Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Specifications
RECEIVED OFFICE COPY OCT 7 202.1 CITY OF TIGARD BUILDING DIVISION alI202/-oO27 Z MIKES DRIVE-IN - TIGARD 11634 SW Pacific Highway Tigard, OR 97223 z STRUCTURAL CALCULATIONS VLMK Project Number:20210460 Scott Edwards Architecture 2525 E Burnside St Portland, OR 97214 i 10/04/21 ,0R VCTVfq S ��' Ep PROFest, cD 4,G t t fF 1O {f It I liti r ., 0 KP EXPIR. : 6 0-2021 Prepared By: Emma Olds,EIT October 4, 2021 ENGINEEEctNG + DESIGN 3933 S Kelly Avenue Portland,OR 97239 tel:503.222.4453 VLMK.COM f • Structural Calculations:Mikes Drive-In-Tigard DC-1 Project: Mike's Drive-In -Tigard Project Number: 20210460 Project Address: 11634 SW Pacific Highway Document: Structural Calculations for Tigard, OR 97223 Building Permit TABLE OF CONTENTS Design Outline and Criteria DC-1 thru DC-4 Canopy Calculations C-1 thru C-12 Interior Tenant Item Calculations T-1 thru T-18 Mechanical Support Calculations M-1 thru M-3 Reference Documents R-1 thru R-6 DESCRIPTION OF PROJECT This 'Mike's Drive-In - Tigard' consists preparing structural drawings and their associated calculations for the following items in the existing building located at 11634 SW Pacific Highway, Tigard, OR 97223. • Addition of canopy • Shortening of existing interior masonry shear wall • Removal of interior wood post • Misc. wall infills and openings • New Kitchen hood support ***LIMITATIONS*** VLMK Engineering + Design was retained in a limited capacity for this project. No responsibility and/or liability is assumed by, nor is any to be assigned to, VLMK Engineering + Design for items beyond that shown in this Structural Calculation Package. G1cad2021\2021046Kalculations\20210460 DC.docx . Structural Calculations:Mikes Drive-In-Tigard DC-2 CODES 2019 Oregon Structural Specialty Code (Based on the 2018 International Building Code) DESIGN LOADS Live Loads Roof Snow Load Flat Roof Snow Load, Pr 25 psf Snow Exposure Factor, Ce 1 .0 Snow Load Importance Factor, Is 1 .0 Thermal Factor, Ct 1 .0 Snow Drift As Required Dead Loads Existing Roof Total Roof Load 15.0 psf Canopy Roof Roofing (new and future) 4.0 psf Insulation 1 .5 psf Sheathing (5/8" plywood) 1 .8 psf Joists 3.0 psf Beams 1 .0 psf Mechanical and Electrical 1 .5 psf Miscellaneous 2.2 psf Total Roof Load 15.0 psf Additional Loads Roof Mounted Mechanical Units As Noted Wall Weights 8" CMU Wall, Solid Grouted 78 psf 6" CMU Wall, Solid Grouted 58 psf Wood-Stud Exterior Walls 15 psf Wind Basic Design Wind Speed, V (3-sec gust) 96 mph Nominal Design Wind Speed, Vasd 76 mph Risk Category II Wind Exposure B Internal Pressure Coefficient GCpi = +/- 0.18 Wcad2021\20210464alculationq0210460 DC.docx • Structural Calculations.Mike's Drive-In-Tigard DC- Seismic Location Latitude 45.4383462 Longitude -122.7537026 Seismic Importance Factor, Ie 1 .0 Risk Category II Mapped Spectral Response Accelerations Ss = 0.868 Si = 0.395 Site Class D Spectral Response Coefficients Sds = 0.695 Sd1 = 0.50 Seismic Design Category D Basic Seismic Force Resisting System(s) Intermediate Reinforced Masonry Shear Walls Seismic Response Coefficient(s) Cs = 0.139 Response Modification Factor R = 3.5 Overstrength Factor S2o = 2.5 Deflection Amplification Factor Cd = 2.25 Canopy Seismic Force Resisting System(s) Steel Ordinary Cantilever Column Systems Seismic Response Coefficient(s) Cs = 0.556 Response Modification Factor R = 1 .25 Overstrength Factor S2a = 1 .25 Deflection Amplification Factor Cd = 1 .25 Analysis Procedure Used Equivalent Static Component Anchorage Factors aP RP Ip S2o HVAC Equip 2.5 6.0 1 .0 2.0 SOILS Allowable Soil Bearing Pressure 1 ,500 psf Passive Earth Pressure 250 pcf Coefficient of Friction 0.3 GN1cad2021\20210460'Calculations\20210460 DC.docx 8/3i/2021 ATC Hazards by Location • OTC Hazards by Location DC-4 Search Information V Address: 11634 SW Pacific Hwy,Tigard,OR 97223, USA VAnr.nilver 233 ft Coordinates: 45.4383462,-122.7537026 kab I and 111 Hillsboro.ro. o �, a Gresharn Elevation: 233 ft Bo ve on Timestamp: 2021-08-31 T17:30:56.361 Z M1. Nation, Hazard Type: Seismic Reference ASCE7-16 Go` 'gieMap data©2021 Google Document: Risk Category: II Site Class: D-default Basic Parameters Name Value Description SS 0.868 MCER ground motion (period=0.2s) Si 0.395 MCER ground motion (period=1.0s) SMS 1.042 Site-modified spectral acceleration value SM1 *null Site-modified spectral acceleration value SDS 0.695 Numeric seismic design value at 0.2s SA SD1 *null Numeric seismic design value at 1.0s SA * So, = 2/3 SM, = 0.5 (EQ 11.4-4) SM, = FvS, = 0.75 (EQ 11.4-2) F,= 1.9 (TABLE 11.4-2) The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design. Disclaimer Hazard loads are provided by the U.S.Geological Survey Seismic Design Web Services. While the information presented on this website is believed to be correct,ATC and its sponsors and contributors assume no responsibility or liability for its accuracy.The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals.ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report. V L M K Project: MDI-TIGARD Job#: 20210460 By: ERO Date. 09/21 Sheet#: C-1 ENGINEERING+DESIGN NEW CANOPY DESIGN LOADING DLCANopy:=15 psf SL:=25 psf DLWALL:=15 psf Cs=0.556 SEISMIC COEFFICIENT FOR CANOPY, SEE FOLLOWING Va.=Cs•((DLcANopy•300 ft2)+(DLwALL•5 ft•49.67 ft))=4.57 kip BASE SHEAR OF CANOPY (SEISMIC) WLpARA:=52.4 psf WIND LOADING ON PARAPET VwL:=(WL pARA)•(5 ft)•(17.417 ft)=4.56 kip BASE SHEAR OF CANOPY (WIND) 0.7 V a=3.2 kip 0.6 Vim.=2.74 kip SEISMIC LOAD CONTROLS LATERAL DESIGN PARAPET H:=1.25 ft+in+2.875 ft TRIB:=2 ft WWL:=WLpARA•TR1B=104.8 plf USE 2x4 STUDS AT 24"O.C. JOIST L:=11.83 ft+4.83 ft TRIB:=2 ft WDL:=DLcANopy•TRIB=30 plf wsL:=SL•TRIB=50 plf USE 2x10 JOISTS AT 24"O.C. MAIN BEEIM LNORTH:=14.917 ft+6.583 ft TR/B:=17.417 ft LsouTH:=19.167 ft+8 ft WDL:=DLcANopy•TRIB=261.26 plf MAX DEAD LOAD WSL:=SL.TRIB=435.43 plf MAX SNOW LOAD USE 3 1/8 x 16 1/2 GLB SECONDARY BEAMS LNoRTH:=14.917 ft+6.583 ft TR/B=17.417 ft LsouTH:=19.167 ft+8 ft wDL:=DLcANopy•TRIB=261.26 plf MAX DEAD LOAD wsL:=SL•TRIB=435.43 plf MAX SNOW LOAD USE 3 1/8 x 10 1/2 GLB COLUMN flax=10 ft PvERT:=3.35 kip+5.583 kip=8.93 kip MAX REACTION FROM BEAM (DL+SL) Pt foRiz:=VEL—3=1.52 kip MAX LATERAL FORCE USE A 5"DIA X-STRONG PIPE WITH A 30"DIA x 5'-6"DEEP POLE FOOTING 3933 S Key Avenue Perked, OR 97239 tel:503.222.4453 tax.503 248 9263 www corn f w� V V1j L 1V1 K Project: MDI-Tigard lob, 20210460 By: ERO Date: 10/21 Sheet#: C-2 €NGINEEeiNG + OE51GN v2.01-Software Copyright 2020 VLMK Consulting Engineers. All Rights Reserved. Seismic Design Coefficients - Canopy Based on the 2018 International Building Code and ASCE 7-16 DESIGN INPUT Sips = 0.695 g design spectral response acceleration (short period) Sol = 0.5 g design spectral response acceleration (lsec period) Si = 0.395 g mapped M.C.E. spectral response acceleration R = 1.3 response modification coefficient [Table 12.2-1] Ie = 1.0 importance factor [Table 1.5-2] hn = 10 height from base to highest level of structure x = 0.75 approximate period parameter [Table 12.8-2] Ct = 0.02 approximate period parameter [Table 12.8-2] TL = 16 sec long-period transition period [Figures 22-14 thru 22-17] L1 = 32.5 ft span of flexible diaphragm supporting walls, for rigid diaphragm enter '0' ANAYLSIS Approximate Fundamental Period: Ta = 0.11 Ta = Cth„x [Equation 12.8-7] Seismic Response Coefficient: Cs = 0.556 Governs Cs = Sps /(R/Ie) [Equation 12.8-2] Cs <_ 3.557 Cs <_ Sat /T(R/I e) for T<_ TL [Equation 12.8-3] C5 <_ NA Cs <_ SDlTL / T2(R/Ie.) for T> TL [Equation 12.8-4] Cs >_ 0.031 Cs >_ 0.044SDs1e >_ 0.01 [Equation 12.8-5] Cs >_ NA Cs >_ 0.5S1 /(R/Ie) forS1 >_ 0.6g [Equation 12.8-6] Base Shear: V = 0.556 *W (Ult) [Equation 12.8-1] 0.7*V = 0.389 *W (ASD) Out-of-Plane Wall Forces: Fp = 0.278 *W (Ult) Fp = 0.45DsIeWp >_ 0.10Wp [Section 12.11.1] 0.7*Fp = 0.195 *W (ASD) Wall Anchorage Forces: ka = 1.3 ka = 1.0 + Lf/100 <_ 2.0 [Equation 12.11-2] Fp = 0.368 *W (Ult) Fp = 0.4SDskaIeWp >_ 0.2kaIeWp [Equation 12.11-1] 0.7*Fp = 0.258 *W (ASD) . 1 VVLMK Project: MDI-Tigard Job# 20210460 By: ERO Date: 10/21 Sheet#:: C-3 ENGINEERING . 0ES1GN v4.01-Software Copyright 2020 VLMK Consulting Engineers. All Rights Reserved. Wind Loads On Parapets - Components & Cladding Based on the 2018 International Building Code and ASCE 7-16, Chapter 30, Part 6: Section 30.9 f-- + WALL ..r-. (-)EDGE ORWM CORNER ZONE (-)WALL MN NI (+)WALL PRESSURE - -',- ROOF PRESSURE PRESSURE N. PRESSURE i , hp /27/A,/, hp -,,',/ // /, i ,f',%',%/<''' //f%' / i' LOAD CASE A LOAD CASE B DESIGN INPUT hp = 15.0 ft Height of Parapet (Above ground, <_ 160 ft.) Vuit = 96 mph Ultimate Wind Speed 3-Second Gust [Figures 26.5-1A, B, & C] B Exposure Category [Section 26.7.3] zg = 100 ft Ground Elevation above sea level zg = 1200 ft Nominal Height of Atmospheric Boundary Layer [Table 26.11-1] a = 7.0 3-second Gust-Speed Power Law Coefficient [Table 26.11-1] K, = 0.575 Velocity Pressure Exposure Coefficient [Table 26.10-1] KZt = 1.00 Topographic Factor [Figure 26.8-1] Kd = 0.85 Wind Directionality Factor [Table 26.6-1] Ke = 1.00 Ground Elevation Factor [Table 26.9-1] Enclosed Enclosure Classification Based on the Porosity of the Parapet Envelope + GCp, = 0.18 (+) Internal Pressure Coefficient [Table 26.13-1] - GCp, = -0.18 (-) Internal Pressure Coefficient [Table 26.13-1] Load Case A: + GCp = 1.00 (+) Wall External Pressure Coefficient [Figure 30.3-1] - GCp = -3.20 (-) Roof External Pressure Coefficient [Figure 30.3-2 thru 30.3-6] Load Case B: + GCp = 1.00 (+) Wall External Pressure Coefficient [Figure 30.3-1] - GCi = -1.40 (-) Wall External Pressure Coefficient [Figure 30.3-1] ANALYSIS qp = 0.00256KZKztKdKeV2 [Equation 26.10-1] qp = 11.5 psf Velocity Pressure Evaluated at the Top of the Parapet p = gp(GCP - GCp,) [Equation 30.8-1] Load Case A Load Case B Pwindward = 13.6 psf Pwindward = 13.6 psf Pressure on Windward Surface Pleeward = -38.8 psf Pleeward = -18.1 psf Pressure on Leeward Surface Ptotal = 52.4 psf Ptotal = 31.7 psf Design Wind Pressure Design Wind Pressure, Putt = 52.4 psf Load Case A Controls (Ult., 1.0W) Project Title: Mike's Drive In-Tigard Engineer: E.Olds, EIT ' Project ID: 20210460 Project Descr: C-4 • Printed: 9 SEP 2021,10:42AM Wood Beam File:20210460.ec6 Software copyright ENERCALC,INC.1983-2020,Build:12.20,8.24 Lac.#:KW-06002728 VLMK CONSULTING ENGINEERS DESCRIPTION: Canopy Parapet Stud CODE REFERENCES Calculations per NDS 2018, IBC 2018, CBC 2019,ASCE 7-16 Load Combination Set :ASCE 7-16 Material Properties Analysis Method: Allowable Stress Design Fb+ 900.0 psi E:Modulus of Elasticity Load Combination ASCE 7-16 Fb- 900.0 psi Ebend-xx 1,600.0 ksi Fc-Prll 1,350.0 psi Eminbend-xx 580.0 ksi Wood Species : Douglas Fir-Larch Fc-Perp 625.0 psi Wood Grade : No.2 Fv 180.0 psi Ft 575.0 psi Density 31.210 pcf Beam Bracing : Beam is Fully Braced against lateral-torsional buckling W(0.1048Z__-- —� 2x4 2x4 2x4 Span= 1.250 ft Span=0.8750 ft , Span=2.875 ft Applied Loads Service loads entered.Load Factors will be applied for calculations. Loads on all spans... Uniform Load on ALL spans: W=0.05240 ksf, Tributary Width=2.0 ft DESIGN SUMMARY Desi•n OK Maximum Bending Stress Ratio = 0.471: 1 Maximum Shear Stress Ratio = 0.248 : 1 Section used for this span 2x4 Section used for this span 2x4 fb:Actual = 1,018.27psi fv:Actual = 71.52 psi Fb:Allowable = 2,160.00psi Fv:Allowable = 288.00 psi Load Combination +D+0.60W+H Load Combination +D+0.60W+H Location of maximum on span = 0.875ft Location of maximum on span = 0.588 ft Span#where maximum occurs = Span#2 Span#where maximum occurs = Span#2 Maximum Deflection r Max Downward Transient Deflection 0.258 in Ratio= 266>=240 Max Upward Transient Deflection -0.005 in Ratio= 2128>=240 Max Downward Total Deflection 0.155 in Ratio= 446>=180 Max Upward Total Deflection -0.003 in Ratio= 3547>=180 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Support 3 Support 4 Overall MINimum S Only Project Title: Mike's Drive In-Tigard Engineer: E. Olds, EIT • Project ID: 20210460 Project Descr: C-5 • Printed:,9 SEP 2021.10:44AM Wood BeamFile:20210460.ec6 Software copyright ENERCALC,INC.1983-2020,Build:12.20.8.24 Lic.#:KW-06002728 VLMK CONSULTING ENGINEERS DESCRIPTION: Canopy Joist CODE REFERENCES Calculations per NDS 2018, IBC 2018, CBC 2019,ASCE 7-16 Load Combination Set :ASCE 7-16 Material Properties Analysis Method: Allowable Stress Design Fb+ 900.0 psi E:Modulus of Elasticity Load Combination ASCE 7-16 Fb- 900.0 psi Ebend-xx 1,600.0 ksi Fc-PrIl 1,350.0 psi Eminbend-xx 580.0 ksi Wood Species : Douglas Fir-Larch Fc-Perp 625.0 psi Wood Grade : No.2 Fv 180.0 psi Ft 575.0 psi Density 31.210pcf Beam Bracing : Beam is Fully Braced against lateral-torsional buckling D{0.030)S{0.050) r 0 2x10 2x10 4 Span=4.830 ft Span= 11.830 ft 1 Applied Loads Service loads entered.Load Factors will be applied for calculations. Loads on all spans... Uniform Load on ALL spans: D=0.0150, S=0.0250 ksf, Tributary Width=2.0 ft DESIGN SUMMARY Desi+n OK Maximum Bending Stress Ratio = 0.479 1 Maximum Shear Stress Ratio = 0.258 : 1 Section used for this span 2x10 Section used for this span 2x10 fb:Actual = 545.16 psi fv: Actual = 53.40 psi Fb:Allowable = 1,138.50psi Fv:Allowable = 207.00 psi Load Combination +D+S+H Load Combination +D+S+H Location of maximum on span = 6.873ft Location of maximum on span = 4.830 ft Span#where maximum occurs = Span#2 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward Transient Deflection 0.085 in Ratio= 1676>=240 Max Upward Transient Deflection -0.023 in Ratio= 4968>=240 Max Downward Total Deflection 0.136 in Ratio= 1047>=180 Max Upward Total Deflection -0.037 in Ratio= 3104>=180 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Support 3 Overall MAXimum 0.587 0.246 Overall MINimum 0.587 0.246 D Only 0.352 0.148 S Only 0.587 0.246 Project Title: Mike's Drive In-Tigard Engineer: E. Olds, EIT Project ID: 20210460 Project Descr: C-6 Printed: 9 SEP 2021.10.47AM Wood Beam File:20210460.ec6 Software copyright ENERCALC,INC.1983-2020,Build:12.20.8.24 '' Ito.#:KW06002728 VLMK CONSULTING ENGINEERS DESCRIPTION: Main Beam CODE REFERENCES Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set :ASCE 7-16 Material Properties Analysis Method: Allowable Stress Design Fb+ 2,400.0 psi E:Modulus of Elasticity Load Combination ASCE 7-16 Fb- 1,850.0 psi Ebend-xx 1,800.0 ksi Fc-Prll 1,650.0 psi Eminbend-xx 950.0 ksi Wood Species : DF/DF Fc-Perp 650.0 psi Ebend-yy 1,600.0 ksi Wood Grade : 24F-V4 Fv 265.0 psi Eminbend-yy 850.0 ksi Ft 1,100.0 psi Density 31.210pcf Beam Bracing : Beam is Fully Braced against lateral-torsional buckling I j 3.125x16.5 Alt, Span=24 330 ft H Applied Loads Service loads entered.Load Factors will be applied for calculations. DESIGN SUMMARY Desi•n OK Maximum Bending Stress Ratio = 0.789 1 Maximum Shear Stress Ratio = 0.346 : 1 Section used for this span 3.125x16.5 Section used for this span 3.125x16.5 fb:Actual = 2,177.68psi fv:Actual = 105.44 psi Fb: Allowable = 2,760.00psi Fv:Allowable = 304.75 psi Load Combination +D+S+H Load Combination +D+S+H Location of maximum on span = 11.721 ft Location of maximum on span = 0.000 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward Transient Deflection 0.806 in Ratio= 362>=240 Max Upward Transient Deflection 0.000 in Ratio= 0<240 Max Downward Total Deflection 1.290 in Ratio= 226>=180 Max Upward Total Deflection 0.000 in Ratio= 0<180 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 2 440 2.297 Overall MINimum 2.440 2.297 D Only 1.464 1.378 S Only 2.440 2.297 Project Title: Mike's Drive In-Tigard Engineer: E.Olds, EIT Project ID: 20210460 Project Descr: C-7 Printed: 9 SEP 2021. 8:41AM Wood Beam File:20210460.ec6 Software copyright ENERCALC,INC.1983-2020,Build:12.20.8.24 Lic.#:KW-06002728 VLMK CONSULTING ENGINEERS DESCRIPTION: Northern Canopy GLB CODE REFERENCES Calculations per NDS 2018, IBC 2018, CBC 2019,ASCE 7-16 Load Combination Set :ASCE 7-16 Material Properties Analysis Method: Allowable Stress Design Fb+ 2,400.0 psi E:Modulus of Elasticity Load Combination ASCE 7-16 Fb- 2,400.0 psi Ebend-xx 1,800.0 ksi Fc-Prll 1,650.0 psi Eminbend-xx 950.0 ksi Wood Species : DF/DF Fc-Perp 650.0 psi Ebend-yy 1,600.0 ksi Wood Grade : 24F-V8 Fv 265.0 psi Eminbend-yy 850.0 ksi Ft 1,100.0 psi Density 31.210pcf Beam Bracing : Beam is Fully Braced against lateral-torsional buckling ..._.__-_ D(O.08873,0.0)S(0.1479,0.0) 3.125x10.5 3.125x10.5 Span= 12.917 ft Span= 7.0 ft Applied Loads Service loads entered.Load Factors will be applied for calculations. DESIGN SUMMARY Desi•n OK Maximum Bending Stress Ratio = 0.228 1 Maximum Shear Stress Ratio = 0.141 : 1 Section used for this span 3.125x10.5 Section used for this span 3.125x10.5 fb:Actual = 628.82psi fv:Actual = 43.00 psi Fb:Allowable = 2,760.00psi Fv:Allowable = 304.75 psi Load Combination +D+S+H Load Combination +D+S+H Location of maximum on span = 5.556ft Location of maximum on span = 0.000ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward Transient Deflection 0.099 in Ratio= 1558>=240 Max Upward Transient Deflection -0.120 in Ratio= 1398>=240 Max Downward Total Deflection 0.159 in Ratio= 973>=180 Max Upward Total Deflection -0.192 in Ratio= 874>=180 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Support 3 Overall MAXimum 0.713 0.846 Overall MINimum 0.713 0.846 D Only 0 428 0.508 S Only 0.713 0.846 Project Title: Mike's Drive In-Tigard Engineer: E. Olds, EIT Project ID: 20210460 Project Descr: C-8 Printed: 9 SEP 2021- 8 42AM Wood Beam File:20210460.ec6 Software copyright ENERCALC,INC.1983-2020,Build:12.20.8.24 Lic.#:KW.06002726 VLMK CONSULTING ENGINEERS DESCRIPTION: Southern Canopy GLB CODE REFERENCES Calculations per NDS 2018, IBC 2018, CBC 2019,ASCE 7-16 Load Combination Set :ASCE 7-16 Material Properties Analysis Method: Allowable Stress Design Fb+ 2,400.0 psi E:Modulus of Elasticity Load Combination ASCE 7-16 Fb- 2,400.0 psi Ebend-xx 1,800.0 ksi Fc-PrIl 1,650.0 psi Eminbend-xx 950.0 ksi Wood Species : DF/DF Fc-Perp 650.0 psi Ebend-yy 1,600.0 ksi Wood Grade :24F-V8 Fv 265.0 psi Eminbend-yy 850.0 ksi Ft 1,100.0 psi Density 31.210pcf Beam Bracing : Beam is Fully Braced against lateral-torsional buckling . --_ D(0.08873,0.0)S(0.1479,0.0) __- ._ _. Y 3.125x10.5 4} 3.125x10.5 Span 19.167 ft Span=8.0 ft Applied Loads Service loads entered.Load Factors will be applied for calculations. DESIGN SUMMARY Desi•n OK Maximum Bending Stress Ratio = 0.512 1 Maximum Shear Stress Ratio = 0.224 : 1 Section used for this span 3.125x10.5 Section used for this span 3.125x10.5 fb:Actual = 1,411.90psi fv:Actual = 68.40 psi Fb:Allowable = 2,760.00psi Fv:Allowable = 304.75 psi Load Combination +D+S+H Load Combination +D+S+H Location of maximum on span = 8.459ft Location of maximum on span = 0.000 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward Transient Deflection 0.507 in Ratio= 453>=240 Max Upward Transient Deflection -0.595 in Ratio= 322>=240 Max Downward Total Deflection 0.811 in Ratio= 283>=180 Max Upward Total Deflection -0.952 in Ratio= 200>=180 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Support 3 Overall MAXimum 1.060 0.949 Overall MINimum 1.060 0.949 D Only 0.636 0.569 S Only 1.060 0.949 _ ; Project Title: Mike's Drive In-Tigard Engineer: E. Olds, EIT Project ID: 20210460 Project Descr: C-9 Printed: 4 OCT 2021. 9:20AM Steel Column File:20210460.ec6 .Software copyright ENERCALC,INC.1983-2020,Build:12.20.8.24 Lic.#:KW-06002728 VLMK CONSULTING ENGINEERS DESCRIPTION: Post Code References Calculations per AISC 360-16, IBC 2018, CBC 2019,ASCE 7-16 Load Combinations Used:ASCE 7-16 General Information Steel Section Name: Pipe5 x-Strong Overall Column Height 10.0 ft Analysis Method: Allowable Strength Top&Bottom Fixity Top Free, Bottom Fixed Steel Stress Grade ,A53, Grade B, Fy=35 ksi, Carbon Brace condition for deflection(buckling)along columns: Fy:Steel Yield 35.0 ksi X-X(width)axis: E:Elastic Bending Modulus 29,000.0 ksi Unbraced Length for buckling ABOUT Y-Y Axis=10.0 ft,K=2.1 Y-Y(depth)axis: Unbraced Length for buckling ABOUT X-X Axis=10.0 ft,K=2.1 Applied Loads Service loads entered.Load Factors will be applied for calculations. Column self weight included:209.118 lbs*Dead Load Factor AXIAL LOADS... Beam Above:Axial Load at 10.0 ft,Xecc=1.0 in,D=3.350,S=5.583 k DESIGN SUMMARY Bending&Shear Check Results PASS Max.Axial+Bending Stress Ratio = 0.1435 :1 Maximum Load Reactions.. Load Combination +D+S+H Top along X-X 0.0 k Location of max.above base 1.342 ft Bottom along X-X 0.0 k At maximum location values are... Top along Y-Y 0.0 k Pa:Axial 9.142 k Bottom along Y-Y 0.0 k Pn/Omega:Allowable 46.336 k Ma-x:Applied 0.0 k-ft Maximum Load Deflections... Mn-x/Omega:Allowable 16.592 k-ft Along Y Y 0.0 in at 0.0 ft above base for load combination: Ma-y:Applied -0.7444 k-ft Mn-y/Omega:Allowable 16.592 k-ft Along X-X 0.1130 in at 10.0 ft above base for load combination:+D+S+H PASS Maximum Shear Stress Ratio= 0.0 : 1 Load Combination 0.0 Location of max.above base 0.0 ft At maximum location values are... Va:Applied 0.0 k Vn I Omega:Allowable 0.0 k Maximum Reactions Note:Only non-zero reactions are listed. Axial Reaction X-X Axis Reaction k Y-Y Axis Reaction Mx-End Moments k-ft My-End Moments Load Combination @ Base @ Base @ Top @ Base @ Top @ Base @ Top @ Base @ Top D Only 3.559 -0.279 S Only 5.583 -0.465 W Only Extreme Reactions Axial Reaction X-X Axis Reaction k Y-Y Axis Reaction Mx-End Moments k-ft My-End Moments Item Extreme Value @ Base @ Base @ Top @ Base @ Top @ Base @ Top @ Base @ Top Axial @ Base Maximum 5.583 -0.465 Minimum Reaction, X-X Axis Base Maximum 3.559 -0.279 Minimum 3.559 -0.279 Reaction, Y-Y Axis Base Maximum 3.559 -0.279 Minimum 3.559 -0.279 Reaction, X-X Axis Top Maximum 3.559 -0.279 Minimum 3.559 -0.279 Reaction, Y-Y Axis Top Maximum 3.559 -0.279 Minimum 3.559 -0.279 Moment, X-X Axis Base Maximum 3.559 -0.279 Minimum 3.559 -0.279 Moment, Y-Y Axis Base Maximum • Project Title: Mike's Drive In-Tigard Engineer: E. Olds, EIT • Project ID: 20210460 Project Descr: C-10 Printed. 4 OCT 2021. 9:20AM Steel Column File:20210460.ec6 Software copyright ENERCALC,INC.1983-2020,Build:12.20.8 24 Lie.#:KW-06002728 VLMK CONSULTING ENGINEERS DESCRIPTION: Post Extreme Reactions Axial Reaction X-X Axis Reaction k Y-Y Axis Reaction Mx-End Moments k-ft My-End Moments Item Extreme Value @ Base @ Base @ Top @ Base @ Top @ Base @ Top @ Base @ Top " Minimum 5.583 -0.465 Moment, X-X Axis Top Maximum 3.559 -0.279 Minimum 3.559 -0.279 Moment, Y-Y Axis Top Maximum 3.559 -0.279 Minimum 3.559 -0.279 Sketches E 9J3k E 933k +Y t{ f H1. (_o 1 +X r 5.56in . i Project Title: Mike's Drive In-Tigard Engineer: E. Olds, EIT • Project ID: 20210460 Project Descr: C-11 Printed:20 SEP 2021.10 43AMM? Pole FootingEmbedded in Soil :202102 Software copyright ENERCALC,INC.1983-2020,BuiId:12.0.8.24 20.8.24 Lie.#:KW-06002726 VLMK CONSULTING ENGINEERS DESCRIPTION: Canopy Post Footing Code References Calculations per IBC 2018 1807.3, CBC 2019,ASCE 7-16 Load Combinations Used :ASCE 7-16 General Information Pole Footing Shape Circular Pole Footing Diameter 30.0 in Calculate Min.Depth for Allowable Pressures No Lateral Restraint at Ground Surface Allow Passive 333.0 pcf Max Passive 1,500.0 psf Point Load Controlling Values Governing Load Combination: +D+0.70E+0.60H o Lateral Load 1.064 k o Moment 10.640 k-ft NO Ground Surface Restraint Pressures at 1/3 Depth Soil Surface No lateral restraint Actual 581.58 psf Allowable 583.92 psf f v 'Lb Minimum Required Depth 5.375 ft .M,. , . Footing Base Area 4.909 ft^2 Maximum Soil Pressure 1.820 ksf Applied Loads Lateral Concentrated Load (k) Lateral Distributed Loads (klf) Vertical Load (k) D:Dead Load k k/ft 3.350 k Lr:Roof Live k k/ft k L:Live k k/ft k. S:Snow k k/ft 5.583 k W:Wind k k/ft k E:Earthquake 1.520 k k/ft k H:Lateral Earth k k/ft k Load distance above TOP of Load above ground surface ground surface 10 0 ft ft BOTTOM of Load above ground surface ft Load Combination Results Forces @ Ground Surface Required Pressure at 1/3 Depth Sof increase Load Combination Loads-(k) Moments-(ft-k) Depth-(ft) Actual-(psf) Allow-(psf) Factor +D+H 0.000 0.000 0.13 0.0 0.0 1.000 +D+L+H 0.000 0.000 0.13 0.0 0.0 1.000 +D+Lr+H 0.000 0.000 0.13 0.0 0.0 1.000 +D+S+H 0.000 0.000 0.13 0.0 0.0 1.000 +D+0.750Lr+0.750L+H 0.000 0.000 0.13 0.0 0.0 1.000 +D+0.750L+0.7505+H 0.000 0.000 0.13 0.0 0.0 1.000 +D+0.60W+H 0.000 0.000 0.13 0.0 0.0 1.000 +D+0.750Lr+0.750L+0.450W+H 0.000 0.000 0.13 0.0 0.0 1.000 +D+0.750L+0.7505+0.450W+H 0.000 0.000 0.13 0.0 0.0 1.000 Project Title: Mike's Drive In-Tigard Engineer: E. Olds, EIT • Project ID: 20210460 Project Descr: C-12 • Printed:20 SEP 2021.10:43AM Pole FootingEmbedded in Soil 2020 Bud112.0.8.24 Software copyright ENERCALC,INC.1983-2020,Buiid:12.20.8.24 tic.#:KW-0600272$ VLMK CONSULTING ENGINEERS DESCRIPTION: Canopy Post Footing +0.60D+0.60W+0.60H 0.000 0.000 0.13 0.0 0.0 1.000 +D+0.70E+0.60H 1.064 10.640 5.38 581.6 583.9 1.000 +D+0.750L+0.7503+0.5250E+H 0.798 7.980 4.75 523.5 524.1 1.000 +0.600+0.70E+H 1.064 10.640 5.38 581.6 583.9 1.000 I VVLMK Project: MD I-TIGARD Jobu 20210460 By ERO Dote: 09/21 Sheet# T-1 ENGINEERING DESIGN REMOVAL OF INTERIOR POST LOADING DLRF=15 psf SL:=25 psf (N) BEAM L:=16.583 ft TR/13:=12.167 ft WDL:=(DLRF)•(TRIB)=182.5 plf WsL:=(SL)•(TRIB)=304.2 plf (DL.RF)•(10.167 ft)•(13.75 ft) PBM.OL'- 2 =1048.5 /bf at 4'-6" (SL)•(10.167 ft)•(13.75 ft) PBM.SL =1747.5 lbf at 41-6" 2 REMOVE 6x6 POST AND PROVIDE A NEW 5 1/8 x 13 1/2 GLES qh jio3 re/ Avenue Portland,OR 97739 tel. 503 222 4453 fax-503.248.9263 vvtvvcvlaik con Project Title: Mike's Drive In-Tigard Engineer: E. Olds, EIT Project ID: 20210460 Project Descr: T-2 • Printed:31 AUG 2021.11:02AM Wood Beam Software Software copyright ENERCALC,INC.1983-2020,Build:12.20.8.24 Lit.#i KW-06002728 VLMK CONSULTING ENGINEERS DESCRIPTION: (N)Interior Beam CODE REFERENCES Calculations per NDS 2018, IBC 2018, CBC 2019,ASCE 7-16 Load Combination Set :ASCE 7-16 Material Properties Analysis Method: Allowable Stress Design Fb+ 2,400.0 psi E:Modulus of Elasticity Load Combination ASCE 7-16 Fb- 1,850.0 psi Ebend-xx 1,800.0 ksi Fc-Prll 1,650.0 psi Eminbend-xx 950.0 ksi Wood Species : DF/DF Fc-Perp 650.0 psi Ebend-yy 1,600.0 ksi Wood Grade :24F-V4 Fv 265.0 psi Eminbend-yy 850.0 ksi Ft 1,100.0 psi Density 31.210pcf Beam Bracing : Beam is Fully Braced against lateral-torsional buckling D(1.048),S(1.747) 1 D(0.182505)S(0.304175) c t 5.125x13.5 �� rilk Span= 16.583 ft Applied Loads Service loads entered.Load Factors will be applied for calculations. Uniform Load: D=0.0150, S=0.0250 ksf, Tributary Width=12.167 ft,((E)Roof) Point Load: D=1.048, S=1.747 k @ 4.50 ft,((E)Beam) DESIGN SUMMARY Desi•n OK Maximum Bending Stress Ratio = 0.659 1 Maximum Shear Stress Ratio = 0.394 : 1 Section used for this span 5.125x13.5 Section used for this span 5.125x13.5 fb:Actual = 1,819.91 psi fv:Actual = 120.14 psi Fb:Allowable = 2,760.00psi Fv:Allowable = 304.75 psi Load Combination +D+S+H Load Combination +D+S+H Location of maximum on span = 6.718ft Location of maximum on span = 0.000 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward Transient Deflection 0.388 in Ratio= 513>=240 Max Upward Transient Deflection 0.000 in Ratio= 0<240 Max Downward Total Deflection 0.620 in Ratio= 320>=180 Max Upward Total Deflection 0.000 in Ratio= 0<180 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 3.795 2.996 Overall MINimum 3.795 2.996 D Only 2.277 1.798 S Only 3.795 2.996 H Only • VVLMK Project MD I-TIGARD Job# 20210460 By: ERO Date. 09/21 Sheet# T-3 ENGINEERING DESIGN REMOVAL OF 3'-0" OF CMU INTERIOR WALL LOADING DLRF:=15 psf DLSTOREFRONT:=15 psf DLcmu.6:=58 psf WEIGHT OF SOLID GROUTED 6" CMU WALL DLcmu.8:=78 psf WEIGHT OF SOLID GROUTED 8" CMU WALL WLWALL 16 psf Cs:=0.199 ASSUMED INTERMEDIATE MASONRY SHEAR WALL, SEE FOLLOWING SEISMIC SHEAR ALONG GRID E.3 TRIBWALL:= 10 ft+5 ft,_10 ft TRIBRF:=32.083 ft 2 fRF:=Cs•DLRF•TR/BRF=95.8 plf fcmu:=Cs•DLcmu.6•TRIBWALL=115.4 plf fsF'=Cs*DLSTOREFRONT•TRIBWALL-=29.9 plf (fRF+2 folu) (12.167 ft) VEL:=6.291 kip+ 2 =8.28 kip ==> 0.7 Va=5794.5 /bf SHEAR AT GRID E.3 WIND SHEAR ALONG GRID E.3 (WLwALL•TRIBWALL)•(12.167 ft+53.33 ft) Vw1.:= =2 5239.8 lbf ==> 0.6 Vok=3143.9 lbf SHEAR AT GRID E.3 SHEAR WALL CHECK SINCE Va> , SEISMIC CONTROLS AND VE.3:=0.7 Va=5794.5 /bf Va3 VE.3.ORIGINAL:= 18 =309 Of UNIT SHEAR IN THE WALL WITH ORIGINAL LENGTH .75 ft VE3 VE.3.NEW= 15.75 ft =367.9 Of UNIT SHEAR IN THE WALL WITH NEW LENGTH VE.3 NEW =1.2 > 1.1 THEREFORE ANALYSIS OF WALL IS REQUIRED, SEE FOLLOWING VE 3 ORIGINAL ADEQUATE TO REMOVE 3'-O"OF EXISTING INTERIOR SHEAR WALL ALONG GRID E.3 3933 S Kelly Avenue Portland,OR 97239 tel: 503122 4453 tax 503.248,9263 wwvv.v1mk,com VVLMK Project: MDI-Tigard Job* 20210460 By: ERO Date: 10/21 Sheet#: T-4 ENGINEERING > PES;GN v2.01-Software Copyright 2020 VLMK Consulting Engineers. All Rights Reserved. Seismic Design Coefficients - Building Based on the 2018 International Building Code and ASCE 7-16 DESIGN INPUT SDS = 0.695 g design spectral response acceleration (short period) Sp1 = 0.5 g design spectral response acceleration (lsec period) Si = 0.395 g mapped M.C.E. spectral response acceleration R = 3.5 response modification coefficient [Table 12.2-1] Ie = 1.0 importance factor [Table 1.5-2] hn = 15 height from base to highest level of structure x = 0.75 approximate period parameter [Table 12.8-2] Ct = 0.02 approximate period parameter [Table 12.8-2] TL = 16 sec long-period transition period [Figures 22-14 thru 22-17] Lt = 32.083 ft span of flexible diaphragm supporting walls, for rigid diaphragm enter '0' ANAYLSIS Approximate Fundamental Period: Ta = 0.15 Ta = C fh n" [Equation 12.8-7] Seismic Response Coefficient: Cs = 0.199 Governs Cs = Sps /(R/Ie) [Equation 12.8-2] Cs 5 0.937 Cs <_ SD1 /T(R/Ie) for T<_ TL [Equation 12.8-3] Cs <_ NA CS <_ SD1Tt /T2(R/Ie) for T> TL [Equation 12.8-4] Cs >_ 0.031 Cs >_ 0.0445os1 e >_ 0.01 [Equation 12.8-5] Cs >_ NA Cs >_ 0.5S1 /(R/I e) for S 1 >_ 0.6g [Equation 12.8-6] Base Shear: V = 0.199 *W (Ult) [Equation 12.8-1] 0.7*V = 0.139 *W (ASD) Out-of-Plane Wall Forces: Fp = 0.278 *W (Ult) Fp = 0.45 psi,Wp ? 0.10Wp [Section 12.11.1] 0.7*Fp = 0.195 *W (ASD) Wall Anchorage Forces: ka = 1.3 ka = 1.0 + L f/100 <_ 2.0 [Equation 12.11-2] Fp = 0.367 *W (Ult) Fp = 0.4SDskaleWp >_ 0.2kaleWp [Equation 12.11-1] 0.7*Fp = 0.257 *W (ASD) l , -VV L IVI K Project: MDI-Tigard Job#: 20210460 By: ERO Dote: 10/21 Sheet#. T-5 ENGINEERING . DES,GN v4.00-Software Copyright 2015 VLMK Consulting Engineers. All Rights Reserved. Wind Loads - Main Wind-Force Resisting System - Envelope Procedure Based on the 2018 International Building Code and ASCE 7-16, Section 28.5 (Part 2: Low-rise Buildings) V = 100 mph Basic Wind Speed 3-Second Gust (USD) [Figure 26.5-1A, B, C, & D] B Exposure Category [Section 26.7.3] II Risk Category (I), (II), (III), or (IV) [IBC Table 1604.5] Kzt = 1.00 Topographic Factor [Figure 26.8-1] Roof Slope = 0 to 5 Degrees Load Factor = 1.0 USD = 1.0W, ASD = 0.6W Design Wind Pressure: p5 = AKzrP53o [Equation 28.5-1] Horizontal Loads ( 1.0W USD LEVEL) Height ` Adjustment End Zones Interior Zones (ft) A (psf) (psf) Wall (A) Roof(B) MIER Roof(D) 15 1.00 16.0 -8.2 16.0 8.0 20 1.00 16.0 -8.2 16.0 8.0 25 1.00 16.0 -8.2 16.0 8.0 30 1.00 16.0 -8.2 16.0 8.0 35 1.05 16.7 -8.6 16.0 8.0 40 1.09 17.3 -8.9 16.0 8.0 45 1.12 17.8 -9.2 16.0 8.0 50 1.16 18.4 -9.5 16.0 8.0 55 1.19 18.9 -9.8 16.0 8.0 60 1.22 19.4 -10.0 16.0 8.0 Vertical Loads ( 1.0W USD LEVEL ) Height ' Adjustment I End Zones Interior Zones Windward Overhang (ft) A (psf) (psf) (psf) Windward Leeward Windward Leeward Windward Windward Roof(E) Roof (F) Roof(G) Roof (H) Roof (EoH) Roof(GOH) 15 1.00 -19.1 -- -10.8 1 -- -13.3 i -- -8.4 ' -- -26.7 I -20.9 20 1.00 i -19.1 -- -10.8 -- -13.3 = -- -8.4 -- -26.7 I -20.9 25 1.00 1 -19.1 -- -10.8 -- -13.3 -- -8.4 k -- -26.7 -20.9 30 1.00 I -19.1 -- -10.8 -- -13.3 -- -8.4 -- -26.7 -20.9 35 1.05 I -20.1 -- -11.3 t -- -14.0 j -- -8.8 -- -28.0 -21.9 40 1.09 I -20.8 - -- -11.8 £ -- -14.5 -- -9.2 -- -29.1 -22.8 45 1.12 i -21.4 -- -12.1 -- -14.9 f -- -9.4 -- -29.9 -23.4 50 ! 1.16 I -22.2 -- -12.5 -- -15.4 -- -9.7 -- -31.0 -24.2 55 # 1.19 E -22.7 -- -12.9 -- -15.8 -- -10.0 -- -31.8 -24.9 60 1 1.22 -23.3 i -- -13.2 " -- -16.2 -- -10.2 d -- -32.6 -25.5 Case 1or2: i 1 2 I 1 ( 2 1 2 1 ? 2 Notes: 1.) Loads shown may be governed by Minimum Wind Design Loads per Section 28.6.4. 2.) Pressures shown are applied to the horizontal and vertical projections. 3.) Plus and minus signs signify pressures acting toward (+) and away (-) from the surfaces. 4.) Load case 2 at 25° is provided only for interpolation between 25° and 30° (Figure 28.5-1 - Note 4). 5.) Reference ASCE 7-16 Figure 28.5-1 for more information. .. . Project Title: Mike's Drive In-Tigard Engineer: E. Olds, EIT Project ID: 20210460 Project Descr: T-6 Printed:31 AUG 2021,11:12AM General Beam File:20210460.ec6 Software copyright ENERCALC,INC.1983-2020,Buidd:12.20.824 Lie.#:KW-06002728 VLMK CONSULTING ENGINEERS DESCRIPTION: Diaphragm Loading From E.3-D General Beam Properties Elastic Modulus 29,000.0 ksi Span#1 Span Length = 53.330 ft Area= 10.0 inA2 Moment of Inertia = 100.0 inA4 E(0.0209) E(0.1084) E(0_1084) ° E(0.0669) �— X X X Span=53.330 ft ---.--.- - - -� Applied Loads Service loads entered.Load Factors will be applied for calculations. Uniform Load: E=0.06690 k/ft, Tributary Width=1.0 ft,(Roof) Uniform Load: E=0.1084 k/ft, Tributary Width=1.0 ft,(Northern Wall(CMU)) Uniform Load: E=0.1084 ksf,Extent=0.0-->>13.917 ft, Tributary Width=1.0 ft,(Southern Wall(CMU)) Uniform Load: E=0.02090 ksf,Extent=13.917-->>53.330 ft, Tributary Width=1.0 ft,(Southern Wall(Storefront)) DESIGN SUMMARY Maximum Bending = 51.837 k-ft Maximum Shear= 4.403 k Load Combination +D+0.70E+0.60H Load Combination +D+0.70E+0.60H Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Location of maximum on span 25.865 ft Location of maximum on span 0.000 ft Maximum Deflection Max Downward Transient Deflection 13.279 in 48 Max Upward Transient Deflection 0.213 in 3004 Max Downward Total Deflection 9.295 in 68 Max Upward Total Deflection 0.112 in 5722 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 6.291 5-391 Overall MINimum E Only 6.291 5.391 i 1 -Si 1 V L 1Y1 K Project: MDI-Tigard Job#: 20210460 By: ERO Date: 10/21 Sheet#. T-7 ENG+NEER/NG - DESIGN v3.00-Software Copyright 2020 VLMK Consulting Engineers. All Rights Reserved. Masonry Shearwall Design Based on the 2018 International Building Code and TMS 402-16 DESIGN INPUT Wall f'm tnominal t Shearwall Type = Intermediate Type (psi) (in.) (in.) Grout = Fully 1 2000 8 7.625 Yg = 1 2 2000 10 9.625 Fs = 32 ksi 3 2000 12 11.625 Sips = 0.695 Weight M Light, Medium, Normal Horizontal Reinforcing Applied Loads1,2 Shearwall Wall h L d # of Bar Bar V Paxial Pier ID Type (ft) (ft) (in) Bars Size Spacing (kip) (plf) A 1 10 15.75 181 1 #5 48 in o.c. 5.8 243.34 ANALYSIS Shear Reinforcing Shearwall f„ = V/Anv 4 M/Vd Pf/An 3 Fvm A„/s Fvs Fv Pier ID (psi) = h/d (psi) (psi) (in2/ft) (psi) (psi) A 4.02 0.663 1.3 63.7 0.08 13.4 77 OK, shear reinf not req'd Chord Reinforcing Shearwall Mot Mresist 5 Mnet Treq'd # of Bar At Tallow Pier ID (k-ft) (k-ft) (k-ft) (kip) Bars Size (kip) A 58.0 63.8 -5.9 0.0 2 #5 0.614 19.6 OK Notes: 1. Lateral Load (V) is applied as a 0.7E factored load. 2. Axial load (Paxial) is input as an unfactored (1.0) load and does not include the wall weight. 3. Axial load (Pf) is factored based on on load combination: (0.6-0.14Sds). [TMS 8.3.5.1.] 4. For Special shearwalls, shear stress (f,) includes 1.5 factor. [TMS 7.3.2.6.1.2] 5. Resisting Moment includes contribution from wall self weight. VV L M K Project: MD I-TIGARD Job#: 20210460 By: ERO Date: 09/21 Sheet#: T-8 ENGINEERING+DESIGN NEW HEADER AT WALK—UP WINDOW LOADINQ DLRF=---15 psf DLSTOREFRONT=15 psf DI-WOODWALL'—15 psf SL:=25 psf HEADER L:=19.67 ft 4.83 ft+12.417 ft\ • (DLwoop.WALL•5 ft),204.4 plf 2 Ws:,SL• 4.83 ft+12.417 ft=215.6 plf 2 USE A 3 1/8 x 12 GL8 3933 S Kelly Avenue Portland,OR 97239 tel: 503.222.4453 fax:503.248,9263 www vInkcorn Project Title: Mike's Drive In-Tigard Engineer: E. Olds, EIT Project ID: 20210460 Project Descr: T-9 • Printed: 9 SEP 2021,12:59PM Wood Beam File:20210460.ec6 Software copyright ENERCALC,INC.1983-2020,Build:12.20.8.24 Lk.#:KW 46002728 VLMK CONSULTING ENGINEERS DESCRIPTION: (N)Header at Walk Up Window CODE REFERENCES Calculations per NDS 2018, IBC 2018, CBC 2019,ASCE 7-16 Load Combination Set :ASCE 7-16 Material Properties Analysis Method: Allowable Stress Design Fb+ 2,400.0 psi E:Modulus of Elasticity Load Combination ASCE 7-16 Fb- 1,850.0 psi Ebend-xx 1,800.0 ksi Fc-Prll 1,650.0 psi Eminbend-xx 950.0 ksi Wood Species : DF/DF Fc-Perp 650.0 psi Ebend-yy 1,600.0 ksi Wood Grade :24F-V4 Fv 265.0 psi Eminbend-yy 850.0 ksi Ft 1,100.0 psi Density 31.210 pcf Beam Bracing : Beam is Fully Braced against lateral-torsional buckling D(0.075) b o b o r D(0.036225)S(0.060375) D0.10125bS0.16875 RT}'P 3.125x12 Span=16.670 ft Applied Loads Service loads entered.Load Factors will be applied for calculations. Uniform Load: D=0.0150, S=0.0250 ksf, Tributary Width=6.750 ft,((E)Roof) Uniform Load: D=0.0150, S=0.0250 ksf. Tributary Width=2.415 ft,(Canopy) Uniform Load: D=0.0150 ksf, Tributary Width=5.0 ft,((E)Parapet Wall Above) DESIGN SUMMARY Design OK Maximum Bending Stress Ratio = 0.889 1 Maximum Shear Stress Ratio = 0.427 : 1 Section used for this span 3.125x12 Section used for this span 3.125x12 fb:Actual = 2,454.31 psi fv:Actual = 130.03 psi Fb:Allowable = 2,760.00psi Fv:Allowable = 304.75 psi Load Combination +D+S+H Load Combination +D+S+H Location of maximum on span = 8.335ft Location of maximum on span = 15.697 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward Transient Deflection 0.494 in Ratio= 404>=240 Max Upward Transient Deflection 0.000 in Ratio= 0<240 Max Downward Total Deflection 0.953 in Ratio= 209>=180 Max Upward Total Deflection 0.000 in Ratio= 0<180 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support2 Overall MAXimum 1.910 1.910 Overall MINimum 1.910 1 910 D Only 1.771 1.771 S Only 1.910 1.910 H Only . . I VVLMK Project: MDI-TIGARD Job# 20210460 By: ERO Date. 09/21 Sheet#. T-10 ENGINEERING+DESIGN MISC. ARCH WORK LOADING LL/NT:=5 psf DLINTWALL:=10 PSf PARTIAL HEIGHT WALL POSTS HmAx:=7 ft P:=200 lbf MBASE=P•HMAX=1400 lbf•ft USE AN HSS2x2x3/8 WITH A 1/2"BASE PLATE WITH (4)3/8"DIA x 3"SCREW ANCHORS KITCHEN WINDOW HEADER HmAx:=11.67 ft DLINT.WALL•5 ft=50 Of WLL. LLINT.5 ft=25 plf USE A BOXED 3625162-33 (MIN) HEADER 3933 S Kelly Avenue Portland,OR 97239 tel.503.222,4453 fax:503.248.9263 lovvo.vIrok corn Project Title: Mike's Drive In-Tigard Engineer: E. Olds, EIT Project ID: 20210460 Project Descr: T-11 Printed:24 SEP 2021, 1:37PM Steel Column File:20210460.ec6 Software copyright ENERCALC,INC.1983-2020,Build:12.20.8.24 Lic.#:KW-06002728 VLMK CONSULTING ENGINEERS DESCRIPTION: Partial Height Wall Posts Code References Calculations per AISC 360-16, IBC 2018, CBC 2019,ASCE 7-16 Load Combinations Used :ASCE 7-16 General Information Steel Section Name: HSS2x2x3/16 Overall Column Height 7.0 ft Analysis Method: Allowable Strength Top&Bottom Fixity Top Free, Bottom Fixed Steel Stress Grade ,A500, Grade C, Fy=50 ksi, Carbon Brace condition for deflection(buckling)along columns: Fy:Steel Yield 50.0 ksi X-X(width)axis: E:Elastic Bending Modulus 29,000.0 ksi Unbraced Length for buckling ABOUT Y-Y Axis=7.0 ft,K=2.1 Y-Y(depth)axis: Unbraced Length for buckling ABOUT X-X Axis=7.0 ft,K=2.1 Applied Loads Service loads entered.Load Factors will be applied for calculations. Column self weight included:30.092 lbs"Dead Load Factor BENDING LOADS.. Lat.Point Load at 7.0 ft creating Mx-x,L=0.20 k DESIGN SUMMARY Bending&Shear Check Results PASS Max.Axial+Bending Stress Ratio = 0.7089 :1 Maximum Load Reactions.. Load Combination +D+L+H Top along X-X 0.0 k Location of max.above base 0.0 ft Bottom along X-X 0.0 k At maximum location values are... Top along Y-Y 0.0 k Pa:Axial 0.03009 k Bottom along Y-Y 0.20 k Pn/Omega:Allowable 3.088 k Ma-x:Applied 1.40 k ft Maximum Load Deflections... Mn-x/Omega:Allowable 1.989 k-ft Along Y-Y 2.115 in at 7.0 ft above base for load combination:+D+L+H Ma-y:Applied 0.0 k-ft Mn-y/Omega:Allowable 1.989 k-ft Along X-X 0.0 in at 0.0 ft above base for load combination PASS Maximum Shear Stress Ratio= 0.02165 :1 Load Combination +D+L+H Y.}( & Y-Y kllr}2t71) Location of max.above base 0.0 ft At maximum location values are... Va:Applied 0.20 k Vn/Omega:Allowable 9.240 k Maximum Reactions Note:Only non-zero reactions are listed. Axial Reaction X-X Axis Reaction k Y-Y Axis Reaction Mx-End Moments k-ft My-End Moments Load Combination @ Base @ Base @ Top @ Base @ Top @ Base @ Top @ Base @ Top D Only 0.030 Lr Only L Only 0.200 -1.400 S Only W Only E Only H Only Extreme Reactions Axial Reaction X-X Axis Reaction k Y-Y Axis Reaction Mx-End Moments k-ft My-End Moments Item Extreme Value @ Base @ Base @ Top @ Base @ Top @ Base @ Top @ Base @ Top Axial @ Base Maximum 0.030 Minimum Reaction, X-X Axis Base Maximum 0.030 Minimum 0.030 Reaction, Y-Y Axis Base Maximum 0.200 -1.400 Minimum 0.030 Reaction, X-X Axis Top Maximum 0.030 Minimum 0.030 Reaction, Y-Y Axis Top Maximum 0.030 Project Title: Mike's Drive In-Tigard Engineer: E. Olds, EIT Project ID: 20210460 Project Descr: T-12 Printed:24 SEP 2021. 1:37PM Steel Column File:20210460.ec6 Software copyright ENERCALC,INC.1983-2020,Build:12.20.8.24 Lio.1#'t KW-08002728 WAR CONSULTING ENGINEERS DESCRIPTION: Partial Height Wall Posts Extreme Reactions Axial Reaction X-X Axis Reaction k Y-Y Axis Reaction Mx-End Moments k-ft My-End Moments Item Extreme Value @ Base @ Base @ Top @ Base @ Top @ Base @ Top @ Base @ Top " Minimum 0.030 Moment, X-X Axis Base Maximum 0.030 Minimum -1.400 0.200 -1.400 Moment, Y-Y Axis Base Maximum 0.030 Minimum 0.030 Moment, X-X Axis Top Maximum 0.030 Minimum 0.030 Moment, Y-Y Axis Top Maximum 0.030 Minimum 0.030 Sketches Y D 20k Cr f +X Ci. CI I CD N i. it- 2.00in SIMPSON Anchor DesignerTM Company: VLMK Engineering+Design Date: 9/24/2021 T-13 Engineer: ERO Page: 1/5 2 Softwareoutunrcie Project: MDI-Tigard Version 3.0.7845.0 Address: Phone: E-mail: 1.Protect information Customer company: Project description: Customer contact name: Location: Customer e-mail: Fastening description: Comment: 2.Input Data&Anchor Parameters General Base Material Design method:ACI 318-14 Concrete: Normal-weight Units: Imperial units Concrete thickness,h(inch):5.00 State:Cracked Anchor Information: Compressive strength,fc(psi):2500 Anchor type:Concrete screw v: 1.0 Material:Carbon Steel Reinforcement condition:B tension,B shear Diameter(inch):0.375 Supplemental reinforcement:Not applicable Nominal Embedment depth(inch):3.000 Reinforcement provided at corners:No Effective Embedment depth,her(inch):2.190 Ignore concrete breakout in tension:No Code report: ICC-ES ESR-2713 Ignore concrete breakout in shear:No Anchor category:1 Ignore 6do requirement: Not applicable Anchor ductility: No Build-up grout pad:No hmin(inch):4.67 cac(inch):3.31 Base Plate Cmn(inch): 1.75 Length x Width x Thickness(inch):8.00 x 8.00 x 0.25 Smin(inch):3.00 Recommended Anchor Anchor Name:Titen HD®-3/8"0 Titen HD,hnom:3"(76mm) Code Report: ICC-ES ESR-2713 - . „ . „ „ , Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax.925.847.3871 www.strongtie.corn Company: VLMK Engineering+Design Date: 9/24/2021 SIMPSON Anchor DesignerT"" T-14 Software Engineer: ERO Page: 2/5 s ' Project: MDI-Tigard 4 Version 3.0.7845.0 Address: Phone: E-mail: Load and Geometry Load factor source:ACI 318 Section 5.3 Load combination:not set Seismic design:No Anchors subjected to sustained tension:Not applicable Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads:No Strength level loads: Nua[Ib]:0 Vu.[lb]:0 t Vuay[lb]:0 M.[ft-lb]:0 Muy[ft-ib]: 1400 Mug[ft-lb]:0 <Figure 1> 01b z 0 ft-lb c .yjg y5 ��n�� 1400 ft_Ib � 5 , ort a�9fe$ f ttre at Itge � � � 01b c 1 Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com l • SIMPSON Anchor DesignerTM Company: VLMK Engineering+Design Date: 9/24/2021 T-15 Engineer: ERO Page: 3/5 Strong-Tie project:Project: MD1-Tigard Version 3,0.7845.0 Address: Phone: E-mail: <Figure 2> 6.50 ,, 6.50 1 50 8 C7 C� r 1 1-71 Duni i 4.00 i LI t 1 8 co oo Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility, &mese.St r t. T1,,C nary xr,- 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com SIMPSON Anchor DesignerTM Company: VLMK Engineering+Design Date: 9/24/2021 T_16 Software Engineer: ERO Page: 4/5 i2 Project: MDI-Tigard S Version 3.0.7845.0 Address: Phone: E-mail: 3.Resulting Anchor Forces Anchor Tension load, Shear load x, Shear load y, Shear load combined, N.(Ib) Vuax(Ib) Vuay(Ib) •i(Vuax)2+(Vuay)2(Ib) 1 0.0 0.0 0.0 0.0 2 1405.6 0.0 0.0 0.0 3 0.0 0.0 0.0 0.0 4 1405.6 0.0 0.0 0.0 Sum 2811.2 0.0 0.0 0.0 Maximum concrete compression strain( ):0.10 <Figure 3> Maximum concrete compression stress(psi):446 Resultant tension force(Ib):2811 ,-,4 o 2 Resultant compression force(Ib):2811 Eccentricity of resultant tension forces in x-axis,e'Nx(inch):0.00 Eccentricity of resultant tension forces in y-axis,e'Ny(inch):0.00 , ____4___1.0. 0 3 4.Steel Strength of Anchor in Tension(Sec.17.4.1) N.(Ib) 0 gNsa(Ib) 10890 0.65 7079 5.Concrete Breakout Strength of Anchor in Tension(Sec. 17.4.21 Nb=kc/'.a\fcher1 5(Eq. 17.4.2.2a) kc A.8 fc(psi) her(in) Nb(Ib) 17.0 1.00 2500 2.190 2755 Ohicbg=tli(ANcI ANceyPec,N&r,NY'gN'Pcp.NNb(Sec.17.3.1 &Eq. 17.4.2.1b) ANc(in2) AN.(in2) ca,ms(in) Y'ec,N tted,N yc,N Yjcp,N Nb(Ib) 0 gtiNcbg(Ib) 76.01 43.16 - 1.000 1.000 1.00 1.000 2755 0.65 3153 6.Pullout Strength of Anchor in Tension(Sec.17.431 gfNp„=O '.p aNp(fx/2,500y'(Sec. 17.3.1,Eq. 17.4.3.1 &Code Report) yc_P A.. Np(lb) fc(psi) n q, 0Np (lb) 1.0 1.00 2212 2500 0.50 0.65 1438 I Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. . 5956 W.Las Positas Boulevard Pleasanton.CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com t✓. ,. .. .... . .v , - ....... .. .. .. .. ,.. .. ,. ._ SIMPSON Anchor DesignerTM Company: VLMK Engineering+Design Date: 9/24/2021 T-17 Engineer: ERO Page: 5/5 S Software Project: MDI-Tigard Version 3.0.7845.0 Address: Phone: E-mail: 11.Results 11.Interaction of Tensile and Shear Forces(Sec.D.7)? Tension Factored Load, N a(lb) Design Strength,oNn(lb) Ratio Status Steel 1406 7079 0.20 Pass Concrete breakout 2811 3153 0.89 Pass Pullout 1406 1438 0.98 Pass(Governs) 318"0 Titen HD,hnom:3"(76mm)meets the selected design criteria. 12.Warnings -Designer must exercise own judgement to determine if this design is suitable. -Refer to manufacturer's product literature for hole cleaning and installation instructions. Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. .iI<< 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone.925.560.9000 Fax:925.847.3871 www.strongtie.com Project Name: 20210460 Page 1 of 1 T-18 Model: Kitchen Window Header Date:09/24/2021 Code: 2012 NASPEC[AISI S100-2012] Simpson Strong-Tie®CFS DesignerTM 3.4.6.0 Reactions Support Reactions(lb) R2 291.75 50.00 I b/ft R1 291.75 Shear and Web Crippling Checks Bending and Shear 28.0% Stressed (Unstiffened): ©R1 NEMS INN Bending and Shear NA R1 R2 (Stiffened): Web Stiffeners No 11.67 Required?: Section : (2)362S162-33(33 ksi)Boxed C Stud Maxo= 881.7 Ft-Lb Va= 2047.2 lb I= 1.10 in^4 Loads have not been modified for strength checks Loads have not been modified for deflection calculations Flexural and Deflection Check Deflection Mmax Mmax/ Mpos Bracing Ma(Brc) Mpos/ Span Ft-Lb Maxo Ft-Lb (in) Ft-Lb Ma(Brc) (in) Ratio Span 851.2 0.965 851.2 60.0 881.7 0.965 0.642 L/218 SIMPSON STRONG-TIE COMPANY INC. www.strongtie.com VVLMK Project MDI-TIGARD Job 4 20210460 By: ERO Dote: 09/21 Sheet 4 M-1 ENGINEERING+DESIGN KITCHEN HOOD SUPPORT LOADING DLRF=15 psf SL=25 psf DLHooD:=1307 Ibf ap:=2.5 COMPONENT AMPLIFICATION FACTOR Sas=0.695 SPECTRAL ACCELERATION Rp:=6.0 COMPONENT RESPONSE MODIFICATION FACTOR ./ .• 1 0 COMPONENT IMPORTANCE FACTOR 0•4*a •Sas•DL.Hoon •F P (3)=454.2 Ibf HORIZONTAL SEISMIC FORCE P Rp-:-Ip Fpfrnw=0.3.5Ds•I p•a HOOD=272.5 Ibf MINIMUM HORIZONTAL SEISMIC FORCE, DOESN'T CONTROL Ev:=0.2.S .•DLH000=181.7 Ibf VERTICAL SEISMIC FORCE DLHooD Ev + 0.7. =159.4 ibf \ 9 i \ 9 DLHOOD\ I E \ CR0D=(0.6• - 0.7. v =73 /bf NO UPLIFT, THEREFORE NO COMPRESSION (E) WEST JOISTS L:=20 ft TRIB:=16 in wDL:=DLRF•TRIB=20 pif wa:=SL•TRIB=33.3 plf PHOOD=&HOOD 9 145.2 /bf LOCATED AT APPROXIMATELY 3", 54", AND 70" *THIS NUMBER IS CONSERVATIVE BECAUSE THERE ARE ACTUALLY 14 HANGER LOCATIONS SISTER NEW 2x10 TO EXISTING WITH 16d NAILS AT 8"O.C. STAGGERED (E) EAST JOISTS L:=12.33 ft TRIB:=24 in woL=DLRF•TRIB=30 plf wsL=SL.TRIB=50 plf PHOOD=145.2 Ibf LOCATED AT APPROXIMATELY 3'-0" AND 81-0" *THIS NUMBER IS CONSERVATIVE BECAUSE THERE ARE ACTUALLY 14 HANGER LOCATIONS SISTER NEW 2x10 TO EXISTING WITH 16d NAILS AT 8"O.C. STAGGERED UNISTRUT 'PlOOOT AND 1/2" DIA THREADED RODS OK BY INSPECTION :1„.; 3933 S Kelly Avenue Portland,OR 97239 tel.5032224453 41603.248.9263 www.vimk.com Project Title: Mike's Drive In-Tigard Engineer: E.Olds, EIT • Project ID: 20210460 Project Descr: M-2 Printed:24 SEP 2021. 2:55PM Wood Beam File:20210460.ec6 Software copyright ENERCALC,INC.1983-2020,Build:12.20.8.24 tic.#`:KW-06002728 VLMK CONSULTING ENGINEERS DESCRIPTION: (E)West Joists With Kitchen Hood CODE REFERENCES Calculations per NDS 2018, IBC 2018, CBC 2019,ASCE 7-16 Load Combination Set :ASCE 7-16 Material Properties Analysis Method: Allowable Stress Design Fb+ 900.0 psi E:Modulus of Elasticity Load Combination ASCE 7-16 Fb- 900.0 psi Ebend-xx 1,600.0 ksi Fc-PrIl 1,350.0 psi Eminbend-xx 580.0 ksi Wood Species : Douglas Fir-Larch Fc-Perp 625.0 psi Wood Grade : No.2 Fv 180.0 psi Ft 575.0 psi Density 31.210pcf Beam Bracing : Beam is Fully Braced against lateral-torsional buckling D(0.145) D(0.145)D(0.145) D 0 0199 S 0 03325) 4: 5 _4.. ..................... _. _._s_— __......._....._................_.._......_. { . ( 2-2x 10 ) Span=20.0 ft Applied Loads Service loads entered.Load Factors will be applied for calculations. Uniform Load: D=0.0150, S=0.0250 ksf, Tributary Width=1.330 ft,((E)Roof) Point Load: D=0.1450 k @ 0.250 ft,(Hood) Point Load: D=0.1450 k @ 4.50 ft,(Hood) Point Load: D=0.1450 k @ 5.830 ft,(Hood) DESIGN SUMMARY Design OK Maximum Bending Stress Ratio = 0.858 1 Maximum Shear Stress Ratio = 0.184 : 1 Section used for this span 2-2x10 Section used for this span 2-2x10 fb:Actual = 976.78psi fv:Actual = 38.19 psi Fb:Allowable = 1,138.50psi Fv:Allowable = 207.00 psi Load Combination +D+S+H Load Combination +D+S+H Location of maximum on span = 8.540ft Location of maximum on span = 0.000 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward Transient Deflection 0.380 in Ratio= 631>=240 Max Upward Transient Deflection 0.000 in Ratio= 0<240 Max Downward Total Deflection 0.801 in Ratio= 299>=180 Max Upward Total Deflection 0.000 in Ratio= 0<180 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 0.558 0.333 Overall MINimum 0.333 0.333 D Only 0.558 0.276 S Only 0.333 0.333 Project Title: Mike's Drive In-Tigard Engineer: E. Olds, EIT Project ID: 20210460 Project Descr: M-3 Printed.24 SEP 2021. 2.57PM Wood Beam File:20210460.ec6 Software copyright ENERCALC,INC.1983-2020,Build:12.20.8.24 Lie.#:KW-06002728 VLMK CONSULTING ENGINEERS DESCRIPTION: (E)East Joists With Kitchen Hood CODE REFERENCES Calculations per NDS 2018, IBC 2018, CBC 2019,ASCE 7-16 Load Combination Set :ASCE 7-16 Material Properties Analysis Method: Allowable Stress Design Fb+ 900.0 psi E:Modulus of Elasticity Load Combination ASCE 7-16 Fb- 900.0 psi Ebend-xx 1,600.0 ksi Fc-PrIl 1,350.0 psi Eminbend-xx 580.0 ksi Wood Species : Douglas Fir-Larch Fc-Perp 625.0 psi Wood Grade : No.2 Fv 180.0 psi Ft 575.0 psi Density 31.210pcf Beam Bracing : Beam is Fully Braced against lateral-torsional buckling D(0_,145) D(0.145) D(0.03)S(0.05) )n i 2-2x10 Span= 12.330 ft Applied Loads Service loads entered.Load Factors will be applied for calculations. Uniform Load: D=0.0150, S=0.0250 ksf, Tributary Width=2.0 ft,((E)Roof) Point Load: D=0.1450 k @ 3.0 ft,(Hood) Point Load: D=0.1450 k @ 8.0 ft.(Hood) DESIGN SUMMARY Design OK Maximum Bending Stress Ratio = 0.50fi 1 Maximum Shear Stress Ratio = 0.155 : 1 Section used for this span 2-2x10 Section used for this span 2-2x10 fb:Actual = 575.93psi fv:Actual = 32.03 psi Fb:Allowable = 1,138.50psi Fv:Allowable = 207.00 psi Load Combination +D+S+H Load Combination +D+S+H Location of maximum on span = 6.345ft Location of maximum on span = 0.000 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward Transient Deflection 0.083 in Ratio= 1790>=240 Max Upward Transient Deflection 0.000 in Ratio= 0<240 Max Downward Total Deflection 0.180 in Ratio= 819>=180 Max Upward Total Deflection 0.000 in Ratio= 0<180 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 0.346 0.314 Overall MINimum 0.308 0.308 D Only 0.346 0.314 S Only 0.308 0.308 H Only • • .LATE.03.HEDWAIDEN FACTORY 'E;7 ; ;',-, HIT.MR.. FIAT LENGTH : A...:ED M.:M.,EADIC STAANNE C).:24 -',„''1:, fr,":-i.....,.. ,,,,,.-.'''K‘ua. ' Ar.:a 0: NENWEINC_AN1101.E : ,.E.0 IN.ATINDIRENENES E. v.,BY INS,....LuM, im.,r DNA., OiARDWARC ET RESTALHEW: t 1 1 ./ DTI...HI EIRENNITERE MANACES 1 1,,,o. 141- : ., •i : •. 1 : Fi;-:.",74."-- • 1‘,..irz,-7x1.---- - 1 , : . ,/ 4, n i i ••• ,,,,,,,,,,,,,,..... ,i „,e,,zall,,,,,,,,,,,,,,,,,,,ro:nr.,,-A*...- . : ..._. iLt71.1:24...,t,•,::',1::-',. ';',1'''-ii.,SA ilii.:7•_:::'''''XAC--- i1 fOR 1 • ' 1 • ,,,,,,i......'4 . A . .. .•••.•: • . .. • : 'II 117 • - . :•, , , , . . : : ..: . i IN.,[SIED:RECESSED 6.HD IIT .[t''''''' \.„:[ D'%'''''''''' \ r,77:447:t•-,A,:\ ii,,,,,,,,,,9P''''\ 111411 ---r, .. , .-,.,-,- .••• , ,....AHD LE9 TIN,E: II 11/1 4 I, . .• ..• — , . ..• .. . : :.,• : : , F%•,,'i' ,41.'-'1.7,1!.:,'4.6 417',,k, . , •• 1 0,=====4),,,,,====.41)======:,(.1)===_--,-..=_0======‘,13,=====C,======.0, . , r:• .: • : F. R., .--...',.. ,,D. --1 NES.SLNABLI......itIAS_TANAAA.thata t,t,s s2z m.B.Ly_111.5.1RUCIIONS. 1 1111 fil i 1 : .. .. . : . HANGING ANGi.E MUST BE SUPACATED WITH,/2--,;`,TA1 i,ANGING ANGLE 3115'DE su,,,,B,,ED um,,,e,-33-,, : I a..,..... BB' ---1 h. •,,R. --,,,-. -- Zgff, I...,,, ,, 28, 1 lc efr c*-i A j 1 1 1, I GRADE 5;MINIMUM,ALL-THREAD SANDWICH HANGING GRADE 5 MINIMUM:ALT-THIN:AP SANDWICH HANGING : f,f ANGLES AND CFR.ING ANCHOR POINTS WI.,3/E.GRADE 5 ANGLES AND CEILING ANCHOR KIWIS WITH 1,2.GRADE 5 ,,11 ,, .• , •.... .,';,-,..,r,,,'''''-, , 1 --,--s',-,------I , , -,,,,4-i,,,,,,-• 1 , , ,,,,,,,.,-,...--- i , I -S,,-;,-,-,,,,,,-,,,,--- , I GRADE 5 04...j.HX.%INE,TS AS SHOWN KZ*uSo GRADE 5<MINIMUM:RC%NUTS AS SHOWN.MUST USE ....1.,---i. ,,,,,,,... ti-'' t --- .--ir":- I-, ii'7' t .,,,, tr!'- t .,,,,,. i f i .,,, DOUBLED Or%Vjr CONFICUPArIGN BENEATH HUM kANGING DOUBi ED HElt NUT COWIGURA HUN ABOVE CELL ENG 11.,Isi...3CF.C,I:d.,,„5.4.i?,:Cdgc,_,Ali,,,1Q+,i,„,„;?4,i2.1.5.1_,C„, ANGLES AND ASCVE.CEILING ANC,.ORS.MAENTALN 1/,OF ANCHORS.SINGLE HEX NI.IT BENEA FH HANGING ANGLE IS .• i Le„,,,11,,,,2,....C,5,,,, i•.1, 1„,--..%--...,,•'''''' '1.1 1 ,,, ,,,:',.,""-, i5,,,,i ,,,,, ,,,,,,-.....-.:4„,„..,,, ,,i_1,,,,,,,,,.-„,..-,,,,v„..„,, , i c,POSED O.:READS DEW A C i BOTTOM MCX NUT TEIRCA„, ACCEPTABLE FOR cl1.. I.ENGTH i-IA,K,ING ANGLES i, hi, SI tr'1 • .• i iM ' i .1___T i.N 1 A i ALL HEX NLC,S,5,C T-LBS MAINTAIN 1/,Of DEPOSCD THREADS BENEATH DO,TC04 ,g] 1 HE*NUF TGO6UE A. HEX NW S IQ 57,r-LBS. i•. , 1.,11,,,.NE'e-1,-tr yrig,Cers:B;7 , •• 13.011 i g! • ,.. .. • T— ED: :• BANGING ANC,L E MUST PE 503383112 VITA I/2"-{1 ,AT '':-..Z4--.'-Xl" GRADE 5,MINImoN,ALL-THREAD SANECKIC,,HANGINC., „.„_„,, r , . r ,,...., .„ ,Dr S,AL LER) i. ANGLES AND CEILING ANCHOR POINTS WITH 1/2'GRACE ND -i-- 1,'Y : SMINIMLN:STEM FLAT 315SER5 AND 1/2' I a III F Tr 8- A, M 'WV NI UV TA GRADE 5 OEININWAIT"El EADTH AS SHET.EN NEES!1151 ....i 1 .6111111 '-''1 .TWA..DANIED • -4 DOUBLED HEX NWI CONF.ICARAIICN BE-NEATI,ur,,,CABINET HANC,D,*.ANGLES AND ABOVE GET:,NG ANCHORS . PAAN....Y.PZA.,._._ 201)1_1=_LIT__Ng.caTILN) NA,NiAIN 1/,,P EXPOSED THREADS DENEA'.BCOIEN 3.'1 •W.' ADDITIEADANAMEN-WAITED-PRIANN[T,TEN Di-TP-:N4 Lomace. I :„.I.SERWS.LEN!TANN Lcs,,I•Cal.,:- A yr-,.1 un I 1 0 / 7-LT=TIM M-19.4M'ars- r\,/, ff.:,.-rtir-\ • . ,',' , in:7,,,,, 71-72.7.472..4-\ K1-41.7` • ,.,I DD / :7,', 1 , Fir7-,2,.-- I 4 Do ,E EATER IA NSW,.%WHINY A.NIA:TED 4 m / NI r,r tr.13:1.WITS 0 AND 100 . -NEWEERNEEN.E.CLEARANCE.ENERNS.N,E = 11 F A / / SWF ACES EIDENST A. --- 4 ... ., IN un,'M,A.TE-D EWEN...LEA i MIT iTED:17... - w rn ,, / / ,,-.*; evriJr.,;..fr; A 1, .-.3500 R VA.NH., ( ;1 /',I•'• I/ Al...6 AWAE ' .--t>"., ,I" AUFmBLY ,NS-FRI II,[(INS A D3 M I/ : 4 •••-•/.. ..7.E.:,,ATE [,/i HA,tOING ANGLE MUST DE SUPPORTED V/IcH 1/2'-13,PI i.44,4LNi-,FAGL, .4 A / / • _ 1.----__-_--z. : .., . . 1 • CRADE 5(KINFA.111>AL L-THREAD.SANDWICH HANGING ANGLES,AND CEILING ANCK1R AGINTS WI,1/2•GRADE 5 . OCNIM12,0 S,EEL E LA,WASHERS AND 1/2'-13 I'M it 0 / 1 - : GRADE 5,A.Nr,A..so.-i-,:x teas As SHOWN.MUST,JSE I • 4 J ''Ta../6 ... ',--,•'''."''''C''''''—t,. .--P. ._ a,,`=•4:. '')'' , : . T.,OLIBL ED MIX NO CONEIGURATION ABOVE CEILING V, I : i ANc,-nAs.SINGLE HEX NUT BENEATH HANGING ANGLE IS . D.E.,A.RATE SD,9 ACCEAMBLE FOR ASP HANGING ANGLES.MAINTAIN,,E.OF ' 0 . -- ,„. ., --- ,,'1 ..::::....tr__ '.! :`,',/ I EXcOSED THREADS BENEATH BOITOM HEX Nia.TOR.. 44,,,e,:,4g ,._, . --i Ir..NUTS TO 37,-LDS Z rr-t. , • • EWE IAIR,ALHA .I.ONLENHAT,NA.R 3, CDT.. /'Ez re /,' • ---T , 0,V.Z.Z.E,frfr,Z.V;''.=:. y,' .*--.•=.' 4 ,,,,,,.,-PrNmals15,,L,Ca...„8,K,,,,,,„1-13,,,c., ,.„,,,,,,' cow : Z ,' / AHD 0.90...NATENIATS 1 . ,,Z.T..,Tr.ZZA i , :. ! . . : 1, .: „ . :. : : ,.._ : . . , ,, : 1 , CV c.,w,...E w,.//I '',' ,. ,. /88043 Q.) P AD.RVEDVADIE CM• ,' : I / . . •1 / : : . V,/, , ,, , • RN c_ m z : 1•,•,,,, ;• ; . • . ea : , 'r,,,' 1 • . : : - i--- : ,, i .i. ',/ i • Co . . , .• :," 1 ,;,`':',77,4•,', :,..c. , 1 ,';'4'4 • 1 , 1 ..', , ',.'7.Vjg : • I 1 / , 1 DAMN 7126/2021,„.".., : • l',,-i -..-, , : : i 1 I r' 1 • : '',/4 ' 1'I . OU 51E15,,, i i i • j 1 i ....!”, • ir '?*----"..r.)L ! C.e.S L,,Ayr.,,,,, i ./ i. 1 _____t f--------A..S PAW DVAIR THES: ' [-- •'[ :-:: : "C.'fi8QTYLT14"likt(11,-(21/::4!12'1..5filAgii. brUC ACJU.111 I 3/4"- 0-0' Wral!:24.P'-t-ADI' ' .11.9121“11F.VRiarlitAr . UlMC LI V F IN _1 „, .,,1 i WASTER DRAWING.s.E.677.7.QN1y.ffizi,rebrf;zifigicip.e.a.e.=-1: ,,,,,-.1 ,, r ,fl.IIIRES, [ T--,--TIENCv P 7 LIE.1-;S: E I.I 'A" 1 IHND, 11,,i,,,,GHTILcmGc,,i ,'.„,,,,,,,,,,, INIE[ TYPE i WIRE,.„,„•-,,,,,I ,. i ki!..ARDI'--''- :?TT. 1 S,2, EL.,.EL,,,,R,IC:L 1 sw..,:,,,f,, 1,7-, z., r__ ._....._ f- I- I —i -1-• : i-- . , IWT,,,,,,,...-,---, ,,, L55 SERIES E26 i NG I VAL L mn„1‘e„,,,,,e.{.14Z,"4„1 A,AAA,Ap/A 1 Dcw,"; •, • I 1 : : . .••• 1 1 1.-c . 1 SHEET NO. .. i E 32 1 i :"•[ [ OfSAWASHi. I [ i i i [I I RECESS,.ROUND 1 Ns . , L i . . 'i L . , 1 2 , ......„. __.... .—! 70 _ 1 -A. „... ,., r imnstotis ""i 41,4M:rtV:<4.414...W.crri'...:TP.-47%,,...MIXED`U.CIPEC.:ARN,FA.N. Af VII :f :A,:4_4_ ,,,,,,,,. 4' :,,,emaliE-,CMISTR,TrIN..3/4.8:44,L2,022,1.0v.4...sc ,Ini 0,,,,,I,OR D.U31,1, , 1.11 1 1 II II I FjC:)1 . l':7,4n,L4W VT.,,r'::,F,',,!,f,r4,.''r'.:•r'.,,,,,''.,..,.ink AN,,CA,,,..., I I II IA riNGEll cola,v.,-,,N512.E'D.84 vs.08:,,.}:10,4.5t/t6,1•ER,Vat,SI,,,,:2.0 I II Iii 1 I 1 FM,,VP,8.08 ZN.M14.1,7. i 1,FM.S.,,,,,,1.S.,C,OP.A.,,.RF.,DISTALLED M Mar MAL.,Arrits...„.,A 41INAN 5114A1.,.K.1,E.i,ro.,,S.F K 4.4:41,TO _ 1 li Oil ;1 1 l'ir4,17ir,`Z'Dli'llgtr4g.t'4';':Zite,'Irrit 7MT9"7,1,jlInirM4Y9r.,A,1 9.:-1;17,,,,pEz%r,:„: y,;— 1111111 1 '',.'''',a.,a',Y.,..f,r'.'.!1',.=„:',..P.,&',4,4,74;m4,4,,-,..v;4::,...g:-iLe4;z2.;',,rrzi'- —-- ;.;',.,,,,,,,,,x...,;,.:7<.71-?,'.4U,-,,•-Iga.,, 1 1111 1 , 1 , • .z., „.. • ... • :I VATF:1,-.. 1 i • . : • r :• , ,,,,,,, \1 , • : : ".., , .. 1 : : , .10... . • 1 1. . . : i• t !I 4., !! _ _J . , , • 0 , ] :6 YU'-4- :. 1 1 .... .• g 1 i III IIM g,1 I 1 '71 11 I 1 0 pi'I J xi • I . f: X I 1 M 7, m 1---- ( 1 rn p.. 1 M . : I z i , I a rn i . . . 1" 37 VW i I •. : : .1 : • , r___= ' --=::::;:;, , ..• 1, . , r 0 4— p ; . 1 ,r2i',.4;';.•1:C..-., ,,,,,,,.., 4:— r -.<i SERVICE orscamcco , . . BLUMEM/MDMR ] / 1 't (\.1 i •• ACCESS OMR i . . 4.-- r---: .......... .___ _ .1 1 ilannillilialiMMIN ' Gs --r 1 t : • • ''...,' I •4'7 , i. c.: • , : !'.414;MK 1 i • Writ F IL`.',,i R.7.11.i7R2,1,- I:,>,,,,AGAIS,.: •Pt,'(..§..1ue--i, .. . •, , K, .I KS:,:Fri:r41,46,.5.LIR MAX EU.IIIM.2.1K. •, CLI cy. i •: . : DATE,.7:20./202.0 1 411 1 : 500'5186 i vrm:m:rw-41.:,„Iriz:N.Ar NI=t..-.4rx,vz:wi--4 =iv= i DRAWN. ,„. 1 , t:.:,-,-75•Zif ShlinritA+%trtiAZ:rTer.g.:4ii'Zieggiri'"'''''''''' : •. SCALE, I 1 /4"= ITO" 1 MASTER DRAWING !-- 1 MLA FAN INFORMATION - JO8C5_905186 7.-1_.,.. ...,. —, 0.60, lirve?COEIER,,,,,,COM.ER,E4,6P MO,ET,F..,,M4 MX,. ,4F.IOSINIS! ']]].. i..'".: ] ]' 8, wcr1 ,,..,RA1E,EWER.,DB]"0,41',R,N5 MBI LEAVING r],3 I 4EAVIK VS]'''-'".]].S.r.Si 1 , : : . : J •• - -- I --- , 1 I . , T i 2 ift...-1,Krft,470, 1 [ 62.-714450-e410 1,0,...2.,,i 62-.25,, ,00, , 76gy 1 p,,,0,,457 i ErC,P,M.M01 IMO i 1'001 ?. :c00:44 i OA 1 2.i 4.93 i 040-c : 68.0, I *Harr NO. , -I— L_-_1_ __I .i. .: _..i. : 1'88,i5"Tiiii."4/C-ii,"1."118,i1Vi"681000",..,mat,mreameme— ' i 7 I X . 1\•,) r P1000 & P1001 Channels U N I STRUT• i P1000-BEAM LOADING P1001 -BEAM LOADING Defl.at Uniform Loading at Deflection Deft.at Uniform Loading at Deflection Max.Allowable Uniform Max.Allowable Uniform Span Uniform Load Load Span/180 Span/240 Span/360 Span Uniform Load Load Span/180 Span/240 Span/360 In Lbs In Lbs Lbs Lbs In Lbs In Lbs Lbs Lbs 24 1,690 0.06 1,690 1,690 1,690 24 3,500* 0.02 3.500* 3,500* 3.500* 36 1,130 0.13 1,130 1,130 900 36 3,190 0.07 3,190 3,190 3,190 48 850 0.22 850 760 500 48 2,390 0.13 2,390 2,390 2,390 �. 60 680 0.35 650 480 320 60 1,910 0.20 1,910 1,910 1,620 72 560 0.50 450 340 220 72 1,600 0.28 1,600 1,600 1,130 84 480 0.68 330 250 160 84 1,370 0.39 1,370 1,240 830 V . 96 420 0.89 250 190 130 96 1,200 0.51 1,200 950 630 N 108 380 1.14 200 150 100 108 1,060 0.64 1,000 750 500 ' i 120 340 1.40 160 120 80 120 960 0.79 810 610 410 144 280 2.00 110 80 60 144 800 1.14 560 420 280 168 240 2.72 80 60 40 168 680 1.53 410 310 210 192 210 3.55 60 50 NR 192 600 2.02 320 240 160 216 190 4.58 50 40 NR 216 530 2.54 250 190 130V/It Fl 240 170 5.62 40 NR NR 240 480 3.16 200 150 100 j 4 litS, t P1000 COLUMN LOADING P1001 -COLUMN LOADING . 0' Max.Allowable Maximum Column Load Applied at C.G. Max.Allowable Maximum Column Load Applied at C.G. Unbraced Load at Unbraced Load Height Slot Face K=0.65 K=0.80 K=1.0 K=1.2 Height at Slot Face K=0.65 K=0.80 K=1.0 K=1.2 In Lbs Lbs Lbs Lbs Lbs In Lbs Lbs Lbs Lbs Lbs 24 3.550 10,740 9,890 8,770 7,740 24 6.430 24,280 23.610 22,700 21,820 36 3,190 8,910 7,740 6,390 5,310 36 6,290 22,810 21.820 20,650 19,670 48 2,770 7,260 6,010 4,690 3,800 48 6,160 21,410 20,300 18,670 16,160 60 2,380 5,910 4,690 3,630 2,960 60 6,000 20,210 18,670 15,520 12,390 'f 72 2,080 4,840 3,800 2,960 2,400 72 5,620 18,970 16,160 12,390 8,950 . 84 1,860 4,040 3,200 2,480 1,980 84 5,170 16,950 13,630 9,470 6,580 ,,.; 96 1,670 3,480 2,750 2,110 1,660 96 4,690 14,890 11,190 7,250 5,040 108 1,510 3,050 2,400 1,810 108 4,170 12,850 8,950 5,730 3,980 su` .............. 120 1,380 2,700 2,110 '* *' 120 3,690 10,900 7,250 4,640 ** j 144 1,150 2,180 1,660 '* ** 144 2,930 7,630 5,040 ** ** P1000/P1001 -ELEMENTS OF SECTION Notes: r4 *Load limited by spot weld shear. Parameter P1000 P1001 **KL/r>200 Area of Section 0.555 In2 1.111 In2 NR=Not Recommended. Axis 1-1 1.Beam loads are given in uniform load(W Lbs)not uniform load(w lbs/ft or w lbs/in). ,;,, "• Moment of Inertia(I) 0.185 In4 0.928 In' 2.Beam loads are based on a simple span and assumed to be adequately laterally t Section Modulus(S) 0.202 In, 0.571 Ina braced.Unbraced spans can reduce beam load carrying capacity.Refer to Page 56 Radius of Gyration(r) 0.577 In 0.914 In for reduction factors for unbraced lengths. gin_ Axis 2-2 3.For pierced channel,multiply beam loads by the following factor: Moment of Inertia(I) 0.236 In' 0.471 In' "KO"Series 95% "T"Series 85% Section Modulus(S) 0.290 In, 0.580 Ina "HS"Series 90% "SL"Series 85% "H3"Series 90% "DS"Series 70% Radius of Gyration(r) 0.651 In 0.651 In• : 4.Deduct channel weight from the beam loads. 5.For concentrated midspan point loads,multiply beam loads by 50%and the corresponding deflection by 80%.For other load conditions refer to page 18. 6.All beam loads are for bending about Axis 1-1. 1WFraming System�;: -"` .. Y,. - .. . . UNISTRUT Lateral Bracing Load Reduction & Bearing Loads R-4 To LATERAL BRACING LOAD REDUCTION CHARTS C Span Single Channel Double Channel Ft. In. P1000 P1100 P2000 P3000 P3300 P4000 P4100 P5000 P5500 P1001 P1101 P2001 P3001 P3301 P4001 P4101 P5001 P5501 e" 2(0.61) 24(61) 1.00 1.00 1.00 1.00 1.00 1,00 1.00 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 3(0.91) 36(91) 0.94 0.89 0.88 0.96 1.00 0.94 0.98 0.85 0.89 1.00 1.00 1.00 1,00 1.00 1.00 1.00 1,00 1.00 4(1.22) 48(122) 0.88 0.78 0.75 0.91 1.00 0.88 0.94 0.70 0.77 1.00 0.98 0.98 1.00 1.00 0.98 1.00 0.97 0.98 1 5(1.52) 60(152) 0.82 0.68 0.61 0.88 0.98 0.83 0.91 0.55 0.67 0.97 0.93 0.92 0.98 1.00 0.93 0.96 0.90 0.93 6(1.83) 72(183) 0.78 0.59 0.48 0.84 0.97 0.79 0.89 0.44 0.58 0.93 0.87 0.85 0.95 0.97 0.88 0.92 0.83 0.87 7(2.13) 84(213) 0.75 0.52 0.41 0.82 0.96 0.75 0.86 0.38 0.51 0.89 0.82 0.78 0,92 0.95 0.83 0,89 0.76 0.81 8(2.44) 96(244) 0.71 0.47 0.35 0.79 0.94 0.72 0.84 0.33 0.46 0.85 0.76 0.71 0.88 0.92 0.79 0.85 0.68 0.76 9(2.74) 108(274) 0.69 0.43 0.32 0.77 0.93 0.69 0.82 0.30 0.42 0.81 0.70 0.64 0.85 0.90 0.74 0.81 0.61 0.70 10(3.05) 120(305) 0.66 0.40 0.29 0.75 0.92 0.66 0.80 0.28 0.40 0.78 0.65 0.57 0.82 0.87 0.69 0.78 0.54 0.64 12(3.66) 144(366) 0.61 0.36 0.25 0.70 0.89 0.60 0.76 0.24 0.36 0.70 0.54 0.45 0.76 0.82 0.60 0.71 0.43 0.53 14(4.27) 168(427) 0.55 0.32 0.23 0.66 0.86 0.55 0.73 0.22 0.32 0.63 0.45 0.38 0.70 0.78 0.51 0.64 0.35 0.45 16 14,88) 192(488) 0.51 0.30 0.21 0.62 0.84 0.50 0.69 0.21 0.30 0.56 0.39 0.32 0.64 0.73 0.44 0.57 0.30 0.39 18(5.49) 216(549) 0.47 0.28 0.19 0.58 0.81 0.47 0.65 0.19 0.28 0.49 0.34 0.28 0.58 0.68 0.39 0.50 0.27 0.34 20(6.10) 240' ": 0.44 0.26 0.18 0.54 0.78 0.43 0.61 0.18 0.26 0.44 0.31 0.25 0.52 0.63 0.35 0,45 0.24 0.30 a ' BEARING LOADS ON UNISTRUT CHANNEL 1x.. LOAD LOAD LOAD Loads are calculated based on 2007 Specification 1 11 For The Design Of Cold Formed Steel Structural Members 11 published by AISI Bearing Length 15/s"(41 mm) Bearing Length 11e"(41 mm) Bearing Length 31"(82 mm) Maximum Allowable Loads Maximum Allowable Loads Maximum Allowable Loads Channel Lbs Lbs Lbs P1003 6,703 3.100 7,700 29.80 13.79 34.25 P1'00 3,500 1,700 4,000 15.57 7.56 17.79 P2000 2,500 1,200 3,000 11.12 5.34 13.34 P3000 6,700 3,200 7,700 29.80 14.23 34,25 P3300 6,800 3,200 7,800 30.25 14.23 34.70 P4000 2,600 1,200 3,000 11.57 5.34 13.34 -__P4100 ___..._ 3,500 1,800 4,100 15.57 8.01 18.24 P5000 6,500 3,000 7,500 28.91 13.34 33.36 P5500 6,600 3,100 7,600 29.36 13.79 33.81 56 3518" Framing System U N 1 STRUT. e Reference Tables and Data R-5 CONVERSION FACTORS FOR BEAMS WITH VARIOUS STATIC LOADING CONDITIONS All Beam Load tables are for single-span(simple)beams supported at the ends.These can be used in the majority of the cases.However,there are times when it is necessary to know what happens with other loading and support conditions. Some common arrangements are shown below.Simply multiply the values from the Beam Load tables by factors given below Load and Support Load Deflection Condition Factor Factor 1. Simple Beam, 1XZ//Z/ZZ//Y� 1.00 1.00 Uniform Load SPAN .� 2. Simple Beam, r Concentrated Load at Center i i .50 .80 3. Simple Beam, / ' i.00 1.10 Two Equal Concentrated Loadcs at 1/4 pts 1 4. Beam Fixed at Both Ends, Uniform Load Tl1ZZZl1ZZJr�1 1.50 .30 5. Beam Fixed at Both Ends, ► 1.00 .40 Concentrated Load at Center f 6. Cantilever Beam, aI111 /_I1/1I_II1I .25 2.40 Uniform Load 7. Cantilever Beam, ► .12 3.20 Concentrated Load at End 8. Continuous Beam,Two Equal Spans, ;//z /77//// '. Uniform Load on One Span SPAN SPAN --1 1.30 .92 9. Continuous Beam,Two Equal Spans, r7ZZZ//Z7z2 7777 7///// 1.00 .42 Uniform Load on Both Ends 1 I 10.Continuous Beam,Two Equal Spans, Concentrated Load at Center of One Span t t i , .62 .71 11.Continuous Beam,Two Equal Spans, Concentrated Load at Center of Each Span 1 r i t t .67 .48 EXAMPLE I: f//////4 EXAMPLE II Determine load and deflection of a } - --p Determine load and deflection of a P 5500 ----+- 3'-0., P 1000 beam continuous over one 5 -0 5 -0 cantilever beam with a concentrated load on f support and loaded uniformly on one span. the end. SOLUTION: SOLUTION: A. From load table for P1000 on page 25 load for a 5'-0"span is A. From load table P5500 on page 52 load for a 3'-0"span is 680#and deflection is.35". 2180#and deflection is.09". B. Multiply by factors from Table above. B. Multiply by factors from Table above. Load=680#x 1.30=884# Load=2180#x.12=262# Deflection=.35"x.92=.32" Deflection=.09"x 3.20=.29" 18 ' : l` ;hil trut-The Original Metal Framing Hardware U N I STRUT` SQUARE NUTS HEXAGON NUTS ©DF EG FLAT WASHERS ©DF EG :p.44:'::41. gill tkk‘ili''':' 4.) Wt1100 pcs WU100 pcs Wt1100 pcs Part No. Size Lbs(kg) Part No. Size Lbs(kg) Part No. Size Lbs(kg) HSQN025EG ve 0.9(0.4) HHXN025EG %a" 0.6(U.3) HFLW025EG /4" 0.8(0.41 HSQN031EG Vie" 1.6(0.7) HHXN031EG Me" 1.2(0.5) HFLW031EG Vie" 1.0(0.5) it_ HSQN037EG Y6" 2.7(1.2) HHXN037EG 3" 1.6(0.7) HFLW037EG %" 1.5(0.7) HSQN050EG 1" 5.8(2.6) HHXN050EG '1* _....._4.8(2.2) HFLW050EG '/z" 3.5(1.6) e HSQN062EG %" 10.7(4.9) HHXN062EG s/e" 7.3(3.3) HFLW062EG 5/e" 7.7(3.5) HSQN075EG Yr" 15.4(6,9) HHXN075EG __..__...__.__..'W 11.9(5.4) HFLW075EG W 11.0(5,0) 2 HSQN087EG '/6" 24.9(11.3) HHXN087EG %" 19.0(8.6) HFLW087EG '" 15.3(6.9) _ HSQN100EG 1" 36.3 HHXN100EG 1" 28.3(12,8) HFLW100EG 1" 18.8(8.5) oa Z STEEL THREADED ROD ©DF EGI LOCK WASHERS ©DF EG 0 Low Carbon Steel Grade 1006-1010 Fy=36,000 psi minimum • 1�, F,=58,000 psi minimum z " �jy 1'£,:,--,-, l t` Wti100 Ft. Wtt100 pcs • tt. Sy � �.1 `�� 1201 ` Part No. Size Lbs(kg) Part No. Size Lbs(kg) " HTHR025 /4"x 20 13 s. HLKIN025EG A" 0.25 •.')\‘‘V!,\II HTHR031 a/16"x 18 20(91) HLKW031EG 6/,s" 0.41;0.21 , HTHR037 '/a"x 16 30(13.6} HLKW037EG Ye" 0.63 0,3) HTHR044 V16"x 14 30(13 6) HLKW050EG 'If 1 32 0.6G.' L7!:1,1E.:: '''' Standard Length 12'(3.7m) HTHR050 'W'x 13 53(24 0) HLKW062EG !6'' 2.20(1.0) HTHR062 %"x 11 84(38,1) HLKW075EG %4" 3.80 0.7) - HTHR075 %"x 10 124 56.2 HLKW087EG %" 6.00 2.7 HTHR087 1W x 9 170(77.1) HLKW100EG 1" 8.80 4.0 HTHR100 1"x 8 223(101.2) . y () LOAD CARRYING CAPACITY OF THREADED HOT ROLLED STEEL STEEL COUPLER NUTS EI DF EGJ CONFORMING To ASTM A575 AND A576 .11 Threaded Rod Loads Threaded Rod Loads for Piping Applications for Structural Applications ' (based on MSS SP-58) (Based on AISC,Steel Construction Manual, ASD, 14th Edition. Per AISC,Allowed Max.Safe Load • Nominal Root Area at 650°F(343°C) Tensile Stress=0.33*F�) Wi/100 Dia. In'(mm2) Lbs(kN) Allowed Part Length pcs Nominal Nominal Area Tension Load Number Size In(mm) Lbs(kg) _...__.__.___..� 0 0.068 730, s 2 HRCN025 /4"-20 Vs" 1.9 Dia. In (mm) Lbs(kN) /z 0126(813J 1,350(6 G1) HRCNO31 �6"•18_ 13/+"(44.5) 7.5(3 d ..- - HRCNO37 dap-16 1�/4"(44.5) 9.00(4.1) eh 0.202(130.3) 2,160(9 61) /4 0 049, . 930 - _._:- ---_-.._._. % Olio(710) 2110(9.39) 0.302(194.8) 3,230(t4 37JHRCN050-_________� ._�. _......__._ - t �___. �1 0.196(2685, 3,750( � , HR_CN_04_4 7/16" „-13 1 44.5) 10.0(4.5) r" __._.�. _ 0.419(210.3) ,_ 4,480(19 93) 1 0.552(356.1) 5,900(26.24) "_ " % 0.307(198 2) 5,870 t<n-a HRCN062 �e 11 2r� (54.0) 18.0(8_2) 3/< 0.442(2 85,4) 8,450(37 59) HRCNO75 %4"-10 2A"(572) 28.0(12.7) ") 1 -1 0.601(388,0) 11,500(51 15) HRCNO87 '/e"-9 2'h"(63.5) 55.0(24.9) 1 . -- 1 0.785(506.8) 15,030 r;6) HRCN100 1"-8 23/4"(69.9) 73.0(33.1) , 15/a" Framing System 4 :,,. CoRe PRODUCTS-TYPICALLY AVAILABLE FROM STOCK III