Loading...
Specifications (2) ; . :� 13,1P202t Ott 253 's,a0 ii-hze. //.0 SALES FLOOR AND STOCKROOM STRUCTURAL FIXTURE CALCULATIONS for RECEIVED T-345 TARGET STORE JUN 21 2022 9009 SW Hall BLVD CITY OF TIGARD Tigard, OR 97223 BUILDING DIVISION TARGET 15 February 2022 WASHINGTON Prepared for: SQUARE, OR TARGET 1000 Nicollet Mall Minneapolis, Minnesota 55403 Prepared by: -2/14/22 EXPIRES jial /2023 VA4 VAA, LLC Kelsey F. Brown, P.E., S.E. 2300 Berkshire Lane North, Suite No. 200 Registration Number: 41093 Plymouth, Minnesota 55441 Expiration Date: 06/25/2023 763.559.9100 Project:Washington Square,OR VA4 BY:JML 2/9/2022 STRUCTURAL FIXTURE AND RACKING CALCULATIONS TABLE OF CONTENTS - 0.0 Index 1.0 General Information Pages G1-G4 1.1 Drawings 1.2 Loadings 1.2.1 Vertical(Gravity)Loadings 1.2.2 Loading Plaque 1.2.3 Loading Combinations 1.2.4 Lateral (Seismic)Loading 2.0 Light Duty Shelving Pages L1-L9 2.1 Description 2.2 Loading Criteria and Material 2.3 Shelf Beams Design 2.4 Determine Post Capacity 2.4.1 Allowable Axial Load 2.4.2 Allowable Moment 2.5 Transverse Seismic Design 2.5.1 Base Shear 2.5.2 Design Forces 2.5.3 Combined Stresses at Post 2.5.4 Spreader Connection 2.5.5 Shear Values of Sheet Metal Screws(SMS) 2.6 Longitudinal Seismic Design 2.6.1 Base Shear 2.6.2 Shear Panel 2.6.3 Back Brace 2.6.4 Biaxial Bending in Post 2.7 Overturning Stability 2.7.1 Anchorage Pattern 2.7.2 Back to Back Attachment 2.8 Base Plate Design 2.8.1 Downward Vertical Force 2.8.2 Uplift Tension Force 1 ,ate , Project:Washington Square,OR VA4 BY:JML 2/9/2022 3.0 Gondolas Pages F1-F10 3.1 Description 3.2 Material Properties and Overstrength Factors 3.3 Shelf Design 3.3.1 Determine Allowable Tension Capacity 3.3.2 Determine Allowable Shear Capacity 3.3.3 Determine Allowable Shelf Capcity 3.4 Determine Loding Demand on Post 3.4.1 Loading to Post-Gravity 3.4.2 Fundamental Period 3.4.3 Determine Seismic Loading 3.5 Determine Capacity of Posts 3.5.1 Allowbale Axial Load 3.5.2 Allowbale Bending Moment 3.6 Combined Stresses at Post 3.7 Base Shoe Anaylsis 3.7.1 Verify Local Buckling of Web 3.7.2 Base Shoe Connection to Post 3.8 Overturning-Transverse Direction 3.8.1 Base Anchorage 3.9 Alternate Attachment to Wall 3.9.1 Verify Blocking 3.9.1.1 Fixture Connection to Blocking 3.9.1.2 Blocking Connection to Studs 3.9.2 Verify Stud Capacity 3.10 Longitudinal Seismic 3.11 Longitudinal Seismic to Wall 3.12 Anchorage to Slab 3.13 Stability of Gondolas Under 8'-0" Tall 4.0 Pallet Racking Pages H 1-H 12 4.1 Description 4.2 Material Properties and Overstrength Factors 4.3 Wire Decking 4.4 Beam Capacity 4.4.1 4"Deep Beam 4.4.2 6"Deep Beam 4.5 Beam Connections 4.5.1 Pin Capacity 4.5.2 Three-Pin Connection Capacity 4.5.3 Four-Pin Connection Capacity 4.5.4 Uplift Resistance 4.6 Standard Frame Post Capacity 4.6.1 Allowable Axial Load 4.6.2 Allowable Bending Moment 2 Project:Washington Square,OR BY:JML 2/9/20229/ 22 4.7 Not Used 4.8 Strut Capacity 4.8.1 Allowable Axial Load 4.8.2 Allowable Bending Moment 4.8.3 Allowable Tension Load 4.9 Not Used 4.10 Not Used 4.11 Transverse Seismic Design 4.11.1 Base Shear 4.11.2 Design Forces 4.11.3 Verify Post Capacity 4.11.4 Verify Brace Capacity 4.11.5 Frame Loading at Top Tier Only 4.11.5.1 Base Anchorage 4.11.5.2 Verify Post Capacity 4.11.5.3 Verify Brace Capacity 4.11.6 Verify Design for 12'-0"Beam Span 4.12 Longitudinal Seismic Design 4.12.1 Base Shear and Fundamental Period 4.12.2 Design Forces 4.12.3 Base Shear Distribution 4.12.4 Verify Post Capacity 4.12.5 Verify Beam Connection 4.13 Not Used 4.14 Not Used 4.15 Weld Capacity Calculations 4.15.1 Transverse Fillet Welds 4.15.2 Flare Groove Welds 4.15.3 Weld Material Limitation 4.16 Base Plate Design 5.0 Slab Verification 5.1 Empirical Method Pages S1-S2 3 Project:Washington Square,OR VA?' BY:1ML 2/9/2022 1.0 General Information The enclosed calculations correspond to Target Corporation's Store and Stockroom Fixtures. These calculations are provided for Building Official Plan Review. All components are shop fabricated. All welding is performed in a certified fabrication shop with no field welding. Design Code= 2019 OSSC Additional reference to RMI 2012 AISI 2016 ASCE 7-16 1.1 Drawings IBC 2018 SRI1 Structural Fixture Plan SR51 Heavy Duty Stockroom Racking SR52 Light Duty Stockroom Shelving SR53 Gondola Sales Floor Shelving 1.2 Loading 1.2.1 Gravity(Vertical)Loading All permissible loading is governed by Target Store Operations and verified through these calculations. The design loading used in these calculations are a conservative when compared to the actual static loading typically experienced in normal store operations. Pallet Rack Loading: Pallet design load= 2000 lbs(4'wide x 4'high x 4'deep)-Includes 50#additional pallet DL #of Loaded Tiers= 2 Light Duty Shelving: Shelf storage volume=2'deep*4'wide*30"tall*5 pcf=100 lbs use 120 lbs Storage unit volume=2'deep*(10'tall)*4'wide x 5 pcf=400 lbs. use 580 lbs Gondola Loading: Shelf storage volume=2'deep*4'wide*30"tall*10 pcf=200 lbs. use 240 lbs Single sided storage=2'deep*94"tall*4'wide x 10 pcf=627 lbs. use 900 lbs 1.2.2 Loading Plaque A plaque denoting the following design capacities will be posted in the Target Store. See sheet SR11 for exact wording,size and placement location. Maximum Load(lbs) Type of Unit Per Tier Per Bay Heavy Duty Pallet Rack,Two Tier(10'-0) 4000 8000 Heavy Duty Pallet Rack,Two Tier(12'-0) 6000 8000 Light Duty Shelving 120 580 Sales Floor Gondolas 240 900 1.2.3 Loading Combinations Pallet Rack Load Combinations Per RMI 2.1 (2) DL+PL+LL Gravity Load Critical (6) (1+0.14Sps)DL+(0.85+0.14SD5))PL+LL+0.7EL Gravity Plus Seismic Critical (9) (0.6-0.14Sds)DL+(0.6-0.14Sds)I3PLapp+0.7EL Seismic Uplift Critical 13 equals 0.7 except for uplift load case per RMI 2.1 The seismic load can be reduced by 0.7 Per ASCE 7-16 Section 2.4 and RMI 2.1 GI Project:Washington Square,OR V1011 BY:1ML 2/9/2022 1.2.4 Lateral(Seismic)Loading Designed for 2018 IBC Seismic Category D Where: R= 4 Rack with Diagonal Bracing (RMI 2.6.3&ASCE 7-16 4 Rack with Moment Frame Action Table 15.4-1) 3 Gondola (ASCE 7-16 Table 15.4-2 Assume distributed mass cantilever) Seismic Weight(W) W=0.67*PLRF*PL+DL+.25*LL (RMI 2.6.2) Elevated Store(Y or N)= N Importance Factor I= 1.0 (ASCE 7-16 Table 11.5-1) Risk Category II Building Height 20.00 ft Gondola Anchorage Height 0.00 ft LD Shelving Anchorage Height 0.00 ft Pallet Rack Achorage Height 0.00 ft Site Class= D(Default) Short Period Ss 0.867 g One Second Period Si 0.398 g Site Coefficient Fa 1.200 Sms=Fa*Ss 1.040 g (ASCE 7-16 Eq 11.4-1) Site Coefficient F„ 1.902 Smi=Fv*Si 0.757 g (ASCE 7-16 Eq 11.4-2) SDs=O.67*SMs 0.694 g (ASCE 7-16 Eq 11.4-3) SD1=0.67*SM1 0.505 g (ASCE 7-16 Eq 11.4-4) Table 11.4-1 Site Coefficient Fa(ASCE 7-16) Mapped Spectral Response Acceleration at Short Period Site Class Ss<0.25 Ss=0.50 SS 0.75 SS 1.00 SS 1.25 Ss>1.5 A 0.80 0.80 0.80 0.80 0.80 0.80 B 0.90 0.90 0.90 0.90 0.90 0.90 C 1.30 1.30 1.20 1.20 1.20 1.20 D 1.60 1.40 1.20 1.10 1.00 1.00 E 2.40 1.70 1.30 See Section 11.4.4 ASCE 7-16 F See Section 11.4.4 ASCE 7-16 Table 11.4-2 Site Coefficient Fv(ASCE 7-16) Mapped Spectral Response Acceleration at 1 Second Period Site Class 51<0.1 51=0.2 Si=0.3 51=0.4 51=0.5 S1>0.6 A 0.80 0.80 0.80 0.80 0.80 0.8 B 0.80 0.80 0.80 0.80 0.80 0.8 C 1.50 1.50 1.50 1.50 1.50 1.4 D 2.40 2.20 2.00 1.90 1.80 1.7 E 4.20 See Section 11.4.4 ASCE 7-16 F See Section 11.4.4 ASCE 7-16 Table 11.6-1 Seismic Design Category Based on Short-Period Response Accelerations(ASCE 7-16) Value of SDs Risk Category I or II III IV SDs<0.167 A A A 0.167<SDs<0.33 B B C 0.33<Sos<0.50 C C D 0.50<SDs D D D G2 Project:Washington Square,OR V1I1 BY:JML 2/9/2022 Table 11.6-2 Seismic Design Category Based on 1-Second-Period Response Accelerations(ASCE 7-16) Value of Sos Risk Category I or II III IV SDi<0.067 A A A 0.067<Spi<0.133 B B C 0.133<Sm<0.20 C C D 0.20<SDi D D D Design is govern by seismic loading Fixture On Ground Design Shear Seismic Response Coefficient Cs=SDl/(R*T) Max.Seismic Response Coefficient Csmax SDS/R (RMI 2.6.3&ASCE Min.Seismic Response Coefficient Csmin=.O44SDS 12.8.1.1) if Sr>0.6g Csmio=0.5S1/R Base Shear Equation V=Cs*Ip*Ws Fixture On Elevated Slab Design Shear 0.4a,SDs z Seismic Response Coefficient (RP ll (1+2 h)WP (ASCE /v/ 15.5.3& Max.Seismic Response Coefficient 1.6SDs/PWp 13.3.1) Min.Seismic Response Coefficient 0.3SDs/pWP Light Duty Shelving V design braced action Cs'Ip'Ws= 0.126*WIT Vmax braced Csmax'Ip'Ws= 0.173*W Vmin braced csmin'Ip*Ws= 0.031 *W V moment action direction Cs*ip*ws= 0.126*W/T Vmax moment Csmax*Ip*Ws= 0.173*W Vmin moment Csmin'Ip'Ws= 0.031 *W Gondola V design Cs*ip*Ws= 0.168*W/T Vmax Csmax'Ip'Ws= 0.231 *W Vmin Csmin'Ip'Ws= 0.031 *W G3 Project:Washington Square,OR V1 BY:JML 2/9/2022 Pallet Rack V design braced action Cs•Ip*ws= 0.126*W/T Vmax braced Csmax'Ip'Ws= 0.173*W Vmin braced Csmin"Ip*Ws= 0.031 *W V moment action direction Cs•ip*ws= 0.126*W/T Vmax moment Csmax"Ip•Ws= 0.173*W Vmin moment Csmin•Ip`Ws= 0.031 *W G4 Project:Washington Square,OR VA4 BY:JML 2/9/2022 2.0 Light Duty Shelving 2.1 Description Light duty shelving consists of 5/8"wood shelves supported on metal beams that span between two sets of uprights. Beam span is always 4'-0". An upright is comprised of two vertical posts with metal spreaders between them yielding a depth of 2'-0". These uprights form a moment frame that is simply anchored to the floor at the base—no moment transfer. A design load of 5 pcf is utilized for the entire structure. Each shelf is checked to a slightly higher load to account for variable loading patterns. In Target Stores,these units are typically stocked sporadically with relatively light loads that seldom approach 5 pcf. 2.2 Loading Criteria and Material Shelf storage volume=2'deep*4'wide*30"tall*5 pcf=100 lbs. Use 120 lbs Storage unit volume=2'deep*(10'tall)*4'wide x 5 pcf=400 lbs. Use 580 lbs Material:A653 ASLAII Grade 50. Fy=50 ksi. Fu=60 ksi. 2.3 Shelf Beam Design-Detail 7/SR52 Section properties A= 0.1339 in r,x= 0.3055 in S2= 1.67 fs t= 0.0625 in2 ryr= 0.2498 in w=W/(4'*2) 15 plf Ix,= 0.012 in4 SK= 0.0333 in3 1= 4 ft lyy= 0.008 in4 fy= 50 ksi AISI C3.1.1 M"-Se.fy M"u = M" = se f} (AISI Eq C3.1.1-1) S2 S� Mall= 1.00 k*in z n Ma = wl _ 30 lb*ft= 0.36 k*in 8 0.36 k*in < 1.00 k*in Mact<Mall-Design O.K. Verify deflection 4max=1/180= 0.27 in (RMI 5.3) 4ect= 0.25 Iprov>freed Beam O.K. Ll Project:Washington Square,OR 2 2/9/2022 2.4 Determine Post Capacity-Detail 3/SR52 Gross section properties Net section properties t= 0.0625 in t= 0.0625 in A9= 0.2287 in2 A„= 0.1579 in2 S„= 0.0599 in3 See= 0.0469 in3 Syy= 0.0637 in3 Syy= 0.0411 in3 rxx= 0.4786 in rxx= 0.5375 in ryy= 0.3244 in r = 0.3138 in Ixx= 0.052 in4 Ix,= 0.046 in4 lyy= 0.024 in4 Iyy= 0.016 in4 S2= 1.8fs 2.4.1 Allowable Axial Loading Lx= 24 in kLx/r,=76 Ly= 24 in kLy/ry= 130 Kx= 1.7 Ky= 1.7 AISI C4 Ae*Fn Pa= (AISI Eq C4.1-1) c Find F„ F ��<1.5 FT,=(0.658A )Fy Y Ac = Fe A > 1.5 Fn=(0.877 FY crt*Qex 7r2E Where: Fe = < Fe= klz (AISI Eq C4.1.2-2)< +a t ex (t') (AISI Eq C4.1.1-1) 1 n2ECW (itc=A*, r\GI+(KtLc)z) (AISI Eq C3.1.2.1-9) ir2E aex= p x (AISI Eq C3.1.2.1-11) (( ( Lx/ll Given: G= 11300 ksi kt= 1 1= 0.0028 in4 Lr= 20 in re=(1/A)1"2 0.1106 in Cw. 0.005 E= 29000 ksi Then: at= 12577.76 ksi aex= 49.67451 ksi Fe= 49.4791 ksi Fe= 49.67451 ksi Use Fe= 49.48 ksi Ac= 1.00525 F„= 32.76 ksi Pa= 2.87 K L2 Project:Washington Square,OR VA4 BY:1ML 2/9/2022 2.4.2 Allowable Moment AISI C3.1.1 Nominal Strength Mn Sefy (AISI Eq C3.1.1-1) Mau=Tf_ Matboc= 1.40 k*in Matyy= 1.23 k*in AISI C3.1.2 Lateral Buckling Strength * is J )I Mcl S * M Mn = Sc Ma = �e = �S! (AISI Eq C3.1.2.1-1) ll x-axis My= Fy*Sf„„= 3.00 k*in Sf= Sa.= 0.0599 in3 full cross section So= SoxK= 0.0469 in3 reduced cross section bey= 16.931 ksi Me=Cb*ro*A*(oey*6et)1/2 = 11.68 kin (AISI Eq C3.1.2.1-4) Mc=My Mo= 2.995 kin Maros= 1.40 k*in Lateral Buckling does not control Maiiyy= 1.23 k*in Lateral Buckling does not control Matba= 1.40 k*in Mafyy= 1.23 k*in 2.5 Transverse Seismic Design 2.5.1 Base shear From Section 1.2.34 V= 0.17 W P= 290 lbs/post W= 194.30 lbs/post V post= 23.58 lbs 2.5.2 Design Forces Distribute lateral forces in proportion to distribution of mass V7-► H7 Height Weight w,h, F; V; V6 ► 144 55.5 7994.057 0.247 5.82 H6 120 55.5 6661.714 0.205 4.85 V5-► 104 55.5 5773.486 0.178 4.20 H5 84 55.5 4663.2 0.144 3.39 V4 ► 64 55.5 3552.914 0.110 2.58 H4 44 55.5 2442.629 0.075 1.78 V3 H3 24 55.5 1332.343 0.041 0.97 V2 ► 388.6 32420.34 1.000 23.58 H2 V1_► H1 L3 Project:Washington Square,OR V4/11 BY:JML 2/9/2022 2.5.3 Combined Stresses at Post P= 192 lbs Vmax= 23.58 lbs/post Mmaz= 0.50 Kin Pma,,= 274 lbs AISI C5.2.1-1 ,S1cP lbMx + 5 1 (Eq C5.2.1-1) Pn Mnx ax flcP Where: ax=1— (Eq C5.2.1-4) Ex rzZElx PEx=(KxLx)2 (Eq C5.2.1-6) Therefore: Pe, 8.94 K a,= 0.94 lcP lbMx + = 0.53 <=1.0 Say O.K. Pn Mnxtrx 2.5.4 Spreader Connection-Detail 6/SR52 Mreqd 0.38 kin Szspreader= 0.4327 in' Mreqd = 0.878207 ksi fs is O.K. fsspreader= Sxspreader C e Mcap= (1"— Pa+(3"— Pa = 1.49 kin where a-2t= 0.125 in Alt Mcap=(3")Pa*1.33= 1.54 kin Use Mcap= 1.49 k in <=Mreqd O.K. See 6/SR52 for Spreader Configuration 2.5.5 Shear Value of Sheet Metal Screws ISMS) #8 sheet metal screws d= 0.164 in F,= 65 ksi AISI E4.3 For t 2 / t, <_ 1 .0 P s Shall be taken as the smallest of = 4.2 t 3 d i i z F (Eq E4.3.1-1) P ", ( z ) „2 Pa, = 2 .7 (t,d )F„, (Eq E4.3.1-2) Pa, = 2 .7(t2d )F„2 (Eq E4.3.1-3) For t 2 / t >_ 2 .5 P„s Shall be taken as the smallest of P,u = 2 .7(t2d )F„2 (EgE4.3.1-4) = 2 .7 (t,d )F (Eq E4.3.1-5) For 1.0 < t2/t, < 2.5 Pf,Shall be calculated from linear interpolation L4 Project:Washington Square,OR VAA BY:JML 2/9/2022 Spreader t1= 0.0598 in 16 ga post t2= 0.0478 in 18 ga spreader 52=3 Since t2/t1<1.0 Pns =4.2(t1d)'5Fu2= 1.16 K Pns=2.7t1dFu1 = 1.72 K Pus=2.7t2dFu2 = 1.38 K P1.= 1.16 K Pns Pa= = 0.39 K Brace t1= 0.0673 in 15 ga brace t2= 0.0598 in 16 ga post 52=3 Since t2/t1<1.0 Pns=4.2(t1d).5Fu2= 1.62 K Pns =2.7t1dFu1 = 1.94 K Pns=2.7t2dFu2= 1.72 K = 1.62 K Pa= s= 0.54 K Back panel t1= 0.0239 in 24 ga panel t2= 0.0598 in 16 ga post 4=3 Since t2/t1>2.5 Ens=2.7t1dFu1 = 0.69 K Pns= 0.69 K P Pa= = 0.23K Back to Back Conection t�= 0.0598 in 16 ga post t2= 0.0598 in 16 ga post 52=3 Since t2/t1<1.0 Pns=4.2(t1d)'5Fu2 = 1.62 K Pns=2.7t1dFu1 = 1.72 K Pns =2.7t2dFu2 = 1.72 K Pns= 1.62 K pa= s= 0.54 K L5 Project:Washington Square,OR VA?11 BY:JML 2/9/2022 2.6 Longitudinal Seismic Design 2.6.1 Base shear From Section 1.2.54 V= 0.173 W P= 580 lbs/unit W= 388.6 lbs/unit V unit= 35.38 lbs 2.6.2 Shear Panel-Detail 2B/SR52 See Detail 2B/SR52 for details 24 ga panel w/#8 sms @ 24"o.c. AISI C3.2 length a= 144 in depth h= 48 in t= 0.0239 in 52„= 1.6 fs h/t= 2008.4 Un=AwFv (Eq C3.2.1-1) When: h/t<JEkv/Fy Fv=0.60Fy (Eq C3.2.1-2) I Ekv/Fy<h/t<1.51 Ekv/Fy Y Y 0.60,1Ek„Fy Fv (h/t) (Eq C3.2.1-3) h/t>1.51JEkv/Fy 0.904E4 Fv= (h/t)Z (Eq C3.2.1-4b) Where: k„= 5.34 Therefore: Vr Ekv/Fy= 55.7 h/t= 2008.4 > 1.51 VI Ekv/Fy= 84.0 _V„_0.904Ekv ht V a S2 (h/t)z (2 = 298.62 lb/ft Screw shear governs @ 114.65 Ib/ft Vreqd= 8.84 plf/unit Vreqd<Vall O.K. L6 VA4 Project:Washington Square,OR Y:JML 2/9/9/2022022 2.6.3 Back Brace-Detail 2A/SR52 See Detail 2A/SR52 P=2 units' 35.4 lbs = 70.8 lbs per brace 15ga x 3/4"strap bracing Ag= 0.0505 in2 An= 0.03365 in2 Tbrece= 100 lbs AnFy Tall = = 1.01 K Tbrace<Tall O.K. verify#8 screw at brace Vregd= 100.1 lbs Veii= 538.9 lbs Screw O.K. 2.6.4 Biaxial Bending in Post Pex;ei= 192 lbs Mbending=( 70.75 *"4"arm)= 0.28 K in Combined interaction Pact+Mact = 0.30<=1.0 O.K. Pau Mall 2.7 Overturning Stability RMI 2.6.8 Condition 1 jh=144" • Veci ::;;:::: = 82.8ineq _ = 109.03 lbs 24" 1 t P q P.q Pgravity±Peq = 232.32 lb downward -43.56 lb uplift L7 Project:Washington Square,OR BY:JML 2/9/9/2022022 Condition 2 h=144" ve9 «< IJA h'=144"-(30"/2)= 129 in WeQ= 120 lbs h' Peg Ve24"h 78.29 lbs 1 Pgravity±Pea = 135.12 lb downward -48.12 lb uplift Governs Peq Peg Use 3/8"diameter x 3" Dewalt Screw Bolt+anchor(ICC ESR 3889) Ultimate value in fc'=3000psi in accordance with ACI 17.2.3.2: Tn= 1050 lbs SITu= -178.01 lbs Tn>T-->O.K. 2.7.1 Anchoring Pattern Anchor all perimeter legs of shelving to floor. At back-to-back units,screw adjacent uprights together at 24"o.c.with#8 sms. Moment o.k.by inspection and overturning tension=0(4'base for double units). Shear is resisted by 2 anchors: Veq 2 units noVu=2 x—x = 134.8 lbs unit 2 anchor Vn= 770 lbs Vn>V-->O.K. 2.7.2 Back-to Back Attachments-Detail 10/SR52 In back-to-back configurations,the posts are screwed together with a#8 sms at 24"o.c.for the full height of the upright. ShearFlow=VQ V= 133.353 lbs I Q=A'ybe 7.5792 in3 A'= 0.3158 in2 =(2*Anet) I=II +Ad,2)+(Ix2+Ad22)]*2 I= 363.87 in4 ShearFlow= 2.78 lbs/in V 16.67 lbs/2ft Pa 1077.82 lbs/2ft V< Pa O.K. L8 Project:Washington Square,OR VA4 BY:JML 2/9/2022 2.8 Base Plate Design-Detail 4/SR52 2.8.1 Downward Vertical Force Section properties B= 2.25 in t= 0.1 in W= 2.625 in fY= 50 ksi F'p= 2100 psi RMI 7.2.1 AP 5.90625 in2 Pa= 274 lbs Fa= 46.39153 psi Plate O.K. 2.8.2 Uplift Tension Force T= -48.12 lbs M= -42.1018 Ib*in S= 0.00375 in3 Ma= 187.5 Ib*in Plate O.K. L9 Project:Washington Square,OR VA4 BY:JML 2/9/2022 3.0 Sales Floor Gondolas 3.1 Description Sales floor gondolas are floor mounted display shelving for general merchandise. The gondolas analyzed here are only units 96"in height or greater On drawing sheet SR11,all gondolas 96"and higher are identified. 3.2 Material Properties and Overstrength Factors Material:Misc. Fy= 36 ksi Fu= 50 ksi Material:Shelf Fy= 90 ksi Fu= 100 ksi Material:Post Fy= 65 ksi Fu= 75 ksi Material:Base Shoe Fy= 45 ksi Fu= 50 ksi Material:Base Shoe Hook Fy= 80 ksi Fu= 107 ksi O to be used for beam tension design > Qt-beam= 1.67 fs S2 to be used for beam flexure design > S2f-beam= 1.67 fs O to be used for column design > S2C0l„m„= 1.80 fs F1 Project:Washington Square,OR VNIBY:JML 2/9/2022 3.3 Shelf Beam Capaicty-Detail 7/SR53 P= 240 lbs hta 1 4 12" 12" d I See Detail 7/5R53 for shelf detail. Section properties: Net section Gauge 12 ga t= 0.1046 in htab= 0.75 in2 A„= 0.07845 in2 d 1g4= 3.41 in Stg4= 0.203 in3 (two per shelf) d 3= 4.92 in S3= 0.422 in3 (two per shelf) bmm= 0.188 in(Minimum thickness of tab hook to support shelf) Fb=0.6*Fy= 54 ksi Mect=P*a= 2.88 k in Sx,egd= 0.053 in3(per shelf) Sxregd<Sxprov Shelf design O.K. 3.3.1 Determine Allowable Tension Capacity T = ° * = 4.23 kip (AISI Eq C2-1) Tact = Mnct = 0.95 kip d—h/2 Tact<Tallow Shelf design O.K. 3.3.2 Determine Allowable Shear Capacity F„=0.4*Fy= 36.0 ksi Va=F„*A= 2.82 kip(based on full tab-Vertical Shear) 0.71 kip(based on min tab hook bm;,,-Tab shear induced by Moment) Vact<Vallow Shelf design O.K. 3.3.3 Determine Allowable Shelf Capacity Tab hook shear governs,Thus: Mcap=P„*(d-h/2)= 2.14 k in Pcap=Mcap/a= 179 lbs(Per beam capacity) Pmax= 357 lbs <----max shelf capacity,governed by bma„ Pact<Pcap Shelf design O.K. F2 Project:Washington Square,OR VIA BY:JML 2/9/2022 3.4 Determine Loading Demand on Post 3.4.1 Loading to Post-Gravity _El D= 18 in if 4 or 22 in Hmnx= 94 in H W= 48 in w= 10 pcf Wseu= 128 lbs Wh, 51 lbs Elevation of gondola One sided post Two sided post PTe=w*D*H*W Pie = 2P., Pone' 1.03 K PM,o 1.93 K M ne P(D-I 2-) 2 2 M = Mone - Mone Mone= 12.59 K in Mom= 0 Kin (balances) 3.4.2 Determine Fundemtenal Period Using Method B(Rayleigh Method) W *(5,2 0,5,=elastic deflection T = 2iC ' w,=weight at level i (ASCE Eq 15.4.4) g*E f *8, f,=force at level i g= 386 in/sect E= 29000 ksi I= 0.87 in2 = f,h,3 = 3E1 Level w(lbs) h;(in) f,(Ibs) A in w;A;2fil 6 100.5 94 25.86 0.284 8.0943 7.339565406 5 100.5 76.4 21.02 0.124 1.5414 2.603142064 4 100.5 58.8 16.18 0.043 0.1897 0.70293911 3 100.5 41.2 11.34 0.010 0.0110 0.11871816 2 100.5 23.6 6.49 0.001 0.0001 0.007321349 1 100.5 6 1.65 0.000 0.0000 7.77656E-06 603.0 56.68 0.18 1.7423 3.4321 F3 Project:Washington Square,OR V/14 BY:JML ML 2/9/2022 1w. *a.2 T =2� = 0.228 sec 1 g*If *5. 3.4.3 Determine Seismic Loading V= 0.23W Level Weight Height wxhx Fi M 6 100.5 94 9447 0.313 2.431 5 100.5 76.4 7678.2 0.255 1.606 4 100.5 58.8 5909.4 0.196 0.951 3 100.5 41.2 4140.6 0.137 0.467 2 100.5 23.6 2371.8 0.079 0.153 1 100.5 6 603 0.020 0.010 Sum: 603.0 30150 1.00 5.62 Where: M = D r p gr'w 2 Meg = H F; V n PL= 900 lbs V = E F. = 82.5 lbs DL= 128 lbs i PeQ= 734.44 lbs Mgravity= 7.52 k*in Meg= 5.62 k*In M sin gle = M gravity + M eq = 13_14Kin M = M -M + 2M = 11_24Kin double gravity gravity eq 3.5 Determine Capacity of Post-Detail 6SR53 Ae= 0.7402 in2 r%z= 1.0842 in Ji L`- S,�= 0.6206 in' ryr= 0.3992 in Sy= 0.2226 in3 lyx= 0.87 in4 2.875" l yy= 0.118 in4 --:1 rl- 3.5.1 Allowable Axial Load f 4 11, Effective length analysis not ideal I for this analysis: sir /1/ 7-- / ) / K=1.0 K=? K=2.1 F4 1 N,.. .. .... ....�. ....... .... . �.... .. . .. .. ... _ a a a ». . •mil. Project:Washington Square,OR V)tltipltl BY:JML 2/9/2022 Use AISI C4-very conservative lumped mass assumption derivation of column capacity K=2.1 L= 88 inches Unrestrained Post Height Find F„ z Fe= 7/ 2= 9.85 ksi d,= IFy/Fe= 2.57 Since lc>1.5: ` JJ F =0.877/IO2)*Fy F„= 8.64 ksi A1S1 C4 P _A, Frt n iPa= 3.6 K 3.5.2 Allowable Bending Moment AISI C3.1.1a 1 Mn=Se F mall = SQ Fy (AISI Eq C3.1.1-1) LI Mail= 24.16Kin i3.6 Combined stresses at post fOne sided- Static Seismic P= 1.03 K P= 0.73 K M= 12.59 K in Ms= 13.14 K in P/Pa+M/Ma= 0.81 <=1.0 O.K. Static Seismic Two sided- P= 1.93 K P= 1.33 K M= 0 K in Ma= 11.24 K in P/Pa+M/Ma= 0.84<=1.0 O.K. 3.7 Base Shoe Analysis-8/SR53 0 Gauge 14 ga Ixx= 3.44 in4 t= 0.0747 in I yy= 0.035 in4 ir As= 0.702 in2 Sx= 1.171 in3 d d= 5.875 in S,= 0.0532 in3 t= 14ga w= 1.25 in r,,= 2.2131 in J= 0.00017 in4 ryy= 0.2247 in C„,= 0.211 in6 rt= 0.272 in w I Mbase= 13.14 kin (one base take all load-no tension) Fb=FY/1-2b= 26.9 ksi Ma= 31.6 kin F5 Project:Washington Square,OR V4lØ1Ø1 BY:1ML 2/9/2022 M/M== 0.46<=1.0 O.K. single or double sided AISI C3.1.1 strength analysis of base Mn=S0*Fy Ma=Mn/nb Se=Sx M.= 31.55 Kin AISI C3.1.2.1 Lateral buckling strength M MT, S`—F` (AISI Eq C3.1.2.1-1) Fc is... Fe>_2.78Fy F,=Fy 2.78Fy>Fe>0.56Fy10F(1— F` = 9 Fy 36F) (AISI Eq C3.1.2.1-2) e Fe<0.56Fy Fe=Fe (AISI Eq C3.1.2.1-3) Where: CbroA Fe= S (rtt (AISI Eq C3.1.2.1-4) rzzE aey= Z ry (AISI Eq C3.1.2.1-8) rrl Ky zECWI (AISI Eq C3.1.2.1-9) o at A z L G' n(KtLt)2 Given: G= 14457 ksi ro= 2.22 in kt= 0.65 Ky= 1 1�= 22 in l = 22 in Therefore: at 85.53 ksi aey 29.86 ksi Fe 67.4 ksi Fy 45 ksi F, 40.73 ksi Me 28.56 K-in Section limited by buckling 3.7.1 Local Buckling of Web(flange not limited by inspection) h/t= 76.65 compact criteria=(640/(Fy)^.5)= 95.4 Compact O.K. 3.7.2 Base Shoe Connection to Post Locking device Ma Cd=Td= 27.11 k in I ( C I / M raga= 13.14 K in 5.875" l I Top resistance=Bearing on flange i.iz" Bottom resistance=11 ga steel strap w/5 spot welds F6 V�11 Project:Washington Square,OR BY:JML 2/9/2022 toot plate= 0.1196 in hi= 1.12 in Min hbot plate= 0.995 in d,= 4.755 in C=bearing of flange= 0.9*Fy*Aga„ge= 5.67 K T=tension in tab= A *Fy/S2= 5.70 K verify spot welds per AISI E2.2.1.2 d weld= 0.375 in P„shall be the smaller of the values calluated using either(a)or(b) 2 AiSI Eq E2.2.1.2-1 (a) P = ,cd e 0.75 F SZ= 2.55 4 (b) For dolt<_0.815.JE/F AiSI Eq E2.2.1.2-2 P =2.20tda F S2= 2.2 For 0.815 .E/F* < da /t < 1.397VE/F* AiSI EgE2.2.1.23 P„ =0.280 1+5.59VE/F" tdaF„ �= 2.8 d,„I For dolt >_ 1 .397VE / Fu AiSI Eq E2.2.1.2-4 P„ = 1 .40 td a F„ n= 3.05 Therefore, lyde2 Pr,= .75 F70 = 2.27 K 4 da/t= 5.02 <0.815*(E/F„)^.5= 16.6 P„=2.2*t*d*F = 3.00 K Pa/weld=P„/1 = 1.36 K Pa assembly= 5.70 K Tab tension controls Mall>Mreqd O.K. 3.8 Overturning-Transverse Direction Movt= (h/2)*V= 3.33 Kin V= 82.5 lbs 82.54 lbs Mres=Pgravity*D/2= 4.07 K in Net overturning= 0.00 K in F7 Project:Washington Square,OR V,4'I1if1 BY:1ML 2/9/2022 3.8.1 Base Anchorage See Detail 9/S53 Manchors=Tanchor*d Tanchor regd=Mnet ost/d= 0.00 lbs d= 12in Use 3/8"diameter x 3" Dewalt Screw Bolt+anchor(ICC ESR 3889) (very conservative d value) Ultimate value in fc'=3000psi in accordance with ACI 17.2.3.2: 52Tu= 553 lbs S2Vu= 314 lbs T„= 1050 lbs Vn= 770 lbs T -F VS = 0.73<=1.2 Anchor O.K. Ta Va I 3.9 Alternate Attachment to Wall(in lieu of self resisting overturning)-Detail 13 and 14/SR53 Target Corporation anchors the single sided units along perimeter walls to blocking with in the wall framing. That design is analyzed here: 4 Vbluckin,= 36.95 lbs V= 82.54 lbs M=Vh'= 3.33Kin h= 7.5 ft Vblocking=Mnet/h= 36.95 lbs Vanchor=V-Vblacking 45.59 lbs i e, Vanchor= 45.59 lbs 3.9.1 Verify Blocking Connection 1 x 4 blocking 7'-"AFF • 3-5/8""20 ga sheathed steel studs full height to structure 3.9.1.1 Fixture Connection to Blocking Treqd= 36.95 lbs Gag fir= 0.42 1-1/4"lag screw provided Tan= 70.8 lbs T,u = 71 lbs Tread<Tall Connection O.K. F8 • V.i11 Project:Washington Square,OR BY:JML 2/9/2022 3.9.1.2 Blocking Connection to Studs Treqd= 36.95 lbs 1-1/4"lag screw O.K.by inspection 3.9.2 Verify Stud Capacity 20 ga stud 1.29 plf aP 1 spacing= 16 in oc SDS= 0.694 gyp bd= 3.33 plf I, 1 RP 2.5 hx= 7.5 ft hr= 16.75 ft Wp 4.62 plf 0.4ap*Sps*Wp/(Rp/Ip)j*(1+2(z/h))= 0.97 plf (ASCE Eq 13.3-1) 5 psf partition load span= 16.8 ft wpart= 6.666667 plf Mr= 233.80 lb ft M2=seismic dead load+2/3 seismic fixture load M2= 262.05 lb ft weq= 0.97 plf M2 governs Man stud= 390 lb ft Mall>Mact Stud design O.K. 3.10 Longitudinal Seismic From Section 1.2.3 V= 0.23 W One shear panel on one sided gondolas and two panels on two sided Wmax=Pmax= 0.60 K pnl width= 48 in Vmax= 0.073 K v= 18.30 plf Use analogies from posted calculations for hardboard shear wall elements minimum particle board capacity= 120 plf(t=3/8") minimum drywall capacity= 60 plf(t=1/2") By analogy,hardboard siding values @ 7/32": particle board: 70 plf avg= 48.125 plf drywall: 26.25 plf F9 Project:Washington Square,OR VAII BY:JML 2/9/2022 Shear panel analysis O.K 3.11 Longitudinal Seismic to wall per connection in section 3.9,Vmnx to wall= 36.95 lbs Vbase= 36.25 lbs 1/4"lag screw in shear= 210 lbs NDS Table 9.3B 1-1/4 lag screw O.K. 3.12 Anchorage to Slab-Detail 9,10 and 11/SR53 Number of unit trib to bolts= 2 Number of bolts= 1 12Tu= 553.0 lbs 52Vu= 140.7 lbs Use 3/8"diameter x 3" Dewalt Screw Bolt+anchor(ICC ESR 3889) Ultimate value in fc'=3000psi in accordance with ACI 17.2.3.2: Tn= 1050.0 lbs V„= 770 lbs T \ 1V \ + ' = 0.71 <1.2 Anchor O.K. Tut \V,I Anchor every single sided base shoe with 2-3/8"dia.Bolts per Detail 9/SR53 Anchor every two sided base shoe with 2-3/8"dia.Bolts per Detail 9/SR53 3.13 Stability of Gondolas Under 8-0"Tall ,- P= 0.90 K 0.90 K Movt= V*h/2(Seismic) Movt= 11.48 K in r V Mresist=(l*d+p*dt)*(0.6-0.14Sds) i_______ Mresist= 23.09 K in 11.48 K in FS=Mresist/Movt FS=2.01 > 1.0OK d 22.5 in d1 25.0 in F10 1 /� Project:Washington Square,OR BY:(Mt 2/9/2022 4.0 Heavy Duty Pallet Rack Shelving 4.1 Description Heavy duty shelving consists of wire shelving supported on rolled metal beams that span between two sets of uprights. Beam spans vary from 8'-0"to 12'-0".An upright is comprised of two vertical posts with welded struts spanning between the posts to create a braced frame in the transverse direction. The beam to post connection in the longitudinal direction creates a moment frame. A design pallet load of 2000 lbs and 50 lbs dead load is utilized for our design criteria.This equates to roughly 32 pcf storage density. In actuality,Target typical pallet load is approximately 850 lbs or 43%utilization. Target has multiple profiles,as shown on Sheet SR51. The governing case is analyzed in these calculations. This governing case is the two tier profile(largest loading sceranio combined with longest unbraced column length). The three to five tier loadings will have shorter unbraced column lengths and less loadings,at approximately 10 pcf storage density. 4.2 Material Properties and Overstrength Factors Material:Beams Fy= 55 ksi A1011 HSLA Grade 55 Class II Fu= 65 ksi Material:Columns Fy= 55 ksi A1011 HSLA Grade 55 Class II Fu= 65 ksi Material:Beam Pins Fy= 50 ksi Grade 50 Fu= 70 ksi Material:Weld E70XX electrodes Fxx= 70 ksi R to be used for beam design > n�am= 1.67 fs O to be used for column design > C1culom,= 1.80 fs QRw to be used for column design--> QRMI= 1 k,to be used for column design(Down Aisle)--> kx= 1.7 Per RMI 6.3.1.1 ks,to be used for column design(Cross Aisle)----> ha= 1 Per RMI 6.3.1.2 Column plate buckling coefficient----> k= 4 Per AISI 82.1 Pallet load reduction factor(Cross Aisle)--> PLrf= 1.0 Per RMI 2.6.2 Pallet load reduction factor(Down Aisle)--> PLrf= 0.43 Per RMI 2.6.2 4.3 Wire Decking-Detail 3/SR51 4-1"wide x 1 1/2"tall x 14 ga channels per 48"width Wire decking beams span 4'-0"typically between primary beams L= 4ft See Detail 3/SR51 for wire decking detail.Section properties: 5x= 0.1231 in' Impact loading=25%"one pallet= 500 lbs Ppallet 2000 lbs Ptotal= 2500 lbs H1 • ■ .� Project:Washington Square,OR ,V/ BY:1ML 2/9/2022 = 625 lbs w°han„el= 156 plf wohenna= 13.02 pli w1' Ma =—= 3.30 Kin S1C�=MOC= 0.100 in3 (AISI Eq C3.1.1-1) 8 J. Sprov>Sreqd Channel O.K. 4.4 Beam Capacity 4,4.1 4"Deep Beam 4"Beams span 8'-0"Typical 1= 8 ft See Detail 9/SR51 for beam detail.Section properties: t= 0.0598 in r,"= 1.444 in Aa= 0.7774 in' rw= 0.9611 in Sn,= 0.8451 in3 I„= 1.621 in Sw= 0.5196 in3 I = 0.7181n Impact loading=25%•one pallet= 500 lbs Ptier=2 pallets= 4000 lbs Pay= 4500 lbs Wwam= 2250 lbs wneam= 281 plf wl Maet M a = B = 27.00 K in 4,d= fa = 0.820 in3 (AISI Eq C3.1.1-1) 97%utilization Spray>Sreqd Beam 0 K. Verify deflection: Am„=1/180= 0.53 in 64,0= 0.49 in Ipray>Iregd Beam O.K. 4.4.2 6"Beep Beam 6"Beams span 12'-0"Typical 1= 12 ft See Detail 9/SR51 for beam detail.Section properties: t= 0.0747 in r,"= 2.0944 In Ae= 1.275 in' rw= 1.0267 in 5,"= 1.7907 in3 l,"= 5.593 in° Sw= 0.9884 in3 Iw= 1.344 in Impact loading=25%•one pallet= 500 lbs Ptier=3 pallets= 6000 lbs = 6500 lbs H2 �� Project:Washington Square,OR BY:1ML ML 2/9/2022 Wb„,= 3250 lbs = 271 plf wl= Moq M = S = 58.50 Kin SSA= � = 1.776 in fa 99%utilization Sprov>Sregd Beam O.K. Verify deflection: d,,,,=1/180= 0.80 in d„3= 0.72 in 1prov>iregd Bourn O.K. 4,5 Beam Connections 4.5.1 Pin Capacity dia.= 0.4 in Area= 0.13 in' Shear F,=0.4Fy= 20 ksi V,=F,A= 2.51 K Bearino at Column 14 Gauge column governs over 3/16"plate by inspection t ow= 0.0747 in Rai bra=1.2F"dtc,i= 2.33 K Allowable shear load at rivet=I 2.3 K 4.5.2 Three-Pin Connection Capacity-Detail 5A/SR51 Rai= 7.0 K =1"F3+3"F2+5"F,=i 13.52 K in K O O Where: F2=5F1 F3=5F1 i O Rad= 1.1 K l 8'long beam Gravity Loads O.K. R,n= 1.6 K @ 12'long beam Gravity Loads O.K. 4.5.3 Four-Pin Connection Capacity-Detail 5B/SR51 = 9.3 K =1"Fa+3"F3,5"Fz+7"F,=I 27.97 K in I IF where: 5 3 F2=-F1 Fa=—F1 —iF. O 7 1 0-, 0 Fa—7 Fl Gravity Loads O.K.all spans r, O H3 a Project:Washington Squar • e,JMLML 2/9/2022 4.5.4 Uplift Resistance Per RMI 7.1.3 P„am= 2000 lbs PL M°n— 4 = 6.00 kft S„,,=.gym_ 0.78 in' r, Spray<Sregd Beam 0,K Connection-per detail 5/SR51-each beam connection is provided with a spring clip. This clip provides a rivet similar to that calculated in Section 4.5.1. Uplift is less than capacity of pin Q.K. 4.6 Standard Frame Post capacity-all profiles-Detail 6A and 8/SR51ENks N D N See details 1/SR51 and 12 to 16/SR51 for column profiles.Section properties: r 14 Gross section Gauge(Column)= 14 ga r„= 1.2748 in W= 3.00 in A3= 0,7844 in' rri= 1.1412 in D= 3.00 in S.= 0.8496 in' I„= 1.275 in L= 0.75 in Sri= 0.5976 in' I.= 1,022 in° r= 0.25 in Net section t= 0.0747 in r,„= 1.2533 in A„= 0.7003 in' rri= 1,1168 in Sy„= 0.743 in' I.= 1.115 in° Sri= 0.5603 in' I.= 0.873 in° 4.6.1 Allowable Axial Load Maximum column height between tier beams(X-X Axis)= 60 in Maximum column height between tier beams(Y-Y Axis)= 36 in kL,= 102 in kl,/r,=81.4 kLy= 36 in kly/ry=32.2 AISI 81.1 w/t= 3=,.47< 6€I O,K AISI B2.1 f J = 0.767 Fcr Fcr=k* S-E * I = 93.60 ksi 12(1—µ') w H4 VA�4 Project:Washington Square,OR BY:1ML 2/9/2022 0.22 P= Z� �= 0.93 When X<=0.673 b=w When).>0.673 b=pw b,e front face=b„-2*dn,y= 1.33 in b= 2.33 in b,fl sides=b,rt-dnw,= 1.83 in dray= 0.5 in b„,back face=b,R= 0.47 in A,= 0.56 in2 Find F„ F' = *E 1.13 F= ,= 43.21 ksi F, (kl/r) Since lc<1.5: F,.658^(IO2)*Fy F„= 32.29 ksi AISI C4 P = : " I P,= 10.0 K 4.6.2 Allowable Bending Moment AISI C3.1.1a S*Q%°*F M,,=S,*Fy Mn y M„„= 22.70 K in M„ii, 17.12 Kin 4.7 Not Used 4.8 Strut Capacity(Typical)-Detail 10A/SR51 yy rI Net section )1I r Gauge 16 ga O t= 0.063 in r„= 0.9718 in A„= 0.5313 in2 ryr= 0.8626 in W= 2.50 in S„= 0.3704 in' I„= 0.502 Ma D= 2.00 in Syy= 0.3833 in' lyy= 0.395 in° r= 0.25 in L= 0.75in 4.8.1 Allowable Axial Load Maximum unbraced length(X-X Axis)= 47 inches Maximum unbraced length(V-Y Axis)= 47 inches kl,= 47 in kljr,=48.4 kly= 47 in kly/r,=54.5 AISI B1.1 75< 80 0,K HS . /� Project:Washington Square,OR ,r/ BY:1MLML 2/9/2022 A1S1 82.1 A 'I 1/' _ 0.727 V Fcr Fcr=k* ,r2E * t' 104.03 ksi 12(1—µ2) �w� P (1_ 0.221= II\\ 2 JJ 0.96 When X<=0.673 b=w When X>0.673 b=pw b,,,front face=b,R= 1.38 in b= 1.44 in b,rt sides=be= 2.16 in A,= 0.521 ina Find F„ 2. F = 0.755 F=R'*E = = 96.41 ksi F, (kl/r)2 Since lc<1.5: Fn=.658^(Ic^2)*Fy F, 43.32 ksi A, F„ P _ AISI C4 P,= 12.5 K 4.8.2 Allowable Bending Moment AlSl C3.1.1a S*Qxtin*F M,=S,*F Mn= 12 I M.,1= 11.32 K in I Myo. 11.71 Kin I 4.8.3 Allowable Tension Load t T = A{� F' = I 17.5K 4.9 Not Used 4.10 Not Used H6 A. Project:Washington Square,OR ,r/ BY:AIL 2/9/2022 4.11 Transverse Seismic Design(Cross-Aisle)-standard pallet rack 4.11.1 Base Shear From Section 1.2.3-Max Base Shear Limit---- 0.173'W From Section 1.2.3-Design Base Shear----> 0.126'W/T Use Max Base Shear 0.173•W 4.11.2 Design Forces Two tier configuration is worst case design-all other configurations do not control q of Tiers to evaluate= 2 Legnth of beam to evaluate(8 ft or 12 ft)= 8 ft Purina= 8000.0 lbs Pio.mne/column/Tier= 1.35 k Wuprpnt= 5460.0 lbs Veens.= 663 lbs P P p \ 101 T1ef i 442 P p P SO liar, 221 Longitudinal elevation Transverse elevation Tier PL w;(K) h.(in) w;h,(Kin) w h:12,W,he Vu.,(lbs) 1 4 2.7 60 163.8 0.333 221 2 4 2.7 120 327.6 0.667 442 3 0.0 0.0 0 0.0 0.000 0 L 491.4 1.000 663 From frame analysis,post loadings Too of post Bottom of post M,,0= 1.536 K in Mw,e= 2.57 Kin = 3.27 K Pe„e= 4.039 K Uplift= 0.0 lbs H7 V� Project:Washington Square,OR BY:1ML 2/9/2022 4.11.3 Verify Post Capacity-from section 4.6 Ppost Mpo:r P,t and Ma.see 4.6.1 and 4.6.2 + <1.0 Paitowable Matlowable Mead= 0.00 K in (from eccentric panel point at post) Top of post: 0.326 + 0.090 0.416<1.0 O.K. Bottom of post: 0.403 + 0.150 0.553<1.0 O.K. 4.11,4 Verify Brace Capacity-from section 4.8 Pm„= 1.032 K <Struct capacity O.K.= 16.7 K Weld size= 0.1250 in Weld length= 3 in From Section 4.15.1----> Pa= 1632 lbs/In--> 4896 lbs Welded Connection O.K. 4.11.5 Frame Loading at Top Tier Only PuprgM= 4000 lbs Pioadinr/cai„mnrrier= 1.03 k W,,prgm= 2780 lbs = 337 lbs P P IP 1 1 j 334 3 � I Longitudinal elevation Transverse elevation PL+OL Tier PL w,(Kt h,lint w,h,(Kint w.hJEw;ht V..,(Ibst 1 0 0.1 60 3.0 0.009 3 2 4 2.7 120 327.6 0.991 334 3 0 0.0 0 0.0 0.000 0 £ 330.6 1.000 337 From frame analysis,post loadings Mpg= 1.02 Kin M,da= 0.00 Kin 1.847 K (from eccentric panel point at post) Uplift= 0.0 lbs H8 VA4 Project:Washington Square,OR 8Y:JML 2/9/2022 4.11.5.1 Base Anchorage S2Tu= 877 lbs S3Vu= 947 lbs Use(21 1/2"diameter x 3" Dewalt Screw Bolt+anchor(ICC ESR 3889j Ultimate value in fc'=3000psi in accordance with ACI 17.2.3.2: Certifications:ICC ESR-3889 Tn= 2052 lbs Vn= 1689 lbs (Ti +lV,l 0j71<1.2 Anchor O.K. 4.11.5.2 Check Post Capacity-from Section 4.6 P,r and M..see 4.6.1 and 4.6.2 PPour + M,aar <1.0 Palawabre Ma1lov'abre Post analysis: 0.184 + 0.060 .'44<1.0 O.K. 4.11.5.1 Check Brace Capacity-from section 4.8 Pm„= 0.545 K SFr€ct capacity 4.11.6 Verify Design for 12'Beam Spans Upright capacity is the same for either 8'-0"span pallet rack or 12'-0"pallet rack.Target Team Members are instructed through signage to limit the maximum loading to a frame accordingly. 4.12 Longitudinal Seismic Design(Down-Aisle).standard pallet rack 4.12.1 Base Shear and Fundamental Period-Rayleigh Fundamental Period of Pallet Racking per FEMA 460 Section 6.5.1 .A7L WP hp T=27r i=1 kekbe +N kb+k 8�N �k +kb, b(kb+kb, b,) Step 1 Icy=Mm,„/Om„= 400 K/in Step 2 Wp= 1.37 K hPrrN.m= 60 in by as ram= 120 in he are a..i= Din g= 386 in/sec' N = 2 k,= 400 K/in kn= 400 K/in N,= 8 H9 V Project:Washington Square,OR BY:AIL 2/9/2022 N6= 4 K6,= 6E16/L= 2938.063 1b= 1.621 in" L= 96in K„= 4E1,/H= 2465 = 1.275 in' H= 60 in E= 29000 K/in` a, L.e W h 2 = 49446 Kin` ( )= Nc krky, 2816.544+kb, Nb(kk+jrC¢) 1376.614 T. . 0 sec Use--> . 0 sec From Section 1.2.3-Max Base Shear Limit---- 0.173"W From Section 1.2.3-Design Base Shear----> 0.126'W/T From Section 1.2.3-Min Base Shear Limit---- 0.031"W Since T= 1.00 sec > 0.126 W 4.12.2 Design Forces W,.m.= 2.3 K Vh„n.= 0.151 K Fl,.dms/nm/w 1.353 W„sr 1.1 K V,,,;= 0.075 K 4.12.3 Base Shear Distribution PLrr0.67'PL+DL Tier PL w;(K! h;(in' w.h,(Kin( w,h/Ew,h; Va.,(Ibsi 1 4.0 1.14 60 68.3 0.333 50 2 4.0 1.14 120 136.7 0.667 101 3 0.0 0.00 0 0.0 0.000 0 1: 205.0 1.000 151 4.12.4 Verify Post Capacity From frame analysis,post loadings: Ppm! + p" <1.0 P,a and M,a see 4.6.1 and 4.6.2 'llmweble Mnllmrnblr M,,,e= 3.288 K in P,,,n= 2.8 K Post analysis: 0.279 + 0.145 O,4.24<1.0 O.K. 4.12.5 Verify Beam Connection M„nn= 2.664 K In Veonnt + Mronn Rallowable Mallowable yf 0.107 + 0.095 0 203<1.0 O.K. 4.13 Not Used 4.14 Not Used H10 vs I� Project:Washington Square,OR BY:JML 2/9/2022 4.15 Weld Capacity Calculations 4.15.1 Transverse Fillet Welds AISI E 2.4(2) t*L*F _ F„= 65ksi P,,_ = 2.35 FS Values for base metal<0.10 in (AISI Eq E2-4-2) S2= P_0.75*t>.*L*Fr F..= 70 ksi ,Q= 2.55 FS Values for base metal>0.10 in (AISI Eq E2-4-3) 16 aa material t= 0.059 in I P.= 1.63 K/in 14 ga material t= 0.0747 in I P,= 2.07 K/in I 11 as material t= 0.1196 in P,= 2.46 K/in 10 ga material t= 0.1345 in I P,= 2.77 K/in 4.15.2 Flare Groove Welds Longitudinal AISI E 2.5(2) _0.75 t L F F = 70 ksi P,— — 2.80 FS Values for base metal>0.10 in (AISI Eq E2-5-2) 10 aa material t= 0.1345 in I P.= 2.52 K/in 4.15.3 Weld Material Limitation AISI E 2.4(2) 0.75*t„,*L*F7. P,= FTh= 70 ksi Q= 2.55 FS 1/8"weld t,= 0.0884 in I P. 1.82 K/in 3/16"weld t„,= 0.1326 in I P,= 2.73 K/in H11 �� Project:Washington Square,OR BY:1ML ML 2/9/2022 4.16 Base Plate Design-Detail81SR51 2.8.1 Downward Vertical Force Section properties B= 6 in t= 0.375 in W= 6 in fY= 50 ksi F'p= 2100 psi RMI 7.1.1 Ap 36 in' Pa= 4039 lbs Fp= 112.1944 psi Plate O.K. 2.8.2 Uplift Tension Force T= 0.0 lbs e= 5.00 in M= 0Ib'in S= 0.140625 in3 M,= 7031.25 Ib*in Plate O.K. H12 Project: Washington Square,OR VAA BY:JML 2/9/2022 5.0 Slab Verification 5.1 Empirical Method Concrete Slab: Thickness= 4.00 in fc= 3,000 psi E,= 3,122,019 psi ft= 329 psi <---Uses 6(fc)^0.5 Base Plate Geometry: X= 6in Y= 6in R= 3.00 in <--Equals 1/2 the width of column base plate Soil: ks= 60 pci <---Equates to 500 psf bearing capacity Calculation: Summary of information for use in calculations FS = 2 ks= 60 pci E,= 3,122,019 psi ft= 329 psi R= 3.00 in d = 4.00in d = FSxP 1 1.72x(�x104+3.60)f Pu = 1 .72x( R x104 + 3.60 )frd2 = S1 Project: Washington Square, OR BY:JML 2/9/2022 P„ = 37.8 kips Pa = 18.9 kips > Maximum Post Load in Calculation Section 4.13.2 -OK Radius of Relative Stiffness Ecd 3 b = 4 = (12(1 —,u2)ks b = 23.08 in Minimum column spacing to achieve calculated Pa = 1.5*b = 34.62 in Minimum Post Spacing for Pallet Rack=4ft therefore OK--^ 52