Specifications (2) ; . :� 13,1P202t Ott 253
's,a0 ii-hze. //.0
SALES FLOOR AND STOCKROOM
STRUCTURAL FIXTURE
CALCULATIONS
for
RECEIVED
T-345 TARGET STORE JUN 21 2022
9009 SW Hall BLVD CITY OF TIGARD
Tigard, OR 97223 BUILDING DIVISION
TARGET
15 February 2022
WASHINGTON Prepared for:
SQUARE, OR TARGET
1000 Nicollet Mall
Minneapolis, Minnesota 55403
Prepared by:
-2/14/22
EXPIRES jial /2023 VA4
VAA, LLC
Kelsey F. Brown, P.E., S.E. 2300 Berkshire Lane North, Suite No. 200
Registration Number: 41093 Plymouth, Minnesota 55441
Expiration Date: 06/25/2023 763.559.9100
Project:Washington Square,OR
VA4
BY:JML
2/9/2022
STRUCTURAL FIXTURE AND RACKING CALCULATIONS
TABLE OF CONTENTS -
0.0 Index
1.0 General Information Pages G1-G4
1.1 Drawings
1.2 Loadings
1.2.1 Vertical(Gravity)Loadings
1.2.2 Loading Plaque
1.2.3 Loading Combinations
1.2.4 Lateral (Seismic)Loading
2.0 Light Duty Shelving Pages L1-L9
2.1 Description
2.2 Loading Criteria and Material
2.3 Shelf Beams Design
2.4 Determine Post Capacity
2.4.1 Allowable Axial Load
2.4.2 Allowable Moment
2.5 Transverse Seismic Design
2.5.1 Base Shear
2.5.2 Design Forces
2.5.3 Combined Stresses at Post
2.5.4 Spreader Connection
2.5.5 Shear Values of Sheet Metal Screws(SMS)
2.6 Longitudinal Seismic Design
2.6.1 Base Shear
2.6.2 Shear Panel
2.6.3 Back Brace
2.6.4 Biaxial Bending in Post
2.7 Overturning Stability
2.7.1 Anchorage Pattern
2.7.2 Back to Back Attachment
2.8 Base Plate Design
2.8.1 Downward Vertical Force
2.8.2 Uplift Tension Force
1
,ate ,
Project:Washington Square,OR
VA4
BY:JML
2/9/2022
3.0 Gondolas Pages F1-F10
3.1 Description
3.2 Material Properties and Overstrength Factors
3.3 Shelf Design
3.3.1 Determine Allowable Tension Capacity
3.3.2 Determine Allowable Shear Capacity
3.3.3 Determine Allowable Shelf Capcity
3.4 Determine Loding Demand on Post
3.4.1 Loading to Post-Gravity
3.4.2 Fundamental Period
3.4.3 Determine Seismic Loading
3.5 Determine Capacity of Posts
3.5.1 Allowbale Axial Load
3.5.2 Allowbale Bending Moment
3.6 Combined Stresses at Post
3.7 Base Shoe Anaylsis
3.7.1 Verify Local Buckling of Web
3.7.2 Base Shoe Connection to Post
3.8 Overturning-Transverse Direction
3.8.1 Base Anchorage
3.9 Alternate Attachment to Wall
3.9.1 Verify Blocking
3.9.1.1 Fixture Connection to Blocking
3.9.1.2 Blocking Connection to Studs
3.9.2 Verify Stud Capacity
3.10 Longitudinal Seismic
3.11 Longitudinal Seismic to Wall
3.12 Anchorage to Slab
3.13 Stability of Gondolas Under 8'-0" Tall
4.0 Pallet Racking Pages H 1-H 12
4.1 Description
4.2 Material Properties and Overstrength Factors
4.3 Wire Decking
4.4 Beam Capacity
4.4.1 4"Deep Beam
4.4.2 6"Deep Beam
4.5 Beam Connections
4.5.1 Pin Capacity
4.5.2 Three-Pin Connection Capacity
4.5.3 Four-Pin Connection Capacity
4.5.4 Uplift Resistance
4.6 Standard Frame Post Capacity
4.6.1 Allowable Axial Load
4.6.2 Allowable Bending Moment
2
Project:Washington Square,OR
BY:JML
2/9/20229/ 22
4.7 Not Used
4.8 Strut Capacity
4.8.1 Allowable Axial Load
4.8.2 Allowable Bending Moment
4.8.3 Allowable Tension Load
4.9 Not Used
4.10 Not Used
4.11 Transverse Seismic Design
4.11.1 Base Shear
4.11.2 Design Forces
4.11.3 Verify Post Capacity
4.11.4 Verify Brace Capacity
4.11.5 Frame Loading at Top Tier Only
4.11.5.1 Base Anchorage
4.11.5.2 Verify Post Capacity
4.11.5.3 Verify Brace Capacity
4.11.6 Verify Design for 12'-0"Beam Span
4.12 Longitudinal Seismic Design
4.12.1 Base Shear and Fundamental Period
4.12.2 Design Forces
4.12.3 Base Shear Distribution
4.12.4 Verify Post Capacity
4.12.5 Verify Beam Connection
4.13 Not Used
4.14 Not Used
4.15 Weld Capacity Calculations
4.15.1 Transverse Fillet Welds
4.15.2 Flare Groove Welds
4.15.3 Weld Material Limitation
4.16 Base Plate Design
5.0 Slab Verification
5.1 Empirical Method Pages S1-S2
3
Project:Washington Square,OR
VA?'
BY:1ML
2/9/2022
1.0 General Information
The enclosed calculations correspond to Target Corporation's Store and Stockroom Fixtures. These calculations are provided for Building Official Plan
Review. All components are shop fabricated. All welding is performed in a certified fabrication shop with no field welding.
Design Code= 2019 OSSC Additional reference to RMI 2012
AISI 2016
ASCE 7-16
1.1 Drawings IBC 2018
SRI1 Structural Fixture Plan
SR51 Heavy Duty Stockroom Racking
SR52 Light Duty Stockroom Shelving
SR53 Gondola Sales Floor Shelving
1.2 Loading
1.2.1 Gravity(Vertical)Loading
All permissible loading is governed by Target Store Operations and verified through these calculations. The design loading
used in these calculations are a conservative when compared to the actual static loading typically experienced in normal store
operations.
Pallet Rack Loading:
Pallet design load= 2000 lbs(4'wide x 4'high x 4'deep)-Includes 50#additional pallet DL
#of Loaded Tiers= 2
Light Duty Shelving:
Shelf storage volume=2'deep*4'wide*30"tall*5 pcf=100 lbs use 120 lbs
Storage unit volume=2'deep*(10'tall)*4'wide x 5 pcf=400 lbs. use 580 lbs
Gondola Loading:
Shelf storage volume=2'deep*4'wide*30"tall*10 pcf=200 lbs. use 240 lbs
Single sided storage=2'deep*94"tall*4'wide x 10 pcf=627 lbs. use 900 lbs
1.2.2 Loading Plaque
A plaque denoting the following design capacities will be posted in the Target Store. See sheet SR11 for exact wording,size
and placement location.
Maximum Load(lbs)
Type of Unit Per Tier Per Bay
Heavy Duty Pallet Rack,Two Tier(10'-0) 4000 8000
Heavy Duty Pallet Rack,Two Tier(12'-0) 6000 8000
Light Duty Shelving 120 580
Sales Floor Gondolas 240 900
1.2.3 Loading Combinations
Pallet Rack
Load Combinations Per RMI 2.1
(2) DL+PL+LL Gravity Load Critical
(6) (1+0.14Sps)DL+(0.85+0.14SD5))PL+LL+0.7EL Gravity Plus Seismic Critical
(9) (0.6-0.14Sds)DL+(0.6-0.14Sds)I3PLapp+0.7EL Seismic Uplift Critical
13 equals 0.7 except for uplift load case per RMI 2.1
The seismic load can be reduced by 0.7 Per ASCE 7-16 Section 2.4 and RMI 2.1
GI
Project:Washington Square,OR
V1011
BY:1ML
2/9/2022
1.2.4 Lateral(Seismic)Loading
Designed for 2018 IBC Seismic Category D
Where: R= 4 Rack with Diagonal Bracing (RMI 2.6.3&ASCE 7-16
4 Rack with Moment Frame Action Table 15.4-1)
3 Gondola (ASCE 7-16 Table 15.4-2 Assume
distributed mass cantilever)
Seismic Weight(W) W=0.67*PLRF*PL+DL+.25*LL (RMI 2.6.2)
Elevated Store(Y or N)= N
Importance Factor I= 1.0 (ASCE 7-16 Table 11.5-1)
Risk Category II
Building Height 20.00 ft
Gondola Anchorage Height 0.00 ft
LD Shelving Anchorage Height 0.00 ft
Pallet Rack Achorage Height 0.00 ft
Site Class= D(Default)
Short Period Ss 0.867 g
One Second Period Si 0.398 g
Site Coefficient Fa 1.200
Sms=Fa*Ss 1.040 g (ASCE 7-16 Eq 11.4-1)
Site Coefficient F„ 1.902
Smi=Fv*Si 0.757 g (ASCE 7-16 Eq 11.4-2)
SDs=O.67*SMs 0.694 g (ASCE 7-16 Eq 11.4-3)
SD1=0.67*SM1 0.505 g (ASCE 7-16 Eq 11.4-4)
Table 11.4-1 Site Coefficient Fa(ASCE 7-16)
Mapped Spectral Response Acceleration at Short Period
Site Class Ss<0.25 Ss=0.50 SS 0.75 SS 1.00 SS 1.25 Ss>1.5
A 0.80 0.80 0.80 0.80 0.80 0.80
B 0.90 0.90 0.90 0.90 0.90 0.90
C 1.30 1.30 1.20 1.20 1.20 1.20
D 1.60 1.40 1.20 1.10 1.00 1.00
E 2.40 1.70 1.30 See Section 11.4.4 ASCE 7-16
F See Section 11.4.4 ASCE 7-16
Table 11.4-2 Site Coefficient Fv(ASCE 7-16)
Mapped Spectral Response Acceleration at 1 Second Period
Site Class
51<0.1 51=0.2 Si=0.3 51=0.4 51=0.5 S1>0.6
A 0.80 0.80 0.80 0.80 0.80 0.8
B 0.80 0.80 0.80 0.80 0.80 0.8
C 1.50 1.50 1.50 1.50 1.50 1.4
D 2.40 2.20 2.00 1.90 1.80 1.7
E 4.20 See Section 11.4.4 ASCE 7-16
F See Section 11.4.4 ASCE 7-16
Table 11.6-1 Seismic Design Category Based on Short-Period Response Accelerations(ASCE 7-16)
Value of SDs Risk Category
I or II III IV
SDs<0.167 A A A
0.167<SDs<0.33 B B C
0.33<Sos<0.50 C C D
0.50<SDs D D D
G2
Project:Washington Square,OR
V1I1 BY:JML
2/9/2022
Table 11.6-2 Seismic Design Category Based on 1-Second-Period Response Accelerations(ASCE 7-16)
Value of Sos Risk Category
I or II III IV
SDi<0.067 A A A
0.067<Spi<0.133 B B C
0.133<Sm<0.20 C C D
0.20<SDi D D D
Design is govern by seismic loading
Fixture On Ground Design Shear
Seismic Response Coefficient Cs=SDl/(R*T)
Max.Seismic Response Coefficient Csmax SDS/R
(RMI 2.6.3&ASCE
Min.Seismic Response Coefficient Csmin=.O44SDS 12.8.1.1)
if Sr>0.6g Csmio=0.5S1/R
Base Shear Equation V=Cs*Ip*Ws
Fixture On Elevated Slab Design Shear
0.4a,SDs z
Seismic Response Coefficient
(RP ll (1+2 h)WP (ASCE
/v/ 15.5.3&
Max.Seismic Response Coefficient 1.6SDs/PWp 13.3.1)
Min.Seismic Response Coefficient 0.3SDs/pWP
Light Duty Shelving
V design braced action Cs'Ip'Ws= 0.126*WIT
Vmax braced Csmax'Ip'Ws= 0.173*W
Vmin braced csmin'Ip*Ws= 0.031 *W
V moment action direction Cs*ip*ws= 0.126*W/T
Vmax moment Csmax*Ip*Ws= 0.173*W
Vmin moment Csmin'Ip'Ws= 0.031 *W
Gondola
V design Cs*ip*Ws= 0.168*W/T
Vmax Csmax'Ip'Ws= 0.231 *W
Vmin Csmin'Ip'Ws= 0.031 *W
G3
Project:Washington Square,OR
V1 BY:JML
2/9/2022
Pallet Rack
V design braced action Cs•Ip*ws= 0.126*W/T
Vmax braced Csmax'Ip'Ws= 0.173*W
Vmin braced Csmin"Ip*Ws= 0.031 *W
V moment action direction Cs•ip*ws= 0.126*W/T
Vmax moment Csmax"Ip•Ws= 0.173*W
Vmin moment Csmin•Ip`Ws= 0.031 *W
G4
Project:Washington Square,OR
VA4 BY:JML
2/9/2022
2.0 Light Duty Shelving
2.1 Description
Light duty shelving consists of 5/8"wood shelves supported on metal beams that span between two
sets of uprights. Beam span is always 4'-0". An upright is comprised of two vertical posts with metal
spreaders between them yielding a depth of 2'-0". These uprights form a moment frame that is simply
anchored to the floor at the base—no moment transfer.
A design load of 5 pcf is utilized for the entire structure. Each shelf is checked to a slightly
higher load to account for variable loading patterns. In Target Stores,these units are
typically stocked sporadically with relatively light loads that seldom approach 5 pcf.
2.2 Loading Criteria and Material
Shelf storage volume=2'deep*4'wide*30"tall*5 pcf=100 lbs. Use 120 lbs
Storage unit volume=2'deep*(10'tall)*4'wide x 5 pcf=400 lbs. Use 580 lbs
Material:A653 ASLAII Grade 50. Fy=50 ksi. Fu=60 ksi.
2.3 Shelf Beam Design-Detail 7/SR52
Section properties
A= 0.1339 in r,x= 0.3055 in S2= 1.67 fs
t= 0.0625 in2 ryr= 0.2498 in w=W/(4'*2) 15 plf
Ix,= 0.012 in4 SK= 0.0333 in3 1= 4 ft
lyy= 0.008 in4 fy= 50 ksi
AISI C3.1.1
M"-Se.fy M"u = M" = se f} (AISI Eq C3.1.1-1)
S2 S�
Mall= 1.00 k*in
z
n Ma = wl _ 30 lb*ft= 0.36 k*in
8
0.36 k*in < 1.00 k*in
Mact<Mall-Design O.K.
Verify deflection
4max=1/180= 0.27 in (RMI 5.3)
4ect= 0.25
Iprov>freed Beam O.K.
Ll
Project:Washington Square,OR
2
2/9/2022
2.4 Determine Post Capacity-Detail 3/SR52
Gross section properties Net section properties
t= 0.0625 in t= 0.0625 in
A9= 0.2287 in2 A„= 0.1579 in2
S„= 0.0599 in3 See= 0.0469 in3
Syy= 0.0637 in3 Syy= 0.0411 in3
rxx= 0.4786 in rxx= 0.5375 in
ryy= 0.3244 in r = 0.3138 in
Ixx= 0.052 in4 Ix,= 0.046 in4
lyy= 0.024 in4 Iyy= 0.016 in4
S2= 1.8fs
2.4.1 Allowable Axial Loading
Lx= 24 in kLx/r,=76
Ly= 24 in kLy/ry= 130
Kx= 1.7
Ky= 1.7
AISI C4 Ae*Fn
Pa= (AISI Eq C4.1-1)
c
Find F„ F ��<1.5 FT,=(0.658A )Fy
Y
Ac = Fe A > 1.5 Fn=(0.877
FY
crt*Qex 7r2E
Where: Fe = < Fe= klz (AISI Eq C4.1.2-2)<
+a
t ex (t') (AISI Eq C4.1.1-1)
1 n2ECW
(itc=A*, r\GI+(KtLc)z) (AISI Eq C3.1.2.1-9)
ir2E
aex= p
x (AISI Eq C3.1.2.1-11)
((
( Lx/ll
Given:
G= 11300 ksi kt= 1
1= 0.0028 in4 Lr= 20 in
re=(1/A)1"2 0.1106 in Cw. 0.005
E= 29000 ksi
Then:
at= 12577.76 ksi
aex= 49.67451 ksi
Fe= 49.4791 ksi
Fe= 49.67451 ksi
Use Fe= 49.48 ksi
Ac= 1.00525
F„= 32.76 ksi
Pa= 2.87 K
L2
Project:Washington Square,OR
VA4 BY:1ML
2/9/2022
2.4.2 Allowable Moment
AISI C3.1.1 Nominal Strength
Mn Sefy (AISI Eq C3.1.1-1)
Mau=Tf_
Matboc= 1.40 k*in
Matyy= 1.23 k*in
AISI C3.1.2 Lateral Buckling Strength
* is
J )I Mcl S *
M
Mn = Sc Ma = �e = �S! (AISI Eq C3.1.2.1-1)
ll
x-axis My= Fy*Sf„„= 3.00 k*in
Sf= Sa.= 0.0599 in3 full cross section
So= SoxK= 0.0469 in3 reduced cross section
bey= 16.931 ksi
Me=Cb*ro*A*(oey*6et)1/2 = 11.68 kin (AISI Eq C3.1.2.1-4)
Mc=My Mo= 2.995 kin
Maros= 1.40 k*in Lateral Buckling does not control
Maiiyy= 1.23 k*in Lateral Buckling does not control
Matba= 1.40 k*in
Mafyy= 1.23 k*in
2.5 Transverse Seismic Design
2.5.1 Base shear
From Section 1.2.34 V= 0.17 W
P= 290 lbs/post
W= 194.30 lbs/post
V post= 23.58 lbs
2.5.2 Design Forces
Distribute lateral forces in proportion to distribution of mass
V7-►
H7 Height Weight w,h, F; V;
V6 ► 144 55.5 7994.057 0.247 5.82
H6 120 55.5 6661.714 0.205 4.85
V5-► 104 55.5 5773.486 0.178 4.20
H5 84 55.5 4663.2 0.144 3.39
V4 ►
64 55.5 3552.914 0.110 2.58
H4 44 55.5 2442.629 0.075 1.78
V3
H3 24 55.5 1332.343 0.041 0.97
V2 ► 388.6 32420.34 1.000 23.58
H2
V1_►
H1
L3
Project:Washington Square,OR
V4/11 BY:JML
2/9/2022
2.5.3 Combined Stresses at Post
P= 192 lbs Vmax= 23.58 lbs/post
Mmaz= 0.50 Kin Pma,,= 274 lbs
AISI C5.2.1-1
,S1cP lbMx
+ 5 1 (Eq C5.2.1-1)
Pn Mnx ax
flcP
Where: ax=1— (Eq C5.2.1-4)
Ex
rzZElx
PEx=(KxLx)2 (Eq C5.2.1-6)
Therefore:
Pe, 8.94 K
a,= 0.94
lcP lbMx
+ = 0.53 <=1.0 Say O.K.
Pn Mnxtrx
2.5.4 Spreader Connection-Detail 6/SR52
Mreqd 0.38 kin
Szspreader= 0.4327 in'
Mreqd = 0.878207 ksi fs is O.K.
fsspreader=
Sxspreader
C e
Mcap= (1"— Pa+(3"— Pa = 1.49 kin
where a-2t= 0.125 in
Alt Mcap=(3")Pa*1.33= 1.54 kin
Use Mcap= 1.49 k in <=Mreqd O.K.
See 6/SR52 for Spreader Configuration
2.5.5 Shear Value of Sheet Metal Screws ISMS)
#8 sheet metal screws d= 0.164 in
F,= 65 ksi
AISI E4.3
For t 2 / t, <_ 1 .0 P s Shall be taken as the smallest of
= 4.2 t 3 d i i z F (Eq E4.3.1-1)
P
", ( z ) „2
Pa, = 2 .7 (t,d )F„, (Eq E4.3.1-2)
Pa, = 2 .7(t2d )F„2 (Eq E4.3.1-3)
For t 2 / t >_ 2 .5 P„s Shall be taken as the smallest of
P,u = 2 .7(t2d )F„2 (EgE4.3.1-4)
= 2 .7 (t,d )F (Eq E4.3.1-5)
For 1.0 < t2/t, < 2.5 Pf,Shall be calculated from linear interpolation
L4
Project:Washington Square,OR
VAA BY:JML
2/9/2022
Spreader
t1= 0.0598 in 16 ga post
t2= 0.0478 in 18 ga spreader
52=3
Since t2/t1<1.0
Pns =4.2(t1d)'5Fu2= 1.16 K
Pns=2.7t1dFu1 = 1.72 K
Pus=2.7t2dFu2 = 1.38 K
P1.= 1.16 K
Pns
Pa= = 0.39 K
Brace
t1= 0.0673 in 15 ga brace
t2= 0.0598 in 16 ga post
52=3
Since t2/t1<1.0
Pns=4.2(t1d).5Fu2= 1.62 K
Pns =2.7t1dFu1 = 1.94 K
Pns=2.7t2dFu2= 1.72 K
= 1.62 K
Pa= s= 0.54 K
Back panel
t1= 0.0239 in 24 ga panel
t2= 0.0598 in 16 ga post
4=3
Since t2/t1>2.5
Ens=2.7t1dFu1 = 0.69 K
Pns= 0.69 K
P
Pa= = 0.23K
Back to Back Conection
t�= 0.0598 in 16 ga post
t2= 0.0598 in 16 ga post
52=3
Since t2/t1<1.0
Pns=4.2(t1d)'5Fu2 = 1.62 K
Pns=2.7t1dFu1 = 1.72 K
Pns =2.7t2dFu2 = 1.72 K
Pns= 1.62 K
pa= s= 0.54 K
L5
Project:Washington Square,OR
VA?11 BY:JML
2/9/2022
2.6 Longitudinal Seismic Design
2.6.1 Base shear
From Section 1.2.54 V= 0.173 W
P= 580 lbs/unit
W= 388.6 lbs/unit
V unit= 35.38 lbs
2.6.2 Shear Panel-Detail 2B/SR52
See Detail 2B/SR52 for details
24 ga panel w/#8 sms @ 24"o.c.
AISI C3.2
length a= 144 in
depth h= 48 in
t= 0.0239 in
52„= 1.6 fs
h/t= 2008.4
Un=AwFv (Eq C3.2.1-1)
When:
h/t<JEkv/Fy
Fv=0.60Fy (Eq C3.2.1-2)
I Ekv/Fy<h/t<1.51 Ekv/Fy
Y Y 0.60,1Ek„Fy
Fv (h/t) (Eq C3.2.1-3)
h/t>1.51JEkv/Fy
0.904E4
Fv= (h/t)Z (Eq C3.2.1-4b)
Where:
k„= 5.34
Therefore: Vr
Ekv/Fy= 55.7
h/t= 2008.4 > 1.51 VI Ekv/Fy= 84.0
_V„_0.904Ekv ht
V a S2 (h/t)z (2 = 298.62 lb/ft
Screw shear governs @ 114.65 Ib/ft
Vreqd= 8.84 plf/unit
Vreqd<Vall O.K.
L6
VA4
Project:Washington Square,OR
Y:JML
2/9/9/2022022
2.6.3 Back Brace-Detail 2A/SR52
See Detail 2A/SR52
P=2 units' 35.4 lbs = 70.8 lbs per brace
15ga x 3/4"strap bracing
Ag= 0.0505 in2
An= 0.03365 in2
Tbrece= 100 lbs
AnFy
Tall = = 1.01 K
Tbrace<Tall O.K.
verify#8 screw at brace
Vregd= 100.1 lbs
Veii= 538.9 lbs Screw O.K.
2.6.4 Biaxial Bending in Post
Pex;ei= 192 lbs
Mbending=( 70.75 *"4"arm)= 0.28 K in
Combined interaction
Pact+Mact =
0.30<=1.0 O.K.
Pau Mall
2.7 Overturning Stability
RMI 2.6.8
Condition 1
jh=144"
• Veci
::;;::::
= 82.8ineq _ = 109.03 lbs
24"
1 t
P q P.q Pgravity±Peq = 232.32 lb downward
-43.56 lb uplift
L7
Project:Washington Square,OR
BY:JML
2/9/9/2022022
Condition 2
h=144"
ve9
«< IJA
h'=144"-(30"/2)= 129 in
WeQ= 120 lbs
h'
Peg Ve24"h 78.29 lbs
1 Pgravity±Pea = 135.12 lb downward
-48.12 lb uplift Governs
Peq Peg
Use 3/8"diameter x 3" Dewalt Screw Bolt+anchor(ICC ESR 3889)
Ultimate value in fc'=3000psi in accordance with ACI 17.2.3.2:
Tn= 1050 lbs SITu= -178.01 lbs Tn>T-->O.K.
2.7.1 Anchoring Pattern
Anchor all perimeter legs of shelving to floor. At back-to-back
units,screw adjacent uprights together at 24"o.c.with#8 sms.
Moment o.k.by inspection and overturning tension=0(4'base for
double units).
Shear is resisted by 2 anchors:
Veq 2 units
noVu=2 x—x = 134.8 lbs
unit 2 anchor
Vn= 770 lbs Vn>V-->O.K.
2.7.2 Back-to Back Attachments-Detail 10/SR52
In back-to-back configurations,the posts are screwed together with
a#8 sms at 24"o.c.for the full height of the upright.
ShearFlow=VQ V= 133.353 lbs
I Q=A'ybe 7.5792 in3
A'= 0.3158 in2 =(2*Anet)
I=II +Ad,2)+(Ix2+Ad22)]*2
I= 363.87 in4
ShearFlow= 2.78 lbs/in
V 16.67 lbs/2ft
Pa 1077.82 lbs/2ft
V< Pa O.K.
L8
Project:Washington Square,OR
VA4 BY:JML
2/9/2022
2.8 Base Plate Design-Detail 4/SR52
2.8.1 Downward Vertical Force
Section properties
B= 2.25 in t= 0.1 in
W= 2.625 in fY= 50 ksi
F'p= 2100 psi RMI 7.2.1
AP 5.90625 in2
Pa= 274 lbs
Fa= 46.39153 psi Plate O.K.
2.8.2 Uplift Tension Force
T= -48.12 lbs
M= -42.1018 Ib*in
S= 0.00375 in3
Ma= 187.5 Ib*in Plate O.K.
L9
Project:Washington Square,OR
VA4 BY:JML
2/9/2022
3.0 Sales Floor Gondolas
3.1 Description
Sales floor gondolas are floor mounted display shelving for general merchandise. The gondolas analyzed here
are only units 96"in height or greater On drawing sheet SR11,all gondolas 96"and higher are identified.
3.2 Material Properties and Overstrength Factors
Material:Misc. Fy= 36 ksi
Fu= 50 ksi
Material:Shelf Fy= 90 ksi
Fu= 100 ksi
Material:Post Fy= 65 ksi
Fu= 75 ksi
Material:Base Shoe Fy= 45 ksi
Fu= 50 ksi
Material:Base Shoe Hook Fy= 80 ksi
Fu= 107 ksi
O to be used for beam tension design > Qt-beam= 1.67 fs
S2 to be used for beam flexure design > S2f-beam= 1.67 fs
O to be used for column design > S2C0l„m„= 1.80 fs
F1
Project:Washington Square,OR
VNIBY:JML
2/9/2022
3.3 Shelf Beam Capaicty-Detail 7/SR53
P= 240 lbs
hta 1
4 12" 12"
d I
See Detail 7/5R53 for shelf detail. Section properties:
Net section
Gauge 12 ga t= 0.1046 in
htab= 0.75 in2 A„= 0.07845 in2
d 1g4= 3.41 in Stg4= 0.203 in3 (two per shelf)
d 3= 4.92 in S3= 0.422 in3 (two per shelf)
bmm= 0.188 in(Minimum thickness of tab hook to support shelf)
Fb=0.6*Fy= 54 ksi
Mect=P*a= 2.88 k in
Sx,egd= 0.053 in3(per shelf)
Sxregd<Sxprov Shelf design O.K.
3.3.1 Determine Allowable Tension Capacity
T = ° *
= 4.23 kip (AISI Eq C2-1)
Tact = Mnct = 0.95 kip
d—h/2
Tact<Tallow Shelf design O.K.
3.3.2 Determine Allowable Shear Capacity
F„=0.4*Fy= 36.0 ksi
Va=F„*A= 2.82 kip(based on full tab-Vertical Shear)
0.71 kip(based on min tab hook bm;,,-Tab shear induced by Moment)
Vact<Vallow Shelf design O.K.
3.3.3 Determine Allowable Shelf Capacity
Tab hook shear governs,Thus:
Mcap=P„*(d-h/2)= 2.14 k in
Pcap=Mcap/a= 179 lbs(Per beam capacity)
Pmax= 357 lbs <----max shelf capacity,governed by bma„
Pact<Pcap Shelf design O.K.
F2
Project:Washington Square,OR
VIA BY:JML
2/9/2022
3.4 Determine Loading Demand on Post
3.4.1 Loading to Post-Gravity
_El
D= 18 in if
4
or 22 in
Hmnx= 94 in
H
W= 48 in
w= 10 pcf
Wseu= 128 lbs
Wh, 51 lbs
Elevation of gondola
One sided post Two sided post
PTe=w*D*H*W Pie = 2P.,
Pone' 1.03 K PM,o 1.93 K
M ne P(D-I
2-)
2 2 M = Mone - Mone
Mone= 12.59 K in Mom= 0 Kin
(balances)
3.4.2 Determine Fundemtenal Period
Using Method B(Rayleigh Method)
W *(5,2 0,5,=elastic deflection
T = 2iC ' w,=weight at level i (ASCE Eq 15.4.4)
g*E f *8, f,=force at level i
g= 386 in/sect
E= 29000 ksi
I= 0.87 in2
= f,h,3 =
3E1
Level w(lbs) h;(in) f,(Ibs) A in w;A;2fil
6 100.5 94 25.86 0.284 8.0943 7.339565406
5 100.5 76.4 21.02 0.124 1.5414 2.603142064
4 100.5 58.8 16.18 0.043 0.1897 0.70293911
3 100.5 41.2 11.34 0.010 0.0110 0.11871816
2 100.5 23.6 6.49 0.001 0.0001 0.007321349
1 100.5 6 1.65 0.000 0.0000 7.77656E-06
603.0 56.68 0.18 1.7423 3.4321
F3
Project:Washington Square,OR
V/14
BY:JML
ML
2/9/2022
1w. *a.2
T =2� = 0.228 sec
1 g*If *5.
3.4.3 Determine Seismic Loading
V= 0.23W
Level Weight Height wxhx Fi M
6 100.5 94 9447 0.313 2.431
5 100.5 76.4 7678.2 0.255 1.606
4 100.5 58.8 5909.4 0.196 0.951
3 100.5 41.2 4140.6 0.137 0.467
2 100.5 23.6 2371.8 0.079 0.153
1 100.5 6 603 0.020 0.010
Sum: 603.0 30150 1.00 5.62
Where: M = D r p
gr'w 2 Meg = H F; V
n
PL= 900 lbs V = E F. = 82.5 lbs
DL= 128 lbs i
PeQ= 734.44 lbs
Mgravity= 7.52 k*in
Meg= 5.62 k*In
M sin gle = M gravity + M eq = 13_14Kin
M = M -M + 2M = 11_24Kin
double gravity gravity eq
3.5 Determine Capacity of Post-Detail 6SR53
Ae= 0.7402 in2 r%z= 1.0842 in
Ji L`- S,�= 0.6206 in' ryr= 0.3992 in
Sy= 0.2226 in3 lyx= 0.87 in4
2.875"
l yy= 0.118 in4
--:1 rl-
3.5.1 Allowable Axial Load
f 4
11,
Effective length analysis not ideal I
for this analysis: sir
/1/ 7-- / ) /
K=1.0 K=? K=2.1
F4
1
N,.. .. .... ....�. ....... .... . �.... .. . .. .. ... _ a a a ». . •mil.
Project:Washington Square,OR
V)tltipltl BY:JML
2/9/2022
Use AISI C4-very conservative lumped mass assumption derivation of column capacity
K=2.1 L= 88 inches
Unrestrained Post Height
Find F„
z
Fe= 7/ 2= 9.85 ksi d,= IFy/Fe= 2.57
Since lc>1.5: ` JJ F =0.877/IO2)*Fy
F„= 8.64 ksi
A1S1 C4
P _A, Frt
n
iPa= 3.6 K
3.5.2 Allowable Bending Moment
AISI C3.1.1a
1
Mn=Se F mall
= SQ Fy (AISI Eq C3.1.1-1)
LI
Mail= 24.16Kin
i3.6 Combined stresses at post
fOne sided- Static Seismic
P= 1.03 K P= 0.73 K
M= 12.59 K in Ms= 13.14 K in
P/Pa+M/Ma= 0.81 <=1.0 O.K.
Static Seismic
Two sided- P= 1.93 K P= 1.33 K
M= 0 K in Ma= 11.24 K in
P/Pa+M/Ma= 0.84<=1.0 O.K.
3.7 Base Shoe Analysis-8/SR53
0
Gauge 14 ga Ixx= 3.44 in4
t= 0.0747 in I yy= 0.035 in4
ir As= 0.702 in2 Sx= 1.171 in3
d d= 5.875 in S,= 0.0532 in3
t= 14ga w= 1.25 in r,,= 2.2131 in
J= 0.00017 in4 ryy= 0.2247 in
C„,= 0.211 in6 rt= 0.272 in
w I Mbase= 13.14 kin (one base take all load-no tension)
Fb=FY/1-2b= 26.9 ksi Ma= 31.6 kin
F5
Project:Washington Square,OR
V4lØ1Ø1 BY:1ML
2/9/2022
M/M== 0.46<=1.0 O.K. single or double sided
AISI C3.1.1 strength analysis of base
Mn=S0*Fy Ma=Mn/nb Se=Sx
M.= 31.55 Kin
AISI C3.1.2.1 Lateral buckling strength
M MT, S`—F` (AISI Eq C3.1.2.1-1)
Fc is...
Fe>_2.78Fy
F,=Fy
2.78Fy>Fe>0.56Fy10F(1—
F` = 9 Fy 36F) (AISI Eq C3.1.2.1-2)
e
Fe<0.56Fy
Fe=Fe (AISI Eq C3.1.2.1-3)
Where: CbroA
Fe= S (rtt (AISI Eq C3.1.2.1-4)
rzzE
aey= Z
ry (AISI Eq C3.1.2.1-8)
rrl
Ky
zECWI (AISI Eq C3.1.2.1-9)
o
at A z L G' n(KtLt)2
Given:
G= 14457 ksi ro= 2.22 in
kt= 0.65 Ky= 1
1�= 22 in l = 22 in
Therefore:
at 85.53 ksi
aey 29.86 ksi
Fe 67.4 ksi
Fy 45 ksi
F, 40.73 ksi
Me 28.56 K-in
Section limited by buckling
3.7.1 Local Buckling of Web(flange not limited by inspection)
h/t= 76.65
compact criteria=(640/(Fy)^.5)= 95.4 Compact O.K.
3.7.2 Base Shoe Connection to Post
Locking device Ma Cd=Td= 27.11 k in
I ( C
I /
M raga= 13.14 K in
5.875"
l I Top resistance=Bearing on flange
i.iz" Bottom resistance=11 ga steel strap w/5 spot welds
F6
V�11
Project:Washington Square,OR
BY:JML
2/9/2022
toot plate= 0.1196 in hi= 1.12 in
Min hbot plate= 0.995 in d,= 4.755 in
C=bearing of flange= 0.9*Fy*Aga„ge= 5.67 K
T=tension in tab= A *Fy/S2= 5.70 K
verify spot welds per AISI E2.2.1.2
d weld= 0.375 in
P„shall be the smaller of the values calluated using either(a)or(b)
2
AiSI Eq E2.2.1.2-1
(a) P = ,cd e 0.75 F SZ= 2.55
4
(b) For dolt<_0.815.JE/F
AiSI Eq E2.2.1.2-2
P =2.20tda F S2= 2.2
For 0.815 .E/F* < da /t < 1.397VE/F*
AiSI EgE2.2.1.23
P„ =0.280 1+5.59VE/F" tdaF„ �= 2.8
d,„I
For dolt >_ 1 .397VE / Fu
AiSI Eq E2.2.1.2-4
P„ = 1 .40 td a F„ n= 3.05
Therefore,
lyde2
Pr,= .75 F70 = 2.27 K
4
da/t= 5.02 <0.815*(E/F„)^.5= 16.6
P„=2.2*t*d*F = 3.00 K
Pa/weld=P„/1 = 1.36 K
Pa assembly= 5.70 K Tab tension controls
Mall>Mreqd O.K.
3.8 Overturning-Transverse Direction
Movt= (h/2)*V= 3.33 Kin
V= 82.5 lbs 82.54 lbs
Mres=Pgravity*D/2= 4.07 K in
Net overturning= 0.00 K in
F7
Project:Washington Square,OR
V,4'I1if1
BY:1ML
2/9/2022
3.8.1 Base Anchorage
See Detail 9/S53
Manchors=Tanchor*d
Tanchor regd=Mnet ost/d= 0.00 lbs
d= 12in
Use 3/8"diameter x 3" Dewalt Screw Bolt+anchor(ICC ESR 3889)
(very conservative d value) Ultimate value in fc'=3000psi in accordance with ACI 17.2.3.2:
52Tu= 553 lbs
S2Vu= 314 lbs
T„= 1050 lbs
Vn= 770 lbs
T -F VS =
0.73<=1.2 Anchor O.K.
Ta Va
I
3.9 Alternate Attachment to Wall(in lieu of self resisting overturning)-Detail 13 and 14/SR53
Target Corporation anchors the single sided units along perimeter walls to blocking with
in the wall framing. That design is analyzed here:
4 Vbluckin,= 36.95 lbs
V= 82.54 lbs
M=Vh'= 3.33Kin
h= 7.5 ft Vblocking=Mnet/h= 36.95 lbs
Vanchor=V-Vblacking 45.59 lbs
i e, Vanchor= 45.59 lbs
3.9.1 Verify Blocking Connection
1 x 4 blocking
7'-"AFF
• 3-5/8""20 ga sheathed steel studs
full height to structure
3.9.1.1 Fixture Connection to Blocking
Treqd= 36.95 lbs Gag fir= 0.42
1-1/4"lag screw provided Tan= 70.8 lbs
T,u = 71 lbs Tread<Tall Connection O.K.
F8
•
V.i11
Project:Washington Square,OR
BY:JML
2/9/2022
3.9.1.2 Blocking Connection to Studs
Treqd= 36.95 lbs
1-1/4"lag screw O.K.by inspection
3.9.2 Verify Stud Capacity
20 ga stud 1.29 plf aP 1
spacing= 16 in oc SDS= 0.694
gyp bd= 3.33 plf I, 1
RP 2.5
hx= 7.5 ft
hr= 16.75 ft
Wp 4.62 plf
0.4ap*Sps*Wp/(Rp/Ip)j*(1+2(z/h))= 0.97 plf (ASCE Eq 13.3-1)
5 psf partition load span= 16.8 ft
wpart= 6.666667 plf
Mr= 233.80 lb ft
M2=seismic dead load+2/3 seismic fixture load
M2= 262.05 lb ft weq= 0.97 plf
M2 governs
Man stud= 390 lb ft
Mall>Mact Stud design O.K.
3.10 Longitudinal Seismic
From Section 1.2.3 V= 0.23 W
One shear panel on one sided gondolas and two panels on two sided
Wmax=Pmax= 0.60 K pnl width= 48 in
Vmax= 0.073 K
v= 18.30 plf
Use analogies from posted calculations for hardboard shear wall elements
minimum particle board capacity= 120 plf(t=3/8")
minimum drywall capacity= 60 plf(t=1/2")
By analogy,hardboard siding values @ 7/32":
particle board: 70 plf
avg= 48.125 plf
drywall: 26.25 plf
F9
Project:Washington Square,OR
VAII
BY:JML
2/9/2022
Shear panel analysis O.K
3.11 Longitudinal Seismic to wall
per connection in section 3.9,Vmnx to wall= 36.95 lbs
Vbase= 36.25 lbs
1/4"lag screw in shear= 210 lbs NDS Table 9.3B
1-1/4 lag screw O.K.
3.12 Anchorage to Slab-Detail 9,10 and 11/SR53
Number of unit trib to bolts= 2
Number of bolts= 1
12Tu= 553.0 lbs
52Vu= 140.7 lbs
Use 3/8"diameter x 3" Dewalt Screw Bolt+anchor(ICC ESR 3889)
Ultimate value in fc'=3000psi in accordance with ACI 17.2.3.2:
Tn= 1050.0 lbs
V„= 770 lbs
T \ 1V \
+ ' = 0.71 <1.2 Anchor O.K.
Tut \V,I
Anchor every single sided base shoe with 2-3/8"dia.Bolts per Detail 9/SR53
Anchor every two sided base shoe with 2-3/8"dia.Bolts per Detail 9/SR53
3.13 Stability of Gondolas Under 8-0"Tall
,-
P= 0.90 K 0.90 K
Movt= V*h/2(Seismic)
Movt= 11.48 K in
r
V Mresist=(l*d+p*dt)*(0.6-0.14Sds)
i_______ Mresist= 23.09 K in
11.48 K in
FS=Mresist/Movt
FS=2.01 > 1.0OK
d 22.5 in
d1 25.0 in
F10
1 /� Project:Washington Square,OR
BY:(Mt
2/9/2022
4.0 Heavy Duty Pallet Rack Shelving
4.1 Description
Heavy duty shelving consists of wire shelving supported on rolled metal beams that span between two
sets of uprights. Beam spans vary from 8'-0"to 12'-0".An upright is comprised of two vertical posts
with welded struts spanning between the posts to create a braced frame in the transverse direction.
The beam to post connection in the longitudinal direction creates a moment frame.
A design pallet load of 2000 lbs and 50 lbs dead load is utilized for our design criteria.This equates
to roughly 32 pcf storage density. In actuality,Target typical pallet load is approximately 850 lbs or
43%utilization.
Target has multiple profiles,as shown on Sheet SR51. The governing case is analyzed in these
calculations. This governing case is the two tier profile(largest loading sceranio combined with longest
unbraced column length). The three to five tier loadings will have shorter unbraced column lengths
and less loadings,at approximately 10 pcf storage density.
4.2 Material Properties and Overstrength Factors
Material:Beams Fy= 55 ksi
A1011 HSLA Grade 55 Class II Fu= 65 ksi
Material:Columns Fy= 55 ksi
A1011 HSLA Grade 55 Class II Fu= 65 ksi
Material:Beam Pins Fy= 50 ksi
Grade 50 Fu= 70 ksi
Material:Weld
E70XX electrodes Fxx= 70 ksi
R to be used for beam design > n�am= 1.67 fs
O to be used for column design > C1culom,= 1.80 fs
QRw to be used for column design--> QRMI= 1
k,to be used for column design(Down Aisle)--> kx= 1.7 Per RMI 6.3.1.1
ks,to be used for column design(Cross Aisle)----> ha= 1 Per RMI 6.3.1.2
Column plate buckling coefficient----> k= 4 Per AISI 82.1
Pallet load reduction factor(Cross Aisle)--> PLrf= 1.0 Per RMI 2.6.2
Pallet load reduction factor(Down Aisle)--> PLrf= 0.43 Per RMI 2.6.2
4.3 Wire Decking-Detail 3/SR51
4-1"wide x 1 1/2"tall x 14 ga channels per 48"width
Wire decking beams span 4'-0"typically between primary beams
L= 4ft
See Detail 3/SR51 for wire decking detail.Section properties:
5x= 0.1231 in'
Impact loading=25%"one pallet= 500 lbs
Ppallet 2000 lbs
Ptotal= 2500 lbs
H1
•
■ .� Project:Washington Square,OR
,V/ BY:1ML
2/9/2022
= 625 lbs
w°han„el= 156 plf
wohenna= 13.02 pli
w1'
Ma =—= 3.30 Kin S1C�=MOC= 0.100 in3 (AISI Eq C3.1.1-1)
8 J.
Sprov>Sreqd Channel O.K.
4.4 Beam Capacity
4,4.1 4"Deep Beam
4"Beams span 8'-0"Typical 1= 8 ft
See Detail 9/SR51 for beam detail.Section properties:
t= 0.0598 in r,"= 1.444 in
Aa= 0.7774 in' rw= 0.9611 in
Sn,= 0.8451 in3 I„= 1.621 in
Sw= 0.5196 in3 I = 0.7181n
Impact loading=25%•one pallet= 500 lbs
Ptier=2 pallets= 4000 lbs
Pay= 4500 lbs
Wwam= 2250 lbs
wneam= 281 plf
wl Maet
M a = B = 27.00 K in 4,d= fa = 0.820 in3 (AISI Eq C3.1.1-1)
97%utilization Spray>Sreqd Beam 0 K.
Verify deflection:
Am„=1/180= 0.53 in 64,0= 0.49 in
Ipray>Iregd Beam O.K.
4.4.2 6"Beep Beam
6"Beams span 12'-0"Typical 1= 12 ft
See Detail 9/SR51 for beam detail.Section properties:
t= 0.0747 in r,"= 2.0944 In
Ae= 1.275 in' rw= 1.0267 in
5,"= 1.7907 in3 l,"= 5.593 in°
Sw= 0.9884 in3 Iw= 1.344 in
Impact loading=25%•one pallet= 500 lbs
Ptier=3 pallets= 6000 lbs
= 6500 lbs
H2
�� Project:Washington Square,OR
BY:1ML
ML
2/9/2022
Wb„,= 3250 lbs
= 271 plf
wl= Moq
M = S = 58.50 Kin SSA= � = 1.776 in
fa
99%utilization Sprov>Sregd Beam O.K.
Verify deflection:
d,,,,=1/180= 0.80 in d„3= 0.72 in
1prov>iregd Bourn O.K.
4,5 Beam Connections
4.5.1 Pin Capacity
dia.= 0.4 in
Area= 0.13 in'
Shear
F,=0.4Fy= 20 ksi
V,=F,A= 2.51 K
Bearino at Column
14 Gauge column governs over 3/16"plate by inspection
t ow= 0.0747 in
Rai bra=1.2F"dtc,i= 2.33 K
Allowable shear load at rivet=I 2.3 K
4.5.2 Three-Pin Connection Capacity-Detail 5A/SR51
Rai= 7.0 K
=1"F3+3"F2+5"F,=i 13.52 K in
K O
O Where: F2=5F1 F3=5F1
i
O
Rad= 1.1 K l 8'long beam Gravity Loads O.K.
R,n= 1.6 K @ 12'long beam Gravity Loads O.K.
4.5.3 Four-Pin Connection Capacity-Detail 5B/SR51
= 9.3 K
=1"Fa+3"F3,5"Fz+7"F,=I 27.97 K in I
IF
where: 5 3
F2=-F1 Fa=—F1
—iF. O
7 1
0-, 0 Fa—7 Fl
Gravity Loads O.K.all spans
r, O
H3
a
Project:Washington Squar •
e,JMLML
2/9/2022
4.5.4 Uplift Resistance
Per RMI 7.1.3
P„am= 2000 lbs
PL
M°n— 4 = 6.00 kft S„,,=.gym_ 0.78 in'
r,
Spray<Sregd Beam 0,K
Connection-per detail 5/SR51-each beam connection is provided
with a spring clip. This clip provides a rivet similar to that calculated
in Section 4.5.1.
Uplift is less than capacity of pin Q.K.
4.6 Standard Frame Post capacity-all profiles-Detail 6A and 8/SR51ENks
N D N
See details 1/SR51 and 12 to 16/SR51 for column profiles.Section properties: r 14
Gross section
Gauge(Column)= 14 ga r„= 1.2748 in W= 3.00 in
A3= 0,7844 in' rri= 1.1412 in D= 3.00 in
S.= 0.8496 in' I„= 1.275 in L= 0.75 in
Sri= 0.5976 in' I.= 1,022 in° r= 0.25 in
Net section
t= 0.0747 in r,„= 1.2533 in
A„= 0.7003 in' rri= 1,1168 in
Sy„= 0.743 in' I.= 1.115 in°
Sri= 0.5603 in' I.= 0.873 in°
4.6.1 Allowable Axial Load
Maximum column height between tier beams(X-X Axis)= 60 in
Maximum column height between tier beams(Y-Y Axis)= 36 in
kL,= 102 in kl,/r,=81.4
kLy= 36 in kly/ry=32.2
AISI 81.1
w/t= 3=,.47< 6€I O,K
AISI B2.1 f
J = 0.767
Fcr
Fcr=k* S-E * I = 93.60 ksi
12(1—µ') w
H4
VA�4 Project:Washington Square,OR
BY:1ML
2/9/2022
0.22
P= Z� �= 0.93
When X<=0.673 b=w
When).>0.673 b=pw
b,e front face=b„-2*dn,y= 1.33 in b= 2.33 in
b,fl sides=b,rt-dnw,= 1.83 in dray= 0.5 in
b„,back face=b,R= 0.47 in A,= 0.56 in2
Find F„
F' = *E
1.13 F= ,= 43.21 ksi
F, (kl/r)
Since lc<1.5: F,.658^(IO2)*Fy
F„= 32.29 ksi
AISI C4 P = : " I P,= 10.0 K
4.6.2 Allowable Bending Moment
AISI C3.1.1a
S*Q%°*F
M,,=S,*Fy Mn y
M„„= 22.70 K in
M„ii, 17.12 Kin
4.7 Not Used
4.8 Strut Capacity(Typical)-Detail 10A/SR51 yy
rI
Net section )1I
r
Gauge 16 ga O
t= 0.063 in r„= 0.9718 in
A„= 0.5313 in2 ryr= 0.8626 in W= 2.50 in
S„= 0.3704 in' I„= 0.502 Ma D= 2.00 in
Syy= 0.3833 in' lyy= 0.395 in° r= 0.25 in
L= 0.75in
4.8.1 Allowable Axial Load
Maximum unbraced length(X-X Axis)= 47 inches
Maximum unbraced length(V-Y Axis)= 47 inches
kl,= 47 in kljr,=48.4
kly= 47 in kly/r,=54.5
AISI B1.1
75< 80 0,K
HS
. /� Project:Washington Square,OR
,r/ BY:1MLML
2/9/2022
A1S1 82.1 A 'I 1/'
_ 0.727
V Fcr
Fcr=k* ,r2E * t' 104.03 ksi
12(1—µ2) �w�
P (1_ 0.221=
II\\ 2 JJ 0.96
When X<=0.673 b=w
When X>0.673 b=pw
b,,,front face=b,R= 1.38 in b= 1.44 in
b,rt sides=be= 2.16 in A,= 0.521 ina
Find F„
2. F = 0.755 F=R'*E
= = 96.41 ksi
F, (kl/r)2
Since lc<1.5: Fn=.658^(Ic^2)*Fy
F, 43.32 ksi
A, F„
P _
AISI C4 P,= 12.5 K
4.8.2 Allowable Bending Moment
AlSl C3.1.1a
S*Qxtin*F
M,=S,*F Mn=
12
I M.,1= 11.32 K in
I Myo. 11.71 Kin I
4.8.3 Allowable Tension Load
t
T = A{� F' = I 17.5K
4.9 Not Used
4.10 Not Used
H6
A. Project:Washington Square,OR
,r/ BY:AIL
2/9/2022
4.11 Transverse Seismic Design(Cross-Aisle)-standard pallet rack
4.11.1 Base Shear
From Section 1.2.3-Max Base Shear Limit---- 0.173'W
From Section 1.2.3-Design Base Shear----> 0.126'W/T
Use Max Base Shear 0.173•W
4.11.2 Design Forces
Two tier configuration is worst case design-all other configurations do not control
q of Tiers to evaluate= 2
Legnth of beam to evaluate(8 ft or 12 ft)= 8 ft
Purina= 8000.0 lbs Pio.mne/column/Tier= 1.35 k
Wuprpnt= 5460.0 lbs
Veens.= 663 lbs
P P p \
101 T1ef i 442
P p
P
SO liar, 221
Longitudinal elevation Transverse elevation
Tier PL w;(K) h.(in) w;h,(Kin) w h:12,W,he Vu.,(lbs)
1 4 2.7 60 163.8 0.333 221
2 4 2.7 120 327.6 0.667 442
3 0.0 0.0 0 0.0 0.000 0
L 491.4 1.000 663
From frame analysis,post loadings
Too of post Bottom of post
M,,0= 1.536 K in Mw,e= 2.57 Kin
= 3.27 K Pe„e= 4.039 K
Uplift= 0.0 lbs
H7
V� Project:Washington Square,OR
BY:1ML
2/9/2022
4.11.3 Verify Post Capacity-from section 4.6
Ppost Mpo:r P,t and Ma.see 4.6.1 and 4.6.2
+ <1.0
Paitowable Matlowable Mead= 0.00 K in
(from eccentric panel point at post)
Top of post: 0.326 + 0.090 0.416<1.0 O.K.
Bottom of post: 0.403 + 0.150 0.553<1.0 O.K.
4.11,4 Verify Brace Capacity-from section 4.8
Pm„= 1.032 K <Struct capacity O.K.= 16.7 K
Weld size= 0.1250 in
Weld length= 3 in
From Section 4.15.1----> Pa= 1632 lbs/In--> 4896 lbs
Welded Connection O.K.
4.11.5 Frame Loading at Top Tier Only
PuprgM= 4000 lbs Pioadinr/cai„mnrrier= 1.03 k
W,,prgm= 2780 lbs
= 337 lbs
P P IP
1 1 j 334
3
� I
Longitudinal elevation Transverse elevation
PL+OL
Tier PL w,(Kt h,lint w,h,(Kint w.hJEw;ht V..,(Ibst
1 0 0.1 60 3.0 0.009 3
2 4 2.7 120 327.6 0.991 334
3 0 0.0 0 0.0 0.000 0
£ 330.6 1.000 337
From frame analysis,post loadings
Mpg= 1.02 Kin M,da= 0.00 Kin
1.847 K (from eccentric panel point at post)
Uplift= 0.0 lbs
H8
VA4 Project:Washington Square,OR
8Y:JML
2/9/2022
4.11.5.1 Base Anchorage
S2Tu= 877 lbs
S3Vu= 947 lbs
Use(21 1/2"diameter x 3" Dewalt Screw Bolt+anchor(ICC ESR 3889j
Ultimate value in fc'=3000psi in accordance with ACI 17.2.3.2:
Certifications:ICC ESR-3889
Tn= 2052 lbs
Vn= 1689 lbs
(Ti +lV,l 0j71<1.2 Anchor O.K.
4.11.5.2 Check Post Capacity-from Section 4.6
P,r and M..see 4.6.1 and 4.6.2
PPour + M,aar <1.0
Palawabre Ma1lov'abre
Post analysis: 0.184 + 0.060 .'44<1.0 O.K.
4.11.5.1 Check Brace Capacity-from section 4.8
Pm„= 0.545 K SFr€ct capacity
4.11.6 Verify Design for 12'Beam Spans
Upright capacity is the same for either 8'-0"span pallet
rack or 12'-0"pallet rack.Target Team Members are
instructed through signage to limit the maximum
loading to a frame accordingly.
4.12 Longitudinal Seismic Design(Down-Aisle).standard pallet rack
4.12.1 Base Shear and Fundamental Period-Rayleigh
Fundamental Period of Pallet Racking per FEMA 460 Section 6.5.1
.A7L
WP hp
T=27r i=1
kekbe +N kb+k
8�N �k +kb, b(kb+kb,
b,)
Step 1
Icy=Mm,„/Om„= 400 K/in
Step 2
Wp= 1.37 K
hPrrN.m= 60 in
by as ram= 120 in
he are a..i= Din
g= 386 in/sec'
N = 2
k,= 400 K/in
kn= 400 K/in
N,= 8
H9
V Project:Washington Square,OR
BY:AIL
2/9/2022
N6= 4
K6,= 6E16/L= 2938.063
1b= 1.621 in"
L= 96in
K„= 4E1,/H= 2465
= 1.275 in'
H= 60 in
E= 29000 K/in`
a,
L.e W h 2 = 49446 Kin`
( )=
Nc krky, 2816.544+kb,
Nb(kk+jrC¢) 1376.614
T. . 0 sec Use--> . 0 sec
From Section 1.2.3-Max Base Shear Limit---- 0.173"W
From Section 1.2.3-Design Base Shear----> 0.126'W/T
From Section 1.2.3-Min Base Shear Limit---- 0.031"W
Since T= 1.00 sec > 0.126 W
4.12.2 Design Forces
W,.m.= 2.3 K Vh„n.= 0.151 K Fl,.dms/nm/w 1.353
W„sr 1.1 K V,,,;= 0.075 K
4.12.3 Base Shear Distribution
PLrr0.67'PL+DL
Tier PL w;(K! h;(in' w.h,(Kin( w,h/Ew,h; Va.,(Ibsi
1 4.0 1.14 60 68.3 0.333 50
2 4.0 1.14 120 136.7 0.667 101
3 0.0 0.00 0 0.0 0.000 0
1: 205.0 1.000 151
4.12.4 Verify Post Capacity
From frame analysis,post loadings:
Ppm! + p" <1.0 P,a and M,a see 4.6.1 and 4.6.2
'llmweble Mnllmrnblr
M,,,e= 3.288 K in P,,,n= 2.8 K
Post analysis: 0.279 + 0.145 O,4.24<1.0 O.K.
4.12.5 Verify Beam Connection
M„nn= 2.664 K In
Veonnt + Mronn
Rallowable Mallowable yf
0.107 + 0.095 0 203<1.0 O.K.
4.13 Not Used
4.14 Not Used
H10
vs
I� Project:Washington Square,OR
BY:JML
2/9/2022
4.15 Weld Capacity Calculations
4.15.1 Transverse Fillet Welds
AISI E 2.4(2)
t*L*F _ F„= 65ksi
P,,_ = 2.35 FS Values for base metal<0.10 in (AISI Eq E2-4-2)
S2=
P_0.75*t>.*L*Fr F..= 70 ksi
,Q= 2.55 FS Values for base metal>0.10 in (AISI Eq E2-4-3)
16 aa material
t= 0.059 in I P.= 1.63 K/in
14 ga material
t= 0.0747 in I P,= 2.07 K/in I
11 as material
t= 0.1196 in P,= 2.46 K/in
10 ga material
t= 0.1345 in I P,= 2.77 K/in
4.15.2 Flare Groove Welds Longitudinal
AISI E 2.5(2)
_0.75 t L F F = 70 ksi
P,— — 2.80 FS Values for base metal>0.10 in (AISI Eq E2-5-2)
10 aa material
t= 0.1345 in I P.= 2.52 K/in
4.15.3 Weld Material Limitation
AISI E 2.4(2)
0.75*t„,*L*F7.
P,= FTh= 70 ksi
Q= 2.55 FS
1/8"weld
t,= 0.0884 in I P. 1.82 K/in
3/16"weld
t„,= 0.1326 in I P,= 2.73 K/in
H11
�� Project:Washington Square,OR
BY:1ML
ML
2/9/2022
4.16 Base Plate Design-Detail81SR51
2.8.1 Downward Vertical Force
Section properties
B= 6 in t= 0.375 in
W= 6 in fY= 50 ksi
F'p= 2100 psi RMI 7.1.1
Ap 36 in'
Pa= 4039 lbs
Fp= 112.1944 psi Plate O.K.
2.8.2 Uplift Tension Force
T= 0.0 lbs
e= 5.00 in
M= 0Ib'in
S= 0.140625 in3
M,= 7031.25 Ib*in Plate O.K.
H12
Project: Washington Square,OR
VAA BY:JML
2/9/2022
5.0 Slab Verification
5.1 Empirical Method
Concrete Slab:
Thickness= 4.00 in
fc= 3,000 psi
E,= 3,122,019 psi
ft= 329 psi <---Uses 6(fc)^0.5
Base Plate Geometry:
X= 6in
Y= 6in
R= 3.00 in <--Equals 1/2 the width of column base plate
Soil:
ks= 60 pci <---Equates to 500 psf bearing capacity
Calculation:
Summary of information for use in calculations
FS = 2
ks= 60 pci
E,= 3,122,019 psi
ft= 329 psi
R= 3.00 in
d = 4.00in
d =
FSxP
1 1.72x(�x104+3.60)f
Pu = 1 .72x( R x104 + 3.60 )frd2 =
S1
Project: Washington Square, OR
BY:JML
2/9/2022
P„ = 37.8 kips
Pa = 18.9 kips > Maximum Post Load in Calculation Section 4.13.2 -OK
Radius of Relative Stiffness
Ecd 3
b = 4 =
(12(1 —,u2)ks
b = 23.08 in
Minimum column spacing to achieve calculated Pa = 1.5*b = 34.62 in
Minimum Post Spacing for Pallet Rack=4ft therefore OK--^
52