Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Specifications
Approved plans OFFICE COPY shall be on job site. RECEIVED JUN 21 2022 CITY OF TIGARb 8IJIl._DING �71VISIOh� Structural C/P.2 )22.00/6,6 l( 1!2 72,1194i/ Engineering Design , Inc . 1815 Wrlght Ave La Verne, CA 91750 Phone:909.596.1351 Fax: 909.596.7186 Project Name : MEISTER PRop .6 \ro GINFS�pZ C9 Project Number : 22-0614-12 cr 98752 PE r 20 ORE ON �'1'1BER Date : 00/10/22 � hAO Z 15'LoHP�G .E, oW Wzo:a Street Address: 16112 SW 72ND AVE CICity/State : TIGARD, OR 97224 ENHAO Digitally signed by tY ENHAO ZHANG ZHANG Di ate::oo 2022.0 :2307600.17 Scope of Work : STORAGE RACK Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel:909.596.1351 Fax: 909.596.7186 By: JJM/MQZ Project: MEISTER Project#: 22 0C1.1 TABLE OF CONTENTS 12 Title Page 1 Table of Contents 2 Design Data and Definition of Components 3 Critical Configuration 4 Seismic Loads 5 to 6 Column 7 Beam and Connector 8 to 9 Bracing 10 Anchors 11 Base Plate 12 Slab on Grade 13 Other Configurations 14 TVnFA Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel:909.596.1351 Fax: 909.596.7186 By: JJM/MQZ Project: MCISTLR Project#: 23 061'1 Design Data 12 1)The analyses herein conforms to the requirements of the: 2018 IBC Section 2209 2019 CSC Section 2209 ANSI MH 16.1-2012 Specifications for the Design of Industrial Steel Storage Racks'2012 RMI Rack Design Manual" ASCE 7-16,section 15.5.3 2)Transverse braced frame steel conforms to ASTM A570,Gr,55,with minimum strength, Fy=55 ksi Longitudinal frame beam and connector steel conforms to ASTM A570,Gr.55,with minimum yield, Fy=55 ksi AM other steel conforms to ASTM A36,Gr.36 with minimum yield, Fy= 36 ksi 3)Anchor bolts shall be provided by installer per ICC reference on plans and calculations herein. 4)All welds shall conform to AWS procedures, utilizing E70xx electrodes or similar.All such welds shall be performed in shop, with no field welding allowed other than those supervised by a licensed deputy inspector. 5)The existing slab on grade Is 6"thick with minimum 2500 psi compressive strength.Allowable Soil bearing capacity is 750 psf. The design of the existing slab is by others. 6) Load combinations for rack components correspond to 2012 RMI Section 2.1 for ASD level load criteria Definition of Componentsr Oats mi C p— T s� aazrarnai Ware m to Calmat C7annee:a Al Lka anal Er Frame , 3 Wig h ta"rc BaSe Plate and Anthers r ir.. . . . .� Psi eV Beams Lew Frame Depth Avant View: Down Axle {Lcmo"tt:udinai)Frame Section rk:Gloss Aisle Transverse l Frame TYPF 13_ Structural Engineering & Design Inc. 1815 Wright Ave La Verne.CA 91750 Tel:909.596.1351 Fax: 909.596.7186 By: JJM/MQZ Project: Project#: Configuration&Summary:TYPE A SELECTIVE RACK 12 I` **RACK COLUMN REAL LIONS 48 = ASD LOADS AXIAL DL= 75/b 62" — AXIAL LL= 4,300/b (2 48" SEISMIC AXIAL Ps=+/ 1,851 lb t BASE MOMENT= 5,000 in-lb 192" ', 192" 48" 70" t i •-, 36" 'f 96" + -r 42" 42" Seismic Criteria #Bm Lvls Frame Depth Frame Height #Diagonals Beam Length Frame Type Ss=0.853, Fa=1 2 42 in 192.0 in 4 96 in Single Row Component Description STRESS Column Fy=55 ksi Hannibal IF3014-3x3x14ga P=4375 lb,M=20226 in-lb 0.87-OK Column&Backer None None _ None N/A Beam Fy=55 ksi HMH 41160/4.125"Face x 0.057"thk Lu=96 in Capacity: 5075 lb/pr 0.79-OK Beam Connector Fy=55 ksi Lvl 1: 3 pin OK Mconn=12476 in-lb Mcap=12691 in-lb 0.98-OK Brace-Horizontal Fy=55 ksi _ Hannibal 1-1/2x1-1/2x16ga 0.11-OK Brace-Diagonal Fy=55 ksi Hannibal 1-1/2x1-1/2x16ga 0.17-OK Base Plate Fy=36 ksi 8x5x0.375 Fixity= 5000 in-lb 0.61-OK Anchor 2 per Base 0.5"x 3,25"Embed HILTI KWIKBOLT TZ ESR 1917 Inspection Reqd(Net Seismic Uplift=596 lb) 0.183-OK Slab&Soil 6"thk x 2500 psi slab on grade.750 psf Soil Bearing Pressure 0.33-OK Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg Brace Transv ‘ Longit. Axial Moment Moment Connector 1 4,000 lb 70.0 in 36.0 in 266 lb 238 lb 4,375 lb 20,226 "# 12,476 "# 3 pin OK 2 4,600 lb 62.0 in 48.0 in 575 lb 515 lb 2,338 lb 7,979 "# 5,787 "# 3 pin OK 48.0 in 48.0 in 1 **Load defined as product weight per pair of beams Total: 841 lb 753 lb Notes TYPF 0 P..-.., Li ,,F 11 c•ii,-»n,n Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: JJM/MQZ Project: Fit ElST Project#: _ • Seismic Forces Configuration:TYPE A SELECTIVE RACK 12- Lateral analysis is performed with regard to the requirements of the 2012 RMI ANSI MN 16.1-2012 Sec 2.6&ASCE 7-16 sec 15.5.3 Ss= 0.853 Transverse(Cross Aisle)Seismic Load 51= 0.390 V= Cs*Ip*Ws=Cs*Ip*(0.67*P*Prf+D) x. vt Fa= 1.000 Csl= Sds/R Fv= 1.910 = 0.1422 Cs-max*Ip= 0.1422 1111 Sds=2/3*Ss*Fa= 0.569 Cs2= 0.044*Sds Vmin= 0.015 EMI Sd1=2/3*S1*Fv= 0.497 = 0.0250 Eff Base Shear=Cs= 0.1422 Transverse Elevating Ca=0.4*2/3*Ss*Fa= 0.2275 Cs3= 0.5*S1/R Ws= (0.67*PLRFI* PL)+DL(RMI 2.6.2) (transverse,Braced Frame Dir.)R= 4.0 = 0.0488 = 5,912 lb Ip= 1.0 Cs-max= 0.1422 vtransv=Vt= 0.1422* (150 lb+5762 lb) PRFI='` 4fAiNa, Base Shear Coeff=Cs= 0.1422 Etransverse= 841 lb Pallet Height=hp= 48.0 in Limit States Level Transverse seismic shear per upright DL per Beam Lvl= 75 lb Level PRODUCT LOAD P P*0.67*PRFI DL hl wi*hi Fi Fi*(hi+hp/2) 1 4,000 lb 2,680 lb 75 lb 70 in 192,850 266.1 lb 25,013-#1 2 4,600 lb 3,082 lb 75 lb 132 In 416,724 574.9 lb 89,684-# I sum: P=8600 lb 5,762 lb 150 lb W=5912 lb 609,574 841 lb 1=114,698 Longitudinal(Downaisle)Seismic Load __.. Similarly for longitudinal seismic loads,using R=6.0 Ws= (0.67* PLRF2* P)+ DL PRF2= 1.0 Cs1=Sd1/(T*R)= 0.1273 = 5,912 lb (Longitudinal,Unbraced Dir.)R= 6.0 Cs2= 0.0250 Cs=Cs-max*Ip= 0.1273 T= 0.65 sec Cs3= 0.0325 Vlong= 0.1273* (150 lb + 5762 lb) ME Mt_ - Cs-max= 0.1273 Elongitudinal= 753 lb Limit Stales Level Loagit.seismic shear per upright - Level PRODUC LOAD P P*0.67*PRF2 DL hi wi*hi Fi Front View 1 4,000 lb 2,680 lb 75 lb 70 in 192,850 238.2 lb 2 4,600 lb 3,082 lb 75 lb 132 in 416,724 514.8 lb I sum: 5,762 lb 150 lb W=5912 lb 609,574 753 lb iiil TYPF A Parav C of L I 6/16/2022 Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel:909.596.1351 Fax: 909,596.7186 By: JJM/MQZ Project: MCI T-R Project#: zr e64:} Downaisie Seismic Loads Configuration:TYPE A SELECTIVE RACK 12 Determine the story moments by applying portal analysis.The base plate is assumed to provide partial fixity. Seismic Story Forces Typical Frame made Vlong= 753 lb Tributary area oFtwocolamns Vcol=Vlong/2= 377 lb ofrack(rame Ft= 238 lb i® Mk ® Ili IN -,- Typical Frame made F2= 515 lb oFtwo columns 4,/ F3= 0lb -0- - - - 1111111111 "" i lilt Ell - - - . ' • Ili ':.SD1-. .:- - 1 � Top View. y s' ' Front View 5(de.View Seismic Story Moments Conceptual System COL Mbase-max= 5,000 in-lb <__=Default capacity h1-eff= hi -beam clip height/2 Mbase-v= (Vcol*hleff)/2 = 67 in Vcol i = 12,613 in-lb <__=Moment going to base Mbase--eff= Minimum of Mbase-max and Mbase-v h = 5,000 in-lb M 1-1= [Vcol*hieff]-Mbase-eff M 2-2= [Vcol-(F1)/2] *h2 _� = (377 lb*67 in)-5000 in-lb = [377 lb-257.4 Ib]*62 in/2 = 20,226 in-lb = 7,979 in-lb h1 hie Mseis= (Mupper+Mlower)/2 Beam to Column Mseis(i-1)= (20226 in-lb+7979 in-lb)/2 Mseis(2-2)= (7979 in-lb+0 in-lb)/2 = 14,102 in-lb = 3,990 in-lb rho= 1.0000 1---- Summary of Forces LEVEL hi Axial Load Column Moment** Mseismic** Mend-fixity Mconn** Beam Connector 1 70 in 4,375 lb 20,226 in-lb 14,102 in-lb 3,720 in-lb 12,476 in-lb 3 pin OK 2 62 in 2,338 lb 7,979 in-lb 3,990 in-lb 4,278 in-lb 5,787 in-lb 3 pin OK Mconn= (Mseismic+Mend-fixity)*0.70*rho Mconn-allow(3 Pin)= 12,691 in-lb "all moments based on limit states level loading rvPF A 2..,,a .h „s it r/I r/O Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel;909.596.1351 Fax: 909.596.7186 By: JJM/MOZ Project: P4E+STE-R Project#:�� Column(Longitudinal Loads) Configuration:TYPE A SELECTIVE RACK 12 Section Properties Section: Hannibal IF3014-3x3x14ga 3.000 in Aeff= 0.643 in^2 Iy = 0.749 in^4 Kx= 1.7 _ X Ix= 1.130 inA4 Sy= 0.493 in^3 Lx= 67.9 in Sx = 0.753in^3 ry= 1.080 In Ky= 1.0 y_._. .--•-y 3.000 in rx= 1.326 in Fy= 55 ksi Ly= 36.0 in j0.075 in Qf= 1.67 Cmx= 0.85 Cb= 1.0 , E= 29,500 ksi I X JI0.75 in Loads Considers loads at level 1 COLUMN DL= 75 lb Critical load cases are:RMI Sec 2.1 COLUMN PL= 4,300 lb Load Case 5.•:(t+0..105*Sds)D+0.75*(1.4+0.14Sds)*B*P+0.75*(0.7*rho*E)<=1.0,ASD Method Mcol= 20,225 in-lb axial load coeff.• 0.77679945*P seismic moment coeff. 0.5625*Mcol Sds= 0.5687 Load Case 6::(1+0.14*Sds)D+(0.85+0.14Sds)*B*P+(0.7*rho*E)<=1.0,ASD Method 1+0.105*Sds= 1.0597 axial load coeff 0.65073 seismic moment men? 0.7*Mcol 1.4+0.14Sds= 1.4796 By analysis, Load case 6 governs utilizing loads as such 1+0.14Sds= 1.0796 0.85+0,14*Sds= 0.9296 Axial Load=Pax= 1.079618*75 lb+0.929618*0.7*4300 lb Moment=Mx= 0.7*rho*Mcol B= 0.7000 = 2,879 lb = 0.7* 20225 in-lb rho= 1.0000 = 14,158 in-lb Axial Analysis KxLx/rx= 1.7*67.9375"/1.326" KyLy/ry= 1*36"/1.08" Fe > Fy/2 = 87.1 = 33.3 Fn= Fy(1-Fy/4Fe) 55 ksi*[1-55 ksi/(4*38.4 ksi)] Fe= n^2E/(KL/r)max^2 Fy/2= 27.5 ksi = 35.3 ksi = 38.4ksi Pa= Pn/Oc Pn= Aeff*Fn Qc= 1.92 = 22695 lb/1.92 = 22,695 lb = 11,820 lb P/Pa= 0.24 > 0.15 8ending_Analysis Check: Pax/Pa + (Cmx*Mx)/(Max*px) <_ 1.0 P/Pao +Mx/Max 5 1.0 Pno= Ae*Fy Pao= Pno/SZc Myleld=My= Sx*Fy = 0.643 in^2*55000 psi = 353651b/1.92 = 0.753 in^3* 55000 psi = 35,365 lb = 18,419 lb = 41,415 in-lb Max= My/Of Pcr= n^2EI/(KL)max^2 = 41415 in-lb/1.67 = nA2*29500 ksi/(1.7*67.9375 in)^2 24,799 in-lb = 24,665 lb px= {1/[1-(Oc*P/Pcr)]}^-1 = {1/[1-(1.92*2879 Ib/24665 Ib)]}^-1 = 0.78 Combined Stresses (2879 lb/11820 lb) + (0.85*14158 in-lb)/(24799 in-Ib*0.78) = 0.87 < 1.0,OK (EQ C5-1) (2879 lb/18419 lb)+ (14158 In-lb/24799 In-lb) = 0.73 < 1.0,OK (EQ C5-2) **For comparison, total column stress computed for load case 5 is 79.0% loads 3419.7161475 lb Axial and M= 10618 in-lb '�. TVPF A I I. r'Ii c'ion") Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel:909.596,1351 Fax: 909.596 7186 By: JJM/MQZ Project: MDSTER - Project#: Za 0624 BEAM Configuration:TYPE A SELECTIVE RACK 12 DETERMINE ALLOWABLE MOMENT CAPACITY __ W 2.75 in A)Check compression flange for local buckling(B2.1) .1.75 in ,1 W. c-2*t-2*r T = 1.75 In-2*0.057 in-2*0.057 in - = 1.522 in ��� � 1.625 in w/t= 26.7 i=lambda= [1.052/(k)^0.5] * (w/t)*(Fy/E)^0.5 Eq. B2.1-4 = [1.052/(4)^0.5] *26.7* (55/29500)^0.5 4.125 in = 0.606 < 0.673, Flange is fully effective Eq. B2.1-1 1 0.057 in Id---- ,D)check web for local buckling per section b2.3 f1(comp)= Fy*(y3/y2)= 50.53 ksi f2(tension)= Fy*(y1/y2)= 102.29 ksi Y= f2/f1 Eq. B2.3-5 Beam= iiMfl 41160L4.12ri"Face x A.®�7"thk = -2.024 Ix= 1.617 inA4 k= 4+ 2*(1-Y)^3+2*(1-Y) Eq. B2.3-4 Sx= 0.740 in^3 = 65.35 Ycg= 2.723 in - flat depth=w= y1+y3 t= 0.057 in = 3.897 in w/t= 68.36842105 OK Bend Radius=r= 0.057 in I=lambda= [1.052/(k)^0.5]*(w/t)* (f1/E)^0.5 Fy=Fyv= 55.00 ksi = [1.052/(65.35)^0.5] *3.897* (50.53/29500)^0.5 Fu=Fuv= 65.00 ksi = 0.368 < 0.673 E= 29500 ksi be=w= 3.897 in b2= be/2 Eq B2.3-2 top flange=b= 1.750 In bl= be(3-Y) = 1.95 in bottom flange= 2,750 in = 0.776 Web depth= 4.11 bl+b2= 2.726 in > 1.2885 in, Web is fully effective Determine effect of cold working on steel yield point(Fya)per section A7.2 t1(comp) Fya= C*Fyc+(1-C)*Fy (EQ A7.2-1) Lcorner=Lc= (p/2)* (r+t/2) 0.134 in C= 2*Lc/(Lf+2*Lc) yz Lflange-top=Lf= 1.522 in = 0.150 in r3 • m= 0.192*(Fu/Fy)-0.068 (EQ A7.2-4) depth • = 0.1590 Bc= 3.69*(Fu/Fy)-0.819*(Fu/Fy)A2-1.79 (EQ A7.2-3) 1.427 1 since fu/Fv= 1.18 <1.2 Ycg y1 and r/t= 1 < 7 OK then Fyc= Bc*Fy/(R/t)^m (EQ A7.2-2) I i - ._ z(rehse,) = 78.485 ksi Thus, Fya-top= 58.52 ksi (tension stress at top) Fya-bottom= Fya*Ycg/(depth-Ycg) y1= Ycg-t-r= 2.609 in = 113.59 ksi (tension stress at bottom) y2= depth-Ycg= 1.403 in Check allowable tension stress for bottom flange y3= y2-t-r= 1.289 in Lflange-bot=Lfb= Lbottom-2*r*-2*t = 2.522 in Cbottom=Cb= 2*Lc/(Lfb+2*Lc) = 0.096 Fy-bottom=Fyb= Cb*Fyc+(1-Cb)*Fyf = 57.26 ksi Fya= (Fya-top)*(Fyb/Fya-bottom) = 29.50 ksi If F= 0.95 Then F*Mn=F*Fya*Sx= 20.73 in-k Q' 1 Structural Engineering & Design Inc. _ 1815 WrightAve l�Verne CA 91750 Tel•A0�596 1351_ ax• 909 596.7186 By: JJM/MQZ Project: Project MEISTER #:__ _ REAM Contiguration:TYPE A SELECTIVE RACK 12 RMI Section 5.2, PT II Section Beam= HMH 41160/4.125" Face x 0.057"thk Ix=Ib= 1.617 inA4 2.75 in Sx= 0.740 inA3 t= 0.057 in E= 29500 ksi 1.75 in Fy=Fyv= 55 ksi F= 300.0 ,--- - - - f Fu=Fuv= 65 ksi L= 96 in Fya= 58.5 ksi Beam Level= 1 1.625 in P=Product Load= 4,000 lb/pair D=Dead Load= 75 lb/pair 4,125;n 0.057 in 1.Check Bending Stress Allowable Loads Mcenter=F*Mn= W*1..*W*Rm/8 W=LRFD Load Factor= 1.2*D+ 1.4*P+1.4*(0.125)*P RMI2.2,item 8� FOR DL=2%of PL, W= 1.599 Rm= 1 -[(2*F*L)/(6*E*Ib + 3*F*L)] _ 1 -(2*300*96 in)/[(6*29500 ksi*1.617 in^3)+(3*300*96 in)] ___•_ = 0.845 Prodaae _ if F= 0.95 Then F*Mn=F*Fya*Sx= 41.14 in-k Thus,allowable load per beam pair=W= F*Mn*8*(#of beams)/(L*Rm*W) - Beam Lin _ •___•_ ,h = 41.14 in-k*8* 2/(961n* 0.845* 1.599) = 5,075 lb/pair allowable load based on bending stress -- -- �` Mend= W*L*(1-Rm)/8 = (5075 lb/2)*96 in* (1-0,845)/8 = 4,720 in-lb @ 5075 lb max allowable load 3,720 in-lb @ 4000 lb imposed product load 2.Check Deflection Stress Allowable Loads Dmax= Dss*Rd Rd= 1 -(4*F*L)/(5*F*L+ 10*E*Ib) Allowable Deflection= L/180 = 1 -(4*300*96 1n)/[(5*300*96 in)+(10*29500 ksi*1.617 in^4)] = 0.533 in = 0.814 in Deflection at Imposed Load= 0.420 in If Dmax= L/180 Based on 080 Deflection Criteria and Dss= 5*W*LA3/(384*E*Ib) L/180= 5*W*LA3*Rd/(384*E*Ib*#of beams) solving for W yields, W= 384*E*I*2/(180*5*L^2*Rd) = 384*1.617 In^4*2/[180*5*(96 in)A2*0.814) = 5,426 lb/pair allowable load based on deflection limits Thus,based on the least capacity of item 1 and 2 above: Allowable load= 5,075 lb/pair Imposed Product Load= 4,000 lb/pair Beam Stress='0.79 Beam at Level 1 CT Structural Engineering & Design Inc. 1815 Wright Ave L a Verne CA 91750 Tel:909 596.1351 Fax: 909,596.718E BydJM/MQ7_ Project: MOISTER Project* 3 Pin Beam to Column Connection TYPE A SELECTIVE RACK 12 i he beam end moments shown herein show the result of the maximum induced fixed end monents Corm seismic+static Toads and the code mandated minimum value of 1.5%(DL+PL) —� C pi Mr Mconn max= (Mseismic+ Mend-fFxity)*0.70*Rho rho= 40QG, = 12,476 in-lb Load at level 1 2„ 1/2" Connector Type= 3 Pin Shear Capacity off Pin Pin Diam= 0.44 in Fy= 55,000 psi Ashear= (0.438 in)^2*Pi/4 = 0.1507In^2 Pshear= 0.4* Fy*Ashear = 0.4*55000 psi*0.1507in^2 = 3,315 lb Bearing Capacity of Pin tcol= 0.075 in Fu= 65,000 psi Omega= 2.22 a= 2.22 Pbearing= alpha*Fu* diam*tcol/Omega = 2.22*65000 psi*0.438 In*0.075 In/2.22 = 2,135 lb < 3315 lb Moment Capacity of Bracket Edge Distance=E= 1.00 in Pin Spacing= 2.0 In Fy= 55,000 psi C= P1+P2+P3 tclip= 0.18 in Sclip= 0.127 inA3 P1+P1*(2.5"/4.5")+P1*(0,5"/4.5") = 1.667*P1 Mcap= Sclip* Fbending C*d= Mcap = 1.667 d= E/2 I = 0.127in^3 *0.66* Fy = 0.50 in = 4,610 in-lb Pclip= Mcap/(1.667*d) = 4610.1 in-lb/(1.667*0.5 in) Thus, P1= 2,135 lb = 5,531 lb Mconn-allow= [P1*4.5"+P1*(2.5"/4.5")*2.5"+P1*(0.5"/4.5")*0.51 = 2135 LB*[4.5"+(2.5"/4.5")*2.5"+ (0.5"/4.5")*0.51 = 12,691 In-lb > Mconn max, OK TVPF A o_-_ U _s tA � n Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: JJM/MQZ Project: MCISTCR Project#: 22 0624 Transverse Brace Configuration:TYPE A SELECTIVE RACK 12 Section Properties Diagonal Member= Hannibal 1-1/2x1-1/2x16ga Horizontal Member= Hannibal 1-1/2x1-1/2x16ga Area= 0.273 in^2 1.500 in Area= 0.273 in^2 r min= 0.496 In r min= 0.496 in 1.500 —°' Fy= 55,000 psi /-'"'—"!"+ Fy= 55,000 psi K= 1.0 0 11.500 in K= 1.0 1����, 52c= 1.92 ` _ 11.500 14—0.250 -o> sr—0,250 Frame Dimensions Bottom Panel Height=H= 48.0 in Clear Depth=D-B*2= 36.0 in Frame Depth=D= 42.0 In X Brace= NO Column Width=B= 3.0 in rho= 1.00 Diagonal Member '0 t Load Case 6::(1 fQ 1Gt4 �sj .85t0.14Sds)*B*P+[0.7*rho*EJ<=1.0,ASD Method I 4c —.®I Vtransverse= 841 lb Vb r\_... Vb=Vtransv*0.7*rho= 841 lb*0.7* 1 (kl/r)= (k* Ldiag)/r min = 589 lb = (1 x 55.3 in/0.496 in) Ldiag= [(D-B*2)^2+ (H-6")^2]^1/2 = 111.5 in Ldlag = 55.3 in Fe= piA2*E/(kl/r)^2 A H Pmax= V*(Ldiag/D)* 0.75 = 23,419 psi Jit/ Pmax = 581 lb axial load on diagonal brace member Since Fe<Fy/2, 3 P Pn= AREA*Fn Fn= Fe B --- = 0.273 in^2*23419 psi = 23,419 psi Typical Panel = 6,393 lb Sanffaurabon Pallow= Pn/Q Check End Weld = 6393 lb/1.92 Lweld= 3.0 In = 3,330 lb Fu= 65 ksi tmin= 0.060 in Pn/Pallow= 0.17 <= 1.0 OK Weld Capacity= 0.75*tmin* L* Fu/2.5 = 3,510 lb OK Horizontal brace V1)=Vtransv*0.7*rho= 589 lb (kl/r)= (k* Lhoriz)/r min Fe= pi^2*E/(kl/r)^2 Fy/2= 27,500 psi = (1 x 42 in)/0.496 in = 40,584 psi = 84.7 in Since Fe>Fy/2, Fn=Fy*(1-fy/4fe) Pn= AREA*Fn Pallow= Pn/Qc = 36,366 psi = 0.273in^2*36366 psi = 9928 lb/1.92 = 9,928 lb = 5,171 lb Pn/Pallow= 0.11 <= 1.0 OK TYPE A Parma I nF I Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel:909.596.1351 Fax: 909.596.7186 _ By: JJM/MQZ Project: MEISTER Project*: Single Row Frame Overturning Configuration:TYPE A SELECTIVE RACK Loads Critical Load case(s): 1) RMI Sec 2.2,item 7: (0.9-0.2Sds)D + (0.9-0.20Sds)*B*Papp-E*rho hp <�, Sds= 0.5687 v Vtrans=V=E=Qe= 841 lb (0.9-0.2Sds)= 0.7863 DEAD LOAD PER UPRIGHT=D= 150 lb (0.9-0.2Sds)= 0.7863 PRODUCT LOAD PER UPRIGHT=P= 8,600 lb B R H h Papp=P*0.67= 5,762 lb rho= 1.0000 Wst LC1=Wst1=(0,78626*D+0.78626*Papp*1)= 4,648 lb Frame Depth=Df= 42.0 in T G Product Load Top Level, Ptop= 4,600 lb Htop-Iv1=H= 132.0 in DL/Lvl= 75 lb # Levels= 2 s-Of-1°1 Seismic Ovt based on E,E(Fi*hi)= 77,779 in-lb #Anchors/Base= 2 height/depth ratio= 3.1 in hp= 48.0 in SIDE ELEVATION A)Fully Loaded Rack h=H+hp/2= 156.0 in Load case 1: Movt= E(Fi*hi)*E*rho Mst= Wstl * Df/2 T= (Movt-Mst)/Df = 77,779 in-lb = 4648 lb*42 in/2 = (77779 in-lb-•97608 in-lb)/42 in = 97,608 in-lb = -472 lb No Uplift Net Seismic Uplift= -472 lb B)Top Level Loaded Only Load case 1: 0 V1=Vtop= Cs*Ip*Ptop>= 350 lb for H/D>6.0 Movt= (V1*h+V2* H/2)*rho = 0.1422*4600 lb = 103,451 in-lb = 654 lb V1eff= 654 lb Critical Level= 2 = (103451 in-lb 7842.9 in-lb)/42 in V2=VDL= Cs*Ip*D Cs*Ip= 0.1422 = 596 lb Net Uplift per Column = 21 lb Mst= (0.78626*D + 0.78626*Ptop*1)*42 in/2 = 78,429 in-lb Net Seismic U 596 lb Anchor o..�.�.a..m...R... .. Check(2)0.5"x 3.25" Embed HILTI KWIKBOLT TZ anchor(s)per base plate. Special inspection is required per ESR 1917. Pullout Capacity=Tcap= 1,961 lb L.A. City JurisdIction? NO Tcap*Phi= 1,961 lb Shear Capacity=Vcap= 2,517 lb Phi= 1 Vcap*Phi= 2,517 lb Fully Loaded: (210 lb/2517 Ib)^1 = 0.08 <= 1.2 OK Top Level Loaded: (298 lb/1961 1b)^1 + (163 Ib/2517 Ib)^1 = 0.22 <= 1.2 OK TYPE A 11 Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel. 909.596.1351 Fax: 909,596.7186 By: JJM/MQZ Project: MCISTER Project#: Base Plate Configuration:TYPE A SELECTIVE RACK 12 Section Baseplate= 8x5x0.375 Eff Width=W= 8.00 in a = 3.00 in Mb Eff Depth=D= 5.00 in Anchor c.c. =2*a=d= 6.00 in _ Column Width---b= 3.00 in N=#Anchor/Base= 2EF—Tb 14— Column Depth=dc= 3.00 in Fy= 36,000 psi w _^ L= 2.50 in Plate Thickness=t= 0.375 in Downalsle Elevation Down Aisle Loads Load Case 5:(1+0.105*5ds)D+0.75*'f(1.4+0.14Sds)*B*P+0.75*[0.7*rho*EJ<=1.0 A'SD Method COLUMN DL= 75 lb Axial=P= 1.0597135 * 75 lb +0.75* (1.479618*0.7*4300 lb) COLUMN PL= 4,300 lb = 3,420 lb Base Moment= 5,000 in-lb Mb= Base Moment*0.75*0.7*rho 1+0.105*Sds= 1.0597 = 5000 in-lb*0.75*0.7*rho 1.4+0.14Sds 1.4796 = 2,625 in-lb Eff( B= f iefi a a° Axial Load P= 3,420 lb Mbase=Mb= 2,625 in-lb �l Effe Axial stress=fa = P/A= P/(D*W) M1= wL^2/2= fa*L^2/2 = 85 psi = 267 in-lb Moment Stress=fb = M/S= 6*Mb/[(D*B^2] Moment Stress=fb2= 2* fb* L/W = 49.2 psi = 30.8 psi Moment Stress=fbl = fb-fb2 M2= fb1*L^2)/2 1 = 18.5 psi = 58 in-lb M3 = (1/2)*fb2*L*(2/3)*L= (1/3)*fb2*LA2 Mtotal = M1+M2+M3 = 64 in-lb = 389 in-lb/in S-plate = (1)(tA2)/6 Fb= 0.75*Fy = 0.023 in^3/In = 27,000 psi fb/Fb = Mtotal/[(S-plate)(Fb)] F'p= 0.7*F'c 0.61 OK = 1,750 psi OK Tanchor= (Mb-(PLapp*0,75*0.46)(a))/[(d)*N/2] Tallow= 1,961 lb OK = -1,887 lb No Tension Cross Aisle Loads CdttaU bad case RN!Sec Id,Item'e(1+0.115drJDL+(1+0.14505)N,0.75+EL*0.75'=1.O,A5D Method Check uplift load on Baseplate Check uplift forces on baseplate with 2 or more anchors per RMI 7.2.2. Pstatic= 3,420 lb 'When the base plate configuration consists of two anchor bolts located on either side of the column and a net uplift force exists,the minimum base plate thickness Movt*0.75*0.7*rho= 40,834 in-lb Pseismic= Movt/Frame Depth hall be determined based on a design bending moment in the plate equal Frame Depth= 42.0 in = 972 lb to the uplift force on one anchor times 1/2 the distance from P=Pstatic+Pseismic= 4,392 lb he centerline of the anchor to the nearest edge of the rack column" b =Column Depth= 3.00 in T 1 — c * ./, L=Base Plate Depth-Col Depth= 2,50 in Ta Mu a , .111111 fa = P/A= P/(D*W) M= wL^2/2=fa*LA2/2 I b I mo f = 110 psi = 343 In-lb/in Elevation Uplift per Column= 596 lb Sbase/in = (1)(tA2)/6 Fbase= 0.75*Fy Qty Anchor per BP= 2 = 0.023 in^3/in = 27,000 psi Net Tension per anchor=Ta= 298 lb c= 2.50 in fb/Fb = M/[(S-plate)(Fb)] Mu=Moment on Baseplate due to uplift= Ta*c/2 0.54 OK = 373 in-lb Splate= 0.117 in^3 fb Fb *0.75= 0.088 OK TYPE A Page 1 1.- of IL gI 16/2O22 Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel:909.596.1351 Fax: 909.596.7186 By: JJM/MQZ Project: Project#: Slab on Grade Configuration:TYPE A SELECTIVE RACK 12 .: r t�d.If . ,2, Y t•x .s t A. .". .1 a " `; ::` Concrete h'�F�; VI ': I ' ;, „ fc= 2,500 psi D t. slab t .•e.• 'i;' bI e tsiab=t= 6.0 in j\ �F ,n, cross `� teff= 6.0 in `I :a e`,, --- --' `,'Aisle 4,;',fi • i x "►I I4� C }fir t+ C '' a�w,•.,, s�� ` .'.. : �. i , a t'FklYA�i#f �l, .�, .r I`.y i SOil Y .t,�"* ` ° " + "�" r °,� -' (soil= 750 psf L , , ` M « ; Down Aisle Movt= 102,043 in-lb a^z SLAB ELEVATION Frame depth= 42.0 in Baseplate Plan View Sds= 0.569 Base Plate 0.2*Sds= 0.114 Effec.Baseplate width=B= 8,00 in width=a= 3,00 in F r µ"as ,.. q,, .,. . ,3 :z Effec.Baseplate Depth=D= 5.00 in depth=b= 3.00 in R=B/D= 1.600 midway dist face of column to edge of plate=c= 5.50 in Ec^0.5= 50.00 psi Column Loads midway dist face of column to edge of plate=e= 4.00 in DEAD LOAD=D= 75 lb per column Load Case 1) (1.2+0.2Sds)D+ (1.2+0.2Sds)*B*P+rho*E RMI SEC 2.2 EQTN 5 unfactoredASDload = 1.31374*75 lb+ 1.31374*0.7*4300 lb+ 1 * 2429 lb PRODUCT LOAD=P= 4,300 lb per column = 6,482 lb unfactoredASD load Load Case 2) (0.9-0.2Sds)D+ (0.9-0.2Sds)*B*Papp+ rho*E RMI SEC 2.2 EQTN 7 Papp= 2,881 lb per column = 0.78626*75 lb +0.78626*0.7* 2881 lb+ 1 *2429 lb P-seismic=E= (Movt/Frame depth) = 4,074 lb = 2,429 lb per column Load Case 3) 1.2*D+ 1.4*P RMI SEC 2.2 EQTN 1,2 unfactored Limit State load = 1.2*75 lb+ 1.4*4300 lb B 4 � a = 6,110 lb rho a 1, r a Load Case 4) 1.2*D+ 1.0*P+ 1.0E ACI 318-14 Sec 5.3.1 Sds= 0.5687 = 6,819 lb Eqtn 5.3.1e 1.2 +0.2*Sds= 1.3137 Effective Column Load=Pu= 6,819 lb per column 0. 9-0.20Sds= 0.7863 Puncture Apunct= [(c+t)+(e+t)]*2*t ~--- = 258.0 in^2 Fpunctl= [(4/3 +8/(3*p)] *?*(F'c^0.5) fv/Fv= Pu/(Apunct*Fpunct) = 90. psi = 0.331 < 1 OK Fpunct2= 2.66*X*(F'c^0.5) = 79.8 psi Fpunct eff= 79.8 psi Slab Bending Pse=DL+PL+E= 6,819 lb Asoil= (Pse*144)/(fsoil) L= (Asoil)^0.5 y= (c*e)^0.5+ 2*t = 1,309 in^2 = 36.18 in = 16.7 in x= (L-y)/2 M= w*x^2/2 S-slab= 1*teff^2/6 = 9.7 in = (fsoil*xA2)/(144*2) = 6.0 inA3 Fb= 5*(phi)*(fc)^0.5 = 247.3 in-lb fb/Fb= M/(S-slab*Fb) = 150. psi = 0.275 < 1,OK TYPE A Facie CI of LA r_f i ci9n0', Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909,596.71$_ — By: JJM/MQZ Project: MClST[R Project#: Configuration&Summary TYPE B SELECTIVE RACK 12 1% **RACK COLUMN REACTIONS 48" ASD LOADS AXIAL DL= 75 lb 60" AXIAL LL= 4,300 lb 48" SEISMIC AXIAL As=+/- 2,006 lb ` BASE MOMENT= 8,000 in-lb 192" 192" yl 48" 84" 1` 36" k 96" 'I -1` 42" — - 42" A" Seismic Criteria #Bm Lvls Frame Depth 'Frame Height #Diagonals Beam Length Frame Type 1 Ss=0.853, Fa=1 2 42 in 192.0 in 4 96 in Single Row Component Description STRESS Column Fy=55 ksi Hannibal IF3014-3x3x14ga P=4375 lb, M=18447 in-lb 0.98-OK Column&Backer None None None N/A Beam Fy=55 ksi HMH 41160/4.125"Face x 0.057"thk Lu=96 in i _Capacity: 5075 Ib/pr 0.79-OK Beam Connector Fy=55 ksi Lvl 1:3 pin OK — J Mconn=11332 in-lb r Mcap=12691 in-lb __ 0.89-OK Brace-Horizontal Fy=55 ksi Hannibal 1-1/2x1-1/2x16ga 0.11-OK Brace-Diagonal Fy=55 ksi Hannibal 1-1/2x1-1/2x16ga 0.17-0K Base Plate Fy=36 ksi 8x5x0.375 Fixity= 8000 in-lb 0.73-OK Anchor 2 per Base 0.5"x 3.25"Embed HILTI KWIKBOLTTZ ESR 1917 Inspection Reqd(Net Seismic Uplift=786 lb) 0.225-OK Slab&Soil 6"thk x 2500 psi slab on grade. 750 psf Soil Bearing Pressure 0.34-OK Level Load** Story Force Story Force Column Column Corm. Beam Per Level Beam Spcg Brace Transv Longit. Axial Moment Moment Connector 1 4,000 lb 84.0 in 36.0 in 284 lb 220 lb 4,375 lb 18,447 "# 11,332 "# 3 pin OK 2 4,600 lb 60.0 in 48.0 in 557 lb 433 lb 2,338 lb 6,491 "# 5,266 "# 3 pin OK 48.0 in 48.0 In l**Load defined asproduct weightperpair of beams 9 Total: 841Ib 653lb Notes TYPE 15 Pacie ill of LA. ci 1 cionoo Structural Engineering & Design Inc. 181 Wright Ave La Verne t,A 91750 T I' 0 5A6 13F 1 F��. gna�96.7186 By: JJM/MQZ Project: n n rliT&„ Project#: Configuration&Summary:TYPE C SELECTIVE RACK 12 .1` **RACK COLUMN REACTIONS 30" .48" — ASO LOADS AXIAL DL= 188 lb �` AXIAL LL= 8,300 lb 30" 48„ SEISMICAXL4L Ps=+/- 3,244 lb 1` BASE MOMEIVT= 5,000 in-lb 1'l 192" t •L _ - - 96" 'f 42" 4 --f— 42" 4 Seismic Criteria #Bm Lvls Frame Depth Frame Height #Diagonals Beam Length Frame Type Ss=0.853, Fa=1 5 42 in 192.0 in 4 96 in Single Row Component Description STRESS Column Fy=55 ksi Hannibal IF3014-3x3x14ga P=6950 Ib, M=11707 in-lb 0.58-01< Column&Backer None None None N/A Beam r Fy=55 ksi _ HMH 41160/4.125" Face x 0.057"thk Lu=96 in Capacity: 5075 Ib/pr 0.59-OK Beam Connector Fy=55 ksi LvI 2: 3 pin OK Mconn=9768 in-lb Mcap=12691 in-lb 0.77-OK _ Brace-Horizontal Fy=55 ksi Hannibal 1-1/2x1-1/2x16ga 0.22-OK Brace-Diagonal Fy=55 ksi Hannibal 1-1/2x1-1/2x16ga 0.34-OK Base Plate Fy=36 ksi 8x5x0.375 r Fixity= 1189 in-lb 0.76-0K Anchor 2 per Base 0.5"x 3.25"Embed HILTI KWIKBOLT TZ ESR 1917 Inspection Reqd(Net Seismic Uplift=460 Ib) 0.15-OK Slab&Soil 6"thk x 2500 psi slab on grade. 750 psf Soil Bearing Pressure 0.7-OK Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg Brace Transv Longit. Axial Moment rMoment Connector 1- - 3,000 lb 6.0 in 36.0 in 25 lb 24 lb 8,488 lb 1,189 "# 6,466 "# 3 pin OK 2 3,000 lb 30.0 in 48.0 in 149 lb 145 lb 6,950 lb 11,707 "# 9,768 "# 3 pin OK 3 3,000 lb 30.0 in 48.0 in 273 lb 265 lb 5,413 lb 10,623 "# 8,693 "# 3 pin OK 4 3,000 lb 30.0 in 48.0 In 398 lb 385 lb 3,875 lb 8,636 "# 6,986 "# 3 pin OK 5 4,600 lb 30.0 in 790 lb 766 lb 2,338 lb 5,745 "# 5,005 "# 3 pin OK I**Load defined as product weight per pair of beams Total: 1,635 lb 1,585 lb I INotes I --- TYPE C rage 15 of IL G/16/2022 Structural Engineering & Design Inc. a Wriaht Ave La Verne I 17 0 T I' A09 596 13 1 FaX AOg 596 718 By: JJM/MQZ Project: Pr2ject#:! 3-ns•^6Fr�9- Configuration&Summary:TYPE D SELECTIVE RACK 12 l' -1- **RACK COLUMN REACTIONS 36" 48 — ASD LOADS N t AXIAL DL= 150 lb AXIAL LL= 7,550/b 48„ SEISMIC AXIAL Ps=+/- 2,737lb 36" BASE MOMENT= 5,000 in-lb 192" 192" 36" 48" f' t 6" 36" I 96" 'f -1`— 42" - 42" -I- Seismic Criteria #Bm Lvls Frame Depth Frame Height #Diagonals Beam Length Frame Type Ss=0.853,Fa=1 4 42 in 192.0 in 4 96 in Single Row Component Description STRESS Column Fy=55 ksi Hannibal IF3014-3x3x14ga _ P=5913 lb, M=11673 in-lb 0.54 OK Column &Backer None None None �� N/A Beam Fy=55 ksi HMH 41160/4.125" Face x 0.057"thk Lu=96 in Capacity: 5075 lb/pr 0.69-OK — Beam Connector Fy=55 ksi Lvl 2: 3 pin OK Mconn=9811 in-lb Mcap=12691 in-lb 0.77-OK Brace-Horizontal Fy=55 ksi Hannibal 1-1/2x1-1/2x16ga _ 0.2-OK Brace-Diagonal Fy=55 ksi Hannibal 1-1/2x1-1/2x16ga 0.31-OK Y_ Base Plate Fy=36 ksi 8x5x0.375 r Fixity= 995 in Ib — 0.94 OK_ Anchor 2 per Base 0.5"x 3.25"Embed HILTI KWIKBOLTTZ ESR 1917 Inspection Redd(Net Seismic Uplift=280 lb) 0.125-OK Slab&Soil 6"thk x 2500 psi slab on grade. 750 psf Soil Bearing Pressure 0.6-OK Level Load** Story Force Story Force Column Column Corm. Beam Per Level Beam Spcg Brace Transv Longit. Axial Moment Moment Connector 1 3,500 lb 6.0 in 36.0 in 32 lb 29 lb 7,700 lb 994 "# 6,712 "# 3 pin OK 2 3,500 lb 36.0 in 48.0 in 226 lb 203 lb 5,913 lb 11,673 "# 9,811 "# 3 pin OK 3 3,500 lb 36.0 in 48.0 in 421 lb 377 lb 4,125 lb 9,849 "# 7,987 "# 3 pin OK 4 4,600 lb 36.0 in 48.0 in 802 lb 718 lb 2,338 lb 6,460 "# 5,256 "# 3 pin 01< **Load defined asproduct weightperpair of beams 9 Total: 1,4811b 1,3261b Notes TYPE D Page [b of 1A, 6/1G/2022