Loading...
Specifications Ex), -1 v-t\-- 0.8 RECEIVED OFFICE COPY FEB 9 2022 CITY OF TIGARD 3UILDING DIVISION s a 's 4' Strucfurol Engineering 64 esign , I 1815 Wright Ave La Verne, Co. 91750 Tel: 909-596-1351 Fox: 909-596-7186 0 P R oFFss project Name : BIAMP SYSTEMS o (<,�G I N /�Z cc1 / 98752 PE v: Project Number : 22-0124-7 ( 74 2y7c/4/4 ORE ON O OL�MBER�1�'�p`L Dote . 1/26/22 NoZ EXPIRES: H" l Street Address: 8005 SW HUNZIKER ST 06/30/2024 City/State : TIGARD, OR 97223 ENHAO Digitally signed by ENHAO ZHANG Scope of Work : STORAGE RACK ZHANG D4:0358208'00'6 yqr Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Bob S Project: Blamp Systems Project#: 22-0124-7 TABLE OF CONTENTS Title Page 1 Table of Contents 2 Design Data and Definition of Components 3 Critical Configuration 4 Seismic Loads 5 to 6 Column 7 Beam and Connector 8 to 9 Bracing 10 Anchors 11 Base Plate 12 Slab on Grade 13 Other Configurations 14 4 r type A select-D1amp.xt5 Page .2 of I , I/26/2022 1 r Structural Engineering & Design Inc. 6 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596,7186 By: Bob S Project: Biamp Systems Project#: 22-0124-7 Design Data 1) The analyses herein conforms to the requirements of the: 2018 IBC Section 2209 2019 CBC Section 2209 ANSI NH 16.1-2012 Specifications for the Design of Industrial Steel Storage Racks '2012 RMI Rack Design Manual" ASCE 7-16, section 15.5.3 2) Transverse braced frame steel conforms to ASTM A570, Gr.55, with minimum strength, Fy=55 ksi Longitudinal frame beam and connector steel conforms to ASTM A570, Gr.55, with minimum yield, Fy=55 ksi All other steel conforms to ASTM A36, Gr. 36 with minimum yield, Fy= 36 ksi 3) Anchor bolts shall be provided by installer per ICC reference on plans and calculations herein. 4) All welds shall conform to AWS procedures, utilizing E70xx electrodes or similar. All such welds shall be performed in shop, with no field welding allowed other than those supervised by a licensed deputy inspector. 5) The existing slab on grade is 5" thick with minimum 4000 psi compressive strength. Allowable Soil bearing capacity is 1250 psf. The design of the existing slab is by others. 6) Load combinations for rack components correspond to 2012 RMI Section 2.1 for ASD level load criteria Definition of Components A I Column Beam J A T_ 1 Horizontal Brace Beam to Column Connector Diagonal Brace Frame ,- Height Beam Product Spacing Base Plate and x i : . .. q t Anchors Panel Beam Height Length F._Frame .. Depth Front View: Down Aisle Section A: Cross Aisle (Longitudinal) Frame (Transverse) Frame type A select-Dtamp,xl5 Page 3 of 1 I/2�/2022 Structural Engineering & Design inc. iY 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Bob S Project: Biamp Systems Project#: 22-0124-7 li Configuration & Summary: TYPE A SELECTIVE RACK 1` **RACK COLUMN REACTIONS ASV LOADS • 60" 42 `I 54iN " AXIAL DL= 150/b j� AXIAL LL= 8,000/b I SEISMIC AXIAL Ps=+/- 8,484 lb 0 240" BASE MOMENT= 5,000 in-lb 240" 54" . 60" ,�' 36" 1` t 60" 36" -f 96" -T - 44" 4 Seismic Criteria # Bm Lvis Frame Depth Frame Height # Diagonals Beam Length Frame Type Ss=0.863, Fa=1.155 4 44 in 240.0 in 5 96 in Single Row Component Description STRESS Column Fy=55 ksi SPCRK FH-25/3x3x13ga P=8150 Ib, M=21135 in-lb 0.93-OK Column & Backer None None None N/A Beam Fy=55 ksi SpaceRak SB406M 4 in x 0.06 In Lu=96 in Capacity: 4860 lb/pr 0.82-OK "'"-, °"' Beam Connector Fy=55 ksi Lvl 1: 3 pin OK Mconn=14519 in-lb Mcap=15230 in-lb 0.95-OK Brace-Horizontal Fy=55 ksi Sperack 1-1/2x1-1/4x14ga 0.3-OK Brace-Diagonal Fy=55 ksi Sperack 1-1/2x1-1/4x14ga 0.61-OK Base Plate Fy=36 ksi 8x5x0.375 Fixity= 5000 in-lb 0.9-OK Anchor 2 per Base 0,5"x 3.25" Embed HILTI KWIKBOLT TZ ESR 1917 Inspection Reqd (Net Seismic Uplift=4258 lb) 0.942-OK Slab &Soil 5" thk x 4000 psi slab on grade. 1250 psf Soil Bearing Pressure 0.92-OK Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg Brace Transv Longit. Axial Moment Moment Connector 1 4,000 lb 60.0 In 36.0 in 183 lb 92 lb 8,150 lb 21,135 "# 14,519 "# 3 pin OK 2 4,000 lb 60.0 in 36.0 in 366 lb 183 lb 6,113 lb 12,380 "# 10,492 "# 3 pin OK 3 4,000 lb 60.0 in 54.0 in 549 lb 275 lb 4,075 lb 9,629 "# 8,084 "# 3 pin OK 4 4,000 lb 60.0 in 54.0 in 732 lb 367 lb 2,038 lb 5,502 "# 4,715 "# 3 pin OK 42.0 in ** Load defined as product weight per pair of beams Total: 1,830 lb 917 lb Notes i r 1 type A select-Diamp.xls Page "1 of ( S I/26/2022 I Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Bob S Project: Biamp Systems Project#: 22-0124-7 Seismic Forces Configuration: TYPE A SELECTIVE RACK Lateral analysis Is performed with regard to the requirements of the 2012 RMI ANSI MH 16.1-2012 Sec 2.6&ASCE 7-16 sec 15.5.3 Ss= 0.863 Transverse (Cross Aisle) Seismic Load �• S1= 0.394 V= Cs*Ip*Ws=Cs*Ip*(0.67*P*Prf+D) vt Fa= 1.155 Cs1= Sds/R Fv= 1.900 = 0.1661 Cs-max * Ip= 0.1661 Sds=2/3*Ss*Fa= 0.665 Cs2= 0.044*Sds Vniin= 0.015 Sd1=2/3*S1*Fv= 0.499 = 0.0292 Eff Base Shear=Cs= 0.1661 Transverse Ekvatiort Ca=0.4*2/3*Ss*Fa= 0.2658 Cs3= 0.5*S1/R Ws= (0.67*PLRF1 * PL)+DL(RMI 2.6.2) (Transverse,Braced Frame Dir.)R= 4.0 = 0.0493 = 11,020 lb Ip= 1.0 Cs-max= 0.1661 Vtransv=Vt= 0.1661 * (300 lb + 10720 Ib) PRF1= 1' :' I':e4 ., Base Shear Coeff=Cs= 0.1661 Etransverse= 1,830 lb Pallet Height=hp= 48.0 In Limit States Level Transverse seismic shear per upright DL per Beam Lvl= 75 lb Level PRODUCT LOAD P P*0.67*PRFI DL hi wi*hi Fi Fi*(hi+hp/2) 1 4,000 lb 2,680 lb 75 lb 60 in 165,300 183.0 lb 15,372-# I 2 4,000 lb 2,680 lb 75 lb 120 in 330,600 366.0 lb 52,704-# 3 4,000 lb 2,680 lb 75 lb 180 in 495,900 549.0 lb 111,996-# 4 4,000 lb 2,680 lb 75 lb 240 in 661,200 732.0 lb 193,2484 I sum: P=16000 lb 10,720 lb 300 lb W=11020 lb 1,653,000 1,830 lb Z=373,320 Longitudinal (Downaisle) Seismic Load Similarly for longitudinal seismic loads,using R=6.0 WS= (0.67 * PLRF2* P) + DL PRF2= 1.0 '.'. :`;1 \n'Is.�•`'�``�`' r.':'1 Cs1=Sd1/(T*R)= 0.0832 = 11,020 lb (Longitudinal,Unbraced Dir.)R= C.0 „b`r Cs2= 0.0292 Cs=Cs-max*Ip= 0.0832 T= 1.00 sec '"`,`', �, 3`,,,,I Cs3= 0.0328 Vlong= 0.0832 * (300 lb + 10720 Ib) ;7 :;6,:;, ' r.;1 Cs-max= 0.0832 Elongitudinal= 917 lb Limit States Leve/Longit.seismic shear per upright Level PRODUC LOAD P P*0.67*PRF2 DL hi wl*hi Fl Front View 1 4,000 lb 2,680 lb 75 lb 60 in 165,300 91.7 lb I 2 4,000 lb 2,680 lb 75 lb 120 in 330,600 183.4 lb 3 4,000 lb 2,680 lb 75 lb 180 in 495,900 275.1 lb 4 4,000 lb 2,680 lb 75 lb 240 in 661,200 366.8 lb I sum: 10,720 lb 300 lb W=11020 lb 1,653,000 917 lb type A 5elect-6iamp,xls Page $ of i & I/26/2022 Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909,96.1851 Fax: 909.596.n 86 By: Bob S Project: Biamp Systems Project#: 22-0124-7 Downaisle Seismic Loads Configuration: TYPE A SELECTIVE RACK Determine the story moments by applying portal analysis. The base plate is assumed to provide partial fixity. Seismic Story Forces Typical frame made Vlong= 917 lb Tributary area oftwocolumns Vcol=Vlong/2= 459 lb oFrack frame -0- = :w.0 • ..:% mil , .,:clC) ,V,:` • Typical Frame made F2= 183 lb .A'''ouiwo columns F3= 275 lb - wt = : i ' ; P''' rs:'. i --► ' ■11111111111 / Toti vim I 96° Front View Side View Seismic Story Moments Conceptual svetern COL Mbase-max= 5,000 in-lb <__=Default capacity hl-eff= h1 - beam clip height/2 ball Mbase-v= (Vcol*hleff)/2 = 57 In Vcol ...............fr = 13,067 In-lb <__= Moment going to base I Mbase-eff= Minimum of Mbase-max and Mbase-v h2 = 5,000 in-lb M 1-1= [Vcol * hleff]-Mbase-eff M 2-2 [Vcol-(F1)/2] * h2 innommEimmor�s ir = (459 lb * 57 in)-5000 in-lb = [459 lb - 91,7 lb]*60 In/2 = 21,135 in-lb = 12,380 in-lb h1 hleff Mseis= (Mupper+Mlower)/2 Beam to Column Mseis(1-1)= (21135 in-lb + 12380 in-lb)/2 Mseis(2-2)= (12380 in-lb + 9629 in-lb)/2 Elevation = 16,757 In-lb = 11,004 in-lb rho= 1.0000 Summary of Forces LEVEL hi Axial Load Column Moment** Mseismic** Mend-fixity Mconn** Beam Connector 1 60 in 8,150 lb 21,135 in-lb 16,757 in-lb 3,984 in-lb 14,519 in-lb 3 pin OK I 2 60 in 6,113 lb 12,380 in-lb 11,004 in-lb 3,984 in-lb 10,492 in-lb 3 pin OK 3 60 in 4,075 lb 9,629 in-lb 7,565 in-lb 3,984 in-lb 8,084 in-lb 3 pin OK 4 60 in 2,038 lb 5,502 in-lb 2,751 in-lb 3,984 in-lb 4,715 in-lb 3 pin OK Mconn= (Mseismic + Mend-fixity)*0.70*rho Mconn-allow(3 Pin)= 15,230 in-lb **all moments based on limit states level loading type A select-Biarnp.xl5 Page C of I S I/26/2022 i Structurai Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Bob S Project: Biamp Systems Project#: 22-0124-7 Column (Longitudinal Loads) Configuration: TYPE A SELECTIVE RACK Section Properties Section: SPCRK FH-25/3x3x13ga 3.000 in Aeff= 0.757 in^2 Iy = 0.871 in^4 Kx = 1.7 1.,0 X Ix = 1.320 in^4 Sy= 0.574 in^3 Lx = 58.0 in Sx = 0.879 in^3 ry = 1.080 in Ky = 1.0 rx 10.090 1.320 in Fy= 55 ksi Ly = 36.0 in Y_•�" '"• in' Y 3.000 in Qf= 1.67 Cmx= 0.85 Cb= 1.0 _ - E= 29,500 ksi -r e3-0.75 in Loads Considers loads at level 1 COLUMN DL= 150 lb Critical load cases are:RMI Sec 2.1 COLUMN PL= 8,000 lb Load Case 5: : (1+0.105*Sds)D + 0.75*(1,4+0.14Sds)*B*P 0.75*(0.7*rho*E)<= 1.0, ASD Method Mcol= 21,134 in-lb axial load coeff,' 0.78384075*P seismic moment coef 0.5625*Mcol Sds= 0.6645 Load Case 6: : (1+0.14*Sds)D+ (0.85+0.14Sds)*B*P+ (0.7*rho*E)<=1.0, ASD Method 1+0.105*Sds= 1.0698 axial load coeff 0.66012 seismic moment coefl: 0.7*Mcol 1.4+0.14Sds= 1.4930 By analysis, Load case 6 governs utilizing loads as such 1+0.14Sds= 1.0930 0.85+0.14*Sds= 0.9430 Axial Load=Pax= 1.09303*150 lb+0.94303*0.7*8000 lb Moment=Mx= 0.7*rho*Mcol B= 0.7000 = 5,445 lb = 0.7 * 21134 in-lb rho= 1.0000 = 14,794 in-lb Axial Analysis KxLx/rx = 1.7*58"/1.3196" KyLy/ry = 1*36"/1.08" Fe > Fy/2 = 74.7 = 33.3 Fn= Fy(1-Fy/4Fe) = 55 ksi*[1-55 ksi/(4*52.1 ksi)] Fe= n^2E/(KL/r)max^2 Fy/2= 27.5 ksi = 40.5 ksi 52.1ksi Pa= Pn/Qc Pn= Aeff*Fn Qc= 1.92 = 30657 lb/1.92 = 30,657 lb = .15,967 lb P/Pa= 0.34 > 0.15 Bending Analysis Check: Pax/Pa + (Cmx*Mx)/(Max*px) 5 1.0 P/Pao + Mx/Max 5 1.0 Pno= Ae*Fy Pao= Pno/Qc Myield=My= Sx*Fy = 0.757 In^2 *55000 psi = 41635Ib/1.92 = 0.879 in^3 * 55000 psi = 41,635 lb = 21,685 lb = 48,345 in-lb Max= My/Qf Pcr= n^2EI/(KL)max^2 = 48345 in-lb/1.67 = nA2*29500 ksi/(1.7*58 in)^2 = 28,949 in-lb = 39,531 lb px= {1/[1-(Qc*P/Pcr)]}^-1 _ {1/[1-(1..92*5445lb/39531 lb)]}^-1 = 0.74 Combined Stresses (5445 Ib/15967 Ib) + (0.85*14794 in-lb)/(28949 in-Ib*0.74) = 0.93 < 1.0, OK (EQ C5-1) (5445 lb/21685 Ib) + (14794 in-lb/28949 in-Ib) = 0.76 < 1.0, OK (EQ C5-2) **For comparison, total column stress computed for load case 5/s.• 88.0% q loads 6431.191875 lb Axial and M= 11095 in-lb type A select-Biamp.xls Page 7 of /J I/26/2022 Structural Engineering & Design Inc. 1815 Wriaht Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Bob S Project: Biamp Systems Project* 22-0124-7 BEAM Configuration: TYPE A SELECTIVE RACK DETERMINE ALLOWABLE MOMENT CAPACITY 2,50 In A) Check compression flange for local buckling (B2.1) 1.63 In 4, w= c- 2*t -2*r = 1.625 in - 2*0.06 in - 2*0.06 in r = 1.385 in w/t= 23.08 1.625 In I l=lambda= [1.052/(k)^0.5] * (w/t) * (Fy/E)^0.5 Eq. B2.1-4 �,! _ [1.052/(4)1\0.5] * 23.08 * (55/29500)^0.5 4.000 In = 0.524 < 0.673, Flange is fully effective Eq. B2.1-1 0.060 In B) check web for local buckling g per section b2.3 � f1(comp)= Fy*(y3/y2)= 50.15 ksi ���air f2(tension)= Fy*(y1/y2)= 101.91 ksi Y= f2/f1 Eq. B2.3-5 Beam= SpaceRak SB406M 4 in x 0.06 in = -2.032 Ix= 1.471 in^4 k= 4 + 2*(1-Y)^3 + 2*(1-Y) Eq. B2.3-4 Sx= 0.694 In^3 = 65.81 Ycg= 2.640 in flat depth=w= y1+y3 t= 0.060 In = 3.760 in w/t= 62.66666667 OK Bend Radius=r= 0.060 in i=lambda= [1.052/(k)^0.5] * (w/t) * (f1/E)^0.5 Fy=Fyv= 55.00 ksi = [1.052/(65.81)1\0.5] * 3,76 * (50.15/29500)^0.5 Fu=Fuv= 65.00 ksi = 0.335 < 0.673 E= 29500 ksi be=w= 3.760 in b2= be/2 Eq B2.3-2 top flange=b= 1.625 In bl= be(3-Y) = 1.88 in bottom flange= 2.500 in = 0.747 Web depth= 4.0"'FYn bl+b2= 2.627 in > 1.24 in, Web Is fully effective Determine effect of cold working on steel yield point (Fya) per section A7.2 fuccmp) Fya= C*Fyc + (1-C)*Fy (EQ A7.2-1) -._._ Lcorner=Lc= (p/2) * (r + t/2) 0.141 in C= 2*Lc/(Lf+2*Lc) yz Lflange-top=Lf= 1.385 in = 0.169 in y3 m= 0.192*(Fu/Fy) - 0.068 (EQ A7.2-4) depth = 0.1590 Bc= 3.69*(Fu/Fy) - 0.819*(Fu/Fy)^2 - 1.79 (EQ A7.2-3) a = 1.427 since fu/Fv= 1.18 < 1.2 Y y'� and r/t= 1 < 7 0K then Fyc= Bc * Fy/(R/t)^m (EQ A7.2-2) _._. f2(tenslon) = 78.485 ksi Thus, Fya-top= 58.97 ksi (tension stress at top) Fya-bottom= Fya*Ycg/(depth -Ycg) y1= Ycg-t-r= 2.520 in = 114.48 ksi (tension stress at bottom) y2= depth-Ycg= 1.360 in Check allowable tension stress for bottom flange y3= y2-t-r= 1.240 in Lflange-bot=Lfb= Lbottom - 2*r*-2*t = 2.260 in Cbottom=Cb= 2*Lc/(Lfb+2*Lc) = 0.111 Fy-bottom=Fyb= Cb*Fyc + (1-Cb)*Fyf = 57.61 ksi Fya= (Fya-top)*(Fyb/Fya-bottom) = 29.68 ksi if F= 0.95 Then F*Mn=F*Fya*Sx= 19.56 in-k fi Structural Engineering & Desi9n Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596,7186 By: Bob S Project: Biamp Systems Project#: 22-0124-7 BEAM Configuration: TYPE A SELECTIVE RACK RMI Section 5.2, PT II Section Beam= SpaceRak SB406M 4 In x 0.06 in Ix=Ib= 1.471 in^4 2.50 In Sx= 0.694 in^3 • t= 0.060 in E= 29500 ksi .1.63 In Fy=Fyv= 55 ksi F= 300.0 _ Fu=Fuv= 65 ksi L= 96 in — f Fya= 59.0 ksi Beam Level= 1 1.6z51n P=Product Load= 4,000 lb/pair D=Dead Load= 75 lb/pair 4.000In _______________ 0.060 In 1. Check Bending Stress Allowable Loads 4— Mcenter-F Mn= W*L*W*Rm/8 W=LRFD Load Factor= 1.2*D + 1.4*P+1.4*(0.125)*P RINI2.2,item 8 FOR DL=2% of PL, W= 1.599 I l l l l l l 11111111111111111111111111111111111111 Rm= 1 - [(2*F*L)/(6*E*Ib + 3*F*L)] 1■ li 1 - (2*300*96 in)/[(6*29500 ksi*1.471 in^3)+(3*300*96 in)] = 0.834 _ if F. 0.95 Prod.,�e Then F*Mn=F*Fya*Sx= 38,88 in-k Thus, allowable load >_ per beam pair=W= F*Mn*8*(# of beams)/(L*Rm*W) Beam = 38.88 in-k * 8 * 2/(96in * 0.834 * 1.599) Length = 4,860 lb/pair allowable load based on bending stress Mend= W*L*(1-Rm)/8 = (4860 lb/2) * 96 in * (1-0.834)/8 = 4,841 in-lb @ 4860 lb max allowable load = 3,984 in-lb @ 4000 lb imposed product load 2. Check Deflection Stress Allowable Loads Dmax= Dss*Rd Rd= 1 - (4*F*L)/(5*F*L + 10*E*Ib) Allowable Deflection= L/180 = 1 - (4*300*96 in)/[(5*300*96 in)+(10*29500 ksi*1.471 in^4)] = 0.533 in = 0.801 in Deflection at imposed Load= 0.439 in if Dmax= L/180 Based on L/180 Deflection Criteria and Dss= 5*W*L^3/(384*E*Ib) L/180= 5*W*L^3*Rd/(384*E*Ib*# of beams) solving for W yields, W= 384*E*I*2/(180*5*L^2*Rd) = 384*1.471 in^4*2/[180*5*(96 in)^2*0.801) = 5,016 lb/pair allowable load based on deflection limits Thus, based on the least capacity of item 1 and 2 above: Allowable load= 4,860 lb/pair Imposed Product Load= 4,000 lb/pair I Beam Stress= 0.82 Beam at Level 1 r 2- Structural Engineering & Design Inc. 1815 Wright Ave I a Verne, CA 91750 Tel' 909.596_1351 Fax: 909_596.7186 By: Bob S Project: Biamp Systems Project#: 22-0124-7 3 Pin Beam to Column Connection TYPE A SELECTIVE RACK I he beam end moments shown herein show the result or the maximum induced tixed end monents form seismic + static loads and the code mandated minimum value of 1.5%(DL+PL) Inir P1 . Mconn max= (Mseismic + Mend-fixity) 0.70*Rho = 14,519 in-lb Load at level 1 C 1.i rho= 1i;0000'; e P2 2" C P3 i \ 1/2" ` 1/2" Connector Type= 3 Pin Shear Capacity of Pin Pin Diam= 0.44 In Fy= 55,000 psi Ashear= (0.438 in)^2 * Pi/4 = 0.1507 In^2 Pshear= 0.4 * Fy * Ashear = 0.4 * 55000 psi * 0.15071n^2 = 3,315 lb Bearing Capacity of Pin tcol= 0.090 in Fu= 65,000 psi Omega= 2.22 a= 2.22 Pbearing= alpha * Fu * diam * tcol/Omega = 2.22 * 65000 psi * 0.438 In * 0.09 in/2.22 = 2,562 lb < 3315 lb Moment Capacity of Bracket Edge Distance=E= 1.00 in Pin Spacing= 2.0 in Fy= 55,000 psi C= P1+P2+P3 tclip= 0.18 in Sclip= 0.127 in^3 = P1+P1*(2.574.5")+P1*(0.5"/4.5") = 1.667 * P1 Mcap= Sclip * Fbending C*d= Mcap = 1.667 d= E/2 = 0.127in^3 * 0.66 * Fy = 0.50 in = 4,610 in-lb Pclip= Mcap/(1.667 * d) = 4610.1 in-lb/(1.667 * 0.5 in) Thus, P1= 2,562 lb = 5,531 lb Mconn-allow= [P1*4.5"+P1*(2.5"/4.5")*2.5"+P1*(0.5"/4.5")*0.5"] = 2562 LB*[4.5"+(2.574.5")*2.5"+ (0.5"/4.5")*0.51 = 15,230 in-lb > Mconn max, OK type A select-Biamp.xls Page I of I t 1/26/2022 Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596,1351 Fax: 909.596.7186 By: Bob S Project: Biamp Systems Project#: 22-0124-7 Transverse Brace Configuration: TYPE A SELECTIVE RACK Section Properties Diagonal Member= Sperack 1-1/2x1-1/4x14ga Horizontal Member= Sperack 1-1/2x1-1/4x14ga Area= 0.292 inA2 1.500 rn Area= 0,292 inA2 r min= 0.430 in r min= 0.430 in 1*. 1.500 in Fy= 55,000 psi irrawsmatrurimusi —ri: Fy= 55,000 psi K= 1.0 1 1.250 m K= 1.0 ippr=ss aural S2C= 1.92 0.075 inI 1.250 in 0.075 InI 1 1 Frame Dimensions Bottom Panel Height=H= 54.0 in Clear Depth=D-B*2= 38.0 in Frame Depth=D= 44.0 In X Brace= NO Column Width=B= 3.0 in rho= 1,00 Diagonal Member ----► 0 Load Case 6: :(1+121(l Sd .85+0.14Sds)*B*P+[0.7*rho*E]<= 1.0, ASD Method 14 0 ----01 Vtransverse= 1,830 lb vb 1111111111.1 Vb=Vtransv*O.7*rho= 1830 lb * 0.7 * 1 (kl/r)= (k * Ldiag)/r min �— = 1,281 lb = (1 x 61.2 in /0.43 in ) Ldiag= [(D-B*2)^2 + (H-6")^2]^1/2 = 142.3 in Ldiag = 61.2 in Fe= pi^2*E/(kl/r)A2 H Pmax= V*{Ldiag/D} * 0.75 = 14,378 psi 1 Pmax = 1,336Ib axial load on diagonal brace member Since Fe<Fy/2, 3"tYP 111.111111111 Pn= AREA*Fn Fn= Fe B , = 0.292 inA2 * 14378 psi = 14,378 psi Typical panel = 4,198 lb cnflauratfon Pallow= Pn/Q Check End Weld = 4198 lb /1.92 Lweld= 3.0 in = 2,187 lb Fu= 65 ksi tmin= 0.075 in Pn/Pallow= 0.61 <= 1.0 OK Weld Capacity= 0.75 * tmin * L * Fu/2.5 = 4,388 lb OK Horizontal brace Vb=Vtransv*0.7*rho= 1,281 lb (kl/r)= (k * Lhoriz)/r min Fe= pi^2*E/(kl/r)^2 Fy/2= 27,500 psi = (1 x 44 In) /0.43 in = 27,821 psi = 102.3 in Since Fe>Fy/2, Fn=Fy*(1-fy/4fe) Pn= AREA*Fn Pallow= Pn/S2c = 27,817 psi = 0.292in^2*27817 psi = 8123 lb/1.92 = 8,123 lb = 4,231 lb Pn/Pallow= 0.30 <= 1.0 OK . 'i type A select-t3iamp.xla Page r b of ( .,— !/26/2022 ;i Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909.596,1351 Fax; 909.596.7186 By: Bob S Project: Biamp Systems Project#: 22-0124-7 Single Row Frame Overturning Configuration: TYPE A SELECTIVE RACK Loads Critical Load case(s): A 1) RMI Sec 2.2, item 7: (0.9-0.2Sds)D + (0.9-0.20Sds)*B*Papp - E*rho hp Sds= 0.6645 v Vtrans=V=E=Qe= 1,830 lb (0.9-0.2Sds)= 0.7671 .s DEAD LOAD PER UPRIGHT=D= 300 lb (0.9-0.2Sds)= 0.7671 PRODUCT LOAD PER UPRIGHT=P= 16,000 lb B= 1)1'* Papp=P*0.67= 10,720 lb rho= 1.0000 Wst LC1=Wst1=(0.7671*D + 0.7671*Papp*1)= 8,453 lb Frame Depth=Df= 44.0 in T Product Load Top Level, Ptop= 4,000 lb Htop-Ivl=H 240.0 in I DL/Lvl= 75 lb # Levels= 4 Seismic Ovt based on E, E(Fi*hi)= 373,320 in-lb # Anchors/Base= 2 height/depth ratio= 5.5 in hp= 48.0 in SIDE ELEVATION A) Fully Loaded Rack h=H+hp/2= 264.0 in Load case 1: Movt= E(Fi*hl)*E*rho Mst= Wst1 * Df/2 T= (Movt-Mst)/Df = 373,320 in-lb = 8453 lb * 44 in/2 = (373320 in-lb - 185966 in-lb)/44 In = 185,966 in-lb = 4,258 lb Net Uplift per Column Net Seismic Uplift= 4,258 lb B)Top Level Loaded Only Load case 1: 0 V1=Vtop= Cs * Ip * Ptop >= 350 lb for H/D >6.0 Movt= [V1*h + V2 * H/2]*0.7*rho = 0.1661 * 4000 lb = 126,967 in-lb = 664 lb T= (Movt-Mst)/Df V1eff= 664 lb Critical Level= 4 = (126967 in-lb - 72568 in-lb)/44 in V2=VDL= Cs*Ip*D Cs*Ip= 0.1661 = 1,236 lb Net Uplift per Column = 50 lb Mst= (0.7671*D + 0.7671*Ptop*1) * 44 in/2 = 72,568 in-lb Net Seismic Uplift= 1,236 lb Anchor Check(2) 0.5" x 3.25" Embed HILTI KWIKBOLT TZ anchor(s) per base plate. Special inspection is required per ESR 1917. Pullout Capacity=Tcap= 2,250 lb L.A. City Jurisdiction? NO Tcap*Phi= 2,250 lb Shear Capacity=Vcap= 2,517 lb Phl= 1 Vcap*Phi= 2,517 lb Fully Loaded: (2129 Ib/2250 Ib)^1 + (457 lb/2517 Ib)^1 = 1.13 <= 1.2 OK Top Level Loaded: (618 lb/2250 Ib)^1 + (166 Ib/2517 Ib)^1 = 0.34 <= 1.2 OK type A select-8iamp,xls Page C l' of I S .I/26/2022 Structural Engineering & Design Inc. 1815 Wriaht Ave La Verne. CA 91750 Tel; 909.596.1351 Fax: 909.596.7186 By: Bob S Project: BiampSystems Y Project#; 22-0124-7 Base Plate Configuration: TYPE A SELECTIVE RACK Section a — ► P Baseplate= 8x5x0.375 I.4 Eff Width=W = 6.75 in a = 2.38 in n Mb Eff Depth=D = 5.00 in Anchor c.c. =2*a=d = 4.75 in a iummommummil Column Width=b = 3.00 in N=# Anchor/Base= 2 �0 b oi Column Depth=dc = 3.00 in Fy36 000psi = W L = 1.88 in Plate Thickness=t = 0.375 in Downalsle Elevation Down Aisle Loads Load Case 5 :(1+0,105*Sds)D+ 0.75*/f(1,4+0,14Sds)*B*P+0.75*f0.7*rho*EJ<= 1.0, ASD Method COLUMN DL= 150 lb Axial=P= 1.0697725 * 150 lb + 0.75 * (1.49303 * 0.7 * 8000 lb) COLUMN PL= 8,000 lb = 6,431 lb Base Moment= 5,000 in-lb Mb= Base Moment*0.75*0.7*rho 1+0.105*Sds= 1.0698 = 5000 in-lb * 0.75*0.7*rho 1.4+0.14Sds 1.4930 = 2,625 In-lb Eflf B= K , T Axial Load P = 6,431 lb Mbase=Mb = 2,625 in-lb Effie Axial stress=fa = P/A = P/(D*W) M1= wLA2/2= fa*LA2/2 = 191 psi = 335 in-lb Moment Stress=fb = M/S = 6*Mb/[(D*BA2] Moment Stress=fb2 = 2 * fb * L/W = 69.1 psi = 38.4 psi Moment Stress=fbl = fb-fb2 M2= fb1*LA2)/2 F = 30,7 psi = 54 in-lb M3 = (1/2)*fb2*L*(2/3)*L = (1/3)*fb2*LA2 Mtotal = M1+M2+M3 = 45 in-lb = 434 In-lb/in S-plate = (1)(tA2)/6 Fb = 0.75*Fy = 0.023 inA3/in = 27,000 psi fb/Fb = Mtotal/[(S-plate)(Fb)] F'p= 0.7*F'c = 0.69 OK = 2,800 psi OK Tanchor = (Mb-(PLapp*0.75*0.46)(a))/[(d)*N/2] Tallow= 2,250 lb OK = -3,674 lb No Tension Cross Aisle Loads Critical load case RMI Sec 21,Item 4;(1+0,11Sds)Dt+(I+O.i4SOS)PL""0.75+EL*0,75c=1,0,,ASA Method Check uplift load on Baseplate Check uplift forces on baseplate with 2 or more anchors per RMI 7.2,2, Pstatic= 6,431 lb en the base plate configuration consists of two anchor bolts located on either side if the column and a net uplift force exists,the minimum base plate thickness Movt*0.75*0.7*rho= 195,993 in-lb Pseismic= Movt/Frame Depth hail be determined based on a design bending moment in the plate equal Frame Depth= 44.0 in = 4,454 lb to the uplift force on one anchor times 1/2 the distance from P=Pstatic+Pseismic=- 10,886 lb he centerline of the anchor to the nearest edge of the rack column" b =Column Depth= 3.00 in T c * L =Base Plate Depth-Col Depth= 1.88 in Ta Mu a ..��Irltll ij- fa = P/A = P/(D*W) M= wLA2/2= fa*LA2/2 I b I r�-I = 323 psi = 567 in-lb/in Elevation Uplift per Column= 4,258 lb Sbase/in = (1)(tA2)/6 Fbase = 0.75*Fy Qty Anchor per BP= 2 = 0.023 inA3/in = 27,000 psi Net Tension per anchor=Ta= 2,129 lb c= 1.88 in fb/Fb = M/[(S-piate)(Fb)] Mu=Moment on Baseplate due to uplift= Ta*c/2 0.90 OK = 1,996 In-lb Splate= 0.117 inA3 fb Fb *0.75= 0,473 OK type A select-Biamp,xls Page I a"'of (1 l/2G/2022 i Structural a� Engineering & Design Inc. 1$15 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596,7186 By: Bob S Project: Biamp Systems Project#: 22-0124-7 Slab on Grade Configuration: TYPE A SELECTIVE RACK 1 P f slab a "`- a ; Concrete � b e fc= 4,000 psi slab t t ,r -:` I • • tslab=t= 5A in ' .�- i Cross teff= 5.0 in ���+Ili���lill�����I�1����1l��I���IiIIIlliIlillill`��lli���ll111111 r^ -----c ----' ':Aisle pWr '- x -'I�1�- yc `� I `: Soil. N 1r.�, " r, s B ;a 4 L 4 fsoil= 1,250 psf Down Aisle Movt= 261,324 in-lb SLAB ELEVATION Frame depth= 44.0 in Baseplate Plan View Sds= 0.665 Base Plate 0.2*Sds= 0.133 Effec.Baseplate width=B= 6.75 in width=a= 3.00 in ay, ,; f fw-) 0.4 00 Effec, Baseplate Depth=D= 5.00 in depth=b= 3.00 in p=B/D= 1.350 midway dist face of column to edge of plate=c= 4.88 in F'c^0.5= 63.20 psi Column Loads midway dist face of column to edge of plate=e= 4.00 in DEAD LOAD=D= 150 lb per column Load Case 1) (1.2+0.2Sds)D + (1.2+0.2Sds)*B*P+ rho*E RMI SEC 2.2 EQTN 5 unfactored ASV load = 1.3329 * 150 lb + 1.3329 * 0.7 * 8000 lb + 1 * 5939 lb PRODUCT LOAD=P= 8,000 lb per column = 13,603 lb unfactoredASl7load Load Case 2) (0.9-0,2Sds)D + (0,9-0.2Sds)*B*Papp + rho*E RMI SEC 2.2 EQTN 7 Papp= 5,360 lb per column = 0.7671 * 150 lb + 0.7671 * 0.7 * 5360 lb + 1 * 5939 lb P-seismic=E= (Movt/Frame depth) = 8,932 lb = 5,939 lb per column Load Case 3) 1,2*D + 1.4*P RMI SEC 2.2 EQTN 1,2 unfactored limit State load = 1.2*150 lb + 1.4*8000 lb 6= r = 11,380 lb rho= .,1 O0t} 5 ` Load Case 4) 1.2*D + 1,0*P + 1.0E AC1318.11 Sec 9,2.1,Eqr 9.5 Sds= 0.6645 = 14,119 lb 1.2 + 0.2*Sds= 1.3329 Effective Column Load=Pu= 14,119 lb per column 0. 9 - 0,20Sds= 0.7671 Puncture Apunct= [(c+t)+(e+t)]*2*t = 188.75 in^2 Fpunctl= [(4/3 + 8/(3*p)] *a,*(F'c^0,5) fv/Fv= Pu/(Apunct*Fpunct) = 125.5 psi = 0.742 < 1 OK Fpunct2= 2.66 * a, * (F'c^0.5) = 100.9 psi Fpunct eff= 100.9 psi Slab Bending Pse=DL+PL+E= 14,119 lb Asoil= (Pse*144)/(fsoli) L= (Asoil)^0.5 y= (c*e)^0.5 + 2*t = 1,627 in^2 = 4034 in = 14.4 in x= (L-y)/2 M= w*x^2/2 S-slab= 1*teff^2/6 = 13,0 in = (fsoil*x^2)/(144*2) = 4.17 inA3 Fb= 5*(phi)*(fc)^0.5 = 729.0 in-lb fb/Fb= M/(S-slab*Fb) = 189.74 psi = 0.922 < 1, OK , • type A select$rarnp.xls Page /4 of / .( 1/26/2022 , L Structural g & DesignEn ineerin Inc. 9 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Bob S Project: Biamp Systems Project#: 22-0124-7 Configuration &Summary:TYPE C SELECTIVE RACK N **RACK COLUMN REACTIONS 42" ASD LOADS AXIAL DL= 75/b 1 d0" AXIAL LL= 4,000/b 54" SEISMIC AXIAL Ps=+/- 3,965/b BASE MOMEIVT= 5,000 in lb 240" ,,, 240" 54" 100" 36" 36" `. N I N 96" 44" 4 Seismic Criteria # Bm Lvls Frame Depth Frame Height # Diagonals Beam Length Frame Type Ss=0.863, Fa=1.155 2 44 in 240.0 in 5 96 in Single Row Component Description STRESS Column Fy=55 ksi SPCRK FH-25/3x3x13ga P=4075 lb, M=17213 in-lb 0.95-OK Column & Backer None None None N/A Beam Fy=55 ksi SpaceRak SB406M 4 in x 0.06 In Lu=96 in Capacity: 4860 lb/pr 0.82-OK Beam Connector Fy=55 ksl Lvl 1: 3 pin OK Mconn=11485 in-lb Mcap=15230 in-lb 0.75-OK Brace-Horizontal Fy=55 ksi Sperack 1-1/2x1-1/4x14ga 0.15-OK Brace-Diagonal Fy=55 ksi Sperack 1-1/2x1-1/4x14ga 0.31-OK Base Plate Fy=36 ksl 8x5x0.375 Fixity= 5000 in-lb 0.44-OK Anchor 2 per Base 0.5"x 3.25" Embed HILTI KWIKBOLT TZ ESR 1917 Inspection Reqd (Net Seismic Upllft=1852 lb) 0.467-OK Slab &Soil 5" thk x 4000 psi slab on grade. 1250 psf Soil Bearing Pressure 0.39-OK Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg Brace Transv Longit. _ Axial Moment Moment Connector 1 4,000 lb 100.0 in 36.0 in 305 lb 153 lb 4,075 lb 17,213 "# 11,485 "# 3 pin OK 2 4,000 lb 100.0 in 36.0 in 610 lb 305 lb 2,038 lb 7,633 "# 5,460 "# 3 pin OK 54.0 In 54.0 in 42.0 in **Load defined as product weight per pair of beams Total: 915 lb 458 lb Notes Slab governs type Cselect-Biamp.xls Page /e of (1— 1/24/2022 Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Bob S Project: Biamp Systems Project#: 22-0124-7 Configuration &Summary: TYPE T SELECTIVE RACK r — **RACK COLUMN REACTIONS 60" 42" AO LOADS tAXIAL DL= 150/b t 54" AXIAL LL= 7,000/b SEISMIC AXIAL Ps=+/- 7,679/b 60" 240" I 240" BASE MOMENT= 5,000 in-lb 54" 60" �� `I 36" 60" 36" 7 -'f 108" .-fr .L 44" Seismic Criteria # Bm Lvls Frame Depth Frame Height # Diagonals Beam Length Frame Type Ss=0.863, Fa=1.155 4 44 in . 240.0 in 5 108 in Single Row Component Description STRESS Column Fy=55 ksi SPCRK FH-25/3x3x13ga P=7150 Ib, M=17943 in-lb 0.78-OK Column & Backer None None None N/A Beam Fy=55 ksi SpaceRak 513406M 4 in x 0.06 in Lu=108 in Capacity: 4055 lb/pr 0.99-OK Beam Connector Fy=55 ksi Lvl 2: 3 pin OK Mconn=10528 in-lb Mcap=15230 in-lb 0.69-OK Brace-Horizontal Fy=55 ksi Sperack 1-1/2x1-1/4x14ga 0.27-OK Brace-Diagonal Fy=55 ksi Sperack 1-1/2x1-1/4x14ga 0.54-OK Base Plate Fy=36 ksi 8x5x0.375 Fixity= 5000 in-lb 0.8-OK Anchor 2 per Base 0.5"x 3.25" Embed HILTI KWIKBOLT TZ ESR 1917 Inspection Reqd (Net Seismic Uplift=3966 Ib) 0.867-OK Slab &Soil 5" thk x 4000 psi slab on grade. 1250 psf Soil Bearing Pressure 0.77-OK Level Load** Story Force Story Force Column Column ' Conn. Beam Per Level Beam Spcg Brace Transv Longit. Axial Moment Moment Connector 2 4,000 lb 60.0 in 36.0 in 338 lb 169 lb 6,113 lb 11,423 "# 10,528 "# 3 pin OK 3 4,000 lb 60.0 in 54.0 in 507 lb 254 lb 4,075 lb 8,885 "# 8,308 "# 3 pin OK 4 4,000 lb 60.0 in 54.0 in 676 lb 339 lb 2,038 lb 5,078 "# 5,198 "# 3 pin OK 42.0 In ** Load defined as product weight per pair of beams Total: 1,608 lb 805 lb Notes Interior Tunnel type T select-Blamp.xis Page (5 of / (-- )/25/2022