Loading...
Specifications 13t157 2b21-001 I b-113 st° 2 DECEIVED CITY OF TIGARD BUILDING DIVISION Structurai OFFICE copy En i n e e r i n g Design G { N F S'/O Project Name : PORTLAND COMMUNITY COLLEGE w 62618PE ' Project- Number : 21-0610-12 - _ - (IR • G3i3OA1E OF REG\ Date : 06/22/21 �'GQIAO ‘,,J 07/21/2021 Street Address: 6713 SWV BONITA RD, BLDG C #200 EXPIRES: 06-30-2022 City/State : PORTLAND, OR 97224 Mingqiao Zhu, PE/ P.Eng 1428 N Shevlin Court Scope of Work : STORAGE RACK Sewickley, PA 15143 1 1815 Wright Ave La Verne. CA 91750 Tel: 909,596.1351 Fax: 909.596,7186 By: Bz Eng: Mqz Project: PORTLAND COMMUNITY COLLEGE Project#:21-0616-12 TABLE OF CONTENTS Title Page 1 jj Table of Contents 2 Design Data and Definition of Components 3 Critical Configuration 4 Seismic Loads 5 to 6 Column 7 Beam and Connector 8 to 9 Bracing 10 Anchors 11 Base Plate !z Slab on Grade 13 Other Configurations PORTLAND COMMUNITY COLLEGE TYPE B Pa9e Z of 2. 6/18/2021 Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Bz Eng. Mqz Project: PORTLAND COMMUNITY COLLEGE Project#:21-0616-12 Design Data 1)The analyses herein conforms to the requirements of the: 2018 IBC Section 2209 2019 CBC Section 2209 ANSI NH 16.1-2012 Specifications for the Design of Industrial Steel Storage Racks'2012 RMI Rack Design Manual" ASCE7-16, section 15.5.3 2) Transverse braced frame steel conforms to ASTM A570, Gr.55, with minimum strength, Fy=55 ksi Longitudinal frame beam and connector steel conforms to ASTM A570, Gr.55, with minimum yield, Fy=55 ksi All other steel conforms to ASTM A36, Gr. 36 with minimum yield, Fy= 36 ksi 3) Anchor bolts shall be provided by Installer per ICC reference on plans and calculations herein. 4) All welds shall conform to AWS procedures, utilizing E70xx electrodes or similar. All such welds shall be performed in shop, with no field welding allowed other than those supervised by a licensed deputy inspector. 5)The existing slab on grade is 5" thick with minimum 2500 psi compressive strength. Allowable Soil bearing capacity is 750 psf. The design of the existing slab Is by others. 6) Load combinations for rack components correspond to 2012 RMI Section 2.1 for ASD level load criteria Definition of Components A _us_ Cobmt / l Beam 1 (_Z _4 Horizonte! Brace Beam to Q irm Cbnroec tor Diagonal Brace F.anp . . I{Nigtrt • . • • • • Beam v,d,ot. Spacing Basel�lateand I Anchors T J. 1 Beam Iighi �- length 14.Frame Dept h Front View: Down As1 Section Al Cross Aisle fLoncItudinai) Frame fTransverse I Frame i I PORTLAND COMMUNITY COLLEGE TYPE D Page 3 of 35 Gil 8/202 1 Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Bz Eng: Mqz Project: PORTLAND COMMUNITY COLLEGE Project#:21-0616-12 ji Configuration &Summary: TYPE B SELECTIVE RACK N - - T i h **RACK COLUMN REACTIONS 42„ ASD LOADS AXIAL DL= 751b 68" `� A AXIAL LL= 3,000 lb 54" SEISMIC AXIAL Ps=#/- 1,470/b 192 192 BASE MOMENT= 8,000In-/b s. 36" 68' 3T A ..„ 1 4- inion -I 96" -f - 44" Seismic Criteria # Bm Lvls Frame Depth Frame Height # Diagonals Beam Length Frame Type Ss=0.86, Fa=1.156 2 44 in 192.0 In 4 96 in Single Row Component Description STRESS Column Fy=55 ksi SPCRK FH-20/3x3x14ga P=3075 Ib, M=14523 in-lb 0.58-OK Column &Backer None None None N/A Beam Fy=55 ksi SpaceRak S8416M 4.125 in x 0.06 in Lu=96 in Capacity: 5050 lb/pr 0.59-OK Beam Connector Fy=55 ksi Lvl 1: 3 pin OK I Mconn=9810 in-lb Mcap=12691 In-lb 0.77-OK Brace-Horizontal Fy=55 ksi Sperack 1-1/2x1-1/4x14ga 0.11-OK _ Brace-Diagonal Fy=55 ksi Sperack 1-1/2x1-1/4x14ga 0.23-OK Base Plate Fy=36 ksi 8x5x0.375 Fixity= 8000 In-lb 0.61-OK Anchor 2 per Base 0.5"x 2" Embed HILTI KWIKBOLT TZ ESR 1917 No Inspection (Net Seismic Uplift=636 Ib) 0.358-OK Slab &Soil 5" thk x 2500 psi slab on grade. 750 psf Soil Bearing Pressure 0.31-OK Level Load** Story Force Story Force Column Column Conn. Beam Per Level_ Beam Spcg Brace Transv Longit. Axial Moment Moment Connector 1 3,000 lb 68.0 in 36.0 in 230 lb 231 lb 3,075 lb 14,523 "# 9,810 "# 3 pin OK 2 3,000 lb 68.0 In 36.0 in 461 lb 462 lb 1,538 lb 7,854 "# 4,727 "# 3 pin OK 54.0 in 42.0 In 1 I **Load defined as product weight per pair of beams Total: 691 lb 693 lb Notes 1 PORTLAND COMMUNITY COLLEGE TYPE 13 Page If of -26- 6/1 8/202 I • Structural Engineering & Design Inc. . 1615 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Bz Eng: Mqz Project: PORTLAND COMMUNITY COLLEGE Project#:21-0616-12 I Seismic Forces Configuration: TYPE B SELECTIVE RACK Lateral analysis Is performed with regard to the requirements of the 2012 RMI ANSI MN 16.1-2012 Sec 2.6&ASCE 7-16 sec 15.5.3 Ss= 0.860 Transverse (Cross Aisle) Seismic Load S1= 0.392 V= Cs*Ip*Ws=Cs*Ip*(0.67*P*Prf+D) vt Fa= 1.156 Cs1= Sds/R Fv= 1.908 = 0.1657 Cs-max * Ip= 0.1657 Sds=2/3*Ss*Fa= 0.663 V *' Cs2= 0.044*Sds min= 0.015 Sh1=2/3 S1 Fv= 0.499 = 0.0292 Eff Base Shear=Cs= 0.1657 It.tnlre.)1ck:Isacatlon Ca=0.4*2/3*Ss*Fa= 0.2651 Cs3= 0.5*S1/R Ws= (0.67*PEKE, * PL)+DL (RMI 2.6.2) (Transverse,Braced Frame Dlr.)R= 4.0 = 0.0490 = 4,170 lb Ip= 1.0 _ Cs-max= 0.1657 Vtransv=Vt= 0.1657 * (150 lb +4020 lb) PRFI= 1,0 Base Shear Coeff=Cs= 0.1657 Etransverse= 691 lb Pallet Height=hp= 48.0 in Limit States level Transve, e seismic shear per upright DL per Beam Lvl= 75 lb Level PRODUCT LOAD P P*0.67*PRFj DL hl wl*hi Fi FI*(hi+hp/2) 1 3,000 lb 2,010 lb 75 lb 68 In 141,780 230.3 lb 21,188-# 2 3,000 lb 2,010 lb 75 lb 136 in 283,560 460.7 lb 73,7124 sum: P=6000 lb 4,020 lb 150 lb W=4170 lb 425,340 691 lb 2=94,900 Longitudinal (bownaisle) Seismic Load Similarly for longitudinal seismic loads,using R=6.0 Ws= (0.67* PLAF2* P) + DL PRF2= 1.0 '''`" 1__:_"9 C51=5d1/(T*R)= 0.1662 = 4,170 lb (Longitudinal,Unbraced Dlr.)R= 6.0 Cs2= 0.0292 Cs=Cs-max*Ip= 0.1662 T= 0.50 sec `"�" "w `". Eig Cs3= 0.0327 Vlong= 0.1662 * (150 lb +4020 lb [:�" i;;,,w `77 ,-"••,i Cs-max= 0.1662 Elongltudinal= 693 lb Limit Status Level tongh:seism*shear per up,gkt Level PRODUC LOAD P P*0.67*PRF2 DL hi wi*hi R Fmht View 1 3,000 lb 2,010 lb 75 lb 68 in 141,780 231.0 lb 2 3,000 lb 2,010 lb 75 lb 136 in 283,560 462.0 lb sum: 4,020 lb 150 lb W=4170 lb 425,340 693 lb • PORTLAND COMMUNITY COLLEGE TYPE 8 Page S of " F/l 8/202 I Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596,1351 Fax: 909.596,7186 By: Bz Eng. Mqz Project: PORTLAND COMMUNITY COLLEGE Project#:21-0516-12 - Downaisle Seismic Loads Configuration: TYPE 5 SELECTIVE RACK Determine the story moments by applying portal analysis. The base plate is assumed to provide partial fixity. Seismic Story Forces Typigl Frame made Vlong= 693 lb TNhu try arca °fiw°Gann ns Vcol=Vlong/2= 347 lb °flack(rams F1= 231 Ib } p,,\.•:' :4;;:, i :�,.�, L'mA `i ..:;`�• :�,.:`,,; Typical Frame made F2= 462lb i $ aftwocolumns F3= 0 lb - = 1 : :t i`.e .,.-.. -—'1� .:'-i,NN's 1. ‘ q T° Ykxt 14— 96' s , Front„Yisw :hie VIM Seismic Story Moments conceptual systern COL Mbase-max= 8,000 in-lb <__=Default capadty h1-eff= hi - beam clip height/2 Mbase-v= (Vcol*hleff)/2 = 65 in Vco! = 11,261 in-lb <_==Moment going to base I-_eiT Mbase-eff= Minimum of Mbase-max and Mbase-v h2 = 8,000 in-lb M 1-1= [Veal * hieff]-Mbase-eff M 2-2= [Vcol-(F1)/2] * h2 __' _ (347 lb * 65 in)-8000 in-lb = [347 lb- 231 Ib3*68 in/2 = 14,523 in-lb = 7,854 in-lb hi .§ Mseis= (Mapper+Mlower)/2 A Beam to Column Mseis(1-1)= (14523 in-lb + 7854 in-lb)/2 Mseis(2-2)= (7854 in-lb + 0 in-lb)/2 Elevation = 11,188 In-lb = 3,927 in-lb rho= 1.0000 Summary of Forces LEVEL hi Axial Load Column Moment** Mseismic** Mend-fixity Mconn** Beam Connector 1 68 in 3,075 lb 14,523 in-lb 11,188 in-lb 2,826 In-lb 9,810 In-lb 3 pin OK i 2 68 in 1,538 lb 7,854 in-lb 3,927 In-lb 2,826 in-lb 4,727 in-lb 3 pin OK I Mconn= (Mseismic+ Mend-fixity)*0.70*rho Mconn-allow(3 Pin)= 12,691 in-lb **all moments based on limit states level loading PORTLAND COMMUNITY COLLEGE TYPE 5 Page 6 of 2S G/18/2021 Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Bz Eng: Mqz Project' PORTLAND COMMUNITY COLLEGE Project#:21-0616-12 - Column (Longitudinal Loads) Configuration: TYPE B SELECTIVE RACK Section Properties Section: SPCRK FH-20/3x3x14ga 1,0_ 3.000 in _ti Aeff= 0.643 in^2 Iy= 0.749 InA4 Kx = 1.7 x Ix = 1.130 inA4 Sy = 0.493 In^3 Lx = 65.9 In r..:._I- 7 Sx = 0.753 in^3 ry= 1,080 in Ky= 1.0 rx = 1.326in 1 y-•-•r - wl 3.000in Fy= 55 ksi Ly = 36.0 in 52f= 1.67 Cmx= 0.85 Cb= 1.0 4 _ 10.075 i I E= 29,500 ksi II 0,7s in x 4 Loads Considers loads at level 1 I COLUMN DL= 75 lb Critical load cases are:RMI Sec 2.1 COLUMN PL= 3,000 lb Load Case 5::(1+0.105*Sds)D + 0.75*(1.4+0.145ds)*B*P+ 0.75*(0.7*rho*E)<= 1.0, ASD Method Mcol= 14,522 in-lb axial load coeeff 0.7837158*P seismic moment coefic 0.5625*Mcol Sds= 0.6628 Load Case 6: :(1+0.14*Sds)D+(0.85+0.14Sds)*B*P+(0.7*rho*E)<=1.0, ASD Method 1+0.105*Sds= 1.0696 axial load coeti`.• 0.65995 seismic moment coelf.• 0,7*Mcol 1.4+0.14Sds= 1.4928 By analysis, Load case 6 governs utilizing loads as such 1+0.14Sds= 1.0928 0.85+0.14*Sds= 0.9428 Axial Load=Pax= 1.092792*75 lb+0.942792*0.7*3000 lb Moment=Mx= 0J*rho*Mcol B= 0.7000 = 2,062 lb = 0.7* 14522 in-lb rho= 1.0000 = 10,165 in-lb Axial Analysis KxLx/rx = 1.7*65,9375"/1,326" KyLy/ry = 1*36"J1.08" Fe > Fy/2 = 84.5 = 33.3 Fn= Fy(1-Fy/4Fe) 2- 27 5 ksi = 55 ksi*[1-55 ksi/(4*40.7 ksi)] Fe= n^2E/(KL/r)max^2 Fy/2=- = 36.4 ksi = 40.7ksi Pa= Pn/Qc 1 Pn= Aeff*Fn Qc= 1.92 = 23430 lb/1.92 = 23,430 lb = 12,203 lb 1 P/Pa= 0.17 > 0.15 Bending Analysis Check: Pax/Pa + (Cmx*Mx)/(Max*px) S 1.0 P/Pao + Mx/Max _< 1.0 Pno= Ae*Fy Pao= Pno/Qc Myield=My= Sx*Fy 0.643 in^2 *55000 psi = 353651b/1.92 = 0.753 In^3 * 55000 psi = 35,365 lb = 18,419 lb = 41,415 in-lb Max= My/S21 Pcr= n^2EI/(KL)max^2 _a`. = 41415 in-lb/1.67 = n^2*29500 ksi/(1.7*65.93751n)^2 = 24,799 in-lb = 26,184 lb px= {1/[1-(Qc*P/Pcr)]}^-1 = {1/[1-(1.92*2062lb/26184Ib)))^-1 = 0,85 Combined Stresses {2062 lb/12203 lb) + (0.85*10165 in-lb)/(24799 in-Ib*0.85) = 0.58 < 1.0, OK (EQ C5-1) (2062 lb/18419 lb) + (10165 in-lb/24799 In-lb) = 0.52 < 1.0, OK (EQ C5-2) **For comoarison, total column stress computed for load case 5 is: 52.0% no loads 2431.36695 lb Axial and M= 7624 in-lb PORTLAND COMMUNITY COLLEGE TYPE B Page 7 of 25- 6l 18/20?_I • Structural i i Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909:596.1351 Fax: 909.596.7186 By: Bz Eng: Mqz Project: PORTLAND COMMUNITY COLLEGE Project* 21-0616-12 BEAM Configuration: TYPE B SELECTIVE RACK DETERMINE ALLOWABLE MOMENT CAPACITY t 2.50In A) Check compression flange for local buckling (82,1) 1.63In $1 w- c- 2*t -2*r T ' = 1.625 in -2*0.06 in - 2*0.06 in I r--------! f = 1.385 in _______________ 1.625 in w/t= 23.08 1=lambda= [1.052/(k)^0.5] * (w/t) * (Fy/E)^Q.5 Eq. B2.1-4[1.052/(4)^Q.5) * 23.08 * (55/29500)^0.5 4.1251n0.524 < 0.673, Flange is fully effective Eq. B2.1-1 0.060 in B) check web for local buckling oer section b2.3 f1(comp)= Fy*(y3/y2)= 50.29 ksi f2(tension)= Fy*(y1/y2)= 102.06 ksi Y= f2/f1 Eq. B2.3-5 Beam= SnaceRak 564104 4.125 in x 0.06 in = -2.029 1 Y ^3 + 2* 1 Y Ix= 1.589 inA4 k= 4 + 2* ( } ( ) Eq. B2.3-4 Sx= 0.729 in^3 = 65.64 flat depth=w= yl+y3 Ycg= 2.723 in t= 0.060 in = 3.885 in w/t= 64.75 OK Bend Radius=r= 0.060 in i=lambda= [1.052/(k)^0.5] * (w/t) * (f1/E)^0.5 _ [1.052/(65.64)^0.5) * 3.885 * (50.29/29500)^0.5 FY=Fyv= 65.00 ksi Fu = 0.347 < 0.673 =Fuv= 65.00 ksi be=w= 3.885 in E= 29500 ksi be(3-Y) b2= be/2 Eq B2.3-2 top flange=b= 1.625 in bl== be(3- ) = 1.94 in bottom flange= 2.500 in 0.773 Web depth= 4.!Ic ,^ b1+b2= 2.713 In > 1.2825 in, Web Is fully effective - Fr Determine effect of cold working on steel yield ooint(Fya) per section A7.2 f,cnl Fya= C*Fyc + (1-C)*Fy (EQ A7.2-1) IF t - Lcorner=Lc= (p/2) * (r+ t/2) f t 0.141 in C= 2*Lc/(Lf+2*Lc) r2 I Lflange-top=Lf= 1.385 in = 0.169 in r3 m= 0.192*(Fu/Fy) - 0.068 (EQ A7.2-4) depth = 0.1590 Bc= 3.69*(Fu/Fy) - 0.819*(Fu/Fy)^2 - 1.79 (EQ A7.2-3) ' = 1.427 since fu/Fv= 1.18 < L2 Ycg ri and r/t= 1 < 7 OK then Fyc= Bc * Fy/(R/t)Am (EQ A7.2-2) illrzne eroe> = 78.485 ksi Thus, Fya-top= 58.97 ksi (tension stress at top) Fya-bottom= Fya*Ycg/(depth -Ycg) l = 114,48 ksiy1= Ycg-t-r= 2.603 in (tension stress at bottom) y2= depth-Ycg= 1.403 in Check allowable tension stress for bottom flange Lflange-bot=Lfb= Lbottom - 2*r*-2*t y3= yZ t r= 1.283 in = 2.260 in Cbottom=Cb= 2*Lc/(Lfb+2*Lc) = 0.111 Fy-bottom=Fyb= Cb*Fyc + (1-Cb)*Fyf = 57.61 ksi l Fya= (Fya-top)*(Fyb/Fya-bottom) .+ = 29.68 ksi if F= 0.95 Then F*Mn=F*Fya*Sx=, 20.55 in-k &, If Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.591.7186 By: Bz Eng: Mqz Project: PORTLAND COMMUNITY COLLEGE Project#: 21-0616-12 BEAM Configuration: TYPE 8 SELECTIVE RACK RMI Section 5.2, PT II Section Beam= SpaceRak SB416M 4.125 in x 0.06 in Ix=Ib= 1.589 in^4 2.50 in Sx= 0.729 in^3 t= 0.060 in E= 29500 ksl f 1.63In 3 —~ Fy=Fyv= 55 ksi F= 300.0 Fu=Fuv= 65 ksi L= 96 in f Fya= 59.0 ksl Beam Level= 1 j 1.625In P=Product Load= 3,000 lb/pair I D=Dead Load= 75 tb/pair 4.—4.125 in '* 1. Check Bending Stress Allowable Loads 0.060 In Mcenter=F*Mn= W*L*W*Rm/8 W=LRFD Load Factor= 1.2*D + 1.4*P+1.4*(0.125)*P RMI2.2,item FOR DL=2% of PL, W= 1.599 Rm= 1 2*F*L 6*E*lb + 3*F*L 111111N111111111111111111111111t111111111111 [( )/( )] 1 - (2*300*96 in)/[(6*29500 ksi*1.589 inA3)+(3*300*96 in)] ; = 0.843 if F= 0.95 r.eam<e Then F*Mn=F*Fya*Sx= 40.84 in-k . . . Thus, allowable toad per beam pair=W= F*Mn*8*(# of beams)/(L*Rm*W) I Beam = 40.84 in-k * 8 * 2/(96in * 0.843 * 1.599) Length = 5,050 lb/pair allowable load based on bending stress ;—;• ; Mend= W*L*(1-Rm)/8 = (5050 Ib/2) * 96 in * (1-0.843)/8 = 4,757 in-lb @ 5050 lb max allowable load • = 2,826 in-lb @ 3000 lb imposed product load 2. Check Deflection Stress Allowable Loads Dmax= Dss*Rd Rd= 1 -(4*F*L)/(5*F*L + 10*E*Ib) Allowable Deflection= L/180 = 1 - (4*300*96 in)/[(5*300*96 in)+(10*29500 ksi*1.589 in^4)] = 0.533 in in Deflection at Imposed Load= 0.317 in if Dmax= L/180 Based on V180 Deflection Gnteria • and Dss= 5*W*L^3/(384*E*Ib) L/180= 5*W*L^3*Rd/(384*E*Ib*# of beams) solving for W yields, W= 384*E*I*2/(180*5*LA2*Rd) 384*1.589 1nA4*2/[180*5*(96 In)'.2*0.812) = 5,345 lb/pair allowable load based on deflection limits Thus, based on the least capacity of item 1 and 2 above: Allowable load= 5,050 lb/pair Imposed Product Load= 3,000 lb/pair I Beam Stress= 0.59 Beam at Level 1 8,1 Structural Engineering & Design Inc. 1815 Wright Ave I a Verne CA P1750 Tel• 90P 596 1351 Fax• POP 6PR 7186 By: Bz Eng: Mpz Project: PORTLAND COMMUNITY COLLEGE Project#: 21-0616-12 3 Pin Beam to Column Connection TYPE B SELECTIVE RACK I he beam end moments shown herein show the result of the maximum induced fixed end monents form seismic +static loads and the code mandated minimum value of 1.5"/0(DL+PL) Mconn max= (Mseismic+ Mend-fixity)*D.70*Rho Mr i„ C rho 1.0000 = 9,810 in-lb Load at level 1 2' n7 Ir C 1/2" 1P" Connector Type= 3 Pin Shear Capacity of Pin Pin Diem= 0.44 In Fy= 55,000 psi Ashear= (0.438 in)A2 * Pi/4 = 0.1507 inA2 Pshear= 0.4 * Fy *Ashear = 0.4 * 55000 psi * 0.1S07inA2 = 3,315 fb Bearing Capacity of Pin tcol= 0.075 in Fu= 65,000 psi Omega= 2.22 a= 2.22 Pbearing= alpha * Fu * diam * tcol/Omega = 2.22 * 65000 psi * 0.438 In * 0.075 in/2.22 = 2,135 lb < 3315 lb Moment Capacity of Bracket Edge Distance=E= 1.00 in Pin Spacing= 2.0 in Fy= 55,000 psi C= P1+P2+P3 tclip= 0.18 in Sclip= 0.127 inA3 = P1+P1*(2.5'/4.57)+P1*(0.574.5") = 1.667 * P1 Mcap= Sclip * Fbending C*d= Mcap = 1.667 d= E/2 = 0.127 inA3 * 0.66 * Fy _ 0.50 in = 4,610 in-lb Pclip= Mcap/(1.667 * d) = 4610.1 In-1/(1.667 * 0.5 in) Thus, P1= 2,135 lb = 5,531 lb Mconn-allow= [P1*4.5"+P1*(2.574.5")*2.5"+P1*(0.5"/4.5")*0.5") = 2135 LB*(4,5"+(2.574.5")*2.5"+ (0.5"/4.5")*0.5"] = 12,691 In-lb > Mconn max, OK PORTLAND COMMUNITY COLLEGE TYPE 13 Page (i of -2/5- Gil8/202 i Structural Engineering & Design Inc. 1815 Wriaht Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Bz Eng: Mqz Project: PORTLAND COMMUNITY COLLEGE Project#:21.0616-12 Transverse Brace Configuration: TYPE B SELECTIVE RACK Section Properties jl Diagonal Member= Sperack 1-1/2x1-1/4x14ga Horizontal Member= Sperack 1-1/2x1-1/4x14ga Area= 0.292 inA2 Area= 0.292ln^2 r min= 0.430 in 1.500 in r min= 0.430 in (�. 1.500 i" Fy= 55,000 psi r"' T Fy= 55,000 psi I _ _ i• K= 1.0 K= 1.0 r -, ^"''T S2c= 1.92 I 0.075 in •250In r 0.075 in 1.250 in 1 I Frame Dimensions Bottom Panel Height=H= 54.0 in Clear Depth=D-B*2= 38.0 in Frame Depth=D= 44.0 in X Brace= NO Column Width=B= 3.0 in rho= 1.00 Diagonal Member 0 Load Case 6.•: (a1)..1.441-5d .85+0.14SdsJ*B*P+(0.7*rho*EJ<=1.0,ASD Method �. fn _-•I� Vtransverse= 691 lb Vb ' Vb=Vtransv*0.7*rha= 691 lb * 0.7 * 1 (ki/r)= (k * Ldiag)/r min = 484 lb = (1 x 61.2 in/0.43 in ) Ldiag= [(D-B*2)^2 + (H-6")^2r1/2 = 142.3 in = 61.2 in Ldlag Fe= pi^2*E/(kl/r)^2 H Pmax= V*(Ldiag/D) * 0.75 = 14,378 psi = 505 1b , axial load on diagonal brace member Since Fe<Fy/�, 3„ 1------- Pn= AREA*Fn tvPIIIIIrllIll Fn= Fe = 0.292 in^2 * 14378 psi = 14,378 psi e = 4,198 lb Tvwcal Panel CannautadQu Pallow= Pn/R Check End Weld = 4198 lb/1.92 Lweld= 3.0 In = 2,187 lb Fu= 65 ksi tmin= 0.075 in Pn/Pallow= 0.23 <= 1.0 OK Weld Capacity= 0.75 * tmin * L* Fu/2.5 = 4,388 lb OK Horizontal brace Vb=Vtransv*O.7*rho= 484 lb (kl/r)= (k* Lhoriz)/r min Fe= pi^2*E/(kI/r)^2 Fy/2= 27,500 psi = (1 x 44 in)/0.43 In = 27,821 psi = 102.3 in Since Fe>Fy/2, Fn=Fy*(1-fy/4fe) Pn= AREA*Fn Pallow= Pn/S c = 27,817 psi = 0.292In^2*27817 psi = 8123 lb/1.92 . = 8,123 lb = 4,231 lb Pn/Pallow= 0.11 <= 1.0 OK PORTLAND COMMUNITY COLLEGE TYPED Page ( 0 of-25- Cl 18/202 Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7166 By: Bz Eng: Mqz Project: PORTLAND COMMUNITY COLLEGE Project#:21-0616-12 Single Row Frame Overturning Configuration: TYPE B SELECTIVE RACK Loads Critical Load case(s): 1) RMI Sec 2.2, Item 7: (0.9-0.2Sds)D + (0.9-0.20Sds)*B*Papp- E*rho hpi Sds= 0.66285_ v Vtrans=V=E=Qe= 691 lb (0.9-0.2Sds)= 0.7674 DEAD LOAD PER UPRIGHT=D= 150 lb (0.9-0.2Sds)= 0.7674 PRODUCT LOAD PER UPRIGHT=P= 6,000 lb B= 1.0000 H h Papp=P*0.67= 4,020 lb rho= 1.0000 Wst LC1=Wst1=(0.76744*D+0.76744*Papp*1)= 3,200 lb Frame Depth=Df= 44.0 in T! Product Load Top Level, Ptop= 3,000 lb Htop-Iv1=H= 136.0 in DL/Lvl= 75 lb # Levels= 2 I.-Df—r1 Seismic Ovt based on E, E(Fi*hi)= 64,709 in-lb # Anchors/Base= 2 height/depth ratio= 3.1 in hp= 48.0 In SIDE ELEVATION A) Fully Loaded Rack h-H+hp/2= 160.0 in Load case 1: Movt= E(Fl*hl)*E*rho Mst= Wst1 * Df/2 T= (Movt-Mst)/Df = 64,709 in-lb = 3200 lb* 44 in/2 = (64709 in-lb- 70400 in-lb)/44 in = 70,400 in-lb = -129 lb No Uplift Net Seismic Uplift= -129 lb B)Top Level Loaded Only Load case 1:0 V1=Vtop= Cs* Ip * Ptop >= 350 lb for H/D >6.0 Movt= [V1*h + V2 * H/2J*rho = 0.1657 * 3000 lb = 81,226 in-lb = 497 lb T= (Movt-Mst)/Df Vleff= 497 lb Critical Level= 2 = (81226 in-lb -53184 in-lb)/44 in V2=Vix= Cs*Ip*D Cs*Ip= 0.1657 = 637 lb Net Uplift per Column = 25 lb Mst= (0.76744*D + 0.76744*Ptop*1) * 44 in/2 = 53,184 in-lb Net Seismic Uplift= 637 lb Anchor Check (2) 0.5" x 2" Embed HILTI KWIKBOLT TZ anchor(s) per base plate. Special inspection is notrequired per ESR 1917. Pullout Capacity=Tcap= 970 lb L.A. City Jurisdictfon7 NO Tcap*Phi= 970 lb Shear Capacity=Vcap= 1,250 lb Phi= 1 Vcap*Phi= 1,250 lb Fully Loaded: (172 Ib/1250 Ib)^1 = 0.14 <= 1.2 OK Top Level Loaded: (318 Ib/970 Ib)^1 + (124 ib/1250 Ib)^1 = 0.43 <= 1.2 OK ( PORTLAND COMMUNITY COLLEGE TYPE B Pace I of ZS G/I b/202 I . Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Bz Eng: Mqz Project: PORTLAND COMMUNITY COLLEGE Project#:21-0616-12 Base Plate Configuration: TYPE B SELECTIVE RACK Section 41— a P Baseplate= 8x5x0.375 PA , { Eff Width=W = 8.00 In a = 3.00 In a Mb Eff Depth=D = 5.00 in Anchor c.c. =2*a=d = 6.00 In spionimammi Column Width=b = 3.00 in N=# Anchor/Base= 2 ! ;o Column Depth=dc = 3.00 In FL y = 36,000 psi I b �'_ L = 2.50 in �— W __ow_ Plate Thickness=t = 0.375 in pawnalsle Elevation Down Aisle Loads Load Case 5: :(1+0.105*Sds)D+ 0.75*/(1.4+0.14Sds)*B*P+ 0.75*10.7*rho*Ek=1.0,ASD Method COLUMN DL= 75 lb Axial=P= 1.069594* 75 lb + 0.75 * (1.492792 * 0.7 * 3000 lb) COLUMN PL= 3,000 lb = 2,431 lb Base Moment= 8,000 In-lb Mb= Base Moment*0.75*0.7*rho 1+0.105*Sds= 1.0696 = 8000 in-lb * 0.75*0.7*rho 1.4+0.14Sds= 1.4928 = 4,200 in-lb Elf( B= 0.7000 Axial Load P = 2,431 lb Mbase=Mb = 4,200 in-lb Effe Axial stress=fa = P/A = P/(D*W) MI= wLA2/2= fa*LA2/2 = 61 psi = 190 in-lb Moment Stress=fb = M/S = 6*Mb/[(D*BA2] Moment Stress=fb2 = 2 * fb * L/W = 78.8 psi = 49.2 psi Moment Stress=fbl = fb-fb2 M2= fb1*LA2)/2 F = 29.5 psi = 92 in-lb M3 = (1/2)*fb2*L*(2/3)*L = (1/3)*fb2*LA2 Mtotal = M1+M2+M3 = 103 in-lb = 385 in-lb/In 5-plate = (1)(t^2)/6 Fb = 0.75*Fy = 0.023 inA3/in = 27,000 psi fb/Fb = Mtotal/[(S-plate)(Fb)] F'p= 0.7*Fc = 0.61 OK = 1,750 psi OK Tanchor= (Mb-(PLapp*0.75*0.46)(a))/[(d)*N/2] Tallow= 970 lb OK = -900 lb No Tension Cross Aisle Loads °Ate load rapt RA1 Sec 2.1.kdn4:(1+a11SoWL+(1+O.I4SAS)P[•0,75+EV-75<.+I.QAS°Methnd Check uplift load on Baseplate Check uplift forces on baseplate with 2 or more anchors per RMI 7.2.2. Pstatic= 2,431 lb en the base plate conflguratfon consists of two anchor bons located on either side • the column and a net uplift force exists,the minimum base plate thickness Movt*0.75*0.7*rho= 33,972 in-lb Pseismic= Movt/Frame Depth •hall be determined based on a design bending moment In the plate equal Frame Depth= 44.0 in = 772 lb to the uplift force on one anchor times 1/2 the distance from P=Pstatic+Pseismic= 3,203 lb e centerline of the anchor to the nearest edge of the rack column" b =Column Depth= 3.00 in II T I'— c * L =Base Plate Depth-Col Depth= 2.50 in Ta Mu a milmweermilememileei fa = P/A = P/(D*W) M= wLA2/2= fa*LA2/2 I I b I r = 80 psi = 250 in-lb/iny allon Uplift per Column= 636 lb Sbase/in = (1)(tA2)/6 Fbase = 0.75*Fy Qty Anchor per BP= 2 = 0.023 inA3/in = 27,000 psi Net Tension per anchor=Ta= 318 lb c= 2.50 in fb/Fb = M/[(S-plate)(Fb)] Mu=Moment on Baseplate due to uplift= Ta*c/2 = 0.40 OK = 398 In-lb Spiate= 0.117 inA3 — fb Fb *0.75= 0.094 OK PORTLAND COMMUNITY COLLEGE TYPE B Page (2,of 2 S 6/18/202 i Structural Engineering & Design Inc. ri 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 i By: Bz Eng: Mqz Project: PORTLAND COMMUNITY COLLEGE Project#:21-0616-12 _p Slab on Grade Configuration: TYPE B SELECTIVE RACK i P .: slab . . 11 I. a a , Concrete ..�� • e fc= 2,500 psi D : b slab 1 r I tslab=t= 5.0 in cross tell= SA in `IIIIIIIIIIIIIl111IIIIIIlI111111II1ii1111111IIIIIIlIll1111I1IIllllll ---' Aisle pni= = 0:6 Lii-- X -01 i•- c -►i : : soil • y T • • • B • fsoil= 750 psf •Down Aisle Movt= 79,536 in-lb SLAB ELEVATION Frame depth= 44.0 in Baseolate Plan iew Sds= 0.663 Base Plate 0.2*Sds= 0.133 Effec.Baseplate width=B= 8.00 in width=a= 3.00 in - 0.600 Effec.Baseplate Depth=D= 5.00 in depth=b= 3.00 in 0=B/D= 1.600 midway dist face of column to edge of plate=c= 5.50 in Pc^0.5= 50.00 psi Column Loads midway dist face of column to edge of plate=e= 4.00 In DEAD LOAD=D= 75 lb per column Load Case 1) (1.2+0.2Sds)D + (1.2+0.2Sds)*B*P+ rho*E RMI SEC 2.2 EQTN 5 unfactofedASOload = 1.33256 * 75 lb + 1,33256* 0.7 * 3000 lb + 1 * 1807 lb PRODUCT LOAD=P= 3,000 lb per column = 4,705 lb unfactoredASD load Load Case 2) (0.9-0.2Sds)D + (0.9-0.2Sds)*B*Papp + rho*E RMI SEC 2.2 EQTN 7 Papp= 2,010 lb per column = 0.76744 * 75 lb + 0.76744 * 0.7* 2010 lb+ 1 * 1807 lb P-seismic=E= (Movt/Frame depth) = 2,944 lb = 1,807 lb per column Load Case 3) 1.2*D + 1.4*P RMI SEC 2.2 EQTN 1,2 unfactored Limit State load = 1.2*75 lb + 1.4*3000 lb 8= 0.7000 = 4,290 lb • rho= 1.0000 Load Case 4) 1.2*D + 1.0*P + 1.0E ACT 318-14 Sec 5.3.1 Sds= 0.6628 = 4,897 lb Eqtn 5.3.1e 1.2 + 0.2*Sds= 1.3326 Effective Column Load=Pu= 4,897 lb per column 0. 9 - 0.20Sds= 0.7674 Puncture Apunct= [(c+t)+(e+t)]*2*t = 195.0 in^2 Fpunctl=•[(4/3 + 8/(3*(i)] * X. *(Pc^0.5) fv/Fv= Pu/(Apunct*Fpunct) = 90. psi = 0.315 < 1 OK Fpunct2= 2.66 * >,.* (Pc^0.5) = 79.8 psi Fpunct eff= 79.8 psi Slab Bending Pse=DL+PL+E= 4,897 lb Asail= (Pse*144)/(fsoil) L= (Asoil)^0.5 y= (c*e)^0.5 + 2*t = 940 In^2 = 30.66 in = 14.7 In x= (L-y)/2 M= w*x^2/2 S-slab= 1*teff^2/6 = 8.0 in = (fsoii*x^2)/(144*2) = 4.17 In^3 Fb= 5*(phi)*(fc)^0.5 = 166.0 in-lb fb/Fb= M/(S-slab*Fb) = 150. psi = 0.266 < 1, OK PORTLAND COMMUNITY COLLEGE TYPE B Page f3 of 2 S C,!18/202 1 Structural Engineering & Design Inc. 1815 Wright Ave., La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.693.8561 14. SHELVING •, 1 • Structural Engineering & Design Inc. 1815 Wright Ave.Ste 200 La Vnrne. CA 91750 Tel: 909.596.1351 Fax: 909.593.8561 By: Bz Eng: Mqz Project: PORTLAND COMMUNITY COLLEGE Protect#: 21-0616-12 Design Data Configuration: Rivetier II Shelving Type A:84 in x 48 in x 18 in II 1) The analyses of the light duty storage fixtures conforms to the requirements of the 2018 IBC and ASC 7-16 2) Steel minimum yield, Fy= 36 ksi unless otherwise noted on the plans or analysis herein. {{ 3) Anchor bolts shall be provided by installer per ICC reference on the calculations herein. 4) All welds shall conform to AWS procedures, utilizing E70xx electrodes or similar. All such welds shall be performed in shop, with no field welding allowed other than those supervised by a licensed deputy inspector. 5) Slab on grade is 5 in thick concrete with fc=2500 psi WPSS Rivetier II Shelving -I I-20-17 Page /5-of 2is 6I!8/202 I Structural z Engineering & Design Inc. G 1815 Wright Avn Ste 200 I a Verne.CA 91750 Tel:909.596.1351 Fax: 909.593.8561 By: Bz Eng: Mqz Project: PORTLAND COMMUNITY COLLEGE I, Protect#:21-0616 12 r -k Summary of Results Configuration: Rivetier II Shelving Type A:84 In x 48 in x 18 in Shelf Configuration I z'+�—�}'� 1..., rl# Of Levels- 5 I D= 18.0in H= 84.0 in L= 48.0 in I Location Elevation Load 1i; p j hl= 3.0 in 250 lb CD r- I h2= 27.0 in 250 lb N ( h- h3= 27.0 In 250 lb v7 u? h4= 13.5 in 250 fb Mj h5= 13.5 in 250 lb -NI • i SHELVING 0 18" DEEP X 48" WIDE X 84" TALL Seismic Coeff: Ss= 0.860 Product Load/Lvl= 250 lb S1= 0.392 Dead Load/Level= 10 lb Fa= 1.156 Fv= 1.908 Steel Fy= 36,000 psi Component Summary Column WPSS LURH L1-1/2"x14ga 0.48 OK Beam SS Double Rivet Beam 0.20 OK Beam Rivet 1/4" Diam Rivetx 1-1/2" Spacing 0.35 OK Anchor (1) 3/8" x 2" Embed Hilti Kwikbolt TZ per footplate 0.49 OK I l Special inspection is required per ICC ESR 1917. Net Uplift=222 lb I Footplate 5.75 x 3.625 x 0.075 Footplate at T Post 0.48 OK I 3.5x3.625x14ga at L Post I Slab on Grade 5 in thick concrete with f c=2500 psi 0.09 OK _;- 750 psf allowable soil bearing pressure i Notes Column Reactions (ASD): Axial column DL= 25 lb Axial column LL= 625 lb Axial column seismic Toad=+/- 541 lb Net Seismic uplift= 222 lb ,i it WPS5 Rivetier It Shelving -I 1-20-17 Page ( 6 of 2i I G/18/202 I , Structurai Inc.& Design 1815 Wright Ave. Ste 200 La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.593.8561 By: Bz Eng: Mqz Project: PORTLAND COMMUNITY COLLEGE Project#:21-0616-12 Seismic Forces Configuration: Rivetier II Shelving Type A: 84 in x 48 in x 18 in V1= Sas *W/R 7 V2= [0.4*ap*Sos*Ws*(1+2*z/h)/(Rpt[p)] Ss= 0.86 Deck DL= 0 psf S1= 0.39 V3= 0.044*Sds Deck LL= 0 psf V4= 0.5*S1/R - I V =A= ft^2 Fa= 1.16 ! DeckTrib level Area LL= 00•0lb Fv= 1.91 -$ _ V1= 0.1657 ds 0.663 V2= 0.1657 hb Deck level DL= 0 lb Sd1= 0.499 4. V3= 0.0292 R=Rp= 4.00 V4= 0.0000 M e 1p= 1.00 Vm�n�murn= 0.015 ' ap= 2.5 Elevation VII= 0.00 Seismic Coeff=Cs= 0.1657 # of levels= 5 (Either Direction) Depth= 18.0 in Cs*Ip= 0 Product LL/Shlf= 250 lb DL/Shlf= 10 lb Down Aisle Seismic Shear (Longitudinal) Cross Aisle Seismic Shear (Transverse) Wlong= Y(LL*0.67+DL) Wtransv= E(LL*0.67+DL) = 8881b = 888 lb Vlong=VL= 0.1657 * 887.5 lb Vtaansverse=VT= 0.1657 *887.5 lb = 147 lb VJ2= 74 lb = 147 lb VT/col= 74 ib Summary of Reactions(See following pages) Longitudinal Column Loads Transverse Column Loads Pstatic= E(LL+DL) Mlong= MT*VL/VT Pstatic DL= 25 lb = 650 Pb Movt= 9,732 in-lb = 695 in-lb Pstatic LL= 625 lb Depth=D= 18 In Longitudinal Conn Moment Pseismic= Movt/D = 541 lb Mtransv=MT= 699 In-lb Transverse Conn Moment ( �tt1 it WP55 Rivetier 11 Shelving -11-20-17 Page 7 of 2S 6/I Pe/202 1 Structural Engineering & Design Inc. 1815 Wri ht Ave Ste 900 La VPrni CA 91750 Tel: 909.696.1351 Far* 909.503 R561 By: Bz Eng: Mqz Project: PORTLAND COMMUNITY COLLEGE Protect#: 21-0616-12 Seismic Load Distribution Level LL DL hi wi*hi F! Fi*hi 1 250 lb 10 lb 3 in 780 1.8 lb 5 in-lb 2 250 lb 10 lb 30 in 7,800 18.0 lb 540 in-lb 3 250 lb 10 lb 57 in 14,820 34.3 lb 1,955 in-lb 4 250 lb 10 lb 71 in 18,330 42.4 lb 2,989 in-lb 5 250 lb 10 lb 84 in 21,840 50.5 lb 4,242 in-lb 6 0 lb 0 lb U In 0 0.0 lb 0 In-lb 7 0 lb 0 lb 0 in 0 0.0 lb 0 In-lb 8 0 lb 0 lb 0 in 0 0.0 lb 0 in-lb 9 0 lb 0 lb 0 in 0 0.0 lb 0 in-lb 10 0 lb 0 lb 0 in 0 0.0 lb 0 in-lb 11 0 lb 0 lb 0 in 0 0.0 lb 0 in-lb 12 0 lb 0 lb 0 In 0 0.0 lb 0 in-lb 13 0 lb 0 lb 0 in 0 0.0 lb 0 in-lb 14 0 lb 0 lb 0 in 0 0.0 lb 0 In-lb 15 0 lb 0 lb 0 in 0 0.0 lb 0 in-lb 16 0 lb 0 lb 0 in 0 0.0 lb 0 In-lb 17 0 lb 0 lb 0 in 0 0.0 lb 0 in-lb 18 0 lb 0 lb 0 in 0 0.0 lb 0 in-lb 19 0 lb 0 lb 0 in 0 0.0 lb 0 in-lb 20 0 lb 0 lb 0 In 0 0.0 lb 0 In-lb 21 0 lb 0 lb 0 in 0 0.0 lb 0 in-lb 22 0 lb 0 lb 0 in 0 0.0 lb 0 In-lb 23 0 lb 0 lb 0 in 0 0.0 lb 0 In-lb 24 0 lb 0 lb 0 in 0 0.0 lb 0 in-lb 25 0 lb 0 lb 0 in 0 0.0 lb 0 In-lb 26 0 lb 0 lb 0 In 0 0.0 lb 0 in-lb 27 0 lb 0 lb 0 in 0 0.0 lb 0 in-lb 28 0 lb 0 lb 0 in 0 0.0 lb 0 in-lb 29 0 lb 0 lb 0 in 0 0.0 lb 0 in-lb 30 0 lb 0 lb 0 in 0 0.0 lb 0 in-lb ' 31 0 lb 0 lb 0 in 0 0.0 lb 0 In-lb 32 0 lb 0 lb 0 in 0 0.0 lb 0 in-lb 33 0 lb 0 lb 0 in 0 0.0 lb 0 In-lb 34 0 lb 0 lb 0 in 0 0.0 lb 0 in-lb 35 0 lb 0 lb 0 In 0 0.0 lb 0 in-lb 36 0 lb 0 lb 0 in 0 0.0 lb 0 in-lb 37 0 lb 0 lb 0 in 0 0.0 lb 0 in-lb 38 0 lb 0 lb 0 in 0 0.0 lb 0 in-lb 39 0 lb 0 lb 0 in 0 0.0 lb 0 in-lb 40 01b 0 lb 0 in 0 0.0 lb 0 in-lb Sum: 1,250 lb 50 lb W=1300 lb 63,570 147 lb 9,732 in-lb =Mont Ii WPSS Rivetier II Shelving -1 I-20-I'7 rage ( g of 75 1 6/1612021 Structural Engineering & Design Inc. 11115 Wright Ave.Ste 200 La Verne_ CA 91750 TeL 909.596.1351 Fax: 909.591 A561 By: Bz Eng: Mqz Project: PORTLAND COMMUNITY COLLEGE Project#: 21-0616-12 Determine effective loading to double rivet moment resisting beams - Vlon - 1471b 9- Vcol= 74 lb Vlong= 147 lb Vcol= 74 lb Longitudinal Direction • Dbl Rivet Transverse Direction Qty Dbl Rivet •. :f Moment Resisting Dbl Rivet Beams(Long) "''" ,a „: Moment Resisting Dbl Rivet Beams(Transv) hb Veff Mn Mconn hb Veff Mn 1 3 in 73.5 lb 221 in-lb 507 in-lb Mconn 2 27 in 58.80 lb 794 In-lb 695 in-lb 1 3 in 74.0 lb 222 in-lb 511 In-lb 2 27 in 59.20 lb 799 in-lb 699 in-lb 3 27 in 44.10 lb 595 in-lb 397 in-fb 4 14 in 29.40 lb 198 in-lb 149 in-lb 3 27 in 44.40 lb 599 In-lb 400 in-lb ; S 14 in 14.70 Ib 99 in lb 50 in Ib 4 14 in 29.60 lb 200 in-lb 150 in-lb 6 0!n 0.00 lb 0 in-lb 0 in-lb 5 14 In 14.80 lb 100 in-lb 50 In-lb I. 7 0 In 0.00 lb fl in-lb 0 in-lb 6 0 In 0.00 lb 0 in-lb 0 in-lb, 8 0 in 0.00 lb 0 in-lb 0 in-lb 7 0 in 0.00 lb 0 in-lb 0 in-lb 9 0 in 0.00 lb 0 in-lb 0 fn-lb 8 0 in 0.00 lb 0 in-lb 0 in-lb 30 0 in 0.00 lb 0 in-lb 0 In-lb 9 01n 0.00 lb 0 in-lb 0 in-lb 11 Din 0.00 lb 0 in-lb 0 In-lb 10 0 in 0.00 lb 0 in-lb 0 in-Ib 12 0 in 11 0 in 0.00 fb 0 in-lb 0 in-lb 0,00 lb 0 in-lb 0 in-lb 12 0 in 0.00 lb 0 in-lb 0 in-lb 13 0 in 0.00 lb 0 in-lb 0 in-lb 14 0 in 13 0 in 0.00 lb 0 in-lb 0 in-lb 0.00 ib 0 In-lb 0 in-lb 14 0 in 0.00 lb 0 In-lb 0 in-lb 15 0 in 0.00 lb 0 in-lb 0 in-lb 16 0 in 0.00 lb 0 in-lb 0 in-lb 15 0 in 0.00 !b 0 in-lb 0 in-lb 16 0 in 0.00 lb 0 in-lb 0 in-lb 17 0 in 0.00 lb 0 in-lb 0 in-lb 17 0 In 0.00 lb 0 in-lb 0 in-lb - 18 0 in 0.00 lb 0 in-lb 0 !n-ib 19 0 in 18 0 in 0.00 lb 0 in-lb 0 in-lb _ 0.00 lb 0 in-lb 0 In-lb 19 0 in 0.00 lb 0 in-lb 0 In-lb 20 0 In 0.00 lb 0 in-lb 0 in-lb 20 0 In 0.00 lb 0 in-lb 0 in-lb 21 0 in 0.00 lb 0 in-lb 0 In-lb 22 0 in 0.00 lb 0 in-fb 0 in-lb 21 0 in 0.00 lb 0 in-lb 0 in-lb 23 0 in 0.00 Ib 0 in-Ib Din-Ib 22 0 in 0.00 lb 0 in-lb 0 in-lb 24 0 in 0.00 lb 0 in-lb 0 In-lb 23 0 in 0.00 lb 0 in-lb 0 In-lb 25 0 in 0.00 Ib 0 in Ib 0 in-lb 24 0 in 0.00 lb 0 In-lb 0 in-lb 26 0 in25 0 in 0.00 lb 0 in-lb 0 in-lb 0.00 lb 0 in-lb 0 in-lb 26 Din 0.00 lb 0 in-lb 0 in-lb 27 0 in 0.00 lb 0 in-lb 0 In-lb 27 0 in 0.00 lb 0 in-lb 0 In-lb 28 0 in 0.00 lb 0 In-lb 0 In-lb 28 0 in 0.00 lb 0 in-lb 0 in-lb 29 0 in 0.00 lb 0 in-lb 0 in-lb 29 0 in 0,00 lb 0 in-lb 0 in-lb . 30 0 In 0.00 ih Din ib 0 in-lb 31 0 in 0.00 lb 0 in-lb 0 in-lb 30 0 in 0.00 lb 0 in-Ib 0 in-lb 32 0 in 31 0 In 0.00 lb 0 in-lb 0 in-lb 0.00 lb 0 in-lb 0 in-lb 32 0 in 0.00 lb 0 In-lb 0 in-lb 33 0 in 0.00 lb 0 in-lb 0 in-lb 34 0 in 0.00 Ib 0 in-Ib 0 in-lb 33 0 In 0.00 lb 0 in-lb 0 in-lb • 35 0 in34 0 In 0.00 lb 0 in-lb 0 in-lb ' 0.00 lb 0 in-lb 0 in-lb 35 0 fn 0.00 lb 0 In-lb 0 in-lb 36 0 in 0.00 lb 0 in-lb 0 In-lb 37 0 In 0.00 lb 0 in-lb 0 in-lb 36 0 in 0.00 lb 0 in-lb 0 in-lb 37 0 in 0.00 lb 0 In-lb Din in-lb 38 0 in 0.00 lb Din in-lb 0 in lb 39 0 in38 0 in 0.00 lb 0 in-lb 0 in-lb 0.00 lb 0 in-lb 0 In-lb 39 0 in 0.00 lb 0 in-lb 0 in-lb 40 0 in 0.00 lb 0 In-lb 0 in-lb 40 O In 0.00 lb 0 in-lb 0 In-lb Longitudinal Column Loads max: 695 in-lb max: 699 in-lb Transverse Column Loads Pstatic= E(LL+DL) Mlong= MT*Vi/VT = 650 fb Pstatic DL= 25 lb Movt= 9,732 in-ib = 695 in-lb Pstatic LL= 625 lb 18 in Longitudina/Conn Moment Mtransv=M - Depthmlc Movt ` r 699 in-lb Pseismic= MovtJD Transverse Conn Moment = 541 lb WPSS Rwetier II Shelving -I I -20-17 Page of G/18/202 1 Structural Engineering & Design Inc. • By: Bz Eng: Mqz Project; PORTLAND COMMUNITY COLLEGE Project#: 21-0616-12 Transverse Column Loads(Weak Axis Bending) Configuration: Rivetier II Shelving TYpeA: 84inx48inx18Fn Net Section Pro erties Column= WPSS LURH L1-1/2"x14ga Aeff= 0.358 inA2 S2f= 1.67 Ix (downaisle) = 0.148 in^4 ^ E= 1,0 ksi Sx (downaisle) = 0.099 in 3 Cb= 1.0 rx(downaisle) = 0.642 in Cmx= 0.85 Iy (crossaisle) = 0.087 In^4 Kx = � 0 1 1/2" Sy(crossaisle) = 0.090 in^3 Lx = 27.0 in ry(crossaisle) = 0.494 in Ky= 1.0 Fy= 36 ksi Ly = 27.0 In 1 1/2"—.�1 1 1/2"— Axial DL= 25 lb Axial LL= 625 lb Pseismic= 541 Pb Loads Lod Case: Full Loaded Axial=P= DL+0.75LL+0.75*0.7*Pseismic = 778 lb Moment=My= 699 in-lb Axial Anal sis KxLx/nc= 1* 17"/0.642" KyLy/ry = 1*2770.494" Fe > F y/2 = 54.7 Fn= Fy(1-Fy/4Fe) Fe= n^2E/(KL/r)max^2 Fy/2= 18.0 ksi = 36 ksi*[1.-36 ksf/(4*97.5 ksf)] = 97.5ksi = 32.7 ksi Pn= Aeff*Fn Qc= 1.92 = 11,698 lb Pa= Pn/S2c = 11698 Ib/1.92 P/Pa= 0.13 < 0.15 = 6,0931b Bending Analysis Check: P/Pa + My/May <_ 1.0 Pno= Ae*Fy = 0.358 inA2 *36000 psi Pao= Pno/S2c Myield=My= Sy*Fy = 12 888 lb = 12888fb/1.92 = 0.09 in^3 * 36000 psi = 6,713 lb = 3,240 in-lb May= My/Of = 32401n IbJ1.67 Pcr= n^2EI/(KL)max^2 _ = 1,940 in lb = nA2*29500000 psi/(1*27 in)^2 • = 59,109 lb U= {1/[1-(S2c*P/Pcr)]}^-1 = {1/[1-(1.92*778lb/59109 lb)]}^-1 = 0.97 Combined Stresses (778 lb/6093 lb) + (699 in-lb/1940 in-lb) = 0.48 < 1.0, OK (EQ C5-3) .I WPSS Riveter II Shelving -1 I-20-17 Page7.Uof25- G/18/2021 Structural Engineering & Design Inc. • 50 Tel• apa Fas 1351 F apa 93 g 1 By: Bz Eng: Mqz Project: PORTLAND COMMUNITY COLLEGE Project#: 21-0616-12 -? Longitudinal Column Loads(Strong Axis Bending) Configuration: Rivetier II Shelving Type A:84 in x 48 in x 18 in Net Section Pro erties Column= WPSS LURH L1-1/2"x14ga Aeff= 0.358 in^2 Qf= 1.67 Ix(downaisle) = 0.148 In^4 Sx(downaisle) = 0.099 In^3 E= 1.0 ksi rx (downaisle) = 0.642Cb= n in Cmx= 0.85 Iy(crossalsle) = 0.087 In^4 , Kx = 1.0 I 1 1 2"Sy (crossaisle) = 0.090 in^3 Lx = 27.0 in ry(crossalsle) = 0.494 in ii Fy= 36 ksi KY = 1.0 - -- - LY = 27.0 In 1 1/2" 1 1 2 Axial DL= 25 ` I / "-4 Axial LL= 625 lb Pseismic= 0 lb Loads Load Case: Full Loaded Axial=P= DL+0.75LL+0.75*0.7*Pseismic = 494 lb Moment=Mx= 695 in-lb Axial Analysis KxLx/rx = 1*27"/0.642" KyLy/ry ` 1*27'70.494" = 42.1 = 54.7 Fe > Fy/2 Fn= Fy(1-Fy/4Fe) Fe= n^2E/(KL/r)max^2 = 36 ks1*[1-36 ksl/(4*97.5 ksi)] = 97.5ksi Fy/2= 18.0 ksi = 32.7 ksi Pn= Aeff*Fn Oc= 1.92 = 11,698 lb Pa= Pn/Qc = 11698 lb/1.92 P/Pa= 0.08 < 0.15 = 6,093 lb BendingAnal sis Check: P/Pa + My/May < 1.0 Pno= Ae*Fy = 0.358 In^2 *36000 psi Pao= Pno/S2c Myield=My= Sx*Fy = 12,888 Pb = 12888Ib/1.92 = 0.099 in^3 *36000 psi = 6,713 lb = 3,564 in-lb May= My/Of = 3564 in Ib/1:67 Pcr= n^2EI/(KL)max^2 2,134 In-lb = nA2*29500000 psi/(1*27 in)^2 = 59,109 lb p= {l/[1-(S c*P/Pcr)])^-1 = {1/[1-(1.92*494 Ib/591091b)])^-1 = 0.98 Combined Stresses (494 Ib/6093 lb) + (695 in-lb/2134 in-lb) = 0.40 < 1.0 OK . (EQ C5-3) WPSS Rivetier II Shelving -I 1-?_O-17 Page 2 (of ?�S 6/15/202 1 Structural Engineering & Design Inc. 1815 Wright Ave. Ste 200 I a Verne. CA 91750 Tel: 909.596.1351 Fax: 909.593.8561 P By: Bz Eng: Mqz Project: PORTLAND COMMUNITY COLLEGE Project#:21-0616-12 —M Double Rivet Beam Configuration: Rivetier II Shelving Type A: 84 in x 48 in x 18 in b 1-5/32" Beam Type= SS Double Rivet Beam Downaisle beam fi! Ix= 0.2060 in^4 A A A A A A Ad , Sx= 0,123 in^3 —r t-1a.9a Fy beam= 36,000 psi T 1r Shelf Span=L= 47 in . I r N �' V V V V V V V �r DowRafSie beam I 'i L ). 5�b1 Rtxcf$sam � ° Check Beam Bending Shelf DL= 10 lb Check Beam Deflection Shelf LL= 250 lb Shelf LL+DL= 260 lb E= 29,500,000 psi Load=w=LL*0.67/(2*L)= 23.1 plf D= 5 * w* LA4/(384 * E * Ix) M= w * LA2/8 = 0.0208 In = 532 in-lb Dallow= L/140 fb= M/Sx = 0.34 in OK = 4,321 psi Fb= 0.6 * Fy 21,600 psi fb/Fb= 0.20 OK Check DRB Beam Rivets For Static+ Seismic Loads Check load case: DL+0.75LL+ 0.75*0.7*Mseismic Rivet Spacing=d= 1.5 in Rivet diameter= 0.25 in train= 0.075 in Fu= 58,000 psi Column Fy-rivet= 36,000 psi Max Conn. Moment=Mc= 699 In-Ib Rivet Mc*0.7*0.75=M= 367 in-lb W= (LL*0.75+DL)/4 = 49 lb Beam C— M/d Qi"i/ 2451bIn Shear Capacity= Rivet Area * 0.4 * Fy-rivet = [(0.25 in)A2 * pi/4] * 0.4* 36000 psi ,11� = 707 lb • Bearing Capacity= Rivet Diem *tmtn * Fu * 1.2 1,3051b Beaan to Cotumn Effective Shear= [(W/2)A2 + CA21^0 5 = 2461b OK • WP55 Rwetier II Shelving -1 1-20-17 Page 22_of ZS 61181202 I Structural tructurai Engineering & Design Inc. 1815 Wright Ave.Ste 200 La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.593_8561 By: Bz Eng: Mqz Project: PORTLAND COMMUNITY COLLEGE Project#: 21-0616-12 Anchors Configuration: Rlvetier II Shelving Type A: 84 in x 48 in x 18 In Check load case: 0.9D + 0.9*0.67LL + V Loads Vtrans=V= 147 lb V DL/Frame= 50 lb LL/Frame= 1,250 lb Frame Depth=0= 18.0 in Wst=(0.9*DL+ 0.9*0.67LL)total= 799 lb Htop-Ivl= 84.0 in LL @ TOP= 250 lb # Levels= 5 DL/Lvf= 10 lb #Anchors per col.= 1 DL*0.90= 9 lb Lateral Ovt Forces=E(Fi*hi)*1.15= 11,191 in-lb T I~D-.I Fully Loaded rack 5IDE ELEVATION Vtrans= 147 lb Movt= Z(Fi*hl) Mst= Wst * D/2 Net Uplift=T= (Movt-Mst)/D = 11,191 in-lb = 799 lb * 18 in/2 = (11191 in-lb - 7191 in-lb)/18 in = 7,191 in-lb = 222 lb Top Level Loaded Only Critical Level= 5 Hgt @ Lvl 5= 84.0 in Vtop= Cs * LLtop Vtop= 0.166 * 250 lb Movt= Vtop*Htop*1.15 = 41fb = 411b * 84in * 1.15 = 3,961 in-lb Mst= 0.6*(LL-top)*D/2 Net Uplift=T= (Movt-Mst)/D = (250 ib 0.6) 18 in/2 = (3961 in-lb- 1350 in-lb)/18 in = 1,350 in-lb ) = 145 lb Anchor Net Seismic Max Uplift=1222 LB j Check(1) 3/8" x 2" Embed Hilti Kwikbolt TZ anchor(s)per footplate ** Special inspection is required per ICC ESR 1917. - Pullout Capacity=Tcap= 500 lb Shear Capacity=Vcap= 500 lb Ph1= 1.00 Tcap*Phi= 500 lb Vcap*Phi= 500 lb Fully Loaded: (222 lb/500 Ib)A1 + (74 lb/500 Ib)AI = 0.59 <= 1.2 OK Top Level Loaded: (145 lb/500 Ib)^1 + (21 lb/500 'by]. = 0.33 <= 1.2 OK WP55 Rrvetier II 5hehng -I I-20-17 Page 23 of 2 ..5- 6/!£j/2021 Structural fi Engineering & Design Inc. 6L 1915 Wright Ave.Ste 200 La Verne_CA 91750 Tal: 909.596.1351 Fax: 909.59,4 R561 By: Bz Eng: Mqz Project: PORTLAND COMMUNITY COLLEGE Project#: 21-0616.12 -( Base Plate Configuration: Rivetier II Shelving Type A: 84 in x 48 in x 18 in Section fActual base plate for T Post is 5.75 in x 3.625 In x 14 ga, but a smaller area is considered to be effective due to the rigidity!Imitations of the baseplate Width=B = 4.00 in Column Wldth=b = 3.000 in Depth=D = 2.00 in Column depth=b = 1.500 In Plate Thickness=t = 0.075 in L = 0.50 in Mb Fy = 36,000 psi a ■ b L Cross Aisle Loads . ,N• Axial DL= 25 lb Axial L= 625 lb DL+0.751L + 0.75*0.7*Pseismic= 778 lb Pseismic= 541 lb L = Base Plate Depth-Col Depth = 0.50 in fa = P/A = P/(D*8) M= wLA2/2= fa*LA2/2 = 97 psi = 12 in-lb/in Sbase/in = (1)(tA2)/6 Fbase = 0.75*Fy = 0.001 inA3/in = 27,000 psi fb/Fb = M/[(S-plate)(Fb)] J 3r4• --- 0.48 OK ® cs 3LL g CONNECT TO UPRIGHT CONNECT TO UPRIGHT WI(2)1/4'TEK SCREWS W1(�)1/4"TEK3CREW RDSFP FOOTPLATE RAP FOOTPLATE ;I ii WPSS Rivetier II Shelving -1 I-20-17 Page Z f 2 { 611 aizo2l Structural Engineering & Design Inc. 1815 Wright Ave. Ste 2no I a Verne. CA 91750 Tel: 909.596.1351 Fax:9.0 By: Bz Eng: Mqz Project: PORTLAND COMMUNITY COLLEGE 4ftg3•R561 Project*: 21-0616-12 Slab on Grade Configuration: Rivetier II Shelving Type A: 84 in x 48 illi slay : ....•. ........ a 1 Concrete fc= 2,500 psi slob D r b e tslab=t= 5.0 in �rrrrmuuruniunrnnnnmiinu+nmrnruirrrmirurm i Cross :- Phi=f�= 0.60 -- -� --- ' Aisle .. • Lli-- x 'I. f y� � Soil _ fsoll= 750 psf L , ......:.: :.:.: . . : Movt= 9,732 in-lb Down Aisle SLAB ELEVATION Frame depth= 18.0 in Base Plate Baseplate Plan view B= 4.00 In width=a= 3.00 in D= 2.00 in eff, baseplate width=c= 4.00 in depth=b= 1.50 in eff. baseplate depth=e= 2.00 in Load Case 1: Product+ Seismic Product DL= 25 lb P-seismic=E= Movt/Frame depth Product LL= 625 lb (Strength Design Loads) = 541 lb Puncture I Pu= 1.2DL + LOLL + 1.0*E = 1,1151b Fpunct= 2.66*phi*sgrt(fc) Apunct= [(c+t)+(e+t)]*2*t = 79.8 psi = 160.0 in^2 fv/Fv= Pu/(Apunct*Fpunct) Slab Bending = 0.09 < 1.0 OK Asoil= (P*144)/(fsoil) L= (Asoil)^0.5 y= (c*e)^0.5 + t*2 = 214 inA2 = 14.63 In x= (L-y)/2M= = 12.8 = 0 9 in w*xA 2J2 5-slab= 1*t^2/6 Fb= *(phi)*(fc)^D.5 = (fsoil*x^2)/(144*2) = 4.17 inA3 = 2 in-lb fb/Fb= M/(S slab*Fb) = 150, psi = 0.00 < 1.0OK Load Case 2: Static LoadsI DL= 25 lb LL= 625 lb Puncture Pu= 1.2*DL+ 1.6*LL = 943 lb Fpunct= 2.66*phi*sgrt(fc) Apunct= [(c+t)+(e+t)]*2*t = 79.8 psi = 160 in^2 fv/Fv= Pu/(Apunct*Fpunct) ' Slab Bending = 0.07 < 1.0 OK Asoil= (Pu*144)/(fsoil) L= (Asoil)^0.5 = 181 in^2 = 13.45 In y= 1c*8) 0 5 + t*2 * ^ = 12.8 in x= (L-y)/2 M= w x 2/2 S-slab= 1*t^2/6 Fb= 0.3 in *(fc}^0.5 = (fsoil*x^2)/(144*2) = 4.17 in^3 = 0 In-lb fb/Fb= M = 150. psi /(S slab Fb) = 0.00 < 1.0, OK WP55 Rive-tier II Shelving -1 I-20-r 7 r Page 2c of / 6!18l202 I