Loading...
Report (9) PRODUCT DESCRIPTION The Precision Rail Residential Railing System consists of extruded 6005-T5 aluminum alloy framing members (posts and rails)with aluminum balustrades (for which Precision Rail uses the term "pickets") or glass balustrade panels or stainless steel cables. (Balustrade material is designated "infill" in the industry.) Aluminum members are connected with cadmium-coated Torx Drive flat head steel screws and coated with a pigmented enamel finish for durability and aesthetics or Type 304 SH stainless steel flat head screws. The railing systems are typically sold for use as exterior residential guardrails on balconies, decks, porches, stairs and similar installations where railings are required or desired. These systems are designed to be partially field-fabricated using stock components. The frames are designed to attach the systems to structures composed of wood and other components. The screw and lag connectors used to connect to the supporting structures should be either hot dipped galvanized steel or stainless steel. The top railing for these systems is offered in rounded cross-sectional configurations (Series 100 and 999) or flat configurations (Series 200, 375, and 400). Railing sections are fabricated for 5-foot spacing for glass infill systems between vertical posts or up to 6- foot spacing for other infill. These sections are attached to a short railing block which in turn is attached to the vertical posts. The posts are attached to mounting brackets which are attached to the deck or balcony framing. STANDARDS Precision Rail products are marketed in the western United States. Therefore, it was determined that standard used for analysis should be the minimum loads specified in the 2015 International Building Code(IBC)and the 2015 International Residential Code (IRC)which are the basis for state building codes in the Western United States. Guardrails and handrails are required by both codes where safety from falling is involved in the design and construction of buildings. A subset of the load provisions of the IBC are incorporated into the IRC which is widely used by state building code organizations as the minimum standard for construction of one- and two-family dwellings as well as townhouses. The IBC covers other types of residential such as multi-family structures (condos, apartments,mixed use buildings). It was determined that the loading provisions of Section 1607.8.1 of the IBC is the more conservative of the two codes that apply to the Precision Rail residential railing systems. A copy of the key code sections is attached. Per the IBC, Railing Systems are required to withstand a specified loading of 200 pounds applied in any direction or 50 pounds per linear foot to the top rail of guardrails. The IBC does exempt the 50 plf requirement for one- and two- family dwellings and this uniform load is also not included in the IRC. The top rail load is not required to be concurrent with any other loads. Consulting Structural Engineers 610 S.W.Alder Street,Suite 918, Portland,Oregon 97205 Tel:(503)226-1286 Fax:(503)226-3130 Components of the rail system(pickets, glass panels, cables,bottom rails) are designed to resist a 50 lb force in any direction over a one foot square area (same requirement in both the IRC and IBC codes). Railing systems are limited by ASD wind pressures of 30 psf or less on the glass as determined by the designer or local building codes. Example calculations to convert wind speed to wind pressure included in this report. The terminology of the IBC "be designed to resist"was interpreted to mean that the railing system being analyzed would resist the forces applied without any material yielding(breaking or permanent bending). Because railing system members are not considered to be structural components of a building, the material deflection limit requirements do not apply; however,it is obvious that a railing system must resist minimum loads without plastic a deformation that would compromise safety. Thus,the analysis utilizes allowable stress design(working stress design). The analysis provides a suitably conservative demonstration that the residential guardrail system meets the applicable code requirements. ANALYSIS RESULTS The analysis is elaborated as follows: • Calculations Pages 1 - . Section Properties Pages S1 - S21 • Code References Pages RI-R4 We are pleased to submit this report. Please call us if questions arise. Sincerely yours, S # itl ilP 0t it 46 4te% +4:'6-` . 4) '0134$'4' 474 yry if Y 414 l GOz #Y L l Pi 6- - i Peder Golberg,P.E., S.E. Principal Consulting Structural Engineers 610 S.W.Alder Street,Suite 9IX, Portland,Oregon 97205 'rel:(503)226-12S6 Fax:(503)226-3130 Residential Series Aluminum Railing Systems Task: Check for conformance to the 2015 IRC using the 2015 Aluminum Design Manual, 10th edition. Code Summary One or Two family dwellings - IRC is the controlling code Multiple family dwellings (apartments, condos, hotels) and other commercial applications - IBC is the controlling code and the design of those types of guardrails systems is beyond the scope of this analysis. IRC Table R301.5: Guardrail & Handrails 200 lbs any direction at top rail Guardrail in-fill 50 psf over a 1 ft sq. area (balusters, fillers, glass, cables, etc) Glazing requires a safety factor of 4 IBC Section 1607.8: Similar to above IRC except they add a design requirement of 50 plf load to the top rail in any direction (comes into play when posts are spaced over 4 ft o/c) This requirement is not included in the IRC. Guardrail Height:; H36 = 36 in ; min. but often; H42 = 42 in ;check both ALUMINUM PROPERTIES Extruded 6005-T5 ;Ft. = 38 ksi ;Fty = 35 ksi ;Pcy = 35 ksi ;Fshear = 20 ksi ;Rearing = 56 ksi ;E = 10000 ksi ;Fb, = Pby / 1.65 = 21212.121 psi ;(ASD) or ;Fb2= Ft0/ (1 * 1.95) = 19487.179 psi ;(ASD) ; Fb, = 21212.121 psi ; Fb2 = 19487.179 psi ;Fb = min(Fb1,Fb2) ;Fb = 19487.179 psi Project Job no. James G. Pierson, Inc. Residential Guardrail systems Locnnon Date Consulting Structural Engineers Oregon and Washington 5/1/2019 Gl0 S.W.Alder,Suite 916 Portland,Oregon 97205 Tcl_(503)226-1206 Fax_(503)226-3130 ❑an Shcox no Precision Rail of Oregon 1, Aluminum Properties Cont: Extruded 6063-T5 ;Ftu6o63 = 22 ksi ;Fty6o63 = 16 ksi ;F'cy6o63 = 16 ksi ;Fshear6o63 = 13 ksi ;Eon= 10100 ksi ;Fb16o63= F'cy6o63 / 1.65 = 9696.970 psi ;(ASD) or ;Fb26o63= Ftu6o63/(1 * 1.95) = 1128z.0s1 psi ;(ASD) ; Fb16063=9696.970 psi ; Fb26063 = 11282.051 psi ;Fb6063= min(F616063,F626063) ;Fb6063=9696.970 psi Projoet lob no. James G. Pierson, Inc. Residential Guardrail systems Consulting Structural Engineers Date Oregon and Washington 5/1/2019 610 S.W.Alder,Suite HIS Portland,Oregon 97205 Tel:(503)226-1256 Fax:(503)226-3130 C4onl Shoot no. Precision Rail of Oregon 100 SERIES TOP RAIL CHECK SERIES 100 TOP RAILS FOR LOADING ;Lion=5.66 ft;is desired maximum spacing of posts. ;Lion=5.660 ft Bending of Top Rail;M=200 lbs*L1oo/4=283.000 Ib_ft; or M=3396.000 lb in 100 Series Top Rail (SAPA part 13505) ;Svertioo=0.201 in^/1.159 in= 0.173 in3 ;Shorzioo=0.228 in"/1 in=0.228 in3 Check for vertical loading direction: ;fbven=M/Svertioo=19581.910 psi ;<19,500 psi (for 6005-T5) ,_"No Good" i.e. maximum post spacing is ;5'-6";for 100 series unless balusters or glass panels used to share any vertical load between top and bottom rails-then 6 ft max.spacing may be okay Check for horizontal loading condition ;fbhorz=M/Shorz,00 =14894.737 psi; <19,500 psi 100 Series Top Rail okay for 5.5 ft on center spacing of posts for vertical or horizontal loading Project Job no. James G. Pierson, Inc. Residential Guardrail systems Localism DateConsulting Structural Engineers 610 S.W.Alder,Suite.vls Portland,ongoa 97205 Oregon and Washington 5/1/2019 Tel:(503)226.1286 Fax:(503)226-3130 Cha"t 9hcct nu. Precision Rail of Oregon 200 SERIES TOP RAIL CHECK 200 SERIES TOP RAILS FOR LOADING ;L=6 ft;is desired maximum spacing of posts. ;L=6.000 ft Bending of Top Rail; M=200 lbs L/4=300.000 Ib_ft;or ;M=3600.000 Ib_in 200 Series Top Rail (SAPA part 25878) 9AIM ;Svert200=0.249 in4/1.199 in=0.208 in3 ;Shorzzoa=1.442 in4/1.75 in=0.824 in3 • Check for vertical loading direction: ;fb°art=M/Svert2o0=17334.940 psi ;< 19,500 psi (for 6005-T5) ._"Okay" Check for horizontal loading condition ;fbhorz=M/Shorz200 =4368.932 psi; <19,500 psi 200 Series Top Rail okay for 6 ft spacing of posts for vertical or horizontal loading Project Job no. James G. Pierson, Inc. Residential Guardrail systems Consulting Structural Engineers Location Date Oregon and Washington 5/1/2019 610 S.W.Aldo,Suite 918 Portland,Oregon 97205 Tel:(503)226-l2d6 Fax(503)226-3130 Chem Sheet nu. Precision Rail of Oregon 375 SERIES TOP RAIL CHECK 375 SERIES TOP RAILS FOR LOADING ;L=6 ft;is desired maximum spacing of posts. ;L=6.000 ft Bending of Top Rail;M=200 lbs*L/4=300.000 lb_ft;or ; M=3600.000 lb_in r € 375 Series Top Rail (SAPA part 31836) ) ;Svert375=0.382 in°/1.382 in= 0.276 in3 ;Shorza75=0.295 in°/0.875 in=0.337 in3 Check for vertical loading direction: ;fbvan=M/Svert375=13024.084 psi ;< 19,500 psi (for 6005-T5) ,_"Okay" Check for horizontal loading condition ;fbhorz= M/Shorz375 =10677.966 psi; < 19,500 psi 375 Series Top Rail okay for 6 ft spacing of posts for vertical or horizontal loading Pryeq Job no. James G. Pierson, Inc. Residential Guardrail systems Consulting Structural Engineers locator nay Oregon and Washington 511I2079 610 S W.Alder,Suite 918 Portland,Oregon 97205 Tcl:(503)226-1286 Fax(503)226-3130 Cner Shod no. Precision Rail of Oregon • 999 SERIES TOP RAIL CHECK 999 SERIES TOP RAILS FOR LOADING ;L=6 ft;is desired maximum spacing of posts. ;L=6.000 ft Bending of Top Rail; M=200 Ibs'L/4=300.000 lb_ft;or -. ;M=3600.000 Ib_in _" 4 ots 999 Series Top Rail (SAPA part 29811) ;Svertsss=0.228 in4/1.23 in= 0.185 in3 ;Shorz9ss= 1.30 in4/1.75 in=0.743 in3 Check for vertical loading direction: ;fbv,n=M/Svertsss=19421.053 psi ;< 19,500 psi (for 6005-T5) ,_"Okay" Check for horizontal loading condition ;fbhorz=M/Shorz989 =4846.154 psi; < 19,500 psi 999 Series Top Rail okay for 6 ft spacing of posts for vertical or horizontal loading Project Job no. James G. Pierson, Inc. Residential Guardrail systems Consulting Structural Engineers `'°`a"°° Date Oregon and Washington 5/1/2019 610 S.W.Alder,Suia;918 Portland,(hogoa 97205 Tel.(503)226-1286 Fax:(503)226-3130 CI"°` Svcs°1- Precision Rail of Oregon 400 SERIES TOP RAIL CHECK 400 SERIES TOP RAILS FOR LOADING ;L=6 ft;is desired maximum spacing of posts. ;L=6.000 ft Bending of Top Rail; M=200 lbs`L/4=300.000 Ib_ft;or ;M=3600.000 lb in 400 Series Top Rail (SAPA part 42443) ;Svert400=0.014 in4/0.59 in= 0.024 in3 ;Shorz400=0.282 in4/1.33 in=0.212 in3 400 Series rail is used with 2x4 or 2x6 wood railing. From section properties above,the 400 Series does not have much vertical capacity at all. Horizontal,has some but the wood controls the design. 2x4 wood rail ;Stertaa= 1.3125 in^3 ;Shorz2x4=3.06 in^3 Check 2x4 railing with 400 series for vertical loading direction ;fbvert=M/Svert2x4=2742.857 psi ;>;975 x 1.5 x 1.6 x 1.1 =2575 psi (for 2x4#1 Hem Fir,weak axis bending Just over but okay assuming 2x4 continoius over more than one post(not simply supported) plus if the alumimum railing is used to add a little strength, or the pickets are considreerd in sharing the loads. 2x4 railing okay for 6 ft or less spacing for vertical load direction. Check 2x4 railing with 400 series for horizontal loading direction ;fbhorz=M/Shorz2a4 =1176.471 psi; <975 x 1.5 x 1.6=2340 psi (for 2x4#1 Hem Fir) i.e. maximum post spacing of 6'-0"okay for horizontal loading of all series of the top rails Project Job no. James G. Pierson, Inc. Residential Guardrail systems Location Date Consulting Structural Engineers Oregon and Washington 5/1/2019 610 S.W.Alder,Suite 918 Portland,Oregon 97205 Tel:(503)226-1286 Fax:(503)226-3130 Chem Shea no. Precision Rail of Oregon 670 SERIES TOP RAIL ;L=6.0 ft;is desired maximum spacing of posts. ;L=6.000 ft Bending of Top Rail;M=200 lbs"L/4=300.000 lb_ft;or ;M=3600.000 lb_in Wind Load ;WL=29.66 psf ;w=WL'40 in/2=49.433 ;M=w s Lz/8=2669.400 Ib_in TR670 Top Rail ;Svertsrs=0.2628 in4/1.155 in= 0.228 in3 ;Shorz67s=2.230 in4/2.0455 in=1.090 in3 Check in for vertical loading direction ;fbwi=M/Sverts75=11731.952 psi ;at;L=6.000 ft ;fbven=11731.952 psi;<19,500 okay for vertical loading Check for horizontal loading condition ;fbhorz=M/Shorzs75 =2448.546 psi; <19,500 okay for horizontal loading of top rails 670 SERIES TOP RAIL 2 11J16" 1 1/4" c4 (V _____f_ TR67A-apr Area: 1.25933084 Perimeter: 21.03960088 Bounding box: X: -2.04556155 -- 1.88129505 Y: -1.15570214 -- 0.59428683 Centroid: X; 0.00000000 Y:: 0.00000000 Moments of inertia: X: 0.26285632 Y: 2.23078131 Product of inertia: XY: -0.11401036 Radii of gyration; X: 0.45686648 Y: 1.33094031 Principal moments and X-Y directions about centroid: I: 0.25627324 along [0.99833714 0.05764513] 3: 2.23736440 along (-0,05764513 0.99833714] Projai Joh no. James G. Pierson, Inc. Residential Guardrail systems Consulting Structural Engineers Data Oregon and Washington 5/1/2019 610 S.W.Alter,Stitt 4111 Portland,Oregon 97205 TcC(503)2261256 Fax:(503)226-3130 Chmt Shea nu. Precision Rail of Oregon CHECK BOTTOM RAILS --.- 15/1 C" Check bottom rails for wind loads or 50 lbs over 1 sq,R. ;L=6 ft;is desired maximum spacing of posts. ;L=6.000 ft 100 Series Bottom Rail tK,1 ;Svert,00b=0.201 in4/1.159 in= 0.173 in3 ;Shorzioob=0.228 in4/1 in=0.228 in3 200 Series Bottom Rail ;Svert200b=0.1447 in3 f ;Shorz200b=0.2825 in3 1 00 SERIESBOTTOM RAIL 50 lbs over 1 sq.ft. Use 50 lb point load at midspan ;M=50lb*L/4=75.000lb ft Check for vertical loading direction: 100 series stress;fbioo=M/Svertioon =5189.552 psi 3!$ ! 200 series stress;fb2ao=M/Shorz2aab=3185.841 psi Bottom rails okay for the 50 lb point load Check for horizontal loading direction: Check bottom rails for wind loads ;W= 30 psf;(i.e.,Oregon coast)or;w=W*39 in/2 ;w=48.750 plf r ;Mwind=w*L*L/8;Mwnd=2632.5001b_in ;100 series Bending ;Mwind/Shorzioob=11546.053psi II ;200 series Bending ;Mwlnd/Shorz2oob=9318.584psi 200 (HD) SERIES BOTTOM RAIL Use 200 series for bottom rails for all glass rail systems Project Job no. James G. Pierson, Inc. Residential Guardrail systems Consulting Structural Engineers Locate], Date Oregon and Washington 5/1l2019 610 S.W.Alder,Suite 916 Portland,Oregon 97205 Tel:(503)226-1286 Fax:(503)226-3130 Client S➢ca no. Precision Rail of Oregon RAIL CONNECTIONS The top rail sections either slide over connection blocks or are attached to the top of the posts. In either case, (2)#10 self-drilling steel screws are used to make the connections. The connection blocks are attached to the sides of the vertical posts with (2)#10 self-drilling steel screws. In most cases,the 200 lb maximum load is shared by(4)screws but if the load(200 Ibs)is placed at the end of a rail,it would be supported by just(2)screws. Maximum shear is each screw ;v=200 lbs/2=100.000 Allowable shear in each screw: 5A3 Screw Shear and Bearing The slur force our s screw shall not exceed the least.et 1) 2 Pam,a rat+a (Eq.54.3-J) If the screw is €x un one-half the h of the countersink shalt be deducted from r3; 2) 2E„;t DrA, (Ed.5,4J-2) 3) 4.210)}mE,,yduxw,(Prt,Sr, (e4. 143-3) 4) P f(I.25 a,) (E4 5,4.3-.4) ;Ftuscrew=38000 psi ;dscrew=0.19 in ;#10 screw ;nu= 1.95 ;asd factor ;ns=3 ;factor of safety ;tl =0.1 in ;thickness bottom rail ;12=0.1 in ;thickness post ;Pns =1526 lbs ;ESR-3332 report ;1) ;2*Ftoscrew*dscrew*h/nu=740.513 lbs ;2) ;2*Ftuscrew*dscrew't2/nu=740.513 lbs ;3) ;4.2*(t23*dsc ew)6*Fwsorew/ns=733.311 lbs ;4) ;Pns/(1.25*na)=406.933 lbs Okay #10 screws are okay to attach top rail to posts Bottom rail connection similar but 50 lb design load. #10 screws okay by inspection Project lob no, James G. Pierson, Inc. Residential Guardrail systems l.oeadoa Dote Consulting Structural Engineers Oregon and Washington 5/1/2019 610 S.W.Alder,Sui0.;918 Portland,Oregon 97205 Tel:(503)226-1286 Fax:(503)226-3130 cbc°t sheet no. Precision Rail of Oregon ATTACHMENT OF RAILS TO BUILDING Check end plate of the top rail for attachment to the building Plate is attached to the top rail with(2)#10 Torx-drive flat head steel screws ;Shear capacity= 184 lbs each ;Tension Capacity;TC=0.0175 in2 x 30 ksi/2=262.500 2#10 screws are okay Assume only one anchor bolt at the middle(conservative—more than one bolt will be used) ;Mpiam=200 lb x 3 in/4=150.000 lb_in For 3/16"thick plate x 1"x 3" ;tpiata=0.1875 in ;fb=Mp ate x 6 I(1 in X tpiate X touts)=25.600 ksi Fb =27.6 ksi 3/16"plates okay for wall anchorage Project Job no. James G. Pierson, Inc. Residential Guardrail systems Locattor Date Consulting Structural Engineers Oregon and Washington 5/1/2019 610 SW.Alder,Sao 916 Portland,Oregon 97205 Tcl:(503)226-1286 Fax:(503)226-3130 Chao Shod no. Precision Rail of Oregon Posts All of the railing systems use the R Series Post for 36"or 42"height R Series Post (SAPA part 36430) ;Sri =0.935 in4 11.188 in= 0.787 in3 For 40"tall posts(fascia mounted), 6 ft max spacing ;L6=6 ft Per IRC ;Mi =200 lbs*(H36+4 in)=8000.000 lb_in Per IBC ;M2=50 lbs/ft*L6*(H36+4 in) =12000.000 Ib_in For 46"tall posts(fascia mounted), 6 ft max spacing ;Ls=6 ft Per IRC ;M3=200 lbs•(H42+4 in) =9200.000 lb_in Per IBC ;M4=50 lbs/ft*L6*(H42+4 in) =13800.000 lb_in Standard Residential—36"+4"height ;Fni =Mi/Sxi=10164.706 psi ;or;Fb2=M2 I Sx1= 15247.059 psi Taller Posts—46"height ;Fos=Ms/Sri=11689.412 psi ;or;Fb4=M4/Sri=17534.118 psi Allowable;Fb=19.487 ksl R Series Posts are good using both IBC or IRC for up to 6 ft spacing in bending at a height of 46"or less(fascia mounted 4" below deck,worst case) Prajecl Job no. James G. Pierson, Inc. Residential Guardrail systems Location Data Consulting Structural Engineers Oregon and Washington 5/1/2019 610 S.W.Alder,Suite 91 B Portland,Oregon 97205 Tcl:(503)226-1286 Fax:(503)226-3130 [Lwi S6at no. Precision Rail of Oregon POSTS - SHEAR Check shear in post walls Circumference of resisting area for screw pull-thru ;Cscrev,=0.2 in*pi=0.628 in Post wall thickness;ti =0.10 in; (13503) ;Areal=Cscn:w*tt =0.063 in2 ;V=Areal*Fsbear/1.65=761.598 lbs ;>100 lbs Check Posts for Shear ;f"=300 lbs/(2*2.375 in*tt)=0.632 ksi ; not an issue 2.To join a straight connection,butt joint over the CHECK RAIL SPLICES center of a post.Reintotoe the joint with 6010x 314"screws fastened through pro-drilled holes, to a splice centered between the rails.Attach Check hat channel(SAPA 25877)rail splices. These members,when top rail to the post with 4 08 x'UT screws. used,are located at rail splices over posts ;Mhat=200 Ibs 6 in=1200.000 lb in Hat Channel (SAPA part 25877) 4 ryrxr ww 4Ima ;SVertnai=0.0736 in3 r ar i ;Shorzhai=0.149 in3 t Rsa* ;Fbvert=Mnet/Sverthat=16304.348 psi : ;Fbnorz=Mhat/ShorzJs=8053.691 psi ;Fty/1.65 = 21212.121 psi ;Fb = 19487.179 psi Hat channels are okay Project Job no. James G. Pierson, Inc. Residential Guardrail systems Consulting Structural Engineers Locd`1O" o"` Oregon and Washington 5/1/2019 610 S.W.Alder,stile 918 Portland,Oregon 97205 Tel:(503)226-1286 Fax (503)226-3130 Cram Sheet no. Precision Rail of Oregon POST MOUNTING BRACKETS Check screws: Fascia Mount Diagram ;vscrew=300 lbs*(H42+3 in)/(4.5 in*2)=1500.000 lbs441 Allowable Shear screw; Vscrewenow= 120 ksi*.2*.7=16.800 ksi Shear area required ;Vscrew/Vscrewailaw=0.089 in2 ei * Use 5/16"m x'14"long Torx Drive Flate Head self drilling screws 4 Vertical load is shared between(4)screws or;300 lbs/4=75.000 Ibs; each—okay Check Bending in Bracket ;fbxbra J t=300 lbs*(H42+3 in)/(5.825 in4/1.5 in)=3476.395 psi;out-of- plane direction ;fbybreckel=300 lbs*(H42+3 in)/(7.204 in4/3 in)=5621.877 psi;in-plane of deck Fascia Bracket okay for loads. OTHER FOUR WALLED BRACKETS Other sleeve type brackets used have to receive sleeve[coated a distance from the attachment plates for decks withich have framing recessed behind the edge of the deck. All brackets have four walls. The brackets all resist bending of the post by resistance by the two opposite walls of the bracket sleeve rather than side screws. Therefore,the 5/16" diameter screws could be'tY"diameter in these bases. Bracket 35757 ;Sr..= 13.768 in4/3.82 in=3.604 in3 ;Fb =300 lbs*(H42+3 in)/ Sm n=3745.642 psi ;-okay By Inspection,shear at post bracket is okay Project Job no. James G. Pierson, Inc. Residential Guardrail systems Consulting Structural Engineers o tioo Date Oregon and Washington 5/1/2019 610 S.W.Aldo,ruin:918 Portland,Oregon 97205 TeL(503)226-1286 Fax:(503)226-3130 Cltrnl Shcct no. Precision Rail of Oregon , R C1 ♦ Z _. , rs 00 ,V�S,�G l f��t�, �QT r1 fs r +l '¢ 9 834•' QQ4Q 00321168 i OREGON I!,3FaIch 1s �� , . P'PRO R R. coL EXPIRES 10/13/19 EXPIRE : 6-30-19 PRECISION RAIL 10735 SE FOSTER ROM 1.-0' 1'-4•• 1-4" 1'-4•' - 1•-4• I 1-4" PGFTLFNO.OREGON Bt2t8 �444 )4R4 J V u;M J V N t0 0-MIN 0 W 0 j N S w¢_Iu °w¢g0 0 0 a 0 U' a C W H 222 222 j 222 NI222 r Co m ! 0-„, z n �f4.94 ' �444 J In(� 01110 Jy 1(] IO Q�Qa6 WCJgg6 ( W09a 07a CC JU I. 0 ® 4. Q EQUALLY SPACED EQUALLY SPACED CABLE 4'-0"MAXIMUM CABLE 4'-0"MAXIMUM GLASS 5'-0"MAXIMUM GLASS 5'-0"MAXIMUM PICKET 6'-0"MAXIMUM PICKET 6'-0"MAXIMUM 7ATF: 12/29115 OPLAN VIEW- TYP DECK FRAMING SCALE: 1 1/2" = 1'-0" DRAWN: sm JOB: SHEET Page 10 of 34 Page 10 of 1.33 1 } � m 2 tt RAILING SYSTEM WITH POST 42"MAXIMUM Qa QQ HEIGHT.EXPOSURE B.135 MPH MAXIMUM WIND.MAXIMUM 25'BLDG HEIGHT OR 30 PSF NOMINAL WIND PRESSURE. DECKING RESIDENTIAL POST > PRO. (4)5"LEDGERLOK FASTENER ' FASCIA MOUNTING as 'f` O ,,yy"yyy As*. PRECISION RAIL 40 =T 10735 SE OSTER ROAN PORTLANDFOREGON PTA% It DOUG FIR 2X FRAMING YA (4)SIMPSON A3 e082888 DOUG FIR 6X6 BLOCKING SECTION .4faZeT11 1 ? WITH(4)16d EACH END 1 emu ZONAL 0.1 MOMS RAILING SYSTEM WITH POST42"MAXIMUM HEIGHT.EXPOSURE B. 135 MPH MAXIMUM RESIDENTIAL POST WIND.MAXIMUM 25'BLDG HEIGHT. OR 30 PSF NOMINAL WIND PRESSURE. LU DECKING I- (4)5"LEDGERLOK FASTENER (f) FASCIA MOUNTING } �� PRaf C �►I- U) ck Z34. I DOUG FIR PERIMETER JOIST e�0s/ J Q 4. ORE( 7K !t (4)SIMPSON A3- <",",FA � � (4)16d EACH ENDlf? ON CKING WITH O`SECi�-0" Q C EXPIRES 6-30-19 -J RAILING SYSTEM WITH POST 42"MAXIMUM HEIGHT.EXPOSURE B.135 MPH MAXIMUM RESIDENTIAL POST WIND.MAXIMUM 25'BLDG HEIGHT. OR 30 PSF NOMINAL WIND PRESSURE. DECKING DOUG FIR PERIMETER JOIST (4)SIMPSON A3 DOUG FIR 6X6 BLOCKING )SECTION DATE' 12/29/15 WITH(4)16d EACH END = 1'-0" SCALE: DRAWN: sm JOB: SHEET Page 10a of 34 1 a Page 11 of 48 TOP MOUNTED BASEPLATE Posts attach to plate at interior holes and is attached to substrate(deck)at hole located near the edges. V ;OTM=200 lbs*(H36+.375 in) ;OTM=7275.000 lb_in Tension in post base screw connections is;T=OTM/(2.116 in*2);T= 1719.045 lbs SAE Grade 5 screws ; Flocrew= 120 ksi* .75=90.000 ksi I 2{16 If4 li Check Screws Per ADM 5.4 Try 5/16"diameter screws (minor area=.0524 in^2) ;D=0.3125 in ;Dws=0.625 in ;Di,=0.28 in ;(screw chase) ;to=1 in;(min into screw chase) .11111111 ;Fw2=38 ksi 9 625 ;Flu{=38 ksi 1.575 ;Fly= l6ksi ;ns=3 ;factor of safety ;C=1 ---- ;t{=.375 in _.._.. .,_.._. _.� ;Pool=1.63*D*tc*Fto2=19356.250 lbs ;(eq. 5.4.2.1-6) { C) 0 Jo ;Po1=Fiscrew*.0524 inA2=4716.000 lbs ;(nominal tensile strength fo screw) ;Pnov=(0.27+1.45*1.1)*D*t{*Fly=3496.875 lbs ;(eq.5.4.2.2-2) ADM 5.4.2 Allowable 03" Pno/ns=6452.083 lbs . _ ;Pnl/(1.25*ns)=1257.600 lbs ;Pnw Ins=1165.625 lbs (T[ 0 Load Test Connection 70.939 Load Test is 2.5x design load Check Screws for 42"tall posts and IRC Loading at 6 ft post spacing ;OTM42=200 lbs*2.5*(H42+.375 in) ; OTM42=21187.500 lb_in Tension in post base screw connections is;T42=OTM42/(2.116 in"2);T42= 5006.498 lbs ;Load Test to verify Use(2)5/16"diameter x 2"long SAE Grade 5(min.)self tapping Torx drive flats head screws(1 ''A"min.Embedment into post) Project Job no. James G. Pierson, Inc. Residential Guardrail systems Consulting Structural Engineers L°"d°n Date Oregon and Washington 5/1/2019 610 S.W.Matt,suik 918 Portland,Oregon 97205 Tel:(503)226-1286 Fax,(503)226-3130 Client Shea no. Precision Rail of Oregon Check Top Mounted Base Plate Bending Check 3/8"x 5"x 5" plate ;Tgate=OTM/3.75 in= 1940.000 lb ;Bending=OTM/(5 in*(5 in)2/6); Bending-349.200 psi ;d=2.22 in ;T=Bending*d/2*5 in;T=1938.060 lb Plate bending is maximum below edge of post or 1.3125"from plate edge ;P2=(2.22 in—1.3125 in)/2.22 in*Bending=142.747 psi ;Mmax=((P2*1.3125 in2/2)+((Bending—P2)*1.3125 in2/(2)'(2/3)))*5 in ;Mmax=920.005 lb_in ;Fb=Mmax*6/(5 in*.375 in*.375 in)=7850.708 psi Bending Okay for standard 5x5 plate Check 3/8"x 3"x 5" plate (stair use) ;Tpate2=OTM/2.38 in=3056.723 lb ;Bending2=OTM/(3 in*(5 in)2/6); Bending2=582.000 psi ;d=2.22in ;T=Bending2*d/2*3 in;T= 1938.060 lb Plate bending is maximum below edge of post or.3125"from plate edge ;P3=(2.22 in—.3125 in)/2.22 in*Bending=300.045 psi ;Mmax2=((Pa*.3125 in2/2)+((Bending—P3)*.3125 in2/(2)*(2/3)))*5 in ;Mmax2=260.012 Ib_in ;Fa=Mmax2*6/(5 in*.375 in' .375 in)=2218.766 psi Bending in smaller plate also okay Project Job no. James G. Pierson, Inc. Residential Guardrail systems Consulting Structural Engineers " orate 610 SW.Alder,Suitt;vla Portland,�xnn 97205 Oregon and Washington 5/1/2019 Tel:(503)226-1286 Fax:(503)226-3130 Client Shca no. Precision Rail of Oregon BASE PLATE ATTACHMENT Anchor Tension ;AT=OTM42/4.375 in;AT=2905.714 lb 2 anchors per side ;Atbolt=AT/2=1452.857 lb Wood: Try 3/8"diameter lag bolts and assume Douglas Fir ;Tallow=305 lb/in*1.6*2.78 in;, 5"long lag,2 25/32"embed 1.6 Cd wood factor ;Taimw= 1356.640 lb Use 3/8"daimeter x 5"embedment lag screws(4 corners) Concrete: Assume 4"thick concrete—use Simpson 3/8"diameter strong bolts 5"concrete—can use 3/8"Titen HD w/3"embedment See attached ACI 318 Appendix D calc. Pmjn I Job no. James G. Pierson, Inc. Residential Guardrail systems Location DateConsulting Structural Engineers Oregon and Washington 10/10/2018 610 6.W.Alder,Suite 918 Portland,Oregon 97205 Tel:(503)220.1286 Fan:(503)226-3130 Clica. Sheet no. Precision Rail of Oregon Page 15 of 48 2 I 1 Parts List ITEM QTY PART NUMBER DESCRIPTION 1 1 BP-5X5-STD-30248 .375 ALUM PLATE NOTES: 1. PART TO BE FREE OF ALL BURRS AND SHARP EDGES. 2. THIS BASEPLATE TO BE USED WITH SAPA HEAVY COMMERCIAL POST (DIE NO. 30248). 5.00 4.38 ► 3.43 — 1.57 0.63 (4X) n0.44 THRU /—( R0.634X) B I I —O 1.57 (6X) n0.38 THRU I I w n0.65 X 82° 2.50 O O 3.43 OO / 5.00 411 o- o- A DRAWN TIM C 7/3/2007 CHECKED SAPA PROFILES, INC. QA TITLE MFG APPROVED BASEPLATE, 5X5, STD, HVY COMM, DIE 30248 N w SIZE DWG NO REV A B BP-5X5-STD-30248 1 SCALE SHEET 1 OF 1 2 ' 1 Page 16 of 48 Company: Pierson,Inc. Date: 12/15/2015 SIMPSON Anchor DesignerTM Engineer: Golberg "^ Page: 1/5 StronTie Software Project: Version 2.4.5673.50 Address: 610 SW Alder#918 Phone: 503-226-1286 E-mail: Peder@jgpierson.com 1.Project information Customer company:PRO Project description:Top Mounted Bracket Customer contact name: Location: Customer e-mail: Fastening description: Comment: 2.Input Data&Anchor Parameters General Base Material Design method:ACI 318-11 Concrete:Normal-weight Units:Imperial units Concrete thickness,h(inch):5.00 State:Cracked Anchor Information: Compressive strength,f0(psi):3000 Anchor type:Torque controlled expansion anchor Wc,v: 1.2 Material:Carbon Steel Reinforcement condition:B tension,B shear Diameter(inch):0.375 Supplemental reinforcement:Not applicable Nominal Embedment depth(inch):2.875 Reinforcement provided at corners:No Effective Embedment depth,her(inch):2.500 Do not evaluate concrete breakout in tension:No Code report:ICC-ES ESR-3037 Do not evaluate concrete breakout in shear:No Anchor category:1 Ignore 6do requirement: Not applicable Anchor ductility:Yes Build-up grout pad:No ham(inch):4.50 cd(inch):6.00 Base Plate Cam(inch):6.00 Length x Width x Thickness(inch):5.00 x 5.00 x 0.38 Sam(inch):3.00 Load and Geometry Load factor source:ACI 318 Section 9.2 Load combination:not set Seismic design:No Anchors subjected to sustained tension:Not applicable Apply entire shear load at front row:No Anchors only resisting wind and/or seismic loads:No how <Figure 1> *Iff s3o 1R0o~M1, x' an-m lr Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone,925.560.900e Fax:925.847.3871 wwwstrongtie.com Page 17 of 48 SIMPSON Anchor Designer TM Company: Pierson,Inc. Date: 12/15/2015 Engineer: Golberg Page: 2/5 Software Project: Version 2.4.5673.50 Address: 610 SW Alder#918 Phone: 503-226-1286 E-mail: Peder@jgpierson.com <Figure 2> ' l0 -z_ 6.00 - - Recommended Anchor Anchor Name:Strong-Bolt®2-318"E CS Strong-Bolt 2,hnom:2.875"(73mm) Code Report:ICC-ES ESR-3037 Vi. Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tio Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com Page 18 of 48 SIMPSON Anchor Designer TM Company: Pierson,Inc. Date: 12/15/2015 Engineer: Golberg Page: 3/5 Stro Toe Software Project: Version 2.4.5673.50 Address: 610 SW Alder#918 Phone: 503-226-1286 E-mail: Peder@jgpierson.com 3.Resulting Anchor Forces Anchor Tension load, Shear load x, Shear load y, Shear load combined, Nua(Ib) Voa.(Ib) Voay(Ib) 11(Vua.)2+(Vuay)2(Ib) 1 1799.2 -80.0 0.0 80.0 2 1799.2 -80.0 0.0 80.0 3 0.0 -80.0 0.0 80.0 4 0.0 -80.0 0.0 80.0 Sum 3598.4 -320.0 0.0 320.0 Maximum concrete compression strain(%o):0.30 <Figure 3> Maximum concrete compression stress(psi): 1290 0 1 02 Resultant tension force(Ib):3598 Resultant compression force(Ib):3598 Eccentricity of resultant tension forces in x-axis,e'N.(inch):0.00 Eccentricity of resultant tension forces in y-axis,e'Ny(inch):0.00 Eccentricity of resultant shear forces in x-axis,e'v.(inch):0.00 O► Eccentricity of resultant shear forces in y-axis,e'vy(inch):0.00 X Jif Y t at1a�j 4.Steel Strength of Anchor in Tension(Sec.D.5.1) Nea(Ib) 0 0Nsa(Ib) 5600 0.75 4200 5.Concrete Breakout Strength of Anchor in Tension(Sec. D.5.21 Nb=kbAbYffchet"(Eq.D-6) ke a.a fc(psi) her(in) Nb(Ib) 17.0 1.00 3000 2.500 3681 /4Noba=0(ANC/ANm)PacN Ted,N Pc,N Tep,NNb(Sec.D.4.1 8 Eq.D-4) AN (in2) ANco(in2) y'ecN 'Ned.N Vc,N Pop,N Nb(Ib) 0 fNug(lb) 84.38 56.25 1.000 1.000 1.00 1.000 3681 0.65 3589 6.Pullout Strenath of Anchor In Tension(Sec.D.5.31 ON„„=OPpteNp(fo/2,500)"(Sec.0.4.1, Eq. D-13&Code Report) KP ..a Np(Ib) Pe(psi) n d 0Np„(Ib) 1.0 1.00 2775 3000 0.50 0.65 1976 Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.580.9000 Fax 925.847.3871 www.strongtie.com Page 19 of 48 Company: Pierson,Inc. Date: 12/15/2015 SIMPSON Anchor Designer TM Engineer: Golberg Page: 4/5 Software Project: 'le Version 2.4.5673.50 Address: 610 SW Alder#918 e Phone: 503-226-1286 E-mail: Peder@jgpierson.com 8.Steel Strength of Anchor in Shear(Sec. D.6.1) V..(Ib) Og'out 95 OgroafVsa(Ib) 1800 1.0 0.65 1170 9.Concrete Breakout Strength of Anchor in Shear(Sec.D.6.21 Shear perpendicular to edge in x-direction: Vby=min)7(/8/da)e'24da294recar''5;9aa11recar''51(Eq.D-33&Eq.D-34) le(in) cis(in) ).a rc(psi) car(in) V.(Ib) 2.50 0.38 1.00 3000 9.75 10446 SVVbg._0(Avc/Avu,)9'ecv 9'ed,v 9'c,V 9'n,VVGA,(Sec.D.4.1 &Eq.D-31) Avc(in2) Avice(in2) 9acv 9'ed,v 9'av `Yh,V VC%(Ib) 0 QbVcbg,r(Ib) 121.88 427.78 1.000 0.823 1.200 1.710 10446 0.70 3519 Shear parallel to edge in x-direction: Vby=min)7(4/da)c•24dada4rccar's;94,Alr'cc0145I(Eq. D-33&Eq. D-34) I.(in) da(in) ).a rc(psi) car(in) Vby(Ib) 2.50 0.38 1.00 3000 6.00 5043 OVctgx=0(2)(Ave/Avoo)Wec,vVGG,vV'gv5vh,vVby(Sec. D.4.1 &Eq.D-31) Avc(in2) Avco(in2) 9'eo,v 9'ed.v 9o,v 9'h.v Vby(Ib) 0 01./wgx(Ib) 93.75 162.00 1.000 1.000 1.200 1.342 5043 0.70 6578 10.Concrete Prvout Strength of Anchor in Shear(Sec. D.6.31 bVspg=0kpNceg= 0km(ANc/ANce)9'ec,N'Fed,N WAN 9cpNNb(Eq. D-41) kg) ANc(in2) ANcd(in2) 9'ec.N 9'ed,N 9'eN 9'cp,N Nb(Ib) 0 0Vgg(Ib) 2.0 126.56 56.25 1.000 1.000 1.000 1.000 3681 0.70 11594 11. Results Interaction of Tensile and Shear Forces(Sec.D.7) Tension Factored Load, Nua(Ib) Design Strength,gist,(Ib) Ratio Status Steel 1799 4200 0.43 Pass Concrete breakout 3598 3589 1.00 Pass(Governs) Pullout 1799 1976 0.91 Pass Shear Factored Load,V.(Ib) Design Strength,oVc(Ib) Ratio Status Steel 80 1170 0.07 Pass T Concrete breakout x- 320 3519 0.09 Pass(Governs) II Concrete breakout y+ 160 6578 0.02 Pass(Governs) Pryout 320 11594 0.03 Pass Interaction check Nee/0N,, V,,.,i{oVc Combined Ratio Permissible Status Sec.D.7.1 1.00 0.00 100.3% 1.0 Pass 3/8"0 CS Strong-Bolt 2,hnom:2.675"(73mm)meets the selected design criteria. Input data end results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Ins. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com Page 20 of 48 SIMPSON Anchor Designer TM Company: Pierson,Inc. Date: 1 211 5/2 0 1 5 Engineer: Golberg Page: 5/5 Strong-Tie Software Project: Version 2.4.5673.50 Address: 610 SW Alder#918 Phone: 503-226-1286 E-mail: Peder@jgpierson.com 12.Warnings -Designer must exercise own judgement to determine if this design is suitable. -Refer to manufacturer's product literature for hole cleaning and installation instructions. Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com Page 21 of 48 m i2 TV Z . C 14, i + ' Ei4 QQQQ ,` 1 3 45 � bREGbNcre4 et('O�'�h t9 1g o R. CP EXPIRES 10/13/19 EXPIRES- 6-30-19 1'-4 PRECISION RAIL - - 10i 355E FOSTER R:1P0 PORTLW�,CTFEI,f1N 81_SJ 0 7 7 0 0 7 7 7 a I I I I I I I aX-X 444 �444 V Y)co J 1n to 7 W N W 7 W N w C7 in NY el II < I 0 W Q a 0 O O a 0 O n I- »> r>- W �2 W 2 2 2_ v, J a < 0 0 u7222 ^ W222 z C �'Q Q 4 Yoo4 G J Cr E ID 4 k I J Cr iD N J a3< o Y �' 7 j�W W U a Ua Q C CC cf) Q W 2 co I EQUALLY SPACED I EQUALLY SPACED I CABLE 4'-0"MAXIMUM CABLE 4'-0"MAXIMUM GLASS 5'-0"MAXIMUM GLASS 5'-0"MAXIMUM PICKET 6'-0"MAXIMUM PICKET 6'-0"MAXIMUM DATE: 7127i15 ®PLAN VIEW- TYP DECK FRAMING SCALE: 1 1/2" = 1'-0" Dluwv: sm JOB: SHEET Page 21 of 34 .1 Page 22 of Ad 1 Z RAILING SYSTEM WITH POST 42"MAXIMUM Q HEIGHT. EXPOSURE B. 135 MPH MAXIMUM ce WIND.MAXIMUM 25' BLDG HEIGHT. RESIDENTIAL POST OR 30 PSF NOMINAL WIND PRESSURE. aQa Q 5X5 X 3/8" BASE PLATE (4)5/16"DIAMETER X 2" GRADE 5 CADMIUM PLATED :. o s go (4)5"LEDGERLOK FASTENER STEEL SCREWS y, . , ! I PRO: a� DECKING �'� I - 1 - /1 /�/�p��� DOUG FIR 2X FRAMING PRECISION RAIL W VA�➢M /1 � ie f'.10 P00.RANO,POliEOON 9)284 4146,9/1711 S (4)SIMPSON A3 t01STAL IP1(3119 ii DOUG FIR 6X6 BLOCKING WITH SECTION ExentEs1 (4) 16d EACH END 1 1" = 1'0" RAILING SYSTEM WITH POST 42"MAXIMUM HEIGHT. EXPOSURE B. 135 MPH MAXIMUM RESIDENTIAL POST WIND.MAXIMUM 25'BLDG HEIGHT. OR 30 PSF NOMINAL WIND PRESSURE. 5X5 X 3/8"BASE PLATE (4)5/16"DIAMETER X 2" 2 GRADE 5 CADMIUM PLATED UJ STEEL SCREWS R �CT R (4)5"LEDGERLOK FASTENER I ( } Z +ta \-\G}"4,,Q D DECKING '-� ( (7 0 4334•1 4 �',�� z 2 DOUG FIR PERIMETER JOIST 11— J w OREGON g� Q I— Ce.�y it (4)SIMPSON A3- Q ar �, ©�{.Aj R 00\-4+ DOUG R FIR 6X6 END BLOCKING WITH 2 SECTION _I a Q w E<PD -3O-I9 O1" = 110" Q Q 2m D RAILING SYSTEM WITH POST 42"MAXIMUM Q HEIGHT. EXPOSURE B. 135 MPH MAXIMUM WIND.MAXIMUM 25'BLDG HEIGHT. RESIDENTIAL POST OR 30 PSF NOMINAL WIND PRESSURE. 5X5 X 3/8"BASE PLATE (4)5/16"DIAMETER X 2" GRADE 5 CADMIUM PLATED STEEL SCREWS (4)5"LEDGERLOK FASTENER 1111,1 DECKING lifFOPPAiriglil , i JJ DOUG FIR PERIMETER JOIST DATE: 7/27/15 (4)SIMPSON A3i SCALE: DRAWN: sm DOUG FIR 6X6 BLOCKING JOB: WITH(4) 16d EACH END ©SECTION SHEET 1" = 1'-0„ Page 21a of 34 1 a Page 23 of 3$ m vrieS tR 4z 1 'V' Mr10,, (.'e)t *G4tsiF' 0 4 st i<QQ 4,834)1 0 y. OREGON R, maws 10/13/19 E>CFIRE5: E+-30-19 PRECISION RAIL 10735 SE FOSTER ROAD PORTLAND,OREGON D7100 RAILING SYSIEM W/ POST 42" MIN HEIGHT AND 5'-0" MAX C/L SPACING. R POST EXPOSURE B. 80 MPH MAX WIND. MAX 35' BLDG HEIGHT. 5X5 X 3/8" BASE PLATE (4X) 5/18"6 X 2" GRADE 5 CADMIUM PLATED STEEL SCREWS (4)3/8"x 2 7/8"Simpson Strong-Bolt 2,6"edge distance,min,5"min.slab 1.1J thickness �I�,�A A i■ H DECKING '- Z C00 Z � W Q Recommended Anchor J a Anchor Name:Strong-Bolt®2-3/8"0 CS Strong-Bolt 2,hnom:2.875"(73mm) Q W Code Report:ICC-ES ESR-3037 U) m J DATE: 7/27/15 OSECTION SCALE: 11 Q„ DRAWN: sm JOB: SHEET Page 22 of 34 Page 24 of id BASE PLATE 5 x 3 ATTACHMENT Anchor Tension;AT2=OTM42 I 2.38 in ;AT2-5341.387 Ib 2 anchors per side ;Atbolt=AT2/2=2670.693 lb Wood: Try 3/8"diameter lag bolts ;Tallow=3D5 lb/in*1.33'5.75 in;, 6"length typical 1.33 Wood factor = 2332.488 lb Use 3/8"daimeter x 5 3/4"embedment lag screws(4 corners) Concrete: Assume 4"thick concrete—use Simpson 3/8"diameter strong bolts 5"concrete—can use 3/8"Titen HD w/3"embedment See attached ACI 31 B Appendix D calc. Project Job no. James G. Pierson, Inc. Residential Guardrail systems Consulting Structural Engineers L"sae usis Oregon and Washington 10/10/2018 610 S.W.Alder,Saito 918 Portland,Oregon 97205 Tcl:(503)226-1286 Fax:(503)226-3130 Caner 6hcor no. Precision Rail of Oregon Page 25 of 48 PICKET RAILING Picket Railing systems use the Series 200 top rail, standard R series posts,and 100 series bottom rail �tfYMaiM�MdWx3 WPM MAI onasm MmA r` "`�smtda&MNM zonina ROM *AM teiNSANNW ..' SSrMj.HKS 44k6.49YDXJ.. . ✓ ROW tWYdN MGVY .1-000s1"4<ri itlattOntate 1N,b'9xlYV.I 4.1.01) POW M.&.:flnXx ♦: ('44'1YkT9MW6N SI WIIM1 i94Kft4V1.$90.T. " 5Ds4'M}m5-S411J 4, KITAWnk4.01)341NI1+0 Whry"#r WWI Check Pickets !I! 5/8" SQUARE PICKET Design Loads-Infili: 50 lbs over 1 sq.ft design load Are„ * 0,115 iftf2 Porknotor . 2.483 In min 2 pickets resist that load so use 25 lb point load for cootrptpjout mood to pert to n) design v •o ;Itllpicket=25 lbs*42 in/4=262.500 lb_in in*vtio with rospootto Statch OJsx rt(in): nortta teiicrtio'4) ;Ixpicket=0.006 inA4 ixx ` 0,006 ii5y • e lyx m 0 ;Sxplcket=lxplcket/0.3125 in=0.019 inA3 Nor Mototta# of atorta ot 0.013 lea Fbplcket=Mpicket/S,gicket=13671.875 psi iWa Isoirior4pf ]rerua wiot mow to Pritopat Awe+( o): tx - e0o iy M Rood Paler of itorOe It 0,013 le'4. Pickets okay for 42" height Rotation mate Rao antioattal Sottatt OrlotnP+srcpot ftlatt0100004160t About s *tie m 0 Rodi of Of ion with roapeet to Principal Axi*(at): RI 0,236 ft2 At 0,236 Project Job no. James G. Pierson, Inc. Residential Guardrail systems Consulting Structural Engineers anon ➢° Oregon and Washington 511/2019 610 S.W.Alder,Suite 918 Portland,Oregon 97205 Tel:(503)226-1286 Fax:(503)226-3130 Chem Shot no. Precision Rail of Oregon Guard Rail Cable Calculations TASK: Determine if proposed guard rail cables met deflection requirements CABLE PROPERTIES: Cable Material: 316 Stainless Steel Cable Construction Type: 1 x 19 Young's Modulus: ;E =16000000 psi Cable Diameter: ;d=0.125 in Cross-Sectional Area: ;A= (rr x d2)/4=0.012 in2 Cable Spacing: ;S=3.125 in Full Cable Length: ;L=50 ft =600.000 in Unsupported Cable Span: ;I=60.00 in FORCES ON CABLE: IBC 2015 1015.4: "Required guards shall not have openings that allow passage of a sphere of 4 inches in diameter from the walking surface to the required guard height." ASCE 7-10 4.5.1: "Intermediate rails(all those excep the handrail or top rail)and panel fillers shall be designed to withstand a horiztonally applied normal load of 50 lb on an aea not to exceed 12in by 12in". Required Force: ;FReq= 50.00 psf Sphere Diameter: ;D=4.00 in Sphere Cirumference: ;C=(rt x D2)/4 =0.087 ft2 Projected Load over Circumference: ;Fproi=FReq x C=4,363 lb Safety Factor. ;FS=2; or use 50 lbs over 4 pages ; ;FMax= 12.5 lb 1 I a 0 d Projtt� tub no. James G. Pierson, Inc. cables Consulting Structural Engineers uk°"°° Ode 10/10l2018 610 S,W.Alder,Suite 918 Portland .5 Oregon 9720 Tel:(503)226-L286 Fax:(503)226-3130 diem Shed no. Page 28 of 48 ANGLED FORCES AND CABLE DEFLECTION: When the 4"sphere is pushed through the cables,they are forced to move both vertically and horizontally,with the vertical displacement governing. The angle of the resultant force is approximately 45 degrees,which will be utilized in the angled force and deflection calculations. Angled Force on Cable: ;FA=J((FMax)2+ (FMax)2)= 17.678 lb Allowable Vertical Deflection: ;aver=(D—S)/2=0.437 in; (governs) Allowable Cable Deflection: ;arvi=d(aver2+aver2)=0.619 in ;per cable 0.82' F 0.44" Fa Deflection equation derivation: T=(FAxI)/(4x a); S=2xa2/I; 5=(TxL)/(ExA)=(FAxI)/(4xa)xL/(ExA); 2xa2/l=(FAxI)/(4xa)xL/(ExA); 8xa3/1=(FA XIxL)/(EXA); 8xa3=(FAxI^2xL)/(ExA); a3=(FA xI^2xL)/(8xExA); a=((FAxI^2xL)/(8xExA))1i3; Deflection due to sphere load: ;as=((FA x 12 x L)/(8 x E x A))t13=2.960 in James G. Pierson, Inc. cables M,. Consulting Structural Engineers L.rc ion Daze 10/10l2018 610 S.W.Alder,Suite 918 Portland Oregon 97205 Tel:(503)226-1286 Fax:(503)226-3130 ClientSheetno. Page 29 of 48 CABLE TENSION FORCE: Deflection due to load is higher than the allowable, so cable is to be pretensioned to be compliant. Tension in cable due to sphere load: ;Ts=(FA x 1)/(4 x as)=89.589 lb Tension in cable at max deflection: ;Ta=Ts x(as/am)=428.571 lb Required pretension: ;Tip =T.—Ts=338.983 lb • Cable is recommended by supplier to be tensioned at 300 lbs/cable which is greater than the required pretension. Thus, cable is compliant with both codes IBC 2015 and IRC 2015. CABLE TENSION FORCE FOR SHORTER SPANS: Unsupported Cable Span: ;1=54.00 in Deflection due to sphere load: ;as= ((FA x 12 x L)/(8 x E x A))113=2.759 in Tension in cable due to sphere load: ;Ts=(FA x 1)1(4 x as)=86.497 lb Tension in cable at max deflection: ;Ta=Ts x(as/am)=385.714 lb Required pretension: ;Tp2 =Ta—Ts=299.217 lb Unsupported Cable Span: ;1=48.00 in Deflection due to sphere load: ;as=((FA x 12 x L)/(8 x E x A))113=2.551 in Tension in cable due to sphere load: ;Ts=(FA x 1)/(4 x as)=83.167 lb Tension in cable at max deflection: ;Ta=Ts x(as/am)= 342.857 lb Required pretension: ;Tp3=Ta—Ts=259.690 lb Unsupported Cable Span: ;I=42.00 in Deflection due to sphere load: ;as=((FA x 12 x L)/(8 x E x A))1/3=2.333 in Tension in cable due to sphere load: ;Ts=(FA x I)/(4 x as)=79.546 lb Tension in cable at max deflection: ;Ta=Ts x(as I am)=300.000 lb Required pretension: ;Tp4= Ta—Ts =220.454 lb Unsupported Cable Span: ;I=36.00 in Deflection due to sphere load: ;as=((FA x 12 x L)/(8 x E x A))113= 2.106 in Tension in cable due to sphere load: ;Ts= (FA x 1)/(4 x as) =75.562 lb Tension in cable at max deflection: ;Ta=Ts x(as/am)=257.143 lb Required pretension: ;Tps=Ta—Ts = 181.581 lb Unsupported Cable Length: Required Pretension: ;60 in ; Tp1 = 338.983 lb ;54 in ;To=299.217 lb ;48 in ;To=259.690 lb ;42 in ;To=220.454 lb ;36 in ; ;Tp5=181.581 lb ; James G. Pierson, Inc. P`°"" Cables Job no. Consulting Structural Engineers °cetion Onto 1 011 0/2 0 1 8 610 S.W.Alder,Suite 918 Portland,Oregon 97205 Tcl:(503)226-1286 Fax:(503)226-3130 China Shoal no. Page 30 of 48 Cable Forces on Posts: s, MAX Eta Eo CONT. TOP RAIL IL REACTION > GABLE FENClON< ... .... . ; GAnkE TENGIIAN.?..,. . OAIX,C TCNWON$ GAME TCNOION< OIALC ItCNWOfA< $1' OA91.0 TEM 1ON< GABLE GAakC TCNeteN{„" I NFILL CAOL£TENSION< CADIX TCNr,ION< 2 3/fr RAMC:c1 e19,‹ POST 11 KLACT ION - PICKET BOTTOM SPACER RAIL ) TYPICAL ELEVATION Cable Tension is resisted by the termination posts and also corners or changes in direction. Top rail acts as a compression member to resist cable tension forces. Bottom rail also acts as a compression member resisting cable tension when present. If there is no bottom rail,the base connection is required to resist the tension forces from cables. Top rail flat inserts(required for astestics) bear directly on face of post so tension forces are resisted by bearing and not just screws. For top rails when no infill is used, rail must be attached to posts with screws desgined to resist tension force. Screw shear: Per Aluminum Design Manual: £4.3 Screw Shear and Searing The shear force on a mow shad not exceed the least o 1) 2 F.,D4t . (ET 5;4.34) Prlob no James G. Pierson, Inc. °"`t Cables re Consulting Structural Engineers l°` °° °a 10/10/2018 610 S.W.Alder,Suite 9I8 Portland,Oregon 97205 Tel.(503)226-1286 Fax_(503)226-3130 Page 31 of 48 2) 2F„,Di2ln. (Eq.5.4.3-2) 3) 4.2(QD)t6 F„21n,,furry s rl (Eq. 5.4.3.3) 4) P„/(1.25 n,) (6q.5,4.3-4) SA.4 Minimum Spacing of Screw% The minimum distance between screw centers shall be 2.5 times the nominal screw diameter.. Minimum;F,a1 =38000 psi;post and rails ;#10 screw;dacrew=0.190 in Post thickness;t =0.10 in ;Vallowlo=2`Ftu.'dacrw,`h/3=481.333 lbs Project Job no. James G. Pierson, Inc. Cables Cora Dan Consulting Structural Engineers 10/1012018 610 S.W.Alder,Senn 91S Portland,Oregon 47205 Tel:(503)226-1286 Fax:(503)226-3130 Chat Shod oo. Page 32 of 48 Posts Cable Systems also use R Series Posts(SAPA part 36430) ;H3s=36 in ; H42=42 in Intermediate posts(not used for cable termination) Residentail Post ;Six = .787 in3 For 36"tall posts, 4.5 ft max spacing ;L6=54 in Per IRC ;M1=200 lbs*Has=7200.000 lb_in For 42"tall posts, 4.5 ft max spacing ;Ls=54 in Per IRC ;M3=200 lbs*H42=8400.000 lb_in Residential—36"height Fb1=Mil Sci=9148.666 psi ; Commercial—42"height ;Fos=Ma/S„1=10673.443 psi ; Allowable; Fb=19487.18 psi ; Post good for either height and bending Termination posts(used for cable termination) also use R Series Posts(SAPA part 36430) ;Sy1 = 0.787 in3 ;Sxx1=0.787 in3 Out of plane loading For 36"tall posts, 4.5 ft max spacing ;L6=54 in Per IRC ;Mi =200 lbs"H36=7200.000 lb_in;at base connection ;Ms=200 lbs*H36/2=3600.000 lb_in ;at mid-height For 42"tall posts, 4.5 ft max spacing ;L5=54 in Per IRC ;M3=200 lbs*H42=8400.000 lb_in;at base connection ;Ms=200 lbs*H42/2=4200.000 lb_in ;at mid-height Residential—36"height ;Fb1=M1/Sxxi=9148.666 psi ;at bottom connection ;Fos=Ms/Sxxi=4574.333 psi ;at midheight Prol ect lob no. James G. Pierson, Inc. Cables Consulting Structural Engineers Date 610 S.W.Alder,Suite 918 Portland,Oregon 97205 10/10/2018 Tel:(503)226-1286 Fax:(503)226-3130 Clicm Sheet no. Page 33 of 48 Commercial—42"height ;Fb3=M3/Sxxt=10673.443 psi ;at bottom connection ;Rs=Ms/Sxxi=5336.722 psi ;at midheight Allowable; Fb = 19487.180 psi Check bending in other direction due to Cable tension bending (in-plane) For 225 lbs tension For 36"tall posts ;M2=926 lb_ft For 42"tall posts ;M4-1287 lb_ft Residential—36"height ;Fb2=M2/Sy1=14.119 ksi ; Commercial—42"height ;Fb4=M4/Syi=19.624 ksi ; Allowable;Fb=19487.180 psi 36"Posts combined Loading(check at midheight): ;Fb5/Fb+ Fb2/Fb=0.959 36"tall Post good for tension created bending plus guardrail forces. 42"Posts combined Loading(checked at midheight): ;F1,6/Fb+ Fb4/Fb= 1.281 42"tall Post not okay for tension created bending plus guardrail forces without bottom rail Project Job no. James G. Pierson, Inc. Cables Consulting Structural Engineers Location Date 10/10/2018 610 S.W.Aida.Suite 918 Penland,Oregon 97205 Tel:(51)3)226-1286 Fax:(503)226-3130 C6:m1 Shod no. Page 34 of 48 Base Plate Attachment — Typ Line Post 5x5x3/8" Plate ;H35=36 in Anchor Tension;AT=Mi/4.375 in;AT= 1645.714 lb 2 anchors per side ;Atbolt=AT/2=822.857 lb Wood: Try 318"diameter lag bolts and assume Douglas Fir ;Team=305 lb/in* 1.6*2.78 in;, 5"long lag,2 25/32"embed 1.6 Cd wood factor ;Taxow= 1356.640 lb Use 3/8"diameter x 5"embedment lag screws(4 corners) Try 3/8"diameter lag bolts and assume Hem Fir PT ;Tallow=269 lb/in* 1.6*3.28 in;, 6"long lag,3 9/32"embed 1.6 Cd wood factor ;Tallow= 1411.712 lb Use 3/8"diameter x 6"embedment lag screws(4 corners) Try 7/16"diameter lag bolts and assume Hem Fir PT ;Tallow=302 lb/in* 1.6*2.22 in;, 4"long lag,2 7/32"embed 1.6 Cd wood factor ;Tallow= 1072.704 lb Use 7/16"diameter x 4"embedment lag screws(4 corners) Try#14 x 5"stainless steel wood screws and assume Hem Fir PT ;Tallow= 146 lb/in* 1.6*5 in;, 5"long screws,5"embed 1.6 Cd wood factor ;Tallow= 1168.000 lb Just works #14-5"wood screws(4 corners) 5x5x3/8" Plate ;H42=42 in Anchor Tension;AT=M3/4.375 in;AT=1920.000 lb 2 anchors per side ;Atbolt=AT/2=960.000 lb Try#14 x 5"stainless steel wod screws and assume Hem Fir PT ;Talow=146 lb/in*1.6'5 in;, 5"long lag,5"embed 1.6 Cd wood factor ;Tallow= 1168.000 lb Use#14 x 5"embedment ss wood screws(4 corners) Project fob no. James G. Pierson, Inc. Cables Consulting Structural Engineers e`a ma ea" 1 D/1 D/2D16 610 S.W.Alder,suite 91S Portland,Oregon 97205 --_ Tel:(503)226-1286 Fax:(503)226-3130 Chew Sand no. Page 35 of 48 BASE PLATE ATTACHMENT - TERMINATION POST 5x5x3/8"Plate Anchor Tension ;AT=M3/4.375 in;AT=1920.000 lb 2 anchors per side ;Atbolt=AT/2=960.000 lb Shear due to 175 lbs in cables ;Vc=5*175 lbs=875.000 lbs Shear due to fall protection;Vr=200 lbs Try#14 x 5"stainless steel wood screws and assume Hem Fir PT ;Tallow=146 lb/in* 1.6*5 in;, 5"long lag, 5"embed 1.6 Cd wood factor ;Taiiow= 1168.000 lb ;Vanow=196 lbs*4•1.6 ; 4 screws total, 1.6 Cd wood factor ; ;Vanow=1254.400 lb No Good Try 3/8"diameter lag bolts and assume Hem Fir PT ;Tallow=269 lb/in* 1.6*3.82 in;, 6"long lag,3 25/32"embed 1.6 Cd wood factor ;Tallow= 1644.128 lb ;Vanow=270 lbs*4*1.6; 4 lags total, 1.6 Cd wood factor ; ;Vanow=1728.090 lb Atbolt/Tallow=0.584 (Ve+Vr)/Vanow=0.622 Use 3/8"diameter x 7"embedment lag screws(4 corners) Try 318"diameter lag bolts and assume Douglas Fir ;Tallow=305 lb/in" 1.6*3.82 in;, 6"long lag,3 25/32"embed 1.6 Cd wood factor ;Tallow= 1864.160 lb ;Vanow=280 lbs*4*1.6; 4 lags total, 1.6 Cd wood factor ; ;Vanow=1792.000 lb Atbolt/Taiiow=0.515 (Vo+Vr)/Valiow=0.600 Use 3/8"diameter x 7"embedment lag screws(4 corners) Prai ect Job no. James G. Pierson, Inc. Cables Consulting Structural Engineers Location Date 10/10/2016 610 S.W.Alder.Suite 910 Portland,Oregon 97205 Tel:(503)226-1286 Fax:(503)226-3130 n"al Shccl no. Page 36 of 48 FASCIA BRACKET CONNECTION - LINE POST 6x4x3/8"Plate Anchor Tension ;AT=M3/4.2 in;AT=2000.000 lb 2 side by side anchors per bracket ;Atbolt=AT/2=1000.000 lb Wood: Try 3/8"diameter lag bolts and assume Douglas Fir ;Tallow=305 lb/in* 1.6*2.78 in;, 5"long lag,2 25/32"embed 1.6 Cd wood factor ;Tallow= 1356.640 lb Use 3/8"diameter x 5"embedment lag screws(4 corners) Try 318"diameter lag bolts and assume Hem Fir PT ;Taoow=269 lb/in* 1.6*3.28 in;, 6"long lag,3 9/32"embed 1.6 Cd wood factor ;Tallow= 1411.712 lb ;Vaaow=270 lbs*4*1.6; 4 lags total, 1.6 Cd wood factor ; ;Vaonw=1728.000 lb Use 3/8"diameter x 6"embedment lag screws(4 corners) Try 7/16"diameter lag bolts and assume Hem Fir PT ;Tallow=302 lb/in* 1.6*2.22 in;, 4"long lag,2 7/32"embed 1.6 Cd wood factor ;Tallow= 1072.704 lb Use 7/16"diameter x 4"embedment lag screws(4 corners) Try#14 x 5"stainless steel wood screws and assume Hem Fir PT ;Tallow= 146 lb/in* 1.6*5 in;, 5"long screws,5"embed 1.6 Cd wood factor ;Tallow= 1168.000 lb Just works #14-5"wood screws(4 corners) Try#14 x 5"stainless steel wood screws and assume Douglas Fir ;Tallow=172 lb/in* 1.6*5 in;, 5"long screws,5"embed 1.6 Cd wood factor ;Tallow= 1376.000 lb Use#14-5"wood screws(4 corners) Projut Job no. James G. Pierson, Inc. Cables Consulting Structural Engineers r°"t"'° Date 10/10/2018 610 S.W.Alder,Suite 918 Portland,Oregon 97205 Tel:(503)226-1286 Fax_(503)226-3130 Chrnt Shed ao. Page 37 of 48 ' FASCIA BRACKET -TERMINATION POST 6x4x3/8"Plate Anchor Tension;AT=M3/4.2 in;AT=2000.000 lb 2 side by side anchors per bracket ;Atbolt=AT/2=1000.000 lb Shear due to 175 lbs tension in cables ;Ve=5"175 lbs=875.000 lbs Shear due to fall protection;Vf=200 lbs Wood: Try 3/8"diameter lag bolts and assume Douglas Fir ;Tallow=305 lb/in* 1.6*2.78 in;, 5"long lag,2 25/32"embed 1.6 Cd wood factor ;Tallow= 1356.640 lb ;Vallow=196 lbs*4*1.6; 4 screws total, 1.6 Cd wood factor ; ;Vanow=1254.400 lb Use 3/8"diameter x 5"embedment lag screws(4 corners) Try 3/8"diameter lag bolts and assume Hem Fir PT ;Talow=269 lb/in* 1.6*3.28 in;, 6"long lag,3 9/32"embed 1.6 Cd wood factor ;Tallow= 1411.712lb ;Vauow=270 lbs*4*1.6; 4 lags total, 1.6 Cd wood factor ; ;Veuow=1728.000 lb Use 3/8"diameter x 6"embedment lag screws(4 corners) Try 7/16"diameter lag bolts and assume Hem Fir PT ;Tallow=302 lb/in* 1.6*2.22 in;, 4"long lag,2 7/32"embed 1.6 Cd wood factor ;Tallow= 1072.704 lb Use 7/16"diameter x 4"embedment lag screws(4 corners) Try#14 x 5"stainless steel wood screws and assume Hem Fir PT ;Tallow=146 lb/in*1.6*5 in;, 5"long screws,5"embed 1.6 Cd wood factor ;Tallow= 1168.000 lb Just works #14-5"wood screws(4 corners) Try#14 x 5"stainless steel wood screws and assume Douglas Fir ;Tallow=172 lb/in* 1.6*5 in ;, 5" long screws,5"embed 1.6 Cd wood factor Tho.,= 1376.000 lb Use#14-5"wood screws(4 corners) Project lob no. James G. Pierson, Inc. Cables Consulting Structural Engineers Lo"`l"a Date 10/10/2018 610 S.W.Alder,Suite YIS Portland,Oregon 97205 Tel:(503)226-1286 Fax:(503)226-3130 Chant Shed no. Page 38 of 48 Cable System Posts , 45- 3 ' rr MAX.POST SPAN Cable Systems also use R Series Posts(SAPA part 36430) WY TOP RAIL ;Has=36 in ;H42=42 in vasionifirasimmilmonnommi Intermediate posts (not used for cable termination) ._.__.. .... ...,e___ III Residentail Post I II ;S.l = .787 ina IIIIIII For 36"tall posts, 6 ft max spacing ;Le=54 in � " III 5; !!llRRIIINIIIIIIIIIIIIIIIIIIIIIIIIIIIIFJIIIIIIIr__IIIIII Per IRC ;Mi=200 lbs H36=7200.000 lb in 4"APNEPoE MOLL amok,mit FORM 51Ax WLAOO$G2EW6 NOT PA58THR0 BOOR For 42"tall posts, 6 ft max spacing ;L5=54 in K7 PEx6 BASF-PLATE) TYPICAL ELEVATION VIEW Per IRC ;M3=200 lbs'H42=8400.000 lb in Residential—36"height SER TOO ;Flat =Mi/Set=9148.666 psi ; TCPSWN 9*rort L iter SSCABLE Mr SI CABLE �Commercial—42"height `roZOOM to g "� 4 T ;F33=M3/Sxt=10673.443 psi ; g i Nomm el,,,,,PR FOR i uoTs:9CAS&ESP� i se 3SYSTEMwan i LL RAIL 00 i RAIL____ & Allowable; Fb= 19487.18 psi; I x' P T \ f t q "SO PTMET wBOTTOM PA/ BorrdA am), o Post good for either height and bending Zg r wzn Selk L g rAqr PSPNERB NWI I w 2 �F NOT PASS T in\ P$SI+ g WVMOOR �� k n�NSR :- Single Corner Post ROCgNRREIX,BiE�'�"•'� ae wA.T weo ''" RSXL6 '50l19ET,,.r �� ATPOST si.cjsNss w?5TIM 4 ' RpNAillt . 1AO SCREWS UST BE �1,1. Xk'kM%Y;CEiMEtl PIxLY fiL1EHODEO l SOW WOODON Check Bending due to cable tension around corners TypICAL SECTION view. TYPICAL SECTION VIEW _. .. ;Sri = .586 in3 tt.Isele.RETEIfEail (WOWOECI) For 180 lbs tension(3'-0"ft max span between cable supports with bottom rail) For 36"tall posts; M2=860 lb_ft ;180 lbs x 9 cables over 3 ft divided by Sin 45 degres x LA2/8 For 42"tall posts ;M4=1225 lb_ft Residential—36"height ;Fb2=M2/Sri=17.611 ksi ; Commercial—42"height ;F34=M4/Siz =25.085 ksi ; Allowable;Fb =19487.180 psi Pr James G. Pierson, Inc. °'«' Cables Job no. Consulting Structural Engineers OC°°° °a te 10/10/201 B 610 S.W.Allier,Suits:918 Portland,Oregon 97205 Tel:(503)226-1286 Fax:(503)226-3130 Class shed.to,. Page 39 of 48 36"Posts combined Loading (check at midheight): ;Fb5/Fb+ Fb2/Fb = 1.138 36"tall single corner post overstressed for combined loading of tension and 200 lb force pulling in. For typical fall(outward force),loads are not additive and post would be okay. Corner post also can share the 200 lb load(or 50 plf)with other posts through the top chords. As such,36"single corner post at 36"tall is okay for 180 lbs of cable tension or less. 42""R"Posts combined Loading(checked at midheight): ;Fb6JFb+ Fb4/Fb = 1.561 42"tall"R"Post not okay for tension created bending plus guardrail forces For 180 lbs tension(3'-0"ft max span between cable supports without bottom rail) For 36"tall posts; M2=954 lb_ft ;180 lbs x 10 cables over 3 ft divided by Sin 45 degres x L^2/8 For 42"tall posts ;M4=1235 lb_ft Residential—36"height ;Fb2=M2/Szi=19.536 ksi ; Commercial—42"height ;Fb4=M4/Siz =25.290 ksi ; Allowable;Fb=19487.180 psi 36"Posts combined Loading(check at midheight): ;Fb5/Fb+ Fb2/Fb= 1.237 36"tall Post not okay for tension created bending plus guardrail forces without bottom rail. 42""R"Posts combined Loading(checked at midheight): ;Fos/Fb+ Fb4/Fb= 1.572 42"tall"R"Post not okay for tension created bending plus guardrail forces Projem Job no. James G. Pierson, Inc. Cables Consulting Structural Engineers [ovation Date 10/10/2018 6l0 S.W.Alder.Suite 918 Portland,Oregon 97205 Tel:(503)226-1286 Fax:(503)226-3130 a&nl Sbccl no. Page 40 of 48 Termination posts (used for cable termination) also use R Series Posts(SAPA part 36430) ;Syi = 0.787 in3 ;Sxxi =0.787 in3 Out of plane loading For 36"tall posts, 6 ft max spacing ;L6=72 in Per IRC ;Mi=200 lbs*H36=7200.000 lb_in;at base connection ;M6=200 lbs*H36/2=3600.000 lb_in ;at mid-height For 42"tall posts, 6 ft max spacing ;L5=72 in Per IRC ;M3=200 lbs*H42=8400.000 lb_in;at base connection ;106=200 lbs*H42/2=4200.000 lb_in ;at mid-height Residential—36"height ;Fbl=Mt/Sxxi=9148.666 psi ;at bottom connection ;Fbs=M6/Sxxi=4574.333 psi ;at midheight Commercial—42"height ;Fb3=M3/Sxxi=10673.443 psi ;at bottom connection ;Fbe=M6/Sxxi=5336.722 psi ;at midheight Allowable;Fb =19487.180 psi Check bending in other direction due to Cable tension bending (in-plane) For 180 lbs tension(3'-0"ft max span between cable supports—with bottom rail) For 36"tall posts;M2=608 lb_ft For 42"tall posts ; M4=866 lb_ft Residential—36"height ;Fb2=M2/Syi=9.271 ksi ; Commercial—42"height ;Fb4=M4/Syt=13.205 ksi ; Allowable;Fb=19487.180 psi 36"Posts combined Loading(check at midheight): ;Fbs/Fb+ Fb2/Fb= 0.710 James G. Pierson, Inc. "°"" Cables ' ob Consulting Structural Engineers Location Detc 10/10/2018 610 S.W.Alder.Suite 918 Portland,Oregon 97205 Tcl:(503)226-1286 Fax:(503)226-3130 CLma Maxi no. Page 41 of 48 36"tall Post good for tension created bending plus guardrail forces. 42"'R"Posts combined Loading(checked at midheight): ;Fos/Fe+ Fe4/Fb =0.951 42"tall Post okay for tension created bending plus guardrail forces with bottom rail For 180 lbs tension(3'-0"ft max span between cable supports—without bottom raill For 36"tall posts;M2=675 lb ft For 42"tall posts ;M4=945 lb_ft Residential—36"height ;Fez=M2/Syt=10.292 ksi ; Commercial—42"height ;Fee=M4/Syl=14.409 ksi ; Allowable;Fb= 19487.180 psi 36"Posts combined Loading(check at midheight): ;Fb5/Fb+ Fo2 I Fb= 0.763 36"tall Post good for tension created bending plus guardrail forces. 42""R"Posts combined Loading(checked at midheight): ;Fos/Fb+ Fo4/Fb= 1.013 42"tall Post okay for tension created bending plus guardrail forces without bottom rail(3 ft max or 180 lbs tension) Project Job no. James G. Pierson, Inc. cables Consulting Structural Engineers Lnr non Dale 1o/1or2o16 6I0 S.W.Alder.Suite 918 Poetlaud,Oregon 97205 Tel:(503)226-1286 Fax:(503)226-3130 CGcn1 813xt no. Page 42 of 48 104444440 Isis 11111004404 TYPICAL ISOMETRIC VIEW Project lob no. James G. Pierson, Inc. Cables ad.Consulting Structural Engineers 1 0/1 012 01 8 610 S.W.Aida,Suite 918 Portland,Oregon 9721)5 Tcl:(503)226-1286 Fax (503)226-3130 Ctiwl gycct no. Page 43 of 48 BASE PLATE ATTACHMENT - TERMINATION POST 5x3x3/8"Plate /, \ Anchor Tension;AT=M3/4.375 in ;AT=1920.000 lb 0 0 2 anchors per side ;Atbolt=AT/2 =960.000 lb 4? • Shear due to 180 lbs in cables ;Vc=5* 180 lbs=900.000 lbs in Shear due to fall protection ;V(=200 lbs 4? , 0 0 Try 3/8"diameter lag bolts and assume Hem Fir PT BASE PLATE ;Tallow=269 lb/in*1.6*3.82 in;, 6"long lag,3 25/32"embed 1.6 Cd wood factor ;Taiinw= 1644.128 lb ;Vauow=270 lbs*4*1.6; 4 lags total, 1.6 Cd wood factor ; ;Vallnw=1728.000 lb Atbolt/Tallow=0.584 (Vc+Vt)/Vallow=0.637 Use 3/8"diameter x 7"embedment lag screws(4 corners) Try 3/8"diameter lag bolts and assume Douglas Fir ;Tallow=305 lb/in*1.6*3.82 in;, 6"long lag,3 25/32"embed 1.6 Cd wood factor ;Tali.= 1864.160 lb ;Vallow=280 lbs*4* 1.6; 4 lags total, 1.6 Cd wood factor ; ;Valk.= 1792.000 lb Atbolt/Tallow=0.515 (VG+Vf)/VBiiow=0.614 Use 3/8"diameter x 7"embedment lag screws(4 corners) Project lob no. James G. Pierson, Inc. Cables Consulting Structural Engineers Location 610 S.W.Alder,Suite 918 Portland,Oregon 97205 1 OM 0/201$ To!:(503)226-1286 Fax:(503)226-3130 Cti vt Shoot no. Page 44 of 48 GLASS RAILING SYSTEMS Guardrails with Glass Infill Task: Check wind loading on balcony rails. To determine maximum wind force, look at railing or post maximum loading and work backwards for maximum wind force. 100 Series Top Rail. ;Shorzioo = 0.228 in3 ;Fb = 19487.179 psi 100 Series Bottom Rail: ; Shorzloob = 0.102 in3 Mmax = Fb * Shorzioo = 4443.077 lb in Mmaxb = Fb * Shorz1oob = 1987.692 lb_in ;L = 5 ft ;(max chosen for glass systems) ;wmax= Mmaxb * 8 / (L2) = 53.005 plf ;hgiass = 39 in ;Wwindmax = 2 *Wmax I hglass = 32.619 psf Check Posts using wind from above ;Mpost = wmax* L * 42 in + Wmax * L * 3 in = 11926.154lb in Post okay— Bottom Rail Properties controls allowable wind pressures on glass system. ��,;eet James G. Pierson Inc. Residential Guardrail systems Canner, Dalc Consulting Structural Engineers Oregon and Washington 8/16/18 610 S.W.Alder,Suite 918 Portland,Oregon 97205 Tel:(503)226-1286 Pax:(503)226-3130 Chem Sheet ne. Precision Rail of Oregon Page 45 of 48 Wind Loading on Balcony Glass ASCE 7-10, Chapter 29: Wind Loads on Other Structures and Building Appurtenances- MWFRS ASCE 7-10, Section 29.4 most closely applies to typical balcony railing as balconies are open on both sides and most similar to the section for solid freestanding walls or signs. If balcony was located less than 3 ft from building, would be looked at as component and cladding forces (Section 29.4.2). If balcony is at roof top, needs to be looked at as parapet which results in higher wind pressures and outside of scope of this analysis. Section 29.4.1 - Solid Free standing signs provides a resonable wind pressure between the two sections (cladding force and parapet force) ,, . `" i��oty` ure. Iias;>ty pressure» �q.. evaku at iheight x shall be calculated by the ftbllowing equation= —_- . 0,00256 K;,Ki.A1 (161ti21' (29.3-1). t _ . SI: � 9� • wind €erect onality factor defined to Nectton 26,6 `(K, vekc .ity,pretisure expo%rue coelti tent dqined in Section . 2�93t t4tpOgraphie.tucltr defittcd $ o.t2 t G.!. .: Vi=basic wind speed from 265 "_l=-tilelt it reraure calm(' "`29 =1 4-1Weight ti ja ` `"� � t 'I'he. numerical toefliei nt 0.(1)256(0.613 in SI)shah be used ,exeept-where su eie d €{ate are avails le t°justify- . . ,50.estitrn of. n s�t`feient v tie. uf; thia faAor or al sign application. I ;Kz= 0.70 ;(30 ft tall, Exposure B) ;Kzt= 1 ;(topo flat) ;Kd = 0.85 ;V3sec = 135 ;mph (Clark County Washington) =Vult ;qh = 0.00256 psf* Kz * Kzt* Kd* V35ec2 = 27.760 psf TABLE R301.2.1.3 WIND SPEED CONVERSIONS° V,5 110 115 120 130 140 150 160 170 180 190 200 85 89 93 101 108 116 124 132 139 147 155 For SE: I mile per hour=0.447 m/s. a. Linear interpolation is permitted. Ponca Job no. James G. Pierson, Inc. Residential Guardrail systems Consulting Structural Engineers Location Date Oregon and Washington 8116/18 610 S.W.Alder,&lac 918 Portland,Oregon 97205 Tel:(503)226-1286 Fax (503)226-3130 cimat Sheet no. Precision Rail of Oregon Page 46 of 48 Wind force on Free Standing Balcony, F = r�t�t 3, 1b t?') I (294-t) where i I d the velocity presaureeevatuated at height h(del ne4 in Fig 29.4-1;) a.5 cteterntined in accordance with Section 293,2 i gligt -factorlfroln Section 26.9 _ H �.. 0 t trams ixefltciit from Fig. 29.44.1... . ._ _ __ =the gross area of the Slid freestanding wall or itteitandin,g solid sign, in ft! (iu) . I ;G = 0.85 ;(Gust-effect from Section 26.9, ASCE 7-10) ;Cf= 1.98 ;(From Figure 29.4-1 Case C - assume B=20 ft, s = 3.25 ft, s/h<.16, Aspect Ratio ;B/s = 6 = 3.3*0.6 =1.98 max for glass at corner of balcony— see next page) ;F = qh * G * C1= 46.721 psf ;(3 sec wind) ;Fasd = F * 0.6 = 28.032 psf ;(ASD wind force with V = 135 mph wind, Exp B) =Vult (Vasd = 105 mph) ;V1203sec= 120 ;mph =Vult (Vasd = 95 mph) ;KZ= 0.94 ;(25 ft tall, Exposure C) ;qh = 0.00266 psf* K7 * Kzt* Kd* V1203seo2 = 29.454 psf ;F = qh * G * Cf= 49.572 psf ;(3 sec wind) ;Fasd = F * 0.6 = 29.743 psf ;(ASD wind force with V = 120 mph wind, Exp C) ;V1153sec = 115 ;mph =Vult (Vasd = 90 mph) ;KZ= 0.98 ;(30 ft tall, Exposure C) ;qh = 0.00256 psf* KZ * I< * Ka* V1153sec2 = 28.202 psf ;F = qh * G * Cf= 47.464 psf ;(3 sec wind) ;Fasd = F * 0.6 =28.478 psf ;(ASD wind force with V = 115 mph wind, Exp C) Pn+jut James G. Pierson, Inc. lob no. Residential Guardrail systems Looniion pnu Consulting Structural Engineers Oregon and Washington 8/16/18 610 S.W.Alder,Suite 918 Portland,Oregon 97205 Tel:(503)226-1286 Fax:(503)226-3130 Cho"t Shea no. Precision Rail of Oregon Page 47 of 48 Design Wind Loads AD Heights . Figure 29.44 I Force Coefficients,C5 Solid Freestanding Walls (1Lhtr sirseteres &Solid Freestanding Signs rsn40a� r ,enettnpnvotein in CA$EA I, . l I 1 I i 'Faa tal 4Ne fi aG (� r{ CASE s ELEVATION VIEW F F I 4 .an x 7 c ,tr tx. *I. JFti.ml[ .xn. xn t tM�"'�r ram' RkWKf aftaa CIAOSESECTION 13tW , PLANWEWS IO CI, S'A&CASES ... e® Y R®niin Aspitnitiolo.1964 2E0,en sCCO a,1 S.2 try 1 2 4 5 10 4n'0 30 z:45 1 1.60 ^ I.T9 ,65 3,55 9.45 #.49 t.15 105 1% i.69 _ 1.39 1,60 09 9,5 a75 CAL., fi,,. ,'> , 1- , $4.,4 , $$« 1.1"i'. 11fl „.,,_ ...1 , a14 :. 0'7 1.00 to 1:,5 z`ail 1.P5 E60 1.60 , 3 55 i. 1.,:}? 1.55 1.5.5 05 i.86 195 1.50 015 1-75 1.70 '1.70 170 1,70 1.70 3_751 1.20 6% 1.95 129 1.55 B_E 4AI 3_S 150 'ate 1.Ei 105 1.25 1.55 PZ 1:95 a:90 1.165 039 ➢, CH 1 E9 l XI i Y'X 195-`,5.500 1. 1.29 10.19 5.95 1,99 155 t,96 9.66 1E9 120 166 l 1.65 16 9.29 1.25 Cr,CASE C Raglan Alegiart *Am- ® _ axmyrca 4 r�... a -3'i l . win*.rn:.. 43 a&4 tm c2910 P. '1 i.,45S �.tr '53 3.55 170 9 75 355 '2820 0 2.49 R;25 s, 4. fib 3510 104 1_19 1.05 1.05 1.05 1.05 100 005 34.a94n 1.50 1.25 4F1204 98 i. rv;.wa2w newest a'ascv�nx a,09.04r•+g Nadi . " " 1� ,,,u,'rsan:s»raa 35 tU 114 9..29 1,10 lame roan it wet . menet,inter* xa _.. WIwwWFtlY+WIswY iYY cam: 1.The um"51052'n+x556'509w 3390 502465 la'0060tssdtn0 458119'. .8469*la norrogr4 9961019 61 099 Part 3904011i te grate tenet ans 49555 59 s..nodnivel Faze+s»flkimtinWr told 04099,10104e060 asA b5 9919E rod4E4451 by Ea ttAttkoari 15914t(l-{t-c1'"i. ..4.To AXYarPar 0015 wortti awl Or atiard draeb"aro,the!uNawtrg penes rho%Fes.trorkeirres FIN otzl" CASE A:SaaasaIwor 809 nerrnE 661 ale loot of Pee '1106441 the.05699 Slits i@r6NS.. CASE 0 reoul990110,96 ap53rarm s la Ia Noe of 11,4v o"at a ilSffirTro Norm So 905r5501({93l5 - 292F,90�lnea s4vrs 35 P:19a P0a41G 0.21i1sss Aso wow*oath lit1199 5tg3.. For Ob.0 i CA0E..C mon Sao 026 o9599994551, CAW C:raN.rlaat aarsaaar3ncsree&to line hand 950 914r.20044 i`na 509065 c 6251600 axeas e60401. Fwr s'h 0 P. Tut 9E64 CAW 4a 519e5a 90960 Pra111L.roleal 9et00.09 i Who 1,0054rIt floors rota 99e 461.5531n Amos 91a 02~12*WIN erdml to 5.55 90589 aha sna!sge 11S1435 Al Oa*In. .Far-CA75E Cxl6rw art 0,0.2,10404 gogellicifra*shot baino0ip5atl 4lira Letiar:SArttn(1.9-slt -.Omar 5SII649355O is 904629000 Ws 92o is or Ad&Basta l.'e 516ar 15ss ISssr 0 wirottail 43001$01 al 6191,Is Net i!tntar5i h',1,4592901 the sir,inpeal 51351,915: s.5:52E921 O uxa KO.In Baal 1155001-, e;raiiu0f 9.401 ss 10 240,95 area; 6'tarttamt:d 5nsn400c' 1.m96 55r in OWl c,'54lss) STANDARDS 7-10 Project Job no. James G. Pierson, Inc. Residential Guardrail systems Consulting Structural Engineers L°rzto-rn °°" Oregon and Washington 8/16/18 610 S.W.Alder,Suns 918 Portland Otegon 97205 Toll(503)226-1286 Fax (503)226-3130 5'1i""r Shee Precision Rail of Oregon i�9age 48 of 48 100 SERIES TOP RAIL 1 35 05 Area = 0.543 in-2 Perimeter 10.285 in Centroid,with respect to Sketch Origin(in) X = 0 Y = 1.159 Inertia with respect to Sketch Origin(in): Inertia Tensor(In'"4) lxx - 0.93 Ixy - 0 lyx 0 lyy - 0.228 Polar Moment of Inertia = 1.159 in-4 Area Moments of Inertia with respect to Principal Axes(in'4): Ix = 0.201 ly = 0.228 Polar Moment of Inertia = 0.429 in-4 Rotation Angle from projected Sketch Origin to Principal Axea(degrees): About z axis = 0 Radii of Gyration with respect to Principal Axes(in): R1 — 0.608 R2 = 0.648 y, 9 "'666 SECTION PROPERTIES 200 SERIES TOP RAIL 25878 FOR ALL VALUES REFER TO THE FOLLOWING UNITS : LENGTH = 1 INCHES ANGLE = 1 DEG FACE 1: NUMBER OF HOLES noh = 0 DENSITY rho = 1 PERIMETER LENGTH P = 21.83004309500135 AREA A - 0.839214186843193 CENTER OF AREA = CENTER OF MASS (Cx,Cy) = (34.249999896726,-3.98150095300674) PRINCIPAL AXES THROUGH THE CENTER OF AREA (DIRECTIONS) u = (1,0) v = (0,1) SECOND MOMENTS OF AREA (ABOUT PRINCIPAL AXES) Icu = 0.249355106313525 Icy = 1.44208299061069 SECOND MOMENTS OF AREA (ABOUT COORDINATE SYSTEM AXES) Ix = 13.5528719858305 ly = 985.892769222497 PRODUCT OF SECOND MOMENT OF AREA (ABOUT COORDINATE SYSTEM AXES) Ixy = 114.440623556893 MOMENTS OF INERTIA (ABOUT PRINCIPAL AXES) Jcu = 0.249355106313525 Jcv — 1.44208299061059 MOMENTS OF INERTIA (ABOUT COORDINATE SYSTEM AXES) Jx = 13.5528719858305 Jy = 985.892769222497 PRODUCT OF MOMENT OF INERTIA (ABOUT COORDINATE SYSTEM AXES) Jxy = 114.440623555693 SECTION MODULI ABOUT PRINCIPAL AXES Zcu = 0.207952954058004 Zcv = 0.824047155759991 DISTANCE FROM NEUTRAL AXIS u TO EXTREME FIBER Du = 1.19909384044611 DISTANCE FROM NEUTRAL AXIS v TO EXTREME FIBER Dv = 1.75000056796592 RADII OF GYRATION WITH RESPECT TO THE CENTER OF AREA Rcu = 0.545095660465914 `+^ Rcv = 1.31086726595215 ANGLE BETWEEN COORDINATE SYSTEM AND PRINCIPLE AXES phi = 0 111) 111 �t M SECTION PROPERTIES 375 SERIES TOP RAIL 31836 Area = 0.735 in-2 Perimeter = 10.799 in Centroid,with respect to Sketch Origin(in) X = Y = 1.382 Inertia with respect to Sketch Origin(in): Inertia Tensor(In"4) lxx = 1.787 Ixy = 0 lyx = 0 lyy = 0.295 Polar Moment of Inertio = 2.082 in-4 Area Moments of Inertia with respect to Principal Axes(in"'4): Ix = 0.382 ly = 0.295 Polar Moment of Inertia = 0.677 in-s4 Rotation Angle from projected Sketch Origin to Principal Axes(degrees): About z axis = 0 Radii of Gyration with respect to Principal Axes(in): R 1 = 0.721 R2 = 0.634 R e SECTION PROPERTIES 999 SERIES TOP RAIL 2981 1 JSr`4i Area = 0.845 inA2 Perimeter = 19.708 in Centroid,with respect to Sketch Origin(in) X = 0.001 Y = 1.23 Inertia with respect to Sketch Orlgin(in): Inertia Tensor(in-4) Ixx = 1.508 Ixy = 0 Iyx = 0 Iyy = 1.3 Polar Moment of Inertia = 2.808 in-4 Area Moments of Inertia with respect to Principal Axes(in-4): Ix = 0.228 ly = 1.3 Polar Moment of Inertia = 1.528 in'4 Rotation Angle from projected Sketch Origin to Principal Axes(degrees): About z axis = —0.01 Radii of Gyration with respect to Principal Axes(in): RI = 0.52 R2 = 1.24 SECTION PROPERTIES • 5/8" SQUARE PICKET 38038 Area = 0.115 in-2 Perimeter = 2.483 in Centroid,with respect to Sketch Origin(in) X = 0 Y = 0 Inertia with respect to Sketch Origin(in): Inertia Tensor(ln"4) lxx = 0.006 Ixy = 0 lyx = 0 lyy = 0.006 Polar Moment of Inertia = 0.013 in-4 Area Moments of Inertia with respect to Principal Axes(in-4): lx = 0.006 ly - 0.006 Polar Moment of Inertia = 0.013 in-4 Rotation Angle from projected Sketch Origin to Principal Axes(degrees): About z axis = 0 Radii of Gyration with respect to Principal Axes(in): R1 — 0.236 R2 = 0.236 R � SECTION PROPERTIES 1 .5 X .626 X .061 SQ TUBE 18520 Area = 0.247 in'-'2 Perimeter = 4.199 in Centroid,with respect to Sketch Origin(in) X = 0 Y = 0 Inertia with respect to Sketch 0rigin(in): Inertia Tensor(in"4) lxx = 0.016 Ixy = 0 lyx = 0 lyy = 0.067 Polar Moment of Inertia = 0.063 in-4 Area Moments of Inertia with respect to Principal Axes(in-4): Ix = 0.016 ly = 0.067 Polar Moment of Inertia - 0.003 in-4 Rotation Angle from projected Sketch Origin to Principal Axes(degrees): About z axis = 0 Radii of Gyration with respect to Principal Axee(in): R1 = 0.255 R2 - 0.522 SECTION PROPERTIES 100 SERIES BOTTOM RAIL 1350 /1 Area = 0.334 in-2 Perimeter = 11.023 in Centroid,with respect to Sketch Origin(in) X = 0 Y = 1.022 Inertia with respect to Sketch Origin(in): Inertia Tensor(In-4) lxx = 0.453 lxy = 0 lyx = 0 lyy = 0.048 Polar Moment of Inertia = 0.501 in-4 Area Moments of Inertia with respect to Principal Axes(in-4): lx = 0.104 ly = 0.048 Polar Moment of Inertia = 0.152 in-4 Rotation Angle from projected Sketch Origin to Principal Axes(degrees): About z axis = 0 Radii of Gyration with respect to Principal Axes(in): R1 — 0.558 R2 = 0.379 s • 4 11) 1110/ ) SECTION PROPERTIES 100 SERIES RAIL CONNECTION BLOCK 1 353 6 Area = 0.225 in-2 Perimeter = 5.393 in Centroid,with respect to Sketch Origin(in) X = 0 Y = 0.628 Inertia with respect to Sketch Origin(in): Inertia Tensor(In-4) lxx = 0.104 Ixy = 0 Iyx = 0 Iyy = 0.015 Polar Moment of Inertia = D.119 in-'4 Area Moments of Inertia with respect to Principal Axes(in-4): lx = 0.015 ly = 0.015 Polar Moment of Inertia = 0.03 in-4 Rotation Angle from projected Sketch Origin to Principal Axes(degrees): About z axis = D Radii of Gyration with respect to Principal Axes(in): R1 — 0.259 R2 = 0.258 r } SECTION PROPERTIES 100 SERIES SPACER 135C8 Arca = 0.063 in-2 Perimeter = 2.593 in Centroid,with respect to Sketch Origin(in) X = 0 Y = 0.144 Inertia with respect to Sketch Origin(in): Inertia Tensor(In-4) lxx = 0.001 Ixy = 0 lyx = 0 lyy = 0.007 Polor Moment of Inertia = 0.009 in-4 Area Moments of Inertia with respect to Principal Axes(in-4): Ix = 0 ly = 0.007 Polar Moment of Inertia = 0.007 in-4 Rotation Angle from projected Sketch Origin to Principal Axes(degrees): About z axis = 0 Radii of Gyration with respect to Principal Axes(in): R1 - 0.049 R2 = 0.34 (' 10 II9 )'' SECTION PROPERTIES 200 SERIES TTL POCKET INFILL 1 35 42 ALL VALUES REFER TO THE FOLLOWING UNITS : LENGTH — 1 INCHES ANGLE = 1 DEG FACE 1: NUMBER OF HOLES noh = 0 DENSITY rho = 1 PERIMETER LENGTH P = 11.2587646743856 AREA A = 0.341181588997096 CENTER OF AREA = CENTER OF MASS (Cx,Cy) - (64.2500000000039,7.85014561499757) PRINCIPAL AXES THROUGH THE CENTER OF AREA (DIRECTIONS) u = (1,0) v - (0,1) SECOND MOMENTS OF AREA (ABOUT PRINCIPAL AXES) Icu = 0.027928021932406 Icy = 0.1 622405451 711 82 SECOND MOMENTS OF AREA (ABOUT COORDINATE SYSTEM AXES) Ix = 21.0531692587977 ly = 1408.58108121342 PRODUCT OF SECOND MOMENT OF AREA (ABOUT COORDINATE STSIUM AXES) Ixy = 172.082381107409 MOMENTS OF INERTIA (ABOUT PRINCIPAL AXES) Jcu = 0.027928021932406 Jcv = 0.162240545171182 MOMENTS OF INERTIA (ABOUT COORDINATE SYSTEM AXES) Jx - 21.0531692587977 Jy - 1408.58108121342 PRODUCT OF MOMENT OF INERTIA (ABOUT COORDINATE SYSTEM AXES) Jxy = 172.082381107409 SECTION MODULI ABOUT PRINCIPAL AXES Zcu = 0.0415388534922942 Zcv — 0.129533363654258 DISTANCE FROM NEUTRAL AXIS u TO EXTREME FIBER Du = 0.67233492464078 DISTANCE FROM NEUTRAL AXIS v TO EXTREME FIBER Dv = 1.25250005553954 RADII OF GYRATION WITH RESPECT TO THE CENTER OF AREA Rcu = 0.286106223173912 Rcv = 0.689583589080575 ",. •- ANGLE BETWEEN COORDINATE Sib IEM AND PRINCIPLE AXES phi = 0 4 iii) votar 1 \wirf SECTION PROPERTIES 200 SERIES FLAT INFILL 1 6567 Area = 0.212 in"2 Perimeter = 6.171 in Centroid.with respect to Sketch Origin(in) X = —0.002 Y = 0.062 Inertia with respect to Sketch Origin(in): Inertia Tensor(in"4) lxx — 0.002 Ixy = -0 lyx = —0 lyy = 0.14 Polar Moment of Inertia = 0.142 in-4 Area Moments of Inertia with respect to Principal Axes(in4): Ix = 0.001 ly = 0.14 Polar Moment of Inertia - 0.141 in-4 Rotation Angle from projected Sketch Origin to Principal Axes(degrees): About z axis = —0.01 Radii of Gyration with respect to Principal Axes(in): R1 = 0.068 R2 = 0.813 * 10 110) y SECTION PROPERTIES 200 SERIES RAIL CONNECTION BLOCK 20362 ALL VALUES REFER TO THE FOLLOWING UNITS LENGTH = 1 INCHES ANGLE = 1 DEG FACE 1: NUMBER OF HOLES noh = 0 DENSITY rho = 1 PERIMETER LENGTH P = 5.83357030945167 AREA A = 0.492669077517924 CENTER OF AREA = CENTER OF MASS (Cx,Cy) = (44.2503813854549,-4.24059403183032) PRINCIPAL AXES THROUGH THE CENTER OF AREA (DIRECTIONS) u = (0.999999775037326,-0.000670754707921189) v = (0.000670764707921189,0.999999775037328) SECOND MOMENTS OF AREA (ABOUT PRINCIPAL AXES) Icu = 0.0169318869651197 Icy = 0.0440209708151259 SECOND MOMENTS OF AREA (ABOUT COORDINATE SYSTEM AXES) Ix = 8.87642144723497 ly = 964.737495496318 PRODUCT OF SECOND MOMENT OF AREA (ABOUT COORDINATE SYSTEM AXES) Ixy = 92.44.8337542733 MOMENTS OF INERTIA (ABOUT PRINCIPAL AXES) Jcu = 0.0169318859551197 Jcv 0.0440209708151259 MOMENTS OF INERTIA (ABOUT COORDINATE SYSTEM AXES) Jx = 8.87642144723497 Jy = 964.737495496318 PRODUCT OF MOMENT OF INERTIA (ABOUT COORDINATE SYSTEM AXES) Jxy = 92.448337542733 SECTION MODULI ABOUT PRINCIPAL AXES Zcu = 0.0470494584051218 Zcv = 0.0776725898297682 DISTANCE FROM NEUTRAL AXIS u TO EXTREME FIBER Du = 0.359874216177513 DISTANCE FROM NEUTRAL AXIS v TO EXTREME FIBER Dv = 0.566750393048626 RADII OF GYRATION WITH RESPECT TO THE CENTER OF AREA Rcu = 0.185385186410798 Rev = 0.29891806051608 ANGLE BETWEEN COORDINATE SYSTEM AND PRINCIPLE AXES > f phi = —0.0384319896921306 • IS) SECTION PROPERTIES 200 SER ES SPACER 21 899 Area - 0.067 in-2 Perimeter = 3.051 in Centroid,with respect to Sketch Origin(in) x - 0 Y = 0.296 Inertia with respect to Sketch Origin(in): Inertia Tensor(in-4) lxx = 0.007 Ixy = 0 lyx = 0 Iyy = 0.004 Polar Moment of Inertia = 0.011 in-4 Area Moments of Inertia with respect to Principal Axes(in"4): lx = 0.001 ly = 0.004 Polar Moment of Inertia = 0.005 in-4 Rotation Angle from projected Sketch Origin to Principal Axes(degrees): About z axis = 0 Radii of Gyration with respect to Principal Axes(in): R1 = 0.131 R2 = 0.253 4110A1111' SECTION PROPERTIES TOP RAIL SPLICE 25877 ALL VALUES REFER TO THE FOLLOWING UNITS : LENGTH = 1 INCHES ANGLE = 1 DEG FACE 1: NUMBER OF HOLES noh - 0 DENSITY rho = 1 PERIMETER LENGTH P = 8.01986774370539 AREA A = 0.35495343150397 CENTER OF AREA = CENTER OF MASS (Cx,Cy) _ (74.2500000000071,7.78991414945611) PRINCIPAL AXES THROUGH THE CENTER OF AREA (DIRECTIONS) u = (1,0) v = (0,1) SECOND MOMENTS OF AREA (ABOUT PRINCIPAL AXES) Icu = 0.0369426091703374 Icv = 0.182534005108261 SECOND MOMENTS OF AREA (ABOUT COORDINATE SYSTEM AXES) Ix = 21.576497376031 ly = 1957.06298647634 PRODUCT OF SECOND MOMENT OF AREA (ABOUT COORDINATE SYSTEM AXES) Ixy = 205.305464316475 MOMENTS OF INERTIA (ABOUT PRINCIPAL AXES) Jcu = 0.0369428091703374 Jcv = 0.182534.00510B261 MOMENTS OF INERTIA (ABOUT COORDINATE SYSTEM AXES) Jx = 21.576497376031 Jy = 1957.06298647634 PRODUCT OF MOMENT OF INERTIA (ABOUT COORDINATE SYSTEM AXES) Jxy — 205.305464316475 SECTION MODULI ABOUT PRINCIPAL AXES -- - -- Zeu = 0.0793596121687647 Zcv = 0.149007347701932 DISTANCE FROM NEUTRAL AXIS u TO EXTREME FIBER Du = 0.465508942908843 DISTANCE FROM NEUTRAL AXIS v TO EXTREME FIBER Dv = 1.22500002800798 v e RADII OF GYRATION WITH RESPECT TO THE CENTER OF AREA Rcu = 0.322610199080666 Rcv = 0.717110698926506 # ANGLE BETWEEN COORDINATE Sib ILIA AND PRINCIPLE AXES $.4 11) phi = 0 ja SECTION PROPERTIES 200 (HD) SERIES BOTTOM RAIL 33565 F ALL VALUES REFER TO THE FOLLOWING UNITS : LENGTH = 1 INCHES ANGLE = 1 DEG FACE 1: NUMBER OF HOLES noh = 0 DENSITY rho = 1 PERIMETER LENGTH P - 11.4472015265798 AREA A = 0.597880406581454 CENTER OF AREA = CENTER OF MASS (Cx,Cy) _ (24.2499999927758,-4.25496508481869) PRINCIPAL AXES THROUGH THE CENTER OF AREA (DIRECTIONS) u — (1,0) v - (0,1) SECOND MOMENTS OF AREA (ABOUT PRINCIPAL AXES) Icu = 0.14292768017901 Icy = 0.197799982540076 SECOND MOMENTS OF AREA (ABOUT COORDINATE ST LM AXES) Ix — 10.9673897419505 ly — 351.788846368364 PRODUCT OF SECOND MOMENT OF AREA (ABOUT COORDINATE SYSTEM AXES) Ixy = 61.6910361660611 MOMENTS OF INERTIA (ABOUT PRINCIPAL AXES) Jcu = 0.14292768017901 Jcv = 0.197799982540076 MOMENTS OF INERTIA (ABOUT COORDINATE SYSTEM AXES) Jx = 10.9673897419505 Jy = 351.788846368364 PRODUCT OF MOMENT OF INERTIA (ABOUT COORDINATE SYSTEM AXES) Jxy = 61.6910361660611 SECTION MODULI ABOUT PRINCIPAL AXES Zcu = 0.144717882551987 Zcv = 0.282571389409032 DISTANCE FROM FROM NEUTRAL AXIS u TO EXTREME FIBER Du — 0.987629708634424 DISTANCE FROM NEUTRAL AXIS v TO EXTREME FIBER Dv = 0.700000035225623 RADII OF GYRATION WITH RESPECT TO THE CENTER OF AREA Rcu = 0.488934870363719 Rcv = 0.575182897002279 'x ANGLE BETWEEN COORDINATE STaItM AND PRINCIPLE AXES ,. phi = 0 SECTION PROPERTIES FASCIA MOUNT BRACKET 35L56 Area = 3.414 in-2 Perimeter - 21.975 in Centroid,with respect to Sketch Origin(in) x = —o Y = 1.5 Inertia with respect to Sketch Origin(in): Inertia Tensor(inr4) lxx = 13.504 Ixy = —0 lyx = —0 lyy = 7.204 Polar Moment of Inertia = 20.708 in-4 Area Moments of Inertia with respect to Principal Axes(in"4): Ix = 5.825 ly = 7.204 Polar Moment of Inertia = 13.03 in-4 Rotation Angle from projected Sketch Origin to Principal Axee(degreee): About z oxis = 0.01 '. - Radii of Gyration with respect to Principal Axes(in): 'e R1 = 1.306 R2 = 1.453 1116 ` I a SECTION PROPERTIES FASCIA MOUNT BRACKET-INSIDE CORNER 35757 Area = 3.412 in-2 Perimeter = 21.974 in Centroid,with respect to Sketch 0rigin(in) X = 2.362 Y = 2.364 Inertia with respect to Sketch Origin(in): Inertia Tensor(in-4) lxx = 27.07 Ixy = 13.295 lyx = 13.295 lyy = 27.049 Polar Moment of Inertia = 54.118 in-4 Area Moments of Inertia with respect to Principal Axes(in-4): Ix = 13.765 ly = 2.245 Polar Moment of Inertia = 16.01 in-4 Rotation Angle from projected Sketch Origin to Principal Axes(degrees): About z axis = 45 11)Radii of Gyration with respect to Principal Axes(in): w R2 = 0.811 e` y' SECTION PROPERTIES FASCIA MOUNT BRACKET-OUTSIDE CORNER 3593C Area = 4.46 in^2 Perimeter = 23.145 in Centroid,with respect to Sketch Origin(in) X = 0 Y = 1.449 Inertia with respect to Sketch 0rigin(in): Inertia Tensor(in"4) lxx = 27.181 Ixy = 0.003 lye = 0.003 lyy = 4.287 Polar Moment of Inertia = 31.469 in-4 Area Moments of Inertia with respect to Principal Axes(in-4): Ix = 17.817 ly = 4.287 Polar Moment of Inertia = 22.104 in-4 Rotation Angle from projected Sketch Origin to Principal Axes(degrees): About z axis = —0.01 Radii of Gyration with respect to Principal Axes(in): R1 = 1.999 R2 = 0.98 tv`■ *�a ✓ w w SECTION PROPERTIES , RESIDENTIAL 135° POST 3 6 / 29 Area = 1.412 in-2 Perimeter = 11.182 in Centroid,with respect to Sketch Origin(in) X = 15.142 Y = 11.415 Inertia with respect to Sketch 0rigin(In): Inertia Tensor(in"4) lxx = 185.267 by = 244.026 lyx = 244.026 lyy = 325.616 Polar Moment of Inertia = 510.883 inf4 Area Moments of Inertia with respect to Principal Axes(in"4): Ix = 1.308 ly = 1.91 Polar Moment of Inertia = 3.218 in-4 Rotation Angle from projected Sketch Origin to Principal Axes(degrees): About z axis = 0 Radii of Gyration with respect to Principal Axes(in): R1 = 0.963 R2 = 1.163 'T SECTION PROPERTIES SERIES 120 RESIDENTIAL POST 36430 ALL VALUES REFER TO THE FOLLOWING UNITS : LENGTH - 1 INCHES ANGLE = 1 DEG FACE 1: NUMBER OF HOLES noh = 1 DENSITY rho = 1 PERIMETER LENGTH P = 9.33986273653319 AREA A = 1.10266445374452 CENTER OF AREA — CENTER OF MASS (Cx,Cy) _ (14.2500000000019,7.74440523454926) PRINCIPAL AXES THROUGH THE CENTER OF AREA (DIRECTIONS) u = (1,0) v = (0,1) SECOND MOMENTS OF AREA (ABOUT PRINCIPAL AXES) Icu - 0.934743622381297 Icy - 0.934743622381403 SECOND MOMENTS OF AREA (ABOUT COORDINATE SYSTEM AXES) Ix = 67.0679400810151 ly = 224.84454426094 PRODUCT OF SECOND MOMENT OF AREA (ABOUT COORDINATE SYSTEM AXES) Ixy = 121.687595237326 MOMENTS OF INERTIA (ABOUT PRINCIPAL AXES) Jcu = 0.934743622381297 Jcv = 0.934743622381403 MOMENTS OF INERTIA (ABOUT COORDINATE SYSTEM AXES) Jx = 67.0679400810151 Jy = 224.84454426094 PRODUCT OF MOMENT OF INERTIA (ABOUT COORDINATE SYSTEM AXES) Jxy = 121.687595237326 SECTION MODULI ABOUT PRINCIPAL AXES Zcu = 0.786820977503882 Zcv = 0.786820977503185 DISTANCE FROM NEUTRAL AXIS u TO EXTREME FIBER Du = 1.18800038268767 Y. DISTANCE FROM NEUTRAL AXIS v TO EXTREME FIBER Dv = 1.18800038268885 , 7+# RADII OF GYRATION WITH RESPECT TO THE CENTER OF AREA Rcu = 0.920713620850259 • t Rcv = 0.920713620850311 ANGLE BETWEEN COORDINATE SYSTEM AND PRINCIPLE AXES ... phi = 0 it SECTION PROPERTIES • 2015 INTERNATIONAL RESIDENTIAL CODES R301.5 Live load. The minimum uniformly distributed live load shall be as provided in Table R301.5. TABLE R301.5 MINIMUM UNIFORMLY DISTRIBUTED LIVE LOADS(In pounds per square foot) USE LIVE LOAD Unhands' stsrageb tinethabitable attics with Ranted storageb t 20 Hatable attics and attics served with fixed stairs 30 Fire escapes 40 Guards and htandratis"` 200s Guard in4lil cam:.rentat Soh a 1 Rooms other than sleeping rooms 40 Steeping rooms 30 Stairs For St: 1 pound per square foot=0.0479 kPa, I square inch=645 mm2, 1 pound=4.45 fa. e, Elevated garage floors shall be capable of supporting a 2,000-pound load applied over a 2.0-square4nch area. b. uninhabitable ethos without storage are those where the clear between joists and rafters is not more than 42 inches,or where there are not two or mote adjacent trusses with web configurations capable of accommodating an assumed rectangle 42 inches in height by 24 loches at width. or greater, within the plane of the trusses. This live load need not be assumed to act concurrently with my other live load re sairements. c. tntgvidual stair treads shall be designed for the uniformly distributed live load or a 300-pound concentrated load acting over an area of 4 square inches, whichever produces the greater er stressesy.,4Fy� y �gv raj d ' 4 .3 1i T" �Sha eF'j _ � r L e. Seems" or cos a ached to ex# rwails Wit^'.. 4i Unfrhabitable attics with limited storage are those where the clear height between jests and rafters is not greater than 42- s„or where there are two or more ar4acent trusses with web configurations capable of accommodating an mined recta 42 inches in height by 24 Inches in width,o greeter within the plane of the trusses, The live load Steyr only be applied to those portions of the joists or truss bottom chords where of the wing conditions are met 1.. The attic arse is accesserle from an opening not less than 20 incises in Micah hay 30 inches in that is located where the clear heirja in the attic Is not lessthan 30 trichwe, 2,The slopes of the joists or truss bottom chords are not greeter than 2 inches vertical to 12 units horizontal. 3. Required iristiation depth is less than the joist or truss harboat chord member depth. The remaining portions of the joists or truss bottom chords shall be designed for a uniformly distributed concurrent Eve toad of not less than 10 pounds per stpaare toot "p s g� i r�� ,` .Ei . .,.lormsvted uit€t a 4 =rr' t sf ter c tl e xa It q u„ Project Job no. James G. Pierson, Inc. Residential Guardrail systems Location Date Consulting Structural Engineers Oregon and Washington 10/31/2017 610 S.W.Abler,Suite 918 Portlan.l,Oregon 97205 Tel:(503)226-1286 Fax:(503)226-3130 t i nrO Sheet no. Precision Rail of Oregon 2015 INTERNATIONAL BUILDING CODE® 310.1 Residential Group R. Residential Group R includes, among others, the use of a budding or z tenor a portion thereof, for sleeping purposes when not classified as an Institutional Group I , fi ; � I' 0 International Residential Code. The following terms are defined in Chapter 2: BOARDING HOUSE. CONGREGATE LIVING FACILITIES, DORMITORY. GROUP HOME. GUEST ROOM. LODGING HOUSE. PERSONAL CARE SERVICE. TRANSIENTT, Project Job nog James G. Pierson, Inc. Residential Guardrail systems Consulting Structural Engineers "Do Oregon and Washington 10/31/2017 610 S.W.Alder,Suit:918 PnNand,Oregon 97205 Tel:(S03)226-1256 Fax:(503)226-3130 r'i"" aTea no. Precision Rail of Oregon 2015 INTERNATIONAL BUILDING CODE® 16 . `ds,grab bars, seats and vehicle barriers. Handrails, guards,grab bars,accessible seats, accessible benches and vehicle barriers shag be designed and constructed for the structural loading conditions set forth in this section. 1607.8.1 Handrails and guards. Handrails and guards shall be designed to resist a linear t��� .t €)(0,73 kN/m)In acoefdance' ,Section 4.5-1 of ASCE 7. Glass handrail assemblies and guards shall also comply with Section 2407. Exceptions; ap , .' m_ 2. In Group 1-3, i~, H and S occupancles,for areas that are not accessible to the general public and that have an occupant load less than 50,the minimum load shall be 20 pounds per foot(0.29 kN/m). 4040k IUbe't �¥sl rout ( . ''S r design ises �[ , a cg � 43 i- 18 R 9 L�Ts i,.s" - .pa x51�4+ *='a&-$�"§be r , ' pounds,tl , ). ro 00 ,at w v1 i �iJ 1607.8.2 Grab bars,shower seats and dressing room bench seats. Grab bars, shower seats and dressing room bench seats shall be designed to resist a single concentrated load of 250 pounds(1.11 kN)applied in any direction at any point on the grab bar or seat so as to produce the maximum load effects. 1607.8.3 Vehicle barriers. Vehicle barriers for passenger vehicles shall be designed to resist a concentrated load of 6,000 pounds(26.70 kN)in accordance with Section 4.5.3 of ASCE 7. Garages mmodating trucks and buses shall be designed in accordance with an approved method that contains provisions for traffic railings. Project Job no. James G. Pierson, Inc. Residential Guardrail systems Location Dale Consulting Structural Engineers Oregon and Washington 10/31/2017 610 S.W.Alder,Sulfa HIS Penland,Oregon 97205 Tel:(503)226-1286 Fax:(503)226-3130 Clem Sheet no. Precision Rail of Oregon