Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Report (3)
1 off'CE COPY /catena engineers IqtVeC-Ii2jrat 1/J., ' April 24, 2020 RECEIVED Mr. Chris Linn ' Bora Architects MAY 2 7 2020 720 SW Washington Suite 800 CITY OF TIGARD Portland, OR 97205 BUILDING DIVISION I RE: Art Rutkin Elementary School,Tigard, OR ' PROJECT ADDRESS: 1 River Terrace Blvd Plan Check Comment Response catena Project No.: 2018017.00 1 Dear Chris: ' This letter contains our responses to the plan check comments prepared by Rogers Engineering for the Art Rutkin Elementary School project. For your convenience, we have included the plan check comment in italics preceding our response. We have also included supplemental calculations that complement revisions to the drawings that have occurred since the initial permit submittal on 10/18/2019. ' Item #1: Clarify how reactions on calculation pages 53 and 59 correspond to the loads on page 63.OSSC Sec. 1604.4 ' Response: Refer to attached annotated page 63. Note that calculations included dead load associated with PV panels, which will not be installed on this portion of the roof. Reaction on page 53 was used for second force from the left, while reaction on page 59 ' was used for second force from the right.The remainder of the forces were calculated using cantilevered beam with back span equation Rb =w(L+b)2/(2L). Also note that span dimensions changed from the time that the beams were analyzed to the time that the girder was analyzed, hence the slight decrease in loads from pages 53 and 59 to page I 63. Item #2: Where do calculations specify beam size, connections, details, and reactions for pages 63-69? OSSC Sec. 1603.1 ' Response: Please see attached for beam analysis for flexural and serviceability of W24x131 girder. Refer to 1 1/S604 for GL beam to steel girder and steel girder to posts connection details. Item #3: Where is framing evaluated on calculation pages 97 and 98 shown on the plans? OSSC Sec. 1603.1 a connected series of related elements 1500 ne Irving street • suite 412 • portland Oregon 97232 • v 503.467.4980 • f 503.467.4797 April 24, 2020 Page 2 Catena Project No.: 2018017.00 Response: Elevation on page 97 of calcs is looking east on grid H between grids 5 and 7. • Post 1 was removed from the design and beam 7 on pages 94 of calculations was updated to match beam 6, no redesign is required for beam 7. • Post 2 occurs at grid 5.5 and south of grid 6. • Post 3 is shown on S121E at grid 6.5. Item #4: Where is framing on calculation page 99 located? OSSC Sec. 1603.1 Response: Page 99 is for 2x10 SS DFL framing above GL Beams on the roofs.This occurs at the roofs covering the gymnasium, commons, administration wing, front porch and covered play area. Item #5: Calculation page 122 shows SW1 length as 92 ft. Clarify how this corresponds to the plans. OSSC Sec. 1603.1 Response: See attached plan sheet with labels and lengths. Since the lengths shown in the permit set were less than what the original calculations show, updated calculations have been attached. No shear wall changes for SW1 are required. ' Item #6: Clarify the location of shear walls SW3-1 and SW3-2 on calculation page 123. OSSC Sec. 1603.1 111 Response: See attached shear wall label diagram. Since there were changes in the ' architecture that prompted shear wall revisions, updated shear wall calculations have been attached for shear walls SW3-1 and SW3-2. For SW3-2, shear wall designations have been included into the updated plan. Item #7: Clarify the location of shear walls SW4-1 and SW4-2 on calculation pages 124 and 125. OSSC Sec. 1603.1 Response: See attached shear wall label diagram. Item #8: Calculation page 127 specifies 19/32 sheathing for SW6. Sheet S 121E shows shear wall type 2A. Provide clarification. OSSC Sec. 1604.2 Response: Calculations have been updated to reflect the 2A designation on plan. Item #9: Calculation page 127 shows HDU8 holdowns for SW6. Where are the holdowns specified on the plans? OSSC Sec. 1603.1 Response: See updated plan. , a connected series of related elements 1500 ne irving street • suite 412 • portland oregon 97232 503.467.4980 • f 503.467.4797 1 April 24, 2020 Page 3 Catena Project No.: 2018017.00 Item #10: Calculation page 126 shows uplift of 9092 lb. at the north end of SW5 lower. Indicate the holdown required. OSSC Sec. 1604.4 ' Response: See updated plan. Item #1 1: Calculation page 127 shows SW5.1 wall length as 56 feet. Clarify where the wall is located. OSSC Sec. 1603.1 ' Response: See attached shear wall label diagram. ' Item #12: Calculation page 128 shows SW-M 1 length as 10.5 feet. Clarify where the wall is located. OSSC Sec. 1603.1 ' Response: Shear walls SW-M1 through SW-M6 (the shear walls supporting the tributary load from the mechanical mezzanine adjacent to the gymnasium) were reconfigured during the design phase and their lengths and, in some cases, locations have since been adjusted. Refer to calculation pages 361 through 363 and response to Item #52. Item #13: Calculation page 128 shows SW-M2 length as 11.5 feet. Clarify where the wall is ' located. OSSC Sec. 1603. 1 Response: Shear walls SW-M1 through SW-M6 (the shear walls supporting the tributary ' load from the mechanical mezzanine adjacent to the gymnasium) were reconfigured during the design phase and their lengths and, in some cases, locations have since been adjusted. Refer to calculation pages 361 through 363 and response to Item #52. Item #14: Calculation page 129 shows SW-M3 length as 56 Feet. Clarify where the wall is located. OSSC Sec. 1603.1 Response: Shear walls SW-M1 through SW-M6 (the shear walls supporting the tributary load from the mechanical mezzanine adjacent to the gymnasium) were reconfigured ' during the design phase and their lengths and, in some cases, locations have since been adjusted. Refer to calculation pages 361 through 363 and response to Item #52. Item #15: Clarify how SW-M4 on calculation page 104 corresponds to the plans. OSSC Sec. 1603.1 ' Response: Shear walls SW-M1 through SW-M6 (the shear walls supporting the tributary load from the mechanical mezzanine adjacent to the gymnasium) were reconfigured during the design phase and their lengths and, in some cases, locations have since been adjusted. Refer to calculation pages 361 through 363 and response to Item #52. a connected series of related elements 1500 ne Irving street • suite 412 • portland oregon 97232 • v 503.467.4980 • f 503.467.4797 , April 24, 2020 Page 4 Catena Project No.: 2018017.00 Item #16: SW-MS on calculation page 130 specifies wall type 3 A. Clarify where specified on 1 the plans. OSSC Sec. 1603.1 Response: Shear walls SW-M1 through SW-M6 (the shear walls supporting the tributary load from the mechanical mezzanine adjacent to the gymnasium) were reconfigured during the design phase and their lengths and, in some cases, locations have since been 1 adjusted. Refer to calculation pages 361 through 363 and response to Item #52. Item #17: Calculation page 134 shows anchor spacing as 12 inches. This does not match detail 2/S603. Provide clarification. OSSC Sec. 1603.1 Response: This calculation was specific to detail 2/S603. Since detail 2/S603 is no longer applicable, this calculation is no longer necessary. See updated plan. Item #18: Where is beam 1 on calculation page 143 located? OSSC Sec. 1603.1 Response: Beam 1 on page 143 are located on the roof of the admin hallway between grids Dx and Hx and span between grids 5x and 5x.2. , Item #19: Provide a schematic drawing with beams and headers identified that correlate with the calculations. OSSC Sec. 107.1 Response: Refer to attached schematic drawing showing beam locations for calculations on page 143. Schematic for headers is not required. Header calculations show maximum spans for each header size below the roof and below two stories. Refer to plan note 10 on sheets S122E &S122W and plan note 6 on sheets S123E & S123W for header designations matching header calculations. Also refer to these sheets for locations designated HDR for locations of headers. Item #20: Where is the framing on calculation page 182 located? OSSC Sec. 1603.1 Response: Framing on calculation page 182 occurs east of grid Dx and south of grid 5x. This is the west entrance which has a window wall system similar to the commons east and west walls. Item #21: Calculation pages 185 and 186 evaluate 3x5.5 studs. Where are the studs specified on the plans?Also clarify if wind loading is applicable. OSSC Sec. 1603.1 , Response: Double 2x6 wall occurs on grids 2, 3, 2x and 3x at both the first and second floor.This is type S6A walls. No, wind loading is not applicable on these interior walls. a connected series of related elements 1500 ne irving street • suite 412 • portland oregon 97232 • 503.467.4980 • f 503.467.4797 April 24, 2020 Page 5 Catena Project No.: 2018017.00 Item #22:Calculation pages 189 and 190 evaluate load capacity for the double top plate. Provide evaluation of fasteners required to connect the plates together to perform as a ' single member. OSSC Sec. 1604.2 Response: Double top plate does not act in as single member. Please find attached ' updated double top plate calculations which evaluate the continuous double top plate as two separate members. ' Item #23: Calculation page 200 evaluates the diaphragm capacity for 19/32"sheathing. Sheet S123 indicates 1-1/8"sheathing. Specifications on sheet S001 indicates ring shank nails. Specify the length and diameter to achieve required penetration and shear capacity. OSSC Sec. 1604.2 Response: The sheathing is called out as keyed note 2 on structural drawing sheet S123E. In keyed note 2, 10d nails are denoted as the fastener used for attaching the sheathing to the framing below. This notation has been updated to reflect "0.148"x3" nails". With a length of 3", the nails achieve a penetration into the framing of 1 7/8".This is greater than the required penetration of 10D = 1.48", outlined per NDS. See updated structural ' drawings. ' Item #24: Calculation page 201 notes RISA Floor has input with 10d at 6" o.c. The wall panel data appears to show 8d nailing. Provide clarification. OSSC Sec. 1604.4 ' Response: 8d nails were inputted into RISA Floor, as evidenced by the RISA Floor output. 8d nails are specified for shear wall nailing in detail 1/S601. Page 201 is unnecessary and may be ignored. No changes necessary. Item #25: Where are results of calculations for roof and floor beams in the Additive Alternate #1 as shown on calculation pages 204 and 205? OSSC Sec. 1603.3 ' Response: The results are shown on calculation pages 222-226. ' Item #26: Calculation page 287 shows beam M23 at grid G. Where is the beam specified on the plans? OSSC Sec. 1603.3 ' Response: This beam is M73. The beam, a GL 5 % x 12, has now been denoted on the roof plan at grid G. See updated structural drawings. Item #27: Where is floor member M49 on calculation page 295 located? OSSC Sec. 1603.3 Response: See calculation page 286. This beam is on grid Cx and one end sits on grid 2x. Item #28: Where is roof member M38 on calculation page 296 located? OSSC Sec. 1603.3 a connected series of related elements 1500 ne Irving street • suite 412 • portland oregon 97232 • v 503.467.4980 • f 503.467.4797 April 24, 2020 Page 6 Catena Project No.: 2018017.00 Response: See calculation page 287.This beam is on grid Cx and one end sits on grid 2x. Item #29: The Wall Results, Wood Wall Panels show axial check values exceeding 1.0. Provide clarification. OSSC Sec. 1604.2 Response: The RISA Floor models were not used to design gravity walls.The RISA Floor models were used to design the gravity beams and the lateral walls. No changes necessary. , Item #30: Verify the design of shear walls 1 W56 and 2W56 accounts for the relite. OSSC Sec. 1604.4 Response: See updated calculations and structural drawings. Item #31: Calculation page 337 specifies HDU 14 holdown for wall 1 W82. This does not match detail 4/S301. OSSC Sec. 1603.3 Response: See updated structural drawings. Item #32: Where are WP 181 and WP182 on calculation pages 274 and 337 located. OSSC Sec. 1603.3 Response: WP181 does not exist. WP182 exists and there is a WP183. WP182 and WP183 are on structural drawing sheet S122E. WP183 occurs on grid D from grid 1 to south of grid 1.6. WP182 starts at the south end of WP183 and continues south-southwest until it hits grid ' 2. Refer to calculation page 194. Item #33: Verify the design of shear wall 2W61 accounts for the relite. OSSC Sec. 1604.4 ' Response: See updated calculations and structural drawings. Item #34: Calculation page 337 specifies a HDU5 holdown for 2W82. This does not match sheet S 122E. OSSC Sec. 1603.3 Response: See updated structural drawings. Item #35: Verify the design of shear wall WP335A includes door openings. OSSC Sec. 1604.4 Response: See updated calculations and structural drawings. , a connected series of related elements 1500 ne irving street • suite 412 • portland oregon 97232 • 503.467.4980 • f 503.467.4797 April 24, 2020 Page 7 Catena Project No.: 2018017.00 Item #36: Verify the design of shear walls WP309, WP300A, WP293, WP296A, and WP296 accounts for the openings. OSSC Sec. 1604.4 Response: -WP309: Refer to responses to Items #47 through #51. See updated calculations and ' structural drawings. -WP300A, WP293, WP296A, and WP296: Refer to updated calculations and structural drawings. Item #37: Verify the design of shear wall WP283D accounts for the relite. OSSC Sec. 1604.4 111 Response: See updated calculations and structural drawings. ' Item #38: Verify that WP273 meets the requirements of SWPDS 4.3.4. Response: Although WP273 was designed as its own standalone wall in RISA Floor, this wall is connected to and in-line with wall 2W82. As such, it does not violate the requirements of NDS SDPWS 4.3.4. Item #39: Verify the design of shear wall WP267 accounts for the window. OSSC Sec. 1604.4 Response: Refer to responses for Items #47 through #51. See updated calculations and structural drawings. Item #40: Provide a schematic drawing showing the location of beams designed on calculation pages 344 -347. OSSC Sec. 107.1 Response: a) The GL 5 '/ x 13 '/2 referred to on calculation pages 344-345 is the GL 5 '/2 x 13'/2 on grid 1.6 and between grids E & F on structural drawing sheet S123E. See attached schematic. b) The GL 5 '/2 x 12 referred to on calculation pages 344-345 is the GL 5 '/2 x 12 on grid 2 and centered on grid Eon structural drawing sheet S123E. The GL 51/2 x 12 no longer picks up a girder truss point load at the roof (A 6x6 post, shown on 1/S401, was added to pick up the reaction from the roof GLs. See calculation page 395 for design of post). As such, the design of this beam is still structurally acceptable by observation. See attached schematic. c) The GL 5 1/8 x 13 '/2 referred to on calculation page 346 was later re-designed on ' calculation page 396-it is now a GL 5 1/2 x 19 '/2 (see response to Item #62). See attached schematic. d) The GL 5 1/8 x 12 referred to on page calculation 346 was later re-designed on ' calculation page 396-it is now a GL 5 'h x 19 '/2 (see response to item #62). See attached schematic. a connected series of related elements 1500 ne irving street • suite 412 • portland oregon 97232 • v 503.467.4980 • f 503.467.4797 April 24, 2020 Page 8 Catena Project No.: 2018017.00 e) The GL 5 '/ x 15 referred to on calculation page 347 has since been eliminated-it is no longer needed due to the framing changes noted above and the direction of second floor framing. Item #41: Clarify how calculation pages 348 and 349 correspond to the plans. OSSC Sec. 1603.1 Response: The post and footing referred to on calculation pages 348 & 349 are the post and footing on grid E,just north of grid 1.6 on structural drawing sheet 5121 E.Said post and footing were further designed on calculation page 351. Item #42: Provide calculations for the steel baseplates. OSSC Sec. 1604.4 Response: See original calc package page 81 for baseplate in detail 6/S503. Attached, please find calculations for base plate in detail 7/S503. Baseplate in detail 13/S503 is in full bearing with concrete stem wall and wood column (OK by inspection, no design of baseplate required). Attached please find calculations for base plate in detail 1/S701. Item #43: Provide calculations for square footing pads. OSSC Sec. 1604.4 Response: Attached please find calculations for isolated footings. Item #44: Calculations on page 350 do not appear to include vertical distribution of forces. ASCE 12.8.3 Response: See updated calculations. Item #45: Calculation page 350 appears to show grid E wall terminating at the second floor. How are the lateral forces distributed to resisting elements? Note that sheet A 101E shows a wall at grid E. OSSC Sec. 1604.4 Response: The wall shown on architectural drawing sheet A101 E is a nonstructural wall. The in-plane shear load is transferred from the second floor wall into the second floor diaphragm through the use of sole plate nailing and through the placement of the strap directly south of the wall (refer to grid E, north of grid 2 on structural drawing sheet S122E and to detail 1 1/S605). The overturning forces imparted by the termination of the grid E wall at the second floor are transmitted through the following mechanisms: -At the south end of the wall, the Simpson HDU8 transfers load to the HSS post below through detail 1 1/S605. Thereafter, the load is resolved into the foundation through the connection of the HSS post to its footing. -At the north end of the wall, the Simpson HDU8 transfers load to the perpendicular wall below on grid 1. That wall resolves load into the foundation through its Simpson hold down at grade. a connected series of related elements 1500 ne irving street • suite 412 • portland oregon 97232 • v 503.467.4980 • f 503.467.4797 ' April 24, 2020 Page 9 Catena Project No.: 2018017.00 Item #46: Verify that calculations on page 351 for grid F account for door openings. OSSC Sec. 1604.4 Response: See updated calculations. Item #47:Calculations on page 353 do not appear to include vertical distribution of forces. ASCE 12.8.3 ' Response: See updated calculations and structural drawings. Item #48: Calculations for grid 1 on pages 353 and 354 do not appear to include the upper opening. OSSC 1604.4 Response: See updated calculations and structural drawings. Item #49:The evaluation of the short wall on calculation page 354 does not appear to ' include the provisions of SWDWS Table 4.3.4 footnote 1. Provide clarification. Response: See updated calculations and structural drawings. Item #50: Calculation page 354 specifies HDU 14 for the short wall and HDU8 for the long wall. This does not match 1/S301. Provide clarification. OSSC Sec. 1603. 1 Response: See updated calculations and structural drawings. Item #51: Provide uplift calculations for the footings on calculation page 354. OSSC Sec. 1604.4 Response: See updated calculations and structural drawings. ' Item #52: Calculation pages 361 and 363 do not appear to include vertical distribution of forces. ASCE 12.8.3 Response: See updated calculations and structural drawings. ' Item #53: Clarify if the PV rails on calculation page 367 have standoff legs creating concentrated loads on the supporting members. OSSC Sec. 1604.2 ' Response: The PV rails will be attached to a standing seam roof system. As such, the loads from the PV system will be applied onto the roof structure as a distributed load. a connected series of related elements 1500 ne irving street • suite 412 • portland oregon 97232 • v 503.467.4980 • f 503.467.4797 April 24, 2020 Page 10 Catena Project No.: 2018017.00 Item #54: Clarify where the members on calculation page 380 are located. OSSC Sec.1603.1 Response: These members no longer exist. They were eliminated during the design phase and were mistakenly included in the structural permit calculations. Item #55: Clarify where the members on calculation page 385 are located. OSSC Sec.1603.1 Response: This member is the wind girt for east wall of the east stair of the base bid. See structural drawing sheet S122E on grid H, between grids 1 & 1.6. ' Item #56: Detail 14/S605 specifies (16) nails to the header and (6) nails to the studs.The (16) nails should be in the supporting member. OSSC Sec. 1604.2 Response: See updated structural drawings which reflect this correction. Item #57: Where is the HDU5 on calculation page 389 shown on the plans? OSSC Sec. 1603.1 Response: The HDU5 referred to on calculation page 389 is located on detail 8/S301. Item #58: Where is the mezzanine beam on calculation page 389 located? OSSC Sec.1603.1 1 Response: The mezzanine beam referred to on calculation page 389 is located on partial plan 2/S401. It is the GL 5 1/2 x 18 that runs from the north end of the mezzanine to the south end of the mezzanine. Item #59: Clarify how calculation page 390 corresponds to the plans. OSSC Sec. 1603.1 Response: These calculations correspond with detail 1 1/S801. Item #60: Calculation page 391 appears to evaluate studs at the basketball hoops. Where are details for connectors or installation? Note that sheet A 101E indicates the east and west hoops are ceiling mounted. OSSC Sec. 1604.2 Response: The basketball hoops were a basis of design item and a final product had not yet been chosen at the time of permit submission. Maximum allowable loads that the double studs we specify can resist are listed on structural drawing sheet Si 21 E, keyed note 13. Connection of hoops to studs are by the hoop manufacturer. See updated drawings and calculations for support of roof-mounted basketball hoops. Item #61: Clarify the location of members evaluated on calculation page 393. OSSC Sec. ' 1603.1 a connected series of related elements 1500 ne Irving street • suite 412 • portland oregon 97232 • 503.467.4980 • f 503.467.4797 April 24, 2020 Page 11 Catena Project No.: 2018017.00 Response: a) The "DFL #1 2x10 @ 24" o.c. on west hallway of 2nd floor" are located on structural drawing sheet S122W and span the narrower portion of the hallway between grids 2x &3x. Structural drawing sheet S122W, keyed note 3. b) The "DFL #1 2x10 @ 24" o.c. on east side of 2nd floor" are located on structural drawing sheet S122E between grids 2 & 3 and grids 2x & 3x. Structural drawing sheet S122E, keyed note 3. c) The "DFL #1 2x8 @ 32" o.c. on east side of base bid roof" are located on structural drawing sheet S123E between grids 2 &3 and grids 2x & 3x. Structural drawing sheet S123E, keyed note 5. Item #62: Where are the glulam beams on calculation pages 396 and 397 located? OSSC Sec. 1603.1 Response: These (2) GL 5 '/2 x 19 '/z are shown on partial plan 1/S401. Item #63: Calculation page 492 specifies 1-1/2" diameter extra strong pipe with 5/16" weld. Where is this specified in the plan? OSSC Sec. 1603.1 Response: 1 1/2"x-strong pipe occurs at stairs located in commons at grid Kx between ' grids 4 and 5. Refer to 35&63/A561 for architectural stair section calling out sch. 80 pipe with 5/16" welds. Item #64: Clarify where the headers on calculation page 496 and 497 are located. OSSC Sec. 1603.1 Response: Header on calculation page 496 and 497 occurs at the first floor north exterior elevation between grids F&E. Refer to 5/S301. Item #65: Calculation page 506 specifies footing top bars as #7 and bottom bars as #6, whereas page 522 shows top bars as #6 and bottom bars as #7. Provide clarification. OSSC ' Sec. 1603.1 Response: Calculations have been updated for consistency. Item #66: Provide calculations demonstrating the slab in details 1/S506 and 2/S506 can resist the lateral force from the retaining wall. OSSC Sec. 1604.2 ' Response: Refer to attached calculations demonstrating adequacy of slab to resist retaining wall lateral load. Item #67: Calculation page 527 notes #5 transverse stem reinforcing, whereas page 552 shows #4 bars. Provide clarification. OSSC Sec. 1603.1 a connected series of related elements 1500 ne Irving street • suite 412 • portland oregon 97232 • v 503.467.4980 • f 503.467.4797 April 24, 2020 Page 12 Catena Project No.: 2018017.00 I Response: Horizontal #4 rebar @ 12" o.c. is sufficient. See updated calculations. Item #68: Calculation pages 568 and 586 note #5 transverse stem reinforcing. Detail 3/S506 shows #4 bars. Provide clarification. OSSC Sec. 1603.1 Response: Horizontal #4 rebar @ 12" o.c. is sufficient. See updated calculations. Item #69: Specify the height and provide calculations for the 8-inch concrete wall in detail 2/S504. OSSC Sec. 1604.4 Response: The wall travels with the elevation of the stair. As such, it does not have a , constant height.See updated calculations and structural drawings. Item #70: When available, provide calculations and details for the north site retaining wall. OSSC Sec. 1807.2 Response: North site retaining wall is a delegated design item.The detailing and design of the wall will be provided as a submittal during the construction process. We hope that this information clarifies the project documents satisfactorily. Sincerely, R ' TU 41470 • I R Qo ►o EXPIRES:00/30/2020 Jason M. Thompson, S.E. Mike Clark Principal Engineer a connected series of related elements 1500 ne irving street • suite 412 • portland oregon 97232 • 503.467.4980 • I 503.467.4797 lc ate na e n gsi a rs 111 Art Rutkin Elementary School Tigard, Oregon Plan Check Comments I Structural Calculations I I ,�SVCT 1 � '� 4 Vili* 11' 0 4*CH 0,tti4 c`► I ,s�Q6'�/ EXPIRES:08/30/2020 I catena project number: 2018017.00 04.24.2020 a connected series of related elements 1500 ne Irving street • suite 412 • portland oregon 97232 • v 503.467.4980 • f 503.467.4797 IPage 63 Project:RUTKIN ES No: 2018017.00 Page: 2/3 I catena Subject Covered Entrance ETABS Model By. DAA Date. 10/23/2019 Response to Plan check comment#1: - NOTE THAT CALCULATIONS ON PAGE 53 AND 59 ASSUMED PV PANELS ON THIS PORTION OF THE ROOF. PV PANELS WERE NOT INCLUDED ON THIS PORTION OF THE ROOF, THEREFORE THE REACTIONS ON PAGE 53 AND 59 ARE CONSERVATIVE. BEAMATE MAIN SPAN CALCL T POINT WER ONSRFORMER—HENCE AND CANTILEVER DT E IMENSISMAOLLER PT LOADS BENS L REDUCED IFROM TggHEFF -REMAINDERTIME THAT THE WERE CA ULATED USING CANTILEVERED BEAM�'IT ACKSPAN EQUATION Rb=W(L+b)^2/2/L. 1-DA,CATENA 04/14/2020 v 4 i LOADS FROM PAGE 3. i LOADS ARE LIGHTLY LOWER ECAUSE MAINlif Z PAN CHANGED ^ LOADS FROM PAGE 59. FROM 22FT TO 20 LOADS ARE SLIGHTLY FT AND LOWER BECAUSE MAIN IANTILEVER SPAN I SPAN AND CANTILEVER HANGED FROM 10 3 X /V\ SPANS CHANGED FROM rT TO 9'6". NOTE, 9'-9"TO 9'-6". PV PANELS WERE NOTE, PV PANELS WERE STILL ACCOUNTED ETABS Dead Load Applied (KIPS) STILL ACCOUNTED FOR OR IN DEAD IN DEAD LOAD. OAD. I AA1 EC GE 9 F 1 1 I Z I - X 1 ETABS Snow Load Applied (KIPS) I I _ :::: +'-'yi�\ � NU 4501216 Pagel/ ager I Ccat:na e V } ay: / 2. � P iic w (k S .4) 0AA oy rn/ Comment #2 I ov pAL. TMnr(t G,!R CIE ._ uv GR) () AS gE*1 N 1 X i tx ° 1 , u = 21 -k - I 4 13d W Z.6 2 tAd",1L v 1 mr , 0),<f A__ I fyFiTcriow$ yi( '7 /J IQN1ILEVF VI 1-5L ::: Of 1‘Zi n ---21--//227-A 1 1\:-.07\ 1 1;mi, 111 ( , NT(A cPAN o i5L-11il I a fk froiA):: D. ()a2,2 I 5 pvii tAtilkEvtu. I 1\ V \ d YbfA1J D , ° 1) �} = �pa I I Project: ,`-1 No�:]��/�) 4{ Page: 2/)— i C a t e n a e n e < < : Subject: ` By: 1 ' 11 Date' 1,4 0--'19 • Comment #2 14 ,ei five A 7-Efi. 6-1 R,0-Q torfiAc 1"oYS4 IL i svA C-1 ifAak[G- LAP/IcaYt 1 i ls Fa = sOp 5 i I bz,L r /Tr41- bWzU;03�) 1 STTEI, 6-1(�D R 10 Gauunivl 5Ni$010 NI I (40 ,d5 TS : ., , i Ok 6y ifof T.c1`o N 1 r5r /stO i 1 1 1 1 1 I I SW1 Wall Height (ft) 23.00 Wall Length (ft) 80.33 Total Shear Load (Ib) (from 37100 Seismic) Design Unit Shear (plf) 462 Design Uplift (Ib) -9303 Max. Spacing of 16d (in.) 5.86 Max. Spacing of A35 Clips 16.89 Max. Spacing of 5/8"dia. 4.09 Anchors (for DF) (ft) Shear Capacity for 15/32" 640 sheathing w/ 8d @ 2" o.c. No holdowns necessary. Use 4A schedule. Item #5 SW3-1 Wall Height (ft) 15.50 Wall Length (ft) 9.92 Total Shear Load (Ib) (from 4595 Seismic) Design Unit Shear (plf) 463 Design Uplift, No Dead Load 7182 (Ib) Design Uplift (Ib) 6098 Max. Spacing of A35 Clips 16.83 (in.) 07 Max. Spacing of 5/8" dia. 4.83 Anchors (for DF) (ft) Shear Capacity for 15/32" 490 sheathing w/8d @ 3" o.c. Use HDU8-SDS2.5 holdowns w/(3) DF studs. Use 3A schedule. I r r\ 1) I 1 1 II (I) I Shear Wall Label Diagram NNNNNNNNNNNNNN T TTTTTY.' � w /' ` ; -- - 4<'-9" 11 5 ,� � sal' SW (��-- --3w� i ® ' w �• � S 1 TC— 1 no4v1 Ilmml s� O , /, Ti s 1 cia LOcaNc O.C I N EL.,TZ$ D G 71 wnus IMBICN I\—OfR123.ISo.C. I,O.STEAMING ~� (1W� > WALLS.IIDN U Al �! EL I01-IP 4 y / N h N S®1 T Gl'mb I/ !� J R -•iii G IB SWINGER /^ yLO N I HD l ® vM� V Imolss N� 1 � moles � ® II II - __._-� I IR 1 il9'I-�OISS®�s c. J � ® f� —_—_—_ ssw 1 41 _i`1 SW2 _I ' T I4 11y 56 ttPAIIMERIQRW;LLSPLOYM le �'4)i Ii WAtiIWQN.i >>��� 19 O oS` 4101 dIt N. 'I Cn U MIFCRM / �� I ill��;. iSW3-2 l l SW3-2 SW3-2 SW32 anI 3-1 Is<r _ �_—_—_ —_—_—_—_—_—_—_—_— J iT3 II AI�M ®22-� J �12._0"� e\ �12-0" (sl�com+� SW3-Ronli'..� . CORNER K iii, SIMS ® ' At FLOOR SA]1 1 1 5•r IA.gal®SM 1 1 1 Vit ,^ W E E MI 111111 11111111 r MN IIIIIII wi INIIII N SIM IIIIIII MI MI ail EMI MIll NM MIN +r i SW6 Wall Height (ft) 19.5 Wall Length (ft) 57.00 Total Shear Load (Ib) (from 19900 Wind) Design Unit Shear (plf) 349 Design Uplift (Ib) 3845 Max. Spacing of 10d Nails on 5.94 1.125"sheathing (in.) 1 Max. Spacing of A35 Clips 22.34 Max. Spacing of 5/8"dia. 5.41 Anchors (for DF) (ft) Shear Capacity for 15/32" 530 sheathing w/8d @ 4" o.c. Use HDU8-SDS2.5 holdowns. Use 2A schedule. I Item #8 1 I I I I r I SW3-2 Wall Height (ft) 14.50 Wall Length (ft) 57.42 Total Shear Load (Ib) (from Seismic) 24505 Design Unit Shear (plf) 427 Design Uplift (Ib) -5639 Max. Spacing of A35 Clips 18.28 (in.) i Max. Spacing of 5/8" dia. 4.42 Anchors (for DF) (ft) Shear Capacity for 15/32" 490 sheathing w/ 8d @ 3" o.c. No holdowns required. Use 3A schedule. SW5 (Lower Section) Wall Height (ft) 17.50 Wall Length (ft) 27.58 Total Shear Load (lb) (from 11888 Wind) Design Unit Shear (plf) 431 Design Uplift, No Dead Load 7542 (Ib) Max. Spacing of A35 Clips 18.10 Max. Spacing of 5/8" dia. 4.38 Anchors (for DF) (f) Shear Capacity for 15/32" 895 sheathing w/8d @ 2" o.c. Use HDU11-SDS2.5 holdowns where HSS to stud detail is not used. Use 4A schedule. I Item #10 I i I I Shear Wall Label Diagram TF-o� a�`sHD �1TP. r= T - % FOR HQP HOE I CL630%99 , - ---- T I RIXDINGD247777 s ® 0 N L1ERNn1E la ti 2 1 III fim. L .! all ®ttP ,-<›.„. _ _� 15 lil IX63IR%IR J I1 III ' 9 I♦ I 7 F -7 i r ll HI H41r 5 316t I 6 II=lIS I,®IHS H JJJ1 T _ smx r I li 0 0 ( J_ XOR NOR HOR HDR HCP _F HDR HCR T. -�DR _ i� it _ ____ -ENO OF GI. M. I 11 OL. R%21 [ Il r Ai n X xix P w s �: ® H"` �I �� nst a e I rvP ® PI 1 ILI LBSI Vi%11 886 68 (p 6 ( sF 1 C A a n e m l I u A 5 61 All A 1 0 q I Is 1' _ wxGAL ANQEJNDI V.Z-X9UVANII l A1D '\^ "� _— _ 1 ___ ___1_y®_ LVANIiFIn 5� -��rs: __ r a _ y�. fi T I— I t " `�© I I ® I —J I f\\ I I 1A s1EAmMG44!, 19 ,s I IN/1 11111 N. INN NEI MIN Nil 1111111 INI1PM I II 60 I 50 I 40 I 30 I 20 I 10 I 0 I o _ _ sa k,.'' 0. ar COMMENT #19 : .a o oxp s.a, ..,., ww.w.--ao o--...,—,--- -- 0..- K. B O RA ' 7 o�a `°. m :'. ` o=",4 7i °xis. 7 am �x ti o =,n, Q ' /DQ Y 4 4 4 I, -a.-,w 1 1 I 1 I 1 fir % p! ' / ' /Ir / ', �ar;�;. , 1 zta i .a -I /• ''. �a L(.?, , tN 1 I T / s F�,<- I � �' . �� T �.E G COMIVINN 3 � . N %/ , • I °' . O 4 A ; 7r �� GY Mr � R� Iro, GYM o� / /r R / / a, a x u u R ® u ul u J. 0 u lu ali 1 F r• 'i a e 1 1 a o a 3 e '11 a o �) II 11 _ — Z W MEDIA LU 7 _ , _ Z / / I 3 ///r `/ . ` ICI II .y 3 Y a r .. / ® N. CC >� 4: Qw /` r ? '< i ® HO. CAI 11' a aI i 2 ',r1 .'If: / _ - .i d P a P a 2 — xi 1 „L1tl19 B0ILCEIWYI / d -� I.aJ, C o ,.. a _._ — .—, — w.ee o.a oescv�m a. — c �m m A arr a-imms sa. Yq>lph 0 I KEY PLAN: , /i 1, 1 ��°,, 0� 1 1 4—�' 1 vmrnn SET 1,,,,,/ ROOF FRAMING PLAN- '' 0 ROOF FRAMING PLAN-EAST EAST I S123E 60 I 50 I 40 I 30 I 20 I 10 I 0 I I I II 60 I 00 I e0 I 30 I 20 I 10 I 0 I CP)�> / C)-� (C) I - BORA COMMENT #19 � _ A 1 /Fj yam\ I ffi — �_ p �\ a / , _Ir o _ ' x ' �a ��� .m. 6 /S4 i^ ,, ' m '` n ti\ \ ,a u,' �yxx w'i k 6 „� 4, O i A/ l - \ imh , 4arx < '' eO cn..".....,..,.u...°a.,..n¢rw somesihrrosscotarmao / I ! i Po;; — //` ADMIN HALL ad,n,,,. /o, i/ � 4116.7"i / i ct / 'men`''''''11;77:-. ,7'--", T„ i //' ....,i_ii w:// / // ' /- el, . is a4 / / / J W , / . , Z i' ce w d _ ti' / > m:' —� _ �� �� t" / awe / � i i — \\ \` — MOK SATE JESEnc M . Dx�- Wad � 10,18,2019 `\ `\`\ IY,0:: / Sac 1 \ / / KEY PLAN m v�vy / 1 / /y/ , 1 PER �� / PERMIT SET 1em, Hx), IROOF ST FRAMING PLANWE 111 - OROOF FRAMING PLAN-WEST Lx S7 23 W 60I seI ao I 30 I 20I 10 I 0 I I :::; , � NO: Pa e: 4 241 Cca - *4k tena : n 9 nleten 9 Y. d All b 4�� 1 5/174 CbA'l \ ffi #2L (ALc UPIArH TO 1Iei rAP PI ►�� f AY' ` I �' z.sK I03.0'0 . -- (AL( (11714)-;,0 ---= :4. I "Ak UppArto PAtC• ----E-- 6 . 11 1n , 6 I x - . ( -r)( 5 -5")( (. ; 12-= 9 . ILS it)3 1 fib"- P\\k/s� 1 IF Fb I000 f5% JL , AND ( ` t " I (p = I. ) 5 Es NOW] I ( r _ 9. 1 1 Fir - ;112 / 1psi b ' , L e41 1 01-f coori (5-riu Aso/tip/E. 1 goo 1Wpamt9 0 I P L3 P-z.1n L'0U��( 5.1 it 17/ dqjiao 5, j:__0,03,,,,-. z I Project: No: Page: Ieatena e` ° ng`lne° "ena Subject:' R%;14;, 20124I'1 nra B Y' Date: r • t NAclnc.r , Rtrimanst. : .1-:ern .3o PM?C. '{ ; Yzezo I - zwSB • Govwn' R!5A f '.FFt i5'4` -7{ I1vSa : '►l =52;7 iC'?�,7"s2.0151:iiAS i • ,ZW.S'/ : ' =437 ;b•P,`j'dp.4: iixt ItJ 134 9;4 ti yP, • krcIS-F t4 r ^ariq�? .bg, i 7 ! k2cli, i r4a1 UVe 2.W5fl .F--- i, I P 3'a" il I • _ !G.S4. • t s134 1 • � c��r�t t1� (`D - { r��3-�r�,\ y-� ,�I , s I. --, � ne V ;� -�ara�r '.x>� ;�4ko! an A^...sQ.4�5+' f • I-r(;.i A5 'n x-., -' = 0.11, .YJlz Aem if I Aa r h r'S stt tK� g( • 'f . .7."f It E - I• tto tb, s`L, 74 • (z 7'!4.5 :I.:tS-o,I2s. 0.5 .1" 4- eY ,z.a14.5.t't.2S-o.t2s-i”i; 1 = 4zarl:iP ,�f r ' •1 r lsb+. zw o r i_]!+.~a 5ka lifer wui tut 3"3 eif Ail a rrv,1 uQ :,4.) I . "!�}� I.;IOD:bs'�}iT'F i9SCI•z'`'•o.t2S•t45171 + !.it'� (1.25'R2S•'4.5,.2 214I4}D> ii-214./' • pe+-br+tmmi.$ Wxu: !W5re 1 r 1 • 144 '3.3343.5l: / 1 i . � • k= Ia 1 �rt3.15f: -r 43� r Y y3—?s^1i L.4.0.,r . . t.03 �; ,n, ,agt;a % i , r A,,a Z 4 : ni. - • . :u +w .mod ' -, Ia+ I ; I • -r,6x1 41,1 EL; = .•tiip Ir ,'/ r1.4'-4 + =1.54',•` 4'44115) i 17 L!44. 3 milt rFYov14 .,.r%1 A' '.4 'z :roof an 4r, rolerc: I I I Project: rs No: Page: I catena `°°`° "' n9 1' e npine ers Subject: By: Date: h3 I ' : I • A UL- a;4 KisA wow. :, • 1i S 0 It•r 5`8 --510 14' 8 ' I ' Perberk S+ar h1 � • 'f o w.,,,,S 15.15`e g 2.45< 3.5/ 3,10 [5-,1 1 c r yi,f colLi - �•-->• y='f21'44-26-P`?tn = :Da6bli 3,`t • `!i r I9 gin + (2-•. -‘` iS)(54t-tri) _ {8.45;? r �, • � i•1' ��;3-z f I-io}ill.'-; z I.: -)1 'asp 611. in� An :i>wd bC444 M 1 i'�r. I '� • t'= ti+ is : 2f11'.1 :-CI:S3/ 'rO11f &; • A e s 5`• 3':5''F 1,24 • yl,. 154, j ? , • _.NL'^,..Aa ; CO .vQtr � _` "' ,• (1tB'1 lLi'� r-- �TA C�y~i ib v�d�3 Alt.� 2+‘,1�/,�kg,' ianei{ � Z ,,. 5 >.:?S S• r} f�a;ld i: �n� ,2 564�'� L. I I I 1 1 Project: No: Page: ftena "" , uifi IF+ F 20tc �' ° ' " ° • ` : Subject: By: Date: • 'Na,6; ►N F33SA • fikti4 P At '4 •Ts 3.905 - • 3c5t bias, Ali • /t/ _1' r,tt ' • P64717 r tad • k rh n•,,, = 1541!b.E? = ;.5 <2 / • T: C Vh'G 1 ! Trew r `Talk L'Od/iL;<I 5143S —' rHb'J$ 41716L• 304 -i 325_ e i ' n= 15 . L; : 13.5 o!p s23.S-F, I : ?33 0.221 • vot,1u l r a'trio i - 0. 33• jti aD!�r,c? Z 23.5 4.t - l aGilj to } 'S 'c ✓. 1 1 i 1 1 i I Project: � No: 'J/� Page: I eonsu 'flog WS ?a� rl %•✓� . e a to n a e n g i n e e , s Subject: By: Date: N. client, ?,attr c. :wcm 3f, i.l.F'. 5 I J • W�1R. WP3CDA r- 1 f s 33={ lb;P r Ttok, 1s tee, Rol! 04. , ftekt.4 SRtt/1rpU ' �i .e�7/ • 114 , s I S-C. 5 = 343.5 / $ 51 ' ry C.051 • VT33931 •ig*S ( 2L .r . ha iS44 ..• I • .L: 7 ;04 4 (2•5f;5)(5€a i i3•4i;n l �/�,,� • Cc) , r;�f 3-2r1, ;,�,};�r L; = 0.99 -� { � n e""� :� =et,.s1+v1 pact ' ��,v ‘� I - 1 • Y 4' : co 14i 2Li - ;• il0stb!1,12 .i, { 1l,25-o.sas•1515i(11np(K4f !i{2 j;5.'7 t!u;a; ZIb 1i�:Vt I • gj = III i.j4 NA. • ., 4.41, RYA rea. ':r. jay 14; s I - 11 'io : ,z.tii & 3.-V. 77.1 pis' • T. 0: All 1 C44 L; : Hiss li, -- CUB 1 - .t;: (2--�.,6)(g4,4} (2.7i,5)r71s4. ��?l? ! ` ' � ?` i I • Al =33.SW1' t .. — i ' • r 0.$i co0A3z Vud•.d : G,vita v`- . (0.93Z) ( alu4:tlyz.7lS .� .1s-013�• iV 7) :( 0 y42 744(4•L S-S.zS')5 j j . I 555 it ---> iSo 4.0 2"a o fpa I 1 I Project: No: Page: cp �r�?l�;n S 20lg017 �_I e n a e ^ e', n ie e n i Subject By: Date: ROAC>rol.Pc " : TtUtl * .s- Mit 41!ti2 r 1 -74 • 'U = 32_1 16A ory, iiv,4 ei,,w giiA I .k314 • i : 0 Wks • 1 �t+FE�. 5�#7 WI tl . r , �064c,� =3 <3-s/ ,rke-$' `� ID, • T=r = './k/C,xt; = if I • V=3z? 16/41 • 1? =526ib 'lf•, •z-. - lob . (2-1AS) 5412 `34I `:n -/" 1 •Ao 2`tf$:' •r= e•Si3 -C O.4° -+ I >m M I • y ' a � -. r 11001bi402-14 + 9uo6,t-1 •f4•(.2'SAS 21-4t2f-iS/s : 710ini3 ).5wg,✓ `` • W&.'i WPZ 'i • ^l b. a -Cwt.:. -tio^, MA em s o.0iji ' S. r_ i 1 , 1 • 1,io . i517 .2,?N s 7'---7.1i___ ,I7 yi 5 r z Vh f C, L; , - '(ioailbip ;74 :121 b ; f • II.; .c (Z•3/�Sa(71(2y ' i3 • QocZ{ —' _ I - rc C'-K i c4 s 0 .81 ---•-^, I o.a1iw�;•17-4,b.$1-j31 =0aRy1e3t> 1,ii.gt)ziedR4t t,j,gt S' dN tas 1 VoPt,ol ; C644.1( £L; = (d-` Y,llGOib,4 z (4 74}�z•745)( .25-0.t2<•i5/7)j : 59291I/ >'�3UUio I 1 I I I Project: No: I K`}t- Es /j [� s Page: C a Con• u 1 f 1 n g �tdA 20i2Di n s ° " ` ` ' ' Subject: By: Date: 4r2 • WG.,• 'N P 2$3 D _.._____ f I • '►! :``t33 114 - ' . 0.445itr 1 • `nj6Nett- ri5l5s=2.13<3.5 ,f _s`V____f 3�`�?~—,7i4' r /i5 1 . 7:t•,: fitic,LL; %� • V r`f33!b•25.154:;'L'!"1 tte orI .11::l7 25,4 a(1.5 5t:5XS.S I r a _•t"- • A,rz34' I •Co f i-i i -4 r ---r re c er 440,, v)401. Gaut ar, perwtiew ' esi,.W! t a 't0 it.4 = (i!oolifttl2:i1 17 2 , + 5,5 2.5,5,15)(f.F3-W. l:5l5.0 j r jSrjij } IIat ) S;tarw„{ lvvv' ■ ' l _1_ 1 I I I I I I I i Comment # 40 I I I I . I 16'-4" 16'-4" I I I • I illi I 1 9 \ 5604 Immill � 1111 t G2 L51/8x18HDR I GL51/8x18HDR I— — — — —B - *NO UI \ II III II'I 11 7/8"I-JOIST @ III NEW III 32"o.c., BY OTHERS III SIM^ �,.o. _�EAr N� I ECY .12T-85/8' AI II II 4� ILPSON AC6 I I I 1.6 POST CAP 4� . i S604 II AA :NU-2MX WI. I�J�'51/2x131/2 GL51/2x131/2 °°`� 8 0CP HRV 11 7/81 Ilk "I-JOIS1 @ 700 LBS H III S604 D �LBs 32"o.c., BY 0!HERS • © �., is I LS *191" IDS - ' Mk 1 I ROOF III ®SIM.B HATCH _ HDR 1 - - - _IL - = OE 0GL 5 1�/2 12 H DR 1 bb 4J I 560 4( 1) PARTIAL PLAN - MECHANICAL MEZZANINE 212A I Project: No Page: I Ccatena : O9' Itifl ° � K iA poi AGI Subject: e: PO N CAfiC1 ii- By: Dated at PAS Q N//5/74 I (0 v1M t-n/fi y2 6A5iftArb ? 5.W3 I IVOC z') 3' :. ' ICl/ i ny /4 p ' l4 "x riv49J ll lig1'1 C� I Aee 4 acVvc 4 YA gP io ;:.-1, I , A .-_,- ht bri 1 0 O' ¶5J'1 A, ,q ,r1= 9k5/ X ffR OF?MN4L CALLS P4 ?e aEARl i,_ ,70 -i i • i .x rt (ARAciir: EA itv ' or I �r�, LY------- �y 3�N� � �� I 2 4 _i I -0. bi ) b( (2.-"i 5 - e.- i)rot\ ,z_., 70. 5X1rs -I -, u5b 1 ) k - \\001,‘: )25n 1 I I Project: No: Page: C-- 41 tena °" ' lik\aK N 4 INui a 0 d e n �n e e r s SUbje i A N B EZK .+ 1 By: /�Adi Oq} �V j e O r Un&N r ti:L 1A5 E el-)47- V5 70i LAL t s o EA DtiS 1 G i G-ut 1] / wokaJ I A613 :1e)2 = 25Z14*-- yilgp = / 02 " fa I if I eofvc Try = (31 ifi )2911vtif-. \_ f) (AM/ ;i ori" 1O (Y(R 7F� I J � ��� -9 A , a �5 /le ' R�,Lff zij5.dOO,n-pszb 1 c 10y5 )4►)P 0 J 0.6.6 ,B-1O Pjp `-i ti55 - li b A6 Pt-�� � (=t��k U P,(4I 5-1K,t Of I ek, pi_-_-, 0 F-‘ 77: (P fj -iCi (4) t 1 , . oil,n , pk, w iz 1 v P 1 . 5 I 4, I PTA is t ..f /0 I 112 K 1 P3 --9 Ai‘-- e UNE R-En et-1 y I ARA, ESL Ai Dill,, " ._ 2 0010P3 0 ' 't.t%1.Zh+l.ds=)211►c)6. • I Project: No: Page: i catena cnn� u ���nu RSV) ES No: � na � n ee � s Subject: By: Dole: P6t Ohc:sc_ ftswoue. _ tm 2- M.PC 4/117 n • pztrii 4be pss rE4 an sizIE E, rk} ro4' 64 1_6 *ph En { an cam+t caw ruslar, (K. a cola: 0nrot 357 ) • Po, s 310.1 ivrs ' cow 1 SM s1rtss on brsc Pt t 9"`1Apu = 8.9 ktz ✓ oivay icy snt iim . R7ts k�SSxr��tf¢a f.3irii __ __ Tu : 3.745 mu :TA ;I.Z3514::111? /r ---,. -) 41AnPt= ¢bSwrY r lo.k5 �n . Fy r 31.to, • (ti, 2 / \. �x r . bP FFC +K G (1214)(0:rs:AY Bopi_ 1 I I I I I I i I 1 1 I 1(atena f u 1c; S .2/DIgS017, �y I f4. 4-'i.� /VT Et K/ 5/^d [-KS Pcs3- Uri,* cflek ' cw/5 NLS Prsf: I �r�7vr 56mr wrAi aw^w' 7�c;c I✓ - + ?.S` I-; N ` = d.{,(tck) co.7('',Sz k) fz. I k > 0 , No oe, 1 $cse lc4e Saes ozf oee,9 +-t be ciecke #nr etc:' f- I I I I I I r 1 1 I ��. Project: �v 1�I N N Z0 1 7U). �v Page:9 Y I catena ` ° ° ' ° "` e " ° ' " ° ° ` ' Subject: By: Date: cC)v t�� t) PV OM Q itiO/Li G (AV S COMMENT#43 6- i. PUNmt .1 ,... 15E 1 its j 140p5 i 4 --, 4-4 1 zz__ .____-- 0". if /1/\)fi 5L Z ;[4sL t r ----- -i ------t 95 yS' I Ri t 7 p., ft,i I I ,R, _ 2 9. 31S a - isEE P16- 4 ," (AL C5 I . 3 k 5 L SL,E 3A5 E et s-503 roouvit PAS I R z = 51. IA Di- s E1 S G- „1,� c).41, Av�, 3f g I 36 . Sk Z 5 DSO '/ 301 /Ai-C, I I I COMMENT #43 IProject: Rutkin ES No: 2018017.00 Pogo: Catena :°.9 `'o::: Subject:3/S501 By: DAA Dote:4/15/20 Spread Footing Design Square Column: IColumn Location: FOOTING A Base size 6 in (Conc col dim or equivalent: midway btwn face of steel col &base plate) IConcrete Strength: Min Footing Size: Punching Shear: ACI 1 1.1 1.1.2 f'c = 4000 psi Areq= 5 ft2 bo= 56.25 in (I)Vc= 86.05 k Loads: Trial Size: Vu= 21.6 k OK Service Loads: t= 12 in PDT_ '..-.' k b, = 36 in Beam Shear. ACI 15.5.2 Pru= k b2= 36 in (IN,= 27.54 k PEQ= k Apov= 9 ft2 Vu= 2.023 k OK PTOT= 7.5 k I Trial Bars: Beam Moments: ACI 15.4.2 Factored Loads (2012 IBC/ACI318-1 1): Size (#) = 5 4)Mn= 32.79 Load Case 1: 1.4D #of bars= 3 Mu= 5.625 ft-k OK Pu= 10.5 k Ast= 0.93 in2 p= 0.0032 Min. Flexural Reinforcement: Load Case 2: 1.2D+ 1.6L P= 0.85 Am;,,= 0.968 in2 Pu= 9 k Pb= 0.02851 Reinforcement 1/3>A,e1: I 0.75Pb= 0.02138 Ain= 0.213 in2 Load Case 3: 1.2D+ 1.0E+0.5L Min.Temp Reinforcement: Pu= 9 k d= 8.0625 in ATEMP= 0.778 in2 I (Controlling Load Case 1) a= 0.46 in Reinforcement Provided: A prov= 0.93 in2 OK Bottom o Design Pu= 10.5 k I Design qu= 1.2 ksf Design Using Soil Capacity Soil Bearing Pressure: I %Row= 1500 psf Footing Size and Reinforcement: qEa= 1995 psf(=1.33gaiiow) Use: 3.0 ff x 3.0 ff x 12 in. with 3 # 5 each way IDesign Notes: Concrete cover=3" Punching shear Va based on 4xsgrt(f'a) I Punching shear Po located'd/2' from face of column or equivalent (may be conservative for steel col) Beam moment calculated at face of colur Beam shear calculated at'd'from point of critical section for beam moment I I I COMMENT #43 Project: Rutkin ES No: 2018017.00 Page: 111 ca tena Subject:3/5501 By: DAA oate:4/15/20 Spread Footing Design Square Column: Column Location: FOOTING 8-(WORST CASE GRID C&7) Base size 16 in (Conc col dim or equivalent:midway btwn face of steel col &base plate) Concrete Strength: Min Footing Size: Punching Shear: ACI 11.1 1.1.2 , t'o= 4000 psi Areq= 15.8667 ft2 ba= 96.25 in (IN,= 147.2 k Loads: Trial Size: V„= 76.8 k OK Service Loads: t= ET,777171 in Pnr= 29.3 k b, = fii' ‘i4 fit; in Beam Shear: ACI 15.5.2 P«= 18.3 k b2= 48 in OV,= 36.71 k PEQ= 0.0 k Aprov= 16 ft2 Vu= 10.66 k OK PTQT= 47.6 k Trial Bars: Beam Moments: AC/ 15.4.2 Factored Loads (2012 IBC/AC1318-1 I): Size (#) = 5 Wo= 43.72 Load Case 1: 1.4D #of bars= 4 Mu= 17.07 ft-k OK P„= 41.0 k Ast= 1.24 in2 p= 0.0032 Min. Flexural Reinforcement: 111 Load Case 2: 1.2D+ 1.6L 13= 0.85 An,,,,= 1.29 in2 P„= 64.44 k Pb= 0.02851 Reinforcement 1/3>A,�: 0.75pb= 0.02138 A,/3= 0.645 in2111 Load Case 3: 1.2D+ 1.0E+0.5L Min.Temp Reinforcement: P„= 44.31 k d= 8.0625 in ATEMP= 1.037 in2 (Controlling Load Case 2) a= 0.46 in Reinforcement Provided: A„0 = 1.24 in2 OK Bottom o Design P„= 64.44 k Design q„= 4.0 ksf Design Using Soil Capacity Soil Bearing Pressure: ("allow= 3000 psf Footing Size and Reinforcement: qm= 3990 psf (=1.33goiiaw) Use: 4.0 ft x 4.0 ft x 12 in. with 4 # 5 each way Design Notes: I Concrete cover=3" Punching shear Vc based on 4xsgrt(f0) Punching shear bo located 'd/2'from face of column or equivalent (may be conservative for steel col) Beam moment calculated at face of colur Beam shear calculated at'd'from point of critical section for beam moment I I I I COMMENT #43 IProject: Rutkin ES No: 2018017.00 Page: c ate n a :V o ':: Y Subject:3/S501 By: DM Date:4/15/20 Spread Footing Design Square Column: illColumn Location: FOOTING C- (WORST CASE GRID 5 btw Jx*C) Base size 16 in (Conc col dim or equivalent: midway btwn face of steel col &base plate) IConcrete Strength: Min Footing Size: Punching Shear: ACI 1 1.1 1.1.2 f'c= 4000 psi '4 eq= 10.3667 ft2 be= 119.5 in 6V,= 314.6k I Loads: Trial Size: V = 120.0 k OK Service Loads: t= 18 in PDr= _f=i'k ID, = 60 in Beam Shear: ACI 15.5.2 I PLL_ k b2= 60 In 6V,= 78.98 k Pew= jj k Aprov= 25 ft2 V„= 5.731 k OK PLOT= 31.1 k I Trial Bars: Beam Moments: ACI 15.4.2 Factored Loads (201218C/ACI318-11): Size (#) 4)Mn= 134.2 Load Case 1: 1.4D #of bars ;f Mu= 40.33 ft-k OK P„= 26.0 k Ast= 2.2 in2 11 p= 0.00264 Min. Flexural Reinforcement: Load Case 2: 1.2D+ 1.6L 0= 0.85 Amin= 2.775 in2 P„= 42.32 k Pb= 0.02851 Reinforcement 1/3>A,-1: I 0.75pb= 0.02138 Alm= 0.882 in2 Load Case 3: 1.2D+ 1.0E+0.5L Min.Temp Reinforcement: P„= 28.57 k d= 13.875 in ATennp= 1.944 in2 1 (Controlling Load Case 2) a= 0.65 in Reinforcement Provided: •prav 2.2 in2 OK Bottom o Design P = 42.32 k I Design q = 1.7 ksf Design Using Soil Capacity Soil Bearing Pressure: I ganaw= 3000 psf Footing Size and Reinforcement: qew= 3990 psf(=1.33g0i1aw) Use: 5.0 ft x 5.0 ft x 18 in. with 5 # 6 each way IDesign Notes: Concrete cover=3" Punching shear Vc based on 4xsgrt(Ya) IPunching shear ba located 'd/2'from face of column or equivalent (may be conservative for steel col) Beam moment calculated at face of colur Beam shear calculated at'd'from point of critical section for beam moment I I I I COMMENT #43 Project: Rutkin ES No:2018017.00 Page: Za-te n a °; Subject: 3/S501 BY: DAA Date:4/15/20 Spread Footing Design 111 Square Column: Column Location: FOOTING D- (GRID A.5 btw 5x&6x) I Base size 24 in (Conc col dim or equivalent:midway btwn face of steel col &base plate) Concrete Strength: Min Footing Size: Punching Shear: ACI 1 1.1 1.1.2 I fo= 4000 psi Are9= 19 ft2 bo= 128.3 in +Vo= 196.2 k Loads: Trial Size: Vu= 115.2 k OK I Service Loads: t= 12 in PDr= 30.0 k bt = 72 in Beam Shear. ACI 15.5.2 Pry= 27.0 k b2= 48 inV,= 55.07 k PEQ= 0.0 k Aprov= 24 ft2 Vu= 6.497 k OK PTQr= 57.0 k Trial Bars: Beam Moments: ACI 15.4.2 Factored Loads (2012 IBC/ACI318-1 1): Size (#) = 5 6Mn= 65.58 Load Case 1: 1.4D #of bars= 6 Mu= 14.4 ft-k OK Pu= 42.0 k Ast= 1.86 in2 p= 0.0032 Min. Flexural Reinforcement: Load Case 2: 1.2D+ 1.6L R= 0.85 Amin= 1.935 in2 P = 79.2 k Pb= 0.02851 Reinforcement 1/3>A.a,: 0.75pb= 0.02138 A1i3= 0.544 in2 I Load Case 3: 1.2D+ 1.0E+0.5L Min.Temp Reinforcement: P„= 49.5 k d= 8.0625 in ATEMP= 1.555 in2 (Controlling Load Case 2) a= 0.46 in Reinforcement Provided: Aprov= 1.86 in2 OK Bottom o Design P„= 79.2 k Design qu= 3.3 ksf Design Using Soil Capacity Soil Bearing Pressure: gonow= 3000 psf Footing Size and Reinforcement: gm= 3990 psf (=1.33gaiio,,) Use: 6.0 ft x 4.0 ft x 12 in. with 6 # 5 each way Design Notes: ! Concrete cover=3" Punching shear Vo based on 4xsgrt(fo) Punching shear bo located'd/2'from face of column or equivalent (may be conservative for steel col) Beam moment calculated at face of colur Beam shear calculated at'd'from point of critical section for beam moment I I I I COMMENT #43 IProject: Rutkin ES No:2018017.00 Page: /c a to n a Subject: 3/S501 By: DAA Date:4/15/20 Spread Footing Design Square Column: 111 Column Location: FOOTING E- (WORST CASE GRIDS E.7&7) Base size 16 in (Conc col dim or equivalent: midway btwn face of steel col &base plate) IConcrete Strength: Min Footing Size: Punching Shear: AC1 1 1.1 1.1.2 f'c= 4000 psi Afeq= 31.7 ft2 ba= 119.5 in 6Ve= 314.6 k ILoads: Trial Size: V = 172.8 k OK Service Loads: t 18 in PDr= 58.6 k b1 = 72 in Beam Shear: ACI 15.5.2 I Pu= 36.5 k b2= 72 in (IN,= 94.77 k Peo= 0.0 k pprov- 36 ft2 Vu= 25.25 k OK PLOT= 95.1 k Trial Bars: Beam Moments: ACI 15.4.2 I Factored Loads(2012 IBC/ACI318-1 I): Size (#) = 6 6M„= 161 Load Case 1: 1.4D #of bars= 6 Mu= 78.4 ft-k OK Pu= 82.0 k Ast= 2.64 in2 p= 0.00264 Min. Flexural Reinforcement: Load Case 2: 1.2D+ 1.6L R= 0.85 A,,,;,,= 3.33 in2 Pu= 128.72 k pb= 0.02851 Reinforcement 1/3>Aran: 0.75Pb= 0.02138 A7/3= 1.714 in2 Load Case 3: 1.2D+ 1.0E+0.5L Min.Tema Reinforcement: Pu= 88.57 k d= 13.875 in ATEMP= 2.333 in2 1 (Controlling Load Case 2) a= 0.65 in Reinforcement Provided: 'prov 2.64 in2 OK Bottom o Design P = 128.72 k I Design q„= 3.6 ksf Design Using Soil Capacity Soil Bearing Pressure: ("alloy,= 3000 psf Footing Size and Reinforcement: qEo= 3990 psf (=1.33gaiia,,,,) Use: 6.0 ft x 6.0 ff x 18 in. with 6 # 6 each way IDesign Notes: Concrete cover=3" Punching shear V,based on 4xsgrf(f'j IPunching shear bo located 'd/2'from face of column or equivalent (may be conservative for steel col) Beam moment calculated at face of colur Beam shear calculated at'd'from point of critical section for beam moment I I I I I Comment #43 IProject: Rutkin ES No:2018017.00 Page: c a to n a :; .'y Subject: 3/S501 BY: MPC Dote: 4/15/20 J Spread Footing Design:Type E Footing Square Column: IColumn Location: Footing E:Grids E/1.5 Base size 18 in (Conc col dim or equivalent:midway btwn face of steel col &base plate) IConcrete Strength: Min Footing Size: Punching Shear: ACI 1 1.1 1.1.2 f'c= 4000 psi Preq= 10.3 ft2 bo= 127.5 in I iVc= 335.7 k Loads: Trial Size: Vu= 0.2 k OK Service Loads: t= 18 in PDL= 15.0 k b1 = 72 in Beam Shear: ACI 15.5.2 PLL= 5.9 k b2= 72 in 4Vc= 94.77 k P50= 20.3 k f pray= 36 ft2 Vu= 7.52 k OK I PTOT= 41.2 k Trial Bars: Beam Moments: ACI 15.4.2 Factored Loads (2012I8C/ACI318-I l): Size (#) = 6 (i)Mn= 161 ILoad Case 1: 1.4D # of bars= 6 Mu= 0.073 ft-k OK Pu= 21.0 k 74t= 2.64 in2 P= 0.00264 Min. Flexural Reinforcement: ILoad Case 2: 1.2D+ 1.6L R= 0.85 Amin= 3.33 in2 Pu= 27.44 k Pb= 0.02851 Reinforcement 1/3>A-n: 0.75Pb= 0.02138 A113= 0.002 in2 111 Load Case 3: 1.2D+ 1.0E+0.5L Min.Temp Reinforcement: Pu= 41.25 k d= 13.875 in ATEMP= 2.333 in2 (Controlling Load Case 3) a= 0.65 in Reinforcement Provided: Iprov= 2.64 in2 OK Bottom o Design Pu= 41.25 k I Design qu= 1.1 ksf Design Using Soil Capacity Soil Bearing Pressure: ICIalow= 3 psf Footing Size and Reinforcement: CIEQ= 4 psf (=1.33ga11o,,) Use: 6.0 ft x 6.0 ff x 18 in. Iwith 6 # 6 each way Design Notes: I Concrete cover=3" Punching shear Vc based on 4xsgrt(f'e) Punching shear ba located 'd/2'from face of column or equivalent (may be conservative for steel col) I Beam moment calculated at face of colur Beam shear calculated at'd'from point of critical section for beam moment I I Project: No: Page: , I atena :en, "";na F*1n ES 2O1d017. o n 9 i n e e ' s Subject: By: Date: Omsk. ?,ec L.: 7 ,1141 Mk r I �ti 1= -Ail lit • ASCE 7-10 12.13: frx=CvxV I . CY. = wxtix/Jlit Wirk = wx.1i,. lii W;tt; • h=I I • T< 0.5s (scc c016.4 +an me, log) • (2) Pon I • KG Ste, wit ai -F`:rs1 4ax • mac (rttc.1\n. wlas flan h4F�.y be},,aa kl amp. �'1 A r 110 •i rail Sivjl". ), 1 , , ,,,s .4,1 j umil r L x 3 eaoihr 451 62..1 „ 9tezi4 ertio vi L rat t h t�) `� - itr = 3444 • win - (617F . 1. 5-4 ' I :7.of 1,.;ps I - ors42.14 • 115641. _ 48.3161,5 • C„, 7 :VA.as./(17.4t•z614¢.3-34) r 0.zt3 I • Cif _ 4&.3 .34/(i-tp426441.3'3y) r 0.717 - V z o.iz5(ii01 I,* 413 3 1013 s 'i. Irf rt Fr * Cvr V =6431% 1 • r*, = CvmV = 74116 I • V2 = fr 4Fil, 7E17411 • ItA4t, : 0.7 V24/G wti : 441 10 a• 3'). sr,..41 4 fix . r~c-:> J.tt. I14*a 4tb : 0.7Ftui ( l -ki•Aci,; = 3Gozs fb4 • MyA Atb = o.-7{F,r04 (3+1•-i5') * f (z.4'-15°)J = 4$9(0511741 • 1,14.4 .:b = 0.7[604' .► 1: •At'1= 18174z lb-;1 I • Sixes pemTot 'Ori±-cam ?owl - • :(o. -o•t`{stt)b 4 0.-TE (0.6-0.14•o_b5)C14g35Ib) f ii411$to) : ; ‘13 i. =? tlIf 5t5K-At 4144 •D Dg firD*riz+ = 1413516 "�P s{5.�w Lock • `1-(3`9'/z",�t7"/z."34 00/z)(1Vq"+ib°'i`')C 2-)(1Z'/'•1;3 5") = 8�3 I i D °P t:.j.eet�� h!�- Lein op. 'Al•PEsA-I /04 .20. 4.4 1� b(td 'Tb A'j2-IC,s, M )rtE mod.' •p�-.Ft13--3—+4111.4/�S 4 . m .-u ins{./aps4XIll- Cib'3i"}(42417`lie)4(11121. }Z)16) - 'a7!Z 1b I • 0.7E= M,L1i r (124712)/03} s 142.15 1/1,- • co mpresston: (1+0.iysta)i? + 4.iE : (1+0.19-6.45)!!'1!35 i6 •t 147-K!i r 36510113 < Cw.... 4to.vt •Twat : Mmtt. /1..,,A = 2.7,1 16 l J214i ✓d'- vi" aJsult 1 v I • TPA r Mxi t /1,,, 76t3 t {CCU B s'1f 1 :4lci v" _. . _ NU X If0.1I fai ua►li..r/ C` 51-41 Nnk"x1 r n bailil =tm#' asl san;'t I Project: No: Page: catena e 9 R` ' Es .2ot&ot7 4�bject: " By: Date: ?Awn akk- Pu : 144N MK Lif i.V ieo Grid, F W J _ B.744,_igc • ASCE 7-16 Lt%- 3 FC Cvx,V C wwlnx'`/ w;i k- : wxhn/1 DA � ;Li r- - 7 { o.5s (sv. calu.Lll ia•, fae8c, MR) • {3) f toe - t (eftait r aas4on WW1 ►Moat n< vat( 4t1i4Iti -av PO ) I • owl:w t ( w rt '~'"� k}vetn L2 gYheT a .Y*-i'•ul 4,0 intzgoit A- • /_44.4tay ( tc1\L wog -Fop Lbtrt $.o.Gt. i..zesitl 40 6g,ty vebn 1_2 *It 164 1 : z44r; •V 1 r g 344 • wz 7iatsf -z3!0- •z = ;75.911::+14 W,n `o7pf-zsr•6e _ !7.01 . wrt 'O • 175 x _ 73.5k-a ! CYO - f75.56•S5`�175.54.154 f769 •,o 4. 73.5. 34� 0.472. • C„rn 17.o -z4/f(175.5b-154ua4•?4f73.5.34) 0 0.ozo cam, _ 73.5.34`I 175.56- {5+ t7.o9.2:L+73-5.3ij 3.414g • ` 0.1 ,5(175.54kr 4 !1 O k•aj s t 13.5 tcs)=35. 9 kits . Fr C,r•V= ;494516 1 • F„1 - Cw„V s 240.ill - F = G,RV= 157o3►k • V,zpt r Fr+Fni= • Vt Fz = 331-70 bb 1 liver• .v. * = 0.7V2,./L.=,�u S 0.7.17547!b 2Z4= 55144 --i Z° 11.4 rMi, ..i 14 d cJYtslly a aH pot s/, • ,iry • z �t► s o.7 Fr twJ: = 0.'I•Net5 tit/-514 = 475 *14 ` t!+r+; ' 3 .x,i ,�(3teg7 v+lui+•;c aGw/Y�D.4�4144 fs rt;n = 0.7Vjr� ``(Lw.tt -L oat.* ) = 0.7 33Z7otta/(zz'9 -3'I•) = 1224 t4-4 41g01 41 (z sz+at skr,,.R a(z�, k si* . . - I I Project No: Page: I catena ° °° 3Y,,, n ° en ° Ine eo Subject: 7 By: 2.0180(7 Date:y( I'im Goa - Ka . -- Cm t b l t7 ►r ill/202o ' FtibykLit4 3En4!t1 : NCB SaWS 9.5.5.3 I - s'ru x1 o" wt " W.1 slats w;f Aki Aufiliklakdk / sktir w,ti t tcolut et tit, di r-ryhkd gAesf 1/41,1 Is.+ 4165: lIis$. 3.5: 1 a4vrileil ftV Altli ✓ (kiki : ;541,1/P 3;4 7 LK <L '. 4.4vmstamit < 113511.415uak lei • ['!k (d to Pt j ptatil..{4y1 ;W� tot # wit f • uec r+n -to. ,p,1 3 8.0. trait tltwc!-.;Ms / T = C = vka ColLi = 3327a lb •!5-4! •0.7 �0.93cc•1/P S;46o2-tib > 4: f ,110111)w4 - Ca T. (r/(g'zr); j'• /ili x 0.8 • Zz."y;°111 r o.431? (wt jra�G aO a� t ti e 1 • r : (14Ael;,l1,.T: = o 9zz k Stu} . �r-7e--3•1- .2941 'LwJ"'Npstt ` I!!T5 :) w= ha'K.wr+ . I �t ; s IV sot of 3•hxTAi• [Wr r 0:4 (ist 5 4D(}... A6,t4>A1;,,wyw • 1, : 15- M AO 4 b a(�wu r ci ✓ • i = uaf(C. c2• I12 .1ci 1 /.`t, • o.gs3�' _ !. sq;k,� > !/2414, yf 1 I I I I Project: l1 No: Page: �t�1�ln 3 I ('7 i c a to n a e ^ s ^ < < _ = Subject: By: Date: : 1 I Ltrik itiaits 50,51 • C vx = w,ch,,i ix;h; } 30 lc i • km: zG sc • wr r, 42.pxP•72o f 1 = 30-=Y 1u'r1 ' . wm= 4,71,54, -zss4(Z : tZoq kip • EIJL 7614 - 'ID : 36.iirE s ' Cyr (30-2-4• )/(3s.9a• {r_S + 11,611-6 4 0.2-y-3°) s 13.43 • ciw,= (Ito9 •Z4a/(' .1? - 'f$4)709.2d33D.2 •30) : o. 2-36 • Crz = (14.4a 14.6)/(3f..=t - 4.5411.01-i,+ 3t -9-• D) ; 0.2g;I V: (0.175}(30.13-1+1TA43a•47 )ills : I Lir ' • Fr T NO/t 50dA tie • Fo,= Cn V : 2..t73I, I . ez :Cyz.V : 7.1419 I o v.4 � Fr Fm= 7533I'c —', '/2 qsp=fi'•7'J =527�1b —ft bL ''f; 111 • VOA ' Vyrt-� F`i s 10'i7?:b-->`J:r�ASD r d.TJ,t r 73�:: Y � Y>�-` 1 ` ` 4ilr6a._y.— eile L 'rya s ' • bayx f" w�.' In F TAO (F,:u.Trenskr A'mwhl open,$ 'i T S `--�—/ -t� f� �. l'fii kg 'AO 5J1,t'fi 4 - k .�j�I)35:: ,.,,i . lvtl t`tR a!�rre. i w1it "�. ' 1aH8�Cl z" t'! �1, ( `0: I nua,r •SOltA, 131E-4 61 l• ki''''-' V-01 \ I i v ! I. I14.=vb s IF' (I,4.a�,61? R 5 *-° `:•?1:2°JL2w -1 1s / 3':.nw x�kz'em= 2,i�£'-u..e, 't,.a T al. ! 2. r rd 41:16!. F)'.:t iN: ant. - ..-_ /.b,s.2.1 S•-t•g;{ I • 0 . va1.o `.tort ;74'44; _ ?C.?9 (, I + _ Fi =f o''r. , ; ! � '• ' . � z�q�cq 4,�`:(Y.6`) y.5k1�• =55;t$ Q • T! . G`•- Le, / ' - 72. _ Lz '5:'' 1=!-22: =!23te:(a,� 1:i5‘..4,2a31 = 3 'gig` I mac;, Project: No: Page: r;X fir. �� .; ' catena ° ° ° ` ° t^ a " e e ' ' Subject: By: Date: r pi q i(t pyi !ro wLk- R�t�+4�►' icvnr 7.l f''' I f),Si I • V nr s'mr &side,44. orlt• • ' 1 VI s lV!�;( .I=T I,,'„l r (" :tllS1f33)�4.5§5.5 2:;�f.`�)= 1',..(.' 4b�.,- • Vz s (VILLA;(72+1.z!/;,2. _ (5:-.t?s,1'r,.3/)( .4B:42A,j' c3; = 720 iki • Brain+• r !b(rte Oxus= I • f?,l 'Yl j1 = (-0.° 14, 4y.t5` s 52.Lit 16 • K2. s 'l2 L2 = (7zo 16.1`N2.83;` - 2010 a, • RI- Fl 0.3ND t-0- 5-572 'I c _r"..2P9_ j0 ' • Rz-F2 = 2D••tolb - 3'i 21 ;) c -;1/111 16 • Ury:{ SW*/ it - 't '.scar :arcs • Va I L (RI -FU/ 1 = -£; ibi .5 . �1c?: s.xn a I . VA•1tl4.4k ., 4VI int = (-5oy;{5')fFLZD<L9S)= 15- '.TV • VR.(, 6.4',k 0••Vim.(.6.1446) -(V Pt k _ 0cmg(5) - (-SOWS) "`•.12'0)03-S!x 0 7 I • VR.2{nG4- +0 462,1 ,.e - 1(G1.x41..1 \s (51Y5). ( n s'- frol'. S:zb 7 • Mxx;+ v"-{ ?my s 106116:g `- httst *)nv NI - id 2.wS ''. s ttdti '„`3' 1ti1-1p.61.4it i llo !l it5' • Aloe m+W+! 7 ;trw 155 lb -•i":csc-Smtjr. "I'l 9 w /Z7='tro! 4c•., F.A 1;4 g t- rb, ' .41.„dr.) eit41 key, w. 1-.11i$ x2.,2.; rt.'.s. Nu,s4rAt f.ieNt. (,p'A44%'' .g 1A :, _ 1 501 Sin ' WI'"- loot ts;- e \ a /!• ,. 501 ; Ioc . 5r4 • to* :tuft, 9A1 tar? Tr,n b -pie Loft rt*gr:tr: '.a 4rt Irv' 44,,t 1 1 A un -rryrs.S:Tr Vl^.'l = 4 i ry • Ca.ca.,c•t i-0-, Z33, .r•l�.5�4J�.e.33•FE = .e5:1 ,c--•";:use. , tm831,+ :1Ct1 rej •till,c 7$70.' V` I • S",?,,t trlf r1z`.-' S;^r_if 2sore 1 a ^ 'ni ' Ilk; '4: -rl('„rc‘rti ; L rs51, t6:12+0ff1-izas9s13o3IVA I • flAd. ;oh). kaa,Juy 4rce. 4.14411. •tit 6.6_0 dreil,r{ : I • 0 =VLL, 213o3:6'4';• 9 c 320. .d I Project: No: Page: I UrAt. J. Ji catena " ` e n g i n e e : Subject: By: � Date: ?Inn r,rid�, : ?4rm4 il9?,' Vitt, tit?' !i_r(5 2.D26 _ So, 5! • CeJ,c:,+l e•44' a Comte -s,fr.F.S: ' 0 F:_(014);(LI4I.2.) :($Liz X7.5() '(7.5'4li.t4 4 s 3) 70 16 - Fzs(3)(L2) )(LllL.) s$7J2X(4.f3')/(7-5`ia.`0; : 2Q43ib I1'i:161440r! ttrt, a{ a s • T! = LI•L0/(L lti.i) : (7.50(9')I,7.33' : 2.43• I • 1-2.s L2-i o ('L 4l.t) r.(yASX111) 'l2.33' . 1.57, • Jni4 SPOL,r',z 1* 4t CtillS ' • VI : (Ytt•)(L.I-4TiVLI c (733"i1I4,33)(7.02•`i3r)f7.5' I. 545 ' • VI- s (V!:• (L 2-+1Z'..':.2.s(7339:f10)(E.%;'+:.511/4541= s95 iiv4 - 4j • aj cor++v Oxus f 1 . RI :(V1.){.1.n: 4343 ri, l , sr 1 - R2 t (V2.)(t.2) f 2 4 t73 I j73 1 _ — _ _ _ _ — , • R1 —O. :y443 -3:7-a3 12R3tb ( i • R2--CZ ' 2e'ro 2.6q g 33•L 4�S '�!5 i ihli-= s•< r.a• 4t. -Alm(zz+^z.: V&.I z :RI-ct. (L- : 173 It;` - - - j - --i • vt•—: i R--�z):L.2. : 173 ;a•.k 173 r3_3 { 173 4 o.1 {:V'..k'41 i•'YIKRtt 13`j(5)- ( i .51 $ 45t34 NYY • V4-(+trjhti —Yw! (644+to)—Vi 'rlvf (150.V. 5) - 173`,j(5) -15154,S)xo 7 I • VG'4(6,4L6) 4Y2'k.0 -Yc(1..-tt+b} S i17 '.5) 4-(5i5X15; -! 3a3)(5eR o f • M64WIA u:nrr IGal= 13D3 1 i. --.*holt 4I„r ro 6: ZWL. I • PAK:40 044 FYrA r 52:?iy--÷ Si'lrf o.CIASTi't w, L:7''arri tcoy i EA rok pi opii%4. Fj! e!! keit;in cnl. 1n jo ' 0.:9 Y 2 Ve m;Ls. P?ocr rxi, - Q 'yc?a ;rt`zwrr ' • M,34 0.7EFIli- 4F,,,kM ; G"2',:27 t(O.- (53,o• 304: 29•73.2# +Z 1-)(-S)1 :2jl5 i -I', - ' „1: : (2'11,1 )`_lti.334y,,'lzYi7'74:: 4-(:611..:•(.C.S.ay!! ='s ccgis ii, b,0 - b2.„(+(Lea-ta\xi'51.4.(112.X16-:7•`)4 ;s4.',t4)4i=-s•4+;;(.t2.pS4'.) 2,i39aja •L.: `40rA)(14•13141eji)(3o`=04): trti It.[I. __ ' r" t: if i'3'tvi 2'-io".eriaz:5 "n n kV 815® j24..c. Ew 64. % 150 i t. to;� 'P •(y5o14y : 0.L•2•j2 te• , li = tp.4l.jA 7Vix='t1:Cr-2-S x/0 Itiff4,i' •p bkirlill - f = O-OV ?o.o1$✓ I . cc 0.3Dy-kro.is. =0•4sp.53' • 01,"Mil`(O-y;(Ugtk1( }(IA2,)02- :5.6=5-1•6.53ie;4, 41 /}u x Li lac.(2..x.RN:12.5k44 Catena Consulting Engineers Page 1 4/20/2020 ' I Project: Art Rutkin ES No: 2018017.00 Page: ' c a to n a e a :' . Subject: Plan Check Item#51 By: MPC Date: 4/15/2020 Grid 1 Wall I PO'.',. Wall Footing Calculations dist ' x.,na Dw 1 Project Title: Rutkin Project No: 2018017 /�\ I Wall Loc'n: Grid 1 Wall r 1+ta +V 1 t Dfl€ Input Unfactored Lateral Forces at Bottom of Wall*: E* D L S H M(k-ft)= 258.8 0.0 0.0 0.0 0.0 V(k)= 10.5 0.0 0.0 0.0 0.0 Sos= 0.650 *Except for ME and VE,which shall be strength-based and shall include p and reduction per ASCE 7-10 section 12.13.4. Foundation Dimensions: Depth(ft) I Width(it) I Length(It) I Xend ln) I Notes: Wall 0.00 0.00 0.00 Forces input are at bottom of wall. Footing 1.25 4.00 21.50 , Surcharge 0.00 Unfactored Gravity Loads: Load I D(kips) I. L(kips) [ S(kips) E(kips) I Dist.(ft) I Description/Location ' P, 21.3 10.1 3.9 0.0 10.8 P2 P3 P4 P5 P6 P7 , Pa P9 Pto Allowable Soil Bearing Pressures: ' Dead Load: 3000 9 allow gross= 3138 PSJ" Dead+Live Loads: 3000 9 allow gross= 3138 PSJ. , Dead+Live+Seismic: 4000 9 allow gross= 4138 psi" *ga,,owg,oss = gaiwwaa,+(displaced soil wt./ftg. area) where soil density is 110 pcf. I ' Catena Consulting Engineers Page 2 4/20/2020 ' Load Case 1: D+L+H (ASCE 7-10 2.4.1, Eq. 2) +E Ma = E (Pp„,_I Dist.);+MO+1_+H+VO+L+H"(I.)waii+Dftg) = 511.02 kip-ft R = E Pp+i_ =X = EMa/ 47.54 kips R = 10.75 feet e = Ix-(Lfl9/2)I = 0.00 < 3.58 t1 = Lftg/6 IWreq'd = 0.70 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 It, gmax = 553 at dist. = 21.50 ft groin = 553 at dist. = 0.00 ft I o I 553 :!3 Load Case 2: D+S+H (ASCE 7-10 2.4.1, Eq. 3) I +E Ma = E (pp.,/Dist.),+Mp,S+H+VO,S+H*(Dwan+Dftg) = 444.43 kip-ft R = E Pp+s = 41.34 kips ' x = EMa/R = 10.75 feet e = x-(Lftg/z) I = 0.00 < 3.58 ft = Lgg/6 = ' Wreq'd = 0.61 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 ft., gmax481 at dist. = 21.50 ft groin = 481 at dist. = 0.00 ft p ono I 81 481 I Load Case 3: D+0.75(L+S)+H (ASCE 7-10 2.4.1, Eq.4) +E Ma = E (P0,o.78(Ls)/Dist.)i+Mo.75(L+s)+H+Vo.7s(L+s)+H1Uwall+ Dftg) = 515.21 kip-ft IR = E Po+0.75(i_+S) = 47.93 kips x = E Ma/R = 10.75 feet ' e = Ix-(L1g(2) 1 = 0.00 < 3.58 ft = Lftg/6 Wed = 0.71 feet (See Load Case 1 for equations) O.K.. I For Wftg= 4.00 ft., gmax = 557 at dist. = 21.50 ft 4min = 557 at dist. = 0.00 f o Lfl3 I :57 J7 Catena Consulting Engineers Page 3 4/20/2020 ' Load Case 4: (1.0+U.148Ds)U+0.7pE+H (ASCE 7-10 12.4.2.3, Eq. 5) I +E Ma = E(Pi+ Mi+V((Dwaii+ Dflg)) = 629.72 kip-ft R = E Pi = 40.87 kips ' x = E Ma/R = 15.41 feet e = Ix-(Lflg/2)I = 4.66 > 3.58 ft = Lftg/6 WreQ.d = 1.08 feet (See Load Case 1 for equations) O.K. ' For Wftg= 4.00 ft., gmax = 1118 at dist. = 21.50 ft gmin = 0 at dist. = 3.22 ft 0 L,tg 118 , Load Case 5: (1.0+0.105Sns)D+0.525pE+0.75(L+S)+H (ASC;E 7-10 12.4.2.3, Eq.6) +E Ma = E(Pi+Mi+Vi"(Dwaii+Deg)) = 685.44 kip-ft I R = E Pi = 50.48 kips x = E Ma/R = 13.58 feet , e = Ix-(Lftg/2)I = 2.83 < 3.58 ft = Lflg/6 Wreq'd = 1.02 feet O.K.. For Wftg= 4.00 ft., gmax = 1050 at dist. = 21.50 ft I gmin = 124 at dist. = 0.00 ft o L,m I '050 Load Case 6: (U.6-0.14Sns)U+U./ph+H (ASCE 7-10 12.2.4.3, Eq. S) I +E Ma = E(Pi+Mi+Vi'(Dwaii+Dftg)) = 395.32 kip-ft R = E Pi = 19.07 kips ' x = E Ma IR = 20.73 feet e = Ix-(Lflg/2)1 = 9.98 > 3.58 ft = Lflg/6 Wreq'd = 3.99 feet O.K. For Wftg= 4.00 ft., gmax = 4129 at dist. = 21.50 ft gmin = 0 at dist. = 19.19 ft o NO\ Ore 4129 I I I I /,, Project: No: Page: I katena °: ° 9," ", Ru i11 E' 2DI 17 '1 " ' " ° ° " Subject: By: Dote: ?10.4 r„u,A.. M xtcl 24 s 1'! si P _Pc 1 28zo I 1Cind- 1. Wkii1 M 111 • co., f Wv4../A w:Ilj • hr-35. • tut s 'Di •1240 1 r 52.12.1ti S I • Mt,= (Alfa •2554 2 s !7 O k♦1)s • ruz ' 74 pg- I214-ft s /5.147 k:r ' .C •0.44 • C',w,: 0.119 I 3 • V 1 O—5i1:4,; =2072.Z ib ' • Fr .i()V % • Fro a;•-''i'o(n 16 • Ft s 7 377lia 14.% s v ix : •Z0122.4 •1/2.,,1.hSD: 0.7.12.749ib/!2.2S AI =724 lb/4 -4 2"514 ' :0Ali op ruin, tJ ,s ' a'4144ek M p/4ht f I . h4 ASb = 0 .1• 7iz 1ihf.1-5 •-, 101Fs ii 4 AD i s NA44"A M24.A 1.7[i 35'45`)k r •-15•) I 1,4,zER!M �b.'r� I • L4S asb ' CO[Frio - 35'4 F •2;`i r:,a•151 320'•ls1 6-4 • Del : (2.-7 At12. 0'42..}{dtf,'-i v�te") (L2-2S#,�f '� :V. 2. 1145 c,, ' • b b 4(ilipb.rX14.251? 11,-.1et; 41e ia" s ( 'j.Z 5'P'tY!2 } s 2iitibb rb .1-24, : Mmt 11 yt1 (0-4-(3.NNSns�D4.4;2- •'((f2$811;'1012S}- CD.6-4. 4-0.45j(4=N5j j2 !on rb - 15 .6t • 1 -71 = NLAIL TLD.6-0•H'Stit %/2s2nz 03 !o -- -'' (2) OW '., 4r ,% P i1! • S= (.27P4)(12.IP;(:112Xi``."+3a`:oi- i5oiflb L. G t)(►,4.2_4 .'1z'(30:'`)a ( spi•ik1a u ''z(g1(4 s 136,321b • halt; 5.`KZ:f'lo;/5--(o Etttnsl+n tva ST s )2.%.c.. EW e - 107 O i240.t. :orv,t, I . eN,In s 0.6•'2•b•d- e Co.41(2,)C:e#-li( /1t ) t;?-`0 Pr,41 at,41 7 ViA c L!a.5-<. '• r 2—kkj/.fj - r I 6ithn :' EI (obi'/sz 7i-cso:.ES-(.. )% r -7 ;- 4> thici;A&c-t;54+7 o.9I.�'• tilt itr�S? ck_j .,-- t--_ --- _----_ :.L_I I • c•. — 0,W.IX-9 ` I.u3 Catena Consulting Engineers Page 1 4/20/2020 ' 1 Project: Art Rutkin ES No: 2018017.00 Page: ' c a t e n a a Subject: Plan Check Item#51 By: MPC Date: 4/15/2020 L Grid 2 Wall 1 PDLLL Wall Footing Calculations dist ' a I Dwell Project Title: Rutkin Project No: 2018017 I Wall Loc'n: Grid 2 Wall /--‘, +M +v + a411. `- L� Dn I Input Un factored Lateral Forces at Bottom of Wall*: , E* D L S H M(k-ft)= 543.5 0.0 0.0 0.0 0.9 V(k)= 20.7 0.0 0.0 0.0 0.0 SIDS= 0.650 *Except for ME and VE,which shall be strength-based and shall include p and reduction per ASCE 7-10 section 12.13.4. Foundation Dimensions: , Depth(ft) I Width(tt) Length(8) I )(end VI/ I Notes: Wall 0.00 0.00 0.00 Forces input arc at bottom of wall. Footing 2.50 5.00 25.25 Surcharge 0.00 , Unfactored Gravity Loads: Load I D(kips) I L(kips) I S(kips) I E(kips) I Dist.(ft) I Description/Location , Pi 24.9 13.6 6.5 0.0 12.6 P2 P4 3 P5 P6 P7 ' Ps Pa Pto Allowable Soil Bearing Pressures: ' Dead Load: 3000 9 allow gross= 3275 Psi` Dead+Live Loads: 3000 9 allow gross= 3275 PSI` ' Dead+Live+Seismic: 4000 9 allow gross= 4275 PSI' *g allow gross = ("allow net+(displaced soil wt./ftg. area) where soil density is 110 pcf. I I ICatena Consulting Engineers Page 2 4/20/2020 ILoad Case 1: D+L+H (ASCE 7-10 2.4.1, Eq. 2) +E Ma = E(PD+L/Dist.);+ MD+L+H+VD+L+H Vwell+Dftg) = 1084.18 kip-ft I R = E PD+L = 85.88 kips X = E Ma/R = 12.63 feet e = Ix-(Lftg/2)I = 0.00 < 4.21 ft = LftgI6 IWreq'd = 1.04 feet (See Load Case 1 for equations) O.K. For Wflg= 5.00 ft., Clem = 680 at dist. = 25.25 ft I qm;n = 680 at dist. = 0.00 ft o Lea I680 $80 Load Case 2: D+S+H (ASCE 7-10 2.4.1, Eq. 3) I +E Ma = E(PD+s/Dist.);+ MD+s+H+Vo+s+Hw(Dwall+Dflg) = 994.19 kip-ft R = E PD+S = 78.75 kips I x = E Ma/R = 12.63 feet e = Ix-(Lftg/2)I = 0.00 < 4.21 ft = Lftg/6 Wreq'd = 0.95 feet I (See Load Case 1 for equations) O.K. For Wftg= 5.00 ft., ga,ax = 624 at dist. = 25.25 ft gmin = 624 at dist. = 0.00 ft 1 0 4,, e24 I C21 Load Case 3: D+0.75(L+S)+H (ASCE 7-10 2.4.1, Eq.4) +E Ma = E(PD+o.75(L+s)I DISt.)i+MO.75(L+S)+H+V0.75(L+s)+H"(Dwall+ Dftg) = 1102.74 kip-ft IR = E PD+o.75(L+S) = 87.35 kips x = E Ma/R = 12.63 feet Ie = Ix-(Lftg/2)I = 0.00 < 4.21 ft = Lftg/6 Wreq'd = 1.06 feet (See Load Case 1 for equations) O.K.. I For Wflg= 5.00 ft., gmax gm;o = 692 at dist. = at dirt. = 25.25 ft 692 0.00 ft o I COPf 92 I I I Catena Consulting Engineers Page 3 4/20/2020 ' Load Case 4: (1.0+0.14Sos)D+0.7pE+H (ASCE 7-1 U 12.4.2.3, Eq.5) I +E Ma = E(Pi+Mi+Vi((Dwaii+Dftg)) = 1411.79 kip-ft R = E Pi = 78.82 kips ' x = E Ma/R = 17.91 feet e = Ix-(Lrq/2)I = 5.29 > 4.21 ft = Lftg/6 Wreq'd = 1.68 feet (See Load Case 1 for equations) O.K. I For W ftg= 5.00 tt., gmax = 1432 at dist. = 25.25 ft groin = 0 at dist. = 3.24 ft 0 , 4re 432 I Load Case 5: (1.0+0.105Sps)D+0.525pE+0.75(L+S)+H (ASCE 7-1 U 12.4.2.3, Eq.6) +E Ma = E(Pi+Mi+Vj`(Dwag+ Dftg)) = 1477.53 kip-ft I R = E P, = 92.28 kips x = E Ma/R = 16.01 feet , e = }x-(Lsgl2)I = 3.39 < 4.21 ft = Lftg/6 Wreq'd = 1.54 feet O.K. For W ftg= 5.00 it, gmax = 1319 at dist. = 25.25 ft ' groin = 143 at dist. = 0.00 ft 0 i-fta 1 319 Load Case 6: (0.6-0.14Sos)D+0.7pE+ H (ASCE 7-10 12.2.4.3, Eq. 8) I +E Ma = E (F''i+M,+Vi"(Dwao+Dftg)) = 880.96 kip-ft R = E P, = 36.77 kips , x - E Ma/R = 23.96 feet e = Ix-(Lftg/2)I = 11.33 > 4.21 ft = Lftg/b Wreq'd = 4.44 feet O.K. For Wag= 5.00 ft., gram = 3793 at dist. = 25.25 ft groin = 0 at dist. = 21.37 ft o g Lna 93 1 1 Project: No: Page: I itcatenap en , i, lo R ;.�h ES 20.i0,7 I e n ie n e enra Subject: By: Dote: 44.,_ G.A Clack_F+ rns? : I4e . °52- MR" fi`i!a:2020 1 ilr = }24i • hhv, : 224 I • 'Pr ' (Lizi t:0 i1'\ s 0 Lb 1 •0111, = C6T?14 35 '(4 . 1'.1ti iaQs ' w, = t75 1. `8»=`,(4 ;4 (,'N:!'1.4)7 = 4`f. >ti. I • Cyr - Q • CYm= (2.!.II 421)/!?;.1! •22+ !IV? •;24 = 0.46(c Cit = (-44.!1:f.z4/!^—.1.?; •22+ ` ?.=r • ,2) : 0.•539 V= 0.125(Z.t. ! wa*_idsgi4 S;kQ ), - tscr. / : 5137% 1b _ _ _ _ — _ — — --- .. VMElf- 6S1 t,.rm.. .5g s, }ii .. 1 • Vik.= Vm=t 4 r :e1p. le • mutASD 0.7linucI.-kW,' 7 07-38:ysafzl-54 1I5 it10 -4 (t'1;-, tul4 ro' i'. :aiik r .;�:dITtd Ltsr Vkii . gpiASD ' 0.7V1,:- (L i yuc t 0"1•QIi;{:�`26 -•2z' 'C`-. : ,-T,- . _ ; ' Mnxn,risD= 0.7 rM-;z t kM nt? 2u., n NI qitb : 0.7[F,,s1.ch = F,(n,)1 zg550. :o-A- b „x.= ,1ze :G41lr..v,.s i s zsEe,4, - `v,:; - ..z,.- 07- ti( 4t)(42 : U7L'ie:11.2 1?1t'tSF`, :1b2 ° !o I `vival Arim4.1.-r.t . .,„a .- `0.(C'n }•ti Fw? ` 2 :stfai0 -.a. o Ser r) Tr• t,G- io•k-=7 44/1. ALS- zi-nl.ra,n'tXJ2 vii::,. • IL A b M,, A>;, r ,.!...LA — 0•'14'O.?`•tic$`, 1*)1,42 z -if67;b --T rt. EN.:.'-11 jf.._1J 1 rs S..6y,l iS 1 A1( I _ -- _-_ �h C1r:,eS ,EC ..3 I • h; 32-• • ht,, =r24; 1 I ,1 I '"1 •.. lum - (t7izi �1 F7,t' i}'.. - z3. i ,:a ' - fW, - (7s?arl .'i- y ?-ri,, = 3l_:s s,i I Cur = (I15 32 Yt '75-9.32 211:•z2- 31).5 1z.7 - 02 r? ... _. • -C--rfi•t (21.11 2-1 1 75.,#•32-42t.I!-22.4 2q. S• 2.- . 0.07 • C,• r. (?4-:S •;2);; -g. • 4 2t./. •224 3ci.:S• 2, == 0.072 I Project: No: Page: catena : o4 , n,r; , a � ° g e e " Subject: By: Date: I V=.r,.i2-5 - -m.i 4-21.11=31.:51p7s 72145; 'wit i - Fr - Cvr V : 252 ; - F, : c...0 2.12..1 I • Vroo€ = Fr r IS 11,5 i. I • 11024A(i: 0.7'J •,..k.tt r 0.7.25i3$ z?S. = (s55 is-Y --4 2 .1Q°r W.1 *lit MU crY ,t - 'Un: A:r r 0-T v .:mot : n.7.27 337 z74 _ T, , � --q -stftbi ' t ! ; e f � �;'. 1� S+t^1:Ur v>>'j (Ofr IrLlfat i+M ✓glitii. 4;}(S'•i4J1 . /V. ASc z 0.1V. • ..).4!i 0.7.29?;1-7 4 - 'Pei ;. 4. --a.4 -s Lan :1/44) 1..+:'3`r,J n4i tra ✓ty r L, wiw a S¢ • PJyr An r 0:1Fr{'Ar'km) 7 i7r7 ,, .a -1 I • M,As., ' 0-7rFr'nr T i>;,..re,+r.'r:I - ta'.5r2a ';t,—Ps • r ��r , fI7_2c -2 f 3 . '(• < -1- ', J.- Z(> tnf t:ttr.L r2? , s 10G-6� a 1 • h: - 4•;•,:1 4 ii? a=•.. ~r /4i;(7} . 'ESE&-r'` = tc7;i..) ib r • t': - te,.4 (17.r.L;(^?r • • \ii .' (re7r,(`V r, 3rfjx5r0 I l • itp= Fl:f.I - `j t-`' ;- $t,. 1.r < 3p2u•p' 1. r 2.j:.� i� i f tt - Mt/Vitt -f:W1./,.. �h-.rie f :mot%' ( h �J , r�•�';i�a:i t'In,r' { �.+d'' £ ? '.�''/. 11_^[Y',6tY^• �C• x^ 1; n>t. t1.Alt. !-,...0 0-9-0.;y..:1:-1. t, '2 ?F....,;[ y --a t.'s-e.,+J - - - . I - -- 1 • Cym : (2_1.1.1 •22 '2?.1;•2zr23.+i •''•' - 0.( i. - CV' rz. .'a3•:2).I(z[.!e .N7 :2.3.:; -`2_.' = C.37C I - \/= 6.125/1_1! ;23..2; r� 4 C. -n31 • fin,= Cvtm,l s 3`:7,' ib Fe a C,,e'/= 2.t20 'e 1 1 Project: No: qg p Pagc: I c on so lfin g ~J e a t e n a e ^ _ 1 1 Subject: By: Date: r n 'L- t'; f ?, i • V Fh, S 3ti s j t' 11mPr, = SE-Ti ' ; 'tlw * 0 7'!fiI = C. 1.3u7a .,.2S 2!7 ,c'1! ^a iir,w,Atr r »s i;s:,,l7 �f: A;l • 0.7`J, i4 = n.7- 5f:1q �•?5,5 a 3 f; d«i --> +r'St1'Jr au of", .ate-» rh- '[ on. qq I �J 1 to O T 1 IP 4 ; r • L,, e i,2 r 1, r , A „----___-- POt_-' 11 m t1'f1,',1 ".iti•,' — ;'.+5 ..1 Fr i t�..'`... t‘4 2.. " i2 a oiC •-3:ii'i17 47 1 , _ 11111 ' 7.;.'sq�� : Cn4 rLI • hm: 224 I ,1..= I • W;' !' .41')qg fi• Li its r it., f+r} cYem. 3.77.z / 377.7.14 ii.. L' : 3'2.1Q • C•J, E11 •J^ 1 (3-�7•97- 'iK3•i_ r 0.73Z I (S.774 - F1, = C,,,,,`i c 7(c),, I F, < c,,;'k ?_n?s',; • 4-4,• r 0'1• AZ I: •Z; �i ---1,- z To S;e' 1, s:-•ti_," 3;r1 �,^-;l€.p,..ai tP^.cr�f / ,, It I ' ?f:T.:D ' 'n.' • IrliEr ifs' 2_.:4" : 32 1..,1 �'--3 :0,1,• 'A6.:,1•?',i,1 4, e.4';J • F .. = 0.7 rFo re. d F.ri : 2 2-1)1•"1 it • bs Cm ; , `1Y92 j ifc, ,r • r� jM s 5,2i) .s..L. — t3{ ct.:=j �5 2'S17...L'I : &9', : iL —, r9 2 2.c --f',-7.f? '.. :r..440 t•�UA °+`�11'. Ir� •y� ! �< / ��qv f '1 �6 • 7. Y 2'11 , p.25 - ` -';-041'i •C(cC :a C1f . . ! 1 •11242-yA ^'T r'1)V '. 1 I ' Project: No::n" ``y' 6s Page: I � eafena g Subject: Sy: Zo18O17 AA,' Date: Pat (%td € : �_►h$ MPL q l o/ •$ut -iy itri -liof bil.LetW 1,tors : (z} DR.. SS X I t) pu4 au ac41 GL d .14 ,�;� s 9.f fir'=17.0) lb I WI - Ss,27 I ' Cbr : ri,c4bci4C `Ci,'CFV f = nibs; '-�+ Ma tg97 esl " ',/•:.5{Q" .1,5`�2 = k:r77 tb_ rvi S • C• F'V. I FY'' FvC11,Vc = ? 7p va =3• •,Z•d_5�425„.3,rz.3 Ij, I ' r''s I cps: 4 Y ; Va-V s.7, zA do =>ivnx, A9' mod: r,21021 112 040.+41v011. max, +soot timh+ u.+:o wl. t Yk Ntusv-44 c-Ar41• ' �� -cmove x d p-!.6 C cOtale, jeer, 41- loin'wit I . M : PL/y < 4 5177 ib- ,n. ?< 4•N5I77 Ib-M 12D1, = i505- I ( i 431P •, 1.41,4 F14!!) doad w,i (2) bFL SS 24o is I SC'Ib i • Cos ry3f CIG. bup '•tws? I • Isr1:9t.A 7 —�j s 0•A9 - 11. i C53")Y,'i s I$I S0 lb. 41Y11 = 1°'C 7 b (n stere '7 M z 10.0-1C 524..i /g It „5i +s•' lf s 271 5kr $ d(Kio w;n fA ' Zs3.2S.41r) 4yziol ti cc.v.;ryCpr ,�. cii• : psi 'r r-fp * ; v` ws;�: ,n3. a r rr ! ! ! I S b = lisle < F6 r6f'il4 S. CYLr3iv LCS 59.,•T:ali1[i•:.fi'0.1g= Bird • f z`5€)°J(s2131P1(5325l4.75)1.1 -0.7E I iAoer-- 1 fcatena 'A.)1- 2./c5c6 .g/3-40/Z0 if2- i'tt.-4-- Teos iie S'i-r-eiv-hi 1 _ 00 =6- c) A 7 11 I 1 C C70. --- 6 -'ig k I iTror ilrOtc-,11 Amirs's- - q,ici k 1111 V/ I (4.44,r.. ./.{.: , (...2.,;ii\e00,_ s IT et4s7+ly, et"71._ c.(e.., • IA± 4- 4r cifim,s.te I 4 , ,r-77----4_ L-t' l,f/ - i's" 75 4 - ' * . - (......,, t . ,... .... , r Tlin,,,-.7—• *. ,r, ..r. I ..._ .1 1 c , ‘i—t.t."-L.F.-:, I , 6.. rev'cliC k/ I Ccocrei., _., I Ip :: a Lie (fry,* Ge.,iec cefki^4. ) I I I I SIMPSON Anchor Designer TM Company: Date: 4/20/2020 I Page: 1/5 g Software Engineer: Engin Engineroj t: Stron Tie Version 2.8.7094.0 Address: e Phone: IE-mail 1.Project information I Customer company: Project description: Slab Tieback at Stem Wall Customer contact name: Location: Customer e-mail: Fastening description: at Gridline 5, Adjacent to Comment: Retaining Wall per 2/S506 I 2. Input Data&Anchor Parameters General Base Material Design method:ACI 318-14 Concrete: Normal-weight Units: Imperial units Concrete thickness,h(inch):8.00 State: Uncracked Anchor Information: Compressive strength,fc(psi):3000 Anchor type: Bonded anchor Wc,v: 1.0 Material:A615 Grade 60 Rebar Reinforcement condition: B tension, B shear 1 Diameter(inch):0.625 Supplemental reinforcement: No Effective Embedment depth,he,(inch):4.000 Reinforcement provided at corners: No Code report: ICC-ES ESR-2508 Ignore concrete breakout in tension: No Anchor category:- Ignore concrete breakout in shear:No 1 Anchor ductility: No Hole condition: Dry concrete hmm(inch):7.13 Inspection:Continuous c (inch):7.20 Temperature range,Short/Long: 110/75°F Cmn,(inch): 1.75 Ignore 6do requirement: Not applicable Saar,(inch):3.00 Build-up grout pad: No IRecommended Anchor Anchor Name:SET-XP®-SET-XP w/#5 A615 Gr.60 Rebar Code Report: ICC-ES ESR-2508 I . r <M I I I I I Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com I SIMPSON Anchor Designer TM Company: Date: 4/20/2020 Engineer: Page: 2/5 I Strong-Tie Software Project: Version 2.8.7094.0 Address: Phone: E-mail: I Load and Geometry Load factor source:ACI 318 Section 5.3 Load combination: not set Seismic design: No Anchors subjected to sustained tension:No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No Strength level loads: Nu.[lb]: 3430 V.[lb]:0 Vuay[lb]:0 <Figure 1> I Z = Req'd Restraint force - (soil friction of 4" concrete slab at 2/S506) 3430 lb 4111 I I I O lb I O lb Y I • X' 0 1 os I Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com 1 1 SIMPSON Anchor Designer TM Company: Date: 4/20/2020 1 Engineer: StrongTie Software Project: Page: 3/5 Version 2.8.7094.0 Address: Phone: E-mail: <Figure 2> I 1 I 6 . 00 6. 00 1 1 1 1 1 1 1 Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com t I SIMPSON Anchor DesignerTM Company: Date: 4/20/2020 Engineer: Page: 4/5 Strong-Tie Software Project: I Version 2.8.7094.0 Address: e Phone: E-mail: I 3.Resulting Anchor Forces Anchor Tension load, Shear load x, Shear load y, Shear load combined, N.(Ib) Vuax(Ib) Vuay(Ib) 4(Vuax)2+(Vuay)2(Ib) 1 3430.0 0.0 0.0 0.0 Sum 3430.0 0.0 0.0 0.0 Maximum concrete compression strain(%a):0.00 ' Maximum concrete compression stress(psi): 0 Resultant tension force(Ib):3430 Resultant compression force(Ib):0 Eccentricity of resultant tension forces in x-axis,e'Nx(inch):0.00 Eccentricity of resultant tension forces in y-axis,e'Ny(inch):0.00 I 4.Steel Strength of Anchor in Tension(Sec.17.4.1) Mc(Ib) 0 5Nsa(Ib) 27900 0.65 18135 5.Concrete Breakout Strength of Anchor in Tension(Sec.17.4.2) Nb=kc2 rohell 5(Eq. 17.4.2.2a) kc As f'c(psi) her(in) Nb(lb) 24.0 1.00 3000 4.000 10516 0Ncb=0(ANc/ANcn)%d,,N'Yc,NVcp,NNb(Sec. 17.3.1 &Eq. 17.4.2.1a) ANc(m2) ANco(in2) Ca,mm(in) Pad,N VaN 17op,N Nb(Ib) 0 0Ncb(Ib) ' 144.00 144.00 6.00 1.000 1.00 0.833 10516 0.65 5695 6.Adhesive Strength of Anchor in Tension(Sec.17.4.5) ' Tk,uncr=Tk,uncrfshort-termKsat Tk,uncr(psi) fshort-term Kcal Tk,uncr(psi) 1631 1.00 1.00 1631 Mc=Aazuncordehef(Eq. 17.4.5.2) A reef(psi) de(in) hef(in) Nba(lb) 1.00 1631 0.63 4.000 12810 ' #Na=0(ANa/ANao)lYed.Na lPcp.NaNba(Sec. 17.3.1 &Eq. 17.4.5.1a) ANa(in2) ANao(in2) CNa(in) Ca,min(In) lyed,Na Tcp,Na Nba(Ib) d 0Na(lb) 182.65 231.68 7.61 6.00 0.937 1.000 12810 0.65 6148 1 Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com I SIMPSON Anchor Designer TM Company: Date: 4/20/2020 Engineer: Page: 5/5 Strong-Tie Software Project: Version 2.8.7094.0 Address: Phone: E-mail: I I I 11.Results 11.Interaction of Tensile and Shear Forces(Sec.D.7)? Tension Factored Load, N.(Ib) Design Strength,mg,(Ib) Ratio Status Steel 3430 18135 0.19 Pass Concrete breakout 3430 5695 0.60 Pass(Governs) Adhesive 3430 6148 0.56 Pass SET-XP w!#5 A615 Gr.60 Rebar with hef=4.000 inch meets the selected design criteria. 12.Warnings -When cracked concrete is selected,concrete compressive strength used in concrete breakout strength in tension,adhesive strength in tension and concrete pryout strength in shear for SET-XP adhesive anchor is limited to 2,500 psi per ICC-ES ESR-2508 Section 5.3. -This temperature range is currently outside the scope of ACI 318-14/-11 and ACI 355.4. Designer must exercise judgement to determine if this design is suitable. -Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option. -Designer must exercise own judgement to determine if this design is suitable. -Refer to manufacturer's product literature for hole cleaning and installation instructions. I I 1 I Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com I G--.1 cyl --- P,' ''"-•••. iE ---1 t 7E" ti LEI `.......... •---9 "*----'''s ......) .e. t..._. —.`....' ..---•..., Q Z (4) tfl Q '--, VI _ 0 9.— v.: r-lil .4_s cit kd vs —Li I i , . C C i a) \is: 1110 00 1101 1011 UN VIII III Mill Ell UM IIIU UN 11111 IOU 011 MR MI MIMI 11111 NIMP NO NM ON NIS INII MMI 1210 MN MS MIN NIN NMI MN INN III. n) .1.1 MIN 1.111 S.R t.I r • " , tn al -- 4--, g ---, r- it ,-------.'ca -4,... 60 (-----, — Ci -----, __1_, r,-...,.......,.., t• 3 V * . ,----..„ .-n r- 1____, ........., „ ::4_, k., —f- ....g ...-...- ._ Q.,.. 0 Q --. ..... „.... 1_—,,, 1!3 c\ --t- 0"--) ‹,-- -,. -..: -'-' -e; :-3 :: 4- ',--• IN 4 fr,,,eN r ---- S =0; _,. . , '4444, Qv - i•44 cffi 1.4.. , . 0 c f CD I RTWa11 Output DATE: 04/13/2020 Project:Rutkin ES Prepared by:AA M Company:catena Phone: Email: Project Information - Basics Retaining wall depicted in detail Design criteria: 1 /S506 with seismic loads applied Code used: 2015 IBC F.S.withouth seismic= 1.5 F.S.with seismic= 1.1 Design Assumptions: Wall is restrained against sliding: NO Soil weights are factored as dead load: YES Vertical component of active pressure is used in stability checks: YES Surcharge load vertical component is used in stability checks: NO Combine passive pressure resultant force with friction force to resist sliding =YES The weight of the soil over the toe is neglected for strength design of the toe: YES Bearing pressure beneath the heel is neglected for strength design of the heel:NO Vertical bars are developed at the top of the stem: NO Project Information - Geometry Backfill: H (from top of footing)= 13.5 ft Slope=0° Soil Over Toe: H (from top of footing)=0 ft Depth of soil over toe to ignore= 0 ft Stem: H (from top of footing)= 14.5 ft Wall type: RC Cantilever Thickness at top = 12 in. Extra thickness at bottom(heel-side) = 0 in. Extra thickness at bottom(toe-side)=0 in. Footing: Thickness= 18 in. Heel width=5 ft Toe width = 4 ft Project Information -Materials Backfill Soil: Y = 110 pcf Analysis type: EFP YEFP =35 psf/ft ' Angle of external friction=20° Soil Over Toe: S. K. Ghosh Associates LLC. 1334 Colfax St.,Palatine,IL 60067 Page 1 of 16 I RTWal1 Output DATE: 04/13/2020 Project:Rutkin ES I Prepared by:AA M Company:catena Phone: Email: y = 110 pcf Analysis type: EFP YEFP =300 psf/ft Soil under the Footing: Allowable bearing pressure=4000 psf Footing-soil friction coefficient=0.4 Water: Ywater =62.4 pcf (I)saturated =30° Ysaturated= 130 pcf Structure: Yconcrete = 150 pcf Stem concrete Pc =4000 psi Footing concrete Pc =4000 psi fy = 60000 psi I Project Information - Loads Concentrated loads at the top of the stem: Axial loads: Dead load= 1150 plf Live load=392 plf Lateral loads: I Seismic load on backfill: Fseism;c =730 plf applied at 4.5 ft from the top of the footing. Project Information - Reinforcement r Stem reinforcement: Longitudinal bars(main layer):#9 @ 10 in. -cover=2 in. from backfill Embedment type: Hooked Longitudinal bars(toe-side layer):#5 @ 12 in. -cover=2 in. from passive Transverse bars: #4 @ 12 in. I Top reinforcement: Main bars: #6 @ 12 in. -cover—2 in. from the top of the footing Bottom reinforcement: Main bars: #7 @ 12 in. -cover= 3 in. from the bottom of the footing Footing transverse reinforcement: I S. K. Ghosh Associates LLC. 1 334 Colfax St., Palatine,IL 60067 Page 2 of 16 I I RTWal1 Output DATE: 04/13/2020 Project:Rutkin ES Prepared by:AAM rt Company:catena Phone: Email: #5 @ 18 in. 1 1 I 1 1 1 1 1 1 1 1 1 1 i 1 S.K. Ghosh Associates LLC. 334 Colfax St.,Palatine,IL 60067 Page 3 of 16 I RTWa11 Output DATE: 04/13/2020 Project:Rutkin ES I Prepared by:AAM Company:catena Phone: Email: Backfill Pressure u I I r 15.00 ft 3937.5lb/ft 5.00ft ' I 525.0 psf Analysis Method: Equivalent Fluid Pressure (EFP) at = H YEFP =(15.00 ft)(35 psf/ft) = 525.0 psf i i I I I I 1 i S.K. Ghosh Associates LLC. 1334 Colfax St.,Palatine, IL 60067 Page 4 of 16 I RTWa1l Output DATE: 04/13/2020 Project:Rutkin ES Prepared by:AAM �� Company:catena Phone: Email: Passive Pressure r I 1 I I.50ft 1.50 ft .5 lb/ft 450.0 ps 337 f�` Analysis Method: Equivalent Fluid Pressure(EFP) al =H yEFP = (1.50 ft)(300 psf/ft) =450.0 psf II I I 1 I i 1 I IS.K. Ghosh Associates LLC. 1 334 Colfax St.,Palatine, IL 60067 Page 5 of 16 RTWall Output DATE: 04/13/2020 Project:Rutkin ES I Prepared by:AAM Company:catena Phone: Email: DL = 1150.0 lb/ft I` I Concentrated Loads at the Top t I 4.50 ft - `,; I I I I I 1 I I I I I I S. K. Ghosh Associates LLC. 1 334 Colfax St.,Palatine,IL 60067 Page 6 of 16 1 I RTWaII Output DATE: 04/13/2020 Project:Rutkin ES Prepared by:AAM Company:catena Phone: Email: Seismic Pressure li 19.5 psf 4 3 730.O lb/ft 6.00 77.9 psf Geotechnical Report Values: Strength-level Fseismic = 730.00 plf applied at 4.5 ft from the top of the footing. Based on the above, a trapezoidal distribution of seismic force is constructed: atop = 19.47 psf abottom = 77.87 psf I I I 1 I I I S. K. Ghosh Associates LLC. 1 334 Colfax St., Palatine,IL 60067 Page 7 of 16 I RTWall Output DATE: 04/13/2020 Project:Rutkin ES 1 Prepared by:AAM Ell Company:catena Phone: Email: I Weights 2175.O lb/ft I 7425.0 lb/ft I i I , . i. 2250.O lb/ft I I Summary of Force Calculations Load Vert. Comp. Moment Arm Horiz. Comp. Moment Arm I Force Type (lb/ft) (ft) (lb/ft) (ft) Active Pressure H 0.0 10.00 3937.5 5.00 I Water Pressure F --- --- 0.0 0.00 Passive Pressure H --- --- -337.5 0.50 Uniform Surcharge L 0.0 7.50 0.0 7.50 Uni. Lateral Pressure W --- --- 0.0 0.00 Axial Dead Load D -1150.0 4.50 --- --- Axial Live Load L -392.0 4.50 --- --- Applied Shear at top W --- --- 0.0 16.00 I Applied Moment at top W 0.0 lb-ft/ft Adjacent Footing L 0.0 0.00 0.0 0.00 Seismic E 0.0 0.00 730.0 6.00 Stem Weight D -2175.0 4.50 --- --- Footing Weight D -2250.0 5.00 --- --- Shear Key Weight D 0.0 0.00 --- -- Backfill Soil Weight D -7425.0 7.50 --- --- Passive Soil Weight D 0.0 NaN --- --- 1 S. K. Ghosh Associates LLC. 1334 Colfax St., Palatine,IL 60067 Page 8 of 16 ' I RTWall Output DATE: 04/13/2020 IProject:Rutkin ES Prepared by:AAM I Company:catena Phone: Email: tStability Checks: D + H+ F+ L+ W+ 0.7E (IBC Section 1807.2.3) Bearing (lb/ft) Sliding (lb/ft) Overturning(ft-lb/ft) I Destabilizing Loads Active Pressure(Horz.) --- 3937.5 19687.5 Seismic - QE(Horz.) --- 511 3066 Fsliding= 4448.5 Moverturning= 22753.5 I Resisting Loads Passive Pressure(Horz.) 337.5 168.8 Axial Dead Load(Vert.) 1150 --- 5175 I Axial Live Load(Vert.) 392 --- 1764 Seismic - QE(Vert.) 0 0 Stem Weight(Vert.) 2175 --- 9787.5 ' Footing Weight(Vert.) 2250 --- 11250 Backfill Soil Weight(Vert.) 7425 --- 55687.5 IRtotai= 13392 Fresisting= 337.5 Mresisting= 83832.8 Overturning: IMresisting/Moverturning = 83832.8/22753.5 =3.7 >F.S. (seismic)= 1.1 ...OK Bearing Pressure: Ie =(Bfooting/2) - [(Mresisting- Moverturning) /Rtotal ] =(10/2)- [(83832.8- 22753.5)/ 13392] = .44 ft <(Bfooting/6)= 1.67 ft 1 aapplied=(R/B)+(6Re/B2 )=( 13392/ 10)+(6x 13392x .44/ 100) = 1692 psf a'allowable / aapplied — 4000/ 1692 = 2.4> 1.0 ...OK ISliding: R= 133921bs IFriction force: Ffriction = It R= .4x 13392= 5356.8 lbs Fresisting = 337.5 + 5356.8 = 5694.3 lbs Fresisting/Fsliding = 5694.3/4448.5 = 1.3 >F.S.(seismic) = 1.1 ...OK I I ' S, K. Ghosh Associates LLC. 1 334 Colfax St.,Palatine,IL 60067 Page 9 of 16 RTWaIl Output DATE: 04/13/2020 Project:Rutkin ES Prepared by:AAM 1121 Company:catena Phone: Email: Stem Structural Design ' (top) 0.0 3.6 Stem Height(ft) --* 7.3 10.9 ♦ ♦ ♦♦ ( I � ♦ 1 14.5 -46.2 -30.8 -15.4 0.0 15.4 30.8 46.2 Moment(kip-ft/ft) 0.0(top) 3.6 Stem Height(ft) • 1 7.3 i ---- 10.9 14.5 -11.0 -7.4 -3.7 0.0 3.7 7.4 11.0 Shear(kip/ft) ---- Factored Load — Design Strength(Straight Bars) ---- Design Strength(Hooked Bars) , S.K. Ghosh Associates LLC. 1334 Colfax St.,Palatine, IL 60067 Page 10 of 16 , RTWalI Output DATE: 04/13/2020 ' Project:Rutkin ES Prepared by:AAM t Company:catena Phone: Email: Based on the governing values from all load combinations and#9 bars with hooked embedment: z [from top] (ft) 0.0 1.5 2.9 4.4 5.8 7.3 8.7 10.2 11.6 13.1 14.5 Vu (kips/ft) 0.00 0.01 0.15 0.40 0.78 1.29 1.93 2.69 3.57 4.58 5.72 +Mu (kip-ft/ft) 0.00 0.00 0.10 0.48 1.33 2.82 5.13 8.46 12.98 18.88 26.33 +As, req (sq.in/ft) 0.00 0.00 0.00 0.01 0.03 0.07 0.12 0.20 0.31 0.46 0.65 -Mu (kip-ft/ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -As,req (sq.in/ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 For stern material: Ld= db { (3/40) (fy/2f ) Wt-We Ws/ [(°b+Ktr) /db)] ) > 1.Oft (1.3 in.) { (3/40) [(60000 psi)/(1.0) 1(4000 psi)] (1.0) (1.0) (1.0) [(2.56+0.0)/(1.3 in.)] = 2.94 ft For footing material: Ld=2.68 ft; Ldh = 1.25 ft; and Lprovided= 1.25 ft ' Governing positive moment(at 14.21 ft from the top of the stem): a=As fy/0.85 f a=(1.2 in.2 /ft)(60000 psi)/(0.85)(4000 psi)= 1.8 in. 4) Mn= [Lavailable/Ld] (I) As fy(d-a/2) = [1.54/2.68] (0.9) (1.2 in.2/ft)(60000 psi) [(9.44 in.) -(0.88 in.)]=46.19 kip-ft/ft >Mu(= 24.71 kip-ft/ft) ...OK Governing shear(at 14.50 ft from the top of the stern): Vn=4, 2A, i d =(0.75)(2) (1) ( psi)(9.44 in.) = 10.74 kip/ft >Vu(= 5.72 kip/ft) ...OK ' Other structural checks: Maximum vertical steel: st=0.003[d/(a/f31 )- 1]=0.003[(9.72 in.)/(0.48 in./0.85)- 1] =0.051 >0.004...OK ACI 318 Section 9.3.3.1 Minimum positive vertical steel: Mn(_= 46.19 kip-ft/ft) >(4/3)Mu(= 32.95 kip-ft/ft) Although the minimum vertical steel check does not apply per ACI 318 Section 9.6.1.3, it is still illustrated below: ' S.K. Ghosh Associates LLC. 1 334 Colfax St.,Palatine,IL 60067 Page 11 of 16 RTWal1 Output DATE: 04/13/2020 Project:Rutkin ES I Prepared by:AAM Company:catena Phone: Email: As,min =max{3 Ify, 200/fy } bW d ACI 318 Section 9.6.1.2 (0.0033)(12 in.) (9.48 in.) =0.377 in.2/ft <As,provided(= 1.200 in.2/ft) Maximum vertical steel spacing: sv= 12 in. <sv,max(= 18.0 in.) ...OK ACI 318 Section 11.7.2.1 Minimum horizontal steel: , pt=As,h/ sh t=(0.40 in.2 )/(12 in.)(12.00 in.) =0.0028 >Pt,min (= 0.0020) ...OK ACI 318 Section 11.6.1 Maximum horizontal steel spacing: sh= 12 in. <sh,max(= 18.0 in.) ...OK ACI 318 Section 11.7.2.1 ' 1 1 I I 1 S.K. Ghosh Associates LLC. 1 334 Colfax St.,Palatine,IL 60067 Page 12 of 16 ' RTWaII Output DATE: 04/13/2020 Project:Rutkin ES Prepared by:AAM Company:catena Phone: Email: Heel Structural Design Based on the governing load combination for moment [1.2(D +F) + 1.6(L +H)]: (Bearing pressure is simply factored by an average value of 1.4.) 1782.0 psf-soil weight i : : , : : ,270.0 psf- concrete self-weight . ... : . . i . 980.0 psf- soil bearing pressure 1874.9 psf Critical Section for Moment and Shear At the critical section: Mu=6.33 kip-ft/ft<Mu,stem(= 22.96 kip-ft/ft); no reduction is required. a=AS fy/0.85Fc=(0.4 in.2/ft)(60000 psi)/(0.85)(4000 psi)=0.6 in. Mn=(I) Asfy(d-a/2) ' =(0.9)(0.4 in.2 /ft)(60000 psi) [(15.6 in.) -(0.3 in.)]= 30.30 kip-ft/ft >Mu(= 6.33 kip-ft/ft) ...OK ' Required development length for#6 bars: ACI 318 Sections 25.4.2 and 25.4.3 Straight embedment: Ld= 1.42 ft Hooked embedment: Ldh=0.83 ft ' Based on the governing load combination for shear [1.4(D +F)]: ( Vn=41) 2Ad d =(0.75)(2) (1) ( 4000 psi)(15.6 in.)= 17.79 kip/ft >Vu(= 3.83 kip/ft) ...OK Other structural checks: Maximum steel: et=0.003[d/(a/(31 )- 1] =0.003[(15.6 in.)/(0.6 in./0.85)- 1] =0.059>0.004...OK ACI 318 Section 9.3.3.1 S. K. Ghosh Associates LLC. 334 Colfax St.,Palatine,IL 60067 Page 13 of 16 RTWall Output DATE: 04/13/2020 Project:Rutkin ES 1 Prepared by:AAM Company:catena ' Phone: Email: Minimum steel: 4 M❑(= 30.30 kip-ft/ft) >(4/3)Mu(= 8.44 kip-ft/ft) ACI 318 Section 9.6.1.2 does not apply per ACI 318 Section 9.6.1.3 Also: As,min = [0.0018 x 60,000/fy] bµ,d ACI 318 Section 7.6.1.1 =(0.0018)(12 in.) (15.6 in.) =0.338 in.2/ft<As,provided(= 0.440 in.2/ft) ...OK Maximum steel spacing: s= 12 in. <smax(= 18.0 in.) ...OK ACI 318 Section 7.7.2.3 Minimum transverse steel: Pt=As,t/st t=(0.62 in.2 )/(18 in.)(18.00 in.)= 0.0019 ?Pt,min (= 0.0018) ...OK ACI 318 Section 24.4.3.1 Maximum transverse steel spacing: st= 18 in. < st,max(= 18.0 in.) ...OK ACI 318 Section 24.4.3.3 1 S. K. Ghosh Associates LLC. 1 334 Colfax St., Palatine,IL 60067 Page 14 of 16 ' I RTWall Output DATE: 04/13/2020 IProject:Rutkin ES Prepared by:AAM I Company:catena Phone: Email: Toe Structural Design Based on the governing load combination for moment [0.9D+ 1.0W+ 1.6H]: (Bearing pressure is simply factored by an average value of 1.4.) I202.5 psf- concrete self-weight 1 4, 4, 1 . 4 d ;<— I � . 2368.9 psf- soil bearing pressure A 1973.7 psf 1 Critical Section for: Shear Moment At the critical section for moment: MU= 16.28 kip-ft/ft<Mu,stem(= 22.96 kip-ft/ft); no reduction is required. ia=As fy/0.85fe= (0.6 in.2 /ft)(60000 psi)/(0.85)(4000 psi)=0.84 in. Mn= As fy(d-a/2) (0.9)(0.6 in.2 /ft)(60000 psi) [(14.52 in.) -(0.42 in.)]=38.13 kip-ft/ft I >Mu(= 16.28 kip-ft/ft) ...OK Required development length for#7 bars: ACI 318 Sections 25.4.2 and 25.4.3 Straight embedment: Ld=2.08 ft Hooked embedment: Ldh=0.97 ft At the critical section for shear: Based on the governing load combination for shear [0.9D+ 1.OW+ 1.6H]: 4) Vn=4) 2a,N. 'cd =(0.75)(2) (1) psi)(14.52 in.) = 16.58 kip/ft >Vu(= 5.65 kip/ft) ...OK Other structural checks: Maximum steel: st= 0.003[d/(a/[31)- 1] =0.003[(14.52 in.)/(0.84 in./0.85)- 1] —0.039>0.004...OK ACI 318 Section 9.3.3.1 S.K. Ghosh Associates LLC. 1 334 Colfax St.,Palatine, IL 60067 Page 15 of 16 I RTWa1i Output DATE: 04/13/2020 Project:Rutkin ES 1 Prepared by:AAM �� Company:catena Phone: Email: Minimum steel: , 4) Mn(=38.13 kip-ft/ft) >(4/3)Mu(—21.70 kip-ft/ft) ACI 318 Section 9.6.1.2 does not apply per ACI 318 Section 9.6.1.3 Also: As,min = [0.0018 x 60,000/fy] b,,,d ACI 318 Section 7.6.1.1 1 =(0.0018)(12 in.) (14.52 in.)=0.315 in.2/ft<As,provided(= 0.600 in.2 /ft) ...OK Maximum steel spacing: 1 s= 12 in. <smax(= 18.0 in.) ...OK ACI 318 Section 7.7.2.3 Minimum transverse steel: i Pt=As,t/st t=(0.62 in.2 )/(18 in.)(18.00 in.) =0.0019 >Pt,min (= 0.0018) ...OK ACI 318 Section 24.4.3.1 1 Maximum transverse steel spacing: st= 18 in. <st max(= 18.0 in.) ...OK ACI 318 Section 24.4.3.3 1 1 S. K. Ghosh Associates LLC. 1 334 Colfax St.,Palatine,IL 60067 Page 16 of 16 1 I RTWaIl Output DATE: 04/13/2020 Project: Prepared by: g' ' Company: 'I Phone: Email: Project Information -Basics Retaining wall depicted in detail Design criteria: 1 /S506 with no lateral load Code used: 2015 IBC F.S.withouth seismic= 1.5 F.S.with seismic = 1.1 Design Assumptions: Wall is restrained against sliding: NO Soil weights are factored as dead load: YES Vertical component of active pressure is used in stability checks: YES Surcharge load vertical component is used in stability checks: NO Combine passive pressure resultant force with friction force to resist sliding=YES ' The weight of the soil over the toe is neglected for strength design of the toe: YES Bearing pressure beneath the heel is neglected for strength design of the heel:NO Vertical bars are developed at the top of the stem: YES ' Project Information - Geometry Backfill: H (from top of footing)= 12 ft Slope= 0° Soil Over Toe: H (from top of footing)=0 ft Depth of soil over toe to ignore=0 ft Stem: H (from top of footing)= 12 ft Wall type: RC Cantilever Thickness at top = 12 in. Extra thickness at bottom(heel-side) =0 in. Extra thickness at bottom(toe-side)=0 in. Footing: Thickness= 18 in. Heel width=5 ft Toe width = 4 ft ' Project Information - Materials Backfill Soil: y = 110 pef Analysis type: EFP 7EFP = 35 psf/ft ' Angle of external friction=20° Soil Over Toe: S.K. Ghosh Associates LLC. 1 334 Colfax St., Palatine,IL 60067 Page 1 of 14 RTWaIl Output DATE: 04/13/2020 Project: , Prepared by: Company: gi Phone: Email: y = 110 pcf Analysis type: EFP ?EFP =300 psf/ft Soil under the Footing: Allowable bearing pressure—3000 psf Footing-soil friction coefficient=0.4 , Water: Ywater =62.4 pcf dsaturated =30° Ysaturated= 130 pcf Structure: Yconcrete = 150 pcf Stem concrete f c =4000 psi Footing concrete fc =4000 psi fy =60000 psi 1 Project Information - Loads Surcharge: Uniform surcharge pressure= 100 psf Project Information - Reinforcement Stem reinforcement: Longitudinal bars (main layer): #9 @ 10 in. -cover=2 in. from backfill 1 Embedment type: Hooked Longitudinal bars(toe-side layer):#5 @ 12 in. -cover=2 in. from passive Transverse bars:#4 @ 12 in. Top reinforcement: Main bars: #6 @ 12 in. -cover=2 in. from the top of the footing Bottom reinforcement: , Main bars: #7 @ 12 in. -cover= 3 in. from the bottom of the footing Footing transverse reinforcement: ' #5 @ 18 in. S.K. Ghosh Associates LLC. 1 334 Colfax St.,Palatine,IL 60067 Page 2 of 14 I RTWa1l Output DATE: 04/13/2020 Project: Prepared by: Company: rC Phone: Email: Backfi!II Pressure I 4 13.50 ft 3189.4 lb/ft .50ft 472.5 psf Analysis Method: Equivalent Fluid Pressure(EFP) at =H yEFp =(13.50 ft)(35 psf/ft) =472.5 psf 1 i i 1 1 1 1 1 S.K. Ghosh Associates LLC. 334 Colfax St., Palatine, IL 60067 Page 3 of 14 1 RTWa1I Output DATE: 04/13/2020 Project: 1 Prepared by: Company: Phone: Email: Passive Pressure 1 1 1 1 50 ft 337.5 lb/ft 0.50 ft 450.0 psf A Analysis Method: Equivalent Fluid Pressure(EFP) a =H YEpp =(1.50 ft) (300 psf/ft) =450.0 psf i 1 1 1 1 1 1 1 S. K. Ghosh Associates LLC. 1334 Colfax St.,Palatine, IL 60067 Page 4 of 14 1 I RTWal1 Output DATE: 04/13/2020 Project: Prepared by: I Company: Phone: Email: 500.0 lb/ft I Uniform Surcharge Pressure t I 7.50ft k 13.50 I , 31.8 psf 429.5 lb/ft I 6.75ft 11 h L. ' Analysis Method: Equivalent Fluid Pressure(EFP) I Ka= YEFP/ Y =35/110=0.32 6sur Ka Psur =(0.32)(100.0 psf)= 31.8 psf I I I I I I I I S.K. Ghosh Associates LLC. 1 334 Colfax St.,Palatine,IL 60067 Page 5 of 14 I RTWaIl Output DATE: 04/13/2020 Project: I Prepared by: �� Company: ' Phone: Email: Weights ' t.',.• ii.p....: 1800.1K ft I '4° 6600.0lb/ft . I I J ti: 4L.,, 2250.0 lb/ft I 1 Summary of Force Calculations Load Vert. Comp. Moment Arm Horiz. Comp. Moment Arm I Force Type (lb/ft) (it) (lb/ft) (ft) Active Pressure H 0.0 10.00 3189.4 4.50 I Water Pressure F --- --- 0.0 0.00 Passive Pressure H --- --- -337.5 0.50 Uniform Surcharge L -500.0 7.50 429.5 6.75 Uni. Lateral Pressure W --- --- 0.0 0.00 Axial Dead Load D 0.0 0.00 --- --- Axial Live Load L 0.0 0.00 --- --- Applied Shear at top W --- --- 0.0 13.50 Applied Moment at top W 0.0 lb-ft/ft Adjacent Footing L 0.0 0.00 0.0 0.00 I Seismic E 0.0 0.00 0.0 0.00 Stem Weight D -1800.0 4.50 --- --- Footing Weight D -2250.0 5.00 --- ' Shear Key Weight D 0.0 0.00 --- --- Backfill Soil Weight D -6600.0 7.50 --- --- Passive Soil Weight D 0.0 NaN --- --- I S.K. Ghosh Associates LLC. 1334 Colfax St.,Palatine, IL 60067 Page 6 of 14 ' I RTWaII Output DATE: 04/13/2020 ' Project: Prepared by: s' I Company: Phone: Email: IStability Checks: D + H+ F+ L + W+ 0.7E (IBC Section 1807.2.3) Bearing (lb/ft) Sliding (lb/ft) Overturning(ft-lb/ft) 1 Destabilizing Loads Active Pressure (Horz.) 3189.4 14352.2 Uniform Surcharge(Horz.) 429.5 2899.4 IFsliding— 3618.9 Movertuming= 17251.6 I Resisting Loads Passive Pressure(Horz.) 337.5 168.8 Uniform Surcharge(Vert.) N.A. --- N.A. I Stem Weight(Vert.) 1800 8100 Footing Weight(Vert.) 2250 11250 Backfill Soil Weight(Vert.) 6600 --- 49500 IRtotal = 10650 Fresisting= 337.5 Mresisting= 69018.8 1 Overturning: — Mresisting/Movertuming = 69018.8/ 17251.6 =4.0>F.S.(w/o seismic)= 1.5 ...OK I Bearing Pressure: e =(Bfooting/2) - [(Mresisting- Movertuming) /Rtotal ] =( 10/2)- [(69018.8- 17251.6)/ 10650] — .14 ft <(Bfooting/ 6)= 1.67 ft °applied=(R )+(6ReB2 )=( 10650/ 10)+ (6x 10650x .14/ 100) = 1154 psf I °allowable / °applied = 3000/ 1154=2.6> 1.0 ...OK Sliding: Add effects from 4" R— 10650 lbs concrete slab and stem wall & footing on gridline 7 Friction force: Ffriction = µ R= .4x 10650= 4260 lbs Fresisting = 337.5 + 4260 = 4597.5 lbs + 1 150 lb+1025 lb= 6772.5 lb I Fresisting/Fsliding = 1597.5/3618.9- 1.3 <F.S.(w/o seismic)- 1.5 ... NC 6772.5/3618.9= 1.87>F.S. (w/o seismic) = 1.5 ....OK I I ' S. K. Ghosh Associates LLC. 1 334 Colfax St.,Palatine,IL 60067 Page 7 of 14 I RTWafl Output DATE: 04/13/2020 Project: 1 Prepared by: Company: Phone: Email: Stem Structural Design (top)0.0 ---- 3.0 Stem Height(ft) t ► 6.0 • • • •• 9.0 • • ` i 12.0 -46.2 -30.8 -15.4 0.0 15.4 30.8 46.2 Moment(kip-ft/ft) 0.0(top) I p 3.0 Stem Height(ft) , 6.0 -- 9.0 12.0 -11.0 -7.4 -3.7 0.0 3.7 7.4 11.0 Shear(kip/ft) ---- Factored Load — Design Strength(Straight Bars) ---- Design Strength(Hooked Bars) ' I S.K. Ghosh Associates LLC. 1 334 Colfax St.,Palatine,IL 60067 Page 8 of 14 I RTWa1I Output DATE: 04/13/2020 Project: Prepared by: Company: Phone: Email: Based on the governing values from all load combinations and#9 bars with hooked embedment: z [from top] (ft) 0.0 1.2 2.4 3.6 4.8 6.0 7.2 8.4 9.6 10.8 12.0 1 Vu (kips/ft) 0.00 0.10 0.28 0.55 0.89 1.31 1.82 2.40 3.07 3.82 4.64 +Mu (kip-ft/ft) 0.00 0.05 0.28 0.77 1.62 2.93 4.80 7.33 10.60 14.73 19.79 +As, req (sq.in/ft) 0.00 0.00 0.01 0.02 0.04 0.07 0.11 0.17 0.25 0.36 0.48 -Mu (kip-ft/ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -As, req (sq.in/ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 For stem material: Ld=db { (3/40) (fy ' W ) WtWeWs/ [(eb+Ktr) /db)] } > 1.0ft =(1.3 in.) { (3/40) [(60000 psi)/(1.0) NI(4000 psi)] (1.0) (1.0) (1.0) [(2.56+0.0)/ (1.3 in.)] } -2.94 ft For footing material: Ld=2.68 ft; Ldh= 1.25 ft; and Lprovided= 1.25 ft Governing positive moment(at 11.76 ft from the top of the stem): a=As fy/0.85f _(1.2 in.2/ft)(60000 psi)/(0.85)(4000 psi)= 1.8 in. 4 Mn= [Lavailable/Ld] 4) As fy(d-a/2) = [1.49/2.68] (0.9) (1.2 in.2 /ft)(60000 psi) [(9.44 in.) -(0.88 in.)]=46.19 kip-ft/ft >Mu(= 18.70 kip-ft/ft) ...OK Governing shear(at 12.00 ft from the top of the stem): � Vn=4) 2 d =(0.75)(2) (1) (N I.( )0 psi)(9.44 in.)= 10.74 kip/ft >V„(=4.64 kip/ft) ...OK Other structural checks: Maximum vertical steel: 6t=0.003[d/(al RI )- 1]=0.003[(9.72 in.)/(0.48 in./0.85)- 1] =0.051 >0.004...OK ACI 318 Section 9.3.3.1 Minimum positive vertical steel: (I) Mn(= 46.19 kip-ft/ft) >(413)Mu(= 24.93 kip-ft/ft) Although the minimum vertical steel check does not apply per ACI 318 Section 9.6.1.3, it is still illustrated below: IS. K. Ghosh Associates LLC. 1334 Colfax St.,Palatine, IL 60067 Page 9 of 14 I RTWaIl Output DATE: 04/13/2020 Project: Prepared by: Company: Phone: Email: As,min =max{3 /fy, 200/fy } b,v d ACI 318 Section 9.6.1.2 =(0.0033)(12 in.) (9.48 in.)=0.377 in.2/ft<As,provided(= 1.200 in.2/ft) Maximum vertical steel spacing: I sv= 12 in. < sv,max (= 18.0 in.) ...OK ACI 318 Section 11.7.2.1 Minimum horizontal steel: I Pt—As,h/sh t= (0.40 in.2 )/(12 in.)(12.00 in.)= 0.0028 >Pt,min (=0.0020) ...OK ACI 318 Section 11.6.1 Maximum horizontal steel spacing: sh= 12 in. <sh,max(= 18.0 in.) ...OK ACI 318 Section 11.7.2.1 1 1 1 I I I 1 1 1 1 1 S. K. Ghosh Associates LLC. 1 334 Colfax St.,Palatine,IL 60067 Page 10 of 14 1 I RTWa11 Output DATE: 04/13/2020 Project: Prepared by: -/- Company: a� (. Phone: Email: Heel Structural Design Based on the governing load combination for moment [1.2(D +F) + l.6(L + H)]: (Bearing pressure is simply factored by an average value of 1.4.) I 160.0 psf- uniform surcharge 1584.0 psf- soil weight 270.0 psf- concrete self-weight , • . t ♦ . t J 980.0 psf- soil bearing pressure 1491.0 psf Critical Section for Moment and Shear At the critical section: Mu=7.58 kip-ft/ft<Mu,stem(= 19.79 kip-ft/ft); no reduction is required. a =As fy/0.85fe=(0.4 in.2 /ft)(60000 psi)/(0.85)(4000 psi)=0.6 in. (I) Mn=(I) Asfy(d-a/2) =(0.9)(0.4 in.2/ft)(60000 psi) [(15.6 in.) -(0.3 in.)]=30.30 kip-ft/ft >Mu(= 7.58 kip-ft/ft) ...OK Required development length for#6 bars: ACI 318 Sections 25.4.2 and 25.4.3 Straight embedment: Ld= 1.42 ft Hooked embedment: Ldh=0.83 ft ' Based on the governing load combination for shear [1.4(D +F)]: lVn=42A.41cd _(0.75)(2) (1) ( 4 psi)(15.6 in.) = 17.79 kip/ft >V.(= 3.67 kip/ft)...OK Other structural checks: Maximum steel: Et=0.003[d/(a/(3t )- 1] =0.003[(15.6 in.)/(0.6 in./0.85) - 1] =0.059>0.004...OK ACI 318 Section 9.3.3.1 IIS. K. Ghosh Associates LLC. 1 334 Colfax St.,Palatine,IL 60067 Page 11 of 14 I RTWaII Output DATE: 04/13/2020 Project: , Prepared by: rit Company: Phone: Email: Minimum steel: Mn(= 30.30 kip-ft/ft) >(4/3)M❑(= 10.10 kip-ftlft) ACI 318 Section 9.6.1.2 does not apply per ACI 318 Section 9.6.1.3 Also: As,min = [0.0018 x 60,000/fy] by,d ACI 318 Section 7.6.1.1 =(0.0018)(12 in.) (15.6 in.)=(1338 in.2 /ft <As,provided(— 0.440 in.2 /ft) ...OK Maximum steel spacing: I s= 12 in. < smax(= 18.0 in.) ...OK ACI 318 Section 7.7.2.3 Minimum transverse steel: Pt=As,t/st t=(0.62 in.2 )/(18 in.)(18.00 in.)=0.0019 ?Pt,min (= 0.0018) ...OK ACI 318 Section 24.4.3.1 1 Maximum transverse steel spacing: st= 18 in. <St,max(= 18.0 in.) ...OK ACI 318 Section 24.4.3.3 1 1 1 1 1 I 1 I S. K. Ghosh Associates LLC. 1334 Colfax St., Palatine,IL 60067 Page 12 of 14 RTWaII Output DATE: 04/13/2020 Project: Prepared by: rt Company: Phone: Email: Toe Structural Design Based on the governing load combination for moment [0.9D+ 1.0W+ 1.6H]: (Bearing pressure is simply factored by an average value of 1.4.) I 202.5 psf- concrete self-weight 1 1 1 1 1 1 I 1 d �-- 1615.6 psf- soil bearing pressure l I I 1 I I t 1515.9 psf ICritical Section for: Shear Moment At the critical section for moment: Mu= 11.04 kip-ft/ft<Mu,stem(= 16.13 kip-ft/ft); no reduction is required. a =As fy/0.85fe=(0.6 in.2/ft)(60000 psi)/ (0.85)(4000 psi)=0.84 in. I4. Mn= As fy(d-a/2) =(0.9)(0.6 in.2/ft)(60000 psi) [(14.52 in.) -(0.42 in.)]=38.13 kip-ft/ft I >Mu(= 11.04 kip-ft/ft) ...OK Required development length for#7 bars: ACI 318 Sections 25.4.2 and 25.4.3 Straight embedment: Ld=2.08 ft Hooked embedment: Ldh =0.97 ft At the critical section for shear: I Based on the governing load combination for shear [0.9D+ 1.0W+ 1.6H]: (l) Vn=(I) 2AfF'cd I =(0.75)(2) (1) psi)(14.52 in.)= 16.58 kip/ft >Vu(= 3.84 kip/ft)...OK Other structural checks: Maximum steel: Et=0.003[d/(a/(3 t )- 1] 0.003[(14.52 in.)/(0.84 in./0.85) - 1] =0.039>0.004...OK ACI 318 Section 9.3.3.1 S. K. Ghosh Associates LLC. 334 Colfax St., Palatine, IL 60067 Page 13 of 14 RTWaII Output DATE: 04/13/2020 Project: Prepared by: Company: Phone: Email: Minimum steel: rp Mn(= 38.13 kip-ft/ft) >(4/3)Mu(= 14.72 kip-ft/ft) ACI 318 Section 9.6.1.2 does not apply per ACI 318 Section 9.6.1.3 Also: As,min = [0.0018 x 60,000/fy] b,d ACI 318 Section 7.6.1.1 =(0.0018)(12 in.) (14.52 in.) =0.315 in.2 /ft<As,provided(= 0.600 in.2 /ft) ...OK Maximum steel spacing: I s= 12 in. <Smax(= 18.0 in.) ...OK ACI 318 Section 7.7.2.3 Minimum transverse steel: I Pt=As,t/st t=(0.62 in.2 )/(18 in.)(18.00 in.)=0.0019 >Pt,min (= 0.0018) ...OK ACI 318 Section 24.4.3.1 1 Maximum transverse steel spacing: st= 18 in. <st,max(= 18.0 in.) ...OK ACI 318 Section 24.4.3.3 I I I I I I I S. K. Ghosh Associates LLC. 1334 Colfax St., Palatine,IL 60067 Page 14 of 14 I I RTWaII Output DATE: 04/20/2020 Project:Rutkin ES Prepared by:AAM t Company:catena Phone: Email: Project Information -Basics Retaining wall depicted in detail Design Criteria: 1 /S506 with wind loads applied Code used: 2015 IBC ' F.S.withouth seismic = 1.5 F.S.with seismic = 1.1 Design Assumptions: Wall is restrained against sliding: NO Soil weights are factored as dead load: YES Vertical component of active pressure is used in stability checks: YES Surcharge load vertical component is used in stability checks: NO Combine passive pressure resultant force with friction force to resist sliding=YES The weight of the soil over the toe is neglected for strength design of the toe:YES Bearing pressure beneath the heel is neglected for strength design of the heel:NO Vertical bars are developed at the top of the stem: NO Project Information - Geometry ' Backfill: H(from top of footing)= 13.5 ft Slope=0° Soil Over Toe: H (from top of footing)=0 ft Depth of soil over toe to ignore—0 ft Stein: H (from top of footing)= 14.5 ft Wall type: RC Cantilever Thickness at top = 12 in. Extra thickness at bottom(heel-side)=0 in. Extra thickness at bottom(toe-side) =0 in. Footing: Thickness= 18 in. Heel width= 5 ft Toe width = 4 ft Project Information -Materials Backfill Soil: iy = 110 pcf Analysis type: EFP YEFP = 35 psf/ft Angle of external friction=20° Soil Over Toe: S. K. Ghosh Associates LLC. 1 334 Colfax St.,Palatine,IL 60067 Page 1 of 15 I RTWa1I Output DATE: 04/20/2020 Project:Rutkin ES Prepared by:AAM t Company:catena I Y Phone: Email: 7 = 110 pcf Analysis type: EFP YEFP = 300 psf/ft Soil under the Footing: Allowable bearing pressure=3000 psf Footing-soil friction coefficient=0.4 1 Water: Ywater =62.4 pcf 4saturated =30° Ysaturated= 130 pcf Structure: Yconcrete = 150 pcf Stem concrete fc =4000 psi Footing concrete fe = 4000 psi fy =60000 psi Project Information - Loads Surcharge: Uniform surcharge pressure= 100 psf Concentrated loads at the top of the stem: Axial loads: Dead load= 1150 plf Live load=392 plf Lateral loads-Wind: Shear=234 plf and Moment=0 lbs-ft/ft Project Information - Reinforcement Stem reinforcement: Longitudinal bars(main layer):#9 @ 10 in. -cover=2 in. from backfill Embedment type: Hooked Longitudinal bars(toe-side layer):#5 @ 12 in. -cover=2 in. from passive Transverse bars: #4 @ 12 in. Top reinforcement: Main bars: #6 @ 12 in. -cover=2 in. from the top of the footing Bottom reinforcement: Main bars: #7 @ 12 in. -cover=3 in. from the bottom of the footing Footing transverse reinforcement: #5 @ 18 in. ' S. K. Ghosh Associates LLC. 1 334 Colfax St., Palatine,IL 60067 Page 2 of 15 I 1 RTWa1I Output DATE: 04/20/2020 Project:Rutkin ES Prepared by:AAM Company:catena Phone: Email: Backfill Pressure I 1 15.00 ft 3937.5 lb/ft 5.00 ff 525.0 psf Analysis Method: Equivalent Fluid Pressure(EFP) ci =H YEFp =(15.00 ft)(35 psf/ft) =525.0 psf 1 I I I I IS. K. Ghosh Associates LLC. 334 Colfax St.,Palatine, IL 60067 Page 3 of 15 I RTWa1I Output DATE: 04/20/2020 Project:Rutkin ES I Prepared by:AAM Company:catena Phone: Email: Passive Pressure I I 1 I 1.50 ft 337.5 lb/ft 0.50 ft 450.0 psf. I Analysis Method: Equivalent Fluid Pressure (EFP) ai =H ?EFP = (1.50 ft)(300 psf/ft) =450.0 psf I I I I 1 I I t S.K. Ghosh Associates LLC. 1334 Colfax St., Palatine,IL 60067 Page 4 of 15 I RTWaII Output DATE: 04/20/2020 Project:Rutkin ES Prepared by:AAM -/- Company:catena L ' Phone: Email: 500.0lb/ft Uniform Surcharge Pressure 3r 7.50ft i 15.00 31.8 psf 477.3 lb/ft :t .4 4 7.50ft Analysis Method: Equivalent Fluid Pressure(EFP) Ka= YEFP/ Y —35/110—0.32 6sur Ka Psur =(0.32)(100.0 psf) =31.8 psf I I I I I I IS. K. Ghosh Associates LLC. 334 Colfax St.,Palatine,IL 60067 Page 5 of 15 I RTWa1I Output DATE: 04/20/2020 Project:Rutkin ES I Prepared by:AAM Company:catena Phone: Email: DL— 1150.0 lb/ft LL= 392.0 lb/ft Concentrated Loads at the Top 41--T-- V— 234.0 lb/ft I 16.00 ft 4.50 ft I I I I I I I I I I I S. K. Ghosh Associates LLC. 1 334 Colfax St.,Palatine,IL 60067 Page 6 of 15 I I RTWa1I Output DATE: 04/20/2020 ' Project:Rutkin ES Prepared by:AAMI � Company:catena Phone: Email: Weights I2175.01b/ft l I / 7425.0 lb/ft N. I I jt''u44AVA I2250.0 lb/ft v I Summary of Force Calculations ILoad Vert. Comp. Moment Arm Horiz. Comp. Moment Arm Force Type (lb') (ft) (lb/ft) 0 I Active Pressure H 0.0 10.00 3937.5 5.00 Water Pressure F =__ --- 0.0 0.00 IPassive Pressure H -337.5 0.50 Uniform Surcharge L -500.0 7.50 477.3 7.50 I Uni. Lateral Pressure W 0.0 0.00 Axial Dead Load D -1150.0 4.50 Axial Live Load L -392.0 4.50 --- --- ' Applied Shear at top W --- -- 234.0 16.00 Applied Moment at top W 0.0 lb-ft/ft Adjacent Footing L 0.0 0.00 0.0 0.00 ISeismic E 0.0 0.00 0.0 6.00 Stem Weight D -2175.0 4.50 --- --- ' Footing Weight D -2250.0 5.00 =-- ___ Shear Key Weight D 0.0 4.50 Backfill Soil Weight D -7425.0 7.50 --- --- ' Passive Soil Weight D 0.0 NaN --- --- ' S. K. Ghosh Associates LLC. 1 334 Colfax St.,Palatine,IL 60067 Page 7 of 15 I RTWall Output DATE: 04/20/2020 Project:Rutkin ES rt ' Prepared by:AAM Company:catena t Phone: Email: Stability Checks: D + H+F+ L + W + 0.7E (IBC Section 1807.2.3) I Bearing (lb/ft) Sliding (lb/ft) Overturning (ft-lb/ft) Destabilizing Loads I Active Pressure(Horz.) --- 3937.5 19687.5 Uniform Surcharge(Horz.) --- 477.3 3579.5 Applied Shear at Top --- 234 3744 ' Fsliding= 4648.8 Moverturning= 27011 Resisting Loads I Passive Pressure(Horz.) --- 337.5 168.8 Uniform Surcharge(Vert.) N.A. --- N.A. ' Axial Dead Load(Vert.) 1150 --- 5175 Axial Live Load(Vert.) 392 --- 1764 Stem Weight(Vert.) 2175 --- 9787.5 ' Footing Weight(Vert.) 2250 --- 11250 Backfill Soil Weight(Vert.) 7425 --- 55687.5 ' Rtotal = 13392 Fresisting= 337.5 Mresisting= 83832.8 Overturning: Mresisting/Moverturning = 83832.8/27011 = 3.1 >F.S.(w/o seismic)= 1.5 ...OK Bearing Pressure: ' e =(Bfooting/2) - [(Mresisting- Moverturning) /Rtotal ] _(10/2)- [(83832.8- 27011)/ 13392] = .76 ft <(Bfooting/6)= 1.67 ft 6applied=-(RB)+(6Re/B2)-( 13392/ 10)+ (6x 13392x .76/ 100)= 1947.5 psf 6allowable / 6applied = 3000/ 1947.5 = 1.5> 1.0 ...OK I Sliding: Add effects from 4" R= 13392 lbs concrete slab and stem ' wall & footing on gridline 7 Friction force: Ffriction = p.R= .4x 13392= 5356.8 lbs Fresisting = 337.5 + 5356.8 = 5694.3 lbs + 1 150 lb+1025 lb) = 7869.3 lb Fresisting/Fsliding = 5694.3/4648.8- 1.2 <F.S.(.A/e s,isualc)- 1.5 ...PiG ' 7869.3/4648.8= 1.69> F.S. (w/o seismic) = 1.5 ....OK I S.K. Ghosh Associates LLC. 1334 Colfax St.,Palatine,IL 60067 Page 8 of 15 1 I RTWaII Output DATE: 04/20/2020 IProject:Rutkin ES Prepared by:AAM rill I Company:catena Phone: Email: ' Stem Structural Design (top) 0.0 i i 1 i 3.6 Stem Height(ft) II I I- 7.3 • • • ` ,`• 10.9 • • • I ``�. 1 14.5 -46.2 -30.8 -15.4 0.0 15.4 30.8 46.2 IMoment(kip-ft/ft) 0.0(top) . I 3.6 Stem Height(ft) . I . . . . 7.3 . ;:; ---- 10.9 I '�. 14.5 I . -11.0 -7.4 -3.7 0.0 3.7 7.4 11.0 Shear(kip/ft) I ---- Factored Load — Design Strength (Straight Bars) ---- Design Strength(Hooked Bars) I S.K. Ghosh Associates LLC. 1 334 Colfax St.,Palatine,IL 60067 Page 9 of 15 RTWall Output DATE: 04/20/2020 Project:Rutkin ES 1 Prepared by:AAM 11 Company:catena Phone: Email: Based on the governing values from all load combinations and#9 bars with hooked embedment: z [from top] (ft) 0.0 1.5 2.9 4.4 5.8 7.3 8.7 10.2 11.6 13.1 14.5 Vu (kips/ft) 0.23 0.25 0.37 0.60 0.96 1.43 2.05 2.81 3.69 4.68 5.79 +Mu (kip-ft/ft) 0.00 0.34 0.77 1.46 2.57 4.29 6.77 10.19 14.72 20.54 27.81 +As, req (sq.in/ft) 0.00 0.01 0.02 0.03 0.06 0.10 0.16 0.24 0.36 0.50 0.69 -Mu (kip-ft/ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -As, req (sq.in/ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 For stem material: Ld=db { (3/40) (fy/a,N/ WtWeWs/ [(cb+Ku.) /db)] } > 1.0ft =(1.3 in.) {(3/40) [(60000 psi)/(1.0) J(4000 psi)](1.0) (1.0) (1.0) [(2.56+0.0)/(1.3 in.)] } =2.94 ft For footing material: Ld=2.68 ft; Ldh= 1.25 ft; and Lprovided = 1.25 ft Governing positive moment(at 14.21 ft from the top of the stem): a-As fy/0.85 Fe =(1.2 in.2/ft)(60000 psi)/(0.85)(4000 psi)= 1.8 in. Mn= [Lavailable/Ld] 4) As fy(d-a/2) [1.54/2.68] (0.9) (1.2 in.2 /ft)(60000 psi) [(9.44 in.) -(0.88 in.)]=46.19 kip-ft/ft >Mu(=26.23 kip-ft/ft) ...OK Governing shear(at 14.50 ft from the top of the stem): � Vn=4) 2X[ d _(0.75)(2) (1) ( psi)(9.44 in.) = 10.74 kip/ft > V„(= 5.79 kip/ft) ...OK Other structural checks: Maximum vertical steel: s -0.003[d/(a/(il )- 1] ' =0.003[(9.72 in.)/(0.48 in./0.85)- 1] =0.051 >0.004...OK ACI 318 Section 9.3.3.1 Minimum positive vertical steel: Mn(= 46.19 kip-ft/ft) >(4/3)M„(= 34.97 kip-ft/ft) Although the minimum vertical steel check does not apply per ACI 318 Section 9.6.1.3, it is still illustrated below: S.K. Ghosh Associates LLC. 1 334 Colfax St.,Palatine, IL 60067 Page 10 of 15 ' 1 RTWa11 Output DATE: 04/20/2020 Project:Rutkin ES Prepared by:AAM Company:catena Phone: Email: As,min =max{3'/fy, 200/fy } b,,,d ACI 318 Section 9.6.1.2 =(0.0033)(12 in.) (9.48 in.)=0.377 in.2/ft <As,provided(= 1.200 in.2 /ft) ' Maximum vertical steel spacing: sv= 12 in. <sv,max(= 18.0 in.) ...OK ACI 318 Section 11.7.2.1 Minimum horizontal steel: Pt=As,h/ sh t=(0.40 in.2)/(12 in.)(12.00 in.)=0.0028 >Pt,min (= 0.0020) ...OK ACI 318 Section 11.6.1 Maximum horizontal steel spacing: sh= 12 in. <sh,max(= 18.0 in.) ...OK ACI 318 Section 11.7.2.1 1 1 I t S.K. Ghosh Associates LLC. 1 334 Colfax St., Palatine,IL 60067 Page 11 of 15 RTWa1l Output DATE: 04/20/2020 Project:Rutkin ES Prepared by:AAM Company:catena Phone: Email: Heel Structural Design Based on the governing load combination for moment [1.2(D+F) + 1.6(L+H)]: (Bearing pressure is simply factored by an average value of 1.4.) ' 160.0 psf-uniform surcharge 1782.0 psf- soil weight 270.0 psf-concrete self-weight �980.0 psf- soil bearing pressure , : 1874.9 psf Critical Section for Moment and Shear , At the critical section: Mu— 11.31 kip-ft/ft<Mu,stem(=27.60 kip-ft/ft); no reduction is required. a=As fy/0.85 f e=(0.4 in.2/ft)(60000 psi)/(0.85)(4000 psi)=0.6 in. Mn=(1) Asfy(d-a/2) _(0.9) (0.4 in.2/ft)(60000 psi) [(15.6 in.) -(0.3 in.)]=30.30 kip-ft/ft >Mu(= 11.31 kip-ft/ft) ...OK Required development length for#6 bars: ACI 318 Sections 25.4.2 and 25.4.3 Straight embedment: Ld= 1.42 ft Hooked embedment: Ldh =0.83 ft Based on the governing load combination for shear [1.4(D+F)]: Vn=(I) 2A,sd =(0.75)(2) (I) ( psi)(15.6 in.) = 17.79 kip/ft >Vu(= 4.72 kip/ft) ...OK Other structural checks: Maximum steel: Et=0.003[d/(a/131 )- 1] =0.003[(15.6 in.)/(0.6 in./0.85)- 1] =0.059>0.004...OK ACI 318 Section 9.3.3.1 S. K. Ghosh Associates LLC. 1 334 Colfax St.,Palatine, IL 60067 Page 12 of 15 ' 1 RTWal1 Output DATE: 04/20/2020 1 Project:Rutkin ES Prepared by:AAM Y� � ' ComP an catena Phone: Email: 1 Minimum steel: Mn(=30.30 kip-ft/ft) >(4/3)M„(= 15.08 kip-ft/ft) ACI 318 Section 9.6.1.2 does not apply per ACI 318 Section 9.6.1.3 Also: As,min= [0.0018 x 60,000/ fy] bW d ACI 318 Section 7.6.1.1 _(0.0018)(12 in.) (15.6 in.) =0.338 in.2/ft <As,provided(— 0.440 in.2 /ft) ...OK Maximum steel spacing: s= 12 in. <smax(= 18.0 in.) ...OK ACI 318 Section 7.7.2.3 1 Minimum transverse steel: Pt=As,t/st t=(0.62 in.2 )/(18 in.)(18.00 in.) =0.0019 1 �Pt,min (= 0.0018) ...OK ACI 318 Section 24.4.3.1 Maximum transverse steel spacing: st= 18 in. < st,max(= 18.0 in.) ...OK ACI 318 Section 24.4.3.3 1 1 1 1 i 1 1 1 1 1 S. K. Ghosh Associates LLC. 1334 Colfax St.,Palatine,IL 60067 Page 13 of 15 I RTWaII Output DATE: 04/20/2020 Project:Rutkin ES I Prepared by:AAM Company:catena Phone: Email: Toe Structural Design Based on the governing load combination for moment [0.9D+ 1.0W+ 1.6H]: (Bearing pressure is simply factored by an average value of 1.4.) 202.5 psf- concrete self-weight 1 1 1 1 1 1 i d � 2726.5 psf- soil bearing pressure 2045.2 psf , Critical Section for: Shear Moment At the critical section for moment: Mu= 18.38 kip-ft/ft<Mu,stem(= 26.36 kip-ft/ft); no reduction is required. a=AS fy/0.85f, =(0.6 in.2/ft)(60000 psi)/(0.85)(4000 psi)=0.84 in. I Mn=4 As fy(d-a/2) _(0.9) (0.6 in.2 /ft)(60000 psi) [(14.52 in.) -(0.42 in.)]=38.13 kip-ft/ft >Mu(= 18.38 kip-ft/ft) ...OK Required development length for#7 bars: ACI 318 Sections 25.4.2 and 25.4.3 Straight embedment: Ld=2.08 ft Hooked embedment: Ldh—0.97 ft At the critical section for shear: Based on the governing load combination for shear [0.9D+ 1.0W+ 1.6H]: � Vn=42XT d _(0.75)(2) (1) psi)(14.52 in.) = 16.58 kip/ft >Vu(= 6.37 kip/ft)...OK Other structural checks: Maximum steel: et=0.003[d/(a/[31 )- 1] =0.003[(14.52 in.)/(0.84 in./0.85)- I] =0.039>0.004...OK ACI 318 Section 9.3.3.1 I S.K. Ghosh Associates LLC. 1 334 Colfax St.,Palatine,IL 60067 Page 14 of 15 I RTWaII Output DATE: 04/20/2020 Project:Rutkin ES i» Prepared by:AAM ' Company:catena Phone: Email: Minimum steel: Mn(= 38.13 kip-ft/ft) >(4/3)Mu(=24.50 kip-ft/ft) AC1 318 Section 9.6.1.2 does not apply per ACI 318 Section 9.6.1.3 Also: As,min = [0.0018 x 60,000/fy I bW d ACI 318 Section 7.6.1.1 =(0.0018)(12 in.) (14.52 in.) = 0.315 in.2/ft<As,provided(= 0.600 in.2/ft) ...OK Maximum steel spacing: s= 12 in. <smax(= 18.0 in.) ...OK ACI 318 Section 7.7.2.3 Minimum transverse steel: Pt=Ast/ st t= (0.62 in.2 )/(18 in.)(18.00 in.)=0.0019 �t,min (= 0.0018) ...OK ACI 318 Section 24.4.3.1 Maximum transverse steel spacing: st= 18 in. <st,max(= 18.0 in.) ...OK ACI 318 Section 24.4.3.3 I I i IS. K. Ghosh Associates LLC. 1334 Colfax St.,Palatine,IL 60067 Page 15 of 15 RTWaII Output DATE: 04/20/2020 ' Project:Rutkin ES Prepared by:AAM ' Company:catena Phone: Email: ' Project Information -Basics Retaining wall depicted in detail Design Criteria: 2/S506 with seismic loads applied Code used: 2015 IBC F.S.withouth seismic = 1.5 F.S.with seismic = 1.1 ' Design Assumptions: Wall is restrained against sliding: YES Soil weights are factored as dead load: YES Vertical component of active pressure is used in stability checks: YES Surcharge load vertical component is used in stability checks: NO Combine passive pressure resultant force with friction force to resist sliding =YES The weight of the soil over the toe is neglected for strength design of the toe: YES Bearing pressure beneath the heel is neglected for strength design of the heel:NO Vertical bars are developed at the top of the stem: YES Project Information - Geometry Backfill: H (from top of footing)= 15.5 ft Slope =0° ' Soil Over Toe: H (from top of footing)= 1.5 ft Depth of soil over toe to ignore=0 ft Stem: H (from top of footing)= 15.5 ft Wall type: RC Cantilever ' Thickness at top = 14 in. Extra thickness at bottom (heel-side)=0 in. Extra thickness at bottom(toe-side)=0 in. Wall is restrained at 15.5 ft from the bottom of the stem. ' Footing: Thickness= 18 in. Heel width= 8 ft Toe width = 2.83333 ft Project Information -Materials Backfill Soil: = 110 pcf Analysis type: EFP 7EFP = 55 psf/ft Angle of external friction=20° S. K. Ghosh Associates LLC. 1 334 Colfax St., Palatine, IL 60067 Page 1 of 16 RTWa1I Output DATE: 04/20/2020 Project:Rutkin ES ' Prepared by:AAM Company:catena Phone: Email: Soil Over Toe: y = 110 pcf Analysis type: EFP YE — 300 psf/ft Soil under the Footing: Allowable bearing pressure=3000 psf Footing-soil friction coefficient=0.4 Water: I Ywater =62.4 pcf Osaturated — 30° Ysaturated— 130 pcf I Structure: Yconcrete = 150 pcf Stem concrete fc =4000 psi ' Footing concrete fe =4000 psi fy =60000 psi Project Information - Loads , Surcharge: Uniform surcharge pressure=50 psf Lateral loads: Seismic load on backfill: Fseismic =4624 plf applied at 8.5 ft from the top of the footing. I Project Information -Reinforcement Stem reinforcement: Longitudinal bars(main layer): #8 @ 12 in. -cover—2 in. from backfill Embedment type: Hooked , Longitudinal bars(toe-side layer):#6 @ 12 in. -cover=2 in. from passive Transverse bars: #4 @ 12 in. Top reinforcement: Main bars: #6 @ 12 in. -cover=2 in. from the top of the footing Bottom reinforcement: Main bars: #6 @ 12 in. -cover=3 in. from the bottom of the footing Footing transverse reinforcement: #5 @ 18 in. I S.K. Ghosh Associates LLC. 1334 Colfax St.,Palatine,IL 60067 Page 2 of 16 RTWafl Output DATE: 04/20/2020 Project:Rutkin ES Prepared by:AAM Company:catena Phone: Email: Backfill Pressure 1 17.00 ft 7947.5 lb%ft 5.67 935.0 psf Analysis Method: Equivalent Fluid Pressure(EFP) at =H YEFP =(17.00 ft)(55 psf/ft)=935.0 psf 1 I i I 1 1 I IS. K. Ghosh Associates LLC. 1334 Colfax St.,Palatine, IL 60067 Page 3 of 16 RTWail Output DATE: 04/20/2020 Project:Rutkin ES Prepared by:AA M Company:catena Phone: Email: Passive Pressure I 1 I. ft Aim 1350.O lb/ft ♦ 1.00 ft 900.0ps Analysis Method: Equivalent Fluid Pressure(EFP) 6t =H YEFP (3.00 ft)(300 psf/ft) =900.0 psf I I I I I 1 I S. K. Ghosh Associates LLC. 1 334 Colfax St.,Palatine, IL 60067 Page 4 of 16 I i RTWa11 Output DATE: 04/20/2020 Project:Rutkin ES Prepared by:AAM Company:catena Phone: Email: 400.0 lb/ft ' Uniform Surcharge Pressure k 8.00 ft 1 17.0 25.0 psf 425.0 lb/ft A 8.50 ft Analysis Method: Equivalent Fluid Pressure(EFP) Ko= YEFP/ Y = 55/110=0.50 crsur KO Psur =(0.50)(50.0 psf)=25.0 psf i I 1 i i 1 1 ' S. K. Ghosh Associates LLC. 334 Colfax St.,Palatine,IL 60067 Page 5 of 16 i RTWa11 Output DATE: 04/20/2020 Project:Rutkin ES I Prepared by:AAM rt Company:catena Phone: Email: Seismic Pressure 416.0 psf r-. 4624.0 lb/ft Stt 10 1 $oiR 128.0 psf I Geotechnical Report Values: Strength-level Fseismic =4624.00 plf applied at 8.5 ft from the top of the footing. Based on the above, a trapezoidal distribution of seismic force is constructed: atop =416.00 psf Cr bottom = 128.00 psf I I I I I S. K. Ghosh Associates LLC. 1334 Colfax St.,Palatine, IL 60067 Page 6 of 16 I I RTWall Output DATE: 04/20/2020 IProject:Rutkin ES �7 Prepared by:AA M t� I Company:catena Phone: Email: IWeights I2712.5 lb/ft I13640.0 lb/ft 1 1 467.5 lb/ft I2700.0 lb/ft I Summary of Force Calculations ILoad Vert. Comp. Moment Arm Horiz. Comp. Moment Arm Force Type (lb/ft) (ft) (lb/ft) (ft) IActive Pressure H 0.0 12.00 7947.5 5.67 Water Pressure F --- --- 0.0 0.00 IPassive Pressure H -1350.0 1.00 Uniform Surcharge L -400.0 8.00 425.0 8.50 I Uni. Lateral Pressure W 0.0 0.00 Axial Dead Load D 0.0 4.50 Axial Live Load L 0.0 4.50 --- --- I Applied Shear at top W - 17.00 Applied Moment at top W 0.0 lb-ft/f Adjacent Footing L 0.0 0.00 0.0 0.00 ISeismic E 0.0 0.00 4624.0 10.00 Stem Weight D -2712.5 3.42 --- --- Footing Weight D -2700.0 6.00 =__ Shear Key Weight D 0.0 0.00 Backfill Soil Weight D -13640.0 8.00 --- --- IPassive Soil Weight D -467.5 1.42 --- --- IS. K. Ghosh Associates LLC. 334 Colfax St.,Palatine,IL 60067 Page 7 of 16 RTWaII Output DATE: 04/20/2020 Project:Rutkin ES I Prepared by:AAM Company:catena Phone: Email: Restraint Reactions (Unfactored) from Various Loading Conditions (lb/ft) (Numbering starts from the bottom restraint) Restraint 1 1 Backfill Pressure -1347.51 Fluid Pressure 0.00 Passive Pressure 0.97 Surcharge Load -143.23 Adjacent Footing 0.00 1 Uniform Lateral Load 0.00 Seismic Load -1968.36 Moment from Axial DL 0.00 Moment from Axial LL 0.00 Shear and Moment at Top 0.00 i I 1 I 1 I I S.K. Ghosh Associates LLC. 1334 Colfax St., Palatine,IL 60067 Page 8 of 16 I I RTWaII Output DATE: 04/20/2020 IProject:Rutkin ES 7�► Prepared by:AAM I Company:catena { I r Phone: Email: IStability Checks: D + H+ F+ L + W + 0.7E (IBC Section 1807.2.3) Bearing (lb/ft) Sliding (lb/ft) Overturning(ft-lb/ft) I Destabilizing Loads Active Pressure(Horz.) --- 7947.5 45035.8 Uniform Surcharge(Horz.) --- 425 3612.5 ISeismic - QE(Horz.) 3236.8 32368 Fsliding= 11609.3 Moverturning= 81016.3 IResisting Loads Passive Pressure (Horz.) --- 1350 1350 I Restraint Reactions(Horz.) --- 2867.E 48749.7 Uniform Surcharge(Vert.) N.A. N.A. Seismic - QE(Vert.) 0 --- 0 IStem Weight(Vert.) 2712.5 --- 9267.7 Footing Weight(Vert.) 2700 --- 16200 I Backfill Soil Weight(Vert.) 13640 109120 Passive Soil Weight(Vert.) 467.5 662.3 Rtotal= 19520 Fresisting= 4217.6 Mresisting= 185349.7 IOverturning: Mresisting/Moverturning = 185349.7/81016.3=2.3 >F.S.(seismic)= 1.1 ...OK IBearing Pressure: I e =(Bfooting/2) - [(Mresisting- Moverturning) /Rtotal ] =( 12/2)- [( 185349.7 - 81016.3)/ 19520] _ .66 ft <(Bfooting/6)= 2 ft I 6applied=(R/B)+(6ReB2 )= ( 19520/ 12)+(6x 19520x .66/ 144)= 2159.4 psf a allowable / 6applied = 3000/2159.4= 1.4> 1.0 ...OK I Sliding: The wall is restrained against sliding. I I I S.K. Ghosh Associates LLC. 1 334 Colfax St.,Palatine,IL 60067 Page 9 of 16 RTWa1l Output DATE: 04/20/2020 Project:Rutkin ES I Prepared by:AAM 10, Company:catena Phone: Email: Stem Structural Design i (top)0.0 3.9 Stem Height(ft) , ' 7.8 • • ♦ ♦ 1♦ 11.6 15.5 -38.8 -25.9 -12.9 0.0 12.9 25.9 38.8 Moment(kip-ft/ft) 0.0(top) I 3.9 Stem Height(ft) ----- 7.8 •L 11.6 1 15.5 -13.2 -8.8 -4.4 0.0 4.4 8.8 13.2 Shear(kip/ft) ---- Factored Load — Design Strength(Straight Bars) ---- Design Strength(Hooked Bars) 1 I S.K. Ghosh Associates LLC. 1334 Colfax St., Palatine, IL 60067 Page 10 of 16 , I RTWall Output DATE: 04/20/2020 Project:Rutkin ES Prepared by:AAM rt Company:catena Phone: Email: Based on the governing values from all load combinations and#8 bars with hooked embedment: z [from top] (ft) 0.0 1.6 3.1 4.7 6.2 7.8 9.3 10.9 12.4 14.0 15.5 Vu (kips/ft) -4.19 -3.44 -2.52 -1.43 -0.46 1.26 2.86 4.64 6.58 8.70 10.44 +Mu (kip-ft/ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.51 15.33 30.29 +As, req (sq.in/ft) 0.00 0.01 0.05 0.11 0.22 0.36 0.56 0.82 0.07 0.30 0.61 -Mu (kip-ft/ft) 0.00 5.94 10.59 13.68 14.95 14.13 10.95 5.16 0.00 0.00 0.00 -As, req (sq.in/ft) 0.00 0.11 0.21 0.27 0.29 0.27 0.21 0.10 0.00 0.00 0.00 For stem material: Ld=db { (3/40) (fy/AA/ ) WtWeWs/ [(eb+Kt,) /db)] } > 1.Oft =(1.0 in.) { (3/40) [(60000 psi)/(1.0) I(4000 psi)] (1.0) (1.0) (1.0) [(2.50+ 0.0)/(1.0 in.)] } =2.37 ft For footing material: Ld=2.37 ft; Ldh= 1.11 ft; and Lprovided= 1.25 ft Governing positive moment(at 15.19 ft from the top of the stem): a= As fy/0.85fc=(0.8 in.2/ft)(60000 psi)/(0.85)(4000 psi)= 1.2 in. Mn= [Lavailable/Ld ] 4 As fy(d-a/2) = [1.56/2.37] (0.9) (0.8 in.2/ft)(60000 psi) [(11.50 in.) -(0.58 in.)]=38.82 kip-ft/ft >Mu(= 27.10 kip-ft/ft) ...OK Governing negative moment(at 6.51 ft from the top of the stem): a-As fy/0.85fu-(0.4 in.2 /ft)(60000 psi)/(0.85)(4000 psi)=0.6 in. Mn= As fy(d-a/2) (0.9) (0.4 in.2 /ft)(60000 psi) [(11.63 in.) -(0.32 in.)]=22.38 kip-ft/ft >Mu(= 14.96 kip-ft/ft) ...OK Governing shear(at 15.50 ft from the top of the stem): (1) V„=(1) 2XV d =(0.75)(2) (1) ( psi)(11.50 in.) = 13.09 kip/ft > Vu(= 10.44 kip/ft)...OK Other structural checks: Maximum vertical steel: £t=0.003[d/(a/[31 )- 1] IS.K. Ghosh Associates LLC. 1 334 Colfax St.,Palatine, IL 60067 Page 11 of 16 I RTWaII Output DATE: 04/20/2020 Project:Rutkin ES I Prepared by:AAM �� Company:catena Phone: Email: 0.003[(11.64 in.)/(0.6 in./0.85) - 1] =0.043>0.004...OK ACT 318 Section 9.3.3.1 Minimum positive vertical steel: 4) Mn(= 38.82 kip-ft/ft) >(4/3)Mo(= 36.13 kip-ft/ft) 1 Although the minimum vertical steel check does not apply per ACI 318 Section 9.6.1.3, it is still illustrated below: As,min =max{3 s/fy, 200/fy } bw d ACI 318 Section 9.6.1.2 1 =(0.0033)(12 in.) (11.52 in.)=0.460 in.2/ft<As,provided(—0.790 in.2/ft) Minimum negative vertical steel: i 4) Mn(= 22.38 kip-ft/ft) >(4/3)Mo(= 19.94 kip-ft/ft) Although the minimum vertical steel check does not apply per ACI 318 Section 9.6.1.3, it is still illustrated below: As,min=max{3 /fy, 200/fy} bw d ACI 318 Section 9.6.1.2 _(0.0033)(12 in.) (11.64 in.)— 0.465 in.2/ft>As,provided(= 0.440 in.2/ft) I Maximum vertical steel spacing: sv= 12 in. <sv,max(= 18.0 in.) ...OK ACI 318 Section 11.7.2.1 Minimum horizontal steel: Pt=As,h/sh t= (0.40 in.2)/(12 in.)(14.00 in.)—0.0024 >Pt,min (= 0.0020) ...OK ACI 318 Section 11.6.1 Maximum horizontal steel spacing: sh= 12 in. <sh,max(= 18.0 in.) ...OK ACI 318 Section 11.7.2.1 I S. K. Ghosh Associates LLC. 1 334 Colfax St.,Palatine,IL 60067 Page 12 of 16 I I RTWaII Output DATE: 04/20/2020 Project:Rutkin ES Prepared by:AAM 1 Company:catena Phone: Email: Heel Structural Design Based on the governing load combination for moment [1.2(D+F) + 1.6(L +H)]: (Bearing pressure is simply factored by an average value of 1.4.) I I80.0 psf-uniform surcharge 2046.0 psf- soil weight 270.0 psf- concrete self-weight iA # A 1t -L— t'980.0 psf- soil bearing pressure 2526.0 psf Critical Section for Moment and Shear At the critical section: 111 Mu= 17.06 kip-ft/ft<Mu,stem(=22.21 kip-ft/ft); no reduction is required. a=AS fy/0.85fu=(0.4 in.2/ft)(60000 psi)/(0.85)(4000 psi)=0.6 in. � Mn=4) Asfy(d-a/2) =(0.9)(0.4 in.2 /ft)(60000 psi) [(15.6 in.) -(0.3 in.)] =30.30 kip-ft/ft >Mu(= 17.06 kip-ft/ft) ...OK Required development length for #6 bars: ACI 318 Sections 25.4.2 and 25.4.3 Straight embedment: Ld= 1.42 ft Hooked embedment: Ldh=0.83 ft Based on the governing load combination for shear [1.4(D +F)]: 4) Vn=4) 2Ad d =(0.75)(2) (1) ( psi)(15.6 in.)= 17.79 kip/ft >Vu(= 5.39 kip/ft)...OK Other structural checks: Maximum steel: Et=0.003[d/(a/[31 )- 1] = 0.003[(15.6 in.)/(0.6 in./0.85) - 1] =0.059>0.004...OK ACI 318 Section 9.3.3.1 IS. K. Ghosh Associates LLC. 334 Colfax St.,Palatine,IL 60067 Page 13 of 16 RTWaI1 Output DATE: 04/20/2020 Project:Rutkin ES I Prepared by:AAM Company:catena Phone: Email: Minimum steel: Mn(=30.30 kip-ft/ft) >(4/3)Mu(= 22.74 kip-ft/ft) ACI 318 Section 9.6.1.2 does not apply per ACI 318 Section 9.6.1.3 Also: As,min = [0.0018 x 60,000/fy] b,,,d ACI 318 Section 7.6.1.1 1 =(0.0018)(12 in.) (15.6 in.) =0.338 in.2/ft<As,provided(= 0.440 in.2 /ft) ...OK Maximum steel spacing: 1 s= 12 in. <smax(= 18.0 in.) ...OK ACI 318 Section 7.7.2.3 Minimum transverse steel: I Pt=As,t/ st t= (0.62 in.2 )/(18 in.)(18.00 in.) =0.0019 >Pt,min (= 0.0018) ...OK ACI 318 Section 24.4.3.1 I Maximum transverse steel spacing: st= 18 in. <st,max(= 18.0 in.) ...OK ACI 318 Section 24.4.3.3 1 I I I I I 1 I S.K. Ghosh Associates LLC. 1334 Colfax St., Palatine,IL 60067 Page 14 of 16 I RTWa11 Output DATE: 04/20/2020 Project:Rutkin ES Prepared by:AAM Company:catena Phone: Email: Toe Structural Design Based on the governing load combination for moment [0.9D+ 1.OW+ 1.6H]: (Bearing pressure is simply factored by an average value of 1.4.) I 202.5 psf- concrete self-weight d � �— 3023.2 psf- soil bearing pressure II ' I I. I 1 2671.0 psf 1 Critical Section for: Shear Moment At the critical section for moment: Mu= 10.85 kip-ft/ft<Mu,stem(=20.95 kip-ft/ft); no reduction is required. a=As fy/0.85fe =(0.4 in.2/ft) (60000 psi)/(0.85)(4000 psi)=0.6 in. Mn= As fy(d-a/2) = (0.9) (0.4 in.2 /ft)(60000 psi) [(14.64 in.) -(0.3 in.)] =28.32 kip-ft/ft >Mu(= 10.85 kip-ft/ft) ...OK Required development length for#6 bars: ACI 318 Sections 25.4.2 and 25.4.3 Straight embedment: Ld= 1.42 ft Hooked embedment: Ldh=0.83 ft At the critical section for shear: Based on the governing load combination for shear [0.9D+ 1.0W+ 1.6H]: Vn= 2XT d =(0.75)(2) (1) J 4000 psi)(14.64 in.) = 16.65 kip/ft >Vu(=4.39 kip/ft)...OK Other structural checks: Maximum steel: ct= 0.003[d/(a/13I )- 1] U =0.003[(14.64 in.)/(0.6 in./0.85)- 1] =0.055>0.004...OK ACI 318 Section 9.3.3.1 IS. K. Ghosh Associates LLC. 1 334 Colfax St.,Palatine,IL 60067 Page 15 of 16 I RTWa11 Output DATE: 04/20/2020 Project:Rutkin ES 1 Prepared by:AAM Company:catena Phone: Email: Minimum steel: Mn(= 28.32 kip-ft/ft) > (4/3)Mu(= 14.47 kip-ft/ft) ACI 318 Section 9.6.1.2 does not apply per ACI 318 Section 9.6.1.3 Also: As,min = [0.0018 x 60,000/fy d ACI 318 Section 7.6.1.1 1 =(0.0018)(12 in.) (14.64 in.)=0.316 in.2/ft<As,provided(=0.440 in.2 /ft) ...OK Maximum steel spacing: 1 s= 12 in. <smax(= 18.0 in.) ...OK ACI 318 Section 7.7.2.3 Minimum transverse steel: Pt=As,t/ stt=(0.62 in.2 )/(18 in.)(18.00 in.) =0.0019 �Pt,min (=0.0018) ...OK ACI 318 Section 24.4.3.1 1 Maximum transverse steel spacing: st= 18 in. <st,max(= 18.0 in.) ...OK ACI 318 Section 24.4.3.3 1 1 1 1 1 i 1 1 1 1 S. K. Ghosh Associates LLC. 1 334 Colfax St., Palatine,IL 60067 Page 16 of 16 1 II RTWal)Output DATE: 04/20/2020 1 Project:Rutkin ES Prepared by:AAM ri-- 1 Company:catena consulting engineers Phone: I Email: Project Information - Basics Retaining wall depicted in detail Design Criteria: 2/S506 without seismic loads applied Code used: 2015 IBC IF.S.withouth seismic= 1.5 F.S.with seismic = 1.1 Design Assumptions: Wall is restrained against sliding:NO Soil weights are factored as dead load: YES I Vertical component of active pressure is used in stability checks: YES Surcharge load vertical component is used in stability checks: NO Combine passive pressure resultant force with friction force to resist sliding=YES II The weight of the soil over the toe is neglected for strength design of the toe:YES Bearing pressure beneath the heel is neglected for strength design of the heel:NO Vertical bars are developed at the top of the stem: YES 1 Project Information - Geometry I Backfill: H (from top of footing)= 15.5 ft Slope=0° I Soil Over Toe: H (from top of footing)= 1 ft Depth of soil over toe to ignore=0 ft I Stem: H (from top of footing)= 15.5 ft Wall type: RC Cantilever Thickness at top = 14 in. Extra thickness at bottom(heel-side) =0 in. Extra thickness at bottom(toe-side) =0 in. I Footing: Thickness= 18 in. Heel width=9 ft Toe width = 2.833 ft IProject Information -Materials Backfill Soil: y = 110 pcf Analysis type: EFP 7EFP =35 psf/ft I, Angle of external friction=20° ISoil Over Toe: S. K. Ghosh Associates LLC. I 334 Colfax St.,Palatine,IL 60067 Page 1 of 14 RTWall Output I DATE: 04/20/2020 Project:Rutkin ES I. Prepared by:AAM rCompany:catena consulting engineers Phone: I Email: t y = 110 pcf Analysis type: EFP ygFp = 300 psf/ft Soil under the Footing: Allowable bearing pressure=3000 psf Footing-soil friction coefficient= 0.4 1 Water: ?water =62.4 pcf saturated =30° )'saturated= 130 pcf Structure: ?concrete = 150 pcf Stem concrete fe =4000 psi Footing concrete f =4000 psi fy =60000 psi I Project Information - Loads Surcharge: Uniform surcharge pressure= 100 psf Project Information - Reinforcement Stem reinforcement: Longitudinal bars(main layer):#8 @ 12 in. -cover=2 in. from backfill I Embedment type: Hooked Longitudinal bars (toe-side layer):#5 @ 12 in. -cover=2 in. from passive Transverse bars: #4 @ 12 in. I Top reinforcement: Main bars: #6 @ 12 in. -cover=2 in. from the top of the footing Bottom reinforcement: Main bars: #6 @ 12 in. -cover=3 in. from the bottom of the footing Footing transverse reinforcement: i #5@18in. I I S. K. Ghosh Associates LLC. 1 334 Colfax St.,Palatine,IL 60067 I Page 2 of 14 I RTWall Output DATE: 04/20/2020 Project:Rutkin ES Prepared by:AAM Company:catena consulting engineers Phone: Email: Backfill Pressure N I 17.00ft 5057.5 lb/ft 5.6 595.0 psf Analysis Method: Equivalent Fluid Pressure(EFP) 61=H YEpp =(17.00 ft)(35 psf/ft)=595.0 psf I I I I I I I IS.K. Ghosh Associates LLC. 1334 Colfax St.,Palatine,IL 60067 Page 3 of 14 I RTWa1I Output DATE: 04/20/2020 Project:Rutkin ES I Prepared by:AAM Company:catena consulting engineers Phone: Email: Passive Pressure I I f 2.50 ft 937.5 lb/ft ♦ 0.83 ft 750.0 psf. I Analysis Method: Equivalent Fluid Pressure(EFP) a =H YEFP =(2.50 ft) (300 psf/ft) =750.0 psf I I I I I I I I S.K. Ghosh Associates LLC. 1 334 Colfax St.,Palatine,IL 60067 Page 4 of 14 I RTWall Output DATE: 04/20/2020 Project:Rutkin ES Prepared by:AAM rt Company:catena consulting engineers Phone: Email: 900.0 lb/ft Uniform Surcharge Pressure 1 � . 8.50 ft 17.00 ft 31.8 psf 540.9 lb/ft 41111 - 8.5(k`s 1 �4 � r Analysis Method: Equivalent Fluid Pressure(EFP) ' Ka= YEFP/ Y = 35/110= 0.32 6sur Ka Psur =(0.32)(100.0 psf)=31.8 psf i 1 S.K. Ghosh Associates LLC. 1 334 Colfax St.,Palatine, IL 60067 Page 5 of 14 I RTWa1l Output DATE: 04/20/2020 Project:Rutkin ES Prepared by:AAM rt Company:catena consulting engineers ' Phone: Email: Weights 2712.5 ibi ft 15345.O lb/ft ' I 311.6 lb/ft 1 i 2924.9 lb/ft I Summary of Force Calculations Load Vert. Comp. Moment Arm Horiz. Comp. Moment Arm , Force Type (lb/ft) (ft) (lb/ft) (ft) Active Pressure H 0.0 13.00 5057.5 5.67 ' Water Pressure F --- --- 0.0 0.00 ' Passive Pressure H --- --- -937.5 0.83 Uniform Surcharge L -900.0 8.50 540.9 8.50 Uni. Lateral Pressure W --- --- 0.0 0.00 ' Axial Dead Load D 0.0 4.50 --- --- Axial Live Load L 0.0 4.50 --- --- Applied Shear at top W --- --- 0.0 17.00 ' Applied Moment at top W 0.0 lb-ft/ft Adjacent Footing L 0.0 0.00 0.0 0.00 Seismic E 0.0 0.00 0.0 10.00 ' Stem Weight D -2712.5 3.42 --- --- Footing Weight D -2924.9 6.50 --- --- ' Shear Key Weight D 0.0 0.00 --- -- Backfill Soil Weight D -15345.0 8.50 --- --- Passive Soil Weight D -311.6 1.42 --- --- ' S. K. Ghosh Associates LLC. 1 334 Colfax St.,Palatine, 1L 60067 Page 6 of 14 ' I RTWall Output DATE: 04/20/2020 III Project:Rutkin ES Prepared by:AAM � I Company:catena consulting engineers Phone: Email: Stability Checks: D + H+ F+ L+ W+ 0.7E (IBC Section 1807.2.3) Bearing (lb/ft) Sliding(lb/ft) Overturning(ft-lb/ft) IDestabilizing Loads Active Pressure(Horz.) --- 5057.5 28659.2 Uniform Surcharge(Horz.) --- 540.9 4597.7 Fsliding= 5598.4 Moverturning= 33256.9 I Resisting Loads Passive Pressure(Horz.) 937.5 781.3 Uniform Surcharge(Vert.) N.A. --- N.A. I Stem Weight(Vert.) 2712.5 9266.8 Footing Weight(Vert.) 2924.9 19011.5 Backfill Soil Weight(Vert.) 15345 --- 130427.4 IPassive Soil Weight(Vert.) 311.6 --- 441.4 Rtotal= 21294.1 Fresisting= 937.5 Mresisting= 159928.4 ' Overturning: Mresisting/Moverturning = 159928.4/33256.9-4.8 >F.S.(w/o seismic)= 1.5 ...OK IBearing Pressure: e =(Bfooting/2) - [(Mresisting- Moverturning) /Rtotal ] ' = ( 13 /2)- [( 159928.4- 33256.9)/ 21294.1] = .55 ft <(Bfooting/6)= 2.17 ft 6applied=(RIB)+(6ReB2 )'=(21294.1/ 13)+(6x 21294.1x .55/ 169)= 2054.7 psf aallowable / 6applied - 3000/2054.7= 1.5> 1.0 ...OK I Sliding: R= 21294.1 lbs Friction force: Ffriction = µ R= .4x 21294.1 = 8517.6 lbs IFresisting = 937.5 + 8517.6 = 9455.1 lbs Fresisting/Fsliding = 9455.1/5598.4= 1.7 >F.S.(w/o seismic)= 1.5 ...OK I I ' S.K. Ghosh Associates LLC. 1334 Colfax St.,Palatine,IL 60067 Page 7 of 14 RTWaII Output DATE: 04/20/2020 Project:Rutkin ES Prepared by:AAM Company:catena consulting engineers Phone: Email: Stem Structural Design (top)0.0 i 1 3.9 Stem Height(ft) it 7.8• • '• • • - 11.6 15.5 -40.8 -27.2 -13.6 0.0 13.6 27.2 40.8 Moment(kip-ft/ft) 0.0(top) • • 3.9 Stem Height(ft) • 7.8 0 11.6 t 15.5 -13.3 -8.9 -4.4 0.0 4.4 8.9 13.3 Shear(kip/ft) ---- Factored Load — Design Strength(Straight Bars) ---- Design Strength (Hooked Bars) , 1 S. K. Ghosh Associates LLC. 1334 Colfax St.,Palatine, IL 60067 Page 8 of 14 , RTWall Output DATE: 04/20/2020 ' Project:Rutkin ES Prepared by:AAM r-t Company:catena consulting engineers Phone: Email: Based on the governing values from all load combinations and#8 bars with hooked embedment: z [from top] (ft) 0.0 1.6 3.1 4.7 6.2 7.8 9.3 10.9 12.4 14.0 15.5 Vu (kips/ft) 0.00 0.15 0.43 0.84 1.39 2.08 2.90 3.85 4.94 6.16 7.28 +Mu (kip-ft/ft) 0.00 0.10 0.52 1.49 3.20 5.87 9.71 14.92 21.71 30.29 40.79 +As, req (sq.in/ft) 0.00 0.00 0.01 0.03 0.06 0.11 0.19 0.29 0.43 0.61 0.83 -Mu (kip-ft/ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -As,req (sq.in/ft) 0.00 0.11 0.21 0.27 0.29 0.27 0.21 0.10 0.00 0.00 0.00 For stem material: Ld=db { (3/40) (fy/X ' ) lit WeWs/ [(eb+Ktr) /db)] } > 1.0ft =(1.0 in.) { (3/40) [(60000 psi)/(1.0) J(4000 psi)](1.0) (1.0) (1.0) [(2.50+0.0)/(1.0 in.)] } =2.37 ft For footing material: Ld=2.37 ft; Ldh= 1.11 ft; and Lprovided= 1.25 ft ' Governing positive moment(at 15.19 ft from the top of the stem): a=AS fy/0.85fe-(0.8 in.2/ft)(60000 psi)/(0.85)(4000 psi)= 1.2 in. Mn= [Lavailable/Ld] As fy(d-a/2) [1.56/2.37] (0.9) (0.8 in.2/ft)(60000 psi) [(11.50 in.) -(0.58 in.)]=38.82 kip-ft/ft >MU(= 38.56 kip-ft/ft) ...OK Governing shear(at 15.50 ft from the top of the stem): 4) Vn=42 �id =(0.75)(2) (1) ( psi)(11.50 in.)= 13.09 kip/ft >V.(= 7.28 kip/ft)...OK Other structural checks: Maximum vertical steel: Et= 0.003[d/(al(31 )- 1] =0.003[(11.64 in.)/(0.48 in./0.85)- 1] =0.062>0.004...OK ACI 318 Section 9.3.3.1 Minimum positive vertical steel: As,min =max{3 f/fy, 200/fy } bW d ACI 318 Section 9.6.1.2 =(0.0033)(12 in.) (11.52 in.) =0.460 in.2/ft <As,provided(= 0.790 in.2/ft) ...OK IS. K. Ghosh Associates LLC. 334 Colfax St.,Palatine,IL 60067 Page 9 of 14 RTWa11 Output DATE: 04/20/2020 Project:Rutkin ES Prepared by:AAM Company:catena consulting engineers Phone: Email: Maximum vertical steel spacing: sv= 12 in. <Sv,max(= 18.0 in.) ...OK ACI 318 Section 11.7.2.1 Minimum horizontal steel: pt=As,h/sh t= (0.40 in.2 )/(12 in.)(14.00 in.) = 0.0024 >pt,nvn (= 0.0020) ...OK ACI 318 Section 11.6.1 Maximum horizontal steel spacing: p g: sh= 12 in. <sh,max(= 18.0 in.) ...OK ACI 318 Section 11.7.2.1 I 1 S. K. Ghosh Associates LLC. 334 Colfax St., Palatine, IL 60067 Page 10 of 14 , RTWall Output DATE: 04/20/2020 Project:Rutkin ES Prepared by:AAM ' Company:catena consulting engineers Phone: Email: Heel Structural Design Based on the governing load combination for moment [1.2(D +F) + 1.6(L +H)]: (Bearing pressure is simply factored by an average value of 1.4.) ' 160.0 psf-uniform surcharge 2046.0 psf- soil weight ' 270.0 psf- concrete self-weight 980.0 psf- soil bearing pressure 2517.7 psf Critical Section for Moment and Shear At the critical section: Mu=20.12 kip-ft/ft<Mu,stem(=40.79 kip-ft/ft); no reduction is required. a=As fy/0.85fe=(0.4 in.2/ft)(60000 psi)/(0.85)(4000 psi)=0.6 in. ' i Mn= As fy(d-a/2) —(0.9) (0.4 in.2 /ft)(60000 psi) [(15.6 in.) -(0.3 in.)] =30.30 kip-ft/ft >Mu(= 20.12 kip-ft/ft) ...OK Required development length for #6 bars: ACI 318 Sections 25.4.2 and 25.4.3 Straight embedment: Ld= 1.42 ft Hooked embedment: Ldh=0.83 ft ' Based on the governing load combination for shear [1.4(D +F)]: 4) Vn=. 2? T d _(0.75)(2) (1) ( 04 00 psi)(15.6 in.) = 17.79 kip/ft >Vu(= 5.29 kip/ft)...OK Other structural checks: Maximum steel: ct=0.003[d/(a/(31 )- 1] ' = 0.003[(15.6 in.)/(0.6 in./0.85) - 1] =0.059>0.004...OK ACI 318 Section 9.3.3.1 S.K. Ghosh Associates LLC. 334 Colfax St.,Palatine,IL 60067 Page 11 of 14 RTWa11 Output DATE: 04/20/2020 Project:Rutkin ES I Prepared by:AAM rt Company:catena consulting engineers Phone: Email: Minimum steel: Mn(= 30.30 kip-ft/ft) >(4/3)Mu(= 26.83 kip-ft/ft) ACI 318 Section 9.6.1.2 does not apply per ACI 318 Section 9.6.1.3 Also: As,min = [0.0018 x 60,000/fy] bw,d ACI 318 Section 7.6.1.1 ' =(0.0018)(12 in.) (15.6 in.) =0.338 in.2/ft<As,provided(=0.440 in.2/ft) ...OK Maximum steel spacing: I s= 12 in. <smax(= 18.0 in.) ...OK ACI 318 Section 7.7.2.3 Minimum transverse steel: Pt=As t/st t=(0.62 in.2 )/(18 in.)(18.00 in.)=0.0019 ?Pt,min (= 0.0018) ...OK ACI 318 Section 24.4.3.1 ' Maximum transverse steel spacing: st= 18 in. <st,max(= 18.0 in.) ...OK ACI 318 Section 24.4.3.3 ' I 1 I S. K. Ghosh Associates LLC. 1 334 Colfax St.,Palatine,IL 60067 Page 12 of 14 ' I RTWa1I Output DATE: 04/20/2020 Project:Rutkin ES Prepared by:AAM Company:catena consulting engineers Phone: Email: Toe Structural Design Based on the governing load combination for moment [0.9D+ 1.0W+ 1.6H]: ' (Bearing pressure is simply factored by an average value of 1.4.) I 202.5 psf- concrete self-weight 1. d —� 2876.6 psf- soil bearing pressure 1 I I r I 2622.4 psf ' Critical Section for: Shear Moment At the critical section for moment: M„= 10.39 kip-ft/ft<Mu,stem(= 34.68 kip-ft/ft); no reduction is required. a=As fy/0.85fe =(0.4 in.2/ft) (60000 psi)/(0.85)(4000 psi)—0.6 in. ' (i) Mn=tp As fy(d-a/2) =(0.9)(0.4 in.2/ft)(60000 psi) [(14.64 in.) -(0.3 in.)]=28.32 kip-ft/ft ' >Mu(= 10.39 kip-ft/ft) ...OK Required development length for#6 bars: ACI 318 Sections 25.4.2 and 25.4.3 Straight embedment: Ld= 1.42 ft Hooked embedment: Ldh= 0.83 ft At the critical section for shear: ' Based on the governing load combination for shear [0.9D+ 1.0W+ 1.6H]: Vn=(I) 2a[d = (0.75)(2) (1) psi)(14.64 in.) = 16.65 kip/ft >Vu(= 4.20 kip/ft)...OK Other structural checks: Maximum steel: st=0.003[d/(a/(31 )- 1] =0.003[(14.64 in.)/(0.6 in./0.85)- 1] = 0.055>0.004 ...OK ACI 318 Section 9.3.3.1 S. K. Ghosh Associates LLC. 1 334 Colfax St.,Palatine,IL 60067 Page 13 of 14 1 RTWaff Output DATE: 04/20/2020 Project:Rutkin ES I Prepared by:AAM Company:catena consulting engineers Phone: Email: Minimum steel: Mn(= 28.32 kip-ft/ft) >(4/3)Mu(= 13.85 kip-ft/ft) ACI 318 Section 9.6.1.2 does not apply per ACI 318 Section 9.6.1.3 Also: As,min = [0.0018 x 60,000/fy] b,d ACI 318 Section 7.6.1.1 =(0.0018)(12 in.) (14.64 in.)—0.316 in.2/ft<As,provided(= 0.440 in.2 /ft) ...OK Maximum steel spacing: I s= 12 in. <smax(= 18.0 in.) ...OK ACI 318 Section 7.7.2.3 Minimum transverse steel: Pt=As,t/st t=(0.62 in.2)/(18 in.)(18.00 in.) = 0.0019 ?Pt,min (= 0.0018) ...OK ACI 318 Section 24.4.3.1 1 Maximum transverse steel spacing: st= 18 in. < st,max(= 18.0 in.) ...OK ACI 318 Section 24.4.3.3 , i 1 I S.K. Ghosh Associates LLC. 1 334 Colfax St.,Palatine,IL 60067 Page 14 of 14 , I RTWaII Output DATE: 04/20/2020 Project:Rutkin ES Prepared by:NH Company:catena Phone: Email- �" Project Information - Basics Retaining wall depicted in detail Design Criteria: 3/S506 with seismic loads applied Code used: 2015 IBC F.S.withouth seismic = 1.5 F.S.with seismic= 1.1 Design Assumptions: Wall is restrained against sliding: NO Soil weights are factored as dead load: YES Vertical component of active pressure is used in stability checks: YES Surcharge load vertical component is used in stability checks: YES Combine passive pressure resultant force with friction force to resist sliding =YES The weight of the soil over the toe is neglected for strength design of the toe:NO Bearing pressure beneath the heel is neglected for strength design of the heel: YES Vertical bars are developed at the top of the stem: NO 1 Project Information - Geometry Backfill: H(from top of footing)= 11.5 ft Slope=0° ' Soil Over Toe: H (from top of footing)=0 ft Depth of soil over toe to ignore=0 ft Stem: H (from top of footing)= 11.5 ft Wall type: RC Cantilever Thickness at top = 10 in. Extra thickness at bottom(heel-side) =0 in. Extra thickness at bottom (toe-side) =0 in. Wall is restrained at 11.5 ft from the bottom of the stem. ' Footing: Thickness= 18 in. Heel width=7 ft Toe width = 2.83 ft Project Information -Materials Backfill Soil: y = 110 pef Analysis type: EFP 7EFP = 55 psf/ft Angle of external friction=20° S. K. Ghosh Associates LLC. 1334 Colfax St.,Palatine, IL 60067 Page 1 of 18 I RTWa1l Output DATE: 04/20/2020 Project:Rutkin ESra I Prepared by:NH Company:catena Phone: Email: I ' Soil Over Toe: y = 110 pcf Analysis type: EFP YEFP = 100 psf/ft Soil under the Footing: Allowable bearing pressure=3000 psf I Footing-soil friction coefficient=0.4 Water: 1 Ywater =62.4 pcf 41saturated =30° Ysaturated= 130 pcf I Structure: Yconerete — 150 pcf Stem concrete fe, =4000 psi 1 Footing concrete fc =4000 psi fy = 60000 psi Project Information - Loads , Surcharge: Uniform surcharge pressure— 50 psf Concentrated loads at the top of the stem: Axial loads: , Dead load —660 plf Live load=0 plf Lateral loads: 1 Seismic load on backfill: Fseismic= 1060 plf applied at 3.83 ft from the top of the footing. Project Information -Reinforcement , Stem reinforcement: Longitudinal bars(main layer):#5 @ 12 in. -cover=2 in. from backfill Embedment type: Hooked Longitudinal bars(toe-side layer):#5 @ 12 in. -cover=2 in. from passive Transverse bars: #4 @ 12 in. ' Top reinforcement: Main bars: #6 @ 12 in. -cover=2 in. from the top of the footing Bottom reinforcement: S. K. Ghosh Associates LLC. 1 334 Colfax St., Palatine,IL 60067 Page 2 of 18 I 1 RTWalI Output DATE: 04/20/2020 1 Project:Rutkin ES Prepared by:NH Company:catena Phone: Email: Main bars: #6 @ 12 in. -cover= 3 in. from the bottom of the footing Footing transverse reinforcement: #5@18in. 1 1 1 1 i 1 1 1 t 1 1 1 S.K. Ghosh Associates LLC. 1 334 Colfax St., Palatine,IL 60067 Page 3 of 18 RTWa1I Output DATE: 04/20/2020 Project:Rutkin ES ' Prepared by:NH rt Company:catena , Phone: Email: Backfill Pressure 1 13.00 ft 4647.5 b/ft .33 I 715.0 psf Analysis Method: Equivalent Fluid Pressure(EFP) 61 =H YEFP =(13.00ft)(55psf/ft) =715.0psf I I I 1 S. K. Ghosh Associates LLC. 1 334 Colfax St.,Palatine,IL 60067 Page 4 of 18 I 1 RTWail Output DATE: 04/20/2020 Project:Rutkin ES Prepared by:NH Company:catena Phone: Email: Passive Pressure t 1 I 1 50 ft 112.5 lb/ft 0.50 ft 150.0 psf-- 1 ';1 ,=.'I* >. ::a... Analysis Method: Equivalent Fluid Pressure(EFP) 1 =H YEFP =(1.50 ft)(100 psf/ft) = 150.0 psf I I I I I I I I IS. K. Ghosh Associates LLC. 1334 Colfax St.,Palatine, IL 60067 Page 5 of 18 I RTWallOutput DATE: 04/20/2020 Project:Rutkin ES 1 Prepared by:NH I. P Y Company:catena Phone: Email: ,SO 0 Ih/ft Uniform Surcharge Pressure I I. I13.0 25.0 psf 7.16ft 325.0 lb/ft I f•So i Analysis Method: Equivalent Fluid Pressure(EFP) Ko= YEFP/ 7 = 55/110=0.50 6sur Ko Psur _(0.50)(50.0 psf)=25.0 psf I I I I 1 I I S. K. Ghosh Associates LLC. 1 334 Colfax St.,Palatine,IL 60067 Page 6 of 18 ' I RTWa11 Output DATE: 04/20/2020 Project:Rutkin ES Prepared by:NH Company:catena Phone: Email: DL—660.0 lb/ft Concentrated Loads at the Top LL=0.0 lb/ft ft I I I I I I I I I 1 S. K. Ghosh Associates LLC. 334 Colfax St., Palatine, IL 60067 Page 7 of 18 I RTWa1l Output DATE: 04/20/2020 Project:Rutkin ES I Prepared by:NH rt Company:catena Phone: Email: Seismic Pressure I 37.5 psf I -b 1 1060.0 lb/ft 125.6 psf Geotechnical Report Values: Strength-level Fseismic = 1060.00 plf applied at 3.8 ft from the top of the footing. Based on the above, a trapezoidal distribution of seismic force is constructed: atop =37.51 psf abottom = 125.57 psf I I I I I I I S. K. Ghosh Associates LLC. 1334 Colfax St.,Palatine,IL 60067 Page 8 of 18 ' I RTWall Output DATE: 04/20/2020 IProject:Rutkin ES Prepared by:NH I Company:catena Phone: Email: IWeights I1437.5lb/ft 1 i .. 8855.0 lb/ft 1 I I12399.3 lb/ft I Summary of Force Calculations ILoad Vert. Comp. Moment Arm Horiz. Comp. Moment Arm Force Type (lbft) (ft) (lb/ft) (ft) IActive Pressure H 0.0 10.66 4647.5 4.33 I Water Pressure F --- --- 0.0 0.00 Passive Pressure H -112.5 0.50 Uniform Surcharge L -350.0 7.16 325.0 6.50 I Uni. Lateral Pressure W 0.0 0.00 Axial Dead Load D -660.0 3.25 Axial Live Load L 0.0 3.25 --- --- I Applied Shear at top W --- 0.0 13.00 Applied Moment at top W 0.0 lb-ft/ft Adjacent Footing L 0.0 0.00 0.0 0.00 ISeismic E 0.0 0.00 1060.0 5.33 Stem Weight D -1437.5 3.25 --- --- I Footing Weight D -2399.3 5.33 =__ --- Shear Key Weight D 0.0 0.00 Backfill Soil Weight D -8855.0 7.16 --- --- IPassive Soil Weight D 0.0 NaN --- --- S.K. Ghosh Associates LLC. 1 334 Colfax St., Palatine,IL 60067 Page 9 of 18 I RTWaII Output DATE: 04/20/2020 Project:Rutkin ES Prepared by:NH rt Company:catena ' Phone: Email: Restraint Reactions (Unfactored) from Various Loading Conditions (lb/ft) (Numbering starts from the bottom restraint) Restraint 1 1 Backfill Pressure -746.64 Fluid Pressure 0.00 Passive Pressure 0.00 Surcharge Load -105.74 Adjacent Footing 0.00 1 Uniform Lateral Load 0.00 Seismic Load -250.59 Moment from Axial DL 0.00 Moment from Axial LL 0.00 Shear and Moment at Top 0.00 I i I I I I S. K. Ghosh Associates LLC. 1 334 Colfax St.,Palatine, IL 60067 Page 10 of 18 I I RTWall Output DATE: 04/20/2020 IProject:Rutkin ES 1 Prepared by:NN i ir I Company:catena Phone: Email: / t IStability Checks: D + H+ F+ L +W+ 0.7E (IBC Section 1807.2.3) Bearing (lb/ft) Sliding (lb/ft) Overturning(ft-lb/ft) IDestabilizing Loads Active Pressure(Horz.) --- 4647.5 20139.2 Uniform Surcharge(Horz.) --- 325 2112.5 ISeismic - QE(Horz.) 742 3954.9 Fsliding= 5714.5 Moverturning_ 26206.5 IResisting Loads Passive Pressure(Horz.) --- 112.5 56.3 I Restraint Reactions(Horz.) -- 1027.8 13361.3 Uniform Surcharge(Vert.) 350 2507.2 Axial Dead Load(Vert.) 660 --- 2142.8 ISeismic - QE(Vert.) 0 --- 0 Stem Weight(Vert.) 1437.5 --- 4667.1 I Footing Weight(Vert.) 2399.3 --- 12792 Backfill Soil Weight(Vert.) 8855 63431.3 Rtotal = 13701.8 Fresisting= 1140.3 Mresisting= 98957.9 IOverturning: Mresisting/Moverturning = 98957.9/ 26206.5 = 3.8 >F.S.(seismic)= 1.1 ...OK IBearing Pressure: I e =(Bfooting/2) - [(Mresisting- Moverturning ) /Rtotal ] =( 10.7 /2)-[(98957.9- 26206.5)/ 13701.8] = .02 ft <(Bfooting/6)= 1.78 ft I Cr applied=(R/B)+(6Re/B2)=( 13701.8/ 10.7) +(6x 13701.8x .02/ 113.7)= 1300.9 psf °allowable / °applied = 3000/ 1300.9=2.3> 1.0 ...OK I Sliding: R= 13701.8 lbs Friction force: Ffrietion _ µ R= .4x 13701.8= 5480.7 lbs IFresisting = 1140.3 + 5480.7 = 6621 lbs Fresisting/Fsliding = 6621/ 5714.5= 1.2>F.S.(seismic)= 1.1 ...OK 1 I IS.K. Ghosh Associates LLC. 334 Colfax St.,Palatine,IL 60067 Page 11 of 18 I RTWa1l Output DATE: 04/20/2020 Project:Rutkin ES I Prepared by:NH rt Company:catena Phone: Email: Stem Structural Design 111 (top)0.0 • • • •i 2.9 Stem Height(ft) i • 5.8• • • .+ ` 8.6 • ` ` • ~ -- ` -. 11.5 -10.4 -6.9 -3.5 0.0 3.5 6.9 10.4 Moment(kip-ft/ft) I 0.0(top) • 2'9 Stem Height(ft) I 5.8 8.6 11.5 -8.8 -5.8 -2.9 0.0 2.9 5.8 8.8 Shear(kip/ft) ---- Factored Load — Design Strength(Straight Bars) ---- Design Strength(Hooked Bars) , I S. K. Ghosh Associates LLC. 1 334 Colfax St.,Palatine,IL 60067 Page 12 of 18 I RTWaII Output DATE: 04/20/2020 Project:Rutkin ES Prepared by:NH t Company:catena Phone: Email: Based on the governing values from all load combinations and#5 bars with hooked embedment: z [from top] (ft) 0.0 1.2 2.3 3.5 4.6 5.8 6.9 8.1 9.2 10.4 11.5 Vu (kips/ft) -1.50 -1.38 -1.13 -0.76 -0.27 0.36 1.10 1.98 2.97 4.10 5.34 +Mu (kip-ft/ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.63 4.69 10.10 +As, req (sq.in/ft) 0.00 0.00 0.01 0.03 0.06 0.11 0.19 0.29 0.02 0.14 0.30 -Mu (kip-ft/ft) 0.00 1.67 3.12 4.22 4.82 4.78 3.96 2.20 0.00 0.00 0.00 -As,req (sq.in/ft) 0.00 0.05 0.09 0.12 0.14 0.14 0.12 0.06 0.00 0.00 0.00 For stem material: Ld=db { (3/40) (fy/?,[) WtWeWs/ [(cb+Ktr) /db)] } > 1.0ft =(0.4 in.) { (3/40) [(60000 psi)/(1.0) J(4000 psi)] (1.0) (1.0) (0.8) [(2.31 +0.0)/(0.4 in.)] } = 1.19ft For footing material: Ld= 1.19 ft; Ldh= 0.69 ft; and Lprovided= 1.25 ft Governing positive moment(at 11.27 ft from the top of the stem): a=As fy/0.85 fe=(0.3 in.2/ft)(60000 psi)/(0.85)(4000 psi)=0.48 in. � Mn= As fy(d-a/2) = (0.9) (0.3 in.2 /ft)(60000 psi) [(7.69 in.) -(0.23 in.)] = 10.41 kip-ft/ft >Mu(= 8.90 kip-ft/ft) ...OK Governing negative moment(at 5.06 ft from the top of the stem): a=As fy/0.85fe=(0.3 in.2/ft)(60000 psi)/(0.85)(4000 psi)=0.48 in. Mn= As fy(d-a/2) = (0.9) (0.3 in.2 /ft)(60000 psi) [(7.69 in.) -(0.23 in.)]= 10.41 kip-ft/ft >Mu(= 4.89 kip-ft/ft) ...OK Governing shear(at 11.50 ft from the top of the stem): 4Vn=42X d _(0.75)(2) (1) ( psi)(7.69 in.)=8.75 kip/ft >Vu(= 5.34 kip/ft)...OK Other structural checks: Maximum vertical steel: st=0.003[d/(a/13 i )- 1] IS. K. Ghosh Associates LLC. 334 Colfax St.,Palatine,IL 60067 Page 13 of 18 I RT W all Output DATE: 04/20/2020 Project:Rutkin ESFA I Prepared by:NH Company:catenu Phone: Email: 0.003[(7.68 in.)/(0.48 in./0.85)- 1] =0.040>0.004...OK ACI 318 Section 9.3.3.1 Minimum positive vertical steel: As,min =max{3 f/fy, 200/fy } bW d ACI 318 Section 9.6.1.2 =(0.0033)(12 in.) (7.68 in.)=0.308 in.2/ft<As,provided(= 0.310 in.2/ft) ...OK Minimum negative vertical steel: 1 Mn(= 10.41 kip-ft/ft) > (4/3)Mu(= 6.52 kip-ft/ft) Although the minimum vertical steel check does not apply per ACI 318 Section 9.6.1.3, it is still illustrated below: As,min =max{3 NIT'e /fy, 200/fy } bw d ACI 318 Section 9.6.1.2 =(0.0033)(12 in.) (7.68 in.) =0.308 in.2/ft<As,provided(= 0.310 in.2/ft) 1 Maximum vertical steel spacing: sv= 12 in. <sv,m (= 18.0 in.) ...OK ACI 318 Section 11.7.2.1 1 Minimum horizontal steel: ' Pt=As,h/sht=(0.40 in.2)/(12in.)(10.00in.) =0.0033 �Pt,min (= 0.0020) ...OK ACI 318 Section 11.6.1 Maximum horizontal steel spacing: 1 sh= 12 in. < Sh,max(= 18.0 in.) ...OK ACI 318 Section 11.7.2.1 1 I i 1 1 S. K. Ghosh Associates LLC. 1334 Colfax St., Palatine,IL 60067 Page 14 of 18 1 RTWa1l Output DATE: 04/20/2020 Project:Rutkin ES Prepared by:NH t Company:catena Phone: Email: Heel Structural Design Based on the governing load combination for moment [1.2(D+F) + 1.0E+0.5L+ 1.6H]: I 25.0 psf-uniform surcharge 1518.0 psf- soil weight 270.0 psf-concrete self-weight I Critical Section for Moment and Shear At the critical section: MU=44.42 kip-ft/ft>Mu,stem(= 10.10 kip-ft/ft); therefore Mu= 10.10 kip-ft/ft a =As fy/0.85fe=(0.4 in.2 /ft)(60000 psi)/(0.85)(4000 psi)=0.6 in. (I) Mn=(i) As fy(d-a/2) _(0.9) (0.4 in.2/ft)(60000 psi) [(15.6 in.) -(0.3 in.)]=30.30 kip-ft/ft >Mu(= 10.10 kip-ft/ft) ...OK Required development length for#6 bars: ACI 318 Sections 25.4.2 and 25.4.3 Straight embedment: Ld= 1.42 ft Hooked embedment: Ldh=0.83 ft Based on the governing load combination for shear [1.4(D +F)]: ' (I) Vn=(I) 27o/Td =(0.75)(2) (1) ( psi)(15.6 in.)= 17.79 kip/ft >Vu(= 14.60 kip/ft) ...OK Other structural checks: ' Maximum steel: Et= 0.003[d/(a/(31 )- 1] =0.003[(15.6 in.)/(0.6 in./0.85)- 1] =0.059>0.004...OK ACI 318 Section 9.3.3.1 S. K. Ghosh Associates LLC. 334 Colfax St.,Palatine, IL 60067 Page 15 of 18 I RTWail Output DATE: 04/20/2020 Project:Rutkin ES Prepared by:NH Company:catena Phone: Email: 111 Minimum steel: Mn(= 30.30 kip-ft/ft) >(4/3)M„(= 13.47 kip-ft/ft) ACI 318 Section 9.6.1.2 does not apply per ACI 318 Section 9.6.1.3 Also: As,min = [0.0018 x 60,000/fy] bW d ACI 318 Section 7.6.1.1 1 (0.0018)(12 in.) (15.6 in.) =0.338 in.2 /ft<As,provided(= 0.440 in.2/ft) ...OK Maximum steel spacing: I s= 12 in. <smx(= 18.0 in.) ...OK ACI 318 Section 7.7.2.3 Minimum transverse steel: I Pt=As,t/ t t=(0.62 in.2)/ (18 in.)(18.00 in.)—0.0019 ?Pt,min (= 0.0018) ...OK ACI 318 Section 24.4.3.1 ' Maximum transverse steel spacing: st= 18 in. <st,max(= 18.0 in.) ...OK ACI 318 Section 24.4.3.3 I 1 I 1 I 1 I I S. K. Ghosh Associates LLC. 1 334 Colfax St.,Palatine, IL 60067 Page 16 of 18 1 I RTWa1l Output DATE: 04/20/2020 Project:Rutkin ES Prepared by:NH �� Company:catena Phone: Email: Toe Structural Design Based on the governing load combination for moment [0.9D+ 1.0W+ 1.6H]: (Bearing pressure is simply factored by an average value of 1.4.) 1 202.5 psf-concrete self-weight 1 l 1 l 1 1 1 1 d -- 1821.2 psf- soil bearing pressure' � 11809.4 psf I � Critical Section for: Shear Moment At the critical section for moment: Mu=6.47 kip-ft/ft<Mu,stem(= 8.57 kip-ft/ft); no reduction is required. a=As fy/0.85fe—(0.4 in.2 /ft)(60000 psi)/(0.85)(4000 psi)=0.6 in. � Mn=(I) Asfy(d-a/2) = (0.9) (0.4 in.2 /ft)(60000 psi) [(14.64 in.) -(0.3 in.)]=28.32 kip-ft/ft >Mu(= 6.47 kip-ft/ft) ...OK Required development length for #6 bars: ACI 318 Sections 25.4.2 and 25.4.3 Straight embedment: Ld= 1.42 ft Hooked embedment: Ldh—0.83 ft At the critical section for shear: Based on the governing load combination for shear [0.9D+ 1.0W+ 1.6H]: Vn=4 2X\nr:d t =(0.75)(2) (1) 4000 psi)(14.64 in.)= 16.65 kip/ft >Vu(-2.60 kip/ft) ...OK ' Other structural checks: Maximum steel: et—0.003[d/(a/(3 i )- 1] = 0.003[(14.64 in.)/(0.6 in./0.85) - 1] =0.055> 0.004...OK ACI 318 Section 9.3.3.1 IS.K. Ghosh Associates LLC. 334 Colfax St.,Palatine,IL 60067 Page 17 of 18 I RTWaII Output DATE: 04/20/2020 Project:Rutkin ES 1 Prepared by:NH � Company:catena Phone: Email: Minimum steel: r¢ Mn(=28.32 kip-ft/ft) > (4/3)Mo(= 8.62 kip-ft/ft) ACI 318 Section 9.6.1.2 does not apply per ACI 318 Section 9.6.1.3 Also: As,min = [0.0018 x 60,000/ fy] bµ,d ACI 318 Section 7.6.1.1 =(0.0018)(12 in.) (14.64 in.)=0.316 in.2 /ft<As,provided(= 0.440 in.2 /ft) ...OK Maximum steel spacing: 1' s= 12 in. <smax(= 18.0 in.) ...OK ACI 318 Section 7.7.2.3 Minimum transverse steel: Pt=As,t/ stt= (0.62 in.2 )/(18 in.)(18.00 in.)=0.0019 >Pt,min (= 0.0018) ...OK ACI 318 Section 24.4.3.1 Maximum transverse steel spacing: st= 18 in. <st,max(= 18.0 in.) ...OK ACI 318 Section 24.4.3.3 1 r 1 1 1 i 1 1 1 1 S. K. Ghosh Associates LLC. 1 334 Colfax St.,Palatine, IL 60067 Page 18 of 18 I Project: No: Page: cat e � gs,�'e� KLikih ES z6c8�tr Subject: By- Date: Plwn fb cs. Fs :lifts t 9 M� qA720, • $"w,a to 0.5. 1540,L, E.W. owiertek ;, uatc s;vr+,fy s tosieol ii HI -Fah1l Avg -Pit sr rs - e ves ' hmio II.54 I • WO1OA [ , Ltd t }( • 10 soil D tekeiv J5it.of 1:I?: • 10ad cast. : 1.4E+1-(014 1 ,1 y.4!4 L:0.1a+It ; I 11 A' s 11.S- VA 1 a1� ss fx) if-----". Mtt z (o.14k ff,� X,t a it 4' Itz83 I A, t f = 11.23i k-44 4,V,: i;j vm.AY,l'fy '(o.e vAl TvMf!, •A = 0.4.0.ro.,:0.(e Ayfi : 0.31iA -11. /15ke,c. = O.z-°15'sn',g -4,"rb0 1; Qbk,,y : m6A (4-16.01¢) = Y.zll1�4K. I •66-0.4 •As,o.R4Sif)f4 I i:n �irt Ilit l�0IZ.`..c- r-->ski/ is a (31.104V Off ► t(1°I.`636146;4.4g4-GI5•a-5.14)11? ( • IZI 1414 i