Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Specifications
112-44 iE - j �C K TM RIPPEY Suite CP 650 SW Beveland St -c� CONSULTING ENGINEERS Tigard,Oregon 9 Phone: (503)443-3900 Fax: (503)443-3700 STRUCTURAL CALCULATIONS RECEIVED FOR OCT 8 2019 11244 SW TIEDEMANAVE. CITY NG TIGARD BUILDING DIVISION TIGARD, OR 97223 TMR #18323 April 17,2019 PAGE MEZZANINE CALCULATIONS M1-M13 FOUNDATION CALCULATIONS F1-F5 METAIL BUILDING REACTIONS R1-R9 OFFICE IAE ZfktitoE 'FRAtAi J -I i i ' .. 1 1 . I i '. 1 : .. ..I .. . . .. .. ' SOi5IIS (IDL l5 ps4-°t 1.L-124.ps$-) 1 I ,• 1 7.0 ut� en litov6rhanc� :s , t4i tS 5�0 ,I 'oa I I A� .P4• •, !! a "ix,. RiK's I{aY Y.$: ! I . 1 1 • i 1 I � i `C4Y1..i'INICYOASC:',1M W/o . j , i I I : I Mi enMsYnt.`"Qlif-i_e,i\s$ 1 I I • i ' I 1H . J. of A- ;ovcr N`I ' I - • I i � �� S y�,4 of : o�fic,�s S h l^i lt'1' ; . 1 L. usne.; lN"T5i S�cQ: 6 2-yn o/c sw A:PALht .Sktd'f 1 1 1 i 1 I 1 i 1 ! I . i I Ii i 1 i I I i ° i 1 I i 8ellt'n su ofl-ivi " o`t } or e.mlrt ovU hit! ..I ; i : 1 1 ; i • s.po.o.c;CI'2.:'1 '1)L,---I 62 ptE LI =e*2'L plf. i : a,.. s'i$/s " x+3;,'' 'I 6,= o s7a. z Y3ao I i 1 ,y "Rxw• bL=Ip(c0lbs LL,1-14 0 ►tar, I au sr. (�) 1*.ei 1 {koe 2Xla I I , • I ! • 1 1 K i3dkt-@ 2yVne. wi nGou, ! (� an=tz'31) I 1 .. 74. ' =--.". el- 5- IS. • Soz 13.311 . -pb' $�o."I15 • : I °1-- - i__- _. \p L. Rxvt' bL_c10 ,in LL-1'SOIbs .1 • i (2) 2.24.(d 'Bf9.r1 n.61. c�4-i k.GI.S 1 1. 14" .1.. i I I - xYiln \nCclYt!1A� atre!! =94io/1oo c .�a6 T� /ai 2. ,3' lm� -lllicke v($f4!? j 1 15-tpib�_rv-N Q csov.Cxe(•), o t at rctckt' b ai h�ao rr, i j 1 • . OL-•25 L�<ln� • bLF127 i ,y i q.QZ" • ! v v v fI,/E=D, I P A • a 1 I ;12.Xtn'. U., 2ov IV-10 .350 1 u. t�aa :L OI ()' ; %.�1Lc1I' C,+i-ECK• tnx� :POSI- Pcif,„=o•L4 1 '4�4Ar!Lg at-t..A , 108100/tsoo .,-�,IA -- 2'a" I 1 : i I E „TEAKTM RIPPEY BY MAT DATE CONSULTING ENGINEERS CHK BY DATE 7650 S.W. Beveland St, Suite 100 I12LF-f SW —(iecteMart Ave. IOBNO 10 2.-3 Tigard, Oregon 97223 Phone(503) 443-3900 SHEET 1`'\I OF MEMBER REPORT Level, Copy of Floor joist-over entry PASSED F O R T E 1 piece(s) 14"TM® 560 © 24" OC Overall Length: 14'6 1/2" • JI I 11 al 9'4' 4'2"' 0 Q El All locations are measured from the outside face of left support(or left cantilever end),AII dimensions are horizontal. ,k2eisign iteiulits. -?�,.� . 11���LP�tip� ;� �lavred�,<�; but . LOF losd.;so�n�-�_i7��±!j•_ _� ._ :Food Member Reaction(Ibs) 2753 @ 9'9 1/4" 3000(3.50') Passed(92%) 1,00 1.0 D+1.0 L(All Spans) Member Type:Joist Shear(Ibs) 1338 @ 9'7 1/2" 2390 Passed(56%) 1.00 1.0 D+1.0 L(All Spans) Building Use:Residential Moment(Ft-Ibs) -2405 @ 9'9 1/4' 11275 Passed(21%) 1.00 1.0 D+1.0 L(All Spans) Building Code:IBC 2012 Live Load Defl:(In) 0.063 @ 4'7 1/16" 0.239 Passed(L/999+) — 1.0 D+1.0 L(Alt Spans) Design Methodology:ASO Total Load Oefl.(In) 0.070 @ 4'6 15/16° 0.478 Passed(L/999+) -- 1.0 D+1.0 L(Alt Spans) Tl-Pro•"Rating 63 40 Passed -- '-- •Deflection criteria:LL(1/480)and IL(L/240). •Top Edge&acing(Lu):Top compression edge must be braced at 13'4°o/c unless detailed otherwise. • Bottom Edge Bracing(Lu):Bottom compression edge milt be braced at 12'8'o/c unless detailed otherwise. •-401 lbs uplift at support 14'2'.Strapping or other restraint may be required. •A structural analysis of the deck has not been performed. • Deflection analysis Is based on composite action with a single layer of 23/32"Panel(24'Span Rating)that Is glued and nailed down. •Additional considerations for the TJ-Pro""Rating include:None ass- ..+, -a p v;;v PI001 M1'l' -c., t aoI1e r Tool �11v61NpJe ._ I I h- , .`Lives 1-Beam-GLB 3.50" 3.50" 1.75" 123 1043/-20 1166/-20 Blocking 2-Stud wall-DF 3.50" 3.50" 3.50" 295 2456 2753 Blocking 3-Plate on steel-OF 5.50" 4.25" 1.75" 19 600/-419 619/-419 1 1/4"Rim Board •RIm Hoard is assumed to carry all loads applied directly above it,bypassing the member being designed. •Blocking Panels are assumed to carry no loads applied directly above them and the fug load Is applied to the member being designed. 1.entkyl,'(SidoR, 3paN49>� ".`(0;.9.0)S e-r`(],x0P. Resi Obmmeltts_i. : . 1-Uniform MGM 0 to 14'61/2' 24' 15.0 125.0 erdial-Living Areas Joist that lAleyerhaekser`IYotes - . = . x � s 1tS)SUSTAINABLE FORESTRY INmATNf Weyerhaeuser warrants that the sizing of Its products will be In accordance with Weyerhaeuser product design criteria and published design values. `F Weyerhaeuser expressly disdains any other warranties related to the software.Use of this software is not Intended to dreumvent the need for a design professional as determined by the authority having Jurisdiction.The designer of record,builder or framer Is responsible to assure that this calculation is compatible with the overall project Accessories(Rim Board,Blocking Panels and Squash Blocks)are not designed by this software.Products manufactured at Weyerhaeuser facet/ifs are third-party certified to sustainable Forestry standards.Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested In accordance with applicable ASTM standards.Far current code evaluation reports,Weyerhaeuser product literature and iodation details refer to wove.weyerhaeuser.com/woodproducts/document-library. The product application,Input design loads,dimensions and support information have been provided by Forte Software Operator Forte Software Operator Job Notes 4/12/2019 11:12:14 AM Kristin Jaycox Forte v5.4,Design Engine:V7.1.1.3 TM Rlppey Consulting Engineers 18323 Office Mezz.4te (503)443-3900 klaycox(rptmrippay.comIA 2 Page 1 of 1 PASSED ai1 F 0 R T E MEMBER REPORT Level, 17R span 1 piece(s) 14" T11® 560 @ 16" OC Overall Length_18'1" } 4 0 34 17'2' a a An locations are measured from the outside face of left support(or left cantilever end).All dimensions are horizontal. Design•Results., Acttta101ocattmi, Iuiowgd__.,-rte uftry{� , 1 _ -. sntem:Reor Member Reaction(Ibs) 1668 0 4 1/2" 1725(3.50") Passed(97%) 1.00 L.0 D+1,0 L(All Spans) Member Type:Joist Shear(Ibs) 1602 0 5 1/2" 2390 Passed(67%) 1.00 1.0 D+1.0 L(All Spans) Building use:Residential Moment(Ft-Its) 7011 0 9'1/2" 11275 Passed(62%) 1.00 1.0 D+1,0 L((All!Spans) Building Code:IBC 2012 Live Load Defl.(in) 0.406 0 9'1/2" 0.433 Passed(L/512) -- 1.0 D+LO L(All Spans) Des Design Methodology:ASD Total Load Deft.(In) 0.455 0 9'1/2" 0.867 Passed(14457) — 1.0 D+1.0 L(All Spans) T]-Pro"Rating 56 40 Passed - •Defedlon criteria:U.(1/480)end TL(L/240). •Top Edge Bradng(W):Top compression edge must be braced at 7'2•o/c unless defamed othervlse. •Bottom Edge Bradng(Le):Bottom compression edge must be braced at 17'IL"o/c unless cleaned otherwise. •A structural analysts of the deck has not been performed. •Deflection analysis Is based on composite action with a single layer of 23/32'Weyerhaeuser Edger"Panel(24"Span Baling) that isglued and nailed down. •Add lfonel considerations for the D-Pro'"Rating Include:No e aWrtnyLbv • -";=A:oidatoePleiD[t'Rr _ - F: $IF)1p0,,,1'�8 __ v--s,=,. ,f° 4Va1 7q ---rg 7 _Ag9 : UVe�.,' I ''" „� 1-Stud wall-OF 5.50" 4.25' 3.28" 181 1507 1688 1 1/4°Rim Board 2-Stud wall•OF mg. 4,25" 3.26" en 1507 1688 1 1/4"Rim Board •Rim Board Is assumed to carry al loads applied directly above It,bypassing the member being designed. ,„may K -` - ' a ' _`• ems ,� 10 dS z' =`� �14-ca-g-L i de ', SP.?�9ff;. R:90J�.�.:�,(1WA) tmn > ..___' 1-Urdform(PSF} 0 to 18'1' 16" 15.0 125A Areas stlal-Wing Areas *- �e - n ' rx- �'-•' s•,: -- -a - . ` e feWiliaf51 ]Vute5< s ,,-w.- -. ._ -tr, _.. i ram>sxc?a:. _ :� .-. ._. a (!3)SUSTAINABLf FORESTRY INITIATIVE Weyerhaeuser warrants that the string afits products will be In accordance with Weyerhaeuser product design criteria and published design a d. `` Weyerhaeuser expressly dsdafms any other warranties related to the software.Use of this software Is rat Intended to drxrmvent the treed for a design professional as determined by the authority having jurisdiction.The designer of record,builder a framer Is responsible to assure that this calculation Is compatible with the overal project Accessories(Rin Board,Bkxkig Panda and Squash frocks)are not designed by this software.Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards.Weyerhaeuser Engineered lumber Products have been evaluated by ICC FS under technical reports ESP-1153 and ESR-1387 and/or tested In accordance with applicable ASTM standards.For current code evaluation reports,Weyerhaeuser product literature and Installation details refer to weev.weyerha The product application,input design loads,dimensions and support Infornadon have been provided by Forte Software Operator Forte software operator Job Notes 4/12l2019 11:11:23 AM Knlslen Jaycox Forte v5.4,Design Enginel,V7.1.1.3 TM Ropey Consulting Engineers 18323 Office Mezz.4te (603)443-3900 kiayco><fpltmdppey.com M3 Page 1 of 1 Project Title: Engineer: Project ID: Project Descr: Printed:17 APR 2019, 3:13PM WOOd Be8t1') ;` 329 F1reDatnagedOulding 112445WTIedemasAV Tiggid1eRILI IURALICN.CS..118323OjfiaeM kra -.. <'>So0.umiecpgyrthlENFJiCALC,INC.1983 Sa,atddW.10181213 Lic.# : KW-06002562 Licensee :TM RIPPEY CONSULTING ENGINEERS Description: header over front window opening .:: CODE REFERENCES a Calculations per NDS 2012, IBC 2012,CBC 2013,ASCE 7-10 Load Combination Set:ASCE 7-10 Material Properties Analysis Method: Allowable Stress Design Fb+ 2,400.0 psi E:Modulus of Elasticity Load Combination ASCE 7-10 Fb- 1,850.0 psi Ebend-xx 1,800.0ks1 Fe-Pill 1,650.0 psi Eminband-xx 950.0ksi Wood Species : DF/DF Fc-Perp 650.0 psi Ebend-yy 1,600.0 ksi Wood Grade :24F-V4 Fv 265.0 psi Eminbend-yy 850.0ksi Ft 1,100.0 psi Density 31.210pcf Beam Bracing : Beam is Fully Braced against lateral-torsional buckling D(0.148)L(1.220) a o o 5.5x14 Span=12.330 ft ;j Appilt3d Loads`. Service loads entered.Load Factors will be applied for calculations. Uniform Load: D=0.1480, L=1,229, Tributary Width=1.0 ft DESIGN SUMMARY I Design OK Maximum Bending Stress Ratio = 0.72a 1 Maximum Shear Stress Ratio = 0.510 : 1 Section used for this span 5.5x14 Section used for this span 5.5x14 fb:Actual = 1,747.77 psi fv:Actual = 135.20 psi FB:Allowable = 2,400.00 psi Fv:Allowable = 265.00 psi Load Combination +D+L Load Combination +D+L Location of maximum on span = 6.165ft Location of maximum on span = 11.205 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward Transient Deflection 0.284 in Ratio= 521>=360 Max Upward Transient Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.318 in Ratio= 465>=180 Max Upward Total Deflection 0.000 in Ratio= 0<180 Maximum Forces &Stresses for Load,'Combinations . Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span# M V Cd C FN C I Cr Cm C t C L M fb Pb V fv FW D Only 0.00 0,00 0,00 0.00 Length=12.330 ft 1 0.087 0.061 0.90 1.000 1.00 1.00 1.00 1.00 1.00 2.81 187.85 2180.00 0.75 14.53 238.50 +D+L 1.000 1.00 1.00 1.00 1.00 1.00 0,00 0,00 0,00 0.00 Length=12.330 ft 1 0.728 0.510 1.00 1.000 1.00 1.00 1.00 1.00 1.00 26.17 1,747.77 2400:00 6.94 135.20 265,00 +D+0.750L 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=12.330 ft 1 0.453 0.317 1.25 1.000 1.00 1.00 1.00 1.00 1.00 20,33 1,357,79 3000.00 5,39 105.03 331.25 +0.600 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length=12.330 ft 1 0.029 0.021 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.69 112.71 3840.00 0.45 8.72 424.00 1 Vertical Reactions ., Support notation:Far left Is#1 Values In KIPS Load Combination Support 1 Support 2 Overall MAXImum 8.489 8.489 Mi Project Title: Engineer: Project ID: Project Descr: Printed:17 APR 2019, 3:13PM UI(OOd _BBafCI s23 Arebameged8tiN109 11244 swTi demanAve,Tiga tisTRUCIVtilALlf49$118323 04014.etz:eo8 . SavwreP➢ f• NEROAIC,WC 19B121Y18 8u➢d:10.18.4213 Lic.f : KW06002562 Licensee:TM RIPPEY CONSULTING ENGINEERS Description: header over front window opening • V�#icaf Reactions Support notation:Far left Is#1 Values In KIPS Load Combination Support 1 Support 2 Overall MINimum 7.577 7.577 D Only 0.912 0.912 +0+1 8.489 8.489 +0+0.750L 6.595 6.595 +0.60D 0.547 0.547 L Only 7.577 7.577 • 1AG Project Title: Engineer: Project ID: Project Descr: Printed:17 APR , . ',. . 2019. 3:18 PM 32; Flret eatid 112MSW7i � anAe] ardlSFto daiiiitlll ,, z i fl gT. AA 2OeAfeas6 , --- >�_ t . , Soweecopigt4 ENECALJC-93P16 Butid1 1812.13:'". Lic.#I: KW-06002562 Licensee:TM RIPPEY CONSULTING ENGINEERS 'Description: Typ.load bearing stud wall Code References ,• Calculations per 2012 NOS, IBC 2012,CBC 2013,ASCE 7-10 Load Combinations Used:ASCE 7-10 General:Information Analysis Method: Allowable Stress Design Wood Section Name 2x4 End Fixities Top&Bottom Pinned Wood GradingiManuf. Graded Lumber Overall Column Height 8.830 ft Wood Member Type Sawn (Used for non-slender calculations) Exact Width 1.50 in Allow Stress Modification Factors Wood Species Douglas Fir-Larch Exact Depth 3,50 in Cf or Cv for Bending 1.50 Wood Grade No.2 Cf or Cv for Compression 1.150 p � Ix 5.359+ 900.0 psi Fv 180.0 r Area 5.2509 in 2 9 inA4 Cf or Cv for Tension 1.50 Fh- 900.0 psi Ft 575.0 psi ly 0.9844 in"4 Cm:Wet Use Factor 1.0 Fc-Pill 1,350.0 psi Density 31.210 pcf Ct:Temperature Factor 1.0 Fc-Perp 625.0 psi Cfu:Flat Use Factor 1.0 E:Modulus of Elasticity... x-x Bending y-y Bending Axial Kf:Built-up columns 1.0 NDS 15.a2 Basic 1,600.0 1,600-0 1,600.0 ksl Use Cr:Repetitive? No Minimum 580.0 580.0 Brace condition(or deflection(buckling)along columns: X-X(width)axis: Fully braced against budding about X-X Axis Y-Y(depth)axis: Unbraced Length for Y-Y Axis buckling=8.830 ft,K=1.0 Applied.Loads Service loads entered-Load Factors will be applied for calculations. Column self weight included:10.047 lbs*Dead Load Factor AXIAL LOADS. .. Axial Load at 8.830 ft,0=0.2570,L=2.150 k BENDING LOADS... Lat.Uniform Load creating Mx-x,W=0.010 k!ft DESlGN,St1MMARY ` Bending&Shear Check Results PASS Max.Axial+Bending Stress Ratio = 0.9637:1 Maximum SERVICE Lateral Load Reactions.. Load Combination +D+L Top along Y-Y 0.04415 k Bottom along Y-Y 0.04415 k Governing NDS Forumla Comp Only, fc/Fc' Top along X-X 0.0 k Bottom along X-X 0.0 k Location of max.above base 0.0 ft Maximum SERVICE Load Lateral Deflections... At maximum location values are... Along Y-Y 0.1612 in at 4.445 ft above base Applied Axial 2.417 k for load combination:W Only Applied Mx 0.0 k-ft Applied My 0.0 k-ft Along X-X 0.0 In at 0.0 fl above base Fc:Allowable 477.712 psi for load combination:nla Other Factors used to calculate allowable stresses... PASS Maximum Shear Stress Ratio= 0.02628:1 Bending Compression Tension Load Combination +D+0.60W Location of max.above base 0.0 ft Applied Design Shear 7.569 psi Allowable Shear 288.0 psi '; Load Combination Results: Maximum Axial+Bending Stress Ratios Maximum Shear Ratios Load Combination C D C P Stress Ratio Status Location Stress Ratio Status Location D Only 0.900 0.338 0.1078 PASS 0.0ft 0.0 PASS 8.830 ft +D+L 1.000 0.308 0.9637 PASS 0.0ft 0.0 PASS 8.830 ft +D+0.750L 1.250 0.251 0.7344 PASS 0.0ft 0.0 PASS 8.830 ft +D+0.60W 1.600 0.199 0.1281 PASS 4.385ft 0.02628 PASS 0.0ft +D+0.750L+0.450W 1.600 0.199 0.7773 PASS 4.445ft 0.01971 PASS 0.0 ft • +0.60D+9.60W 1.600 0.199 0.1165 PASS 4.385ft 0.02628 PASS 0.0ft +0.60D 1.600 0.199 0.06160 PASS 0.0ft 0.0 PASS 8.830 ft ... Project Title: .. Engineer: Project ID: Project Descr: Printed:17 APR 2019, 3:16PM "..47it-Wkirl: w. . ..,.It::it:.VAY-!::;,EVVSERtt.AMIRR4RiiIIMA6iDlitieid:601kflefi'4.„11244 SW:TiederiarAve:lkiarib3D3IFRIFIA0r40,%1832833(60..ble#,S4Z. t"7 -rz,r4,.lrrntmtgia::,aug,gg.::imaawmio:qk*:.:18,-.:-'0m?;.i,'. gm;tq: ;,,, ,,§x:,F. - -.,',:,-.r,:::-.•.: drif4ioaioNfRb/iLcANcoo8"-,2oie:tooio.=fto..i .--::::, Lic. # : KW-06002562 Licensee :TM RIPPEY CONSULTING ENGINEERS Description: Typ.load bearing stud wall Maximum.. , „,::::: .. , ., , „„.,„ ,,: .. ..., tceactionsi5:' ,*:..,:.:io. .,-,:,,..,:,.:,, ,:::::,:::,,,,,,,i.,.-.!:i.,,..-!,,,.,...,,.i;,*i Note:Only non zero reactions are listed. X-X Axis Reaction k Y-Y Axis Reaction Axial Reaction My-End Moments k-ft Mx-End Moments - I Load Combination @ Base @Top @ Base @ Top @ Base @ Base @ Top @ Base @ Top 0 Only 0.287 +D+L 2.417 +D+0.750L 1.880 +0+0.60W 0.026 0.026 0.267 +D+0.750L+0,450W 0.020 0.020 1.880 +0.600+0,60W 0.026 0.026 0.160 +0.60D 0,160 L Only 2.150 W Only 0.044 0.044 : - .• . . i. ii...illakinum.Defleathins for Load Combinations • .....•:.:,..... • : :; Load Combination Max.X-X Deflection Distance Max.Y-Y Deflection Distance D Only 0.0000 In 0.000 ft 0.000 in 0.000 ft +D+L 0.0000 In 0.000 ft 0.000 in 0.000 ft +0+0.7501 0,0000 In 0.000 ft 0.000 in 0.000 ft +0+0.60W 0.0000 in 0.000 ft 0.097 in 4.445 ft +0+0.7501+0.450W 0.0000 in 0.000 ft 0.073 in 4.445 ft +0.600+0.60W 0.0000 In 0.000 ft 0.097 in 4.445 ft +0.600 0.0000 In 0.000 ft 0.000 in 0.000 ft L Only 0.0000 in 0.000 ft 0.000 in 0.000 ft W Only 0.0000 In 0.000 ft 0.161 in 4.445 ft I.„$kotche6.-.'', .:I;,.: ...: -1..:;•I..•I...::-..1.-•„:.:':III., :II:: ::: :E:, :: ZI011t 2rtir 11- .:34.4.11i :01.0;.. 11P [i +X - c) in iti:4'5:41 x . a 1' i i R 1 g . 1 1 . i1.50 In MIME 4 r Hi 1 1 I I ' I I t V i � ( � I 1 • 1 i ii j • 1 ;0FrIc p- . i r,R �.. ' •• . i ' . 1 1 II ts =012°I E=1.0I R to S �u�mT-FPrxs�+e) S2. 3.0; Q. 1-z 5 1 ! .I ; i 1 I :� p i1 W= 0 i zt& I : ii �s io• • j 1 j• • DL is psf t o,z5(12) `to,ZS.pfi, i 1 `: j ��SYiW�s�' bil;?' 1 i • 1 � j V&X 1- i1n)< VJ (Z)6roQs lo)'r'ii.,,2 1'et. 1(1"[.(n'l) k>1®pl .. ' - 1 1 _I 1 1 xo.l — a 0 • p1F ` 1) . 1 . . AX @.s4ANC%- W.=(4lb f�(foo i-a\46.2*psF)(1'L.s'• ) _ "17 plf , I ! • V D.I t 2(i:h ) ' 161 1;1c tuLY) , ! . . I X01 . - 141 pS( LN•St)1 I { I M+„@ s+d<<Y W='(?)(opl,�xlo){(4b.2 QS/F,(3'� =33� plf . 1 . 1 V=0,112. (3i.) = 13s 1)1F• .(IAL.r)i • 1 ! , Xo.1 : _ :�� ; plc (no� 1 1 J I ( , ) i j 1SoxW1/sOtAT tiiR. . . . I ! I Min. : . w. (2lobs4)(1n1)-f(bks. (1%) 0b. ss�)(Vo�t�_ 11 of f •• w= 'O.1I2 (ite?fE)', ig. F ?IF. (uL.j • Xo:i • P 17" v1f- (P0i) : 1 1-0\0.K% Iw= z)(1(y)+(io%z}3(toQsh) t*'P2 4 &1I i-i•J 112-k61-1 trY . I : . 1 I V= Q.I I2,t2.15y) 241 pIF (uL) I j : j 10.1 Iio°1 p1� (p D) i I i 1 1 i 1 ..I i i j : • • • I ! I i ; i I I j . ; . I 1 1 i i . I 1 1i I •• I I •1 I i I 1 I 11 TM RI PEY BY KlAl DATE • II ll\]L/. CONSULTING ENGINEERS CHK BY DATE _ 7650 S.W. Beveland St, Suite 100 l\2t 4 nit.iktm &r' Akit• 10BNo i'•6?,:7? Tigard, Oregon 97223 Phone(503)443-3900 SHEET_._ b OF I • - i } : I ! !Hr.( Y , 1 I i i . 1 r I i 1 1 i I 1 . I I I - - :.. 1 : I I 1 1 au f 1 1 1 � INorts}Yie,otAt'H IpIREGlioN i .I I 1 1t34 V3 (.gloK 1 ,N,=\Ali" 141.v1) '1Y> Of (.u,t.-?d 1 i 1 � �, 1 14(�S/3a, S>i i 2(, ,..q'olockad) 31,.0 xio.+o 12se pl4-' ( t"?b; 1 1 1 V6 I I 11 VS 7� i-�1 i 1 I 1 1 I j PY 3 9 1 519: < 1 1 1 N • i ,4 C: : 1 1 1� 1 IEASc/wEs-r U►kF�rtofa � , 1 1 1 1 . I y"'_ " \ie5 _ v \ip,- 1.( 1 IS ' I A 1 — k j 1 - I j I : 1 1 < y-►a-.I4\k/ -r.t.t, = :91' 1)IS-(wi ) . < -t$e pV_ 1 • 1 c • V -z,s D,gOK k b/sK f 1.SIk I Ja < , u,-�lb,s .>' i /t7.coti' P lop-p1r (w1-r� �::2s9 pt f, — - _ I VI,= o.to,s< . - 'Vp=O,b '</a'= z1-1 ptF itkcr) e 2f3 pti\' I • , i I A°R➢ •FoRc�S . . 1 1 r` ••• •• i J I*43"N f °4kAl tk : Mg = D.y 1 k• a T=; S.`(`i k•F•k/,` 4.F'1; = 3s,t lbg i III EAT)WEST' Ms,,,,,,x h 00,c;. ='i•51atr k Fk 1, Ti S-i .c.4/19.u9c : 43o Ibs. 1 ... i I I *DTA -c-OV ' l.ttl- cow. ! I j . i I I I 1 `C®�r=craft . -g : i : 1 I 'U=-k lF x1ci.Sti c °13(a Ibs (uuer 17 43c7,¢ -ek'Y 'llCovr. -01,t 1 T=(RtP1bsXD:!)x2$ = 1(930,fbs. . ns.) c.S14 r::ki0 lbs I I . S u.1- ;- `131? ibs/Z98 = 3.2S) vkse, ' (.-.0-i 1.P. I 1 1 , 1 I I • I I I 1 : 1 I I j I . I . i I I I i TM RIPPEY BY 45MS.DATE__ CONSULTING ENGINEERS CHK BY DATE 7650 S.W. Bevel and St, Suite 100 li244 -1-i{yij '1a.n -toil. JOB NO 1639-?:, Tigard,Oregon 97223 Phone(503)443-3900 SHEET )A1 OF _ jDPIe.R a•I 5t{th4zW1•kU.S I • 1 1 I I . j I • : i � • i I i , � I I I I i .I I 1 • t c f 1 ` i �_ i ; • . : ry : 2': Sic^iio to; : `E(iA) (2) -a I i .. I U iS.leNA. . 0.$1 1 (6.7 =5(07 I . (ASb) I. 1 1 1 . -t! _ .8PVi,slh.' 40.5 Pf1 (4$4) < U k.sl�-4„124)= zin rod .-mte 0 1 1 I \' = t�iIo, )(Ct 2.5� xo25 Ibs <.f( 7 to II-J 1u5 F Qfa' x2. °I" : : I • III ... I i 1 2•s ',T 1 , $(el? 105 . (or?' 'Nip I . 1 I I i 1 i i I I t 1aT C1�OLk M6 (8101td�x6$ '71 ;1iF�' i. ' • I I i L-%cS �J \ • ' 1 1 I ' I 1 I - i . i .. I ; M� . ( 2)(2).. .t .425 k, {. i 1 i i . d 9-U.2x;7y,�t Z� ' I i I t k i 1 T:. (- t+S-,o.42,. /0 i = 3.3(e :(uc� ' Q 2.5' $.L1 K i 1 AtX. SIM'soru wS1.,1/41) t,x? P=42P0;b4 ! ! I .. •vAtlew,,,A1 224-1r'J'Ib5 : • ! 1 ! 1 . I - )-. s e. �tk T- stt2no:i�(�t)�1 .9,K� ilr2oo(z " ?�-42� jC.i2.=2 t . 1- VOTrRE Soo V3 six 7,'$3$ I of liSt.ISd 0(VI C.trf IN- I I • I I i • 1 i t; 4F pf`i-IGI= . :(E/W it ) : ! . , i I . I I \/- 1•Stk (itii.T) Yst,(i=112-1e'l Ibs (tKOC 1 . . I. N. =181o/t11'-33) • I3 .Ip4F (u•i-t) C •-vs. OitetSd64°) lkb4xo9= 384Fp11=. ! 1 1 . I SY>QvY: St1k sEv.: 13(t0A32x0.1) = 1.3G' k'o,i cps a.. s/e x2.a/„ fits&-.E�, 1 carte. ;SPc 29ot3,tot J(13zK2•S)= 7•ao 1 . . ; ! (� i 0T: Ciock $ . Mo =�I•FWXt.f83)= 1 .R8 1 .-. -, 'I • I 1 I pL Q.'i3xls'Qs4)+teb.153(10p5 laa i,,tf PL(ttni�ecioo)=(.?-'>lk 5" j.X3.1-I, 37-jtbs. 1 1 . . j • MR' t0• 9-D,24.4 12.4 10151,- �1?,v02/2 t(3),tbs)(13.bT-5�4.7•1y k,.c+ 1 • i I T= 116i98--1.6 /13:.b7' a (912110,s GD"Sr2.1. -:102-51bs0,g-D) ' 1 i j Vtl..X3",twtlzct( 2153 Ibs I s ; I - . • I 1 :i N S 1 ) . I ! :. `�.LU1" �\oY2 4u�4 Ctt">Z1D 3 I � ( p R. I , ; I V� \A(pv7 .(u.i.'Y) -✓=1Flteo/(2t.t.-1) =,Iq0 p\ -((om) : I 3 4. W:- . 5h2ar.. • 1/ < `.1i32 0. 'k•ILkc -.`Yo"spy 5%q,"QfX2?R".1t2cSr j l 1 :©T Ck�.r,k : Ma =,•7V"}('t'i.9'J')- I`I.31 k.fit 'I I I I . ' DL= *f;' )(.IopSf)4tIAF Dtr.(61,•) -0.4.optr) =SIOF M =(O. I 'f2 (SS)��t•4�)2�z i ( 1a)(2i 41�i7 (°I."15 k, •>w(o. : No hvldawn rt lo( I j, . . . I 1 I I I 1M1::: .. TM RIPPEY • sY KMB- DATE CONSULTING ENGINEERS CHK BY DATE 7650 S.W.Beveland St, Suite 100 li244 Su)--1-Ifat-lean ts\R, JOB NO to ..23 Tigard, Oregon 97223 Phone(503)443-3900 SHEET M kn OF Strong-War'Wood Shearwalls SIMPSON Standard and Balloon Framing on Concrete Foundations Strong-Tie Strong-Wall®Wood Shearwall Standard Application on Concrete Foundation 2,500 pal Concrete 3,000 psl Concrete Strong Wall Allowable se land& Wind : Seismic' Wind - Wood Anchor Anchor. Anchor..` Anchor.' y1 p Allowable Dr9t at Allowable Drift at Allowable Drift at Allowable Drift at Tendon at Tension at Tenalon at Terisicn at Mode (1bp ASD Shear Alow�le pliowable A50 Sflear Allowable Allowable ASP Shear Allowable alowabie ASD Shear Allowable Allewa416 Load, sZwnll°Q: )17.. ��, . ,ear S earT Load, :Shea, pn)1° Shge�alrl7 Pa)11 S(m) A Shrg, • 1,000 1,065 0.31 10,285 1,380 0.43 13,375 1,065 0.31 10,285 1,380 0.43 13,375 WSW12x7 4,000 1,065 0.31 10,285 1,380 0.43 13,375 1,065 0.31 10,285 1,380 0.43 13,375 7,500 1,065 0.31 10,285 1,380 0.43 13,370 1,065 0.31 10,285 1,380 0.43 13,375 1,000 2,475 0.31 13,865 2,980 0.40 16,675 2,475 0.31 13,865 3,225 0.43 18,040 WSW18x7 4,000 2,475 0.31 13,865 2,710 0.36 15,160 2,475 0.31 13,865 3,225 0.43 18,040 7,500 2,475 0.31 13,865 2,395 0.32 13,395 2,475 0.31 13,865 2,910 0.39 16,280 tCS 1,000 5,515 0.29 22,710 5,515 0.32 22,710 5,515 0.29 22,710 5,515 0.32 22,710 WSW24x7' 4,000 5,515 0.29 22,710 5,400 0.31 22,240 5,515 0.29 22,710 5,515 0.32 22,710 CO 7,500 5,515 0.29 22,710 4,950 0.29 20,390 5,515 0.29 22,710 5,515 0,32 22,710 1,000 960 0.39 11,125 1,245 0.53 14,420 ' 980 0.39 11,125 1,245 0.53 14,420 WSW12x8 i.4,000 960 ':' '0,39 11,125 "1,245 0.53 14,420 960 0.39 11,125 1,245 ` :` 0.53 14,420 '0 7,500 960 .`' 0.39 > 11,125 1,155 ' `0.49 13,370 960 0.39 11,125 1,245 0.53 14,420 O `:1,000 2,430 0.39 16,245 2,490 ; 0.42 16,675 2,430 0.39 16,245 ' 2,925 0.50 .119,560 WSW18x8 :4,000 2,430 0.39 16,245 2,265 0.38 15,160 2,430 0.39 16,245 2,695 0.46 18,045 7,500.. `2,430 0.39 16,245 2,000 0.34 ` 13,395 2,430 0.39 16,245.: ..2,435 . `:.0.41 16,280 1,000 ` 4,945 : ` 0.37 24,355 4,840 0.40 23,830 4,945 0.37 ` 24,355 .:5,515 " `0.45 27,150 WSW24x8 4,000 4,945 0.37 24,355 4,515 0.37 22,240 4,945 ' 0.37 24,355 5,360 0.44 26,395 7,500 4,945 0.37 24,355 4,140 0,34 :20,390.. 4,945.' 0.37 < 24,355 4,985 0.41 24,540 C53 1,000 790 0.43 10,310 1,020 0.60 13,335 790 0.43 10,310 1,020 0.60 13,335 WSW12x9 4,000 790 0.43 10,310 1,020 0.60 13,335 790 0.43 10,310 1,020 0.60 13,335 0 7,500 790 0.43 10,310 1,020 060 13,335 790 0,43 10,310 1,020 0.60 13,335 U) 1,000 1,920 0.43 14,505 2,210 0,53 16,675 1,920 0,43 14,505 2,515 0.60 18,980 WSW18x9 4,000 1,920 0.43 14,505 2,010 0,48 15,160 1,920 0.43 14,505 2,390 0.57 18,045 7,500 1,920 0.43 14,505 1,775 0,42 13,395 1,920 0.43 14,505 2,155 0.51 16,280 Via.-_... 1,000 4,190 0,43 23,275 4,290 0.46 23,830 4,190 0.43 23,275 5,035 0.54 27,985 WS0124x9 4,000 4,190 0.43 23,275 4,000 0.43 22,240 4,190 0.43 23,275 4,750 0.51 26,395 7,500 4,190 0.43 23,275 3,670 0.40 20,390 4,190 0.43 23,275 4,415 0.48 24,540 1,000 630 0.50 9175 810 ; 0.67 ,:' 11,810 ` 630 0.50 9,175 810 " 0.67 11,810 i= 2 WSW12x10 `:4,000 630 0.50 9,175 810 0.87 11,810 ' 630 0.50 9,175 810 0.67 11,810 7,500 630 0,50 9,175. 810 067 .11,810 630 0.50 9,175 810 0.67 11,810 1,000 1,715 0.49. 14,440 1980.': 0.59 16,675 1,715 049 14,440 2,225 0.67 18,715 WSW18x10 ',4,000 ; 1,715 ,;0.49 14,440 : :1,800 0.54 15,160 1,715 0.49 14,440 2,145 .` i:0.64 18,045 7,500 1,715 .`0.49 14,440 1,590 ` 0.48 " 13,395 1,715 0.49 14,440 1,935 058 1.6,280 1,000 3,675 048 22,740 3,850:: 054 " 23,830 3,675 048 22,740 4,520 063 27,985. WSW24x10 4,000 3,675. ;'0.48 22,740 3,590.: 0.50 22,240 3,675 0.48 22,740 4,265 060 26,395 7,500 3,675 ` '"0A8.',. 22,740 3,295 : 046 .'.. 20,390 3,675 0.48 22,740 3,965 .0.55 24,540 6 1,000 575 0.55 9,190 735 0.73 11,810 575 0.55 9,190 735 0,73 11,810 WSW12x11 4,000 575 0,55 9,190 735 0.73 11,810 575 0.55 9,190 735 0.73 11,810 7,500 575 0.55 9,190 735 0.73 11,810 575 0.55 9,190 735 0.73 11,810 1,000 1,510 0.53 14,010 1,800 0.67 16,675 1,510 0.53 14,010 1,975 0.73 18,335 WSW18x11 4,000 1,510 0.53 14,010 1,635 0.61 15,160 1,510 0.53 14,010 1,945 0.72 18,045 7,500 1,510 0.53 14,010 1,445 0.54 13,395 1,510 0.53 14,010 1,755 0.65 16,280 1,000 3,295 0.53 22,485 3,490 0.58; 23,830 3,295 0.53 22,485 4,100 0,69 27,985 WSW24x11 4,000 3,295 0.53 22,485 3,260 0.55 22,240 3,295 0.53 22,485 3,865 0,65 26,395 7,500 3,295 0.53 22,485 2,985 0.50 20,390 3,295 0.53 22,485 3,595 0.60 24,540 See toonotes on page 43. M 1 t 42 Strong-Wall"Vlood Shearwalls SIMPSON Standard and Balloon Framing on Concrete Foundations Strong-Tie Strong-Wall®Wood Shearwall Standard Application on Concrete Foundation (cont.) 2,500 psi.Concrete 3,000 psi Concrete • • • Strong Wall. Allowable Seismic' .`: Wind • Seismic' Wind Wood Vertical Anchor. Anther Anchor :Anchor.. Shearwall : toad p Allowable Drift at Allowable Drift at Allowable Drift at Allowable Drift at Tension at Tensim at Tension at Tension at Model',;:, 01)y :•ASO Shear Allowable Allowtlle ASD Shear Allowable Movable ASD Shear Allowable Allowable ASDShear Allowable. Allowable Load,V; Shear,A ; SheerT Load,V ' Shear)A Shear,? Load,V Shear)A, Sheer,T Load,V. Shear Shear,Tf Ob•) 0114 6b,),+ 01) oil.) {Ib)„ 44 " {I ' b.)n 0b.} `; M} ;. ob.y+ • 1,000 485 0.62 8,540 625 0.80 10,915 485 0.62 8,540 625 0.80 10,915 WSW12x12 4,000 485 0.62 8,540 625 0.80 10,915 485 0.62 8,540 625 0.80 10,915 7,500 485 0.62 8,540 625 0.80 10,915 485 0.62 8,540 625 0.80 10,915 1,000 1,340 0.58 13,580 1,645 0.75 16,675 1,340 0.58 13,580 1,755 0.80 17,770 WSW18x12 4,000 1,340 0.58 13,580 1,495 0.68 15,160 1,340 0.58 13,580 1,755 0.80 17,770 7,500 1,340 0.58 13,580 1,320 0.60 13,395 1,340 0.58 13,580 1,605 0.73 16,280 1,000 2,920 0,58 21,795 3,195 0.66 23,830 2,920 0.58 21,795 3,750 0.77 27,985 CO WSW24x12 4,000 2,920 0.58 21,795 2,980 0.61 22,240 2,920 0.58 21,795 3,540 0.73 26,395 7,500 2,920 0.58 21,795 2,735 0.56 20,390 2,920 0.58 21,795 3,290 0.68 24,540 ((Li • 1,000 1,190 0.63 19,065 1,515 0.85 16,675 1,190 0.63 13,065 1,555 0.87 - 17,100 r WSW18x13. 4,000 1,190 .'. 0.63. 13,065 1,380 0.77: 15,180 1,190 `0.63 ` 13,065 1,555 0.87 ' 17,100 Cl) 7,500 1,190 ' 0.63 13,06,5 1,220 0.68 .i 13,395 1,190 " `0.63 `13,065 1,480 0.83 16,280 'Z} 1,000 2,590 - :'0.64 20,970 2,945 0.74 : 23,830 2,590 0.64 20,970 3,445 0.87 ` 27,865 O WSW24x13 '4,000 2,590 0.64 '20,970 '.2,750 0.69 22,240: 2,590 '`.0.64 • 20,970 3,260 6.82 ` 26,395 • 7,500 2,590 0.64 20,970 2,520 = ` 0.63 20,390 2,590... '.0.64. 20,970 3,035 0,76 24,540 ° 1,000 960 0.69 11,580 1,245 0.93 14,995 960 0.69 11,580 1,245 0,93 14,995 WSW18x14 4,000 960 0.69 11,580 1,245 0.93 14,995 960 0.69 11,580 1,245 0.93 14,995 1,000 2,175 0.69 19,300 2,685 0.89 23,830 2,175 0.69 19,300 2,815 0.93 24,970 WSW24x14 4,000 2,175 0.69 19,300 2,505 0.83 22,240 2,175 0.69 19,300 2,815 0.93 24,970 1,000 830 0.79 11,420 `1,085 1.07 14,945 830 0.79 11,420 1,085 1.07 14,945 0 WSVJ18d51. .'4,000 830 0.79 - 11,420 1,085 1.07 14,945 830 0.79 11,420 .1,085. 1.07•• 14,945 W5W24x16 . 1,000 1,810 0.80 18,330 2,350 1.04 23,830 1,810 0.80 18,330 2,400 1.07 24,355 4,000 1,810 0.80 ` 18,330 2,195 0.97 22,240 1,810 0.80 18,330 2,400 1,07 [: 24,355 1,000 650 0.90 10,105 855 1.20 13,225 650 0.90 10,105 855 1.20 13,225 WSW18x18° 4,000 650 0.90 10,105 855 1.20 13,225 650 0.93 10,105 855 1.20 13,225 n_x u 1,000 1,420 0.92 16,220 1,890 1.20 21,555 1,420 0.92 16,220 1,890 1.20 21,555 WSW24x18° 4,000 1,420 0.92 16,220 1,890 1.20 21,555 1,420 0.92 16,220 1,890 1.20 21,555 1,000 545 1.03 9,385 700 1.33 12,020 545 1.03 9,385 700 1.33 12,020 WSW18x20 • 4000 545 .` 1.03 9,385 700 1.33 12,020 545 1.03 9,385 700 1.33 12,020 1,000. 1,180 1.02 14,940 1,510 1.33 19,140 1,180 ' 1.02 14,940 1,510 1.33 19,140 WSW24x20 4,000.. `. 1,180.: 1.02 14,940 1,510 1.33 19,140 1,180 1.02 14,940 1,510 1.33 19,140 ti 1. Allowable shear loads are apptcabie to installations on concrete with 7. A11 panels taller than 18'require a 2x6 minimum full-height stud attached to o specified compressive strengths as listed using the ASD basic(IBC Section each side.Attach using 10d common nails at 16'o.c. 1605.3.1)or the alternative basic(IBC Section 1605.3.2)load combinations. 8. See page 44 for allowable out-of-plane and axial capacities. 2. Load values include evaluation of bearing stresses on concrete foundations 9. WSW24x7 must be trimmed from a WSW24x8 shearwall,WSW18x14,16, and do not require further evaluation by the Designer.For instalations on and 18,and WSW24x18 shearwalls are trirn med from a 20 ft.tal panel. masonry foundations,bearing capacity shall be evaluated by the Designer. l0,Drifts at lower design shear may be meaty reduced. 3. Seismic design based at 2015 IBC using R=6.5.For other codes,use the 11.Tabulated anchor tension values assume no resisting vertical load.Anchor seismic coefficients corresponding to light-frame bearing walls with wood tension made at design shear values and inducing the effect of vertical bad structural panels or sheet-steel panels. be detetmi ed using th$followfr equation: 4. Allowable vertical load denotes the total ma>amun concentric vertical bad T=l(V x H /B)-P/2,vim: permitted on the panel acting in combination with the allowable shear loads. T=Anchor tension load(lb.) 5. Allowable shear,drift and anchor tension values may be Interpolated for V=Design shear load(m.) intermediate height or vertical loads.For panda 741i"-78'tall,use the P=Applied vertical load(lb.) values for a 78'-1al panel. H=Panel height fin.) 6. High-strength anchor bolts are required for anchor tension farces B=Moment arm(in.);8.06'for WSW 12, exceeding the allowable load for standard-strength bolts tabulated on 13.94'for WSW18,18.94'for WSW24.pages 53-54.See pages 52-59 for WSW-AB anchor bolt i nfamatbn ------------------ ._..._....,___-.� and anchorage salutbns. ML2 43 i I I ... ..I i. I I ! I ! I !0F1 lcar 10) • i I . I iI I I I I4.,E to a :t.N�t.L �u�b y i ( '1 11?) , I. , I ; i 1 a,Sb,ergvil.sel�iion :(O 1I 1101:4) • I -v-a'4, 1�,f.1.s'. 94 1f i Cu�-,r) �-Jt �0`1 Air, . . ; 1 ' Slu.ots .spl ,.gt=.61.A11es/(giXOh' .13.E ' I r. 1 : - i V-St.94.:,'-s1s� 5/?i`�)(2Sli I 1 ki1.5,„ I ; 1 cvnc.sP1= 2�40b lb /(RIx25)- 10'5$' _I I I I 0T C.h�.c1'.'. kilo (81,2K tb�(0,4011, 7(o.7 .l {� • I I ; .. I . H I I �L-: to1'](14ps4-(B.'b `x%op,.i) R( plE -b\ trte0 (am awp4r'rt, 'd.n . -s�Es' I ' I ).4 = [0•15'42'(�T9)9, t/z. 33`r' le F� MR(r slkc,r ev,a� - $3)09 ',k.fd ly.v i •. .. . T=(i.u7-'S..bw k.e.4)/41;s= `64 lbs.. . I . vtz:a' ; U-z i I I • ' -a 14oyltitem ,tt-L-i'on (l50 14)tlII) : 1 I 1 I V �\."W k)(15,o-(16o;uxi' =i VII 1bs - . ^11=871/c5•4.B'= vy p1F <-ti5 I Csa 5 A s n uh,r inn I • I 16T.Check:. 1"10 :`1iG°l k•1"# 1 • _1 , ��= (0(6 NAC)•-(t.e3 06,ps-t)=22`4 p� L I I I MR-0O:t54•2)(22` tt () . 8)21z = l ' '9' k••f 11.^0 I I: - I 1 i 1 1 ' I I i ! I i I I )K WMl Al e.F11, of 5TA12S t i LEfw Dt[t) a i V:= Ibs ( zt) ,-� W = 1.50/3' 2I1 plF(w1•11> <30`I CIF : 4 I _ i" �_ • S'tua.r•. t1.Se l2) 4nChoi3 I j 3`1 13� 1 I I ! : :gr.: 4 Max Its vo.�ins'(�8.43'?a'=5.1N k• - nvg.spAo ' • , 3 1 L t.3')- Re plc : • 'Pt,(t0.a)=(et>3'�(10 is4 s‘2il '*iflpIF ' 1 MR- 101542I_Qko tCx331/2.i-i tl( xlo.•?-)'-/]=5 el.. -t >;k0 no VIPIA.v?ri t tc6{c� . i : 1 1 . . I • i I 1 i j s I . IhilK TM RIPPEY CONSULTINGBY KM� .DATE ENGINEERS ENGINEERS - BY DATE 7650 S.W. Beveland St, Suite 100 N24k-1 %w "Tit aria-rt Ave. JOB No 1S3227 _ Tigard,Oregon 97223 SHEET M13 or Phone(503) 443-3900 � t P: : I i I 1 I i III : : : i i 'Fou.tclAon I;argd 2. s A i 11 1 • 1 , 1 • i 1 1 1 i 1 I d t?t— !G- ! SV ` wf. i • - 3 ! Igt.3 11—.14, I 1 .v j I . ' 11 , 1 1 vb 1 3 ' 1.5 g.t 1 y t 1 • .. i 1 --�i vx 1 •2� DL C1. i Sy I wt. ` . -7 Q i 11'1 _.1 1 I 1 1 i - • • i 1 i D 0.4. +O(/1W _ :5;(/(1';(8}1'i1)— D•( e3.I+o1) 14.de,9.K ; I : 1 DL = 0 to X (01G KaF,X--)(A) 4d6,: 1 ' 1 ' ' 4(0.\4v....c-Io.$)(is'x1 ) {S\abin4er;or-3 i 1 • • I � I .4[o la I�rx:21X('� '( S O'0.4 1C�Cttor3 1 1 t '' 1 i ' -} 'fv!". 102-(ol' t z ,0:, ,tea' rI .43 x I'(" `111•iCK ! , : 1 I - 95%_Cvkkv\Giik rn.�>=(0,Z5�(y �D01(2 t.4 3.t2i3 S ^82-2k• ! >71.2-(D+c)-Il.t; i-o•Sw=3 £,: 9_ i I o.Vc_(Dt .yua S) to.*2� W (S0"Y IS')c .1(?3.10K >> to(Y,;')' k`113ti . I 1 1 I tutu 1 W 0,0016 (I$"X6o:' Z. R. in$ .a lci)#. 1 0.= O.23I1-% i I Qs: = ,+V- ' > b 3rernn� 6.ut' 12s'22 2_ kitrl11"l 1 k " ; (I,:..t /'- ` i - u-&—k ..big,-,V�=1.2p-!-l•ceS+O-Sc� — • tl ' & .1(-7 ,o+n-kralS 1 i 1 . i : f•2b + 4W +O.SS =. te.9:1 . 1 : I I y = 2f.23k f0.1?la() bm�� in1 1:."--1 bi5 fo nv =J,4` ing) 1 I 1 As— 9-.1. ; /omslt0: 0,0tti ina i - 1 i 1 1 • . I TM RIPPEY BY 11 Y 1M�J DATE ]1 CONSULTING ENGINEERS CHK BY DATE _ 7650 S.W. Beveiand St, Suite 100 1i24`1 SW T1 elk rnAi(1 AV? 1, IoBNO ig✓2✓ Tigard, Oregon 97223 Phone(503) 443-3900 _ SHEET F1 OF • I I 1 , i = • (I"ounda-hvn arSct;3qi4 I l ' I. I III I i i. I DL ia_ •tom W.t ! ! I . I : I : ' .1 I I I 1 1 I h. i \ /1 • v 1 i `J - I i i 1 Y •O .F 1 SL c1t- 1 1 1 X . I i . : ; O.tdD i-D.la(.0 `P. ' 04,/3.01-6,1) b.U(ii 2t IH.'7� -12 gy K 1 I i • I i Tel 1 L r t M tc'• Et.R.\p 2?Ari ' , I . I 1 12,934-1F,:.� -1.312c�t'-F` 2,0q-�.�{ -1 4.t�?>tc)L1t : I _ 14? r. t.Ski t x I -iiiGK ' IAse 6'` " '!l•" I .. ! i . 1 1 ' I _� of = 10."IlD'tin. i . i • z . Mn= 1-t 13 k m 14.2.n K•C-� > 'Mu C'' �°� rt/i :1.2 . x s.-is= `7:41 k f•F; 1 • 1 i , I . 1 i 1 ' I 1 1 I -Chr sk -t e,i \J l.zDtIi.ws�-o' lo,4ak I • I .1.294 w.+oss = 9;4 43 i 4.. ._ 1 ka iD,'W -/M,ixia" 0.19 ivla '-": Li)- -y ;(� �0.201h)-� 1 1 1 • I ' 1 I 1 I I I I ' 1 1 i i ILA I - TM RIPPEY BY CMS DATE CONSULTING ENGINEERS CHK BY DATE 7650 S.W. Beveland St, Suite 100 U244 Sw Tit.filt.1'nan {hle.• JOB NO 19343 Tigard,Oregon 97223 Phone(503) 443-3900 SHEET T 2 OF is � i � I I pwndct-lior\ ��Yic& i)' � i I Rxn oi, 1 0- sI- _I 1 1 I 1 1 I y ;Co3 3 to I. . 14.3 I E ' ! -...r i ` i i Vx I r12 1, , I I � I . I I I I I I Up1 i � C� taU..F O,(o 1 ) = 12.t 2� I E. i : E I I I 6 �.(, • ' p.i x, rk).*t6)(1,-,-.1-. 4,t-'�o tC y xi),+(o is �.�-(q 1tis l o R2� s �)(o.tr i j k L' w&nc. wails . .i I I I ' 12 ta•m• 83111 4- 0.Cr(A 1 oltA - ! III 1 i ' : 4-- =19" `f.'7Fp' Al E-:..C.arri-o(s U �} 41 ':7 L-T ' SAME-s1e i I ' Beavlytaa.-• b'tc..+sl ?�:•�k / isno pc� � : 3:13' I i ! , I I I i ^t ,�\ OrcPl8 '(L�')(t-1")=i t.15 Ina --,j , (b) 5 F.m.15ar; : 1 i I I ; -11',rus4. -lj ,: a Vy: t. b }t,iDS i-O,Sw 25.93 ka,c. - = o.-l-irna: 0 1 'I l2•ln 1e.: -a - fig= 0,23'rn.2 (I)IS I I . ourlda- ioyt :(C€IrIck 3; Sty) . R.XY1t Vt." G- sr.- wt•-: Pi.... i. (conc. wauA • �1 3,4 • 2.a 14,4 rg 1 1 it2.311, \/,1 0.le .� Sao ..._,b(� ,• I , Vx --. . _ In.)� Uplr ek : o:41)i-0.tpkF -5.82 : F r>L.< 0•to X CtkA(oFx15:%el.S)+ co t2P(%.P)+o ISM -t- (t0,q�.t 1`-11 �2).-7)(0 q i • ! Egoe6--3 !Csos 3 ; >_ ,u • [coa•ti w.64.11.' I I S,p3 K: c t2,yVtp 4:0P18A 4.O.DR4A j .;:k-Yto ;u0l-F4 i a.vcn wO•11\0& (• wet ; i Seuvi.n. b•t G+S = 32.41k f. I Soa KC, `i 61$ 1431 1 &w• ( t 41 1S) =�r-I'-l.60k/`I•.to915 ZVSLI IM-P • i o.00te,j16'x51D') t.$tu„ - -3' (to) "1'r'2.-: 'Eaw, :T3or • ' 0r,,n= ,w�-1 k•>.n -• Izz k• ,> ►�u= L �1)(4�,y -1: )zc-Xy.(e,) S:4,6 k + 1 I TTIn s-e ;--1e: t..9-\ V:/+-o,SW 10.44k .-7 . S . of 1q `"1 6) . I t.2n+w+o,„S _ 1.45 I • I I • ' 11 ,LA TM RIPPEY BY >4M5 DATE CONSULTING ENGINEERS CHK BY DATE 7650 S.W. Beveland St, Suite 100 1124L-1 SW Tyo_dn Alva PSVt, JOB NO t8323 Tigard,Oregon 97223 Phone(503}443-3900 SHEET .5 of 1 . , t_ t l I I . I . . i . i I 1. . I foun�a-4-inn.(find `1;. A� 1 1 AL C>.. :5L i W:L. [ ` i 1 I Yy 3i0 I 10,0 3`r •h2,io% 1 ; I 1 1 j v' K 102- b 3 1 2 4 5. 1 1 I . . ; Li ; Vx � ; j f ? �2, � j I I . I `f' I � Up11f�1• • O14D-t0 (�W = i-2.o k II I UU 0,b X (0.16){n.5 L7. �z-t it-1,1 4_)(3 Co lS),�,O,K-+1. It , j i� '. t If sukq i :&XV 4AtL jr !CPS I I 1 .. 2„0,'{ - 4 7Ok t O.o1+A `; , J .ug+ 11if IlGtd.Cdi-Por 4c..1 1'i'i- : I I i I , . I ' I tk n D}CkS = 7�K. I � $ � 5 6 aj ; I 1 i I �Mc :n7fG,NI (k) .11 /i oopsC1. P.' I *i.e. 31n„t) Xi4";1}1tcI. I � ' I Ve pvncht"�� .(d.' X4 -,(-»D (i1" 2xi�+2rltl) s laf3lo8 � (.�+I.bS�o.Sw� It lbt`: I Pcgn,,,1= D.00i ((H")(3V"} o q1 :in' (3} s , 1 1 I I Thn.�s� -tie.: ; 1,21••)�ww+d6s 5.7k - i 0.t! .:'in . I I 1 I I i I ' 1 I i I i Fovnd.cttion (Ewc '4 9 C.) I . . i T1(Y1 Pi- CA- •SL i j ttiL i I :Pfc- * z to,lK < ii,Sr- (4n-0(4;A) s .. �q I;N o.a 3tT -P•� 1 V� o.a. 1 o) ' o.s ti,i n;ist Etd 9 R A Vx i -7-- •i ,tr I I I Ulo?VI k: 0 leb t 0.1QiA.) - 2I` i ; j ; 1 1 . •-rE* DL( .mz as 8hd Li ik) . '�.2K f{:7d +0.0i'.6q 4,-. i I,e nat- .6 kplit+ I , i I-i usS g+1 tK v'-i-, g `t{-t -r ate ;Re. A-4 4*,A 1 j I , Ii .. i I r • E j 1 I i i 1 { I , /r ' RI TM PPEY BY K!-kS=DATE 11 YY CONSULTING ENGINEERS CHK BY DATE 7650 S.W. Beveland St, Suite 100 1121-1y -ie.a.tyri.exti A\it. 108 NO 1b31... Tigard, Oregon 97223 Phone(503) 443-3900 SHEET Fy OF j. 1 : 1 ! ( • I . : : 1 1 ! ! ! ! ! i ! ! 'Ci & 1' 'c.ounda-I-,an` C.i•li.0.1, ' 1 1 i ' 1 I 1 iN10.)( LOQa1 3 i i ! ' I . 1 . i . ' . 1 . I DL=(9i1) (_.'1-'(J,3 :5L•=q$1 , w L��'10 / _.`3 5 ! ..4/lcrpp sp j' ;•Z 2 21 1 : I • i • I FTC U4 04 ( �o• tA+(o.is)(11 s' (0,).1•(o t./�(�p 1 (01 .--yk'1_tih'� i , .. 1 1 I : 1 • �� '� :L$LNE:: : , Csoi+-'J 1 • Ceou@.wgLL-3 I ! i . 1 7 t: in.l�t +,q o¢4>�:A-Ob I-1.A: 1 1 ii y Et1-1�" =� 2 �851 11 1 • I I 1 ! 1 yt-11' : 3.'-1 ' :e ! 1 . 1 1 - • I II . I b�aX � 1fIn st .= :Fik ' A = 0.-157 iin? rc (4) -Lt I 1 : ! i 1 j I I 1 • I I I I • I 1 • 1 I • I ' • I 1 1 I 1 I i 1 1 • • 1 I 1 I ! I ! I i • i I ! � 1!I I 1M A TM RIPPEY BY K►�� DATE CONSULTING ENGINEERS CHK BY DATE 7650 S.W.-Beveland St, Suite 100 1124I-I SW —fitcktwna.n ilk/L. JOB NO i3323 Tigard,Oregon 97223 Phone(503)443-3900 SHEET \ OF arco Building Systems REACTIONS BUILDER: PREFABRICATED STEEL BUILDING SOLUTION... CUSTOMER: GREENBURG TEAM ONE. LLC JOB NUMBER: 16-B-47573 Notes 1) The reactions provided are based on the Order Documents at the time of mailing. Any changes to building loads or dimensions may change the reactions. The reactions will be superseded and voided by any future mailing. 2) The reactions provided have been created with the following layout(unless noted otherwise). a) A reaction table is provided with the reactions for each load group. b) Rigid Frames (1) Gabled Buildings (a) Left and Right columns are determined as if viewing the left side of the building,as shown on the anchor rod drawing,from the outside of the building. (b) Interior columns are spaced from left side to right side. (2) Single Slope Buildings (a) Left column is the low side column. (b) Right column is the high side column, (c) Interior columns are spaced from low side to high side. c) Endwails (I) Left and Right columns are determined as if viewing the wall from the outside. (2) Interior columns are spaced from left to right. d) Anchor rod size is determined by shear and tension at the bottom of the base plate. The length of the anchor rod and method of load transfer to the foundation are to be determined by the foundation engineer. e) Anchor rods are ASTM F1554 Gr.36 material unless noted otherwise on the anchor rod layout drawing. t) X-Bracing (1) Rod Bracing reactions have been included in values shown in the reaction tables. (2) For IBC and UBC based building codes,when x-bracing is present in the sidewall,individual longitudinal seismic loads(RBUPEQ and RBDWEQ)do not include the amplification factor,Cis. (3) For IBC and UBC based building codes,when x-bracing is present in the endwall,individual transverse seismic loads(EQ)do not include the amplification factor,fia 3) Reactions are provided as un-factored for each load group applied to the column. The foundation engineer will apply the appropriate load factors and combine the reactions in accordance with the building code and design specifications to determine bearing pressures and concrete design. The factors applied to load groups for the steel column design may be different than the factors used in the foundation design. a) For projects using ultimate design wind speeds such as 2012 IBC,2015 IBC,or 20I4 Florida building code,the wind load reactions are at a strength value with a load factor of 1.0. b) For 1BC codes,the seismic reactions provided are at a strength level and do not contain the rho factor. c) For NBCC codes,the seismic reactions provided do not contain the Ra*Ro factor. The manufacturer does not provide"maximum"load combination reactions.However,the individual load reactions provided may be used by the foundation engineer to determine the applicable load combinations for his/her design procedures and allow for an economical foundation design. R1 n /1/1,I.1,,n • FRAME ID #1 USER NAMEidlcarIsom DATE' 2/11/19 PAGE' 1-3 ms4 70, /22. /10, 323 20. /120. JOB NAME' 47573A FILET frame_1,fra SUPPORT REACTIONS FOR EACH LOAD GROUP *LOCATION Grldllnes$ 1 NOTES.<1) All reactions are in kips and kip-ft. TIME; 131 27324 (2> The seismic overstrength factor (0mega> Is not Included In -the 'RBDWEQ' and `RBUPEQ' Load Group reactions. Seismic 'BASE-ONLY' combination reactions include an overstrength factor of' 2.000 (3> Primary wind load cases are not concurrent. C4> X-bracing reactions CRBPULW and RBUPEQ) are combined with LWL and LEQ groups only. REACTION NOTATIONS �� 4�3 ��CL HL f HI H2 H3 HR iVL 'Vl 'V2 'V3 ' VR ® ® Iw-D I ® w-A LOAD GROUP REACTION TABLE GRIDLINES w = 1 COLUMN w-F w-A w-E w-D w-C LOAD GROUP HL VL LNL HR VR LNR H1 VI LN1 H2 V2 LN2 H3 V3 LN3 DL 0. 0 �0, 7( 0, 0 -0. 0 -O:% 0, 0 0, 0 0. 9 0. 0 0. 0 -r O. 0 O. 0 1. 0 0, 0 CELL 0. 0 0, 3 0. 0 -0. 0 0, 4 0, 0 0, 0 0. 77! 0, 0 0, 0 0. 8' 0. 0 0. 0 0. 9 0, 0 SNOW 0. 1 1, 4 0, 0 -0. 1 1. 81 0, 0 0, 0 13. 0, 0 0, 0 3 8 0. 0 0, 0 4, 0 0, 0 LL 0. 0 �1. i 0. 0 -0. 0 1, 5 0, 0 0, 0 2. 5 0, 0 0, 0 3. 0 0, 0 0, 0 3. 2 0. 0 RBDWEQ -0, 0 5. 6 0, 0 0. 0 -0, 0 0, 0 0. 0 -0. 1 0. 0 0, 0 -0. 0 0, 0 0, 0 -0. 0 0. 0 EQ -1. 2 -3. 0 0, 0 -1. 0 2. 0 0. 1 -0. 0 3. 4 0. 1 -0. 0 -0. 6 0. 1 -0, 0 0. 6 0. 1 RBUPEQ 0, 1 -5,6 -4. 7 -0. 1 0. 1 0, 0 -0, 0 0. 1 0. 0 -O. 0 -0. 0 0, 0 -0. 0 0. 0 0. 0 WL1 -3, 1 -6, 3 0. 0 -3, 3 1. 1 0. 0 -0, 0 0, 3 0. 0 -O. 0 r-6, 3' 0, 0 -0. 0 -2. 5 0, 0 WL2 -4. 0 -5. 2 0. 0 -2. 4 2. 3 0. 0 -0. 0 � .1�.�1 0. 0 -0. 0 -4. 7 0. 0 -0. 0 -1. 1 0. 0 -- l WL3 3. 5 3, 0 0. 0 3. 0 )-5. 6t 0. 0 0, 0 -i, y[ 0. 0 0. 0 -2. 1 0, 0 0. 0 1-5. 31 0. 0 WL4 2. 6 4, 1 0, 0 , -4. 3 0. 0 0. 0 -6. 6 0, 0 0, 0 -0. 5 0. 0 0. 0 -3. 9 0, 0 LWL1 1. 9 --2. 3 0, 0 -1, 4 -2. 9 2. 3 -0, 0 -4. 5 3, 7 -0, 0 -5. 3 4. 5 -0. 0 -3, 3 4, 9 RBUPLW 0,-7 -10, J� -8.,5, -0, 1 0. 2 0. 0 -0, 0 0, 2 0. 0 -0, 0 -0, 0 0, 0 -0. 0 0, 0 0. 0 LWL2 \1. 3 2. g 0. 0 -1. 9 --3, 1 2. 3 -0. 0 -0. 9 3, 7 -0, 0 -3. 1 4. 5 -0. 0 -3. 9 4, 9 LWL3 1. 0 -1. 2 0. 0 -0. 5 -1. 6 -2, 3 0. 0 -3. 6 -3. 7 0. 0 -3, 7 -4, 5 0. 0 -1. 9 -4. 9 LWL4 0. 4 -1. 8 0. 0 -1. 0 -1. 8 -2. 3 0, 0 -0. 0 -3. 7 0, 0 -1. 5 -4. 5 0. 0 -2. 5 -4, 9 RS 0, 0 0, 1 0. 0 -0. 0 0. 4 0. 0 0. 0 0, 3 0, 0 0. 0 0. 1 0. 0 0, 0 1. 5 0. 0 LS 0, 0 0, 4 0. 0 -0. 0 0, 2 0. 0 0. 0 0, 8 0. 0 -0. 0 I. 5 0, 0 -0. 0 1. 2 0. 0 -R?),I7WLw 10.1 -0, LOAD GROUP DESCRIPTION DL ' Roof Dead Load COLL I Roof Collateral Load SNOW Roof Snow Load LL Roof Live Load RBDWEQ Downward Acting Rod Brace Load from Long. Seismic EQ Lateral Seismic Load Cparallel to plane of frame] RBUPEQ Upward Acting Rod Brace Load from Long. Seismic WL1 , Wind from Left to Right with +GCpI WL2 ' Wind from Left to Right with -GCpi WL3 I Wind from Right to Left with +GCpI WL4 Wind from Right to Left with -GCpI LWL1 Windward Corner Left with +GCpI RBUPLW I Upward Acting Rod Brace Load from Long. Wind LWL2 Windward Corner Right with +GCpI LWL3 I Windward Corner Left with -GCpI LWL4 I Windward Corner Right with -GCpI RS Unbalanced Right Roof Snow Load LS I Unbalanced Left Roof Snow Load R2 FRAME ID #1 USER NAND dtcarlson DATE: 2/11/19 PAGE! 1-4 ms4 70, /22. /10,323 20, /120. JOB NAME' 47573A FILE:frame_1, fra SUPPORT REACTIONS FOR EACH LOAD GROUP *LOCATION' Gridlines: 1 NOTES' (1) All reactions ore In kips and kip-ft. TIME' 13: 27' 24 (2) The seismic overstrength factor (Ome a> Is not included In the 'RB➢WEQ' and 'RBUPEQ' Load Group reactions. Seismic 'BASE-ONLY' comb!nation reactions Include an overstrength factor ofi 2. 000 (3) Primary wind toad cases are not concurrent. (4) X-bracing reactions CRBPULW and RBUPEQ) are combined with LWL and LEQ groups only. REACTION NOTATIONS V\l � V�2 V V�� HL� V '/H1 '/ H2 ' H3 Arr. HR IVL V1 rV2 V3 VR ® ® I*-D I ® 4-A LOAD GROUP REACTION TABLE GRIDLINES * = 1 COLUMN w-F 4-A w-E *-D *-C LOAD GROUP HL VL LNL HR VR LNR H1 V1 LNI H2 V2 LN2 H3 V3 LN3 RBDWLW -0. 0 10, 7 0, 0 0. 0 -0. 1 0. 0' 0, 0 -0, 3 0. 0 0. 0 -0, 0 0, 0 0, 0 -0. 0 0. 0 LOAD GROUP DESCRIPTION RBDWLW : Downward Acting Rod Brace Load from Long. Wind R3 FRAM ID N1 USER NAME; dl car lson DATE; 2/11/19 PAGE; 1-5 ns4 70, /22. /10.323 20. /120, JOB NAME; 47573A FILE; frame_l,fra SUPPORT REACTIONS FOR EACH LOAD GROUP sLOCATION; GridlInes; 1 NOTES; (1) All reactions are in k i ps and k i pp-f t, TIME; 13; 27+ 24 (2) The seismic overstrength factor (Omega) is not Included in the 'RBDWEQ' and 'RBUPEQ' Load Group reactions. Se ism lc 'BASE-ONLY' combination reactions include an overstrength factor of; 2. 000 (3) Primary wind load cases are not concurrent. (4) X-bracing reactions (RBPPLW and RBUPEQ) are combined with LWL and LEQ groups only. REACTION NOTATIONS H4 I V4 (NE-B 1 LOAD GROUP REACTION TABLE GRIDLINES w = 1 COLUMN s-B LOAD GROUP H4 V4 LN4 DL 0. 0 1, 0 0, 0 COLL -0. 0 0. 9 0. 0 SNOW -0. 0 3, 9 0. 0 LL -0. 0 3. 1 0, 0 RBDWEQ -0. 0 0. 0 0. 0 EQ 0, 0 -2, 4 0. 1 RBUPEQ 0, 0 -0. 1 0. 0 WL1 0. 0 1 6, 51 0. 0 WL2 0. 0 -5. 2 0, 0 WL3 -0. 0 -2. 3 0. 0 WL4 -0, 0 -1, 0 0. 0 LWL1 -0. 0 -1, 9 4. 6 RBUPLW 0, 0 -0. 3 0. 0 LWL2 -0. 0 -5. 7 4, 6 LWL,3 0. 0 -0, 7 -4, 6 LWL4 0. 0 -4. 5 -4. 6 RS -0. 0 1. 7 0, 0 LS 0. 0 0. 2 0, 0 RBDWLW -0, 0 0. 1. 0. 0 LOAD GROUP DESCRIPTION DL Roof Dead Load COLL ; Roof Collateral Load SNOW 1 Roof Snow Load LL ; Roof Live Load RBDWEQ Downward Acting Rod Brace Load from Long. Seismic EQ ; Lateral Seismic Load [parallel to plane of frame] RBUPEQ Upward Acting Rod Brace Load from Long, Seismic WL1 Wind from Left to Right with +GCpI WL2 Wind from Left to Right with -GCpI WL3 Wind from Right to Left with +GCpi WL4 ; Wind from Right to Left with -GCpI LWLI I Windward Corner Left with +GCpi RBUPLW Upward Acting Rod Brace Load from Long. Wind LWL2 ; Windward Corner Right with +GCpi LWL3 r Windward Corner Left with -GCpI LWL4 . ; Windward Corner Right with -GCpI RS ; Unbalanced Right Roof Snow Load LS Unbalanced Left Roof Snow Load REDWLW _ Downward Acting Rod Brace Load from Long. Wind R4 FRAME ID #2 USER NAME' dicarlson DATE' 2/11/19 PAGE' 2-3 cs 70. /22,/16. 344 20. /120,/ JOB NAME' 47573A FILE' frame_2.fro SUPPORT REACTIONS FOR EACH LOAD GROUP *LOCATION' Gri di.lnes' 2 NOTES' (1) All reactions are in kips and kip-ft. TIME' 14' 21' 03 <2) The seismic overstrength factor (Omega) Is not Included In the 'RBDWEQ' and 'RBUPEQ' Load Group reactions. Seismic 'BASE-ONLY' combination reactions Include an overstrength factor of 2.000 <3) Primary wind load cases are not concurrent, <4) X-bracing reactions (RBPULW and RBUPEQ) are combined with LWL and LEQ groups only. REACTION NOTATIONS r V4_ HI- DiC+S: ?OMI" U.2x p -c4-0l4Si-0..16w: 2-1.T q,2 ��� u 1 s' K HL ..70.40i.a,le° HR O.lely - p {).(#(i2,,bko = 13aa. � VL VR .-Vie, '. 1+2 .S 1›A"; i-o,SWr-1`2 13 ® x-A 1•2)b06w t 0-SS 121> 4I.IFS ' I4•.05 LOAD GROUP REACTION TABLE GRIDLINES w = 2 COLUMN w-F w-A LOAD GROUP HL VL LNL HR VR LNR DL 1. 3 3. 0 0, 0 -1, 3 3. 1 0. 0 COLL 1. 8 3. 6 0. 0 -1. 8 3. 1 0, 0 SNOW 8, 1 14. 3 0, 0 -B. 1 14. 3 0, 0 LL 6. 5 11. 4 0, 0 -6, 5 11, 5 0. 0 RBDWEQ -0, 0 5, 5 0. 0 0. 0 -0. 0 0. 0 EQ -1. 5 -0, 9 0, 3 -1, 6 0. 9 0, 0 RBUPEQ 0. 0 -5. 5 -4, 7 -0, 0 0. 0 0. 0 WL11 -14. 0 0. 0 2. 4 -9. 2 0, 0 WL2 -7, 7 -8. 0 0. 0 0. 9 -3. 2 0. 0 WL3 -2, 2 -9. 1 0, 0 9. 1 -13, 8 0. 0 WL4 -0. 8 , -3. 2 0. 0 7. 6 -7, 8 0. 0 LWL1 -3. 0 -12, 8'1 -4. 0 3, 4 -10, 4 0, 0 RBUPLW 0. 1 '-10, 4 -8. 6 -0. 1 0. 0 0. 0 LWL2 -a 2 'tU72 -4, 0 2. 7 -12, 6 0. 0 LWL3 -1, 5 -6, 9 3, 4 2. 0 -4. 4 0. 0 _LWL4 -1. 7 -4. 2 3, 4 1. 2 -6, 6 0, 0 RS 1. 9 2, 3 0. 0 -1. 9 4. 3 0. 0 LS 2, 2 4. 1 0. 0 -2, 2 2, 7 0. 0 VgpwLW 1o.1 '/1 1"{a - A LOAD GROUP DESCRIPTION • _ . DL Roof Dead Load DtCAS 5 COLL , Roof Collateral Load SNOW ' Roof Snow Load ptG48'ISSA-0A5W LL ' Roof Live Load RBDWEQ i Downward Acting Rod Brace Load from Long. Seismic o,4w- 0.(pt1;,6'= 13.,2.`1, EQ ' Lateral Seismic Load [parallel to plane of frame] RBUPEQ ' Upward Acting Rod Brace Load from Long. Seismic WL1 ' Wind from Left to Right with +GCpI WL2 ' Wind from Left to Right with -GCpi WL3 Wlnd from Right to Left with +GCpi WL4 Wind from Right to Left with -GCpI LWL1 ' Windward Corner Left with +GCpi RBUPLW ' Upward Acting Rod Brace Load from Long, Wlnd LWL2 ' Windward Corner Right with +GCpI LWL3 i Windward Corner Left with -GCpi LWL4 i Windward Corner Right with -GCpi - RS ' Unbalanced Right Roof Snow Load LS ' Unbalanced Left Roof Snow Load R5 • FRAME ID #2 USER NAME' dl car lson DATE' 2/11/19 PAGE' 2-4 cs 70./22. /16.344 20, /120./ JOB NAME' 47573A FILE' frame_2, fra SUPPORT REACTIONS FOR EACH LOAD GROUP ■LOCATION, OrldlInes' 2 NOTES (I) Al l reactions are in kips and k i p-f t. TIME' 141 211 03 (2) The seismic overstrength factor (Omega) is not included in the 'RBDWEQ' and 'RBUPEQ' Load Group reactions, Se ism lc 'BASE-ONLY' combination reactions Include an overstrength factor ofi 2,000 (3) Primary wind load cases are not concurrent. (4) X-bracing reactions <RBPULW and RBUPEQ) are combined with LWL and LER groups only. REAETION NOTATIONS /77 f H I_ ---7. HR 'I VL l VR LOAD GROUP REACTION TABLE GRIDLINES A = 2 COLUMN *-F IN-A LOAD GROUP HL VL LNL HR VR LNR RBDWLW -0, 0 10, 4 0, 0 0. 0 -0, 0 0. 0 LOAD GROUP DESCRIPTION RBDWLW 1 Downward Acting Rod Brace Load from Long. Wind • 1 R6 FRAME ID #3 USER NAME' dlcar lson DATEc 2/13/19 PAGE' 3-3 cs 53, 024/23. 4144/16, 20,/1 JOB NAME' 47573B FILE' frane_3.fro SUPPORT REACTIONS FOR EACH LOAD GROUP ■LOCATION! Grldlines, 3 NOTE& (1) Al l reactions are in kips and kip-ft. TIME!09, 331 48 (2) Primary wind load cases are not concurrent (3) X-bracing reactions <RBPULW and RBUPEO) are combined wlthLWL and LEg groups only. REACTION NOTATIONS 1ILL Lhl1� J *SD 5.0 K p•kCkS D,lrul=ale/ 11 J:P-1''2:C4(-0-. HL -- -- HR IVL IVR ix-SD *-A LOAD GROUP REACTION TABLE GRIDLINES S = 3 COLUMN w-SD s-A LOAD GROUP HL VL LNL HR VR LNR DL "0, E. 3, 4 0. 0 -0. 6 3, 81 0. 0 CULL 0. 8 2. 9 0. 0 -0. 8 2, 3 0. 0 SNOW 3. 6, L 14.1L 0. 0 -3, 6 j`0, 5. 0. 0 LL 2. 8 11. 1 0. 0 -2. 8 8, 4 0. 0 EQ -1. 8 -1. 6 0. 9 -1. 9 1. 5 0. 0 WL1 -5. 5 -13. 1 0. 0 -1. 1 -6. 1 0. 0 WL2 -6,0 -7, 6 -0. 9 -1. 6 0. 0 LWL 1 0, 9 -11. 2 (f 6. LA 0. 1 -7. 9 0. 0 LWL2 0. 4 -11. 4 6, 1 -0, 3 -E=T-71 0, 0 LWL3 0. 4 -5. 8 -6, 1 0. 3 -3. 4 0, 0 LWL4 -0. 1 -6. 0 -6. 1 -0. 1 -5, 1 0, 0 WL3 1. 5 -9. 9 0. 0 5. 8 -11, 2 0. 0 WL4 1. 0 -4. 5 0. 0 01 -6. 7 0. 0 RS 0. 9 1, 9 0, 0 9 3. 0 0. 0 LS 0, 8 3, 8 0, 0 -0. 8 1. 6 0. 0 LOAD GROUP DESCRIPTION --- DL I Roof Dead Load COLL I Roof Collateral Load klP.ln SNOW Roof Snow Load LL , Roof Live Load EQ ' Lateral Seismic Load {parallel to plane of frame] WL1 Wind from Left to Right with +GCpi WL2 Wind from Left to Right with -GCpI LWL1 Windward Corner Left with +GCpi LWL2 Windward Corner Right with +GCpi LWL3 Windward Corner Left with -GCpI • LWL4 Windward Corner Right with -GCpi WL3 Wind from Right to Left with +GCpi WL4 i Wind from Right to Left with -GCpi RS u Unbalanced Right Roof Snow Load LS i Unbalanced Left Roof Snow Load R7 FRAME ID #4 USER NAME' d icor'son DATE' 2/11/19 PAGE' 4-2 ssml 30. 125/22./10, 20, /120 JOB NAME' 47573A FILE' frame_4, fro. SUPPORT REACTIONS FOR EACH LOAD GROUP *LOCATION' Grldlines' 4 NOTES'(1) All reactions are in kips and kip-ft. TIME' 11' 12' 14 (2) Primary wind toad cases are not concurrent. (3) X-bracing reactions (REPULW and RBUPEQ) are combined withLWL and LEQ groups only, REACTION NOTATIONS HL-• f HI HR IVL 1VI IVR OMUI s-B EMI LOAD GROUP REACTION TABLE GRIDLINES m = 4 COLUMN s-A s-C m-B LOAD GROUP HL VL LNL HR VR LNR H1 V1 LN1 DL 0, 2 3. 0 0. 0 0. 2 1, 4 0, 0 0, 0 0. 91 O. 0 CELL 0, 3 0.a', 0. 0 0, 1 t0. 81_ 0. 0 -0. 0 00 Z, 0. 0 PSLI O. 0 0, 6 0. 0 -0, 0 -0. 0 0. 0 0. 0 0, 5 0. 0 PSL2 0. 0 -0, 0 0. 0 -0, 0 0. 5 0. 0 -0, 0 0. 5 0, 0 SNOW 1. 2 `3, 71' 0, 0 0, 5 `3. 91 0. 0 -0, 0 1_3.j a 0 LL 1. 0 3. 0 0. 0 0, 4 3, 1 0. 0 -0, 0 2. 6 O. 0 EQ -1. 5 -2. 3 0. 2 -1. 1 1, 7 0. 7 O. 0 0. 6 0, 5 WL 1 -3. 8 - . 4 0. 0 -3, 4 -2. 8 0. 0 0. 0 -4. 2 0. 0 WL2 -4. 5 -4. 9 0. 0 -2. 3 -0. 8 0. 0 0, 0 �-3, 3 0. 0 LWL1 1. 5 -3. 7 2, 4 -1. 8 -5. 4 5. 6 0, 01 " " 4. 7 LWL2 1. 0 -3, 4 2, 4 -a 3 -6. 0 5. 6 0, 0 -1. 7 4. 7 LWL3 0. 8 -2, 2 -2. 4 -0. 6 -3. 4 -5, 6 -0. 0 -3. 4 -4. 7 LWL4 0, 3 -1, 9 -2. 4 -1. 2 -3. 8 -5. 6 -0. 0 -0. 8 -4. 7 WL3 3. 5 1, 1 0, 0 3, 0 i-V., 4 0. 0 -0. 0 -3. 8 0, 0 WL4. 2. 8 ` 2. 6 0, 0 4, 1 -6, 2 0. 0 -0. 0 -2. 9 0, 0 LOAD GROUP DESCRIPTION DL ' Roof Dead Load COLL ' Roof Collateral Load PSLI ' Pattern Snow Load [PSLxx] PSL2 ' Pattern Snow Load [PSLxx] SNOW Roof Snow Load LL ' Roof Live Load EQ ' Lateral Seismic Load [parallel to plane of frame] WL1 ' Wind from Left to Right with +GCpI WL2 Wind from Left to Right with -GCpi LWLI ' Windward Corner Left with +GCpi LWL2 Windward Corner Right with +GCpi LWL3 Windward Corner Left with -GCpi LWL4 Windward Corner Right with -GCpi WL3 ' Wind from Right to Left with +GCpi WL4 i Wind from Right to Left with -GCpi ADDITIONAL NOTES, ( 1 ) Pattern live or snow load cases are not concurrent with any other live or snow load cases. • R8 FRAME ID 05 USER NAME' dlcarlson DATE' 2/13/19 PAGE' S-2 • pf 14, 375/22, main building a JOB NAME' 47573A FILE' frame_portal_gl a. fra SUPPORT REACTIONS FOR EACH LOAD GROUP LOCATION' buys 2-(Gr l d i i ne A) TLME' 09i ODi 22 NOTES' (1) All reactions are In kips and kip-ft. (2) Primary wind load cases are not concurrent, (3) X-bracing reactions (RBPULW and RBUPEQ) are combined wIthLWL and LEO groups only, REACTION NOTAT ONS HL— VL VR w-LEFT w-RIGHT LOAD GROUP REACTION TABLE GRIDLINES w = A COLUMN 4-LEFT w-RIGHT LOAD GROUP HL VL LNL HR VR LNR DL 0. 0 0, 7 0. 0 -0. 0 0. 7 0. 0 LEO -2, 5 -8. 8 0. 0 -2, 6 8. 8 0. 0 LWL1 -4. 2 -14, 7 0. 0 -4. 4 14. 7 0. 0 LWL2 4. 4 14. 7 0. 0 4. 2 -14. 7 0. 0 LOAD GROUP DESCRIPTION DL Roof Dead Load LEQ Longitudinal Seismic Load LWL1 Wind from Left to Right with +GCpI LWL2 i Wind from Right to Left with -GCpi R9