Loading...
Plans s 1 _ Y dy \ __ _ - - - - RELOCATE 6 EG 202 8 / }- -I" � _ - _ - -' / \�� `� \ �_� y ---_ lL`��^ _-..�! PORTION OF Ld _-"�.- _ _-- _ /� -� /' \ - �\ EX TEMP .C` -A_. - TW 198.d8 1-\ ---____-- - _FS 7??- I EG 200.9 -_ / l _ T_EG 199.8 �EG20.9 EG 201.6 _EG 202.B �G2022 -PRK LT CONDUIT CW 194.82) `-� '� ,q �' / `1 \T� \ \`=s �� \ _ EX GAS LINE CONST ESMT } i9_�_ _ EX SLOPE ESMT- - �\.')- - - FS 77? - - ETM,20828� / ' p / LIMITS OF GRADING i'`� `- TW 19563 TW W 19406 T4 19C95 -TW 197.91 •; �\ T TOBE RELOCATED .. CW 196.95 .�CW 1• .19 - - �L FS 19374 _ W�195' .J �'`- �\ \- y - O (.. _ `� _CW 19101 __EG 202.2_ - ---- �_''_ _ EG 202.9_- CW195.46 EG 2D,.3_'_' EG 199.3 EG 19].5 �' / l' 1 1 ,-c `_• - II C_W 1953]. 1--" ---- r v - TNCW,94.98 EG 195J � --_\ �� _ t \ _�-- CW - _ �EG2035 - - - _ .�d� I 'O L I `1 Arl \- __ - CW194.20 `._ TW19B 24 TM',m81 11/4 TW 1986r�- - T....-,A; W 197.10 - I _ _ PROPERTY 1\1. /L-` •Fi EG 195 a„ o_ - ` - 1 --CW 195.81 W195,8 GW 194.9] - _- LINE _ - Iiiigi WNW \G t EG1670_1- �_.� 4 ,• �� �:���_ ,.�,r __-`3 - -- - /f tti - .•T_ _ _ I �L�1�"' •��rr..+++r��_a�� -E �. ..r s��+.r _ G •"' ,�-H=e --ti - \ - - 104 _ yea �� /� \ - ..__. TW=W 174.63 _ - ! _ == W1� L. % l3 V lV 7- TOI I V IF _'1 T175J1 I _}1I fr lC'7401/1TW .O4-1 ` '7 .66 CW1,72. TW 17447, ITr1 �.5� TC13.'1 CWr 176.T/,� �- TW 173.12c- \_I i TC 175. 1 TC 174.37 TW 174.69 CW 173.58 CW 17260' TW 174.39 TW 179.68 /11'11W,74.08CW 773.16 TC 172.77 CW 172.fi6 CW 11261 W,73.54 TC 1]2.47 CW172.39TC 17330 TC^ 2130 `TC 1]2.31 173.43 PC 172.57 TC 174.20 ETC 172.30 I '�/j1 III III I I 0 m . PROPERTYLINE TC 173.91 �� C17285 ^ $ 1 1 1 1 1 1 1 1 I MI Q I I L I I I __ __ _ O o' --\/ I I IIli I y �- \J U I I III JIIIIIIIIII 0 SCALE IN EE N \ 1�i\ I SLOPE 212 212 212 ESMT I 212 SLOPE !L ESMT 11111 ..._ 208 SLOPE 208 208 1• __-_.... --_-_..- 208 208 IIIIq 1, 208 208 I F.CONDUlT __M ...- EC EIVED 204 _ griNG ESF1T -4 Ezlsrlrvc - ___..._. 204 204 Y minEXIBTKNI_ 204 _� _I,.... I or.ouuo - 204 - rP0 ISTING { �_ 2� 2� �j GROUND 200 - _GROUND 200 200 -■ 200 200 _.. 200 �(� pJ E s �M_N K�.:r - MN= EXISI ING -r _ `\ •raa .._ ._. L'Ir,f F P EU.-1 GROUND _ Hb y.. 196 196 ' 196 ,9� i_a ` __ _..__ ,96 196 �,. \ NF.n .._ -_-� 196 1� FIELDS LIDA �+ _. _. .._......_....____________ ,92 \ ---- 192 192 -i'�_ ',\3 - - ,92 792 FACILITY - - 19z 192 "'�1 192 CITY OF TIGARD PGE CONDUIT \ , .. I M_ 1 PGE CONDUIT - _ _ ,88 180 BUILDING DIVISION 1__ L .1cXenue Fc._ 788 -.. �� naev TY well t wcteae RG 198 M.M.vb FG-__._. 188 188mit ,88 I Mackenzie FG rULTRA BLOCK, 784AVAI=AW ._... 164 184 .t l,_p�;K-�,•,pUp L ,� 1� GRAVITY WALL - - RD�ECr - 184 1� - 4 wau sr 1� IULTReaLODK) WKLST �1�11.w�l�IR \ 80.0JECT ' ' T- =Et (ULTRA BLOCK) CURB LINE ,60 \ { WRB LINE ,80 180 -- CURB 780 180 1� Re NE _ c�yiRD7 ' 176 ---_ \\ H.2,9 --- ,76 .i„ = \`II 176 176 _. _ 1 t\ rN.15' - 176 176 .._..... "TOR CODE COMPLIANCE 172 : - -'_ 172 172 I= ------- -- -- - -- ! 172 172 -- -- --'I - -- -._ 172 172 -_,Approved: - 172 170 170 170 170 170 170 770 A p1" fI. _ ] - 170 ,+00 OTC: Ci C I FOR '�7 SECTION A2-A2 SECTION A-A SECTION B-B r, Ia ) _ a l 1 R h d Erosion Control PF,^=2D' /' '{ �p SCALE'HORIZ'1'=20' SCALE:HOR12:1^=20' IVTS'C'1edule Inspections: VERT: 1^=10' VERT: 1^=10' VERT: 1^=1b Address: '7g'7n J.g up., 2; f Gs/ Call (503) 639-4175 Suite#: initial inspection: Prior to rooting Inspectl0n By: ---- --- Date: A- ) 'a j Final inspection: SLOPE Prior to final bulldog inspection SLOPE - - ESMT 1 I ESMT _ __ a 208 ._ l 1 - 208 208 i FIELDS LIDA .... ... ........ 208 208 --Steer- 208 cl noE - 204 _ 204 3f FACILITY STING fn EXI TING - - w G OUND 1 ( - C%1ST NG -- -- -q a--_ //'GROUND - _- a DUNG 200 - ' _-r.- / - 200 200 - _. -- 200 200 -_.. - _ . I GROUND 200 200 - - _ t ._ 200 1 I -F G D 5 .IL/ 196 _ 196 196 1 - 196 198 --t- - N-c s` -. 196 196 ___- -- 196 PGE CONDUIT I 1 PGECONDUIT r '�FG l l _ _ 1 192 I 192 192 I _-. 192 192 --POEJ._ - I ... .--.-.. E 192 J iLPGE CONDUIT r-... _ ,.r I 188 ULABLOCK) , Ina�t.�a.Fc 1 I`�"FG PARKINQ LIQHT..184 CONDUIT Ii_-__ 784 184 _ 184 184 ULTRA BLOCK) t -- 184 184 ( -_ -. _. 1 --. WALL ST __ _ 1 WALL ST �.. WALL ST 180 , PROJECT - 180 180 -. 7 i PROJECT 180 180 __ CVR B L,....CT 180 180 - wa.L si - 180 CURB LINE 1 4 CURB LINE INE PR 176 + .............. 1 15 176 176 { _... 178 176 -_ 176 176 CUReEw LE 78 172 ._ 172 172 __._ _..-j .. - 172 172 _._. .__ . 172 172 .._ _...... 172 170 170 170 I 170 170 170 170 170 1+00 1+00 1+00 1+00 t SECTION C-C SECTION E-E FIELDS APARTMENTS SCALE:HORIZ:1^=20' SECTION D-D SCALE:HORS.11=20' SECTION F-F SLOPE GRADING EXHIBIT VERT: ,^=10' SCALE HORIZ:1^=20' VERT: 1'=10' SCALE:HORIZ:1+20' WALL 8.5'WEST OF PGE CONDUIT VERT: 1^=10' VERT: 1'=10' April 23,2021 Otak \- \ - - -- � - ® o _ o J�` - ' - - Grw�l�onstructiofi Entrange - - a \�\ � „`` \� -- El- ' 43`.T- _ 1 - - -" - 1 / 197.1' - ❑� ' _ - "/ \ \ \ _ \\ -ter_ _. - RELOCATE EG 202.8 �. / _ i i / / _,, �� \�� �1_ i _ - _ PORTION OF -�T1N 198.48 I� �R i / _ �' \\ -,, --_- EX TEMP: EG 20 9 -PRK LT CONDUIT -� _ - _FS??T EG 2009 / _ __ EG 199.8EG 2016 EG 2029 �62022 - '82l - ??? - EG 2026 L 4 �\ i {� - CONST ESM7 --- 4 Q-.- - __ - - FS - _ - - \ =.r \ EX GAS LINE �. _ TW 195.63 TW 1' .63_ _ TW 18].38 TW 198.85 TW 79781 EX SLOPE ESMT- - �.� TW 19828� /I -TOP 19E63 LIMITS OF GRADING--- CW 1B4 `1 \ T _� �. TO BE RELOCATED I - CW 194.95 CW 19.19 - �L. __ FS 1B3.74 ( CW 195.0E .� - �CW 19406 CW 194.91 CW 19C01 _ __ _ �- - EG 202.9__ CW 195.46 EG 199.3 �Y� _D---4 \� ,y _I --_ -EG 202.2_ - - -- _- - _ _ _ EG 201.3�- EG 197.5 EG 1957-� �1- ' ��� _ � O ,> _ .-� --- - -�� _. _ _TOP 197.88 I_- EG _TOP 198.48 - TW 198..ri - _ - _ TW=CW194.: ' L - \ O , I -- _ _ TW 19824 y TW 19].10 I _ _ - - PROPERTY _L�� I - CW 19d.20 ``!! - CW 19581 CW 1956 CW 194.9J _ A.,,,_,--,---„,,_ -------„-- - - _` >- � 1� -_ _ -' - - -- - --- _LINE--y EG 1925 0 'y. a..s _-� -' ��y,rrr` 4m� GW/953N� 1�:�-•�E��r "��'� '.r � ,:w _.. - O EG 1949 �' �� , - - - \ EG187.0,1 _ �� _ , �-_ �. >< - o.---rTT'��•��.�- ..___._vat.,•41_ra.�- -��'-LA2f�RL��L '�-✓i }� .�. ;-•> _-I / �. ,.a.� -� 1�� �L=• _ - - -��- . o_��� R14 - _-�wlrbYY=-�- [: ice(`,'_ �_ _ - _ _ � _ _ _ _ _ �r�_�.. _ __- Tv.1rr.rru[Ve.. r�.vuer_.E.Mmasa.Lr-�r-•-.m, ^ `` �. +- _ -� \ \ , 1.5.1 �,����.�._ ' C']4 R1 I i' III ] 09• TW 774.27 • i Ir --- TN 174.47,ji T.1 .. TC 1 3.51 TW 95.11 r '� �■ ■ 1 A TC 175J1 TW 175.04 `/ 175.85 CW 172.87 7W 17524 TW 173.54 CW 174.77 TW 1]3.12 \�i TC 174.37 TN 174.69 CW 17260 7W 174.38 �' CW 772.39 CW 1]4.08 CW 173A6 TC 172 77 CW 112.86 CW i12.61 CW 173.54 TC 172.4] TC 172.57 2A0 I TC 172.31 TC 172.30 1 1 TC 173 43 TC 174.20 !!++ 1 PROPERTY LINE- TC 173.94- C 172.65 u ©_ _\ Illik ilt Fence 1 L J 1 I I I I I I I IUIIIIIIIIII 6GNENFEET SLOPE 212 212 212 ES T 212 SLOPE R -.. r. ... _... 208 208 ES MT I _._ EXISTING 208 208 208 208 •---- 208 208 I PGE CONDUIT / GROUND SLOPE {1 ' _ t / ESMT R --. - E%ISTMG .lw EXISTING 204 2D0 X --. - 204 204 -_ - _ 204 204 -- - -- --. GROUND- 204 - J/`GROUND - _. - � EXISTING I _. _ _ - / 200 - -f _ f _- 2� iff 200 __ --- GROUND _. 200 200 ... 200 200 EXISTING =- llf( -- 200 -- - 5. �_- nT'v`-- Nlsa`r _ ._ 198 - r•`<v 196 GROUND 196 T ' 196 196 196 19z J 1 I _ 1s6 - ' i`` , �` 196 FIELDS LIDA MackanxM FG 188 188 GRAVITYwall- 1 �_ _.1_ - FACILITY 192 192 192 192 I--- 192 PGE CONDUIT PGE CONDUIT - -. 1-- PGE CONDUL_. I ME_kx aaG 14$ - klxkerele EG 188 188 - - -- K'"9°�- 188 188 ULTRA BLOCK) 184 GRAVITY- WALL __-- __--. -. 184 184 G) VRYW. WALL ST 184 154 _- 184 ULTRA BLOCK WULST GRAVITY PROJECT wa LST -. j I PROJECT _ -_(ULTRAB a _.... VI4116T _ __(ULTRA BLOCK) CURB NE 180 , PROJECT PRWECT 180 - 180 CURB LINE 180 CURB LINE- 180 180 90 _. CURB LINE 176 -__i. -. f - 176 176 -= _._ . __ -I-N=15 - 178 176 -- I -N_i s _ - 176 R-vs ... ii 172 - - 172 172 1 172 17Y ...- -- - 172 '--- I - _ _ _ 172 170 170 170 170 170 I ' 170 170 1610 170 SECTION Al-Al SECTION A2-A2 SECTION A-A SECTION B-B SCALE.HOW:1".20' SCALE:HORIZ:1'=20' SCALE:HORIZ:1"=20' SCALE HORIZ:1"=20' VERT: 1'=10' VERT: 1"=10' VERT: 1'=10' VERT: 1"=10' SLOPE SLOPE I 208 -- E$1 T. ......- _-_.__-_- - - _ - 208 208 -- _ESI T -FIELDS LIDA _._- 208 208 r -- I - 208 1DPE 204 ae 204 204 -EA ILITY + -e. EXISTING _ 204 204 - E T - - 204 204 Ma _.. _.. -- 204 -` EXI TING __._ - G 4 _ _- .. a 200 - - f- -- - 200 200 -.. _ - - 200 200 -- _ -- GROUIND _ 200 200 ---_ .... -. 200 196 _- - �� N�:V _ _-- 796 196 -. 1 H 4 -. --. 196 108 -- s -. - 196 196 .._ ` _ _ - _ 196 rr STING G owns PGE CONDUIT I ' J- I Ma<ke�eie _-. I 1 I , > _. _ -PBEGONDUIT f :---- - )/// 192 \ 1 - -- ----- 192 192 - f 192 192 PCC CONDUIT - I - - ---- 192 192 I f - - -- - 192 JJJ 1 GRAVITY WALL I - _ _ _-PGE CONDUIT \ 1 _- 188 -- -- 188 188 - - ---- 188 188 -- . eearx�.a G 188 188 (ULTRA BLOCK) Neow.=PG- PARKING LIGHT - + _-. GRAVRYWALL GRAVITY OPAL. 184 184 CONDUI' - - r 184 - -_ - 184 184 'ULTRA BLOCK) ----. 184 184 - - - . wA _. (ULTRA BLOC", U ST - -. --1 .-.. I .. WALL ST - .. _.. WALL ST -- PROJECT 180 PROJECT iq0 180 ?, FRGJECi - 180 180 - • - - 1B0 180 r- - -' I - -WALLPROJECT ST ' 180 CURB LINE cJFB L'NE CUR.LINE-. - /1)/1 IE PROJECT _ 176 H=1.4 I 176 1l6 - ... -.-. - - 176 176 I -. - 176 176 -. _ - CURB LINE 172 _ __1 _--___- 1 ___ `--I. ;_.. 172 iJ2 .....___.. __i _-. 172 172 - ___ ]_170 ' 170 170 170 170 170 170 170 1+00 1+00 1+00 1+00 • SECTION C-C SECTION E-E FIELDS APARTMENTS SCALE:HORIZ:1=20' SECTION D-D SCALE:HORIZ:1"=20' SECTION F-F SLOPE GRADING EXHIBIT VERT: 1"=10' SCALE:HORI2:1"=20' VERT: 1"=10' SCALE-HORIZ:r=zB' WALL 8.5'WEST OF PGE CONDUIT • VERT: 1"=10' VERT: 1•=10' April 23,2021 Otak ��► Tallest 5.3 wall RECEIVED MtY 17 202 j • UltraWall CITY OF TIGARD BUILDING DIVISION Project: The Fields Apartements Location: Tigard, OR Designer: Mia Mahedy, PE Date: 5/14/2021 Section: Section 1 Design Method: NCMA_09_3rd_Ed, Ignore Vert. Force Design Unit: UltraBlock O SOIL PARAMETERS cp coh y ' Reinforced Soil: 30 deg Opsf 120pcf Retained Soil: 30 deg Opsf 120pcf I 6.50 Foundation Soil: 30 deg Opsf 120pcf Leveling Pad: Crushed Stone GEOMETRY Design Height: 6.00ft (5.00ft Exp.) Live Load: Opsf Wall Batter/It: 0.00/0.00 deg Live Load Offset: 0.00ft Embedment: 1.00ft LL2 Width: Oft E0 PROF Leveling Pad Depth: 0.50ft Dead Load: Opsf ,ctG� FSS, Slope Angle: 26.0 deg Dead Load Offset: 0.0ft & �aO,tNER,P S�0 Slope Length: 10.0ft Dead Load Width: Oft Z +Y 19244PE Slope Toe Offset: O.Oft i F-- Vertical 6 on Single Depth OREGOIV v FACTORS OF SAFETY 1 Sliding: 1.50 Pullout: 1.50 21j Gar is Ny9 ', Overturning: 2.00 Uncertainties: 1.50 C. nuktk Bearing: 2.00 Connection: 1.50 1 Shear: 1.50 Bending: 1.50 EXPIRES: If - -.),/- (i UltraWall 5.0.20167 1 r S RESULTS FoS Sliding: 2.28 FoS Overturning: 4.50 Bearing 847 FoS Bearing: 12.930 Pullout 1.51 Total Pullout 986 FoS Total Pullout 2.24 Top FoSot: 6.11 FoS Connection: 2.11 ID Height Length Geogrid. Tallow EP(Pa) LL(Pql) DL(Pqd) TMax FS Str Tal Cn FS Pk Cn FS PO/[Tmax] FS Sldg[fndn] Grid Embed 1 2.46 6.5 8XT 2812 654 0 0 654 6.45 922 2.11 1.51/[654] 7.77[2.28] 1.75 Column Descriptions: Ta: allowable geogrid strength Rc %: percent coverage for geosynthetics EP (Pa) internal active earth pressure LL(Pql)earth pressure due to live load surcharge DL (Pqd) earth pressure due to dead load surcharge Tmax maximum earth pressure on geosynthetic layer FSstr factor of safety on geogrid strength (Ta/Tmax) Ta cn allowable tension on the connection FS Pkcn, factor of safety on the connection (Ta cn/Tmax) FS PO, factor of safety on pullout (Ta pullout/(Tmax- LL) Grid Embedment, depth of embedment beyond the theorectical failure plane. UltraWall 5.0.20167 2 14-5 en + @ ' G�5 +-; Ctij f II II J i O,, . _ ____ ,,,, .... - _:---._,_ IIV- ; 650 4 PH UltraWall 5.0.20167 3 COMPOUND RESULTS . Compound stability is a global analysis (Bishop) with the failure planes originating at the top of the slope/wall and exiting out through the face of the wall. For MSE walls, the resistance of the geogrid reinforcement is included in the analysis and the shear resistance of the face units is included. ID Enter Point X Enter Point Y Exit Point X Exit Point Y Center X Center Y Radius FoS 4 16.66 10.88 2.46 2.46 4.53 15.14 12.85 2.078 4 16.66 10.88 2.46 2.46 4.53 15.14 12.85 2.078 4 15.46 10.88 2.46 2.46 4.34 13.80 11.49 2.086 4 15.46 10.88 2.46 2.46 4.34 13.80 11.49 2.086 4 17.86 10.88 2.46 2.46 4.72 16.61 14.33 2.100 4 17.86 10.88 2.46 2.46 4.72 16.61 14.33 2.100 4 19.06 10.88 2.46 2.46 4.91 18.20 15.93 2.148 4 19.06 10.88 2.46 2.46 4.91 18.20 15.93 2.148 4 14.26 10.88 2.46 2.46 4.14 12.57 10.25 2.175 4 14.26 10.88 2.46 2.46 4.14 12.57 10.25 2.175 GLOBAL RESULTS Global stability is a global analysis (Bishop)with the failure planes originating at the top of the slope/wall and exiting out below the wall in the area infront of the structure. For MSE walls, the resistance of the geogrid reinforcement is included in the resisting forces. The curve may go through the base of the wall and the wall shear would be included. In most cases the failure plane will pass below the structure. ID Enter Point X Enter Point Y Exit Point X Exit Point Y _Center X Center Y Radius FoS 2 13.06 10.88 -7.80 1.00 -0.84 13.26 14.10 1.465 2 14.26 10.88 -7.80 1.00 -0.52 14.31 15.17 1.469 2 13.06 10.88 -9.00 1.00 -1.72 14.31 15.17 1.482 2 13.06 10.88 -6.60 1.00 0.05 12.27 13.08 1.485 1 13.06 10.88 -7.80 1.00 -1.33 14.29 14.78 1.487 1 14.26 10.88 -7.80 1.00 -1.18 15.79 16.20 1.490 2 11.86 10.58 -9.00 1.00 -1.90 13.04 13.98 1.498 1 13.06 10.88 -9.00 1.00 -2.01 14.96 15.61 1.498 1 14.26 10.88 -9.00 1.00 -1.87 16.54 17.09 1.499 1 14.26 10.88 -6.60 1.00 -0.47 15.01 15.30 1.499 UltraWall 5.0.20167 4 GEOGRID REINFORCING STRUCTURAL PROPERTIES: Mirafi GEOGRID PROPERTIES Name Tult RFcr RFd RFid Ci Cd Alpha Ltds 8XT 7400 1.45 1.10 1.10 0.80 0.80 0.80 4218 CONNECTION STRENGTHS Geogrid Slope 1 Intercept 1 Peak Break Slope 2 Intercept 2 Max Normal Rup Conn Conn Creep Tlot(%) Tlot 5XT 18.00 536 1571 3.00 964 2361 False 1.45 100 4700 8XT 19.00 946 4834 3.00 2357 7745 False 1.45 100 7400 10XT 22.00 1464 -1 0.00 0 4999 False 1.45 100 9500 20XT 26.00 1825 4746 0.00 4140 6936 False 1.45 100 13705 SHEAR STRENGTHS Slope 0 deg Intercept 3500psf UltraWall 5.0.20167 5 CALCULATION RESULTS OVERVIEW UltraWall calculates stability assuming the wall is a rigid body. Forces and moments are calculated about the base and the front toe of the wall. The base block width or bottom reinforcement length is used in the calculations. The concrete units, granular fill over the blocks or reinforced zone soils are used as resisting forces. EARTH PRESSURES The method of analysis uses the Coulomb Earth Pressure equation (below)to calculate active earth pressures. Wall friction is assumed to act at the back of the wall face. The component of earth pressure is assumed to act perpendicular to the boundary surface. The effective delta angle is delta minus the wall batter at the back face (assumed to be vertical). If the slope breaks within the failure zone, a trial wedge method of analysis is used. INTERNAL EARTH PRESSURES Effective internal Delta angle (2/3 phi) delta =20.0 deg Coefficient of active earth pressure ka =0.496 Internal failure plane p = 47.0 deg EXTERNAL EARTH PRESSURES Effective external Delta angle delta =30.00 deg 9 Coefficient of active earth pressure ka =0.448 External failure plane p = 51.0 deg co(¢i+i}a Kt:_ a cos(i)a cos(Si—i)Ii + cos(Si Si cos( + (3) UltraWall 5.0.20167 6 FORCES AND MOMENTS UltraWall resolves all the geometry into simple geometric shapes to make checking easier. All x and y coordinates are referenced to a zero point at the front toe. The wall image can be exported to CAD for a more detailed output. Name Factory Force(V) Force(H) X-Ien Y-Ien Mo Mr Face Blocks(W1) 1.00 2115 -- 1.23 -- -- 2600 Soil(W3) 1.00 2910 -- 4.48 -- -- 13034 Slope(W5) 1.00 478 -- 4.33 -- -- 2071 Pa h 1.00 -- 1480 -- 2.66 3932 -- Sum(V,H) 1.00 5503 1480 Sum Mom 3932 17706 WO: leveling pad W6: Rectangle zone in broken back W1: facing units W7: Live load over the mass W2: soil wedge behind the face W8: Dead load over the mass W3: rectangular area in MSE area W9: Force Pa W4: the wedge at the back of the mass W10: Surcharge load Paq W5: slope area over the mass W11: Dead Load Surcharge Paqd X-Len: is measured from the center of the base (+) Driving, (-) Resisting. Pa_h: horizontal earth pressure Pa_v: vertical earth pressure Pq_h: horizontal surcharge pressure Pq_v: vertical surcharge pressure VV8 _ f • r W3L t es. I UltraWall 5.0.20167 7 BASE SLIDING Sliding at the base is checked at the soil-to-soil interface between the reinforced mass and the foundation soil. Forces resisting sliding = (SumVr-WO -W1 -W7) 5,503 - 0- 2,115-0 SumVr= 3,388ppf Resisting force = SumVr x tan(30) + c x L+ Base Shear Rf1 =3,376 where L is the base width where Base Shear= N tan(40.0) *0.8 1,419.88 Driving force is the horizontal component of Pah + Pqh+ Pdh Df= 1,480 Factor of Safety= Rf/Df FSsI =2.28 UltraWall 5.0.20167 8 OVERTURNING ABOUT THE TOE Overturning at the base is checked by assuming rotation about the front toe by the block mass, soil retained on the blocks or within the reinforced zone. Allowable overturning can be defined by eccentricity (e/L) or by the ratio of resisting moments divided by overturning moment(FSot). Moments resisting overturning = Sum(M1 to M6) + MPav+ MPqv Mr=17,706ft-lbs Moments causing overturning = MPah + MPqh Mo =3,932ft-Ibs Factor of safety= Mr/Mo FSot =4.50 OK UltraWall 5.0.20167 9 ECCENTRICITY AND BEARING Eccentricity is the calculation of the distance of the resultant away from the centroid of mass. In wall ReinDesign the eccentricity is used to calculate an effective footing width, or in rigid structure, it is used to calculate the pressure distribution below the base. Calculation of Eccentricity e = (SumMr+ M7 + SumMo)/SumV Mr= -4,094.74 Mo = 8,206.69 e = (-4,094.748,206.69)/5,503.22) e =-2.235 Because 'e' is negative (leaning into the embankment), it is ignored to get the maximum bearing at the face of the wall. Calculation of Bearing Pressures Qult= c*Nc+ q*Nq + 0.5*gamma*(B')*Ng where: Nc =30.14 Nq =18.40 Ng =22.40 c=0.00psf q=120.00psf B' =10.97ft Calculate Ultimate Bearing, Qult Qult=10,945.10psf Applied Bearing Pressures = (SumVert/B' + (2B + LP depth)/2 * LP depth *gamma) sigma=846.65psf Calculated Factors of Safety for Bearing Quit/sigma =12.93 UltraWall 5.0.20167 to TENSION CALCULATIONS Tmax is the maximum tension in the reinforcing based on the earth pressure and surcharge loads applied. In the NCMA design method, earth pressures are calculated using the Coulomb Earth pressure equation. Infinite surcharge loads are applied as q x ka. In designs were there is a broken back slope, or the surcharge is not uniform over the area, a tie-back wedge analysis method is used. FS = (Tal * FS_tn)J Tmax TABLE OF RESULTS Elevation[ft] ka z sv Name[ft] Tult[ppf] Ta[ppf] Re% Tmax[ppf] FS 2.46 0.510 2.39 4.77 8XT 7,400 2,812 100 654 6.45 UltraWall 5.0.20167 11 PULLOUT CALCULATIONS Pullout is the amount of resistance of the reinforcing has to a pullout failure based on the Tmax applied and the depth of embedment (resistance). In an NCMA design the failure place is defined as the Coulomb failure plane which varies with face batter, backslope angle, and surcharge loads applied. All failure planes begin at the tail. of the facing units. For AASHTO calculations, the live load surcharge is not included in the Tmax value for pullout. Failure Plane Angle (p) =47.0 Deg NOTE: The pullout capacity is limited by the LTDS of the reinforcing layer, not the ultimate pullout capacity calculated. F* = 0.67xtan(cp) = 0.67x0.58 = 0.39 Le =embedment length = Li - block depth - hi *Tan(90- p) La = Li - Le sv= geogrid spacing Rc= % coverage a = scale effect correction Pullout= 2xLexF* xsvxaxRC TABLE OF RESULTS Elevation[ft] Normal[Ibf] Ci %Coverage Tmax[ppf] Le[ft] La[ft] Pullout_[Pr][ppf] FS PO 2.46 1067.66 0.80 100 654 1.75 4.75 986 1.51 UltraWall 5.0.20167 12 CONNECTION CALCULATIONS Connection is the amount of resistance of the reinforcing has to a pullout failure from the facing units based on the Tmax applied and the normal load on the units. In an AASHTO LRFD design, creep on the connection may be applied for frictional and mechanical connections. In NCMA or AASHTO 2002, a frictional failure is based on the peak connection capacity divided by a factor of safety. For a rupture connection the capacity is the peak load divided by a creep reduction factor and a factor of safety. Frictional Connection Peak Connection = N(ppf)tan(slope) + intercept Rupture Connection Connection Capacity= [N(ppf)tan(slope)+ intercept]/RFcr RFcr can be a value obtained from long-term testing or by default could be the creep reduction factor of the geogrid reinforcing. Tal_cn =Allowable connection capacity= Tult_cn / FScn Rc= % coverage FS = Tal_cn * FScnlTmax TABLE OF RESULTS Elev[ft] Name Tmax[ppf] Rc% N[ppt] Tult_cn Tac[ppf] FS 2.46 8XT 654 100 1269 1521 922 2.11 UltraWall 5.0.20167 13 Gravity 4ft wall UltraWall Project: The Fields Apartements Location: Tigard, OR Designer: Mia Mahedy, PE Date: 5/14/2021 Section: Section 1 Design Method: NCMA_09_3rd_Ed, Ignore Vert. Force f Design Unit: UltraBlock SOIL PARAMETERS cp coh y Retained Soil: 30 deg Opsf 120pcf Foundation Soil: 30 deg Opsf 120pcf Leveling Pad: Crushed Stone 2.43 40 deg Opsf 135pcf GEOMETRY Design Height: 4.00ft Live Load: Opsf Wall Batter/Tilt: 0.00/0.00 deg Live Load Offset: O.O0ft Embedment: 1.00ft Live Load Width: Oft Leveling Pad Depth: 0.50ft Dead Load: Opsf Slope Angle: 26.0 deg Dead Load Offset: O.Oft Slope Length: 10.0ft Dead Load Width: Oft Slope Toe Offset: 0.0ft Leveling Pad Width: 3.46ft Vert 5 on Single Dpth FACTORS OF SAFETY Sliding: 1.50 Overturning: 1.50 Bearing: 2.00 UltraWall 5.0.20167 a 1 1 RESULTS f FoS Sliding: 2.47 (Ivlpd) FoS Overturning: 3.39 Bearing: 817.42 FoS Bearing: 7.73 2 4 Name Elev.[dpth] ka Pa Paq Paqd (PaC) PaT FSsI FoS OT %D/H 1 2.46[1.54] 0.510 72.66 0.00 0.00 0.00 72.66 -- 29.64 159% 1 0.00[4.00] 0.510 489.17 0.00 0.00 0.00 489.17 2.47 3.39 61% Column Descriptions: ka: active earth pressure coefficient Pa: active earth pressure Paq: live surcharge earth pressure Paq2: live load 2 surcharge earth pressure Paqd: dead surcharge earth pressure (PaC): reduction in load due to cohesion PaT: sum of all earth pressures FSsI(Ivl Pad): factor of safety for sliding at each layer. (FS sliding below the leveling pad) FSot: factor of safety of overturning about the toe. UltraWall 5.0.20167 2 EZ CIM U II r • if UltraWall 5.0.20167 3 COMPOUND RESULTS Compound stability is a global analysis (Bishop)with the failure planes originating at the top of the slope/wall and exiting out through the face of the wall. For MSE walls, the resistance of the geogrid reinforcement is included in the analysis and the shear resistance of the face units is included. ID Enter Point X Enter Point Y Exit Point X Exit Point Y Center X Center Y Radius FoS 2 12.26 8.78 2.46 0.00 -6.75 20.14 22.14 1.634 2 11.46 8.39 2.46 0.00 -5.60 17.67 19.42 1.676 3 12.26 8.78 2.46 0.00 0.81 11.70 11.82 1.718 2 10.66 8.00 2.46 0.00 -4.55 15.38 16.90 1.726 3 11.46 8.39 2.46 0.00 1.19 10.38 10.46 1.780 2 9.86 7.61 2.46 0.00 -3.58 13.27 14.58 1.788 3 10.66 8.00 2.46 0.00 1.53 9.15 9.20 1.855 2 9.06 7.22 2.46 0.00 -2.70 11.34 12.46 1.871 3 9.86 7.61 2.46 0.00 1.83 8.02 8.04 1.948 2 8.26 6.83 2.46 0.00 -1.91 9.59 10.53 1.968 GLOBAL RESULTS Global stability is a global analysis (Bishop)with the failure planes originating at the top of the slope/wall and exiting out below the wall in the area infront of the structure. For MSE walls, the resistance of the geogrid reinforcement is included in the resisting forces. The curve may go through the base of the wall and the wall shear would be included. In most cases the failure plane will pass below the structure. ID Enter Point X Enter Point Y Exit Point X Exit Point Y Center X Center Y Radius FoS 2 12.26 8.78 -6.20 1.00 0.10 11.83 12.53 1.680 2 12.26 8.78 -5.40 1.00 0.68 11.12 11.81 1.682 2 12.26 8.78 -7.00 1.00 -0.47 12.57 13.29 1.697 1 12.26 8.78 -5.40 1.00 0.06 12.54 12.76 1.697 1 12.26 8.78 -6.20 1.00 -0.42 13.07 13.38 1.698 2 11.46 8.39 -6.20 1.00 0.06 10.84 11.66 1.701 1 12.26 8.78 -7.00 1.00 -0.89 13.59 14.00 1.710 1 12.26 8.78 -4.60 1.00 r 0.56 11.98 12.13 1.716 2 12.26 8.78 -4.60 1.00 1.27 10.45 11.12 1.719 1 11.46 8.39 -5.40 1.00 -0.04 11.71 11.97 1.729 UltraWall 5.0.20167 4 §\ECM\ J§ON REQUIRED State of/ems A t a Specialty Code p COncrets and ReinforcingGeel 0 Bolts Installed mConcrete 0Spoo*Momeni-Resisting Concrete Fra me 0ReinforoingS&&Rrestressing SteelTndons o Structural 'mS ::acting $ on i rm Gypsum Conc«e mU;.�aR 0 Spray Applied k eMacrials . 0 Pilings,Drilled m and Caissons mom J a g Grading, tion and Filling LJ Smoke-Control aAms Other yc r �