*Wind Load
fbl 0-6.fbwindly
fb1 = 317 psi Actual bending stress on post
0.6.Pdeadpost
fc:_
Apost fc= 8 psi Actual compression stress per post
2
CCFALI7 = + l
,Fcc_WorE / fe
Fb- 1 - -
FcE CCFALI7=0.29
5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12'.xmcd 18
Check Gable Load Cases-cont'd:
Evpost:= 0.2•SDS'Pdeadpost l-post= 641b Vertical seismic load
Load Case 8:Dead Load+0.7'Vertical Seismic Load+0.7*Horizontal Seismic Load
fb1:= 0.7•fbseismicty fbi = 755 psi Actual bending stress on post
f — Pdeadpost + 0 7'f vpost fe- 14 psi Actual compression stress per post
—
Apost
- -
fc 2 fbi
CCFALI8:= +
Fce_WorE/ lc
Fb. 1 - -
F EI CCFALI8= 0.71
Load Case 9:Dead Load+0.525*Vertical Seismic Load+0.525` Horizontal Seismic Load+
0.75*Live Load+0.75`Snow Load
0.525 fbseismiciy fbi = 566psi Actual bending stress on post
Pdeadpost+ 0.525-Fvpost + 0.75 Privepost+ 0.75•Psnowpost_Is
fe
Apost
fe= 56 psi Actual compression stress per post
/ fe \2 fbi
CCFALI9:= +
�\Fcc_WorE) C fc �J
Fb 1 JI CCFA1,19 = 0.64
hcE
Load Case 10: Dead Load-0.7*Vertical Seismic Load+0.7*Horizontal Seismic Load
0.7 fbseismicly fbi = 755 psi Actual bending stress on post
bl �=
Pdeadpost— 0.7.Evpost
fe
Apost
fe= 12 psi Actual compression stress per post
rr .„2
CCFALI10 :— fe + fbl
L F /1 fe
Fee Work)
b \ FcEi CCFALIIO = 0.71
CCFALIgabieL= 0.71 Less than or equal to 1.00 thus OK
5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12'.xmcd 19
EMBEDMENT FOR LOW EAVE POST:
Calculate the minimum required post embedment depth for lateral loading for the low eave posts.
Post_is= "not constrained by a concrete slab"
Va= 382 lb Lateral shear load at the ground line
Ma= 4587 ft-lb Moment at the ground line
dia_foot•. = 1.7 ft Main low eave post footing diameter
Ssoa = 100 psf Lateral capacity of soil
Trial depth=1.5 ft.-The starting depth of the post hole depth.The final post hole depth is determined
by aerating to a final depth.
depth post = 3.16 ft This is the minimum required post embedment depth for lateral loading
FOOTING DESIGN FOR LOW EAVE POST:
Determine the footing size and depth for vertical bearing for the low eave posts.
q,,,il = 1500psf Soil bearing capacity for footing
dia food= 1.67 ft Footing diameter
2�
dia_footingI
Afooting �'' 4 , Afooting = 2.18 ft2 Footing area
Post_depaf = 4.0 ft Minimum required post embedment depth
Pfooting>, nfooting gsnit dfactor PfootingL= 5563 lb End bearing capacity of footing
PsnowL= 2850 lb Total low eave footing load
Note that the end bearing capacity(P ,gL)is greater than the snow load(Ps L). This is OK.
Check uplift:
PuIL W n
cis + Overt.angL 'Bay'I quptil PuiL= 1813 lb This is the uplift on one eave wall post
Z
Assume a total weight of roof to be 0.6*Dead Weight(pd). The area of the roof that will tend to
keep the post in the ground will be as follows:
2
Wt p 150 cf P n dia_Luvt ngL AP
L ost_hole p Dist d the Dist Wt 1159lb Weight of concrete
` 4 / Lpnsl_hole=
in post hole
Wutrf,:= 2Wt� + °verhangi. 'Bay'(0.6'pd) + WtLpost_hole+ PskinLEV
Wulrr.= 20981b Total uplift resistance
Note that the total uplift resistance(Wtg L)is greater than the uplift load(Puir). This is OK.
5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12'.xmcd 20
MAIN HIGH EAVE POST DESIGN:
Calculate allowable unit compression stress, F„.
Fc2= 575 psi Fc Fc2.CMepost*Ctpost2•CFcpost2'Cipost2•CdASCE
Fe= 690 psi Allowable compression stress including load factors
1.post bmign= 168 in Bending length of post
dpost= 6.00in Minimum unbraced dimension of post
Ke:= 1.2 c:= 0.8 Emin wood2= 400000 psi E'm;n Enun_wood2'CMEpost2•CtpostE2'CipostE2
Te Ke'LpostbndgH Ie= 201.6 in E'en= 400000.00 psi
0.822•E'min Load duration factors(CD):
FcE:= FcE= 291 psi Load duration factors(CD):
i 1 2
e
CDconst= 1.25 CDwind= 1.60
dpost/
Calculate Column Stability Factor,CP: CDsnow= 1.15 Cl3seism c= 1.60
2
CDlive= 1.00
/ FcE\ ( i'cE\ FcE
1 + — 1 + - —
Fe Fc Fe
Cp 2-c 2-c c Cp_Lr = 0.31 Cp L= 0.38
Cps = 0.33 Cp_WOTP.= 0.25
FccL= Fe.CpL Fcc_L= 260 psi
Fee Lr Cp Lr FeC Lr= 214 psi Allowable compression stress on the post;load case 2
Fcc s= Foi Cp_s Fee s= 230 psi Allowable compression stress on the post;load case 3b&
4b
Fcc worE Fc Cpwort Fcc_worE= 171 psi Allowable compression stress on the post;all load cases
except as note above
Pdeadpost= 475 lb Axial loading per post due to roof dead load
Pi;vepost= 0 lb Axial loading per post due to live load
PLroofpost= 1900 lb Axial loading per post due to live roof load
• Psnowpost= 2375 lb Axial loading per post due to roof snow load(load case 3b&4b)
Psnowpost fs= 1995 lb Axial loading per post due to roof snow load(load cases except as noted above)
Fb Fb2'CDwind'CMbpost2'Ctpost2•CLpost2'CFbpost2'Cfupost2.Cipost2.CdASCE
Fb= 1104psi Allowable bending stress per post including load factors
5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12'.xmcd 21
Check Eave Load Cases:
Load Case 1:Dead Load
Pdeadpost
fe fe = 13 psi Actual compression stress per post
Apost2
/ fe
CCFALII := — CCFALI1 = 0.05
�cc L� j
Load Case 2: Dead Load+Live Load
Pdeadpost + Plivepost
fe:= fe= 13 psi Actual compression stress per post
Apost2
0" fe \
CCFALI2:= —
�Fee L� CCFALI2 = 0.05
Load Case 3a: Dead Load+Live Roof Load
Pdeadpost + PLroofpost
fe:= fe= 66 psi Actual compression stress per post
Apost2
/ fc \
CCFALI3a:_ —
,,Fcc Lr," CCFALI3a= 0.31
Load Case 3b: Dead Load+Snow Load
Pdeadpost + Psnowpost
fe:= fe= 79 psi Actual compression stress per post
Apost2
fe \
CCFALI3b :=
Fee s CCFALI3b = 0.34
Load Case 4a: Dead Load+0.75*Live load+0.75*Live Roof Load
Pdeadpost + 0.75•Plivepost+ 0.75'PLroofpost
fe:= fe= 53 psi Actual compression stress per post
Apost2
/ fc
CCFALI4a :_ —
\Fee Lr CCFALI4a= 0.25
•
Load Case 4b:Dead Load+0.75*Live load+0.75*Snow Load
Pdeadpost + 0.75"Plivepost+ 0.75•Psnowpost
fe.- k- 63 psi Actual compression stress per post
Apost2
f
CCFALI4b := c
�Fcc_s/ CCFALI4b = 0.27
5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12'.xmcd 22
Check Eave Load Cases-cont'd:
. Load Case 5:Dead Load+0.6*Wind Load
fbi := 0.6.fbwindzx fbi = 470 psi Actual bending stress on post
Pdcadpost
fe= fc= 13 psi Actual compression stress per post
Apost2
fc 2 fb1 1
CCFALIS := +
Fcc_WorE fc
Fb. 1 — —
FcE CCFALIS = 0.45
Load Case 6a: Dead Load+0.75*Live Load+0.75*(0.6*Wind Load)+0.75*Live Roof Load
fbt := 0.75•(0.6.fbwind2x) fb1 = 352 psi Actual bending stress on post
Pdcadpost + 0.75•Puvepost + 0.75•PLroofpost
fc= fe= 53 psi Actual compression stress per post
Apost2
r fc 2 fbl 1
CCFALI6a:_ +
\Fcc_WorE fc
Fb. 1 — —
Fcg1 CCFALI6a= 0.49
Load Case 6a: Dead Load+0.75*Live Load+0.75*(0.6*Wind Load)+0.75*Snow Load
fb1 := 0.75-(0.6.fbwind2x) fbi = 352 psi Actual bending stress on post
Pdcadpost + 0.75'P1ivepost + 0.75•Psnowpost_fs
fc:- fc= 55 psi Actual compression stress per post
p
post2
2
fbl 1
CCFALI6b :_ / fc \ +
�Fcc_worEi fc
Fb. 1 — —
PeEi CCFALI6b = 0.50
Load Case 7:0.6*Dead Load+0.6*Wind Load
• fb1 := 0.6-fbwind2x
fin = 470 psi Actual bending stress on post
0.6'Pdeadpost
fc:_
Apost2 fc= 8 psi Actual compression stress per post
2
CCFALI7:= fc 1 + fbi Fcc_WorE
Fb. 1 — fc
FcE CCFALI7 = 0.44
5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12'.xmcd 23
Check Eave Load Cases-cont'd:
Evpost:= 0.2.SDS'Pdeadpost Est = 64 lb Vertical seismic load
Load Case 8:Dead Load+0.7*Vertical Sesmic Load+0.7*Horizontal Seismic Load
fb1:= 0.74bseismic2x fbt = 492 psi Actual bending stress on post
fc:= Pdeadpost + 0.TEvpost fc= 14 psi Actual compression stress per post
f post2
\2 _
CCFALI8:= fc +(
fbl
Fcc_WorEj ' lc
Fb 1 CCFALIS = 0.48
FcE/-
Load Case 9:Dead Load+0.525*Vertical Seismic Load+0.525*Horizontal Seismic Load+
0.75*Live Load+0.75*Snow Load
fbl:= 0.525•fbseismic2x fbi = 369 psi Actual bending stress on post
Pdeadpost+ 0.525•Evpost+ 0.75•Piivepost+ 0.75"Psnowpost_fs
re
._
t2
fc= 56 psi Actual compression stress per post
-
fc 2 fb1
CCFALI9:= +
�Fcc_worE, fc
Fb• 1 —
FcE CCFALI9 = 0.52
Load Case 10:Dead Load-0.7*Vertical Seismic Load+0.7*Horizontal Sesmic Load
fb1 := 0.7.fbseismic2x fbi = 492 psi Actual bending stress on post
Pdeadpost— 0.7-Evpost
fc:_
Apost2
fc= 12 psi Actual compression stress per post
•
r fc \2 fbl
CCFALI10 := +
. �Fcc_worEi fc
Fb• 1 --..) CCFALI10= 0.47
CCFALIeaveH= 0.52 Less than or equal to 1.00 thus OK
5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15_12'.xmcd 24
MAIN HIGH EAVE POST DESIGN: (Loads applied perpendicular to frame)
Calculate allowable unit compression stress, FCe.
hc2= 575 psi Fc:= Fc2'Cn4cpost2.Ctpost2'CFcpost2•Cipost2•CdASCE
Fc= 690 psi Allowable compression stress induding load factors
Lypost_bndgD= 174.5 in Bending length of post
dpost= 6.00 in Minimum unbraced dimension of post
Ke:= 1.2 c := 0.8 Ervin wood2 = 400000 psi E'min Emirs_wood2.CMEpostTCtpostE2'CipostE2
le Ke'Lypost_bndgn Ie= 209.4 in = 400000psi
Load duration factors(CD):
0.822•E'n,i,
FeE:= FeE= 270 psi CDconst= 1.25 CDwind= I.60
Ie 2
CDsnow= 1.15 CDseismic= 1.60
dpost
Calculate Column Stability Factor,Ci,: CDlive = 1.00
2
1 + FeE 1 + FeE FcE Cp_Lr= 0.29 Cp L= 0.35
Fe.CD Fe-CD Fe•CD
Cp 2-c j 2-c c Cp_s = 0.31 Cp wn<E= 0.23
Fcc_L:= Fc Cp_L Fec_L= 243 psi Allowable compression stress on the post; load case 1
Fcc Lr:= Fe-Cp Lr F„ Lt= 200 psi Allowable compression stress on the post;load case 2
Fees:= Fe Cp s Fee s= 215 psi Allowable compression stress on the post; load case 3b&
4b
Fcc_worE Fe Cp_worE Fee_worE= 159 psi Allowable compression stress on the post; all load cases
except as note above
Pdeadpost= 475 lb Axial loading per post due to roof dead load
PLrepost = 0 lb Axial loading per post due to live load
PLroofpost = 19(X)lb Axial loading per post due to live roof load
Psnowpost= 2375 lb Axial loading per post due to roof snow load(load case 3b&4b)
Psnowpost_fs = 1995lb Axial loading per post due to roof snow load(load cases except as noted above)
Fb2= 575.00 psi Fb Fb2-CDwind•C'vfbpost2'Ctpost2'CLypost2.CFbpost2.Cfuposi2.Cipost2.CdASCE
Fb= 1099 psi Allowable bending stress per post including load factors
5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12'.xmcd 25
Check Gable Load Cases:
Load Case 1:Dead Load
Pdeadpost
fc:= fe= 13 psi Actual compression stress per post
Apost2
/ fc \
CCFALII := — CCFAI.11 = 0.05
\Fcc_L1
Load Case 2: Dead Load+Live Load
Pdeadpost+ Plivepost
fc:= fe= 13 psi Actual compression stress per post
Apost2
/ fc \
CCFALI2 :_ CCFALI2 = 0.05
Fcc_L
Load Case 3a: Dead Load+Live Roof Load
Pdeadpost + PLroofpost
fe:= fc= 66 psi Actual compression stress per post
Apost2
fe
CCFALI3a:_ Fcc_Lr-
CCFALI3a = 0.33
Load Case 3b: Dead Load+Snow Load
Pdeadpost+ Panowpost
fe:_ f,= 79 psi Actual compression stress per post
Apost2
/ fc
CCFALI3b :_ —
ee s) CCFALI3b = 0.37
Load Case 4a: Dead Load+0.75*Live load+0.75*Live Roof Load
Pdeadpost+ °•75'Plivepost + 0.75'PLroofpost
fe:= fc= 53 psi Actual compression stress per post
Apost2
/ fc
CCFALI4a:=
F CCFALI4a = 0.26
cc_Lr)
Load Case 4b: Dead Load+0.75*Live load+0.75*Snow Load
Pdeadpost + 0.75'Plivepost + 0.75•Psnowpost
fc:= fe= 63 psi Actual compression stress per post
Apost2
i fc \
CCFALI411 := -
\Fcc_s/ CCFALI4b = 0.29
5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15112'.xmcd 26
Check Gable Load Cases-cont'd:
Load Case 5:Dead Load+0.6*Wind Load
fb1:= 0.64aind2y fbt = 203 psi Actual bending stress on post
Pdeadpost
fc fe= 13 psi Actual compression stress per post
/*pose
2
CCFALIS �/ fe \ + fbl
Fcc WorEj
Fb. ] -
FcE)
CCFALI5 = 0.20
Load Case 6a: Dead Load+0.75*Live Load+0.75*(0.6*Wind Load)+0.75*Live Roof Load
fb1 := 0.75•(0.6-fbw;nd2y) fbl = 152 psi Actual bending stress on post
Pdeadpost+ 0.75•P&vepost+ 0.75.PLroofpost
fc fe= 53 psi Actual compression stress per post
Apost2
/ fe 12 fbt _
CCFALI6a +
\Fcc_WorEJ fc
Fb• 1 — —
FcE/ CCFALI6a= 0.28
Load Case 6a: Dead Load+0.75*Live Load+0.75*(0.6*Wind Load)+0.75*Snow Load
fbl := 0.75•(0.6.fbw;nd20 fb1 = 152 psi Actual bending stress on post
Pdeadpost + 0.754Plivepost+ O.75•Psnowpost_t
fe fe= 55 psi Actual compression stress per post
Apost2
2
CCFALI6b :- fe + tbt
— (F0WEJ / fc
Fb• I — —
\ FeF CCFALI6b = 0.29
Load Case 7:0.6*Dead Load+0.6*Wind Load
• fbt 0.6-fbwind2y
fbt = 203 psi Actual bending stress on post
0.6.Pdeadpost
fc:=
Apost2 fe= 8 psi Actual compression stress per post
2
CCFALI7:= fe I + flat
�Fcc_WorE JI fc
Fb• 1 — —
CCFALI7 = 0.19
FeE/—
5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15112'.xmcd 27
Check Gable Load Cases-cont'd:
• lwpost 0.2SDs'Pdeadpost Evpost = 641b Vertical seismic load
Load Case 8:Dead Load+0.7*Vertical Seismic Load+0.7*Horizontal Seismic Load
fbf:= 0.74bseismiczy fbf = 511 psi Actual bending stress on post
fc Pdeadpost + 0.7 E pit fc= 14 psi Actual compression stress per post
Apost2
_ 1
fc v 2
4,1
CCFALI8 := +
\Fcc_WorEj ( fc
Fb• I _
F`E/J CCFALI8 = 0.50
_ \
Load Case 9:Dead Load+0.525*Vertical Seismic Load+0.525*Horizontal Seismic Load+
0.75*Live Load+0.75*Snow Load
fbf := 0.525•fbseismic2y fbl = 383 psi Actual bending stress on post
Pdeadpost+ 0.525•Evpost+ 0-75•Piivepost+ 0.75"Psnowpost_fs
fc:_
Apost2
fc= 56 psi Actual compression stress per post
2
CCFALI9:= / fc \ + fbi
fe
\Fcc_WorEi \ FcE
Fb 1 CCFALI9 = 0.56
Load Case 10:Dead Load-0.7*Vertical Seismic Load+0.7*Horizontal Seismic Load
fbi 0 7.fbscismic2y fbl = 511 psi Actual bending stress on post
Pdeadpost- U-7"•-pp vpost
fe p
"post2
fc= 12 psi Actual compression stress per post
2
fc fist
CCFALIIO := +
Fcc_ FWorE.1 fc
b• 1
FcE CCFALI IO = 0.49
CCFALIgableH- 0.56 Less than or equal to 1.00 thus OK
7
5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12'.xmcd 28
EMBEDMENT FOR HIGH EAVE POST:
Calculate the minimum required post embedment depth for lateral loading for the high eave posts.
Post is = "not constrained by a concrete slab"
Va= 196 lb Lateral shear load at the ground line
Ma= 2348ft•lb Moment at the ground line
dia foot-ngH= 1.67 ft Main high eave post footing diameter
Sao 1 = 100 psf Lateral capacity of soil
Trial depth=1.5 ft.-The starting depth of the post hole depth.The final post hole depth is determined
by iterating to a final depth.
depth_post= 2.66 ft This is the minimum required post embedment depth for lateral loading
FOOTING DESIGN FOR HIGH EAVE POST:
Determine the footing size and depth for vertical bearing for the high eave posts.
4soii = 1500psf Soil bearing capacity for footing
dia_footingH= 1.67 ft Footing diameter
2\
dia_footingH
4 Afooting= 2.18 ft2 Footing area
P„t depthil= 4.0 ft Minimum required post embedment depth
PfootingH= A£ooting'(heir dfactor PfootingH= 5563 lb End bearing capacity of footing
PsnowH= 2850 lb Total low eave footing load
Note that the end bearing capacity(Pf fl9H)is greater than the snow load(PsmwH). This is OK.
Check uplift:
Wbmg + Overhang; 'Bay'Ic luplifl I P 1813 lb This is the uplift on one eave wall post
ulH=
2
Assume a total weight of roof to be 0.6*Dead Weight(pa). The area of the roof that will tend to
keep the post in the ground will be as follows:
2
dia footingH
• WtHpost hole= 150 pcf'Post deptt.T-rw rc• 4 Apost2 WtHpost_hole= 1159 lb Weight of concrete
}B .(0.6.P )
in post hole
WulrH Wbldg + Overhang/ + WtHpost_hole+ PskinHp.H
WwtH= 2098 lb Total uplift resistance
Note that the total uplift resistance(Waal)is greater than the uplift load(Pules). This is OK
• 5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12'.xmcd 29
PURLIN DESIGN:
The purlins simply span between pairs of trusses or rafters. Determine the adequacy of the purlins.
Purlin= "2x6" TIC pacing= 24 in O.C.
Lpudin_span = 115.5 in
wp„rlin = 4.91 pli Maximum combined distributed roof load along top edge of purlin
2
M µpnrl;n ipurlin_span = 8195 in•lb Bending moment in the purlin
pudin�= 8 purfin
f Mpnrl;n f 1084 psi Bendingstress applied to the purlin
bpurlin�— bpurlin= pp
Spurlin
Determine the allowable member stress including load factors
Fbpurlin = 1650 psi CDsmw= 1.15 CMbpurlin= 1.00 Clprrbn= 1.00 CLpnrlin= 1.00
CFpurlin= 1.00 Cfupurlin= 1.00 Crpudin= 1.15
Fbpurlin Fbpurlin'CDsnow'CMbpurlin'Ctpurlin'CLpudin'CFpurlin'Cfupurlin'Crpurlin
Fbpudin= 2182psi > fbpurlin This is OK
5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12'.xmcd 30
RAFTER DESIGN:
Determine the required section for intermediate building or shed rafters. The rafters will simple span
between posts. It will be assumed that both ends are pinned.
Rafter_style := Srafter := Raftergrade
'Double 2-Plyv1 I2x12 v 12 sr
Rafterspecies
IDoug-Fir j Lrafter_span= 195.3 in
Wrafter= 25p1i Maximum combined distributed roof load along top edge of rafter
2
Wrafter'Lrafter_span
Mrafter:= 8 Mrafter= 119250in•lb Bending moment in the rafter
Mrafter
fb` ef
Sxrafter Rafterqty ftrrafter= 942 psi Bending stress applied to the rafter
Determine the allowable member stress including load factors
FbRafter= 900.00psi CD,„,= 1.15 CMbrafter= 1.00 Ctratler= 1.00 CLrafter= 0.97
CFrafter= 1.00 Cfurafter= 1.00 Crrafter= 1.00
Fbrafter:= FbRafter'CDsnow•CMbrafter.•Ctraftet••CLrafter CFraftef Cfuraftef Crrafter
Fbraft„= 1007 psi > fbrafler. This Is OK
5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15_12'.xmcd 31
MAIN POST CORBEL BLOCK DESIGN:
Determine the required number and size of bolts required in the main post corbel block.
Allowable fastener shear capacities
Z1 It 58 = 15401b Shear capacity for 5/8"dia. bolts
zTbou 34= 21901b Shear capacity for 3/4"dia. bolts
z3bott 10 = 36001b Shear capacity for 1"dia.bolts
ZTnad 16d= 122 lb Shear capacity for 16d nails
zTnad god= 147 lb Shear capacity for 20d nails
PLEcorbel = 2850 lb Combined snow, or live roof,and dead loads on corbels
PHEcorbel = 2850 lb Combined snow or live roof,and dead loads on corbels
If 5/8 dia.bolts are used:
NLEbous58 = 1.6 Number of 5/8"dia. bolts required in the low eave corbel block,if used.
NHEbolts58 = 1.6 Number of 5/8"dia.bolts required in the high eave corbel block,if used.
If 3/4 dia.bolts are used:
NLEbolts34= 1.1 Number of 3/4"dia.bolts required in the low eave corbel block,if used.
NHEbolts34 = 1.1 Number of 3/4"dia.bolts required in the high eave corbel block,if used.
If 1 dia.bolts are used:
NLEboits10= 0.7 Number of 1"dia.bolts required in the low eave corbel block, if used.
NHEbolts10= 0.7 Number of 1"dia. bolts required in the high eave corbel block, if used.
If 20d nails are to be used:
NLEnails2od= 8.4 Number of 20d nails required in each low eave corbel block,if used.
• NHE.nails20d= 8.4 Number of 20d nails required in each high eave corbel block, if used.
• If 16d nails are to be used:
NLEnailsind= 10.2 Number of 16d nails required in each low eave corbel block,if used.
NI1Enads16d= 10.2 Number of 16d nails required in each high eave corbel block,if used.
5/25/2022 MW22138 (P&C Const for Tigard School District) 16x30x15'_12'.xmcd 32
• SUMMARY OF RESULTS:
Building Dimensions Building Design Loads
Wbmdg= 16 ft Width of Building Ground_snow load = 25 psf
Lbldg = 30 ft Length of Building Roof dead_load= 5 psf
Hbldgr,= 12 ft Low Eave Height of Building Wind speed= 97 mph
HbtdgH= 15 ft High Eave Height of Building Wind_exposure = "C"
Rpltoh= 2.3 /12 Roof pitch Seismic_Design_Category = "D"
°verhangL= 18 in Length of Low Eave Overhang
werhangx = 18 in Length of High Eave Overhang
Low Eave Post Details Footing Details for Low Eave Post:
Post_size= "6x6" Post_is = "not constrained by a concrete slab"
Post_grade = "#2 Hem-Fir" PostdcpthL= 4.0 ft Design Post Depth
Post_usageL = 86 % Combined stress usage di, foot• = 1.7ft Design Footing Diameter
of low eave post
FootingusageL= 51 % Stress usage of footing
High Eave Post Details Footing Details for High Eave Post:
Post_size2 = "6x6" Post_is = "not constrained by a concrete slab"
Post_grade2 = "#2 Hem-Fir" PostdepthH= 4.0 ft Design Post Depth
Post_usageIi= 56 % Combined stress usage dia footingx = 1.7 ft Design Footing Diameter
of high eave post
Footingusagerr= 51 % Stress usage of footing
Purlin Details:
Purlin_usage= 50 % Stress usage of roof purlin
Rafter Details:
Rafter_usage = 94 % Stress usage of roof rafters
SPECIAL NOTE:
The drawings attendant to this calculation shall not be modified by the builder unless authored in
writing by the engineer. No special inspections are required. No structural observation by the
design engineer is required.