Loading...
Specifications OFFICE COPY' attP262 - (W- �APPROVED /3/2 c /f ac% EVISION Structural Calculations for GENSET Equipment Pad & Seismic Anchorage for Tigard Police Department 13125 SW Hall Blvd, Tigard, OR Prepared for EC Electric PACE Project Number 21803 February 11t", 2022 * * * Limitations Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and/or liability is assumed by, or is to be assigned to, the engineer for items beyond those shown on these sheets. 27 sheets total including this cover sheet. RucrvR . Digi eFf)p.- K. ,`cj ur•h, FSS i • \t ' K �aceeng , =Patr'• 0 ��nnurph c a ICI gi'I Cut p y L=Kirkland, S=WA, C=US ea on: I gad is :K - e IEXPIRES: 12/3�2022 This Packet of Calculations is Null and Void if Signature above is not Original PACE Engineers, Inc. 4500 Kruse Way, Suite 250 Lake Oswego, OR 97035 (503) 597-3222 Fax (503) 597-7655 CC " -- m^ zO > ass m • C O tv Cn rry O C7 ry z 0 PACE GENSET Equipment Pad & Seismic Anchorage for Tigard Police Department PACE Job No. 21803 Structural Calculations Table of Contents Item Sheets 1. Master Data Sheet MDS-1 — MDS-2 2. Structural Calculations: a. Load Analysis 3 - 5 b. Stability checks 6 — 7 c. Foundation Design 8 - 10 d. Anchorage Design 11 - 17 3. Reference 18 - 23 4. Structural Sketches Separate Cover MASTER DATA SHEET & DESCRIPTION PACE Job No. 21803 Project Description: The scope of this project includes structural design of an equipment pad and seismic anchorage for an emergency power GENSET at the Tigard Police Department in Tigard, OR. Validation and analysis of GENSET internal components for design forces is not in the scope of this project. Project Specifications: Code: 2019 Oregon Structural Specialty Code (OSSC) ACI 318-14 Building Code Requirements for Structural Concrete Risk Category IV Seismic Design Criteria: Component Importance Factor Ip: 1.5 ASCE 7 Response modification coefficient R: 1.5 ASCE 7 MCER Ground Motion (0.2s period) Ss: 0.858 ATC Hazard MCER Ground Motion (1.0s period) Si: 0.394 ATC Hazard Site Coefficient Fa: 1.2 OSSC, Table 1613.2.3(1) Site Coefficient F,,: 1.9 OSSC, Table 1613.2.3(2) MCE spectral response acceleration (0.2s) SMs: 1.03 OSSC, Equation 16-36 MCE spectral response acceleration (1.0s) SM1: 0.749 OSSC, Equation 16-37 Numeric seismic design value at 0.2s SA SDS: 0.687 OSSC, Equation 16-38 Numeric seismic design value at 1.0s SA SD1: 0.499 OSSC, Equation 16-39 Site Class D OSSC Seismic Design Category D OSSC Design Base Shear V: 0.87 kip ASCE 7 Seismic Response Coefficient CS: 0.31g ASCE 7 Analysis procedure used ELF ASCE 7 Wind Design Criteria: Ultimate Design Wind Velocity VuLT: 107 MPH OSSC, Table 1609.3 Nominal Design Wind Speed VASD: 68 MPH OSSC, 1609.3.1 Wind Exposure Category B OSSC, 1609.4.3 Snow Design Criteria: Ground snow load Pg: 10psf SEAO web tool MDS-1 (PA( )E An Engineering Services Company Material Data: Concrete Exposure F2 f'c: 4500psi Reinforcement ASTM 615 Gr 60 Anchors Hilti 3/4" DIA HAS-R 316 SS and HIT-HY 200 adhesive Special Inspection: REQUIRED for post installed anchors REQUIRED for concrete sampling Structural Analysis Software Used: MathCad Hilti Profis MDS-2 Project:-F(')-ii---&E) Title: GENSET E-Pad &Anchorage Design An ENWmr WStl„ r:CO•IW, EC Electric -Tigard Police Department 3501 Colby Ave, Suite 101 by: ML Page 1 Everett, WA 98201 02/01/22 1.0 Parameters: SUGGESTED 24V BATTERY NEATER/CHARGER CONDUIT LOCATION IOPTIONAL! 1745 t68.71 78$ I3DE@] 1 (j2 31 2] • 750 [29.51 _ 983 [38 71 am GENSETS 5ONLY GENSETS ONLY P 0 • 0 , CONDUIT ENTRY AREA FOR GENERATOR o M LOAD LEADS (BOTTOM ENTRY(, CIRCUIT 0. BREAKER OPTION, REMOTE CONNECTION 24V BATTERY TO TRANSFER SWITCH AND REMOTE ANNUNICATOR LOCATION r44` SUGGESTED BLOCK HEATER o R CONDUIT LOCATION IOPTIONAL) T_" � • I/,/f. ' .11E L 4 • • . ° V ////1✓/%l. �f F .,500 [I3.71,,, m O 71L 80S t 31.7 e ,` .T,, r0 [ .01 1230 t48.41 ,. / 3.B1 SUGGESTED FUEL SUPPLY 8 RETURNS o STUB-UP AREA. _ - 2250 [88.81 (FLEXIBLE FUEL LINES 318-I8 NPT MALE-FUEL SUPPLY 318.18 NPT WALE-FUEL RETURN Image of Kohler Co. GENSET PLAN VIEW GMiTAiDLLEp *ow* I i f ill I,....... 4 —_,.. . 114 IV; + � '► val I r er p• •.. i pl •p ` r. i 11)111( Willow • "' t=i i VrVoi 444 • i aro ws I 10" €1 • ' 01 21{ 4. _ ., sts t24.61 Oil 025.4 CIA] 1,, Ito 11I . r ,. (OiENSE1' 8 SWIM( fin MET f0S2 141.03 OIL .Dull TANK 0.5 E.3753 1.0. NOSE WV . MINIMS NOLE51 P. 0...we T151 [45.31 FUEL INLET I.$S] • 1339 153.5] IF I III [4.141 [ 15 i S?o t61.el COD up MI '"i 10 3000 (I I L 11 . 1111 Image of Kohler Co. GENSET ELEVATION VIEW \\lo-datasvrl\project_docs\P22\22803_EC Electric_Tigard PS Gen\ENGINEERING\CALCS\STRUCTURAL\Analysis_Design\Emerg Gen Pad Design v2.1.mcdx Page 1 Project: 22803 ��`+� Title: GENSET E-Pad &Anchorage Design An€riano MO$WVY.x Company EC Electric - Tigard Police Department by: ML Page 2 3501 Colby Ave, Suite 101 Everett, WA 98201 02/01/22 r 1044 [41 . 1 ) r I • 4 ) MAXIMUM WET WEIGHT OF GENSET : � • I I923 KD [ 4240 LBS ] I -----•— NNW IOW ----Mill•---UMW r_ --EMI WIN J.--MEN--jai---EMI—ME—EN. re-----•---------, ENCLOSURE WEIGHT I -----N--------- MODEL -----•--------- -----•----NZ—WIN WWI— KG [LBS] ----•—•----O—•---- ' ---"—_--- --- = STEEL WEATHER 494 [ I 09 0 ] =_=•.i___sz___•CC __� _:___:1�.c,:cWE �d __ STEEL SOUND 58 5 [ 12901 vim am 4111114 WE NNW WM WO••NE WE WE Ell:P.m MID WE --I MEI..MN MN NM MIA rJrIll MIMI MIN WE— ALUMINUM SOUND 3 0 0 [ 6 6 0 ] ----O—•---•�.�---- ..«.. 4111111 WWI Will WE•114 II WI WE WIN PIE Mgr WO WE WIE WIN 01; n---—,RR r--WIN-9•?R MIMI o••,-- 1 r•----sue•----u••---ENE•o }} ----_••_ Immo Nam maim=nom' ••= -- > ..Y.......�... ..}... � r--i a ""-`E' — q f t I = i 1 a i O I,I I _ 1 O 1 , ' r I tYw , [23.5] 1194 [47.0] 1 1' I E ' 650 [25.6) __� 4-1 4 -- + 4---i -- '- 1300 [51 .2) di , Y , , t . Image of Kohler Co. GENSET ' - . .� 1 . 1 , , _if ` , t ' , ELEVATION VIEW 1 i I , -I--- i F , Length of GENSET w/ enclosure: 1GENSET:= 161.2 in= 13.4 ft Width of GENSET w/ enclosure: WGENSET:=52.7 in Height of GENSET w/enclosure & tank: hGENSET:=79.8 in=6.7 ft Effective width of anchors (short direction): well anch:=47 in \\lo-datasvrl\project_docs\P22\22803_EC Electric_Tigard PS Gen\ENGINEERING\CALCS\STRUCTURAL\Analysis_Design\Emerg Gen Pad Design v2.1.mcdx Page 2 Project: 22803 PACE Title: GENSET E-Pad &Anchorage Design EC Electric - Tigard Police Department by: ML Page 3 3501 Colby Ave, Suite 101 Everett, WA 98201 02/01/22 2.0 Load Analysis: ... ._ -. 2.1 Gravity. _ 14 -. ._;._� .__�__�._.,.-�_..��_�._., y W enset&enclosure weX'•=4240 lb + 1290 lb =5530 lb p -t-_ .._ say, W„ :=5.6 kip Operating weight _.4" 2.2 Wind per 2019 OSSC/ASCE 7-16: Table 29,1-1 Steps to Determine Wind Loads on MWFRS Rooftop Equipment and Other Structures Step 1:i etenrtin:Risk c'atcgory of building or otter structure:see Table 1.5-1. V:= 107 mph 2019 OSSC Step 2:Determine the basic wind speed,V,tor applicable Risk Category:we Kd:=0.90 Wind direction factor Figs. 26.5-1 and 26.5-2. Step 3: Determine wind toad parameters: Table 26.6-1 • wind directionality factor,KJ;see Section 26.6 and Table 26.6-1. • Exposure category lt,C,or 13:see Section 26.'7. Exposure category B 2019 OSSC • Topographic factor,A see Section 26.8 and Fig.25.11- . p g y • 6mtnut elevation factor,K,;sec Section 26.9 and Table 26.9-1 • Ouat•effect factor, G.see Section 26.t t,except for rooftop equipment. K_,:= 1.0 Topographic factor • Combined (CC,,)factor for rooftop equipment;see Section 29.4.1, Step 4: Determine velocity pressure exposure coefficient, K, or KA;.see section 26.8.2 Tahlc 10-1 Step 5: Determine velocity prrsxtrre qz or q,;see Eq.(26.10 1). Ke:= 1.0 Ground elevation factor Step 6; Determine Pone cuefficient,ef,except for rooftop equipment: Section 26.9 • Solid freestanding signs or solid freestanding walls. Fig.29.3-1 • Chimneys, tanks, Fig. 29.A-1. G:=0.85 Gust-effect factor • Open signs, single-plane open frames,.Fig. 29.4-2. Section 26.11 • Trussed tower. Fig. 29.4-3. • Rooftop equipment,using combined(GC,)tailors listed in Section 29.4.1. K_:-0.57 Velocity pressure • Rooftop solar panels, fig. 29.4.7 and Eq.(29.4-6),or Fig. 29.44 Step 7:Calculate wind force, F',or pressure,p: exposure coef. • Eq,(29.34)for signs and walk. Table 26.10-1 • Eqs-(29.4-2)and (29.4-3)for rooftop structures and equipment. • Eq.(29.4-1)for other structures. • Eq. (29.4-5)or(29.4-7) for ruoll0p solar panels. 2.2.1 Wind velocity pressure, eq. 26.10-1 : 0.00256 psf 2 q,:= a •K_.K_t•Kd•Ke• (V) = 15 psf mph 2.2.2 Wind design forces per eq 29.4-1: - Determine force coefficient, Cf: Force Coefficients, Cf hID Cross Section Type of Surface 1 7 25 Square (wind normal to face) All 1.3 1.4 2,0 Square (wind along diagonal) All 1.0 1.1 1.5 Hexagonal or octagonal All 1.0 1.2 1.4 Round, D qz>2.5 Moderately smooth 0.5 0.6 0.7 DA>5.3 (in S.I.) Rough (D'/D =0.02) 0.7 0.8 0.9 Very rough (D'/D=0.08) 0.8 1.0 1.2 Round, D q,-.2.5 All 0.7 0.8 1.2 D qz,.5.3 (in S.I.) \\lo-datasvrl\project_docs\P22\22803_EC Electric_Tigard PS Gen\ENGINEERING\CALCS\STRUCTURAL\Analysis_Design\Emerg Gen Pad Design v2.1.mcdx Page 3 Project: 22803 PACE.) Title: GENSET E-Pad &Anchorage Design EC Electric - Tigard Police Department by: ML Page 4 3501 Colby Ave, Suite 101 Everett, WA 98201 02/01/22 Notation D=Diameter of circular cross section and least horizontal dimension of square,hexagonal,or octagonal cross sections at elevation under consideration, in ft (m) I)'=Depth of protruding elements such as ribs and spoilers, in ft (m) Ii Height of structure, in ft (m) 47,=Velocity pressure evaluated at height z above ground, in 113Al2 (N/m2). Notes I. The design wind force shall he calculated based on the area of the structure projected on a vertical plane normal to the wind direction. The force shall be assumed to act parallel to the wind direction. 2. Linear interpolation is permitted for h/D values other than shown. FIGURE 29.4-1 Other Structures (Ali Heights): Force Coefficients, C,, for Chimneys, Tanks, and Similar Structures hGENSET — 1.51 wGENSET Use, Cf:= 1.35 Af:=1GENSET•hGENSET=89.3 ft2 Projected area normal to design wind Total wind force on GENSET: qz• G•Cf•Af= 1541 lbf Wo-datasyrl\project_docs\P22\22803_EC Electric_Tigard PS Gen\ENGINEERING\CALCS\STRUCTURAL\Analysis_Design\Emerg Gen Pad Design y2.1.mcdx Page 4 Project: 22803 ('p,�E Title: GENSET E-Pad &Anchorage Design .,,.A„,r,,,,w5vocr,zam„•„. EC Electric - Tigard Police Department by: ML Page 5 3501 Colby Ave, Suite 101 Everett, WA 98201 02/01/22 2.3 Seismic per ASCE 7-16, Chap 13: SDS:=0.687 Design spectral response acceleration for short periods Rp:= 1.5 ASCE 7-16, Table 13.6-1 (other electrical) aP:= 1.0 ASCE 7-16, Table 13.6-1 (other electrical) 1P:= 1.5 Component Importance factor, sec. 13.1 .3 ,Q,:=2.0 ASCE 7-16, Table 13.6-1 (other electrical) z:=0 ft Height of attachment from base: hroof:=hcENSET=6.7 ft Height of roof of building - Seismic coefficient for horizontal seismic forces: i '0.4•a�,•SDS z C,:=max min 1 +2• 1.6•SDS•h ,0.3Ip•SDS =0.31 Rp hro / Ip / / - Seismic coefficient for vertical seismic forces: E,.:=0.2 SDS=0.14 Total horizonal seismic force on GENSET: ', __._.._.. Fh E:= Wo/,• Cs= 1731.2 Ihf a ! I t a l { 4 li 1 } i 1 ( { t 1 i � i. F .«i.,,--T F S-....« -,......,.. .1... ._....,»i_" "__..._r....-. .. ,. .-.-t... ..y..,.. ,. , .....y....«.,., u..,_., ..y».....L._.., , _.F r-._t-__i. 5_�, ,_ ;. I F( i L.. # .t f _...,.__. i t - ; ! ; ! i liii t ; ...._A. S 1 t t V I — { t t 3 3 e,a..f»... ..,�_. -... .,K'_. 1 z ' \\lo-datasvrl\project_docs\P22\22803_EC Electric_Tigard PS Gen\ENGINEERING\CALCS\STRUCTURAL\Analysis_Design\Emerg Gen Pad Design v2.1.mcdx Page 5 ----" Project: 22803 Title: GENSET E-Pad &Anchorage Design ,',I• =inoSmvitesC•^tp••y EC Electric - Tigard Police Department 3501 Colby Ave, Suite 101 by: ML Page 6 Everett, WA 98201 02/01/22 3.0 Stability Checks: 3.1 Parameters: Equipment weight (op): W0p=5.6 kip • Preliminary foundation width: • ' (use 8" edge, all around) w '=w PNSET+2. 8 in=5.7 ft '... ...............'.." f G, rrrrrrrurr •rs` say, wf:=6.0.ft Preliminary foundation length: if:=lGENSET+2. 8 in= 14.8.ft �`` t- say, 1f:= 15 ft E-1 Foundation depth (non-edge): df:=7 in . - 1 Area at soil-concrete interface: A —w •l — t2 f'_ —90 f f f Unit weight of concrete `.,r. -- y�.:= 150 pef rr ' r r 1 Weight of foundation: .... . wf:=wf•lf•df•yc=7.9 kip ....; � j;- /,�'� VIEW Depth of thickened edge - (if :=24 in I } , _ � _�_ , NOTE: 18in frost depth + 64in w, a i 1,--1- -,- , 4 ,- 3.1.1 Stability check (ASD) _t i�_ 1 4 F i __ "-`f f z 3.1 .2.1 Overturning due to seismic 1 s ` ` 1 : 4 d —r ,— Fp.• =0.7•FIE= 1.21 kip - , I. force (ASD) t atrl (hGE2NSET +dfte) =65MoT:=F • kip•ft Overturning Moment _ MR:=0.6 (W0p+ wf) • f=24.3 kip•ft J ; 4. Resisting Moment (0.6D+0.7E) 2 ,_ FOSMR =3.8 �-,.�,�4.�.—__,—�_4 4....}_a--_�.--1—._ a__,.�..�_ ._.*_.,_.__,_.4_—,.._r__� u..•�_1.. �_ _ _1 oT MOT CheckoT:=if(FOSOT> 1.5 ,"OK","NG!") ="OK" 3.1 .2.2 Sliding: c:= 130 psf Presumptive, per OSSC, Table 1806.2 ,u:=0.25 Presumptive, per OSSC, Table 1806.2 Friction force (cohesive soil): Ff_(:=c•Af= 11.7 kip Friction force (weak granular soil): Ff :=0.6 (Wop+ Wf) •,u=2 kip FOS min (Ffc,Ffa) = 1.7 Fp Checks1:=if(FOSst> 1.5 ,"OK","NG!") ="OK" \\lo-datasvrl\project_docs\P22\22803_EC Electric_Tigard PS Gen\ENGINEERING\CALCS\STRUCTURAL\Analysis_Design\Emerg Gen Pad Design v2.1.mcdx Page 6 NCPA . --� Project: 22803 + Title: GENSET E-Pad &Anchorage Design An enginnerim95crvt..Oman EC Electric - Tigard Police Department 3501 Colby Ave, Suite 101 by: ML Page 7 Everett, WA 98201 02/01/22 3.1 .2.3 Soil Bearing: -,,. qa:= 1500 psf ;_ Presumptive allowable soil bearing pressure, per OSSC, Table 1806.2 wf Kern:=== 12 in _ 1, 4 ; Kern,. � .. width 6 + . , , , , , 1 1 1 - Check 0.6D+0.7E (ASD) t t i—' P0.6D:=0.6 (WOP+ Wf) =8085lbf , _ 1_.. ASD 0.6 D MOT .._ j , 1 --�- a -F ! s P0.6D ' - ._ N ' , ' Since e<Kern . __#. ; 1 "1,---;; d _L_ P0.6D 6 MOT 1 , 1 groin o.6D•— A — 2 18 1 psf � .._ 1 1 .wf f - Po.6D 6 MOT ;_ t- I_.. . .1.._.-H gmaY 0.6D:= + = 161.5 psf 1_ _3,. ..._ Af if•wf2 _. .' : - Check D+0.7E (ASD): _1_.;_ .lia ,n_ . ,.__; , , 4 E rt � i i 74 i PD:= W„ + W — 13475 lbf 14 . .�_. _ , s s � �7 l i MOT , ' , ' , i i , ii . eD:= =5.75 to i ,_.1 PD ;;._ a ._a L---i—J, .._ .. ,_..,..w ; ,_.,._ i 1_.s__.. + i ., 1 3 i 7 11 Since e<Kern 1_... ;- 1 ` i !,i ._i ! i r4 -1-H S �-4 3 4 PD 6 MoT , , +_ 4 i i gmin D:= A — 2 =78 Psf '- -Y - J lf•wf m y_ _., _4_...r� �.._: , _./_ .___s_-- . _.�._a- H..4 H. _4 '4___: I gmac_D:= D + 6 MOT =221.4 psf Af lf•wf FOSsb:_ 1.33 qa =9.01 _1.. ,_1/3 increase allowed for short duration loads max(gmax_0.6D 1 gmax D) . -y_ c ..._j—. '_ _.. -7 as + . 3 Check .=if(FOS > 1.0 "OK","NG!") ="OK 1 Y__, ..�_ ....,._1 �.. E i " -.1 4 -i- i . .1. p l a 1. 1 _. i t }..s t M 4 ; ! t L k { l } k Y I i_l4 S i , ,. ---1---1:- a -t-1--i 4- r t 4--. ! ' t i Y i 1 1 ...1 , 1 1 + i j. 4 s t r } t j--i—,'.i� i I-p-' 3 j 1 ._)7777 7-17.-. H I; . t 1 ' : 1 1 i ' 1 4. L 1, L.. i - + i i 1 i 1 1 S ,, I ,, I i t 4 y j ! y i + 1 t I t € t I i "'t , �- j 4 ._-e 1 -d a..."f- c t"'% `t 74 "'� I f .L ,-,1. i 1 i _t , ' - t r t r -..-i._a..._..K.„...X_m. -s- -._,,.__ L t i S 1-4-HI---"I __1'_1 .-[ t .$._. i �,.. i ' 1 i-'- -4 1 - t 1 f >--3 d—i , .-.-I. -!-- �---+----i -9---t------1-_-1---f 1 ! t-- '--1 s i -! r i_�I } 1- 1 i *'a'.-4-_.L f _i.-,, 1 7„-...a_ ' ' t ' . ,._._ „_a_._.4, '._..I f F--� i-+,_1 i 1_.1 { i s i i a 3 , i S i ...._ ""' 1 i'"'"fi-,.* . f`"y"T`..$.. ...-�-..z f 3 1 ; _;... 4 r y .t.,_...4 ,_s. 4 s ...1. ! --I e 'r- i \\Io-datasvrl\project_docs\P22\22803_EC Electric_Tigard PS Gen\ENGINEERING\CALCS\STRUCTURAL\Analysis_Design\Emerg Gen Pad Design v2.1.mcdx Page 7 • Project: 22803 PACETitle: GENSET E-Pad &Anchorage Design A,,,.,—..Son,.;ca Comp.'. EC Electric - Tigard Police Department 3501 Colby Ave, Suite 101 by: ML Page 8 Everett, WA 98201 02/01/22 4.0 Foundation Design: Try #5, mid-depth of non-thickened edge, at 12" OC. b:= 12 in Width of section S:= 12 in On-center spacing dh:=5 in=0.625 in Diameter of rebar 8 Ac#5:=0.31 in Cross section area of#5 rebar A :=As#5. 12 in =0.31 in- _H Cross section area of rei _Snforcement, per 12in strip ,f;,:=60 ksr . : L i ASTM 615 Grade 60 reinforcement .f'c:=4.5 ksi �.r _ Min. concrete compressive strength, -�- -1 _. Exposure F2 df= ' i ' Depth from extreme compression fiber 2 ' ' s to steel centroid 8 :=0.85 i___J.� ___ ..u.......4_i -- ---1 4 ACI 318-14 Table 22.2.2.4.3 �__ . .._. _ } .._.m.'.._L_j a:= A` fv =0.4 in _f Compression region depth 0.85 •f.•b • ' a 3i - Distance to neutral axis from extreme c:= //a =0.48 in _-_1_ compression fiber. /'1 A I3181 eg222241 I T_ 4.1 Flexural capacity s . ( _.�_ t Et:= —c =0.019 k Net tensile strain in reinforcement a...x__ ,. C _ - , _. j i , , i Et>0.005 , therefore tension controlled 4 t , 1 1 , ! ! i a---1 l I. 4... 3 t d , 1 9 a l I 0t:=0.9 d t r y -. + � � ACI 318-14, Table 21.2.2 Moment i _ 3 i ��t�:=�f•AS•fy• (d _ a =55.2 in•krp ' .. �� Mom t capacity per 12" strip 1 d 1 4 -t'-_-Ri--� jL. ,-4r i a,_ , 1. i .{ s-_..-.-" s a 4- i t f s , i , , -fir ..� 1 El 1 1 1 1 , 1 , �i -¢--E t ,*L S i , , di z t .•... —..-w...-t. 3 .e. ..„..y a —$ °-» a t a .-d-- f -1--_{•.-4._..,...._5,.4. 4.,..._,14-4 ._-4 r F a. ..y._ _i .Fi-..-_I �i a I S ' 1 4 , t ' i t 3 t t {i {{ _.S #' C a tl._ i t ¢i_# 1 i z._. i _. 1 -.4 _ # s� .I.....:. d- j" 4 a 3--4 ' �.....�--i--1— i -1`--4--i-.-�---4—i p--t- I- a #-a.-.- i- 1 4 —---� t t—...�.---, t e ,t _. d 3 1 i i i i i i .t i r 1 ! , st i . .j}j 1 i €. f t ! i I t I --I i--� .- ` .._, , 3 0- 4 i , 1_. ,.�1'Y,i....,.1.._ S. t......,..-a ..a....__ _..ti_` ,....I 4._.i6 ---i _}..._1_ ... i- %....� a .__n..1.._t......i.. _i__r _-1-__1....r_.L11.. ... _ ., x _..#._ .-_. i--J.-4-_i i I .. 1.. »t......1. !'- i a -?—_.�..4_4--L,_»,..er_ r- ..�..... .t i I.- i"'--'1--, ;_._,4 _i"", ,14 `---r, ., t- E __n_ ."Y-- _.a _ ilii " - iii � �•_.--E-..-......_�......��i. ,y..., d ,_. t.....y d _..__...i i,....-1 ---111--- In , I L i ,.{,... .,.. ,..--{- I-`l 1__.i._,.y ..x, -.-) f 'f'" { ".'i l T--#»- d I'--..' r 1 f I .....i s.,.. i s i ._.t.. L. § --1 s ; s 4 — — , 4--I r t__ i i fi _-- k -_i --— I —..1t_._.4- b---t , —1 — si —i 1 ' y t ' ; i 6 i 1 i ,i a x i 1 -- - ! t t t :.. ,,.. 5'- t f .� i.4. r_ s i-4 3 i H. 4.. y ...I 4-1- : i--, .� -�."i— -- .;.1 may... ....: F ' -_-H---- x ! ';;;----4 l i { 1 t T i l t 7 c l ---1111 — t i t t \\lo-datasvrl\project_docs\P22\22803_EC Electric_Tigard PS Gen\ENGINEERING\CALCS\STRUCTURAL\Analysis_Design\Emerg Gen Pad Design v2.1.mcdx Page 8 Project: 22803 �R�`+E Title: GENSET E-Pad &Anchorage Design ,,.r„,,,,..,R,=>,./ ,.3COM•n> EC Electric - Tigard Police Department 3501 Colby Ave, Suite 101 by: ML Page 9 Everett, WA 98201 02/01/22 4.1 .1 Flexural loading: Evaluate as simple supported beam (1 ft section width). Ignore SW of slab LRFD - Load Case 1.2D+1 .0E hGENSET Fi, E• Moment from seismic loading/1 ft section Mw:= 2 • 1 ft=5.1 in •kip IGENSET Uniform distribution of DL, per 1 ft wide section WD:= 1.2 Wop =500.2 p/f IGENSET 2 Ultimate moment on 1ft wide section M1.2D_J OW:= 1.2 coD8 f +Mw=37.6 in•kip i , , By inspection, slab has sufficient flexural capacity _1._..._._, 4.1 .2 Check for min reinforcement. _ _. ,___ . _,.I ;.__� . ...u_ Evaluate 1 foot strip Depth of section: dr=7 in Gross area of concrete section: Ag.•=df• 1•ft=84 in2 �,.."r _.. . � . . ._. .._•_ f_.. .. j 0.0018.60000 psi z t h d, As_ninl:_ •A =0.1512 in _. r 1, :.. ._.__i_ '.gfy—0.0014 Ag=0.1176 in .t._ .__. .. ' —44 As_mm2• �.. 4minre�uired:=max (As mini A =0.1512 In # Area of steel provided, A,=0.31 in2 .T � As • OK { , A_mirz_required 4.1 .3 Check for temperature & shrinkage (T&S) reinforcement requirements: The required T&S ratio is identical for min reinforcement above per ACI 318, Table 24.3.3.2 i Try #5at18" OC __ 1e1 17 , ._� , 4 , , r a1 ;` Spacing: ST&S:= 18 in , L4 : 3 . _i p 12 in Cross section area of reinforcement, per 12in strip _ pry. A,.:=Asp;• =0.207 in`, i Use #5 at 18" OC for T&S reinforcement � i 4 .__f _, } .i i , i ..4_ , 1 d a s t i 1 1,H { y E { ; # " d. w 1. 4 L 7�._.t__ i _!_ 4 -. w 1, f_. ._1_- j , „ 11 \\lo-datasvrl\project_docs\P22\22803_EC Electric_Tigard PS Gen\ENGINEERING\CALCS\STRUCTURAL\Analysis_Design\Emerg Gen Pad Design v2.1.mcdx Page 9 (P-ACE Project: 22803 Title: GENSET E-Pad &Anchorage Design A,,.,4„,.,n„,,,5,.,.,cr=Co^,onnX EC Electric - Tigard Police Department by: ML Page 10 3501 Colby Ave, Suite 101 Everett, WA 98201 02/01/22 4.2 One-way shear. Analyze 12" strip: /,. v„ qS,,:=0.75 ACI 318-14, Table 21.2.1 r0. �,:= 1.o Normal weight concrete N. _ — 'I Pc, b„,:= 12 in strip width ' � - 4 -ro di f3G+IF st.41, - Shear capacity: i 2 CA Iwaa:=Ov•2• lbf •2• fre •btiv•d,=4.2 kip ACI 318-14, eq 22.5.5.1 in - Shear Load (1.2D + 1 .0E) on a 12" strip: Determine TC couple h GENSET Fh, E• Moment from wind, per 1 ft wide section Mw:= 2 • 1 ft=5.1 in •kip 'GENSET Effective width of anchors (short direction): Weft'Cd7[C'�7 =33 in _ TCw:= Mw =0.156 kip 1 �._ Wet1 anch -f ..I t Conservatively assume the internal shear from self weight is equal to + 4 i- , reaction force at end of simple supported beam __W. i , _. � ) ._ , , Uniform •distribution of SW, per 1 ft wide section w _I W Wf ;. .,. ; ,. .- n + =941.9 plf a� _ _._ _. , s t i GENSET WD•Wf : ._ Y -i- a 4 yy ._ ; 1 t Rw shear:= 2 =2.8 kip .. +.., t ;i i i .--- -� i 1 R , �_ _. tea i 4 _ - Utilization. t- Rw shear 4-- + -�H. E...-+--i- I .._. UClwa stri — 67 _ ._. s 1 .. 0K a 6 Vc I way i _.. . { ..�.... t 1 7 a i f � 1 4.3 Two-wayshear. I -� -_ i _._ ;-t 3 , --I-- . ,_ ,. . ..__1 By inspection, there is sufficient capacity for two-way shear based on geometry of 2-way . { ` shear failure plane i ,�` '._4- -b —1 ', r. i a i_ �.`...' , !t 1——t_�1i.. 1 . 'i_'.--«---a....f. _.L. 1 ... ,,.t. g i .� -3 ' _s 1 t 1 'r ' ..4 x..,a-..4,_ _.5�._ ...,.3 ___,..4_;«_�.._,.4__-{.....�.. a_.....}.,__4_4_—..�...`.a. 1 i i , -.L._...y._-^�---i4_.._F .. S...;.�..i ,. .E_. ti.._ ..._H.._..A_.,_,_.,!.__1 i v _ .. _ ._._ .. . ., _ ..__,I \\lo-datasvrl\project_docs\P22\22803_EC Electric_Tigard PS Gen\ENGINEERING\CALCS\STRUCTURAL\Analysis_Design\Emerg Gen Pad Design v2.1.mcdx Page 10 • Project: 22803 6 +iii) Title: GENSET E-Pad &Anchorage Design An fnwn+rennq senwsn cnma.nr EC Electric - Tigard Police Department by: ML Page 11 3501 Colby Ave, Suite 101 Everett, WA 98201 02/01/22 5.0 Anchor Design: 5.1 WIND - Net design tension (0.9D+ 1.0W) : 5.1 .1 Uplift Overturning moment: h MOTF. GENSET =5.12.ft•kip W•— hw' 2 Resisting moment: MR:=0.9• Wop• Weff anch =6.93 ft•kip 2 Uplift: U:= (MoTW—MR) =-0.66 kip .. No Uplift! W effanch ( r t r i 5.1 .2 Net design shear: �._.- ,„ i.' �.__ Vanch'=Fh w= 1.54 kip 5.1 .3 Determine design values per anchor: ,. , .._ . ._.i _. ._: . , ,..,.. ... I_,' Nv:=4 Number of anchors resisting shear Vanch Vancho,.:= =385 lbf N Y 5.2 SEISMIC - Net design tension (0.9D+ 1 .0E) : 5.2.1 Uplift Overturning moment: M •—S� •F • h cENSET = 11.51 t•ki MOT w�•— �• h_E• 2 .f p Resisting moment, use dry weight: MR:=0.9• W . (1 —EL,) • Weffanch =5.98 ft•kip 2 Uplift: U:= (um- w—MR) =2 01 kip W eff_anch 5.2.2 Net design shear: Vanch:=Qo•FI E=3.46 kip \\lo-datasvrl\project_docs\P22\22803_EC Electric_Tigard PS Gen\ENGINEERING\CALCS\STRUCTURAL\Analysis_Design\Emerg Gen Pad Design v2.1.mcdx Page 11 (P— - Project: 22803 ACE) Title: GENSET E-Pad &Anchorage Design ,,,°,,, ,..,n. EC Electric - Tigard Police Department 3501 Colby Ave, Suite 101 by: ML Page 12 Everett, WA 98201 02/01/22 5.2.3 Determine design values per anchor: NT:=2 Number of anchors resisting tension U Tanchnr:—N= 1 O06 lbf T .,Al1 .—4 Number of anchors resisting shear Van( f. Vanc/ion.:= = 866 lb N, 5.3 Use above values (seismic) as load inputs to Hilti PROFIS software: (1)0 t v : y 1 _.. y I Iy 45 . 4 C1 . ; Y S 55 ( GENSET & SUBBASE 1 TANS 9 . 5 C . 75 ] , } ' MOUNTINGHALES , Ft Extracts GENSET DWG . 1. Try 3/4" DIA adhesive anchors. # # ;_ .� Use (4) Hilti 3/4" diameter HAS-R 304/316 anchor (2045010) and HIT-HY 200A adhesive (2022791). { 5 effective embedment depth , ,, a per ESR 3187 y ( ....... } t. Hilti report to follow % r x p i l— r--. —t— d. {_ ....),_%:- i ._ %... i t r---6 a e._ .._..,_.... -P_......_ ... % _.s _.p_. --.:.._,� - --' a.._4 .1 l T i . �. 7 L a y N . .. 1 f{— : ..., ; ..�6..._� . . ..x ! • t • i F ; i • • ) • i • i , s • • • 3 E i 5 a s 3 i } 3 • S t t l , 1.... F..,.a. { t % % 1 4 - } % % S -...:-+ ...4.. .%., _.',._a._.. a.w:-.-+.._,._._._j.. _s_....,....+ L _ z L 1 a i i 1` f ( 9 \\lo-datasvrl\project_docs\P22\22803_EC Electric_Tigard PS Gen\ENGINEERING\CALCS\STRUCTURAL\Analysis_Design\Emerg Gen Pad Design v2.1.mcdx Page 12 1111411111111111111,1111 Hilti PROFIS Engineering 3.0.75 www.hilti.com Company: PACE Engineers, Inc. Page: 1 Address: 11255 kirkland way; suite 300 Specifier: Matthew Lemley Phone I Fax: 14258272014 I E-Mail: matthewl@paceengrs.com Design: Tigard PS-GENSET v0 Date: 2/2/2022 Fastening point: Specifier's comments: Flood + Sustained T 1 Input data to , F Anchor type and diameter: HIT-HY 200 + HAS-R 304/316 SS 3/4 "" " """" Item number: 2045010 HAS-R 316 SS 3/4"x9 5/8" (element)/2022791 HIT-HY 200-A(adhesive) Effective embedment depth: het,act= 5.000 in. (het,rmit = - in.) Material: ASTM F 593 Evaluation Service Report: ESR-3187 Issued I Valid: 5/1/2021 13/1/2022 Proof: Design Method ACI 318-14/Chem Stand-off installation: eb = 0.000 in. (no stand-off); t = 0.250 in. Anchor platen : Ix x ly x t= 3.000 in. x 6.000 in. x 0.250 in.; (Recommended plate thickness: not calculated) Profile: no profile Base material: cracked concrete, , fc' = 4,500 psi; h = 24.000 in., Temp. short/long: 32/32 °F Installation: hammer drilled hole, Installation condition: Dry Reinforcement: tension: condition B, shear: condition B; no supplemental splitting reinforcement present edge reinforcement: none or< No. 4 bar Seismic loads (cat. C, D, E, or F) Tension load: yes (17.2.3.4.3 (d)) Shear load: yes (17.2.3.5.3 (c)) Application also possible with HVU2 + HAS-R 304/316 SS 3/4 under the selected boundary conditions. More information in section Alternative fastening data of this report. R-The anchor calculation is based on a rigid anchor plate assumption. Geometry [in.] & Loading [lb, in.lb] 4 4 4 Design loads Sustained loads 8 --C- "�_ .a+.-.�s Yrw, f'66 110111 id' P 4.1 1 `il y tr-'• X Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering(c)2003-2022 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan 1 Page 13 1114111111011111.111 Hilti PROFIS Engineering 3.0.75 www.hilti.com Company: PACE Engineers, Inc. Page: 2 Address: 11255 kirkland way; suite 300 Specifier: Matthew Lemley Phone I Fax: 14258272014 I E-Mail: matthewl@paceengrs.com Design: Tigard PS-GENSET v0 Date: 2/2/2022 Fastening point: 1.1 Design results Case Description Forces [lb]/ Moments[in.lb] Seismic Max. Util. Anchor[%] 1 Combination 1 N = 1,006; Vx = -866; Vy= 866; yes 27 Mx = 0; My = 0; MZ = 0; Nsus = 0; Mx,SUS = 0; My,sus = 0; Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering(c)2003-2022 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan 2 Page 14 1�■■�111..T1 Hilti PROFIS Engineering 3.0.75 www.hilti.com Company: PACE Engineers, Inc. Page: 3 Address: 11255 kirkland way; suite 300 Specifier: Matthew Lemley Phone I Fax: 14258272014 I E-Mail: matthewl@paceengrs.com Design: Tigard PS-GENSET v0 Date: 2/2/2022 Fastening point: 2 Proof I Utilization (Governing Cases) Design values [lb] Utilization Loading Proof Load Capacity '3N/Rv[%] Status Tension Bond Strength 1,006 3,983 26/- OK Shear Concrete edge failure in direction y+ 1,225 4,586 -/27 OK Loading PN Pv Utilization PN,V [%] Status Combined tension and shear loads 0.253 0.267 5/3 22 OK 3 Warnings • Please consider all details and hints/warnings given in the detailed report! Fastening meets the design criteria! Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering(c)2003-2022 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan 3 Page 15 11.41111111111111911111 Hilti PROFIS Engineering 3.0.75 www.hilti.com Company: PACE Engineers, Inc. Page: 4 Address: 11255 kirkland way; suite 300 Specifier: Matthew Lemley Phone I Fax: 14258272014 I E-Mail: matthewl@paceengrs.com Design: Tigard PS-GENSET v0 Date: 2/2/2022 Fastening point: 4 Alternative fastening 4.1 Alternative fastening data Anchor type and diameter: HVU2 + HAS-R 304/316 SS 3/4 Item number: 2045010 HAS-R 316 SS 3/4"x9 5/8" (element)/ not s, 111, available (capsule) Effective embedment depth: het,act = 6.625 in., hnom = 6.625 in. Material: ASTM F 593 Evaluation Service Report: ESR-4372 Issued I Valid: 9/1/2021 16/1/2022 Proof: Design Method ACI 318-14 / Chem Stand-off installation: eb = 0.000 in. (no stand-off); t = 0.250 in. Anchor plateR : IX x ly x t = 3.000 in. x 6.000 in. x 0.250 in.; (Recommended plate thickness: not calculated) Profile: no profile Base material: cracked concrete, , fc' = 4,500 psi; h = 24.000 in., Temp. short/long: 32/32 °F Installation: hammer drilled hole, Installation condition: Dry, Installation direction: vertical downward Reinforcement: tension: condition B, shear: condition B; no supplemental splitting reinforcement present edge reinforcement: none or< No. 4 bar Seismic loads (cat. C, D, E, or F) Tension load: yes (17.2.3.4.3 (d)) Shear load: yes (17.2.3.5.3 (c)) Max. Utilization with HVU2 + HAS-R 304/316 SS 3/4: 27 Fastening meets the design criteria! Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering(c)2003-2022 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan 4 Page 16 . .. I�■II�..TI Hilti PROFIS Engineering 3.0.75 www.hilti.com Company: PACE Engineers, Inc. Page: 5 Address: 11255 kirkland way; suite 300 Specifier: Matthew Lemley Phone I Fax: 14258272014 I E-Mail: matthewl@paceengrs.com Design: Tigard PS-GENSET v0 Date: 2/2/2022 Fastening point: 5 Remarks; Your Cooperation Duties • Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application. • You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you. Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering(c)2003-2022 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan 5 Page 17 CITC Hazards by Location Search Information �j Address: 13125 SW Hall Blvd, Portland, OR 97223, USA urnham Business & Storage 153 ft Coordinates: 45.42516619999999, -122.7670533 The ields A Elevation: 153 ft ' Agilyx Timestamp: 2022-01-27T17:49:35.747Z Fan no 14 Creek Park Hazard Type: Seismic �,,,, - Tigard Public Library Reference ASCE7-16 o le Map data ©2022 Google Document: Risk Category: IV Site Class: D-default Basic Parameters Name Value Description Ss 0.858 MCER ground motion (period=0.2s) Si 0.394 MCER ground motion (period=1.0s) SMS 1.03 Site-modified spectral acceleration value SM1 * null Site-modified spectral acceleration value SDS 0.687 Numeric seismic design value at 0.2s SA SDI * null Numeric seismic design value at 1.0s SA * See Section 11 .4.8 'Additional Information Name Value Description SDC * null Seismic design category Fa 1.2 Site amplification factor at 0.2s F� * null Site amplification factor at 1.0s CRs 0.886 Coefficient of risk (0.2s) CR1 0.867 Coefficient of risk (1.0s) PGA 0.391 MCEG peak ground acceleration FPGA 1.209 Site amplification factor at PGA PGAM 0.472 Site modified peak ground acceleration Page 18 TL 16 Long-period transition period (s) SsRT 0.858 Probabilistic risk-targeted ground motion (0.2s) SsUH 0.969 Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years) SsD 1.5 Factored deterministic acceleration value (0.2s) Si RT 0.394 Probabilistic risk-targeted ground motion (1.0s) S1UH 0.454 Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years) Si D 0.6 Factored deterministic acceleration value (1.0s) PGAd 0.5 Factored deterministic acceleration value (PGA) * See Section 11 .4.8 The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design. Disclaimer Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services. While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report. Page 19 Oregon Snow Loading The design ground snow of any location in the state of Oregon may be determined by entering the latitude and longitude of your site into the boxes below. The tool provides the design ground snow load (pg in ASCE7*) for your site. The design ground snow load val- ues can also be viewed on the online map. Users are strongly recommended to review the Map Usage Notes. Ground snow loads are very sensitive to geographic location, and particularly sensitive to elevation. It is recommended that the lati- tude and longitude values be entered with a precision of 0.001 (about 105 yards). * ASCE Standard (ASCE/SEI 7-10) Minimum Design Loads for Buildings and Other Structures published by the American Society of Civil Engineers. Latitude - Longitude Lookup Results Latitude: 45.425069 Longitude: -122.767393 Snow Load: 10.0 psf Modeled Elevation: 206 ft Site Elevation versus Modeled Grid Elevation Site elevation refers to the elevation (above sea level, in feet) of the location for which the snow load is required. The modeled grid elevation is the average elevation of the 4 km (about 2-1/2 miles) grid cell that was used in the snow load modeling. In rela- tively flat terrain, the two elevations will likely be the same or very similar. In sloped or mountainous terrain, the two elevations may be quite different. The design ground snow load may be underreported for some locations where the site elevation is higher than the modeled grid elevation. Consult the Map Usage Notes if your site elevation is more than 100 ft. above the modeled grid elevation shown, or if your site is at or near the top of a hill. Oregon Design Ground Snow Load Look Up Results It is important that the user of this tool understand the principals and limitations of the modeling used to create it. Ground snow loads can vary dramatically over short distances due to changes in precipitation and elevation. It is critical to use good engineer- ing judgment when interpreting and using the results reported by this tool. The user is recommended to review the online map, to gain a better understanding of the variations and range of magnitudes of the ground snow loads in the vicinity of the site location. In remote regions at high elevation, reliable snow data was not available during the creation of the map. A site-specific case study is required to determine the design ground snow load in these areas. The ground snow load values on the map are based on ex- trapolation, and are not recommended for design. See the Map Usage Notes for the regions that require a site-specific case study. It is recommended that the local building official having jurisdiction at the site be consulted for minimum design ground snow or roof snow loads. The reported design ground snow loads must be adjusted as required by Chapter 7 of ASCE7* for site exposure, roof slope, roof configuration, etc. Only the properly adjusted loads can be used to design roof structural elements. Oregon requires a minimum roof snow load of 20 psf (pm in ASCE7*) for all roofs, plus a 5 psf rain-on-snow surcharge for many roof types, resulting in a 25 psf minimum roof design load for most roofs. See the Map Usage Notes or Snow Load Analysis for Oregon, Part II for further information. * ASCE Standard (ASCE/SEI 7-10) Minimum Design Loads for Buildings and Other Structures published by the American Society of Civil Engineers. © Copyright 2010-2013 seao.org All rights reserved. Page 20 GIQN r0 Date: 01/01/2015 et, i WASHINGTON COUNTY - ENGINEERING STRUCTURAL DESIGN CRITERIA 0REGO4 .e current state building code governing commercial and engineered residential construction is th- 201 4 •regon Structural Specialty Code (OSSC). Seismic: • Site speci ' seismic design parameters may be determined based upon usi-g the following USGS link: htt►• /earthquake.usgs.gov/designmaps/us/application.php .nd selecting 2012 International Bui u' g Code as the design code reference documen •er 2014 OSSC 1613.3.1. • Site Class D shall be ` " al report determines Site Class E or F soils are pr 2019 OSSC is current Wind: building code for Design wind pressures are Washington county speed and the procedures of the 2010 edition of Minirm res (ASCE 7-10) or in accordance with the alternate method cont.' ed in the 0.. C. The design wind speeds (3-second gust) for WA County are: Risk Category Vult (mph) Vasd (mph) 115 89 II 120 •3 , IV 130 10 Wind exposure cate: y must be determined by the Engineer of Record based up.n site conditions. Snow: • ' -r 2014 OSSC, Ground snow load is based on Snow Load Analysis for Oregon as publis 'ed by the Structural Engineer Association of Oregon. Ground snow loads at a specific site can be determined at the following link: http://snowload.seao.org/lookup.html Soils: Frost depth . Foundation and retaining wall design parameters may be based upon the presump ' - : . •-: - .r - : values per 2014 OSSC Table 1806.2, or as justified by submission of a Geotechnical Report. • Default allowable foundation bearing capacity within WA County is 1,500 psf. • Default lateral soil loads shall be 40 psf/ft for laterally unrestrained retaining walls and 55 psf/ft for laterally restrained retaining walls (basement walls). Lateral pressures for walls supporting sloping backfill or surcharge loads must be determined by a Geotechnical Report. • Minimum frost depth is 12-inches for elevations less than 500-ft. Minimum frost depth is 18- inches for elevations greater than or equal to 500-ft unless the Building Official determines that a deeper frost depth is required for the site. Page 21 I I I V I I I SUGGESTED 24V BATTERY HEATER/CHARGER CONDUIT LOCATION (OPTIONAL) 75 1745 [68, 71 r 783 [30.8] 311 [ 12. 2] �,- [3. 07 750 [29. 5] .. 983 [38. 7] _ ENCLOSED GENSETS ONLY ENCLOSED -,i-Ln GENSETS ONLY ir '////i 1 r////////////i A! CONDUIT ENTRY AREA FOR GENERATOR o • L LOAD LEADS (BOTTOM ENTRY) , CIRCUIT Lc,c; BREAKER OPTION, REMOTE CONNECTION 24V BATTERY ol- TO TRANSFER SWITCH AND REMOTE ANNUNICATOR LOCATION ""J m SUGGESTED BLOCK HEATER o • CONDUIT LOCATION (OPTIONAL) on-) 0 L-% A / n-u 0 ► 1 --� 1 i i ////� A, ` '///////////// _ / xr �500 [ 19. 7]„ o 0 75 _ 805 [31 . 7]. 7] ` [3. 0] D 350 1230 [48. 4]o- � (9 [ 13,81 SUGGESTED FUEL SUPPLY & RETURN o STUB-UP AREA. - - 2250 [88. 6] (FLEXIBLE FUEL LINES 3/8- 18 NPT MALE-FUEL SUPPLY 3/8- 18 NPT MALE-FUEL RETURN 41 [ 1 . 6] 1044 [41 . 1 ] o CONTROLLER LOCATION ► ° INSTALLATION NOTE IF SUBBASE FUEL TANK AND/OR ----- ► SOUND HOUSING IS USED, REFER ► II- TO SUBBASE FUEL TANK ADV TO •e '_---�z" �` DETERMINE MOUNTING LOCATIONS. _ e • i BM PI Mal �� AIL' \ III II I �1. _�_�_�_®_BM, Y r�_�N� I�\�' .tom �����0=, CO y -NNN.-NNN�NN.}IN.1 =In NMI MI _ I V' '571 X �. -11 IV, CO e NNN�NN�NNN.W�NNwii: CO z . =ease:=- a==xcI =a NOTES: Ln T k: '� �' ° , I s--CNM G-NMI o I ) WHEN SUBBASE TANK IS USED, !,' �i,_-__ 0 ► CONDUIT MUST BE LOCATED n II ` N ������� �� m OUTSIDE OF TANK AREA OR IN - , aM a: :-a EIMI!I ME STUB-UP AREA FOR SUBBASE - ' i 'i 1 ° _ p .=� M00M MI�M C q TANK. REFER TO SUBBASE ADV. o / . o �'�: v J ' 2) DIMENSIONS IN [ 7 ARE ENGLISH etc E " ° <.,z '= • EQUIVALENTS. ° ° - L. p . - o °• 1 u J 3) IF AN ENCLOSURE IS USED, THE ui N I _ , �� _ _ N " FUEL LINE MUST BE STUBBED UP ► °o`` � NCO FROM DIRECTLY UNDER THE UNIT ° o c • ° 0 I 1 LJ r, , °0 `)- OR BROUGHT R IN FROMR TO THEENC END OF THE E t 676 '26 . 6] 597 -� ADV. 1 • 1910 �` [75. 2] 800 [31 . 5] [23. 5] I194 [47. 0] 4) MAXIMUM WET WEIGHT OF GENSET: i' 1 1923 KD [4240 LBS] 4X025. 4 11 . 01-- / (GENSET & SUBBASE FUEL INLET 1062 [41 .8] OIL DRAIN 650 [25. 6] 5) IF IBC CERTIFICATION IS REQUIRED _ TANK 9. 5 [ . 375] I . D. HOSE SEE SEISMIC ADV FOR INSTALLATION MOUNTING HOLES) 1151 [45. 3] FUEL INLET 1300 [51 .2] INSTRUCTIONS. 55 I . 0 __ 1359 [53. 5] ► 7 [4.6] REV DATE ON COMPOSITE DWGS, SEE PART NO. FOR REVISION LEVEL By IINLESS OTHERWISE SPECIFIED' KOHLER CO METRIC PRO-E II OINENSIONS ARE IN MILLIMETERS [2 I . 691 I - 6-6-I I NEW DRAWING [91637-3] PLO SI TOLERANCES ARE: III_ 1 570 [6 1 .8] COB x.xx f POWER SYSTEMS, KOHLER, WI 53044 U.S.A. NN► A 10-8-13 (A-5) 800 [31.51 ADDED; (A-4) 117 [4,61 WAS 254 110.0]; x.x ± THIS DRAWING IN DESIGN AND DETAIL IS KOHLER CO 3000 [ 1 1 8. 1 ] _ (A-5) 1359 [53,5] WAS 1422 [56.0]; (A-6) 551 [21.7] WAS ANGLES f SURFACE FINISH PROPERTY AND MUST NOT BE USED EXCEPT IN '� 1069 [42.1]; (A-8) LOX 25.4 WAS 6X 22.2 [CT59787] SVP 1 MAX. DESIIGNTORN INVENTIIONL AREC RESERVED.ALL RIGHTS OF D ANDLE TITLE 200 MODEL 4UA9, 4UA13, 4513X RECONNECTABLE B I D-I-I S (A-4) ALTERNATOR 4SI3X MODEL DESIGNATION ADDED PROJFeY) • 4X25. 4 [ I . 0] STANDARD MOUNTING & SEE SHEET 2 [CT126236] PAS APPROVALS DATE DIMENSION PRINT, 200 MODEL IMPROVED MOTOR STARTING (IMS) RECONNECTABLE C 8 3 17 (8SE) ENGINE VIEW UPDATED [CT177028] PAS DR AP PLD 6-6 • IOX 25. 4 [ 1 . 0] I BC MOUNTING AND 600V ALTERNATORS PLD 6-6-11 SCALE O.IS ICAO NO. I RXEET1 oT 2 JOHN DEERE 6068HF TIER III CXEOXFD APPROVED GDF 6-s-II DNN«o. ADV-8185 1 D 1 1 I Page 22 I - I - I I I T I I I ENCLOSURE WEIGHT MODEL KG ILBSI STEEL WEATHER 494 [ 10901 STEEL SOUND 585 [ 1290] ALUMINUM SOUND 300 [660] row r —�� 0127. 0 [5. 00] ENGINE EXHAUST 600 °'o [23. 6] L.. Ip _ •:.::...............mom' ... ...•• • oo AIR 'VTAKE • • �, ME MN EME MEW n NEE 6, EEO • :: ME ..:. I RRR AIR DISCHARGE VIEW A _ '3 [52. 7) 859 [33.8] DOOR OPENING _ ° r o e 4 SEE VIEW A COZ • • .Z CO • N CO M N rn • c0 CC • o r— • �C)0 No :I- _1: N� LIIMIMIIIIIMNIIIIIII• • • • e • e e o e • •N ° ° e • •/� • • o • 1 eA 559 800 100 53 1194 [47 . 07 77 19 10 [75. 2] 1-'4 AIR INTAKE [3. 17 [22. 0] [31 . 5] [3. 9] [2 . 1 ] 2249 [88. 5] AIR INTAKE 1300 [51 . 2] �__ 2568 [ I01 . 1 ] 436[ 17. 2] F f� _ OIL/COOLANT DRAIN 4094 [ 161 , 2] (BOTH SIDES) DIMENSIONS IN [ ] ARE INCH EQUIVALENTS REV DATE ON COMPOSITE DWGS, SEE PART NO. FOR REVISION LEVEL BY UNLESS 01NERMISE SPECIFIED- KOHLER Co 1 METRIC 1 PRO-E I)DINENS IONS ARE IX MILLIMETERS G 10-31-12 SHEET 2 WAS SHEET, ADDED SHEET I ECT28612] CEK 2)TOLERANCES ARE: NOTE: X.NX±0,25 POWER SYSTEMS, ESIGNKOHLER, WI 53044 U.S.A. ENCLOSURE ONLY MOUNTS TO SKID. H 2-5-13 (A-I) 1-3 WAS 1-2, SEE SHEET 3 [CT32174] SAM a.X Ls THIS DRAWING IN DESIGN AND DETAIL IS KOHLER Co 180 MODEL 4S 5, 4S 2X, 4SI3X 3X J 0 3 13 SHEET 3 REMOVED; SEE SHEET 2 [CT59787] SVP ANGLES±0' NO SURFACE FINISH PROPERTY AND MUST NOT 0E USED EXCEPT IN 200 MODEL 4 U A 9, 4 U A 13, 4 S 13 X / MAN. CONNECTION WITH KOHLER CO. WORK. ALL RIGHTS OF FOR STUB UP ACCESS DURING INSTALLATION THE RECONNECTABLE L 12MAY2020 K 9 25 17 (D s) DIM. [s.ool ADDED [CT1770047 SRM d DESIGN OR INVENTION ARE RESERVED. D, SEE SHEET 2 [C7204085] sss 'T.REAR ENCLOSURE PANEL SHOULD BE REMOVED IMPROVE MOTOR STARTING ( IMS) RECONNECTABLE A ADDS (C-4) VIEW A ADDED, PROIECi ION DIMENSION PRINT, ENCLOSURE 180-200 JD & 600V ALTERNATORS APPRovA DATE DRANN 6068HF485 JOHN DEERE TIER III DJV 2 10 SCALE 0.06 CAD Re. "'"I of 2 <xccxcD CWF 2- I- 0 APPRDVED RJD 2- - 0_m.RD ADV-7854 I D I I _ I • Page 23